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Preface

Overview

Circuit Theory and Networks (Analysis and Synthesis) is an important subject for third-semester students of
of Electronics & Telecommunication Engineering and Electronics Engineering. With lucid and brief theory,
this textbook provides thorough understanding of the topics of this subject. Following a problem-solving
approach and discussing both analysis and synthesis of networks, it offers good coverage of dc circuits,
network theorems, two-port networks, and network synthesis.

Generally, numerical problems are expected in university examinations in this subject. The weightage
given to problems in examinations is more than 70-80%. Questions from important topics of this subject
are part of competitive examinations such as IAS, IES, etc. Hence, numerous solved examples and exercise
problems are included in each chapter of this book to help students develop and master problem-solving
skills required to ace any examination with confidence. Objective-type questions from various competitive
examinations are also included at the end of each chapter for easy revision of core concepts.

Salient Features

Up-to-date and full coverage of the latest syllabus of University of Mumbai

Covers both analysis and synthesis of networks

Uses problem-solving approach to explain topics

Lucid coverage of network theorems, transient analysis, two-port networks, network synthesis
Extensively supported by illustrations

Examination-oriented excellent pedagogy:

Hlustrations: 1500+

Solved Examples within chapters 539

Unsolved Problems: 195

Objective Type Questions: 130

AN AN

Chapter Organisation

This text is organised into 11 chapters. Chapter 1 covers basic circuit elements and laws comprising networks.
Chapter 2 elucidates DC network theorems while AC network theorems are covered in Chapter 3. Chapter
4 discusses about magnetic circuits. Further, Chapter 5 discusses the concepts of graph theory. Chapters 6
and 7 elaborate upon transient analysis in time domain and frequency domain, respectively. Chapters 8 and
9 cover network functions and two-port networks. Chapter 10 deals with network synthesis. Lastly, Chapter
11 describes filters.
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Roadmap to the Syllabus

(As per latest revised syllabus of University of Mumbai)
This text is useful for

Circuit Theory and Networks—ECC304

Module 1: Electrical Circuit Analysis

1.1 Analysis of DC and AC Circuits: Analysis of circuits with and without controlled sources using gen-
eralized loop and node matrix methods, circuit theorems: Superposition, Thevenin’s, Norton’s, Maxi-
mum Power Transfer and Reciprocity theorems

1.2 Magnetic Circuits: Concept of self and mutual inductances, coefficient of coupling, dot convention,
equivalent circuit, coupled circuit-solution using mesh analysis

GO TO:

CHAPTER 1. BASIC CIRCUIT CONCEPTS

CHAPTER 2. ANALYSIS OF DC CIRCUITS

CHAPTER 3. ANALYSIS OF AC CIRCUITS

CHAPTER 4. MAGNETIC CIRCUITS

Module 2: Graph Theory

2.1 Objectives of graph theory, linear oriented graphs, graph terminologies, matrix representation of a
graph: incidence matrix, circuit matrix, cut-set matrix, reduced incident matrix, tieset matrix, f-cutset
matrix.

2.2 Relationship between sub matrices A, B and Q.

2.3 KVL and KCL using matrix

GO TO:

CHAPTER 5. GRAPH THEORY

Module 3: Time and Frequency Domain Analysis

3.1 Time Domain Analysis of R-L and R-C Circuits: Forced and natural response, initial and final values
solution using first order differential equation for impulse, step, ramp, exponential and sinusoidal
signals

3.2 Time Domain Analysis of R-L-C Circuits: Forced and natural response, effect of damping factor, solu-
tion using second order equation for step, ramp, exponential and sinusoidal signals.
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3.3 Frequency Domain Analysis: Frequency-domain representation of R, L, C, initial value theorem and
final value theorem, applications of Laplace Transform in analyzing electrical circuits

GO TO:

CHAPTER 6. TIME DOMAIN ANALY SIS OF RLC CIRCUITS

CHAPTER 7. FREQUENCY DOMAIN ANALYSIS OF RLC CIRCUITS

Module 4: Network Functions

4.1 Network functions for the one port and two port networks, driving point and transfer functions, poles
and zeros of network functions, necessary condition for driving point functions, necessary condition
for transfer functions, calculation of residues by analytical and graphical methods, time domain
behavior as related to the pole-zero plot, stability and causality, testing for Hurwitz polynomial

4.2 Analysis of ladder and symmetrical lattice network

GO TO:

CHAPTER 8. NETWORK FUNCTIONS

Module 5: Two Port Networks

5.1 Parameters: Open circuits, short circuit, transmission and hybrid parameters, relationship among pa-
rameters, conditions for reciprocity and symmetry

5.2 Interconnections of two port network 7"and 7 representation

5.3 Terminated two port network

GO TO:

CHAPTER 9. TWO-PORT NETWORKS

Module 6: Synthesis of RLC circuits

6.1 Positive Real Functions: Concept of positive real function, testing for necessary and sufficient
conditions for positive real functions

6.2 Synthesis of LC, RC and RL Circuits: Properties of LC, RC and RL driving point functions, LC, RC
and RL network synthesis in Cauer-I and Cauer-II , Foster-I and Foster-II forms

GO TO:

CHAPTER 10. SYNTHESIS OF RLC CIRCUITS




Roadmap to the Syllabus XV

This text is useful for
Electrical Network Analysis and Synthesis—ELX304

Module 1: Analysis of DC Circuits

1.1 DC Circuit Analysis: Analysis of DC circuits with dependent sources using generalized loop, node
matrix analysis.

1.2 Application of Network Theorems to DC Circuits: Superposition, Thevenin, Norton, Maximum Power
Transfer and Millman theorems.

GO TO:
CHAPTER 1. BASIC CIRCUIT CONCEPTS
CHAPTER 2. ANALYSIS OF DC CIRCUITS

Module 2: Analysis of AC Circuits

2.1 Analysis of Steady State AC circuits: Analysis of AC circuits with independent sources using general-
ized loop, node matrix analysis.

2.2 Application of Network Theorems to AC Circuits: Superposition, Thevenin, Norton, Maximum Power
Transfer and Millman theorems.

2.3 Analysis of Coupled Circuits: Self and mutual inductances, coefficient of coupling, dot convention,
equivalent circuit, solution using loop analysis.

GO TO:
CHAPTER 3. ANALYSIS OF AC CIRCUITS
CHAPTER 4. MAGNETIC CIRCUITS

Module 3: Time and Frequency Domain Analysis of Electrical Networks

3.1 Time Domain Analysis of R-L and R-C Circuits: Forced and natural responses, time constant, initial
and final values.

3.2 Solution using First Order Equation for Standard Input Signals: Transient and steady state time re-
sponse, solution using universal formula.

3.3 Frequency Domain Analysis of RLC Circuits: S-domain representation, concept of complex frequen-
cy, applications of Laplace Transform in solving electrical networks, driving point and transfer func-
tion, poles and zeros, calculation of residues by analytical and graphical method.

GO TO:

CHAPTER 6. TIME DOMAIN ANALYSIS OF RLC CIRCUITS

CHAPTER 7. FREQUENCY DOMAIN ANALYSIS OF RLC CIRCUITS

CHAPTER 8. NETWORK FUNCTIONS
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Module 4: Two Port Networks

4.1 Parameters: Open circuit, short circuit, transmission and hybrid parameters, relationships among pa-
rameters, reciprocity and symmetry conditions
4.2 Series/Parallel Connection: T and Pi representations, interconnection of two port networks.

GO TO:

CHAPTER 9. TWO-PORT NETWORKS

Module 5: Synthesis of RLC Circuits

5.1 Positive Real Functions: Concept of positive real function, testing for Hurwitz polynomials, testing for
necessary and sufficient conditions for positive real functions.
5.2 Synthesis of RC, RL, LC Circuits: Concepts of synthesis of RC, RL, LC driving point functions.

GO TO:

CHAPTER 10. SYNTHESIS OF RLC CIRCUITS

Module 6: Filters

6.1 Basic Filter Circuits: Low pass, high pass, band pass and band stop filters, transfer function, frequency
response, cut-off frequency, bandwidth, quality factor, attenuation constant, phase shift, characteristic
impedance.

6.2 Design and Analysis of Filters: Constant K filters

GO TO:

CHAPTER 11. FILTERS




Basic Circuit

Concepts

E®N| inTrRODUCTION

We know that like charges repel each other whereas unlike charges attract each other. To overcome this force
of attraction, a certain amount of work or energy is required. When the charges are separated, it is said that a
potential difference exists and the work or energy per unit charge utilised in this process is known as voltage
or potential difference.

The phenomenon of transfer of charge from one point to another is termed current. Current (/) is defined as
the rate of flow of electrons in a conductor. It is measured by the number of electrons that flow in unit time.

Energy is the total work done in the electric circuit. The rate at which the work is done in an electric circuit
is called electric power. Energy is measured in joules (J) and power in watts (W).

E®J| Rresistance

Resistance is the property of a material due to which it opposes the flow of electric current through it.

Certain materials offer very little opposition to the flow of electric current and are called conductors, e.g.,
metals, acids and salt solutions. Certain materials offer very high resistance to the flow of electric current and
are called insulators, e.g., mica, glass, rubber, Bakelite, etc.

The practical unit of resistance is ohm and is represented by the symbol Q. A conductor is said to have
resistance of one ohm if a potential difference of one volt across its terminals causes a current of one ampere
to flow through it.

The resistance of a conductor depends on the following factors.

(1) It is directly proportional to its length.

(i1) It is inversely proportional to the area of cross section of the conductor.
(iii) It depends on the nature of the material.
(iv) It also depends on the temperature of the conductor.

Hence,

where / is length of the conductor, 4 is the cross-sectional area and p is a constant known as specific resistance
or resistivity of the material.
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1. Power Dissipated in a Resistor We know that v=R i
When current flows through any resistor, power is absorbed by the resistor which is given by
p=vi
The power dissipated in the resistor is converted to heat which is given by

t t
E=J.vidt=J.Riidt=i2Rt
0 0

EE}| inoucTance

Inductance is the property of a coil that opposes any change in the amount of current flowing through it. If
the current in the coil is increasing, the self-induced emf is set up in such a direction so as to oppose the rise
of current. Similarly, if the current in the coil is decreasing, the self-induced emf will be in the same direction
as the applied voltage.

Inductance is defined as the ratio of flux linkage to the current flowing through the coil. The practical unit
of inductance is henry and is represented by the symbol H. A coil is said to have an inductance of one henry
if a current of one ampere when flowing through it produces flux linkages of one weber-turn in it.

The inductance of an inductor depends on the following factors.

(1) It is directly proportional to the square of the number of turns.
(i) Itis directly proportional to the area of cross section.
(ii1) It is inversely proportional to the length.
(iv) It depends on the absolute permeability of the magnetic material.

Hence,
2
LOCN A
l
2
L:“NIA

where [ is the mean length, A4 is the cross-sectional area and y is the absolute permeability of the magnetic
material.

1. Current-Voltage Relationships in an Inductor We know that

Expressing inductor current as a function of voltage,

1
di=—vdt
L
Integrating both the sides,
i(1) I
[di==[va
i(0) 0

i(t)= %Jvdt+i(0)
0



1.4 Capacitance 1.3

The quantity i(0) denotes the initial current through the inductor. When there is no initial current
through the inductor,
1 t
i(H=—|vdt
0 L{

2. Energy Stored in an Inductor Consider a coil of inductance L carrying a changing current /. When
the current is changed from zero to a maximum value /, every change is opposed by the self-induced emf
produced. To overcome this opposition, some energy is needed and this energy is stored in the magnetic
field. The voltage v is given by

di

v=L—
dt

Energy supplied to the inductor during interval dt is given by
, di . .
dE =vidt=L—idt=Lidt
dt
Hence, total energy supplied to the inductor when current is increased from 0 to / amperes is

I I 1
E:JdE:jLidi:Ele
0 0

BN caracitance

Capacitance is the property of a capacitor to store an electric charge when its plates are at different potentials.
If O coulombs of charge is given to one of the plates of a capacitor and if a potential difference of V' volts is
applied between the two plates then its capacitance is given by

The practical unit of capacitance is farad and is represented by the symbol F. A capacitor is said to have
capacitance of one farad if a charge of one coulomb is required to establish a potential difference of one volt
between its plates.

The capacitance of a capacitor depends on the following factors.

(1) Itis directly proportional to the area of the plates.
(ii) TItis inversely proportional to the distance between two plates.
(iii) It depends on the absolute permittivity of the medium between the plates.

Hence,

where d is the distance between two plates, 4 is the cross-sectional area of the plates and & is absolute
permittivity of the medium between the plates.
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1.

Current-Voltage Relationships in a Capacitor The charge on a capacitor is given by
q=Cv

where g denotes the charge and v is the potential difference across the plates at any instant.
We know that

,_dq_dc _Cdv

Taar dr

Expressing capacitor voltage as a function of current,

dv= lidt
c
Integrating both the sides,

Ta-L]
dv=—|idt
v(0) ’ COl

v(t)zé{idt+v(0)

The quantity v (0) denotes the initial voltage across the capacitor. When there is no initial voltage on
the capacitor,

1 t
v(t)=E_([l dt

Energy Stored in a Capacitor Let a capacitor of capacitance C farads be charged from a source of
V volts. Then current i is given by

i=C—
dt
Energy supplied to the capacitor during interval dt is given by

dE =vidt = vC@dt
dt

Hence, total energy supplied to the capacitor when potential difference is increased from 0 to ¥ volts is

V 4 1
E=JdE=JCvdv=ECV2
0 0

EX}| sources

Source is a basic network element which supplies energy to the networks. There are two classes of sources,
namely,

1. Independent sources
2. Dependent sources



1.5.1 Independent Sources

Output characteristics of an independent source are not dependent on any network variable such as a current
or voltage. Its characteristics, however, may be time-varying. There are two types of independent sources:

1. Independent voltage source
2. Independent current source

Independent Voltage Source An independent voltage
source is a two-terminal network element that establishes a
specified voltage across its terminals. The value of this voltage
at any instant is independent of the value or direction of the
current that flows through it. The symbols for such voltage
sources are shown in Fig. 1.1.

The terminal voltage may be a constant, or it may be some
specified function of time.
Independent Current Source An independent current
source is a two-terminal network element which produces a
specified current. The value and direction of this current at any
instant is independent of the value or direction of the voltage that
appears across the terminals of the source. The symbols for such
current sources are shown in Fig. 1.2.

The output current may be a constant or it may be a function
of time.

1.5.2 Dependent Sources

If the voltage or current of a source depends in turn upon some other
voltage or current, it is called as dependent or controlled source. The
dependent sources are of four kinds, depending on whether the
control variable is voltage or current and the controlled source is a
voltage source or current source.

1.

1.5 Sources 1.5

(a) (b)
Fig. 1.1 Symbols for independent

voltage source

(a) (b)

Fig. 1.2 Symbols for independent

Voltage-Controlled Voltage Source (VCVS) A

voltage-controlled voltage source is a four-terminal ao—

network componentthatestablishesa voltagev_ between

two points ¢ and d in the circuit that is proportional to a Vab

voltage v, between two points a and b. po—
The symbol for such a source is shown in Fig. 1.3.

current source
| — oc
+
HVap Ved
45(1

The (+) and (-) sign inside the diamond of the
component symbol identifies the component as a
voltage source.

vz'dzlu vab

The voltage v, depends upon the control voltage

Fig. 1.3 Symbol for VCVS

v, and the constant 4, a dimensionless constant called

voltage gain. as

Voltage-Controlled Current Source

(VCCS) A voltage-controlled current source is a
bo——

four-terminal network component that establishes a
current i_,in a branch of the circuit that is proportional

9mVab

to the voltage v , between two points a and b.
The symbol for such a source is shown in Fig. 1.4.

Fig. 1.4 Symbol for VCCS
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The arrow inside the diamond of the component symbol identifies the component as a current

source.

lcd = gm vab

The current i , depends only on the control voltage v , and the constant g , called the transconductance
or mutual conductance. The constant g has dimension of ampere per volt or siemens (S).

Current-Controlled Voltage Source (CCVS) A
current-controlled voltage source is a four-terminal
network componentthatestablishesavoltage v, between
two points ¢ and d in the circuit that is proportional to
the current i , in some branch of the circuit.

The symbol for such a source is shown in
Fig. 1.5.
=ri

v(fd

ab

The voltage v_, depends only on the control current
i, and the constant » called the transresistance or
mutual resistance. The constant » has dimension of

volt per ampere or ohm (€2).

Current-Controlled Current Source (CCCS)
A current-controlled current source is a four-terminal
network component that establishes a current i,
in one branch of a circuit that is proportional to the
current i, in some branch of the network.

The symbol for such a source is shown in
Fig. 1.6.

icd = B iab

I'iab

Ved

+——od

Fig. 1.5 Symbol for CCVS

/B iab

Fig. 1.6 Symbol for CCCS

The current i, depends only on the control current i , and the dimensionless constant 3, called the current gain.

E¥A| some periniTIONS

1.

Network and Circuit The interconnection

of two or more circuit elements (viz., voltage
sources, resistors, inductors and capacitors)
C %4

is called an electric network. If the network
contains at least one closed path, it is called

[

an electric circuit. Every circuit is a network, o
but all networks are not circuits. Figure 1.7(a)

(a) (b)

shows a network which is not a circuit and Fig. Fig. 1.7 (a) Network which is not a circuit
(b) Network which is a circuit

1.7(b) shows a network which is a circuit.
Linear and Non-linear Elements If the

resistance, inductance or capacitance offered by an element does not change linearly with the change in
applied voltage or circuit current, the element is termed as /inear element. Such an element shows a linear
relation between voltage and current as shown in Fig. 1.8. Ordinary resistors, capacitors and inductors are

examples of linear elements.
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A non-linear circuit element is one in which the current does not change linearly with the change
in applied voltage. A semiconductor diode operating in
the curved region of characteristics as shown in Fig. 1.8 {
is common example of non-linear element.

Other examples of non-linear elements are voltage-
dependent resistor (VDR), voltage-dependent capacitor
(varactor), temperature-dependent resistor (thermistor), light- &
dependent resistor (LDR), etc. Linear elements obey Ohm’s ¥
law whereas non-linear elements do not obey Ohm’s law.

Active and Passive Elements Anelement which is a &
source of electrical signal or which is capable of increasing D

the level of signal energy is termed as active element. ) v
Batteries, BJTs, FETs or OP-AMPs are treated as active
elements because these can be used for the amplification
or generation of signals. All other circuit elements, such as
resistors, capacitors, inductors, VDR, LDR, thermistors,
etc., are termed passive elements. The behaviour of active elements cannot be described by Ohm’s law.

Fig. 1.8 V-I characteristics of linear and
non-linear elements

Unilateral and Bilateral Elements 1If the magnitude of current flowing through a circuit element
is affected when the polarity of the applied voltage is changed, the element is termed unilateral element.
Consider the example of a semiconductor diode. Current flows through the diode only in one direction.
Hence, it is called an unilateral element. Next, consider the example of a resistor. When the voltage is
applied, current starts to flow. If we change the polarity of the applied voltage, the direction of the current
is changed but its magnitude is not affected. Such an element is called a bilateral element.

Lumped and Distributed Elements A lumped element is the element which is separated physically,
like resistors, inductors and capacitors. Distributed elements are those which are not separable for analysis
purposes. Examples of distributed elements are transmission lines in which the resistance, inductance and
capacitance are distributed along its length.

Active and Passive Networks A network which contains at least one active element such as an
independent voltage or current source is an active network. A network which does not contain any active
element is a passive network.

Time-invariant and Time-variant Networks A network is said to be time-invariant or fixed if its
input—output relationship does not change with time. In other words, a network is said to time-invariant,
if for any time shift in input, an identical time-shift occurs for output. In time-variant networks, the
input—output relationship changes with time.

BE®A| SErIES AND PARALLEL COMBINATIONS OF RESISTORS

Let R|,R, and R; be the resistances of three resistors

T : / Ry R Rs
connected in series across a dc voltage source V as shown in
Fig. 1.9. Let V1, V, and V3 be the voltages across resistances
R;, R, and R; respectively. —Vi V2 t— V3 —
In series combination, the same current flows through
each resistor but voltage across each resistor is different. } |
V=W+V,+V; v
Rel=RI+RI+RI Fig. 1.9 Series combination of resistors

Rr=R+R+R;
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Hence, when a number of resistors are connected in series, the equivalent resistance is the sum of all the

individual resistance.

1. Voltage Division and Power in a Series Circuit

Total power

Figure 1.10 shows three resistors connected in parallel across
a dc voltage source V. Let [;,I, and I3 be the current flowing

B 14
R1+R2 +R3
R
W=RI=—1V
R+R+R;
R
Vy=Ry[=—2 1
R+R+R;
R
Vy=Ryl=—3 )
R+R+R;
Pr=R+P+P

=I’R+I*R,+I°Ry
2 2 2
V.
NN
R R R

through resistors Ry, R, and R; respectively.

In parallel combination, the voltage across each resistor is

same but current through each resistor is different.

I=L+0L+1;

V Vv Vv Vv

— =+ —

R R R R

1 1 1 1

— =+

Rr R R R

_ R R Rs
RRR+RR+R R

T

R,

R,

Rs

Fig. 1.10

[y
‘ I
"4
Parallel combination
of resistors

Hence, when a number of resistors are connected in parallel, the reciprocal of the equivalent resistance
is equal to the sum of reciprocals of individual resistances.

2. Current Division and Power in a Parallel Circuit

V:RT]:R1]1:R2[2:R3[3

poV Rl RR

R R RR+RR+RR
LoV Rl RE

R, R RR+RR+RR

V. Ryl RR,
L=—="1"2

"Ry R, RR+RR+RR
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Total power Pr=R+P+Ph
=IER + 3R+ I3R;
v: oyt R
=—t—+—
R R R
Note: For two branch circuits, Ry = R R
R+R
V=R I=RIL=R1,
LV Rl R
! R] R1 R1 + R2
V. Rrl R
12 ===
R R, R+R)

E¥H| SserIES AND PARALLEL COMBINATION OF INDUCTORS

Let L;,L, and L3 be the inductances of three inductors connected i L Ly Ly
in series across an ac voltage source v as shown in Fig. 1.11. Let
vi,v, and v; be the voltages across inductances L;,L, and L3
respectively.

In series combination, the same current flows through each
inductor but the voltage across each inductor is different.

V=Vv+v+Wv

di . di . di  di

Fig. 1.11 Series connection of

Lr—=L—+L,—+1;— inductors
dt dt dt dt

LT =L1+L2 +L3

Hence, when a number of inductors are connected in series, the equivalent inductance is the sum of all the
individual inductances.

Figure 1.12 shows three inductors connected in parallel Iy L
across an ac voltage source v. Let ij,i, and i3 be the current
through each inductance L, L, and L3 respectively. i| ik Ly
In parallel combination, the voltage across each inductor _
is same but the current through each inductor is different. s WLZ?ZS\
i=h+ih+0 —~
~
1 1 1 1 N
— vdtz—J.vdt+—J.vdt+—J‘vdt v
Ly L 2 L
1 111 Fig. 1.12 Parallel connection of inductors

Ly Llfzg

_ L L L3
T Ly + Lol + L1,

Hence, when a number of inductors are connected in parallel, the reciprocal of the equivalent inductance
is equal to the sum of reciprocals of individual inductances.
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BEXD| SERrIES AND PARALLEL COMBINATION OF CAPACITORS

Let C;,C, and C3 be the capacitances of three capacitors connected in series across an ac voltage source v as
shownin Fig 1.13. Let v;,v, and v; be the voltages across capacitances C, C, Cs
Cy,C;, and C; respectively. } } } } |

In series combination, the charge on each capacitor is same but
oo e—V, ‘ v, ‘ Va—>
voltage across each capacitor is different. ! ! 2 ! 3

1 v= vi +vy + v31 1 @

T ! 2 3 Fig. 1.13 Series combination of
1_r. t.1 capacitors
r G G G

GGGy

r= CiCy + C,C5 + GG

Hence, when a number of capacitors are connected in series, the reciprocal of the equivalent capacitance
is equal to the sum of reciprocals of individual capacitances.

1. Voltage Division in a Series Circuit

0=CrV =C1 =Cyl, =C3ls i ‘0‘1
0 CV C, Cy | |
I/l == = ) ; 02
G G CiC, + GG + GG i A } }
v, = 2: CrV _ C G y i ‘0‘3
C2 C2 C]C2 +C2C3 +C3C1 | |
V= Q_GV_ GG S
G G CG+GG+GG \V/

Figure 1.14 shows three capacitors connected in parallel across
an ac voltage source v. Let 7,7, and i3 be the current through each
capacitance Cy,C, and Cj respectively.

In parallel combination, the voltage across each capacitor is same but current through each capacitor is
different.

Fig. 1.14 Parallel combination
of capacitors

I=h+i)+i
d d d d
CTl:C1l+Czl+C3l
dt dt dt dt
Cr=C+Cy+C5

Hence, when a number of capacitors are connected in parallel, the equivalent capacitance is the sum of all
the individual capacitance.

ERTN| sTAR-DELTA TRANSFORMATION

When a circuit cannot be simplified by normal series—parallel reduction technique, the star-delta transformation
can be used.

Figure 1.15 (a) shows three resistors R, R, and R . connected in delta.

Figure 1.15 (b) shows three resistors R, R, and R, connected in star.
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Ra
(a) (b)

Fig. 1.15 (a) Delta network (b) Star network

These two networks will be electrically equivalent if the resistance as measured between any pair of
terminals is the same in both the arrangements.

1.10.1 Delta to Star Transformation

Referring to delta network shown in Fig. 1.15 (a),
Rc (R4 +Rs)
Ry+Rp+Rc
Referring to the star network shown in Fig. 1.15 (b), the resistance between terminals 1 and2 = R + R, .
Since the two networks are electrically equivalent,

_ Re(Ra+Rp)
Ry+ R +Rc

Similarly, Ry+ Ry = RaRe* Re) (1.2)

R4+ Rp+Rc

the resistance between terminals 1 and 2= R || (R, + Rg) =

R +R, (L)

and Ri+R=——"""~ ..(L.3)
Subtracting Eq. (1.2) from Eq. (1.1),

(1.4)

Adding Eq. (1.4) and Eq. (1.3),

__ ReRe
Ry+Rys+Rc

__ RuRe
R,+Rz+Re

R

Similarly, R,

R, Rp

3T R+ Ry + Re

Thus, star resistor connected to a terminal is equal to the product of the two delta resistors connected to
the same terminal divided by the sum of the delta resistors.
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1.10.2 Star to Delta Transformation
Multiplying the above equations,

2
RR, = RaRyRe P ~(1.5)
(R4 +Rp +Rc)
2
RyRy = —RaReRe 5 (1.6)
(R4+Rp+Re)
2
RyR = —LafoRe (17)
(R4+Rp +Rc)
Adding Egs (1.5), (1.6) and (1.7),

RR> + RoRs + RsR, = RyRpRc(R4+Rp+Rc) — RyRpRc

" Ry+Rz+Re

(Ry+Rg +Rc)’

=RyR =RpR, =RcR3
Hence,

RR, + RyRs + 3Ry
Ry=

R
= R2 +R3 + 273
R R
RR, +R2R3 +R3R1 R3R1
Ry =

“R+Ry+
R2 1 3

2

RC _ RR, +R2R3 + R3R| RR,

=R +R+
R3 1 2

Ry
Thus, delta resistor connected between the two terminals is the sum of two star resistors connected to the
same terminals plus the product of the two resistors divided by the remaining third star resistor.

Note: (1) When three equal resistors are connected in delta (Fig. 1.16), the equivalent star resistance is given by

RARA Ra
RY = =
RA+ Rp + Ry 3
RA :3Ry
A
Ry

Fig. 1.16 Equivalent star resistance for three equal delta resistors

(2) Star-delta transformation can also be applied to network containing inductors and capacitors.
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EBEN| source TRANSFORMATION

A voltage source with a series resistor can be converted into a equivalent current source with a parallel
resistor. Conversely, a current source with a parallel resistor can be converted into a voltage source with a
series resistor as shown in Fig. 1.17.

(a) (b)
Fig. 1.17 Source transformation

Source transformation can be applied to dependent sources as well. The controlling variable, however
must not be tampered with any way since the operation of the controlled sources depends on it.

” DET[I RSN Replace the given network of Fig. 1.18 with a single current source and a resistor.
o A

10 A 6 Q

5Q

20V—’r
° B

Fig. 1.18

A
2
Solution  Since the resistor of 5 Q is connected in parallel with the voltage 80V
source of 20 V it becomes redundant. Converting parallel combination 60 = %
5
B B

of current source and resistor into equivalent voltage source and resistor 6Q
(Fig. 1.19), 20V
By source transformation (Fig. 1.20),
O A
Fig. 1.19
13.33A (D 6Q
o B

Fig. 1.20

” SET[IMWA  Reduce the network shown in Fig. 1.21 into a single source and a single resistor be-

tween terminals A and B.
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0A
1A 2Q 2Q
Lav
39% §1Q
6V T3V

5B

Fig. 1.21

Solution  Converting all voltage sources into equivalent current sources (Fig. 1.22),

oA
1A 20 20 2A
2A 30 10 3A
5B
Fig. 1.22

Adding the current sources and simplifying the network (Fig. 1.23),

A
10 3A
0.75Q 1A
B
Fig. 1.23

Converting the current sources into equivalent voltage sources (Fig. 1.24),

QA A
s

10 3.75V
=
0.75Q 1750
0.75V T B B
Fig. 1.24

” SETNII MR Replace the circuit between A and B in Fig. 1.25 with a voltage source in series with

a single resistor.
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oA

5Q 6Q
RN

o B

Fig. 1.25

Solution Converting the series combination of voltage source of 20 V and a resistor of 5 Q into equivalent
parallel combination of current source and resistor (Fig. 1.26),

oA

3A Q) 30Q 50 Q G>4A 5Q 6Q

o B

Fig. 1.26

Adding the two current sources and simplifying the circuit (Fig. 1.27),
0 A

7A<D 30|50 |5/ 6=2.38 Q

o B

Fig. 1.27

By source transformation (Fig. 1.28),

2.38Q

0 A
16.67V

o B

Fig. 1.28

” SETII NN Find the power delivered by the 50 V source in the network of Fig. 1.29.

3Q

Fig. 1.29
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Solution Converting the series combination of voltage source of 10 V and resistor of 3 Q into equivalent
current source and resistor (Fig. 1.30),

5Q

Q>1OA 2Q <D3.33A 3Q

50V
T

Fig. 1.30

Adding the two current sources and simplifying the network (Fig. 1.31),

5Q

<D13.33 A 12Q

50V

Fig. 1.31

By source transformation (Fig. 1.32),

59% /\/V %1.29
L T

50V 16V
Fig. 1.32
I= >0-16 =548 A
5+1.2

Power delivered by the 50 V source = 50 x 5.48 =274 W

” SETII MW  Find the current in the 4 Qresistor shown in network of Fig. 1.33.

SACD 20 (DZA 40

Fig. 1.33

Solution Converting the parallel combination of the current source of 5 A and the resistor of 2 Q into an
equivalent series combination of voltage source and resistor (Fig. 1.34),
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2Q 6V

10V—/—
(Den 3o

Fig. 1.34

Adding two voltage sources (Fig. 1.35),
2Q

Fig. 1.35

Again by source transformation (Fig. 1.36),

2A() S2a (Dea Sea

Fig. 1.36

Adding two current sources (Fig. 1.37),

4A<E> 2Q 4Q

Fig. 1.37

By current-division rule,

2
Lig=4x——=133A
o 2+4

” SETII MM Find the voltage across the 4 Q2 resistor shown in network of Fig. 1.38.
3Q 2Q 1Q

6V —/— 6Q Q 3A 4Q

Fig. 1.38

1.17
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Solution Converting the series combination of the voltage source of 6 V and the resistor of 3 Q into
equivalent current source and resistor (Fig. 1.39),

2Q 1Q

2A<D 3Q 6Q G>3A 4Q

Fig. 1.39
By series—parallel reduction technique (Fig. 1.40),

2Q 1Q

ZACD 2Q G)SA 4Q

By source transformation (Fig. 1.41),

2Q 1Q 1Q

2Q 4Q

O ONNEIT

1Q 1Q 4Q  1Q

1A<D 40 G)GA 40 4A<D 40Q 40 16vT 40

Fig. 1.41
=—1% _i8a
4+41+4

Voltage across the 4 Q resistor =4/ =4x1.78=7.12V
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” Example WA Find the voltage at Node 2 of the network shown in Fig. 1.42.

1 50 Q 2
! 100 Q
15V 100 Q
T 101/
Fig. 1.42

Solution We cannot change the network between nodes 1 and 2 since the controlling current 7, for the
controlled source, is in the resistor between these nodes. Applying source transformation to series combination
of controlled source and the 100 Q resistor (Fig. 1.43),

1 1 50Q 2 1 7 50Q 2
15V JT 0.1/ 100 Q 100 Q 15V JT 011/ 50 Q
1 ] 50Q 2 50 Q

| .

Fig. 1.43

Applying KVL to the mesh,
15-507-50/-51=0

1 =1—5= 0.143 A
105

Voltage at Node 2 =15-50/ =15-50x0.143=7.86 V

ERPN| sourcesHiFTING

Source shifting is the simplification technique used when there is no resistor in series with a voltage source
or a resistor in parallel with a current source.
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” Example W Calculate the voltage across the 6 Q resistor in the network of Fig. 1.44 using source-
shifting technique.

3Q

(@)¢

® 4Q (3 1Q ®

N

18V —— 20 6Q

Fig. 1.44

Solution  Adding a voltage source of 18 V to the network and connecting to Node 2 (Fig. 1.45), we have

@ 30

@ 40 ©) 10 @

18V ——

18V

=

Fig. 1.45
Since nodes 1 and 2 are maintained at the same voltage by the sources, the connection between nodes 1
and 2 is removed. Now the two voltage sources have resistors in series and source transformation can be

applied (Fig. 1.46).

18V 3Q

18V 4Q 10

20 6QV,

Fig. 1.46



Simplifying the network (Fig. 1.47),
18V

1.21

Exercises

‘ 30 15"“’ 3Q
N H
45A
45A @ 1Q
1Q —
1.33Q
4Q +
20 60>V,
N 60Q
AL
(@) (b) 4
18‘\/ 30 v,
1
5985V 1330 10 3Q 2.330Q 60
w
18V 5.985V
=, n
(c) (d)
Fig. 1.47
Applying KCL at the node,
V,—-18 V,-5985 V,
+ +—==0
3 2.33 6
V,=923V
EXGI’CISGS
1.1 Use source transformation to simplify the 1.2 Determine the voltage V_in the network of
network until two elements remain to the left Fig. 1.49 by source-shifting technique.
of terminals 4 and B.
3Q
6 kQ 3.5kQ
ANN—o A
2Q 1Q
VX
2kQ 3kQ G 20mA < 12kQ
2v —— 20 50
B
Fig. 1.48 Fig. 1.49
[88.42 V., 7.92k Q] g L

[1.129 V]
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Objective-Type Questions

1.1

1.2

1.3

14

1.5

A network contains linear resistors and ideal
voltage sources. If values of all the resistors
are doubled then the voltage across each
resistor is

(a) halved
(b) doubled

(c) increased by four times
(d) not changed

Four resistances 80 Q, 50 Q, 25 Q. and R are
connected in parallel. Current through 25 Q
resistor is 4 A. Total current of the supply is
10 A. The value of R will be

(a) 66.66 Q (b) 40.25Q

(c) 36.36Q (d) 76.56Q

Viewed from the terminal AB, the network
of Fig. 1.50 can be reduced to an equivalent
network of a single voltage source in series with
a single resistor with the following parameters

Ao L

0V 5V
10Q 4Q
Bo
Fig. 1.50

(a) 5V source in series with a 10 € resistor
(b) 1V source in series with a 2.4 Q resistor
(¢) 15V source in series with a 2.4 Q resistor
(d) 1V source in series with a 10 € resistor
A 10V battery with an internal resistance of 1
is connected across a nonlinear load whose
V-I characteristic is given by 7/ = Vie2v.
The current delivered by the battery is

(@ 0 (b) 10A

(c) 5A (d 8A

If the length of a wire of resistance R is

uniformly stretched to » times its original
value, its new resistance is

1.6

1.7

1.8

(@ nR (b)

(c) n’R (d)

Solx = 1=

All the resistances in Fig. 1.51 are 1 Q each.
The value of / will be

Fig. 1.51
i 2
LA by = A
@ 13 ® 75
4 8
© 13 @ 15

The current waveform in a pure resistor at
10 Q is shown in Fig. 1.52. Power dissipated
in the resistor is

A
9
0 3 6 t
Fig. 1.52
(@) 729W (b) 524 W
() 135W d 270w

Two wires 4 and B of the same material
and length L and 2L have radius » and 2r
respectively. The ratio of their specific
resistance will be

(@ 1:1 (b) 1:2
(c) 1:4 (d 1:8
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Answers to Objective-Type Questions

1.1. (d) 1.2. (c) 1.3. (b) 1.4. (c) 1.5. (c) 1.6. (d) 1.7. (d)
1.8. (b)






Analysis of DC

Circuits

EX}| inTrRODUCTION

In Chapter 1, we have studied basic circuit concepts. In network analysis, we have to find currents and
voltages in various parts of networks. In this chapter, we will study elementary network theorems like
Kirchhoff’s laws, mesh analysis and node analysis. These methods are applicable to all types of networks.
The first step in analyzing networks is to apply Ohm’s law and Kirchhoff’s laws. The second step is the
solving of these equations by mathematical tools. There are some other methods also to analyse circuits.
We will also study superposition theorem, Thevenin’s theorem, Norton’s theorem, maximum power transfer
theorem, Reciprocity theorem and Millman’s theorem. We can find currents and voltages in various parts of
the circuits with these methods.

EX]| KiRcHHOFF's LAWS

The entire study of electric network analysis is based mainly on Kirchhoff’s laws. But before discussing this,
it is essential to familiarise ourselves with the following terms:
Node A node is a junction where two or more network elements are connected together.
Branch An element or number of elements connected between two nodes constitute a branch.
Loop A loop is any closed part of the circuit.
Mesh A mesh is the most elementary form of a loop and cannot be further divided into other loops.
All meshes are loops but all loops are not meshes.

1. Kirchhoff's Current Law (KCL) The algebraic sum of currents meeting
at a junction or node in an electric circuit is zero.
Consider five conductors, carrying currents /, /,, [, I, and I, meeting at a
point O as shown in Fig. 2.1. Assuming the incoming currents to be positive
and outgoing currents negative, we have

1 +(—12)+13 +(—I4)+15 =0
L—1L+1-14+15 =0
L+L+1s=1+14

Fig. 2.1 Kirchhoff’s
Thus, the above law can also be stated as the sum of currents flowing towards current law

any junction in an electric circuit is equal to the sum of the currents flowing away from that junction.
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2. Kirchhoff’s Voltage Law (KVL) The algebraic sum of all the voltages in any closed circuit or mesh
or loop is zero.
If we start from any point in a closed circuit and go back to that point, after going round the circuit,
there is no increase or decrease in potential at that point. This means that the sum of emfs and the sum of
voltage drops or rises meeting on the way is zero.

3. Determination of Sign A rise in potential can be assumed to be positive while a fall in potential can
be considered negative. The reverse is also possible and both conventions will give the same result.

(i) Ifwe go from the positive terminal of the battery or source to the negative terminal, there is a fall in
potential and so the emf should be assigned a negative sign (Fig. 2.2a). If we go from the negative
terminal of the battery or source to the positive terminal, there is a rise in potential and so the emf
should be given a positive sign (Fig. 2.2b).

[ Ny
N _
(a) Fall in potential (b) Rise in potential
Fig. 2.2 Sign convention
(i) When current flows through a resistor, there is a voltage drop across it. If we go through the resistor
in the same direction as the current, there is a fall in the potential and so the sign of this voltage
drop is negative (Fig. 2.3a). If we go opposite to the direction of the current flow, there is a rise in
potential and hence, this voltage drop should be given a positive sign (Fig. 2.3b).

i — — i
+ NWJr
(a) Fall in potential (b) Rise in potential

Fig. 2.3 Sign convention

EXN| MesH anAvysis

A mesh is defined as a loop which does not contain any other loops within it. Mesh analysis is applicable only
for planar networks. A network is said to be planar if it can be drawn on a plane surface without crossovers.
In this method, the currents in different meshes are assigned continuous paths so that they do not split at a
junction into branch currents. If a network has a large number of voltage sources, it is useful to use mesh
analysis. Basically, this analysis consists of writing mesh equations by Kirchhoff’s voltage law in terms of
unknown mesh currents.

Steps to be Followed in Mesh Analysis

1. Identify the mesh, assign a direction to it and assign an unknown current in each mesh.

2. Assign the polarities for voltage across the branches.

3. Apply KVL around the mesh and use Ohm’s law to
express the branch voltages in terms of unknown mesh
currents and the resistance.

4. Solve the simultaneous equations for unknown mesh
currents.

Vi

Consider the network shown in Fig. 2.4 which has three
meshes. Let the mesh currents for the three meshes be /7, /,, and
I, and all the three mesh currents may be assumed to flow in the

clockwise direction. The choice of direction for any mesh current
is arbitrary. Fig. 2.4 Circuit for mesh analysis
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Applying KVL to Mesh 1,
N-R(h-L)-R (i -13)=0

(R+R)L R I,-R I3 =V, (2.1)
Applying KVL to Mesh 2,
Vo=Rylh —Ra(lp —13)—Ri (I, - 1,)=0
“RL+(R+Rs+R)L-Ry 3=V, ...(2.2)
Applying KVL to Mesh 3,
R (-5)-R (3 -1)-Rsl3+V3=0
Ryl — Ry, + (R + Ry +Rs) 3 =73 ...(2.3)
Writing Egs (2.1),(2.2), and(2.3) in matrix form,
R+R -R -R, 0] [%]
-R  R+R+Ry —Ry L =1
R, —Ry Ro+Ry+Rs || 1] | V3]

In general,
Ry Ry Rsf|lh 4
Ry Ryn Ru||L|=("

Ry Ry Rz ||z [V3]

where, R, = Self-resistance or sum of all the resistance of mesh 1
R, =R, =Mutual resistance or sum of all the resistances common to meshes 1 and 2
R, = R,, = Mutual resistance or sum of all the resistances common to meshes 1 and 3
R,, = Self-resistance or sum of all the resistance of mesh 2
R,, = R,, = Mutual resistance or sum of all the resistances common to meshes 2 and 3
R,, = Self-resistance or sum of all the resistance of mesh 3
If the directions of the currents passing through the common resistance are the same, the mutual resistance
will have a positive sign, and if the direction of the currents passing through common resistance are opposite
then the mutual resistance will have a negative sign. If each mesh current is assumed to flow in the clockwise
direction then all self-resistances will always be positive and all mutual resistances will always be negative.
The voltages V', V, and V, represent the algebraic sum of all the voltages in meshes 1, 2 and 3 respectively.
While going along the current, if we go from negative terminal of the battery to the positive terminal then its
emf is taken as positive. Otherwise, it is taken as negative.

” D E I WM Find the current through the 5 Q2 resistor is shown in Fig. 2.5.

1Q 2Q
$5§2

|

[
\Y 4Q

|

I

[
w
o
—VV\H

10V —=
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Solution  Assign clockwise currents
Applying KVL to Mesh 1,

in three meshes as shown in Fig. 2.6.

10-17, =3(I, = I,)—6(I; = I3) = 0

105,-31,-615=10 ...(1)
Applying KVL to Mesh 2,
1Q 2Q
=3I, -L)-21,-5I,-5=0
— =_ .
3L +100, =5 (ii) - o
Applying KVL to Mesh 3,
h
—6(1;—1 —-41;+20=
(3 =h)+5-41+20=0 10V ,D ——
—61,+1013 =25 ... (iii) / 5V
Writing Eqs (i), (i1) and (iii) in matrix form, " 60 /D 40
Ok o - /
10 -3 —6|[5] [10 L
— ‘\
-3 10 0 |[LL|=|-5 20V
-6 0 10| I3] [25 Fig. 2.6
We can write matrix equation directly from Fig. 2.6,
Ry Ry Rsl|[4L] [n
Ry Rn Ry || L2 |=|12
Ry Ry Rz ||| |3
where R, = Self-resistance of Mesh 1 =1+3 + 6 =10 Q

R, = Mutual resistance common to meshes 1 and 2 = -3 Q
Here, negative sign indicates that the current through common resistance are in opposite direction.
R, = Mutual resistance common to meshes 1 and 3 = -6 Q

Similarly,

For voltage matrix,

Solving Egs (1), (ii) and (iii),

Ry =-3Q

Ry =3+2+5=10Q
Rz =0

Ry =—6Q

Ryp =0

Ry3;=6+4=10Q

V=10V

Vo==5V
V., = algebraic sum of all the voltages in mesh 3=5+20=25V

L =427 A
I, =078 A
I,=5.06 A

ISQ :]2 :078A



2.3 Mesh Analysis 2.5

”m Determine the current through the 5 Q2 resistor of the network shown in Fig. 2.7.

1oV
1 ”
8V 1Q 4Q
2Q 3Q
f
12V 5Q
Fig. 2.7

Solution  Assign clockwise currents in three meshes as shown in Fig. 2.8.
Applying KVL to Mesh 1,

8-1(/i =12)=2(, -15)=0
311—[2—21328 (1) 8V —
Applying KVL to Mesh 2,
10-41,-3(l,-13)-1(l,-1)=0
- +81,-313=10 ...(11)
Applying KVL to Mesh 3,
2(z;-1)-3(3-1,)-51+12=0
20L-3,+1015=12 ...(1i1)
Solving Eqs (1), (ii), and (iii),
I, =6.01A
I,=327A
I3 =338A

I5Q =[3 =338A

”m Find the current through the 2 (2 resistor in the network of Fig. 2.9.

3Q

QONDIE AP EAIDE
ho T8V b A TQV

Fig. 2.9

Solution Mesh 1 contains a current source of 6 A. Hence, we can write current equation for Mesh 1. Since
direction of current source and mesh current /, are same,

1,=6 .G
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Applying KVL to Mesh 2,
36—12([2 —[1)—6([2 —[3):0
36-12(1, —6)—61,+613=0

187, -613 =108 ...(11)
Applying KVL to Mesh 3,
—6(I3-1;)-313-213-9=0
61,-111;=9 ...(1il)
Solving Eqs (ii) and (iii),
I;=3A
Lo=1;=3A

” S ETII W Find the current through the 5 Qresistor in the network of Fig. 2.10.
3A

ZQD
AN

lp
4A ) 59) %292 3A
I Iy I
1 T 2

Vv 4

Fig. 2.10

Solution  Writing current equations for Meshes 1, 2 and 4,

I, = ..(1)
I, = ..(i1)
1,=-3 ...(ii1)
Applying KVL to Mesh 3,
=S5(;-1))-2(;-1,)-2(;—-1,)-2=0 ...(iv)

Substituting Eqs (i), (ii) and (iii) in Eq. (iv),
=5, -4)-2(;,-3)-2(I;+3)-2=0
L,=2A
Lg=1-1,=4-2=2A



2.3 Mesh Analysis 2.7
EXAMPLES WITH DEPENDENT SOURCES
”m Obtain the branch currents in the network shown in Fig. 2.11.
I, 59 10/g 50 g
W\ & ANAN————
10Q
5V — 10V
50,
Fig. 2.11
Solution  Assign clockwise currents in two meshes as shown in Fig. 2.12
From Fig. 2.12,
I, 5Q 10/g 50 g
——\WW\ + = AN
10Q
5V - ’> ’> — 10V
Iy 51, I
Fig. 2.12

[A = Il (l)

[B = 12 . (11)
Applying KVL to Mesh 1,
5-50,-1015—-10(I, = I)=514=0
5-50,-101,-101,+101, =51, =0

201, =-5
I =%=0.25A ...(iii)

Applying KVL to Mesh 2,
51,-10(I,-1))-51,-10=0
S5L-101,+10, -51, =10
155,-151, =10
Putting 7, = 0.25 A in Eq. (iv),
15(0.25)-151;, =10
I, =-0416 A

i)
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” SCN A CWHRW  Find the mesh currents in the network shown in Fig. 2.13.

2V,

4Q 2Q
¥ - AV AV
+ V-
+
5Q v, 1Q
_ — 10V
5vT 2V,
Fig. 2.13
Solution  Assign clockwise currents in the two
meshes as shown in Fig. 2.14. 2V, 4Q 2Q
From Fig. 2.14, +/WV\A
. 2~
Vi=-51; (D) .
... 5Q V. 1Q
V,=21I, (i) 1 > 3 — 10V
Applying KVL to Mesh 1, SVT Iy 2V, Iy
—5-5L-2V, -4L -1 -1)+2) =0 Fig. 2.14
—5—5[1 —2(212)—4[1 _Il +12 +2(—5]1) = 0
204 +31,=-5 ...(iii)
Applying KVL to Mesh 2,
2N -1, -1)-21,-10=0
—2(—5[1)—12 +0,-21,=10
111, -3, =10 ...(iv)
Solving Egs (iii) and (iv),
I} =0.161 A
I, =-2742 A

” SETNI WA Find currents I, and 1, of the network shown in Fig. 2.15.

2l 40 | 20

T = AMAN—>- AW

5Q 1Q
—10V
5V 21
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Solution  Assign clockwise currents in the two meshes as shown in Fig. 2.16.

From Fig. 2.16, 21, 40 |, 20
T = AMA AW
I, =1 (1)
I=1-1, O ) e 3 Loy
Applying KVL to Mesh 1, 5V Iy 2l, b
—S5-50-21,-41,-1(1; - 1,)+21,=0 T I
=5-5L-2(,-)-4L-L+1,+2=0 Fig. 2.16
S-5hH-2L+2, -4 -1 +1,+2];=0 ...(iiD)
-10L+31, =5
Applying KVL to Mesh 2,

=21, -1, -1)-21,-10=0
2L-L+L-21,=10
- -3, =10 ..(1v)
Solving Egs (iii) and (iv),

h=-2_ 1364
11

I,=-2878 A

I,=-1364 A

I,=5-1,=-1364+2878=1514 A

” SETII RN Find the currents in the three meshes of the network shown in Fig. 2.17.

Lo1Q 10 I 10

5V %19 O

Fig. 2.17

Solution  Assign clockwise currents in the three meshes as shown in Fig. 2.18.

10 10 I, 10
AW T - AN
Iy
5V— 3 %19 ) O
h 1Q I I3
ly




2.10 Circuit Theory and Networks—Analysis and Synthesis

From Fig. 2.18,

Ix:II
I, =1
I,=5hHL-1

Applying KVL to Mesh 1,
5-15L-1,-1(I; -1,)=0
5-1,-(,-13)-(I;-1;)=0

21 +1;=-5
Applying KVL to Mesh 2,
=1, L) +1, -1, =1, -1(I, - 13)=0
(L -1+ —5)-L - -2 -13)=0
-20,=0
For Mesh 3,
=-1
Solving Egs (iii), (iv) and (v),
L =2A
I,=0
I;=-1A

()

..(ii)

...(iii)

(iv)

..(v)

” SETII RN For the network shown in Fig. 2.19, find the power supplied by the dependent voltage

source.
50 Q

20Q 30 Q

5A(%) \2 04V, 4> 001 v,

Fig. 2.19

Solution  Assign clockwise currents in three meshes as shown in Fig. 2.20.

50 Q

20Q 3 30 Q

Iy

Fig. 2.20

5A(%) \2 p 04V, p 4> 001 v,



2.3 Mesh Analysis

From Fig. 2.20,
=20(I;-1;)-047=0
0.67V,=201,-2013
71 =33.3311-33.3315

For Mesh 1,
1] = 5
For Mesh 2,
I, =-0.017; =-0.01(33.337, —33.33 I5)
0335 +1, —033[3 =0
Applying KVL to Mesh 3,

=501 -30(I3—1;)-20(I3—1;)=0
207, -307,+1007; =0
Solving Eqgs (ii), (iii) and (iv),
L =5A
I,=-147A
I;=0.56 A
71 =33.331; —33.3315 = 33.33(5)—33.33(0.56) =148 V
Power supplied by the dependent voltage source = 0.4 V (I, — I,) = 0.4 (148)(5 + 1.47) =383.02 W

” ETII RO Find the voltage V_in the network shown in Fig. 2.21.
0.45A

&
16.67 Q 33.33Q

+ V-

30V 25Q 2V

oV
|

Fig. 2.21

Solution  Assign clockwise currents in the three meshes as shown in Fig. 2.22.

0.45A

)
\ZJ

’3<>

16.67 Q 33.33 0

+ V-

X

? 25Q
30V 3 2V,

h Tov I

Fig. 2.22

2.11

()

..(ii)

...(iii))

...(1Iv)
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From Fig. 2.22,
V, =16.671
Applying KVL to Mesh 1,
-30-16.671, —33.33(/, —13)—25(1; - 1;)-10=0
-30-16.671; -33.337, +33.331; =251, +251, -10=0
=755, +251, +3333]3 =40

Applying KVL to Mesh 2,
10-25(I,-1))+2V, =0
10-25(1, - 1))+ 2(16.671,)=0
10-251,+251,+3334 =0
58341 -251,=-10
For Mesh 3,
I3;=045
Solving Egs (ii), (iii) and (iv),
I, =-09A
I,=-17A
I3;=045A

V. =16.671 =16.67(-0.9)=-15V

” SETIIWHEN  For the network shown in Fig. 2.23, find the mesh currents I, 1,and I,

15A
)
Ny
20 0.111 V, 1Q
— AMAN
D +
P V=32 /)y,
——\WA
1Q 20
Fig. 2.23
Solution  From Fig. 2.23,
V=3 ~1)
Writing current equation for the two current sources,
;=15
and O.IIIVX:[1—I3

0.111[3([1—[2)]:[1—[3

()

...(ii)

-..(iif)

.(iv)

(V)

...

..(ii)
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0.3337,-03331, -1 +13=0

—0.6671,-03331,+15=0 ...(iii)
Applying KVL to Mesh 2,
S -h)-WL-5)-21,=0
3L +61,-13=0 ...(Iv)
Solving Egs (ii), (iii) and (iv),
]1 = 17 A
I, =11A
13 =15A

”m For the network shown in Fig. 2.24, find the magnitude of V, and the current supplied
by it, given that power loss in R, = 2 Qresistor is I8 W.

5Q 10Q 5Q

+V, -

X

Vo =— 20 40 % oV 2Q R =2Q

Fig. 2.24

Solution  Assign clockwise currents in meshes as shown in Fig. 2.25.

5Q 10Q 5Q
+ V-
Vo == 3 293 40 4 2v, 3 293 Ri=2Q
Iy A Iy Iy
Fig. 2.25
From Fig. 2.25,
V,=5I ...(1)
Also,
1 R =18
1,2(2)=18
I=3A .. (D)

Applying KVL to Mesh 1,
VO —511 —2(11 —12) = O
7[1—2[2 :VO (lll)
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I;=2V,=2(5I;)=101,

Applying KVL to Mesh 2,
—2(12 —11)—412 = 0
2L+61,=0
For Mesh 3,
10, -1;=0
Applying KVL to Mesh 4,
24 —13)-514,-21,=0
—2154+91,=0
21+93)=0
I3=135A
From Eq. (v),
I 2173_ 13.5
10 10
From Eq. (iv),
-2(1.35)+61, =0
I, =045A
From Eq. (iii),
7(1.35)-2(0.45) =V,
Vo =855V

Current supplied by voltage source V;=1,=1.35 A

=——=135A

” SETIIWRER 11 the network shown in Fig. 2.26, find voltage V, such that V_= (.

Do

2A 0.1V,
10Q 5Q
AW
n
24V T V,£20Q TV
Fig. 2.26
Solution  Assign clockwise currents in four meshes ,2<>
as shown in Fig. 2.27. 2A(A ) 01 V.
I - X
From Fig. 2.27, i !
V,=20(l;—1 @ 10Q 5Q
(=ly) AN AW
Writing current equations for Meshes 1 and 2, .
24V ) V, 209) T
=2 ... (i) Iy - A
I, =3 ....(iii)

Fig. 2.27

(iv)

gDSA



Applying KVL to Mesh 3,
24-10(13—-1)—-20(13—-14)=0
24-10(15—2)—20(I3 —14)=0
-3075+2071, =44

Applying KVL to Mesh 4,
=204 —13)-5(I4—1)+V, =0
20(Iy —15)=5(Is =3)+V> =0

20[3 —25]4 = —Vz -15

But

Ve=0
20(l3-14)=0
=14
From Eq. (iv),
-3073+207; =44
I=44A
I,=44A
From Eq.(v),
20(4.4)-25(44)=-1,-15
V, =7V

EXN| suPerMESH ANALYSIS

2.4 Supermesh Analysis  2.15

..(1v)

...(v)

Meshes that share a current source with other meshes, none of which contains a current source in the outer
loop, form a supermesh. A path around a supermesh doesn’t pass through a current source. A path around each
mesh contained within a supermesh passes through a current source. The total number of equations required
for a supermesh is equal to the number of meshes contained in the supermesh. A supermesh requires one
mesh current equation, that is, a KVL equation. The remaining mesh current equations are KCL equations.

” SETNII WO Find the current in the 3 2 resistor of the network shown in Fig. 2.28.

7Vij

Solution Meshes 1 and 3 will form a supermesh.

Writing current equation for the supermesh,

L—-1;=7
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Applying KVL to the outer path of the supermesh,
T-1(I, = 1,) =3Iy~ I,) =11, =0

- +41,-41;=-7 ...(ii)
Applying KVL to Mesh 2,
-1, -1))-21,-3(I,-1;)=0
1,-61,+31;=0 ...(iii)
Solving Egs (1), (ii) and (iii),
I,=9A
I,=25A
I;=2A

Current through the 3 Q resistor=/1,—-1,=25-2=05A

” Example YW Find the current in the 5 Qresistor of the network shown in Fig. 2.29.

50V —

Fig. 2.29

Solution  Applying KVL to Mesh 1,
50-10(,-1,)-5,-1;)=0
151,101, =513 =50 (1)
Meshes 2 and 3 will form a supermesh as these two meshes share a common current source of 2 A.
Writing current equation for the supermesh,

12_[322 (11)
Applying KVL to the outer path of the supermesh,
-10(1,-1))-21,-1;-5(;-1})=0
—151,+121,+61; =0 ... (1il)
Solving Eqgs (i), (ii) and (iii),
I, =20A
I,=1733A
I, =1533 A



2.4 Supermesh Analysis 2.17

Current through the 5 Q resistor =/, — [, =20 - 1533 =4.67 A

” SE AR Determine the power delivered by the voltage source and the current in the 10 Q2

resistor of the network shown in Fig. 2.30.

[&)]

5Q

)

ﬂDmA

Fig. 2.30

Solution Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,

1,-1,=3
Applying KVL to the outer path of the supermesh,
50-51,-51,-10(, - 1;)-1(/, - 1;) =0

—61; =151, +111; =-50

For Mesh 3,
;=10
Solving Egs (i), (ii) and (iii),
1,=976 A
1,=6.76 A
I;=10A

()

..(i)

... (i)

Power delivered by the voltage source = 50 /, = 50 X 9.76 = 488 W
Loo=13-1,=10-676=3.24 A

” Example YV For the network shown in Fig. 2.31, find current through the 8 Q resistor.

3A

6Q
/W:\g
I2
20 10 80 10
la
5V TAY —
Iy I

Fig. 2.31
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Writing current equations for meshes 1 and 4,
I, =-3
1, =-12
Meshes 2 and 3 will form a supermesh.
Writing current equation for the supermesh,
L—-1,=17
Applying KVL to the outer path of the supermesh,
5-4(1,-1))-61,-8(1;—1,)+10=0
5-4(,+3)-61,-8(I;+12)+10=0

-107,-81;=93
Solving Eqs (iii) and (iv),
I, =-828A
I, =—-128A

Lo =1,-1,=-128+12=10.72 A
EXAMPLES WITH DEPENDENT SOURCES
” Example YN In the network of Fig. 2.32, find currents I, and I,

80 v, 3V,
1oV ) 2e ) 10Q
Fig. 2.32
Solution From Fig. 2.32,
-10-87; -7 =0
Vo =-10-81
Meshes 1 and 2 will form a supermesh.
Writing current equations for the supermesh,
L -1 =-3
Applying KVL to the outer path of the supermesh,
-10-87; -3V, -101, =0
-10-87,-3(-10-81;)-107, =0
161, -107, =20
Solving Eqs (ii) and (iii),
I, =-833A

I, =-1133A

()

..(ii)

...(iii)

...(1v)

..

..(ii)

.. (iii)
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” SETNIWHER 11 the network of Fig. 2.33, find the current through the 3 Q2 resistor.

-4V 3Q
| AW
+ 1Q
2Q Vx 5 Vx
- 2A
Fig. 2.33
Solution  Assign clockwise currents in two meshes as shown in Fig. 2.34.
From Fig. 2.34, _av 30
Ve==-21 (1) {I A
Meshes 1 and 2 will form a supermesh. . 10
Writing current equations for the supermesh, 2Q=vy, D D 5V,
L—-1=2 -..(iD) P 2A )
Applying KVL to the outer path of the supermesh, Fig. 2.34

21, —-4-31,-5V, =0
20 -4-31,-5(-21})=0

85 -31, =4 ...(iii)
Solving Eqs (ii) and (iii),
I1=2A
L=4A
Lao=5L=4A

” SCI AW  Find the currents 1, and I, at the network shown in Fig. 2.33.

10Q
140 40Q WV

A D)
RSN
110V[ ') 202V, 05V, ) 6Q
I

4 I

Fig. 2.35

Solution From Fig. 2.35,

Vi=2(-1)
Meshes 2 and 3 will form a supermesh.
Writing current equation for the supermesh,

;-1 =0.5V, =0.5X2(11—[2)=11—[2
13 =11
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Applying KVL to outer path of the supermesh,
2, -1))-10I;-61,=0
20,425 -10,-61,=0

L =-1,
Applying KVL to Mesh 1,

110-141,-45L-2(., -1;)=0
110-207,+21, =0
110420, +271, =0

100 6Q

50V T

Fig. 2.36

Solution  Assign clockwise currents to the three meshes as shown in Fig. 2.37.
From Fig. 2.37,

I,=1,-1I

Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,

L-1,=051,=05(1)
05+, =0 ...(ii)

Applying KVL to the outer path of the supermesh,

50—10(; —I3)—6(I, —I3)—81, =52 =0
—107,—141, +1615 =2 .(iv)

Applying KVL to Mesh 3,
) Iy —6([3 —12)—10(13 —[1)=0
=S5y -15)-6(3—-1)-10(l3-1;)=0
0L+1,-111=0 (V)



2.4 Supermesh Analysis 2.21

Solving Eqs (iii), (iv) and (v),

11 :—156A
I, =-0.58 A
I=-111A

[SQ :]2 :—058A

”m For the network shown in Fig. 2.38, find the current through the 10 £2resistor.

100 20\, 5Q Q
T ) (Fen ) a3 Lo
; T
Flg. 2.38

Solution Meshes 1, 2 and 3 will form a supermesh.
Writing current equations for the supermesh,
I,-1,=2 (1)
L—-1,=21
and 2hL+1,-13=0 ..(i1)
Applying KVL to the outer path of the supermesh,
15-101; -20-51, -413+40=0

105, +51,+415=35 ...(ii1)
Solving Egs (i), (ii) and (iii),
;=196 A
I, =-0.04 A
I; =389 A

1109 :11 :196A

”m In the network shown in Fig. 2.39, find the power delivered by the 4 V source and
voltage across the 2 Qresistor.

2Q 6 Q
AV AW

+ Vo—

5A <" 4Q
> AW

R

I3

Fig. 2.39

Solution From Fig. 2.39,
V2 =2 [1 .. (l)
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Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,
IL,-1,=5 ...(1)
Applying KVL to the outer path of the supermesh,
4-50, -2 -6 -4(, -13)-1(I, - 13)=0

—12,-61,+51; =4 ...(1i1)
For Mesh 3,
I —&zﬁzll
2 2
L-13=0 (V)
Solving Eqgs (ii), (iii) and (iv),
L =-2A
L, =3A
L=-2A

Power delivered by the 4 V source =47,=4(3)=12 W
Va=2L=2(-2)=-4V

” SENNI WL Find currents 1, 1, 1, 1, of the network shown in Fig. 2.40.

0% 20 5%
— W\ AW AV
1 - 5V, 1
5V b I3 2 @
6V " (¥)40A
/
1 4
I B¢
Fig. 2.40
From Fig. 2.40,
1 .
Vx=g(12—11) (D)
For Mesh 4,
1, =40 ...(11)
Applying KVL to Mesh 1,
1 1 1
-6-—1——U;-1,)-—;-1,)=0
101 5(1 2) 6(1 4)
1 1 1 1 1
—6-—I,——-L+-1,——1,+=(40)=0
101 5iT5hTgh 6( )
—lh+15:—z ...(iii)
15 5 3

Mesh 2 and 3 will form a supermesh.



Writing current equation for the supermesh,

2.5 Node Analysis  2.23

1
Li—L,=5V, =5[5(12 —11)]=12 A

L-21,+15=0
Applying KVL to the outer path of the supermesh,

1 1 1 1
(=1 —— Ty —— T3 —~(Is—14)=0

5(2 1) 20255 2(3 4)
11 1 1 11
b4l =L —— I ——I;+~(40)= 0
shrsh—gglamsh=— L+, @0

1 1 17

Sh=glh=gg13=—20
Solving Egs (iii), (iv) and (v),
I,=10A
I,=20A
I3=30A
I, =40 A

EX3| n~obpe anALysis

...(Iv)

.(v)

Node analysis is based on Kirchhoff’s current law which states that the algebraic sum of currents meeting
at a point is zero. Every junction where two or more branches meet is regarded as a node. One of the nodes
in the network is taken as reference node or datum node. If there are n nodes in any network, the number of

simultaneous equations to be solved will be (n — 1).

Steps to be followed in Node Analysis

1. Assuming that a network has » nodes, assign a reference node and the reference directions, and
assign a current and a voltage name for each branch and node respectively.

2. Apply KCL at each node except for the reference node and apply Ohm’s law to the branch currents.

3. Solve the simultaneous equations for the unknown node voltages.

4. Using these voltages, find any branch currents required.

”m Determine the current through the 5 Qresistor for the network shown in Fig. 2.41.

36V 4Q
L W
V1 /%N\Q/Z\ “/2 5Q 7V3
3A D %49 %1009 %209
=

Fig. 2.41
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Solution  Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,
ﬁ+[/1—V2+I/1—36—V3 -3
4 2 4

11 36
et L A AP
FREA 4

—0.5V,-025V5=12 (i)

Applying KCL at Node 2,
BV, W V-l
2 100 5

1 1 1 1 1
N+ —+—+-|Va—-=V3=0
2 2 100 5

—0.5V,+0.71%, —0.2V3 =0 (i)

=0

Applying KCL at Node 3,
Bt Vs (361
5 20 4

1.1 1,11
) 7 V;=-9
4 s 57202

=025V -02V,+05V;=-9 ...(1ii)

=0

Solving Eqgs (i), (ii) and (iii),
=1341V
V=706V
V3 =-847V
Va-Vs _ 7.06—(-8.47)
5 5

=3.11A

Current through the 5 Q resistor =

” SETII W  Find the power dissipated in the 6 2 resistor for the network shown in Fig. 2.42.

3Q % 10 20
60Q

20V V, V,

5A 50

Fig. 2.42



2.5 Node Analysis  2.25
Solution  Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,
vV, — - —
S A
3 1 2
1 1 1 2
—+l+= | =-V,—-=T; _20
3 2 2 3

1.83V,-V,-0.5V; =6.67 ..(D)
Applying KCL at Node 2,

=0

Vz—V1+V2—V3 _
1 6

1 1
-VN+{1+—=(Va==V3=5
1 ( 6) 2 6 3

N +117V,=0.17V5 =5 ...(ii)
Applying KCL at Node 3,

5

Kot Vs Vi
2 5 6

1 1 1 1 1
——VN—-=V,+| =+=+—=|V;=0
2 6 2 5 6

-057,-017V,+0.87V; =0
Solving Egs (i), (ii) and (iii),

=0

... (i)

7, =23.82V
V,=274V
V,=19.04V

v, -V, 4-19.
P 32741904 _ o0
6 6

Power dissipated in the 6 Q resistor =(1.39)> x 6 =11.59 W

” SETNWWYB  Find V, and V, for the network shown in Fig. 2.43.

50 Q Vv,
Ya @ZA

10Q v,
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Solution  Assume that the currents are moving away from the nodes.

Applying KCL at Node a,
Va=80 Va=Vo »_,
50 10
QL) L, 80,
50 10 10 50
0.12v,-0.17, =-0.4 ..(i)
Applying KCL at Node b,
V=Vo Vo VoVe _,
10 50 20
1 I 1 1 1
Vot =+ —+— |V ——V.=0
10 10 50 20 20
—0.1V,+0.17V, -=0.05V, =0 ...(ii)

Node c is directly connected to a voltage source of 20 V. Hence, we can write voltage equation at Node c.

V. =20 ...(1i1)
Solving Egs (i), (ii), and (iii),

V,=3.08V

Vy =769V

V=V,-V,=3.08-769=-4.61V
Vo=V, =V.=769-20=-1231V

” S ETIIWWERN  Find the voltage across the 100 Q2 resistor for the network shown in Fig. 2.44.

50 Q
20 Q V. 20Q
Va g » Ve
60 V—
100 Q

Solution
Node 4 is directly connected to a voltage source of 60 V. Hence, we can write voltage equation at Node 4.

V, =60 ...()

Assume that the currents are moving away from the nodes.
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Applying KCL at Node B,

Vo Va Vs Ve \ Vs _gg
20 20 20

1 111 1
V|t — |V —— Ve =06
4 (20 20 20)3 20 €
~0.05V,+0.15 V5 —0.05 Ve = 0.6 (i)

Applying KCL at Node C,

VC—VA_’_VC—VB_’_VC—IZ_,_VL:()
50 20 50 100

1 1 1 1 1 1 12
——Vy——Vp+t| =+ —+—+— Ve =—
50 20 50 20 50 100 50

—0.02V,—-0.05V3 +0.1V- =0.24 ...(iii)
Solving Egs (i), (ii), and (iii),

Ve =31.68V
Voltages across the100 € resistor =31.68 V

EXAMPLES WITH DEPENDENT SOURCES

” SETII LR Find the voltage across the 5 Qresistor in the network shown in Fig. 2.45.

v, 20 Q
100 100
(1) o
30/, T 50V
=
Fig. 2.45

Solution From Fig. 2.45,

V=50 ¥ =50

= = ..
20+10 30 ®

1

Assume that the currents are moving away from the node.
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Applying KCL at Node 1,

I —
o Vi V300 =50

5 10 30
y+30( 120
" 30 V1 =50
2=—+ +
5 10 30
o2 =50 1 -50
==t —
5 10 30
Solving Eq. (ii),
=20V

Voltage across the 5 Q resistor = 20V

” SEINIICWIDN  For the network shown in Fig. 2.46, find the voltage V..

/

y
06A(}) =100 (} 500 o2y,

251,

Solution From Fig. 2.46,

I, ==
7100

Assume that the currents are moving away from the node.
Applying KCL at Node x,
Ve Ve V=02V,

=+
100 50 40

25 Ve +0.6= Ve +E+0'8Vx
100 100 50 40

251, +0.6=

LR N ) P
4 100 50 40

0.2V, =-0.6

V,=-3V

..(iD)

...()
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” Example VIHN  For the network shown in Fig. 2.47, find voltages V,and V,

50 0.5V,
10Q
20 G>4A
—(40V

V1 2

20Q

TZOV

Solution  Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

2a(})

+
|
s

Fig. 2.47

_Vi=20 =057V,

2=
20 5
1 1 0.
(el 08) sy
20 5 5
0151 -02V,=3
Applying KCL at Node 2,
V2 +05V -1 +&+V2_40=4
5 2 10
E_l [/'1+ l+l+i V2:4+ﬂ
5 5 5 210 10
—0.171+0.8V, =8
Solving Eqgs (i) and (ii),
V=40V
V=15V

”m Determine the voltages V, and V, in the network of Fig. 2.48.

0.5Q 72 1Q v,

2v 0.25Q 7 10

I+

Fig. 2.48

2.29

...(1)
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Solution  Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

_ 1% _
n-2, " K-V,
05 0.25 1

(L+—1 +1)V1—V2=i

0.5 0.25 0.5
7V7—V2=4 (1)
Applying KCL at Node 2,

- 12

u + 72 + Vl = 0
1 1

2V, =0

V=0 ...(11)
From Eq. (i),
4
h=-V
7
”M In the network of Fig. 2.49, find the node voltages V,, V,and V.
v, 1Q V, 1Q Vs 2V
%
- Vit
2A (D 20 20 20 av,
-
Fig. 2.49
Solution From Fig. 2.49,
Vi=h-N )

Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

n n-v
—1,717"

2
2 1

1
—+1(N=-r=2
(3+1)n-r

15V -V, =2 ...(ii)
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Applying KCL at Node 2,
h-nh n n-rn_,
1 2 1
1
—Vl+(1+2+1)V2—V3 =0
Vi +2.5V,-V5=0
At Node 3,

Vs—4V,=2
V3—4(a-1)=2
AV, =4V, +V3=2

Solving Egs (ii), (iii) and (iv),

Vi =-133V
Vy=—4V
V;=-8.67V

” SETNTI WL For the network shown in Fig. 2.50, find the node voltages V,andV,

v, b v,

3Va (4 <D1A =10 20.2596 oa (¥)2

\\H—

Fig. 2.50

Solution  From Fig. 2.50,
-1

=12

0.5

Assume that the currents are moving away from the nodes.

2.31

...(iii))

...(iv)

(@)
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Applying KCL at Node 1,

3V2+1:ﬁ+V1 2 13
1 0.5
1+L V- 3+L V,=-2
0.5 0.5
3N -5V, =-2 ...(1)
Applying KCL at Node 2,

0.25
5_V2 V1+V2 2V1 7
05 025 0.5
L2 (2,
05 05 0.5 025 05
2N +2V, =5 ...(iii)
Solving Eqs (ii) and (iii),
V=131V
V=119V

”m Find voltages V, and V, in the network shown in Fig. 2.51.

5A 1Q

=

Fig. 2.51
Solution From Fig. 2.51,

-

[ =—= ...(1)
T

Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

n n-v;
5:71+¥+V1

1 2

1 1
(1++1)V1—V2 =5

2 2

2.5V -0.5V,=5 (i)



Applying KCL at Node 2,

Solving Eqgs (ii) and (iii),

2.5 Node Analysis  2.33

u+%:2]1+Vl

1
V,-W +V2=2(%)+Vl

3V, =30,
h="r .. (iii)

=25V
V,=25V

” SE[I WL  Find the power supplied by the 10 V source in the network shown in Fig. 2.52.

10A

Solution
From Fig. 2.52,

=20 $)av, =10

Vs = +10-V, ...

Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

10+

1 1
2 4 2

Applying KCL at Node 2,

Vs 10—V,

n n+10-v, n-Vr;
nh 2 NV

0
4 2

Vi — l_,_l [/22_10_9
4 2 4

1251 = 0.75V; = -12.5 ...(i)

n-n n

4

V, =10-1

+ 2 =471,
21

h-h "

4

+—==4+10-1;
3 1 (U 2)
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————— 4K+1+LHM4%=E+M
4 2 4

475 +5.75V, =42.5 ...(iii)
Solving Eqs (ii) and (iii),
7 =-11.03V
V,=-172V
Vi+10-V, -11.03+10-(-1.72) _
4 - 4 -
Power supplied by the 10 V source =10 x 0.173 =1.73 W

Ligv = 0.173 A

” S ET I WY  For the network shown in Fig. 2.53, find voltages V,and V,

0.03 V,

Solution From Fig. 2.53,

Vo=V -V, ...(1)
V) .
1y=4—0 ...(ii)

Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

04= 17l
100 20
hn h-n

04=—+
100 20

+0.03 7,

+0.03(; —V>)

L oo |n—[L+003]r =04
100 ' 20 20

0.09 1, —0.08 ¥, = 0.4 -..(iii)



2.5 Node Analysis

Applying KCL at Node 2,
BV Vo Va=Vs _
20 40 40
1 1 1 1 1
—— N+ —=+—+—[Voa——=V3=0
20 40 40 40
-0.057;+0.17,-0.025V75 =0

0

For Node 3,
Vs
V3 :801), :80(40):2V2
2 V2 - V3 =0
Solving Eqgs (iii), (iv) and (v),
V=40V

V2 =40V
V3 =80V

” SENICWIEN  Find voltages V., V,and V_in the network shown in Fig. 2.54.

2Q

>

v, 2}\/ 20V, 3Q

Fig. 2.54
Solution From Fig. 2.54,
11 _ Vu _VL
2
Assume that the currents are moving away from the nodes.
Applying KCL at Node «,
Vo Vo=V, Vo=2-V,
4=—+ + b

1 2 2
1+l+l Va—lVb—lVC =5
2 2 2 2

2V,-05V, =05V, =5

2.35

...(1v)

..(v)

..
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Applying KCL at Node b,
Vy+2-V, Vb Yy
2 3
Vo+2=Va Vo=Ve _,(Va=Ve
2 3 2
Vy+2-V, -V,
b a4 Vb [ Va _ Vc

2 3

—l—l Va+ l+l Vy + 1—l Ve=-1
2 2 3 3

-1.5V,+0.83V, +0.67V, = -1

Applying KCL at Node c,

VC_Vb'f’fc:Il
3

Ve=Vo Ve Va-Ve

+ =
3 5 2
1 1 1 1 1
——Vy==Vy+| z+=+= V. =0
243t (3 5 2) ¢

-0.5V,-0.33V,+1.033V. =0
Solving Eqgs (i), (ii), and (iii),

V, =4303V
Vv, =388V
V.=333V

EXA| superNODE ANALYSIS

..(ii)

...(iii)

Nodes that are connected to each other by voltage sources, but not to the reference node by a path of voltage
sources, form a supernode. A supernode requires one node voltage equation, that is, a KCL equation. The

remaining node voltage equations are KVL equations.

” SETII IR  Determine the current in the 5 Qresistor for the network shown in Fig. 2.55.

72 2Q

* AN

10A (D 30

—

%29

\\H—q

Fig. 2.55
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Solution  Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

w=1,n="
3 2

11 1
—+—|V—=V, =10
32 2
0.837,-0.5V, =10

Nodes 2 and 3 will form a supernode.
Writing voltage equation for the supernode,

V,=V;=20
Applying KCL at the supernode,
Vv, — —
AN U
2 1 5 2
—lV]+ l+1 v, + l+l V=2
2 2 5 2

0.5V, +1.5V,+0.7V, =2

=0

Solving Egs (i), (ii) and (iii),

¥, =19.04V
V,=11.6V
V,=-84V

Vy-10  —8.4-10

Iso="" =368 A

2.37

..(iD)

...(iii)

” SEII RO Find the power delivered by the 5 A current source in the network shown in Fig. 2.56.

v, 10V v,

3Q

2A Vs 5A %59

2Q

=

Fig. 2.56
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Solution  Assume that the currents are moving away from the nodes.
Nodes 1 and 2 will form a supernode.
Writing voltage equation for the supernode,

V=V, =10 -..(D)
Applying KCL at the supernode,

n-v, v, V,-V.
17" Y Fa Vs

2+ =5
3 5 1
1 1 1
Vl+(+1jV2— —+1({V;=3
3 5 3
0331 +1.2V,-133V7;=3 ...(i)
Applying KCL at Node 3,
V. — -
Bh B-h W
3 1 2
1 1 1
—— V-V +| -+1+-|V3=0
3 3 2
0331, -V, +1.831;=0 ...(1i1)
Solving Egs (1), (ii) and (iii),
V,=13.72V
V,=3.72V
V3 =451V

Power delivered by the 5 A source =5 V,=5x3.72=18.6 W

” SETNTI RN In the network of Fig. 2.57, find the node voltages V, V,and V,.

05Q
AW
033Q
v, A ? [ERA VA
4A<? %0.29 210
Fig. 2.57

Solution  Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

h-na -V
0.33 0.5

1 1 1 1
305 om e es et
033 05 0.33 0.5

5.03V,-3.03V, -2V, =4 Q)
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..(ii)

Nodes 2 and 3 will form a supernode.
Writing voltage equation for the supernode,
Vs=V,=5
v, V3 V=W
72 73_;,_ 3 1 — 0
...(1i1)

Applying KCL at the supernode,
n-n
02 1 0.5

0.33
_L_L I/l_;r_ L_f_i V2+ 1+L V3 :0
033 0.5 033 0.2 0.5
—5.03V,+8.03V,+3V;=0
Solving Egs (i), (ii) and (iii),

Vy=2.62V

V,=-0.17V

V3 =483V

EXAMPLES WITH DEPENDENT SOURCES
” Example yN: YW For the network shown in Fig. 2.58, determine the voltage V.
[T
v, 6V A 10
. M AW o Vs
+ Ve -
3Q 4Q 100Q
(¥)12A
2A TSV 2V,
=
Fig. 2.58

Vi=Va-V3

Solution From Fig. 2.58,
Assume that the currents are moving away from the nodes.

Node 1 and 2 will form a supernode.
h-r,=6

Writing voltage equations for the supernode,
=Vl+5+V2_2Vx +V2—8—V3+V2—V3
10 7 11

11

Applying KCL at the supernode,
10

2
4

2
4
R

..
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1 1 1 1 1 1 1 1
N+ —=—=+= N+ ————— V3:2—§+§
4 10 5 7 11 5 7 11 4 7
0.2571+0.1337, -0.033 /5 =1.89
Applying KCL at Node 3,
ViVy Vi+8=V,
11 7
1 1 1 1
———= |+ = V3:—12—§
1 7 11 7 7

-0.233V,+0.233 V3 =-13.14

+12=0

Solving Egs (1), (ii) and (iii),

=18V
V2 =42V
V3 =-60.6 V
” SEIIWHER  Find the node voltages in the network shown in Fig. 2.59.
6Q

6A
Fig. 2.59
Solution From Fig. 2.59,
I, = =N
5
For Node 4,
V4 =40

Applying KCL at Node 1,

6+ =0

0 5 6
6+ﬁ+Vl _V2 +M:
10 5 6
1 1 1 1
—+— N—=-=" —ﬂ—6

10 5 6 5 6

1 2

Thn-in=2

15 5 3

...(ii)

... (i)

..()

...(ii)

...(iii))
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Nodes 2 and 3 will form a supernode,
Writing voltage equation for the supernode,

V_
%—n=5a={ig”)=%—m

V=2V, +V;=0 ...(iv)
Applying KCL to the supernode,

BtV Vs ViV
5 20 15 2
BV Ve Vs Vi=40
520 15 2

1 1 1 1 1

—— N+ =+—=|Vat+| =+=[V3=20
5 5 20 15 2
17

=0

0

1 1
——N+-T+—=V=20
5174300 )
Solving Eqs (iii), (iv) and (v),
=10V
V, =20V
V3 =30V
V4 =40V

” ET NI WY Find the node voltages in the network shown in Fig. 2.60.

Solution  Selecting the central node as reference node,

hi=-l12v (D)
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Applying KCL at Node 2,
Vz—V1+V2—V3 —14
0.5 2
—LV]*‘ L+l I/2_1V3 =14
0.5 05 2 2
2V +25V,-051;=14 ...(ii)

Nodes 3 and 4 will form a supernode,
Writing voltage equation for the supernode,

Vs—Vy =02V, =02(V4 1)

02N +V5-12V,4 =0 ...(iif)
Applying KCL to the supernode,
M—O.SVX +&+u =0
1 2.5
Vy—N

=0

-05(, -N)+V4+

1 1 1 1
05— N—|=+05+=-V3+|1+—|Va=0
25 2 2 2.5

0.1 M=V, +05V3+1.4V3=0 ...(1v)

V3=V,
2

Solving Egs (i), (ii), (iii) and (iv),

V,=-12V
Vy=-4V
Vs=0
Vy=-2V

EXA| suPErPOSITION THEOREM

It states that ‘in a linear network containing more than one independent source and dependent source,
the resultant current in any element is the algebraic sum of the currents that would be produced by each
independent source acting alone, all the other independent sources being represented meanwhile by their
respective internal resistances.’

The independent voltage sources are represented by their internal resistances if given or simply with zero
resistances, i.e., short circuits if internal resistances are not mentioned. The independent current sources are
represented by infinite resistances, i.e., open circuits.

The dependent sources are not sources but dissipative components—hence they are active at all times. A
dependent source has zero value only when its control voltage or current is zero.

A linear network is one whose parameters are constant, i.e., they do not change with voltage and current.



2.7 Superposition Theorem 2.43

Explanation Consider the network shown in Fig. 2.61. Suppose we have to find current , through
resistor R,

R, R

[ R, R, !

Fig. 2.61 Network to illustrate superposition theorem

The current flowing through resistor R, due to constant voltage source V' is found to be say 7 (with proper
direction), representing constant current source with infinite resistance, i.e., open circuit.

The current flowing through resistor R, due to constant current source / is found to be say Z;” (with proper
direction), representing the constant voltage source with zero resistance or short circuit.

Ry R,

Vv — Ry Ry

Fig. 2.62 When voltage source V is acting alone

R, R

Iy

R, R, !

Fig. 2.63 When current source I is acting alone

The resultant current /, through resistor R, is found by superposition theorem.
Iy=1,+17

Steps to be followed in Superposition Theorem

1. Find the current through the resistance when only one independent source is acting, replacing all
other independent sources by respective internal resistances.

2. Find the current through the resistance for each of the independent sources.

3. Find the resultant current through the resistance by the superposition theorem considering magnitude
and direction of each current.
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” SCIACWREW  Find the current through the 4 2 resistor in Fig. 2.64.

2Q
5A 60
5Q
40
6 Q
20V _’,
Fig. 2.64
Solution
Step I When the 5 A source is acting alone (Fig. 2.65)
2Q
on () o
5Q
4Q
6Q
Fig. 2.65
By series-parallel reduction technique (Fig. 2.66),
2Q
2Q 14
6Q >
5A 4Q
CD 5A 8.73Q
273Q
(a) (b)
Fig. 2.66
[=sx—oT3 =343 AW)

8.73+4

4Q



2.7 Superposition Theorem

Step I ' When the 20 V source is acting alone (Fig. 2.67)

2Q
6 Q
| 5Q r
40
6 Q
20V T
Fig. 2.67
By series-parallel reduction technique (Fig. 2.68),
| 5Q I | 5Q
20V —— 6 Q 10Q 20V — 3.75Q
(a) (b)
Fig. 2.68
I= 20 =229A
5+3.75

From Fig. 2.68(a), by current-division rule,

[7=229x—0 = 0.86 A()
6+10

Step III By superposition theorem,
I=I"+1"=343+086=429A ()

” SETII RN Find the current through the 3 82 resistor in Fig. 2.69.
2Q

2.45
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Solution

Step I When the 5 A source is acting alone (Fig. 2.70)

2Q
5Q 3Q
sa(})
. . - . Fig. 2.70 ;20
By series-parallel reduction technique (Fig. 2.71),
rosx— 1 375 AW)
15+2+3 5A CD 15Q
Step I 'When the 20 V source is acting alone (Fig. 2.72)
2Q Fig. 2.71
5Q
10Q
Fig. 2.72
By series-parallel reduction technique (Fig. 2.73),
" i
20Q 4Q 20V 333Q —L 5oy
(a) (b)
Fig. 2.73
-2 _6a
3.33
From Fig. 2.73(a), by current-division rule,
4
1”7=6x =1AT)=-1A(
20+4 ) )

Step III By superposition theorem,
I=I'+1"=375-1=275A(1)

3Q



2.7 Superposition Theorem

” SCIN A CWRYE  Find the current in the 1 2 resistors in Fig. 2.74.

2.47

@1 A
2Q 3Q
4V — 1Q Cf 3A
Fig. 2.74
. 20 30
Solution
I
Step I When the 4 V source is acting alone (Fig. 2.75)
a4V —— 1Q
, 4
I'=——=133A())
2+1
Step I' 'When the 3 A source is acting alone (Fig. 2.76) Fig. 2.75
By current-division rule, 50 30
1":3xi:2A(¢) r
1+2
1Q 3A
Step III  'When the 1 A source is acting alone (Fig. 2.77)
1A
&) Fig. 2.76
2Q 3Q
1Q
Fig. 2.77
Redrawing the network (Fig. 2.78), "
By current-division rule, 3Q
2Q 1Q
2
1”7 =1x—=0.66 A({
2+1 ) TA
Step IV By superposition theorem,
Fig. 2.78

I=I"+1"+1"=133+2+066=4A )



2.48 Circuit Theory and Networks—Analysis and Synthesis

|NCEIETERRER  Find the voitage ¥, in Fig. 2.79.
o A
1 '

6V 5Q
Vas
5A — 10V
oB
Fig. 2.79

Solution
Step I When the 6 V source is acting alone (Fig. 2.80)

Vip=6V L 0A

6V 5Q

Vag

Fig. 2.80 24
5Q
Step I When the 10 V source is acting alone (Fig. 2.81) Vg
Since the resistor of 5 Q is shorted, the voltage across it is zero.
0V
Vig =10V T sg
. . . Fig. 2.81
Step III  'When the 5 A source is acting alone (Fig. 2.82) g
Due to short circuit in both the parts, e
Vi =0 5Q
Step IV By superposition theorem, A @
Vg = VAE} +VA,1,; +VA'2;' =6+10+0=16V
Fig. 2.82

EXAMPLES WITH DEPENDENT SOURCES
” SETNIWHER  Find the current through the 6 Q2 resistor in Fig. 2.83.

| 6Q 8Q

>

15V —— 3/ — 10V

Fig. 2.83



Solution
Step I When the 15 V source is acting alone (Fig. 2.84)
From Fig. 2.84,
I'=1 ..(D)
Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,
I, -1, =31"=3]
4L -1, =0 ...(1i)
Applying KVL to the outer path of the supermesh,
15-61,-81, =0
61, +81, =15
Solving Egs (ii) and (iii),
I; =0.39A
I, =1.57TA
I'=1=039A(—>)
Step I When the 10 V source is acting alone (Fig. 2.85)
From Fig. 2.85,
1”=1 ..(1)
Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,
I, -1, =31"=3]
45 -1, =0 ...(i1)
Applying KVL to the outer path of the supermesh,
-6l -8, +10=0
61,+81, =10
Solving Eqs (ii) and (iii),
=026A
I, =1.05A
I”"7=6L=026A (—)
Step III By superposition theorem,

2.7 Superposition Theorem 2.49

I

6Q 8Q
15V — ) 3r )
I I

Fig. 2.84

...(ii)

" 6Q 8Q
) 3" ) — 10V
Iy I

Fig. 2.85

... (i)

I=0+1"=039+026=0.65A (—)

” SCIACWRAR  Find the current I in Fig. 2.86.

I, 5Q 1Q

20V — G) 30 A
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Solution

Step I When the 30 A source is acting alone (Fig. 2.87)
From Fig. 2.87,

I 5Q 1Q
I =1 ...(1)
Meshes 1 and 2 will form a supermesh. I 30A ) al,

Writing current equation for the supermesh,

L—1,=30 .. (i)
Applying KVL to the outer path of the supermesh, Fig. 2.87
—5]1 —112 —4[; =0
5L —I,—41, =0
9L +1, =0 (i)
Solving Egs (ii) and (iii), L=3A
I, =-27A

I[=1=3A(>)

Step I When the 20 V source is acting alone (Fig. 2.88)

) I 5Q 10
Applying KVL to the mesh,
20517 =117 —4I7 =0 ;
I =2A(-) 20V = 4
Step III By superposition theorem,
I, =13 +I{ =3+2=5A(—) Fig. 2.88

”m Find the current I. in Fig. 2.89.

Vi 4V,

10Q

5V

Fig. 2.89

Solution
Step I When the 5 V source is acting alone (Fig. 2.90)

From Fig. 2.90, 10Q

V,=5-101/ sy

Applying KVL to the mesh,
5-101 -4V -2I,=0 Fig. 2.90
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5-10[; -4 (5-10I))-2I;=0
5-101 -20+40[/ -2I'=0
15
Ii=—==054A"
s h
Step I When the 2 A source is acting alone (Fig. 2.91)
From Fig. 2.91,
V., =-101{ (D)

Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,

10Q

L-I{=2 ..(ii)

Applying KVL to the outer path of the supermesh,
-101{ -4V, -2, =0
-101{ —-4(-101{ )-21, =0
30 =21, =0 ....(iii)
Solving Eqs (ii) and (iii),

I1=014A (T
I, =214 A

Step III By superposition theorem,
L=1{ +I] =0.54+0.14=0.68 A (T)

”m Determine the current through the 10 £2 resistor in Fig. 2.92.

10Q 10V,

J* sezv, <D10A

T f

100V

Fig. 2.92
Solution
Step I When the 100 V source is acting alone (Fig. 2.93) 10Q 10V,
From Fig. 2.93, r 2
V. =s5I i
Applying KVL to the mesh, 100 V 5Q 2y,
100 - 107+ 10V —5I'=0 T

100 — 107 + 10(57') —~ 5I' =0
Fig. 2.93
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I'=-2.86A(—)

Step I When the 10 A source is acting alone (Fig. 2.94)
From Fig. 2.94,
Ve =51 —12) (1)

Applying KVL to Mesh 1,
10A

104 +10V, —5(1, = 1,) =0
—104, +10{5(1; - I;)}-5(1, - 1,)=0
351, —451, = 0 (i)

For Mesh 2,
I, =-10 ...(1il)

Solving Eqgs (ii) and (iii),

I;=-12.86 A

L=-10A

I"=1=-12.86 A (—)
Step Il By superposition theorem,

I=0'+1"=-286-12.86=—-1572 A (—)

”m Find the current I in the network of Fig. 2.95.

17V 3Q
I |
+ 40
20 >V, 5V,
- 1A
Fig. 2.95
17V 3Q
Solution 4{ v
Step I When the 17 V source is acting alone (Fig. 2.96) N
From Fig. 2.96, o 20 ‘ix 5V,
Applying KVL to the mesh,
2I' = 17-3I'-5V =0
2I —17-3I' -=5(=2I')=0 Fig. 2.96
I'=34A ()
3Q
Step I 'When the 1 A source is acting alone (Fig. 2.97) >
From Fig. 2.97, r
+ 40
Vx =—211 (1) 20 Vx ) ) 5Vx
Meshes 1 and 2 will form a supermesh. - h A lp
Writing current equation for the supermesh,

L-1 =1 (i)
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Applying KVL to the outer path of the supermesh,
—2]1 —3[2 —SVX =0
21} =31, -5(-21,)=0
8 -3, =0
Solving Egs (ii) and (iii),
I;=06A

L=16A
I"=1,=16A(>)

Step III By superposition theorem,
I[=7+1"=34+1.6=5A(>)

” SEINNICWRTLE  Find the voltage V, in Fig. 2.98.

1Q | 4Q

+
4] V1Q> 5A — 20V

Fig. 2.98

Solution
Step I When the 5 A source is acting alone (Fig. 2.99) 10 v, | 40
From Fig. 2.99, \

4 41 5A
Applying KCL at Node 1,

2.53

...(iii)

Vll_41 Vll
Azt s
1 4 Fig. 2.99

-4 L s
4) 4

V=20V

Step I When the 20 V source is acting alone (Fig. 2.100) 1Q Vi o4Q
Applying KVL to the mesh,

4/-1-41-20=0

=_20A 4/ — 20V

V" =4I-1(I)=31=3 (-20)=—-60 V

Step III By superposition theorem,

V.= V/+ ¥/ =20-60=-40V Fig. 2.100
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”m Find the current in the 6 £2 resistor in Fig. 2.101.
1Q

2V,

-+
i_vx+ |
Q 3A 6Q

Fig. 2.101
Solution 1Q 2V,

— +
Step I When the 18 V source is acting alone (Fig. 2.102) - Ve + I
From Fig. 2.102,

18V

V=1 18V 60
Applying KVL to the mesh, / T
187 +2V,~6I'=0
18-1'-2I-6I'=0 Fig. 2.102

I'=2A{)

Step I When the 3 A source is acting alone (Fig. 2.103) 1Q oV
From Fig. 2.103, t

- Vi +

Ve=-15 =-1I (D)
3A 6Q
Meshes 1 and 2 will form a supermesh. | )
;

Writing current equation for the supermesh, L
I,-1;=3 ...(1h)
Applying KVL to the outerpath of the supermesh,
—14+2V, -61,=0
- +2(-1})-61, =0
3[,+61, =0 ...(iii)

Solving Eqs (ii) and (iii),
ILI=-2A
L =1A
I"=L=1A()

Step III By superposition theorem,
Lo=I+I"=2+1=3A()

” Example 2.56 [Wazree current 1 in Fig. 2.104.
ly aq 10/, 8Q

A ———<E ST A
120V — G) 12A — 40V

Fig. 2.104



Solution

Step I When the 120 V source is acting alone (Fig. 2.105)
Applying KVL to the mesh,

120 - 41" — IOIy’ -81'=0

120V =

2.7 Superposition Theorem 2.55

Yy 4Q

10/,

8Q

I/=545A(-)

Step I  'When the 12 A source is acting alone (Fig. 2.106)
From Fig. 2.106,

1,”=1, ...(1)

Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,
]2—[1 :12 (11)

Applying KVL to the outer path of the supermesh,
—41,-101,” 81, =0
—41,-10,-81, =0

141, +81, =0
Solving Eqs (ii) and (iii),
I, =—436A
I, =7.64 A

b =1 =-436A(—)

Step III' ' When the 40 V source is acting alone (Fig. 2.107)

...(iii)

— 40V

Applying KVL to the mesh, I . _1 ol 80
_4 [y/// _ 10[y/” _ 8[‘!,,, B 40 _ 0
40 4Q
1, =-—=-182A (-
y ) (=)
Step IV By superposition theorem,
Fig. 2.107

Iv — ]y/ + Iy/’ + Ivlll — 5.45
436 1.82=-0.73 A (—)

” SETNTI WAV Find the voltage V. in Fig. 2.108.

3Q 60 3V,

i
+ Ve -
24 Q

18V
[ &

~‘—36V

Fig. 2.108
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Solution
StepI When the 18 V source is acting alone (Fig. 2.109)
From Fig. 2.109,
V=3I
Applying KVL to the mesh,
18 -37-6I-3V'=0
18-3/-61-3(3))=0

I=1A
V=3V

Step I When the 5 A source is acting alone (Fig. 2.110)

Fig. 2.109

3Q

From Fig. 2.110,
v =-31I ..(D)
Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

6Q
+ Vv, -

24 Q
) ) SVX,
Iy 5A bk

L-1I;=5 ..(11)
Applying KVL to the outer path of the supermesh,
=30 -61,-3V7 =0
=3I, -6, -3(33;)=0
12} +61, =0
Solving Eqs (ii) and (iii),
I =-1.67A
I, =333A
vy =31 =3(-1.67)=-5V

Step III' When the 36 V source is acting alone (Fig. 2.111) 3Q
From Fig. 2.111,

+ v

VVIII — 73] X
Applying KVL to the mesh,
36+3V"—61-31=0

Fig. 2.110

...(iii)

C —— 36V
/

36+3V;”—6(_V" )—3(_Vx ):o
3 3

36430+ 20V =0
Vi’=-6V

Step IV By superposition theorem,
V=V V=3

Fig. 2.111

5-6=-8V
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” SCINACWRY W Find the voltage V in the network of Fig. 2.112.

8Q 15Q 5Q
-V +
10V_— <¢ SA 120 8V
Fig. 2.112
Solution
Step I When the 10 V source is acting alone 8Q 15Q 5Q
(Fig. 2.113) N
From Fig. 2.113, v
V=8l () qoy L ) . )
Applying KVL to Mesh 1, Iy A
—10—8[1 -15 [1 -12 (11 —12)2 0
35L-121, =-10  ...(i1) Fig. 2.113
Applying KVL to Mesh 2,
—12(I, - ))-51, -8V"=0
—121, +121, =51, -8(-81;) =0
76]1 —17]2 =0
Solving Eqs (ii) and (iii),
I;=054 A
,=24A

V’'=-8l =-8(0.54)=-432V

Step I When the —5 A source is acting alone (Fig. 2.114)

8 Q

15Q

v

5Q

) @) e ) Or

From Fig. 2.114,
V" =-8I
Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,
L-1,=-5

Fig. 2.114

2.57

8V’

...(iii)

()

...(ii)
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Applying KVL to the outer path of the supermesh,
=80 —151, -12(I, - 13)=0
=80 -271,+121; =0 ...(1i1)
Applying KVL to Mesh 3,
—12(3,-1,)-5-8V"=0
—121;+121, -5I; - 8(-811) =0
641, +121, —171;, =0 ..(1v)
Solving Eqs (ii), (iii) and (iv),
I,=497A
1, =997A
13=2574 A
V”=-8I =-8(—4.97)=-39.76 V
Step III By superposition theorem,
V=V'+V"=-432-39.76=—-44.08 V

” SETII RN For the network shown in Fig. 2.115, find the voltage Vv,

50 Q 200 Q
+
40 Q
+
V JR -
1AQ>VO 1 . — 25V
- OV
Fig. 2.115

Solution
Step I When the 1 A source is acting alone (Fig. 2.116)
From Fig. 2.116,

V1 =2001, (1) 50 Q 200 Q
For Mesh 1, +

L=1 ...(ii) 00
Applying KVL to Mesh 2, 1A (T ‘J/ro, ) v, )

0.5V —40(I, —I;)—2001, =0 ) o5V, &
0.5(2001,)—401, +401; =200, =0 _
40/, 1407, =0 ...(iii)

Solving Egs (ii) and (iii), Fig. 2.116

L=1A

1,=029A

VOI—SO [1 —2()0]2 =0
Vo’ =50(1)—200(0.29) = 0
Vo' =108 V
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Step I’ 'When the 25 V source is acting alone (Fig. 2.117) 50 Q 200 Q
From Fig. 2.117, © +
1—-2007/-25=0 40 Q
K=2000425 () vy v, ) Loy
Applying KVL to Mesh 1, 0.5V, I
0.5//-407-2007-25=0 o -

0.5(2007+25)—4071-2007-25=0
1=-0.09 A
Vo' =V, =2001+25=200(-0.09)+25=7V

Fig. 2.117

Step III By superposition theorem,
Vo=Vy+Vy =108+7=115V

” Example VIO For the network shown in Fig. 2.118, find the voltage V.
@1 0A

2Q 4Q

v,
20V VxZ 60 1=

Fig. 2.118

Solution

¥
Step I When the 20 V source is acting alone
(Fig. 2.119) S0V — L, S6a
From Fig. 2.119, | x P
1 2

Vi=6(I1-1,) ..(0)

m‘ ~

Applying KVL to Mesh 1,

Fig. 2.119
20—2]1 —6([1 —12): 0
81 —61, =20 ..(11)
For Mesh 2,
4 L -1
I =VL=M=3II—312
2 2
3 -4, =0 ...(1i1)

Solving Eqs (ii) and (iii),
I =571A
1, =429 A
Vi=6(I1—1,)=6(5.71-429)=8.52V
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Step I 'When the 10 A source is acting alone (Fig. 2.120)

From Fig. 2.120,

VY =6(1-1)
Applying KVL to Mesh 1,
“2(L —13)-6(11-1;)=0
8 —61,-215=0

For Mesh 2,
I =%:M=31. -31,
3]1 - 412 = O

For Mesh 3,
I;=-10

Solving Eqs (ii), (iii) and (iv),
L =-571A
I,=-429 A
I=-10A

(D)

..(if)

V" =6(I, - I)=6(-5.71+4.29) = -8.52 V

Step III By superposition theorem,

Ve=V."+V,"=852-852=0

” ETII NI  Calculate the current I in the network shown in Fig. 2.121.

4Q

20 Q

21,

70V —

-

2Q

10 Q

Fig. 2.121

Solution

Step I When the 70 V source is acting alone (Fig. 2.122)

From Fig. 2.122,
I'=15
Applying KVL to Mesh 1,
45 -21,-20(L1-1)=0
261, -201, =0
Applying KVL to Mesh 2,
70-20(1, -1})-2(I, -13)=0
=201, +221, =213 =170

()

..(ii)

...(iii)

— 50V

70V

Iy 40
) 21,
20Q |,

— +
b
I I3 v

100
Fig. 2.122
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Applying KVL to Mesh 3,
—2(I3-1,)+2,-10/5=0
20 +21, 1213 =0 ..(1v)
Solving Eqs (ii), (iii) and (iv),
I, =8.94A
I, =11.62A
I; =3.43A
I'=1;=343A(«)
Step I ' When the 50 V source is acting alone (Fig. 2.123) I 4Q
From Fig. 2.123,
2.
I"=0L ..»1) 20Q /1) 1+
Applying KVL to Mesh 1,
2Q — 50V
—4[1—2[1—20(11—[2):0 ! P
261, -201, =0 ...(ii) ? )
Applying KVL to Mesh 2, 0Q
—20([2—[1)—2([2—[3)=0 Fig. 2.123
=201, +221, =213 = ... (il
2011 +221, -213 =0
Applying KVL to Mesh 3,
—2(l3 —1,)+21;+50-1015=0
1t2aly —12l3 =— (v
20 +21, 121 50 i
Solving Eqgs (ii), (iii), and (iv),
I, =1.06A
I, =138A
I;=457TA

1”"=1;=457 A («)
Step III By superposition theorem,
I=1"+1"=3434+457=8A («)

” SET[IWHIYN  Find the voltage V, in the network of Fig. 2.124.

5Q “‘V 10
|
‘\

v
10V — (DH\ v 220 -
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Solution
. . 5Q 1Q
Step I When the 10 V source is acting alone
(Fig. 2.125)
Applying KCL at the node, +
10V Wz2aq
i [
’_ ’ V() - -
V() 10 " Vi() n 2 -0
5 2 1
1 1 1 Fig. 2.125
( +—+ ) Vo=2
5 2 2
Vo=1.67V
Step I 'When the 1A current source is acting 5 Q _ 10
alone (Fig. 2.126)
Applying KCL at the node, + .
” G TA VW20 %
v VO 2
” ” 0~ ~ —
E +1+ Vi + 72
5 2 1
Fig. 2.126
l+l+l Vy'=-1
5 2 2
Vy'=-0.83V

Step III' ' When the 4 V source is acting alone
(Fig. 2.127)

Applying KCL at the node,

W

”

VOIII VO’” Vi 0—

=0

5 2 1

l+l+l I/(),”=4
5 2 2

V{"=333V

Step IV By superposition theorem,

Vo =Vo+Vy+Vy”"=1.67-0.83+3.33=4.17V

EXY| tHEVENIN’S THEOREM

VAL

It states that ‘any two terminals of a network can be replaced by an equivalent voltage source and an
equivalent series resistance. The voltage source is the voltage across the two terminals with load, if any,
removed. The series resistance is the resistance of the network measured between two terminals with load
removed and constant voltage source being replaced by its internal resistance (or if it is not given with
zero resistance, i.e., short circuit) and constant current source replaced by infinite resistance, i.e., open

circuit.’



|
| |
| |
|
Network } R, | Vo ——
| |
| |
I

2.8 Thevenin’s Theorem 2.63

Fig. 2.128 Network illustrating Thevenin’s theorem

Explanation Consider a simple network as shown in Fig. 2.129.

R R,

Fig. 2.129 Network

For finding load current through R, first remove the load
resistor R, from the network and calculate open circuit voltage
V., across points A and B as shown in Fig. 2.130.

R
R1 +R

Vi =

For finding series resistance R, , replace the voltage source
by a short circuit and calculate resistance between points 4 and
B as shown in Fig. 2.131.

RiR,

R =Ry +
Th } R+R

Thevenin’s equivalent network is shown in Fig. 2.132.

V1

I =t
" Ry +R,

If the network contains both independent and dependent
sources, Thevenin’s resistance R, is calculated as,

where /,, is the short-circuit current which would flow in a short
circuit placed across the terminals 4 and B. Dependent sources
are active at all times. They have zero values only when the
control voltage or current is zero. R, may be negative in some

A
R.
B
R Ry
’\A/\/—g_ A
V— R, Vin
oB
Fig. 2.130 Calculation of V,,
Ry R,
ANNAN——0A
Ry ~— Rty
o B
Fig. 2.131 Calculation of R,
R
A
Vin —— ) R.
I
B
Fig. 2.132 Thevenin’s equivalent

network
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cases which indicates negative resistance region of the device, i.e., as voltage increases, current decreases in
the region and vice-versa.
If the network contains only dependent sources then

VTh:O
]N:()

For finding R, in such a network, a known voltage V'is applied across the terminals 4 and B and current
is calculated through the path 4B.

14
Ry = 7
) Brn
or a known current source / is connected across the oA

terminals 4 and B and voltage is calculated across the
terminals 4 and B.

y
Ry = —
™= o
Thevenin’s equivalent network for such a network is
shown in Fig. 2.133. Fig. 2.133 Thevenin’s equivalent network

Steps to be Followed in Thevenin’s Theorem

1. Remove the load resistance R,.
2. Find the open circuit voltage V., across points 4 and B.
3. Find the resistance R, as seen from points 4 and B.
4. Replace the network by a voltage source V., in series with resistance R ;..
5. Find the current through R, using Ohm’s law.
IL — A
R + R,
” SETOIIWHEN  Determine the current through the 24 2 resistor in Fig. 2.134.
30 Q 200
220V —
24 Q
50 Q 5Q
Fig. 2.134
Solution
Step I Calculation of V., (Fig. 2.135)
220 220V —(—
1= =275A
30450
220 0 o8
I, = =8.8A
20+5
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Writing the V7, equation,

Vin +301; =207, =0
Vi = 201, =301, = 20(8.8)—30(2.75) = 93.5 V

Step Il Calculation of R, (Fig. 2.136)

30 Q 20Q
o Rqy 0
A
50 Q 5Q
Fig. 2.136
Redrawing the circuit (Fig. 2.137),
30 Q 200
Ry = (301]]50)+(20]]5)=22.75Q A B
50 Q 5Q
Fig. 2.137
Step III  Calculation of /, (Fig. 2.138)
22.75Q
A
I, = 93.5 —2A 935V —— ) 24Q
22.75+24 I
B
Fig. 2.138
” Example YIS Find the current through the 20 2 resistor in Fig. 2.139.
120V
[
‘ i
BV 200 15Q
10Q 5Q
I
5Q 20V
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Solution 120V
Step I Calculation of V7, (Fig. 2.140) } |
Applying KVL to Mesh 1, + l A +
45-120—151, =51, — I3) ~10(1, = I,) = 0 o ‘YT < 150
1 — —
301, — 151, = 75 TB
- + - +
Applying KVL to Mesh 2, *0a” t5a
20-51, —10(1, = I;)=5(1, =) = 0 . )
...(11) I
~151; +201, = 20 |
- + I
Solving Egs (i) and (ii), 5Q 20V
L =-32A Fig. 2.140

Ih=-14A
Writing the V., equation,

45—V —10(4; - 1) =0
Vin = 45-10(1) — 1) = 45-10[-3.2 - (-1.4)] = 63 V

Step Il Calculation of R, (Fig. 2.141)

L
Rn 15Q
TB
10Q 5Q
5Q
Fig. 2.141

Converting the delta formed by resistors of 10 €2, 5 Q and 5 Q into an equivalent star network (Fig. 2.142),

R =105 550
20 J;
105 A
R, = ~25Q B
20
_5><5 Ry 15Q 15Q

R=22"=125Q
20

Simplifying the network (Fig. 2.143 and
Fig. 2.144),

Fig. 2.142 Fig. 2.143



2.8 Thevenin’s Theorem 2.67

Ry =(16.25]2.5)+2.5=4.67Q LA
Rrn
250 B 16.250Q
25Q
Fig. 2.144
Step IIl  Calculation of /, (Fig. 2.145)
467 Q
L=—5 )55 A
4.67+20
63V —/ ) 20Q
I
B
Fig. 2.145

” SETIIWHEW  Find the current through the 10 £2 resister in Fig. 2.146.

100Q
20 20
15V TQ 1Q
T 10V
10
Fig. 2.146

Solution
Step I Calculation of V., (Fig. 2.147)
Applying KVL to Mesh 1,

-15-20L-1(1 -1,)-10-1; =0 0
.
4 -1, =-25

Applying KVL to Mesh 2, 15V —

10—1([2—11)—2[2—11220 ..

...(11)

—]1 +412 =10
Solving Egs (i) and (ii),
II=-6A
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Writing the V7, equation,
_VTh +2]2 +2]1 = 0
Vin =20 +21, =2(-6)+2()=-10V
=10 V(the terminal Bis positive w.r.t. 4)

Step IT  Calculation of R, (Fig. 2.148)

O R, ©
A B
2Q 2Q
1Q 1Q
1Q
Fig. 2.148

Converting the star network formed by resistors of 2€Q,2Q and 1Q into an equivalent delta network
(Fig. 2.149),

O Ry ©
A B
2Q 2Q
&=2+2+%?g=89
Ry=2+1+ 2x1 =4Q
2 1Q 1Q
Ry=2+1+ 2x1_ 4Q
2
1Q
Fig. 2.149
Simplifying the network (Fig. 2.150),
I .
———0 Ry, o——m A ¢ B
A B
| oo
8Q
4Q 4Q 0.8Q 0.8Q
(b)
N .
A B
1Q 1Q 1.33Q
(a)
(c)

Fig. 2.150
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R =133Q
Step IIl  Calculation of /, (Fig. 2.151)
1.33Q
A
IL=L=0.88A(T) 10V = U’L 100
1.33+10
B
Fig. 2.151
” SETNI RN  Find the current through the 1 2 resistor in Fig. 2.152.
1A
&
2Q 3Q
4V —/—
1Q (P 3A
Fig. 2.152
Solution
Step I Calculation of V., (Fig. 2.153)
A
&
_20Q 2) 30
T
4V
V-
I Th (f 3A
Bo- e} [}
T 2Q 3Q
Fig. 2.153 J)
A
Writing the current equations for Meshes 1 and 2, A
I =-3 Th
=1 BT
Writing the V., equation,
4_2([1 _12)_VTh =0 Flg. 2.154
Vi =4-2(1 - 1,) = 4-2(~4) =12V gy A
Step Il Calculation of R, (Fig. 2.154)
Ry =20 12v = ) 10
Step III  Calculation of /, (Fig. 2.155) I
12 B
Ip=——=4A
2+1

Fig. 2.155
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EXAMPLES WITH DEPENDENT SOURCES

” Example YAV Obtain the Thevenin equivalent network for the given network of Fig. 2.156 at

terminals A and B.

OA
Iy
4Q
21,
8V
o B
Fig. 2.156
Solution
Step I Calculation of V., (Fig. 2.157) oA
From Fig. 2.157, h +
I = —2[| 4Q 21 V1h
3, =0
8V
1i=0 T s
Writing the V., equation,
T“ Fig. 2.157
8—-0-Vm =0
Vin =8V

Step Il Calculation of /, (Fig. 2.158),
Meshes 1 and 2 will form a supermesh.

I
Writing current equation for the supermesh, 10
I, -1, =21, ) 21, ) In
Iy I
..(1) 8V
T

311—12 =0

Applying KVL to the outer path of the supermesh, B
8—-41,=0 Fig. 2.158
Solving Egs (i) and (ii),
L=6A 1330

Iy=I=6A oA
Step III  Calculation of R, 8V ——

Ry w3330

Iy 6 0B

Step IV Thevenin’s Equivalent Network (Fig. 2.159) Fig. 2.159
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” Example VAW Find Thevenin’s equivalent network of Fig. 2.160.

2Q 3Q
0A
+
4V — ? 0.1V, Vy
oB
Fig. 2.160
Solution 20 3Q oA
Step I Calculation of V., (Fig. 2.161) + - e
Ve =V 4V — ) ? 01V,  Vy=Vg
11 = —01 Vx /1
iy . oB
Writing the V., equation,
Fig. 2.161
4-2L-V, =0 . 30
4-2(=0.1,)-V, =0 94
4-08/, =0 4v =+ T 01V,  ViYly
Ve=5V
Ve=Vm =5V —B
) ) Fig. 2.162
Step Il Calculation of /, (Fig. 2.162)
From Fig. 2.162, 2Q 3@ A
V.=0
The dependent source 0.1 V_depends on the controlling 4V — In
variable V. When V= 0, the dependent source vanishes, i.e.,
0.1 ¥ =0 as shown in Fig. 2.163. B
4 .
Iy=——=08A Fig. 2.163
2+3
. 6.25 Q
Step IIl  Calculation of R, oA
Ryy=—=—=625Q L
™y 08 SV
Step IV Thevenin’s Equivalent Network (Fig. 2.164) oB

Fig. 2.164
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” Example VAN Obtain the Thevenin equivalent network of Fig. 2.165 for the terminals A and B.

vV, 10 4v,
A
2Q
2A
2V
T oB
Fig. 2.165
Solution
Step I Calculation of V., (Fig. 2.166)
From Fig. 2.166,
2-2L-V, =0
Vx =2- 211
For Mesh 1,
L=-2A

Ve=2-2(-2)=6V

Writing the V., equation,

2-20-0+4V, =V, =0

2-2(=2)=0+4(6)—Vpp, =0

Vin =30V
Step Il Calculation of /, (Fig. 2.167)
From Fig. 2.167,
V,=2-2I
Meshes 1 and 2 will form a supermesh,
Writing current equation for the supermesh
L-I=2
Applying KVL to the outer path of the supermesh,
2-2I -1, +4V, =0
2-2I-1,+4(2-20)=0
10, +1, =10
Solving Egs (ii) and (iii),
=073 A
I,=273A
In=1,=273A
Step III  Calculation of R,
Ry, =@:ﬂ=10.989
Iy 273

Step 1V

Thevenin’s Equivalent Network (Fig. 2.168)

()

(i)

10.98 Q

0A

30V—/—

Fig. 2.168

OB

...(iii)
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” SETII WO  Find the Thevenin equivalent network of Fig. 2.169 for the terminals A and B.

8l, 1Q

H: :>—/\/\/\/—OA
h
10Q
10Q
5V
T oB
Fig. 2.169
Solution 8, 10
Step I Caleulation of ¥, (Fig. 2.170) —< >4
Applying KVL to the mesh, h
10Q
5-107;, -107; =0 10Q Vin
[ =2 =025A 5V T _
20 oB
Writing the V., equation, Fig. 2.170
5-100,+85, -0V, =0
Vrn =5-211=5-2(0.25)=4.5V
Step I  Calculation of /, (Fig. 2.171) 8 1Q
Applying KVL to Mesh 1, _F A
l}
5-105, -10(; - 1,)=0 . 10 Q "
(1) 10Q
207, -101, =5 | ,
1 2
Applying KVL to Mesh 2, 5V
B
—10(12—11)+811—112=0 ()
(il ;
18]1 _1112 =0 Flg 2.171
Solving Egs (i) and (ii),
I =1375A
I, =225A
2Q
Iy=1,=225A OA
Step IIl  Calculation of R,
45V —
Ry, = Vm _ 45 20
Iy 225
oB

Step IV Thevenin’s Equivalent Network (Fig. 2.172) Fig. 2.172
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” Example 2.71 g V., and R, between terminals A and B of the network shown in Fig. 2.173.

1Q 2Q |,

l i
12V

T 21, 1Q

( .

Fig. 2.173

Solution oA

7
Step I Calculation of V., (Fig. 2.174) l
I.,=0 12V 10 Vrn

The dependent source 2/ depends on the controlling variable

I.When! =0, the dependent source vanishes, i.e., 2/, =0 as oB
shown in Fig. 2.174. Fig. 2.174

Writing the V., equation,
1
Vih =12X——=6V
1+1

Step Il Calculation of 7, (Fig. 2.175) 1Q W 2Q Iy

From Fig. 2.175, l t A
%
I, =- 12V

Applying KCL at Node 1,

n-12 n W
11 +Tl+51=2]x Fig. 2.175

V1+V1+ﬁ—12:2 4]
2 2
V=8V

4

8
Iy=2=2_4n
N7 T

Step IIl  Calculation of R,

RTh:@:E:I.SQ
Iy 4

” Example PPN Obtain the Thevenin equivalent network of Fig. 2.176 for the given network at

terminals a and b .
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30 V, 4Q 5V,
a
2A 2Q
ob
Fig. 2.176
Solution
Step I Calculation of V., (Fig. 2.177)
Applying KCL at Node x,
2=l
2
V.=4V

Writing the V., equation,
Vih =V, =5V,=—4V,

3Q V, 4Q 5V,

=-16V (the terminal a is negative w.r.t. b) a
Step Il Calculation of ,, (Fig. 2.178) Iy
Applying KCL at Node x, 2A 20
- % + Ve —45 Ve
v, v, b
Iy x
2= 2 Ve 2 Fig. 2.178
Ve=—4V -4Q
— oa
]N — u — _Vx =4 A
4
Step III ~ Calculation of R, —16V —
Rpy, = VTJ — ;16 =40
]N 4 ob
Step IV Thevenin’s Equivalent Network (Fig. 2.179) Fig. 2.179

” Example PIWEN  Obtain the Thevenin equivalent network of Fig. 2.180 for the given network.

300 15‘°V 10Q

o
\

5A<D V, S150 v

—_

Fig. 2.180
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Solution

Step I Calculation of V,, (Fig. 2.181) 300 1ﬁ0 Vo100
From Fig. 2.181, A© \
Vx = VTh + 1
Applying KCL at the node, Vrh 5A (D Ve 215Q 3 %
v, -150 - 1 ooy B -
—= +-245=0 Bo
10 15
V.o=75V Fig. 2.181
Vin =75V 300 VY 150V 100
; -
Step Il Calculation of /, (Fig. 2.182)
Applying KCL at Node x, 1
1 Iy 5A 15Q 3V
v yo Ve=150—2V;
Tiyspig 3 o
30 1 10 B
Ve Ve Vi VW,
XX Y —15-5 :
30715 710 30 Fig. 2.182
V,=60V 375Q
OA
Iy Ve (605 A
30 30 v-L
Step III  Calculation of R, BV T
Vi 75
RTh:E:7:37.SQ OB
Step IV Thevenin’s Equivalent Network (Fig. 2.183) Fig. 2.183

” SETIWWEN  Find the Thevenin’s equivalent network of the network to the left of A-B in the

Fig. 2.184.
10/, 10V
+ - } } oA
Iy
1A (D 5Q 10Q
o B
Fig. 2.184 10 1, 10
+ - } f oA
. IX +
Solution .
Step I Calculation of ¥, (Fig. 2.185) 1A (D ) 50 ) 100 Vi
From Fig. 2.185, Iy A -
Ix=11—12 (1) -
o B

For Mesh 1,

I =1 ..(i)
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Applying KVL to Mesh 2,
=5(1, —1,)—-101, -101, =0
=51, - L)-10(l1 - ;) -101, =0

5L+51,=0 ...(iii)
Solving Egs (ii) and (iii),
I =1A
L=-1A

IL,=hL-L=1-(-)=2A
Writing the V., equation,
10/, -10-Vq, =0
10(=1)=10 =V, =0
Vin =-20V

From Fig. 2.186, + -
]x:[1_12 ..

(1)
.. 1A 5Q 10Q [/
I =1 ...(11) Q) I1> /2> /3> N
Applying KVL to Mesh 2,

—5([2 —[1)—101x —10(12 —13) =0
=5(Iy = 1) =10(1, = ) ~10(I = 13) = 0 Fig. 2.186

Step I1  Calculation of 7, (Fig. 2.186) 10 I, 1? \Y
\

For Mesh 1,

=5I; =51, +1015 =0 ...(iii)
Applying KVL to Mesh 3,
-10(l3-1;)-10=0
107, 1075 =10 ...(iv)
Solving Eqs (ii), (iii) and (iv),
L =1A -10Q
L, =3A
I=2A
Iy=L=2A

OA

20V —/—

Step III  Calculation of R,

oB

) .
Ry =I;Lh=70=_1og Fig. 2.187
N

Step IV Thevenin’s Equivalent Network (Fig. 2.187)

” SE[I I WEN  Find Thevenin’s equivalent network at terminals A and B in the network of
Fig. 2.188.
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2Q 4Q
OA
+
4v, V, 250
oB
Fig. 2.188
Solution
Since the network does not contain any independent source,
Ve =0 20 40
Th A
Iy =0
But the R, can be calculated by applying a known 4
voltage source of 1 V at the terminals 4 and B as shown 4V« ) Vi <5Q ) v
in Fig. 2.189. h - lo I
v
R = —=— B
™=
From Fig. 2.189, Fig. 2.189
Vx :5([1—12) (1)
Applying KVL to Mesh 1,
-4V, =21, =51, -1,)=0
—4[5(I - L] -2, =51, +51, =0
=270 +251, =0 ...(11)
Applying KVL to Mesh 2,
—5(12 —]1)—4[2 —-1= 0
5[1—912:1 (111)
Solving Eqs (ii) and (iii),
L=-021A °A
I,=-023A

Hence, current supplied by voltage source of 1 V is 0.23 A.
1

Ryp = —— =435Q
™= 023

Hence, Thevenin’s equivalent network is shown in Fig. 2.190.

” SETNI WL Find the current in the 9 82 resistor in Fig. 2.191.

6/,

-+

40

20V

6Q

Fig. 2.191

9Q

4.35Q

L———————— o8B

Fig. 2.190
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Solution 6,
Step I Calculation of V., (Fig. 2.192) t ; ° A
Applying KVL to the mesh, ‘0 X
+
20-41,+6I,-61,=0 60V,
I,=5A -
Writing the V., equation, : 20V _
61, ~Viy =0 B
6(5)—Vm =0 Fig. 2.192
VTh =30V
Step II  Calculation of 7 (Fig. 2.193). 61y
From Fig. 2.193, > . A
X
I, =0 4Q
The dependent source 6/ depends on the controlling 6Q In
variable /. When I, = 0, the dependent source vanishes, 20 V
i.e., 6/, =0 as shown in Fig. 2.194. B
20
In=",=5A Fig. 2.193
61,
g A A
4Q 4Q
N = Iy
20V 2V
B T B
@ (b)
Fig. 2.194 60
A
Step IIl  Calculation of R,
V30
RTh—K—?—6Q 30V —— I) 90
L
Step IV Calculation of /, (Fig. 2.195)
B
30
=524 Fig. 2.195

” SCIWACWNIN  Determine the current in the 16 2 resistor in Fig. 2.196.

40V ——

10Q 6 Q

¢ 0.81,

Fig. 2.196

16 Q
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Solution 10 Q 6Q

Step I Calculation of V., (Fig. 2.197)
From Fig. 2.197,

1,=0 40V
The dependent source 0.8/ depends on the controlling
variable /. When /= 0, the dependent source vanishes, as

shown ianig. 2.198.

ie., 0.8/, =0 Fig. 2.197

Vi =40 V 10Q 6 Q B
Step II  Calculation of 7, (Fig. 2.199) +
From Fig. 2.199,

1 x = I 2 (1)
Meshes 1| and 2 will form a supermesh,
Writing current equation for the supermesh,

[1 —12 =0-8[x =0.8[2
I, -181,=0

...(ii) Fig. 2.198

Applying KVL to the outer path of the supermesh, -

40-107,-61, =0
...(ii1)
101, +6 1, =40 40V ¢ 0.81,
Iy I

Solving Egs (ii) and (iii), [

. 24 Q
Step IIl  Calculation of R, A

Rp=-"=""2240
Iy 5 40V = 16 Q
3 I

Step IV Calculation of /, (Fig. 2.200)
4
24+16

” SETNIWWER  Find the current in the 6 82 resistor in Fig. 2.201.

10 2V,
-+

I Fig. 2.200

18V — Q 3A 6Q

Fig. 2.201



Solution

2.8 Thevenin’s Theorem 2.81

Step I Calculation of V., (Fig. 2.202) 10 2V,
From Fig. 2.202, i -+ oA
- +
V. =-1I, = -1 ...(0) Vi
For Mesh 1, 18V — ) CD 3A Vin
L =-3A ...(11) I,
V=3V B
Writing the V., equation, Fig. 2.202
18=1L+2V, =V =0
18+3+23) -V, =0
Vin=27V
Step Il Calculation of /, (Fig. 2.203)
From Fig. 2.203, 1Q 2V,
V. =1, () R N A
Meshes 1 and 2 will form a supermesh, X In
Writing current equation for supermesh, 18V — ) Q) 3A )
[2—[123 (11) h lp
Applying KVL to the outer path of the supermesh, B
18-14H+2V,=0 Fig. 2.203
181 +2(-1;)=0 ...(1ii)
I =6A
Solving Egs (ii) and (iii),
IL=9A
Iy=I,=9A 30
Step IIl  Calculation of R, A
RThZQZE—?)Q 27V —/— ) 6Q
IN 9 I
Step IV Calculation of /, (Fig. 2.204) B
27
I R 3 A .
L7376 Fig. 2.204
” SCIACWNER  Find the current in the 10 82 resistor-.
10Q 10V,
~ +
+
100V — Vv, S50 Q 10A

Fig. 2.205
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Solution
Step I Calculation of V., (Fig. 2.206)
From Fig. 2.206,

Ve =10x5=50V

Writing the V., equation,
100 -V, + 10V, =V, =0
100 =V, +9V, =0
100 =V, +9(50) =0
Vi =550 V
Step Il Calculation of /, (Fig. 2.207)
From Fig. 2.207,
Ve =5y +10)
Applying KVL to Mesh 1,
100+10V, =V, =0

1
100
_100 =51y +50
9
550
Iy=—"-A
N7 s
Step III  Calculation of R,
550
RTh = E =-45 Q
45
Step IV Calculation of /, (Fig. 2.208)
550 110
[ =——=-"=
-45+10 7

EXD| NORTON’S THEOREM

Vi 10V,
——o0 -+
oo P>
N
100V — 50>V, Q>1OA
Fig. 2.206
A B 10V,
-+
In
+
100 V [ V, 250 Q 10A
Fig. 2.207
-45Q
A
550 V = ) 100
I
B
Fig. 2.208

It states that ‘any two terminals of a network can be replaced by an equivalent current source and an equivalent
parallel resistance.” The constant current is equal to the current which would flow in a short circuit placed across
the terminals. The parallel resistance is the resistance of the network when viewed from these open-circuited
terminals after all voltage and current sources have been removed and replaced by internal resistances.

Network

Fig. 2.209 Network illustrating Norton’s theorem
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Explanation Consider a simple network as shown in Fig. 2.210.

Ry Rs

N

Fig. 2.210 Network

For finding load current through R;, first remove the load
resistor R; from the network and calculate short circuit
current Isc or Iy which would flow in a short circuit placed
across terminals A and B as shown in Fig. 2.211.

For finding parallel resistance Ry,replace the voltage
source by a short circuit and calculate resistance between
points 4 and B as shown in Fig. 2.212.

RR,
Rl + Rz

Ry =R; +

Norton’s equivalent network is shown in Fig. 2.213.

R
I =1y —2
Ry + R,

If the network contains both independent and dependent
sources, Norton’s resistances R, is calculated as

where V7, is the open-circuit voltage across terminals 4 and
B. If the network contains only dependent sources, then

VTh=0
]NZO

To find R, in such network, a known voltage V" or current
1 is applied across the terminals 4 and B, and the current / or
the voltage ¥ is calculated respectively.

Norton’s equivalent network for such a network is shown in
Fig. 2.214.

Fig. 2.211 Calculation of I,
R, R,

oA

Ry <— Ry

o B

Fig. 2.212 Calculation of R,

/ N Q) RN RL

Fig. 2.213 Norton’s equivalent network

OA

oB

Fig. 2.214 Norton’s equivalent network
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Steps to be followed in Norton’s Theorem

L.
2. Find the short-circuit current / . or /.
3. Find the resistance R, as seen from points 4 and B.
4.
5. Find current through R, by current-division rule.
I
[, = IRy
Ry +R;

Remove the load resistance R, and put a short circuit across the terminals.

Replace the network by a current source /, in parallel with resistance R,.

” SETII RN Find the current through the 10 2 resistor in Fig. 2.215.

5Q

10Q G ap S150Q

Fig. 2.215

Solution
Step I Calculation of /,, (Fig. 2.216)
Applying KVL to Mesh 1,
2-1,=0
=2
Meshes 2 and 3 will form a supermesh.
Writing the current equation for the supermesh,

L—-1,=4
Applying KVL to the supermesh,
=51, 1515 =0
Solving Egs (i), (ii) and (iii),
I =2A
L, =-3A
I;=1A

In=L-1,=2-(-3)=5A
Step Il Calculation of R (Fig. 2.217)

Ry =1]|(5+15)=0.95 Q
Step IIl  Calculation of /, (Fig. 2.218)

095 __ 0.43A

I, =5x—— =
0.95+10

) 15Q

()
B
Fig. 2.216
(i) 50
(i) AS
1Q <— Ry 15Q
Bo
Fig. 2.217
A
I
5A (D 0.95Q 100
B
Fig. 2.218
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” SCIACWRIN  Find the current through the 10 2 resistor in Fig. 2.219.

10Q 20Q 30 Q

5ovL %209 20Q i1oov
[ T v [

Fig. 2.219

Solution

A
Step I Calculation of /,, (Fig. 2.220)
Applying KVL to Mesh 1,

50-20(1; — 1,)—40 =0 0 %oV
1

Applying KVL to Mesh 2,

v B 200 30 Q
) 20Q ) 20Q ) i1oov
20,20, =10 [ h b Is [
40V
T 0

40-20(1, —1;) =201, =20(1, - I3)=0 Fig. 2.220

=207 +607, —2075=40 ...(ii)
Applying KVL to Mesh 3,
—20(/3-1,)—30/3 -100=0
—201, +5075 =—-100
Solving Egs (1), (ii) and (iii),
I; =0.81A
Iy =1; =0.81A

Step Il  Calculation of R, (Fig. 2.221)

Ry 20 Q

...(iii)

30 Q

Ry =[(201]]30)+20]]]20 =12.3Q 20Q

20Q

Fig. 2.221

Step III  Calculation of /, (Fig. 2.222)

0.81A
1 osix123 _gasa ®
12.3+10

123 Q 10Q

Fig. 2.222
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” Example VIV Find the current through the 8 2 resistor in Fig. 2.223.

5V
I
SA 120 40 2A 80
Fig. 2.223
Solution
Step I Calculation of 7, (Fig. 2.224)
5V
I A
5A 120 40 2A In
B
Fig. 2.224

The resistor of the 4 Q gets shorted as it is in parallel with the short circuit. Simplifying the network by
source transformation (Fig. 2.225),

12Q 5V

—\—] A

60V — ) 2 A ) In
I I

B
Fig. 2.225
Meshes 1 and 2 will form a supermesh.
Writing the current equation for the supermesh,
oA
L-1=2 (D)
Applying KVL to the supermesh,
120 40 <~ Ry
60-127;,-5=0
121, =55 ..(1i)
B
Solving Egs (i) and (ii), ©
I, = 458A Fig. 2.226
I, =6.58A A
Iy =1, =6.58A I
Step I Calculation of R, (Fig. 2.226) 6.58 A D 30 8Q
Ry =12|14=3Q
Step III  Calculation of /, (Fig. 2.227) B

I, = 658><i =1.79A Flg. 2.227
3+8
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” SCICWRER  Find the current through the 1 82 resistor in Fig. 2.228.

2Q
1Q
1A
®  Foa X, s
2Q
Fig. 2.228
Solution
Step I Calculation of 7, (Fig. 2.229)
0 A
2Q
In
1A
®  Zsa X, se
o B
2Q
Fig. 2.229
By source transformation (Fig. 2.230),
0 A
20 )
IS
30 /) I
! 1V 2Q
wl Y
I2
o B
2Q
Fig. 2.230

Applying KVL to Mesh 1,

—3—3[1 —2([1 —[3)+1:0
5[1 —2[3 =-2

2.87

()
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oB

Applying KVL to Mesh 2, OA
2Q
-1-2(I,-13)-21,=0 .
...(i1)
41, -21; = -1 ~—FRn
3Q 2Q
Applying KVL to Mesh 3,
B
=2(;-1))-2(I5-13)=0
(I3-51)-2l5-17) (i) 20
=20 =21, +41; =0 (@)
Solving Egs (i), (ii) and (iii), 2Q 2Q
I, =-0.64A
I, =-0.55A A
I;=-0.59A
IN:13:—0.59A 3Q 2Q
(b)
Step I Calculation of R, (Fig. 2.231
ep alculation of R, (Fig ) . 1o
Ry =22Q Ao
. . (c)
Step Il Calculation of /, (Fig. 2.232)
Fig. 2.231
A
0.59 A 22Q 1Q
I; =0.59% 22 _ 0.41A G>
. IL
B
Fig. 2.232

EXAMPLES WITH DEPENDENT SOURCES

” Example .1 Find Norton’s equivalent network across terminals A and B of Fig. 2.233.

3/,

10Q

I
10Q

Fig. 2.233



Solution
Step I Calculation of V., (Fig. 2.234)
From Fig. 2.234,
L =1,
I =-1,
Applying KVL to the mesh,
5-107,-51,-107, =0
5-101,-51,-101, =0
I,=02A
I =-02A
Writing the V., equation,
5-101,+30 =V, =0
5-10(0.2)+3(-0.2)— V¥V, =0
VTh =24V

Step Il Calculation of I, (Fig. 2.235)
From Fig. 2.235,

2.9 Norton’s Theorem

2.89

10Q
Iy PN 24
10Q 5Q
) VTh
5V Ix 10/,
| -,
Fig. 2.234

L =1, ..(D)
Li=1,-1, ..(i)
Applying KVL to Mesh 1,
5-101, =51y —-1,)—10/, =0
5-101, =51, +51,-101, =0
251, -51,=5  ..(iii) Fig, 2.235
Applying KVL to Mesh 2,
107, =5(1, —1,)+31, =101, =0
101, =51, +51, +3(1, —1,)-101, =0
121, -121, =0 ...(iv)
Solving Eqs (iii) and (iv),
I,=025A oA
I,=025A
. Iy=1,=025A 0.25 A D 960
Step III  Calculation of R,
N = % = 02—245 =9.6 oB
Step IV Norton’s Equivalent Network (Fig. 2.236) Fig. 2.236
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” Example PIREW  For the network shown in Fig. 2.237, find Norton'’s equivalent network.

20Q

Fig. 2.237
Solution
Step I Calculation of V., (Fig. 2.238)
From Fig. 2.238,
Ve=2I, ..(D)
For Mesh 1,
I =3V, =-3(21,) =61, ...(11)
For Mesh 2,
I, =2 ... (iii)
L =-6I,=-6(2)=-12 A
Writing the V., equation,
Ven —0+50L +15(5, —1,)-21, =0
Vi +5(=12)+15(-12-2)-2(2) =0
Vih =274V
Step Il Calculation of /, (Fig. 2.239)
From Fig. 2.239,
Ve=2(I,-15) ...(D)
For Mesh 2,
I, =2 ...(ii)

Meshes 1 and 3 will form a supermesh.
Writing the current equation for the supermesh,

Iy —1, =3V, =3[2(1, - I3)] = 61, - 615
L +61,-715=0 ...(iii)
Applying KVL to the outer path of the supermesh,
=50 —2015-2(I5—-1,)-15(l, - 1;)=0
—2011+1712—22[3 =0 (IV)
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Solving Eqs (ii), (iii) and (iv),

2.91

I, =-0.16 A
L=2A oA
I5=169 A
Iy=1;=1.69 A 1_69AQ> 162.13 Q
Step III  Calculation of R),
RNzﬁzﬂzléz.BQ 0B
Iy 1.69
Step IV Norton’s Equivalent Network (Fig. 2.240) Fig. 2.240
” SETII RN Obtain Norton’s equivalent network across A-B in the network of Fig. 2.241.
oA
by
15V — 0.6V, 15Q
o B
Fig. 2.241
Solution
Step I Calculation of V., (Fig. 2.242)
_?_A
+ G
15V 104, 0.6V, ) 15Q Vg,
I B
o B
Fig. 2.242
From Fig. 2.242,
N=8(I,-1,) ..()
Applying KVL to Mesh 1,
15-51, -8, —1,)=0
137, -81, =15 ...(11)
Applying KVL to Mesh 2,
—8(1, —1,) =21, 101, =0
81, =101, 101, =0 ...(iii)
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For Mesh 3,
I, =0.6V; =0.6[8(/,—1,)]

481, -481,-1,=0 ...(iv)
Solving Eqs (ii), (iii) and (iv),
I, =328A
1,=345A A
I, =-083 A 2
Writing the V7, equation, 15V — 101, 0.6V, 15Q In
151, =V =0
15(-0.83) =V, =0 B
Vih =-1245V
Step Il Calculation of /, (Fig. 2.243)
From Fig. 2.243, A
12 =0
The dependent source of 10 7, depends 15V 5 0.6V I
on the controlling variable /,, When
I, =0, the dependent source vanishes, B
i.e. 10/, =0 as shown in Fig. 2.244.
From Fig. 2.244, Fig. 2.244
N=8U;-1,) ...(1)
Applying KVL to Mesh 1,
15-51,-8(1,—1,)=0
137, -81, =15 ...(11)
Applying KVL to Mesh 2,
=81, —1,)-21,=0
=81, +101, =0 ...(1il)
Solving Egs (ii) and (iii),
I, =227A
I,=182A
Vi=8(,—1,)=81227-182)=3.6V oA
For Mesh 3,
Iy =0.671=0.6(3.6)=2.16 A
N. 1 3:6) 2.16 A G) -5.76 Q
Step III  Calculation of R),
|2 —-12.45
Ry =-1 = =-5.76 Q 0B
Iy 2.16

Step IV Norton’s Equivalent Network (Fig. 2.245) Fig. 2.245
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” Example YRV Find Norton’s equivalent network of Fig. 2.246.

O A
I1
0.5/,
1Q
2Q
2V
1 -
Fig. 2.246 / 0A
;
0.5/,
Solution "
Step I Calculation of V., (Fig. 2.247) 1Q Vrh
Applying KVL to the mesh, 2Q -
2-2I1+0.5 -1, =0 oV
2-250=0 1 oB
L=08A Fig. 2.247
Writing the V., equation, oA
=V =0 h
100.8) Vi, = 0 0.5h
Vi =08V 10 In
Step II  Calculation of 7, (Fig. 2.248) 2Q
When a short circuit is placed across the 1 Q resistor, it gets shorted. oy
I,=0 1 Lg
The dependent source of 0.5/, depends on the controlling variable /,. Fig. 2.248
When /, = 0, the dependent source vanishes, i.e. 0.5 /, = 0 as shown in T
Fig. 2.249. A
2
Iy===1A
Mo 20 In
Step Il Calculation of R),
2V
Ry = @ _ % —080Q B
Iy 1
Step IV Norton’s Equivalent Network (Fig. 2.250) Fig. 2.249
OA
1A (D 08Q
oB

Fig. 2.250
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” Example YIREW  Find Norton’s equivalent network at the terminals A and B of Fig. 2.251.

61,
—>
3Q 2Q
oA
IX
9V — 6Q
oB
Fig. 2.251
61,
Solution g~
Step I Calculation of V., (Fig. 2.252) )
From Fig. 2.252, 3Q I 2Q
A
I, =1, () PV YT
Applying KVL to Mesh 1, 9V —/— ) 60 Vi
9-3(1-1;)-6,=0 h _
91, -31, =9 ..(ii) °B
For Mesh 2, Fig. 2.252
I, =6I, =61,
6I,—-1,=0 ... (iil)
Solving Egs (ii) and (iii),
L =-1A
L=-6A
Writing the V., equation,
9—3(11 —12)+212 _VTh =0
9-3(-1+6)+2(-6)— V1, =0
Vin =—-18V
Step Il Calculation of I, (Fig. 2.253) 6l,
From Fig. 2.253, g~
I,=1 -1 ..() )
. 3, 20
Applying KVL to Mesh 1, 7 A
X
9-3(,-1;)-6(I,—15)=0
(L1 —1r)—6(1, - 13) v o W
9[1—3[2—6[3=9 ...(11) | I
1 3
For Mesh 2, B
Iy =61, =6(I1 - 1) Fig. 2.253
6l,—-1,-6I3=0 ...(1i1)
Applying KVL to Mesh 3,
—6(13—11)-2(l3-12)=0
-6, -2, +815 =0 ...(iv)
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Solving Eqs (ii), (iii) and (iv), OA
I1=5A
L=3A asA(}) ~4Q
[3 =45A
Iy=6L=45A oB
Step III  Calculation of R), Fig. 2.254
v = V. - -18 =40
Iy 45

Step IV Norton’s Equivalent Network (Fig. 2.254)

” SET[I RN Find Norton’s equivalent network to the left of terminal A-B in Fig. 2.255.

OA
6Q 0.5/ 4Q
!
o B
Fig. 2.255
%4
. . . 4 A
Solution Since the network does not contain any
independent source, 60
4Q
Vip =0 0.5/ 1A
IN =0 !
But R, can be calculated by applying a known current B
source of 1 A at the terminals 4 and B as shown in Fig. 2.256
Fig. 2.256.
From Fig. 2.256,
=2
6
Applying KCL at the node,
Y +0.57+ L 1
4
v +0.5 (V) + Y 1
6
A
1 05 1
( + 03 + ) V=1
6 6 4 20
V=2
2
Ry r.2 =2Q B

Hence, Norton’s equivalent network is shown in Fig. 2.257. Fig. 2.257
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” Example YISO Find the current through the 2 2 resistor in the network shown in Fig. 2.258.

20 I 21y
o
10V Q) 2A 4Q 10 Q
Fig. 2.258
Solution / -2l
Step I Calculation of ¥, (Fig. 2.259) AV B o
From Fig. 2.259, A
I, =0
10V Q 2A 40Q 10Q
The dependent source of —2 /_depends on
the controlling variable /. When I, =0, the
dependent source vanishes, i.e. 27, =0 as
shown in Fig. 2.260. Fig. 2.259
I =2
.- . /
Writing the V., equation, A VThg .
3/

_10_VTh —4]1 :0

—10—Vm, —4(2)=0 -10V Q)ZAID 4Q 10Q
1

Veh =-18V
Step II Calculation OfIN (Flg 2261) Flg- 2.260
From Fig. 2.261, I
-2 »
I, =1, .0 A v Bk o~

Mesh 1 and 2 will form a supermesh.

Writing the current equation for the
supermesh, -0V (D 2A 40 Qe
Iy I Iy

L-1=2 ...(ii)
Applying KVL to the outer path of the
supermesh, Fig. 2.261
-10-4(1, -13)=0
41, +41; =10 ...(iii)

For Mesh 3,
I3 =—(21,)=21, =21,
2]1—13 =0 (IV)
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Solving Eqs (ii), (iii) and (iv),
L =45A
I,=65A
=9A
Iy=1=45A

Step III  Calculation of R,
_Pm 18

RN_IN_4.5__4Q 45A (D -4Q 20

Step IV Calculation of /, (Fig. 2.262)

—4
—4+2

” S ETIIWREN  Find the current through the 212 resistor in the network of Fig. 2.263.

I =4.5X% =9A Fig. 2.262

Sy, +
1Q
2Q
5V
Fig. 2.263
Solution S5V
Step I Calculation of V., (Fig. 2.264) !
From Fig. 2.264,
54V;+4V; =0
Vi=-1V 5V
Writing the V., equation, T
4V, Vi =0
Vin = —4V; = —4(-1)=4 V Fig. 2.264
Step Il Calculation of I, (Fig. 2.265) - v. ¢ A
From Fig. 2.265, I
547, =0 1e
In
Vi=-5V 5V
4V;
Applying KVL to the mesh,
B
AV, -1y =0

Iy =—4V; = —4(=5)=20 A Fig. 2.265
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Step III  Calculation of R, A
Veh 4
RN=E=%=O.ZQ 20 A D 02Q 2Q
Step IV Calculation of /, (Fig. 2.266)
B
0.2
I =20Xm=1.82A Fig. 2.266

” SETII RPN Find the current in the 2 82 resistor in the network of Fig. 2.267.

10 I, 21,
IWV —>
[ 1A 3Q 20

Fig. 2.267

10V

Solution
Step I Calculation of V., (Fig. 2.268)

10 I, 21,
Meshes 1 and 2 will form a supermesh. P/W > N <9>—S A
Writing current equation for the supermesh, 10V
) 1A ) 3Q
I b<' =

L—1 =1 .G Vrn
Applying KVL to the outer path of the 5B
supermesh,
10-14,-31, =0 Fig. 2.268
L+3L, =10 ...(i)
Solving Egs (i) and (ii),
L =175A
I,=275A
Writing the V., equation,
30, -Vm =0
3(2.75)=Vm =0
Vi =825V
Step Il Calculation of [, (Fig. 2.269) 1Q Iy 21,

From Fig. 2.269,

N 7
=i 0 vi 1A 3Q I
Meshes 1 and 2 will form a supermesh. 10 T | , P N
1 2 3

Writing the current equation for the supermesh,
L, -1 =1 ...(11)
Applying KVL to the outer path of the supermesh,
10-15,-3(l,-15)=0

—
~

Fig. 2.269



I, +31, —3]3 =10

For Mesh 3,

Solving Egs (ii), (iii) and (iv),

Step Il Calculation of R),

RN=@=@=—1.189
Iy -7

Step IV Calculation of /, (Fig. 2.270)

~1.18
I, =-Tx——"=10.07 A
—1.18+2

Iy =21, =21

211—]3 :0

I =-35A
L=-25A
L=-TA
In=L=-TA

2.9 Norton’s Theorem 2.99

... (i)

...(Iv)

-1.18Q 20

7A D

Fig. 2.270

” SETIIWRERN  Find the current through the 10 £2 resistor for the network of Fig. 2.271.

2Q

0V

Solution

Step I Calculation of V., (Fig. 2.272)
Applying KVL to the mesh,

10-21,+31,-51,=0
I,=25A
Writing the V., equation,
5[y =V =0
5(2.5) =V =0
Vi =125V

Step Il Calculation of /, (Fig. 2.273)
From Fig. 2.273,

I,=0

31,

—

5Q

Fig. 2.271

10Q
20
10V
Fig. 2.272
31,
-+
IX
20
5Q In
10V T

Fig. 2.273
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The dependent source of 3 /_depends on the controlling variable / . A
When [ = 0, the dependent source 3 /_vanishes, i.e. 3/ =0 as shown
in Fig. 2.274. 2Q |
N
Iy = 0_s5a 10V
2
B
Step III  Calculation of R, Fig. 2.274
RN—VT—h—u'S:z.SQ A
Iy n
Step IV Calculation of /, (Fig. 2.275) 5A (D 25Q 10Q
2.5
I, =5x% =1A
ET 5410 B
Fig. 2.275
” SETIIWRLN  Find the current through the 5 2 resistor in the network of Fig. 2.276.
20 |, 40
12V 50 4l
Fig. 2.276
Solution
Step I Calculation of V,, (Fig. 2.277) 2Q Iy 4Q
Applying KVL to the mesh, + - J)
+0A
12-21,-41,-41,=0 1oV —— Vi 4,
12-107, =0 0B
I,=12A T
Writing the V., equation, Fig. 2.277
12_21x _VTh =0
12-2(1.2)=Vm =0
VTh =96V
Step I1  Calculation of I, (Fig. 2.278)
From Fig. 2.278,
Li=0h  ..(3) 2Q 4Q
Applying KVL to Mesh 1,
12-2,=0
e [/ 41
h=6A .Gy 2V /> " /> "
Applying KVL to Mesh 2, ! 2
-4, -41, =0
Fig. 2.278

-4, -4 =0 ...(ii)
Solving Eqs (ii) and (iii),
ILHL=-6A
IN 211 —12 =6—(—6)=12A



2.9 Norton’s Theorem 2.101

Step III  Calculation of R,

I
Ry =/m %6 _5q ‘
Iy 12 12A 0.8Q 5Q

Step IV Calculation of /, (Fig. 2.279)

0.8
I = 12xm =1.66 A Fig. 2.279

” S ETTIWREW  Find the current through the 10 £2 resistor for the network of Fig. 2.280.
5Q

Solution
Step I Calculation of V., (Fig. 2.281)
For the mesh,

= Vx

I =-0.5V, =-0.5V,

Writing the V7, equation,
5—41 00—V, =0
5-4(-0.5Vm)—Vm =0
Voh=-5V

Step I1  Calculation of 7, (Fig. 2.282)
From Fig. 2.282,

V=0

The dependent source of 0.5 ¥ depends on the controlling
variable V. When V_= 0, the dependent source vanishes, i.e. 0.5 A
V_=0 as shown in Fig. 2.283.

/
IN =—= é A N
445 9 5V T
Step II1  Calculation of R), B
Viw =5 Fig. 2.283
Ry=—-=7=-9Q
N Iv 5 A
9 L
5
<A = 10 Q
Step IV Calculation of /, (Fig. 2.284) 9 G) 90
I, = 5 -9 _ s B
9 -9+10

Fig. 2.284
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” Example 2 SIS Find the current through the 10 Q resistor in the network shown in Fig. 2.285.

1000Q 1,
{THay, <> 5Q 10 Q
Fig. 2.285
Solution 1000Q 1
Step I Calculation of V., (Fig. 2.286) OA
From Fig. 2.286, +
V,=-255I)=—1251, ...(i) kg 25Q  Vm
Applying KVL to Mesh 1, ; _
o B
12-10007, =2V, =0
12-10007; —2(-1251;) =0 .. (ii) Fig. 2.286
1, =0.016 A
Ve =-125I} =-125(0.016) =2V
Writing the V., equation, 1000Q 1,
A
Vih=V,=-2V .
Step Il Calculation of I, (Fig. 2.287) 12V Vi 25Q Iy
From Fig. 2.287, _
Ve=0 B
The dependent source of 2V depends Fig. 2.287
on the controlling variable V. When
V. =0, the dependent source vanishes, 1000Q | A
ie. 2V =0, as shown in Fig. 2.288.
h=—2_o012A 12V 5h I
1000
Iy =-5I =-5(0.012) = -0.06 A B
Step III  Calculation of R, Fig. 2.288
— A
Ry = m_ =2 33330 I
Iy —0.06
~0.06 A (D 33330 210Q
Step IV Calculation of /, (Fig. 2.289)
B
I; =-0.06 xﬂ =-0.046 A
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” SCIACWEIYE  Find the current through the 5 2 resistor for the network of Fig. 2.290.

| } 4V
1Q 2Q
+ v, =
1Q
5Q
4V,
2A
Fig. 2.290
Solution
Step I Calculation of V., (Fig. 2.291)
From Fig. 2.291,
Ve=21 ..(D)
For the mesh,
=2 ...(11)
Ve=22)=4V
Writing the V., equation,
4V, +2I+1I+4 V1, =0
44)+22)+2+4-Vm, =0
Vi =26V
Step Il Calculation of /, (Fig. 2.292)
From Fig. 2.292,
Ve=2(I; - 1) ..(D)
For Mesh 1,
L =2 ...(11)
Applying KVL to Mesh 2,
4Vx —2(12 —Il)—l(lz —11)+4 =0
A2 - L) -2L,+2L - L+ +4=0
115, 11, =4 ...(iii)
Solving Eqs (ii) and (iii),
]1 =2A
I,=236A A
Iy=1,=236 A I
Step III  Calculation of R,
2.36 A 11.02 Q 5Q
Vi 26 A (D
Ry=—=—-=11.02Q
Iy 236
B
Step IV Calculation of /, (Fig. 2.293)
11.02 Fig. 2.293

I, =2.36% =1.62 A

11.02+5
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” Example PICEN  Find the current through the 1 Q2 resistor in the network of Fig. 2.294.

6Q I

L
[

12V

Fig. 2.294

Solution
Step I Calculation of V., (Fig. 2.295)
From Fig. 2.295,

I, =1

Meshes 1 and 2 will form a supermesh.
Writing the current equation for the supermesh,

I, -1 =31, =3I
45 -1, =0
Applying KVL to the outer path of the supermesh,
12-61; =31, =0
61,+31, =12
Solving Eqs (ii) and (iii),

.G

(i)

I, =0.67 A
I, =2.67A

Writing the V., equation,
3, -V =0
3(2.67) -V =0
Vih =8V
Step Il Calculation of [, (Fig. 2.296)

When a short circuit is placed across a 3 € resistor, it

gets shorted as shown in Fig. 2.297.
From Fig. 2.297,
I, =1
Meshes 1 and 2 will form a supermesh.
Writing the current equation for the supermesh,

I, -1, =31, =3]
45, -1, =0

Applying KVL to the outer path of the supermesh,
12-6,=0
I =2

..(0)

..(ii)

6Q I,

> O

1 o

12V ) 3&) 3Q Vin
T Iy I =

°

Fig. 2.295

... (i)

6Q Iy

12V 3y 3Q

Fig. 2.296

6Q I,

12V =/ ) 3ly ) In
Iy Iy

Fig. 2.297

... (i)
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Solving Egs (ii) and (iii),

L =2A
12 = 8 A A
]N = ]2 = 8 A IL
Step III  Calculation of R, 8 A (D 10 10
Ry V. - 8 =10
Iy 8 B
Step IV Calculation of /, (Fig. 2.298) Fig. 2.298
I; =8x% L =4 A
1+1
” SETNIWRLER  Find the current through the 1.6 2 resistor in the network of Fig. 2.299.
31,
~ o+
Iy
104 (4) 10 60 160
Fig. 2.299
Solution 3/,
Step I Calculation of V., (Fig. 2.300) _— oA
From Fig. 2.300, Iy .
L=h-I..() 10A(}) ) 10 ) 6Q v,
h I z
For Mesh 1,
L=10 .. °B
Applying KVL to Mesh 2, Fig. 2.300
(I, -0))+3I,-61,=0
L +L+3(1-1,)-6I,=0
41, -101, =0 ...(1ii)
Solving Eqs (ii) and (iii),
=10 A
[2 =4 A
Writing the V., equation,
6[2 - VTh =0
6(4)—Vm =0

Vin=24V
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Step Il  Calculation of /, (Fig. 2.301)

When a short circuit is placed across the 3 Q resistor, it

gets shorted as shown in Fig. 2.302.
From Fig. 2.302,

I.=5L-1
For Mesh 1,
L =10
Applying KVL to Mesh 2,
—1(I,-)+31,=0
L +1+3(l,-1;)=0
41, -41, =0
Solving Egs (ii) and (iii),

31,
-+ A
IX
~ 10A f 1Q 6Q Iy
...(1) <)
B
...(11)
Fig. 2.301
3/,
-+ A

IX
...(ii)
10A 1Q In
b, )

=10 A
I,=10A
IN = 12 =10 A
Step IIl  Calculation of R),
y=rm o2 40
Iy 10
Step IV Calculation of /, (Fig. 2.303)
I; =10x 2:4 =6A
24+1.6

B
Fig. 2.302
A
I
10A D 240Q 16Q
B
Fig. 2.303

EET]| maxiMum POWER TRANSFER THEOREM

It states that ‘the maximum power is delivered from a source to a load when the load resistance is equal to

the source resistance.’

Proof From Fig. 2.304,

. V'R
Power delivered to the load R, = P =1 R, = 7L2
(Rs + RL)
To determine the value of R, for maximum power to be transferred
to the load,
dpP
i)
dR;,
ap_d V*?

dR,  dR; (R, +R; )
_ V2[R +R)? ~(2R)(R, +Ry)]

Rs

i

Network illustrating
maximum power transfer
theorem

Fig. 2.304

(R, +Rp)*
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(Ry+R;)> =2 Ry (R +R;)=0
R2+R,>+2R.R, —2R, R, -2R? =0
Rs = RL

Hence, the maximum power will be transferred to the load when load resistance is equal to the source
resistance.

Steps to be followed in Maximum Power Transfer R
Theorem A
1. Remove the variable load resistor R, .
2. Find the open circuit voltage ¥, across points 4 and Vin — ) Ry =R
B. I
3. Find the resistance R, as seen from points 4 and 5
B.
4. Find the resistance R, for maximum power Fig. 2.305 Thevenin’s equivalent network
transfer.
Ry = Rm

5. Find the maximum power (Fig. 2.305).

/= Vrn Vrn
L
RTh + RL 2RTh
Vi Vi
P, max 1 g RL = T2 Th = =
Th 4Ry

” Example yROWN  For the value of resistance R, in Fig. 2.306 for maximum power transfer and

calculate the maximum power.

15Q ;% 18Q

10 Q 20 Q 27 Q
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Solution
Step I Calculation of V., (Fig. 2.307)
150 A B 18Q
o VO
5Q 15Q 27 Q 9Q
10 Q 20Q 27 Q
I
100V
Fig. 2.307

By star-delta transformation (Fig. 2.308),

100

[=—=208A
5+45+204+9+9

Writing the V., equation,
100-51 =V, =91 =0
Vi =100-147
=100-14(2.08)
=70.88V

Fig. 2.308
Step Il Calculation of R, (Fig. 2.309)

5Q A B 9Q
—AAA—0 Ry o—AAA— 50 4 B 9Q

—\V\V\N—o0 R
14Q h
340
9.920Q
(c) (d)

Fig. 2.309
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Rry =23.92Q
Step 11T . Calculation of R, 23.92 0
For maximum power transfer, A
R, =Ry, =23.92Q
Step IV Calculation of P, (Fig. 2.310) 7088V = 23920
2 2
Pmax = VTh = (70788) =5251W B
4R, 4x23.92
Fig. 2.310

” Example yROEN  For the value of resistance R, in Fig. 2.311 for maximum power transfer and

calculate the maximum power.
2A

o0 )
\_/

10Q 20Q

— 20V

80V —
R

Fig. 2.311

Solution
Step I Calculation of V., (Fig. 2.312)

NN

80V - — 20V
h

Applying KVL to Mesh 1,

8051, —10(1; = 1,)—20(1, = 1,)—20=0
3511 —3012 =60

()

Writing the current equation for Mesh 2,
I,=2 ...(ii)
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Solving Egs (i) and (ii), 5Q
O O
I, =343A
] 10Q 20 Q
Writing the V7, equation,
A

VTh—ZO(I]—Iz)—20=O RTh

Vrn =20(3.43-2)+20=48.6 V TB
Step II Calculation of R, (Fig. 2.313

P m (Fig ) Fig. 2.313

R =15[20=8.57Q

Step III  Calculation of R,
. 8.57 Q
For maximum power transfer, A

RL = RTh =8.57Q

Step IV Calculation of P__(Fig. 2.314) 486V 8.570
V3 48.6)° B
max:4Th 2286) =689 W
R 4x8.57 Fig. 2.314

” Example yJROPE  For the value of resistance R, in Fig. 2.315 for maximum power transfer and

calculate the maximum power.

10Q 200
100V = %
R
30 Q 40 Q
Fig. 2.315
Solution
Step I Calculation of V., (Fig. 2.316)
100
= =25A e
1 10430 100V
2= 100 _ 1.66 A
20+40

Writing the V., equation,

Vin +10 1, =201, =0
Vin = 201, =101, = 20(1.66)—10(2.5) = 8.2 V
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Step Il Calculation of R, (Fig. 2.317)

Fig. 2.317
Redrawing the network (Fig. 2.318),
10Q 20 Q
A B
R, =(10]]30)+ (201 40) = 20.83 Q
30 Q 40 Q
Fig. 2.318
Step IIl  Value of R, 20.83 Q
For maximum power transfer, A
RL = RTh = 2083 Q
82V | 20.83 Q
Step IV Calculation of P (Fig. 2.319)
Vi 8.2)" B
o == B2 _ g1y
4Rr, 4x20.83 Fig. 2.319

” SETIIWRMOEN  For the value of resistance R, in Fig. 2.320 for maximum power transfer and

calculate the maximum power.

72N —/—
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Solution
Step I Calculation of V., (Fig. 2.321)
Applying KVL to Mesh 1,
72-61-3(11 -1;)=0
91, =31, =72 ...(1) 2V =

Applying KVL to Mesh 2,
—3(12 —11)—2[2 —4[2 =0
=3+91, =0 ...(i)

Solving Egs (i) and (ii),
I1=9A
I, =3A
Writing the V., equation,
Vin =61, =21, =0
Vi =61 +21, =6(9)+2(3)=60 V

Step Il Calculation of R, (Fig. 2.322)

A 2Q
6 Q
Rrh
B
O\ 6Q A
20 4Q
Rrh
3Q 4Q
B
Fig. 2.322
Rry =[(6][3)+2]]|4=2Q
. 2Q
Step III  Calculation of R, A
For maximum power transfer,
Ry =Rm=2Q 60V — 20
Step IV Calculation of P _(Fig. 2.323)
Vi, (60) B
Py = —21 =607 450w
4Ry, 4x2 Fig. 2.323

EXAMPLES WITH DEPENDENT SOURCES
” SET[I IO For the network shown in Fig. 2.324, find the value of R, for maximum power

transfer. Also, calculate maximum power.
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/

20Q 40Q

10/ 50V

Fig. 2.324

Solution

Step I Calculation of V., (Fig. 2.325)

Applying KVL to the mesh, 209 Ab+ 4a0Q
107 —207 —407 =50 =0 Y

Bo- 50 V

I=-1A 10/
Writing the V7, equation, T

Vi —400-50=0 Fig. 2.325
Vin —40(=1)—50 = 0
Vi =10 V

Step Il Calculation of I, (Fig. 2.326) /

From Fig. 2.326,
I1=1, ...(1) 20 Q A 40 Q
Applying KVL to Mesh 1, ) | )
N
107 -207, =0 h B lo

10/

10/, =207, =0 ...(1)
Applying KVL to Mesh 2, Fig. 2.326
—407, -50=0
I,=-125A ...(1ii)
Solving Egs (i), (ii) and (iii),
I; =-0.625 A
Iy=1 -1, =-0.625+125=0.625 A
Step III  Calculation of R,

Ry, = Vi — l =16 Q
Iy 0.625 60
Step IV Calculation of R, A
For maximum power transfer,
Ry =Ry =16 Q 10V — 16 Q
Step V' Calculation of P (Fig. 2.327)
Vi _ (10)° 5

=1.56 W

J - -
" 4Ry 4x16 Fig. 2.327
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” Example yMOEW  For the network shown in Fig. 2.328, calculate the maximum power that may be

dissipated in the load resistor R, .

21, 30
— +
Iy
10A (D 40 60 R,
Fig. 2.328
21
Solution < 30
- NNVN—0 A
Step I Calculation of V., (Fig. 2.329) b I +
From Fig. 2.329, *
10A (4 4Q 6Q Vrn
Ix = 12 1 <> /1 /2> B
For Mesh 1, -
I, =10 - (i) Fig. 2.329
Applying KVL to Mesh 2,
-4, -1)+21, -6, =0
40, +4L+21,-61, =0
4]1—8]2:0 (111)
Solving Eqs (ii) and (iii),
I1=10A
I,=5A
Writing the V., equation,
612 -0- VTh =0
Vi =61, =6(5)=30V
Step Il Calculation of I, (Fig. 2.330) 21, 30
From Fig. 2.330, g A
I,=hL-1 (D) t
For Mesh 1, 10 A Q) ) 4Q ) 6Q ) Iy
I, =10 ...(ii) h I ly
Applying KVL to Mesh 2, B
—4(I, = 1))+ 21, —6(I, —13) =0 Fig. 2.330

-4, +41+2(1, - 13)-61,+615 =0
41, =81, +415 =0

...(iii))
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Applying KVL to Mesh 3,
—6(13—1,)-313=0
61, -913=0 ...(1v)
Solving Eqgs (ii), (iii) and (iv),

=10 A
L, =75A
I;=5A
Iv=1=5A
Step III  Calculation of R, 6Q
A
V; 30
Rp=-"2=""=6Q
Iv 3 30V — 60Q
Step IV Calculation of R,
For maximum power transfer, B
Ry =Ry =6 Q Fig. 2.331
Step V' Calculation of P _(Fig. 2.331)
2 2
AL I CLU Y B
4Ry, 4x16

” SET[I WO  For the network shown in Fig. 2.332, find the value of R, for maximum power

transfer. Also, find maximum power.

1Q ZY
|
A (
1Q
2V, Ry
1A
Fig. 2.332
Solution 10 2Y
Step I Calculation of ¥, (Fig. 2.333) e 1 2A
From Fig. 2.333, . raQ
Ve=-1=-1 (@) W ) Vr
/ 1A
For Mesh 1, -
I=-1 ...(ii)

Vo1V Fig. 2.333
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Writing the V7, equation,
2V, —1U+2-V1, =0
2()—-(-D+2-Vmy =0
Vth =5V
Step I1  Calculation of I, (Fig. 2.334)
From Fig. 2.334,
Vx =—111=—[1 (l)
Meshes 1 and 2 will form a supermesh.
Writing the current equation for the supermesh,

L -1 =1 ...(ii)
Applying KVL to the outer path of the supermesh,
2V, —-1+2=0
2(-)-6L+2=0
3 =0
Solving Eqs (ii) and (iii),
;=067 A
I, =167A

[N = 12 = 167 A
Step III  Calculation of R,

Ry, = @ — i =30
Iy 1.67
Step IV Calculation of R,
For maximum power transfer,
RL = RTh = 3 Q
Step V' Calculation of P___(Fig. 2.335)
2 2
o =20 = O 5 08w
4R 4x3

1Q 2V
VW | A
VX
10
2V, ) ) I
P 1A b
B
Fig. 2.334
(i)
30
A
5V — 30
B
Fig. 2.335

” SETNTI MY What will be the value of R, in Fig. 2.336 to get maximum power delivered to it?

What is the value of this power?

05V

—

3a(d) 40

Fig. 2.336



Solution

Step I Calculation of V., (Fig. 2.337)
By source transformation,

From Fig. 2.337,

Vin =41
Applying KVL to the mesh,
12-47+05Vy, —41=0
12—V +0.5Vm =V =0
Vin =8V

Step Il Calculation of /, (Fig. 2.338)
If two terminals 4 and B are shorted, the 4 Q resistor gets
shorted.

V=0
Dependent source 0.5 ¥ depends on the controlling

variable . When V' = 0, the dependent source vanishes, i.e.
0.5 V'=0 as shown in Fig. 2.339 and Fig. 2.340.

_12_

Iy=-2=3A
N7y

05V
-+ A

4Q

122V

JTr
4Q In I

Fig. 2.339
Step III  Calculation of R,
Vin 8

Ry =—=-=2.67Q
Th Iv 3

Step IV Calculation of R,
For maximum power transfer,

RL = RTh = 267 Q
Step V' Calculation of P___(Fig. 2.341)

Vi (8)

P x = = =
T ARy, 4%2.67

2.10 Maximum Power Transfer Theorem 2.117

0.5 Vi,
-+ oA
+
3A (D 40 40 vy,
o B
Fig. 2.337
05 Vi
— + o A
+
40
) 40 Vi
12V i
oB
Fig. 2.338
12V —
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EETN| ReciPrROCITY THEOREM

It states that ‘in a linear, bilateral, active, single source network, the ratio of excitation to response remains

same when the positions of excitation and response are interchanged.’
In other words, it may be stated as ‘if a single voltage

source ¥, in the branch ‘@’ produces a current /, in the branch

‘b’ then if the voltage source V, is removed and inserted in v Network !

the branch ‘b’, it will produce a current /, in branch ‘a”’.

Explanation Consideranetwgrk shown in Fig. 2.342. . Fig. 2.342 Network
When the voltage source V' is applied at the port 1, it
produces a current / at the port 2. If the positions of the
excitation (source) and response are interchanged, i.e., if / Network v
the voltage source is applied at the port 2 then it produces a

current / at the port 1 (Fig. 2.343).
The limitation of this theorem is that it is applicable only Fig. 2.343 Network when excitation

to a single-source network. This theorem is not applicable in and response are

the network which has a dependent source. This is applicable interchanged

only in linear and bilateral networks. In the reciprocity

theorem, position of any passive element (R, L, C) do not change. Only the excitation and response are

interchanged.

Steps to be followed in Reciprocity Theorem

1. Identify the branches between which reciprocity is to be established.
2. Find the current in the branch when excitation and response are not interchanged.
3. Find the current in the branch when excitation and response are interchanged.

|| Example yI W Calculate current I and verify the reciprocity theorem for the network shown in
Fig. 2.344.

5Q 4Q
/
20V — 10Q 6Q
Fig. 2.344

Solution 5Q 40
Case I Calculation of current / when excitation and /

response are not interchanged (Fig. 2.345)

Applying KVL to Mesh 1, 20V I 100 I 6Q

20-51,—10¢1, —1,)=0 ! 2
156, -107, =20 ¢
, b © Fig. 2.345
Applying KVL to Mesh 2,

—}0(12 _Il)_4[2 —612 =0

—107; +201, =0 ...(ii)



Case II

Solving. Egs (i) and (ii),

L =2A
L=1A
I=L=1A

Calculation of current / when excitation and
response are interchanged (Fig. 2.346).
Applying KVL to Mesh 1,

=SH-10( -1,)=0
157, =10/, =0 ...(1)
Applying KVL to Mesh 2,

S10(y — 1)~ 47, ~20—61, = 0
—10]] +20]2 =-20

Solving Eqs (i) and (ii),
ILI=-1A
L=-15A
I=-I,=1A

2.10 Reciprocity Theorem 2.119

5Q 4Q
J_20V
) 10Q ) 60
I, I
Fig. 2.346

..(ii)

Since the current / remains the same in both the cases, reciprocity theorem is verified.

|| Example yIOEN  Find the current I and verify reciprocity theorem for the network shown in

Applying KVL to Mesh 1,

Fig. 2.347.
2Q 2Q
5V 3Q 3Q
4Q
i
4Q
Fig. 2.347
Solution 20 2Q
Case I Calculation of the current / when excitation and
response are not interchanged (Fig. 2.348
P ged (Fig ) 5V &/ | D 3Q P D 3Q
1 >

5-20 =3I, - ,)- 41, —13) =0

9L -3, -4I;=5 ...(1)
Applying KVL to Mesh 2,
—3([2 —[1)—2]2—312 =0
=35,+87, =0 ...(ii)

4Q

Fig. 2.348
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Applying KVL to Mesh 3,
A1, -1)-41;=0
415, +815=0
Solving Eqgs (i), (ii) and (iii),
1, =0.85
1, =0.32
I3 =043
I=1=

... (i)

A
A
A
043 A

Case Il Calculation of current / when excitation and response are interchanged (Fig. 2.349).

Applying KVL to Mesh 1,
=25 =3 - L) -4, -13)=0
9L -31,-4I;=0

Applying KVL to Mesh 2,
-3, -1,)-21,-3,=0

-3I+81, =0
Applying KVL to Mesh 3,
4l -1)+5-415=0
46 +813=5
Solving Egs (i), (ii) and (iii),

2Q 2Q

L) ) o o
I I

4Q

(i) ’3)

|
|
4Q 5V

Fig. 2.349
.. (iii)

1, =043 A

1, =016 A
;=084 A
[=1=043 A

Since the current / remains the same in both the cases, reciprocity theorem is verified.

|| SET I WRMENN  Find the voltage V and verify reciprocity theorem for the network shown in

Fig. 2.350.

10 A D




Solution
Case I Calculation of the voltage J when excitation and
response are not interchanged (Fig. 2.351)

For Mesh 1,
I, =10 (D)
Applying KVL to Mesh 2,
I, -I)-21, -5, -1;)=0
4L +11,-51;=0 ...(1h)
Applying KVL to Mesh 3,

—6(I; —11)=5(3 —1,)-8I;=0
—65, -5, +191; =0
Solving Eqgs (i), (ii) and (iii),
I;1=10A
I,=576 A
I3 =4.67A
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4Q 20
I

50
10A D - "
"DMS/@{

Fig. 2.351

...(iii)

V=51, —1;)=55.76-4.67)=545V

Case Il Calculation of voltage V" when excitation and response are interchanged (Fig. 2.352).

O
+

4Q 20

5Q

v

6 Q 8Q
o

Fig. 2.352

By source transformation (Fig. 2.353), <

Applying KVL to Mesh 1,
-4 -2, -50-5(I1 -1,)=0
117, =51, =-50 v

Applying KVL to Mesh 2,
—61, -5(I, - 1;)+50-81, =0

—SL+191, =50 ...(ii)

Solving Egs (i) and (ii),
I, =-38A
I, =163 A

ol
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From Fig. 2.353,
V+41;+61, =0
V+4(-3.8)+6(1.63)=0
V=542V

Since the voltage V is same in both the cases, the reciprocity theorem is verified.

EXP]| MiLLMAN’S THEOREM

It states that ‘if there are n voltage sources V;,V,,...,V, with internal resistances R;,R,,...,R, respectively
connected in parallel then these voltage sources can be replaced by a single voltage source V, and a single
series resistance R, , ’(Fig. 2.354).

o A A

T T .. T,

Fig. 2.354 Millman’s network

NG+ Gy +.. .+ V,G,
G +Gy+...+G,

where m

and R”IZL:;
G, G+G+..+G,

Explanation By source transformation, each voltage source in series with a resistance can be converted
to a current source in parallel with a resistance as shown in Fig. 2.355.

o A
I (D R Q A R Q I R,
o B
Fig. 2.355 Equivalent network
Let I be the resultant current of the parallel current sources and R |
be the equivalent resistance as shown in Fig. 2.356. | (T) A
12BN V,
In=L+L+..+1,=—+—24.. +"=V,G+V, G, +...V, G,
R R R,

Fig. 2.356 Equivalent network
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111 1 A
— =t — .+
R, R R R, Rm
G,=G+G,+...+G,

. L V,
By source transformation, the parallel circuit can be converted m I
into a series circuit as shown in Fig. 2.357. B
V —I R _In _NGi+VhG+.. .V, Gy Fig. 2.357 Millman’s equivalent
" men G G +Gy+...+G, network

Dual of Millman’s Theorem

It states that ‘if there are n current sources 1;,1,,...,1, with internal resistances R;,R,,...,R, respectively,
connected in series then these current sources can be replaced by a single current source I and a single
parallel resistance R ° (Fig. 2.358).

Iy I A A
S ) S -
| ] =
Ry R, R, R,
A B A B
Fig. 2.358 Millman’s network
where 1m=]1R1+]2R2+...+Ian

R+R+...+R,
R,=R+R+...+R,
Steps to be followed in Millman’s Theorem

1. Remove the load resistance R, .
2. Find Millman’s voltage across points 4 and B.

_ NG +v,G, +...+V, G,
G +Gy+...+G,

Vin

3. Find the resistance R, between points 4 and B.

1
B G +Gy+...+G,

m

4. Replace the network by a voltage source V| in series with the resistance R .
5. Find the current through R, using ohm’s law.

Vin

I =—tm
TR, 4R,
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” Example v SN Find Millman's equivalent for the left of the terminals A-B in Fig. 2.359.

o A
4Q
2Q G 1A
6V
i o5
Fig. 2.359
Solution By source transformation, the network is redrawn CA
as shown in Fig. 2.360. 40 20
Step I Calculation of V|
6V 2V
paene (1)) [
Vi =222 = =33y
G +G, 1.1 Fig. 2.360
4 2
Step Il Calculation of R A
1.33Q
1 1 1
Rm:GizG G =71 1=133Q
mo 1+ 2 3.33V

Step III Millman’s Equivalent Network (Fig. 2.361)

;oB

Fig. 2.361

” SETIIWRMEWR  Find the current through the 10 2 resistor in the network of Fig. 2.362.

10 Q

2Q 4Q 6 Q
5V 10V 15V
L I 1

Fig. 2.362

Solution

Step I Calculation of V|

Vin

5(1)—10(1)“5(7)
_V]G1+V2G2+V3G3_ 2 4 6 —273V

G1+G2+G3 1
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Step Il  Calculation of R

1 1 1.09 Q
G, 1 1 1
"=t I
2 4 6 273V
Step III  Calculation of /, (Fig. 2.363)
i Fig. 2.363
I} =——=025A
1.09+10
” SETIIWRMEER  Find the current through the 10 2 resistor in the network of Fig. 2.364.
50 Q
2Q
50V —— 40 Q 10Q
T 100V
Fig. 2.364
Solution
Since the 40 Q resistor is connected in parallel with the 50 V
source, it becomes redundant. The network can be redrawn
hown in Fig. 2.365 50€ 206
as's g. 2.365. .
Step I Calculation of V|
50V 40 Q 100V
of 1) [ 1
_ NG +v; G2 50
Vin = Gi+G, 1 L 5115V Fig. 2.365
50 20
Step Il Calculation of R
R, = € = ! = =1429Q
Gn G+G L, 1 14200S h
50 " 20 : 3 100
Step III  Calculation of /, (Fig. 2.366) 57.15V
57.15
=————=235A :
" 1429410 Fig. 2.366

” Example YRS Draw Millman’s equivalent network across terminals AB in the network of
Fig. 2.367.
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6V 20
cl3v  1e
L L } o A
8V 6V
4A 20
® % o
o—{} oB
D s5v 50
Fig. 2.367

Step I By source transformation, the network is redrawn as shown in Fig. 2.368.

6V 20
o 3y 10
| o’
8V 8V 6V
o—{} o B
D 5v 50
Fig. 2.368

Step II  Applying Millman’s theorem at terminals CD,

(L8[ L)+60)
_V1G1+V2G2+V3G3_ 2 2

Vi = =3V
G1+Gz+G3 l+l+1
2 2
1 1 1
Ry =——= - 050
Gml G1+G2+G3 l+1

—+1
2 2
Step III  Applying Millman’s theorem at terminals CA,

6(7)+3(1)
Vm2:V4G4+V5G5: 2 -4V
G4 +Gs l+1
2
Rp=—t=t -1l _ge70
sz G4+ Gy 1+1
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Step IV Millman’s Equivalent Network (Fig. 2.369)
Simplifying Fig. 2.369 further, the Millman’s equivalent network is shown in Fig. 2.370.

4V 067 Q
I— o
3V A
0.5Q 6.17 Q
1 } oB 2V
5V 50 T—o B
Fig. 2.369 Fig. 2.370
EXGI'CISGS
Mesh Analysis i 10Q
2.1 Find currents / and / in the network shown in 20Q 300
Fig. 2.371. “
A
80V —
40 Q +
30 Q =V,
5V -

Fig. 2.372

[69.4V,72.38V,73.68 V,70.71V,97.39 V]

[0.5 A, 0.1A] 2.3 Find currents /,, /,, and [, in the network
shown in Fig. 2.373.

2.2 In the network shown in Fig. 2.372, find V, if
element 4 is a
(i) short circuit
(i) 5 Q resistor
(iii) 20V independent voltage source, positive
reference on the right
(iv) dependent voltage source of 1.5 i, with
positive reference on the right
(v) dependent current source 5 i, arrow Fig. 2.373
directed to the right [5A.11A,17 A]
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24  Find currents /_in the network shown in

Fig. 2.374.

20Q
A

25Q
AW

2A 100 151 5Q 5A

Fig. 2.374
[8.33 A]

2.5 Find currents /, in the network shown in

1
Fig. 2.375.

19V 20

5Q I 4Q

LT 1]

Fig. 2.375

25V

[-12 A]

Node Analysis

2.6  Find the voltage V_in the network shown in
Fig. 2.376.
"
10 Vi>2Q
% 4l, 1Q
h
4V 8V
L T
Fig. 2.376
[-4.31V]
2.7  Find the currents V_in the network shown in
Fig. 2.377.
3V,
5Q
+ V-
4V,
7A G) 4Q 6Q
Fig. 2.377
[2.09 V]

2.8  Find the voltage V_in the network shown in
Fig. 2.378.
1
3 Q
1Q vV, 05Q
Y
v+ 3/ 05Q
Fig. 2.378
[6.2 V]
2.9 Determine V, in the network shown in
Fig. 2.379.
50 Q
20 Q 20 Q
+
sa(Dy, 0.4V, A 001y,
Fig. 2.379
[140 V]
2.10 Find the voltage V' in the network shown in
Fig. 2.380. )
0.5V,
g +
150 (M)aazsa (§)6A Z200 vy,
Fig. 2.380
[-10 V]
2.11 Find the voltage ¥, in the network shown in
Fig. 2.381.
0.8V,
i
2Q
©
+ 8A
5A 5Q2v, 25Q
Fig. 2.381

[25.9 V]



Superposition Theorem
2.12 Find the voltage V_in Fig. 2.382.

2Q 4Q
+ v,
50V 0.1V, 100V
Fig. 2.382
[-38.5 V]
2.13 Determine the voltages V¥, and V, in
Fig. 2.383.
40y, 4Q 0V, | 4Q
10 Ag\/\/ <? 0.5V, 0.25/ J—‘TZOV
Fig. 2.383
[6V.12V]
2.14 Find the voltage V_in Fig. 2.384.
oo % v
|
I 'l
+
4A CD 200 300 2V 0.4/,
Fig. 2.384
[7.5V]

Thevenin’s Theorem
2.15 Determine Thevenin’s equivalent network for
figures 2.385 to 2.388 shown below.

(M)
4V,

[ + — o

+ 6Q
40Q

4A

Fig. 2.385
[-58V,12Q]

Exercises 2.129
(i)
I, 100Q
f«/w o
10V
v, T ol 100 Q
O
Fig. 2.386
[9.09 V,9.09 Q]
(iii)
0.5V,

-+

3A CD 40Q 4Q Vv,

+0

Fig. 2.387
[8V,2.66 Q]
(iv)
3Q 5Q
O
3 v
SN OL IO

Fig. 2.388
[150 v,20 Q]

2.16 Find the current /_in Fig. 2.389.

X

Iy 5Q 2Q
10/, 4A<# 5Q 1A<# J_va

Fig. 2.389

[4 A]
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2.17 Find the current in the 24 Q resistor in

Fig. 3.390.
1, 1000
¥ 24 Q
48V ( 3V, 101, 1BeV
Fig. 3.390
[0.225 A]
Norton’s Theorem
2.18 Find Norton’s equivalent network and

hence find the current in the 10 € resistor in
Fig. 2.391.

Objective-Type Questions

20 30
] b A -
1
3Q T 21, 10Q
Fig. 2.391
[0.25A]
2.19 FindNorton’sequivalentnetworkinFig.2.392.
20 20
O
I2
+
12V 8Q<lVy 8 0.1 ;{4 20 Q
O
Fig. 2.392

[0.533A,31Q]

2.1 Two electrical sub-networks N, and N, are
connected through three resistors as shown
in Fig. 2.393. The voltages across the 5 Q
resistor and 1 Q resistor are given to be 10 V
and 5 V respectively. Then the voltage across
the 15 Q resistor is

(a -105V (b) 105V
(c) -15V @ 15V
+ 50 _
10V
Ny N
15Q
1Q
- -
5V
Fig. 2.393

2.2 The nodal method of circuit analysis is based
on
(a) KVL and Ohm’s law
(b) KCL and Ohm’s law
(¢) KCL and KVL
(d) KCL, KVL and Ohm’s law

2.3 The voltage across terminals a and b in

Fig. 2.3%4 is
20 a 1Q
b
Fig. 2.394
(@ (@ 05V (b) 3V
() 35V (d 4V
2.4 The voltage V in Fig. 2.395 is
2Q
L 16V
+
8A 100 12Q v,
6Q -
Fig. 2.395
(a) 48V (b) 24V
(c) 36V (d 28V



2.5 The dependent current source shown in
Fig. 2.396.
5Q

T,
T 5

Fig. 2.396

(a) delivers 80 W (b) absorbs 80 W
(c) delivers40 W (d) absorbs 40 W

V,=20V

2.6 If V¥'=4inFig. 2.397, the value of /_ is given
by
1Q
4Q 2Q 2Q V
Is l
Fig. 2.397
(a) 6A (b) 25A
(c) 12A (d) none of these
2.7 Thevalue of ¥,V and V_in Fig. 2.398 shown
are )
+ V- +V,- +V,-
| L
+ + + +
8V 2vD 1vD 2v
Fig. 2.398
(a) —6,3,-3 (b) -6,-3,1
(c) 6,3,3 (d 61,3
2.8 The circuit shown in Fig. 2.399 is equivalent
to a load of
/ 2Q

o >

40 )2l

Fig. 2.399

Objective-type Questions 2.131

4 8
@ Q ) -Q
€ 4Q @ 20

2.9 In the network shown in Fig. 2.400, the
effective resistance faced by the voltage
source is

i
4
. —>
I
40
I
\Y
Fig. 2.400
(a) 4Q (b)) 3Q
() 2Q d 1Q

2.10 A network contains only an independent current
source and resistors. If the values of all resistors
are doubled, the value of the node voltages will
(a) become half
(b) remain unchanged
(c) become double
(d) none of these

2.11 The value of the resistance R connected across
the terminals 4 and B in Fig. 2.401, which
will absorb the maximum power is

3kQ 4kQ
R
vV A B
6ka 4KQ
Fig. 2.401
(a) 4kQ (b) 4.11kQ
(c) 8kQ (d 9kQ

2.12 Superposition theorem is not applicable to
networks containing

(a) nonlinear elements
(b) dependent voltage source
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(c) dependent current source
(d) transformers

2.13 The value of R required for maximum power
transfer in the network shown in Fig. 2.402
is

5Q 4Q

i wa (Dan

Fig. 2.402
(@ 2Q (b) 4Q
(c) 8Q d 16Q

2.14 In the network of Fig. 2.403, the maximum
power is delivered to R, if its value is

h

40 Q
0.5/, 200 R
_‘, 50V
Fig. 2.403
@) 16Q (b) 4—309
©) 60Q @ 20Q

2.15 The maximum power that can be transferred
to the load R, from the voltage source in

Fig. 2.404 is

100 Q
10V — R,
Fig. 2.404
(@ 1w (b) 10W
() 025W (d 05W

2.16 Forthe circuitshownin Fig.2.405, Thevenin’s
voltage and Thevenin’s equivalent resistance
at terminals a-b is

A L1 50
0.5/ 50Q T 10V
b
Fig. 2.405
@ 5Vand2Q ®) 75Vand25Q

(¢) 4Vand2Q (d 3Vand25Q

2.17 The value of R, in Fig. 2.406 for maximum
power transfer is

9Q

6 Q 6 Q

GQ<>1A 90 LR,

v

Fig. 2.406

(a) 3Q (b) 1.125Q
(c) 4.1785Q (d) none of these

Answers to Objective-Type Questions

2.1. (a) 2.2. (b) 2.3. (c) 2.4. (d) 2.5. (a) 2.6. (d) 2.7. (a)
2.8. (a) 2.9. (d) 2.10. (b) 2.11. (a) 2.12. (a) 2.13. (c) 2.14. (a)
2.15. (c) 2.16. (b) 2.17. (a)



Analysis of

AC Circuits

IE®}| nTrODUCTION

We have discussed the network theorems with reference to resistive load and dc sources. Now, all the
theorems will be discussed when a network consists of ac sources, resistors, inductors and capacitors. All the
theorems are also valid for ac sources.

Y| mesH anALysis

Mesh analysis is useful if a network has a large number of voltage sources. In this method, currents are
assigned in each mesh. We can write mesh equations by Kirchhoff’s voltage law in terms of unknown mesh
currents,

”m Find mesh currents I, and I, in the network of Fig. 3.1.

3Q j4Q

—_j10Q

+
100£45° V f) j10Q
- |

1

Fig. 3.1

Solution Applying KVL to Mesh 1,
100£45° — (3 +j4)I, —j10(I, - L) =0

(3 +/j14)I, - j10L, = 100 £45° (D)
Applying KVL to Mesh 2,
—-/10(L, - 1,) +;10(1) =0
J10I,=0 ...(1i)
=0
Substituting I, in Eq. (i),
—j101, =100£45°
2= 1002457 _ 10£135° A

-J
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"m Find mesh current 1, I, and I, in the network of Fig. 3.2.

50 —2Q j5Q
i T
20
104£30°V r) 39) 5 Qr) %
I I, I T -j2Q
Fig. 3.2

Solution Applying KVL to Mesh 1,
10 £30° = (5—j2) I, = 3(I, - 1,) =0

8 -;2I,-31L,= 10£30 (@)
Applying KVL to Mesh 2,
-3(1,-1,)-j5L-5(1,-1,)=0
=31+ (8+/51,-51,=0 ... (i)
Applying KVL to Mesh 3,

SL-L)-2-2)1,=0
—SL+(7-j2)1,=0 ... (iii)
Writing Egs (i), (ii) and (iii),
8—j2 3 0 I, 10£30°
-3 8+j5 5 ||L|= 0
0 =5 T1-2|| L 0
By Cramer’s rule,
10£30° -3 0
0 8+/5 -5

0 =5 7-j2
I = - =1.43238.7° A
8—j2 -3
-3 8+/5 5
0 -5 7-j2
8—j2 10£30° 0
-3 0 -5
0 0 7-,2
I, = =0.6932-22°A
8—-j2 3 0
-3 8+j5 -5
0 -5 T7-j2
8§—j2 -3 10£30°
-3 8+ /5 0
0 -5 0
I; = =0476£13.8° A

8—j2 -3 0
-3 8+j5 -5
0 -5 7-2



3.2 Mesh Analysis 3.3

|NEETEEER 1 tic network of Fig. 3.3, find the value of 'V, so that the current through (2 + j3)

ohm impedance is zero.

50 20 j3Q 40

Solution Applying KVL to Mesh 1,
30£0° = SI, - jS(1, ~ L) =0

(5 +j5)I, = js51, =30 £0° ...(1)
Applying KVL to Mesh 2,
-51,-1)-2+3),-6(,-1,)=0
5L+ (8+;8)1,-6L,=0 ...(1)
Applying KVL to Mesh 3,

—-6(I,-1)-4L,-V,=0
-6L, + 10L,=-V, ...(1il)
Writing Egs (i), (ii) and (iii) in matrix form,
545 —j5 o]l [30z0°
-j5 8+;8 —6flIL[=| O
0 -6 10 || I5 | -V,

By Cramer’s rule,
54+j5 30£0° 0

5 0 6
0 -V, 10
Iz = " N = 0
515 —j5 0
—j5 8+/8 -6
0 -6 10
(5+j5)(=6V,)—(30)(—750)=0
= 0 s a6 sa50 v
30+ /30

|| SETII XN Find the value of the current 1, in the network shown in Fig. 3.4.

hq 40 10.£30°V

+
20£0°V (™Y
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Solution Applying KVL to Mesh 1,
20£0° = (4 -j4H1 -j10d, -L)-10(I, -1,)=0
(14 +j6)1, —j10L, - 10L,= 20 £0°
Applying KVL to Mesh 2,
—10(I, - 1)) - 10£30" - 20L, - (4 —j4) (I, - 1,) =0
—/10L, + (24 +j6) I, — (4 — j4) 1, = =10£30°
Applying KVL to Mesh 3,
-10(I, - 1) - (4 -4, -1,)-20L,=0
=101, - (4 - jH L+ (34 -jH)1,=0
Writing Eqs (i), (i1) and (iii) in matrix form,

14+ ;6  —j10 -10 ] 20£0°
—j10  24+j6  —(4— 4|1, |=]-10-30°

.

=10 —(4-;4 34-j4 || 15| 0
By Cramer’s rule,
14+j6  —j10 20£0°
—-j10 24+ ;6 -10£30°
-10  —-(4-j4) 0
I3 =044£-14° A

T4+ 6 -10 ~10
10 2446 —(4— j4)
10 —(4—j4) 34— 4

"m Find the voltage V , in the network of Fig. 3.5.

10 /50Q 100 Q

100 Q 40 j200Q
96 Q )
|1
()
-
10£0°V
Fig. 3.5

Solution Applying KVL to Mesh 1,
=961, - (100 +4+,200) (I, -1,) + 10 £0°=0
(200 +,200) I, = (104 +,200) I, =10 £0°
Applying KVL to Mesh 2,
= (1 =750 - 100) I, - (100 + 4 +;200) (I, - 1) =0
= (104 +;200) I, + (205 +,150) I,=0
Writing Egs (i) and (ii) in matrix form,

200+ 200  —(104+ j200)|[1;]_[10£0°
—(104+ j200) 205+ 150 ||[I,| | ©

.. ()

... (i)

.. (iii)

...(iD)



3.2 Mesh Analysis 3.5

By Cramer’s rule,

|1040° —(104 + j200)

0 205+ j150 R
I = : L =0.051£2.72x1073°A
200+ 200  —(104+ j200)

—(104+ j200) 205+ j150
200+ j200  10.£0°
—(104+ j200) 0
I = : L =0.045.226.34° A
200+ j200  —(104+ j200)
—(104+ j200) 205+ ;150

Vg = 10012 —(4+ j200)(ll = 12)
=100(0.045£26.34°) — (4 + j200)(0.051£2.72 % 107 °— 0.045£26.34°)
=0.058 £-92.65° V

|| Example NN For the network shown in Fig. 3.6, find the voltage across the capacitor.

10 3Q
20 ) 10
Iy
+
5.,0°V ne

Fig. 3.6

Solution Applying KVL to Mesh 1,
520°-(1+;2)I) -2(I) - 1)—-(1+ j3)(I; -13)=0

4+ 5L -21, —(1+ j3)13 =5£0° ...(D)
Applying KVL to Mesh 2,
20, -1)=-31,+j2(I, -13)=0
2L +(5-/2) I, +j21; =0 ...(ii)
Applying KVL to Mesh 3,
-1+ 3G -1+ 23 -1) -1+ /D13 =0
-1+ 3L+ 21, +(2+j2)I; =0 ...(iii)

Writing Eqgs (i), (ii) and (iii) in matrix form,
4+ j5 -2 =1+ L 5£0°
-2 5~j2 Jj2 L|=| O
—(1+/3) j2 2452 || L5 0
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By Cramer’s rule,

445 520° —(1+ j3)
2 0 2
—(1+ /3 0 2+ 2
1, =20 2 1 0.65,13051° A
4+ j5 -2 —(1+,3)
2 5-j2 )2
-1+ 3) j2 2+ j2
445 2 5.0
2 5-2 0
(143 2 0
A P L) 1 _091£-2151°A
4+ j5 -2 —(1+73)
2 s 2
—(1+3) 2 2+j2

V. =(=j2)(Is — 1) = (—j2)(0.91./-21.51°—0.65.2130.51°) = 3.03./-123.12° V

" SETNII WA  Find the voltage across the 2 £2 resistor in the network of Fig. 3.7.

30 1o
NN o0
20 .
2./30° A D /> @ 8.,45°V
I pa -
Fig. 3.7
Solution For Mesh 1,
I, =2230° ()

Applying KVL to Mesh 2,

-(2-j2)(I; =L - jll; -8£45°=0
2-2)I; -(2—-j)1, =8«£45° ...(i1)
Substituting I, in Eq. (i),

(2- j2)(2£30°) = (2= j1)I, = 8.£45°
_ —(8£45%)+(2- j2)(2£30°)
B 2-j1

Voo =2(L -1,) = 2(2£30°-3.19£ - 65°) = 7.82.£84.37° V

I, =3.194-65° A



3.2 Mesh Analysis 3.7

|| Example WM Find the current through 3 Qresistor in the network of Fig. 3.8.

5Q
10 1£0° A e
) @ep) 3
Fig. 3.8
Solution  Applying KVL to Mesh 1,
10£0°—- 21, -3, - 1(I; - 1,) =0
4+ ,2)I, -1, =10£0° ...(D)
Meshes 2 and 3 will form a supermesh.
Writing current equation for the supermesh,
I; -1, =1£0° ...(1i)
Applying KVL to the outer path of the supermesh,
—1(12 _ll)_SI3 —jll3 =0
11—12—(5+Jf1)l3 =0 (lll)

Writing Eqgs (i), (ii) and (iii) in matrix form,
4452 -1 0 I, 10£0°
0 -1 1 I, |=| 1£0°
1 -1 =5+ )| 15 0
By Cramer’s rule,
10£0° -1 0
1£0° -1 1
0 -1 —(5+)1)

I = =2.11£-28.01° A
4+2 -1
0 -1 1
1 -1 -5+

I3Q =Il = 2]]4—28010 A

|| SETII RN Find the currents 1, and 1, in the network of Fig. 3.9.

2V,
—+

"
i
9.,0°V r\) /D V=3 Q/) 30
- | - 1

1 2

6 Q

Fig. 3.9
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Solution From Fig. 3.9,

V. =-j3(I1 - 1)

Applying KVL to Mesh 1,
9£0°-61+ j3(I,-1,)=0
(6—73)1; + j3I, =9£0°
Applying KVL to Mesh 2,
J3(L, -1))+2V, =31, =0
J3L = 3L +2[-j3(L - 1,)] =31, =0
S +(3-j91 =0

Writing Eqgs (ii) and (iii) in matrix form,

6-j3 j3 ][] _[9«0°
j9  3—-j9||L| | o

By Cramer’s rule,

=
Il

9,0° 3
0 3-9

6-j3 j3

Jj9 3-J9

|| Example WOV Find the voltage across the 4 Q resistor in the network of Fig. 3.10.

=1.32249° A

=1242-1595° A

40

6£30° V
—(~) SI0
I ~ J‘—j1 Q
20
21,
|1
Fig. 3.10
Solution From Fig. 3.10,
Ix = Il

Applying KVL to Mesh 1,
=2I; + 6 £30°+ jI(I; -13)-21, =0
=21, +6£30°+ jil; — j1I, -2I; =0
(4- /DI + jII, =6£30°



3.3 Node Analysis 3.9
Applying KVL to Mesh 2,
21, +]1(12 —l|)—j212 —-41, =0
21, +j”.2 —_]1 I —j212 —-41, =0
2-/DL =4+ /DL =0 ...(iii)

Writing Egs (ii) and (iii) in matrix form,
4-1 j1 I | |6£30°
2—-j1 -4+ DL, || O

‘4-]1 6.£30°
2-71 0
12:’ J

By Cramer’s rule,

= 1 -074/-291° A
4—j1 1

2-j1 —(4+ j1)
Vo =41, =4(0.74£-2.91°)=2.96/-2.91°V

IEEY| ~obe ANALYsis

Node analysis uses Kirchhoff’s current law for finding currents and voltages in a network. For ac networks,
Kirchhoff’s current law states that the phasor sum of currents meeting at a point is equal to zero.

" SCIACKEMEN /1 the network shown in Fig. 3.11, determine V. andV,

j6Q v, 30 v, j5Q

Solution Applying KCL at Node a,
Y, =1040° . V. VoW

0
J6 —Jj6 3
L_L+l v, —lV,, _ 10£0
j6  jo 3 3 Jj6
0.33V, —0.33V, =1.67£4-90° (D)
Applying KCL at Node b,
V=V N Ny
3 J4
—qu + l+L+i V, =0
3 3 j4 1

-0.33V, +(0.33-1.25)V;, =0 ...(ii)
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Adding Egs (i) and (ii),
—j1.25V, =1.674-90°
_ 1.67£-90°
—j1.25

b =1.342£0°V

Substituting V, in Eq. (i),
0.33V, —0.33(1.34.£0°) = 1.67£-90°
_1.73275.17°

= =524,-7517°V
0.33

|| SETTI WY For the network shown in Fig. 3.12, find the voltages V,andV,

50 v, 4Q vy, 2Q

50£90° V

Applying KCL at Node 1,
Vi =50£0° 'V, V-V,
+—+ =
5 2 4

111 1
(—+—+—]VI—ZV2:1040°

0

5 j2 4
(0.45- 0.5V, —0.25V, =10£0°
Applying KCL at Node 2,
V, -V, N Vv, +V2 -50£90 _
4 -2 2

0

1 1 1
—lvl +| —+——+—= |V, =25490°
4 4 -2 2

~0.25V; +(0.75+ j0.5)V, = 25.290°

Writing Eqs (i) and (ii) in matrix form,
0.45-,0.5 -0.25 V| | 10£0°
-025 075+ j0.5||V, | |25290°

10£0°  -0.25
725 0.75+j0.5

1:‘0.45— 705 025 ’

By Cramer’s rule,

=24.7/£72.25°V

-0.25 0.75+ j0.5
0.45-;0.5 10Z£0°
-0.25 25290°

045- 705  —0.25
~025 075+ 0.5

=3434452.82°V

V2=’

()

(il



3.3 Node Analysis  3.11

|| SETNIEEMER  Find the voltage V, in the network of Fig. 3.13.
50

000

1=10£0°A ——o

ary

I

3 B o
Fig. 3.13

Solution Applying KCL at Node 1,
Mi-Va, M
2 3+ j4
1 1 1
—+ Vi-—-V, =10£0°
2 3+ /4 2
(0.62— j0.16)V, — 0.5V, = 10.£0° ()

10£0° =

Applying KCL at Node 2,
- Vv
2 5 10
1 1 1)
——Vi+| —+—
2275 )
—0.5V, +(0.5— j0.3)V, =0 ...(ii)

=0

1V, =0

Writing Eqgs (i) and (ii) in matrix form,

0.62-50.16  -05 |[Vvi]_[10£0°
-0.5 0.5-703]||Vo| | ©

By Cramer’s rule,

10£0°  -0.5
0 05-;03
V= : =21.8/56.42° V
0.62-70.16 —0.5
-0.5 0.5 j0.3
0.62— j0.16 10.£0°
0.5 0
V, = =18.7.87.42° V

0.62-70.16  —0.5
-0.5 0.5—j0.3

V, =V, =18.74£87.42°V

(j4 )—M( [4)=17.45293.32°V
3+ j4

\
B3+4

Vs = V4 —Vy = (18.7.£87.42°) — (17.45.£93.32°) = 2.23 /34.1° V
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|| SETNIEEMEN  Find the node voltages V, and V, in the network of Fig. 3.14.

vi, e,
AR /2

20 2V, 2 Q D 2.,/30° A

Fig. 3.14

Solution  Applying KCL at Node 1,
Vi VieVa Ly
2
11 (. 1)
—+— Vi 2-—|V.=0
2 —jl T
0.5+ )V, =2+ j)V, =0 .G
Applying KCL at Node 2,

VLV

A

1 1 1

—Vi+| —+— |V, =2430°

Jjl -1 j2

—jIVi+;05V, =2/30° ...(ii)
Writing Eqs (i) and (ii) in matrix form,
05+71 -2+ Vi|_ 0
-1 Jj0.5 ||V, | [2£30°

By Cramer’s rule,

0 -2+ /1)
2./30° j0.5
vV, = - — =2.46/130.62° V
05+ 1 —(2+ /1)
—jl1 j0.5
0.5+ /1 0
—-j1 22£30°
V, = - — =1.23/167.49°V
0.5+,1 =241
—j1 jo.5

|| SET I EWEW [ the network of Fig. 3.15, find the voltage V, which results in zero current through

4 Q resistor.
50  V,

40 vy, 20
| !
50£0°V (~) j2 @ 2 Q v,

Fig. 3.15



3.3 Node Analysis

Solution Applying KCL at Node 1,
V, —50£0° 1 ﬁ+ Vi—V;

5 2 4
111
el M-y oz
5 2 4 4

(0.45= j0.5)V, —=0.25V;5 =10.£0°
Applying KCL at Node 3,
Y-V Y% V-V
4 -j2 2

1 1 1
——V]+ —+—+l V3=0.5V2
4 2

=0

4 -j2
—0.25V; +(0.75+ j0.5) V5 = 0.5V,
Writing Egs (i) and (ii) in matrix form,

045-j05 =025 [vi]_[1020°
-025  0.75+,05|| V5| | 0.5V,
By Cramer’s rule,
10£0° —0.25
Vi = 0.5V, 0.75+ ;0.5  10(0.75+ j0.5)+0.125V,
" lo45- 05  -025 0.55/—15.95°
—025 075+ j0.5
045-,05 10£0°
Vi = -0.25 0.5Va|  0.5V,(0.45-0.5)+2.5
* 7 lo4s - j0.5 -0.25 0.55£-15.95°
—0.25 0.75+ j0.5
Vi—V3
Ijo = =0
4Q 1
Vi=V;
10(0.75+ j0.5)+0.125V,  0.5V,(0.45—- j0.5)+2.5
0.55£-15.95° 0.55£-15.95°
7.5+0.125V, — j 5=2.5+0.225V, — j0.25V,
5+ /5= V(0.1 j0.25)
Vy =5 960611320V
0.1- j0.25
|| ETIIIEWMEN  Find the voltage across the capacitor in the network of Fig. 3.16.
12/30°V
v £ Ve
2/60° A D j1Q 2Q  ——_j20Q

Fig. 3.16

3.13

()

..(ii)
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Solution Nodes 1 and 2 will form a supernode.
Writing the voltage equation for the supernode,

Vi =V, =12/30° ...(1)
Applying KCL to the supernode,
AL} + V2 + V2 =2./60°
g2 =2
(=/DVi+(0.5+ j0.5)V, =2.£60° ...(ii)

Writing Egs (i) and (ii) in matrix form,

1 -1 Vi ] _[12£30°
—j1 05+ 05| Vo| | 2£60°

By Cramer’s rule,

1 12230°
—jl  2.260°
Vo= = 18554157420V
‘—jl 0.5+j0.5‘

V, =V, =18.552157.42° V

IEXN| suPerPOSITION THEOREM

The superposition theorem can be used to analyse an ac network containing more than one source. The
superposition theorem states that in a network containing more than one voltage source or current source,
the total current or voltage in any branch of the network is the phasor sum of currents or voltages produced
in that branch by each source acting separately. As each source is considered, all of the other sources are
replaced by their internal impedances. This theorem is valid only for linear systems.

|| SETNII MY Find the current through the 3 + j4 ohm impedance.

5Q J5 Q

50£90° V

Fig. 3.17
Solution 50 j5Q
Step I When the 50 £90° V source is acting alone (Fig. 3.18)
NG
Z, =5+ 8V 63503000 sos000v
3+/9
4 o
7= _50£90° =7.87£66.8° A
6.35£23.2°

Fig. 3.18



3.4 Superposition Theorem 3.15
By current division rule,

1 =(7.87266.89)| 22— | = 4158530 A(L)
3+/9

5Q J5 Q

Step II ' When the 50£0° V source is acting alone (Fig. 3.19)
+ 5(3+ j4)

+Jj
50.£0°

T 6.74.2682°

Z; =j5 =6.74268.2° Q

T =742/-68.2° A

By current division rule,

I” = (7.424—68.2°)(ﬁ) =415-,-94.77° A(Ty=4.152853° A()
+J

Step III By superposition theorem,
I=1+1"=4.15 £853° +4.15 £85.3° =831 £85.3°A ({)

|| SETNIIIEWMER  Determine the voltage across the (2 + j5) ohm impedance for the network shown in

Fig. 3.20.
jaQ -j3 Q
. 20
50.£0° V (})20230°A
= j5Q
Fig. 3.20
Solution
Step I When the 50£0° V source is acting alone (Fig. 3.21) j4Q 8 Q
I= _3020° =542/£-7747° A
2+ j4+j5

Voltage cross (2 +j5) € impedance
V= (2+/5) (542 £-T77.47°)=29.16 £-9.28° V

Fig. 3.21
Step I When the 20£30° A source is acting alone (Fig. 3.22) 4 Q —j3 Q
By current division rule, I
4
1=(20430°) ]— =8.68£42.53° A 20
2+ j9 Q 20/30° A
. j5Q

Voltage across (2 +/5) Q impedance

V7= (2+/5) (8.68 £42.53°) = 46.69 £110.72° V Fig. 3.22
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Step III By superposition theorem,
V=V +V”=29.16 £-9.28° + 46.69 £110.72° = 40.85 £72.53° V

|| Example 3.19 Determine the voltage V , for the network shown in Fig. 3.23.

j5Q

A —_—-j2 QQ) 4,0° A

Fig. 3.23
Solution

Step I 'When the 50£0° V source is acting alone (Fig. 3.24)

——j2 Q

Fig. 3.24

Vg =5020°V

Step I 'When the 420° A source is acting alone (Fig. 3.25)

j5Q

A 2 QG 420° A

V;B =0
Step III By superposition theorem,
Vg = Vg +Vip =50£0°+0 = 50£0° V



3.4 Superposition Theorem 3.17

|| SCI W ON  Find the current I in the network shown in Fig. 3.26.

| 40 BQ J5Q .0
+ +
13 £25°V G 3 /50° A 20 /-30°V

Fig. 3.26

Solution
Step I 'When the 13£25° V source is acting alone (Fig. 3.27)
40  BQ 5L 2q

y
Fig. 3.27
£25°
r=242" _s0572434308 (o)
6- 2

Step I When the 20£-30° V source is acting alone (Fig. 3.28)

40  BQ 459 2q
+
C 20 /-30°V
I -
Fig. 3.28

[ 20£-30°V

=316 -1157° A(¢) =316 £168.43° A(—)
-J

Step III ' When the 3£50° A source is acting alone (Fig. 3.29)
40 30 S og

-
Q 3 /50° A

Fig. 3.29
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By current division rule,
1”7 =3250° Xz__]i =2.5620.23° A(«—)=2.56£L-179.77° A(—)
Step IV By superposition theorem, ’
I[=T+1"+1"=2.057 £43.13° + 3.16 £168.43° +2.56 £-179.77° A=4.62 £153.99° A (=)

||m Find the current through the j3 £2 reactance in the network of Fig. 3.30.

-j5 Q
'l
1

+ +
5430°v@ —j2Q g j5 Q r\) 10./60° V

000
3 Q

Fig. 3.30
Solution

Step I 'When the 5230° V source is acting alone (Fig. 3.31)

5 Q
|
+
5.30°V r\) — o % 5 Q
00
j3Q
Fig. 3.31
When a short circuit is placed across j15 Q reactance, it gets shorted as shown in Fig. 3.32.
I —-j5 Q
| |
[
+
5./30°V(~) m—
o0
3 Q
Fig. 3.32
5/£30°
I'=s———=25/120°A(«)

—j5+ 3



3.4 Superposition Theorem 3.19
Step I ' When the 10£60° V source is acting alone (Fig. 3.33)

—j5 Q
]
+
— 20 ng Q r\) 10£60° V
00
j3Q
Fig. 3.33
When a short circuit is placed across the —j2 Q reactance, it gets shorted as shown in Fig. 3.34
—j5 Q %
|
n
315 Q @ 10260° V
000
j3Q
Fig. 3.34
4 o
17 =202 s 100 A (o) =52-30° A (o)
—-j5+j3

Step III By superposition theorem,
I=0I'+1"=252120°+54-30°=3.1£4-621°A (<)

||m Find the current I in the network

of Fig. 3.35.
2/0°A
-2 Q 6 Q
lo
+
8Q j4 Q @10430° A
Fig. 3.35
Solution -2 Q 6Q Ik
Step I When the 1043Q° V source is acting alone (Fig. 3.36) lo’ +
Zr =6+ 228772 g ou 041200 80 j4Q @10430°V
j4+8—j2
10£30°
7= _10230° 1.16£5.88° A
8.64.,24.12°

Fig. 3.36
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By current division rule,

4
I)=1.162588°x—2L"  =056,81.84°A ()
8— j2+ j4

Step I When the 220° A source is acting alone (Fig. 3.37)

2/0°A
-2 Q 6 Q
|(’)’ I I
80 jaQ
Fig. 3.37

The network can be redrawn as shown in Fig. 3.38.

-2 Q —j2 Q
v — | {]

IO
8Q j4Q 60Q G 2,0°A 8Q Q 2/0°A

(1.85+2.77) Q

(a) (b)
Fig. 3.38
By current division rule,

1.85+ j2.77

I) =2.20°%
1.85+ j2.77+8— ;2

=0.67251.83°A (1)

Step III By superposition theorem,
Iy =I5 +1§ =0.56£81.84°+0.67£51.83°=1.19265.46° A (1)

||m Find the current through the j5 £2 branch for the network shown in Fig. 3.39.

1

5Q 3Q —j4 Q

+ + +
10 £0°V 15 £90°V 20 £0°V

Fig. 3.39



3.4 Superposition Theorem 3.21

Solution

Step I 'When the 10£0° V source is acting alone (Fig. 3.40)
r

5 Q 3Q —j4Q

Fig. 3.40

Zr = 5+ _ 4 oas61.66° 0
3—j4

10£0°
= _ 10207 =248/-61.66°A (—)
4.04£61.66°
v
Step I When the 15£290° V source is acting alone (Fig. 3.41) I
7, =3+ 925 5000/ 814700 /5 Q 30 ks
J5-j4
+
4 o
T 15290 =0.74£171.47° A 15.£90°V

T 2022/ -8147° >

By current division rule, Fig. 3.41

—i4
17 =0.74/17147°x —= =296,-8.53° A («)=296£17147° A (—)
—j4+j5

Step III' ' When the 20 £0° V source is acting along (Fig. 3.42)

1

jB5Q 30 -4 Q

1 I

20 £0°V

Fig. 3.42

305
Zr=—ja+ 2 347, 505100
3+j5

20£0°

=———=576£5051° A
3.47/-50.51°

T

By current division rule,

1”7 =5.76£50.51°x 3 3 > =296/-8.53°A(«)=2.96£17147° A(—>)
+J
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Step IV By superposition theorem,

I=T+1"+1"=248/-61.66°+2.96£171.47°+2.96£171.47° = 4.86 £-164.41° A

|| SETOII WL Find the voltage drop across the capacitor for the network shown in Fig. 3.43.

20?4§V 20
+ +®_
2Q 10 £0°V
- -2 Q
5o 40 T
Fig. 3.43
Solution o
|
Step I When the 10£0° V source is acting alone N
(Fig. 3.44) 00 10 £0°V
(2+)5(2-j2) /
Ly =4+————— 20
2+ jS+2- /2
=7/-591°Q /50 40 T
T =71040 =1.43/591° A
7£-5091° Fig. 3.44

By current division rule,

24 j5

I'=(1.434591°) ———
24+ j5+2-j2

]: 1.5423724° A (=)

Step I ' When the 20£45° V source is acting alone (Fig. 3.45)

0245V Lo L
()=
2Q
40 2 Q
5Q —‘7
Fig. 3.45
Zr=(2—2)+ 22 _yag, 400
442+ j5
17— 2L A6 5384 A ()= —446/5384°A (o)

T 4487-884°



3.4 Superposition Theorem
Step III By superposition theorem,
I=1'+1"=1.54/3724-446/53.84°=3.01£-117.78° A
V. =(—jD)I=(-/j2) 3.01£-117.78°) =6.02£152.22° V

"m Find the node voltage V, in the network of Fig. 3.46.

5 £30°V
2 A
. T

10 £0° A D 5Q 2Q j109<f 5.20°V

Fig. 3.46
Solution

Step I When the 10£0° A source is acting alone (Fig. 3.47)

5./30°V
vy A
Py /UW Py
10 £0° A D 5Q 2Q fA0Q
Fig. 3.47
Applying KCL at Node 1,
Vi YV o00
5 5/30°

1 1 ’ 1 ’
-+ A\ V, =10£0°
5 5£30° 5£30°

(0.37— j0.1)V; —(0.17— j0.1)V, =10.£0°

Applying KCL at Node 2,

v, ,V_,
5230° 2 410

1 1 I
-———V + +—+—|V2=0
5/30° 5230° 2 10
—(0.17— jO.))V, +(0.67— j0.2)V> =0

3.23

...

...(ii)



3.24 Circuit Theory and Networks—Analysis and Synthesis
Writing Eqs (i) and (ii) in matrix form,
0.37-;0.1 —0.17-;0.1) \ _|10£0°
—=(0.17-,0.1)  0.67-,02 ||V, o
By Cramer’s rule,
037-;0.1 10£0°
—(0.17- j0.1) 0

037- 0.1 —(0.17—j0.1)
—~(0.17-j0.1)  0.67— 0.2

V, = =8.57/-3.36°V

Step I 'When the 5£0° A source is acting alone (Fig. 3.48)
52£30°V

v,

IO

5Q 20 jloQ D540°A

Fig. 3.48

V2 2 Va0
5230°+5 2 410

(0.612-11.93°)V, =5.0°

V, =82/11.93°V
Step III By superposition theorem,
V, =V, +V, =857£-3.36°+8.2/11.93°=16.62/4.12° V

|| Example EWIW  Find current through inductor in the network of Fig. 3.49.

84£135°V
s
2 Q -1 Q
O ||
2/0°A D 20 Q 2,90° A
8,135°V
Fig. 3.49 )
Solution 2o |',> -1 Q
. o _ O ||
Step I When the 8£135° V source is acting alone (Fig. 3.50)
Applying KVL to the mesh, © 50 ©
8£135°—(—jhHI'—j2I'=0 T T

£135°
821357 _ 8245° A («-)=8£—-135°A () .
Jj1 Fig. 3.50

I=




Step I When the 2£0° A source is acting alone (Fig. 3.51)

3.4 Superposition Theorem 3.25

2 -1 Q

7000

2/0°A D 20

Fig. 3.51

The network can be redrawn as shown in Fig. 3.52.
By current division rule,

17 =200 — )= 2 00| 22 = 21800 A=)
—j1+j2 j

Step III ' When the 2290° A source is acting alone (Fig. 3.53)

20 -1 Q
[ |
000 ]

20 Q 2./90° A

Fig. 3.53

The network can be redrawn as shown in Fig. 3.54.
By current division rule,

—Jjl+

1”7 = 2490"(%] =2Z-90°A («)=2290°A ()

Step III By superposition theorem,

I=1"+1"+1"=8 £—135°+2/£180°+2£90° =8.49/—154.47°A

2,0° A D 20

Fig. 3.52

2Q

-1 Q
||

20 Q 2,90° A

Fig. 3.54

|| Example EWHM  Determine the source voltage V¢ so that the current through 2 £2 resistor is zero in

the network of Fig. 3.55.
3Q 2Q 4Q

A B3Q  —3a

Fig. 3.55

+
20£90°V
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Solution

Step I  When the voltage source V _ is acting alone (Fig. 3.56)

3Q 2Q 40
V, /D JER® /D ——-j3Q /D
- Iy 1y Iy
Fig. 3.56

Appling KVL to Mesh 1,
V, =31 - j3(1 ~15)=0

B+ j3) — 3L, =V, ...(0)
Appling KVL to Mesh 2,
= /31y = 1) = 2Ly + j3(1, —13) =0
—j3L 421+ j3I3 =0 ..(ii)
Appling KVL to Mesh 3,

—j3(I3 ~ 1) — 413 =0
3 +(4— 3T =0 ..(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

3+73 -3 0 N

Vs
-3 2 3L |=]o0
0 3 43y 0
By Cramer’s rule,
343 V, 0
-j3 0 3
ol 00 43 O+,
TPB+3 -3 0 A
-j3 2 j3

0 3 4-,3

Step II ' When the 20 £90° V source is acting alone (Fig. 3.57)

30 20 40
i +
j3Q —-j3Q 20,90° V
1 1 Iy =
Fig. 3.57

Applying KVL to Mesh 1,
31— j3(I =15)=0
B+ 31 - j3l, =0 ...(i)



3.5 Thevenin’s Theorem 3.27
Applying KVL to Mesh 2,
-3 —1) =21 + 31, - 1) =0

— 3L +21, + 313 =0 ...(ii)
Applying KVL to Mesh 3,
J3(1; —15)— 415 —20.£90° = 0
315 +(4— j3)Ty = —20.90° ...(iii)

Writing Eqgs (i), (i) and (iii) in matrix form,

3473 -3 0 N 0
-3 2 3 |lnl=l o
0 3 4-3{1| [-20290°
By Cramer’s rule,
3+ 73 0 0
-3 0 73
L= 0 -20£90° 4-;3 -180—,180
TR+ -3 0 A
-3 2 3

0 /3 4-53

Step III By superposition theorem,

L1, +1, = 012V, +A(—180—1180) o

(9+ j12)V, +(~180 — j180) = 0
(9+ j12)V, =180+ /180
V, =16.97/-8.13°V

X THEVENIN'S THEOREM

Thevenin’s theorem gives us a method for simplifying a network. In Thevenin’s theorem, any linear network
can be replaced by a voltage source V., in series with an impedance Z., .

|| SETII IR  Obtain Thevenin’s equivalent network for the terminals A and B in Fig. 3.58.
3 40 BQ 40
| | |
11 7000 —— A
. 40
50-0°V
2 j6 Q

o B

Fig. 3.58
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Solution

Step I Calculation of V., (Fig. 3.59)
—j4 Q BQ —j4Q

3a | | | |
| 000 | gA
. 40
50£0°V /D Vi
- | j6 Q
°B
Fig. 3.59
Applying KVL to the mesh,
50£0°-3B-j4HI-(4+6)1=0
2020 =6.87£-1595° A

T (3= j4)+(4+ j6)
V., = (4+6) 1 = (4+,6) (6.87 £-15.95°) = 49.5 £40.35° V

Step Il Calculation of Z,, (Fig. 3.60)

w=4_334_].130 Q

T =IO G e g6)

30 J4Q 5o 4o
X T ——] f——o4
40
<~—Zm,
6 Q
o B
Fig. 3.60
Step III Thevenin’s Equivalent Network (Fig. 3.61)
4.83 £-1.13°Q
o A
¥
49.5 £40.35° V 1\9
o B
Fig. 3.61
|| S ETIIWENR  Find Thevenin’s equivalent network for Fig. 3.62.
50 —j2 Q j5 Q
| T °A
+
3Q 5Q

10 £30°V

o B

Fig. 3.62



3.5 Thevenin’s Theorem 3.29
Solution

Step I Calculation of V., (Fig. 3.63)

5Q —j2 Q /5 Q
11 00 O A
+
+
10 £30°V 3Q 5Q Vi,
- I I
oB
Fig. 3.63
Applying KVL to Mesh 1,
10 £30° = (5-;2)1, =31, -1)=0
(8-,2)1,-31,=10 £30° ..(D)
Applying KVL to Mesh 2,
=30, -1)-j5L,-51,=0
=3 +(8+/51,=0 ...(i)
Writing Eqs (i) and (ii) in matrix form;
8—j2 =3 |[I,|_[10£30°
3 8+j5|LL,| | O
By Cramer’s rule,
8—72 10£30°
-3 0
I,=————+=043329.7° A
8—j2 3
-3 8+ /5

Vi, =51, =5(0.433£9.7°) =2.16£9.7° V
Step Il Calculation of Z,, (Fig. 3.64)

—j2Q j5Q
|| 700 oA
5-;2)3 .
Zn, = HM% ]5] IS
5—-72+3 50 30 5Q < Zm
=[1.94— j0.265+ j5]||5=(1.94+ j4.735)|| 5
R o B
= w = 30443340 Q
6.94 + j4.735 Fig. 3.64
Step III Thevenin’s equivalent Network (Fig. 3.65)
3.04 £33.4° Q
o A
+
2.16 £9.7°V @
o B

Fig. 3.65
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|| Example WV Obtain Thevenin’s equivalent network for Fig. 3.66.

10 £0°V

4Q

2Q

j6 Q

Fig. 3.66

Solution

Step I Calculation of V.,

2Q

J

j6 Q

_j4 Q
,—|— -
Fig. 3.67
Applying KVL to the mesh,
(2+ j6— j4)1—-5290° =0
I= 5290 =1.77£45° A
2+ j2

V., =(=4) I+5 £90° - 10 £ 0°= (4 £-90°) (1.77 £45°) + 5 £90° - 10 £0° = 18 £146.31° V
Step Il Calculation of Z, (Fig. 3.67)

40Q
oA
20
) ~ Zm
j6Q T 40
oB
Fig. 3.68

Zoy =4+ ZHIOCID 115 aa0300
2+ 2

Step III Thevenin’s Equivalent Network
11.3 £-44.93° Q
o A

N

o B




3.5 Thevenin’s Theorem 3.31

||m Obtain Thevenin’s equivalent network for Fig. 3.70.

10 £0° A 15Q L2Q
A
30 -5 Q
B
Fig. 3.70 :
Solution
o 15Q 220
StepI Caleulation of V. (Fig. 3.71) 102074 !
By current division rule, L oA
e
oy ; 3Q -5Q  Vm
1= M =13.42£26.57° A T
5—j5+ /15 5B
V=791 Fig. 3.71
=(5 £-90°) (13.42 £26.57°) = 67.08 £-63.43° V
Step Il Calculation of Z, (Fig. 3.72)
—i5%5+ 715 j15Q 2Q
Zyy = TOH 5400, 81860 0
—j5+5+ j15
A
Step III Thevenin’s Equivalent Network ) 2
7.07 /-81.86° Q sa S5 = %m
L °A T OB
+
67.08 /-63.43° V @ Fig. 3.72

o B

Fig. 3.73

||m Obtain Thevenin’s equivalent network for Fig. 3.74.

+
20 £0°V f\)
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Solution

Step I Calculation of V., (Fig. 3.75)

+

20 £0°V @

Fig. 3.75

_20£0°

S 21412+ 524
_20£0°
80+ 60

| =0.49,-36.02° A

2 =0.2£-36.86° A

V. =(12+24) 1 - (30 +,60) I,
= (26.83 £63.43°) (0.49 /~36.02°) — (67.08 £63.43°) (0.2 £~36.86°)
=033 £171.12° V

Step I1  Calculation of Z, (Fig. 3.76)
21 50

Ao— H ——OB

12 j24 30 j60

Fig. 3.76

21(12+ j24 :
Zy, = 2020 728)  S060%760) _ 494 o650 0
334,24 80+ 60

Step III Thevenin’s Equivalent Network

47.4 £26.8° Q
1
[

o A

+
0.33 £171.12° V @

o B

Fig. 3.77



3.5 Thevenin’s Theorem

||m Find Thevenin’s equivalent network across terminals A and B for Fig. 3.78.

o A
10 50
2.245°A D N
2Q
10 £90°V
_ o B
Fig. 3.78
Solution
Step I Calculation of V., (Fig. 3.79)
o A
s
1Q 50
2 £45° A D . Vo
2Q
10 £90° V
_ oB
Fig. 3.79

Applying KCL at the node,

Viu_, Vi ~10£90°
1+ 72 5

=2/45°

L Dy = 2z450 422900
1+/2 5

(0.57 /- 45°)Vy, =3.7267.5°
Vi, =6.49/112.5°V

Step Il Calculation of Z, (Fig. 3.80)

O A
1Q
50 -« Zp,
20
OB
Fig. 3.80
W=D gg 5o o

S 54142

3.33



3.34 Circuit Theory and Networks—Analysis and Synthesis

Step III Thevenin’s Equivalent Network (Fig. 3.81)

1.77/£45° Q
1
o A

+
6.49 £112.5°V @

o B

Fig. 3.81

|| SETOII YN Find the current through the (5+ j2) Q impedance in the network of Fig. 3.82.

5Q
+ 3Q 20
20 £0°V @
- 2 Q 20 £0° A
5Q —" 20
Fig. 3.82
Solution
Step I Calculation of V., (Fig. 3.83)
5Q Vv,
3Q 20
+
o Ao+ °
20 £0°V @ Vo, Q 20 £0°A
Bo- -2 Q
Ik
Fig. 3.83
Applying KCL at the node,
Vv, —20£0 . Vi _ 20.20°

5 2-j2
11
— 4+ —— |V, =20.£0°+ 4 £0°
5 2-52
0.51.£29.05° V; = 24 £0°
V, = 47.06/-29.05° V
Vi =V} = 47.06.£-29.05° V



3.5 Thevenin’s Theorem 3.35

Step Il Calculation of Z, (Fig. 3.84)

5Q
3Q 2Q
A
Zm
[ T™
Fig. 3.84
— 52
Zoy =342 4791135 0
542-j2
Step II1  Calculation of I, (Fig. 3.85)
4.79/-11.35° Q
A
[ E—
N 50
47.06 £-29.05° V f\) /D
B I 2Q
B
Fig. 3.85

_ 47.06./-29.05°
479/-1135°+5+ )2

"m Find the current through the 5 £2 resistor in the network of Fig. 3.86.

/5O
700

GLOOAG> 5Q 40Q —-2Q <D440°A

Fig. 3.86

=4.73/-39.96° A

L

Solution
Step I Calculation of V., (Fig. 3.87)

Vi 5 Q Vs,
IO —+
+J>A

|
620° A (D Vin 40 2o CD 4.20°A
[ |

Fig. 3.87
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Applying KCL at Node 1,

Vi N Va 600-0
4 js
1 1
—+— V] ——V2 =-6/0°
4 j5 js
(0.25-;0.2)V; + j0.2V, = -6£0° ...(1)
Applying KCL at Node 2,
VaeVi Vs e
J5 =2
1 11
—— Vit —=—— |V, =4£0°
J5 JS 2
JjO2Vi + 0.3V, =4£0° ...(1i)
Writing Eqs (i) and (ii) in matrix form,
0.25-,02 ;02| V| _|-6£0°
j0.2 JjO3|| Vo | | 420°
By Cramer’s rule,
—-6£0° 0.2
4,20° 0.3
| =————————=20.84-126.87°V
025-3;0.2 ;0.2
j0.2 j0.3
Vi, = V) =20.8£-126.87°V
Step Il  Calculation of Z, (Fig. 3.88)
j5Q
o000
l
Zip > 40 — 20
i
Fig. 3.88
4—72+ 7
Loy =224 D) )y 4 530300
4-j2+ j5)
Step IIl  Calculation of I, (Fig. 3.89) 24 /53.13° 0
A
L
20.84-126.87°
IL=0846087=3,14—143.47°A +
24/5313°+5 20.8 /-126.87° V r\) I 5Q
- L
B

Fig. 3.89
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|| Example EWIW  In the network of Fig. 3.90, find the current through the 10 Qresistor.

5 2£30°V

2Q

10 Q

Solution
Step I Calculation of V., (Fig. 3.91)
Applying KVL to the mesh,
J2I-11-10£0°-51=0
(j2-6)I =10£0°
I1=1.584-161.57° A
Writing V_, equation,
51+10£0°-5430°-0—Vr, =0
5(1.584£-161.57°)—10£0° —=5£30° = V1, =0
Vi, =5.32£-110.06°V

Step Il Calculation of Z, (Fig. 3.92) 20
O A
—j2
Zm=2+377D 345, o100 0 10
5+1-,2 50 <~—Zm,
-2 Q
Step III  Calculation of I, (Fig. 3.93) oB

3.48 £-21.04° Q

1 Fig. 3.92
A 18
4
5.32 /-110.06° V r\) 10Q
- IL
B
Fig. 3.93

I, = 53247 11006% _ 4/ 104670 A
3.48/-21.04°+10
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|| SCINACREIYM  Find the current through (4+ j6) Q impedance in the network of Fig. 3.94.

20 5O 30 159
000 |
N 40 .
100 £0°V 50 £90°V
> P a
Fig. 3.94
Solution
Step I Calculation of V., (Fig. 3.95)
5O

20 /5Q

+

100 £0°V 50 £90°V
1
Fig. 3.95
Applying KVL to the mesh,
100£0° - 21— j51 - 31+ j5I-50£90°=0
1=2236/4-26.57°A
Writing V., equation,
Vi, =31+ j51-50.290° = 0
Vo —(3— j5)(22.36 £-26.57°)—50£90° = 0
Vi, =80.61£—-82.88° V
Step Il Calculation of Z, (Fig. 3.96)
20 j5Q 3o B
I
L
Z,
T B
Fig. 3.96
24 SN i
Zoy = CPICZI) 55,9160 0

2+ 75+3-/5
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Step III  Calculation of I, (Fig. 3.97)

6.2829.16° Q
A
L
N 4Q
80.61 /-82.88° V @
S 1
L 6 Q

B

Fig. 3.97

_ 80.61£-82.88°
6.2829.16°+4+ jo

|| SCINTACRIEN  Obtain Thevenin's equivalent network across terminals A and B in Fig. 3.98.

] 4Q j2Q
AL 000 0 A
-1Q

+
1040°V®
> 21

=652/-117.34° A

L

o B
Fig. 3.98
Solution 1 4Q j2Q
7000 A
Step I Calculation of V_, (Fig. 3.99) 1 fQ *
Applying KVL to th h, *
pplymg 0 the mes 10 £0°V @ VTh
10£0°—41+ j1II-21=0 > 21
I1=1.6429.46°A _
o B
Writing V., equation,
& Vmed Fig. 3.99
10£0°—41-0— Vi, =0
10£0°—-4(1.64£9.46°)— V1, =0
Vi, =3.69£-17°V
Step Il Calculation of I, (Fig. 3.100)
From Fig. 3.100, | 40 PQ A
I=1 T 7000
Applying KVL to Mesh 1, -nQ

N
10£0°— 41, + jI(I; -1, )—21 =0 10040“’@ /) 21 /D Iy
10.£0° =41, + j11; — j11, =21, = 0 - I [

(6— )T+ 11, =1020° ...(J)
Applying KVL to Mesh 2,

214+ 11, = 1) - j2I, =0 Fig. 3.100
2]1 +j1[2 —jlll —jzlz = 0
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..(i)

2=/ -1, =0
Writing Eqgs (i) and (ii) in matrix form,
6-,41 J1 (|5 |_[10£0°
2—71 —ji||I, || o
By Cramer’s rule,
6—j1 10£0°
2—j1 0
I,=—"———=271/-102.53° A
6-j1 Jl
2—j1 —j1
Iy =1,=2.71£-102.53° A
Step III  Calculation of Z,
69£-17°
Ly =y 36922170 50 gs530 0
Iy 271£-102.53°
Step IV Thevenin’s Equivalent Network (Fig. 3.101)
1.36 £85.53° Q
oA
+
369 2-17°V (~)
oB
Fig. 3.101
|| Example EWN  Find Thevenin’s equivalent network across terminals A and B for Fig. 3.102.
20 4 Q
A
N +
5£0°V
- T 0.2V, v,
1Q
°B
Fig. 3.102
Solution 20 j4Q
YO ——o0 A
Step I Calculation of V., (Fig. 3.103) 4 +
5.20°V
From Fig. 3.103, > ) Nozv v
I=-02V, .. (@) 10 |
Writing V., equation,
°B

—I1+520°-0-V, =0

Vh
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0.2V, +520°-V, =0
V,=62520°V
Vi, =V, =62520°V

Step Il Calculation of I, (Fig. 3.104)

2Q
+
520°V
- T 0.2V,
1Q
Fig. 3.104
From Fig. 3.104, 20 j4Q
V,.=0 00 A
+
The dependent source depends on the 5 g0y
controlling variable V. When V, =0, the > |
dependent source vanishes, i.e. 0.2V, =0 as N
shown in Fig. 3.105. 1Q
4 o
N:l=14—53A13°A B
1+2+ j4 .
Fig. 3.105
Step IIl  Calculation of Z,,
Ly =y o 02520° (o5 /531300
Iy 1£-53.13°

Step IV Thevenin’s Equivalent Network (Fig. 3.106)

6.25 £53.13° Q
]
o A

+
6.25 £0°V

o B

Fig. 3.106

IEX3| NORTON’S THEOREM

Norton’s theorem states that any linear network can be replaced by a current source 1, parallel with

an impedance Z,, where 1, is the current flowing through the short-circuited path placed across the
terminals.
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|| SCI AR  Obtain Norton’s equivalent network between terminals A and B as shown in Fig. 3.107.

30 j4Q

Fig. 3.107
Solution

Step I Calculation of I, (Fig. 3.108)

When a short circuit is placed across (4 —j4) Q impedance,
it gets shorted as shown in Fig. 3.109.

3Q j4Q 25 £0°V
o0 A
+
25 £0°V
B In Fig. 3.108
B
Fig. 3.109 30 j4Q
25.20°
Iy =25 =5/-5313° A
3+j4
Step I  Calculation of Z,, (Fig. 3.110)
3+ j4)4— j5
Y= GHIETD) 5390000
3+j4+4-j5
Step III Norton’s Equivalent Network
0A
5/-53.13° A D []4.53 £9.92°Q
oB

Fig. 3.111
|| SETNII XS Obtain Norton’s equivalent network at the terminals A and B in Fig. 3.112.

5Q

0 A

10230°A (})

o B
Fig. 3.112
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Solution

Step I Calculation of I, (Fig. 3.113)

50 A
1Q 4Q
10 £30° A D Iy
20 jaQ
B
Fig. 3.113
By series-parallel reduction technique (Fig. 3.114)
50Q A
10 £30° A D [] 1.62 £58.24° Q Iy
B
Fig. 3.114
.62.£58.24°
Iy ={10£30°) 16229824° ) 591750 A
1.62£58.24°+5
Step Il Calculation of Z,, (Fig. 3.115)
5Q
o A
1Q 4Q
- ZN
20 jaQ
o B
Fig. 3.115

- 5+w: 6.01213.24° Q

Zy
1+ j2+4+ j4

3.43
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Step III Norton’s Equivalent Network (Fig. 3.116)

2.69 £75° A f) |:] 6.01 £13.24° Q

Fig. 3.116

|| Example eW:YA  Find Norton’s equivalent network across terminals A and B in Fig. 3.117.

0 A
j4 Q 10 Q
4 /45° A
D .
3Q 25 290°V
o B
Fig. 3.117
Solution
Step I Calculation of I, (Fig. 3.118)
A
0]
j4 Q 10 Q
4 /45° A D . In
3Q 25 £90° V
°B
Fig. 3.118

When a short circuit is placed across the (3+ j4) Q impedance, it gets shorted as shown in Fig. 3.119.

A
10Q
4 £45° A Q) . Iy
25 /90°V
_ B

Fig. 3.119
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By source transformation, the network is redrawn as shown in Fig. 3.120.

A A
4450 n (}) (M) 2500°A% 100 4452 A(}) (A) 25200°A Yy
B B
(a) (b)
Fig. 3.120

Iy =4£45°4+2.5290°=6.03£62.04° A

Step Il Calculation of Z,, (Fig. 3.121)

0 A
j4 Q
10 Q ~Zy
3Q
o B
Fig. 3.121
1 4
v =06+ _ 5683603 @
10+3+ j4
Step III Norton’s Equivalent Network (Fig. 3.122)
0 A
6.03 £62.04° A f) |:] 3.68 £36.03° Q
o B
Fig. 3.122

|| SETOIIIEWER  Obtain the Norton’s equivalent network for Fig. 3.123.

10 £0° A
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Solution

Step I Calculation of I, (Fig. 3.124)

10 £0° A 5Q

Fig. 3.124

By source transformation, the network can be redrawn as shown in Fig. 3.125.

Writing KVL equations in matrix form,

5 J5|| L |_|50«0° 50 £0°V
J5 0|l | o
By Cramer’s rule, 50
5 50£0°
i5 0 7
12:17':104—90°A 2o
5 Jj5
4

Iy=1,=10£-90° A Fig. 3.125
Step Il Calculation of Z,, (Fig. 3.126)
5Q BQ
j5Q
500 0
2Q —— 50 <2y
o

Fig. 3.126

Zy = j5+ (5+j5)=J5) _
5+j5-j5

Step III Norton’s Equivalent Network (Fig. 3.127)

5Q

10 £-90° A D D 5Q

OA

Fig. 3.127

oB
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|| SCI RN Obtain the Norton’s equivalent network for Fig. 3.128.

10 £45°V f\)

Solution
Step I Calculation of I, (Fig. 3.129)

Writing KVL equations in matrix form,

\/4\1?0(9

+ —j2 Q

Fig. 3.128

+
10 £45°V f\)
> 3

15-;2 -10+,2 -5 I, 10£45°
10+ /2 15-;2 0 I, = 0
-5 0 15+ 2|15 0
By Cramer’s rule,
Fig. 3.129
15—-j2 10£45° -5
—10+ ;2 0 0
-5 0 15+ 52
I, = =1/£41.28° A
15—-;2 —-10+;2 -5
-10+,2 15-;2 0
-5 0 15+ ;2
15-72 —10+ ;72 10£45°
—-10+,2 15-;2 0
-5 0
I; = =049/3741° A
15-;2 -10+,2 -
-10+,2 15-;2 0
-5 0 15+ ;2

Iy =15-1, =0.4943741-1£41.28°=0.51£-135° A

Step Il Calculation of Z,, (Fig. 3.130)

—j2 Q
il

10Q 5Q

5Q 10Q j2Q

(b)
Fig. 3.130
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_510-/2) | 510+2) _

N = =672 Q
54+410—-,2 5+10+ ;2
Step III Norton’s Equivalent Network (Fig. 3.131)
0 A
0.51 Z-135° A 6.72Q
o B
Fig. 3.131

|| SETII W W Find the current through the 8 2 resistor in the Network of Fig. 3.132.

5Q
. 80 10Q
20 £0°V @ Q 5.,0°A
- 4Q
Fig. 3.132
Solution
Step I Calculation of I, (Fig. 3.133)
50
A
. 100
20 £0°V @ Iv G 5.20°A
: 5 AQ
Fig. 3.133

When a short circuit is placed across the (10 + j4) Q impedance, it gets shorted as shown in Fig. 3.134.

50
A
+
20 £0°V @ In Q 5./0°A
B

Fig. 3.134
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By source transformation, the network is redrawn as shown in Fig. 3.135.

4.20°A D 5Q In Q 5.20° A

Fig. 3.135
Iy =4£0°4520°=9.0° A

Step Il Calculation of Z,, (Fig. 3.136)

5Q
A
o 10Q
Zy
o
B j4Q
Fig. 3.136
N = M =3.47£6.87° Q A
5410+ j4 )
9,/0°A 3.47 £6.87 Q
Step III ~ Calculation of I, (Fig. 3.137) 80
B
9.£0°
=——=0.79£-2.08° A .
" 347.,6.87°+8 Fig. 3.137

|| SETTI W Obtain Norton’s equivalent network across the terminals A and B in Fig. 3.138.
51

| 100Q j50Q A

.
1040°v@ 31'10Q

Fig. 3.138
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Solution

Step I Calculation of V., (Fig. 3.139)

51
-
I 1000 450
[ oA
+ _ + 11 T
+
10200 () %/109 Vo,
o B
Fig. 3.139
4 (e}
= _10£0° =0.1£-571°A
100+ 10
Writing V., equation,
10£0° =100 T—(—j5)}(5T) = V3, =0
10£0°-100(0.1£=-5.71°)+(j5)(5)(0.1£=5.71°) = V1, =0
Vi, =3.5485.1°V
Step Il Calculation of I, (Fig. 3.140)
51
| 100 Q | |7j5 Q A
i
+
10 £0°V % noQ In
B
Fig. 3.140
By source transformation, the network is redrawn as shown in Fig. 3.141.
| 1000 50 —j251
<
"
1040°v@ r) 3/109 r) In
- I I,
B
Fig. 3.141
From Fig. 3.141,
I=1

...
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Applying KVL to Mesh 1,
10£0°-100 I, — j10(I, =1,) =0
100+ j10)I; — 4101, =10£0° ...(1i)
Applying KVL to Mesh 2,

—j10(T, = 1))+ j5T, + j251=0
—]1012 +]lOI| +j5[2 +_]25[| = 0
7351, — jSI, =0

Writing Eqgs (ii) and (iii) in matrix form, - (i)
100+ 710 — 10|( T, | _[10£0°
j35 5L | o

‘100+j10 10.£0°

By Cramer’s rule,

735 0
)= =0.6230.96° A
100+ j10 —,10
35 —j5

Iy =1, =0.6£30.96° A

Step III  Calculation of Z,,

_ Vm_ 3.5/85.1°

Zy=-2-=
Iy 0.6£30.96°

=5.83454.14° Q

Step IV Norton’s Equivalent Network (Fig. 3.142)

0 A
0.6 £30.96° A f) |::| 5.83454.14° Q
o B
Fig. 3.142
XAl MAXIMUM POWER TRANSFER THEOREM Zs

This theorem is used to determine the value of load impedance for which

the source will transfer maximum power. v, @ /Bﬂz
Consider a simple network as shown in Fig. 3.143. L

There are three possible cases for load impedance Z, .

Fig. 3.143
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Case (i) When the load impedance is variable resistance (Fig. 3.144)

V. V.
I, = L= . Zs=Rs+jXs
Z,+7, R;+jX,+R —
L1
Vi
IIL| = T . o +
V(R +Ry)* + X! Vs (V) a z,-R,
- |
The power delivered to the load is g
2 Vil Re Fig. 3.144 Purely resistive load
P =R = ig. 3. urely resistive loa

VR + R + X,

For power to be maximum,

s
dR;
v [P LR RO+ XY 2R (R4 Ry) |

(R, +R. ) + X2

0

(R + Ry + X2 =2R; (R, +R;)=0
RE42R.R-4+RE+- X2 —~2RiR.~2RE =0
R} +X]-R; =0
R =R} +X]
R, =R+ X! =z

Hence, load resistance R, should be equal to the magnitude of the source impedance for maximum
power transfer.

Case (i) When the load impedance is a complex impedance with Zs=Rs+jXs
variable resistance and variable reactance (Fig. 3.145)
A\ +
IL:ZS+ZL Vs@ 2 Z,=R +jX,
[Vs|
.| =

2 2
‘/(R" TP+ (A L) Fig. 3.145 Complex impedance load

The power delivered to the load is

2
Vs R,
(Ry+Ry) +(X,+X,)

P =|L[ R, =

For maximum value of P,, denominator of the equation should be small, ie. X; =-X.

_ [Vs|* e

P
TR +R)
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Differentiating the above equation w.r.t. R, and equating to zero,

ar,

| Bt R 2R R+ Ry) |
dr, '’

(Ry+R.)
(Ry+R,)’ -2 R, (R, +R,)=0
R>+2RR,+R} -2 R,R,—2R? =0

0

RZ-R}=0
Ri =R}
RL =Rs

Hence, load resistance R, should be equal to source resistance R, and load reactance X,
should be equal to negative value of source reactance for maximum power transfer.

Ly =7 =R~ jX,
i.e. load impedance should be a complex conjugate of the source impedance.

Case (iii) When the load impedance is a complex impedance with variable resistance and fixed reactance
(Fig. 3.146) Zs=Rs+jXs

1
B V, | I

I, =
Z.+Z; +
v S Ha-nom

In.|=
YR + Ry + (X, + X, )P
The power delivered to the load is Fig. 3.146 Complex impedance load
V[ R
PL=|IL]2RL: | 2' - =
VR + Ry + (X, + X, )P
For maximum power,
a _,
dR;
VP Rt RO+ X+ X, -2 RUR+Ry) |

(R, + R +(X, + X"}
(Ry+R.)* +(Xs+ X, )* =2 R, (Ry+R,)=0
R+2R R +RP+(X,+ X))’ -2 R.R,-2R} =0
R2+(X,+ X, ) —R} =0
R} =R +(X,+X.)*
R, =R +(X,+X.)
=Ry + (X, + X))
=Ry + jX; + jX,|
Zo+ jX1|
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Hence, load resistance R, should be equal to the magnitude of the impedance Z, + jX,, i.e.
|Z,+ jX;| for maximum power transfer.

|| SETII XY For maximum power transfer, find the value of Z, in the network of Fig. 3.147 if

(i) Z, is an impedance, and (ii) Z, is pure resistance.

60 -8 Q
i
+
A 2,
Fig. 3.147
Solution Z,=(6-,8)Q

(i) IfZ,is an impedance
For maximum power transfer, Z; = 7. = 6+ j8)Q

(ii) IfZ, is a resistance
For maximum power transfer, Z; = |ZS| = |6 + j8| =10Q

|| Example LWV For the maximum power transfer, find the value of Z, in the network of Fig. 3.148

for the following cases:

(i) Z, is variable resistance, (ii) Z, is complex impedance, with variable resistance and variable reactance,

and (iii) Z, is complex impedance with variable resistance and fixed reactance of j5 £2.

0 A
2Q 3Q
10A D
50 5.,0°V
o B
Fig. 3.148

Solution Thevenin’s impedance can be calculated by replacing voltage source by a short circuit and current
source by an open circuit.

0 A
2Q
3Q ~—Zy,
5Q
o B

Fig. 3.149
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_3(2+j5)

Zop, =
Th 3+24 5

=(2.1+ j0.9) Q

For maximum power transfer, value of Z, will be,
(i) Z, is variable resistance
Z; =|Zmy|=2.1+ j0.9=2.28 Q
(ii) Z,is complex impedance with variable resistance and variable reactance
Z, =7 =(2.1- j0.9)Q
(iii)  Z, is complex impedance with variable resistance and fixed reactance of j5

Z; =|Zy, + jS|=]2.1+ j0.9+ j5| =6.26 Q

|| SETTI W EN  Find the impedance Z, so that maximum power can be transferred to it in the net-
work of Fig. 3.150. Find maximum power.

3Q 30
.
5.,0°V ngQ ——-3Q []zL
Fig. 3.150
Solution
Step I Calculation of V., (Fig. 3.151)
I 30 30
O A
e
1
+
5.,0°V é;‘sg —-j3Q Vg
o
Fig. 3.151
7, =3+ 2C=) 691065700
3+ 3- 3
5.£0°

r=————=0.754-2657° A
6.71£26.57°

By current division rule,

_B3 =10.75£63.43° A

3+/3-/3

Vi = (= j3)(0.75.£63.43%) = 2.24/— 26.57° V

1=0.754-26.57°x%



3.56 Circuit Theory and Networks—Analysis and Synthesis

Step Il Calculation of Z, (Fig. 3.152) 3Q 30 on
Z,=[G11/3)+3] ] (3)

=3 £-53.12° Q

=(1.8-,24)Q

BQ ——j3Q

000,

B
Step III  Calculation of Z, ©

For maximum power transfer, the load impedance Fig. 3.152
should be a complex conjugate of the source impedance.

Z,=(18+,24)Q
Step IV Calculation of P__(Fig. 3.153)

(1.8-j2.4)Q
L | A
+
204 /-2657°V @ (1.8+/2.4)Q
B
Fig. 3.153
2 2
2.24
PmaXZIVTh\ _| " o7 w
4R, 4x%x1.8

|| SETNII RN Find the value of Z, for maximum power transfer in the network shown and find

maximum power.
Solution
Step I Calculation of V., (Fig. 3.155) I Iz
o 50 70
| = 10020 =8.94/-63.43° A
5+ 410 +
100.20° 100 £0° V r\) A+VTh—B
= ———=4722707° A -
7-520 10Q -20 Q

Fig. 3.155
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Vi = Vg — Vg = (8.94/ — 63.43°)(j10) - (4.72.270.7°)(~ j20) = 71.76 £97.3° V

Step Il Calculation of Z, (Fig. 3.156)
5Q 7Q
Ao— — —oB
AR ||
j10Q -j20 Q
Fig. 3.156
10)  7(— /20 50.£90° 140./-90°
Zy, = U1 7200 S0 0 =(10.23-j0.18) Q
54710 7-,20 11.18£63.43° 21.194-70.7°

Step III For maximum power transfer, the load impedance should be complex conjugate of the source

impedance.

Z,=(10.23+,0.18) Q

Step IV Calculation of P _(Fig. 3.157)

(10.23-/0.18) Q

+
71.76 £97.3°V f\)

]
[ E—

(10.23 +j0.18) Q

Fig. 3.157

Vo, I* 7176
Pmax:| ™[ _ | |

=125.84 W

4R, 4x10.23

|| SETTI BRI  Find the value of load impedance Z . 80 that maximum power can be transferred to
it in the network of Fig. 3.158. Find maximum power.

3Q

+
50 £45°V @

I

2Q

100

Fig. 3.158
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Solution

Step I Calculation of V., (Fig. 3.159)

30
20
+ +0A
50 £45°V @ Vo
- 78, j10Q
Fig. 3.159
_ 028 4718430 A
3+2+ 10

Vi, = (2+ 710) I= (24 j10)(4.47./-18.43°) = 45.6.£60.26° V

Step Il Calculation of Z, (Fig. 3.160)

3Q
2Q
Ao
Z1p
Bo
100
Fig. 3.160
32+ /10
Zry = 2220 _ ) 6at j0m2) 0
342+ /10

Step III  Calculation of Z,

For maximum power transfer, the load impedance should be complex conjugate of the source
impedance.

Z,=(2.64-,0.72) Q
Step IV Calculation of P (Fig. 3.161)

(2.64+j0.72) Q

L A
.
45.6 /60.26° V f\> (2.64 —j0.72) Q
B
Fig. 3.161
Vo P |45.6
P = Y _ 19567 15041

4R,  4x2.64
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||m Determine the load Z, required to be connected in the network of Fig. 3.162 for

maximum power transfer. Determine the maximum power drawn.

1Q
I
4 ,0°A 2Q 4Q z,
Fig. 3.162
Solution
Step I Calculation of V., (Fig. 3.163)
1Q
H00 o A
Iy Iy
420° A 20 49  y,
oB
Fig. 3.163
2
I, =4.20°x% =131524-9.46° A
6+ /1
Vo, =41, =4(1.315£4-9.46°) =526 £-9.46° V
1Q
7500 oA
Step II  Calculation of Z, (Fig. 3.164)
42+ i1 2Q 4Q <« Z7,
Zoy = 22D 4 47 17102 1414 j0.43) Q
4+2+ 1 °B
Step III  Calculation of Z, Fig. 3.164
For maximum power transfer, the load impedance
should be the complex conjugate of the source impedance.
Z,=(1.41-,0.43) Q
Step IV Calculation of P (Fig. 3.165)
(1.41+j0.43) Q
A
| E—
+
5.26 £-9.46°V f\D (1.41-/0.43) Q
B
Fig. 3.165
2 2
P = 1L 3201y gy yy

4R,  4x1.41
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||m In the network shown in Fig. 3.166, find the value of Z, for which the power
transferred will be maximum. Also find maximum power.

5/60°Q 10 £-30° Q

[ [
[ E— | E—

+ +
1040°V@ Z, @5490°V

Fig. 3.166
Solution

Step I Calculation of V., (Fig. 3.167)

5£60°Q 10 £-30°Q
1
[ E—

N

+
1040°V@

Applying KVL to the mesh,
10£0°=(5£60°)T—(10£=30°)T-5290°=0
11.18£-26.57°—(11.18£-3.43°)I=0
I=1£-23.14° A

Writing V., equation,

10£0°—=(5£60°)T -V, =0
10£0°-(5£60°)(1£-23.14°) = V1, =0
Vi, =6.71£-26.56°V

Step Il Calculation of Z,, (Fig. 3.168)
5 £60°Q 10 £-30°Q

L] L]
N

ZTh
T

Fig. 3.168

(5£60°)(10/-30°)
T 5./60°+10/-30°

Zm =447/33.43°Q=(3.73+ j2.46) Q
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Step III  Calculation of Z,

For maximum power transfer, the load impedance should be the complex conjugate of the source
impedance.

Z;=Zm =(3.73— j2.46) Q
Step IV Calculation of P (Fig. 3.169)

(3.73+2.46) Q

A
+
6.71 £-26.56°V f\) (3.73-2.46) Q
B
Fig. 3.169
Vi? (6.71)
Proax = = =3.02W

4R,  4x3.73

|| SETTI NN /1 the network shown in Fig. 3.170, find the value of Z, so that power transfer from

the source is maximum. Also find maximum power.

+
10 £0°V r\)

z, 8Q

Solution

Step I Calculation of V., (Fig. 3.171)
Applying Star-delta transformation (Fig. 3.172)

j9Q 9 Q
2o =7y =7~ .(_/9)(19) - 530 oG
79+ 79+ 9 10 £0°V r\) \ O
V.,,= Voltage drop across (8 +/3)Q impedence A V+ -
Tho\ 8Q
10200 5
=8+ j3)————=854/-1631°V
8+ 73+ /3
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10 £0°V r\)

Fig. 3.172
Step Il Calculation of Z, (Fig. 3.173)
j3Q
j3Q
BQ [] ~Zy,
8Q
O
Fig. 3.173
Zoy = 3+ 28I 551 /80490 Q= (0.72+4 j5.46) @
J3+8+/3)

Step IIl  Calculation of Z,
For maximum power transfer, the load impedance should be the complex conjugate of the source
impedance.

Z, =Z =(0.72— j5.46) Q

Step IV Calculation of P (Fig. 3.174)

max

(0.72+5.46) Q
A
L

+

8.54 /-16.31°V r\) (0.72-j5.46) Q

Fig. 3.174

2
b _|Ym[ _ 854y
4R, 4%0.72

=2532W



3.7 Maximum Power Transfer Theorem 3.63

"m For the network shown in Fig. 3.175, find the value of Z, that will transfer maximum
power from the source. Also find maximum power.

105V, jl0Q
+
100 £0°V 5Vx
Fig. 3.175
Solution 40 100
Step I Calculation of V., (Fig. 3.176)
From Fig. 3.176, 100 £0°V 5V,
V, =41
Applying KVL to the mesh,
100£0°—41—-;101-5V, =0
100£0°—(4+ j10) I-5(41)=0
4 o
= 100 20 =3.854£-22.62°A
24+ ;10
Writing V., equation,
100 £0°—41-Vq, =0
100£0°—-4(3.85 £-22.62°) = V1, =0
VTh =86£3.95°V
Step Il Calculation of I, (Fig. 3.177)
From Fig. 3.177, iy i
g a3y, A j10Q
vV, =4I, /) Iy /)
: +
Applying KVL to Mesh 1, 100 £0°V I B 1 5V,
100 £0°—41; =0 -
I =25A
) Fig. 3.177
Applying KVL to Mesh 2,

—j10I, =5V, =0
—j10T, = 5(41;) =0
— 101, —5(100) = 0
I, =50£90°A
Iy =1, -1, =25-504£90° = 55.9/-63.43°A
Step III  Calculation of Z,
_ Vp,  86£3.95°

Ty = o=
™, 55.9/-63.43°

=1.54/67.38° Q= (0.59+ j1.42) Q
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Step IV Calculation of Z,,
For maximum power transfer, Z; = Zm, = (0.59— j1.42) Q

Step V' Calculation of P___(Fig. 3.178)
(0.59+/1.42) Q

L A
.
86 £3.95°V r\) (0.59-1.42) Q
B
Fig. 3.178
2
V- 2
max:' nl _ 89" gy
4R, 4x0.59

IEXJ| ReciPrOCITY THEOREM

The Reciprocity theorem states that ‘/n a linear, bilateral, active, single-source network, the ratio of excitation
to response remains same when the positions of excitation and response are interchanged.’

|| Example EWIW  Find the current through the 6 Q2 resistor and verify the reciprocity theorem.

1 Q
| ]
Il

.
540°v@ gﬂg 20

1Q

Fig. 3.179
Solution

Case I Calculation of current I when excitation and response are not interchanged (Fig. 3.180)

10 f/1| |Q
I I
’ gn Q 20
- I I,
Fig. 3.180

Applying KVL to Mesh 1,
5£0°-11 — jI{I; -1,)=0
(I+ /DL = jlI, =5£0° ()



Case Il

3.8 Reciprocity Theorem 3.65

Applying KVL to Mesh 2,
—]l(lz - l|)+j1]2 —2[2 = 0
—lel +2I, =0 ()
(i
Writing Eqs (i) and (ii) in matrix form,
I+ 1 —j1|[I; | _|5£0°
-1 2 |L]| | o
By Cramer’s rule,
1+ ;1 5£0°
—jl 0
I, =—"——=13945631°A
1+,1 —jl1
—-jl 2
I=1,=139/£5631°A
Calculation of current I when excitation and response are interchanged (Fig. 3.181)
10 f/1| ?
! /> /) 20
j1Q
I % I N
5.20°V
Fig. 3.181
Applying KVL to Mesh 1,
-1 =1L -1)=0
I+ DL -, =0 ...(1)
Applying KVL to Mesh 2,
— i1, = 1)+ jiI, =21, =5£0°=0
—jl +2I, =-5£0° ...(i1)

Writing Egs (i) and (ii) in matrix form,

1+j1 A1 [ o
-1 2|1, |7 |-520°

By Cramer’s rule,

0 —j1
-5£0° 2
| = =1384£-123.69° A
I+,1 —j1
—-jl 2

I=-1,=13925631° A

Since the current I is same in both the cases, the reciprocity theorem is verified.



3.66 Circuit Theory and Networks—Analysis and Synthesis

|| SETTI I  [n the network of Fig. 3.182, find the voltage V_and verify the reciprocity theorem.

10Q j5Q

20 £90° A D
:
j5Q _j2Q v,

-

Solution

Case I Calculation of voltage V_when excitation and response are interchanged. (Fig. 3.183)

10Q 5Q
20 /90°A D
j5Q
Fig. 3.183
By current division rule,
104 7
1, = (202900 —0FD)  _1546,77010 A

L0+ j5H+(j5-j2)
V, = (=), = (=;2)(17.46.£77.91°) = 34.92 /~12.09° V

Case I  Calculation of voltage V_when excitation and response are interchanged (Fig. 3.184)

20 £90°A

Fig. 3.184

I, =(20.290°) (=/2) =3.12/-38.66°A
(=j2)+ 10+ j5+ j5)

V, =10+ j5I, =10+ j5)(3.12£-38.66°) = 34.88/-12.09°V

Since the voltage V_is same in both the cases, the reciprocity theorem is verified.
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|| SCIWA R Find I and verify the reciprocity theorem for the network shown in Fig. 3.185.

20
10 20
|
40

+
10 £45°V

Fig. 3.185

Solution

Case I Calculation of I when excitation and response are not interchanged (Fig. 3.186)

3o AQ 9L 4, 20
|
4
10 245°V 4Q BQ 2Q
- Iy Iy I
Fig. 3.186

Applying KVL to Mesh 1,
10£45° -3+ j4) I, —4(1, -1,) =0

(7+ j4) 1, —41, =10£45° ...(1)
Applying KVL to Mesh 2,
=4 -1)-(1-,2) 1, - j3(I; -13)=0
4L +(5+ /D1, - j3I;=0 ...(ii)
Applying KVL to Mesh 3,

-3l -1) -2 - 215, =0
—j3L, +(2+j5)15=0 ...(iii)
Writing Egs (i), (ii) and (iii) in matrix form,
7+j4 4 0 I, 10£45°
-4 5+;1 =73 ||L|= 0
0 -3 2+j5|| I 0
By Cramer’s rule,

T+j4 -4 102£45°
-4 5+j1 0

0 -3 0
I; = _ =0.704.£30.72° A
T+j4 -4 0
4 5+j1 -3
0  —j3 2+j5

I=1;=0.704230.72°A
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Case Il Calculation of I when excitation and response are interchanged (Fig. 3.187)

jaq 29

3Q 1Q 2Q
2Q
1 D 40 BQ 3
Iy I, I 10 £45°V
+
Fig. 3.187

Applying KVL to Mesh 1,
-G+ jHL -4 -12)=0

(7+ 41 -4, =0 ...(0)
Applying KVL to Mesh 2,
4L -1)-(1-72) 1, - 31, -13)=0
-4 +(5+ /DI, - 313 =0 ()
Applying KVL to Mesh 3,
—j3(03-T1)—-2I5 — j2I3 +10£45° =0
—j31, +(2+ j5)I3 =10£45° ...(iii)
Writing Eqgs (i), (ii) and (iii) in matrix form,
7+j4 4 0 I 0
~4 s+l =3 | L|=| o
0 -j3 2+j5]|| 15 10£45¢°
By Cramer’s rule,
0 -4 0
0 5+j1 —=j3
10£45° —j3 245
I = =0.704£30.72°A
7+j4 -4 0
-4 5+;1 —;3
0 -j3 245

I=1,=0.704£30.72°A

Since the current I is same in both the cases, the reciprocity theorem, is verified.

EX]| miLLmAN’S THEOREM

Millman’s theorem states that ‘I/f there are n voltage sources V,, V,. ... V with internal impedances Z,,
Z,, ... Z respectively connected in parallel then these voltage sources can be replaced by a single voltage
source V., and a single series impedance Z.

_ ViYi+v. ,+...+V, Y,
Y +Y,+...+Y,
1 1

Zy=— e
Ym YI+Y2+---+YH

\Z
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|| SCIACRERTN  Find the current through the 40 Qresistor for the network shown in Fig. 3.188.

-j20 Q j20 Q
+ +
10 £0°V 20 £0°V
Fig. 3.188

Solution

Step I Calculation of V|

10209 —1 |+ 0209 !
RATAA 30— 20 10+

720

40 Q

J =18.2/-15.95°V

m

Y +Y, o,
30— 20 10+ ;20

Step Il Calculation of Z,
o 1
Y, Y+Y, 1 L]
30— 20 10+ ;20

Step III  Calculation of I, (Fig. 3.189)

20.15 £29.74° Q

I,

L
18.2 £/-15.95°V

Fig. 3.189
18.2/-15.95°

= =031£-2581° A
20.15£29.74°+ 40

L

=20.15£29.74° Q

|| SCINACRNN  Find the current I in the network shown in Fig. 3.190.

—j20 Q | j20 Q

[} T

30 Q

10 £0°V

Fig. 3.190
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Solution The network is redrawn as shown in Fig. 3.191.
|

il

—j20 Q j20 Q
40 Q
s0Q 10Q
+ +
10 £0°V oV 20 /0°V
Fig. 3.191
Step I Calculation of V|
VY + VLY, 0(410)4-(20400)(10+ 'ZOJ
v, -t Vel S _1486./-218°V
Y +Y, L+ 1
40 10+ 520

Step Il Calculation of Z,

=16.61£41.63°Q

Y, Yi+y, 11
40 10+ ;20
Step IIT Calculation of T (Fig. 3.192)

T
16.61 £41.63° Q
30 Q
P +
10 £0°V 14.86 £-21.8°V

Fig. 3.192

10-14.86£-21.8°

= =0.15£136.47° A
30— 720+16.61£41.63°

|| SETOTI NI Apply the dual Millman theorem and find the power loss in the (2 + j2) Qimpedance.

10 A 20 A

40 5Q
000

20 20

Fig. 3.193



Solution

Step I Calculation of I

_LZi+ 1,7, _ (10)(4)+(20)(5)

3.9 Millman’s Theorem 3.71

=15.56A
7,+7, 4+5
Step II  Calculation of Z,
2Z,=1,+7,=4+5=9Q
Step III Calculation of P (Fig. 3.194)
I
2Q
15.56 A D 90
29
Fig. 3.194
By current division rule,
I, = 15.56XL =12.532-10.3° A
9+2+ ;2

P=1iR, =(12.53)> x2 =314 W

|| SETII NI [ the network shown in Fig. 3.195, what load Z, will receive the maximum power.

Also find maximum power.

50Q j5Q 30 ‘/;4 Q
700 |
+ +
50 £0°V z, 25 /90°V
Fig. 3.195

Solution

Step I Calculation of V|

Jjs

]+(25490°)(31,4
-J

m

Y +Y,

5+j5

Step Il Calculation of Z,

1 1
Z, =

(50.£0°)
v Y+ VaYs 5+

] ] J =9.81£-78.69°V
+7
3-j4

1
Y, Y+Y, I

=439/-1526°Q=(423-j1.15Q

+7
5+j5 3-j4



3.72 Circuit Theory and Networks—Analysis and Synthesis

Step III  Calculation of Z,

For maximum power transfer Z, =7, = (4.23+ j1.15) Q

Step IV Calculation of P__(Fig. 3.196)

A
(4.23-j1.15) Q
. (4.23+/1.15) Q
9.81 £-78.69°V
- B
Fig. 3.196
2
Vin 9.81)°
Pmax = | = ( ) =569 W
4R; 4x4.23
EXGI'CISGS
MESH ANALYSIS I, 2Q —j4 Q 5Q
3.1 Find the current through the 3 + j4 Q Iy
. L +
impedance in Fig. 3.197. 50 450V 50 2a
20Q 5 Q
3Q 100V’
) Fig. 3.199

40 100 250 [11.6 £113.2° A]

3.4 In the network of Fig. 3.200, find V, which

. results in zero current through the 4 Q

Fig. 3.197 resistor.

[0] 50 40 20

3.2 In the network of Fig. 3.198, find V..
2Q 2Q 20 50.,0°V

Fig. 3.200
[26.3 £113.2° V]
Fig. 3.198 NODE ANALYSIS
[1.56 £128.7° V]
3.5 For the network shown in Fig. 3.201, find the
3.3 Find the current I, in the network of voltage V .

Fig. 3.199.



5Q 2

+ 5Q

100 £45°V
S j20 Q@

20Q

B

Fig. 3.201
[75.4 £55.2° V]

3.6 Find the voltages at nodes 1 and 2 in the
network of Fig. 3.202.

100 @D 20 @
N 30
50 £0°V §j59 —_— —j10Q
- j4Q
Fig. 3.202

[15.95 £49.94° V, 12.9 £55.5° V]

3.7 In the network of Fig. 3.203, find the current
in the 10 £30° V source.
5Q —-j2Q j5Q
2Q
"
10 £30°V 3Q 5Q
- T 2Q
Fig. 3.203

[1.44 /38.8° A]

SUPERPOSITION THEOREM

3.8 For the network shown in Fig. 3.204, find the
current in the 10 € resistor.

5Q

10Q

—j5Q

100 £0°V
50 £30°V

Fig. 3.204
[73.4 /—21.84° A]

Exercises 3.73
3.9 In the network of Fig. 3.205, find the current
through capacitance.
20 £0°V = _j5Q

Fig. 3.205

[4.86 £80.8° A]

THEVENIN’S THEOREM

3.10 Obtain Thevenin’s equivalent network for the
network shown in Fig. 3.206.

50 Q

50 «£0° Vif\)

1000 Q

—j400 Q

Fig. 3.206

[0.192 £-43.4°V, 88.7 £11.55° Q]

3.11 Obtain Thevenin’s equivalent network for
Fig. 3.207.

16 Q B Q

10Q

4Q 3 10 £90°V
T o
Fig. 3.207

[11.17 £—63.4° V, 10.6 £45° Q]

NORTON’S THEOREM

3.12 Find Norton’s equivalent network for Fig.
3.208.
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50 £0°V
)

+\ -
5 Q 5Q
5 100
, A B
j5Q 50
(~)

F O
50 £90°V

Fig. 3.208
[2.77 £-33.7° A, 2.5+ j12.5 Q]

3.13 Find the current through the (3 + j4) Q
impedance in the network of Fig. 3.209.

5Q

+
50 £90°V

5Q
3Q
"
50 £0°V
j4 Q -

Fig. 3.209
[8.3 £85.2° A]

Objective-Type Questions

MAXIMUM POWER TRANSFER
THEOREM

3.14 Determine the maximum power delivered to

the load in the network shown in Fig. 3.210.

100 J15Q 5Q /6 Q

50 £0° A —j10 Q Z

T j4Q

Fig. 3.210

[1032.35 W]

3.15 For the network shown in Fig. 3.211, find the
value of Z, that will receive the maximum
power. Determine also this power.

50 £0°V @

Fig. 3.211
[3.82 - j1.03 Q, 54.5 W]

3.1 In Fig. 3.212, the equivalent impedance seen
across terminals a, b, is

50 40Q
B3 Q
z
=9 -
_j4Q
20 4 Q

Fig. 3.212

3

iR

(a) %Q ) gsz

(@) (§+j12] Q  (d) none of the above

3.2 The Thevenin equivalent voltage V.,
appearing between the terminals 4 and B of

the network shown in Fig. 3.213 is given by

30
oA
:
100 20°V () él? —— AV
oB
Fig. 3.213
(@) Jj163 —j4) (b) J16(3 +j4)

() 1633 +j4) (d) 1633 -,4)
3.3 A source of angular frequency of 1 rad/s has a
source impedance consisting of'a 1 Q resistance



in series with a 1 H inductance. The load that
will obtain the maximum power transfer is

(a) 1 Qresistance

(b) 1 Q resistance in parallel with 1 H
inductance

(¢) 1 Qresistance in series with 1 F
capacitance

(d) 1 Q resistance in parallel with 1 F
capacitance

3.4 For the network shown in Fig. 3.214, the
instantaneous current Iis

j2Q —j2Q
0 I
Iy
5.,0°A 30 10 £60° A
Fig. 3.214
(a) M Z90° A (b) ﬁ Z-90° A
(¢) 54£60°A (d) 5£-60° A

3.5 Inthenetwork shownin Fig. 3.215, the current
supplied by the sinusoidal current source I is

16 A

3.6

3.7

3.75

Answers to Objective-Type Questions

(a) 28A

(b)y 4A

(c) 20A

(d) cannot be determined

In the network of Fig. 3.216, the magnitudes
of V, and V. are twice that of V,. The
inductance of the coil is

Vg

5Q o} Ve

52£0°
LSV,
Fig. 3.216
(a) 2.14mH (b) 53H
(c) 31.8mH (d 132H

Phase angle of the current I with respect to the
voltage V| in the circuit shown in Fig. 3.217.

Vi=100(1+)) ()

S 100
V2=100(1-)) (~) 7
Fig. 3.217
(a 0° (b) 45°
(c) —45° d -90°

Answers to Objective-Type Questions

3.1 (b) 32 (d) 33 () 34 (@ 3.5 ()

3.6 (c)

3.7 (d)






Magnetic Circuits

X8| inTRODUCTION

Two circuits are said to be coupled circuits when energy transfer takes place from one circuit to the other
without having any electrical connection between them. Such coupled circuits are frequently used in network
analysis and synthesis. Common examples of coupled circuits are transformer, gyrator, etc. In this chapter, we
will discuss self and mutual inductance, magnetically coupled circuits, dot conventions and tuned circuits.

%Y | seLr-iNDUCTANCE

Consider a coil of N turns carrying a current i as shown in Fig. 4.1. 7000
When current flows through the coil, a flux ¢ is produced in the coil. i
The flux produced by the coil links with the coil itself. If the current @

flowing through the coil changes, the flux linking the coil also changes.
Hence, an emfis induced in the coil. This is known as self-induced emf.

4

The direction of this emf is given by Lenz’s law. Fig. 4.1 Coil carrying current
We know that
goei
2 = k, a constant
i
o=ki
Hence, rate of change of flux = k X rate of change of current
a9 _ di
dt dt
According to Faraday’s laws of electromagnetic induction, a self-induced emf can be expressed as
S VL v VL
dt dt idt dt

where L= M and is called coefficient of self-inductance.
i

The property of a coil that opposes any change in the current flowing through it is called self-inductance or
inductance of the coil. If the current in the coil is increasing, the self-induced emf'is set up in such a direction so
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as to oppose the rise in current, i.e., the direction of self-induced emf is opposite to that of the applied voltage.
Similarly, if the current in the coil is decreasing, the self-induced emf will be in the same direction as the applied
voltage. Self-inductance does not prevent the current from changing, it serves only to delay the change.

EY| muTtuAL INDUCTANCE

If the flux produced by one coil links with the other coil, placed closed to the first coil, an emf is induced in
the second coil due to change in the flux produced by the first coil. This is known as mutually induced emf.

Consider two coils 1 and 2 placed adjacent to each other as shown in Fig. 4.2. Let Coil 1 has N, turns while
Coil 2 has N, turns.

) Mutual flux
i
o ! . _/

LR Ly
V4 LR Vo

—  Coil 1 N Coil 2
o

+
+ O

Fig. 4.2 Two adjacent coils

If a current i, flows in Coil 1, flux is produced and a part of this flux links Coil 2. The emf induced in Coil 2
is called mutually induced emf.

We know that
$2 o< iy
?—2 =k, a constant
b
o =ki
Hence, rate of change of flux = k x rate of change of current 7,
dgy _  diy
dt dt

According to Faraday’s law of electromagnetic induction, the induced emf is expressed as

Vi =—N2dﬂ=—N2 kﬁZ—]\[2¢72ﬂ=—]Wﬁ
dt dt i odt dt

Ny ¢,

n

where M = and is called coefficient of mutual inductance.

E¥N| COEFFICIENT OF COUPLING (K)

The coefficient of coupling (k) between coils is defined as fraction of magnetic flux produced by the current
in one coil that links the other.
Consider two coils having number of turns N, and N, respectively. When a current 7, is flowing in Coil 1
and is changing, an emf is induced in Coil 2.
_Na2 gy
i

M



4.5 Inductances in Series

Let k|:¢72
o}
$ =k ¢
o Nako

h

If the current i, is flowing in Coil 2 and is changing, an emf is induced in Coil 1,

oMo
)
Let k2 = ﬂ
b
bt =k ¢
yoM lfz )
)
Multiplying Eqs (4.1) and (4.2),
M2 = k1k2 X N1¢l XM = k2L1L2
n 1%
M =k\JLL,
where k =+\kk,

XN |NDUCTANCES IN SERIES

1. Cumulative Coupling Figure 4.3 shows two coils 1 and 2 connected
in series, so that currents through the two coils are in the same direction in
order to produce flux in the same direction. Such a connection of two coils
is known as cumulative coupling.

Let L, = coefficient of self-inductance of Coil 1

L, = coefficient of self-inductance of Coil 2
M = coefficient of mutual inductance
If the current in the coil increases by di amperes in dt seconds then

Self-induced emf'in Coil 1 = -1, %

Self-induced emfin Coil 2 = -1, %
Mutually induced emf in Coil 1 due to change of current in Coil 2 = -M i;
Mutually induced emf in Coil 2 due to change of current in Coil 1 =-M %

Total induced emf v=—(L+L+2M )%
t

4.3

L(40)

..(42)

Coil 1 Coil 2

AN

i

Fig. 4.3 Cumulative
coupling

..(43)
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If L is the equivalent inductance then total induced emf in that single coil would have been

di
=-L— ...(44
v 7 (4.4)
Equating Eqs (4.3) and (4.4),

L=L+L,+2M

2. Differential Coupling Figure 4.4 shows the coils connected in series Coil1  Coil 2
but the direction of current in Coil 2 is now opposite to that in 1. Such a ; m m
connection of two coils is known as differential coupling.

Hence, total induced emf in coils 1 and 2. Fig. 4.4 Differential

i i " i coupling
ve-L Y LS oML - (22
dt dt dt dt

Coils 1 and 2 connected in series can be considered as a single coil with equivalent inductance L. The
induced emf in the equivalent single coil with same rate of change of current is given by,

v=—Lﬁ
dt

di di
1Y v L2 Y
7 (Li+ 1L, )dt

L=0L+L,-2M

X3 INDUCTANCES IN PARALLEL

1. Cumulative Coupling Figure 4.5 shows two coils 1 and 2 connected in parallel such that fluxes
produced by the coils act in the same direction. Such a connection of two coils is known as cumulative

coupling. )
Let L, = coefficient of self-inductance of Coil 1 i Aot
L, = coefficient of self-inductance of Coil 2
>
M = coefficient of mutual inductance /
If the current in the coils changes by di amperes in df seconds then i WCQH 2
Self-induced emfin Coil 1 = -1, % Fig. 4.5 Cumulative coupling
. . . diy
Self-induced emf'in Coil 2 = -1, a
Mutually induced emf in Coil 1 due to change of current in Coil 2 = -M diz
dt
Mutually induced emf in Coil 2 due to change of current in Coil 1 = -M %

Total induced emf'in Coil 1 =—-1; ﬂ -M dﬁ
dt dt
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Total induced emf'in Coil 2 = —L, @ -M @
dt dt

As both the coils are connected in parallel, the emf induced in both the coils must be equal.

i ydin i di
dt dt dt dt
gy ddi
dt dt dt dt
di dip
L-M)y—=(L,-M)—
(L ) 7 (Ly—M) 7
dh _(La=Mdb (45)
dt Li—M ) dt
Now, =i+
di_di  di
dt dt dt
(LM iy diy
L-M)d dt
= L2 -M +1 di
L-M dt
_( Lt =2M diy (4.6)
L—-M dt
If L is the equivalent inductance of the parallel combination then the induced emf is given by
V= —Lﬁ
dt
Since induced emf in parallel combination is same as induced emf in any one coil,
Py Ve
dt dt dt
di_Lf, di ) diy
dt L dt dt
=l L L-M d&_’_M@
Ll \L-M)dt dt
[ (L,-M '
S N m | (47
Ll \L-M dt

Substituting Eq. (4.6) in Eq. (4.7),
Li+1L,-2M dﬁ=l>L1 L-M) , |d
L-M )a L] \L-M dt
L L=M\,
L-M

Li+L,—2M
L-M
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LL,-LM+LM-M’

Li+L,-2M
L, -M?
Li+L,-2M
2. Differential Coupling Figure 4.6 shows two coils 1 and i Aot
2 connected in parallel such that fluxes produced by the coils
act in the opposite direction. Such a connection of two coils is e WL Coil2 [
known as differential coupling. !
. o diy I
Self-induced emf'in Coil 1 = —1; T
di Fig. 4.6 Differential coupling
Self-induced emf in Coil 2 = —L, 7:
Mutually induced emf in Coil 1 due to change of current in Coil 2 = M diz
. . . . . di
Mutually induced emf in Coil 2 due to change of current in Coil 1 = M o
Total induced emf in Coil 1 =—1; diy +M iy
dt dt
Total induced emf'in Coil 2 = —L, ﬂ +M ﬁ
dt dt
As both the coils are connected in parallel, the emf induced in the coils must be equal.
_L1@+Md£:_L2d£+M@
dt dt dt dt
VL S
dt dt dt dt
di dip
L+M)y—=(L,+M)—
(Li+M) 7 (L + M) 7
diy _(L+M\diy (4.8)
dt Li+M ) dt
Now, I=i+i
di_di diy
dt dt dt
(Lot M \diy diy
Li+M)d dt
_ Ly+M +1 &
L+M dt

_(L1+L2+2M)di2

...(4.9
L+M dt ( )
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If L is the equivalent inductance of the parallel combination then the induced emf is given by

di
v=—L—

dt

Since induced emf in parallel combination is same as induced emf in any one coil,

di_y di

dt dt dt

di_1f, di b

dt L dt dt

:lrLl L+ M @_Mdi
Ll \Li+M)dt dt

o My |9 (4.10)
Li+M ] dt

==

Substituting Eq. (4.9) in Eq. (4.10),

L+Ly+2M\diy _1[ (L+M)  1di
L+M L "\ L+m) 7 a

dt
L L+M -M
_ L1+M
T L+L+2M
L+M
LI, +LM-LM-M?
L+ L, +2M

Ll -M?
Li+L,+2M

” SETII XMW The combined inductance of two coils connected in series is 0.6 H or 0.1 H depend-
ing on relative directions of currents in the two coils. If one of the coils has a self-inductance of 0.2 H, find
(a) mutual inductance, and (b) coefficient of coupling.

Solution Li=02H, Lgx=0.1H, Lyn=06H
(a) Mutual inductance
Lom=Li+L,+2M =0.6 (1)
Lggg =L+ L, —2M = 0.1 ..(ii)
Adding Egs (i) and (ii),
2L +1)=0.7

Ll +IQ :035
L, =035-02=0.15H
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Subtracting Eqs (ii) from Egs (i),

(b) Coefficient of coupling

4M =0.5
M=0.125H
M
k

0.125

CJnL,  No2xols

” SETNII XM Two coils with a coefficient of coupling of 0.6 between them are connected in series so

as to magnetise in (a) same direction, and (b) opposite direction. The total inductance in the same direction

is 1.5 H and in the opposite direction is 0.5 H. Find the self-inductance of the coils.
k=006, Lir=05H, Ly,=15H

Solution

Subtracting Eq. (i) from Eq. (ii),

Adding Eq. (i) and (ii),

Solving Eqs (iii) and (iv),

Lgigg =L +L, —2M =0.5
Lo =Li+L +2M =15

4M =1
M=025H
Z(Ll + L2) =2
Li+L,=1
M
k=
NLL
2
0.6 = 0.25
NLL
LiL, =0.1736
L;=022H
L, =0.78 H

..(ii)

...(ii)

(iv)

” SETII WM Two coils having self-inductances of 4 mH and 7 mH respectively are connected in

parallel. If the mutual inductance between them is 5 mH, find the equivalent inductance.

Li=4mH, L,=7mH, M=5mH

Solution
For cumulative coupling,

For differential coupling,

TLtL+2M 4174205

LL, —M?

_4AxXT-(5)

T L+l—2M 4+7-2(5)

Ll -M*  4x7-(5)’

=0.143 mH
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” Two inductors are connected in parallel. Their equivalent inductance when the
mutual inductance aids the self-inductance is 6 mH and it is 2 mH when the mutual inductance opposes
the self-inductance. If the ratio of the self- inductances is 1:3 and the mutual inductance between the coils
is 4 mH, find the self-inductances.

Solution
Lcum =6 mH, Ldiff =2 mH, % = 13, M =4 mH
2
For cumulative coupling,
L, -M?
Li+L,-2M
L, -4
L+, - 2(4)
6= Ll -16 ()
Li+L,-8
For differential coupling,
Ll -M?
L+ L, +2M
yo bl - 4
B Li+1,+8
LilL,—16
=2 ..(ii)
Li+1L,+8
From Egs (i) and (ii),
2L+ L +8)=6(L + L, —8)

Li+L, +8=3L +3L, —24

L+L,=16
But %:1.3
130, +L, =16
231, =16

L, =6.95mH

L =131, =9.035 mH

E®A| oot convenTiON

Consider two coils of inductances L, and L, respectively connected in series as shown in Fig. 4.7. Each
coil will contribute the same mutual flux (since it is in a series connection, the same current flows through
L, and L,) and hence, same mutual inductance (M). If the mutual fluxes of the two coils aid each other as
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shown in Fig 4.7 (a), the inductances of each coil will be increased by M, i.e., the inductance of coils will
become (L, + M) and (L, + M). If the mutual fluxes oppose each other as shown in Fig. 4.7 (b), inductance
of the coils will become (L, — M) and (L, — M). Whether the two mutual fluxes aid to each other or oppose
will depend upon the manner in which coils are wound. The method described above is very inconvenient
because we have to include the pictures of the coils in the circuit. There is another simple method of
defining the directions of currents in the coils. This is known as dot convention.

Fig. 4.7 Dot convention

Figure 4.7 shows the schematic connection of the two coils. It is not possible to state from Fig. 4.7(a) and
Fig. 4.7(b) whether the mutual fluxes are additive or in opposition. However dot convention removes this
confusion.

If the current enters from both the dotted ends of Coil 1 and Coil 2, the mutual fluxes of the two coils aid
each other as shown in Fig. 4.7(c). If the current enters from the dotted end of Coil 1 and leaves from the
dotted end of Coil 2, the mutual fluxes of the two coils oppose each other as shown in Fig. 4.7(d).

When two mutual fluxes aid each other, the mutual inductance is positive and polarity of the mutually
induced emf is same as that of the self-induced emf. When two mutual fluxes oppose each other, the
mutual inductance is negative and polarity of the mutually induced emf is opposite to that of the self-
induced emf.

” Example RS Obtain the dotted equivalent circuit for Fig. 4.8 shown below.

R
c_\i L
o 0 [ 3
1) (0 C
V()_() ,'([) / T
a LL
Fig. 4.8

Solution The current in the two coils is shown in Fig. 4.9. The corresponding flux due to current in each
coil is also drawn with the help of right-hand thumb rule.
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Fig. 4.9

From Fig. 4.9, it is seen that, the flux @, is in upward direction in
Coil 1, and flux ¢, is in downward direction in Coil 2. Hence, fluxes
are opposing each other. The mutual inductances are negative and
mutually induced emfs have opposite polarities as that of self-induced
emf. The dots are placed in two coils to illustrate these conditions.
Hence, current i(f) enters from the dotted end in Coil 1 and leaves
from the dotted end in Coil 2.
The dotted equivalent circuit is shown in Fig. 4.10.

Ly

o () «D %,c

Ly

Fig. 4.10

” Example NN Obtain the dotted equivalent circuit for the circuit of Fig. 4.11.

j4 Q

j2Q j3 Q
VRN VRN

"\/f\f\ JaWawal

T

uu‘ ‘uu‘ ‘uu‘

j3Q j5Q j6 Q
Fig. 4.11

Solution The current in the three coils is shown in Fig. 4.12.
The corresponding flux due to current in each coil is also
drawn with the help of right-hand thumb rule. 4
From Fig. 4.12, it is seen that the flux is towards the left
in Coil 1, towards the right in Coil 2 and towards the left in !
Coil 3. Hence, fluxes ¢, and ¢, oppose each other in coils
1 and 2, fluxes ¢, and ¢, oppose each other in coils 2 and
3, and fluxes ¢, and ¢, aid each other in coils 1 and 3. The
dots are placed in three coils to illustrate these conditions.
Hence, current enters from the dotted end in Coil 1, leaves
from the dotted end in Coil 2 and enters from the dotted end
in Coil 3.
The dotted equivalent circuit is shown in Fig. 4.13.

j4 Q

j2 Q j3Q

YaY

ST A
Ui
LT

\>anv)

3 Q j5Q 6 Q

Fig. 4.12

j4Q

/SQmjsg,/-\jGQ
.W ,mo OeINIR

Fig. 4.13
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” Example WM Obtain the dotted equivalent circuit for the circuit shown in Fig. 4.14.

Ao j6Q ) o8B
q /_\ —
sad T4 | j3e
j5Qd | jaQ o 1 ]
b
*\ﬁ X /‘>
20
Fig. 4.14
Solution The current in the three coils is shown in ey
Fig. 4.15. The corresponding flux due to current in each coil A i 50 ‘
is also drawn with the help of right-hand thumb rule. o C\L\ /—\ i >—©B
From Fig. 4.15, it is seen that all the three fluxes ¢,, ¢,, ¢, jsadi [ Zjaa i tefBQ
aid each other. Hence, all the mutual reactances are positive 1 ‘\‘ ,/* <
and mutually induced emfs have same polarities as that of ! p 4,,;, %,\ %ﬂ 777777 ¢3V
self-induced emfs. The dots are placed in three coils to 2
illustrate these conditions. Hence, currents enter from the j2 Q’
dotted end in each of the three coils. The dotted equivalent )
circuit is shown in Fig. 4.16. Fig. 4.15
j6Q

AjAQ j1on
J5 Q3 J2 Q 40— j3 Q
A o2 —2 T —2 I oB

Fig. 4.16

” Example LR Obtain the dotted equivalent circuit for the coupled circuit of Fig. 4.17.

q
5o d ] bz
C\ | —
——-j8Q
10Q
(~)
+ —_
502 0°V
Fig. 4.17

Solution  The current in the two coils is shown in Fig. 4.18 . The corresponding flux due to current in each
coil is also drawn with the help of right-hand thumb rule.



4.7 Dot Convention 4.13

(- P <--+
dy ;
5043 BEYCLY
G| /%‘
—-j8Q
10Q
(~3)
-
50£0°V
Fig. 4.18 ]
j5 Q 100Q jpBae 8«
. .. .. . [ o
From Fig. 4.18, it is seen that the flux ¢, is in clockwise 7000 T |
direction in Coil 1 and in anti-clockwise direction in Coil 2. N~
Hence, fluxes are opposing each other. The dots are placed Mz
in two coils to illustrate these conditions. Hence, current ~
enters from the dotted end in Coil 1 and leaves from the F\O=
dotted end in Coil 2. The dotted equivalent circuit is shown 504 0°V
in Fig. 4.19.
Fig. 4.19

” SETIIWRR  Find the equivalent inductance of the network shown in Fig. 4.20.
1H

0.5H 1H

,.1H/\2H/—\&. 5H
>0 —2000 7000

Fig. 4.20
Solution
L=(Li+Mp+Msz)+(Ly+ My + Mo ) +(Ls + Mz + M3,)
=(1+05+D)+2+1+0.5)+(5+1+1D
=13H
” SETII XM Find the equivalent inductance of the network shown in Fig. 4.21.
1H
2H 1H
P 10H N 5H 4 % 6H N
02000 7000
Fig. 4.21
Solution

L=(Li+Mpp—Mp3)+(Ly — My + M)+ (L — M3 —Mp)
(10421 +(5-1+2)+(6-1-1)=21H
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” SCI MU Find the equivalent inductance of the network shown in Fig. 4.22.
ks=0.65

k=033  k,=0.37

i g 12H 4N 14H 4T 14 H
7000 7000 7000

Fig. 4.22

Solution
M]z = M21 = k]ﬂL]Lz =0.33 (12)(14) =428 H
Mas = My, = ko JIoLs = 037J(14)(14) = 5.18 H
My = Mys = ks\JIo L, = 0.65,/(12)(14) =8.42 H
L=(L—Mp+Mp3)+(Ly— My —My)+(Lz+ Mz — Msy)
=(12-4.28+8.42)+(14-5.18-4.28)+ (14 +8.42-5.18)
=3792H

” SCI MY Find the equivalent inductance of the network shown in Fig. 4.23.
O
8H

VR
%15H §16H

A B

Fig. 4.23

Solution For Coil 4,
LA =L1—M12 =15-8=7H

For Coil B,
LB=L2—M12=16—8=8H
1 1 1 1 1 15
—_—=—t—=—4—=—
L Ly Lg 7 8 56
L=§=3.73H
15

” SETIYMEN  Find the equivalent inductance of the network shown in Fig. 4.24.
10H

~ T

10H 15H
T N e ¥ N

Y [ ]
§25H §3OH

35H

000/

Fig. 4.24
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Solution For Coil 4,

LA=L1+M12—M13=25+10—10=25H
For Coil B,

LB=L2—M23+M21235—15+10=25H
For Coil C,

Le=1L3—M3 — M3 =35-15-10=10H

1 1 1 1 1 1 1 9

— =t —t—=—t—F—=—

L Ly Lg Lo 25 25 10 50

L:@=5‘55H
9

” SCI MU Find the equivalent impedance across the terminals A and B in Fig. 4.25.

4.15

5Q
Ao
2Q 3Q
L 12 @ °
N
4Q BQ
Bo
Fig. 4.25
Solution 2,=5Q, Z,=2+j4)Q, Z;=0CB+,j3)Q, Zy =j2Q
72 . LY
z=7,+- 250w CHNCHUD (g /941600
Z,+7Z3-2Z7y 2+ j4+3+ j3-2(52)
XN courLeD circuITs
Consider two coils located physically close to one another as shown iy i
in Fig. 4.26. Jor M 0
When current i, flows in the first coil and i, = 0 in the second coil, ol e
flux ¢, is produced in the coil. A fraction of this flux also links the Vi Ly Ly V2

second coil and induces a voltage in this coil. The voltage v, induced
in the first coil is =

diy
n=1I0 Z Fig. 4.26 Coupled circuit
=0
The voltage v, induced in the second coil is
V) = M ﬁ
dt|, _o
2
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The polarity of the voltage induced in the second coil depends on the way the coils are wound and it is usually
indicated by dots. The dots signify that the induced voltages in the two coils (due to single current) have the
same polarities at the dotted ends of the coils. Thus, due to i, the induced voltage v, must be positive at the
dotted end of Coil 1. The voltage v, is also positive at the dotted end in Coil 2.

The same reasoning applies if a current i, flows in Coil 2 and 7, = 0 in Coil 1. The induced voltages v, and
v, are

di
vy =L, %2
dt =0
di
and V| -m2
dtl; o

The polarities of v, and v, follow the dot convention. The voltage polarity is positive at the doted end of
inductor L, when the current direction for i, is as shown in Fig. 4.26. Therefore, the voltage induced in Coil 1
must be positive at the dotted end also.

Now if both currents i, and i, are present, by using superposition principle, we can write

V] =L1@+Md£
dt dt
vy=m g, 4
dt dt

This can be represented in terms of dependent sources, as shown in Fig. 4.27.

iy A

O O
+ +
Ly Ly
v 12
Mdi, Mdi;
dt dt
o o

Fig. 4.27 Equivalent circuit

Now consider the case when the dots are placed at the opposite ends in the two coils, as shown in Fig. 4.28.

o > - o
M
(]
+ +
V4 Ly Ly Vo
° _
o o

Fig. 4.28 Coupled circuit

Due to i, with i, = 0, the dotted end in Coil 1 is positive, so the induced voltage in Coil 2 is positive at the
dot, which is the reverse of the designated polarity for v,. Similarly, due to i,, with i, =0, the dotted ends have
negative polarities for the induced voltages. The mutually induced voltages in both cases have polarities that
are the reverse of terminal voltages and the equations are
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=1, 8
dt dt
vy =M Py, 9
dt dt

This can be repressed in terms of dependent sources as shown in Fig. 4.29.

O O
+ +
Ly Ly
V4 Vo
Mdi, Mdly
dr dt
o o

Fig. 4.29 Equivalent circuit

The various cases are summarised in the table shown in Fig. 4.30.

4.17

Coupled circuit Time-domain equivalent circuit Frequency-domain equivalent
circuit
iy i Iy p
O > —~< O O —~< O
M
+ + + +
ol e jooly joly
2 Ly Ly Vo 2 Vo
joMi, joMi,
o o o o
iy A i ip i o
O > M —~<€ O O —< O O O
+ + + + + +
Ly iy Jjooly jol,
vy Ly Ly 2oy ) Vo vy Vs
Mdiy Maiy joMiy joMi,

- ° ° . _ dt at _ _ _
O O O O O O
iy I i ip i o
O > ° M —~€ O O O O O
+ + + + + +

A L L, jol, joly
vi Ly Ly 27 vy Vo
Mdliy Mdiy joMi, jwMi;

- ° - - dt at _ _ _
O O O O O O
i A i ip i ip
O > M o O O O O O
+ . + + + + +

Ly Ly jol4 joly
Vi Ly Ly 237 By Vs
Mdiy Mdiy joMi, joMi,
_ . . Ta a _
O O O O O O

Fig. 4.30 Coupled circuits for various cases
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” Example 4.15 Write mesh equations for the network shown in Fig. 4.31.

Fig. 4.31

Solution  Coil 1 is magnetically coupled to Coil 2. Similarly, Coil 2 is magnetically coupled with Coil 1
and Coil 3. By applying dot convention, the equivalent circuit is drawn with the dependent sources.

The equivalent circuit in terms of dependent sources is shown in Fig. 4.32.

Fig. 4.32

(a) In Coil 1, there is a mutually induced emf due to current (i, — i,) in Coil 2. The polarity of the mutually
induced emf is same as that of self-induced emf because currents i and (i, — i,) enter in respective coils
from the dotted ends.

(b) In Coil 2, there are two mutually induced emfs, one due to current i, in Coil 1 and the other due to current
i, in Coil 3. The polarity of the mutually induced emf in Coil 2 due to the current i, is same as that of the
self-induced emf because currents i, and (i, — i,) enter in respective coils from dotted ends. The polarity
of the mutually induced emf in Coil 2 due to the current i, is opposite to that of the self-induced emf
because current (i, — i,) leaves from the dotted end in Coil 2 and the current i, enters from the dotted end
in Coil 3.

(c) In Coil 3, there is a mutually induced emf due to the current (i, — i,) in Coil 2. The polarity of the
mutually induced emfis opposite to that of self-induced emf because the current (i, — i,) leaves from the
dotted end in Coil 2 and the current i, enters from the dotted end in Coil 3.

Applying KVL to Mesh 1,

di di
“2 127120

di d d
D=Ri =L My L —iy) = Ro(i —in) — L (i i) + M.
() =R i - L 12 dt(ll )= Ry (iy —in) 2dt(ll )+ My ” 7

dt
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. di . di
(Ri+Ry)ip +(L + Ly +2M12)?;—Rzlz (L + My +M23)7t2: ()

Applying KVL to Mesh 2,
di dip d . . ..
Mp——My—=L,—(—1))— Ry (ip =i
2y B 2dt(2 ) —Ra(iz =iy

di, d
L% My LG —iy) - Ry =0
)—L3 7 23 dt(ll )= Rsip

—R2 i —(L2 +M12 +M23)%+(R2 +R3)i2 +(L2 +L3 +2M23)%=0

” SETTI WM Jrite KVL equations for the circuit shown in Fig. 4.33.

Ry
i/>
R,° C
L D
° Ip

Ry
. M
v1(t) e A .
- i Ly % _Vz(f)

Fig. 4.33
Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.34.
R2
Ry is,) c
R ]
) ug g
0 " /) @VZ
V-
s Mdi, Mdi, i, -
dt dt
Fig. 4.34
Applying KVL to Mesh 1,
. diy diy
wi)-Rijg—-Li—-M—=0
(O —Ri—L i it
) diy dip
Rig+L—+M—7=v/(t
tht b It 1(2)
Applying KVL to Mesh 2,
diy . di A B
M—-L,—-R(b—i3)—— | (i —i3) dt —v,(£) =0
2 3(12 —13) C_O[(z 3) 2 (1)

4.19

(@)

.(ii)

()
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diy diy S I ..
M——L,——R3(iy —i3)—— | (i, —13) dt = v, (¢ .1
=Ryl =) C{(z 3) dt = va (1) (ii)
Applying KVL to Mesh 3,
1!
—Ryis —— [ (i3 — ia)dt = Ry(is — 1) = 0 ...(iii))
CO

” SCICYNYA  rite down the mesh equations for the network shown in Fig. 4.35.

Z, M
[ °
Ly L,

D ol

2

Fig. 4.35

Solution  The equivalent circuit in terms of dependent sources is shown in Fig. 4.36.

Applying KVL to Mesh 1,

Vi=Z1; - joLil; - joMl, =Z,(1; -1;) =0
(Z1+ij1+Z2)Il—(Z2—jwM) 12 =V1 (1)

Applying KVL to Mesh 2,

—Z,(I; -1+ joMl; — jol,), -Z;1, =0
—(Z2—jwM)ll+(Z2+jle+ZL)12 =0 (11)
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” Example RN Write mesh equations for the network shown in Fig. 4.37.

0 %0807
L

Fig. 4.37
Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.38.

R

4]

@
<>
J
&
<>
g
9:‘ Q
<< >
s
8|
T

Fig. 4.38
Applying KVL to Mesh 1,
d d dis
vi)-Rijy—Li— (G —ih)— My, —(ip —i3)+ Miz—=0
(t)— Riy 1dt(1 2) 12dt(2 3)+ M3 &
d d dis
Ri+L— —ih)+ My, — (> —iz)— Mz — = v(t
| ldt(l 2) 12dt(z i3)— M3 (#)

dt
Applying KVL to Mesh 2,
diz d, . . d, . . d, . . d, . . di
My —+Mp—(—i3)—L—(p—i)—Ly—(p —3) =My — () —h) =My —=0
B3 12 dt(2 3) ldt(z 1) 2dt(2 3)— My dt(l 2)— M i
diy d .. d . . d .. d . . diy
M My Sy i) LS — i)+ Ly (i —is) + Moy (i —in) + Moy 22 =0
E 12 dt(lz i3) ldt(lz i) 2dt(12 i3)+ My dt(ll i)+ My ”
Applying KVL to Mesh 3,
diz d, .. d, . . dis d, . . d,. .. 1l¢.
Mo @B Moy E =)= Lo Ly — i) = Ly &2 4 My iy — i) = My Sy i)~ — [ i5 dt = 0
B 21 dt(ll i) 2dt(l3 )= Ls ” 3ldt(ll )— M3, dt(lz i3) clB

dis d . . d . .. dis d, . . d, .. L.
—Myy— =My — (G =)+ Ly — (5 —bh)+ L3 —— M3 — (G =)+ Mz —(h —13)+— dt=0
23 dr 21 dt(ll i) 2dt(l3 i) 3 dr 31 dt(ll i) 32 dt(lz i3) C ]

...()

..(ii)

..(iii)
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” Example 4.19 Write KVL equations for the network shown in Fig. 4.39.

R

i

h

Fig. 4.39

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.40.

T

Q00

Ly 2 Ly
(-,

TC
Fig. 4.40
Applying KVL to Loop 1,
. . . d11 d dl3
V() (ll %) l3) 1 at 12 dt 13 "
d d dl3
R+ +i3)+ L +M Mﬁ Wt
(i +i +133) ldt 127"~ Mi (t) (i)
Applying KVL to Loop 2,
. . . dlz dll dl3
v(t)= Ry +ir +i3)— Ly —=—— My ——Mr»;—=0
() (1 2 3) 2 dt 21 d 23 ar
RGi+in i)+ Ly 92 4 gy, O +M23d£_v(,) (i)
dt dt
Applying KVL to Loop 3,
v(t)=RG +ip +i3)— Ly —+ M3 — M3 ———|i3dt=0
(O RGrR )by Mg, ”dt C3
S dis di (i)
R +ip+i3)+ i —— My —+ M —+ iy dt = v(t
(i +ip +13) 5 o M J.3 (t)
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” SETNTI WOV  In the network shown in Fig. 4.41, find the voltages V, and V.,

M=2H
3H 4+ X _5H

® v 25

+ - + -
Vi V2

h=seta (1) (D i=10e"A

Fig. 4.41

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.42.

5 dis , dit
3H dt . 5H dt

I3
< > <5 =
V2

V4

i =56t A (D (D ib=10e"A

Fig. 4.42

From Fig. 4.42,

h=ih+ih=5e"+10e"=15¢"A

v = 3@+2@= 31(5 e_t)+2£(15 e)==15¢" =30 =—45¢7'V
dt dt dt dt

V) =5%+2ﬂ=51(15 e_t)+2£(5 e )=-75¢"-10e" =-85¢'V
dt dt dt dt

” SETOIIXWEN 11 the network shown in Fig. 4.43, find the voltages V,andV,

M=2H
, 2H AN 4H .
000 000\
+ - + -
vy Vo

ﬁ=10€4A<3> (E)@:1064A

Fig. 4.43

4.23
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Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.44.

p i p dic
2H at i, 4H at
-+ 7000 -+
+ v, - + -
iy =106t A (D (D i,=10et A
Fig. 4.44
From Fig. 4.44,
h=i+hL=10e"+10e" =20e"'A
v = 2ﬁ—2% = 21(10 e_t)—2£(20 e)==20e"+40e" =20e'A
dt dt dt dt
vy = 4&—2@ = 41(20 e_’)—2£(10 e')=-80e" +20e =—60e'A
dt dt dt dt

” Example WP Calculate the current i,(?) in the coupled circuit of Fig. 4.45.
iy (1) Ip(1)

000 /®
IR
o
N
I

+
30 sint @ 02H

Fig. 4.45

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.46.

i(?) io(f)

Applying KVL to Mesh 1,

30sin 7029 40192 _¢
di d



Applying KVL to Mesh 2,

Substituting Eq. (ii) in Eq. (1),

Integrating both the sides,

30sint-0. 2(2)
dt

4.8 Coupled Circuits 4.25

—0292 190 _
e dt

diy
di

_di

- .(ii)

di ) o1 -

dt

032 Z30sin ¢
dt

0

9B 100 sin 1
di

di, =100 sin ¢ dt
t
iy (1) =100 sin ¢ dr

=100[-cos t];
=100 (1—cos ¢t)

” Example 4.23 Find the voltage V, in the circuit shown in Fig. 4.47 such that the current in the

left-hand loop (Loop 1) is zero.

2Q

) 1Q
2

520°V @

l4
Loop 1

P
I,

Loop 2

Solution

5.20° V@

2Q

Fig. 4.47

The equivalent circuit in terms of dependent sources is shown in Fig. 4.48.

1Q

I

j4Q +

O

30
I

.

j21, j21;

Fig. 4.48
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Applying KVL to Loop 1,
5£0°-21; -4l + j21, =0
Q+jHIL—j21,=5£0°
Applying KVL to Loop 2,
2L = 3L, -1, -V, =0
-2 -1+ 3) L=V,
Writing Egs (i) and (ii) in matrix form,
2+ j4 -j2 L| |5«£0°
-j2 ~1+3)[L] | V2

By Cramer’s rule,

5£0° -j2
Va2 —(143)
T4 )2
—j2 =(1+;3)
ButI =0.
=540+ j3)+j2V,=0
v, = CLOMED) 591, 15430y
j2
” Example UWLS  Determine the ratio % in the circuit of Fig. 4.49, if I, = 0.
1
80Q _ 20
j2Q
S
+ ° ° +
Vi () /D j8Q 20 C )V,
b I I, d
Fig. 4.49

Solution  The equivalent circuit in terms of dependent sources is as shown in Fig. 4.50.

8Q 2Q

j8Q 20

I

j21, j21;

Fig. 4.50
Applying KVL to Mesh 1,
V81, - j8I; — j2I, =0
@+ I+ 2, =V,

..(ii)

.0
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Putting I, = 0 in Eq (i),

2L =V

Applying KVL to Mesh 2,

V, =21, - j2I, — j2T, = 0
]211 +(2+}2) 12 = V2

Putting I, = 0 in Eq (iii),

2+ L=V,

From Egs (ii) and (iv),

Vo _QHIDL 2472 4y gs0y
Vi J2h J2

...(i)

...(iii))

.(iv)

” SCNW W WIEW  For the coupled circuit shown in Fig. 4.51, find input impedance at terminals A and B.

Solution

A 3Q jaQ
[ )
S AVAVAV 7000

®
Vi @ §/59 ——-j8Q

Fig. 4.51
The equivalent circuit in terms of dependent sources is shown in Fig. 4.52.

— o AAA——T00—<F >
j5Q

Fig. 4.52

Applying KVL to Mesh 1,

\

3—j4L -3 —-1)—j5(h —1) -3 =0
(3+]15) I —JS IL,=V

Applying KVL to Mesh 2,

BL=j5I=-I)+ /81, =0
]8 ll+j3 I, =0

L= —f—sl. =267
j3

..(0)

..
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Substituting Eq (ii) in Eq (i),
G+ j15)I; - /8 (-2.67L,) =V,
(B+/3636); =V,

v,
Z = 1—1 =(3+/36.36)Q=36.48 £ 85.28°Q
1

” Example WIS  Find equivalent impedance of the network shown in Fig. 4.53.

2Q j28
o—ANA—T00
° j6 Q
.\Jr AT TN 9 4o
4 Q B3Q
Zeq —_— - i
—j5 Q
5Q T
O
Fig. 4.53

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.54.

2Q 2Q
AT —<C >

(- .
3Q
A e

V1@ é jal
L) i8 =1

+
I "

é j6 1y 50

Fig. 4.54

Applying KVL to Mesh 1,
v, -2I —j211 +]4 (Il —Iz)—j3 (I] —12)+j4 I, —5(11 —Iz)+j612 =0
(T-3)L-G6+/5L =V

...
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Applying KVL to Mesh 2,
—Jjoly =5(I =) = jal, = j3(I; = 1) — j4l + jo(I; —=13) + j5I, = 0
G+ =G+j4) I

L= 2Ty, (i)
5+ j4
Substituting Eq. (ii) in Eq. (i),
5+ 5
(7- 13)11—(5+15)( i Jll—vl
+j4
2, =127 3 CEPDOED) 563, 471500
I; 5+]4

” SETNI NI  Find the voltage across the 5 Qresistor in Fig. 4.55 using mesh analysis.

j566Q
J5 Q /109
.
sozorv () ) % ) e
—j4 Q I
Fig. 4.55

Solution  The equivalent circuit in terms of dependent sources is shown in Fig. 4.56.

jso /566l oo /5661
n

50.£0°V @ D %39 /) 50
- 1 —j4 Q I
T

2

Fig. 4.56

Applying KVL to Mesh 1,
50£0°—j5I;—j5.661,-3-j4) I, -1;)=0
B+ -(3-j9.66)I, =50 £0° ...(D)
Applying KVL to Mesh 2,

-B-j4) (I, 1) —j10I, - j5.66 1 —5I, =0
-(3-79.66) I +(8+j6) I, =0 ...(ii)
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Writing Eqs (i) and (ii) in matrix form,

3+j1 —-(3-j9.60)|[I, | [50£0°
—(3-/9.66) 8+ 6 L| | o0
By Cramer’s rule,

3471 50200
~(3-9.66) 0
= 1377966 0 =382 /—112.14° A
3471 —(3-/9.66)
~(3-/9.66) 8+ 6

Vso=5I,=5(3.82£-112.14°)=19.1 £ -112.14° V

” SETINWER  Find the voltage across the 5 Qresistor in Fig. 4.57 using mesh analysis.

® v o2
5040°V® /) %39 /> 5Q
_ ] )
T_

Solution  For a magnetically coupled circuit,

XM =k XLIXLZ

=0.8/(5) (10)
=5.66Q

The equivalent circuit in terms of dependent sources is shown in Fig. 4.58.

jsa /5661 foq /5661
-+ 7000 -+
* 3Q
o Q

50.0°V @ D % 5

> ; . |

T —j4 Q 2
Fig. 4.58

Applying KVL to Mesh 1,

50 £0°— j5T;+j5.66 1, —(3— j4) (I, —=1,) =0
G+ -3+ 1.66) I, =50 £ 0°
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Applying KVL to Mesh 2,
—(3—]4) (Iz —Il)—j 101, +J 5661, =51, =0
-(3+/j1.66) I, +(8+,6)I, =0

Writing Eqs (i) and (ii) in matrix form,
3+51 -3+ j1.66)([I; | |50£0°
—(3+j1.66) 8+j6 L | 0

3+j1 50200

~(3+,/1.66) 0

L= : : =8.62 £—24.79° A
3+1  —(3+,1.66)

~(3+,/1.66)  8+j6

Vs0=51,=5(8.62 £-24.79°)=43.1 £-24.79° A

By Cramer’s rule,

” SENNI W WER  Find the current through the capacitor in Fig. 4.59 using mesh analysis.

3Q j4Q
7000

+ BQ ° )
50./45° V /) % pQ /> —BQ
- I I,

1

Fig. 4.59

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.60.

30 jaq 130i-h)

——8Q

50£45°V

Fig. 4.60

Applying KVL to Mesh 1,

50 £45°—(3+ j4) 1 — j3(L - L) — j5 (I, L) — j31, =0
G+ /151 - j81, =50 £ 45°

4.31

..(ii)

...()
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Applying KVL to Mesh 2,

J3L =5 -1+ 81,=0
8L - 31, =0 (i)

Writing Eqs (i) and (ii) in matrix form,
3415 —j8|| I | |50 £45°
-8 =3 0

3+ 715 50.£45°

By Cramer’s rule,

-j8 0
I, = - - =3.66 £-310.33° A
3+15 —;8
-j8  =j3

Ic =1, =3.66 £ -310.33°A

” ETII NI  Find the voltage across the 15 Q resistor in Fig. 4.61 using mesh analysis.

200 100
o 000
+ "jﬂS Q
12020°V @ /D 200 /) 150
- Iy I,
Fig. 4.61

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.62.

20 Q j10Q j5(i-1)
. 20Q
120.£0°V @ /D /> 15Q
- h sl
Fig. 4.62

Applying KVL to Mesh 1,

120 £0°=20 1, — j20(T, = 1,)— j51, =0
(20+j20) T, — j151, =120 £ 0° G
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Applying KVL to Mesh 2,

51— j20(I, 1) — 101, — j5 (1, —1,)— 151, =0
—j15T, +(15+ j20) I, =0 ..(i)

Writing Egs (i) and (ii) in matrix form,
20+,20 —j15 I | _[120£0°
—j15  15+20||1, | 0

20+20 120£0°

By Cramer’s rule,

_jls 0
L= " 1 _253.10.12°A
20420 /15
15 154,20

Visqo =151, =15(2.53 £10.12°) =37.95 £10.12°V

” SETII NI  Find the current through the 6 Q2 resistor in Fig. 4.63 using mesh analysis.

4Q
2Q
o 4+
+
12040°v@ /> %ﬁﬂ /D %/BQ
B I I °
6Q
Fig. 4.63

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.64.

40
+ '13 Q j8 Q
200./30° V @ /D /D
" 2 j2 (1~ 1)
60
Fig. 4.64

Applying KVL to Mesh 1,

120 £0°—4 1, — j3(I; = 1,) + j2T, =0
(4+j3) L —j51,=120 £0° .(0)
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Applying KVL to Mesh 2,

-j2L—-j3(L-I)-8L+,2(I;-1;)-61, =0
—]SI|+(6+j15)12 =0

4+;3  —j5 |[n]_[120£0°
-j5 6+j15||1, | 0

4473 120 £0°

Writing Eqs (i) and (ii) in matrix form,

By Cramer’s rule,

—j5 0
ILL=————"—=7.68 £294°A

4+j3  —j5

-j5 6+j15

” Example CICYM  Determine the mesh current 1, in the network of Fig. 4.65.

j16Q
7000

4Q /3

/

2004£30°V @ D él D o8

1
p— 0}

T

Fig. 4.65

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.66.

e Bli-k) 49

40 |3,> 7Q  BQ

MN—(
200430°V @ D D ot

1 ol —_j4Q

T

Fig. 4.66

..(ii)
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Applying KVL to Mesh 1,
200 £30°-4 (I, - 13)— j4(I, - 1)+ j515 =0

A+ —-j41,—(4+ 515 =200 £30° ..(1)
Applying KVL to Mesh 2,
—j5L—j4L-1)-(7-/8) (I -13)—-(6-4) 1, =0
—jAL+(13-8) 1, - (7-/j13) I3 =0 ... (ih)
Applying KVL to Mesh 3,
—JjloLi+j5(0L-L)-12L-(7-/8) (I -I,)-4(1; -1;) =0
-4+ )L -(T-713) 1, +(23+8) I3 =0 ...(iii)

Writing Egs. (i), (ii) and (iii) in matrix form,

4+ j4 —j4 —(4+j5 || L 200 £ 30°
—j4 13-j8 —(7-j13)||1,|= 0
—(4+j5) —(7-j13) 23+,8 || 15 0
By Cramer’s rule,
4+ j4 —j4 200 £30°
—j4 13-,8 0
—-(4+j5 —(7-/13 0
A ) M Ul L) 1 =16.28 Z16.87°A
4+ j4 —j4 —(4+j5)

—j4 138  —(7-j13)
—(4+j5) —(7-j13) 23+ 8

” SETNINEN  Obtain the dotted equivalent circuit for the coupled circuit shown in Fig. 4.67 and

find mesh currents. Also find the voltage across the capacitor.

5Q 5Q
| 2a 1 5
Jj5 Q — A A /3159
S /3

+ +
1OLO°V@ G\) 10£90°V

-0 Q

Fig. 4.67

Solution The currents in the coils are as shown in Fig. 4.68. The corresponding flux due to current in each
coil is also drawn with the help of right-hand thumb rule.
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50 1, | = L sa
‘ re b
BFOL o (450
] | 47
+ ‘ o= +
1020V (~) 5 L () 10290°v
%ﬂOQ

Fig. 4.68

From Fig. 4.68, it is seen that two fluxes @, and ¢, aid each other. Hence, dots are placed at the two coils as
shown in Fig. 4.69.

) 2a
5Q W5 52, 50
000 OO

+ +
10£0°V ———10Q 10£90° V

_ I -~

I,
Fig. 4.69

The equivalent circuit in terms of dependent sources is shown in Fig. 4.70.

50 50 21

jsa 12k

10£90° V

Fig. 4.70
Applying KVL to Mesh 1,

10 £0°=(5+ j5) I — j2 L, + j10 (L, +1,) =0

5-75L-j8I,=10£0° ...(1)
Applying KVL to Mesh 2,
—j10 (L +1)+ 51, —j2,+51, -10 £90°=0
—j8L+(5-j5 1, =10 £90° ...(i1)
Writing Eqgs. (i) and (ii) in matrix form,

5-j5 -8 |[n] [1ozo0°
—j8 5—j5||1,| |10 £90°
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By Cramer’s rule,

10£0° -8
10 £90° 5-j5
I = - - =0.72 £ -82.97°A
5-j5 —J8
-j8 5-j5
5—-j5 10£0°
—-j8 10 £90°
I, = - - =171 £106.96°A
5-j5 —j8
-j8 5-j5
Ve=—j10(1;+1,)=(—;10) (0.72 £-82.97°+1.71 £106.96° A)
=10.08 £24.03°V

XN conDuCTIVELY COUPLED EQUIVALENT CIRCUITS

For simplifying circuit analysis, it is desirable to replace a magnetically coupled circuit with an equivalent
circuit called conductively coupled circuit. In this circuit, no magnetic coupling is involved. The dot
convention is also not needed in the conductively coupled circuit.

Consider a coupled circuit as shown in Fig. 4.71.

I I
o joM 2

Fig. 4.71 Coupled circuit
The equivalent circuit in terms of dependent sources is shown in Fig. 4.72.

I I,

Jool JolLy

joMl, joM,

Fig. 4.72 Equivalent circuit
Applying KVL to Mesh 1,
Vi-joL I, -joM 1,
JoL I} + joM 1, ...(4.11)
Applying KVL to Mesh 2,
Vo, —jol, I, - joM 1; =0
JoM I+ jol, I, =V, ...(4.12)
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Writing Eqs (4.11) and (4.12) in matrix form,
jo L jo ML _ Vi
[ja)M jwl/z:H:Iz =lv, ...(4.13)

Consider a T-network as shown in Fig. 4.73.

I Z, Z
1 | L]

“0 (= O

Fig. 4.73 T-network
Applying KVL to Mesh 1,
Vi-Zi L, -Z3(L; +1,) =0
(Zi+Z) 1 +Z; 1, =V, ... (4.14)
Applying KVL to Mesh 2,
Ry =[(21112)+1]]]3=1.43Q (415
Writing Eqs (4.14) and (4.15) in matrix form,
Z] + Z3 Z3 I] _ V]
Zs 7,+7Z; || 1, B V,
Comparing matrix equations,
7,+75 = jo L
Z3 = ] oM
Z2 + Z3 = ] (0] L2
Solving these equations,
Zi=joL—-joM=jo(l—-M)
Z2 =ja)L2—jwM=jw(L2—M)
Z3 = ] wM
Hence, the conductively coupled circuit of a magnetically coupled circuit is shown in Fig. 4.74.

1, Jjo(ly-M) jo(Ly— M) 1,

v, @ joM @ A

Fig. 4.74 Conductively coupled equivalent circuit
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” SCI XL Find the conductively coupled equivalent circuit for the network shown in Fig. 4.75.

e j6Q
1 A L1
N
V1@ D I3Q§ %/’59 /) 100
- I ° o I,
20
Fig. 4.75

Solution The current I, leaves from the dotted end and I, enters from the dotted end. Hence, mutual
inductance M is negative.
In the conductively coupled equivalent circuit,
Zl :]a)(L1—M):]a)Ll—]a)M:]S—]2:ﬂQ
Zy = jo(L, - M) = jol, — joM = j5— j2= j3Q
Zy=joM = j2Q

The conductively coupled equivalent circuit is shown in Fig. 4.76.

—jf \Q j1Q j3Q 6O
11 7000 00
+
vi () Je) 100

_ |1 |2

2Q
Fig. 4.76
” SETOTINEN  Draw the conductively coupled equivalent circuit of Fig. 4.77.
j6Q

o 5Q 7 TN [0Q .

7000 700
B D i D)
Tl

2
Fig. 4.77

Solution  The current I, enters from the dotted end and I, leaves from the dotted end. Hence, the mutual
inductance M is negative.
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In the conductively coupled equivalent circuit,

Z, = jo(L - M) = joL — joM = j5— j6=—j1Q

Z> = jo(L, — M) = joL, — joM = j10- j6= j4Q
Z3 :JQ)M:]6Q

The conductively coupled equivalent circuit is shown in Fig. 4.78.

10 jaQ
L] L

N j6Q
v, @

(3/4)99[

Fig. 4.78

L

5Q

4Q

” SETII W  Find the conductively coupled equivalent circuit of the network in Fig. 4.79.

j1Q 2Q

[ )
20 jao

Fig. 4.79

D

Solution  The currents I, and I, leave from the dotted terminals. Hence, mutual inductance is positive
In the conductively coupled equivalent circuit,

7, ZjCO(Ll +M)=jCOL1 +]COM=]4+]2=]6Q
7, ZjCl)(Lz +M)=jCOL2 +]COM:]2+]2=]4Q
Z;=—joM=-j2Q
The conductively coupled equivalent circuit is shown in Fig. 4.80.

(4-j2)Q j6 Q

j4Q
— —
L L
+
Vi /) [} -2 Q /> [ 2+j4)Q
- Iy I,

Fig. 4.80

L
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Exercises

4.1

4.2

4.3

4.4

4.5

Two coupled coils have inductances of 0.8 H

and 0.2 H. The coefficient of coupling is 0.90.

Find the mutual inductance and the turns ratio
Ny

N, [0.36 H, 2]

Two coils with coefficient of coupling 0.5 are
connected in such a way that they magnetise
(1) in the same direction, and (ii) in opposite
directions. The corresponding equivalent
inductances are 1.9 H and 0.7 H. Find self-
inductances of the two coils and the mutual
inductance between them.

[0.4H,0.9H, 0.3 H]

Two coils having 3000 and 2000 turns are
wound on a magnetic ring. 60% of the flux
produced in the first coil links with the
second coil. A current of 3 A produce a flux
of 0.5 mwb in the first coil and 0.3 mwb in the
second coil. Determine the mutual inductance
and coefficient of coupling.

[0.2 H, 0.63]

Find the equivalent inductance of the network
shown in Fig. 4.81.

3H 5H

2H 4= 4H X 6 H

SO —— T —2 [0

Fig. 4.81
[10 H]

Find the effective inductance of the network
shown in Fig. 4.82.

2H
3H
o——— 0"
A Al®
5H 4H
~_ 7
2H
O
Fig. 4.82

[4.8 H]

4.6 Write mesh equations of the network shown

in Fig. 4.83.
R Ly Ry
A
+ ® °
w0 D)) g
z i 7 i A
Fig. 4.83
[ d dl3
v=0iR +L—1—l + M, + My —
R+ L — (i — i) lzdt 137
dis d
Ry (5 —1i; +Ri+L—+M —( —1i
) (i3 —iy) + Rsi3 5 13dt(1 2)
dip
My —=0
i B

4.7 Find the input impedance at terminals AB
of the coupled circuits shown in Fig. 4.84 to

4.85.
6
3Q jaQ
Ao—AN—2TT0
\_ &
;30 j5Q — 8 Q
Bo
Fig. 4.84
(ii)
Ao
2Q 2Q
(]
j5Q j5Q
Bo

Fig. 4.85
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(iii) ) k=05 .
. 2Q Ly NQ .
Ao 7000 o0
—-j3Q hs
1020°V () —j30 50
j4Q h
Fig. 4.89
[19.2£-33.02°V]
Bo
4.11 Find the power dissipated in the 5 € resistor
Fig. 4.86 in the network of Fig. 4.90.
j3Q
(@)(3+,36.3)Q  (b)(1+/1.5)Q 20 | 2Q 4—a j4Q , 5Q
(c)(6.22+ j4.65)Q
+
4.8 In the coupled circuit shown in Fig. 4.87, find ~ 100£0°V 3Q
V, for which I, = 0. What voltage appears -
at the 8 Q inductive reactance under this
condition? Fig. 4.90
668.16 W
50 20 20 [ ]
AN 4.12 Find the current I in the circuit of Fig. 4.91.
+ ® ® +
100.£0°V (~0 8 Q 2 Q o)V 50 .
g) J J (? 2 14Q ia 10Q j3Q
¥
Flg 4.87 100£20° V 70£-30°V

[141.5£-45°V, 100£0°V]

4.9 For the coupled circuit shown in Fig. 4.88, Fig. 4.91

find the components of the current I, resulting
from each source V,and V., 4.13 Obtain a conductively coupled circuit for the
j2Q circuit shown in Fig. 4.92.

[7.07£45° V, 1.

) BQ
20 j5Q i j4Q

Fig. 4.88 ) .
100£0°V 3Q —j2Q

[0.77£112.6°A,1.72 £86.05°A] -

4.10 Find the voltage across the 5 Q resistor in the
network shown in Fig. 4.89.

Fig. 4.92



100£0°V

20 2a

Fig. 4.93

Objective-Type Questions

Objective-Type Questions 4.43

—j1Q

4.1

4.2

4.3

4.4

Two coils are wound on a common magnetic

core. The sign of mutual inductance M for

finding out effective inductance of each coil

is positive if the

(a) two coils are wound in the same sense.

(b) fluxes produced by the two coils are
equal

(¢) fluxes produced by the coils act in the
same direction

(d) fluxes produced by the two coils act in
opposition

When two coils having self-inductances
of L, and L, are coupled through a mutual
inductance M, the coefficient of coupling & is
given by

M M

(a) k= (b) k=
L0 N2

© k=2M d k=bl

NLiL, M

The overall inductance of two coils connected
in series, with mutual inductance aiding self-
inductance is L,; with mutual inductance
opposing  self-inductance, the overall
inductance is L,. The mutual inductance M is
given by

(@ L,+1L, (b)y L,-L,

1 1
(c) Z(LI_LZ) (d) 5(L1+l/z)

Consider the following statements:
The coefficient of coupling between two oils

4.5

4.6

4.7

4.8

depends upon

1. Orientation of the coils

2. Core material

3. Number of turns on the two coils
4. Self-inductance of the two coils
of these statements,

(a) 1,2 and 3 are correct

(b) 1 and 2 are correct

(¢) 3 and 4 are correct

(d) 1,2 and 4 are correct

Two coupled coils connected in series have
an equivalent inductance of 16 mH or 8 mH
depending on the inter connection.

Then the mutual inductance M between the
coils is

(@) 12mH (b) 8J/2mH

(c) 4mH (d 2mH

Two coupled coils with L, = L,= 0.6 H have
a coupling coefficient of £ = 0.8. The turns

. Ny
ratto — 18
2
(a) 4 (b)) 2
(c) 1 (d 0.5

The coupling between two magnetically
coupled coils is said to be ideal if the
coefficient of coupling is

(a) zero (b) 0.5

() 1 (d 2

The mutual inductance between two coupled
coils is 10 mH . If the turns in one coil are
doubled and that in the other are halved then
the mutual inductance will be

(a) SmH (b) 10mH

(¢) 14 mH (d) 20mH
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4.9 Two perfectly coupled coils each of 1 H self- jBpa 20
inductance are connected in parallel so as © 7000 7000
to aid each other. The overall inductance in 100 \} °
henrys is ! 100 % 20
(@ 2 (b) 1
1
(c) 3 (d) Zero o
Fig. 4.94
4.10 The impedance Z as shown in Fig. 4.94 is (@) j29Q ®) j9Q
(c) j19Q (d) j39Q

Answers to Objective-Type Questions

41 (o) 42 (b) 43 (o) 44 (d) 45 (d) 46 ()
47 (o) 48 (b) 49 (b) 410 (b)



Graph Theory

X8| nTrRODUCTION

The purpose of network analysis is to find voltage across and current through all the elements. When the
network is complicated and has a large number of nodes and closed paths, network analysis can be done
conveniently by using ‘Network Topology’. This theory does not make any distinction between different
types of physical elements of the network but makes the study based on a geometric pattern of the network.
The basic elements of this theory are nodes, branches, loops and meshes.

Node It is defined as a point at which two or more elements have a common connection.

Branch 1t is a line connecting a pair of nodes, the line representing a single element or series connected
elements.

Loop Whenever there is more than one path between two nodes, there is a circuit or loop.

Mesh It is a loop which does not contain any other loops within it.

EEJ| GrAPH OF A NETWORK

A linear graph is a collection of nodes and branches. The nodes are joined together by branches.

The graph of a network is drawn by first marking the nodes and then joining these nodes by lines which
correspond to the network elements of each branch. All the voltage and current sources are replaced by their
internal impedances. The voltage sources are replaced by short circuits as their internal impedances are zero
whereas current sources are replaced by open circuits as their internal impedances are infinite. Nodes and
branches are numbered. Figure 5.1 shows a network and its associated graphs.

Each branch of a graph may be given an orientation or a direction with the help of an arrow head which
represents the assigned reference direction for current. Such a graph is then referred to as a directed or
oriented graph.

Branches whose ends fall on a node are said to be incident at that node. Degree of a node is defined as
the number of branches incident to it. Branches 2, 3 and 4 are incident at Node 2 in Fig. 5.1(c). Hence, the
degree of Node 2 is 3.
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(6) (6) (6)
o e N SN
1 5 5 1 3 1 3
ms @ “ 9 Se ) © (1) ©)
"4
4 4 4

(a) Network (b) Undirected graph (c) Directed or oriented graph

Fig. 5.1 Network and its graphs

EXEY| GraPH TERMINOLOGIES

1. Planar Graph A graph drawn on a two-dimensional plane is said to be planar if two branches do not
intersect or cross at a point which is other than a node. Figure 5.2 shows such graphs.

(2) 2
] @) (8) 3
1 A 3

) ®) 7 ©)

Fig. 5.2 Planar graphs

2. Non-planar Graph A graph drawn on a two-dimensional plane is said to be non-planar if there is
intersection of two or more branches at another point which is not a node. Figure 5.3 shows non-planar
graphs.

; 2 2 (3) 3
4
(1) ®) (7) 4)
4 ® 6
(5) 5 (6)

Fig. 5.3 Non-planar graphs

3. Sub-graph 1t is a subset of branches and nodes of a graph. It is a proper sub-graph if it contains
branches and nodes less than those on a graph. A sub-graph can be just a node or only one branch of the
graph. Figure 5.4 shows a graph and its proper sub-graph.
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@ @
2 N 2e . VRN
1 3
(1) (6) (4)
4 4

(@)
Fig. 5.4 (a) Graph (b) Proper sub-graph

4. Path 1t is an improper sub-graph having the following properties:

1. Attwo of its nodes called terminal nodes, there is incident only one branch of sub-graph.
2. Atall remaining nodes called internal nodes, there are incident two branches of a graph.

In Fig. 5.5, branches 2, 5 and 6 together with all the four nodes, constitute a path.

Fig. 5.5 Path

5. Connected Graph A graph is said to be connected if there exists a path between any pair of nodes.
Otherwise, the graph is disconnected.

6. Rank of a Graph If there are n nodes in a graph, the rank of the graph is (n — 1).

7. Loop or Circuit A loop is a connected sub-graph of a connected graph at each node of which are incident
exactly two branches. If two terminals of a path are made to coincide, it will result in a loop or circuit.
Figure 5.6 shows two loops.

(4) Q

Loops: {1, 2 3, 4} Loops: {1, 2}
Fig. 5.6 Loops
Loops of a graph have the following properties:

1. There are at least two branches in a loop.
2. There are exactly two paths between any pair of nodes in a circuit.
3. The maximum number of possible branches is equal to the number of nodes.
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8. Tree A tree is a set of branches with every node connected to every other node in such a way that
removal of any branch destroys this property.
Alternately, a tree is defined as a connected sub-graph of a connected graph containing all the nodes of
the graph but not containing any loops.
Branches of a tree are called twigs. A tree contains (n — 1) twigs where 7 is the number of nodes in the
graph. Figure 5.7 shows a graph and its trees.

(6)

3 5 (4)
®) (5) 5 3 (5)
4 4 4
(a) Graph (b) ©
Twigs: {1, 4, 5} Twigs: {2, 3, 5}

Fig. 5.7 Graph and its trees

Trees have the following properties:

There exists only one path between any pair of nodes in a tree.

A tree contains all nodes of the graph.

If n is the number of nodes of the graph, there are (n — 1) branches in the tree.
Trees do not contain any loops.

Every connected graph has at least one tree.

6. The minimum terminal nodes in a tree are two.

kv =

9. Co-free Branches which are not on a tree are called links or chords. All links of a tree together
constitute the compliment of the corresponding tree and is called the co-tree.

A co-tree contains b — (n — 1) links where b is the number of branches of the graph.
In Fig. 5.7 (b) and (c) the links are {2, 3, 6} and {1, 4, 6} respectively.

|| SETII W Draw directed graph of the networks shown in Fig. 5.8.

R

Fig. 5.8
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Solution  For drawing the directed graph,
1. replace all resistors, inductors and capacitors by line segments,
2. replace the voltage source by a short-circuit,
3. assume directions of branch currents, and
4. number all the nodes and branches.

The directed graph for the two networks are shown in Fig. 5.9.

3
@ ®)

M @)

@)
®)

1
/
4 2
®) 5 @
®)
3
(b

)
Fig. 5.9

"m Figure 5.10 shows a graph of the network. Show all the trees of this graph.

m o, @
1 : 3

@) (5)
4
Fig. 5.10

Solution A graph has many trees. A tree is a connected sub-graph of a connected graph containing all the
nodes of the graph but not containing any loops. Figure 5.11 shows various trees of the given graph.

1 2 (2 3 (1) 2 3 1 (1) 2 3 1{(N2@ 3 1(1)2@ 3
4
@y @ @re ) ) @
4
1 3 1 2 (2) 3 1(1) 2 (23
3 @¥s
(3) ®) (3) (5) 3)
4 4
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XAl NciDENCE MATRIX

A linear graph is made up of nodes and branches. When a graph is given, it is possible to tell which branches
are incident at which nodes and what are its orientations relative to the nodes.

5.4.1 Complete Incidence Matrix (A,)

For a graph with n nodes and b branches, the complete incidence matrix is a rectangular matrix of order n X b.
Elements of this matrix have the following values:
a.= 1, if branch j is incident at node i and is oriented away from node i.

=—1, if branch j is incident at node 7 and is oriented towards node i.

=0, if branch j is not incident at node i.
For the graph shown in Fig. 5.12, branch 1 is incident at nodes 1 and 4. It is oriented away from Node 1 and
oriented towards Node 4. Hence, a,, = 1 and a,, = —1. Since branch 1 is not incident at nodes 2 and 3, a,, =
0 and a,, = 0. Similarly, other elements of the complete incidence matrix are written.

(6)

Nodes Branches —
13 2 1 2 3 4 5 6
1 1 1.0 0 0 1
M ®) 2 0-1 1-1 0 0
3 0 0 0 1 1 -1
4 -1 0-1 0-1 0
4
Fig. 5.12 Graph
The complete incidence matrix is
1 1.0 0 0 1
o -1 1 -1 0 0
=10 0 0o 1 1 -

-1 0 -1 0 -1 0

It is seen from the matrix 4, that the sum of the elements in any column is zero. Hence, any one row of the
complete incidence matrix can be obtained by the algebraic manipulation of other rows.

5.4.2 Reduced Incidence Matrix (A)

The reduced incidence matrix 4 is obtained from the complete incidence matrix 4, by eliminating one of the
rows. It is also called incidence matrix. It is of order (n — 1) X b.
Eliminating the third row of matrix 4,

1 1 0 0 01
A= 0 -1 1 -1 0 O
-1 0 -1 0 -1 0

When a tree is selected for the graph as shown in Fig. 5.13, the incidence matrix is obtained by arranging
a column such that the first (n — 1) column corresponds to twigs of the tree and the last » — (n — 1) branches
corresponds to the links of the selected tree.
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1 3 Twigs Links
(@) ) 2 3 4 1 5 6
Twigs: {2, 3, 4}
(3) Links: {1, 5, 6} 1 0 0 1 01
A=|-1 1 -1 0 0 0
M 0O -1 0 -1 -1 0

Fig. 5.13 Tree

The matrix 4 can be subdivided into submatrices 4, and 4,.
A=[4,: 4]
Where 4, the is twig matrix and 4, is the link matrix.

5.4.3 Number of Possible Trees of a Graph
Let the transpose of the reduced incidence matrix 4 be A”. It can be shown that the number of possible trees
of a graph will be given by
Number of possible trees = [4A47]

For the graphs shown in Fig. 5.12, the reduced incidence matrix is given by

[ 1 1.0 0 01

A=y 0 -1 1 -1 0 0
L—l 0 -1 0 -10

Then transpose of this matrix will be

1 -1
1 -1 0
PR
1o -1 0
0 0 -1

1 0 0

1 0 -1
_ 1 -1 0
L1 0 0 01y, ¢ 4 3 -1 -1
44T =10 -1 1 -1 0 o0 ={-1 3 -1
10 -1 0 -1 0ol L Op iy o3
- 0 0 -1
1 0 0
3 -1 -1
|44 |=]-1 3 -1|=309-D)+1)(-3-1)-11+3)=16
-1 -1 3

Thus, 16 different trees can be drawn.
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X3 LooP MATRIX OR CIRCUIT MATRIX

When a graph is given, it is possible to tell which branches constitute which loop or circuit. Alternately, if a
loop matrix or circuit matrix is given, we can reconstruct the graph.
For a graph having 7 nodes and b branches, the loop matrix B, is a rectangular matrix of order b columns
and as many rows as there are loops.
Its elements have the following values:
bl.j =1, if branch j is in loop 7 and their orientations coincide.
=— 1, if branch j is in loop 7 and their orientations do not coincide.
=0, if branch j is not in loop i.
A graph and its loops are shown in Fig. 5.14.
(6)
T2 Lopniag)
1 3 Loop 2:{3, 4, 5}
Loop 3: {2, 4, 6}
Loop 4: {1, 2, 4, 5}
(1) (5) Loop 5: {1, 5, 6}
Loop 6: {2, 3, 5, 6}
Loop 7: {1, 3, 4, 6}

Fig. 5.14 Graph

All the loop currents are assumed to be flowing in a clockwise direction.

Loops Branches —
N 1 2 3 4 5 6
1 -1 11 0 0 0
2 0 0-1-1 1 0
3 0-1 0 1 0 1
4 -1 1 0-1 1 0
5 -1 0 0 0 1 1
6 0-1-1 0 1 1
7 -1 0 1 1 0 1
-1 1 0 0 0]

0 0 -1 -1 10

0 -1 0 10 1
B,=|-1 1 0 -1 10
-1 0 0 0 1 1

0 -1 -1 0 11

-1 0 1 1 0 1]

5.5.1 Fundamental Circuit (Tieset) and Fundamental Circuit Matrix

When a graph is given, first select a tree and remove all the links. When a link is replaced, a closed loop or
circuit is formed. Circuits formed in this way are called fundamental circuits or f~circuits or tiesets.
Orientation of an f-circuit is given by the orientation of the connecting link. The number of f-circuits is
same as the number of links for a graph. In a graph having b branches and » nodes, the number of f-circuits or
tiesets will be (b — n + 1). Figure 5.15 shows a tree and f-circuits (tiesets) for the graph shown in Fig. 5.14.
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1 2 3 - .
(@) 4) @ (4)
3) (3) tieset 1: {1,2, 3}
tieset 5: {5, 3,4}
tieset 6: {6, 2, 4}
4 tieset 1 tieset 5 tieset 6
(a) Tree (b) t-circuits (tiesets)

Fig. 5.15 Tree and f-circuits

Here, b=6 and n =4.
Number of tiesets=b—n+1=6-4+1=3

f-circuits are shown in Fig. 5.15. The orientation of each f-circuit is given by the orientation of the
corresponding connecting link.

The branches 1, 2 and 3 are in the tieset 1. Orientation of tieset 1 is given by orientation of branch 1. Since
the orientation of branch 1 coincides with orientation of tieset 1, b,, = 1. The orientations of branches 2 and 3
do not coincide with the orientation of tieset 1, Hence, b ,=— 1 and b ;= — 1. The branches 4, 5 and 6 are not
in tieset 1. Hence, b,, =0, b;; =0 and b, = 0. Similarly, other elements of the tieset matrix are written.
Then, the tieset schedule will be written as

Tiesets Branches —
L |1 2 3 456
1 1 -1 -1 00 0
0 0-1-110
0 -1 0 10 1
Hence, an f-circuit matrix or tieset matrix will be given as

1 -1 -1 000

B={0 0 -1 -1 1 0

0 -1 0 10 1

Usually, the f-circuit matrix B is rearranged so that the first (n — 1) columns correspond to the twigs and
b — (n — 1) columns to the links of the selected tree.

Twigs Links
2 3 4 1 5 6
-1 -1 0 1 0 O
B={0 -1 -1 0 1 0
-1 0 1 0 0 1

The matrix B can be partitioned into two matrices B, and B,.

B=[B,:B;]1=[B,:U]
where B, is the twig matrix, B, is the link matrix and U is the unit matrix.



5.10 Circuit Theory and Networks—Analysis and Synthesis

5.5.2 Orthogonal Relationship between Matrix A and Matrix B

For a linear graph, if the columns of the two matrices 4, and B, are arranged in the same order, it can be
shown that
4,8, =0
or B,,AaT =0
The above equations describe the orthogonal relationship between the matrices 4, and B,.
If the reduced incidence matrix 4 and the f~circuit matrix B are written for the same tree, it can be shown
that
AB" =0
or B AT =0

These two equations show the orthogonal relationship between matrices 4 and B.

B3 cutser maTrIX 2
Consider a linear graph. By removing a set of branches without affecting the nodes,
two connected sub-graphs are obtained and the original graph becomes unconnected. (1) (3) )
The removal of this set of branches which results in cutting the graph into two parts

. “4)
are known as a cutset. The cutset separates the nodes of the graph into two groups, 4 3
each being in one of the two groups. Fig. 5.16 Graph

Figure 5.16 shows a graph.

Branches 1, 3 and 4 will form a cutset. This set of branches separates the graph into two parts. One having
an isolated node 4 and other part having branches 2 and 5 and nodes 1, 2 and 3.

Similarly, branches 1 and 2 will form a cutset. Each branch of the cutset has one of its terminals incident
at a node in one part and its other end incident at other nodes in the other parts. The orientation of a cutset is
made to coincide with orientation of defining branch.

For a graph having n nodes and b branches, the cutset matrix Q, is a rectangular matrix of order 4 columns
and as many rows as there are cutsets. Its elements have the following values:

q;= 1, if the branch j is in the cutset / and the orientation coincide.
=—1, if the branch j is in the cutset i and the orientations do not coincide.
= 0, if the branch  is not in the cutset i.
Figure 5.17 shows a directed graph and its cutsets.

(6)

- Cutsets Branches —
73 Cutset1:{1,2,6) N 1 2 3 45 6
;- Cutset2:{2, 3, 4}
Cutset 3: {3, 1, 5} I {1 1000 1
Cutset 4: {4, 5, 6} 2 0O 1-1 10 0
Cutset 5: {5, 2, 3, 6} 3 1 01 01 O
Cutset 6: {6, 1, 3, 4} 4 0 0 0 11 -1
5 0-1 1 01 -1
6 1 0 1-10 1

Fig. 5.17 Directed graph

For the cutset 2, which cuts the branches 2, 3 and 4 and is shown by a dotted circle, the entry in the cutset
schedule for the branch 2 is 1, since the orientation of this cutset is given by the orientation of the branch 2
and hence it coincides. The entry for branch 3 is —1 as orientation of branch 3 is opposite to that of cutset 2,
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i.e., branch 2 goes into cutset while branch 3 goes out of cutset. The entry for branch 4 is 1 as the branch 2
and the branch 4 go into the cutset. Thus their orientations coincide.
Hence, the cutset matrix O is given as

1 1 0 00 1
0 1 -1 1.0 0
1 0 1 01 0

Q“_00011—1
0 -1 1 01 -1
1 0 1 -1 0 1

5.6.1 Fundamental Cutset and Fundamental Cutset Matrix

When a graph is given, first select a tree and note down its twigs. When a twig is removed from the tree, it
separates a tree into two parts (one of the separated part may be an isolated node). Now, all the branches
connecting one part of the disconnected tree to the other along with the twig removed, constitutes a cutset.
This set of branches is called a fundamental cutset or f~cutset. A matrix formed by these f~cutsets is called an
f-cutset matrix. The orientation of the f~cutset is made to coincide with the orientation of the defining branch,
i.e., twig. The number of f-cutsets is the same as the number of twigs for a graph.

Figure 5.18 shows a graph, selected tree and f-cutsets corresponding to the selected tree.

(6)
1 2 N3
2 (4)
(1) (5) (3)
4
) (b)

(a) Graph Tree (c) f-cutsets

f-cutset 2: {2, 1,6}
fcutset 3: {3, 1,5}
f-cutset 4: {4, 5,6}

Fig. 5.18 Graph, selected tree and f-cutsets

The branches 2, 1, and 6 are in the f~cutset 2. Orientation of f-cutset 2 is given by orientation of the branch
2 which is moving away from the f-cutset 2. Since the orientations of branches 2, 1 and 6 coincide with the
orientation of the f-cutset 2, ¢,, = 1, ¢;, = 1 and g, = 0. The branches 3, 4 and 5 are not in the f~cutset 2.
Hence, ¢,;=0, ¢,,=0and q,5=0.

Similarly, other elements of the f-cutset matrix are written.

The cutset schedule is

f-cutsets Branches —
\ 1 2 3 4 5 6
2 1 1.0 0 0 1
3 1 01 0 1 O
4 00 0 1 1-1

Hence, the f-cutset matrix Q is given by
1 1.0 0 0 1
o=l1 0 1 0 1 O
o 0 o0 1 1 -1

The f~cutset matrix Q is rearranged so that the first (# — 1) columns correspond to twigs and b — (n — 1)
columns to links of the selected tree.
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Twigs Links
2 4 1 5 6
1 0 0 1 0 1
o=10 1 0 1 1 O
o 0 1 0 1 -1

The matrix Q can be subdivided into matrices Q, and Q,.
0=10:0]=[U:0]
where Q, is the twig matrix, O, is the link matrix and U is the unit matrix.
5.6.2 Orthogonal Relationship between Matrix B and Matrix Q

For a linear graph, if the columns of two matrices B, and Q  are arranged in the same order, it can be shown
that

0.8, =0

or B,0r'=0
If the f-circuit matrix B and the f~cutset matrix Q are written for the same selected tree, it can be shown that

BO" =0

or 0B" =0

These two equations show the orthogonal relationship between matrices 4 and B.

XAl RELATIONSHIP AMONG SUBMATRICES OF A, B AND Q

Arranging the columns of matrices 4, B and Q with twigs for a given tree first and then the links, we get the
partitioned forms as

From the orthogonal relation, ABT = 0,

B/
ABT =4, : 4]
B’
4B +4B" =0
AtBtT = _AIBIT
Since 4, is non-singular, i.e., [4| # 0, 4! exists.
Premultiplying with 4,”!,
B =—4"4B"

-1 T
. . . . B, =-B)(4; - 4)
Since B j1sa unit matrix

B =—A47" 4)"
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Hence, matrix B is written as

B=[-(47"4)" :U] (5.0)
We know that AB" =0

4B =-4B"

Postmultiplying with (B,7)",

A=—AB(B) " =-4B" (B ) =-A(B"B)"
Hence matrix 4 can be written as

A=[4:-A4(B " B)"]

...(52)
=AU :~(B"B)"]
Similarly we can prove that
0=[U:—(B; " B)"] ...(53)
From Egs (5.2) and (5.3), we can write
A=4,0
Q=A"A= 474, 4]1=[U: 47" 4]
We have shown that B, =—(4; ! 4)"
B =—(47"4)
Hence, Q can be written as
0=[U:-B"]
O = BrT

||m For the circuit shown in Fig. 5.19, draw the oriented graph and write the (a) incidence
matrix, (b) tieset matrix, and (c) f-cutset matrix.

RS
R, Ly Ry C
WA
R Re R,
4 i
. “4)
Fig. 5.19

Solution For drawing the oriented graph,

1. replace all resistors, inductors and capacitors by line segments,
2. replace the voltage source by short circuit and the current source by an open

circuit,
3. assume the directions of branch currents arbitrarily, and
4. number all the nodes and branches. 3

The oriented graph is shown in Fig. 5.20. Fig. 5.20
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(a) Incidence Matrix (4)

Nodes | Branches — -1 0 -1
I |1 2 3 4 4, =l 0 1 -
I [-1 0-1 1 1o

2 0 1 1-1
3 1 -1 0 0

Eliminating the third row from the matrix 4, we get the incidence matrix 4.

-1 0 -1 1
4= [ 01 1 —1]
(b) Tieset Matrix (B)
The oriented graph, selected tree and tiesets are shown in Fig. 5.21.

2 Links: {3,4}

Tieset 3: {3, 1, 2} 1 2 3 4
Tieset 4: {4, 1, 2}
B 31-1 -1 1 0
I I 1
Fig. 5.21
(c) f-cutset Matrix (Q)
The oriented graph, selected tree and f~cutsets are shown in Fig. 5.22.
4)
e vy Twigs: (1,2}
: P “ feutset 1: {1, 3, 4) 123 4
f-cutset 2: {2, 3, 4} 11 0 1 =1
0= 2[0 11 —1]

Fig. 5.22

|| Example 5.4 For the network shown in Fig. 5.23, draw the oriented graph and write the

(a) incidence matrix, (b) tieset matrix, and (c) f-cutset matrix.

2Q
2Q
40 N 10Q I

1 * 00—

1F 1H
2Q 2Q

——4F

72 A
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Solution  For drawing the oriented graph, ® 5 (@
1. replace all resistors, inductors and capacitors by line segments, A
2. replace all voltage sources by short circuits and current source | 8
by an open circuit,
assume directions of branch currents arbitrarily, and @) 5)
4. number all the nodes and branches.
The oriented graph is shown in Fig. 5.24.

(98]

4
(a) Incidence Matrix (4)
Fig. 5.24
Nodes Branches —

L ol1 2345 67 boo oo
1 |1 00101 0 - -1 1.0 0 0 0
2 |-1 =1 1.0 0 0 0 A= 0 1 0 0 1 0 1
310 1.0 0 1 0 1 0 0 -1 -1 -1 0 0
4 0 0-1-1-1 0 0 00 0 0 0 -1 -1
5 0 0 0 0 0-1-1

Eliminating the last row from the matrix 4 , we get the incidence matrix 4.

1 0 0 1 0 10
Y= -1 -1 1 0 0 0 0
0 1 0 0 1 0 1
0 0 -1 -1 -1 00

(b) Tieset Matrix (B)
The oriented graph, selected tree and tiesets are shown in Fig. 5.25.

® 5 (@
3 Links: {2,4,7} 1 2 3 4 5 7
Tieset 2: {2, 3, 5}
Tieset 4: {4, 1, 3} 200 1 1.0 -1 0 O
Tieset7:{7,6,1,3,5) B=4/-1 0 -1 1 0 0 O
7710 10 -1 -1 1
Fig. 5.25
(c) f-cutset Matrix (Q)
The oriented graph, selected tree and f~cutsets are shown in Fig. 5.26.
Twigs: {1, 3,5, 6} 1 2 3 45 6 7
t-cutset 1: {1, 4, 7}
f-cutset 3: {3, 4, 7, 2} nir o0 100 -1
t-cutset 5: {5, 2, 7} 0- 3;j0 -1 1. 1 0 0 -1
f-cutset 6: {6, 7} 50 10 01 0 1
60 0 0 0 0 1 1
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For the circuit shown in Fig. 5.27, draw the oriented graph and write (a) incidence
matrix, (b) tieset matrix, and (c) cutset matrix.

Solution  For drawing the oriented graph, 2
1. replace all resistors, inductors and capacitors by line segments,
2. replace voltage source by short circuit and current source by an open (1) @)
circuit,

3. assume directions of branch currents arbitrarily, and
4. number the nodes and branches.

3
The oriented graph is shown in Fig. 5.28. Fig. 5.28
(a) Incidence Matrix (4)
Nodes | Branches —

J 1 2 3 4 o

I [-1 1 0-1 A

2 O 0 1 1 Aa = O O 1 1

3 1 -1 -1 0 1 -1-10

Eliminating the third row from the matrix 4, we get the incidence matrix 4.

-1 10 -1
A= [ 00 1 1]
(b) Tieset Matrix (B)
The oriented graph, selected tree and tiesets are shown in Fig. 5.29.

Links: {1, 3}

Tieset 1: {1, 2} 1 2 3 4

Tieset 3: {3, 2, 4} B_l 1 10 0
T30 -1 1 -1

Fig. 5.29

(c) f-cutset Matrix (Q)
The oriented graph, selected tree and f-cutsets are shown in Fig. 5.30.
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22 Twigs: (2, 4)
/ f-cutset 2: {2, 1, 3}

/ -cutset 4: {4, 3} 1 23 4
M 1@ Ae 2[-1 110
Q:4[ 001 1}
\\T/ é/
3
Fig. 5.30

|| SETII NN For the circuit shown in Fig. 5.31, (a) draw its graph, (b) draw its tree, and (c) write

the fundamental cutset matrix.
2Q

1F 1F ¢

B 10

® B
Fig. 5.?:1
2 T~

1H

Solution
(a) For drawing the oriented graph,
1. replace all resistors, inductors and capacitors by line segments, ) (6)

2. replace the current source by an open circuit,
3. assume directions of branch currents, and
4. number all the nodes and branches.

The oriented graph is shown in Fig. 5.32.

(b) Tree
The oriented graph and its selected tree are shown in Fig. 5.33.

Fig. 5.32

Twigs: {2, 4, 5}
tcutset 2: {2, 1, 3}
t-cutset 4: {4, 3, 6}
f-cutset 5: {5, 1, 6}

(c) Fundamental Cutset Matrix (Q)

1 2 3456
2[111000
0=410 0 -1 1 0 1
5[100011
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|| SCINACRWA  The graph of a network is shown in Fig. 5.34. Write the (a) incidence matrix,

(b) tieset matrix, and (c) f-cutset matrix.

Solution
(a) Incidence Matrix (4)
1 2 3 4 5 6
If-1 1.0 1 0 0
L2200 0 -1 1
730 -1 1 0 -1 0
41 0 -1 0 0 -1

The incidence matrix A is obtained by eliminating any row from the matrix 4.
(-1 10 1 00

4= 0 00 -1 11
0 -1 1 0 10

(b) Tieset, Matrix (B)
The oriented graph, selected tree and tiesets are shown in Fig. 5.35.

8 Links: {1,2,3) 1 23 4 6
Tieset 1: {1, 4, 6}
Tieset 2: {2, 4, 5} 1 |r 100 0 1
Tieset 3: {3, 5, 6} B=2{0 1 0 -1 -1 0
3 [0 0 1 1 -1
Fig. 5.35
(c) f-cutset Matrix (Q)
The oriented graph, selected tree and f~cutsets are shown in Fig. 5.36.
1 2 3 4 56
Twigs: {4, 5, 6}
f-cutset 4: {4, 1, 2} 4/-1 1 0 1 0 O
t-cutset 5: {5, 2, 3} 0=5{01-10 10
t-cutset 6: {6, 1, 3} 6l-1 0 100 1
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|| SCI AR For the graph shown in Fig. 5.37, write the incidence matrix, tieset matrix and f-cutset

matrix.
o
1 2 3 T
@  ® @ @
(6) // /:’
™) .
P
o
Fig. 5.37
Solution
(a) Incidence Matrix (4)
1 2 4 5 6 7
If1r 1 0 0 0 0 0
240 -1 1 0 1 0 O
A,=310 0 -1 1 0 0 O
40 0 0 -1 -1 1 -1
51-1 0 0 0 0 -1 1

The incidence matrix 4 is obtained by eliminating any row from the matrix 4.

1 1 0 0 00 0

4|01 10 10 0

1o 0 -1 1 00 0

0 0 0 -1 -1 1 -1

(b) Tieset Matrix (B) 1 2 3 45 67
e N LSRR
Tieset 6: {6, 1,2, 3, 4} B=6/-1 1 1 1.0 10
Tieset 7: {7, 1,2, 3, 4} 711 -1 -1 =100 1

(c) f-cutset Matrix (Q)
The oriented graph, selected tree and f~cutsets are shown in Fig. 5.38.

1 234 5 6 7
Twigs: {1,2, 3, 4} _
fcutset 1: {1, 6, 7) nroooo0 1 -1
t-cutset 2: {2, 6, 7} 0= 20 1.0 0 0 -1 1
f-cutset 3: {3, 5, 6, 7} 310 01 0 1 =1 1
f-cutset 4: {4, 5, 6, 7} 4lo0 0 0 1 1 -1 1
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|| Example SN For the graph shown in Fig. 5.39, write the incidence matrix, tieset matrix and

[f-cutset matrix.

A
IN K
R >

Solution
(a) Incidence Matrix (4)

1 2 4 5 6 7 8

M1 0 o0-1 1 0 0 O
2(-1r 1. 06 0 0 1 0 O
4,=310 -1 1 0 0 O 1 O
40 0 -1 1 0 0 0 1
50 0 0 O -1 -1 -1 -1

The incidence matrix is obtained by eliminating any one row.

1 0 0 -1 1000

A= -1 1 0 00 10 0

0O -1 1 00 0 10

0 0 -1 1.0 0 0 1

(b) Tieset Matrix (B)

Links: {2, 4, 6,8} 1234 56 78
Tieset 2: {2,7,5,1} 2f1 1.0 0 -1 0 10
Tieset 4: {4,5,7,3} B= 40 0 1.1 1.0 -1 0
Tieset 6: {6, 5, 1} 6/1 0 00 -1 1 00
Tieset 8: {8, 7, 3} &§O 0 1. 0 O 0 -1 1

(c) f-cutset Matrix (Q)
The oriented graph, selected tree and f~cutsets are shown in Fig. 5.40.

Twigs: {1,3,5,7} 1 23 45 6 7 8

i-cutset 1: {1, 6, 2} M1 210 00 <10 0

f-cutset 3: {3, 4, 8}

t-cutset 5: {5, 4, 6, 2} Q=3 0 01 -10 00 -1

f-cutset 7: {7, 2, 8, 4} 50 1 0 -1 1 10 O
710 -1 0 1 0 01 1
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|| SCINACRWON  How many trees are possible for the graph of the network of Fig. 5.41.

o1,

Fig. 5.41

Solution To draw the graph, @)

1. replace all resistors, inductors and capacitors by line segments,

2. replace voltage source by short circuit and current source by an open A)
circuit,

3. assume directions of branch currents arbitrarily, and

4. number all the nodes and branches. 1

The oriented graph is shown in Fig. 5.42. Fig. 5.42
The complete Incidence Matrix (4,) is written as

1 2 3 4

1 o0 -1 1

A, =2{-1 1 0 0

31 0 -1 1 -1

The reduced incidence matrix 4 is obtained by eliminating the last row from matrix 4,,.

1 0 -1 1]
A_[—l 1 0 0]

The number of possible trees = ’AAT‘ = ‘j _21 =6-1=5.

|| SETUII WU Draw the oriented graph from the complete incidence matrix given below;

Nodes Branches —
B 2 @O >3 O
l 1 2 3 4 5 6 7 8 1 4
1 1 00 01 0 0 1 3
2 01 0 0-1 1 0 0 o\ © 4)
3 00 1 0 0-1 1-1
4 00 0 1 0 0-1 0 5
5 |-1-1-1-1 0 0 0 0 Fig. 5.43

Solution  First, note down the nodes 1, 2, 3, 4, 5 as shown in Fig. 5.43. From the complete incidence matrix, it
is clear that the branch number 1 is between nodes 1 and 5 and it is going away from node 1 and towards node 5
as the entry against node 1 is 1 and that against 5 is —1. Hence, connect the nodes 1 and 5 by a line, point the arrow
towards 5 and call it branch 1 as shown in Fig. 5.43. Similarly, draw the other oriented branches.
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|| SCI AWV The reduced incidence matrix of an oriented graph is given below. Draw the
graph.

Solution  First, writing the complete incidence matrix from the matrix 4 such that the sum of all entries in
each column of 4, will be zero, we have

1 2 3 4 5
1 o2 »3
=41 0_0 _0 _1
_ ) 1
41 1 0 0 0 @ @
4
Fig. 5.44

Now, the oriented graph can be drawn with matrix 4, as shown in Fig. 5.44.

|| Example W EN  The reduced incidence matrix of an oriented graph is

0 -1 1 0 O
A= 0 0 -1 -1 -1
-1 0 0 0 1
(a) Draw the graph. (b) How many trees are possible for this graph? (c) Write the tieset and cutset matrices.
Solution

(a) First, writing the complete incidence matrix 4, such that the sum of all the entries in each column of 4,
is zero, we have

1 3
1 2 3
o -1 1 0
y 200 -1 -1 -1 @ (M
“731-1 0 0 1
401 1 0 1 b
Fig. 5.45

Now, the oriented graph can be drawn with the matrix 4, as shown in Fig. 5.45.
(b) The number of possible trees = |44

0 0 -1

0 -1 1 0 O0]|]-1 0 o 2 -1 0

AAT =0 0 -1 -1 =1|[ 1 -1 of=|-1 3 -1

-1 0 0 0 1/lo -1 o0 0 -1 2
0 -1 1
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2 -1
[a47|= -1 3 —1[=2(6-1)+1(-2)=8
0 -1 2

The number of possible trees = §.
(c) Tieset Matrix (B)
The oriented graph, selected tree and tiesets are shown in Fig. 5.46.

2
18 * 3
3) 6) / 1 2 3 4 5
/" Links: {1,2} 1M1 0 0 -1 1
@™ 1@ @) Tieset1:(1,4,5) B=2[0 11 -1 0]
N\ Tieset 2: {2, 3, 4}
Fig. 5.46

f-cutset Matrix (Q)
The oriented graph, selected tree and f-cutsets are shown in Fig. 5.47

]
~x ke Twigs: {3, 4, 5}
©) (5),/ t-cutset 3: {3, 2} 12345
K l-cutset 4: {4, 2, 1} 3o =1 1 0 0
» 4) « 3 :
@ ( )/, ) t-cutset 5: {5, 1} 0=4 1 1010
51-1 0 0 0 1
i€
4
Fig. 5.47
|| SETII WO The fundamental cutset matrix of a network is given as follows;
Twigs Links
a c e b d f
1 00 1 01
01 0 011
001 1 11
Draw the oriented graph. ()
Solution No. of links /=h—n+1 A
No.ofnodesn=b—-[+1=6-3+1=4 Twigs: {a. ¢, €)
J-cutsets are written as, Linlgss:. b, d, 1
f-cutsets a: {a, b, f}

f-cutsets ¢: {c, d, [}
f-cutsets e: {e, b, d, [}

The oriented graph is drawn as shown in Fig. 5.48. Fig. 5.48
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|| Example W N Draw the oriented graph of a network with the f-cutset matrix as shown below:

Twigs Links
1 2 3 4 5 6 7
1 000 -1 00
0100 10 1
00 1 0 011
000 1 010
Solution No. oflinks /=b-n+1
No.ofnodesn=b—-I1+1=7-3+1=5
f-cutsets are written as
- 7
f-cutset 1: {1,5} ®) @) &
f-cutset 2: {2, 5,7}
J-outset 3 3,6, 7} (1) ® Twigs: {1,2, 3,4}
f-cutset 4: {4, 6} @ Links: {5, 6,7}
Then oriented graph can be drawn as shown in (6)
Fig. 5.49.
Fig. 5.49

X3l «iRcHHOFF’s VOLTAGE LAW
KVL states that if v is the voltage drop across the k™ branch, then
z Vi = 0
the sum being taken over all the branches in a given loop. If / is the number of loops or f-circuits, then there

will be / number of KVL equations, one for each loop. The KVL equation for the f~circuit or loop ‘I’ can be
written as

b
ijk\/k:() (kzlaz’sl)
k=1

where b, is the elements of the tieset matrix B, b being the number of branches. The set of / KVL
equations can be written in matrix form.

BV, =0
Vi
where Vy = V:Z is a column vector of branch voltages.
v

and B is the fundamental circuit matrix.

XD KIRcHHOFF’S CURRENT LAW
KCL states that if i, is the current in the k™ branch then at a given node
Nir=0

the sum being taken over all the branches incident at a given node. If there are ‘»’ nodes, there will ‘»’ such
equations, one for each node
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b
Z adir ik =0
k=1
so that set of n equations can be written in matrix form.
Aa I, b= 0
iy
i .
where I, = 2 is a column vector of branch currents.
ip
and 4 is the complete incidence matrix.
If one node is taken as reference node or datum node, we can write the Eq. (5.4) as,

Al, =0
where 4 is the incidence matrix of order (n — 1) X b.
We know that A=4,0
Equation (5.5) can be written as
4,01, =0
Premultiplying with 4,7,
A 4,01, =470
101,=0
01,=0

where Q is the f~cutset matrix.

(k=1,2,...,n)

.(5.4)

...(5.5)

M“ RELATION BETWEEN BRANCH VOLTAGE MATRIX V,, TWIG

VOLTAGE MATRIX V, AND NODE VOLTAGE MATRIX V_

We know that BV, =0
v
[B,:B]|--|=0
14
BV, +B V=0
BV =-B7V,

Premultiplying with B;” g
Vi=-B'BV,=~(B'B)V,
[V
Now vy =|--
Vi

v U

—(Bf{ét)r/z —(B.I:‘B,)

...(5.6)
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Also,

Circuit Theory and Networks—Analysis and Synthesis
%=0"V,
0=47"4
0" = AT (4 = ATl

Hence Eq. (5.6) can be written as

V= A (Al Vo= AT [Ty = AT,

where v, = (A,T )’1 V; is node voltage matrix.

“ RELATION BETWEEN BRANCH CURRENT MATRIX /, AND LOOP

CURRENT MATRIX /,

We know that, 41, =0

I
(4 A4]]...|=0
I
Al +A41,=0
Al =-4 1

Premultiplying with A4, h

Now

L==A"'4 1 =—(4"4) 1,

L] -4t | [ =4 4)
Iy =|...]= = -1

I I U
I,=B"1

IEET3|| NETWORK EQUILIBRIUM EQUATION
5.12.1 KVL Equation

1.

If there is a voltage source v, in the branch & having impedance z, and carrying current i,, as shown in
Fig. 5.50,

. Zy Vsk
Vi = Zp L — Vgi (k=1,2,...,b) g — O 3

In matrix form, i, — (Y
Ve =2y Iy =V | Yie |

where Z, is the branch impedance matrix, /, is the column vector Fig. 5.50 Circuit diagram
of branch currents and V' is the column vector of source voltages.
Hence, KVL equation can be written as
BV, =0
B(Zy Iy =V;)=0
BZ, 1, = BV,
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Also, I,=8"I
BZ, B" I, = BV,
ZI;=E
where E = BV,
and Z=BZ,B"
The matrix Z is called loop impedance matrix.
2. If there is a voltage source in series with an impedance and Vi |
a current source in parallel with the combination as shown in j Z, '
i kt -
Fig. 5.51, o ) o
i = (Vi +vet) ; Vsk
k= Lk
zk SR
Vi = Zk I T Zk Lk — Vk s
In matrix form, . L
Vo=27, 1o+ 2, I, -V, Fig. 5.51 Circuit diagram

KVL equation is BV} = 0.
BVy=B(Zy Iy +Zy I, —V,)=0
BZ,1,=BV,—BZ I,
Now I,=B"I
BZyB"I,=BV,-BZ, I,
Z1,=BV,—BZy I,

where Z = BZ, B is the loop impedance matrix. This is the generalised KVL equation.

5.12.2 KCL Equation

7
1. If the branch k contains an input current source i, and an < y: I
admittance y, as shown in Fig. 5.52, okt — -
iA’:kak_i.vk (k=1,2,...,b)
In the matrix form, ()
N
[I):YbVI)_Is i

where Y, is the branch admittance matrix.

Hence KCL equation is given by, Fig. 5.52 Circuit diagram

Al =0
A,V —1,)=0
AY,V, = Al
Also v, =ATV,
AY, A"V, = Al
YV, =1
where Y=AY, A"

and I=A4I;
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The matrix Y is called admittance matrix. This is the KCL equation in matrix form.
In terms of f~cutset matrix, the KCL equation can be written as

Q1,=0
Q(Yb Vb _Vs) =0
QYb VI} = Q[Y
Also Vy=0"7,

0Y,0"V, =01,

YV, =1
where Y=0Y,0"
and I1=QI;

This is the KCL equation in matrix form.
2. If there is a voltage source in series with an impedance and a |

Vie
ct'lrrent source in parallel with the combination as shown in s Zy N\ -
Fig. 5.53, ° L N
1 Vsk

. . ik
Ue = Yk Vi + Yk Vs — Lsk °
Fig. 5.53 Circuit diagram

In matrix form,
lb :Ybe"_Ysz_[s
KCL equation will be given by,
Alb =0
A,V +Y, V,—1,)=0
AYyVy = Al =AY,V
Also Vy=4"V,
AY, ATV, = AI,— AY, V,
YV,=Al,— AV, V;

where ¥ = A4Y, A" is the node admittance matrix. This is a generalised KCL equation.
In terms of f-cutset matrix, the KCL equation can be written as

01,=0
Q(Yb Vb +Yb Vv _IS)=O
QYb Vb = le _QYb Vs

Also Vv, =0V,
0Y, 0"V, =01,-0Y,V,
YV, =0QI,-0Y,V,

This is a generalised KCL equation.
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Note

(i) For a graph having b branches, the branch impedance matrix Z, is a square matrix of order b, having
branch impedances as diagonal elements and the mutual impedances between the branches as non-
diagonal elements. For a network having no mutual impedances, only diagonal elements will be present
in the branch impedance matrix.

(ii) For a graph having b branches, the branch admittance matrix Y, is a square matrix of order b, having
branch admittances as diagonal elements and the mutual admittances between the branches as non-
diagonal elements. For a network having no mutual admittances, only diagonal elements will be present
in the branch admittance matrix.

(iii) For a graph having b branches, the voltage source matrix or vector V| is a rectangular matrix of order
b x 1, having the value of the voltage source in the particular branch. The value will be positive if there
is a voltage rise in the direction of current and will be negative if there is a voltage fall in the direction
of current.

(iv) For a graph having b branches, the current source matrix or vector /_is a rectangular matrix of order
b x 1, having the value of the current source in the particular parallel branch. The value will be positive if
the direction of the current source and the corresponding parallel branch current are not same. The value
will be negative if the directions of the current source and corresponding parallel branch current are same.

|| SETII W 7rite the incidence matrix of the graph of Fig. 5.54 and express branch voltages in

terms of node voltages. Write the tieset matrix and express branch currents in terms of loop currents.

6B 2 (6)
1 3
2
™) (2 @ 7
5 4)
Fig. 5.54
Solution
(a) Incidence Matrix
1 2 3 4 5 6 7 8
111 0 0 O 1 0 O 1
200 1 0 0 -1 1 0
A, =31 0 0 1 0 0 -1 1 -1
40 0 0 1 0 0 -1
5{-1 -1 -1 -1 0 O 0 O

The incidence matrix is obtained by eliminating any one row.

1000 1 0 0 1
Y= 0100 -1 1 0 O
0010 0 -1 1 -1
0001 0 0-1 0
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(b) Branch voltages in terms of node voltages
V,=A"V,

n] [t |
Vs
A
Vs
Vs
Ve
V7

Vs ]

SO = O
SR

S O - O O

S

— e —
»‘—AOO»—AOOO

PR

£

ﬁ
—_—0 O = O O O
OO»—A»'—A

|

LO

(c) Tieset Matrix
Selected tree and tiesets are shown in Fig. 5.55.

————— LGN -
e - 12 4 56 78
. | Links: {1, 4, 6,8} M1 =1 00 =10 0 0
“ Tieset 1: {1, 2, 5}
AN @) (7 Tieset4:{4,3,7} p=40 0 -1 10010
(1) ™ (3) Tieset 6: {6, 2, 3} 6|0 -1 1.0 0 1 0 O
Tieset 8: {8, 2, 3, 5} 80 -1 1.0 -1 0 0 1
4
5 (4)
Fig. 5.55
(d) Branch currents in terms of loop currents
I,=BT1,
(n] [ 1 0 0 0]
I, -1 0 -1 -1
I3 0 -1 1 1| 1y
]4 _ 0 1 0 0 114
s |-1 0 o -1,
Il 1o o 1 o
I 0 1 0 0
1Is] LO 0 0 1]

|| Example WA Branch current and loop-current relationships are expressed in matrix form as

(1 [ 1 0 o0 —1]
I 0 1 0 -1
I 0 1 1 oflZ
Lo 1 1 off,
Is| |1 -1 0 0f17,
I 0 0 -1 0}1,
I -1 0 0 0
L] [0 0 o0 1

Draw the oriented graph.
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Solution Writing the equation in matrix form,

I,=B"1,
[1 0 0 -1
0 1 0 -1 1 2 34 5 7 8
0O 1 1 0 1 000 1 0 -10
T 0O 1 1 0 o, |0 1T 1.1 -1 0 00
B = 1 -1 0 O ~B= 0O 0 11 0 -1 00
0O 0 -1 0 -1 -1 0 0 0 0 0 1 (8)
-1 0 0 O
0 0 0 1 1 (1 2 (2) 3
) y (5) 3)
From tieset matrix,
No. of links =4 4
No of branches b= 8 ° @ (6)
Noofnodes n=b-[/+1=8-4+1=1
The oriented graph is shown in Fig. 5.56. Fig. 5.56

|| ETII MWW For the given graph shown in Fig. 5.57, write down the basic tieset matrix and

taking a tree of branches 2, 4, 5, write down KVL equations from the matrix.

(2 2

M @)

®)
Fig. 5.57

Solution  Selecting branches 2, 4, and 5 as the tree as shown in Fig. 5.58,

12 3 456
Links: {1, 3, 6} Hr oo -110
Tieset 1: {1, 5, 4} B=3{0 1 1 01 0
Tieset 3: {3, 2, 5} 6lo 1 0 =1 1 1

Tieset 6: {6, 2, 5, 4}
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The KVL equation in matrix form is given by

BV, =0
"
100 -110 ?
01 1 010 ; =0
_ 4
010 -111 %
Ve
Vi—Vy+Vs=0
Vy+Vs+Vs=0

Vo =V4+Vs+Vs=0

|| SETNIIIWEN  Obrain the f-cutset matrix for the graph shown in Fig. 5.59 taking 1, 2, 3, 4 as tree

branches. Write down the network equations from the f-cutset matrix.

Solution Twigs:  {1,2,3,4} 12345 67 8
f-cutset 1:{1,6,7, 8} Ifroo0o0o0 1 -1 1
f-cutset2: {2,5,6,7, 8} Q_2O 100 1 -1 1 -1
fecutset 3 : {3, 5,6} 300 101 -1 0 0
f-cutset4 : {4,6,7} 40 0 0 1.0 1 -1 O

The KCL equation in matrix form is given by

01,=0

o

I
10000 1 -1 1|4
01 00 1 =1 1 —1{I4 -0
00 10 1 -1 0 O0}fIs
000 10 1 -1 0fffFs

I

75 ]
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L+lg—I:+1g=0
Li+Is—Ig+1;—1Ig=0
Ii+1s—1=0
Iy+1g—1;=0

|| SEII WL  The reduced incidence matrix of a graph is given as

1 0 0 0 -1
A=|-1 -1 -1 0 O
0o 0 1 -1 0

Express branch voltages in terms of node voltages.

Solution  For the given graph,
No of branches b =5
No ofnodes n=3
Branch voltages can be expressed in terms of node voltages by

V=4V,
" 1 -1 0
Vv, 0 -1 0flV,
il=l 0 =1 1|V,
V4 0 0 =1{|V,
Vs -1 0 0
N=Vy =V
Vz = _Vnz
V3 =- Vnz + an
Vo=~V
V5 = —an
||m The fundamental cutset matrix of a graph is given as
-1 1 0 0 -1
0=/0 0 1 0 -1
1 001 0
Express branch voltages in terms of twig voltages.
Solution  For the given graph,
No. of branches b =5
No. of twigs =3
Branch voltages are expressed in terms of twig voltages by
Vy=0"",
" -1 0 1
123 1 0 0|l
A= 1 o||w,
V4 0 1|V,
Vs -1 -1 0

5.33
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==V, +V,
Vo=V,
Vs=V,
Vo=V,
Vs ==V, =V,

|m For this network shown in Fig. 5.60, write down the tieset matrix and obtain the
network equilibrium equation in matrix form using KVL. Calculate the loop currents and branch currents.

1Q

2V 20 20

1Q

Fig. 5.60

Solution The oriented graph and one of its trees are shown in Fig. 5.61.

/ N\ Links: {1,2, 3}
// \\ Tieset 1: {1, 4, 5} 123 4 5
(1) (2) My @ () Tieset 2: {2, 4, 6} i1 0 o 1 0
S/ N\, Tieset 3: {3, 5, 6} B=2l0 1 0 -1 0 -1
6) B
2 © N 310 0 1 0 -1 1
3 @ 43 @) 4
Fig. 5.61
The KVL equation in matrix form is given by
BZy,B' I, =BV, -BZ, 1,
Here, I, =0,
BZ, B' I, = BV,
1 00 0 0O 1 0 0 2
010 0 00 0o 1 0 0
oo 1000 + [0 o 1] |0
Z=lo00 20 0o =1 21 of"o
00 0 0 20 1 0 -1 0
00 0 0 0 2 0 -1 1 0
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[1 0 0 0 00
1001108(1)(1)888[100220
BZ,={0 1 0 -1 _1000200:L010_20_2
00 1 0 -1 1j; g g o4l 001 022
000 0 02
1 0 0
[100220‘83? 5 2 =2
BZ,,BT:[OIO—Z e | Y e e
00 1 02 2ff o I [2-2 5
0 -1 1
[2
100 1 1 82
BV,={0 1.0 -1 0 -1 1=]0
-1 1
0 0 1 00
K

The KVL equation in matrix form is given by

s 2 206 [2
2 5 =2|1,|=|0
2 -2 5|15, |0

Solving this matrix equation,

h=Sh
7
4
I]z:7A
4
[13=;A
The branch currents are given by
I, =B"I,
_g_
7
I 1 0 0f6 4
L| 1o 1 of7 Z
L] |0 0 1 ﬂ =
L7l -1 o777 ;
Is I 0 -1|4 -
| o -1 1|7 ;
7
kO;
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||m For the network shown in Fig. 5.62, write down the tieset matrix and obtain the
network equilibrium equation in matrix form using KVL. Calculate loop currents.

20 @SV
40 ) 60Q

3

60Q D 20 D 40
Iy I,

12V 6V
Fig. 5.62
Solution  The oriented graph and its selected tree are shown in Fig. 5.63.
(3) (3)
,”'—»"‘\
A Links: {1, 2, 3}
! 8 1\ (4) (5) //3 Tieset 1: {1, 4, 6} 1 2 3 4 6
\\ J/ Tieset 2: {2, 5, 6}
N Tieset 3: {3, 5, 4} 11 00 0 1
S @ mX Y©rE B=20 10 0 1 -1
310 0 1 =1 —1
4 4
Fig. 5.63
The KVL equation in matrix form is given by
BZ,B"I,=BV,—BZ, 1,
Here, I, =0,
BZ, B'I, = BV,
(6 0 0 0 00 1 0 0 12
040000 0 1 0 -6
oo 2000 |0 0 1| _[-8
Z=lo 0040071 0o %70
000060 0 1 -1 0
00 0 002 1 -1 0 0
[6 0 0 0 00
(100 1 0 1832888 6 00 4 0 2
BZ,={0 1 0 Pl 00 40 0lF|0 40 0 6 2
00 1 -1 -1 0" 00 o6 ol LOO24 -6 0
000 0 02
1 0 0
6 00 4 0 2ﬁg 01 (i 12 2 —4
BZ,B'={0 4 0 0 6 -2 Lo g7l 12 -6
002 4 -6 0f | | |4 612
1 -1 0
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12
6
roo oo 17l 12
BV,=[0 10 0 1 -1 0=L—6
00 1 -1 -1 o L8
0

Hence, the KVL equation in matrix form is given by

12 =2 -4][1,] [12

-2 12 6|1, |=|-6
-4 -6 12| 1, -8
Solving this matrix equation,
I, = 0.55A
1, = —0.866A
I, =-0.916A

|| SCI A CRWLW  For the network shown in Fig. 5.64, draw the oriented graph. Write the tieset
schedule and hence obtain the equilibrium equation on loop basis. Calculate the values of branch currents
and branch voltages.

1A 1v

1Q 1Q
1Q 1Q
Fig. 5.64

Solution  The oriented graph and one of its trees are shown in Fig. 5.65.

Links: {1, 2, 3}
Tieset 1: {1, 4, 5, 6}
Tieset 2: {2, 4, 5}
Tieset 3: {3, 4}

1 23 45 6

111 0 0 -1 1 -1
B=2(0 1 0 -1 1 0
310 01 1.0 O
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BZ, BT I,

The KVL equation in matrix form is given by

o oo
oS o
o — o
— o O
— —
I e
|
[= el e e = — O
oS oo o — O cn — O
|
coocoococo Il
[ ——
— — —
co—~ococo °F° e < T T
— — — | S
0100000 0_ < Il
r 1
S O oo O ]001_|l.|_. S oo — O O
S — N —
I —_ —_— 1
- o o —— - o o
| 4I_.00 |
]10
——— —_— —
[ (===} [
o o o o — o o
oS — O S — O oS — O
— o o —- o o — o o
L | [ | S — |
1] 1l I
N % N
Q DS Q
N
Q

Hence, the KVL equation in matrix form is given by

Solving this matrix equation,
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The branch currents are given by

I,=B" I, +1,
4]
5
3
I Lo o, -1 5
I 0 1 0| - 0 1
Ll_lo o 1] 2[.] o0
Il -1 =1 1||-= 0 =
Is 1 1ol o 3
Is] -1 0 0 o] [-=
5
!
L 5]
The branch voltages are given by
Vo =2y I, -V
[ 4] r 4]
5 —_——
3
" 10000 0jf=%f 10 3
i o100 00 1o 5
3Z100 1.0 0 0| 4(_|0f_| 1
Val |0 0 0 0 00 5! -1
51 1000 0 1 0ff 5] |0] [_2
Vel 100 0 0 0 1l-%| Lo 5
_l L_%
[ 5] .

||m For the network shown in Fig. 5.66, obtain the loop equation in matrix form.
R1

R, i

Ry

Fig. 5.66

Solution The oriented graph and one of its trees are shown in Fig. 5.67.
1 1

/ (2) \\\ Links: {1, 4} b23 4
| Tieset 1: {1, 2, 3} If1r 110
(1) @ M ‘:‘ 2 } @ fieset 4- {4,2,3y B= 4|:0 11 ]}
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The KVL equation in matrix form is given by

BZ, BT I, =BV, - BZ,1,

(R, 0 0 0 10 v 0
R 0 O .+ |1 1 0 I
7, = B V=1, =
1o o R o 11" lol"™ o
|0 0 0 Ry 0 1 0 0
R 0 0 0
(1 110]l0 R 0 0| [R R Rz O
BZ), = -
011 1Jlo 0o R 0 0 R, Ry Ry
0 0 0 Ry
1 0
r [RR R Ry O]lL 1 R+R +R R +R
BZ,B' = =
0 R, Ry Ry||1 1 Ry,+R; R, +Ri+R,
0 1
14
(1 11 0]{o0 14
BVS_»OIIJO_[O}
0
0
R R R 01| [RI
BZ, I, = =
”“[0 R Ry R ||0]| |RI
0

Hence, the KVL equation in matrix form is given by
R+R+R Ry+Rs 1/] _ V _ R I _ V—-RI
R+ Ry Ro+Rs+R |1, | 0] |R 1] | —RI

|| SETIINWIN  For the network shown in Fig. 5.68, write down the tieset matrix and obtain the

network equilibrium equation in matrix form using KVL.

2A
S,
5Q
5Q j5Q
00
2Q
———j4 Q 2Q
+
0V

Fig. 5.68
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Solution  The oriented graph and its selected tree are shown in Fig. 5.69.

(3) (3)
a ,”__)h“x
1 3 Links: {1, 2, 3}
Tieset 1: {1, 4, 6} 1 23 4 5 6
Tieset 2: {2, 5, 6}
Tieset 3: {3, 5, 4} 1[1 00 1 0 1
M @ B=2l0 1 0 0 1 -1
3[0 01 -1 -1 0
4
Fig. 5.69
The KVL equation in matrix form is given by
BZ, BY I, = BV, - BZ,l,
(20 00 o0 0] 1 0 0 10 0
0200 0 0 0 1 0 0 0
1000 50 0 o .- |0 0 1| 0], |-2
%0005 o ofF 1 o T ol T o
000 0 /5 0 0 1 -1 0 0
0 00 0 0 —j4 1 -1 0 0 0
[2 0 0 0 0 0
(100 1 0 18328 8 8 200 5 0 —j4
BZ,=|0 1 0 0 1—10005 0 0=020 0 j5 j4
0 0 1 -1 -1 00000],5 ol 1005 =5 = 0
000 0 0 —j4
1 0 0
200 5 0—]485?7—;‘4 j4 -5
BZ,B"=[0 2 0 0 j5 j4 Lo 4lF j4 2+ /1 -5
00 5 -5 —j5 0 0 1 -1 -5 —j5 10+ 5
1 -1 0
10
[1 00 1 0 1 g 10
BV,=|0 1.0 0 1 -l ol=]0
[0 01 -1 -1 0 0
0
0
0
, 0
200 5 0 —j4ll 0
BZyI,=|0 2 0 j5 jAll 1= O
00 5 -5 —j5 0 0 -10

o
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Hence, the KCL equation in matrix form is given by

7-j4  j4 -s1[1,] 10 0] [10
j4 2+ =5\, |=| o|-| o|=|o0
-5 —j5 10+5)| 1, 0| |-10]| |10

|| Example 5.27 For the network shown in Fig. 5.70, write down the tieset matrix and obtain the

network equilibrium equation in matrix form using KVL.

j5.66 Q

50 £0°V

Solution  The branch currents are so chosen that they assume the direction out of the dotted terminals.
Because of this choice of current direction, the mutual inductance is positive. The oriented graph and its
selected tree are shown in Fig. 5.71.

/“\
! ‘ Links: {1, 3} 1 23
(1)A®@ @ (MAGY y@E) Tieset1:{1,2}
! ! Tieset 3: {3, 2} B= 1 10
VoS 0 -1 1
‘\‘lll/
2 2
Fig. 5.71
The KVL equation in matrix form is given by
BZ,B'I,=BV,-BZ, I,
Here, I,=0,
BZ,B" I, = BV,
js 0 J5.66 1 0 50£0°
Zy=| 0 3-j4 0 [|;B'=|1 —1l;v,=| 0
j566 0 5+;10 0 1 0
sz [ 5 3_0.4 ]5(‘)66 [ 5 3-j4 566
"o 1 / T j5.66 -3+ j4 5+ 10

5. 66 0 5+;10

pzpr | /5 34 js66 1_?_ 3+71  =3+j9.66
b js.66 =3+j4 s+ 10| | [3+j066 8+ 6
50.£0°
1 50.£0°
S P O Bl

0
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Hence, the KVL equation in matrix form is given by
3+1 =3+79.66 || I; | _[50£0°
=3+ j9.66 8.j6 Il | o

|| SETIIIWER  For the network shown in Fig. 5.72, write down the tieset matrix and obtain the

network equilibrium equation in matrix form using KVL.

3Q A Q
J000
. j;Q\‘ .
50 £45°V D 5 Qf) —-j8Q
- I A
Fig. 5.72

Solution The branch currents are so chosen that they assume the direction out of the dotted terminals.
Because of this choice of current direction, the mutual inductance is positive. The oriented graph and its
selected tree are shown in Fig. 5.73.

/ | Links: {1, 3} 1 23
1 A®@ @ MA@y yE) Tieset1:{1,2)
| i Tesetz:{32 p_|!1 10
i ! 0 -1 1
\\il'l’
2 2
Fig. 5.73

The KVL equation in matrix form is given by
BZ,B"I,=BV,—BZ, 1,

Here, 1520’
BZ, B I, = BV,
344 j3 0 1 0 50.£45°
Zy=| j3 j5 0 |;:B"={1 -1|;,=| 0
0 0 —8 0 1 0
R} | R A I VA BT S
BZ, = 0 -1 1 j3 j5 0 |= _3 s _ig
3+7 g8 o]l O r3eas -8
BZbBT=[ A } 1 -1 =[ / f.]
—J3 =55 Rl -Jj8 -J3
[l 10 504045 502450
STlo -1 1 B 0

0
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Hence, the KVL equation in matrix form is given by,
3+715 58| 1, | _|50£45°
-8 =3I | 0

|| S ET[INWAR  For the network shown in Fig. 5.74, obtain branch voltages using KCL equation on

node basis.

8 Q

3Q 4Q
4Q 50

Fig. 5.74

Solution  The oriented graph is shown in Fig. 5.75.

1 () 2
@)
(1 (5)
3
Fig. 5.75
The complete incidence matrix for the graph is
1 2 3 45
1M1 -1 1 0 0
A,=2{ 0 0 -1 1
3-1t 1 0 -1 -

Eliminating the last row from the matrix 4, we get the incidence matrix 4.

1 2 3 435
T -1 10 0
A= 2|:0 0 -1 1 1:|
The KCL equation in matrix form is given by

AY, ATV, = Al — AY, V,
I,=0,
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Here, AY, ATV, =—av,V,
Lo o0 0
4
1
00— 0 0 0 1 0 0
31 -1 0 12
Yo=l0 0 = 0 ol;4"=| 1 -1|;7,=| 0
8] 0 1 24
000 — 0 0 1 0
4
1
000 0 —
L 5]
Lo 00 0
4
o Lo 0 o0
3 1 1
[t -1t 100 1 la 3
AYb_[O 0_111}00§00—
| 0 0
00 0 — 0
4
1
000 0 —
L 5]
_ 1 0
RN I
T— —] | =
AL A" = 11111 1 23
0 0 —— — —|| 0o 1 0
L 8454_0l 8 40
- )
D1y ol 0
0 0 —— — —||24 :
i 8 4 5|,

Hence, the KCL equation in matrix form is given by
17 1

-

& 40

e e}

Solving this matrix equation,
V, =3.96V
Vi, =—9.57V

ENI

5.45

D | =
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Branch voltages are given by,

vy =4,

" 1 0 3.96
Vs -1 0 -3.96
i =| 1| 3% s
Vs 0 1 ’ -9.57
Vs 0 1 -9.57

|| SETOII NN For the network shown in Fig. 5.76, write down the f-cutset matrix and obtain the

network equilibrium equation in matrix form using KCL.
1Q 1Q

oV

2A

Fig. 5.76

Solution  The oriented graph and its selected tree are shown in Fig. 5.77.

1 B 2 Loe
//’*‘ >2 Twigs: {2, 4}
/ t-cutset 2: {2, 1, 3} 1 2 3 4
f-cutset 4: {4, 3}
(1) (4) (1) (4) Q_2 -1 1 10
. 400 0 -1 1
3

3
Fig. 5.77

Pl

The KCL equation in matrix form is given by
0%, 0"V, =01, - 0%V,

’1000} 0 10 -1 0
0100 0 o 1 0
"Zlo o1 o Tofl T o€ 1 -1
0 0 0 1 2 0 0 1
(1 0 0 0
(=11 1 00 1 0 0 -11 10
QY”‘_00—1 1_0010‘[00—1 1]
[0 0 0 1
-1 0
r -1 1 1ol 1t ol [3 -1
%0 N O T 1 | N | _[71 z]
0
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-1 1 1 0ff0 -10
QY”V-“[O 0 -1 1] 0 ‘[ o]
0
Hence, the KCL equation is given by
3 1|V |_|0]_[-10]_]10
-1 20|V, | |2 0| |2
Solving this matrix equation,

V, =44V
V, =32V

||m Calculate the twig voltages using KCL equation for the network shown in Fig. 5.78.
2Q

5Q

910V

Fig. 5.78

Solution  The oriented graph and one of the trees are shown in Fig. 5.79.

Twigs: {1,2, 3}
tcutset 1: {1, 4, 5, 6}

f-cutset 2: {2, 4, 5} 123 4 5 6
f-cutset 3: {3, 4, 6} i1 0 0 -1 -1 1
0=2/0 1 0 -1 -1 0

310 01 -1 0 1

Fig. 5.79

The network equilibrium equation on node basis can be written as
0Y, 0"V, =0l -0V, V;

Here, I,=0,
0Y, 0"V, =-0%, 1,



5.48 Circuit Theory and Networks—Analysis and Synthesis

02 0 0O 0 0 O 1 0 0 910
002 0 0 0 O 0O 1 0 0
10 002 O 0 O, |0 O 1., | O
DElo 0 001 o0 o2 o o a7 o
0O 0 0 0 o 0 -1 -1 0 0
O 0O 0 0 0 01 1 0 1 0
02 0 0 0 0 O]
100 -1 -1 1 8 0'5 Og g 8 8 02 0 0 —-0.1 -05 0.1
oY, =0 1 0 -1 -1 O 0 0 ‘O ol o ol 0 02 0 -01 -05
001 -1 01 0 0 0 0 05 0 0 0 02 -01 0 0.1
0 0 0 0 0 0.1]
1 0 0
02 0 0 —-01 -05 0.1 8 (; (; 09 06 02
QYbQT: 0 02 0 01 -05 0 IR b 06 08 0.1
0 0 02 -0.1 0 0.1 02 0.1 03
-1 -1 0
1 0 1
[910
02 0 0 —-01 -05 0.1 g 182
onVv,=( 0 02 0 -01 =05 0 ol” 0
0 0 02 -0.1 0 0.1 0 0
| 0
Hence, KCL equation can be written as,
09 06 02} v, -182
0.6 0.8 0.1)[v,|=]| O
02 0.1 03]|v, 0
Solving this matrix equation,
v, =—460V
v, =320V
v, =200V

||m For the network shown in Fig. 5.80, obtain equilibrium equation on node basis.

50

10A<D 50 50 100

Fig. 5.80
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Solution  The oriented graph and its selected tree are shown in Fig. 5.81.

(2 )
2 Twigs: {1,3}

cutset 1: {1, 2) 1234
fcutset 3: {3, 2, 4} _
(1) @) Q:11 100
30 -1 1 1
3
Fig. 5.81
The KCL equation in matrix form is given by
0Y, 0"V, =01,-0Y,V,
Here, Vi =0,
0Y, 0"V, =01,
[5 0 0 0] 1 0 -10
050 0| 7 [-1 -1 0
— . - .] —
D=6 05 of? 0o 1" 0
10 0 0 10] 0 1 0
500 0
[1 -1 0 0]l0 5 0 0] [5 -5 0 0
QYb_»O -1 1 1f[0 0 5 0 [0 -5 5 10}
0 0 0 10
1 0
r [5 -5 0 o]-1 -1 _[t0 5
oh o 10 =55 10] 0 1‘[5 20}
0 1
-10
[1 =1 0 o] of [-10
Q[f‘_o -1 1 1} 0 ‘[ 0]
0

Hence, KCL equation will be written as

i

Solving this matrix equation,

||m For the network shown in Fig. 5.82, write down the f-cutset matrix and obtain the
network equilibrium equation in matrix form using KCL and calculate v.



5.50 Circuit Theory and Networks—Analysis and Synthesis

2v

_<_,>_

2Q

2Q

2V 2Q 2Q

<

Fig. 5.82

Solution The oriented graph and its selected tree are shown in Fig. 5.83
Since voltage v is to be determined, Branch 2 is chosen as twig,

1 {4) 2 1 (4) 2
Twigs: {2, 4}
f-cutset 2: {2, 1, 3} 12 34
(3) f-cutset 3: {4, 3} 1 1 10
™) Q:[ 00 -1 1]
3
Fig. 5.83
The KCL equation in matrix form is given by
0Y,0"V,=01,-0YV,
05 0 0 0 -1 0] 0 2
loos o ol , |1 o, | o, _|o
Y= 0 0 05 O’Q 1 —1’[‘_ O’V“_O
0 0 0 0.5 0 1] —2v 0
0.5 0 0 0
or,=["1 1 10005 0 0] [-05 05 05 0
710 0 -1 1 0 0 05 0 0 0 -0.5 0.5
0 0 0 05]
-1 0
r [-05 05 05 0] 1 o [ 15 -05
%0 ’[ 0 0 —05 0‘5] 1 -1 _[—045 1]
0 1
0
-1 1 10 0 0
Ql“‘[o 0 -1 1] 0 ‘[—h}
—2v
2
-0.5 05 05 01/0 -1
QY”V"‘[ 0 0 —05 0.5} 0 [0]
0

1
QIS _QYsz :[—ZV}



Hence, the KCL equation can be written as

1.5 =0.5||v, |_ 1
-0.5 Hlv, | [-2v
From Fig. 5.82, v;,, =v

Solving this matrix equation,

v, =044V
v, =0.66V
v=v, =044V

5.12 Network Equilibrium Equation
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|| SETNII LN For the network shown in Fig. 5.84, write down the f-cutset matrix and obtain the

network equilibrium equation in matrix form using KCL and calculate v.

40
50 05A
+ v -
1V<‘D 40 20
Fig. 5.84

Solution The voltage and current sources are converted into accompanied sources by source—shifting
method as shown in Fig. 5.85.

4Q

+ v —
1v<f> 0.5A
1v<f> 40Q 20Q

Fig. 5.85
The oriented graph and its selected tree are shown in Fig. 5.86.

Twigs: {1,2}
\ t-cutset 1: {1, 4}
v f-cutset 2: {2, 3}
Y@

Fig. 5.86

05A

1 2 3 4

1 0 0 -1
01 -1 0

Q
Il
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The KCL equation in the matrix form is given by

0Y,0"V,=01,-0Y,V,

(025 0 0 0 [1 0 0
o o5 o of |0 1 | o
=10 0 025 o P2 o cif BT 0s
0 0 0 05 -1 0] -0.5
025 0 0 0]
Qy_”l 0 0 -1]l 0 05 0 0] [025 0
PZlo1 -1 off 0 0 025 0| |0 05
0 0 0 05]
1 0
r [025 0 0o -05] 0 1| [075 o0
on 0 1o 05 -025 0 ] 0 -1 ‘[ 0 0.75}
-1 0
0
1 0 0 ~-1]] 0 [ 05
Q[“‘[o 1 -1 0] 0.5 ‘_—0.5]
-0.5
1
025 0 0 -05]|1]| _[025
QY”K“[ 0 05 -025 0 [0 ‘[0,5}
0
QIS—QYbVﬁ[O'_zf]

Hence, the KCL equation can be written as
075 0 |[v, | _|0.25
0 075[|v,| [ -1

v, =033V
v, =—133V

Solving this matrix equation,

From Fig. 5.85, v=I+v, =-033V

0
-0.25

-0.5

0

]
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5.53

Exercises

5.1 For the networks shown in Fig. 5.87-5.90,
write the incidence matrix, tieset matrix and
f-cutset matrix.

(1) Ry c R, Ly
—
R,
Ly Fa
"4
Fig. 5.87
(i1) L
o0
c R
!
I1 CP R2 V2
Fig. 5.88
(ii1)
1Q
2Q
1Q
2Q 20 A 2Q 1Q
0V
Fig. 5.89
(iv) < )’
R, c
l_
L
+ 1
V(‘) Ly
Ry
Fig. 5.90

5.2 For the graph shown in Fig. 5.91, write the
incidence matrix, tieset matrix and f-cutset
matrix.

-
IN
N

Fig. 5.91

5.3 The incidence matrix is given as follows:

Branches —
1 2 3 4 5 6 7 8
-1 -1 0 0 0 0 1 O
0O 1 1 0 10 00
0 0 -1 -1 0 100
1 0 O 1 0 0 0 1

Draw oriented graph and write tieset matrix.
5.4 The incidence matrix is given below:

Branches —
1 2 3 4 5 6 7 8 9 10
o o0 1 1 1 1 O 1 0 O
o -1t -1 0 0 O -1 0 0 -1
-1 1 0 0 0 0 0 -1 -1 1
1 0 0 0 -1 -1 1 0 0 O

Draw the oriented graph.

5.5 For the network shown in Fig. 5.92, draw the
oriented graph and obtain the tieset matrix.
Use this matrix to calculate the current i.

i 1Q 2Q
2Q J‘1V
1Q
2V
—‘7 30 1Q
Fig. 5.92

[0.91 A]
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5.6 Using the principles of network topology,

write the loop/node equation in matrix form
for the network shown in Fig. 5.93.

Objective-Type Questions

R1
R iy
T
9 <—> Ry
RB

5.1

5.2

53

5.4

The number of independent loops for a
network with # nodes and b branches is

(a n-1

(b) b—n

(¢) b—n+1

(d) independent of the number of nodes

A network has 7 nodes and 5 independent
loops. The number of branched in the network
is

(a) 13 (b)y 12

(c) 11 (d) 10

Identify which of the following is NOT a tree
of the graph shown in Fig. 5.94.

Fig. 5.94
(a) begh (b) defg
(c) adfg (d) aegh

The minimum number of equations required
to analyze the circuit shown in Fig. 5.95 is
c C

R R

Fig. 5.93
(@ 3 (b) 4
© 6 @ 7

5.5 Consider the network graph shown in Fig.

5.6

5.96.

%

Fig. 5.96
Which one of the following is NOT a tree of

@ j_I\ (b) W
© X S @ T
Figure 5.97 below shows a network and its

graph is drawn aside. A proper tree chosen for
analyzing the network will contain the edges.

Fig. 5.97

(a) ab, bc, ad
(¢) ab, bd, ca?

this graph?

(b) ab, be, ca
(d) ac, bd, ad



5.7 The graph of an electrical network has » nodes
and b branches. The number of links with
respect to the choice of a tree is given by
(a b—n+1 (b)y b+n
(c) n—b+1 (d n-2b-1.

In the graph shown in Fig. 5.98, one possible
tree is formed by the branches 4, 5, 6, 7. Then
one possible fundamental cutset is

5.8

8
6 7
1 2 5 4
3
Fig. 5.98
(@ 1,2,3,8 (b) 1,2,5,6
() 1,5,6,8 (d 1,2,3,7,8

5.9 Which one of the following represents the

total number of trees in the graph given in

Fig. 5.99?

5.55

Answers to Objective-Type Questions

(1 (5)

Fig. 5.99
(a) 4 b C
() 5 d 8

5.10 Which one of the following is a cutset of the
graph shown in Fig. 5.100?

(©)

Fig. 5.100
(a) 1,2,3and4 (b) 2,3,4and6
(c) 1,4,5and 6 (d 1,2,4and>5

Answers to Objective-Type Questions

5.1. (c)
5.6. (d)

5.2. (c)
5.7. (a)

53. (c)
5.8. (d)

5.4. (b)
59. (d)

5.5. (b)
5.10. (d)






Time Domain Analysis

of RLC Circuits

IEEW| nTrRODUCTION

Whenever a network containing energy storage elements such as inductor or capacitor is switched from one
condition to another, either by change in applied source or change in network elements, the response current
and voltage change from one state to the other state. The time taken to change from an initial steady state
to the final steady state is known as the transient period. This response is known as transient response or
transients. The response of the network after it attains a final steady value is independent of time and is called
the steady-state response. The complete response of the network is determined with the help of a differential
equation.

IEZH| INITIAL CONDITIONS

In solving the differential equations in the network, we get some arbitary constant. Initial conditions are
used to determine these arbitrary constants. It helps us to know the behaviour of elements at the instant of
switching.

To differentiate between the time immediately before and immediately after the switching, the signs ‘-’
and ‘4’ are used. The conditions existing just before switching are denoted as i (0), v (0"), etc. Conditions
just after switching are denoted as i (0*), v (0%).

Sometimes conditions at 7 = o are used in the evaluation of arbitrary constants. These are known as final
conditions.

In solving the problems for initial conditions in the network, we divide the time period in the following
ways:

1. Just before switching (from ¢ =—o fo = 0")
2. Just after switching (at = 0%)
3. After switching (for ¢ > 0)

If the network remains in one condition for a long time without any switching action, it is said to be under
steady-state condition.

1. Initial Conditions for the Resistor For a resistor, current and voltage are related by v(¢) = Ri(¢). The
current through a resistor will change instantaneously if the voltage changes instantaneously. Similarly, the
voltage will change instantaneously if the current changes instantaneously.
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2. Initial Conditions for the Inductor  For an inductor, current and voltage are related by,
di
dt
Voltage across the inductor is proportional to the rate of change of current. It is impossible to change
the current through an inductor by a finite amount in zero time. This requires an infinite voltage across the

inductor. An inductor does not allow an abrupt change in the current through it.
The current through the inductor is given by,

w(t)=L

1 t
i(t) = — [ v(t)dt +i(0)
L
0
where i(0) is the initial current through the inductor.
If there is no current flowing through the inductor at # = 07, the inductor will act as an open circuit at 7= 0".
If a current of value 7, flows through the inductor at # = 0, the inductor can be regarded as a current source
of [, ampere at t = 0",

3. Initial Conditions for the Capacitor For the capacitor, current and voltage are related by,
dv(t)
dt

Current through a capacitor is proportional to the rate of change of voltage. It is impossible to change
the voltage across a capacitor by a finite amount in zero time. This requires an infinite current through the
capacitor. A capacitor does not allow an abrupt change in voltage across it.

The voltage across the capacitor is given by,

i(ty=C

wn:éﬁ@m+wm
0

where v(0) is the initial voltage across the capacitor.

If there is no voltage across the capacitor at # = 0, the capacitor will act as a short circuit at 7 = 0*. If the
capacitor is charged to a voltage ¥ at £ = 0, it can be regarded as a voltage source of V volt at = 0*. These
conditions are summarized in Fig. 6.1.

Element with initial conditions Equivalent circuit at t= 0*
R R
o o) o e}
L ocC
o H00 o] o 0O
(o
[ SC
o i o) o o}
I
lo /O\
o 000 o o C/ o)
Vo V
0
o = ) o @ o

Fig. 6.1 [nitial conditions



6.2 Initial Conditions 6.3

Similarly, we can draw the chart for final conditions as shown in Fig. 6.2

Element with initial conditions Equivalent circuit at t = e

R R

o o) o o)
L

o 00 o) o SC o]
C

o [ ) o 0oC 0

SC

lo

o >—00 o) o——— ———o0
Vo o : lo

o = o o @ ocC o

Fig. 6.2 Final conditions
4. Procedure for Evaluating Initial Conditions

(a) Draw the equivalent network at 7= 0. Before switching action takes place, i.e., for f=—oto t =0, the
network is under steady-state conditions. Hence, find the current flowing through the inductors 7, (0)
and voltage across the capacitor v (07).

(b) Draw the equivalent network at ¢ = 07, i.e., immediately after switching. Replace all the inductors
with open circuits or with current sources 7,(0*) and replace all capacitors by short circuits or voltage
sources v, (0). Resistors are kept as it is in the network.

(c) Initial voltages or currents in the network are determined from the equivalent network at # = 0.

. . 2
nitial conditions, 1.e., — ,— — — are determine writing 1ntegro-
4 Initial diti . a'lo+ dvo+ 0110+a’vo+ 4 ined by iting integ
dt dt dr’ dr?

differential equations for the network for 7 > 0, i.e., after the switching action by making use of initial
condition.

|| Example (W 71 the given network of Fig. 6.3, the switch is closed at t = 0. With zero current in the
d. d2 .

inductor, find i, & and ZL are =0

dt dt’

O>( 10Q
O

100V = D 1H
itt)

Solution
At t =0, no current flows through the inductor.

i(07)=0
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At t =07, the network is shown in Fig. 6.4. 100
At t=07", the inductor acts as an open circuit. l
100V —
i(0°)=0 i(0) i
For ¢ >0, the network is shown in Fig. 6.5. Fig. 6.4
Writing the KVL equation for ¢ > 0, 100
oodi .
100-10i=1--=0 ey D o
i(t)
di . .
—=100-10i ...(i})
dt Fig. 6.5
At t=0", %(0*):100—10%0*):100—10(0):100A/s
Differentiating Eq. (ii),
2.
di__ ol
dr* dt
2. .
At =0, d—z’(o+)=—10ﬂ(0+)=—10(100)=—1000 Als?
dt dt

” Example WA [n the network of Fig. 6.6, the switch is closed at t = 0. With the capacitor un-

di d’i
charged, find value for i, — and — att = 0.
ged, fi S i P

CA/ 1000 @
O

Fig. 6.6
Solution
At t =07, the capacitor is uncharged.
ve(07)=0
i(07)=0
1000 Q
At t =07, the network is shown in Fig. 6.7.
At t = 0%, the capacitor acts as a short circuit.
e ve(0Y)
Vc(0+):0 100V ( )/D c
i(o*
100
i(0")=——=0.1A
1000

Fig. 6.7



For ¢ >0, the network is shown in Fig. 6.8.
Writing the KVL equation for > 0,

jidtzO
0

100 —-1000i —

0
Difterentiating Eq. (i),

o-1oooﬂ—106i=o
dt

6.2 Initial Conditions 6.5

1000 Q

100V — 1
.. . /) - 'HF
i(t)

. 6
@__1, ...(ii)
dt 1000
. 1 6 1 6
Att=07, 9oy =10 0ty = =10 0.1y =100 A/
dt 1000 1000
Differentiating Eq. (ii),
dhi_10° di
dr 1000 dt
2. 6 . 6
Atr=0%, gy 210 ey 107 00y =10 Ass2
dr 1000 d 1000

” SETIINIEW 11 the network shown in Fig. 6.9, the switch is closed. Assuming all initial conditions

2.
i i
as zero, find i, — and — att=0".
dt dr

10V — —=10pF
Fig. 6.9
Solution
Att=0,
i(07)=0
ve(07)=0
At t = 0%, the network is shown in Fig. 6.10. 100 o

At t= 0", the inductor acts as an open circuit and
the capacitor acts as a short circuit.

i(07)=0
ve(0*)=0

J ot
10V — I.(0+)> ve(0Y)

Fig. 6.10
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For ¢ > 0, the network is shown in Fig. 6.11. 10Q 1H
Writing the KVL equation for ¢ > 0, 7000
di 1 . — ) - 10uF
10-10i-15-———fiar=0 .G Y itt)
dr 10x107°

At1=0%, 10—101‘(0*)—%(0*)—0:0
di
Z(07)=10A/s
dt( )

Differentiating Eq. (i),

di d?i 1
Att=0", 0-10—(0*)—=——(0")———i(0")=0
dt( ) dtz( ) 10_51( )

2.
%(m) =-10x10=—100 A/s>
t

d
|| SCINTACKWN 1 the network shown in Fig. 6.12, at t = 0, the switch is opened. Calculate v, ;‘; and
2
d—; att= 0"
dt

1A /{4 1H 100 Q

Fig. 6.12

Solution At =0, the switch is closed. Hence, no current flows through the inductor.

ir(07)=0
At t= 0%, the network is shown in Fig. 6.13. V()
At t = 0%, the inductor acts as an open circuit. i i (0%)
i (07)=0 1A 100 Q
v(0T)=100x1=100 V T

Fig. 6.13
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For ¢ >0, the network is shown in Fig. 6.14. (1)
Writing the KCL equation for 7 > 0,
t
1H 100 Q
ALY O
100 1y
Differentiating Eq. (1),
Fig. 6.14
L@+v:0 ... (ii)
100 dt
Att=0", %(T):—100v(0+):—100><100:—10000 V/s
Differentiating Eq. (ii),
1 d*v dv
- 4 — =
100 g¢>  dt
2
Att=0", ﬂ(m)=—1ooﬂ(o+)=—100x(—104)=106 V/s?
dr dt
|| SETUTI MWW 11 the given network of Fig. 6.15, the switch is opened at t = 0. Solve for v, % and
dz
7; att=0".
dt
o)
10A #D ?4 1kQ ——1uF
Fig. 6.15
Solution At ¢t = 07, switch is closed. Hence, the voltage v(0%)
across the capacitor is zero. °
V(0 =ve(@)=0 10A 1kQ Ve(0Y)
At t=0%, the network is shown in Fig. 6.16.
At t = 0%, the capacitor acts as a short circuit.
(0T )=ve(07)=0 Fig. 6.16
For ¢ >0, the network is shown in Fig. 6.17. v
Writing the KCL equation for # > 0,
v s 1 ..() 10A 1kQ - 1uF
1000 dt
v(0™) dv

+107°==(0")=10

Atr=0",
1000 dt Fig. 6.17
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@(W):l—oﬁ:lomoﬁ V/s
dt 10~
Differentiating Eq. (1),
2
LQ_HO—GQ:O
1000 dr dr>
1 av d*v
At1=0", —— (0" +107° =—(0")=0
1000 ar " dr> ©%)
2
1
Yoy =e—L_x10x10° =—10x10° V/5*
dt 100010~

d
|| Example 6.6 For the network shown in Fig. 6.18, the switch is closed at t = 0, determine v, j‘;

d’
and 7; att= 0"
dt

T

10A 2Q 1H ——05uF v(t)

Fig. 6.18

Solution At =0, no current flows through the inductor and there is no voltage across the capacitor.

i1(07)=0
v07)=0

At t=0", the network is shown in Fig. 6.19. i

At t = 07, the inductor acts as an open circuit
. L 10A 2Q
and the capacitor acts as a short circuit.

(09 ?

i,(0M)=0
w(0*)=0 Fig. 6.19

For ¢ > 0, the network is shown in Fig. 6.20.
Writing the KCL equation for #> 0,

—0.5uF v(t)

10A 2Q 1H —
t
§+%J‘vdt+0.5><10_6@=10 (@)
f Fig. 6.20
N
Att=0", %+0+0.5x10’6%(0+)=10

@(oﬂ =20x10° V/s
dt
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Differentiating Eq. (i),

2
Ldvvosxi0¢9Y g
2 dt dr?
1 dv d*v
At t=0", — 220N+ v(0T)+0.5x10° =—(0") =0
2a,t( )+v(07) dﬁ( )

d*v + 12 2
?(0 )=-20%x10""V/s

|| Example WA In the network shown in Fig. 6.21, the switch is changed from the position 1 to the

di
position 2 at t = 0, steady condition having reached before switching. Find the values of i, EI« and — at
t=0"

20V —
200 /) 1H
it

Solution At 7= 0, the network attains steady-state condition. 20V ' /D
Hence, the inductor acts as a short circuit. i(07)
. 20
i(0 )=E=2A Fig. 6.22
10Q
At t =07, the network is shown in Fig. 6.23.
At t = 0%, the inductor acts as a current source of 2 A. 20 Q /> oA
i(0Y)=2A i(07)
For ¢ >0, the network is shown in Fig. 6.24. Fig. 6.23
Writing the KVL equation for ¢ > 0,
10Q
—201’—101’—1&:0 (D)
dt
i 20Q /D 2A
Atr=0%,  —=30i(0")=2(0")=0 i(t)
dt
%(0*) =-30x2=-60A/s Fig. 6.24
Difterentiating Eq. (i),
di d’i

dt di*
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di d*i
Att= 0", _305(0+)_E(0+)=0

i, 5
?(0 )=1800 A/s

|| ETII MR [n the network shown in Fig.6.25, the switch is changed from the position 1 to the

position 2 at t = 0, steady condition having reached before switching. Find the values of i,

t=0"

30V ——

2.
i d*i

— and — at
t dt

100 /D —_—1uF
i(t)
Fig. 6.25
. . . 20Q
Solution At ¢ = 0, the network attains steady-state condition.
Hence, the capacitor acts as an open circuit. L L
30V /D ve(07)
ve(07)=30V T i(0) |
i(07)=0
Fig. 6.26
At t =07, the network is shown in Fig. 6.27. 20 Q
At t = 0%, the capacitor acts as a voltage source of 30 V.
ve(0Y)
vc(0+)=3OV 100 /D —— 30V
ifOF
30 i(0%)
i(0")=-=—=-1A
07) 30
Fig. 6.27
For ¢ >0, the network is shown in Fig. 6.28. 20 Q
Writing the KVL equation for¢>0, — ——— " NMA—7
T
t ! i uF
~10i-20i ———— [ i dt—30=0 LG 0 /) | I 3
X107 it) : 130V
L,,,T,,,
Differentiating Eq. (i), Fig. 6.28
304 1050 ..(ii)
dt
di + 6.t
Att=0", -30—(07)-10i(0")=0
dt
di 10°(~1
907y =1CCD 6335105 Ass
dt 30
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Differentiating Eq. (ii),

2. .
3090 100
dr’ dt
d%i di
At £ =0, —30—(0")=10°=(0")=0
dﬁ( ) dt( )
2. 6 5
d l(o+):_10 ><033><10 :—1,1)(109 A/52
dr 30

|| SETNINREN  [n the network shown in Fig. 6.29, the switch is changed from the position I to the

. 2
position 2 at t = 0, steady condition having reached before switching. Find the values of i, % and d—zl at
t=0" t t

40V —
1H /> —_—1uF
i(t)

Fig. 6.29
20Q
Solution At ¢ = 07, the network attains steady state. Hence, the l
capacitor acts as an open circuit. 40V —— /> Vo(0)
T c
ve(07)=40V i(07) T
i(07)=0 Fig. 6.30
At t=0", the network is shown in Fig. 6.31. 200
At t = 0%, the capacitor acts as a voltage source of 40 V and the
inductor acts as an open circuit. l /> 77"04((;):/)
ve(0T)=40V T i(0%)
i07)=0 Fig. 6.31
For ¢ > 0, the network is shown in Fig. 6.32. 200
Writing the KVL equation fo # > 0, S
di 1 3 e
—155-20i - ——— [idt-40=0 LG tH , | I 3
dt 1x107" i(t) “"’F"} 40V
di
Atr=0", —;;(0+)—20i(0+)—0—40 =0 Fig. 6.32

é(OJr) =-40A/s
dt
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Differentiating Eq. (i),
dZ . d
205 10%-0=0
de*dt

2. .
Att=0% —%(0*)—20%(0*)—10%‘(0*):0

2.
%(0*) =800 A/s?
t

|| SETII MM 11 the network of Fig. 6.33, the switch is changed from the position ‘a’ to ‘b’ at

. 2.
t=0. Solve for i, di and ai att=10".
dt d’

100V = j
0.1 uF /D
T i)

1H
Fig. 6.33
Solution Atr=0", the network attains steady condition. Hence, 1kQ
the inductor acts as a short circuit.
o 100 100V —|— />
l(O )=W=OIA I(O_)
ve(07)=0 Fig. 6.34
At t =07, the network is shown in Fig. 6.35. 1kQ
At ¢t = 0%, the inductor acts as a current source of 0.1 A and
the capacitor acts as a short circuit. "
ve(07) 01A
i(0")=0.1A i(0%)
+
ve(@)=0 Fig. 6.35
For ¢ >0, the network is shown in Fig. 6.36. 1KkQ
Writing the KVL equation for 7 > 0,
t . —_
d L B 0.1A
————{idr-1000i-12 =0 (@) .t/)
0.1x107 dt i(1)




6.2 Initial Conditions 6.13
.t di +
Att=0%, —0-1000i(0 )_E(O )=0
di
Z;(O*) =-1000i(0%)=—-1000x0.1=—100 A/s
Differentiating Eq. (1),
1 di d%

i —1000 — ——— =
107" dt g

. 2.
At t= 0%, —107i(0+)—1000%(0*)—%(0+)=0
d’i 7 5 2
F(O+)=—10 (0.1)—1000(-100) = -9x10° A/s
t

|| SETII XU The nerwork of Fig. 6.37 attains steady-state with the switch closed. At t=10, the

dv
switch is opened. Find the voltage across the switch v, and TK at t=0".
t

K?<O 1H
U 700
2v ] ) ‘o
05F it
Fig. 6.37
. —_ . . . o—=o0
Solution: At r+=0", the network is shown in Fig. L@ Vi(07)
6.38. At t=0", the network attains steady-state 5 —— } 10
condition. The capacitor acts as an open circuit and the ve(07) i(0)
inductor acts as a short circuit.
5 .
i(O_)=T=2A Fig. 6.38
ve(07)=0

At t=0", the network is shown in Fig. 6.39. A

D)2
; ; . ° © >
At t=07, the capacitor acts as a short circuit L
and the inductor acts as a current source of 2 A. oV /> 10
T i(0%)

ve(0*)
i(0Y)y=2A

ve(07)=0 Fig. 6.39
vg(07)=0
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Also, —Izdt
dvg _ 0
dt  C
d 2
At t=0", VK(0+)—%=7:4A/S

|| Example 6.12 EIRT network shown in Fig. 6.40, assuming all initial conditions as zero, find
di d’i
(07, 12(0%), f(ow ’ (0*) (0+) and = 5-(0").

L
Fig. 6.40
Solution At =0, all initial conditions are zero.
ve(07)=0
i1(07)=0
h(07)=0
At t=0%, the network is shown in Fig. 6.41. R Ry
At t = 0%, the inductor acts as an open circuit and the L
capacitor acts as a short circuit. ’) ve(0%) ’)
vV —
aoty =L (0% (0" T
1
(07)=0 Fig. 6.41
ve(0F)=0
For ¢ > 0, the network is shown in Fig. 6.42. A Ry

Writing the KVL equations for two meshes for 7 > 0,

1 . vV /) —cC /) L
V—Ri—— |G —i)dt=0
10 Cj(ll i) (i) - ()

0

Le . ) diy . .
and —Ej(lz—ll)dt—Rzlz—L7 0 ...(ii) Fig. 6.42
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From Eq. (ii), at £ =07,

d12

—*_[(lz—ll)df—Rzlz(OJr) L=20")=0
d’2(o*) 0
Differentiating Eq. (1),
0-— Rl%——(zl—zz) 0 ....(iii)
+ dll + LNt . +
At t=0", 0-R = (0") == 11(0 )+Ezz(o )=0
Rlﬁ(O*) o
CR
dl] + 14
07 = ———
dt( ) RIC

Differentiating Eq. (iii),
d2i1 1 dll o 1 d12
> Cdi Cd

d [} 1 dl] 1 dlZ

Att=0", —Rl—(OJr) (O*) (0*) 0
dzll( )
R c2
Differentiating Eq. (ii),
dlz dziz
——(h—i) R —2-L"2=0
(lz h)=R a Loz
dlz Rz dlz + + + v
=0 — = 0 07)—4(07)]=
Att=0", - (07)= ( )— LC[lz( )—i(07)]= RLC

|| SETIINCREN 11 the network shown in Fig. 6.43, assuming all initial conditions as zero, find
diy di d’ d’
iy 2 A A g 4 g,
2 2
dt
c Ry

SR
iy(t) i(1)

Fig. 6.43
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Solution At =07, all initial conditions are zero.

ve(07)=0

1(07)=0

(07)=0
At t=0", the network is shown in Fig. 6.44. ve(0°)
At t=0%, the capacitor acts as a short circuit and the b

inductor acts as an open circuit.
vV — R.
i(0%) = 14 . /> " /)
! i1(0%) ip(07)

R

i(0")=0
ve(01)=0

For ¢ >0, the network is shown in Fig. 6.45. C‘
Writing the KVL equation for > 0, |

lf e el
V—Eji1 dt—Ri(iy —ir) =0 ..() (1) (1)

0
di .
and “Ri(iy i)~ Ryiy = LE2 =0 (i)
dt
From Eq. (ii),
dip 1
L Riy— (R +Ry)i
df L[ 141 ( 1 2)2]
At 1=0", diy
dt

Differentiating Eq. (1),

0——-R—+R—=
dt d
di _dih b
dt dt RC
. . ot
At t=0", @((ﬁ):di((ﬁ)_ll(o )_ V7
dt dt RC L R
Differentiating Eq. (iii),
d*i, 1[_ di diy
—=—|R—-(R+R)—
dr’ L[ldt & 2)alt

d%i 1 R
At t=0" — 0=V —+—
’ dr’ ) (RILC I’

Fig. 6.45

(0) = %[Rli.(oﬂ—(Rl + R (01)] = i[m R%—(Rl +R2)0] -

~=



Differentiating Eq. (iv),
d% _d*, 1 dj

di*  di* RC dt

Att=0" @(o*)=dzi2 I di
T dr?

1 (v v
-0 -—0"Y=z-—-""=_ " [
dr* e RC a'") RLC [? ( )

6.2 Initial Conditions 6.17

RC\L RIC

S RC?

14

|| SET TN NCWEN [ the network shown in Fig. 6.46, a steady state is reached with the switch open.
At t=0, the switch is closed. For the element values given, determine the value of v (07), v, (0°), v, (0%) and

v, (07).
10Q
10 Q v,(t) 20 Q
I ® V(1)
SV § 2H
10Q
Fig. 6.46
Solution At =07, the network is shown in 10Q
Fig. 6.47.
At t =0, the network attains steady-state condition. 10Q va(07) 20 Q ~
. .. ° ¢ v,(07)
Hence, the inductor acts as a short circuit.
. e 5 5 2 1
(0= == VT
(101130) 7.5 3 i (07)
v,(07)=0
o(07) Fig. 6.47
20
v,(07)=5x—=333V
30
At t=0%, the network is shown in Fig. 6.48. 109
At t = 0%, the inductor acts as a current source
2
of —A. 10Q v4(0") 20 Q
3 ) ° ¢ V4(07)
i(0")=>A
3 5V —— 100 Y %A
Writing the KCL equations at 7 = 0*,
va(0)=5  v(07)  va0) =0 _
10 10 20 Fig. 6.48
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(0= (07)  w(09)=5 2 _
20 10

and 0

Solving these two equations,
ve(07)=19V
v, (0Y)=-0477V

|| SETNIECWEN [ the accompanying Fig. 6.49 is shown a network in which a steady state is reached
with switch open. At t = 0, switch is closed. Determine v, (0), v, (07), v,(0") and v, (07).

10Q
100 va(t) 20 Q
I ® Vv,(t)
5V—— L oF
10 Q
Fig. 6.49
10Q
Solution At =07, the network is shown in
Fig. 6.50. 00 ~
At t = 07, the network attains steady-state Vafo ) 20Q o v,(0)
condition. Hence, the capacitor acts as an open
circuit. o
5V
v (07)=5V T
vp(07)=5V
Fig. 6.50
At t=0", the network is shown in Fig. 6.51.
At t = 0%, the capacitor acts as a voltage source 10Q
of 5'V.
10Q 0" 20 Q
vp(01)=5V G ® v4,(0%)
Writing the KCL equation at 7 = 0%,
L 10Q L
5V — — 5V
Va(0+)_5 4 Va(0+) + Va(0+)_5 -0
10 10 20
0.25v,(07)=0.75 Fig. 6.51
v (01)=3V

|| Example (W IW  The network shown in Fig. 6.52 has two independent node pairs. If the switch is

d d
opened at t = 0. Find v;, v;, il and a2 att=0".
dt dt
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Fig. 6.52

Solution At =0, no current flows through the inductor and there is no voltage across the capacitor.
ir(07)=0
ve(07)=v(07)=0

At t=0", the network is shown in Fig. 6.53. v4(0%) v,(0%)
At t= 0", the inductor acts as an open circuit and the ; (0?) ©
capacitor acts as a short circuit. -
i(0) R R.
i1(07)=0 1 ?
v(0") =R i(0")
(01 =0 Fig. 6.53
For ¢ > 0, the network is shown in Fig. 6.54. vi(t) L V(1)
Writing the KCL equation at Node 1 for ¢ > 0, * 7000 ?
- oz j(vl —vy)dt = i(f) OB CIO) A, R, —-cC
1
Differentiating Eq. (i),
1dv 1 di Fig. 6.54
=)= s
Rodt L dt
At 1=0", dv‘ =R [ (0*)— Rll(0+ )]
Writing the KCL equation at Node 2 for > 0,
—j(vz—vl)dt+—+cd£=0 (i)
dt
+
At1=0", + 200 - dv2 “E0M)=0
R
dv2 “E0N)=0

|| SCIACKMYA [ the network shown in Fig. 6.55, the switch is closed at t = 0, with zero capacitor

dV] dVg d2V2
and

dt’ dt di?

voltage and zero inductor current. Solve for vy, v,, —— att=10".
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Fig. 6.55

Solution At #= 0", no current flows through the inductor and there is no voltage across the capacitor.

ve(07)=0
vi(07)=0
v,(07)=0
ir(07)=0
ic(07)=0
At t =07, the network is shown in Fig. 6.56. R
At ¢t = 0%, the inductor acts as an open circuit :
and the capacitor acts as a short circuit. +L>_é
ic(0%) i (0% v, (0
ve(07)=0 |V I 1 %
V1(0+) =0 Ry v, (0%)
7(07)=0 =
ir(0Y)=0
Fig. 6.56
ic(0%)= r
c R
R1
For ¢ >0, the network is shown in Fig. 6.57.
Writing the KVL equation for 7> 0,
ve (1) =wi (1) +va2(1) (1) Ve
Differentiating Eq. (1),
e _dn  dvy (i)

de e dt Fig. 6.57



1.
Now, Ve = E-([lc dt
e _ic
da C
+
Att=0", dvc (O+)_ZC(0 )_7\]/5
dt C RC
Also v = Ldi
dt
i _v
d L
: +
At =0, di((fr):w:o
dt L
Also, vy = Ry,
sy _p din
dt dt
Atr=0%, @( 0%) = dei(oﬂ 0
L 0m)= D0+ L2 07)
d
Vl (o+) Vs
RIC
Difterentiating Eq. (vii),
2 2.
d 1;2 _ R, d 12L
dt dt
d*vy diy
Atr— 0 SO =R O
Differentiating Eq. (v),
dZiL 1 dv1
dr? L dt
2.
Att=0", gy L ey LV
dr* L dt L RC
2
2 gry=RY v

ar? " RLC

6.2

Initial Conditions 6.21

....(iii)

.(iv)

...(v)

..(vi)
...(vii)
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|| Example (W N i the network shown in Fig. 6.58, a steady state is reached with switch open. At t =
0, switch is closed. Find the three loop currents at t = 07

2Q

6V —

Fig. 6.58

Solution At t=07, the network is shown in Fig. 20
6.59.

At t=0, the network attains steady-state condition.
Hence, the inductor act as a short circuit and the ) f
capacitors act as open circuits. i(07) v4(07)

40
6V —— %
i4Q(07)=i1(07)=§=1A /) i .
6 i1(07) vo(07)

U]
i(07)=0 ’3(0')>4T v

i5(07)=0

4 Fig. 6.59
M) +1(07) =6x =4V

Since the charges on capacitors are equal when connected in series,
=0
Cv =Gy

w0 _6G_ 1
v(07) G 0S5

wmv=§v

and v2(0_):%V
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At t=07", the network is shown in Fig. 6.60. 20
At t = 0%, the inductor is replaced by a current
source of 1 A and the capacitors are replaced by a

8 4 Sv
voltage source of —V and — V respectively. | 3
3 3 6V —
w09 =Sy (09 4y
1 3 3
4
v (0*)= 3 v
Fig. 6.60
.. 8 4
Att=0" 6-24(0")—=——==0
33
W0T)=1A
Now, iW(0")—-i3(07) =1
5(07)=0

Writing the KVL equation for Mesh 2,
L by o O
—4[2(07)=4a(0 )]—g= 0
oy 8
—4i,(0 )+4—§= 0

i2(0+)=%A

|| SEINACKMER [ the network shown in Fig. 6.61, the switch K is closed at t =0 connecting a volt-
G o0t ) and 207,

age Vy sin ot to the parallel RL-RC circuit. Find (a) i;(0* ) and i,(0" ) (b) u »

K

—(}(o

AGIRAY

Vo sinat @

Fig. 6.61
Solution At 7=07, no current flows in the inductor and there is no voltage across the capacitor.
ve(07)=0
1(07)=0
(07)=0
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At t=07", the network is shown in Fig. 6.62.

At t=0", the inductor acts as an open circuit and the capacitor
acts as a short circuit. The voltage source ¥, sin@t acts as a short
circuit.

i(07)=0
i2(0+) =0
ve(0T)=0

For ¢ >0, the network is shown in Fig. 6.63.
Writing the KVL equation for > 0,

. R .
Vo sma)t—Rz,—EJH dt=0 ...()
and Vo sinwt—Ri —Ldi—o (ii)
° ? dt Vosinwt@
Differentiating Eq. (i),
14 wcosa)t—R@—l—lzo
d C .
Fig. 6.63
@—Vo—wcoswt—i—1
i R RC ... (ii1)
. .t
At t=0", ﬁ(0+)=@coswt _@2@
dt R o+ RC R
From Eq. (ii),
& ES nwt——ip
dt L
At t=0", di(OJr):@sinwt -~ (0")=0
dt L ot

|| SENWNNENWOR 11 the network of Fig. 6.64, the switch K is changed from ‘a’to ‘b’ at t=0 (a

steady state having been established at the position a). Find i;,i, and is at t = 0%,

a CS HZ L2
p W\ S
— b
§ L — G
Ry ) <
I I,2

1

Fig. 6.64



Solution At =07, the network is shown in Fig. 6.65.

At t =07, the network attains steady-
state condition. Hence, the capacitors act
as open circuits and inductors act as short
circuits.

1(07)=0
(07)=0
3(07)=0
ve,(07)=V
ve,(07)=0
va (07)=0

At t =07, the network is shown in Fig. 6.66.
At t=0", the capacitor C, acts as a voltage

source of ¥ volts and capacitors C, and C, act as

short circuts. The inductors act as open circuits.

v

O =0 = G vk
1 2 3

i5(07)=0

6.2 Initial Conditions

6.25

ve,(07) Ry
o—ANV 0——0
A i3(07)
- W,
T ]
ve,(07)
o D Ve (0) °
h(0) (0
Fig. 6.65
v R,
! :
V6 0) Ry k()
@]
1 ve,(0Y)

Fig. 6.66

|| Example CWHN  In the network of Fig. 6. 67, the switch K, has been closed for a long time prior to
t=0. At t =0, the switch K, is closed. Find vc (0" ) and ic (07 ).

K 100 %
ic b
10V — C v 100
Fig. 6.67
Solution At r=0", the network is shown in W@ 109 o
Fig. 6.68. At t =07, the network attains steady- ic(07) ip(07)
state condition. Hence, the capacitor acts as an e b
o 10V — ve(0) 100

open circuit. o

4(07)=0

2(07)=0 Fig. 6.68

ic(07)=0

ve(07)=10V
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At t=0", the network is shown in Fig. 6.69. (0" 10Q
At t=0%, the capacitor acts as a voltage source io(0%) ip(0%)
of voltage V.
10V —/— —_— 10V 10Q
ve(0) =10V ve(0Y)
Writing the KVL equation at ¢ =07,
10-104(07)=10=0 Fig. 6.69
and 10-105,(07)=0
i1(0Y)=0
L0 =-1A
i(07)=ic(07)+i(07)
ic(07)=1A
|| SETII XY [n the network shown in Fig. 6.70, a steady state is reached with the switch open. At
t= 0, the switch is closed. Determine v¢c(07), i;(0%), i,(0%), %(W) and %(0+).
10Q
ih (1) p(1)
20Q 20Q
100V —
1H T1 uF
Fig. 6.70
Solution At t=0", the network is shown in 10 Q
Fig. 6.71. iy (07) i (07)
At t=0", the network is in steady-state. 200
Hence, the inductor acts as a short circuit and the 100V —
capacitor acts as an open circuit. 20Q
20 i
ve(07)=100% =66.67V
20+10 Fig. 6.71
1(07) = 6667 _ 333A
20
ih(07)=0 i1(0%) ip(0)
20 Q
100V — 200

At t=0", the network is shown in Fig. 6.72.

At t+=0%, the inductor acts as a current 3.33A T 66.67 A
source of 3.33 A and the capacitor acts as a
voltage source of 66.67 V. Fig. 6.72
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ve (07)=66.67V

i(0Y)=333 A
5(0%) = 100-66.67 _ L67 A
20
For t> 0", the network is shown in A1) (1)
Fig. 6.73. 200 20Q
Writing the KVL equations for 100V = 1uF
£>0, 3.33A I
di T 66.67 V
100 — 204, —17"= 0 ..3)
! Fig. 6.73
1
and 10020 iz—lo—_ﬁjiz dt—66.67=0 ...(ii)
At t=0%, %(O*) =100-204(0%)=100-20(3.33)=33.3 A/s
Differentiating Eq. (ii),
0-20%2 _105;, = 0
dt
ot diz +y 6 . +
At r=0", 20—=(0")=-10" ,(0™)
dt
di 10°
9 vy = 10 1 67 = —83500 AJs?
dt 20
IEEN| RESISTOR-INDUCTOR CIRCUIT
Consider a series RL circuit as shown in Fig. 6.74. The % R
switch is closed at time 7= 0. The inductor in the circuit is ©
initially un-energised. v .
Applying KVL to the circuit for ¢ >0, T i(t)/>
. di
V-Ri-L— =0 Fig. 6.74 Series RL circuit

This is a linear differential equation of first order. It can be solved if the variables can be separated.
(V—-Ri)dt=Ldi
Ldi
V —Ri

=dt

Integrating both the sides,

L
——=1,(V-Ri)=t+k
gV~ Ri)
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where [ denotes that the logarithm is of base e and k is an arbitrary constant. k can be evaluated from the
initial condition. In the circuit, the switch is closed at # = 0, i.e., just before closing the switch, the current in
the inductor is zero. Since the inductor does not allow sudden change in current, at # = 0%, just after the switch
is closed, the current remains zero.

Settingi=0at =0,

L
—Eln Vzk

L L
—Z 0, (V=Riy=t-=1,V
R R

—%[1,, (V-Ri)-1,V]=t

. R
V—Rl:e—zf
V
_R,
V—-Ri=Ve L
_R
Ri=V—-Ve !
R
v v -
i=———e L fort>0
R R

The complete response is composed of two parts, the steady-state

4 .
response or forced response or zero state response E and transient

R

response or natural response or zero input response Ee L

o)

The natural response is a characteristic of the circuit. Its form may
be found by considering the source-free circuit. The forced response  Fig. 6.75 Current response of
has the characteristics of forcing function, i.e., applied voltage. Thus, series RL circuit
when the switch is closed, response reaches the steady-state value
after some time interval as shown in Fig. 6.75.

Here, the transient period is defined as the time taken for the current to reach its final or steady state value
from its initial value.

L
The term 2 is called time constant and is denoted by 7.

T==
R

At one time constant, the current reaches 63.2 per cent of its final value K
R

1
L v
iy ="V VY LV 3687 — 06327
R R R RS "R R R
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Similarly,
i(2T) = V.V V o135 —056s”
R R R R R
14
i(3T) = V_V s 2V 00498”09507
R R R R R
V s v 14 14

isTy ="V 2V 000677 = 0,993~
R R R R R

After 5 time constants, the current reaches 99.33 per cent of its final value. The voltage across the resistor is

R
vR=Ri=R><V{1—e Lt]
R
_R,
=V|l-e L for t>0

Similarly, the voltage across the inductor is 0| t
di vV d R, Fig. 6.76 Voltage response of
vp=—=L——|1-e’ o5 RL circui
dt R dt series RL circuit

—t
=Ve L for t>0
Note:

1. Consider a homogeneous equation,

di .
7 +Pi=0  where P is a constant.

The solution of this equation is given by,
i(t)y= ke
The value of & is obtained by putting ¢ = 0 in the equation for 7 (7).
2. Consider a non-homogeneous equation,
di
—+Pi=
dt Q

where P is a constant and Q may be a function of the independent variable 7 or a constant.
The solution of this equation is given by,

i(t)y=e Qe dt + ke
The value of £ is obtained by putting # = 0 in the equation of i (?).

|| SET NI NCWER 11 the network of Fig. 6.77, the switch is initially at the position 1. On the steady

state having reached, the switch is changed to the position 2. Find current i(t).
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Fig. 6.77
Solution At =07, the network is shown in Fig. 6.78. R
At t = 07, the network has attained steady-state condition. Hence,
the inductor acts as a short circuit. v />
oV i(07)
i(07)=—
(07 R
Since the inductor does not allow sudden change in current, Fig. 6.78
14
i(07)=—
(0% R

For ¢ >0, the network is shown in Fig. 6.79.

Writing the KVL equation for ¢ > 0,
%4
oo o di R, /> I
_R21_R11_LE=O i) 1

di (R+Ry), .
—+——=2i=0 Fig. 6.79
a1 '8

Comparing with the differential equation %+ Pi=0,

p_RtR
L
The solution of this differential equation is given by,
i(H=ke™
R+R,
-|—=1
i(t)=ke ( L )
Atr=0, i(O):K
R
Yok =k
Ry

i(f) = ;e_( L for¢>0
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|| SEN KWL 1 the network shown in Fig. 6.80, the switch is closed at t = 0, a steady state having

previously been attained. Find the current i (t).

A

Fig. 6.80

Solution At =07, the network is shown in Fig. 6.81. R
. .. 2

At t =07, the network has attained steady-state condition.
Hence, the inductor acts as a short circuit. R,

P 4 vV — /)
1(0 )_ R+R i(07)

Since the current through the inductor cannot change .
instantaneously, Fig. 6.81

vV
R+R,

i(0%) =

For ¢> 0, the network is shown in Fig. 6.82.

Writing the KVL equation for ¢ > 0, Ay
o di VT /D v
V-Ri-L-=0 i(t) Ry + R,
d R .V
—t+—i=— .
dt L L Fig. 6.82

Comparing with the differential equation %+ Pi=0,
R Vv
P =—, = —
L 0 L
The solution of this differential equation is given by,

iy=e"[Qe" di+ke™
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Att=0, i(0)= v
R|+R2
v :£+k
R+R, R
IR
R(R+R)
R
VR -t
(=" : L

——
R R(R+Ry)

R

R ——t

:K l-—2 ¢ L fort>0
R R+R

|| SETIINWEN  [n the network of Fig. 6.83, a steady state is reached with the switch K open. At
t =0, the switch K is closed. Find the current i(t) fort > 0.

30 Q 20 Q
1 .
20V K
DR
oV
1 i)
Fig. 6.83
Solution At =07, the network is shown in Fig. 6.84. 30 Q 20 Q
At t=0", the network has attained steady-state condition. L
Hence, the inductor acts as a short circuit. 20V
_,_20+10 l V) I
i(07) = =0.6 A 10V i(0~
0)=30+20 ° T ©

Since the current through the inductor cannot change
instantaneously, Fig. 6.84

i(0)=0.6 A

For ¢ >0, the network is shown in Fig. 6.85. 20Q

Writing the KVL equation for 7> 0.

10-20i— L9 _ ¢ 10V —— %
2 d
i)

ﬂ+ 40i =20
dt

H 0.6A

=
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. . . . . di
Comparing with the differential equation j; +Pi=Q,

P=40, Q=20
The solution of this differential equation is given by,
i=e"[Qe" di+ke™

— e—4OtJ'20 e40tdt + ke%Ot

=§+ke40'
40
=0.5+ke™
At£=0,i(0)=0.6 A ¢
0.6=05+k
k=0.1

i(1)=05+0.1¢*  fortr>0

|| SETNI WL The network of Fig. 6.86 is under steady state with switch at the position 1. At
t = 0, switch is moved to position 2. Find i (1).

1 40 Q
"X
2
50V — i 10V 20 mH
T i)
Fig. 6.86
40 Q
Solution At 7=07, the network is shown in Fig. 6.87.
At t = 07, the network has attained steady-state condition. 50V ——
Hence, the inductor acts as a short circuit.
i(0)
50
i(0)=—=125A
40
Fig. 6.87

Since current through the inductor cannot change
instantaneously,

i(0")=125A

For ¢ >0, the network is shown in Fig. 6.88.
Writing the KVL equation for 7 > 0,

j 10V —
10— 407 -20x107 % — ¢ /)
dt i(t)

a + 20007 = 500
dt

20 mH 1.25A

000/
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. . . . . di
Comparing with the differential equation j; +Pi=Q,

P =2000, Q=500

The solution of this differential equation is given by,
i=e"[Qe" divke™

— e—ZOOOtJ'SOO eZOOOt +ke—200()t

_ 500 K o~20001
2000
=0.25+ ke
At1=0, i(0)=125 A
1.25=0.25+k
k=1

i(f) = 0.25+ 720001 fort>0

” Example (WA  [n the network of Fig. 6.89, the switch is moved from 1 to 2 at t = 0. Determine i(t).

1
O
595 }2<
20V 20 /> gO.SH
i(t)
40V T

Fig. 6.89

Solution At 1=0", the network is shown in Fig. 6.90.

. .. 5Q
At t = 07, the network has attained steady-state condition. Hence, % /)
the inductor acts as a short circuit. 20V T o)

2

0
(07)=""=4A
i(07) s

Since the current through the inductor cannot change instantaneously,

i(0")=4 A

For ¢ >0, the network is shown in Fig. 6.91.

Writing the KVL equation for ¢ > 0, 20 /D
i(t)

40-2i-05% _ ¢ 40V
di

i 4i—30 Fig. 6.91

dt

Fig. 6.90

05H

4A
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Comparing with the differential equation %+ Pi=Q,
P=4, (0=80
The solution of this differential equation is given by,
i=e"[Qe" di+ke™
= e74'.[80 eMdtrke™

=@+ke_4'

=20+ke™¥
At 1=0,i(0)=4 A
4=20+k
k=-16
i(1)=20-16e*  fort>0

|| SETNNINCWER  For the network shown in Fig. 6.92, steady state is reached with the switch closed.
The switch is opened at t = 0. Obtain expressions for i, (t) and v, (1).

15V T 3000 Q 90mH vi(t)
Fig. 6.92
Solution At 1=0", the network is shown in Fig. 6.93. 100 2
At t=07, the network has attained steady-state condition. Hence, the
inductor acts as a short circuit. />
15V —
15 .

ir(07)=—=0.15A i1(07)

1(07) 100
Since current through the inductor cannot change instantaneously, Fig. 6.93

i, (0=0.15A

For ¢ >0, the network is shown in Fig. 6.94.

Writing the KVL equation for ¢ > 0,
3000 Q 390 mH 0.15A
(1)

30000, —90x1073 %L _

diL 3.
;+33.33X10 ip =0 Fig. 6.94



6.36 Circuit Theory and Networks—Analysis and Synthesis

Comparing with the differential equation %+ Pi=0,
P =3333x10’
The solution of this differential equation is given by,
ii(ty=ke™"
in(f) = o 3333x10°%

Atr=0, i, (0)=0.15 A

0.15=k
i(1)=0.15e7333% forr50
Also, v (ty=r1%

dt
=90x1073 %(o.lse*33~33“°3’)

=-90%x1073 x0.15%33.33x10° x ¢ 3333107

= 450733900 for450

|| Example (WAN  [n the network of Fig. 6.95, the switch is open for a long time and it closes at t =

0. Find i (1).
10Q 10Q
50V /) 0.1H
T 10Q jy
Fig. 6.95
10 Q 10Q
Solution At 7=07, the network is shown in Fig. 6.96.
At t = 07, the network has attained steady-state condition. e )
Hence, the inductor acts as a short circuit. 50V i(0)
i(07)= >0 =25A
10+10 Fig. 6.96
Since current through the inductor cannot change instantaneously,
i(0H=25A
For ¢ >0, the network is shown in Fig. 6.97. 104 0@
For ¢ > 0, representing the network to the left of
the inductor by Thevenin’s equivalent network,
50V —|— 109) %0.1H 25A
1 .
Veq =50><70 =25V i(t)
10+10

=(10]/10)+10=15Q
Beq =(101110) Fig. 6.97
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For ¢ >0, Thevenin’s equivalent network is shown in Fig. 6.98.

Writing the KVL equation for 7> 0, 150
25—15i—0.1ﬂ =0
dt
di 25V /> §0.1 H 25A
—+150i =250 i(t)
dt
. . . . Loodi . .
Comparing with the differential equation Z +Pi=0, Fig. 6.98

P =150, Q=250
The solution of this differential equation is given by,
iy=e"[Qe" di+ke™
= (250 & dr+ ke

250

=20 pets0r
150
=1.667+ke "
Atr=0, i(0)=2.5A
25=1.667+k
k =0.833

i(1)=1.667+0.833¢ " fort>0
” SETNII NN 11 Fig. 6.99, the switch is closed at t = 0. Find i (1) for t > 0.

% 2Q
o

10A 10 20 /D 1H
i)

Fig. 6.99

Solution Atr=0, i(07)=0
Since current through inductor cannot change instantaneously,

i(0*)=0
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For ¢ >0, simplifying the network by source-transformation technique as shown in Fig. 6.100.

2Q
i(t) i(
(a) (b)

Writing the KVL equation for 7 > 0,

6.67—-2.67i— 1é =0
dt

di +2.67i = 6.67
dt

. . . . . di
Comparing with the differential equation j; +Pi=Q,

P=2.67,0=06.67

The solution of this differential equation is given by,

Att=0,i(0)=0

) 1H
)

6.67V

in=e"[Qedi+ke™

— e—2A67tJ.6.6762.67ldt+ke—2A67t

667

——+ke

©2.67

—2.67t

=25+ke "

0=25+k

k=-25

i(1)=2.5-25¢>%""
— 25(1 _ 672‘671‘)

” SETTI NI Find the current i (1) for t > 0.

fort>0

60 Q

25 A D

140 Q

~

o

200 /)
i(f)

]

Fig. 6.101

0.3H
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Solution At 7= 0, the inductor acts as a short circuit. Simplifying the network as shown in Fig. 6.102.

60 Q
25 A D 140 Q 20Q /> I 25A<D 140 Q /> 60 Q
i(07) i(0)
(@) (b)
Fig. 6.102
i(07)=25x% 14;?60 =175A

Since current through the inductor cannot change instantaneously,
i(07)=175A
For t> 0, the network is shown in Fig. 6.103.

60 Q

25 A (D 140 © I 200 i(D 0.3H 175 A

Fig. 6.103

Simplifying the network by source transformation as shown in Fig. 6.104,

60 Q 20Q /> % 0.3H 175A 15Q /> 0.3H 175A
i(t) i(h)

(a) (b)

Fig. 6.104
Writing the KVL equation for ¢ > 0,
-15i-0.3 di =0
dt
di +50i=0
dt

Comparing with the differential equation %+ Pi=0,

P =50
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The solution of this differential equation is given by,
i(=ke ™ =ke™"

Att=0,i (0)=17.5A
k=175

i(1)=17.57% fort>0
|| ETII Y [n the network of Fig. 6.105, the switch is in position ‘a’ for a long time. At t =0, the

switch is moved from a to b. Find v, (t). Assume that the initial current in the 2 H inductor is zero.

1Qa

b
T\/\/\ﬂ o o
+

1
—Q 2H ()
T 1H 2 2

1V

Fig. 6.105

Solution At =0, the switch is in the position a. The network has attained steady-state condition. Hence,
the inductor acts as a short circuit.
Current through the 1 H inductor is given by

1
i(07) = = 1A
v(07)=0
Since current through the inductor cannot change instantaneously,
i(0")=1A

1
V2(0+)=—1><E=—0.5V

For ¢t >0, the network is shown in Fig. 6.106. )
Writing the KCL equation for # > 0, *
Y b1 1H 1A ;_—Q oH  wll)
| vadt+14 24— vydt =0 i
1{ ? 1 2{ ? ® _
~ 3
Differentiating Eq. (1), Fig. 6.106
vy + 2&4'1\/2 =0
2
d
L-l— é\/2 =0
d 4

Comparing with the differential equation % +Pv=0,

p=3
4
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The solution of this differential equation is given by,

3
->t
nt)=Ke " =ke *

At1=0,v,(0)=—0.5V

—-0.5=ke°
k=-0.5
_3
w()=-05e ¢ fort>0

|| SETIINIEEN  [n the network shown in Fig. 6.107, a steady-state condition is achieved with switch
open. At t = 0 switch is closed. Find v_(1).

100Q
1 Yo

3V 5Q Va(t)
T 0.5H

Fig. 6.107

Solution At 7 = 07, the network has attained steady-state condition. Hence, the inductor acts as a short
circuit.

ir(07)=0
va(07)=3x =1V
«(0) 10+5
Since current through inductor cannot change instantaneously,
i,(0M)=0
v (07)=1V
For ¢ >0, the network is shown in Fig. 6.108.
Writing the KCL equation for # > 0, 10Q
2
1§ Vo  Vg—3
E!V“ dits+=5 =0 3V — 5Q 0.5H Valt)
Differentiating Eq. (1), o
Fig. 6.108
20,4020 o1 g
dt dt
dvq + Qva =0

d 3
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. . . . . _dv
Comparing with the differential equation 7 +Pv=0,

pP==

The solution of this differential equation is given by,
20
vo(t)=ke™ = ke_?t
Att=0,v (0)=1V
1=k

20
-

vi(t)y=e 3 fort>0

|| Example 6.34 In the network of Fig. 6.109, determine currents i, (t) and i, (t) when the switch is
0

closed at t = 0.

100V ——
Fig. 6.109
Solution Atr=0, §(07)=0(07)=0
Att=0",
i(0")=0
100
L(0")=——=6.67A
2(07) 5
For ¢ >0, the network is shown in Fig. 6.110. 10Q
Writing the KVL equations for ¢ > 0,
diy . 5Q
100-10(3; +4,) 54 —0.01— =0 @ L
i +52) =54 di @ 100v— D W <50
and 100103 +4,)—5i, =0 ...(ii) iy(1) 0.01H
From Eq. (ii),
_100-104 Fig. 6.110
I = T

Substituting in Eq. (i),

ﬂ+ 8334 =3333
dt
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. . . . . di
Comparing with the differential equation j; +Pi=Q,

P =2833,0=3333

The solution of this differential equation is given by,
in=e"[oedi+ke™
_ 6_833’J3333 833 gt + ke 833

U333, ey

=2 ke
833

=4+ke S
Att=0,i,(0)=0
0=4+k
k=—4
i(t)=4-4e%
=4(1- e85 fort>0
() = 100151011
_100-10(4—4¢7*)
15
=4+2.67e fort >0

|| D ETIINIREW  The switch in the network shown in Fig. 6.111 is closed at t =0. Find v, (t) for all

t > 0. Assume zero initial current in the inductor.

30 Q
A

0V /D 10Q 0.2H
iy(t)

o(t) <~—

Fig. 6.111

Solution At =07, 1(07)=0
ih(07)=0

Since current through the inductor cannot change instantaneously,
(0T)=0

10

100 = 30110

=025A
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For ¢ >0, the network is shown in Fig. 6.112. 30Q
Writing the KVL equations for ¢ > 0,

10300, +4,)~104 = 0 ()
10V D /> .
iy(t)

di - 10Q t 0.2H
and 10—30(i1+i2)—0.2£20 (i) &
From Eq. (i),
_30; Fig. 6.112
5 =107300 605 0754, i)
40
Substituting Eq. (iii) into Eq. (ii),
9 754225
dt

Comparing with the differential equation %+ Pi=Q,

P=3750=25
The solution of this differential equation is given by,
ih(t)= eiP’J.QeP’dt+kefP’
_ 6—37A5zJ‘2.5 ST A+ ke 3T

— £+ ke—375t
37.5
=0.067+ ke
At £=0,i,(0)=0
0=0.067+k
k=-0.067
i (1) = 0.067—0.067 "
diy
dt

= 0.2%(0.067 —0.067¢773")

V() =02

=057 fort>0

|| SETNI I  For the network shown in Fig. 6.113, find the current i(t) when the switch is changed
from the position 1 to 2 at t = 0.

500V
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Solution At =07, the network is shown in Fig. 6.114. 40 < 60 @
At t=0", the network attains steady-state condition. Hence,
the inductor acts as a short circuit.
500V —|—
i(07)= 00 _ i(07)
40+ 60
Si t th h the induct t ch
Since  curren roug e inductor cannot change Fig. 6.114
instantaneously,
i(0")=5A
60 Q

For ¢t >0, the network is shown in Fig. 6.115.

Writing the KVL equation for ¢ > 0,
10i—60i—0.4ﬁ=o 10/ ' /D %0.4H 5A
dt i(t)

ﬂ+125i:0
dt

Fig. 6.115
Comparing with the differential equation %+ Pi=0,
P =125
The solution of this differential equation is given by,
i(t)y=ke ™ =ke ">

At t=0,i(0)=5A
5=k

i(H=5¢""  fort>0

|| SETOII NI  For the network shown in Fig. 6.116, find the current in the 20 2 resistor when the
switch is opened at t = 0.
o

i
30 Q 200
50V —— /> /D
iy(t) 10/ ip(1) 2H
Fig. 6.116
i(07)
Solution At =07, the network is shown in Fig. 300 200
6.117.
At t=0", the network attains steady-state 5oy —— /)
condition. Hence, the inductor acts as a short circuit. i1(07) 10/ (07) ix(07)
i(07) =,(07)

Fig. 6.117
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Writing the KVL equations at =07,
50-30(; —i,)—10i, =0
105, —30(i, —4;)—20i, =0
Solving these equations,
1(07)=333A
LH(07)=25A
Since the current through the inductor cannot change instantaneously,
L(0Y)=25A
For ¢ >0, the network is shown in Fig. 6.118.

Writing the KVL equation for 7> 0,

i
10iy —30iy —20i, —2 %2 =0
dt
D420y =0
dt

Comparing with the differential equation %+ Pi=0,
P=20
The solution of this differential equation is given by,
h()=ke " =ke™
At t=0,5(0)=25A
25=k
h(t)=25¢2"  fort>0

|| SETII TN  [n the network of Fig. 6.119, an exponential voltage v(t) = 4e7is applied at t = 0.

Find the expression for current i(t). Assume zero current through inductor at t = 0.

%o 05Q
4e*3f<f> i(tD 0.25H

Fig. 6.119

Solution At =07, i(07)=0
Since current through the inductor cannot change instantaneously,

i(0*)=0



6.3 Resistor-Inductor Circuit

Writing the KVL equation for ¢ > 0,
di

4e7 -0.5i-025==0
dt

U 9i=16e
dt
. . . . . di .
Comparing with the differential equation E +Pi=Q,

P=2 Q=16
The solution of this differential equation is given by,
i=e" Qe di+ke™
= e72t‘[16 e di++ke™
=16 e_ZtIe_t dt+ke™

=—16e +ke™
At £=0,i(0)=0
0=—-16+k
k=16
i(H=-16e"+16e>  fort>0

6.47

|| SETTIEEN  ForthenetworkshowninFig. 6.120, asinusoidalvoltagesource v = 150 sin (500t +9)

volts is applied at a time when 0 = 0. Find the expression for the current i(t).

(. %
150 sin(500¢ + 0) @ /D 02H
itt)

Fig. 6.120

Solution

Writing the KVL equation for ¢ > 0,
. . di
150sin(500¢ + 0) — 50i — O'ZE =0
di . .
I +250i = 7505sin(5007 + 0)

. . . . . di
Comparing with the differential equation & pi= 0,

P =250, Q=750sin(500¢+0)
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The solution of this differential equation is given by,

Let

and

and

i(=e"[Qe"di+ke™

=" [7505in(5001 + 0) €™ + ke "

250¢

=750 2" m{zso sin(500 + 6) — 500 cos(500¢ + @) } |+ ke >
+

= 0.6sin(5007 + 0) —1.2cos(500¢ + 0) + k e 2!
Acos¢=0.6
Asing=1.2

A% cos® ¢+ A% sin® g = (0.6)* +(1.2)* =1.8

A=1342
12

¢=tan™" () =63.43°
0.6

i(£) = 1.342 cos(63.43°) sin(5007 + 0) — 1,342 sin(63.43°) cos(500¢ + 0) + k e "'
i(f) =1.342 sin(500¢ + 6 — 63.43°) + ke "

At£=0,0=0,i(0)=0

0 =1.342 sin(—63.43°) + k
k=12
i(f) =1.342sin(500f + 0—63.43°)+1.2 e > fort>0

|| SETOII MW ON  For the network shown in Fig. 6.121, find the transient current when the switch is
moved from the position 1 to 2 at t = 0. The network is in steady state with the switch in the position 1. The

voltage applied to the network is v =150 cos(200t+30°) V.

1

o
2)1 200 Q
150 cos(200t + 30°) @ 0.5 H
Fig. 6.121
Solution At #=07, the network is shown in Fig 200 Q
6At1 2;2: 0~ the network attains steady-state condition. 150 €08(2001+30°) @ '(t)/> 05H
; .
PO _ 673430 A

T Z 200+ /x200%0.5

Fig. 6.122
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The steady-state current passing through the network when the switch is in the position 1 is

i =0.67cos(2007 +3.43°) ..(1)
For ¢ >0, the network is shown in Fig. 6.123.
Writing the KVL equation for ¢ >0, /) 200 Q
200i-0.5% = ¢ it 0-5H
dt
di .
5 F400i=0 Fig. 6.123
Comparing with the differential equation %+ Pi=0,
P =400
The solution of this differential equation is given by,
i(Hy=ke P = ke ..(ii)
From Egs (i) and (ii),
0.67 cos(200¢ +3.43°) = ke 0%
0.67cos(3.43°)=k
At =0, k=6.67
i(1)=0.67¢  fort>0

XM ResisTOR-CAPACITOR CIRCUIT

Consider a series RC circuit as shown in Fig. 6.124. The switch
is closed at time ¢ = 0. The capacitor is initially uncharged.
Applying KVL to the circuit for ¢ > 0,

1
V—Ri—lji dr=0
Cy
Differentiating the above equation,

0-R—-—=0
d C

é_ﬁ.ii:()
dt RC

Fig. 6.124 Series RC circuit

This is a linear differential equation of first order. The variables may be separated to solve the equation.

di__dr
i RC
Integrating both the sides,
1
Li=——t+k

RC
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The constant & can be evaluated from initial condition. In the circuit shown, the switch is closed at z= 0. Since

the capacitor never allows sudden change in voltage, it will act as short circuit at # = 0*. Hence, current in the

L 4
circuit at £ = 0*is —.
R

. 14
Setting i =— att =0,
R

14
I”EZIC
1
l,,t:——t+l,,K
RC R
|14 1
Li—1,—=——t
"mT R T T RC
I, d =—Lt
(K) RC
R
i
Z:eiec
R
Vo
i=—e RC fort>0

When the switch is closed, the response decays with time as shown
in Fig. 6.125(a).
The term RC is called time constant and is denoted by 7.
T=RC
After 5 time constants, the current drops to 99 per cent of its initial
value.
The voltage across the resistor is

1
Vo —=t
VR =Ri=REe RC

1
—t

=Ve kC fort>0
Similarly, the voltage across the capacitor is
1 t
ve =—|idt
c C{
1
LV et
= [Z o &re
¢l

o R

1
—-—
=-Ve RC +k

i(t)

i<

ol

Fig. 6.125(a) Current response of
series RC circuit

ol

Fig. 6.125(b) Voltage response of
series RC circuit
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At1=0,v,(0)=0
k=V

1
—t
Hence, Ve =V[1—e RC } fort>0

” Example (W5 The switch in the circuit of Fig. 6.126 is moved from the position 1 to 2 at t= 0. Find Ve ().
1 5kQ
K

2j +
100 V—— soy V== THF

Fig. 6.126

5 kQ
Solution At =0, the network is shown in Fig. 6.127.

At t = 07, the network has attained steady-state condition. L i
Hence, the capacitor acts as an open circuit.

v (07) =100V T T

Since the voltage across the capacitor cannot change
instantaneously, Fig. 6.127

v, (0= 100 V

For ¢ > 0, the network is shown in Fig. 6.128. 22
Writing the KCL equation for ¢ > 0, .
1X10,6dl+vc+50= 50V _—_ ve(t) 2= 1 uF
dt 5000 -
e | 00ve =10
dt Fig. 6.128

Comparing with the differential equation % +Pv=0,

P =200, 0=10*
Solution of this differential equation is given by,
ve(t) = eiPtJ.Q e dt+ke ™
:e’zoo’_[104 2000 g 4 e o201
_10*

=——+ke
200

=50+ ke 20"

-200¢
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At1=0,v,(0)=100V
100 = —50+ k&
k=150

ve(t) = -50+150 ¢ 20 fort>0

” S ETIINWIYN [ the network shown in Fig. 6.129, the switch closes at t = 0. The capacitor is ini-
tially uncharged. Find v . (t) and i_. ().

9 kQ 4kQ jg(t)
+
oV T 1kQ ve(t) —— 3 pF
Fig. 6.129

Solution At =0, the capacitor is uncharged. Hence, it acts as a short circuit.

ve(07)=0
ic(07)=0
At t.= 0%, the network is shown in Fig. §.130. (0%) 9 kQ 4kQ i5(0%)
Since voltage across the capacitor cannot change
instantaneously,
ve (0)=0 10V — 1kQ ve(0Y)
Att=0" iT(o*):[ 10 }: 10 =1.02 mA
9k+(@4kllk)|] 98k Fig. 6.130
k
ic(0Y)=1.02 mx ! =0.204 mA
lk+4k
For ¢ > 0, the network is shown in Fig. 6.131. 9 kQ 4 kQ
For ¢ > 0, representing the network to the left of the
capacitor by Thevenin’s equivalent network, +
10V — 1kQ vy == 3uF
1k N
Veq =10 % =1
9k+1k
Ry =0Ok|[1k)+4k=49kQ Fig. 6.131
For ¢ > 0, Thevenin’s equivalent network is shown in Fig. 6.132. 4.9 kQ
Writing the KCL equation for # > 0, VYV T
sdvc | ve-1 1V SUF = v(d)

3%10 +———=0
dt  49x10 l
dVC 1

£ 1 68.02 ve = 68.02
dt Fig. 6.132
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. . . . . d
Comparing with the differential equation j‘; +Pv=0,

P =68.02, 0=068.02

The solution of this differential equation is given by,
ve(t) = e_Pt_[Q e divke™™

— 6768‘02tJ‘68.02 e68.02t dt+k6768.02t

— 14 ke 8802
At t=0,vc(0)=0
0=1+k
k=-1
ve(r) =1— 8802 fort>0
dVC
ic)=C—
c(?) 7

- 3 X 10—6 i(l _e—68,021)
dt

=3x107° x68.02¢ 76802

=204.06 x 1076 768027 forz>0

|| Example (W:XW  For the network shown in Fig. 6.133, the switch is open for a long time and closes
at t = 0. Determine v, (1).

1200 V Velt) Z= 50 uF
T 300 Q -

Fig. 6.133
Solution At =0, the network is shown in Fig. 6.134.
At ¢t = 0, the network has attained steady-state condition. 100 Q
Hence, the capacitor acts as an open circuit.
vo(07)=1200 V 1200 V ve(07)
Since the voltage across the capacitor cannot change T T
instantaneously,

Ve (09 = 1200 V Fig. 6.134



6.54 Circuit Theory and Networks—Analysis and Synthesis

For ¢ > 0, the network is shown in Fig. 6.135.
Writing the KCL equation for # > 0,

s0x107 dre  ve , ve=1200
dt 300 100

0

dstC+ 266.67 ve = 0.24x10°

Comparing with the differential equation % +Pv=0,

P=266.67, O=0.24x10°

The solution of this differential equation is given by,

ve(t) = e_PtJQePt di+ke™

100 Q

—— 50 uF

Fig. 6.135

— e—266.67tJ'0.24 x 106 6266A67t di + ke—266.67t

_0.24x10° 266671
266.67
=900+ k€7266‘67t
At £=0,vc(0)=1200 V
1200 = 900+ &
k=300
ve (£) = 900 + 300 26667

” Example (W:V'S  [n Fig. 6.136, the switch is closed at t = 0 Find v (1) for t> 0.

% 100 Q
o

L 2Q
[

5V

Fig. 6.136

Solution Atr=0, v (0)=0

Since the voltage across the capacitor cannot change instantaneously,

v (0 =0
Since the resistor of 2 Q is connected in parallel with the
voltage source of 5 V, it becomes redundant.
For ¢ > 0, the network is as shown in Fig. 6.137.
Writing KCL equation for ¢ > 0,

VC_5+ldl:0
100 dt

1009 4y =5

100 Q

Fig. 6.137



e | 0.01ve = 0.05
dr

. . . . . d
Comparing with the differential equation ?‘; +Pv=0,

P=0.01, 0=0.05
The solution of this differential equation is given by,

ve()=e " [Qe™ di+ke™
_ e’O'O]JO.OS 001 g 4 o001

_0.05 ke 001
0.01
= 54 e 00l
At £=0,v0(0)=0
0=5+k
k=5
ve(t) = 5= 5¢7001

=5(1-e")  forr>0

6.55

6.4 Resistor-Capacitor Circuit

” Example (WL [n the network shown, the switch is shifted to position b at t = 0. Find v (1) for t > 0.

1F

J

5V +
50 20 < v(
Fig. 6.138
ve(0)
Solution At ¢ =0, the network is shown in Fig. 6.139. ° e
At t = 07, the network has attained steady-state condition. .
Hence, the capacitor acts as an open circuit. 5V — 20 2 v(0)
v (0)=5V B
v(0)=0 Fig. 6.139
At t = 0%, the network is shown in Fig. 6.140. 5V

At t =07, the capacitor acts as a voltage source of 5 V.
o 5
i(07)= T -1.25A

W(0*)=-125x2=-2.5V
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For ¢ > 0, the network is shown in Fig. 6.141.
Writing the KVL equation for ¢ > 0,

t

,,,,,,,,,,,,,,,,

—2i—5—%Jidt—2i=0 ..()
—0 2Q /> 2Q
4
i(t)

Differentiating Eq. (i),

4% _4izo Fig. 6.141
di
ﬂﬂ' =0
dt

Comparing with the differential equation %+ Pi=0,

P=1
The solution of this differential equation is given by,
i(N=ke " =ke™!
At t=0,i(0)=-1.25A

k=-1.25
i(t)y=-125¢" fort>0
v(t) = 2i(t)

=-25¢" fort>0

|| SET NI MWW 15 the network of Fig. 6.142, the switch is open for a long time and at t = 0, it is

closed. Determine v, (1).

0.25 Q
o VVv ¢
6V T 03F = % Q (1)
)
Fig. 6.142
Solution At ¢ =0, the switch is open. 0.25Q
v, (0)=0 i
Since voltage across capacitor cannot change instantaneously, 6V - N 1? Q w
v, (0 =0
For ¢ >0, the network is shown in Fig. 6.143. °
Writing KCL equation for ¢ > 0, Fig 6.143
2 pgade, 270
d 025

1
2
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D2 20w, =80
di

Comparing with the differential equation % +Pv=0,

P=20, 0=80
The solution of this differential equation is given by,
v(t) = e_PtJ.Q edt+ke ™
= [80 ™ di+ke ™

= 80 +hke
20

Wt = d+fe™
At t=0,1,(0)=0
0=4+k
k=—4
V() =4—4e2
=4(1-¢)  fort>0.

|| SETIINWYN  The switch is moved from the position a to b at t = 0, having been in the position a
Jor a long time before t = 0. The capacitor C, is uncharged at t = 0. Find i (t) and v, (1) for t > 0.

c, /) —c, %
T it)

Fig. 6.144

ol

Solution At =0, the network has attained steady-state condition. Hence, the capacitor C, acts as an open
circuit and it will charge to ¥ volt.

ve () =V,
v (0)=0
Since the voltage across the capacitor cannot change instantaneously,
ve, (07) =7,
ve, (07)=0

. Vo
0Fy="0
i07) R
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For ¢ >0, the network is shown in Fig. 6.145.
Writing the KVL equation for > 0,

1 1§
Vo——idt—Ri-—|[idt=0 ()
| &l

Differentiating Eq. (i),
i R di i

- RS- =0
C dt G,
di
@i, 1(GrG)
dt R\ CGC

Comparing with the differential equation %+ Pi=0,

R

The solution of this differential equation is given by,

1
i(t)=ke™ = keiF‘[ ac

At t=0, i(0)="2
R

v _L(C1+C2]t
i(1)=-"2e RLGC
R

-
=0e RC \where, C =
R
1 t
va(t)=——[idt
29
15y =
- 706 R‘Cdt

1 (c1+c2

GG

C+C,

Ry
O
+
/> —— G w(b)
i(t)
o
Fig. 6.145
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|| Example (W:HW  For the network shown in Fig.6.146, the switch is opened at t=0. Find v (1) for

t>0.
O
(L +
K 1
10A 10 ———F v
p 2
2
o
Fig. 6.146
Solution At =07, the network is shown in Fig. ?
6.147.
Att=0", thenetworkattainssteady-state condition. 44 5 10 10 ve(07) ¥(00)
Hence, the capacitor acts as an open circuit. 2
v(0))=0 T
)
Writing the KCL equation at t =07, Fig. 6.147
w00 V0D
T
2
3v(07)=10
v(07)=333V
Since the voltage across the capacitor cannot change instantaneously,
ve(0F)=v(0")=333V
For ¢ > 0, the network is shown in Fig. 6.148. 9
Writing the KCL equation for ¢ > 0,
i
lﬂ_,.zzl() 10AQ> 1Q T2F v
2dt 1
% +2v=20 °
! Fig. 6.148

Comparing with the differential equation % +Pv=0,
P=2 0=20
The solution of this differential equation is given by,
viy=e"[Qe" di+ke™
= J 20 di+ke™

20

=" tke™
2

=10+ke®
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At t=0, v(0)=333V
333=10+k
k=6.67
v(t)=10+6.67 ¢

|| Example (W:EB  For the network shown in Fig. 6.149, find the current i(t) when the switch is opened
0

at t=0.

10Q ;/

i(t)

L 5i
100V —= 109
T 4 uF
Fig. 6.149
10 Q
Solution At =07, the network is shown in Fig. 6.150.
At t=0", the network attains steady-state condition.
Hence, the capacitor acts as open circuit. 5i(07)
100 100V——
i(07) = =5A
10+10
_ _ _ Q vel0)
ve(07)=100-10i(0")—5i(07)=100-10(5)-5(5) =25V
Fig. 6.150
At t=0", the network is shown in Fig. 6.151.
V(0" = 25 V
25+5i(07)—10i(0*)=0
i(0")=5A 51(0")
For ¢ >0, the network is shown in Fig. 6.152.
t 25V
25— idt+5i—-10i=0 ...(1)
4x107° { T
Fig. 6.151
Differentiating Eq. (1), ig. 6.15
0-025x10%+5% _10% = 5i
dt dt
d . e

—+50000i=0
dt

Comparing with the differential equation %+ Pi=0,

P =50000

10Q
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The solution of this differential equation is given by,
i(f) = ke™P' = k&S00
Att=0, i(0)=5A
5=k
i(1)=5¢>%"  fors>0

|| S ETII XMW For the network shown in Fig. 6.153, find the current i(t) when the switch is opened
at t=0.

10Q

100 V

20i 2uF

Fig. 6.153

10Q

Solution At #=07, the network is shown in Fig.
6.154. At t=0", the network attains steady-state
condition. Hence, the capacitor acts as an open circuit. 20Q 100

Writing the KVL equation at t=0", 100V

100-10i(07)—20#(0")—-20i(0")=0 20i(0) "y (0

i(07)=2A

Also, 20i(07)+20i(07)=0—vc(07)=0 Fig. 6.154
ve(07)=40i(07) = 40(2) =80 V

At t=07", the network is shown in Fig. 6.155.

From Fig. 6.155, i(0") = —i,(0™) 100

20i(0%)—204,(07)—104,(07)-80=10 80V
20i(0%)+20i(07)+10i(07)-80 =0

i(0")=1.6 A

ve(0F) =80V

For ¢ >0, the network is shown in Fig. 6.156.

From Fig. 6.156, i(t) = —i,(¢)
Writing the KVL equation for ¢ > 0, ) 1

10Q

2 uF
80V

ir dt —80 =0

20i —20i, —10i, — !
2% 0

0—6
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jidt—80=0
0

jidt—f;o:o

1
20i+20i, +10i, + 5
2x10”

50i +
107°

Differentiating Eq. (i),
509 4 5x105 =0
dt
A 1%10% =0
dt

. . . . . di
Comparing with the differential equation ;; +Pi=0,
P=1x10*
The solution of this differential equation is given by,
i(1) = ke Pt = ke—lxlo“t

At t=0, i(0)=1.6 A
1.6=k

i()=1.6¢"9  for¢>0

...

|| SETTI NN [n the network of Fig. 6.157, an exponential voltage 4™ s applied at time t = 0.

Find the expression for current i(t). Assume zero voltage across the capacitor at t = 0.

O>V 02Q
o

475t /) —1F
i(t)

Fig. 6.157
Solution At ¢=0", ve(07)=0
i(07)=0

At t=0", the network is shown in Fig. 6.158. 0.2Q

Since voltage across the capacitor cannot change instantaneously,

(0H=0
0o D )

i(0")=—=20A
09=03

Writing the KVL equation for 7> 0, Fig. 6.158
t
47 —0.21‘—1.[1' dr=0
Iy

vo(07)

.0
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Differentiating Eq. (i),

—20e_5’—0.2%—i:0

@+5i: —100¢™"
dt

Comparing with the differential equation g+ Pi=Q,

P=5 Q=-100¢"
The solution of this differential equation is given by,
i=e" Qe dt+ke™
= 675"[—100675t e dt+ke™
=-100te™ +ke™"
At =0, i(0)=20A
20=k
i(f)=-1007e™ +20e™>"  fort>0

|| S ETII WY [n the network shown in Fig. 6.159, the switch is closed at t=0 connecting a
source e~ to the network. At t =0, v¢(0)=0.5V. Determine v(1).

10
O O
¢
1 +
ot 2% 05v__1F V(D)
o
Fig. 6.159
Solution At ¢t=0", v(0)=vc(07)=05V

Since voltage across the capacitor cannot change instantaneously,
v(0")=ve(05)=05V
Writing the KCL equation for ¢ >0,

+—+1—=0
1 1 4
2
ﬁ+3v=e_'
dt
d
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The solution of this differential equation is given by,
v)y=e " [Q e dt+ ke
= j el e di+ke™

= e_3tje 2 dt+ ke

= le_’ +he™
2

Att=0, 1(0)=05V

05=L1ik
2
k=0
w(t)=0.5e"

|| Example XN I the network shown in Fig. 6.160, a sinusoidal voltage v = 100 sin(500t +8) volts

is applied to the circuit at a time corresponding to 0 = 45°. Obtain the expression for the current i(t).

o>( 15Q
O
100 sin (5001 + 45°) /D —— 100 uF
i(1)
Fig. 6.160
Solution
Writing the KVL equation for ¢ > 0,
1 t
100sin(500¢ +45°) ~15i ———— [i dt =0 ..

-6
100x107 5

Differentiating Eq. (i),

di

(100)(500) cos(500¢ +45°) — 15;; -10% =0
% +666.67i = 3333.33cos(500¢ +45°)
. . . . .oodi .

Comparing with the differential equation Z +Pi=Q,

P =666.67, O = 3333.33cos(500¢ + 45°)

The solution of this differential equation is given by,
i=e"[Qedt+ke™

= ¢~ 3333 33008(500¢ + 45°) €*0 67" + f £~
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=3333.33 ¢ 00667 [eﬁéjmz {666.67 cos(500¢ + 45°) + 500in(500¢ + 45°)} | + k e 0™
(666.67)* +(500)

=3.2c0s(5007 +45°) + 2.45in(5007 + 45°) + k e 0067
Let Asing=3.2
and Acos¢p=2.4

A sin® g+ A% cos> 9= (3.2)* +(2.4)* =16
A=4
and ¢ =tan™! (3'2)=53‘13°
24

i(t) = 4sin(53.13°) cos(5007 + 45°) + 4 c0s(53.13°) sin(500¢ + 45°) + k e~°0¢67
= 45in(500¢ + 98.13°) + k ¢ %667
Putting 7 =0, in Eq. (i),
100sin(45°)-15i(0)—-0=0
i(0)=4.71
4.71=4sin(98.13°)+ k
k=0.75

i(f) = 4sin(5007 +98.13°) +0.75 ¢ %7 for¢>0

|| SETOTI NN 11 the network of Fig. 6.161, the switch is moved firom the position I to 2 at t = 0.

The switch is in the position 1 for a long time. Initial charge on the capacitor is 7 X 10~ coulombs. Deter-
mine the current expression i(t), when ® = 1000 rad/s.

°<
2 %50 Q
100 sin (wt + 30°) 50 Q /> 204
i(t) T
Fig. 6.161
Solution At =07, the network is shown in Fig. 6.162.
At t =07, the network attains steady-state condition. 50 Q
100.£30° 100 sin (wt + 30°) ("
I=%= 00 3? =1.41Z75°A ( )<> i(ooD 20 uF
50-j——mm
7 1000%20x10°0

The steady-state current passing through the network when Fig. 6.162

the switch is in the position 1 is
i =1.41sin(10007 + 75°) ...(1)
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For ¢ >0, the network is as shown in Fig. 6.163.
Writing the KVL equation for ¢ >0, 50 Q
t 50 Q />
1 ) ) +
=50i = 50i - ———— [ i dt —vc(0) = 0 (i) i) 20 uF
20x107™ ve(07)™
Differentiating Eq. (ii), Fig. 6.163
—SOQ—SOQ—¥1' =0
de —dr 20x107°
di +500i =0
dt

Comparing with differential equation %+ Pi=0,
P =500
The solution of this differential equation is given by,
i(y=ke ™ = ke ...(iii)
From Egs (i) and (ii),
1.41sin(10007 + 75°) = k e
At t=0, 1.41sin(75°) =k
k=136
i(1)=136e>"" fort>0

X RESISTOR-INDUCTOR-CAPACITOR CIRCUIT

Consider a series RLC circuit as shown in Fig. 6.164. The % R
switch is closed at time ¢ = 0. The capacitor and inductor are °©
initially uncharged. L
Applying KVL to the circuit for ¢ > 0, V— />
. ' i(t) c
V—Ri—L@—ijidﬁo 1
Co

Fig. 6.164 Series RLC circuit
Differentiating the above equation,

. 2.
0-rY_ 4T 1,y
d 4 C
d* Rdi 1 .
—+——+—i=0
d? Ldt LC

This is a second-order differential equation. The auxiliary equation or characteristic equation will be given by,

Al
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Let s, and s, be the roots of the equation.

s.=—£+ (R) =—o+\a’ -} =-o+f

2L
R
o - =-a-
(ZL) c 0
where =£
2L
o = 1
‘o Jic
and B=+o? -}

The solution of the above second-order differential equation will be given by,
l(t) = kle‘“t + kzeszt

where &, and £, are constants to be determined and s, and s, are the roots of the equation.
Now depending upon the values of ezand @), we have 3 cases of the response.

Casel When o> @),

ie., 2L JILC ()
The roots are real and unequal and it gives an overdamped

response.
In this case, the solution is given by,

i=e(k P+ k, e \

or i=hke' +ke™  fort>0 Fig. 6.165 Overdamped

The current curve for an overdamped case is shown in Fig. 6.165.

i(t
Case Il When o= o, w0
R_ 1

2L JILC

ie.,

response

The roots are real and equal and it gives a critically damped i
response.

In this case the solution is given by, Fig. 6.166 Critically damped

response
= e_m(kl +kot) fort>0

The current curve for critically damped case is shown in Fig. 6.166.

Case Il When o < @,

R 1

—_ < P
L LC

The roots are complex conjugate and it gives an underdamped response.

ie.,
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In this case, the solution is given by,
l(t) = k]@slt + k2€szt

where sl =—a%t \/az + wé

Let Jo? —a =N-1wi —a? = jay,
where j= J-1

and Wy = (03 _o?
Hence, i() = & (ke + kpe M)
- A L I @it _ pjout
=e ot {(kl +k2)|: +J(kl _k2) -
2 72

=e ¥ [(ki +ky)coswyt + j(ky —ky)sinwgt] fort>0

The current curve for an underdamped case is shown in Fig. 6.167.

i(t)
h A A
N A

Fig. 6.167 Underdamped response

|| SETOTIXWEW  [n the network of Fig. 6.168, the switch is closed at t = 0. Obtain the expression for

current i(t) for t>0.

o0y —— /D Z-005F
i(t)

Fig. 6.168

Solution At r=0", the switch is open.
i(07)=0
ve(07)=0
Since current through the inductor and voltage across the capacitor cannot change instantaneously,
i(0")=0
ve(0Y)=0
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For ¢ >0, the network is shown in Fig. 6.169. 9Q 1H

Writing the KVL equation for 7> 0,

e —— 0.05F
di 1 G LoBVT ,-(tD

20-9i-1=-———|idr=0 ()
dt 0.05 0
Difterentiating Eq. (i), Fig. 6.169
2.
099 _ 4T 5020
dt  gr*
2. .
i o9 a0i=0
12 dt

(D*+9D+20)i=0
Dy =-4,D,=-5

The solution of this differential equation is given by,

i=ke* +ke™ ..(ii)
Differentiating Eq. (ii),
% =4k eV 5k e ....(iii)
At £=0,i(0)=0
0=k +k ...(1Iv)
di
E(O) = -4k — 5k, ..(v)

Putting =0 in Eq. (i),
di
20-9i(07")=——(0")-0=0
(07 dt( )

%(0*) =20-9i(0")=20 A/s

From Eq. (v),

20 = -4k — 5k, ...(vi)
Solving Eqs (iv) and (vi),

k=20

ky =20

i(1)=20e* =20  fort>0

|| S ET I NCRTW [ the network shown in Fig. 6.170, the switch is moved from the position 1 to 2 at

t =0. The switch is in the position 1 for a long time. Determine the expression for the current i(t).
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1])

20V 2:1
—‘7

10Q

2H

k 7000
/> ——3F
50V i()

Solution At #=0", the network is shown in

Fig. 6.171.

At t=0", the network attains steady-state
condition. Hence, the inductor acts as a short circuit

and the capacitor acts as an open circuit.

ve(07)=20V
i(07)=0

Fig. 6.170

20V o

Fig. 6.171

ve(07)

Since the current through the inductor and the voltage across the capacitor cannot change instaneously,

For ¢ >0, the network is shown in Fig. 6.172.

Writing the KVL equation for 7> 0,
di 1¢
50-10i-2%"—~[idr-20=0
dr 3%

Differentiating Eq. (i),

. 2.
0-109 4T 1 _o_
da dr* 3
2. .
£+5ﬂ+li=0
dr> T dt 6

(D2+5D+é)i20

3F
20V

ve(01)=20V
i(0)=0
10Q 2H
O
.G) L /> T
50V o l

D, =-0.03, D, =-4.97

The solution of this differential equation is given by,

Differentiating Eq. (ii),

At 1=0,i(0)=0

di
—(0)=-0.03k —4.97 k
70 1 2

di

0:k1+k2

l(t)z kl 6*04032 +k2 e*4.97l‘

0.03k e "% —4.97k, ¢

...(i1)

....(iii)

...(iv)
..(v)
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Putting =0 in Eq. (i),

20—101‘(0*)—2%(0*)—0:0

ﬂ(OJ“) = 20-10i07) (0) =10A/s
dt 2
From Eq. (v),
10=-0.03 k; —4.97 k, ...(vi)
Solving Eqs (iv) and (vi),
k =2.02
ky =2.02

i(1)=2.02e%-2.02¢*7" fort>0

|| Example WY I the network of Fig. 6.173, the switch is closed and a steady state is reached in the

network. At t =0, the switch is opened. Find the expression for the current i,(t) in the inductor.

100
100V T 1H ——10uF

Fig. 6.173
Solution At =07, the network is shown in 100
Fig. 6.174.
At t=0", the network attains steady-state i (07) l
condition. Hence, the inductor acts as a short circuit 100V —— ve(09)
and the capacitor acts as an open circuit. T

. 100
B(07)=—-=104 Fig. 6.174

ve(07)=0

Since current through the inductor and voltage across capacitor cannot change instantaneously,

L(0Y)=10 A
ve(0F)=0
For ¢>0, the network is shown in Fig. 6.175. (1)
Writing the KVL equation for 7> 0,
%1 H —— 10yF
10A — VK
di 1 _
12— [idr=0 (D)
dr 10x107

Fig. 6.175
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Differentiating Eq. (i),

(D*+10%)i=0
Dy =j316,D, =—;316

The solution of this differential equation is given by,

ir(t) = ki cos316¢+ k, sin316¢ ...(i0)
Differentiating Eq. (ii),
%:—316klsin316t+3l6kzcos3l6t .. (iii)
At t=0,5(0)=10A
10=FK ...(iv)
@(0)—316k v)
dt 2

Putting ¢ =0 in Eq. (i),
di
~40ty—0=0
dt( )

di .
E(O )=0
From Eq. (v),
0=316 k,
kz =0
ip(t)=10cos316¢ fort>0

|| SEINAERNY N /i the network of Fig. 6.176, capacitor C has an initial voltage v.(07) of

10 V and at the same instant, current in the inductor L is zero. The switch is closed at time t=0.
Obtain the expression for the voltage v(t) across the inductor L.

?{ v(t)
o .

- 1o SH

Lt
NN
-

Fig. 6.176

Solution At =07, ir(07)=0
V(0 )=ve(07)=10V
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Since current through the inductor and voltage across capacitor cannot change instantaneously,

i(07)=0
V(0" ) =ve(01) =10V

For ¢t >0, the network is shown in Fig. 6.177.

Writing the KCL equation for ¢ >0,
dv v 17 gl 1o
—tTtT = iov ——1F
ldt+l+l_([vdt 0 (i) E
4 2
Differentiating Eq. (i), Fig. 6.177
2
CUPELIN S
et dt
(D*+4D+2)v=0
D] = —1, D2 = —3
The solution of this differential equation is given by,
v(it) =k e +hk e
Differentiating Eq. (iii),
ﬁ = _kl €7t —3k2 6‘73t
dt
At t=0,v(0)=10V
10=Kk +k
dv
—(0)=-k -3k
& 0)=-k =3k
Putting =0 in Eq. (i),
dv
—(0")+4v(0)+0=0
o )+4v(0)
ﬂ(O+) =-40V/s
dt
From Eq. (v),
—40=-k -3k
Solving Eqs (iv) and (vi),
ky=-5
ky =15
wW)=-5¢e"+15¢ fort>0

=

..

...(iii)

...(1Iv)
..(v)

(Vi)

|| ETIINWER  [n the network of Fig. 6.178, the switch is opened at t = 0 obtain the expression for

v(t). Assume zero initial conditions.
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2A sf)o 050 S05H —Lgg

Fig. 6.178

Solution At¢=07, ir(07)=0
v(07)=vc(07)=0

Since current through the inductor and voltage across the capacitor can not change instantaneously,
ir(07)=0
v(0")=ve(07)=0

For ¢>0, the network is shown in Fig. 6.179.
Writing the KCL equation for # > 0,

<
—
=

dv
—+— vdt+1—=2 4
05 05 .[ r @ 2a 050 05H - qf
Differentiating Eq. (i),
2 Fig. 6.179
2@+2 +d— 0 8
dt dt?
2
d—+2d—+2 =0
de* ot

(D> +2D+2)v=0
Dl =—1+j1, D2 =—1—j1
The solution of this differential equation is given by,

wW(t) = e (k cost+k,sint)
Differentiating Eq. (ii),

% =—e (ki cost+kysint)+e™" (—k; sint + ky cost)
= e [~k (cost +sint) + ky(cost —sint)]
At£=0,v(0)=0
0=k

dv
—(0)=—k +k
o=k
Putting # = 0 in Eq. (i),
dv
2v(0)+0+—(0)=2
v(0) dt()

.. (i)

...(iii)

...(iv)
(V)
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dv
—(0)=2V/
dt() s

From Eq. (v),
2=—k+k; L.(vi)
Solving Eq. (iv) and (vi),
k=0
ky =2

v(t)=2e " sint fort>0

|| S ET I NN The network shown in Fig. 6.180, a sinusoidal voltage v = 150 sin(200t +¢ ) is ap-
plied at ¢ = 30°. Determine the current i(t).

10Q 0.5H
o 7000
150 sin (200t + ¢) /> —— 200 pF
i(t)

Fig. 6.180

Solution  Writing the KVL equation for ¢ > 0,

, di 1 .
150 sm(200t+30°)—10i—0.5—l—76'[idt=0 ...(1)
dt 200x107° g
Differentiating Eq. (i),
di d’i

30000 cos(2007+30°)—10——-0.5—-—-5000i = 0
dt dr?

2. .
Q +20 ﬂ +10000i = 60000 cos(2007 +30°)

dr? dt

(D?* +20D +10000)i = 60000 cos(2007 + 30°) (i)

The roots of the characteristic equation are

Dy =-10+;99.5, D,=-10—-;99.5
The complimentary function is

ic =e (K, c0s99.5¢ + K, sin 99.5¢)

Let the particular function be
ip = Acos(200¢ +30°) + Bsin(2007 +30°)

ip = —20045in(200¢ + 30°) + 200 B cos(200¢ + 30°)
ip = —40000.4 cos(200¢ + 30°) — 40000 B sin(200¢ + 30°)
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Substituting these values in Eq. (ii),
—40000 A cos(200¢+30°) —40000 Bsin(200¢ +30°) +20[—200 Asin(2007+30°) + 200 B cos(200z +30°)]
+10000[ A cos(2007 +30°) + Bsin(200¢ +30°)] = 60000 cos(200z + 30°)

(40000 B — 4000 4+10000 B)sin(200t +30°) + (40000 A4 +4000 B +10000 4)cos(200¢ +30°)
= 60000 cos(2007 +30°)

Equating the coefficients,

—40000 B —4000 A+10000 B=0

—40000 4 +4000 B+10000 4 = 60000
Solving these equations,

A=-197
B=0.26
ip = —1.97¢0s(200¢ +30°) + 0.26 sin(2007 + 30°)
Let Asing=-1.97
and Acos¢p=0.26
A% sin® g+ A% cos® g = (-1.97)? +(0.26)> =3.95
A=1987
and ¢=tan™" (_197) =-82.48°
0.26

ip =1.9875sin(—82.48°) cos(2007 +30°) +1.987 cos(—82.48°) sin(200z + 30°)
=1.987sin(2007 + 30° —82.48°)
=1.987sin(200¢ — 52.48°)
The solution of the differential equation is given by,
i(f) = "% (ky c0s99.5¢ + kj 8in 99.5¢) +1.987 sin(200¢ — 52.48°) ...(iii)
Differentiating Eq. (iii),
di

0 e 1%(—99.5 k; 5in 99.5¢ +99.5 ky c0s 99.5¢)

—10 &7 (k; c0899.5¢ + ky 5in 99.5¢) + (1.987)(200) cos(200¢ — 52.48°)
At t=0, i(0)=0
0=k +1.987 sin(—52.48°)
fi =1.58 (iv)
%(0) =99.5 ky —10 k; +(1.987)(200) cos(—52.48°)

=99.5 k, —10(1.58) +242.03
=99.5 k, +226.23 (V)
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Putting =0 in Eq. (1),

150sin(30°) —10(0) — 0.5%(0) —0=0

di
—(0)=150 A/s
70

From Eq. (v),
150=99.5 ky +226.23
ky =-0.77
i(t) = e (1.58c0s99.5¢ — 0.775in 99.5¢) + 1.987sin(2007 — 52.48°) for 1 >0
” The switch in the network of Fig. 6.181 is opened at t = 0. Find i (t) for t > 0 if,

(a)L:éHandC:IF (b)L=1Hand C=1F () L=5HandC=1F

W Lo

T 20 ——C vs()

Fig. 6.181

Solution At ¢ = 07, the network has attained steady-state condition. Hence, the inductor acts as a short
circuit and the capacitor acts as an pen circuit.

ve(07)= 4><$= 2V
i(07)=0
Since current through the inductor and voltage across the capacitor cannot change instantaneously,
ve(0H)=2V
i(07)=0

Case I WhenR=2Q,L=%H,C=1F

2L 2x—
2
1 1 1
Wy = = =——=1414
Jie [t \os
2

o>
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This indicates an overdamped case.

i(1) = 4 €™ — 4, ™'
where, si=—o—Jo? —at =2-4-2=-2-2=-3.414
and 5 = —a++Jo —wf =-2++/2=-0.586

i(£) = by e 4y 0S80

At1=0,i(0)=0
ki+ky =0 .G

Alsov,(0%) + v (0%) + v,(0") =0
v (07) = —vp(07) = v (07) = =2i(0") —vc (0Y) =2V ...(ii)

vL(o+>=L%(o+)

Differentiating the equation of i (#) and putting the condition at =0,
—3.414 k - 0.586 k,=—4 ...(iii)
Solving Eqs (i) and (iii), we get
k,=1414 and k,=-1414

i(1)=1.414(e>44 _ 70580 for >0

Casell WhenR=2Q,L=1H,C=1F

R 2 2
aziziz—zl
2L 2x1 2
O == =1
SN TR

o=y

This indicates a critically damped case.

i) =e (k + k)= e (k, +k, 1)
At1=0,i(0)=0

k1:0

di
Also, 0")=L—(0*
ve(07) dt( )

: +
Aoy =20 2 5
dr L 1
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Differentiating the equation of i(f) and putting the condition at ¢ = 0,
di
dil
ky =-2
i(t)=-2te™’ fort>0

:—k1+k2 :—2

CaseIlll WhenR=2Q,L=5H, C=1F

a=—==02
2L 10

O = —— = == 0.447
NITaNG

o< @y

This indicates an underdamped case.
i(t)y=e* (B, cos @ t+B,sin 1)

where, wg =2 -0 = (0.447)% —(0.2)* = 0.4
812 = -0t j(Dd =-02% ]04

i(f) = e %% (B, cos 0.4t + B, sin 0.47)

Applying the initial condition,

i(0h =0
. +
and ﬂ(0+)=_M=_E
dt L 5
B =i(0)=0
B, =-1

i(f)y=—-e"*sin04r  fort>0

Exerc Ises
6.1 The switch in Fig. 6.182 is moved from the =~ 6.2 The switch K is closed at + = 0 in the
position a to b at =0, the network having been network shown in Fig. 6.183. Determine
in steady state in the position a. Determine di d2i
d12 dl3 l(OJr ), *(0+) and 72(0+)
(07, 1(07), i5(07),—%(0%) and —*(0"). dt dt
at dt 10 1H 10
—AA—TIN—T—AM—
Vo /> 1Q /> ——1F
[ iy(t) it)
Fig. 6.183

Fig. 6.182 .
[1.66 A,5 A, —3.33 A, —3.33 A/s, 2.22 AJs] [0, e —Vo]
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6.3 In the network of Fig. 6.184, the switch K
is closed at = 0. At t = 07, all capacitor
voltages and inductor currents are zero. Find

dv dv dv
v1>715v25725\)3 and =3 att:0+.
dt dt dt
K
Ry

Fig. 6.184

{ 190

1

,0,0,0, 0:|

6.4 In the network at Fig. 6.185, the capacitor C|
is charged to voltage 1000 V and the switch K
. . di
is closed at = 0. Find d—lzz atr=0".
t

K
2 MQ

f{o

.

10 uF =—1000 V /> 1MQ/) “—10uF
—‘7 i1 |

3

Fig. 6.185

A/sz]

6.5 In the network shown in Fig. 6.186, switch is
closed at = 0. Obtain the current i, (?).

17
400000

IX 10Q
50 V /> 10 Q/) “C2uF
T iy(1) i)

Fig. 6.186
[i)(1) =5 e 1000001]

6.6 The network shown in Fig. 6.187 is under
steady-state when the switch is closed. At =
0, it is opened. Obtain an expression for 7 (7).

4 kQ
s
i(t)
4 A 10 kQ 4 mH 8 kQ
Fig. 6.187

[i(1) = 2.857 210 1]

6.7 The switch in Fig. 6.188 is open for a long
time and closes at ¢ = 0. Determine i (¢) for ¢ >
0.

6 Q 3Q

240V

Fig. 6.188
[i() =251 —e™)]

6.8 In the network shown in Fig. 6.189, the steady
state is reached with the switch open. At =0,
the switch is closed Find v. (¢) for > 0.

5kQ

8
+
2 kQ ve(t) Z—Z5uF
1kQ -
6V
T

V(D) =5¢7]

6.9 The circuit shown in Fig. 6.190 has acquired
steady state before switching at = 0.
(i) Obtain v, (0%), v.(07),7(0%)and i (07).
(i1) Obtain time constant for ¢ > 0.
(iii) Find current i (¢) for ¢ > 0.



10 kQ

vo(t)Z=2 uF

Fig. 6.190

[(1)5V,5V,1mA,O0, (ii) 0.01 s, (iii) €'’ mA]
6.10 In the network shown in Fig. 6.191, the switch
is initially at the position 1 for a long time. At
t = 0, the switch is changed to the position 2.

Find current i (¢) for ¢ > 0.

20V =
1H

Fig. 6.191
[i (1)) =2e3"
6.11 In the network shown in Fig. 6.192, the switch
is closed at = 0. Find v (¢) for > 0.

?{O O +

Q 1Q

3A

SIES

Fig. 6.192
(1) =e]
6.12 In the network shown in Fig. 6.193, the switch
is in the position 1 for a long time and at =0,
the switch is moved to the position . Find v (¢)

for > 0.
1Q 1 2
[/\/\/\/—O T +
1V g 0.5Q 2H v(t)
[ % I
Fig. 6.193

[v()=—0.5 ¢ 1]

Exercises 6.81
6.13 In Fig. 6.194, the switch is open until time
t = 100 seconds and is closed for all times
thereafter. Find v () for all times greater than
100 if v (100) =-3 V.
8Q 12Q

A o+

5V 6F-— 2F = vt

[ N

Fig. 6.194

_(1-100)
l:v(t) =5-8e 160 ]

6.14 A series RL circuit shown in Fig. 6.195 has a
constant voltage V applied at 1 = 0. At what
time does v, =v,.

VR 10Q

oV iF

Vi 1H

¥

Fig. 6.195
[0.0693 s]

6.15 In the circuit shown in Fig. 6.196, at time
t = 0, the voltage across the capacitor is zero
and the switch is moved to the position y. The
switch is kept at position y for 20 seconds
and then moved to position z and kept in that
position thereafter. Find the voltage across the
capacitor at £ = 30 seconds.

10 kQ y z
A o
e g 5 kQ
10V Vc(T)TOJ uF
Fig. 6.196
[0]
6.16 Determine whether RLC series circuit shown

in Fig 6.197 is underdamped, overdamped or
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critically damped. Also, find v; (0%), di (0%)
and 7 (eo). dt

200 Q

0.1 H

200 u(t) —— 10uF

Fig. 6.197

[critically damped, 200 V, 2000 A/s, 0]
6.17 Determine whether RLC circuit of Fig
6.198 is  underdamped, overdamped

Objec:ﬁve-Type Questions

or  critically  damped. Also  find

: 2
v (07), %(W), %(W} ifv(t) = u(t).

2Q 1H

N =

Fig. 6.198
[underdamped 1 V, 1 A/s, 2 V/s?]

6.1 The voltages v¢,,ve, andve, across the
capacitors in the circuit in Fig. 6.199 under
steady state are respectively

10 kQ 1H

2F
i 2H 2kQ

100V

Fig. 6.199

(a) 8S0V,32V,48V
(b) 80V,48V,32V
(©) 20V,8V,12V
d) 20V,12V,8V

6.2 In the circuit of Fig. 6.200, the voltage v(7) is
1Q 1Q

(a) et — ebt (b) eat + eht
(c) ae— be (d) ae”+ be

6.3 The differential equation for the current i(¢) in
the circuit of Fig. 6.201 is

ity 29 2H
sin t T1 F
Fig. 6.201
d*i . di .
(a) 2?+2E+z(t):smt
b d’i i
( ) ?J{' E"l‘ l(t)—COSt
% di
(c) 2?+2E+l(t)=cost
d*i _di . .
(d) ?+2E+2z(t)=smt



6.4

6.5

6.6

At ¢= 0%, the current i in Fig. 6.202 is

b c
2\§o | |

I
V— R
) B
iy (t) (1) TC

Fig. 6.202
V Vv
(a) “9R (b) R
vV
(c) T (d) zero

For the circuit shown in Fig. 6.203, the time
constant RC = 1 ms. The input voltage is v(?)
= /2sin 10°7. The output voltage v (f) is
equal to

R
o—AN\v o)
vi (1) —_—C Vo (1)
O O
Fig. 6.203

(a) sin(10°—45°) (b)
(c) sin(10°7-53) (d)

For the RL circuit shown in Fig. 6.204, the
input voltage v(#) = u(t). The current i(?) is

sin (103 7 + 45°)
sin (10° 7+ 53°)

1H

Objective-Type Questions 6.83

6.7 The condition on R, L and C such that the step

response v(?) in Fig. 6.206 has no oscillations
is

L R
——oO
N
V(1) Cc —— Vi)
O
Fig. 6.206
1 (L L
R>—.|= b) R>.|=
@ 2\e ®) \E
L 1
¢) R=2/|= d) R=—
(© - (d Jic

The switch S in Fig. 6.207 closed at ¢ = 0. If
v, (0) =10V and vg(O) = 0 respectively, the
voltages across capacitors in steady state will
be
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6.9

6.10

6.11

vy (1)
| |
I
8 uF

A o

Vo (f) Z— 2 uF 1MQ

Fig. 6.207
v, (=) =v, (=) =0
(b) V() =2V, v, () =8V
(© vy(=)=v, (=) =8V
(d) V() =8V, v, (00)=2V

(@)

The time constant of the network shown in
Fig. 6.208 is

ﬁ”“?

Fig. 6.208
(a) 2RC (b) 3RC
1 2
—RC d) =RC
(©) 5 (d) 3

In the series RC circuit shown in Fig. 6.209,
the voltage across C starts increasing when the
dc source is switched on. The rate of increase
of voltage across C at the instant just after the
switch is closed i.e., at t = 0" will be

M N
[
1V
o ‘}
\
Fig. 6.209
(a) =zero (b) infinity
1
RC d —
(c) (d) RC

The v — i characteristic as seen from the
terminal pair (4 — B) of the network of Fig.
6.210(a) is shown in Fig. 6.210(b). If an
inductance of value 6 mH is connected across

6.12

6.13

the terminal pair, the time constant of the
system will be

Network of
linear resistors
and independent
sources

4 mA
> v(t
(0,0)| gv >\
(b)
Fig. 6.210
(a) 3upus
(b) 12s
(c) 32s
(d) unknown, unless actual network is spec-
ified

In the network shown in Fig. 6.211, the circuit
was initially in the steady-state condition with
the switch K closed. At the instant when the
switch is opened, the rate of decay of current
through inductance will be

¥
fo 2Q

2Q
2V —
T 2H
Fig. 6.211
(a) zero (b) 0.5A/s
(¢) 1A/s (d) 2A/s

A step function voltage is applied to an RLC
series circuit having R=2Q, L=1Hand C
= 1 F. The transient current response of the
circuit would be

(b)
(c) under damped (d) none of these

(a) over damped critically damped
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Answers to Objective-Type Questions

6.1 (b) 6.2 (d) 6.3 (c) 6.4 (d) 6.5 (a) 6.6 (b) 6.7 (¢)
6.8 (d) 6.9 (d) 6.10 (d) 6.11 (a) 6.12 (d) 6.13 (b)






Frequency Domain

Analysis of RLC Circuits

IEZ8| ~nTrRODUCTION

Time-domain analysis is the conventional method of analysing a network. For a simple network with first-
order differential equation of network variable, this method is very useful. But as the order of network variable
equation increases, this method of analysis becomes very tedious. For such applications, frequency domain
analysis using Laplace transform is very convenient. Time-domain analysis, also known as classical method,
is difficult to apply to a differential equation with excitation functions which contain derivatives. Laplace
transform methods prove to be superior. The Laplace transform method has the following advantages:

(1) Solution of differential equations is a systematic procedure.
(2) Initial conditions are automatically incorporated.
(3) It gives the complete solution, i.e., both complementary and particular solution in one step.

Laplace transform is the most widely used integral transform. It is a powerful mathematical technique which
enables us to solve linear differential equations by using algebraic methods. It can also be used to solve
systems of simultaneous differential equations, partial differential equations and integral equations. It is
applicable to continuous functions, piecewise continuous functions, periodic functions, step functions and
impulse functions. It has many important applications in mathematics, physics, optics, electrical engineering,
control engineering, signal processing and probability theory.

IEZM| LAPLACE TRANSFORMATION

The Laplace transform of a function £'(¢) is defined as

F(s)=L{f (0} = [ f(0ye™ dr
0

where s is the complex frequency variable.
s=0+jw

The function f(f) must satisfy the following condition to possess a Laplace transform,

[lr@)e di<e
0
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where ois real and positive.
The inverse Laplace transform L {F (s)} is

O+ joo

1 st
f(t)—;j | Fs)e” ds

O—jeo

IEEN| LAPLACE TRANSFORMS OF SOME IMPORTANT FUNCTIONS

1.

Constant Function k
The Laplace transform of a constant function is

oo —st |7
L{k}:_[ke"s’dt:k{e } _k
0 0 S

Function 1"
The Laplace transform of f{¢) is
L{t" = J't"e“”dt
0
dx

Putting st =x, dt = —
s

oo n T
L{t"} = J.(x) eixﬁzs”“_'.x”efxdxzzizl,s>0,n+1>0
o\ S 0 s

If n is a positive integer, vn+1=n!
!
L") = n!

sn+1

Unit-Step Function
The unit-step function (Fig 7.1) is defined by the u(t)
equation, A
u(®=1 t>0

=0 t<0

The Laplace transform of unit step function is

1

- T 0
(1.5t g, _|_¢€ _ l
L{u(n} = -([1 e di= { s ]0 T s Fig. 7.1 Unit-step function

Delayed or Shifted Unit-Step Function
The delayed or shifted unit-step function (Fig 7.2) is defined
by the equation

u(t-a)

u(t—a)=1 t>a
=0 t<a
The Laplace transform of u (1 — a) is

] a =

ol —st - —as - . . .
L{u(t—a)} = J.l-e_‘” dt = |:_ € :| _¢ Fig. 7.2 Shifted unit-step function
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7.3 Laplace Transforms of Some Important Functions 7.3

Unit-Ramp Function r(t)
The unit-ramp function (Fig 7.3) is defined by the equation
M) =t t>0
=0 t<0

The Laplace transform of the unit-ramp function is

. 0|
L{r(t)} = _[te_” -1
0

§2 Fig. 7.3 Unit-ramp function

Delayed Unit-Ramp Function r(t-a)
The delayed unit-ramp function (Fig 7.4) is defined by the
equation
r(t—a)=t t>a
=0 t<a -t
The Laplace transform of » (£ — a) is 0| a

Lir(t-a) = ]fte’“ i = e_zas Fig. 7.4 Delayed unit-ramp function
a )
Unit-Impulse Function
The unit-impulse function (Fig 7.5) is defined by the equation
dH=0 t#0 1

o(t)
‘ - t

and [swar=1  1=0 S

The Laplace transform of the unit-impulse function is Fig. 7.5 Unit-impulse function

at

L{s(t)} = TS(t)e_S’ dr=1
0

Exponential Function (e)
The Laplace transform of the exponential function (Fig 7.6) is

oo oo —(s—a)t |7 t
L at | _ at —st dt = —(s—a)t dt=|— e :| — 1 0
{e } '([e e t -([e t |: X

sS—a Ss—a

sine Function Fig. 7.6 Exponential function

. Lr . .
We know that s1na)t:7[e’a” —e ]“”].

J
The Laplace transform of the sine function is

: 1 ot —jot 1 it ot 1 1 1 )
L{Slna)t}=L{2j(e/ —e/ )}zzj[L{e.l V= Lie™/ }]=|: :|=

2j s—ja)_s+ja) 2+ w?

Cosine Function
1r . .
We know that coswt = E[e/“” +e /"”].

The Laplace transform of the cosine function is

L{cosor} = L{;(eﬂ‘” + e‘f“”)} = %[L{ejw’} +L{e ] = 1[ . } =

2l s—jo s+jo| s+’
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11. Hyperbolic sine function

We know that sinh wt = %(e"” - e’“”).

The Laplace transform of the hyperbolic sine function is

L{sinhwt}:L{;(e“”—e"”)}:;[L{ew’}—L{e“”}]zl[ b1 ]z @

2[s—o0 s+o
12. Hyperbolic cosine function

1
We know that cosh wf = E(e“” + e_“”).

The Laplace transform of the hyperbolic cosine function is

L{cosha)t}:L{i(e“’%e‘“”)}:;[L{e‘”’}+L{e‘“”}]:1[ 2 :|: 2S .

2ls-w s-w]| s"-w

13. Exponentially Damped Function
Laplace transform of an exponentially damped function e™ f'(¢) is

L{e e} = [ 10e e di= [ et di= Fis+a
0 0"

Thus, the transform of the function e £ () is obtained by putting (s + @) in place of s in the transform of /(7).

—at - —at - a)
L{e at smwt}zﬁ L{e at smha)t}:ﬁ
(s+ta)" +o (s+a) -

—at s+a —at s+a
L{e coswt}=ﬁ L{e coshwt}=ﬁ
(s+a)y +ow (s+a) -

IEZB| PROPERTIES OF LAPLACE TRANSFORM
7.4.1 Linearity

If L{f1(8)} = Fi(s) and L{f>2(0)} = F3(s) then Liaf(t)+bf2(1)} = aFi(s)+ bF(s)
where a and b are constants.

Proof L{f ()} = Tf(r) e dt
0
L{af,(t) + bf> ()} = I{afl(t) +bfy(t) e dt = aIﬁ(t)e_”dt + bI fr()e™™ dt = aF (s)+bF; (s)
7.4.2 Time Scaling
If L{f(£)} = F(s) then L{f (at)} = ;F(:)
Proof L{f(t) = Tf(t) e dt
0

Lif(a} = fanye™ dt
0



7.4 Properties of Laplace Transform 7.5

. dx
Putting at =x, dt = —
a

LGy = [ 1) e e A IF(S)
0 ay a

a a

7.4.3 Frequency-Shifting Theorem
If L{f(t)} = F(s) then L{e™ f (1)} = F(s+a)

Proof L{f(t)}= ]of(t)t ed
0
Lie™ f(1)} = ]oe_"’f ()e™" dt :T [0 di = F(s+a)
0 0

7.4.4 Time-Shifting Theorem

If L{f(¢)} = F(s) then L{f(t—a)}=e “F(s)
Proof LUf) = [ fare dr
0

Lift~a)}=[f(~a)e™ dr
0

Putting t—a=x, dt=dx
When t=a, x=0
t—o0, X—oo

L{f(t—a)}= T F(x)e™@) gy = e““T F(x)e™ dx = e‘“s]o F(0) e dt = e “F(s)
0 0 0
7.4.5 Multiplication by t (Frequency-Differentiation Theorem)
If L{f(t)} = F(s) then L{t f(¢)}= —%F(s)

Proof LU @)= F) = [ £ di
0

Differentiating both the sides w.r.t s using DUIS,
d d7 . a0,
—F(s)=—| f(e dt= | —f(t)e™™ dt
) ds{f( e { AGL
= [ (=0 (@)™ dt = [{=t f(O)le™"dt =Lit f()}
0 0

Ll @)} = (D2 Fis)
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7.4.6 Division by t (Frequency-Integration Theorem)

If L{f (1)} = F(s), then L{fit)} = TF(S) ds

Proof
L{f(O}=F(s)= [ f(t)e™ dt
0
Integrating both the sides w.r.t s from s to oo,

TF(S) ds = TT F(te ™ dt ds
s s 0

Since s and ¢ are independent variables, interchanging the order of integration,
o oo | oo o 1 Aad o
[Fyds=[| [ ftye™ds | dr = j[ f(t)e""] dt = j@e-“dt
K s 0 -t N 0 t

0
L {fgt)} = IF(s)ds

7.4.7 Time-Differentiation Theorem: Laplace Transform of Derivatives
IfL{f(¢)} = F(s) then

L{f' ()} = sF(s)= f(0)

L{f ()} = s F(s) = s/ (0) - f(0)

In general,

LU0} = 5"F () =" £(0) =" f(0) =" 7(0)...= f"77(0)
Proof

L{rot=[rwe™ da

0
Integrating by parts,
L@y = f0e™ | = [ () f (e de == f(0)+ 5] f(0ye™"dt == f(0)+sL{f (D)}

Similarly, ’ ’

LUf" ty==f"+sL{f" 1y == (0)+5[=f(0) +sL{f(1)}] = =/ "(0) = sf (0) + s L{ f (1)}
mgeneral,  L{f"(0}=5"F&)=s"" /() =" f/(0)=5">f(0)...= /7(0)

7.4.8 Time-Integration Theorem: Laplace Transform of Integral

F(s)

N

If L{f(t)} = F(s) then L{[ f(t)dt} =
0



7.5 Inverse Laplace Transform 7.7

Proof {ff(f)d } =

Integrating by parts,

et 1

7.4.9 Initial Value Theorem

oS —3

[ro dt}é_”dt
0

F (s)

( | f(t)dtﬂdt | é (e *'dt = L{f(t)}—
0

If L{f(t)} = F(s) then lina f(¢) = lim sF(s)
Proof We know that, ‘
L{f'(t)} = sF(s)— f(0)

sF(s)=L{f" ()} + f(0) = jf'(t) e "dt+ f(0)
0
lim sF(s) = lim T FUte M dt+ £(0)= T lim[ f*(1)e™ 1di+ £(0) = 0+ /(0) = £ (0) = lim £ (1)
§—>o0 §—o0 0 0 §—>o0 =

7.4.10 Final Value Theorem

If L{f(t)} = F(s) then lim f(¢) = lim sF(s)
t—oo §—yo0

Proof We know that

L{f' (D)} = sF(s)- f(0)
sF(s) = L{f' (0} + f(0) = If’(t) eVt + f(0)
0

lim sF(s) = lin(lj £ty e dt+ £(0) = Tlin(l)[ f’(t)e’”]dt+ £(0)= Tf’(t)dt+ £(0)
§—ro0 RNard 0 OS*) 0

=|f@f; + f(©) = lim ()= £(0)+ /(0) = lim £ (1)

IEXH| INVERSE LAPLACE TRANSFORM

If L{f(¢)} = F(s)then f(¢) is called inverse Laplace transform of F(s) and symbolically written as

f()=L"{F(s)}

where L' is called the inverse Laplace transform operator.

Inverse Laplace transform can be found by the following methods:

(i) Standard results
(ii) Partial fraction expansion
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7.5.1 Standard Results

Inverse Laplace transforms of some simple functions can be found by standard results and properties of
Laplace transform.

2
— 35+
” SETNII WM Find the inverse Laplace transform of w

N
s=3s+4 1 3 4

Solution F(s)=—" " "=~ 4
s s 28

LYF(s)y =1-3t+2¢

35+4
” SETII WA Find the inverse Laplace transform of o 5
+

SZ

3s+4  3s 4

Solution F(s)= = +
249 249 s%+9

4
L'{F(s)}=3cos 3t+§sin 3¢

+
“ SETNTIEWEN  Find the inverse Laplace transform of %
2 —

Solution F(s)= 4s2+15 __ 4s+ls 1 s +E 1
16s° —25 2 25) 4 2 25 16 » 25
16 s —— §T—— §T-—
16 16 16

LYF(s)}= L cosh> 1+ 3 sinh >
40Ty
. . 2s+2
” SETNII WA  Find the inverse Laplace transform of —
s +2s+10

Solution Fs=—2*2 264D
s°+2s+10  (s+1)°+9

LY{F(s)y=2e"'L" {zs} =2e™ cos3t

s°+9

” SETII AN Find the inverse Laplace transform of %
_ 25—

S
3347 _3(s=D+10_, (=D o0 1

Solution F(s)= = = +
) s =2s=3 (s—=1)*-4 (s-1)*-4  (s-1)*-4

1
LYF(s)}=3e'L" { 5 e 4}+ 10e'L! {2} =3¢’ cosh 2¢ + 5e’ sinh 2¢
s

s —4

7.5.2 Partial Fraction Expansion

. . P L .
Any function F(s) can be written as % where P(s) and Q(s) are polynomials in s. For performing
s

partial fraction expansion, the degree of P(s) must be less than the degree of Q(s). If not, P(s)must be
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divided by Q(s), so that the degree of P(s)becomes less than that of Q(s). Assuming that the degree of

P(s) is less than that Q(s), four possible cases arise depending upon the factors of Q(s).

Case I Factors are linear and distinct,

P
psy— PO
(s+a)(s+b)
By partial-fraction expansion,
F(s)= 4 + B
s+a s+b

Case I Factors are linear and repeated,

F(s)= _ P
(s+ta)s+b)"
By partial-fraction expansion,
F(s)= 4.8, 5 e B,
s+a s+b (s+b) (s+b)"

Case III Factors are quadratic and distinct,

P(s)
F =
(<) (s2 +as+b)(s2 +cs+d)

By partial-fraction expansion,
As+ B Cs+D
+

s2+as+b s*+es+d

F(s)=

Case IV Factors are quadratic are repeated,

P(s)
F =
(s) (s> +as+b)(s* +cs+d)"

By partial-fraction expansion,

As+ B Cis+ D, Cys+D C,s+D,
Zs +21S Ly 22S o4+ 2”s —
s“+as+b s +cs+d (sT+ces+d) (s”+cs+d)

F(s)=

+2
” SEV I WA  Find the inverse Laplace transform of o sre
s(s+1)(s+3)

Solution F(s)= _s+2
s(s+1)(s+3)
By partial-fraction expansion,
F(S) - é + i + L
s s+1 s+3
s+2 2
A=sF(s)L:0 = ==

(s+D(s+3)|_, 3
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s+2 1

B=(s+DF(s)|_ ,=—| =-

s(s+3)|_, 2

C=(s+3Fe)_,=—-F2 =1

T s(s+ )|, 6
I N N S
35 2 s+1 6 s+3

cpey =2ttty L g T2 L L
3 s] 2 s+1] 6 s+3 3 2 6

” EVNICWNA  Find the inverse Laplace transform of %
s7(s+

Solution F(s)= 2S+2
s“(s+3)

By partial-fraction expansion,

F(s)=é+£;+ ¢
s s s+3

s+2=As(s+3)+ B(s+3)+Cs*
= As® +3A4s+ Bs+3B+Cs>

=(A+C)s* +(34+ B)s+3B
Comparing coefficients of s%,s" and s°,
A+C=0
34+B=1
3B=2
Solving these equations,
1
PSP
9 3 9
11 21 1 1
F = 4=
=t 05

N
P12 a1 1112 1
Y5 =21 }+L‘1 }—L_l }=+t—e_3t
9 s 3 52 9 s+3 9 3 9

2
—15s—11
” SCIWCWRN  Find the inverse Laplace transform of s75s2
s+1)(s—2)

2
Solution Fs)= >3 15511
(s+1)(s—2)

By partial-fraction expansion,
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F(s)=i+ B + ¢
s+l s=2 (s=2)°

552 —15s—11= A(s—2)> + B(s +1)(s—2) + C(s +1)
= A(s® —4s+4)+ B(s* —s—2)+C(s +1)
= As* —4As+4A+ Bs* —Bs—2B+Cs+c
=(A+B)s’ —(44+ B—C)s+(44-2B+C)

. . 2 1 0
Comparing coefficients of s°, s and s,

A+B=5
44+B-C=15
44-2B+C=-11
Solving these equations,
A=1
B=4
C=-7

L I S A
s+l -2 (5-2)

1 _1) T I S (e 1 a2 2
L {F(s)}=L {s+l} 4L {S—Z} 7L {(S—Z)Z} e +4e” —Tte

3s+1
” SETIICWAR  Find the inverse Laplace transform of el

+DE7+2)

3s+1

Soluti =7
olution F(s) GiD(212)

By partial-fraction expansion,

A Bs+C
F(s)=—"—+=
s+l s +2

3s4+1=A(s* +2)+(Bs+C)(s+1)
= As* +2A+ Bs® + Bs+Cs+C
=(A+B)s* +(B+C)s+(24+C)

. . 2 0
Comparing coefficients of s7,s" and s°,

A+B=0
B+C=3
24+C=1
Solving these equations,
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201 2 s 7 1
F =" 4. +—-
=3 "3 23 v

2 1 2 s 7 1 2 2 7
LYF el P iy Gy s }+L_1 }=—e_'+cos\/5+sinx/z
F)=-3 {s+1} 3 {2+2 37 |2+2] 30 73 W2
” SETII MO Find the inverse Laplace transform of — -
(s"+D(s"+4)

N

Solution s s| s +4-5"-1 _1[ s s ]
(SP+D)(s*+4) | 3ls*+1 s*+4

- (s> +1)(s* +4) 3
LYF(s)t = ;[Ll {S25+1}_L1 {S214}:| = %[cost—cosZt]

IEXH| rrReQUENCY DOMAIN REPRESENTAION OF RLC CIRCUITS

Voltage—current relationships of network elements can also be represented in the frequency domain
1. Resistor  For the resistor, the v—i relationship in time domain is

v()=Ri()

The corresponding frequency—domain relation are given as

V(s)=RI (s)
The transformed network is shown in Fig 7.7.

i(1) I(s)
+ +
V() R V(s) R

Fig. 7.7 Resistor
2. Inductor For the inductor, the v—i relationships in time domain are

di
ty=L—
v(t) = d[

i(t) = ljv(t) dt +i(0)
Ly
The corresponding frequency-domain relation are given as
Vis)= Ls 1(s)—Li(0)
1(0)
1(s)= L y(s)+ '@
()= Is (s)

The transformed network is shown in Flg 7 8

:)_ =
Ls
V(s) %Ls G)@
Li(0)

Fig. 7.8 Inductor

ol




For capacitor, the v—i relationships in time domain are

3. Capacitor
t
W) = % £ i(t)dt +v(0)
oo
mycw

The corresponding frequency—domain relations are given as
1 0
V)= 1(s)+ @
Cs
I(s)=CsV(s)—Cv(0)

7.7 Resistor-Inductor Circuit

The transformed network is shown in Fig 7.9.

i(f) 1(s) /(s
o—>— o—>
+ + +

1
Cs
v Lo v V()
v(0)
s
o— o o
Fig. 7.9 Capacitor

IEZA| RresisTOR-INDUCTOR CIRCUIT

Consider a series RL circuit as shown in Fig. 7.10. The switch is closed at time 7= 0.
R

Y o

vV — />
i(f

Fig. 7.10 RL circuit

For ¢ > 0, the transformed network is shown in Fig. 7.11.

Applying KVL to the mesh,
K—RI(s)—Ls I(s)=0
s

I(s)=—2~L
S(S

By partial-fraction expansion,
A B

I(s)=—+
S g R

7.13

D
1(s)

Fig. 7.11

Transformed network
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14
B= s+£ 1(s) = s+£ X# ——K
L R L ( R) R
5__2 sl s+—
L) _®
)
()= LR
s R
s+—
L

Taking the inverse Laplace transform,

R
Vo -
i(="-—e L
()RR

R
:Vll—e Lt:| fort>0
R

” Example Y 1 the network of Fig. 7.12, the switch is moved from the position 1 to 2 at t = 0,

steady-state condition having been established in the position 1. Determine i (1) for t > 0.

1/QQ 1Q
10V —/— 2

Fig. 7.12
Solution

At t = 07, the network is shown in Fig 7.13. At ¢ = 07, the network has attained steady-state
condition. Hence, the inductor acts as a short circuit.

1Q
10
1(07)=T=10A

Since the current through the inductor cannot change instantaneously,

iovV—_— />
i(07)
i(0H=10A

For ¢ > 0, the transformed network is shown in Fig. 7.14.
Applying KVL to the mesh for > 0,

1
—I(s)—1(s)—sl(s)+10=0
1(s)(s+2)=10

1 ) S
I(s

s+2
Taking inverse Laplace transform,

i(t)=10e? fort>0 Fig. 7.14
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” SETII MY The network of Fig. 7.15 was initially in the steady state with the switch in the posi-
tion a. At t = 0, the switch goes from a to b. Find an expression for voltage v (t) for t > 0.
2Q a_ b

—VVW—o)\ o o
+
ov 1Q é“" v(f)
2H
o
Fig. 7.15 50
Solution At ¢t = 07, the network is shown in Fig 7.16. At
t = 07, the network has attained steady-state condition. Hence, the
inductor of 2H acts as a short circuit. 2V— /D
i(07) 2 1A o)
1 = —=
2
Since current through the inductor cannot change instantaneously, Fig. 7.16
i0H=1A o
For ¢ > 0, the transformed network is shown in Fig. 7.17. +
Applying KCL at the node for ¢ > 0, 2s
1 s V(s)
V(s)+2 4 V(s) + V(s) —0 5
2s 1 s nl 5
vl 1 3 1
@)= Fig. 7.17
1
s 2 1
Vis)=—5 = _ =_
() 25+3 25+3 s+1.5
2s
Taking the inverse Laplace transform,
v(t)y=—el3! fort>0
” SETIICWMEN 1 the network of Fig. 7.18, the switch is opened at t = 0. Find i(1).
10Q
[
) S
T 0.1H i(f)
Fig. 7.18
ir(07) 10Q
Solution At ¢=0-, the network is shown in Fig. 7.19. Att=0",
the switch is closed and steady-state condition is reached. Hence, 30
the inductor acts as a short circuit. 6Q

36V _—
_ 36 36
10+(3)|6) 10+2

ir(07)

. 6
L(07)=3x"==2A Fig. 7.19
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Since current through the inductor cannot change instantaneously,
(0 =2A 3
For ¢ > 0, the transformed network is shown in Fig. 7.20
Applying KVL to the mesh for ¢ > 0,

—0.2-0.1s I (s)=31(s)-6/(s)=0
0.1s7(s)+9I(s)=—0.2 02
) ) :
Is) 0.2 2

0.1s+9 s+90 Fig. 7.20

0.1s

Taking inverse Laplace transform,
i(f) =—2e0! fort>0

” Example YU The network shown in Fig. 7.21 has acquired steady-state with the switch closed for
t< 0. At t = 0, the switch is opened. Obtain i (1) for t > 0.

10Q 4Q
o o

Fig. 7.21

Solution At ¢ =0, the network is shown in Fig 7.22. At ¢ = 0, the switch is closed and the network has
acquired steady-state. Hence, the inductor acts as a

short circuit. 100 40
ir (0™
i(07) = 36 __36 —3A 7(07)
10+(4114) 10+2
4 36V 4Q
i(07)=3x——=15A .
0)=3x,774 i)
Since current through the inductor cannot change
instantaneously, Fig. 7.22
i0H=15A
For ¢ > 0, the transformed network is shown in Fig. 7.23. 4
Applying KVL to the mesh for 7> 0,
—41(s)—41(s)—2sI(s)+3=0 2s
81(s)+2sl(s)=3 4
315 /) 3
](S) = =
2s+8 s+4
Taking the inverse Laplace transform, Fig. 7.23
i(H)=1.5e"" fort>0

” SCIACWREN 11 the network shown in Fig. 7.24, the switch is closed at t = 0, the steady-state being
reached before t = 0. Determine current through inductor of 3 H.



7.7 Resistor-Inductor Circuit 7.17

2H % 2Q
IW o
) 3H
(1)

Fig. 7.24

Solution At =0, the network is shown in Fig. 7.25. Att=0",
steady-state condition is reached. Hence, the inductor of 2 H acts

as a short circuit.
1 1
2 i1 (07)

h(07)=0
Since current through the inductor cannot change instantaneously,

Mo*):% A

h(07)=0 1
For t> 0, the transformed network is shown in Fig. 17.26. | }
Applying KVL to Mesh 1,

1
() 41211 (5) = a(s)] = 0 s ) 2 ) 3s
y ( Iy (s) Iy (s)

(2+25) 1 (s)-21,(s) = ]+l
K

Applying KVL to Mesh 2, Fig. 7.26
=2 [1(s) = 1(s)] = 2I,(s) = 3s [, (s) =0
=21,(s) + (4 +3s) L,(s) =0
By Cramer’s rule,

242s 1+l ) 1
s
1(s) = -2 0] ;(S-H) B s+1 _ s+1 B §(S+1)
’ 2425 =2 (2+28)(4+39) =4 s(3s* +75+2) 3s s+l (s+2) s(s+2) s+l
-2 4435 3 3
By partial-fraction expansion,
A B
12(s):—+—+i1
s s+2 ot
3
%(s+l) 1
A=s12(s)“=0=7 =—
s 1 2
(s+2) s+=
3 5=0

L+ .

(1) 10
S| s+—
3 s==2

B=(s+2)L(s)|,_, =
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1
—(s+1)
1 (s+ 2
C=(s+)12(s) 1= 3 =-=
3 =73 s(s+2) 5
1
S=*§
11 1 1 2 1
L(s)=—————F———
2s 10s+2 5 |1
S+§
Taking inverse Laplace transform
1
) I 1 5 2 -t
H=———e " —=e 3 fort>0
P0=3 710 T5¢

” SETII WM 11 the network of Fig. 7.27, the switch is closed at t = 0 with the network previously

unenergised. Determine currents i, (t).

10Q 1H
o—ANA—TTT—
f% "
D En)
[ iy (1) Ip (1) 10Q

100V

Fig. 7.27
Solution For > 0, the transformed network is shown in Fig. 7.28.
10 s
s
00 L ) 10 )
ly (s) Iy (s) 10
Fig. 7.28
Applying KVL to Mesh 1,
1
ﬂ—loh(s)—sll(s)—lo [1i(s)- ()] =0
s
100
(s+20)11(s)—1015(s) =—
S
Applying KVL to Mesh 2,
—10[I2(s) = 11(s)] =5 Io(s) =10 I, (s) = 0
=10 I1(s)+ (s +20)1,(s)=0
By Cramer’s rule,
0w,
s 100 20
0 s+20 o, 6720) 100(s +20) 100(s +20)

h(s)= = 00 -
5+20 —10‘ (s+20)2=100 s(s*>+40s+300) s(s+10)(s+30)

-10  s+20
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By partial-fraction expansion,

Il(s):é+ B + ¢
s s+10 s+30
100(s+20 20
A= 5 1i(8) [p= —2X5+20) | _20
(s+10)(s+30)|_, 3
B=(s+10)(5) [sooro= -2 * 20 _
s(s+30) |,
100(s +20 5
C = (54 30)11(5) oo 0= XS+ 203
s(s+10) | _ 4, 3
201 5 5 1
he=21 22

35 s+10 35430
Taking inverse Laplace transform,

) 20 ior 5 o
h(t)=—-"5¢e ——e
1(?) 3 3

Similarly,
s+20 100
s 1000
L(s) = -10 0| s B 1000 _ 1000
: s+20 10 | (5+20)2=100 s(s>+40s+300) s(s+10)(s+30)
-10  s+20
By partial-fraction expansion,
I(s)= é+ B + ¢
s s+10 s+30
1000 10
A=sh($) == ————| =5
(s+10)(s+30)| _, 3
1
B=(s+10)5(5) lto= 0| =5
s(s+30)[__ o
1000 5
C=(s+30)12(s) |s=—30= ==
s(s+10)| __,, 3
101 5 51
L(s)= 5~

— + -
3s s+10 3s5+30
Taking inverse Laplace transform,

10 5
ih(t) = 3 5e7107 4 ge’”’ fort>0

IEXH| RresisTOR-CAPACITOR CIRCUIT 7o §
Consider a series RC circuit as shown in Fig. 7.29. The switch is ’)
i(f)

closed at time 7= 0. VvV —
For ¢ > 0, the transformed network is shown in Fig. 7.30.
Applying KVL to the mesh,

Fig. 7.29 RC circuit
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14

1 V
(R-FCS)I(S)—S

4 v 14
_ K _ K _ R
1) === Regri 1
R+— s+—
Cs Cs RC
Taking the inverse Laplace transform,
1
—t
i(t)=%e RC fort>0

;—Rl(s)—é](s)zo

tn‘<
|
|

1(s) Cs

Fig. 7.30 Transformed network

” SETIIWMYN 11 the network of Fig. 7.31, the switch is moved from a to b at t = 0. Determine

it)andv_(1).

10 a b 10

fm/v—@ [ o—NN— T+

10V /> 3F= V()
[ SFT )

Fig. 7.31

Solution At 1=07, the network is shown in Fig. 7.32. At ¢ = 0, the network has attained steady-state

condition. Hence, the capacitor of 6 F acts as an open circuit.

V(0 =10V 1Q
i(0)=0 l
v;(01)=0
Since voltage across the capacitor cannot change 10V /D Ve (07)
instantaneously, i(07)
Ve (09=10V
V3¢ (07 =0 Fig. 7.32

For ¢ > 0, the transformed network is shown in 7.33.
Applying KVL to the mesh for r >0,

Q—i[(s)—l(s)—il(s)zo
s 65 3s
L1(s)+1(s)+i1(s)=E
6s 3s s
I(s)= 10 _ 60 _ 10
( 1 1) 6s+3 s+05
S| 1+—+—
6s 3s

Taking the inverse Laplace transform,
i(t) = 10e™ fort>0

ol
N
101 1(s)

T

_—

&)=

<
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Voltage across the 3 F capacitor is given by

1 10
V()= 1) =1
3s 3s(s+0.5)
By partial-fraction expansion,
Vo(s)= é+ B
¢ s s+0.5
10 20
A:ch(s)\ 0 ——| =5
s 3(s+0.5),_, 3
10 20
B=(s+05V. ()| _ 5= =-=
3sl=0s 3
Vc(s) = El — @ 1
3s 3s5+05
Taking the inverse Laplace transform,
20 20 o5
Ve()=———¢€"
(0 3 3
=?(l—e*°5’) fort >0

” SETOIICWMER  The switch in the network shown in Fig. 7.34 is closed at t =0. Determine the voltage

cross the capacitor.
>§ 10Q
10V _‘7 %109 2FT AL

Fig. 7.34
Solution At =0, the capacitor is uncharged.
v(01)=0
Since the voltage across the capacitor cannot change instantaneously,
v(0)=0 10
For ¢ > 0, the transformed network is shown in Fig. 7.35.
Applying KCL at the node for 7 > 0,
10 e 10 al —— Vc(s)
Ve(s) -2 s 2
NACNACER l
10 10 1 -
2s Fig. 7.35

ZSVC(S)-FO.ZVC(S):l
s

1 0.5

Vis)= -
s(2s+0.2)  s(s+0.1)
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By partial-fraction expansion,

Vel)=2 42
s s+0.1
0.5 0.5
A=sV.(s = =—=5
o s+0.1[_, 0.
0.5 0.5
B=(s+0.1)l, (s =— =——-=_5
( ) C( )‘_3:,04 ol 01
5 5
Vo(s)=—-—
(s) s s+0.1
Taking inverse Laplace transform,
ve(t)=5-5¢7"" for >0

” SETIICWBER [ the network of Fig. 7.36, the switch is closed for a long time and at t =0, the switch

is opened. Determine the current through the capacitor.
v (t)
( ip (1)

0

i 05F

% 1Q
1Q

Fig. 7.36

Solution At = 0, the network is shown in Fig. 7.37. At ¢ = 0~, the switch is closed and steady-state
condition is reached. Hence, the capacitor acts as an open circuit.
v.(0)=0

TONBN

v(.O‘)
5
ve(07)
2A Q) % 1Q
1

Q

Fig. 7.37
Since voltage across the capacitor cannot change instantaneously, V(s)
v, (0M=0 he Y o I5(8)
For ¢ > 0, the transformed network is shown in Fig. 7.38. S
; 2
Applying KVL to two parallel branches, = (D 1
1

2

;II(S)"'II(S) =1(s)
Applying KCL at the node for 7> 0, Fig. 7.38

§= L(s)+ 12 (s)



2 h©)+ 1) =2~ 1(s)
S S

2 2
—L(s)+2L(s)=—
s s

v N

Li(s)= =
2+2 s+1
s

Taking the inverse Laplace transform,

i (t) =e!

7.8 Resistor-Capacitor Circuit 7.23

fort>0

” SETIICWWIN [ the network of Fig. 7.39, the switch is moved from a to b, at t = 0. Find v(1).

al 4Q

6V

bw

20 1FZ

Fig. 7.39

Solution At ¢=0-, the network is shown in Fig 7.40. At ¢ = 0~, steady-state condition is reached. Hence,

the capacitor acts as an open circuit.

W0 )= 6x—2—=2V
4+2

. . 6V
Since voltage across the capacitor cannot change

instantaneously,

v(0H) =2V
For ¢ > 0, the transformed network is shown in Fig. 7.41.
Applying KCL at the node for 7> 0,

2
V(s)+LS)_;+@: 0
6 1 2
S
V(s)(§+s): 2
V(s):i2
S+—

3
Taking the inverse Laplace transform,

_2,
v(t) =2¢ 3

4Q
| .
= T v <20
Fig. 7.40
4 V(s)
Iy
s
| ’
2
T s
Fig. 7.41

fort>0
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” Example YWAEN  The network shown in Fig. 7.42 has acquired steady-state at t < 0 with the switch

open. The switch is closed at t = 0. Determine v (t).

2Q

|

4V —(
Fig. 7.42

Solution At =0, the network is shown in Fig 7.43. At

1L
T1

2Q
t=0, steady-state condition is reached. Hence, the capacitor
of 1 F acts as an open circuit.
(¢}
_ 2 - -
W0 )=4x——=2V 4V 20 v
242

Since voltage across the capacitor cannot change
instantaneously, Fig. 7.43

v(0") =2V

For ¢ > 0, the transformed network is shown in Fig. 7.44.

2

(DY

‘47 <*>‘
—
&

Fig. 7.44
Applying KCL at the node for 7> 0,
V(s)—— V(s)— 2
RAOR s V) g
ST
S N

2sV(s)+V(s):g+2
s

2

—+2
Vis)=2 _ 25+2 :g_ 2 :g_ 1
2s+1 sQ2s+1) s 2s+41 s 5405

Taking the inverse Laplace transform,

v(t) =20 fort>0
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IEXB| RESISTOR-INDUCTOR-CAPACITOR CIRCUIT

Consider a series RLC circuit shown in Fig. 7.45. The switch is closed at time # = 0

A o 0
0k

Fig. 7.45 RLC circuit

For ¢ > 0, the transformed network is shown in Fig. 7.46.
Applying KVL to the mesh,

Y RI(s) = Ls I(s)——1(s)= 0
S

R
Cs ij D %LS
S
/ 1
(R+ Ls+ 1)I(S) _r ©
Cs K

T Cs
LCs* + RCs+1 I(s) = Vv Fig. 7.46 Transformed network
Cs s

14 14 4

L L
I(s)= S = =
LCs*+RCs+1 o R 1 (s=s)(s—s52)
Cs L LC

. R 1
where s, and s, are the roots of the equation s*+ ()s + (LC) =0.

R IR
== ——z—ah/a —wf =-o+
R (2L) 0 p

S2=—£— (2RL) \/a —a)o_ oa-f

where o= i
2L
1

Wy = —

LC

and ﬂ:J

By partial-fraction expansion, of (s),
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I(s)= 4 + :
§—=8 S8
v
A:(S—Sl)l(s)‘s:sl = S Ls
1 =982
v v
B:(S_SZ)I(S)‘SZSZ :ﬁ:_ﬁ

vV 1 1
I(s)= L(s —sz)|:s—s1 _s—sz]

Taking the inverse Laplace transform,

i(t) =

sit _eszt] =k Y +hy &

v
———[e
L(s1—s2)
where &, and £, are constants to be determined and s, and s, are the roots of the equation.
Now depending upon the values of s, and s,, we have 3 cases of the response.
Case I When the roots are real and unequal, it gives an overdamped response.
R 1
E— > [—
2L LC
o>
In this case, the solution is given by

i(t) =™ (kleﬁt + kzefﬁ’)

or i(t)=k e +k,e™ fort>0
Case I When the roots are real and equal, it gives a critically damped response.
R__1
2L JLC
o=
In this case, the solution is given by
i(ty=e*(k +k,1) fort>0
Case III  When the roots are complex conjugate, it gives an underdamped response.
R
2L \LC
o<

In this case, the solution is given by
i(t)y=kK e+ ky e

where S|p=-at \/az - a)g

Let \/az—coé =x/——1\/w3—(x2 = jwy
where j= J-1

and w; = \/wg —a?
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Hence
i(ty=e™™ (k1 /% 4k, e_jw"')

Jwgat — jgt J@at _ = jot
= | (hy + k)] S — k) S
2 2j
=e " [(ki + ky)cos gt + j(ki — ky)sinwgt | fort>0

” Example YN The switch in Fig. 7.47 is opened at time t =0. Determine the voltage v(t) for t > 0.

O
¥

05H ——o05F V(i

00

2A<D }4 050Q

Fig. 7.47

Solution At ¢ = 0, the network is shown in Fig. 7.48. At ¢ = 0-, the network has attained steady-state
condition. Hence, the inductor acts as a short circuit and the capacitor acts as an open circuit.

+0O

2A (D I 050Q I : v(07)

ol

Fig. 7.48

i,(0)=0
v(0)=0
Since current through the inductor and voltage across the capacitor cannot change instantaneously,
i,(0M=0
v(0") =0
For ¢ > 0, the transformed network is shown in Fig. 7.49.
Applying KCL at the node for 7> 0,

0
+
. Ssoo 1 s 5
0.5s s (D 0.5 %0.55 j— 01§ V(s)
2V (s)+ 2 V(s)+0.5sV(s)= 2
s s s
2
- Fig. 7.49
V(s)= s 4 4

2 055y SHastd (s+2)
S
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Taking inverse Laplace transform,

v(t) =4t e fort>0
” SETIIWWEN 1 the network of Fig. 7.50, the switch is closed and steady-state is attained. At

t =0, switch is opened. Determine the current through the inductor.

25Q
o— A

5V “—200uF S 05H

000

Fig. 7.50

Solution At r = 0, the network is shown in Fig. 7.51. At ¢ = 0", the switch is closed and steady-state
condition is attained. Hence, the inductor acts as a short circuit and the capacitor acts as an open circuit.
Current through inductor is same as the current through the resistor.

25Q

5
ir(0 )=E=2A L J)
5V Vo (07) /)
i)

Voltage across the capacitor is zero as it is connected in parallel T
with a short.
v (00)=0
(&

Since voltage across the capacitor and current through the
inductor cannot change instantaneously,

i (0N=2A
v, (0)=0 0.5s

For ¢ > 0, the transformed network is shown in Fig. 7.52. % o
Applying KVL to the mesh for 7> 0, 200 x 107%s "
S

1 1

I(s)—0.551(s)+1=0

200x1070s Fig. 7.52
I(s)
0.551(s)~1+5000 2 = ¢
S
1(s) = 1 2s

05545900 52 +10000
N

Taking inverse Laplace transform,

i(t) =2 cos 100z fort>0
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” SCI A CWWLR  [n the network shown in Fig. 7.53, the switch is opened at t =0. Steady-state condition
is achieved before t = 0. Find i(t).
0.5H
oo 2R

1V —1F ) 1Q
(1)

Fig. 7.53

Solution At t = 07, the network is shown in Fig 7.54. At o
t = 07, the switch is closed and steady-state condition is achieved.
Hence, the capacitor acts as an open circuit and the inductor acts as
a short circuit.

L 1Q
v (0)=1V VT
i0)=1A i(07)
Since current through the inductor and voltage across the
capacitor cannot change instantaneously,
v (0 =1V Fig. 7.54
0 =14 05s 05
For ¢ > 0, the transformed network is shown in Fig. 7.55. m—(
Applying KVL to the mesh for 7> 0, 1
11
S I(5)=0.551(s)+0.5—I(s)=0 I !
s s 1 I(s)
1 1 ST
05+—==I(s)+0.5s1(s)+1(s)
s s
! ! Fig. 7.55
](s)|:1++0.5s:| =05+~
s s
s+2  (s+D+1 s+l 1

I(s)=

2 - 2 - 2 2
sT4+2s4+2  (s+D7+1 (s+D)"+1 (s+D"+1
Taking the inverse Laplace transform,

i(t) =e¢'cost+e 'sint fort>0

” SETNICWWEN [ the network shown in Fig. 7.56, the switch is closed at t = 0. Find the currents i)

and i,(t) when initial current through the inductor is zero and initial voltage on the capacitor is 4 V.

1Q
o—AAN

1ovf% ) ra ) %19
it () 1H 20 4V+T1F

Fig. 7.56
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Solution For ¢ > 0, the transformed network is shown in Fig. 7.57.

1
1

s T
» L
Iy (s) s I (s) T i
T s
Fig. 7.57
Applying KVL to Mesh 1,
10
?—11(S)—(1+S)[11(S)—Iz(S)]=0
(s+2)[1(s)—(s+1)12(s):1—
s

Applying KVL to Mesh 2,
1 4
~(s+D[12() = [1(9)] = L2(s) —glz(S)—;

—(s+l)[1(s)+(s+2+f)lz(s) =——
s

By Cramer’s rule,
LU
S
10( % +2s+1 4 1 4
4 s+2+l (S)(S]_(S“)(S) —(z)(s+l)2—(s+1)f
Il(s): +s2 (_fl) = 2 =— 12 :
N —\Ss +
(s+2)[S+2S+1J—(s+1)2 (s+2) D" iy
—(s+1) s+2+-— s s
S
10 4
_ ST(H—D_; _ 3s+5
(s+2)@—(s+l) s(s+1)
s
By partial-fraction expansion,
n=2+2
s s+l
A=S11(S)|s:0=3s+5 =5
s+1 |,
B=(s4Dh() =2 =
s=—1
5 2
hL(s)=—-—
s s+1
i(t)=5-2¢" fort>0

Taking inverse Laplace transform,
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Similarly,
s+2 10
S
_( +1) _i
()= s sl 3s+1 3s+3-2 3(s+D-2_ 3 2
’ s+2 (s+D| (s+D>  (s+D)?  (s+D)P s+l (s+1)
—(s+1) s+2+ 1
s
Taking inverse Laplace transform,
fort>0

ih(t)=3e —2te”’

EZTY| RESPONSE OF RL CIRCUIT TO VARIOUS FUNCTIONS

Consider a series RL circuit shown in Fig. 7.58. When the switch is closed at =0, i(07)=i(0")=0.

%O y

" C> i(t) ) éL

Fig. 7.58 RL circuit
R

For ¢ > 0, the transformed network is shown in Fig. 7.59.

Applying KVL to the mesh,
V(s) <+> ) %Ls
I(s)

V(s)—RI(s)—LsI(s)=0 _

Hy = LW 1 V)
R+Ls L R
s+—

Fig. 7.59 Transformed network

(a) When the unit step signal is applied,
(1) = u(r)

Taking Laplace transform,

V(s)= 1

N

1 5

I(s)=

By partial-fraction expansion,
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Taking inverse Laplace transform,

()
i(t)=E[1—e 28 forz>0

(b) When unit ramp signal is applied,
v(i)y=r(t)=t fort>0

Taking Laplace transform,
Vis)=

=
1
=77
52 (s + —)
L

By partial-faction expansion,

%: As(s+)+B(s+)+Cs2
Putting s =0,
1
B=E
Putting s = —5,
L L
C=—
R2

Comparing coefficients of s%,
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I()=-—Z+2 3+
Rt Byt
Taking inverse Laplace transform,
R
1 L ‘(z)’
l(t) = _F-‘-Et-‘-je
R
1=t
=lt—i[1—e(L]] fort>0
R R
(c) When unit impulse signal is applied,
V(1) = 6(1)
Taking Laplace transform,
V(s)=1
1 1
I(s)=———=
Lo
L
Taking inverse Laplace transform,
,(5}
L fort>0

i(t)= %e

” Example YWAN At t = 0, unit pulse voltage of unit width is applied to a series RL circuit as shown in
Fig. 7.60. Obtain an expression for i(t).

v(t)
1 vin () ) § 1H
it
0 1 !
Fig. 7.60
Solution 1
v(t) = u(t)—u(t—l)
V(s)= 1 e _1-e? V(s) <+> D

s S s - I(s)

For ¢ > 0, the transformed network is shown in Fig. 7.61
Applying KVL to the mesh,
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V(s)—1I(s)—sl(s)=0
1(5)=2)
s+1
_1=e”
T s(s+1)
1 e’
Ts(s+1) s(s+1)
1 1 e €

+
s s+1 s s+l

Taking inverse Laplace transform,
i) =u(t)—e " u(t)—u(t =) +e “Du@r-1)
=(1—e () —[1-e (s -1) for >0

” SETII WMWY For the network shown in Fig. 7.62, determine the current i(t) when the switch is

closed at t = 0. Assume that initial current in the inductor is zero.

?{ 5Q
o

r(t—3)C> i(;) ng

Fig. 7.62

Solution  For > 0, the transformed network is shown in Fig. 7.63.
Applying KVL to the mesh for > 0,
—3s

e
—-51(s)=2s1(s)=0
2 (s)=2s1(s) . C) ) § ”s
—3s 82 - I(s)

51(s)+2s 1(s)= <
S

o3 0.5 73 Fig. 7.63

1)= s*(2s+5) - s*(s+2.5)

By partial-fraction expansion,

0.5 4 B C
By
s°(s+25) s s° s+25
0.5= As(s+2.5)+ B(s+2.5)+Cs*
= As* +2.54s+ Bs+2.5B+Cs>

=(A+C)s* +(2.54+ B)s+2.5 B

Comparing coefficients of 52, s and s°,
A+C=0

254+B=0
25B=0.5



7.10 Response of RL Circuit to Various Functions
Solving these equations,
A=-0.08
B=02
C=0.08

()= (_ 0.08 02 008 )
s 2 s+2.5
—3s —3s —3s
¢ 40295 +0.08°

=-0.08
K 5% s+2.5

Taking inverse Laplace transform,

i(f) = —0.08u(r —3) +0.2r(t = 3) + 0.08¢ >y (t - 3)

7.35

” SETIIWWER  Determine the expression for v, (t) in the network shown in Fig. 7.64. Find v, (t) when

(i) v,(t) = 6(1), and (ii) v (1) = e u(1).

5Q

o (D) § FH

Fig. 7.64

Solution For >0, the transformed network is shown in Fig. 7.65.
By voltage-division rule,

N

Vs(s)

s+10
v () =k

N
Vi(s)=Vy(s)x—2—=
N
—+5

(a) For impulse input,

Vi(s)=1
s _s+10-10_ 10 Fig. 7.65
s+10  s+10  s+10

Taking inverse Laplace transform,

Vi(s)=

V(t) = 8(1)—10e % u(t) fort>0
(b) For vy(t)=e"u(t),

Vy(s)=——
s+1

N

= Coe )
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By partial-fraction expansion,

A B
Vi(s)= +—
1= 0t
A= (s+10,(9)| _ = — _10
SR |
s 1
B=(s+1)V.(s = =-—
s+ DV (), s+10[_, 9
10 1 11
Vp(s)=———-———
M= 0 9+
Taking inverse Laplace transform,
10 _ 1 _
vL(t)=Ee 1°‘u(t)—§e "u(t)
1 1
= Oe_w’—e_’)u(t) fort>0
9 9

” SETNIWWLEN  For the network shown in Fig. 7.66, determine the current i (t) when the switch is

closed at t = 0. Assume that initial current in the inductor is zero.

2Q

25(t-3) )
i1

Fig. 7.66

000
T

Solution For >0, the transformed network is shown in Fig. 7.67.

Applying KVL to the mesh for 7> 0,
2¢7 —21(s)—sI(s)=0

+
20(s)+sI(s) = 2¢7 2% (1) / (S)D s

2e7
I(s)=
() s+2
Taking inverse Laplace transform, Fig. 7.67
i(1) =220yt =3) fort>0

” SETII AN Determine the current it) in the network shown in Fig. 7.68, when the switch is
closed at t = 0.
% 10Q
O

50sin25t @ ) §5H
i(t)




7.10 Response of RL Circuit to Various Functions 7.37

Solution  For ¢ >0, the transformed network is shown in Fig. 7.69.

Applying KVL to the mesh for > 0, 10
1250
—101(s)—=5s1(s)=0
s> +625 1250
~
I(s):z¢ s2+625 <> I(S)D 5s
(57 +625)(s+2)
By partial-fraction expansion,
I(s) = 124S +B + C Fig. 7.69
s°+625 s+2

250 = (As+ B)(s+2) + C(s* +625)
=(A+C)s* +(24+ B)s+(2B+625C)

Comparing coefficients,
A+C=0

2A+B=0
2B+625C =250

Solving the equations,

4=-0.397
B=0.795
C=0397
—-0.397s+0.795 0.397 0.397s ~ 0.795  0.397
I(s)= 3 + =-= + +
s°+625 s+2 $T4+625 sT+625 s+2

Taking the inverse Laplace transform,

i() = —0.397 cos 25¢ +0.032in 25¢ + 0.397¢ fort>0

” SETOII W  Find impulse response of the current i(t) in the network shown in Fig. 7.70.

iy (1) 10

i(1)

2H

Fig. 7.70

Solution  The transformed network is shown in Fig. 7.71.

12s+1 2s+1
T le |

2s+1+1 2s+2 -

V(s 1 2s+2
hs) =2 =
Z(s) 2s+1  2s+1

25+2 Fig. 7.71

Z(s)

2s
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By current-division rule,

1 y 2s+42 1 1 1
2542 2s+2° 2s+1 2s+1 25+0.5
Taking inverse Laplace transform,

1(s)=L(s)X

1
i(t) = Ee‘°'5lu(z) fort>0

” SETN NV N  The network shown in Fig. 7.72 is at rest for t<0. If the voltage

v(t) = u(t)cost+ AS(t) is applied to the network, determine the value of A so that there is no transient

term in the current response i(t).

1Q
v () D 2H
i(t)
Fig. 7.72
v(t) = u(t)cost+ A6(t)
S
Vis)= + 4
st +1
Solution  For ¢ > 0, the transformed network is shown in Fig. 7.73. 1

Applying KVL to the mesh for > 0,

V(s)=2sI(s)+I(5) = 2S+1+A vis) () ) )D 2s
S

N

s+AGST+) K L Kas+K;

I(s) = =
© 1) 1 s +1 .
2 sty +D sty Fig. 7.73

The transient part of the response is given by the first term. Hence, for the transient term to vanish, K, = 0.
-1
— 4+ A é
2 4
(3)
4

K, = (s+é)1(s)s_; =

When K =0
5,.1
4 2
A=g=0.4
5
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EZTH| RESPONSE OF RC CIRCUIT TO VARIOUS FUNCTIONS

Consider a series RC circuit as shown in Fig. 7.74.

v(t) C) ) —cC
i(t)

Fig. 7.74 RC circuit

For ¢ > 0, the transformed network is shown in Fig. 7.75. R
Applying KVL to the mesh,
1 1
V(s)—RI(s)——1I(s)=0 V(s) @) ) — &
Cs I(s)
I(s) = V(s) _ sV(s)1
a+ R R(S-FR) Fig. 7.75 Transformed network

(a) When unit step signal is applied,
v(t) = u(t)

Taking Laplace transform,

V(s)= é

I(s)= s1 = !

Taking inverse Laplace transform,
1
1 —=t
i(t)=Ee RC fort>0

(b) When unit ramp signal is applied,
v(it)y=r(t)=t
Taking Laplace transform,

Vi(s)= iz
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By partial-fraction expansion,

A
I(s)=—+
s 1

C
I(s)=—- I
$ost—
RC

Taking inverse Laplace transform,
1
i(f)=C—Ce KC'
When unit inpulse signal is applied,
V()= 6 (1)
Taking Laplace transform,
V(s)=1

(©)

+
s ___ RC RC _

I(s)=

Taking inverse Laplace transform,

1 JJ—
1(t)=R[5(t)—me RC :l

R s+L R s+L
RC RC

fort>0

fort>0

” ETIIWAEN 4 rectangular voltage pulse of unit height and T-seconds duration is applied to a

series RC network at t = 0. Obtain the expression for the current i(t). Assume the capacitor to be initially un-

charged.
v(t)

(a)
Fig. 7.76
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Solution v(t) =u(t) —u(t—T) A
1 —sT 1- —sT
V(is)=-—- =% 1
N s 1
v (F) ) e
For ¢ >0, the transformed network is shown in Fig. 7.77. I(s)
Applying KVL to the mesh for > 0,
Fig. 7.77
1
V(s)—RI(s)——1(s)=0
Cs
! S
v - 1— —sT 1 1 —sT
1= Ry =T A
R+— s+— R|s+— — st—
cs ' RC (S RC) RC "TRC
Taking inverse Laplace transform,
1 1
1l == A —|e-m
i(t):E e (RC) u(t)—e (RC) u(t—T) fort>0

” SETII WA For the network shown in Fig. 7.78, determine the current i(t) when the switch is

closed at t = 0 with zero initial conditions.

2r(t-2) C) ) —1F
i(t)
Fig. 7.78
Solution For 7> 0, the transformed network is shown in Fig. 7.79. 3
Applying KVL to the mesh for 7> 0,
2 2e% /) -1
Qe S 1 2 -T- s
S —31(s)-—1(s)=0 s I(s)
Ky S
25 Fig. 7.79
(3 + l)l(s) = 262
s N
—2s -2s
I(s) = 2e 1 _ 0.673 ~
§2 (3+7) s(s+0.33)
s

By partial-fraction expansion,
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0.67 A B

s(s+033) s  s+0.33

_ 0.67 —»
s+0.33],_,
B 0.67 _
S ls=-033
25 —2s5
I(s)=e™ 2.2 =2¢ 5 ¢
s s+0.33 s s+0.33
Taking inverse Laplace transform,
i(f) = 2u(t —2) = 2e 03302yt - 2) fort>0

” SETIICWEEW  For the network shown in Fig. 7.80, determine the current i(t) when the switch is
closed at t = 0 with zero initial conditions.
5Q
o

a(t) C_“) ) “—2F
i(1)

Fig. 7.80

Solution  For ¢ > 0, the transformed network is shown in Fig. 7.81.
Applying KVL to the mesh for 7> 0,

I—SI(S)—ZLI(S)ZO
s

1
(5+ 2S)](s) 1
1 5
I(s)= e
54—
2s2s 1 /) %
= 1(s)

T 10s+1

0.2
=== Fig. 7.81
s+0.1

~0.2(s+0.1-0.1)
s+0.1

:0.2(1— 0.1 )
s+0.1

—02- 0.02
s+0.1

Taking inverse Laplace transform,
i()=0.28(1)—0.02 e ()
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” SETNI NN  For the network shown in Fig. 7.82, find the response v, ().
Ao A8
O O

;
vg(t) = %costu(t) (D j— % Foov(t)
o
Fig. 7.82
Solution For ¢ >0, the transformed network is shown in Fig. 7.83.
1 2
V)= 25 0
257 +1 +
By voltage-division rule,
4 %wﬂj) e A
V() =Visyx—- =200 3 ]
i S22 (SPHD(s+2) o
s Fig. 7.83
By partial-fraction expansion,
As+B C
Vo(s)=—
ST+l s+2

s=(As+B)(s+2)+c(s* +1)
s=(A+C)s* +(24+ B)s+(2B+C)

Comparing coefficient of 5%, s and s°,

A+C=0
24+ B=1
2B+C=0

Solving the equations,
A=04, B=02, C=-04

04s+02 04 045 02 04

Vo(s)= = + -
“ sl s+2 241 Sl s+2
Taking the inverse Laplace transform,

i(f)=0.4cost+0.2sint—0.4e>  fort>0

” SETIICWRYA  Find the impulse response of the voltage across the capacitor in the network shown
in Fig. 7.84. Also determine response v_ (1) for step input.

v () LHE v

Fig. 7.84
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Solution For ¢>0, the transformed network is shown in Fig. 7.85.

By voltage-division rule, 2 s
7O00
1
Ve(s) =V (s)x—= o L
24s+l V@)<;> ]
s
Vis) _ V()
Fig. 7.85

S 42s41 (s+1)?

(a) For impulse input,

V(is)=1
1
Vo) =——
(s+1)*
Taking inverse Laplace transform,
ve(t) = te u(t) fort>0
(b) For step input,
1
V(s)=—
s
1
Vi(s) =
s(s+1)°
By partial-fraction expansion,
A
A EE-S S
s s+l (s+1)

1= A(s+1)> + Bs(s+1)+Cs
= A(s* +2s+1)+ B(s* +5)+Cs
=(A+B)s* +(24+B+C)s+ 4

Comparing coefficient of 52, s' and s°,
A=1
A+B=0
B=-A=-1
24+B+C=0
C=-24-B=-2+1=-1

1 1

1
V()= ~———~
(s) s s+1 (S+1)2

Taking inverse Laplace transform,
ve (1) = u(t) — e~ u(t) — te""u(t)
=(l—-e" —teut fort>0
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” SETIIWEER  For the network shown in Fig. 7.86, determine the current i(t) when the switch is

closed at t = 0 with zero initial conditions.

%O >

ey )
i

F

o=

Fig. 7.86

Solution For 7> 0, the transformed network is shown in Fig. 7.87.

Applying KVL to the mesh for > 0, 5

3 Si(s)=si(s)=21(5)=0

S SI(s) = sl) = 1) = 5o s

6 50 s? 1(s) 6

e 6

SI(s)+sI(s)+—1(s)= s

(8)+s1(s) S (8)=— T
5~ 5¢° Flg. 7.87
(s)=

B s(s2 +5546) - s(s+3)(s+2)

By partial-fraction expansion,

1 A B C
_— =T +
s(s+3)(s+2) s s+3 s+2
a1
(s+3)(s+2)|,_, 6
s(s+2)|_, 3
s(s+3)|_, 2
I(s)=5¢e"* i+ 1 _Se e S
6s 3(s+3) 2(s+2)| 6 s 3s+3 2542

Taking inverse Laplace transform,

i(f) = gu(t -1 +§e‘3<f“)u(t -1 —%e_z([_l)u(t -1) fort>0

” SCINACWELEN  For the network shown in Fig. 7.88, the switch is closed at t = (. Determine the cur-

rent i(t) assuming zero initial conditions.
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X 20 1H
o 000

sint ‘:> J‘ 05F
it T

Fig. 7.88
Solution  For 7> 0, the transformed network is shown in Fig. 7.89.
Applying KVL to the mesh for > 0, 2 s
000
1 ) 2
T —2L(s)—s1(s)-—1(s)=0
s©+1 s LA _
s?+1 T
2 1 1(s)
24s5+—|I(s)=—
s s7+1
s Fig. 7.89

§)=
(s +D(s? +25+2)
By partial-fraction expansion,

As+ B Cs+D

2 + 2

s+l s T+ 2s+2

s=(As+ B)(s* +25+2)+(Cs+ D)(s> +1)

= As> + 245> +2As+ Bs* +2Bs+2B+Cs® + Cs+ Ds> + D
=(A+C)s> +(2A+ B+ D)s* +(2A+2B+C)s+(2B+ D)

I(s)=

Comparing coefficients of s°, 52, s' and s°,
A+C=0
24+B+D=0
24+2B+C=1
2B+D=0
Solving these equations,
A=02,B=04,C=-02,D=-0.8
0.2s+0.4 _ 0.2s+0.8
2+l 242542
0.2s 04 025s+0.2+0.6
=t 2 2
s74+1 s7+1  (s+D)7+(1)

I(s)=

02s 04 02(s+1) 0.6
R 2, 2
s+l s7+1 (s+1)"+1 (s+1D)"+1

Taking inverse Laplace transform,

i(t)=0.2cost+0.4sint—02e ' cost—0.6 ¢’ sint

=0.2cost+0.4sint—e™" (0.2 cost+0.6 sint) fort>0
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” Example 7.40 For the network shown in Fig. 7.90, the switch is closed at t = (. Determine the

current i(t) assuming zero initial conditions in the network elements.

N P/

6e 2t D “—025F
i(t)

Fig. 7.90

Solution For 7> 0, the transformed network is shown in Fig. 7.91.

Applying KVL to the mesh for > 0, s

5
6 4 700
——=5I(s)—s I(s)——1(s)=0
s+2 s
4 6 6 J L4
(5+S+S)I(s)—s+2 s+2 Is) s

(s)=— &
(s+2)(s> +5s+4) Fig. 7.91
_ 6s
(s+2)(s+1)(s+4)
By partial-fraction expansion,
I(s)= A + B + ¢
s+2 s+1 s+4
6
A=(s+2I($) [imr=————| =6
(s+D(s+4)| __,
6
B=(s+DI(s) o= ——— =2
(s+2)(s+4)|,__,
6s
C=(s+DI($)|yes=—"T"""— =—4
(s +4)I(s)[s=-4 24|,
I(s)= 6 2 _ 14
s+2 s+1 s+4
Taking inverse Laplace transform,
i(1) = 6e 2 u(t)—2e " u(t) — 4 e 'u(r) fort>0

” SET IS The network shown has zero initial conditions. A voltage v(t) = 8(t) applied to two
terminal network produces voltage v (1) = [e*'+ e7 '] u(t). What should be v (1) to give v () =t 7" u(t)?

+ +
v;(t) Network V, ()
o—— ——-o0

Fig. 7.92
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Solution  For v(r) = &(1),

Vo(s)
i(s)

System function H(s)=

For v, (1) = te > u(t),

From Eq. (i),

By partial-fraction expansion,

Viis)=1
vo(t) = [ +e7 u(r)

1 1
V,(s)= +—
o(9) s+2 s+3

1 1 25+5

Tot2 543 (s+2)(s+3)

Taking inverse Laplace transform,

1
V,(s
AT
Vi(s):V,,(s): 1 X(s+2)(s+3): (s+3)
H(s) (s+2) 25+5 2(s+2.5)(s+2)
B
Vi(s) = +
49 s+2 s+2.5
A=1
B=-0.5
Vis) = 1 05
s+2 s+2.5
vi(t) = e —0.5e7% fort>0

” SETII NV 4 unit impulse applied to two terminal black box produces a voltage

v ()=2¢"—e. Determine the terminal voltage when a current pulse of 1 A height and a duration of 2 seconds

is applied at the terminal.

Solution

When (1) = 8(¢),

———o0
It
is (1) Black box
I
Fig. 7.93
vo(t) = 2e”" —e
2 1
Vols)=———
s+1 s+3
I (S) =1

Fig. 7.94
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Vo(s)=Z(s) I5(s) ...(0)

V) 2 1

2= I,(s) Ts+l s+3

When i () is a pulse of 1 A height and a duration of 2 seconds then,

i()=u(t)—u(t-2)
—2s

1
I(s)=~~°
S S
From Eq. (i),
2 1 ]f1 e
Vis)=|-—2-— 2
o(s) |:s+1 s+3]|:s s]
2 1 2 &

s(s+1)_s(s+3)_s(s+1)+s(s+3)

—2s
N IR T Y (S N P I SRS S IR B
s s+1] 3]s s+3 s s+1 3 ls s+3

Taking the inverse Laplace transform,

v(t) = 2[u(t) — e u(r)] - % [u(t)— e u(t)] = 2[u(t = 2) —e " Du(t - 2)]+ %[u(r —2)—e Dy (1 -2)]
fort>0
Exercises
7.1 For the network shown in Fig 7.95, the switch is 20Q
closed at = 0. Find the current i1(7) for > 0. i i

100
%o o 2Q

100V = ) 509 g 4H ’
iy (1) 24V 05

Fig. 7.95 Fig. 7.96
li()=3-e>1]

7.2 Determine the current i(¢) in the network of
Fig. 7.96, when the switch is closed at 7 = 0.
The inductor is initially unenergized.

2Q

[i() =4(1 — )]

7.3 In the network of Fig. 7.97, after the switch

has been in the open position for a long time,

it is closed at # = 0. Find the voltage across the
capacitor.
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v

1

0a(D)

la

|

m 8¢
1F

o

<

M)=1+4¢1"
7.4 The circuit of Fig. 7.98, has been in the

condition shown for a long time. At ¢ = 0,
switch is closed. Find v(¢) for > 0.

Fig. 7.97

Yy >
20V —|— v(t) —— 2F 3Q
Fig. 7.98

[V(f) = 7.5 + 12.5 & @191

7.5 Figure 7.99 shows a circuit which is in the
steady-state with the switch open. At 7 = 0,
the switch is closed. Determine the current i
(9). Find its value at = 0.114 L seconds.

|

I 400Q  ~=0.001 uF
Fig. 7.99

[i(r) = 0.00857 + 0.01143 875 106’, 0.013 A]

it)

122V 200 Q

7.6  Find i(¢) for the network shown in Fig. 7.100.

i(H) 10Q
L1F Lo.sF
—%sg %59

Fig. 7.100
[i(£) = 0.125 70308 4 3 875 70052

7.7 Determine v(f) in the network of Fig. 7.101
where i,(07)=15Aand v (0)=5V.

0.5H

10V — 0330 -

|-

Fig. 7.101
[v(£) =10 — 10e™ + 5¢7%]
The network shown in Fig. 7.102 has acquired
steady state with the switch at position 1 for
t < 0. At t = 0, the switch is thrown to the
position 2. Find v(#) for ¢ > 0.

7.8

2Q 1, 2
o\ o —_—

2V — v(

~
=

Fig. 7.102
[V(t) =de =2 e
In the network shown in Fig. 7.103, the switch
is closed at # = 0. Find current i,(¢) for #> 0.

3Q 1H
O—AAA— T

20V [ ; (D

Fig. 7.103
[i,()=5+5¢ - 10e]
In the network shown in Fig. 7.104, the switch

is closed at # = 0. Find the current through the
30 Q resistor.

7.9

1Q

11
19"2(1‘)’D T3

7.10

10Q  1H 2H
O ANN—TTT—
10V [ 200 300
Fig. 7.104

[i(£)=0.1818 — 0.265 ¢71314 + 0.083 ¢~#186]



7.11 The network shown in Fig. 7.105 is in steady
state with s, closed and s, open. At #=0, s,
is opened and s, is closed. Find the current
through the capacitor.

20Q 2H s s

-
b L
| |

[i() = 5 cos (0.577 x 10° )]

7.12 In the network shown in Fig. 7.106, find
currents 7 () and i,(¢) for > 0.

10V 1uF

10Q
o—AAM

T L]

it (1)

50V 40Q

Fig. 7.106

[i,(f) = 5 €065, (f) = 1 — 0625 ]

7.13 For the network shown in Fig. 7.107, find
currents 7,(¢) and i,(¢) for ¢ > 0.

5Q
o—A\A\
5Q
50V ——20 uF
iy (1) Ip (1) 01H
Fig. 7.107

ii(£) = 0.101e7"9%%" 410.05¢ 79949
ir () = 5—5.05¢ 1" +0.05¢™ 74

7.14 In the network shown in Fig. 7.108, the
switch is opened at ¢ = 0, the steady state

7.51

Exercises

having been established previously. Find i(#)

for > 0.
3Q
o— ANV .
i(t)
IX - 0
0V
TOJ F 35Q
Fig. 7.108

[i(f) = 1.5124€722 + 3.049¢72%]

7.15 Find the current i(¢) in the network of Fig.
7.109, if the switch is closed at 1 = 0. Assume
initial conditions to be zero.

10Q 15Q
5A
T1 H 25H
Fig. 7.109

[i(1) =3 +0.57¢7141]

7.16 In the network shown in Fig. 7.110, find the
voltage v(t) for ¢ > 0.

7Q 1H

TL

|:v(t) = —ge_t +2€_6t +3cos2t+12(1sin2t:|

—

5 cos 2t F

<
=

Fig. 7.110

10 10

7.17 Forthenetwork showninFig.7.111, determine
v(t) when the input is
(i) an impulse function

(i) i(t) = de u(f)

[e” u(®)]
[4t e u(?)]
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7.18

O
+

v(t)

i(t) CD 1Q ——1F

Fig. 7.111

For a unit-ramp input shown in Fig. 7.112,
find the response v (¢) for ¢ > 0.

Objective-Type Questions

10Q

r(t) “—10F v (1)

Fig. 7.112

[v.(#) = =100 u(f) + 1000 u(t) + ru(1)]

7.1

7.2

7.3

7.4

If the Laplace transform of the voltage across

. 1.
a capacitor of value EF is

V.(s)=
e s2+1

the value of the current through the capacitor
att=0"is

(@ 0 b)) 2A
1
(c) 5 A d 1A
The response of an initially
relaxed linear constant parameter

network to a unit impulse applied at
t=01s 4 e u(r). The response of this network
to a unit-step function will be

(@) 2[1-eu()

(b) 4le” — e u(r)

(c) sin2t

(d) (1-4e™)u)

The Laplace transform of a unit-ramp
function starting at r = a is

1 e
- b —
® (s+a)2 ®) (s+a)2
© & @ £
S S

The Laplace transform of e cos ¢ is equal to

(a) Nl 04

(s—0)? +a?

7.5

7.6

b s+o
®) (s—a) +a?
1

(c) o)

(d) none of the above

The circuit shown in Fig. 7.113 has initial
current (07) = 1 A through the inductor and
an initial voltage v (07) = —1 V across the
capacitor. For input w(f) = u(?), the Laplace
transform of the current i(f) for £ > 0 is

1Q 1H
o 000
+
v(t) ) —1F
i(t)
o
Fig. 7.113
K s+2
(@ — b S
s +s+1 P45+l
s=2 s=2
© - (d —F—
s +s+1 P +s+1

A square pulse of 3 volts amplitude is applied
to an RC circuit shown in Fig. 7.114. The
capacitor is initially uncharged. The output
voltage v, at time ¢ =2 seconds is

@@ 3V (b) -3V
() 4V (d)—4V



3V

7.7

7.8

0.1 pF -2 Q
o—| |
7 1kQ Vo
t o o
2s
Fig. 7.114

A 2 mH inductor with some initial current can
be represented as shown in Fig. 7.115. The
value of the initial current is

1(S)

0.002s imV

Fig. 7.115
(a) 05A (b)) 2A
(c) 1A (d) 0

A current impulse 5 J(¢) is forced through
a capacitor C. The voltage v (¢) across the
capacitor is given by

(@ 5¢ (b) Su(n-C
© 2t @ M0

7.9

7.10

7.53

Answers to Objective-Type Questions

In the circuit shown in Fig. 7.116, it is desired
to have a constant direct current i(¢) through
the ideal inductor L. The nature of the voltage
source v(¢) must be

i(t)

v(t) () L

Fig. 7.116

(a) aconstant voltage

(b) alinearly increasing voltage

(c) anideal impulse

(d) asexponential increasing voltage

When a unit-impulse voltage is applied to an
inductor of 1 H, the energy supplied by the
source is

(@) oo (b) 17

1
© 57 @ 0

Answers to Objective-Type Questions

7.1 ()
7.7 (a)

72 (a)
7.8 (d)

7.3 (c)
7.9 (c)

74 (a)

7.10 (c)

7.5 (b)

7.6 (b)






Network Functions

IEEM| nTrRODUCTION

A network function gives the relation between currents or voltages at different parts of the network. It is
broadly classified as driving point and transfer function. It is associated with terminals and ports.

Any network may be represented schematically by a rectangular box. Terminals are needed to connect any
network to any other network or for taking some measurements. Two such associated terminals are called
terminal pair or port. If there is only one pair of terminals in the network, it is called a one-port network.
Ifthere are two pairs of terminals, it is called a two-port network. The port to which energy source is connected
is called the input port. The port to which load is connected is known as the output port. One such network
having only one pair of terminals (1 — 1”) is shown in Fig. 8.1 (a) and is called one-port network. Figure 8.1
(b) shows a two-port network with two pairs of terminals. The terminals 1 — 1” together constitute a port.
Similarly, the terminals 2 — 2" constitute another port.

! I Ip
1 +: One- 1 +: Two- ‘ +02
%4 port Vv, port v,
15 network 5 network 5o
(a) (b)

Fig.8.1 (a) One-port network (b) Two-port network

A voltage and current are assigned to each of the two ports. V/; and /, are assigned to the input port,
whereas V, and I, are assigned to the output port. It is also assumed that currents /, and 7, are entering into
the network at the upper terminals 1 and 2 respectively.

IEEN| ORIVING-POINT FUNCTIONS

If excitation and response are measured at the same ports, the network function is known as the driving-point
function. For a one-port network, only one voltage and current are specified and hence only one network
function (and its reciprocal) can be defined.
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1. Driving-point Impedance Function 1t is defined as the ratio of the voltage transform at one port
to the current transform at the same port. It is denoted by Z (s).

_re
- I(s)

2. Driving-point Admittance Function 1t is defined as the ratio of the current transform at one port
to the voltage transform at the same port. It is denoted by Y (s).

_ 1)
CV(s)

For a two-port network, the driving-point impedance function and driving-point admittance function at
port 1 are

Z(s)

Y(s)

=t

_ L)

Similarly, at port 2, = Vi(s)
o=l

=

IEEN| TRANSFER FUNCTIONS

The transfer function is used to describe networks which have at least two ports. It relates a voltage or current
at one port to the voltage or current at another port. These functions are also defined as the ratio of a response
transform to an excitation transform. Thus, there are four possible forms of transfer functions.

1. Voltage Transfer Function 1t is defined as the ratio of the voltage transform at one port to the
voltage transform at another port. It is denoted by G (s).

_Va(s)
Gz (s) = V()
~ i)
Guls)= 7r(s)

2. Current Transfer Function 1t is defined as the ratio of the current transform at one port to the current
transform at another port. It is denoted by & (s).

_b®
o2(s) = 1(s)
01(s) = h(s)

 I(s)



3. Transfer Impedance Function
current transform at another port. It is denoted by Z (s).

_Nls)
Zix(s) = 11(s)
(s
Zy1(s) = h(s)

8.3

8.3 Transfer Functions

It is defined as the ratio of the voltage transform at one port to the

4. Transfer Admittance Function 1t is defined as the ratio of the current transform at one port to the

voltage transform at another port. It denoted by Y (s).

_Ix(s)
Na(s)= Vi(s)
_ Li(s)
Yr1(s) = A

|| SEN RN Derermine the driving-point impedance function of a one-port network shown in Fig. 8.2.

R
O
_—_C
O
Fig. 8.2 o R
Solution The transformed network is shown in Fig. 8.3.
1 Z(S) —> f— CL Ls
s
2= a(R+Ls) B R+ Ls 1 S+—
= = > =— 5
i+(R+Ls) LCs* + RCs+1 C52+—s+i .
s L LC Fig. 8.3

|| ETII RN Determine the driving-point impedance of the network shown in Fig. 8.4.

2s 2s
o 00 00
1 1
Z(8) — ::2—3 ::Z
O
Fig. 8.4
Solution
(a) ala) | e 1
|25+ | 25+ 25+— As+8s> +25+— 4 1h02
2 2 2 2 165" +12s° +1
Z(s) =25+ = e e 28 -0 "2
I YO 2+4s 2+4s 2+4s 8s” +4s
S S 2s
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|| Example I Determine the driving-point impedance of the network shown in Fig. 8.5.

1 1
S S
° 11 1]
Z(s) —> S s
(o
Fig. 8.5
Solution
—+
1 S(s S) 1 (+sd)s 1 s+s  s*43s2+1
Z(s)=—+ =— > =—+— = 3
sl s 25841 s 25741 257+
S

|| Example CWN  Find the driving-point admittance function of the network shown in Fig. 8.6.

Y(s) —>
O
Fig. 8.6
Solution
oL
1 2s 1 s 30s* #1552 +25% +1+ 55> 305" +225% +1
Z(s)=3s+—+ =3s+t—+—5—= > = =
5o o1 55 257 +1 55 (25> +1) 55 (25> +1)
2s
1 5s(25°+1)

Y(S) = =
Z(s) 30s*+225* +1

|| SETIIXIN  Find the transfer impedance function Z,,(s) for the network shown in Fig. 8.7.

Iy (s)

O O
+ +
R 1
Vi (s) A0
o o

Fig. 8.7



8.4 Analysis of Ladder Networks 8.5

)

Solution Va(s)=L(s)
1
R+—
Cs
Vz(S) _ R
Li{s) RCs+l1
Va(s) _ 1

Ak = C(HL)
RC

|| SETNI TN Find voltage transfer function of the two-port network shown in Fig. 8.8.

l(s) R I(s)
O O
+ +
Vi(s) - Vy(s)
o o
Fig. 8.8
Solution By voltage division rule,
1 1
-~ . o
Va(9) = () =S = Vi) 2 = Vi) =1
R+— S R E—
Cs RC
b
Voltage transfer function Va(s) = _RC
W L, L
RC

IEXYH| ANALYSIS OF LADDER NETWORKS

The network functions of a ladder network can be h 4 Va % I Vp h=0
obtained by a simple method. This method depends T 2
upon the relationships that exist between the branch
currents and node voltages of the ladder network. Vi Y2 Ya V2
Consider the network shown in Fig. 8.9 where all the
impedances are connected in series branches and all o o
the admittances are connected in parallel branches.

Analysis is done by writing the set of equations. Fig. 8.9 Ladder network

In writing these equations, we begin at the port 2 of
the ladder and work towards the port 1.
V=7,
I,=Y,7,
V,=Z,1,+V,=(ZY,+ 1) V,
L=Y,V, +1,=[Y,(Z, Y, + )+ Y]V,
Vi=Z 1, +V, =[Z{Y,(Z, Y, + )+ Y} +(Z, Y, + 1]V,
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Thus, each succeeding equation takes into account one new impedance or admittance. Except the first two
equations, each subsequent equation is obtained by multiplying the equation just preceding it by imittance
(either impedance or admittance) that is next down the line and then adding to this product the equation twice
preceding it. After writing these equations, we can obtain any network function.

V;
|| Example WA For the network shown in Fig. 8.10, determine transfer function 72

1

Loo1Q 10 =0
o o
+ +
Z ——1F ——1F Va
o o
Fig. 8.10
Solution The transformed network is shown in Fig. 8.11.
1 1 —
V, =V, o h Va b Vo =0 .
+ +
]b —EZSVz l l
1 1 1
- Vi s s Vs
s ' 1
V,=11,+V, 5 5
=s, +V, :(S+1)V2
v 5 Fig. 8.11
11:Ta-f—]bZSVa'f'Ib:S(S+1)V2+SV2=(S +2S)V2
s
V=114V, = (2 +25)Vs +(s+ )V = (s* + 35+ 1) V>
123 1

Hence, =
Vi s +3s+1

v
|| ETTI R For the network shown in Fig. 8.12, determine the voltage transfer function 72

1

I s v, s lb V, b=0

o 00 —e——000 ® 0

+ +

v 1 1 Va

o °

Fig. 8.12
Solution V,=V,
V;
Iy=-2=V,

V,=sl, +V; =5V, +V> :(S+1)V2
V.
I :Ta+[b =(s+ )V + V5, =(s+2)V,

Vi=sli+V, =s(s+2)Va+(s+1)Vs = (s +3s+ 1)V,
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o1

Hence, ==
N st +3s+1

|| Example R Find the networkﬁmctions?,ﬁ and 143 for the network shown in Fig. 8.13.

1 N I
, 1H 1H =0
o 7000 7000 o
+ +
Vi ——1F —_1F V2
o o
Fig. 8.13
Solution The transformed network is shown in Fig. 8.14.
Los v s l Vy hL=0
Vi =V oL g IO
v, + i l +
Iy =—=sV 1
o vi + 5 Ve
; : [ ] I
O O

Vy=sly+Vs=s(sVa)+Vs = (s> + 1)V

”
I =T“+1b =5V, +1, =s(s> + Vs +sVs = (s> +25)V>

S
M=sli+V, =s(s +25)Vs +(s> + )V, = (s* + 25> + 2 + )V = (s* + 352 + )V,

14 st +3s2 41

Hence, =
I s +2s
hh__ 1
oost 35741
v, 1
I $+2s

v, V. v
|| SETII IO Find the network functions ]—1,72, and [—2 for the network in Fig. 8.15.
1V

1

| —_

F

hof S H =0
g | T OO 2
2 %H ——2F Vy
o o
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Solution The transformed network is shown in Fig. 8.16.

4
Vy =V s
b= hoS v, 85 I, V, =0
I, =V]—2=25V2 g H l ¢
. s 1
2S V1 E ES V2
V, =35y +Vs =3s(2sVs)+ V> = (65> + 1) V> - T S
v, 2 145% +2 .
11=?+Ib=—(6s‘+1)V2+2sV2=( e ]Vz Fig. 8.16
S S
2
4 4(145*+2 5 65t +5752 +8
NW=—-0L+V,=— V2+(6S +1)V2: S V,
S S N
Vi 6s*+57s° +8
Hence, =
I 14s° +2s
a_ 88
Vi 6s*+5757 +8
ﬁ_ s
I 14542

|| SET I MEN  For the ladder network of Fig. 8.17, find the driving point-impedance at the 1 — 17

terminal with 2 — 2 open.

19 1H 1Q  1H 10 1H =0
1 o> AN T T— VW00 T VN0 ————=<—202
+ +
Vi —1F —1F —1F Vo
o oo
Fig. 8.17
Solution  The transformed network is shown in Fig. 8.18.
o1 sV, 1 s Vy 1 s V, =0
1 2
¥ 1, Iy +
V. 1 1 1 v,
| [ [ r .
1o o2
Fig. 8.18
Vo=V

Iy =

AR
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Ve =(s+D) Iy +Va= (s+)sha+Vr = (s +s+ 1),

Vy

Io="F+1y=sVy+1y =s(s + s+ D)VatsVs =(s° + 5> +25)Vs
s

Ve=(s+ DL +Vy=(+D( + 2 +2)Va+ (2 +s+ DV =(s* + 282 + 452 + 35+ DV,
Va

L=+l =sVa+1, =s(s* + 28 +4s2 +3s+ D)y + (P + 2 + 2

s
= (s5 +2st 4557 +4s + 3s)V>
Vl=(s+l)[1+Vu=(s+1)(s5+2s4+5s3+4s2+3s)V2 +(s4+233+4s2+3s+1)V2
=(s* 435 +8s* + 113 +115% + 65+ )V,
Vi 5% 435 +8s* +11s° +11s* +65+1
I - s° +2s* +55° +45% +3s

V
|| SETII XMW Determine the voltage transfer function 72 for the network shown in Fig. 8.19.
1

,1Q 2H =0

o AVAYAY 00 O

+ +

Vi ——1F —1F 10 Vo

o °
Fig. 8.19

Solution  The transformed network is shown in Fig. 8.20.

hoo1 Vel 28V V, b=0
Vo=V =V, o AN O o )
+ jjb Iy +
V, V-
I,,=I,,+[C=T2+T2=SV2+V2=(s+1)V2 72 ::1? T% 1 Vs
S ° °
Vo=2sl,+V, =2s(s+ 1)V +V>
5 Fig. 8.20
=2s"+2s+1)V>
Va
11=T’+I,,=sV,,+Ia=s(2s2+2s+1)V2+(s+l)V2=(2s3+2sz+2s+1)V2
s
V=1L +V, =25 + 252 + 25+ D)Vs + (252 + 25 + )V, = (25° +45* +4s+2)V,

Vs 1

Hence, e —————
Vi 257 +4s" +4s+2
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I
|| Example CWEN  For the network shown in Fig. 8.21, determine the transfer function 72

1

3
sQ
L A \AN— 1Q I /=0
O—>—r 2F 0o
+ 3 +
[l |
2 H —— 2F 59 A
o o

Fig. 8.21

Solution  The transformed network is shown in Fig. 8.22.

LV /=0

=
1 N w
-—%%

-

< +
— ¢S
N
(Sl
= +0

Fig. 8.22
V}):Va:Vz
V, 1
[l:[a+]h=T+T=2SV2+6V2:(2S+6)V2
25 6
3.3
Vi=| 225 41|47, = ’ 11+V2:7(6S+15)(2s+6)V2+V2: Qs+5)s+3)
3.3 s+6 65+6 (s+1)
2 2s
(2s+5)(s+3)+(s+1) 25% +65+5s+15+s+1 252 +125+16
= Vy= V,= vy
s+1 s+1 s+1
2(s” +65+38) 2(s+4)s+2)
= Vy= V,
s+1 s+1
Also, L=-I,=-6V,
L 3(s+1)

14 (s+4)s+2)

I
|| Example LN For the network shown in Fig. 8.23, compute o5 (s) = [—2 and Z;5(s) = I;—Z
1 1

1Q 1=0

—
+
+ O

——1F ——1F Vo

Fig. 8.23

+ :|V2



8.4 Analysis of Ladder Networks 8.11

Solution  The transformed network is shown in Fig. 8.24.

1 L, Vv, I=0
Ve=0 T+ l i
V)
12=T=SV2 h v, ::% 1? A
s ) 5

W=1L+V,= sV +V, = (S+1)V2

"
I =T1+12 =sV+1y =s(s +1)Vy +5V5 = (s> + 25}V

Fig. 8.24

N

I 1
o S)=—=
Hence, 12(9) I s+2

v, 1
and Zix(s)=—=
" I $%+2s

V.
|| Example 8.15 Determine the voltage ratio %, current ratio [—Z,transfer impedance 1—2 and

i I 1

v
driving- point impedance [—1 for the network shown in Fig. 8.25.
1

3Q
A A 3H b /=0
o 1F 700 °
I3I 20
2 H —1F 10V
1
1F
5 12 5
Fig. 8.25
Solution The transformed network is shown in Fig. 8.26.
3
b —AA— Vo 85V, bV, 1=0
o—— "3 ¢TI ¢ o
+ s lla Ib l +
| |
I 1 2 1
v, 1 ; v,
_ —|— s B
O O
Fig. 8.26
Ve=Vy =V,
V;
IL=-2=V,
1
V- 1Z 35+2
Li=l+lh=—2s 2= p 4y =222 p
) 21 2s+2 25+2
+ —
S
35(3s+2 9s” +8s5+2
Vy =35l +Vy = S8SH Dy |95 H8sH2 ),
s+ 2s+2
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9 2 2 3 4857
I = &+1‘,—5Vu+1 s( s> +8s+ )V2+(3s+ )sz 95" +8s” +5s+2 v,
1 25+2 25+2 25+2
S
3><3
- 3 2 2
“+ 0~ lv+ -+ “
Vi = S|4y, = 3 L4V, = 3 9s” +8s” +5s+2 v+ 9s” +8s+2 v,
3 s+1 s+1 25+2 25+2
3+-
S
| 2757 + 2457 +155+6+95° +85” +25+95” +85+2 v (365 +415 +255+8)
I (s+1)(2s+2) 2 (s+1)(25+2) ?
B 36s° + 415> +255+8
2% +4s5+2
12 25> +4s+2
Hence, —_= 3 5
Vi 3657 +41s” +255+8
L 2542
I 96 +8s> +55+2
&_ 25+2
I, 95 +8s>+55+2
Vi 365’ +41s°+255+8 365 +41s’ +255+8

L (s+1)(9s° +852 +55+2) 9s* +175° +13s2 +7s+2

1 1
|| SCINACR MW  For the resistive two-port network of Fig. 8.27, find I;— ? 7’ and [—2
I i

I 20 20 20
o VVV A% NVVV .

Vi §1Q §1Q §1Q v, §1Q

b

o
L ]

Fig. 8.27

Solution  The network is redrawn as shown in Fig. 8.28.

LoV 2 v, 2 Vv, 2 A
o ——"\\/\/ A% —"\ Vv *—
+ ) = I b +
2 1 § 1 1 A ; 1
o -

Fig. 8.28



Hence,

8.4 Analysis of Ladder Networks

I =—%=—V2
Vy==31, =3V,

Vb Vb 4
Iy=-t+t ="y =4y
b 1 3 3 b 2

V, =20, +V, =8V, +3V, =11V,
Va

Ia:T+1b =11 +41, =15V,

Vi=21,+V, =30V, +11V, =41V,

"
I :T]”“ =41V, +15V, =56 V5

o1
v, a4l
ool
56
L_ 1 4
w41
L1
56

V:
|| SETNI MY Find the network function 72 for the network shown in Fig. 8.29.
7

I 1Q 10 A hL=0
O + — O
+ +
v, f 2, 10 v,
o )
Fig. 8.29
Solution  The network is redrawn as shown in Fig. 8.30.
L1 gy, A b=0
O + - O
+ al, +
72 T 2, 1 V,
o o

Fig. 8.30

8.13
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From Fig. 8.30,
V,=1(31)=31,

Applying KVL to the outermost loop,
V,=1()~13L)-2V,~1(31)=0

Vv, =-11,
V;

Hence, 72 _ 3
v, 7

Il
|| SET IO  Find the network function 1—2 for the network shown in Fig. 8.31.
1

21, 20 b
g o)
3
Ia
h
h CD 1Q 1Q T > 1Q v,

Fig. 8.31

Solution  The network is redrawn as shown in Fig. 8.32.

21 1

h
Ia+lz+§ 2 b+

%0

co—\/\/\—=<eon
N —
|
+
Q
- —
[\
_— o=
| =~
o ¢ —\ANNV—0
-
N
ol N +

O e

Fig. 8.32

From Fig. 8.32,

I
I=L+1,+1,+—
2

Z%]1+Ia+]2 (1)

Applying KVL to the loop abcda,
-17-11,-21,=0
—1-31,=0
[+31,=0 (i)
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Substituting Eq. (i) in Eq. (ii),

%Il+la+12+31a:0

%]1"'12 +4171,=0 (111)

Applying KVL to the loop dcefd,

lla—][2—2(12+%J=0

I,-31,-1,=0

I,=3L+1 (iv)

Substituting Eq. (iv) in Eq. (iii),

%I["‘]Q +4(3[2 +[1)=0

3
Ell +0L,+121,+45, =0

11

—0L+131,=0

S h 2

11
131, =——1
2 S h
Hence, ]—2:—2

1 26

IEXH| ANALYSIS OF NON-LADDER NETWORKS

The above method is applicable for ladder networks. There are other network configurations to which the
technique described is not applicable. Figure 8.33 shows one such network.

Z
[ E—
/ ,_|Z1 i I
O L Z O
2 L] L °
2 Z3 Vs
o o

Fig.8.33 Non-ladder network

For such a type of network, it is necessary to express the network functions as a quotient of determinants,
formulated on KVL and KCL basis.
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v, V) I I
|| Example LN For the resistive bridged T network shown in Fig. 8.34, find V—ZI—ZVZ and 1_2
11V 1

2Q

Iy 1Q /SD 1Q I,

O A 4 L
+ +
Vv, /) 0.5Q C\ V, 10
_ h b _
O ®
Fig. 8.34
Solution  Applying KVL to Mesh 1,
Vi=151,+051, -1,
Applying KVL to Mesh 2,
0=051+2.5L+1, ..(11)
Applying KVL to Mesh 3,
0=-[+L+41I
Writing these equations in matrix form,
nl (15 05 1[4
0(=105 25 1| (iv)
0 -1 1 4| L
05 -1
0 25 1
A 0 1 4 10-1
L ==L= _hao-n _ Vi
A |15 05 -1 9
05 25 1
-1 1 4
s n -
05 0 1
A -1 0 4] K2+l 1
=== _he+h -4
A 15 05 -1 9 3
05 25 1
-1 1 4
From Fig. 8.34, V,=-1(I,) =-1,
From Eq. (v), V,=-31,
1 1
From Egs. (iv) and (v), I, = —ng =3 I
I, =-31,
I 1
Hence, R &)
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1
L 30
L K3
A
v, 3L, 3
ﬁz —I 219
I 305, 3

|| ETII WL For the network of Fig. 8.35, find Z,, Zand G,

a Za b
o b 1 o
+ L +
Vv, Z, v,

Zp
_ — _
o = 0

d c
Za
Fig. 8.35

Solution  The network can be redrawn as shown in Fig. 8.36. Since the network consists of two identical
impedances connected in parallel, the current in /; divides equally in each branch.

l

I
Vi=(Za+2) 2 i
2
"W Z,+Z7 Z
Z“ = - b b
] 2
V1 V2
Il Il 11 _
Vy=2Zy——2Z,| — |=(Z, - Z,)—
=2 (2) (Zs ) 3 z,
V, Z,-Z, _
Z]z = 1—2 = hT O
! Fig. 8.36
By voltage-division rule,
Zh Za Zb Za
Vs - = 1
Za +Zb Za +Zb Za +Zb
V, Z,-Z,
Gp=—>="¢
" Z.+Z

|| SET NI XWEN  For the network shown in Fig. 8.37, determine Z,,(5), G, (s)and Z, (s).
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1F
I
I 10 10 =0
O O
+ +
Vi _—1F Vo
o o
Fig. 8.37
Solution The transformed network is shown in Fig. 8.38.
1
s
]
1 /:D 1 l,=0
O O
+ +
Vi /D f— 13 Vo
I1
o o
Fig. 8.38
Applying KVL to Mesh 1,
1
V|=(l+—)11—]3 ..(1)
s
Applying KVL to Mesh 2,
1
Vy=—1L+1; ...(i1)
s

Applying KVL to Mesh 3,

—]1+(2+l)[3=0
s
s
I; = 1
} (2s+1]1

Substituting Eq. (iii) in Egs. (i) and (ii),

1 1 243
vo=f1+1]7, - s I = s+l s I = sT+3s5+1 I
s 2s+1 s 2s+l1 s(2s+1)

1 24 25+1
Vo= +—— 1, =| 22257000,
s 25+1 s(2s+1)

...(iii)

Vi 57 +3s+1

Hence, Z(s)=—=
1) I s(Q2s+1)
oV sP+2s+1
Zin(s)=—"="—"
I s(2s+1)
Vy st +2s+1
G]Z(S):_2:7

Vi s243s+1
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|| Example WY For the network shown in Fig.8.39, find the driving-point admittance Y,, and trans-

Jfer admittance Y .

1Q

Fig. 8.39

Solution  The transformed network is shown in Fig. 8.40.

1

o]
n|—

b

h Il
I
2 /D | Izq ]
Iy

Fig. 8.40
Applying KVL to Mesh 1,
1 1 .
V1= —+1 [l+12__[3 (l)
s s
Applying KVL to Mesh 2,
0211+(2+l\12+113 (11)
" s) s
Applying KVL to Mesh 3,
1 1 2
0:——11+—12+(—+1] I ...(iid)
s s N
Writing these equations in matrix from,
1 1
-+1 1 ——
n s lS [
o= 1 2+- - I,
s s
0 11 2 L
—— - —+l1
s s s
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1
-+1 1

Hence,

Hence,

S
I =(l+1] (2+l)(z+1)—i —l[(l)(z+1)+L 1 (l)(l)+(1](2+l)
s S s )\s 52 L s 2| s s s S
2
—+1
S
R
S )
1 1 13Y(2 1 +5s+1
A=l0 24— - =V][(2+—)(—+1J——2}:Vl[2s%]
S N S S S S
1 2
0 - 241
S S
252 +5s5+1
L=V|—F"T"F
ST +55+2
I 2s% +5s+1
Yll:_zzi
M os”+5s+2
A,
L==%
*TA
l+1 V1 J—
S S )
1 2 1 +2s+1
A=l 1 0 - =—Vl(—+1+—2)=—V](%J
S S S S
_l 0 z+]
S S
2
sT+2s+1
SRR
s +5s5+2
L, s*+2s+1
Y12:_:_27
" S +35s+2

IEXA| PoLES AND ZEROS OF NETWORK FUNCTIONS

The network function F(s) can be written as ratio of two polynomials.

where a, a,, ..

. a,and b, by,

and positive for networks of passive elements. Let N(s) = 0 have 7 roots as z,, z,,
have m roots as p,, p,,

N aps" +a, SN ta stag
D(s)  b,s" +b, s" +...+b s+b

F(s)

..., b, are the coefficients of the polynomials N(s) and D(s). These are real

...... , z, and D(s) = 0
...... , P,,- Then F(s) can be written as
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(s—z)(s—23)...(s—2y)
(s=p)(s=p2)...(s = pm)

F(s)=H

where % is a constant called scale Jactor and z, z,, ..., Z,, P\, Pys --.» D,, ar€ complex frequencies. When
m

the variable s has the values z,, z,, ..., z,, the network function becomes zero; such complex frequencies

are known as the zeros of the network function. When the variable s has values p,, p,, ..., p,,, the network

function becomes infinite; such complex frequencies are known as the poles of the network function.

A network function is completely specified by its poles, zeros and the scale factor.

If the poles or zeros are not repeated, then the function is said to be having simple poles or simple zeros. If
the poles or zeros are repeated, then the function is said to be having multiple poles or multiple zeros. When
n > m, then (n — m) zeros are at s = oo, and for m > n, (m — n) poles are at s = co.

The total number of zeros is equal to the total number of poles. For any jo
network function, poles and zeros at zero and infinity are taken into account

in addition to finite poles and zeros. TC_"

Poles and zeros are critical frequencies. The network function becomes PN .
infinite at poles, while the network function becomes zero at zeros. The i 0
network function has a finite, non-zero value at other frequencies. >’<____

Poles and zeros provide a representation of a network function as shown
in Fig. 8.41. The zeros are shown by circles and the poles by crosses. This Fig. 8.41 Pole-zero plot
diagram is referred to as pole-zero plot.

RESTRICTIONS ON POLE AND ZERO LOCATIONS FOR DRIVING-POINT

8.7 FUNCTIONS [COMMON FACTORS IN N(s) AND D(s) CANCELLED]

(1)  The coefficients in the polynomials N(s) and D(s) must be real and positive.
(2) The poles and zeros, if complex or imaginary, must occur in conjugate pairs.

(3) The real part of all poles and zeros, must be negative or zero, i.e., the poles and zeros must lie in
left half of s plane.

(4) If the real part of pole or zero is zero, then that pole or zero must be simple.

(5) The polynomials N(s) and D(s) may not have missing terms between those of highest and lowest
degree, unless all even or all odd terms are missing.

(6) The degree of N(s) and D(s) may differ by either zero or one only. This condition prevents
multiple poles and zeros at s = eo.

(7)  The terms of lowest degree in N(s) and D(s) may differ in degree by one at most. This condition
prevents multiple poles and zeros at s = 0.

3.8 RESTRICTIONS ON POLE AND ZERO LOCATIONS FOR TRANSFER
) FUNCTIONS [COMMON FACTORS IN N(S) AND D(S) CANCELLED]

(1)  The coefficients in the polynomials M(s) and D(s) must be real, and those for D(s) must be positive.

(2) The poles and zeros, if complex or imaginary, must occur in conjugate pairs.

(3) The real part of poles must be negative or zero. If the real part is zero, then that pole must be
simple.

(4) The polynomial D(s) may not have any missing terms between that of highest and lowest degree,
unless all even or all odd terms are missing.
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(5) The polynomial N(s) may have terms missing between the terms of lowest and highest degree,
and some of the coefficients may be negative.

(6) The degree of N(s) may be as small as zero, independent of the degree of D(s).

(7)  For voltage and current transfer functions, the maximum degree of N(s) is the degree of D(s).

(8) For transfer impedance and admittance functions, the maximum degree of N(s) is the degree of
D(s) plus one.

|| DETNIRIWER  Test whether the following represent driving-point immittance functions.

57 +3s7 —2s+1 57+ 55+2 243542

(@) ——— () (c)
s 465420 s? +65° + 957 §2+65+2

Solution

(a) The numerator and denominator polynomials have a missing term between those of highest and lowest
degree and one of the coefficient is negative in numerator polynomial. Hence, the function does not
represent a driving-point immittance function.

(b) The term of lowest degree in numerator and denominator polynomials differ in degree by two. Hence, the
function does not represent a driving-point immittance function.

(c) The function satisfies all the necessary conditions. Hence, it represents a driving-point immittance function.

|| SETII LN Test whether the following represent transfer functions.

35+2 2s° +5s+1 1
b) op=——— (¢) Zy =

@) Goy=—212
@ ! 557+ 457 + 1 s+7 &+ 2s

Solution

(a) The polynomial D(s) has a missing term between that of highest and lowest degree. Hence, the function
does not represent a transfer function.

(b) The degree of N(s) is greater than D(s). Hence the function does not represent a transfer function.

(c) The function satisfies all the necessary conditions. Hence, it represents a transfer function.

|| ETTIRWEN  Obtain the pole-zero plot of the following functions.

-6+ —_s6*D
@ S e+ O ey
. s(5+2) _ (s+1)°(s+5)
© O T e 1D R ST R )
2
© K-

- (s+2)(s>+9)
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Solution

(a) The function F(s) has zeros at s =0 and s =— 2 and poles at s =— 1 and s = — 3.
The pole-zero plot is shown in Fig. 8.42.
jo

-3 -2 -1 |0

Fig. 8.42

(b) The function F(s) has zeros at s = 0 and s = —1 and poles at s =—2, —2 and s = —3.
The pole-zero plot is shown in Fig. 8.43.

Fig. 8.43

(c) The function F(s) has zeros at s = 0 and s = -2 and poles at s =—1 —jl and s =—1 + 1.
The pole-zero plot is shown in Fig. 8.44.

jo
XA
—— o
2 -1 [0
X--—4—j1
Fig. 8.44

(d) The function F (s) has zeros at s =—1, —1 and s = —5 and poles at s =—2, s =—3 +j2 and s =—3 —j2. The
pole-zero plot is shown in Fig. 8.45.

jo
o iy rj2
"
5 | = 5 o
5-4 -8 -2 -1 [,
>I< ——————————— -j2
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(e) The function F (s) has zeros at s =2 and s = —j2 and poles at s = =2, s = j3 and s = —j3. The pole-zero
plot is shown in Fig. 8.46.

| Example 8.26_

them on the s-plane.

jo

QJj2

Fig. 8.46

Find poles and zeros of the impedance of the network shown in Fig. 8.47 and plot

1F
o—|
Z(s) —> 20 % H
O
Fig. 8.47
Solution  The transformed network is shown in Fig. 8.48. 1;
Sx2 ° L
1 > 1 25  2s7+s+4 2(s°+0.55+2)
§ S, 08 s+4  s{s+4) s{s+4) > >
2
_2(s+025+ j1.4)(s+0.25- j1.4) o
s(s+4) Fig. 8.48

The function Z (s) has zeros at s =—0.25 +j1.4 and s =—0.25 — j1.4 and poles at s = 0 and s = —4 as shown

in Fig. 8.49.

jo

otit.4

O+ —j1.4
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|| Example WM Determine the poles and zeros of the impedance function Z (s) in the network shown

in Fig. 8.50.
1o
2
O
Z(s) —> “—4F %Q
O
Fig. 8.50
Solution The transformed network is shown in Fig. 8.51.
1
2
O
Z(S) —> — l l
4s 6
O
Fig. 8.51
.t
Zsp=lods 6 1 1 _ 448 542 05(s+2)
271 1 2 4546 2(4s+6) 2s5+3  s+15
4s 6

The function Z(s) has zero at s = -2 and pole at s = —1.5.

|| Example CWEN  Determine Z(s) in the network shown in Fig. 8.52. Find poles and zeros of Z(s) and

plot them on s-plane.

1H
o 7000
z -1
(8) — 0 F 40
o
Fig. 8.52
Solution The transformed network is shown in Fig. 8.53.
S
7000
120
Z(s) — — 4

Fig. 8.53
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@x4
s 80 20 s(s+5)+20 s°+55+20
Z(s)=s+ =5+ = - =
20 45420 s+5 s+5 s+5
—+4
S
(54254 j3.71)(s+2.5- /3.71)
s+5

The function Z(s) has zeros at s =-2.5 +3.71 and s =-2.5 —j3.71 and pole at s =-5.
The pole-zero diagram is shown in Fig. 8.54.

------------- L—j3.71

Fig. 8.54

1
|| Example CWAELN  For the network shown in Fig. 8.55, plot poles and zeros of function [—0

i

AN

lo
4Q
h(f) ——05F
2H
Fig. 8.55
Solution The transformed network is shown in Fig. 8.56.
By current-division rule, Iy
4
Iy =1, chz I; (D
4+25+— 25
s
Iy _ s(4+2s)  s(s+2)  s(s+2)
I 4s+25°+2 s7+2s+1 (s+D(s+1) Fig. 8.56

The function has zeros at s = 0 and s =2 and double poles at s =—1.
The pole-zero diagram is shown in Fig. 8.57.
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jo

Fig. 8.57

|| Example 8.30 Draw the pole-zero diagram of L for the network shown in Fig. 8.58.

1

Iy

10 H
h (D —— 250 uF

200 Q
Fig. 8.58
Solution  The transformed network is shown in Fig. 8.59.
lp
10s
1
[} -
1 (D " 250x1075s
200
Fig. 8.59
By current-division rule,
I
-6
L= 1250><10 s
- +10s+200
250x10 s
I 400 B 400
I $2+205+400 (s+10—/17.32)(s+10+ j17.32)
The function has no zero and poles at s =—10 +17.32 and s =—-10 —j17.32.
The pole-zero diagram is shown in Fig. 8.60. .
j
N S— L j17.32
-10 E 0 7
S R——— L _j17.32

8.27
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|| Example ICHN  For the network shown in Fig. 8.61, draw pole-zero plot of %

1

I, 10
O
+
v, C) )2V v 5h % 1H — %F V,
o
Fig. 8.61
Solution The transformed network is shown in Fig. 8.62.
h 1 c
O
+
v, C) 2 (y)sh % s — Ve
o
Fig. 8.62
Applying KVL to the left loop,
V=1, +2V,=0
L=V,+2V,
Applying KCL at Node C,
V. 'V,
L+—<+-5=
51 s T2 0
s
si+2r)+ e+ 5y =0
s 2
sn+10v,+ <4 2y, =0
s 2
205+2+s°
v, ( Os+2+s J _ sy,
2s
& _ 10s _ 10s
o §24208+2  (s+0.1)(s+19.9) jo

The function has zero at s = 0 and poles at s =— 0.1 and s =—19.9.
The pole-zero diagram is shown in Fig. 8.63.

-20
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|| Example WY Find the driving point admittance function and draw pole-zero plot for the network
shown in Fig. 8.64.

+ O

V‘C) oav, (}) 1oL S 05s 1 v,

O
Fig. 8.64
Solution  Applying KVL to the left loop,
n-26L+0.1V,=0
= A0 ()
2
Applying KCL at Node 2,
10 1, + V—2+ V—2 =0
0.5s
2
10L,+=V+V,=0
S
2
10 1, +(—+1)V2 =0
S
2
10 7, +(3)V2 -0
s
(HZJVZ =101,
S
y, =10 | ...(ii)
s+2
Substituting Eq. (ii) in Eq. (1),
2 +o.1(— 10‘;)11 10
I = 2] 0514005 —— 7,
2 \ s+2

Hence Y _1_1_ 0.5 _ 0.5(s+2) _ 0.5s+1
’ 1 055  s+05s+2 1.55+2
s+2

1+
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The function has zero at s = —2 and pole at s =—1.33. The pole-zero diagram is shown in Fig 8.65.

jo

} D t o

-3 -2 -133-1 |0

Fig. 8.65

V.
|| SETN A IEEN  For the network shown in Fig. 8.66, determine II/—Z Plot the pole-zero diagram of [—2

g g
1H =0
o0 o
It
Iy 10 —-1F —1F v,
o
Fig. 8.66
Solution  The transformed network is shown in Fig. 8.67.
Ve S Iy V V, =0
» ° ° o
I +
1 1
Iy 1 = 1 v,

T

I’ 5

Fig. 8.67
Ve=Vy =V
Vy Ve
I, =Tb+T=SV2+V2 =(s+ )V,
s

Vo=sly+V, =s(s+)Va+Vs =(s> +s+ 1)V
v, V.

1g=T+Ta+1b=(s2+s+1)V2+s(s2+S+1)V2+(S+I)V2=(s3+2s2+3s+2)V2
s
% 1
Hence, —2=#
I,  §7425"43s+2

The function has no zeros. It has poles at s =—1, s =—-0.5 +1.32 and s = 0.5 —1.32,
The pole-zero diagram is shown in Fig. 8.68.



Vi
|| SETNIIRILN  For the transfer function H(s) = 70 =

T T 3s+10

8.8 Restrictions on Pole and Zero Locations for Transfer Functions

jo
x ===~ Lj1.32
-2 -1 7i0.5 0
pg— L —j1.32
Fig. 8.68

network shown in Fig. 8.69. Find L and C when R =5 2.

Solution  The transformed network is shown in Fig. 8.70.

“©

Simplifying the network as shown in Fig. 8.71,

L
7000 o
T
— Vy
o
Fig. 8.69
Ls
7000 o
e
11
T Cs Yo
)
Fig. 8.70
Ls
00 )
+
4 []Z (s) Vo
o
Fig. 8.71
Bl
z9)= Cls T RCs+1
R+ S+

8.31

, realise the function using the
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R
Vo=V, RCs+1

Ls+

RCs+1
1
Vo _ R _ LC
Vi RLCs’+Ls+R o 1 1
RC LC
But Vo 10
Vi s7+35+10
and R=5Q
Comparing Eq. (ii) with Eq. (i),
1
— =3
RC
Lo
LC
Solving the above equations,
L=15H
1
C=—F
15

(D)

..(ii)

|| SENNERIEEN  Obrain the impedance function Z(s) for which pole-zero diagram is shown in Fig. 8.72.

jo

Fig. 8.72

Solution  The function Z(s) has poles at s =—1 and s =3 and zeros at s =0 and s = 2.

s2(1+g]
s{s+2) _ g s

Z(s) = =
(s+1)(s+3) s2(1+1](1+§J
s s
For s =0,
1
Z(eo)=H——=H
) M
When Z() =1,
H=1
Z(s)= s{s+2)

C(s+1)s+3)
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|| Example RIS Obtain the admittance function Y(s) for which the pole-zero diagram is shown in

Fig. 8.73.
jo
X7 J1 Y()=1
: o
2 -1} 0
S i
Fig. 8.73
Solution  The function ¥(s) has poles at s =—1 +j1 and s =—1 —j1 and zeros at s = 0 and s = —2.
+2 +2 +2 s (H 2)
Y(s)= H s{s+2) - s{s+2) - s{s+2) — s

(s+1+D(s+1=41) (s+1)>=(l)> s +2s5+2 s2(1+g+%)
s s

Fors= oo,
: @
Y(eo)=H-—=H
M
When Y (o) =1,
H=1
s(s+2)
Y(s) = —— =2
() s*+2s5+2

|| SETOIIRIYA 4 network and its pole-zero configuration are shown in Fig. 8.74. Determine the
values of R, L and C if Z (j0) = 1.

jo
° x---j V11
R | 2
1 |
Z(s) — O— 0 o
Ls -3 -15
L |
O ! 2
Fig. 8.74
(Ls+R)i l(s‘*'ﬁ)
Solution Z(s) = Csl = 2LS+R ¢ - Ll (i)
(Ls+R)+— LCs"+RCs+1 2 B 1
Cs L LC
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V111 V111
From the pole-zero diagram, zero is at s =—3 and poles are at s = —145+jT and s=-1.5 _jT
s+3
Z{s)=H
s+1.5+j£ s+145—jﬂ
2 2
Zs)=H s+3 2=H . s+3
2 11 s°+3s+30
(s+1.5) =] j~——
2
When Z(jo)y=1,
1=H 3
30
H=10
Z(s) = 210(5_”) ...(ii)
s°+35+30

Comparing Eq. (ii) with Eq. (i),

R
23
L
1
—=10
C
1
—=30
LC
Solving the above equations,
C=—LF
10
L= lH
3
R=1Q

|| Example YN 4 network is shown in Fig. 8.75. The poles and zeros of the driving-point function
Z(s) of this network are at the following places:

1 3
Poles at ——+ j£
2 2
Zero at —1
If Z (jO) = 1, determine the values of R, L and C.
O
R
5 L1
(8) —> T Cs
Ls
O

Fig. 8.75
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| (1)
Ls+R)— =] e
Solution Z(S):( ' )Csz Ls+R __C L (1)
2
Is+ R4 L LCS+RCs+1 o R .1
Cs L LC
1, .3 .
The poles are at fEiJT and zero is at —1.
Zs)=H s+1 _ s+1 — 2S+1
1.\ 1 B3 1Y (3 s2+s+1
S+—+j—— s+ —J) s+—| = j—
2 2 2 2 2 2
When Z(j0)=1,
1:HQ
M
H=1
1 .
Z(s) = ;;1 (i)
sTHs+
Comparing Eq. (ii) with Eq. (i),
Cc=1
R
k|
L
1
— =1
LC
Solving the above equations,
C=1F
L=1H
R=1Q

|| DET I REICER  The pole-zero diagram of the driving-point impedance function of the network of

Fig. 8.76 is shown below. At dc, the input impedance is resistive and equal to 2 W. Determine the values of
R, LandC.

jo
o X~ j4
1 R i
Z(s) - Cs &— 0 o
Ls -2 —1I
o ]
Fig. 8.76
(Ls+R)- : (s+ RJ
s+ R)— - -
. Ls+R .
Solution Z(s) = CIS = ¢ - L 1 ()
Is+ R+ — LCs” +RCs+1 P S
Cs L LC

From the pole-zero diagram, zero is at s =—2 and poles are at s = —1+ ;4 and s = —1 — j4.
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s+2 _ s+2 - s+2
(s+1+ jd)(s+1=j4)  (s+1)°—(j4)’ s +2s+17
Atdc, i.e., w=0,7Z(j0)=2
-0
17
H=17

Z(s)=H

s+2 ..
Z(s)=17T——"— ..(i1)
s2+25+17

Comparing Eq. (ii) with Eq. (i),

=17

l\’__
AT~ A=

Solving the above equations,

c=Lr
17

L=1H
R=2Q

|| EN AR DN The network shown in Fig. 8.77 has the driving-point admittance Y (s) of the form

Y(s) = g B=s1)6=s2)
(s—s3)

(a) Expresss, s, s;interms of R, L and C.

(b) When s, =10+ j10°, s, =—10 — j10* and Y (j0) = 10~" mho, find the values of R, L and C and
determine the value of s ;.

1 Ls
Y (s) —> ::a
R
O
Fig. 8.77
Solution
I (Ls+R)Cs+1 LCs®+RCs+1 C(¥+LS+LC)
(a) Y(s)=Cs+ _UstR G+l LCs L ()
Ls+R Ls+R Ls+R
s+—
But Y(s) = H(s—s)(s—s2)

(s—s3)
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R, (RY 4
L W\z) 1c R+(R)2 1

where Si, 8 = —
2 2L 2L LC
L R
UL
b) When s, =—10+/10%
1 J
s,=—10—,10*
a4 Yl 2 8 .
Y(s):H(s+10 JIOT)(s+10+ /10 ):HS +20s+10 (i)
§—83 §—83

Comparing Eq. (ii) with Eq. (i),

R

—=20

L

53 =-20

2 | 5q 8
Y(S)—H(S +20s+10%)
(s+20)
At s =0,
(10%)

Y{(j0)=H—2=10"
(jO) 20

H=0.02x10"°

2 ~N 8
Y(s) = 0.02x10°¢ 8205 +107) (i)
(s+20)

Comparing Eq. (iii) with Eq. (i),
C=0.02x10"°F=0.02 uF

I
—_
(e}

S

N | =
T

h|__
SN =~ O

I I

[\

=]

I
S
©

|| SETII RSN 4 network and pole-zero diagram for driving-point impedance Z(s) are shown in
Fig. 8.78. Calculate the values of the parameters R, L, G and C if Z(j0) = 1.

jo

© o mmmmmmm oo - /3
R : T /2

1 i -+ j1

Z(8) — G — Cs i ) : T o

Ls -3 -2 -1 + -/

i +-j2

o Xemmmmmmmmmo - - —Jj3
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Solution 1t is easier to calculate Y(s) and then invert it to obtain Z(s).

2
Y(s):G+Cs+L 1 :(G+Cs)(Ls+R)+1:LCs +(GL+RC)s+1+GR
S

+R Ls+R Ls+R
1 R
1 Ls+R E(HZJ
A= Y(s)  LCs? +(GL+RC) s+1+GR B G R 1+GR -0
S+ s+
Cc L LC
From the pole-zero diagram, zero is at s =—2 and poles are at s =-3 £ ;3.
2 2 2
Z(S):H (S+ ) . = H (Sj' ) 2:H 2S-i-
(s+3-j3)(s+3+/3) (s+3)Y —=(j3) 5T +65+18
When Z(0)=1,
==
18
H=9
s+2 .
Z(s)= 29“7) ...(i1)
(5" +65+18)
Comparing Eq. (ii) with Eq. (i),
1
—=9
C
R
2o
L
g_;,_ﬁ - 6
Cc L
1
+GR ~13
LC
Solving the above equation,
c-1r
9
L= 2 H
10
G=25
9
R=20
5

|| SETII YR 4 series R-L-C circuit has its driving-point admittance and pole-zero diagram is
shown in Fig. 8.79. Find the values of R, L and C.
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jo
N Jj25
i Scale factor = 1
: N o
| A\

1 i 0
Xl jo5
Fig. 8.79

Solution  The function Y (s) has poles at s =—1 + ;25 and s =1 — 25 and zero at s = 0.

Vo)=H—— ooy
(s+1+ j25)(s+1— j25) (s+1)” —=(j25) s°+25+626
Scale factor H=1
s
Y(s)=————
() s> +25+626

For a series RLC circuit,

, R 1
1zt ercs+1 ST
Z(s)=R+Ls+—=—— SR
Cs Cs s

Comparing Eq. (i) with Eq. (ii),

L=1H
L:626
LC

oo L

626
R_,
L
R=2Q

IEXH| TiME-DOMAIN BEHAVIOUR FROM THE POLE-ZERO PLOT

()

..(if)

The time-domain behaviour of a system can be determined from the pole-zero plot. Consider a network

function

Fis)= 8= =22). (5= 2,)
(s=p)s—p2)...(S= pm)

The poles of this function determine the time-domain behaviour of f{f). The function f{#) can be determined
from the knowledge of the poles, the zeros and the scale factor H. Figure 8.80 shows some pole locations and

the corresponding time-domain response.
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(1) When pole is at origin, i.e., at s = 0, the function f{¢) represents steady-state response of the
circuit i.e., dc value. (Fig. 8.80)

f(1)

)
o

Fig. 8.80 Pole at origin
(i) When pole lies in the left half of the s-plane, the response decreases exponentially. (Fig. 8.81)

(1)
o K
0| t

Fig. 8.81 Pole in left half of the s-plane

jo

#

(iii) When pole lies in the right half of the s-plane, the response increases exponentially. A pole in the
right-half plane gives rise to unbounded response and unstable system. (Fig. 8.82)

q0)
I_/ t

0]

~.
=) S
)

Fig. 8.82 Pole in right half of the s-plane

(iv) Fors =0 +jaw,, the response becomes f (¢) = Aetien’ = A(cos @t £ jsin @ 1).The exponential
response e/’ may be interpreted as a rotating phasor of unit length. A positive sign of
exponential ¢/ indicates counterclockwise rotation, while a negative sign of exponential
e7%n! indicates clockwise rotation. The variation of exponential function e/® with time is thus
sinusoidal and hence constitutes the case of sinusoidal steady state. (Fig. 8.83)

f(1)

jo

!

o
)
_ 9]

Fig. 8.83 Poles on jw-axis
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For s = 0, + jw,, the response becomes f (1) = Ae* = Ael%“n) = Ae%' &', The response %' is

an exponentially increasing or decreasing function. The response ¢® is a sinusoidal function.
Hence, the response of the product of these responses will be over damped sinusoids or under

damped sinusoids (Fig. 8.84).

jo
X
0 o
X
(a)
jo
X
o
0
X

(b)

Fig.8.84 (a) Complex conjugate poles in left half of the S-plane
(b) Complex conjugate poles in right half of the S-plane

(vi) The real part s of the pole is the displacement of the pole from the imaginary axis. Since ois
also the damping factor, a greater value of o (i.e., a greater displacement of the pole from the
imaginary axis) means that response decays more rapidly with time. The poles with greater
displacement from the real axis correspond to higher frequency of oscillation (Fig. 8.85).

f

()

\

(a)

Fig. 8.85 Nature of response with different positions of poles



8.42 Circuit Theory and Networks—Analysis and Synthesis

jo . \/ﬁ\;}?\‘/‘ .

o
“<
\

1

\

Il

C

(b)
Fig.8.85 (Continued)

8.9.1 Stability of the Network

Stability of the network is directly related to the location of poles in the s-plane.

(1) When all the poles lie in the left half of the s-plane, the network is said to be stable.
(ii)) When the poles lie in the right half of the s-plane, the network is said to be unstable.
(iii) When the poles lie on the jw axis, the network is said to be marginally stable.
(iv) When there are multiple poles on the j@ axis, the network is said to be unstable.
(v) When the poles move away from jw axis towards the left half of the s-plane, the relative stability of
the network improves.

IEETY| GRAPHICAL METHOD FOR DETERMINATION OF RESIDUE

Consider a network function,

(s—z)(s—23) (s —2,)
(s=p)(s—p2)(s= pm)

F(s)=H

By partial fraction expansion,
K Ky Ko
= + 4
(s=pm) (s=p2) (5= Pm)

F(s)
The residue K is given by

(pi—aXpi—z2)(pi — zn)
(pi = X Pi = P2)(Pi — Pm)

K; :(s—p,)F(s)|HpI: H

Each term (p; — z;) represents a phasor drawn from zero z; to pole p,.
Each term (p, — p,), i # k, represents a phasor drawn from other poles to the pole p,.

Product of phasors (polar form) from each zero to p;

Product of phasors (polar form) from other poles to p;
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The residues can be obtained by graphical method in the following way:

(1) Draw the pole-zero diagram for the given network function.

(2) Measure the distance from each of the other poles to a given pole.
(3) Measure the distance from each of the other zeros to a given pole.
(4) Measure the angle from each of the other poles to a given pole.
(5) Measure the angle from each of the other zeros to a given pole.
(6) Substitute these values in the required residue equation.

The graphical method can be used if poles are simple and complex. But it cannot be used when there are
multiple poles.

2
|| SETII R EW  The current I(s) in a network is given by I(s) = — =% Plotthe pole-zero pat-

tern in the s-plane and hence obtain i(t). (s+1)(s+2)

Solution  Poles are at s =—1 and s =2 and zero is at s = 0. The pole-zero plot is shown in Fig. 8.86.
By partial-fraction expansion,

K K
I(s)= ——+—2
s+1 s+2
jo
g o
2 1 0
Fig. 8.86

The coefficients K, and K,, often referred as residues, can be evaluated from he pole-zero diagram. From
Fig. 8.87,

_ Phasor from zero at origin to pole at 4 2[141800

= =2/180°=-2
1£0°

Phasor from pole at B to pole at 4

jo

B_, A

— -

2 1 0

Fig. 8.87
From Fig. 8.88,

K,=H

1 £180°

Phasor from zero at origin to pole at B ) 2 /180°
Phasor from pole at 4 to pole at B
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jo
B A
4 o
< |°
Fig. 8.88
2 4
I(s)=———+——
s+1 s+2

Taking inverse Laplace transform,
i(f)=-2e'+4e7

|| SETII RN The voltage V(s) of a network is given by

V(s)= +
(s+2)s” +2s+2)

Plot its pole-zero diagram and hence obtain v (t).

3s 3s

Solution Vis)= > = . '
(s+2)(s” +2s+2) (s+2)s+1+ jD(s+1-j1)

Poles are at s =2 and s =—1 + ;1 and zero is at s = 0 as shown in Fig. 8.89.

jo
_
4 E D o
2 1 0
Lol
c
Fig. 8.89
By partial-fraction expansion,
Vis) = Ky , K

+
s+2 s+l—-j1 s+1+ /1

The coefficients K, K, and K; can be evaluated from the pole-zero diagram.
From Fig. 8.90,

3(04) 2/180° e
K=—"l =3 =34/180° = -3
U BA(CA) | (N2£-135°) (+2£1357)
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jo
-1

r?1 80° i

—fx w

|

\
N
|
I
N
-
©
a
8

X -1 -1
(o}

Fig. 8.90
From Fig. 8.91,

3(OB) _3[ (21359 }:g
2

L= =)
(AB)(CB) | (N2£45°) (2.£90°)
. 3
Kz = E
jo
B
______ [ 1
2 x 5 /
A A 450 T‘k 135°
5 N .
-2 -1 0
90°
X Aeeet 1
C
Fig. 8.91
3 3
Vis)=-—— 2 _ 2

- +
(s+2) (s+1-j1) (s+1+,1)
Taking inverse Laplace transform,

) 3r (e —1—int ] _ 3 _ ej1+e_j1
wit)=-3e ‘t+ELe‘ Dy o ]')th—Se 2t-i—2><Ee t(—

> ] =3¢ +3¢ 7 cost

|| SETNI W Find the function v(t) using the pole-zero plot of following function:

_ (5+2)(5+6)
s+ 1)(s+5)

Solution If the degree of the numerator is greater or equal to the degree of the denominator, we have to
divide the numerator by the denominator such that the remainder can be expanded into partial fractions.

V(s)
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2
s +8S+12=1+ 2s+7 14 2(s+3.5)

Vis)=— 3 =
sT+65+5 ST +65+5 (s+D(s+5)
By partial fraction expansion,
K K
Vis)=1+—L 4 =1
s+1 s+5

K, and K, can be evaluated from the pole-zero diagram shown in Fig. 8.92 and Fig. 8.93.

jo Jo
s o o
- 5 0 - 0
-5 -83.5 -1 -5 -85 -1
Fig. 8.92 Fig. 8.93
From Fig. 8.92
K =2 2.520°)_5
4.20° 4
From Fig. 8.93
.5/180°
K, o 152180°) 3
4,180° 4
53
4 4

Vis) =1+ —+——
) s+1 s+5

Taking inverse Laplace transform,

v(t)=5(t)+§e_t+%e_5t

|| Example W The pole-zero plot of the driving-point impedance of a network is shown in
Fig. 8.94. Find the time-domain response.

jo
X7 /1 Scale factor=5
S -
1! 0
X oo L
Fig. 8.94

Solution  The function Z(s) has poles at s =—1 + 1 and s = —1 —j1 and zero at s = 0.
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8.47

Z(s)=H a
(s+14+ jD(s+1- 1)
Scale factor H=5 jo
A=
(s+1+D(s+1- /1) PRva— it
By partial fraction expansion, i \
* ; q o
Z(s)= LS| q 0
s+1+j1 s+1-j1 :
: j
The coefficients Kj and K; can be evaluated from the pole-zero B
diagram. From Fig. 8.95, Fig. 8.95
K= > (EA) _3 (\64135 ) _ 3.54.245°
(BA) 2./90°
K| =3.54£-45°
3.54£45° 3.54/£-45°
Z(s)=
s+1+ 1 s+1-/1
Taking inverse Laplace transform,
2(f) = 3.54 £ 45° &1V 4 3,54 £—45% 14D
. . 4s
|| SETII NI Evaluate amplitude and phase of the network function F(s)= ﬁ from the
ST+ s+

pole-zero plot at s =j2.
4s _ 4s
sT 2542 (s+l+jD(s+1=j1)

Solution F(s)=

The pole-zero plot is shown in Fig. 8.96.

Ats =2,

jo
o J2

X"/

L -

11 Yo
X 4 -
Fig. 8.96
Product of phasor magnitudes from all zero to j2 2

| F(j2)|=

= =0.447
Product of phasor magnitudes from all poles to ;2 (\/5) (\/ﬁ )
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41
—tan” | - |=90°—71.56°—-45°=-26.56°

o(w) = tan”" (6] —tan™' ( .

|| SETII TSR Using the pole-zero plot, find magnitude and phase of the function
F(s)= (sH)(s+3) at s = ja.
+2)

s{s
. s+1)(s+
Solution F(s)= (s+1)(s+3)
s{s+2)
The pole-zero plot is shown in Fig. 8.97.
Ats=j4,
jo
A4
Soas o
-3 -2 -1
Fig. 8.97
Ia G 4)| _ Product of phasor magnitudes from all zeros to j4  (5) (\/ﬁ )
J product of phasor magnitudes from all poles to j4  (1/20) (4)
¢(w) = tan”' (—) +tan”' (—J — tan' (—J —tan”' (i) =75.96°+53.13°—90° — 63.43° = —24.34°

|| Example CWEN  Plot amplitude and phase response for
Fs)= —>

s+ 10

Solution
. Jjo
F(jw)=
/o) jo+10

(0]
|F(jo) = —
Vo? +100
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@ |F(ja))| Fie)
0 0
1 e — -
10 0.707
100 0.995 o7 T
1000 1
The amplitude response is shown in Fig. 8.98. 0 10 100 1000
Fig. 8.98
o w) = tan™' (9) —tan™" (2) =90° —tan™"' (2)
0 10 10
¢ (@)
o | ¢(a)
0 90° 90° 7
10 45°
100 | 5.7° 48° T
1000 0° I I & w
The phase response is shown in Fig. 8.99. 10 100~ 1000
Fig. 8.99

1
|| DETN RN Sketch amplitude and phase response for F(s) = S Ig
o—

Solution
Flje)

_jo+10
jo—10

2 1
Vo +100
|F( foo)l = ~—=
Vo’ +100 »

For all @, magnitude is unity.
The amplitude response is shown in Fig. 8.100. Fig. 8.100

R O VRS O -1 @
¢(w) = tan (10) tan ( 10) 2 tan (10]

The phase response is shown in Fig. 8.101.

F(jw)

/(@)
0 0°
10 90°
T T T [
100 168.6° ol 10 100 1000
1000 178.9° Fig. 8.101
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EXGI’CISGS
_ o o " I, 2H 1H =0
8.1 Determine the driving-point impedance 7 1 3 00 00 2 2
1
. V; 1 1
transfer impedance 1—2 and voltage transfer Vi ——2F ——2F Va
1
Vs - 1o o2
ratio — for the network shown in Fig. 8.102.
1
Fig. 8.104
I, 5Q 20 =0
o ) 1 1
* * [Zzl =— Gy = ﬁ}
25" +3s 4s™+7s” +1
v, 2H —1F A .
8.4 For the two-port network shown in Fig. 8.105,
— - determine Z,, Z,, and voltage transfer ratio
[e; O G (S)
Fig. 8.102 20
l,  2H 20
2 o 000 )
Vi IS+ Ts+5 Vy 25 + +
Lo s2+s+1 L st v, —1F 1H v
Va_ L}
Vo 7s*+7s+5 ° °
Fig. 8.105
8.2 For the network shown in Fig. 8.103, 3 5
25" +4s” +3s+2 K
determine 2 and 2. Zy = > 2y == ,
" I, sT+2s+1 sT+2s+1
2H G =———— :|
Iy — 00— =0 25° +45% +35+2
1
o 1
+ |2| F ¥ 8.5 Draw the pole-zero diagram of the following
; I ] network functions:
2 ——5F —5F V, . E
D) Fls)=—F
= = s*+6s+4
o o
i . ) 55—-12
Fig. 8.103 (i) F(s)=— S
s +4s+13
Vo s+l ¥y 25742 1
- = e s+
o2’ +1 L s(3s*+2 (i) F(s)= ———
¢ ) (s*+2s+2)°
8.3 Find the open-circuit transfer impedance Z 2
o . 21 . s{(s°+5)
and open-circuit voltage ratio G,, for the (iv) F(s)=—F—F5—
st 4257 +1

ladder network shown in Fig. 8.104.



2
sT+s+2
V) F(s8)=————7F—
™) F st +557 4657
2
. -5
Vi) Fs)=———
§7 28" —5=2
2
+3s+2
(vii) F(s)z%
s +3s

(s> +4)(s+1)
(s> +1)(s* +25+5)

(viii) F(s)=

8.6 For the network shown in Fig. 8.106, draw
the pole-zero plot of the impedance function

Z(5).
2H
o—TH0
Z(s) —> — 21—0 F 4Q
O
Fig. 8.106
Zs) = [(s+ 2.5— j1.94)(s+ 2.5+ jl .94)]
s+5

8.7 For the network shown in Fig. 8.107, draw
the pole-zero plot of driving-point impedance

function Z(s).
5Q 10Q
o
Z(s) —> ——10F —__5F
O
Fig.8.107
Z(s)= 5(s+0.01)(s+0.04)
s{s+0.03)

8.8 Find the driving-point impedance of the
network shown in Fig. 8.108. Also, find poles
and zeros.

Exercises 8.51
1F 2F
|| ||
o ] 1
Z(8)—> 1H 1H
o

Fig. 8.108

_ 15s(s°+0.33)
(s> +1.707)(s* +0.293)

Z(s)

8.9 Find network functions ﬁandﬁ for the
1 1

network shown in Fig. 8.109 and plot poles

and zeros of Va(s) .
Ni(s)
L o1Q 2H
o oo
d
+
72 T1F TT1F R <Z1Q
c
Fig. 8.109
Vy 1 M 2s’ +257 +25+1)
Vi 2AsP+25%+2s+1) L1 257 +25% +25+1
8.10 For the network shown in Fig. 8.110,
determine ?and % Plot the poles and
1 1
1%
zeros of —= .
1
I, 1H 2H
o 00
+ +

e

4 1
72 —A1F T?Fj

Fig. 8.110

vi_o2st+sse2 1, 2
1 25° +3s ’]1 25% +3s



8.52  Circuit Theory and Networks—Analysis and Synthesis

8.11 ForthenetworkshowninFig.8.111, determine

14 £ V-
“Land - . Plot the pole and zeros for —.
! 1 1
. 1| ||: 2| ||:
< I I T+
72 1H 1H V,
| [
Fig. 8.111

ho_st+357 41
I 257 +s

8.12 For the network shown in Fig. 8.112, plot the

poles and zeros of transfer impedance function.

I, 1H 1H
T+

o 7000
$

10 Y
o —l:

Fig. 8.112
o1
[1 s+2

Forthe network shown in Fig. 8.113, determine

14 V;
~Land - Plot the poles and zeros of transfer
1 1

impedance function.

8.13

I, 2H 4 H

o 00 W\I .

+ 1

v, —2F _r F v,

: 1

Fig. 8.113

o_l6s'+10s2+1 1, 1
I 8s> +3s ’[1 85> +3s

&_;]
i 16s* +10s% +1

8.14 Obtain the impedance function for which the
pole-zero diagram is shown in Fig. 8.114.

jo
=1
é_\ Z(jo) =1
S H
b
Fig. 8.114
2(s+1
-7 ]
sT+2s+2

8.15 For the network shown in Fig. 8.115, poles
and zeros of driving point function Z(s)
are,

Poles: (-1 + j4); zero: -2
If Z (jO) = 1, find the values of R, L and C.

Ls

Fig. 8.115
[1 Q,05H,2 F}
17

8.16 For the two-port network shown in Fig. 8.116,

find R}, R, and C. Qz#
N s +3s+2

1H R
o I N
+ 1
v, —C Ry,
| [
Fig. 8.116

5



8.17 For the given network function, draw the
pole-zero diagram and hence obtain the time
domain voltage.

Pisy=_S6+5)
(s+2)(s+7)

[W(t)=3e 2 +2e77]

Objecﬁve-Type Questions

Objective-Type Questions 8.53
8.18 A transfer function is given by
Y(s) 105 Find time-

T 515+ /15)(s+5-/15)
domain response using graphical method.

[526 £18.4° G197 4526 £ —18.4° 1) |

8.1 Ofthe four networks N, N,, N, and N, of Fig.
8.117, the networks having identical driving-
point functions are
(a) N,and N, (b) N,and N,

(c) N, and N, (d) N,and N,
2H 10

2Q |1||:
110

2H

2Q

Fig. 8.117

8.2 The driving-point impedance Z(s) of a
network has the pole-zero locations as shown
in Fig. 8.118. If Z(0) = 3, then Z(s) is

jw
X==-1j1
D i o
3 -1 |0
Xooot— 1
Fig. 8.118
3(s+3) 2(s+3
@ 5 5. w)ii__L
s+ 2s+3 ST +25+2
3(s—3) 2(s-3)
c) ——— d) ———
© st —2s-2 @ s*—2s-3

8.3 For the circuit shown in Fig. 8.119, the initial
conditions are zero. Its transfer function

H(sy="00) i
Vi(s)
10 kQ 10 mH

—AA—TI————0

+ +

vi(t) 100 uF v,

o °

Fig. 8.119
1 10°

()

2 +10%s+10° ) $2+10°s+10°
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8.4

85

8.6

10°
s2+10%s+10°

10°
s2+10°s+10°

(© (d)
In Fig. 8.120, assume that all the capacitors
are initially uncharged. If v(#) = 10 u(¢), then
v,(?) s given by

8.7 A network has response with time as shown

in Fig. 8.122. Which one of the following
diagrams represents the location of the poles
of this network?

X (1)

L

1kQ
~—AAA—
t
Ty 3 IRy \
vi(t) M ka 1T0F () T\
_ ~ Fig. 8.122
O O ja) i
Fig. 8.120 !
X b X X
(a) 8 e 00041 (b) 8 (1—e 00041 (a) y o> ¢ (b) o > °
(c) 8 u(r) (d)8
A system is represented by the transfer jo jo
. 10 . . X
function —————. The dc gain of this
system is (D +2) © —c° @ o, ¢
(@)1 (b) 2 Fig. 8.123
(©)5 (d) 10 8.8 The transfer function of a low-pass RC
network is
. . . . V24
Which one of the following is the ratio — 1
£ Vis (@) (RCH) (1 +RCH) (b)) T
of the network shown in Fig. 8.121. TRES
RCs s
c d
1Q © 1+ RCs @ 1+ RCs
o oz 8.9 The driving-point admittance function of the
network shown in Fig. 8.124 has a
10 1Q o
30 0 4 R L —C
1Q
Fig. 8.121 o
(@ 3 (b =~
3 3 (a) pole at s =0 and zero at s = oo
(b) pole at s =0 and pole at s = oo
() 3 @ 4 (¢) pole at s =o0 and zero at s =0
4 3 (d) pole at s = oo and zero at s = oo



Answers to Objective-Type Questions 8.55

I»(s) $2

8.10 The transfer function Y;,(s) =—— for the a b)
Ni(s) @ S +s+1 ®) s+1
network shown in Fig. 8.125 is
1 s+1
() — (d =
10 In(s) s+1 s +1
© 8.11 As the poles of a network shift away from
the x axis, the response
Vi(s) g1 H —1F (a) remains constant
(b) becomes less oscillating
° (c) becomes more oscillating
Fig. 8.125 (d) none of these

Answers to Objective-Type Questions

8.1. (c) 8.2. (b) 8.3. (d) 8.4. (c) 8.5. (c) 8.6. (a) 8.7. (d)
8.8. (b) 8.9. (a) 8.10. (@  8.11. (c)






Two-Port Networks

IEEM| nTRODUCTION

A two-port network has two pairs of terminals, one pair at the

input known as input port and one pair at the output known I, I

as output port as shown in Fig. 9.1. There are four variables §— > | — <32
V., V,, I, and I, associated with a two-port network. Two v, Two-port network V,
of these variables can be expressed in terms of the other 5 | I
two variables. Thus, there will be two dependent variables

and two independent variables. The number of possible Fig. 9.1 Two-port network

combinations generated by four variables taken two at a
time is *C,, i.e., six. There are six possible sets of equations describing a two-port network.

Table 9.1 Two-port parameters

Parameter Variables Equation
Express In terms of

Open-Circuit Impedance ViV, 1,1, Vi=Z,1,+Z,1,
=21 +2,1,

Short-Circuit Admittance I 1L, V.V, L=Y,V,+Y,V,
L=Y, Vi+Y,V,

Transmission Ve I V. 1, V,=AV,-BI,
I,=CV,- DI,

Inverse Transmission Vi 11 Vi 1, Vy,=AV,— Bl
L=C'V-D'[

Hybrid Vi 1 1,7V, Vi=h, I, +h,V,
L=hy I, +hy,V,

Inverse Hybrid I 17 Vi, 1, L=g,V,tg,1,
V=g, Vi +e&nl,
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IEEM| oPEN-CIRCUIT IMPEDANCE PARAMETERS (Z PARAMETERS)

The Z parameters of a two-port network may be defined by expressing two-port voltages ¥, and ¥, in terms
of two-port currents /, and /,.

", )= f,12)
M=z h+Zp I,
Vy=Zynh+Zypl,

iz 2
] [Za Zn ||
[V1=[2]l1]
The individual Z parameters for a given network can be defined by setting each of the port currents equal

to zero.
Case I When the output port is open-circuited, i.e., 7, = 0

In matrix form, we can write

211:7
1

1,=0
where Z,, is the driving-point impedance with the output port open-circuited. It is also called open-circuit
input impedance.

Similarly,

V.
Zy=-2
1

L=0
where Z,, is the transfer impedance with the output port open-circuited. It is also called open-circuit forward
transfer impedance.
Case 2 When input port is open-circuited, i.e., /, =0
"
Zp=—
2

L=0
where Z , is the transfer impedance with the input port open-circuited. It is also called open-circuit reverse
transfer impedance.

Similarly,

L=0
where Z,, is the open-circuit driving-point impedance
with the input port open-circuited. It is also called open
circuit output impedance.

As these impedance parameters are measured with
either the input or output port open-circuited, these are
called open-circuit impedance parameters.

The equivalent circuit of the two-port network in  Fig. 9.2 Equivalent circuit of the two-port

terms of Z parameters is shown in Fig. 9.2. network in terms of Z parameter
9.2.1 Condition for Reciprocity Iy I

A network is said to be reciprocal if the ratio of excitation v, Network Iy
at one port to response at the other port is same if excitation

and response are interchanged.
(a) As shown in Fig. 9.3, voltage V is applied at the ~ Fig. 9.3 Network for deriving condition
input port with the output port short-circuited. for reciprocity
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i.e., Vl — VS
V2 =0
L=-1I

From the Z-parameter equations,
Vei=Zuh-Zp I’
0=2Zy1L-Zn I,y
V4
L=22r
Zy

Zyn ., ,
Vi=Zu——0L'—-Z I,
Zy

Vs _ZnZn—2n 2y

L’ Zy
(b) As shown in Fig. 9.4, voltage V, is applied at the h I
output port with input port short-circuited.
ie., Vy =V, h Network A
=0
I] = - I] i’

) Fig. 9.4 Network for deriving condition for
From the Z-parameter equations, reciprocity

OZ—ZH ]1/+le 12
Vi==Zn1L'+Zn I,
V4
L=y
VAP
Zy

Vi ==Znl'+Zn I’
12

Vs _ ZuZn — 212y

I’ Zip
Hence, for the network to be reciprocal,
Ve _ Vs
L' L
ie., Zip =2y

9.2.2 Condition for Symmetry

For a network to be symmetrical, the voltage-to-current ratio at one port should be the same as the voltage-

to-current ratio at the other port with one of the ports open-circuited.
(a) When the output port is open-circuited, i.e., [, =0
From the Z-parameter equation,

Ve=2Zn 6
V.

= =7y
I

(b) When the input port is open-circuited, i.e., /, =0
From the Z-parameter equation,

Vi=Zn I,
Vs

Loy

A 2

Hence, for the network to be symmetrical,
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i_V
L I
ie., Zy=2Zy

” SETII RN Test results for a two-port network are (a) I, =01 Z£0°4, V, =52 L50°V,
V,=4.1 225 °Vwith Port 2 open-circuited (b) 1,=0.1 Z0°A4,V,=3.12=80°V,V,=4.2 £60°V, with Port 1
open-circuited. Find Z parameters.

Solution
2450° 1£-80°
z =0 222205 sspeq, PN U Y Ty
L, ., 0.1£0° I ;o 0.1£0°
4.1£-25° 4.2./60°
=2 AT s I =12 2200 e
Il 0.1£0° L, 0.1£0°
Hence, the Z-parameters are
Zyy Zyp | |524£50° 31£-80°
Zon Zp | |41£-25° 42260°
” SETII W Find the Z parameters for the network shown in Fig. 9.5.
| Z Z3 .
! [ [ 2
(e, > O
g L L °
Vi [] 2 Vo
° °
Fig. 9.5
Solution
First Method

Case I When the output port is open-circuited, i.e., 7, = 0.
Applying KVL to Mesh 1,

h=(Z+2,) 1
Z) = ﬁ =Z1+2,
L=0
Also a=2, 1
Zy = ) =2,
=0
Case 2 When the input port is open-circuited, i.e., /, = 0.
Applying KVL to Mesh 2,
h=(Z2+7Z3) I
Zy = £ =Z,t7Z3
I L=0
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Also =2, 1,
le=ﬁ =2,
I =0

Hence, the Z-parameters are
l:le ZIZ:|:|:ZI+ZZ 4) :I
Zy Iy Z, Zr+ 73

Second Method
The network is redrawn as shown in Fig. 9.6.
Applying KVL to Mesh 1,

W=2h+2Z(L +1) z Z

:(ZI+ZZ)]1+ZZIZ (l)

Applying KVL to Mesh 2,

4
] ]
L L
V2 =Z3[2+Zz(11+12) Vi /:> [} Z C Vo
1 I2

=71 +(Zz +Z3)12 (11)

o]

Comparing Eqs (i) and (ii) with Z-parameter
equations, Fig. 9.6

[le le]=|:21+22 43 :|
Zn Zn Z, It Z

” Example I  Find Z-parameter for the network shown in Fig. 9.7.

L 1Q 2Q TH
o 700 —=<—0
+ +
2 ——2F 10 Vo
o o
Fig. 9.7
Solution The transformed network is shown in Fig. 9.8.
Z] = 1 ””””””””””
1 2 s
1 o AAN—TOT—0
o + :
s Z,
ZZ = = 1 N l Z3
Ly 25+l Y —2 <liz Vo
2s _ _
Z3 =5+2 o o
From definition of Z-parameters, Fig. 9.8
1 25+2 " 1
lezE =ZI+ZZ=1+ = 5 5 Z]2=fl =
L =0 2s+1  2s+1 I =0 2s+1
V. 1 V. 25 +55+3
Zz]zf2 =—, Z22=72 =Zz+Z3= +s+2= 5 s
Ilp—o 2s+1 Ir|;20 25+1
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” SCIICKRN  Find Z-parameters for the network shown in Fig. 9.9.

Iy 10 10Q I

O > O

+ +

72 20 20 Vo

o o
Fig. 9.9

Solution The network is redrawn as shown in Fig. 9.10.
Applying KVL to Mesh 1,

1/1:311—213 (1)
Applying KVL to Mesh 2,

+ O

V2=2[2+213 (11)

Applying KVL to Mesh 3,
v, 20
=20 +21, +51;=0 I I3

2 2

ol

L==L-=1I ...(ii
3=EShmgh (iii)
Substituting Eq. (iii) in Eq. (1),
4 4
V=3 ——=L+-=1
1 1mshth

11 4
- L+2
517572

Substituting Eq. (iii) in Eq. (ii),
4 4
Vy=2L+=—1,—=1I
2 A

4 6
“2n+2
517502

Comparing Eqgs (iv) and (v) with Z-parameter equations,
11
[le Zi; ] _
Zyn Iy

” SETII RN Find the Z-parameters for the network shown in Fig. 9.11.

Loo1Q 10 A

WA~ »
[V ER RV RN

+ O
+ O

ol
o

Fig. 9.11

.(iv)

..(v)
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Solution  The transformed network is shown in Fig. 9.12.
Applying KVL to Mesh 1, 1 1

VIZ(S+1)[1—SI3 (1)

+ 0

Applying KVL to Mesh 2,
Vy, =sl, + sl (11) v, :> %S :> %S C: Vo
Applying KVL to Mesh 3, h ls Iy

—S11+S12+(2S+1)13:O O O
Fig. 9.12
L=——1--"1p
2s+1 2s+1 (iif)
Substituting Eq. (iii) in Eq. (1),
s s
Vi=(s+)I—s| —— 1 ———1
1=(s+Di (2s+1 Y25+l 2)
2 2
s“+3s+1 K
= I+ 1 ...(v
( 2s5+1 J ‘ [2s+1) ? )
Substituting Eq. (iii) in Eq. (ii),
s s
Vy=sl, +s| — L ——1I
2o (2s+1 ' 25+l 2)
2 2
s ST+
=|—|L+|—|] (v
2s+1] ‘ (2s+1) ? )
Comparing Eqs (iv) and (v) with Z-parameter equations,
Fsz +3s5+1 s
|:le le]: 2s5+1 2s5+1
Zy Iy s S+
L2s+1 2s+1
” SETII RN Find the open-circuit impedance parameters for the network shown in Fig. 9.13. De-

termine whether the network is symmetrical and reciprocal.

4Q
L 1Q 30 I
o—>— <0
+ +
v 2Q V2
o o

Fig. 9.13
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Solution  The network is redrawn as shown in Fig. 9.14.
Applying KVL to Mesh 1,

N-1L-5L)-2(L1+1,)=0

4Q

V1=311+212—[3 (1)
Applying KVL to Mesh 2, :>
Vy=3(L+1;)—-2(1, +1,)=0 10 b 30
Vy=2L+5L,+3  ..(i) 1 :
Applying KVL to Mesh 3,
pplying 0 Mes v, 0 v,
—413—3(]2+13)—1(]3—I])=0 Iy I
1, -3, +813=0 o o
Iy = Ly —élz ....(iii) Fig. 9.14
8 8
Substituting Eq. (iii) in Eq. (1),
1 3
N=3nh+2L—-|-L-=I
1 1 2 (8 173 2)
23 19 .
=—hL+—1 (v
g 1tgh (iv)
Substituting Eq. (iii) in Eq. (ii),
1 3
Vy=20L+50L+3[ -1 —-=1I
2 1 2 (8 173 2)
19 31
=—NL+—1I (v
g gl v)
Comparing Eqgs (iv) and (v) with Z-parameter equations,
3 19
Zn Zin|_[8 8
Zn Zn 19 31
8 8
Since Z,, # Z,,, the network is not symmetrical.
Since Z, = Z,, the network is reciprocal.

IEEN| sHORT-CIRCUIT ADMITTANCE PARAMETERS (Y PARAMETERS)

The Y parameters of a two-port network may be defined by expressing the two-port currents /, and /, in terms

of the two-port voltages ¥, and V.
(I, 12) = f(N,V2)
L=Yuh+¥a ",
L=+l

[11]: i N [V1:|
I, i Yol 0:

[]1=[Y]lV]

In matrix form, we can write
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The individual Y parameters for a given network can be defined by setting each of the port voltages equal to
Zero.
Case I When the output port is short-circuited, i.e., ¥, =0

where Y, is the driving-point admittance with the output port short-circuited. It is also called short-circuit
input admittance.
Similarly,
= 1172
Ly,=0
where Y, is the transfer admittance with the output port short-circuited. It is also called short-circuit forward
transfer admittance.
Case 2 When the input port is short-circuited, i.e., ¥, =0

where Y, is the transfer admittance with the input port short-circuited. It is also called short-circuit reverse
transfer admittance.
Similarly,

where Y, is the short-circuit driving-point admittance with the input port short-circuited. It is also called the
short circuit output admittance.

As these admittance parameters are measured with either input or output port short-circuited, these are
called short-circuit admittance parameters.

The equivalent circuit of the two-port network in terms of Y parameters is shown in Fig. 9.15.

Fig. 9.15 Equivalent circuit of the two-port network in terms of Y-parameters

9.3.1 Condition for Reciprocity
(a) As shown in Fig. 9.16, voltage V. is applied at input port with the output port short-circuited.

ie, =V
V, =0 /4 Iy
I, =-1;
From the Y-parameter equation, Vs Network ly
Iy =Yy V;
I _ Yy, Fig. 9.16 Network for deriving condition for

V, reciprocity
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(b) Asshown in Fig. 9.17, voltage V, is applied at output port with the input port short-circuited.

1.c, V2 = VS‘
=0 .
L=-1I ! 2
From the Y-parameter equation, L
1 Network Vs
I =Y, V;
Il _y
Vs 2 Fig. 9.17 Network for deriving condition for

Hence, for the network to be reciprocal,

reciprocity
L_1
Vs Vs
ie, Y ="y

9.3.2 Condition for Symmetry

(a) When the output port is short-circuited, i.e., V, = 0.
From the Y-parameter equation,

L=V
i_ 1
Iy Y

(b) When the input port is short-circuited, i.e., V', = 0.
From the Y-parameter equation,

L=YnV;

n_1

L Yy
Hence, for the network to be symmetrical,

Vi _ Vs

L I
ie., hi=Y»

” SETIIENA  Test results for a two-port network are

(a) Port 2 short-circuited: V; =50 L0°V,1;=2.1£-30°4,1,=-1.1£-20°4

(b) Port I short-circuited: V, =50 L0°V, 1, =3 £L—15°4,1;=—1.1 Z—20°A.
Find Y-parameters.

Solution

Y“:L‘ =M=0,0424_3006, lezi =M=—0.0224—20°U
Mily—o 50£0° Valyzo 50£0°
1 -1.1£-20° 1 £Z-15°

Yy =2 =70=—0.0224—20° 0, Yo =2 _3Lo1 0.06£-15°0
Mo 50.£0° Valyog  50£0°

Hence, the Y-parameters are

Yii Yo | | 0.042£-30° -0.022£-20°
Yy Y| [-0.022£-20° 0.06£-15°
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” Example CRW  Find Y-parameters for the network shown in Fig. 9.18.

®

o1 3Q A
o—> . <0
+ +
2 2Q V2
o o
Fig. 9.18
Solution
First Method
Case I When the output port is short-circuited, i.e., ¥, = 0 as shown in Fig. 9.19,
2x3 6 11
=l+—=1+-=—Q
Rea 2+3 55
11 14 1Q 3Q I
Now, Vi=—1, o>
5 +
I 5
hi=-H == v, 20
Ao 11
2 2.5 2 -
Also, h=gth=-pah=—ph °
; 5 Fig. 9.19
=2 =-=0
Mily=o 11
Case 2 When the input port is short-circuited, i.e., ¥, = 0 as shown in Fig. 9.20,
1x2 2 11
Req =3+ =3 3 39 Loo1Q 30 b
O
Now Vz = % 12 '
V.
I 3 2Q 2
Yy =— -
Valpo 11 _
O
2 2 3 2 .
Also L ==(-)=-=x=V- v Fig. 9.20
1=3 (=12) PRTIE e
o = I -2
Valy—o 11
Hence, the Y-parameters are
3 2
i Mo|_| 11 11
Y Y 23
11 11
Second Method (Refer Fig. 9.18)
, Vihs
1
=iV

...
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a-r
L=
T3
_nh h
3 3
Applying KCL at Node 3,
V3
L+ ==
1th=-
Substituting Eqgs (i) and (ii) in Eq. (iii),
oyl N
3 3 2
nel2 =1y,
3
6 2
V3 n+—=r.
TR T
Substituting Eq. (iv) in Eq. (i),
6 2
L=Wh-—W-—V
=Nenh
5 2
=W-=V
TN T
Substituting Eq. (iv) in Eq. (ii),
V, 1(6 2
L=2——| 2N+2V
273 3(11 T 2)
2 3
=——N+—=V
TISRETRE
Comparing Eqgs (v) and (vi) with Y-parameter equations,
> 2
i Mo|_| 11 11
Yy Y 2 3
11 11

” SETOTI RN Find Y-parameters of the network shown in Fig. 9.21.

20 Vs 20 b
O . g O
+ +
1Q
Vi Vo
3V,
o o
Fig. 9.21
Solution From Fig. 9.21,
I = n-n
2
1 1
=-N--h

..(iD)

...(iii)

(iv)

..(v)

..(vi)

...
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-V
=22
2T
1 1 .
==V, ==V (1
725 bs (i)
Applying KCL at Node 3,
L+, +3V,=0 ...(1i1)
Substituting Eqs (i) and (ii) in Eq. (iii),
Wh By
2 2
2V =V +7V,
£ —lV +zV >iv)
3=

Substituting Eq. (iv) in Eq. (i),

27222
1 7
=—WN--V Y
rcarié v)
Substituting Eq. (iv) in Eq. (ii),
1 1(1 7
I, ==, V+=7;
=57 (2 (S 2)
1 5
=V, -2V (vi
447 (vi)
Comparing Eqs (v) and (vi) with Y-parameter equations,
7
Yin ha|_| 4 4
1 Yo 15
4

” SETIIEBON  Derermine Y-parameters for the network shown in Fig. 9.22. Determine whether the

network is symmetrical and reciprocal.

, 1o () 20 2 Iy

o . ° o
¥ ¥
v, 20 40 A
o o
Fig. 9.22
Solution  From Fig. 9.22,
I = h-r
1
=Nn-n Q)
Applying KCL at Node 3,
LV
2
=7 B ...(ii)
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Applying KCL at Node 2,
Lot ol
4 2
3 V3
=—V,-—= L. (11
27275 (iii)
Substituting Eq. (i) in Eq. (ii),
|2
Nn-vs=vs——
e
n " .
Vi=—+— . (v
=5+ (iv)
Substituting Eq. (iv) in Eq. (ii),
Ll h
2 4 2
nhn (V)
2 4
Substituting Eq. (iv) in Eq. (iii),
1
o3y L(hn
4 202 4
__hoh .(v)
4 8
Comparing Eqgs (v) and (vi) with Y-parameter equations,
L
h Nao|_| 2 4
Yoy Y] | 1 5
4 8
Since Y|, # Y,,, the network is not symmetrical.
Since Y, = Y,,, the network is reciprocal.

” Example CREN  Determine the short-circuit admittance parameters for the network shown in Fig. 9.23.

,o1Q 1Q I

O > ~< O

+ +

Vi “1F ——1F Vy

o 0
Fig. 9.23

Solution  The transformed network is shown in Fig. 9.24.
From Fig. 9.24,

h-n

1

=V -1 (1)

I =
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Applying KCL at Node 3,

[l=§+(V3—V2)
1 1
s
=(s+D) V-1,
Applying KCL at Node 2,
N h-h)
]2— 1 + 1
s
:(S+1)V2—V3

Substituting Eq. (i) in Eq. (ii),
N=-r=(+)-r,
s+2) =N+,

1 1
N+—=n

V3=
s+2 s+2

Substituting Eq. (iv) in Eq. (ii),

1 1
L=(s+1) N+——n -1
s+2 s+2

s+l 1

NW——>-=-"0,
s+2 s+2
Substituting Eq. (iv) in Eq. (iii),
1 1
I, =(S+1)V2—( "+ Vz)
s+2 s+2
1 5% +3s+1
== 1t 2

s+2 s+2
Comparing Eqs (v) and (vi) with Y-parameter equations,

s+1 1

Yip Yo |_| s+2 )
i 1 s2+3s5+1
s+2 s+2

” SETII MW Determine Y-parameters for the network shown in Fig. 9.25.

1 1
I 2" 2" I

o Il Il o

< L L It

72 1H 1H Vy

o o

9.15

..(ii)

...(iii)

...(1Iv)

...(v)

...(vi)
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Solution The transformed network is shown in Fig. 9.26.

From Fig. 9.26 2 2
> l 3 @ B @ 2

ViV s s
I = ! 2 3 $—>—{ +
; v, s s Vs

s s

=—WN-=V ) - -
S ) :

Applying KCL at Node 3, Fig. 9.26

s V; s
S-ry=2+ S0y
2(1 3) . 2(3 2)

K 1 K K s
A R A
27 s T

s s

= 3 V1+ > Vz
A +1) | 2P+

Substituting Eq. (ii) in Eq. (i),

2 2
L= RS Vit
20 2{ 22+ 2(sP+D)

s3
y
{2 4(s +1)} T

S +2s s

...(ii)

= i- V2 ...(iii)

4(s* +1) 4(s* +1)
Applying KCL at Node 2,
=242 0

sz+2

= v, -2y, (iv)

2s 2
Substituting Eq. (ii) in Eq. (iv),

2 2 2
s°+2 s K s

I, = V,—— 2 "+ 2 V)
2s 2| 2(s” +1) 2(s”+1)

3 2 3
__ i Vit sT+2 i A
4(s°+1) 25 4(s°+1)
s st 4657 +4
T2 it 2
4(s*+1) 4s(s”+1)
Comparing Eqgs (iii) and (v) with Y-parameter equation,

S +2s 3 s
[YH le]_ 4(s> +1) 4(s*> +1)
Yoo Ya s st + 657 +4

T4 A1) 4s(sP+D)

...(v)
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” Example CREN  Obtain Y-parameters of the network shown in Fig. 9.27.

1
| LS
|

I1® 1 @ 1 @ Iy

O—>—@ L 2 O

+ +

Vi 1; Vo

o o
Fig. 9.27

Solution
Applying KCL at Node 1,

]lel—V3+V1—V2
1 1
s
=(s+)N-sh -V (D)
Applying KCL at Node 2,
LV el
rI
s
=(s+)V—sV -1, ...(i0)
Applying KCL at Node 3,
BBl Bl

1 1
S

(s+2)Vs =N =V,=0

1
N+

‘V3=
s+2 s+2

173 ...(iii)
Substituting Eq. (iii) in Eq. (i),
1 1
L=(@+)h-sh-| —h+—W
s+2 s+2

:[@+D@+2%%}K_[ds+@+1}§
(s+2) (s+2)

_ s2+3s+1 Vi 2 +2s5+1 v, (i)
s+2 s+2
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Substituting Eq. (iii) in Eq. (ii),

1 1
L=E+)Vy,—sV— "+ V,
s+2 s+2

_ _|:s(s+2)+1:|Vl +[(s+1)(s+2)—1]V2

(s+2) (s+2)
2 2
__|s +2s+1 Vit s”+3s+1 v, W)
s+2 s+2
Comparing Eqs (iv) and (v) with Y-parameter equations,
5P +3s+1 _(s2+2s+1)
|:Y11 1 ] _ s+2 s+2
y In _(s2+2s+1) s*+3s+1
s+2 s+2

IEXB| TRANSMISSION PARAMETERS (ABCD PARAMETERS)

The transmission parameters or chain parameters or ABCD parameters serve to relate the voltage and current
at the input port to voltage and current at the output port. In equation form,

L) = f(V2,-12)

Vi =AV,—-BI,

1,=CV,-DI,
Here, the negative sign is used with /, and not for parameters B and D. The reason the current /, carries a
negative sign is that in transmission field, the output current is assumed to be coming out of the output port

instead of going into the port.
In matrix form, we can write
i (4 Bil "
e 2]

. |A BY|. .. .
where matrix D is called transmission matrix.

C
For a given network, these parameters are determined as follows:

Case I When the output port is open-circuited, i.e., I, =0

4=l
V 1,=0
where 4 is the reverse voltage gain with the output port open-circuited.
- I
Similarly, c=-L
£ 5L=0

where C is the transfer admittance with the output port open-circuited.
Case 2 When output port is short-circuited, i.e., V, =0

Vi
B=--
I V>=0
where B is the transfer impedance with the output port short-circuited.
- I
Similarly, D=--L
1 V,=0

where D is the reverse current gain with the output port short-circuited.
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9.4.1 Condition for Reciprocity

(a) Asshown in Fig. 9.28, voltage V' is applied at the input port with the output port short-circuited.
ie., _

V=V, :

I2
V,=0
I, =-I, v, Network Iy
From the transmission parameter equations,

Vi=B1I; Fig. 9.28 Network for deriving condition for
V, reciprocity
I
(b) Asshown in Fig. 9.29, voltage V_ is applied at the output port with the input port short-circuited.

=B

ie., v, =V, s I

=0 ,
, I Network 72
[1 = —11

Fig. 9.29 Network for deriving condition for

From the transmission parameter equations, reciprocity
0= AV, - BI,
~I/ =CV, - DI,
L= % Vs
1 =cr, -2y,
Ve B
I’ AD-BC
Hence, for the network to be reciprocal,
Vs _ W
L
. R
ie., = D_BC
ie., AD—-BC=1

9.4.2 Condition for Symmetry
(a) When the output port is open-circuited, i.e., [, = 0.
From the transmission-parameter equations,

Ve =AV,
L =CV,
VS_A
I C

(b) When the input port is open-circuited, i.e., /, = 0.
From the transmission parameter equation,
CVs = DI,
V. D

L, C
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Hence, for network to be symmetrical,

Vi _ Vs
I I
ie., A=D

” SETII RN Find the transmission parameters for the network shown in Fig. 9.30.

Loo1Q 20Q A
o—> <O
+ +
Vi 5Q Vs
o o
Fig. 9.30
Solution
First Method
Case I When the output port is open-circuited, i.e., , = 0.
=6l
and V2 = 511
" 61, 6
A=-L _2a_2
Voo SO S
I 1
c=-1 =-0
Valno 5
Case 2 When the output port is short-circuited, i.e., ¥, = 0, as shown in Fig. 9.31,
5x2 10 17 hoo 19 2Q b
=l+—=1+—=—Q o ~
Rea 542 77 +
17
Now "= ) I v, 5Q
5 5
and [2=;(—11)=—;11 5
17 / Fig. 9.31
" 717
B=--Y == 75 =0
Ly, _o _2 5
I 7
D=--L !
Do 5

Hence, the transmission parameters are

6 17
4 Bl |5 5
[CD]_l 7
5 5




9.4 Transmission Parameters (ABCD Parameters) 9.21

Second Method (Refer Fig. 9.37)
Applying KVL to Mesh 1,

n=6l+5I, )
Applying KVL to Mesh 2,
V,=50+71, (11)
Hence,
SL =V, =171,
I =%V2 _glz ... (i)

Substituting Eq. (iii) in Eq. (1),

=—V,——1, ...(1v)

Comparing Eqs (iii) and (iv) with transmission parameter equations,
g
A B]_
C D|

” SCIACKREN  Obtain ABCD parameters for the network shown in Fig. 9.32.

W= |
WD |3 W

L1 10 A
o o
+ +
Vi 20Q 20Q V2
o o
Fig. 9.32
Solution The network is redrawn as shown in Fig. 9.33.
Applying KVL to Mesh 1, 10 10
V1=311—213 (l) i 2
Applying KVL to Mesh 2,

V2=2[2+2]3 (ll) V. 2Q 2Q Vo
Applying KVL to Mesh 3, " l h

2 -I)-13-2(I3+1)=0

SIy =21 =21, o S
I3 =§Il —%12 ....(iii) Fig. 9.33
Substituting Eq. (iii) in Eq. (1),
=3I —2(?[1 _ilz)
=%11+%12 (V)
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Substituting Eq. (iii) in Eq. (ii),

2 2
Vy=20+2| -1, ——1
2 2 (51 5 2)

4 6
Sy
517572
4 6
2L=r-2
5l 2 5 2
5 3
L=2V,-21 v
1 4 2 2 2 ()

Substituting Eq. (v) in Eq. (iv),

=—V,-=1 ...(vi)

Comparing Eqgs (v) and (vi) with ABCD parameter equations,
1

A4 B] |4
C D] |5
4

,_.
N|WN|W»,

” ETTI RN Determine the transmission parameters for the network shown in Fig. 9.34.
; © g @

ol +0
I
o=
Ol +

Fig. 9.34

Solution
Applying KCL at Node 1,

14
h=f+m—n)

s+1 .
=TV1—V2 (D)

Applying KCL at Node 2,

V;
L=+ =1)

S
=(s+D)hn-Nn
Vi=(s+)Vs—1I (i)



Substituting Eq. (ii) in Eq. (i),

9.4 Transmission Parameters (ABCD Parameters)

s+1
L ZT[(S"‘I)Vz—[z]—Vz

9.23

[(s+1)? 1
[+ 1] y oSt
| s s
2
+s+1 +1
- ”] v, —(S) I, (i)
s s
Comparing Eqs (ii) and (iii) with ABCD parameter equations,
4 B [ s+1 -1
|2
[C D] =|s"+s+1 s+1
s s
” SETNNI RV Find transmission parameters for the two-port network shown in Fig. 9.35.
L 100 15V, b
o —+ 0
+ +
Vs ) 25Q ) 20 Q C V,
I, Iy Ip
o o
Fig. 9.35
Solution  Applying KVL to Mesh 1,
V1 = 10]1 +25([1 —13)
=35I -251; ...(1)
Applying KVL to Mesh 2,
V2 = 20([2 +[3)
=207, +201; ...(1)
Applying KVL to Mesh 3,
=25(I-1))+1.51=20(1,+15)=0
—2513 +25]1 +1.5 (35[1 —25]3)—20]2 —20]3 =0
—2513+ 2511 +52.51, -37.513 201, —2015 =0
82.515=717.51; -201,
I3;=0.941,-0.241, ...(1ii)
Substituting Eq. (iii) in Eq. (1),
V1 =351 —25(0.941, —0.241,)
=11.51;+61, (IV)

Substituting Eq. (iii) in Eq. (ii),
V, =201, +20(0.941, —0.241,)

=18.81, +15.21, (V)
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From Eq. (v),
1, =0.0537,-0.811, ...(vi)
Substituting Eq. (vi) in Eq. (iv),
71 =11.5(0.053V, —0.811,)+61,
=0.61V, -3.321, ... (vii)

Comparing Eqs (vi) and (vii) with ABCD parameter equations,
A B| | 061 =332
C D| |0.053 -081

IEXB| HYBRID PARAMETERS (h PARAMETERS)

The hybrid parameters of a two-port network may be defined by expressing the voltage of input port ¥/, and
current of output port /, in terms of current of input port /, and voltage of output port V.

", )=, V)
Vi=shy L+l Vs
Ly=hy I1+hy Vs

s 5T
I, hy hy || V2

The individual & parameters can be defined by setting 7, =0 and V, = 0.
Case I When the output port is short-circuited i.e., V, =0

In matrix form, we can write

4
Iy = 7
Lp=0
where £, is the short-circuit input impedance.
I
hy = ]
1 V,=0

where £,, is the short-circuit forward current gain.
Case 2 When the input port is open-circuited, i.e., /, =0

where £,, is the open-circuit output admittance.

Since / parameters represent dimensionally an impedance, an admittance, a voltage gain and a current
gain, these are called hybrid parameters.

The equivalent circuit of a two-port network in terms of hybrid parameters is shown in Fig. 9.36.
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I

—<

O
+

V)b D A

O

Fig. 9.36 Equivalent circuit of the two-port network in terms of h-parameters

9.5.1 Condition for Reciprocity
(a) Asshown in Fig. 9.37, voltage V is applied at the input port and the output port is short-circuited.

ie., =V, b %

V,=0 (THv, Network E Iy
L'=-I,

From the A-parameter equations,

V.= I Fig. 9.37 Network for deriving condition
S, for reciprocity
-I' = I
Vi __m
L hy

(b) As shown in Fig. 9.38, voltage V_is applied at the output port with the input port short-circuited.

i.e., V] =0 I b

V2 = VS
L =-1’ h Network Vs

Fig. 9.38 Network for deriving condition

From the A-parameter equations,

0="hyly+ha Vs for reciproci
, procity
hia Ve =~hy Iy = hyy 1
Yo -
L’ hy
Hence, for the network to be reciprocal,
V_V
L'
i.e., hz] = —/’l|2

9.5.2 Condition for Symmetry

The condition for symmetry is obtained from the Z-parameters.

4 _ i+ oy

V>
=yl 2
I bz

1,=0
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But with 7, =0,
0= h21 1 +h22 V,

Va__ha
I hy
hioh Ry — hyoh Ah
Zyy = by, —2ftar _ il hahy _4an
o G 2
where Ah = Iy — hiahyy
Similarly,
Zy = 4]
I =0
With [, =0,
L=V,
V; 1
In=-2 =
Ll M2
For a symmetrical network, Zn=2Zy»n
. Ah 1
ie., —=—
hy  hyn
ie., Ah=1
ie., hyy hyy — iy by =1
Table 9.2  Conditions for reciprocity and symmetry
Parameter Condition for Reciprocity Condition for Symmetry
z Zip =7y Zi1 =2y
Y Yo=Yy hi=Yxn
T AD—-BC =1 A=D
h hp =—hy My hyy —hiy by =1

” Example CREN T the two-port network shown in Fig. 9.39, compute h-parameters from the
following data:

(a) With the output port short-circuited:V; =25V, [, =1 4,1, =2 A
(b) With the input port open-circuited:V; =10V, V, =50V, 1, =2 A

h

b
o—>—
+ e
2 Two-port network V,
-~ p—
o )

Fig. 9.39
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Solution
m="0 -2 _ss5q m=21 =19 g,
hj,_, 1 Valyy 50
I 2 I 2
hy=2 =Z=2, hy=-2 =Z-=0.040
Iily_o 1 Valyg 50

Hence, the h-parameters are
by ha| |25 02
ha hn| |2 004

” SETIIERER  Determine hybrid parameters for the network of Fig. 9.40.

Determine whether the network is reciprocal.

9.27

Iy 10 2Q A
O > —< O
+ +
I, Iy I
o o
Fig. 9.40
Solution
First Method
Case I When Port 2 is short-circuited, i.e., ¥, = 0 as shown in Fig. 9.41,
2X%2
=1l+———=2Q I 1Q 2Q [}
Ra=l+5055 N 2
Now, Vv, =21, +
"
by = a8 =20 v 2Q 40
I V=0
Also, 12=_[lxiz_£ o
242 2 Fig. 9.41
I 1
hy =— =-=
I V4=0 2

Case 2 When Port 1 is open-circuited, i.e., /; = 0 as shown in Fig. 9.42,

2+2)x4
Rqg=2T2X4 5 g

2+2+4 L=0 1Q 10 l
n=2i, o o

E + I Iy +
I,="=2

2 72 20 4Q Vs
V, =41,

1 _ _
Ix=72 o o

Fig. 9.42
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I
I
12 = =—=
Valpoo 4l 4x
I, 21, 1
hyp =— =
Valpo 4 2
Hence, the h-parameters are
1
2 _
i ho _ 2
by hp] | 11
2 2
Second Method (Refer Fig. 9.40)
Applying KVL to Mesh 1,
W =3I-21
Applying KVL to Mesh 2,
Vo, =41, +41,
Applying KVL to Mesh 3,
-2 ([3 —[1)—213 —4([3 +12) =0
8 =21, -41,
L 1
Iy = a2
4 2
Substituting Eq. (iii) in Eq. (i),
v _311_2(11_12)
4
=n+1
Substituting Eq. (iii) in Eq. (ii),
11 [2
Vy=4l,+4| ———
e 2-2)
= 412 + 11 — 2[2
= ]1 + 2[2

1 1
L=—=I+—V-
2 R
Substituting Eq. (v) in Eq. (iv),

5 1 1
NW==—hL--L+=V;
1=5hmshrsh
1
=2I1+V
15"
Comparing Eqs (v) and (vi) with A-parameter equations,
1
2 =
My ho | 2
oy LN
2 2

Since h,, = — h,,, the network is reciprocal.

21°

...(ii)

...(iii))

(V)

(V)

(Vi)
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” Example CWON  Find h-parameters for the network shown in Fig. 9.43.

1 1
L2 F 2F b
5 N N o
° | | °
v, 1H 1TH W
o o
Fig. 9.43

Solution  As solved in Example 9.12, derive the equations for /, and 7, in terms of ¥ and V.

3 3
s +2s N .
1=— i———" (1)
4(s“+1) 4(s*+1)
s’ s*+65° +4 .
=—— 1+ 3 ...(>11)
4(s°+1) 4s(s” +1)
From Eq. (i),
2 2
V= 4(S2 L =y, .. (i)
s(s*+2) sT+2
Substituting Eq. (iii) in Eq (ii),
3 2 2 4 2
4(s+1 +6s°+4
=— i (Sz )[1+ 2S V, +S 62S
4(s"+1)| s(s”+2) sT+2 4s(s” +1)
2 2
-5 +2(s +1) @)

2
2+2 0 s(s2+2)

Comparing Eqgs (iii) and (iv) with A-parameter equations,

4(s* +1) s
Wy ma| | s(s*+2) 5742
har - ho s 2(sP 1)

_sz+2 s(sz+2)

IEXH| INTER-RELATIONSHIPS BETWEEN THE PARAMETERS

When it is required to find out two or more parameters of a particular network then finding each parameter
will be tedious. But if we find a particular parameter then the other parameters can be found if the inter-
relationship between them is known.

9.6.1 Z-parameters in Terms of Other Parameters

1. Z-parameters in Terms of Y-parameters We know that
L=Yuh+ "
L=+l



9.30 Circuit Theory and Networks—Analysis and Synthesis

By Cramer’s rule,

I Ty

Vi = L Yo|  Ynph-Yol, _Yn 1_&]2
i Y| YuYn-YoY AY  AY
1 I

where AY =Y 1Yoy —Y2)2

Comparing with =2l +Zp, 1,

_ Y
=7y
Y
Zip =12
12 AV
h
Y I Y Y;
Also, y, = D 1 21

——=—05L-—1
AY AY AY
Comparing with

i

Ly =—+

2=y

Y;

Zy = —ﬁ
2. I-parameter in Terms of ABCD Parameters We know that
V] =4 V2 - B]2
[] = CV2 - D[z
Rewriting the second equation,
1 D

Vy==—L+—1I
2=oht el

Comparing with Vy=Znhh+Zyls,

Also,

Comparing with

|

AD - BC

)
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3. I-parameters in Terms of Hybrid Parameters

We know that
M=+,
N Ly=h L +hy ),
Rewriting the second equation,
h 1
V2 = —All +7]2
Comparing with 2 2
Vao=2y 42y Iy,
h
Zy=-2L
i)
1
Zyp=-——
hy
h 1 Iy hoh Mihyy — b h
Also, WVi=hy 1 +h; [—“ I +12}= WL+ 21, - 222 =[ 1172 2 21]11 +22,
Gy % 2 I Ly 22
Comparing with M=z 1L+2Z, I,
7= hihyy —hohyy  Ah
n=———=-
Gy ICy
hy
Zp=—%
Ly
9.6.2 Y-parameters in Terms of Other Parameters
1. Y-parameters in terms of Z-parameters We know that
N=Zuh+Zpl
Va=Zyh+Zn 1,
By Cramer’s rule,
n Zp
W2 Zn|  ZpWN-ZpV, Iy Zy
I = = =——V-——"
Zy Zp| ZuZyp-—ZnZy A AZ
Zyn Zn

where AZ =271\ Zyy —Zyy Zy

Comparing with L= N+, Vs,

V4

h =2
AZ
Zi;

Y =22

12 A7
Ziy N
Z V- 21V, — Z1o W V4 V4

Also, ol Bl_ahh-Zoh | 2o, Zngy,

AZ AZ AZ AZ

Comparing with
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Zi
Yy = AZ
2. Y-paramelers in Terms of ABCD Parameters We know that
1=AV, - BI,
=CV,-DI,

Rewriting the first equation,

1.4
L=——W+2V.
2 B 1 B 2

Comparing with L= "N+1nls,
Yo = ——
21 3
A
Yy =—
n=7
Also, L=V -D| -1y +dp, | =Ly 4| BEZAD ),
B B B B
Comparing with L= N+,
D
Y, ==
n=
y._BC-4D _ AD-BC __ AT
2 B B B
3. Y-parameters in Terms of Hybrid Parameters We know that
N=hili+hyVy
Ly=h L1 +hpVs
Rewriting the first equation,
=ty
i i
Comparing with L=mN+1V,,
1
h=—
i
Y, = A
oy
My h hyhoy =l b
Also I, = h21|: " —1V2:|+h22V2 =2 "+ [“ 22 12 21:|V2
h11 l’l]l hll hll
Comparing with L=V, N+,
Yy, = .
I
Y = Ml —hohay _ A
n=—"17/" =7-

hyy hyy
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9.6.3 ABCD Parameters in Terms of Other Parameters

1.

ABCD Parameters in Terms of Z-parameters We know that
M=Zuh+2Zp1
Va=Zoh+Zx 1,

Rewriting the second equation,

1 V4
L=—7-"21
2y Zn
Comparing with 1, =CV,—=DlI,,
1
C=—
73
V4
D=222
Zn
1 V4 Z Zy Z,
AlSO, V1=le|:V2—2212:|+21212 =JV2— 2 1112+212[2
Zy Zn Zn Zy
V4 2112 —2Z1n Z
=“V2—|: 1 Zx» =21 21]12
2y 25
Comparing with 1 =AV, - BI,,
V4
A4=21
Zn
puZn=Zuiy _AZ
2y 2y

2. ABCD Parameters in terms of Y-parameters We know that

L=+,

L=N+Yul
Rewriting the second equation,

Y, 1
V==Vt
21 Yo
Comparing with Vi =AV, —BI,,
Y,
A=—_222
¥e3
1
B=——o
Yo

Also,

21 Y Y

Comparing with 1,=CV,-DI,,
C= YoV - Yo AY
er 3
)¢
pD=--1L

Y

Y; 1 Yoo -1 v 4
11=Y11[—Y22V2+12]+Y|2 V2=[12 2 2z]Vz"'Y”]z

21

9.33
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3. ABCD Parameters in Terms of Hybrid Parameters We know that
N=mLi+h V>
L=l L+hy V)

Rewriting the second equation,

]1 Z—QVZ +L12
I I
Comparing with 5L =CV,—-DI,,
Cz_hﬁ
IS
po_L1
I
AlSO, V] = hl] [112 —}122V2j|+/’l|2 V2 = |:h12 h21 _hll h22 :|VQ +m12
I I o I
Comparing with Vi = A4V, - BI,,
gyl —hhy AR
I I
B__@
I

9.6.4 Hybrid Parameters in Terms of Other Parameters

1. Hybrid Parameters in terms of Z-parameters We know that
N=Zuh+2ZpI

Va=Znh+Znl
Rewriting the second equation,

Z 1
L=-22L+—,
Zy Zy
Comparing with Iy =hy Ly + hy V3,
Z
Iy = =%
Zy
1
hyy =—
Zy
V4 1 Z2i1Zyp—2Z1h Z Z
Also, V1=Zn]1+212|:—2111+V2:|:|:11221221:|11+12V2
Zy Zy Zy Zy
Comparing with N=hili+hyVs,
=i =Znln _ AZ
Zy Zy
Z
hy =22

Zy
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2. Hybrid Parameters in terms of Y-parameters We know that

Rewriting the first equation,

Comparing with

Also,

Comparing with

L=Yuh+h0
L=V +Ynl,

1 Y
h=—Irn-27,
VR VR
Vi=h i+ Vs,
1
hy=—
A
Y
by =-22
h

I, =Y21|:Y111 —YIZV2]+Y22 Vs =[

1 VR VO

L=l L+ Vs,

Y,
h21=£

'
3 Y Yn-TrY AY
p=— = ——

A A

3. Hybrid Parameters in Terms of ABCD Parameters We know that

Rewriting the second equation,

Comparing with

Also,

Comparing with

Vi = AV, — Bl,
1]:CV2—DIZ

1 C
L=——IL+—V
2 D 1 D 2

Iy =My L1+ Vs,

g = ——
)
C
Iy = —
27D
1 B AD-B
Vi=avy—Bl -1+ Sy |= B | AP=BC |y,
D D D D
Vi=hi L +hy Vs,
B
A
"D
AD—-BC AT
hlzzizi

D D

Y1 Y2 — 1o Yoy ]V2

Y;
el
VO

I

9.35



9.36 Circuit Theory and Networks—Analysis and Synthesis

Table 9.3 Inter-relationship between parameters
AX =Xy Xy — X2 Xy

In terms of
[Z] [Y] [T] [h]
Zi Za Tp Yo A AT M
AY AY C C Ty I
[Z]
Ly Zm v LD w1
AY AY c C I o
Zn _Zn W o EE |
AZ AZ B B hyy hyy
[Y]
Z Z e LA b s
Az AZ B B by
Zn Az Y 1 4 B _A
Zy 2y Y er hy
[7]
0oz AY ¥ C D k1
Zy 2y Yo Yo hyy hyy
AZ Zip 1 Y B AT hy hi
0] Zyn Iy ¥ ' D D
_Zn 1 Y oAY 1 C hy hy
Zy Zy h D D

” Example CWAN  The Z parameters of a two-port network are Z, =209 7,,=3009 7,

=10 L2 Find Y and ABCD parameters.

Solution
AZ = le 222 —le Zz] = (20)(30) - (10)(10) =500

Y-parameters

Z 30 3 V4 10 1
=22 =" =20, Yp=-"2-_ — -
AZ 500 50 AZ 500 50
Zy 10 1 Zy; 20 2
Y21:—7=—7=—— R Y22=7=7=—
AZ 500 50 AZ 500 50
Hence, the Y-parameters are
SR
Yy Yo|_| 50 50
i T 1 2

50 50

21
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ABCD parameters

aoZn 20, Az _500_
Zn 10 Zn 10
Zu 10 Zy 10

Hence, the ABCD parameters are
A B| |2 50
Cc D| |o1 3

” SEINNICERWYR  Currents I, and I, entering at Port 1 and Port 2 respectively of a two-port network

are given by the following equations:

1,=0.5V,-0.2V,

I, =02V, +V,
Find Y, Z and ABCD parameters for the network.
Solution
n=2 050, Ypo=-4 =-020
" V=0 2ln=0
1 I
=2  =-020, V=2 =10
Vl V,=0 VZ =0
Hence, the Y-parameters are
iy Y| | 05 -02
Yoy Yool |-02 1
Z-parameters
AY =Y, Yoy — Y2 Va1 = (0.5)(1) = (—0.2)(=0.2) = 0.46
szﬁz—l =2.174Q, 212:—&:—7(_0’2):0.4349
AY 046 AY 0.46
—0. 0.5
_ ta_ 02):0.4349, Zzz=£=7=1~0879
AY 0.46 AY 0.46
Zyy Zip|_[2.174 0.434
Zy Zyp| 0434 1.087
ABCD parameters
1 1
A:—YZiz:—L:S’ B=—-— =——— =5
Y2l -0.2 Yz] -0.2
4 Y .
c=-AY_ 046 55 p=-Tu__ 05 _,;

Y21 -0.2 Y21 -0.2
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Hence, the ABCD parameters are
A4 B| |5 5
C D| |23 25
” Example 9.23 Using the relation Y =77, show that |Z]/= I(ZZZ+Z”).
2\Y; T»

Solution We know that

y=2z"
Zn  _Zn
ie., [Yn Y12:|= AZ AZ
Yu Yol |_Zu Zu
AZ  AZ

| Z =212y~ 21y Zy

1( Zy, Z“) 1 Zy Zy | 1 1

|22 A | 22 A s (AZ+AZ)=—(2AZ)=AZ =22 - Z1p Z

Z[YH o)1 G T |- Sazeaz) - Sanz) 27 2o
AZ AZ

| Z|= 1(222+Z”J
2\h Y

” Example 9.24 For the network shown in Fig. 9.44, find Z and Y-parameters.

I 2Q I
O O
+ +
12 1Q 2Q ¢ 3l Vs
o o
Fig. 9.44

Solution  The network is redrawn by source transformation technique as shown in Fig. 9.45.
Applying KVL to Mesh 1,

+ O

N

n=nL-1L ...(1) 2Q
O
Applying KVL to Mesh 2, +
V2=2([2 +[3)—6[2 20
=—41, +21; ...(11) Vi D 1Q /D C
Applying KVL to Mesh 3, h s 61, &
—([3—11)—2]3—2([2 +I3)+612=0 o
5]3:]1+412 Flg 9.45
13 =l]1+ﬂ[2 (111)

5 5
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Substituting Eq. (iii) in Eq. (1),
1 4
n=h--IL—--=1I
1 1 5 1 5 2
4 4
:gjl_sz ...(iv)

5
Substituting Eq. (iii) in Eq. (ii),

1, 4
Vy=—AL +2| L +=1
2 2 (5 1 5 2)

2 12
=2 -=1 ..(v)
5750
Comparing Eqgs (iv) and (v) with Z-parameter equations,
4 4
Zin Zip|_|5 5
Zy Zxn 2 12
5 5

Y-parameters

4\ 12 4\(2 40 8
AZ=21Zn-ZnZn=|~|-=|-[-= =_=__2
11 £22 12 £21 (5)( 5) ( 5)(5) 25 5

_12 _4
Yll—@— g:éU, Yn:_&_%__%zj
5 5
2 4
Zy 51 Zu 5 1
Yy=—""=—=-0, Yp=—"=—"=—=0
21 AZ 874 2= 3 )
5 5

Hence, the Y-parameters are
3
|:Y11 le:| _|2
i Yof |1
4

” Example 9.25 Find Z and h-parameters for the network shown in Fig. 9.46.

Iy 2Q 4h 2Q IA
Oo—> +— ~—0O
+ +
AEDEIDE G

I Iy b
o o
Fig. 9.46

Solution  Applying KVL to Mesh 1,
=2hL+2(1-15)

=41, -21, (1)
Applying KVL to Mesh 2,

V, =212 +2(12 +I3)
2412 +2I3 (11)
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Applying KVL to Mesh 3,
—2(]3 —11)—411 —2(13 +12) =0
]1+12:—2I3 (lll)
Substituting Eq. (iii) in Eq. (i),
V] = 4]1 + [1 + [2
=50 +1, ...(1Iv)
Substituting Eq. (iii) in Eq. (ii),
h=4L-5L -1,
=—1,+3], (V)
Comparing Eqgs (iv) and (v) with Z-parameter equations,

[Zn 212}2[5 1]
Zoy Zy -1 3

AZ=27112Zy»-2122,1=(53)-D(=)=15+1=16

h-parameters

AZ 16 Z 1
h=""=20, ==
Z> 3 Zy 3
V4 1 1 1

By =—22L=—, hy=—=-0
V4 3 Zy 3

Hence, the h-parameters are

[hll Iz ] _|3
hy o] |1
3

” Example WIS  Find Y and Z-parameters for the network shown in Fig. 9.47.
1
Lo 29 ® 10 ©) A

Fig. 9.47

Solution Applying KCL at Node 3,
2 -V =2n+s-12)
V, .
V;=— .1
3=3 ®
Now,

L=2N+(;-r)
=2V1 +%—V2

2
=2h-3h (i)
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L =21+ -V3)

Comparing Eqs (ii) and (iii) with Y-parameter equations,
2

, _Z
[Yn le:|= 3
ha Yol |, 8

Z-parameters

8 16
AY:Yllez—leYzl:(z)(* -0=—
3 3
: -3)
Yo 3 1 Y2 3
Zy=-2=3_-"q Zp=—22__ 3/ _lqg
"TAY 16 2 27T Ay 16 38
3 3
Y5 0 Y. 2 3
Zy=—2L=_" oy, Zp=-lo2_29
2T A 16 2TAY 16 8
3 3

Hence, the Z-parameters are
|:211 le} _
Zy Iy

” SENNI I  For the network shown in Fig. 9.48, find Y and Z-parameters.
o D e 3N (@ b

S N
0| L oo | —

o ¥ o
+ +
v, 20 1Q A
o o
Fig. 9.48
Solution  Applying KCL at Node 1,
L= =l
2 1
3
=2 -V
e
Applying KCL at Node 2,
I :%+V2 +31/1 -"

=20 +2V,

92.41

...(iii))

...

..(ii)
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Comparing Eqs (i) and (ii) with Y-parameter equations,
3
[Yn 1 ] -175 -1
i Yo 5 9

Z-parameters

AY =Y Y -Yp Y21 = (—2)(2)—(—1)(2) =-3+2=-1

Y; 2 Y, -1
Zn=2-"_-90Q, Zyp=——12 = )10
AY -1 AY (=)

_3
Zy= B2 g 2yt T2 34
AY (=) AY -1 2

Hence, the Z-parameters are
-2 -1
|:le le:| _ 3
Zy Iy 2 5

” Example CWEN  Find Z-parameters for the network shown in Fig. 9.49. Hence, find Y and h-parameters.
0.9 1,
>

+ O
+ O

10Q

Ql
Ol

Fig. 9.49

Solution The network is redrawn by source transformation technique as shown in Fig. 9.50.
Applying KVL to Mesh 1,

9l
V=20 +1 i) ke e Ak
Applying KVL to Mesh 2, + +
V, =91 +101, +1(1; + 1) v, 10 A
=101 +117, ...(i1)
Comparing Eqgs (i) and (ii) with Z-parameter equations, 5 5

Zy Zpp|_|2 1 Fig. 9.50
Zn 7y | |10 11

Y-parameters
A =27\122»n—-212Z,=2) A1) —-(1)(10)=22-10=12

11:@:26, lez—éz—i
AZ 12 AZ 12
Z 1 2 1

Yy =-"2=- 0_—§U, Y22=é=*=*6

AZ 12 6 AZ 126



Hence, the Y-parameters are

11
[Yll le]: 12
Yy Ym] | 5
6
h-parameters
AZ 12
hy=——=—4,
Zy 11
Z 1
h21=—i:—*0,
Zn 11
Hence, h-parameters are
12
My ho|_| 11
My hpf| | 10
11

S
12
1

6

9.6 Inter-relationships between the Parameters

V4 1

iy Il VI
Zy 11

1 1

hyy = =—
Zyn 11

” SETNI LN Find Y and Z-parameters of the network shown in Fig. 9.51.

I @ 1Q 2V, @ Iy
o—> o —+ o <~—0
+ +
7 1Q 2V, 20 Vy
o o
Fig. 9.51
Solution Applying KCL at Node 1,
oot BD
I, =41 =31,
Applying KCL at Node 2,
Ve T Wieh
2 1
=31 +1.5V,
Comparing Eqgs (i) and (ii) with Y-parameter equations,
i haf_[4 -3
Y21 Y22 h -3 15
Z-parameters
AY =YYy - Yol = (4 (1.5) - (-3)(-3) =3
Y; 1. Y —
Z“:ﬁ:_iz_ojg’ le——ﬁ——ﬂ—
AY 3 AY -3
P TR E g B4 4g
AY -3 AY 3 3
Hence, the Z-parameters are
-0.5 -1
[le le] _
Zy Iy -1 -

3

9.43

...()

.(ii)
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” Example VN Determine Y and Z-parameters for the network shown in Fig. 9.52.
o @O 20 (@ b

O L 4 L 2 O
+ +
72 10 20 ¥)3h V,
o o
Fig. 9.52
Solution Applying KCL at Node 1,
I = ﬁ+ n-n
1 2
=1.5V1-0.5V, ..()
Applying KCL at Node 2,
I = % e 27h

=%+3(1.5V1—0.5V2)+@

=05V, +4.5V -1.5V,+0.5V, -0.51
=4V, -0.5V, ...(ih)
Comparing Egs (i) and (ii) with the Y-parameter equation,

i Y] 15 -05
Yoy Yool | 4 -0.5

AY =Yy Yoy — YiaYay = (1.5)(<0.5) - (=0.5)(4) = 1.25

Z-parameters

le=@=—£=—o.4g, ZIZ:—&=£=O.4Q
AY 125 AY 125
Y- 4 ) 1.
Zy=—"2l=_ " =-32Q, Zp=d1_15_ 159
AY 125 AY 125

Hence, the Z-parameters are
Zy Zpp|_|-04 04
Zn Zyp| |32 12
” SETNII I Derermine the Y and Z-parameters for the network shown in Fig. 9.53.
y @ 0se ® 10 @

o ° ° ° - o
+ +
Vv, 1Q 2V, 05Q V,
o o

Fig. 9.53
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Solution  Applying KCL at Node 1,

n n-vr
_a.hh

1 05
=31 27,

I

Applying KCL at Node 2,

Applying KCL at Node 3,

KR
0.5 1

1

V3= sz
Substituting Eq. (iii) in Egs (i) and (ii),
2
I =3 —-=V,
1 173"
8
L =01+ sz
Comparing Egs (iv) and (v) with Y-parameter equations,
, 2
[Yll Y12:| _ 3
Y
21 Y 0 8
3

Z-parameters

8
AY =Y1Yn —YoY5 =(3)(3)—0:8

8 2
Y; 1 h 1
Z“:ﬁ—;— Q, lez_i 3_1
AY 8 3 AY 8 12
2
Zzl_—&=;=i9, Zzz=m_§Q
AY 8 12 YA 8
Hence, the Z-parameters are
L
[Zn Ziy ] _|3 12
Zn ZIn] | 3
8
” Example IV Determine Z and Y-parameters of the network shown in Fig. 9.54.
Iy 4Q 2Q A

Fig. 9.54

9.45

..

..(iD)

... (i)

...(1v)

..(v)
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Solution  Applying KVL to Mesh 1,
V,—41,-0.057,=0
V, =4I +0.051, (D)
Applying KVL to Mesh 2,
V,=2L,+10V, =0
V,=2I,- 10V, ..(11)
Substituting Eq. (i) in Eq. (ii),
V,=2I,—40I —0.5],
=—407, + 1.5, ...(1i1)
Comparing Eqs (i) and (iii) with Z-parameter equations,

Zn Zn| [ 4 005
Zoy Zn| |40 1.5

AZ = Z] 1222 —212221 = (4)(15) —(005)(—40) = 8

Y-parameters

Yn:@_gtl lez_@__&z;
AZ 8 AZ 8
yy Lo __(40) 40, yZn_4
AZ 8 8 AZ 8
Hence, the Y-parameters are
L5 0.05
Yii Yaf_| 8 8
)y Y| |40 4
8 8

2V,
-
Iy 1Q 8h CIS 20 Iy
O +— O
+ +
+
v, 2Q 2V Vs
Iy - Ip
o o
Fig. 9.55

Solution  Applying KVL to Mesh 1,
V,— U =3L-2(+1)=0
V, =3I +5I, (D)
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Applying KVL to Mesh 2,
V,=2(l,-1)-2(,+1)=0
V,=2L,+2[,-21 -2[,=0
V,=2I +4I, - 2I,
Writing equation for Mesh 3,
L=2V,
From Fig. 9.55,
V.=2(I,+1,)
L=2V,=4l +4],
Substituting Eq. (iv) in Eq. (ii),
V,=-6l -4,
Comparing Eqs (i) and (v) with Z-parameter equations,

Zy Zipp|_|3 5

AZ =712y — 21225 = (3)(—4) - (5)(-6) =18

Y-parameters

Zn 4 2 Zn 5
h=—"=-—=--0, Yp=—""=——
AZ 18 9 AZ 18
Y21:—@:—@216’ YZZZE i
AZ 18 3 AZ 18
Hence, Y-parameters are
2 5
i Mo|_| 9 18
o Yo 1 3
3 18

IEEB| INTERCONNECTION OF TWO-PORT NETWORKS

9.47

..(iD)
...(iii)

(V)

(V)

We shall now discuss the various types of interconnections of two-port networks, namely, cascade, parallel,
series, series-parallel and parallel-series. We shall derive the relation between the input and output quantities

of the combined two-port networks.

9.7.1 Cascade Connection

Transmission Parameter Representation Figure 9.56 shows two-port networks connected in cascade.
In the cascade connection, the output port of the first network becomes the input port of the second network.

Since it is assumed that input and output currents are positive when they enter the network, we have

L'=-1I,
h I I %
d ¥+ +
12 Ny Vo o VY N, vy
_ _ _

Fig. 9.56 Cascade Connection
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Let 4,B,,C,,D, be the transmission parameters of the network N, and 4,,B,,C,,D, be the transmission

parameters of the network N,.
For the network NV,

For the network N,,

nl_
L]

"
L

4 B

Since V| =V, and I; = —I,, we can write

Combining Eqgs (9.1) and (9.3),

A B
Hence, [C D:I

individual ABCD matrices.

nl_
_12___

4 B

nl_
Ild_

(4 B[ s
G DI
C, D)

G D

-1’ |

(4 B[4 B n]_
G DG D||-L']|

[Al Bl]—AZ Bz]
G DG D

Equation 9.4 shows that the resultant ABCD matrix of the cascade connection is the product of the

A4 B[ v
C D|-1’

]

(9.1)

(9.2)

(9.3)

(9.4)

” SETNII YN Tywo identical sections of the network shown in Fig. 9.57 are connected in cascade.

Obtain the transmission parameters of the overall connection.

,  2Q 2Q A

O > O

+ +

72 1Q 20 Vo

o o
Fig. 9.57

Solution  The network is redrawn as shown in Fig. 9.58.

2Q

2Q

»
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Applying KVL to Mesh 1,

V=31 -1,
Applying KVL to Mesh 2,
V,=2L,+2I,
Applying KVL to Mesh 3,
=1, +20,+51,=0
1 2
L=-5—--1I
3=ghmgh
Substituting Eq. (iii) in Eq. (i),
1 2
n=3n-{-L-=-1I
1 1 (5 173 2)
14 2
=—I+-1
57050

Substituting Eq. (iii) in Eq. (ii),

1 2
Vy=20L+2| -1, —=1
2 2 (51 5 2)

2 6

==L+-=1

571750

5
L ==V,-31
1=5" 2

Substituting Eq. (v) in Eq. (iv),

14(5 2
NW=—|=V-30L [+=1
1= (2 2 2) 5

=7, =81,

Comparing the Eqs (vi) and (v) with ABCD parameter equations,

4 B [7 8
¢ D |25 3

Hence, transmission parameters of the overall cascaded network are

P s P P S ]

” SETIIEIREN  Determine ABCD parameters for the ladder network shown in Fig. 9.59.

Iy 2Q 2H A
o 000 o)
+ +
V4 “—2F ——1F 1Q V,
o o

Fig. 9.59

9.49

()

...(ii)

... (i)

.(iv)

...(v)

...(vi)
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Solution The above network can be considered as a cascade connection of two networks N, and N,

The network N, is shown in Fig. 9.60.

Iy 2 2s |
o—> 7000 o
+ +
v, — v,
o o
Fig. 9.60
Applying KVL to Mesh 1,
1 1
Nn=(2+—|L+—1
! ( 2s) st
Applying KVL to Mesh 2,
1 1
Vo=—9L+|2s+—|I
T ( 2s) :
From Eq. (ii),
I =2sV,—(4s*+ 1)1,
Substituting Eq. (iii) in Eq. (i),
Vi = 24 [25V, —(4s* +1)12]+i12
2s 2s
= (4s+ 1)V, —(8s> +25+2)1,
Comparing Eqs (iv) and (iii) with ABCD parameter equations,
[Al Bl]_ 4s+1 85 +2s5+2
G D 2s 457 +1
The network N, is shown in Fig. 9.61.
Iy Iy Iy Iy
o—> —< e} Oo—> —~—0
+ + + +
, 1 , _ 1 ,
72 —3 1 V, 72 2As) =1 Vy
o o o )
(a) (b)
Fig. 9.61

Applying KVL to Mesh 1,
1 1
V1/=7[II+712/
s+1 s+1
Applying KVL to Mesh 2,
1

1
Vz,:711/+712,
s+1 s+1

...()

..(ii)

...(iii)

...(1v)

.(ii)
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From Eq. (ii),
L'=(s+D)n" -1’ ...(iii)
Also, n=v ...(iv)
Comparing Egs (iv) and (iii) with ABCD parameter equations,

4 B [1 o
C, D, h B +1 1
Hence, overall ABCD parameters are

[A B}_F4s+1 8s2+2s+2[1 o}_ 857 +105% +85+3 852 +25+2
C D | 25 45 +1 L+l 1] | 48 +457 43541 45741

9.7.2 Parallel Connection

Figure 9.62 shows two-port networks connected in parallel. In the parallel connection, the two networks have
the same input voltages and the same output voltages.

Fig. 9.62 Parallel connection

Let Y11",Y12",Y21",Y2," be the Y-parameters of the network N, and ¥,”,11,”,Y5,”,Y5,” be the Y-parameters
of the network N,
[11" [ Y][V]
L' | |7

For the network NV,
I:]]”—=>Yll” YIZ”][V]:|
L7 |[Y” Y"||7
For the combined network, L=0I'+1"and I, =1+ 1,".
" [11 1 _ —1|'+1|”]: [Yll""Yn” Y12l+Y12”]|:Vl:|:|:Yll le][Vl]
ence, L] | L'+DL” '+ 1" Y +Y" || V2 i o ||
Thus, the resultant Y-parameter matrix for parallel connected networks is the sum of Y matrices of each
individual two-port networks.

” DETTI NI Determine Y-parameters for the network shown in Fig. 9.63.

For the network N,,
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3Q

Iy 20 20 A

+ 0
+

ol
O

Fig. 9.63

Solution  The above network can be considered as a parallel connection of two networks, N, and N,.
The network N, is shown in Fig. 9.64.
Applying KCL at Node 3,

’ ’ V .
L'+, =?3 (1) T
From Fig. 9.64,
’ Vl _V3 .
L' =——— (i
1 2 (ii)
L' = % ..(iii) Fig. 9.64
Substituting Eqs (ii) and (iii) in Eq (i),
By Vo=l _1s
2 2 2
=N+
non .
Vi=—+— (v
=313 (iv)
Substituting Eq. (iv) in Eq. (ii),
gl B L(KL
2 2\3 3
1 1
==V —-=V; Y
316" v)
Substituting Eq. (iv) in Eq. (iii),
1 V;
[2’ = &_7 54_72
2 2\3 3
1 1 .
=——N+-=V s (v1
¢ 1t3" (vi)
Comparing Eqs (v) and (vi) with Y-parameter equations,
1 1
2 I E- s 5 30 [
ot 3 6 N 2 .
' Yn| | 1 1 + +
6 3 v, v,
The network N, is shown in Fig. 9.65.
]1”=_12”=I/1_V221V1—1V2 6 5

3 33 Fig. 9.65
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Hence, the Y-parameters are

1 1
[Yll” le”:|: 3 3
Yo" Yo 11
3 3
The overall Y-parameters of the network are
1 1 2 1
[Yn Y12:|:|:Y111+Y11” Y12'+Y12”:|: 373 76 3 |3 2
i T '+ Yn” Yn'+Yp"| | 1 1 l_,_, 12
6 3 3 3 2 3
” Find Y-parameters for the network shown in Fig. 9.66.
Iy 2Q I
+ +
1Q 0.5Q
Vi 05Q 050Q V2
2Q
o ° o
Fig. 9.66

Solution  The above network can be considered as a parallel combination of two networks N, and N,.
The network N, is shown in Fig. 9.67.
Applying KCL at Node 1,

]1'=ﬁ+Vl_V2
b2 y (O 20 &y
3001 ¢ * * Q
==V —-=V; @
o (1)
v, 10 05Q
Applying KCL at Node 2,
s Th-N - _
L' =—+——
> 705 2 ° _ °
1 5 - Fig. 9.67
=——Vi+2V, ...(1i1)
2 2

Comparing Eqgs (i) and (ii) with Y-parameter equation,

31

e on'|_| 2 2
' Yo' 15
2

2
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The network N, is shown in Fig. 9.68.

Applying KCL at Node 3,

o . 05 (38) o0sQ 1y
L"+1 =3 (D) ° o
”_ Vl _V3 _
where = =21 =203 v, . v
12”=M=2V2—2V3
0.5 5 5
Substituting /,” and /,” in Eq (i), Fig. 9.68
20N =2V3+ 2V, =213 =0.51;
4.5V5 =211+ 21,
4 4 .
Vi==V+-V L. (1
3= (i1)
4 4 10 8
L7 =2 =2V =2 =2l =V +=V, |=—V, —=V-
1 1 3 1 (9 1y 2) 9 17972 ...(ii1)
” 4 4
and L"=2V, -2V =2V, -2 §VI+§V2
8 10 .
=——V,+—V- ...(1v)
992
Comparing Eqgs (iii) and (iv) with Y-parameter equations,
(10 8
m Ww’_|l9 9
Y21” Y22” _§ E
L 9 9
Hence, overall Y-parameters of the network are
i 3,10 1T 81 147 2
Yo Yo |_|YW'+h” W'+ |_| 2 9 2 9|_| 18 18
Yo Yof [Ya'+Yn” Yn'+Yp”| | 1 8 5 10 _25 65
2 9 2 9 18 18
” Example CICH N Find Y-parameters for the network shown in Fig. 9.69.
1F 1F
| |
Iy 20 20 A
O ® O
+ l +
2 1Q 2F Vo
o T o

Fig. 9.69
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Solution  The above network can be considered as a parallel connection of two networks, N, and N,.
The network N, is shown in Fig. 9.70.

Iy 20 20 Iy Iy 2 ©) 2 Iy

+0

NS +0
+0

-

NS +0

Vi —__2F Vi Pe

I T 2s
o o o o

O O O
(@ (b)
Fig.9.70
Applying KCL at Node 3,
]1,+I2,=2SV3 ...(1)
From Fig. 9.70, I’ = %
1 1 ...(1i)
=~h-=V
2 2
]2/ — V2 - V3
2
1 1
==V, —=V ...(1i1)
27 27
Substituting Eq. (ii) and Eq. (iii) in Eq. (i),
V;
E_E_FJ_E: (2s) V3
2 2 2 2
n.,n
2s+D)V3 = —+—
( W3 513
1 1 .
V3= "+ 7, ...(iv)
2(2s+1) 2(2s+1)
Substituting Eq. (iv) in Eq. (ii),
1 1 1
1= hol 1+ Vs
2 2[2(2s+1)) 2(2s+1)
4s+1 1
= - V.
(8s+4) 1 (8s+4) ? ©
Substituting Eq. (iv) in Eq. (iii),
, o1 1 1
V=2 n- Vs
2 2|22s+1) 2(2s+1)
1 4s+1
=——M+|— |V L(vi
(8s+4) 1 (8s+4) ? )
Comparing Eqs (v) and (vi) with Y-parameter equations,
4s+1 1
N Y'|_| 8s+4  8s+4
A e Y IR M ]

8s+4  8s+4
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The network N, is shown in Fig. 9.71.

1 1
oo o 3 @ 3
o N N o o |
° || N 0 2 ! ¢
Vi 1Q Vs Vi 1 Vs
o o o o
(@) (b)
Fig. 9.71
Applying KCL at Node 3,
[1”+[2”=V3 (1)
From Fig. 9.71,
” Vl _V3
L7 =—F—
Ll
s
=sV—sl; ...(11)
’ VZ _V3
Iy =———
ol
s
=gV, —sV; ...(1ii)

Substituting Eqs (ii) and (iii) in Eq. (1),
sV =sVs+sVy—sVs =13
QCs+0)Vs =sV +sV,

v, = (2:”)1/1 +(2SS+])V2 (iv)
N
=sh- [(2s )1 (23+1)V2]

[s(”l) Vi- [2s+lJ )

2s+1]
” S
L2 _SVZ_S[(2S )] (2s+1)V]
_ | s(s+1) )
N [2s+1}Vl+[ 2s +1} 2 ()

Comparing Eqs (v) and (vi) with Y-parameter equations,

Substituting Eq. (iv) in Eq. (ii),

Substituting Eq. (iv) in Eq. (iii),

s(s+) s
|:Y11" le”]: 2s+1 2s+1

_ s s(s+1)
2s+1 2s+1
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Hence, the overall Y-parameters of the network are

45 +8s+1 (45 +1)

Yoo Mo |_[Y T R +¥n”| | 4@s+D) 4@2s+)
|:Y21' Y22:|_|:Y21'+Y21” Y22'+Y22”]_ (45 +1) 45> +8s+1
C42s+1) 4(2s+])

9.7.3 Series Connection

Figure 9.72 shows two-port networks connected in series. In a series connection, both the networks carry the
same input current. Their output currents are also equal.

h + + Iy
o—>——————— 00— —o——=<—o0
+ vy N, v, +
v, Vs

+ +
_ v Ne 2 _
o—>————— 00— —o——=<—o0

Fig. 9.72 Series connection

Let Z,.',72,.,".Z,,",Z,," be the Z-parameters of the network N, and Z,”,Z\,”,Z>1",Z»"” be the

11 °%12 2 %21 2422 1
Z-parameters of the network N,
For the network N,
Hg 1
1 [Za" Zn"|| 1
o £
N 1Za" Zn"| I
For the combined network Vi=W'+N"and V, =V, +V,".
Hence [Vl ] _ |:V1'+V1”:| _ [le'Jerl” le'+le”][11 :| _ [le Zi ][11]
’ Vs "] | Za'+Za" Zn'+Zyn"|| 1 Zn ZIn ]|l

Thus, the resultant Z-parameter matrix for the series-connected networks is the sum of Z matrices of each

individual two-port network.

For the network N,,

” SETOII RN Two identical sections of the network shown in Fig. 9.73 are connected in series.

Obtain Z-parameters of the overall connection.

I 2Q 2Q I
O O
+ +
Vi 1Q v,
o )

Fig. 9.73
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Solution
Applying KVL to Mesh 1,

V=31 +1, (D)
Applying KVL to Mesh 2,

V,=1I+3I, ...(ii)

Comparing Egs (i) and (ii) with Z-parameter equations,
Zy" Zp”| |31
Zn” Zn”| |1 3

Hence, Z-parameters of the overall connection are

z z)|_[3 1],[3 1]_[6 2
Zon Zyn| |1 3|1 3|7 |2 6

” SETII RN Determine Z-parameters for the network shown in Fig. 9.74.

L L
o ST T, ST o
vy Vo

L

C C
5 I I 5

I I

Fig. 9.74

Solution The above network can be considered as a series connection of two networks, N, ,and N,.
The network N, is shown in Fig. 9.75.

Applying KVL to Mesh 1, I, Ls Ls I
o 000 o0 o
1 1 0 + +
V1'= Ls+— |1 +| — |I» !
Cs Cs ’ )
. vy = Vs
Applying KVL to Mesh 2, Cs
, 1 1 e — -
V' =|—I|L+|Ls+— |1, ...(11) o O
Cs Cs .
Fig. 9.75

Comparing Eqgs (i) and (ii) with Z-parameter equations,

Ls+L —
[le' le':|= Cs Cs

Z 4 ’
20 Zn 1 Lo+ 1
Cs Cs P A
The network N, is shown in Fig. 9.76. i i
Applying KVL to Mesh 1,
V"= (Ls + 1) I +(Ls)I, ... vy % Ls Vo'
Cs l l
Applying KVL to Mesh 2, , Cf Cf _
\ \

o

” _ 1 1
Vy” = (L), + (Ls+ CS) I -..(11) Fig. 9.76
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Comparing Eqs (i) and (ii) with Z-parameter equations,

1
” ” Ls+— Ls
[Zn Zi ] _ Cs
Zn” Zn" Ls Ls+ L
Cs

Hence, the overall Z-parameters of the network are,

2 1
’ ” ’ ” 2Ls+— Ls+—
[le 212:|:|:le +7Z1" Zn'+Zp ]: Cs Cs =(Ls+1)|:2 1:|
Zyy Zy o1 + 201" Zyn'+Zn Ls+i 2Ls+£ Cs)|1 2
Cs Cs

9.7.4 Series-Parallel Connection

Figure 9.77 shows two networks connected in series-parallel. Here, the input ports of two networks are
connected in series and the output ports are connected in parallel.

I 1 + /2’ I 2
O
+ V1 ’ N1 +
vy
+
v, Ne

Fig. 9.77 Series-parallel connection

Let vy’ /2", hoy”, by be the h-parameters of the network Ny and A", k2", hyy ", hpy” be the h-parameters
of the network N,
For the network N,
I:Vllqz—hll/ hlz'][ll]
L k|| Vs
l:Vl”qz’_hll” hlzr/:”:ll}
L7 " h" ||V

For the combined network, V;=W"+V"and I, =1,"+1,”

Hence, |:Vl— _ VV1'+V1”] _ [h11'+h11” h12'+h12”}[11 ] _ [hll h12:||:[1:|
L| | L'+L” o'+ hyy” 'y ||V hy hy || V2
Thus, the resultant #-parameter matrix is the sum of s-parameter matrices of each individual two-port
networks.

For the network N,,

” SETII RSN Determine h-parameters for the network shown in Fig. 9.78.
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Iy 10 10 Ip
o—> ] > ~—0
+ +

20
10 10
v, V.
1 10Q 10Q 2
20
o o
10 10
Fig. 9.78

Solution  The above network can be considered as a series-parallel connection of two networks N, and N,.
The network N, is shown in Fig. 9.79.
Applying KVL to Mesh 1,

v, =41 +21, @) o e Uy b
Applying KVL to Mesh 2, + +
V,=2I +4l, ...(ii)
Rewriting Eq. (ii
writing Eq. (i) v, - v,
412 = —2[1 + V2
1 1
L=—5L+-V; (m
2 TR (iii) . )
Substituting Eq. (iii) in Eq. (i), © 0
1 1 1Q 1Q
V1=4[1+2(—E[1+1V2) Fig. 9.79
1
=311+5V2 ...(1Iv)
Comparing Eqs (iii) and (iv) with #-parameters equations,
_ .
’ ’ 3 -
by’ | 2
' T 11
L 2 4]
For network N,, h-parameters will be same as the two networks are identical.
- 0
” ” 3 ~
" | 2
h21 ” h22 ” _l l
L 2 4]
Hence, the overall s-parameters of the network are
1 1
B ’ ’ ” ” 3 - 3 — 6 1
[hll hlz]: h" hp ]+[h|1 M ]: 20, 20_ 1
hy hn| |k h'| " ") | 1 1 1 1] |-l 5
2 4 2 4
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IEXS| 7-neTwork

Any two-port network can be represented by an equivalent 7 network as shown in Fig. 9.80.
The elements of the equivalent 7 network may be expressed in terms of Z-parameters.
Applying KVL to Mesh 1,

/ Z, Zs ,
V]ZZA11+Zc(11+12) O—;—E — 2 o
=(Zy+Zc)h + Zcly (99 + +
Applying KVL to Mesh 2, v, [] 2 ,
Va=Zplhh+Zc(Iy+11)
:ZC11+(ZB +Zc)[2 (910) — —
O O
Comparlng Egqs (9.9) and (9.10) with Z-parameter Fig. 9.80 T-Network
equations,
le = ZA + ZC
Zin="Zc
Zn=2Zc
222 = ZB + ZC

Solving the above equations,
Zy=Zy—Zin=2y1—2Zy
Zy=Zypn—27y=2Zy»—7Zp
Zc =21y =2y

IEXB| P/ (z)-NETWORK

Any two-port network can be represented by an equivalent pi (77) network as shown in Fig. 9.81.
Applying KCL at Node 1,

L=Y+Yp(V1=V13)

=Yy + YW —YgVs RCANV @ LCH @ b
Applying KCL at Node 2, + — +
L =YV +Yp(V2-N)
=Yg +(Y + Y )V, L0.12) Y Ya Yo Vz
Comparing Eqs(9.11)and(9.12) with Y-parameter
equations, 3 s
hi=Yy+Yp
Y, =-Yp Fig. 9.81 m-network
Y5 =-Yp
Yy =Yg +Yc

Solving the above equations,
Yy=Yn+hy="i+1y
Yp=-Yp ==Yy

Ye=Yn+Yo=Yn+1y
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” Example CW:YA  The Z-parameters of a two-port network are: Z,=100Q27,=2,=50Q7,=20L0

Find the equivalent T-network.
Z Z

Solution The T-network is shown in Fig. 9.82. h ] ] 2
Applying KVL to Mesh 1, + +
Vi=(Z +Z),+Z,1, (D)
Applying KVL to Mesh 2, v, [] Z V,
V,=Z,I, +(Z,+ Z)I, ...(ih)
Comparing Egs (i) and (ii) with Z parameter equations,
le:ZI+ZZ :10 5 g
le = Zz =5 Flg. 9.82
Z2l = Zz =5

Ly =2r+23= 20
Solving the above equations,

Z,=5Q
Z,=5Q
Z3 :1SQ

|| SETII LN ddmittance parameters of a pi network are Y, =0090,Y,=Y, =-0.050 and
Y,, = 0.07 0. Find the values of R , R, and R .

Solution  The pi network is shown in Fig. 9.83.
Applying KCL at Node, 1,

Lol hh
Ru Rb R
I b !
11 1 , S z
[l n-Ln )9 :
(Ra Ry ) Ry ' :
Applying KCL at Node 2, v, R, R, Vs,
Lot ah
R, _ _
1 1 1 ? ’
-——— +(+)V2 ...(ii) Fig. 9.83
R, Ry R

Comparing Eqgs (i) and (ii) with Y-parameter equations,

1
Y= —+—=0.09
a Rb
1
Y, =——=-0.05
Ry
1
Yz] == —005
Ry
Y22— ! +L=007
Ry, R



9.9 Pi(r)-Network 9.63

Solving the above equations,

R,=25Q
R, =200Q
R.=50Q

|| SETII RS Find the parameters YA, YB and YC of the equivalent p network as shown in

Fig. 9.84 to represent a two-terminal pair network for which the following measurements were taken:

(a) With terminal 2 short-circuited, a voltage of 10 £ 0° V applied at terminal pair I resulted in
1,=2520°4and1,=-0.5 £ 0° A.

(b) With terminal 1 short-circuited, the same voltage at terminal pair 2 resulted in I,= 1.5 £ 0° 4
and I, =—1.1 Z=20° A.

/1 @ YB @ I2

-
)
+ O
N

72 Y Yo Vy

Fig. 9.84

Solution Since measurements were taken with either of the terminal pairs short-circuited, we have to
calculate Y-parameters first.

Yllzi :2.540 0257
Vilp,og  10£0°
I -0.5£0°

Y21=i =M=_0'05(§
Vil 10£0°
1 1.5£0°

Yp=-% = S20°_ 155
Valoo  10£0°

Applying KCL at Node 1,
L=YN+Ye(1=12)
:(YA+YB)V1—YBV2 (1)

Applying KCL at Node 2,

L =YV, +Yp(V2-N)

==Yl +(Yp+Yc )2 ...(1i)

Comparing Eqgs (i) and (ii) with the Y-parameter equation,

Y1 =Y,+Y3=025

Y, =Y =-Y3=-0.05

Yoo =Yg + Y =0.15
Solving the above equation,

Y,=0200

Y3 =0.050
Yo =0.100
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|| SEI RN CW 4 network has two input terminals (a, b) and two output terminals (c, d) as shown
in Fig. 9.85. The input impedance with c and d open-circuited is (250 + j100) ohms and with ¢ and d short-

circuited is (400 + j 300) ohms. The impedance across ¢ and d with a and b open-circuited is 200 ohms.

Determine the equivalent T-network parameters.

Zy

Zg

bo

]
L

HEZ

]
L

Fig. 9.85

Solution  The input impedance with ¢ and d open-circuited is

Z,+7Z.=250+,100

The input impedance with ¢ and d short-circuited is,

ZgZ,
Za+—82C_ — 400+ j300
Zy+Zc
The impedance across ¢ and d with a and b open-circuited is
Z,+Z.=200
Subtracting Eq. (i) from (ii),
ﬂ—zc =150+ ;200
Zg+Z¢

From Eq. (iii),

Z,=200~2,

Subtracting the value of Z, in the equation (iv) and simplifying,
Z,.= (100 —j200)

From Egs (i) and (vi),

From Egs (iii) and (vi),

” Example CW: W Find the equivalent m-network for the T-network shown in Fig. 9.86.

2

Z,= (150 +,300) Q

Z,= (100 +,200) Q

2Q

25Q

I

5Q

Fig. 9.86

.(ii)

... (i)

.(iv)

..(v)

(Vi)
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Solution  Figure 9.87 shows T-network and z-network.

Za Zg Z3
O O O O
Zc Z, Z,
o 0 o o)
T-network (Star network) mnetwork (Delta network)
Fig. 9.87

For converting a 7T-network (star network) into an equivalent z-network (delta network), we can use star-
delta transformation technique.

Z.Z, 2x5 .
Zi=Zy+Ze +22C 2045+ 22 2110 50
5 25 ° o
X 2.
Z =ZA+ZB+ZAZB —24+25+ 223 550
Zc 5 11Q 13.75Q
Zy=Zp+Ze+ 2820 _n545:. 29X (13750
ZA o O
The equivalent 7-network is shown in Fig. 9.88. Fig. 9.88

” SETOIIERYN  For the network shown in Fig. 9.89. Find the equivalent T-network.

8Q
Iy 10 ’3:> 40 Iy
O > —~< O
+ +
14 A
o o
Fig. 9.89
Solution  Applying KVL to Mesh 1,
N=3L+2I,-15 (1)
Applying KVL to Mesh 2,
V,=20+6I,+41; ...(11)
Applying KVL to Mesh 3,
13]3 —11 +4]2 :O
L =ill—ilz ...(1il)

13 13
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Substituting the Eq. (iii) in Eq. (i),
1 4
VW =30+21, _E[I +—1

13
38 30

EELyANELY )
ERRE N (iv)

Substituting the Eq. (iii) in Eq. (ii),
1 4
V2 = 211 +612 +4(13[1 —12)

13
30 62
=—hL+—1 (v
TRARTR: v)
The T-network is shown in Fig. 9.90.
Applying KVL to Mesh 1, I Z, Zg I
N=(Z4+Zc)+Zc1, vy © 2
Applying KVL to Mesh 2,
V,=2Zc1) +(ZB +Zc)12 (Vll) v, Zs v,
Comparing Eqs (iv) and (v) with Eqgs (vi) and (vii),
38 - -
Zy+Zc = E ¢} . O
Zc=—
13
62
Zp+Zc=—
sBtZc =13
Solving the above equations,
8
Zy=—Q
SRE
32
Zp=—Q
HRE
30
Ze=—Q
‘13

IEETY| LATTICE NETWORKS

A lattice network is one of the common two-port networks, shown in Fig. 9.91. It is used in filter sections and
is also used as attenuator. This network can be represented in terms of z-parameters.

I Zs A
o <o
+ +
V4 Z
Vi g ? Vo
o o
Za

Fig. 9.91 Lattice network
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The lattice network can be redrawn as a bridge network as shown in Fig. 9.92. This lattice network is
symmetric and reciprocal. The current /; divides equally between the two arms of the bridge.

When the output port is open-circuited, i.e., [, = 0 I
I o
V= (Za+Zs) ¥
le _ ﬁ _ ZA + ZB
Iilp 2o 2
V.
I I I !
Vo="zp-2L7,= (22
Also 2232A2(B 1)
V; Zp—-Z
Zy=-2 =22
Il 2o 2 _
Since the network is symmetric, © Fig. 9.92  Brid "
747 ig. 9. ridge networ
Ziy=2Zyp="1"2
2
Zp—Zy
Z = Z =
12 =421 )
Solving the above equations,
Zy=Zn—2p
Zp=Zn+1n

The lattice network can be represented in terms of other two-port network parameters, with the help of
inter-relationship formulae of various parameters.

” SETNI RS Find the lattice equivalent of a symmetrical T network shown in Fig. 9.93.

Loo1Q 10 Iy

o o

+ +

v 2Q V2

o o
Fig. 9.93

Solution  Applying KVL to Mesh 1,

" =3L+21, ...(1)
Applying KVL to Mesh 2,
Vs =21, +31, ..(ii)
Comparing Eqgs (i) and (ii) with Z-parameter equations,
Z;1=3Q
Z;p=2Q
Z1=2Q

Z» =30
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Since Z,, = Z,, and Z,, = Z,,, the network is symmetric and reciprocal. The parameters of lattice network
are

Zy=211-Zp=3-2=1Q

Zp=2Z11+2Z;;=3+2=5Q
The lattice network is shown in Fig. 9.94.

Iy 1Q A
O—> ~< O
+ +
v, 5Q 5Q v,
o o

1Q
Fig. 9.94
” SETNIIERER  Find the lattice equivalent of a symmetric m-network shown in Fig. 9.95.
h 5Q b

O —~€ O

+ +

Vi 10Q 10Q A

o o

Fig. 9.95

Solution  The network is redrawn as shown in Fig. 9.96.
Applying KVL to Mesh 1,

V=105, -10;  ...(i)

I
Applying KVL to Mesh 2,

Vo, =101, +10715 ...(i1) v, ) 100 :> 100 C V,
Applying KVL to Mesh 3, h f3 I

-101;+107, +2515=0 - -

I 5Q

e}
A
o

o o
hz%[—%lz ...(1i1) Fig. 9.96
Substituting Eq (iii) in Eq (i),
2 2
Vi=10L-10 = -=1
1 1 (5 173 2)
=61+41, ...(v)

Substituting Eq (iii) in Eq (ii),
2 2
Vy=100L+10| =1, —=1
2 2 (5 173 2)

=4]1—6]2 (V)
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Comparing the Eqgs (iv) and (v) with Z-parameter equations,

Z]l =60Q
Z1p=4Q
I 2Q I
Z21 =4Q O—> —~—O
Zn=6Q " "
Since Z,, = Z,, and Z,, = Z,, the network is 100 100
symmetric and reciprocal. The parameters of 1 V2
lattice network are
Zy=211—Z1p=6-4=2Q - _
O O
Zp=2Z11+Z;,=6+4=10Q 20
The lattice network is shown in Fig. 9.97. Fig. 9.97

IEETH| TERMINATED TWO-PORT NETWORKS

9.11.1 Driving-Point Impedance at Input Port

A two-port network is shown in Fig. 9.98. The output port of the network is terminated in load impedance
Z,. The input impedance of this network can be expressed in terms of parameters of two-port network
parameters.

h h

o—>—
+ +
Two-
Vs port Vo Z
network
_ _

Fig. 9.98 Terminated two-port network

1. Input Impedance in Terms of Z-parameters We know that
N=Znh+2Zph

Vo=Zyli+Zy1
From Fig. 9.98, Fo TR

Vy==2Z1,
—LZy =21 +Zy 1,
V4
L=-—"—1
Zzz +ZL

"
Z; =71=le+le

(_ Zy ): 2\ Zy + 22 — Z12Zy,
1

Zzz +ZL Zzz +ZL

If the output port is open-circuited, i.e., Z, = oo,

2\ Zy — 212 Z.
11 22Z 12 21+le
Zin=lim ZL =le
P 224
ZL
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If the output port is short-circuited, i.e., Z, =0,
112y — Z1nZ
Zi — 11422 12421
Zy

2. Input Impedance in Terms of Y-parameters We know that
L =Y+,
L =Y +Ynl,

From Fig. 9.98,

Va==Z1,
1
I =—E=—YLV2 where Y, = —
Zr Zr
=YV =+ 1),
Y;
Vr=— V]
n+7Yg
Y; Nt Y11 — Yo Yo + 111
L =Y i+, - 21 V=¥, — =22 Il — it ity g
Y22+YL Y22+YL Y22+YL
7 ﬂ _ Y +Y;
"L N Yol +hY,
When output port is open-circuited, i.e., ¥, =0
Y
Z = 22
1Yo — 1Yo
When output port is short-circuited, i.e., ¥, = o,
Y;
Zin = llm L = —
YL—>wY11Y22—Y12Y21+Y Y
— St
Y,
3. Input Impedance in Terms of Transmission Parameters We know that
Vi=AV, — BV,
I, =CV,-DI,
From Fig. 9.98,
Vy=-Z;1,
L, =-CZ;1,-DI, = —(CZL +D)[2
P
CZ;+D
1 AZ; + B
Vi=AZ I, -B=|-—"—|=| Z2£ I
CZ;+D CZ,+D
7 = W _AZ, +B

I, CZ,+D
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If the output port is open-circuited, i.e., Z, = o,
ZA
C
If the output port is short-circuited, i.e., Z, =0,
B
Zin = B
4. Input Impedance in Terms of Hybrid Parameters We know that
N =hal +
Iy =yl + s
V2 = —ZL[2
Iy =hyy —hpZ D
I, = tw I
1+ o7,
Y hZ, :
1+ h2ZZL

Substituting the value of V, in V,

- Z My — ol )Zp + h
I/l — hll[l +h12 214L IL — ( 117922 12 21) L 11 [1
1+hoZ; 1+hpZ;

Vi _ Uiy = hiohy )21 +
I 1+ hnZ;
If the output port is open-circuited, i.e., Z, = oo,
_ hihy — hahy
Ly
If the output port is short-circuited, i.e., Z, =0,
Z,=hy,

Zin =

Zin

9.11.2 Driving-Point Impedance at Output Port

9.71

A two-port network is shown in Fig. 9.99. The input port is terminated in load impedance Z,. The output

impedance of this network can be expressed in terms of two port network parameters.

——=<—o0
+ +
Two-
Z 72 port A
network
_ _

Fig. 9.99 Terminated two-port network
1. Output Impedance in terms of Z-parameters We know that
Vi =2Zul + Zia1,
Vy=2Zoli + 2yl
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From Fig. 9.99,
h=-2Z.1

—IZy =Zn 1 + Z;21,

I = __Zn I
ZL+Z“

V4
Vy = 221(_12)]2 +Zpl =1 (Zzz -

251725 ): (211222 —ZiZln+2ZnZ; )[2

ZL +Z“ ZL +Z“ le+ZL
Zy = Va _ ZuZn —ZnZan+ZnZ;
I In+Zp

If the input port is open-circuited, i.e., Z, = oo,

Zy=2y
If the input port is short-circuited, i.e., Z,= 0,

Z\\Zy —Z1nZ
Zo = 11422 — £12421

Z

2. Output Impedance in Terms of Y-parameters We know that
LI =" +1ol,

L = + Yl
From Fig. 9.99,

h=-Z,1
A A/
Z

YV =+ Yo,

Y
vt Yy,
Y +¥

Y

I = YZI(_ 12 )Vz +¥nlh =0, |:Y22 -
T+

_hnh_ Y+ 1

I, YuYn —Yilo +Y.1»
If input port is open-circuited, i.e., ¥, =0,

N V. Yy —YoYs +Y, Yo
Y+ 1 Y+ 1

Zy

Y
Zo -
Y -1l

If input port is short-circuited, i.e., ¥, = o,

3. Output Impedance in Terms of ABCD Parameters We know that
Vi = AV, — BI,
1] = CV2 - DIZ
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From Fig. 9.99,

Mh=-Z.1
Vi, _AVh-BI
L ' con-bn
V2(CZy + A)=1,(DZ; + B)
_ W _DZ,+B
T L Cz +4
If input port is open-circuited, i.e., Z, = oo,
D
Zy=—
"¢
If input port is short-circuited, i.e., Z, =0,
B
Zon=—=
' 4
4. Output Impedance in Terms of h-parameters We know that
=l + hatin

Iy =yl + hyoVs
From Fig. 9.99,
n=-Z.1
=hZp =l + Iyl

L=|- 2 Vs
m+Z

9.73

hy
I =My | — Vy+hopVy = V5
2 21( h11+ZL)2 22> 2[

7 |23 hi+Z;
) = 2=
I, hy —hohy +hpZ;

hll +ZL

If input port is open-circuited, i.e., Z, = oo,
1
Zy=—
Iy
If input port is short-circuited i.e., Z, = 0,

Zo = hiy
hihy — o

” SEINTACRRR  Measurements were made on a two-terminal network shown in Fig. 9.100.

o—>—
+ +
2 Network V, Ry
_ _
v >

Fig. 9.100

iy —hiohoy +hnZ), :|
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(a) With terminal pair 2 open, a voltage of 100 £0° V applied to terminal pair 1 resulted in
I;=10£0° A, V,=2520°V

(b) With terminal pair 1 open, the same voltage applied to terminal pair 2 resulted in
I,=20Z£0°A4, V;=5020°V

Write mesh equations for this network. What will be the voltage across a 10-£2 resistor connected across
Terminal pair 2 if'a 100 £0° V is connected across terminal pair 1?

Solution  Since measurements were done with either of the terminal pairs open-circuited, we have to
calculate Z-parameters first.

anﬂ _100£0 —100
Lo, 10£0°
Zy = 143 = 2520 =25Q
Il 10£0°
V 100£0°
zp=02 210020 _sq
L, 20£0°
le = ﬁ = 5040 = 25 Q
Lo, 20£0°
Putting these values in Z-parameter equations,
" =105,+2.51, ...(1)
V, =251 +51, (11)
When a 10-Q resistor is connected across terminal pair 1,
1 =100 £0°V

Vy==R; 1, =-101,

Substituting values of V, and ¥, in Eqgs (i) and (ii),
100 = 10/, +2.51,

and =107, =2.51 +5I,
251, =~15I,
1, =6,
100 = —601, +2.51,
I, = _100 g4
57.5

Voltage across the resistor = —/,R, =—10(-1.74) = 17.4 V

” SETNII BRI  The Z-parameters of a two-port network shown in Fig. 9.101 are Z,=2,=1048
Z,, = Z,,= 4 Q If the source voltage is 20 V, determine I ,1,,V, and input impedance.

Vs v, Network V, 5Q

Fig. 9.101
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Solution
N=V,=20V
V, =-201,

The two-port network can be represented in terms of Z-parameters.
=101, +41,

V=45 +101,
-201, =41, +101,
41, =-301,
I, =-1.51,
Substituting the value of 7, in Eq. (i),
V =10(-7.51,)+41, =711,
20=-711,
I, =-028A
I, =-7.5(-028)=2.1A
V, =-20(-0.28) =56V
20

Input impedance Z, =—=—=9.52Q
I 2.1

9.75

...()
..(ii)

” SETII MRV The Z-parameters of a two-port network shown in Fig. 9.102 are, Z, =240

1Z I
Z,=1802 7, =248 7, =5 £ Calculate the voltage ratio 72, current ratio —1—2 and input impedance I

s 1

Iy A

+ +
Vs v, Network v, 5Q
Fig. 9.102
Solution  The two-port network can be represented in terms of Z-parameters.
Vi=2L+1
V=211 +51,
When the 5 Q resistor is connected across port-2,
Vy,=-51,
Applying KVL to the input port,
Vs =1 =1 =0
Vi=V+ 1,
Substituting values of V|, and V, in Eqgs (i) and (ii),
VeI =20 +1,

Vs =35 +1

"
1

..()
...(ii)

...(iii)

.(iv)

..(v)
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and =51, =21, +51,
0=271+101, ...(vi)

Solving Eqs (v) and (vi), we get

Ve 1

0 10
L= _iVs

3 1] 14

2 10

3V

0 0 1
h=n—t=-=V,

301 14

2 10

L1
I, 5
5 1 5
Vo =20 +50, =2| >v, |+5| ——v, | =27,
Fo TR (14“) (143) 14"
ha_s
v, 14
5 1 9

Vi=2l+1, =2| 2V, |-—v, =,
o (143) 14 ° 14 °
n_d%,
L, 5

” SETTIEREN 7/ following equations give the voltages V, and V, at the two ports of a two-port
network shown in Fig. 9.103.

Vi=51;+21,
Vo,=21,+1,
A load resistor of 3 £2is connected across port 2. Calculate the input impedance.
h b

o—>
+ +
Two-
2 port Vs 3Q
network
_ _
Fig. 9.103
Solution  From Fig. 9.103,
V,=-3I, (1)
Substituting Eq. (i) in the given equation,
=30, =2L+1,
I, = —151 (ii)
Substituting the Eq. (ii) in the given equation.
V1 = 5[1 —[1 = 411
Input impedance Z; = n =4Q
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” SCINCRERTY®  The y-parameters for a two-port network shown in Fig. 9.104 are given as, Y

1
=40,Y,,=50,Y,,=Y, =40. Ifaresistor of 1 £is connected across port-1 of the network then find the

output impedance.

14 l

2 ——
Vi 1Q Network Vs
_ _
Fig. 9.104
Solution The two-port network can be represented in terms of Y-parameters.
L =4n+41, ..(0)
1, =4V +5V, (11)
When the 1-Q resistor is connected across port-1 of the network,
h=-1=-I
I =-1
Substituting value of /, in Eq (i),
N =4 +4r,
-5 =41,
4
N=-_0

Substituting value of V| in Eq (ii),
4 9
L =4 =0V, [+5V, ==V;
2 ( 5 2) 2=5"

. Vo, S
Output impedance Zy = —>==Q
I, 9

” Example CICEN  The following equation gives the voltage and current at the input port of a two-port
network shown in Fig. 9.105.

V=5V, =31,
Il = 6V2 - 2]2
A load resistance of 5 £2is connected across the output port. Calculate the input impedance.
h I
o—>
+ +
Two-
72 port V, 250
network
_ _
Fig. 9.105
Solution  From Fig. 9.105,
V,=-5I,

Substituting the value of ¥, in the given equations,

W =5(-51,)-31, =281,

I, =6(=51,)-21, =-321,
_h_ 285 7

Input impedance =—= =
P P L, 321, 8

i
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” SCI AR  The ABCD parameters of a two-port network shown in Fig. 9.106 are A = 2.5,
B=44 C=10, D=2 What must be the input voltage V, applied for the output voltage V, to be 10 V across
the load of 10 €2 connected at Port 2?

o—>—]
+ +
2 Network V, 100
_ -
Fig. 9.106
Solution  The two-port network can be represented in terms of ABCD parameters.
V,=2.5V,- 4l (D)
I=V,-2l, ... (if)
When the 10 Q resistor is connected across Port 2,
¥V, =-101, =10 ..(iii)
I =-1A

Vi =2.510)—4(=1)=29 V

” SETNI BTN The h-parameters of a two-port network shown in Fig. 9.107 are h,=482h,=1,

h,, =1, h,, = 0.5 O. Calculate the output voltage V, when the output port is terminated in a 3 $2resistance
and a 1V is applied at the input port.

+ +
1V 2 Network V, 30
Fig.9.107
Solution
n=1v
V,==-31,
The two-port network can be represented in terms of #-parameters.
N=4L+V, (1)
L=L+05), (11)
I, =1, +0.5(-31)
250 =1,

Substituting the value of V', and I, in Eq (i),
1=42.51)-31,

1=71,
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|| Example CRYEN  The h-parameters of a two-port network shown in Fig. 9.108 are hy,, =180

5, = —hy,, =2, h,, = 1 G. The power absorbed by a load resistance of 1 £2 connected across port-2 is
100W. The network is excited by a voltage source of generated voltage V_and internal resistance 2 €2
Calculate the value of V.

20 Iy Ip
+ +
Vs v, Network V, 20
Fig. 9.108
Solution The two-port network can be represented in terms of 4-parameters.
V1=]|+2V2 (l)
L=-211+V, ...(11)
When the 1 Q resister is connected across port-2,
2
2 =100
1
V=10V
V, =-11, =10
IL,=-10A
Substituting values of 7, and V, in Eq (ii),
-10=-21+10
11 =10A
Applying KVL to the input port,
Vi=2L -1 =0

Vi=2L1 =(11+2V3)=0
VS —3[1 —2V2 =0
Ve =31 +2V, =3(10)+2(10) =50 V

EXGI’CISGS
9.1 Determine Z-parameters for the network 9.2 Find Z-parameters for the network shown in
shown in Fig. 9.109. Fig. 9.110.
Loo1Q 10 Ip , 1F 2F I
; ° o] ] .
vy 2Q 050 Y% Vi 2H 2H v,
_ _ o o
O O
] Fig. 9.110
Fig. 9.109

4s* +657+1  4s°
7= 4% +5 45 +1
45 45 +2s
4s* +1 4s* +1

N

Il
SRR ot
LW N
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9.3 Find Y-parameters of the network shown in
Fig. 9.111.

I4 2Q 2Q 2Q I

v, 10 10 Va

o
ol

Fig. 9.111
v = 036 —-0.033
~1-0.033  -0.36
9.4 Find Y-parameters for the network shown in
Fig. 9.112.
Iy 30 1H A
o 00N ‘o)
+ +
12 ——2F 20 —1F V2
o o
Fig. 9.112
10s*+13s+2 2
y = S5s+6 S5s+6
- 2
2 5s”+6s+5
55+6 55+6
9.5 Find Y-parameters for the network shown in
Fig. 9.113.
h | \JTF 2
[e; 1T O
+ +
v 2Q 1§F 2H 1Q V,
o o
Fig. 9.113
7s+6 s
Y= 12 , 4
s s +4s+2
4 4s

9.6 Find Y-parameters for the network shown in
Fig. 9.114.

2i
>
i 8Q
O > O
+ 40 +
2 20 Vo
o o
Fig. 9.114

3 _1
20 20

Y =
11
4 4

9.7 Show the ABCD parameters of the network
shown in Fig. 9.115.

, 1F 1F I
5 Il |l 5
o | | <
v 1H Vs
o o
Fig. 9.115
1+s°  1+2s°
[A B] | os? $
¢ D 1 1+
S s2
9.8 Find ABCD parameters for the network shown
in Fig. 9.116.
L, 4Q 8Q 6Q b
[e; O
+ +
Vv, 1Q 2Q Vs
o )
Fig. 9.116

CD=11

4 a1 [27 206
— @
2

9.9 For the network shown in Fig. 9.117,
determine parameter /,,.



2/,
>
Iy 1Q N I
O | —<—O
+ 1F +
2 1Q V2
o o
Fig. 9.117
—-(2+53)
=
1+s
9.10 Determine Y and Z-parameters for the
network shown in Fig. 9.118.
Iy 2Q I
O O
+ +
v, 20 10 21, Vs
o o
Fig. 9.118

[Y11=10,%,=-050,Y, =150, =050

2 2 6 4
Zn=2Q, 7, =2Q, 2y =——Q, Z»n =—Q
11 5 12 5 21 5 22 5 ]

9.11 For the bridged 7, R-C network shown in
Fig. 9.119 determine Y-parameters using
interconnections of two-port networks.

1

2k
Il
|
P 10 29 A
O O
+ +
2 ::%F Va
> 5
Fig. 9.119
s 48548 (s7+65+8)
yo| 2s+6) 2(s+6)
(s*+65+8) s’ +10s+8
2(s+6) 2(s+6)

9.12 For the network of Fig. 9.120, find Y-param-
eters using interconnection of two-port net-
works.

Exercises 9.81
2Q 2Q

Iy 20 20Q Ip
O ' g O
+ +
2 1Q 10 Va
= _

Fig. 9.120
3 1
4 4
Y=
L
4 4
9.13 Two identical sections of the network shown
in Fig. 9.121 are connected in parallel. Obtain
Y-parameters of the connection.

Lo1Q 2Q A
O—> O
+ +
2 20Q 40Q Va
o o

Fig. 9.121
1
b
Y =
s
2 4
9.14 Determine Y-parameters using interconnection
oftwo-port networks for the network shown in
Fig. 9.122.
10 1Q

<+
N
e}
Ol < +0

AN
o=
)

Fig. 9.122
3.1 -09
r= [—0.9 3.1 :|
9.15 Determine the transmission parameters of the

network shown in Fig. 9.123 using the concept
of interconnection of two two-port networks.
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1H 1H 1H
o—500 000 TY00—o0
_—1F —_—1F
O O
Fig. 9.123
143s> +5* 354457 +5°
25+5° 1+3s% +5°
9.16 Two networks shown in Fig. 9.124 are
connected in series. Obtain the Z-parameters
of the resulting network.
1Q 1Q
O O
2Q
O O
(a)
10Q 20 Q
O O
5Q
O O
(b)
Fig. 9.124

18 7
7 28

9.17 Two identical sections of the network shown
in Fig. 9.125 are connected in series-parallel.

Objective-Type Questions

Determine the A-parameters of the overall

network.
3Q 3Q
O O
1Q 1Q
O O
Fig. 9.125
o1
2 2
L]
2 2
9.18 The h-parameters of a two-port network
shown in Fig. 9.126 are &, =2 Q, h,, =4, h,,
=-S5, h,, =2 0. Determine the supply voltage
V' if the power dissipated in the load resistor
of 4Qis25 Wand R =2 Q.
R=2Q |, A
+ +
Vs Vi Network Vs 4Q
Fig. 9.126
[58 V]

9.19 The Z-parameters of a two-port network are
Z,=21Q,2,=2,=06Q,7Z,=16Q. A
resistor of 2 Q is connected across port 2. What
voltage must be applied at port 1 to produce a
current of 0.5 A in the 2 Q resistor.
[6 V]
Ifatwo-portnetworkhas Z,, =25Q, 7 ,=Z, =
209,Z,,=509, find the equivalent T-network.
[10 Q, 30 Q, 20 Q]

9.20

9.1 The open-circuit impedance matrix of the
two-port network shown in Fig. 9.127 is
2Q

10 V) 8h

Fig. 9.127

-2 1 -2 -8
@ |5 3] o7 7

0 1 2 1
© [1 0] @ [—1 3}

9.2 Two two-port networks are connected in
cascade. The combination is to be represented
as a single two-port network. The parameters
are obtained by multiplying the individual



9.3

9.4

9.5

(a) z-parameter matrix
(b) h-parameter matrix
(c) y-parameter matrix
(d) ABCD parameter matrix

For a two-port network to be reciprocal
@) z,=2, () ¥, =y,
(c) hy,=—h, (d) AD-BC=0

The short-circuit admittance matrix of a two-

o L
2.

0

port network is The two-port

network is 2

(a) non-reciprocal and passive
(b) non-reciprocal and active
(c) reciprocal and passive

(d) reciprocal and active

A two-port network is shown in Fig. 9.128.
The parameter £, for this network can be
given by

Iy R R A
O—> <O
+ +
v, R Vo
o o

Fig. 9.128
1 1
a) —— b) —
@ ®)
3 3
c) —— d —
© -3 @ 3
9.6 The admittance parameter Y,, in the two-port

network in Fig. 9.129.
20 Q

5Q 10Q

Fig. 9.129

9.7

9.8

Objective-Type Questions 9.83
(a) —0.2 mho (b) 0.1 mho
(¢) —0.05 mho (d) 0.05 mho

The Z-parameters Z | and Z,, for the two-port
network in Fig. 9.130 are,

Iy 2Q Iy

O —~€ O

+ +
4 Q

v, v,
10V,

o o

Fig. 9.130

6 16 6 4

0000 b Lot

@ =% ® 7%

6 16 4 4

20_-2%9 a 2o

© 7% 7 @ %0

The impedance parameters Z,, and Z, of a
two-port network in Fig. 9.131.

2Q 2Q 3Q

9.9

Fig. 9.131

(@) 2.75Q,025Q
(c) 3Q,025Q

(b) 3Q,05Q
(d) 2.259,0.5Q

The h parameters of the circuit shown in
Fig. 9.132.

10Q
o o)

20Q

Fig. 9.132
0.1 0.1
@ [—0.1 0.3]

30 20
© [20 20]
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9.10

9.11

9.12

9.13

9.14

A two-port network is represented by ABCD

parameters given by [VI:|—[A B:|[ V2 ]
L] |C D|-L]

If port 2 is terminated by R, then the input

impedance seen at port 1 is given by

A+ BR AR; +
(a) AT PRL (b) Lic

C+ DRy BR; +D
© DR; + A4 d) B+ AR,

BR; +C D+CR;,

In the two-port network shown in Fig. 9.133,
Z,, and Z,, are respectively

o S O
A G Al A
O O
Fig. 9.133
(a) r,and Br, (b) 0and -fr,

(c) 0and Br, (d) r,and —Br,

If a two-port network is passive, then we
have, with the usual notation, the following
relationship for symmetrical network

(@) hy,=hy,
(b) hyy=—h,,
(©) hyy = hy,
(d) & -h
A two-port network is defined by the following
pair of equations /, =2V, +V,and [, =V + V.
Its impedance parameters (Z,, Z,,, Z,,, Z,,)
are given by

(@ 2,1, 1,1

() 1,1, 1,2

A two-port network has

h, =1

1hoy = hyhy, =

(b) 1,-1,-1,2
@ 2,-1,-1,1

transmission
A B . .
parameters c pl The input impedance

of the network at port 1 will be

A AD
@ = ® Zc

9.15

9.16

9.17

9.18

AB D
(© ch (d E

A two-port network is symmetrical if

@ Z,2,-2,2,=1
(b) AD-BC=1

(¢) hyy hy—hyyhy =1
(d ¥, Y,-Y,7, =1

For the network shown in Fig. 9.134
admittance parameters are ¥, = 8 mho, Y, =
Y,, = =6 mho and Y,, = 6 mho. The value of
Y,, Y, and Y. (in mho) will be respectively

(a) 2,6,-6

(©) 2,0,6

(b) 2,6,0
(d) 2,6,8

Ye
O
L]

i ]

Fig. 9.134

The impedance matrices of two two-port

networks are given by [3 2] and |:15 > ]
2 3 3 25

If these two networks are connected in series,

the impedance matrix of the resulting two-

ol 2

(d) inderminate

port network will be

(@ B 255]

15 2
CE
If the wnetwork and T'network are equivalent,

then the values of R,, R, and R, (in ohms) will
be respectively

(a) 6,6,6
(©) 9,6,9

(b) 6,6,9
) 6,9,6
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16 Q

1Q | ‘%F
© © o— W || o
24Q 24Q 2H
O O
° ° Fig. 9.136
R, R, [2s+1 25 3" ) [25+1 —2s3
© © @ 2s 25+ -— ®) =25 25+-
L s ] L s
r . 3
Ry 2s+1 2s 25+ 5 —2s
() 3 @
L —2s 25+ n 2s 25+ 3
O O - L Ky
Fig. 9.135 9.21 With the wusual notations, a two-port
9.19 For a two-port symmetrical bilateral network, resistive network satisfies the conditions
if 4 =3 and B = 1, the value of the parameter 3 4 )
C will be A=D=EB=§C. The Z,, of the network is
(a) 4 (b) 6 5 4
(c) 8 (d) 16 (a) 3 (b) 3
9.20 The impedance matrix for the network
shown in Fig. 9.136 is © 2 @ L
3 3
Answers to Objective-Type Questions
9.1. (a) 9.2. (d) 9.3. (b), (c) 9.4. (b) 9.5. (a) 9.6. (¢) 9.7. (¢)
9.8. (a) 9.9. (d) 9.10. (d) 9.11. (b) 9.12. (d) 9.13. (b) 9.14. (a)

9.15. ()  9.16. (c)  9.17. (b) 9.18. (@)  9.19. (c)  920. (a  9.21. (b)






Synthesis of

RLC Circuits

ETEN| ~nTrRODUCTION

In the study of electrical networks, broadly there are two topics: ‘Network Analysis’ and ‘Network
Synthesis’. Any network consists of excitation, response and network function. In network analysis, network
and excitation are given, whereas the response has to be determined. In network synthesis, excitation and
response are given, and the network has to be determined. Thus, in network synthesis we are concerned with
the realisation of a network for a given excitation-response characteristic. Also, there is one major difference
between analysis and synthesis. In analysis, there is a unique solution to the problem. But in synthesis, the
solution is not unique and many networks can be realised.

The first step in synthesis procedure is to determine whether the network function can be realised as a
physical passive network. There are two main considerations; causality and stability. By causality we mean
that a voltage cannot appear at any port before a current is applied or vice-versa. In other words, the response
of the network must be zero for # < 0. For the network to be stable, the network function cannot have poles in
the right half of the s-plane. Similarly, a network function cannot have multiple poles on the j axis.

ETEN| HurwiTZ POLYNOMIALS

A polynomial P(s) is said to be Hurwitz if the following conditions are satisfied:
(a) P(s) is real when s is real.
(b) The roots of P(s) have real parts which are zero or negative.

Properties of Hurwitz Polynomials
1. All the coefficients in the polynomial
P(5) = ays" + @y 8"+ ars + ag

are positive. A polynomial may not have any missing terms between the highest and the lowest order
unless all even or all odd terms are missing.

2. The roots of odd and even parts of the polynomial P(s) lie on the jw-axis only.

3. If the polynomial P(s) is either even or odd, the roots of polynomial P(s) lie on the jw-axis only.

4. All the quotients are positive in the continued fraction expansion of the ratio of odd to even parts or
even to odd parts of the polynomial P(s).



10.2 Circuit Theory and Networks—Analysis and Synthesis

5. If the polynomial P(s) is expressed as W(s) P,(s), then P(s) is Hurwitz if W(s) and P (s) are Hurwitz.
6. If the ratio of the polynomial P(s) and its derivative P’(s) gives a continued fraction expansion with all
positive coefficients then the polynomial P(s) is Hurwitz.

This property helps in checking a polynomial for Hurwitz if the polynomial is an even or odd function
because in such a case, it is not possible to obtain the continued fraction expansion.

” SE I EMOBE  Siare for each case, whether the polynomial is Hurwitz or not. Give reasons in each case.
(a) st 45° +35+2
() 0 +55° +4s? =357 +257 +5+3

Solution (a) Inthe given polynomial, the term s? is missing and it is neither an even nor an odd polynomial.
Hence, it is not Hurwitz.
(b) Polynomial s +55° +4s* —35® + 257 + s+3 is not Hurwitz as it has a term (—3s%) which has
a negative coefficient.

” Example WA Test whether the polynomial P(s)= s*+57 +55° + 35+ 4 is Hurwitz.

Solution  Even part of P(s)=m(s) =s* + 55> +4
Odd part of P(s)=n(s)= $°+3s
m(s)

n(s)

By continued fraction expansion,

$ 3s)s4 +55° +4 (s

0(s) =

st 4352
2 3 1
2s +4)s +3s(s
2
$°+2s
$)2s° +4(2s
2s?
4)s(1s
4
S
0

Since all the quotient terms are positive, P(s) is Hurwitz.

” Example VW Test whether the polynomial P(s)= s° +45° + 55+ 2 is Hurwitz.

Solution  Even part of P(s) = m(s) = 4s* +2
Odd part of P(s) n(s) = s° +5s



10.2 Hurwitz Polynomials 10.3

The continued fraction expansion can be obtained by dividing n(s) by m(s) as n(s) is of higher order than

m(s).

n(s)
m(s)

1
457 +2)s3 +5s(4s

0(s)=

2
S+
4

gs 452 +2 §s
2 9

4

Since all the quotient terms are positive, P(s) is Hurwitz.

” SCI AWK  Test whether the polynomial P(s) = s* +s° + 35 + 2s+12 is Hurwitz.
Solution  Even part of P(s)=m(s) =s* +3s* +12
Odd part of P(s)=n(s)=s>+2s

_ m(s)
O(s) = n(s)

By continued fraction expansion,

s -+-2s)s4 +3s2 +12 (s
st+2s?
s2 +12)s3 + 2s (s

s +12s

Since two quotient terms are negative, P(s) is not Hurwitz.
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” SE[I MO Prove that polynomial P(s)= s* +57 4257 + 35+ 2 is not Hurwitz.

Solution  Even part of P(s) = m(s) = s* +2s* +2
Odd part of P(s)=n(s)=s" +3s

m(s)
n(s)

By continued fraction expansion,

Os) =

$ 3s)s4 +257+2 (s
st 4357
-5+ 2)s3 +3s(—s

$*—2s

SS)—SZ +2(—1s
5
2) SS(SS
2

S5s
0

Since two quotient terms are negative, P(s) is not Hurwitz.

” Example 0NN Prove that polynomial P(s)= 25 +55° +65° +3s+1 is Hurwitz.

Solution  Even part of P(s)=m(s) = 2s* + 65> +1
Odd part of P(s)=n(s) = 55° +3s

m(s)

n(s)

By continued fraction expansion,

O(s) =

553 +3s)2s4 +65%+1 (zs
2s4+§s2
5
24 25
241|587 43| s
5 24

54 +§s
24
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47 24 , 576
—s |—s"+1| —=
24 )5 235
24
5
)47 24
1|—s|—s
24 \ 47
47
—s
_24
0

Since all the quotient terms are positive, the polynomial P(s) is Hurwitz.

” SETII MO Test whether the polynomial P(s) = s*+75% +65° +21s+8 is Hurwitz.

Solution  Even part of P(s)=m(s)=s* +6s>+8
Odd part of P(s) = n(s)=7s> +21s

m(s)

n(s)

By continued fraction expansion,

1
7s° +21s) st +65? +8(7s

O(s) =

st +3s?

32 +8)7s3 +21S(Zs

7s° +§s

3

zs 3s% +8 gs

3 7

3s?
8)7s(7s

3 \24
7
—s
3
0

Since all the quotient terms are positive, the polynomial P(s) is Hurwitz.

(NCEIEEEROER  Check wicther P(s)= 5" +55° +55° + 45+ 10 is Hurwitz.

Solution  Even part of P(s) = m(s) = s* + 55> +10
Odd part of P(s) = n(s) = 55> +4s
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m(s)

Q@)= ()

By continued fraction expansion,
1
55° + 4s) st +557 +10(5s

4
4,00

5

2s2 +10 | 55° +4s és

5 21

N

250

59+ 5
21
1
—66s)21s2+10(—441s
21 830

21

10)—@5 —@s
21 210

Since the last two quotient terms are negative, the polynomial P(s) is not Hurwitz.

” SEIEROEN  Test whether the polynomial s° + 3s® + 2s is Hurwitz.
Solution  Since the given polynomial contains odd functions only, it is not possible to perform a continued
fraction expansion.

P'(s) = %P(s) =55 +957 42

_ PG
Q)= )

By continued fraction expansion,
55 +957 + 2) s +3s° + ZS(SS

EFER IR
5 5

Es3 +8s)5s4 +95? +2(265s



5s4+@s2
1
7sz+2)6s3+8s(8s
3 5 5 \35
6 ;5 36
-85 +—s
5 35
20 \7 »

10.2 Hurwitz Polynomials 10.7

Since all the quotient terms are positive, the polynomial P(s) is Hurwitz.

” SETII WS  Tesr whether the polynomial P(s) is Hurwitz.

P(s)=s" +5 +s

Solution Since the given polynomial contains odd functions only,
fraction expansion.

P'(s) = 4 P(s)=5s" +3s7 +1
ds

P(s)
P’(s)

O(s)=
By continued fraction expansion,
1
55 +357 +1)s5 + s +s(5s

I I
5 5

S +=s

it is not possible to perform continued

2o st s 321 B
555 2

55% +10s2
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)26 26
1|—s|—s
35 \35
26

—=5

35

0

Since the third and fourth quotient terms are negative, P(s) is not Hurwitz.

” SETII WS KN  7ess the polynomial P(s) of Hurwitz property.

P(s)=5s° +3s" +8s* +155° +175° +12s+4

Solution  Even part of P(s)=m(s)=s® +8s* +17s* +4
Odd part of P(s) = n(s) =3s° +155° +12s

m(s)

n(s)

By continued fraction expansion,

O(s) =

3s° +15s° +12s) S +8s* +175* +4 (;s
$0 +55% + 457
3s* +13s7 +4) 3s° +155° +12s (s
3s° +13s5° +4s

2s3+85) 35t +13s2 +4(;s

3s* +1257
s2+ 4) 25° +8s (ZS
25> +8s
0

The division has terminated abruptly (i.e., the number of partial quotients (that is four) is not equal to the
order of polynomial (that is six) with common factor (s + 4).

P(s)= s +35° +8s* +155° +175% +12s+4 = (s* + 4)(s* +35° + 45 +3s5+1)
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If both the factors are Hurwitz, P(s) will be Hurwitz.
Let B(s)=s>+4

A(s)
Rls)

Since it contains only even functions, we have to find the continued fraction expansion of

Pls)=2s
2 2
B(s) s"+4 s + 4

_s.1
B(s) 2s 2s 2s 2 s
2

Since all the quotient terms are positive, P (s) is Hurwitz.

Now, let Py(s)= st4358% 4457 +35+1
my(s) = st+4st+1
ny(s) = 3s° +3s

By continued fraction expansion,

1
3s° +3s) st+4g? +1(3S

4
st §?

352 +1) 35 +3s (s

35 +5
23) 3s% + 1(3s
2
3s?
1)2s (2s
25
0

Since all the quotient terms are positive, P,(s) is Hurwitz.
Hence, P(s)=(s* +4)(s* +3s° +4s> +3s+1) is Hurwitz.

” SCI OBV Test whether the polynomial P(s)=s" +2s5 +25" +5* +45° + 857 +8s+4 is

Hurwitz.

Solution  Even part of P(s) = m(s)=2s® +s* +8s* +4
Odd part of P(s)=n(s)=s’ +2s° +4s° +8s
n(s)

m(s)

Os) =
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By continued fraction expansion,

1
25% + 5% + 852 +4)s7 +25° +45° +8s(2s

s’ +ls5 +45° +2s
2
4
3s5 +6s)2s6+s4+8s2+4(s
2 3
2s° +8s%

st +4)§s5+6s és
2 2

és5 +6s
2

0

Since the division has terminated abruptly it indicates a common factor s*+ 4. The polynomial can be
written as

P(s)=(s* +4)(s> + 25> + 25 +1)

If both the factor are Hurwitz, P(s) will be Hurwitz.
In the polynomial (s*+ 4), the terms s°, s*> and s are missing. Hence, it is not Hurwitz.
Therefore, P(s) is not Hurwitz.

” Example VW Test whether the polynomial 259 +5° + 135 +65° + 5657 + 255+ 25 is Hurwitz.
Solution  Even part of P(s) = m(s) = 2s° +13s* + 565% + 25
Odd part of P(s)=n(s)=s" +6s> +25s

m(s)
n(s)

By continued fraction expansion,

Os) =

$° 465> +255)25° +13s* +565% +25(2s

25% +12s* + 5052

s* 4657 +25)s5° +65° +25s(s
> +65° +25s
0

The division has terminated abruptly.
P(s)=25° +5° +135% +65° +565% +255+25=(s* +65° +25) (25* +s5+1)

Let P(s)= st 652 +25
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A(s)
Als)

Since P(s) contains only even functions, we have to find the continued fraction expansion of

Pls)=4s>+12s
By continued fraction expansion,
3 4, 2 1
4s +125) s*+6s +25(4s
st 4357
2 3 4
3s° + 25) 4s” + 12s(3s

100

45 +—3s
3
—is 352425 —is
3 64
352
25)—64s(—64
3 75
64
—?s
0

Since two of the quotient terms are negative, P,(s) is not Hurwitz.
We need not test the other factor (2s*>+ s + 1) for being Hurwitz.
Hence, P(s) is not Hurwitz.

There is another method to test a Hurwitz polynomial. In this method, we construct the Routh—Hurwitz
array for the required polynomial.
Let P(5) = ays" + ap1 8" + ap_as" 7 + .+ ars+ ag

The Routh—Hurwitz array is given by,

" |an ap—2  dp—4

N

Sn_l ap-1 Aap-3 Qps
Sn_2 bn bn—l bn—2
Sn_3 Cn Cn—1

Sl

SO
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The coefficients of s” and s” ! rows are directly written from the given equation.

ay_1Qy_» —a,a,_
where bn=n1n2 n“n-3
Ay
b _ Qp1Gp—4 — Qpldy—s
n—1 —
Ap—1
b _ Gn-14p-6 — Apdp—7
n—-2 —
Ap—|
_ bnan—S _an—lbn—l
y = ——————————
by
bnan—S - an—lbn—2
Cp-1 =

— b,

Hence, for polynomial P(s) to be Hurwitz, there should not be any sign change in the first column of the
array.

” SET[IRMOREN  Tess whether P(s)= s*+757 +657 +21s+8 is Hurwitz.

Solution  The Routh array is given by,

s 11 6 8
$ 17 21
s 13 8
g1
30
18

Since all the elements in the first column are positive, the polynomial P(s) is Hurwitz.

” Example VW Determine whether P(s)= s*+57 + 257 + 35+ 2 is Hurwitz.

Solution  The Routh array is given by,

Sl1 2 2
Sl 103
2l-1 2
S5 0

O 2

Since there is a sign change in the first column of the array, the polynomial P(s) is not Hurwitz.

” ET IO Test whether P(s)= s +25* +45° + 657 + 25+ 5 is Hurwitz.
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Solution The Routh array is given by,

s 1 4 2
st 2 6 5
s 1 -0.5

s 7 5

st -1.21

50 5

Since there is a sign change in the first column of the array, the polynomial is not Hurwitz.

” SETII MOV Test whether the polynomial P(s) = s° + s + s is Hurwitz.

Solution  The given polynomial contains odd functions only.
P'(s)=55"+3s+ 1
The Routh array is given by,

s 1 1
sl s 301
s 04 08

s -7 1

s' 086

s° 1

Since there is a sign change in the first column of the array, the polynomial is not Hurwitz.

” SCIACHONER  Test whether the polynomial P(s) = s* + 550 + 2s* + 357 + 1 is Hurwitz.

Solution The given polynomial contains even functions only.
P’(s)=8s7 +30s° + 85 + 65
The Routh array is given by,

st 1 5 2 31
s/ 8 30 8 6 0
s¢ 1125 1 225 1
s | 236 -64 -04 0
st 133 227 1

s* | —46.6 —18.14 0

2| 175 1

st | 849

50 1

Since there is a sign change in the first column of the array, the polynomial is not Hurwitz.

” SCIACHUONER  Tesr whether P(s) = s° + 125 + 455° + 60s? + 44s + 48 is Hurwitz.

10.13
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Solution  The Routh array is given by,

S| 1 45 44
st 112 60 48
s° 140 40

s* | 48 48
ss10 0

SO

Notes: When all the elements in any one row is zero, the following steps are followed:
(1) Write an auxiliary equation with the help of the coefficients of the row just above the row of zeros.
(i) Differentiate the auxiliary equation and replace its coefficient in the row of zeros.
(iii) Proceed for the Routh test.
Auxiliary equation,

A(s) = 48s% + 48

A'(s)=96s
11 45 44
st 12 60 48
sS40 40

s* | 48 48

s 196 0

s° | 48

Since there is no sign change in the first column of the array, the polynomial P(s) is Hurwitz.

” SETII MWLV Check whether P(s) = 255 + 57 + 135 + 65° + 5652 + 255 + 25 is Hurwitz.

Solution  The Routh array is given by,

12 13 56 25
S 11 6 25
st 11 6 25
$10 0 0

S2

Sl

SO

A(s) =s*+ 65* + 25
A'(s)=4s>+ 125
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Now, the Routh array will be given by,

s 2 13 56 25
s 1 6 25
st 1 6 25
s 4 12

s 3 25

st =213

s° 25

Since there is a sign change in the first column of the array, the polynomial P(s) is not Hurwitz.

” Example VWAEN  Determine the range of values of ‘a’ so that P(s) = s* + s° + as? + 2s + 3 is Hurwitz.

Solution The Routh array is given by,

sl a 3
$ 1 2
s2 a-2 3
1 2a-17
N
a-2
s° 3
For the polynomial to be Hurwitz, all the terms in the first column of the array should be positive,
ie., a-2>0
a>2
and 2a=7 >0
a-2
7
a>—
2

Hence, P(s) will be Hurwitz when a > %

” Example VYR Determine the range of values of k so that the polynomial P(s) = s° + 3s? + 2s + k

is Hurwitz.

Solution  The Routh array is given by,

[
)

[ N

S XN

v ‘

=]
=]
bl
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For the polynomial to be Hurwitz, all the terms in the first column of the array should be positive,

ie., —>0

ie,k<6and k>0
Hence, P(s) will be Hurwitz for 0 < k < 6.

ETEN| rosITIVE REAL FUNCTIONS

A function F{(s) is positive real if the following conditions are satisfied:
(a) F(s) is real for real s.
(b) The real part of F(s) is greater than or equal to zero when the real part of s is greater than or equal to
zero, i.e.,
Re F(s)=0 for Re(s) >0

10.3.1 Properties of Positive Real Functions

. . 1 . iy
1. If F(s) is positive real then 7 is also positive real.
s

2. The sum of two positive real functions is positive real.

3. The poles and zeros of a positive real function cannot have positive real parts, i.e., they cannot be in the
right half of the s plane.

4. Only simple poles with real positive residues can exist on the jw-axis.

5. The poles and zeros of a positive real function are real or occur in conjugate pairs.

6. The highest powers of the numerator and denominator polynomials may differ at most by unity. This
condition prevents the possibility of multiple poles and zeros at s = co.

7. The lowest powers of the denominator and numerator polynomials may differ by at most unity. Hence,
a positive real function has neither multiple poles nor zeros at the origin.

10.3.2 Necessary and Sufficient Conditions for Positive Real Functions

The necessary and sufficient conditions for a function with real coefficients F(s) to be positive real are the
following:

1. F(s) must have no poles and zeros in the right half of the s-plane.

2. The poles of F(s) on the jw-axis must be simple and the residues evaluated at these poles must be real
and positive.

3. Re F (jw) = 0 for all .

Testing of the Above Conditions Condition (1) requires that we test the numerator and denominator of
F(s) for roots in the right half of the s-plane, i.e., we must determine whether the numerator and denominator
of F(s) are Hurwitz. This is done through a continued fraction expansion of the odd to even or even to odd
parts of the numerator and denominator.

Condition (2) is tested by making a partial-fraction expansion of F(s) and checking whether the residues
of the poles on the jw-axis are positive and real. Thus, if F(s) has a pair of poles at s = + j@,, a partial-fraction
expansion gives terms of the form
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K, K
S—jwy S+ jwy

Since residues of complex conjugate poles are themselves conjugate, K| = K; | and should be positive and
real.

Condition (3) requires that Re F(jw) must be positive and real for all @.

Now, to compute Re F(jw) from F(s), the numerator and denominator polynomials are separated into even
and odd parts.

F(s) = mi(s)+m(s) _ m+m

my(s)+ ny(s) - my +ny
Multiplying N(s) and D(s) by m, — n,,

my+n my —ny mny —nny mpn —mny

2 2

F(s)= - > >
ny +ny, my —ny my; —ny m; —ny

But the product of two even functions or odd functions is itself an even function, while the product of an
even and odd function is odd.

mm; —mhy
m; —n

myn —mmny

Od F(s)= —
my —ny

Now, substituting s = j@ in the even polynomial gives the real part of F(s) and substituting s = j® into the
odd polynomial gives imaginary part of F(s).
Ev F(s)‘s:jw =Re F(jo)
od F(s)\s:jw = jIm F(jo)
We have to test Re F(jw) = 0 for all w.
The denominator of Re F(jw) is always a positive quantity because

2 2
mp —ny

20
s=jw

Hence, the condition that Ev F(j®) should be positive requires

2
mymy — nym | = A(w)

s=jo

should be positive and real for all = 0.

” SCI A CWOWEN  Test whether F(s)= s-_i'-j
s

is a positive real function.

Solution j‘f
N(s) s+3
@ Fls="_s+3
D(s) s+1
The function F{(s) has pole at s = —1 and zero at s = —3 as shown in
Fig. 10.1.
Thus, pole and zero are in the left half of the s-plane. o— > o
3 -2 -110

(b) There is no pole on the j axis. Hence, the residue test is not carried
out. Fig. 10.1
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(¢) Evenpartof N(s)=m =3
Odd part of N (s)=n = s
Even part of D(s)=m, =1
(s

Odd part of D(s)=ny =5

A7) =mmy —mm, |s= jo= 3)1) = (5)(5) ly= jo=3—5" |y jo=3+ @"

A(a?) is positive for all @ > 0.

Since all the three conditions are satisfied, the function is positive real.

” SETII WL Test whether F(s) = ﬂ is positive real function.

2+ 9s+1
Solution

N(s) _ 5" +65+5 _ (s+5)(s+1)
D(s) s +9s+14 (s+7)(s+2)

(@ F(s)=

The function F (s) has poles at s =—7 and s = —2
and zeros at s =—5 an s = —1 as shown in Fig. 10.2.
Thus, all the poles and zeros are in the left half
of the s plane.
(b) Since there is no pole on the jw axis, the residue
test is not carried out.

(c) Evenpartof N(s)=my = 245
Odd part of N(s) = n = 6s
Even part of D(s) =m, = 2 +14

Odd part of D(s)=n, =9s

A(0*) = mmy —mny |- jo= (s> +5) (57 +14) = (65)(95) |s= jo= 5" =355> +70 |s<jp=

A(a?) is positive for all @ > 0.

Since all the three conditions are satisfied, the function is positive real.

” SETIIWMOWEN  Test whether F(s)= s(s+3)(s+3)
(s+D)(s+4)

Solution

N(s) _ s(s+3)(s+5) _ 5" +8s° +15s
D(s) (s+D)(s+4)  s*+5s+4

(@ F(s)=

is positive real function.

jo
o =

7 65 432 1 [0
Fig. 10.2

o* +350% +70
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The function F(s) has poles at s =—1 and s =—4 and Jjo
zeros at s =0, s =—3 and s = —5 as shown in Fig. 10.3.
Thus, all the poles and zeros are in the left half of
the s plane.
(b) There is no pole on the jw axis, hence the residue test |
is not carried out. 5 -4 -3 -2 _1 0

(¢) Evenpartof N(s)=m = 8s?

Odd part of N(s) = n; = s> +15s Fig. 103
Even part of D(s) = m, = s* +4
Odd part of D(s) =n, =5s
A@) = mmy = mm |i— jo= (857 )(s* +4) = (s +155)(55) |s= jo= 35 —435% |- jo= 300" + 430"

A(a@?) is positive for all @ > 0.
Since all the three conditions are satisfied, the function is positive real.

2

” Example VWL  Test whether F(s)= s +41
K

is positive real function.

s+
Solution
N(s st +1 s+ j)(s—j1 jo
@ Flo= MO S G D=
D(s) s’+4s  s(s+j2)(s—j2) P
The function F(s) has poles at s =0, s = —j2 and s =2 and zeros at s = —j1 D /1
and s =1 as shown in Fig. 10.4. 5 o

Thus, all the poles and zeros are on the j axis.

(b) The poles on the jw axis are simple. Hence, residue test is carried out. P
_/2
2 2
s7+1 s +1
Fl)=5——=—5—"- .
s”+4s  s(s”+4) Fig. 10.4

By partial-fraction expansion,

K, K K,
F(s)=—+—+—
s s+j2 s—j2

The constants K, K, and K,* are called residues.

2
s7+1 1
KIZSF(S)|S=O= B =
sT+4] 4
2
. s°+1 —4+1 3
Ky =(s+ J2F () ls=mjo=—— T
Ss=JjD|__, jD(j2-j2) 8

* 3
Ky =K, =—
2 273

Thus, residues are real and positive.
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(c) Even part of N(s)=m =s> +1
Odd part of N(s)=m =0
Even part of D(s)=m, =0
Odd part of D(s) = ny = s° +4s
A0 ) = mmy =iy = o= (5* +1)(0) = (O)s” +45) 0= 0

A(@?) is zero for all 0= 0.
Since all the three conditions are satisfied, the function is positive real.

257 + 257 + 35+ 2
” Example 10.27 Test whether F(s) = % is positive real function.
s”+

Solution
N(s) 25" +25" +3s+2 257 +25% +35+2
D(s) st +1 (s+jD(s = jb)

Since numerator polynomial cannot be easily factorized, we will prove whether N(s) is Hurwitz.

(@) F(s)=

Even part of N(s) = m(s) = 252 +2
0dd part of N(s) = n(s) = 25> +3s

By continued fraction expansion,

2s% + 2) 2s° +3s(s
25> +2s
S) 2s% + 2(25‘
2s°
1
2 ) K (s

2

K

0

Since all the quotient terms are positive, N(s) is Hurwitz. This indicates that zeros are in the left half
of the s plane.
The function F(s) has poles at s = —j1 and s =j1.
Thus, all the poles and zeros are in the left half of the s plane.
(b) The poles on the jw axis are simple. Hence, residue test is carried out.

25% + 257 +3s+2
F(s)="—"F——
sT+1

As the degree of the numerator is greater than that of the denominator, division is first carried out
before partial-fraction expansion.
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$2 +1) 2s° +2s2+3s+2(2s+2
2s3 +2s
252 + 542
2s? +2
S

F(s)=2s+2+—

241

By partial-fraction expansion,

K K
F(s)=2s+2+— !
s+j1 s—jl
Ki=(s+ DF(s) pop=—t =1
1 J s=—j1 _]1_]1 2
. 1
Kl =K =—
1 1 7

Thus, residues are real and positive.
(¢c) Evenpart of N(s)=my = 252 +2
Odd part of N(s) = m = 25> +3s
Even part of D(s) =m, = st +1
Odd part of D(s)=mn, =0

A(@) = mymy —mny = j= (25" +2)(s> +1) = (25> +35)(0) [ jo= 25" +45> +2 |s jo=2(0" —20* +1)
=2(w* —1)*

A(e?) =0 for all > 0.
Since all the three conditions are satisfied, the function is positive real.

3 2
+65 +7s+
” SET[IMOWER  Test whether F(s)= SHOS 53 is positive real function.

S +2s+1
Solution

N(s) $°+65° +7s+3 _ $ 4657 +75+3
D(s) 2 +2s5+1 (s+1)(s+1)

Since a numerator polynomial cannot be easily factorized, we will test whether N(s) is Hurwitz.

(@ F(s)=

Even part of N (s)=m(s)=6s”+3
0Odd part OfN(s) = n(s) =s>+7s
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By continued fraction expansion,

1
65> +3) S +7s (s
6
s> +0.5s
6.5s) 65> +3 (0.92s
65>
3) 6.5s (2.17s
6.5s
0

Since all the quotient terms are positive, N(s) is Hurwitz. This indicates that the zeros are in the left
half of the s plane.
The function F(s) has a double pole at s =—1.
Thus, all the poles and zeros are in the left half of the s plane.
(b) There is no pole on the jw axis. Hence, the residue test is not carried out.

(¢c) Evenpart of N(s)=my = 65% +3
Odd part of N(s) =n = S +7s
Even part of D(s)=m, = st +1
Odd part of D(s) =n, =2s
A(@) = mmy —mny |- jo= (65> +3)(s> +1) = (s* + T5)(25) |s=jo= 4s* =55" +3 |2 jo= 40" +50° +3

A(a@?) is positive for all @ > 0.
Since all the three conditions are satisfied, the function is positive real.

2
+s5+6
” SET[IMOWLER  Test whether F(s)= % is a positive real function.
ST +s+

Solution

st—+j— ——j—
N(s)_s2+s+6_( 2 2 2 2

D(s) $*+s+1 (sl ﬁ)( 1 ﬁ)

1 .Jz_sj(ﬁl JZ]

(@ F(s)=

The function F(s) has zeros at s = —%i j@ and poles at s = —%i j?.
(b) There is no pole on the jw axis. Hence, the residue test is not carried out.
(c) Evenpartof N(s)=m; =s*+6
Odd part of N(s)=m =s
Even part of D(s)=m, = 2 +1
Odd part of D(s)=mn, =5
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A(@) = mmy =y |= jo= (s> +6)(s> +1) = (5)(5) [y jo= 5" + 65 +6 |;= ;= 0" 60" +6

For w=2, A(@?)=16—-24+6=-2
This condition is not satisfied.
Hence, the function F(s) is not positve real.

2
+4
” SET[I RN Test whether F(s) = S s AN positive real function.

S +357+35+1
Solution
N(s) _ s2+4 _(s+j2)(s—j2)
D(s) §*+3s*+3s5+1 (s+1)°

(@ F(s)=

The function F(s) has two zeros at s = = ;2 and three poles at s = —1.
Thus, all the poles and zeros are in the left half of the s plane.
(b) There is no pole on the jw axis. Hence, the residue test is not carried out.
(c) Evenpartof N(s)=m = s*+4
Odd part of N(s)=m =0
Even part of D(s)=m, = 357 +1
Odd part of D(s)=n, = $°+3s

A(0*) = mmy —mmy |s= jo= (s> + D35> +1) = (0)(s* +35) |z jo= 35" +135* +4 |, jp=30" —130° +4

Foro=1,A(w)?*=3-13+4=-6
This condition is not satisfied.
Hence, the function F(s) is not positive real.

3
” ET I WRIEN  Test whether F(s)= Lj'sl is positive real function.

st+287 +
Solution

N(s)_ 8 +5s _s(s2+5)=s(s+j\/§)(s—jx/§)

(@ Fl)= D(s) s*+257+1  (s2+1)° (s£jD(s 2D

The function F(s) has zerosat s =0, s =21 J5 and two poles at s =1 and two poles at s = —1.

Thus, poles on the j@ axis are not simple.
Hence, the function F (s) not positive real.

4 3,2
+357 +5° +5+2
” Example VY Test whether F(s) = d s TS is positive real function.

S+sP+s+1

Solution
N(s) Y4357 457 +s+2

F(s): =
D(s) S5’ +s+1

Here, it is easier to prove that N(s) and D(s) are Hurwitz.
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By Routh array,
4 1 1 2
S
s 3 1
2 =
Tl3 2
s =g
s° 2

Since there is a sign change in the first column of the array, N(s) is not Hurwitz. Thus, all the zeros are not
in the left half of the s plane. The remaining two tests need not be carried out.
Hence, the function F(s) is not positive real.

BTYN| ELEMENTARY SYNTHESIS CONCEPTS

We know that impedances and admittances of passive networks are positive real functions. Hence, addition
of impedances of the two passive networks gives a function which is also a positive real function. Thus,
Z(s) = Z,(s) + Z,(s) is a positive real function, if Z (s) and Z,(s) are positive real functions. Similarly,
Y(s) = Y\(s) + Y,(s) is a positive real function, if ¥ (s) and Y(s) are positive real functions. There is a special

terminology for synthesis procedure. We have, Zy(s)
Z(s) = Zi(5) + Z(s) o— | o— |}
o 2 2s) 2(9)
Z,(5) = 2(5) = Zi(s) A o

Here, Z,(s) is said to have been removed from
Z(s) in forming the new function Z,(s) as shownin =~ O————
Fig. 10.5. If the removed network is associated ~ Y(5) ¥(s) Yi(s) Ya(s)
with the pole or zero of the original network
impedance then that pole or zero is also said to
have been removed.

There are four important removal operations.

Fig. 10.5 Network interpretation of the removal of
impedance and admittance

10.4.1 Removal of a Pole at Infinity

Consider an impedance function Z(s) having a pole at infinity which means that the numerator polynomial is
one degree greater than the degree of the denominator polynomial.

S a,s" + .+ as+ ag B Cus" + ey .+ as+a

Z(s)= . Hs+ :
b,s" +b,1s" +...+bs+by bys" +b,18" +...+bis+by
where o=
n
Let Z\(s)=Hs
n n—1
+c, +...+ +
and  Zy(s)= T ST _ 7(s)— Hs
bys" +b,1s" +...+bs+by
Z (s) = Hs represents impedance of an inductor L
of value H. Hence, the removal of a pole at infinity O—/T00— O
corresponds to the removal of an inductor from the ~ 4(5) 2(9) ¥(s) T c 2(8)
network of Fig. 10.6(a).
If the given function is an admittance function (a) (b)

Y(s), then Y (s) = Hs represents the admittance of
a capacitor Y (s) = Cs. The network for Y (s) is a Fig. 10.6 Network interpretation of the removal of
capacitor of value C = H as shown in Fig. 10.6(b). a pole at infinity
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10.4.2 Removal of a Pole at Origin

If Z(s) has a pole at the origin then it may be written as

-1 n n—1
ag+ais+...+a,_1s" +a,s" Ky di+dis+..+d,s
Z(S)= 0 1 > n—1 n — 0+ 1 2 n 71221(S)+22(S)
bis+bys” +...+b,s" S bit+bys+...+b,s"

where K, =

%
by

K . . 1
Zi(s) = =2 represents the impedance of a capacitor of value .
s 0

. . . . K .
If the given function is an admittance function Y(s) then removal of Yj(s) = =L corresponds to an inductor
s

1
of value —.
Ky ©
2Zs) © Zy(s) Ys) g1 Z(s)
Thus, removal of a pole from the impedance

function Z(s) at the origin corresponds to the @ b)
removal of a capacitor, and from admittance

function Y(s) corresponds to removal of an Fig. 10.7 Network interpretation of the removal of a
inductor as shown in Fig. 10.7. pole at origin

10.4.3 Removal of Conjugate Imaginary Poles

If Z(s) contains poles on the imaginary axis, i.e., at s = = j, then Z(s) will have factors (s +j,) (s — jo,) =
5% + o in the denominator polynomial

Z(s)=— p(zs)
(5" + o) qi(s)
By partial-fraction expansion,
K *
- K
s+ jo; s—joy

Z(s)= +7Z,(s)

For a positive real function, jm axis poles must themselves be conjugate and must have equal, positive and
real residues.

K, =K
2K
Hence, Z(s)= 2+ Z,(s)
ST+ o
2K 1 1
Thus, Zi(s)=— 1S2 = —=
S” + g S (O] Y,+Y,
2K1 2K1S

s . . . 1
where Y, = —— 1is the admittance of a capacitor of value C = —
2K, K,
2
op . . . 2K
L is the admittance of an inductor of value L = ~—-

K[S a)lz

and Y, =
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If the given function is an admittance function Y(s) then

2Ks 1 1
ST+ i Zu + Zb N (O]
2K1 2K1S
o , 1 Lo
where Z, = 2 isthe impedance of an inductor of value L =——and Z;, = DL s the impedance of
2K1 Kl 18
. 2K
a capacitor of value C = —21
[O)) L

Thus, removal of conjugate imaginary poles @—Eﬁ»
from impedance function Z(s) corresponds to Z(s) c Z,(8) Y(s) L Z,(s)
the removal of the parallel combination of L —C . -=cC

and from admittance function ¥(s) corresponds to
removal of series combination of L — C as shown Fig. 10.8 Network interpretation of the removal of
in Fig. 10.8. conjugate imaginary poles

10.4.4 Removal of a Constant

If a real number R, is subtracted from Z (s) such that
Zy(s)=Z(s)- R
Z(s)= R+ Z,(s)

then R, represents a resistor.

If the given function is an admittance function ¥(s), then removal of ¥,(s) = R, represents a conductance
of value R .

Thus, removal of a constant from impedance function Z(s) corresponds to the removal of a resistance, and
from admittance function Y(s) corresponds to removal of a conductance.

3
” Example VXN  Synthesize the impedance function Z(s) = s +ds

. s +2
Solution
By long division of Z(s),
s +2) s* +4s (s
s +2s
2s
2s
Z(s) =5+ =Zi(8)+Zy(s)
sT+2
Z (s) = s represents impedance of an inductor of value 1 H.
1 +2 502 11
N(s)= =" =4 = st = Hi(5)+Ti(s)
Z5(s) 2s 2s 28 2 s
1 . . 1
Y3(s) = —s represents the admittance of a capacitor of value —F. 1H
2 2 T
1 . .
Y4(s) = — represents the admittance of an inductor of value 1 H. 7 1
s (s) —F TH

The impedances are connected in the series branches whereas
the admittances are connected in the parallel branches. The network
is shown in Fig. 10.9. Fig. 10.9
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” Example VTN Realise the network having impedance function

2 +2s+10

A= s(s+35)

Solution
By long division of Z(s),

2 +5s) $2 +2s+10(2
S

2s+10

52 2 s

=—+——=Z(s)+ 2y (s
ERT TP 1(8)+Z(s)

Z(s)=z+
s

2 . . 1
Z,(s) = — represents the impedance of capacitor of value EF
s

1 s+5 5
=2 14 2 = V() + V(s
A S 3(8)+Y4(s)

Y,(s) = 1 represents the admittance of a resistor of value 1 €. o | }

h(s)=

5 . . 1
Yi(s)= S represents the admittance of an inductor of value gH Z(s) 1Q

The impedances are connected in the series branches whereas the
admittances are connected in the parallel branches. The network
is shown in Fig. 10.10. Fig. 10.10

O

65 +55° +6s5+4
” SETTIMOEEN  Realise the network having impedance function Z(s) = 0% TS TOSTE

257 +2s
Solution By long division of Z(s),

2s° +2s) 65> +55% +6s+4 (3

6s° + 65
52 +4
2
4
2(5) =3+ 22 _ 2 (5)4 Za(s)
25" +2s

Z,(s) = 3 represents the impedance of a resistor of value 3 Q.

1 25 +2s
Zy(s) 5% +4

h(s)=

10.27
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By long division of Y,(s),

2
552 + 4) 25° +2s (SS

2s3+§s
5
2
—s
5
2
’ =S
Yr(s)=—s+ =Y3(s)+Y4(s
2(s) st oa 3(8)+Y4(s)

2 . . 2
Y3(s) = gs represents the admittance of a capacitor of value 3 F.

1 557+4 25¢°+20 25 10

Zy(s)= = s+—="Zs5(s)+ Zs(s
4(s) ne 2, % . 5(8)+Zo(s)
5
25 A . 2 2By e
Zs(s) = 7s represents the impedance of an inductor of value — H. 30 2 10
— AN T
10 . . 1
Zs(s) = — represents the impedance of a capacitor of value EF Z(s) L2,
N T 5
The impedances are connected in the series branches, whereas the
admittances are connected in the parallel branches. The network is
shown in Fig. 10.11. Fig. 10.11
” SETII MR Realise the network having impedance function
4 2
sT+10s"+7
Z (S) = 3 .
7+ 2s

Solution By long division of Z(s),
s +2s) st +10s2 +7 (s

s*+2s57
8s>+7
8s” +7
Z(s)=s+—=——=2Z(s)+ Za(s)

s +2s
Z,(s) = s represents the impedance of an inductor of value 1 H.

I s +2s

Zy(s) 8s*+7

()=
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By long division of Y,(s),
2 3 1
8s +7J s +2s(8s
7
s +—s
9
=5

1 g’
Yo(5)==s+——=Y3(5)+Y4(s
(5) = g5+ 5 =B +G)

1 1
Yi(s) = §S represents the admittance of a capacitor of value gF

1 85%+7_64 56

10.29

Z4(s)= s+—="75(5)+ Z¢(s
4(s) ACEECS Ay 5(8)+Zs(s)
8
64 . . 64 9
Zs(s) = ES represents the impedance of an inductor of value —H. 1H 56
o——000——T7—"000 %
Ze(s) = 6 represents the impedance of a capacitor of value iF
5(8) =, TP p p 56 Z(s) ::%F
The impedances are connected in the series branches, whereas the

admittances are connected in the parallel branches. The network is
shown in Fig. 10.12.

45’ +6
” SETII MY Realise the network having admittance function Y (s) = e o %
s

Solution By long division of ¥(s),

s+1) 45% + 65 (4s

45* + 45
2s
2s
Y(s)=4s+——=Y(s)+ 12(s)
s+1
Y\(s) = 4s represents the admittance of a capacitor of value 4 F.
I s+l 1

1
D) —TS—E+7S—Z3(S)+Z4(S)

Zy(s) =

Fig. 10.12



10.30 Circuit Theory and Networks—Analysis and Synthesis

1
Z5(s) = % represents the impedance of a resistor of value % Q. 29 2F
o AAA
Z4(s) = L ts the imped f itor of value 2 F
4(s) = o represents the impedance of a capacitor of value 2 F. Zs) .
The impedances are connected in the series branches, whereas the
admittances are connected in the parallel branches. The network is
shown in Fig. 10.13. Fig. 10.13
. . . 3+5s
” SCITACWORYEN  Realise the admittance function Y (s) = VO
+ 25
Solution By long division,
3
4+2s|3+5s| —
4
3+ és
2
7
-8
2
7
Y(s)—3+ 55 =Y(s)+Y2(s)
4 4+25 ’
3 . . 4
Yi(s)= 1 represents the admittance of a resistor of value 3 Q.
1 4+2s 8+4s 8 4
Z-(8) = = = =—+—=27Z5(5)+Z4s(s
2(s) AR 7.7 3(8)+ Za(s)
2
7 4

8 . . 7
Z5(s) = o represents the impedance of a capacitor of value gF

4 . 4
Z4(s)= 7 represents the impedance of a resistor of value 7 Q. 45
3
The impedances are connected in the series branches, whereas the
admittances are connected in the parallel branches. The network is
shown in Fig. 10.14. Fig. 10.14

ETEH| REALISATION OF LC FUNCTIONS

LC driving point immitance functions have the following properties.

. It is the ratio of odd to even or even to odd polynomials.

. The poles and zeros are simple and lie on the jw-axis.

. The poles and zeros interlace on the jw-axis.

. There must be either a zero or a pole at the origin and infinity.

. The difference between any two successive powers of numerator and denominator polynomials is at
most two. There cannot be any missing terms.

DA W N =
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6. The highest powers of numerator and denominator polynomials must differ by unity; the lowest powers
also differ by unity.

There are anumber of methods of realising an LC function. But we will study only four basic forms—Foster,
Foster II, Cauer I and Cauer II forms. The Foster forms are obtained by partial-fraction expansion of F(s), and
the Cauer forms are obtained by continued fraction expansion of F(s).

10.5.1 Foster Realisation
Consider a general LC function F(s) given by
_H(S* + 0l (5" + 03)...

s(s* + 03 )(s* + 03F)...

F(s)

where 0< w? <0} <3 ... and H is positive.

By partial-fraction expansion of F(s),

K K K
F(s)= =>4 ———+—
N S+ jw, Ss— jW,

+..+K.s

Combining terms with conjugate poles,

F(s)= Ko, 2K2s2
s S+ Wy

+K..s

where K, K. and K_ are the residues of F(s) at the origin, at jo, and at infinity respectively.
These residues are given by

Ko = SF(9)|y=0
(32 +of )F (s)
T
s’ =—w}
x F®
S oo

Foster | Form If F(s) represents an impedance function, it gives a series connection of impedances.

K 2K;s
F(s) :z(s)zTMs2 +2w%

+Ko.s=2Z1(s)+2Z,(s) + ... +Z,(s)

K . . 1
The first term —~ represents the impedance of a capacitor of A farad.
s 0

The last term K_ s represents the impedance of an inductor of K_ henry.

The remaining terms, i.e., represent the impedance of a parallel combination of capacitor C, and

i
s*+w?
inductor L,. For parallel combination of L, and C,,

1 (cle 2K
_ _ i _ iS
)= IR
Cs+— s*+— % i
LiS LiCi
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Ci :% and Li = 2Kl

i i

Table 10.1 Realisation of Foster-I form of LC network

Impedance function Element
Ko _ 1 ‘ ’
=C 1
N 0s CO _
Ko
1 2K;
— s Ll = 2l
2K;s G ;
2 2
ST+ ; S2 + 1
1
C=—
2K;
K s=Ls o——000——o0
L. =K.

The network corresponding to Foster I form is shown in Fig. 10.15.

Ly L;
Co
iy
Z(s) > L.

O
Fig. 10.15 Foster-I form of LC network

If Z(s) has no pole at the origin then capacitor C; is not present in the network. Similarly, if there is no pole
at oo, inductor L_ is not present in the network.

Foster Il Form 1If F(s) represents an admittance function, it gives the parallel combination of

admittances.
KO 2K2S
F(s)=Y(s)=—+
(9= (9)= 20 322

+...+K°<,s=Y](s)+Y2 (s)+...Y,, (s)

K . . 1
The first term —2 represents the admittance of an inductor of A henry.
s 0

The last term K_s represents the admittance of a capacitor of K_ farad.

iS
2+ w}

The remaining terms, i.e., represent the admittance of a series combination of an inductor L, and

a capacitor C,.
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L,
1 (L,-) _ 2K;s

Y(s) = = =
Lis+— sz+L st +of
CiS LiCi

L =L and C; = 2Ki
2K, 2

i i

For series combination of L, and C,

Table 10.2  Realisation of Foster-II form of LC network

Admittance function Element
Ko _ 1
s Lys — L
Ly Ko
1
1), -
2Kis  \ L 2K;
2 2 .
Srol o, L o 2K
LG — w?
K_s=Cs ©
T C.=K.

in Fig. 10.16.

If Y(s) has no pole at the origin then inductor L is not
present. Similarly, if there is no pole at infinity, capacitor C_
is not present. Fig. 10.16 Foster-1I form of LC network

o -
The network corresponding to the Foster II form is shown
Y(s)—> Lo Ly L —c
C. C;
o T T

10.5.2 Caver Readlisation or Ladder Realisation

Caver | Form Since the numerator and denominator polynomials of an LC function always differ in
degrees by unity, there is always a zero or a pole at s = . The Cauer I Form is obtained by successive
removal of a pole or a zero at infinity from the function.

Consider an impedance function Z(s) having a pole at infinity.

By removing the pole at infinity, we get

Z, (s): Z(s) —Lis
Now, Z,(s) has a zero at s = . If we invert Z,(s), Y,(s) will have a pole at s = co.
By removing this pole,
Y3(s)=Y5(s) = Cas
Now Y(s) has a zero at s = oo, which we can invert and remove. This process continues until the remainder

is zero. Each time we remove a pole, we remove an inductor or a capacitor depending on whether the function
is an impedance or an admittance. The impedance Z(s) can be written as a continued fraction expansion.
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VA (s) =Lis+
Cos+
Lys+——
Cys+...
Thus, the final structure is a ladder network whose series arms are inductors and shunt arms are capacitors.
The Cauer I network is shown in Fig. 10.17.

Fig. 10.17 Cauer I form of LC network

If the impedance function has zero at infinity, i.e., if degree of numerator is less than that of its denominator
by unity, the function is first inverted and continued fraction expansion proceeds as usual. In this case, the
first element is a capacitor as shown in Fig. 10.18.

Fig. 10.18 Cauer-I form of LC network

Caver Il Form  Since the lowest degrees of numerator and denominator polynomials of LC function must
differ by unity, there is always a zero or a pole at s = 0. The Cauer II form is obtained by successive removal
of'a pole or a zero at s = 0 from the function.

In this method, continued fraction expansion of Z(s) is carried out in terms of poles at the origin by
removal of the pole at the origin, inverting the resultant function to create a pole at the origin which is
removed and this process is continued until the remainder is zero. To do this, we arrange both numerator and
denominator polynomials in ascending order and divide the lowest power of the denominator into the lowest
power of the numerator. Then we invert the remainder and divide again. The impedance Z(s) can be written
as a continued fraction expansion.

1 1
Z(s)=—+
Gs L 1 o) Cs
Ls 1 1 o—| L .
[E— + —
Cs 1
Las Z(s)—> Ly L,
Thus, the final structure is a ladder network whose first element ol

is a series capacitor and second element is a shunt inductor as
shown in Fig. 10.19. Fig. 10.19 Cauer Il form of LC network
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If the impedance function has a zero at the origin then the first ﬁg JC4
element is a shunt inductor and the second element is a series © I T
capacitor as shown in Fig. 10.20.
Thus, the LC function F(s) can be realised in four different — Z(8)—> Ly Ly Lg
forms. All these forms have the same number of elements and

o1

the number is equal to the number of poles and zeros of F(s)

including any at infinity. Fig.

10.20 Cauer-II form of LC network

” SETII LN State whether the following functions are driving point immittance of LC

networks are not:

_5s(s7+4) 2T+ )T +9)
@ 2(9)= (> +1)(s> +3) (b A9)= s(s? +2)
Solution
2
(@) Z(s)= S5s(s”+4)

(s +1)(s* +3)

The function Z(s) has polesat s =% 1 and s ==+ j\/g and zeros
ats =0 and s==;2 as shown in Fig. 10.21. Since the poles
and zeros do not interlace on the jo axis, the function Z(s) is not
an LC impedance function.

2(s2 +1)(s*> +9)

b
®) s(s* +2)

Z(s)=

/0)

L3
j2

Fig. 10.21

The function Z(s) has poles at s = 0 and s=% j\/E and zeros at s=%j1 and s==%;3 as shown in
Fig. 10.22. The poles and zeros are simple and lie on the jw-axis. The poles and zeros interlace on the j@

axis. Hence, the function Z(s) is an LC impedance function.
jo

5 J3

- j2
N2

& J1

|

T
-3

1 1
-2
S
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” Example OW:OB  Realise the Foster and Cauer forms of the following impedance function
4(s° +1)(s° +9)

Z(s)="""1
s(s*+4) jo
Solution  The function Z(s) has poles at s = 0 and s = + ;2 and zeros b
ats==j1 and s = + ;3 as shown in Fig. 10.23. ¢ B
From the pole-zero diagram, it is clear that poles and zeros are simple 2
and lie on the j axis. Poles and zeros are interlaced. Hence, the given & 1
function is an LC function.
>0
Foster I Form The Foster I form is obtained by partial-fraction 0
expansion of the impedance function Z(s). But degree of numerator is D 1
greater than degree of denominator. Hence, division is first carried out. e
Z(s)= 4(s* +1)(s° +9) _ 4s* +40s> +36 & 3
s(s> +4) s° +4s
$° +45) 4s* +405% +36 (4s Fig. 10.23
4s* +16s”
245° +36
2452 + 2452 +
Z(s) = 4s+5736 = 4s+S2736
§” +4s s(s”+4)

By partial-fraction expansion,

Ky, K K K, 2K
Z(s)=ds+ -2 4oLy D1 gy 20 SIS
s s+j2 s—j2 s st+4
where Ky = sZ(s)‘S:0 =@= 9
P +49Zs)|  4AED(4+9) 15
! x5 |, 2(—4) 2
Z(s)=4s+2+ iSs
s s°+4

The first term represents the impedance of an inductor of 4 H. The second term represents the impedance

. 1 . .
of a capacitor of ry F. The third term represents the impedance of a parallel LC network.

c)
— IS
AC)
s+ —
LC

For a parallel LC network,

Zic(s)=

By direct comparison,

C=—F
15
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15 i
L== 9
4 4 H }

The network is shown in Fig. 10.24.
Foster Il Form The Foster II form is obtained by partial-

‘ -

fraction expansion of the admittance function ¥(s). 156
2
Y= D
4(s*+1D(s*+9) ©
By partial-fraction expansion, Fig. 10.24
Y(S)I K1 n K] n K2 i K2 _ 2K1S+2K2S
s+l s—j1 s+j3 s—j3 241 s7+9
2
+1 -1+4
where K = (s~ +1) Y(s) s 3
2s o, 8(-1+9) 64
2
+9 -9+4 5
K=y D _5
2s o 39+ 64
3 5
2) (32)
Y(s)= 2 +=
s“+1  s7+9
These two terms represent admittance of a series LC network. For a series LC network,
(1)
z N
Yie($)=——71-
2
sT+—
LC
By direct comparison,
_2 _3 T3 5
=gt a=gF a" T asek
32 5 32 32
L,=—H C,=—7F - H - H
*7s 7288 8 5
The network is shown in Fig. 10.25. Fig. 10.25

Cauer I Form The Cauer I form is obtained from continued fraction expansion about the pole at
infinity.
45" +40s% +36

Z(s)=
s> +4s

Since the degree of the numerator is greater than the degree of the denominator by one, it indicates the
presence of a pole at infinity.
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By continued fraction expansion,
3 4 2
s +4S)4S +40s +36(4s —Z
45 +1657

245? +36)s3 +4s is «Y
24

245
5
36) s(s «—Y
72 48
5 4 H 5 H
5 s o 7000 700
Z 1 1s
0 T 24" T72"
The impedances are connected in the series branches whereas
the admittances are connected in the parallel branches in a Cauer
or ladder realisation. The network is shown in Fig. 10.26. Fig. 10.26

Cauer Il Form The Cauer II form is obtained from continued fraction expansion about pole at origin.
4(s* +1)(s* +9) _ ds* +405% +36

s(s2 +4) - s° +4s
The function Z(s) has a pole at origin. Arranging the numerator and denominator polynomials in ascending
order of s,

Z(s)=

_36+40s” +4s*
4s+s°

Z(s)
By continued fraction expansion,

4s+s3)36+4052+4s4(9ez
S

36+ 9s?

31s° +4s4)4s+s3 (;eY

s
4s+&s3
31
15s3)31s2 +45* (961 —7Z
31 15s

31s2
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4s4) 1—5s3 15 «Y
31 \124s

1 15
7F —=
15 5 9 961"
2 —i] |
0 Eil 124
" 15

The impedances are connected in the series branches whereas the
admittances are connected in the parallel branches in a Cauer or °
ladder realisation. The network is shown in Fig. 10.27. Fig. 10.27

” Example 10.41 Realise Foster forms of the LC impedance function

(s +D)(s° +3)
7 [ A S
) s(s2 +2)

Solution

Foster I Form The Foster I form is obtained by continued-fraction expansion of the impedance function Z(s).
Since the degree of the numerator is greater than the degree of the denominator, division is first carried out.

(s2 +1)(s2 +3) st +4s7+3

Z(s)=
s(s?+2) s +2s
s +2s)s4 +4s° +3(s
st 4257
25243
25 + 257 +
Z(s)=s+ j 3'=s S2 3
s7+2s s(s”+2)
By partial-fraction expansion,
Z(S):S'Fﬁ'i‘L‘FL:S'Fﬁ'Fﬁ
s s+j2 s—j2 s st+2
na3) 3
where Ko = SZ(s)|y-0= He) _3
2 2
2
2 =2+1)(2 1
PR P L) 5 W
2s Ea 2(-2) 4
2),5
2) )}
Z(S)=S+7+27
s s°+2

The first term represents the impedance of an inductor of 1 H. The second term represents the impedance

. 2 . .
of a capacitor of 3 F. The third term represents the impedance of a parallel LC network.
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For a parallel LC network,

Zic(s)= 2
2L 1w 3
) ) LC ° 700 1
By direct comparison,
C=2F Thloe
) 4
L= Z H o
The network is shown in Fig. 10.28. Fig. 10.28
Foster II Form The Foster II form is obtained by partial-fraction expansion of the admittance function Y(s).
2
Y(s) = 2s(s +22)
(s“+D(s” +3)
By partial-fraction expansion,
Y(S) _ Kll i K1 . K2 Kz ZKIS n 22[<2S
s+jl s—j s+]\/_ s— ]\/— 21 P43
+1 —1+2 1
where K= (S )Y( ) :!:7
2s oo 2(-1+3) 4
5743 -3+2 1
K, = ( )y Y(s) ==
s 2(-3+1) 4
¢ ) )
2) o)
Y(s)=——+—-—"—

S+ 57 +3
These two terms represent admittance of a series LC network. For a series LC network,

(&)

Yic(s)= I
2
S +—
. . LC
By direct comparison,
1 ° L1 L1,
L1 = 2H, C1 = EF 2 6
1 2H 2H
L,=2H, C,= gF o
The network is shown in Fig. 10.29. Fig. 10.29

” SETIIMORYE  Realise Foster forms of the following LC impedance function:
(T +3)
s(s” +2)(s” +4)

Solution
Foster I Form The Foster I form is obtained by partial-fraction expansion of the impedance function Z (s).
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By partial-fraction expansion,

Z(s)=&+ KK, Kz_ + Kz. K, 22K1S+22K2S
s s+ 2 s—jN2 s+j2 s—j2 s 242 s2+4
where Ky = sZ(s)‘S_O = OB = 3
- @@ 8
2 — p—
k=0t 22+ 1
2s o 2AD(2+4) 8
2
PG PN N 25 5 N
2 L, 2A)(4+2) 16

oAb
— —|S —|s

s 242 $2+4

. . 8 .
The first term represents the impedance of a capacitor of — F. The other two terms represent the impedance
of a parallel LC network. 3
For a parallel LC network,
(¢)
— s
A\C)

Zic(s)=

2 1
ST+ —
LC 1 H 3 H
. . 8k 8 32
By direct comparison, 3
Ci=4F, L=1m -
8 4F 8¢
C, =3F L= 3 °
S 32 o
The network is shown in Fig. 10.30. Fig. 10.30

Foster Il Form The Foster II form is obtained by partial-fraction expansion of the admittance function ¥(s).
B s(s2 +2)(s2 +4) s° +65° +8s
(SF+D)(s*+3) st +457+3

Y(s)
Since the degree of the numerator is greater than the degree of the denominator, division is first carried out.
st 45+ 3)s5 +65° + 8s(s
$° +4s° +3s
25% +5s

25° +5s 25> +5s

Y(s)=s+ =g
st 45’ +3 (s> +1)(s* +3)

By partial-fraction expansion,

K, Ky K K, 2Kis | 2K
Y(s)=s+——4— 4 22 4 72—y 21S+ 22s
s+j1 s—Jl1 s+j\/§ s—j\/§ sT+1 s7°+3
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where k=Dl I 3
Y o 2A-143) 4
2
KZ:(S +3)Y(s) :(—3+2)(—3+4):l
2s Ly 2-3+1) 4
3 1
) )
Y(s)=s+-—F—+—-—"—

2 2
sT+1 5743
The first term represents the admittance of capacitor of 1 F. The other two terms represent admittance of
a series LC network. For a series LC network,

(2}

Yie(s)=——"7-
2
5T+ —
. . LC
By direct comparison, ©
2 3 2H 2H
L==H, C==F L 3
1 3 1 2 T % 3 % 1
1 SF 1F
L=2H C=_F o 12 T
The network is shown in Fig. 10.31. Fig. 10.31

” DETIIMONER  Realise Cauer forms of the following LC impedance function:

10s* +125% +1
) =5
25 +2s

Solution
Cauer I Form The Cauer I form is obtained from continued fraction expansion about the pole at infinity.
10s* +125% +1

2% +2s

Since the degree of the numerator is greater than the degree of the denominator by one, it indicates the
presence of a pole at infinity.
By continued fraction expansion,

25 +25)10s* +125* +1(5s « Z

10s* +10s2

Z(s)=

2s? +1)2s3 +2s(s «Y
25% +s
5)2s> +1(2s < Z

2s?

l)s(s<—Y

N
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The impedances are connected in the series branches whereas the admittances are connected in the parallel
branches in a Cauer or ladder realisation. The network is shown in Fig. 10.32.

5H 2H
o 7000 7000
—1F ——1F
O
Fig. 10.32

Cauer II Form The Cauer II form is obtained from continued fraction expansion about the pole at the
origin.
105" +125° +1

2% +2s

The function Z(s) has a pole at the origin. Arranging the numerator and denominator polynomials in
ascending order of s,

Z(s)=

1+12s% +10s*
25+2s°

By continued fraction expansion of Z(s),

Z(s)=

1
2s+2s3)1+12s2 +10s* (2 —7Z
S

1+ s°

11s? +10s4)2s+2s3 2y
11s

2s+§s3
11

2o s 105t (12 e 2
11 2s

11s?

1054)353 2 «Y
11 110s

The impedances are connected in the series branches
whereas the admittances are connected in the parallel
branches in Cauer or ladder realisation. The network is
shown in Fig. 10.33. o
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” Example OW:Y  Realise the following network function in Cauer I form:

4 2
Z(s) = 6; +42j +48
s +18s” +48s
Solution The Cauer I form is obtained by continued fraction expansion of Z(s) about the pole at infinity.
In the above function, the degree of the numerator is less than the degree of the denominator which indicates
the presence of a zero at infinity. The admittance function Y(s) has a pole at infinity. Hence, the continued
fraction expansion of Y(s) is carried out.

Y(s)= s +18s° +48s
6s* +425> +48
By continued fraction expansion
1
65" +425% + sz)s5 +18s° + 48s(6s «Y

S+ 75°+ 8s

nﬁ+mﬂwﬁ4h%4{ﬁsez

6s4+@s2
11
22 230 |1s 4 dos| s v
1 222
115+ 2308
222
3072 1222 (49284
222°) 11 33792
222
11
(128
222 "\ 444
3072
- S
222
0

The impedances are connected in the series branches whereas the admittances are connected in the parallel
branches in a Cauer or ladder realisation. The network is shown in Fig. 10.34.

6 49284
11 H 33792 H
000 000
] L2 L 128
T 6 F T 222 F T 444 F
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” ETIIMONCN  Realise Cauer II form of the function:

s(s* +357+1D)
Zic($)=——F——5 -
3s" +4s7+1
Solution The Cauer II form is obtained by continued fraction expansion about the pole at the origin. The
given function has a zero at the origin. The admittance function Y(s) has a pole at origin. Hence, the continued
fraction expansion of Y(s) is carried out. Arranging the polynomials in ascending order of's,
35t +ds? +1  1+4s° +3s"
S +3s° +s S35 +5°
By continued fraction expansion of Y(s), we have

Yic(s)=

s+3s° +s5)1+4s2 +3s* (1<—Y
K

1+3s*+ s*
1
s2 +2s4)s+3s3+s5 (<—Z

s+25°

The impedances are connected in the series branches whereas
the admittances are connected in the parallel branches in a Cauer
or ladder realisation. The network is shown in Fig. 10.35. Fig. 10.35

” Example OIS Obtain the Cauer I form of realisation for the function
s +75° +10s

st +552+4

Zic(s)=

Solution  The Cauer I form is obtained by continued fraction expansion of Z, . (s) about pole at infinity.
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st 4557 +4)s5 +75° +10s(s —Z
S +55° + 4s
3 4 2 1
257 +6s |5 +55" +4 EseY
st 4352

2s2+4)2s3+6s(s<—Z

25 +4s
2s)2s2 +4(s «Y
252
1
4)2s(s —Z7
2
2s
0

The impedances are connected in the series branches, whereas the admittances are connected in the parallel
branches in a Cauer or ladder realisation. The network is shown in Fig. 10.36.

1
1H 1H oM
o 000 000
11 1
-3 F —1F
O
Fig. 10.36
” SETOII MY Synthesize the following LC impedance function in Cauer II form:
3
7 +2s
2()=—F—5
s +4s°+3

Solution The Cauer II form is obtained by continued fraction expansion about the pole at the origin.

s(s2 +2)

7 - "\ =
) (s +3)(s2+1)

But Z(s) has a zero at the origin. Hence, the continued fraction expansion of Y (s) is carried out. Arranging
the polynomials in ascending order of s,

452 4
Y(s)=3+ s -:s
2s+s
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By continued fraction expansion of Y (s),
3 2 43
2s+s )3+4s +s (e Y
s
3+§s
2
5 4
s’ +s4)2s+s3 ( —Z7Z
2 Ss

4
25+—5°
5

Y
s
—
D | —
w
Vo
2~
N
EN[é]
m

—
W
o

The impedances are connected in the series branches whereas
the admittances are connected in the parallel branches in a Cauer
or ladder realisation. The network is shown in Fig. 10.37. Fig. 10.37

ETXA| REALISATION OF RC FUNCTIONS

RC driving point immittance functions have following properties:

. The poles and zeros are simple and are located on the negative real axis of the s plane.
. The poles and zeros are interlaced.

. The lowest critical frequency nearest to the origin is a pole.

. The highest critical frequency farthest to the origin is a zero.

Residues evaluated at the poles of Z, . (s) are real and positive.

Al S I S e

o

d . .
The slope — Zy¢ is negative.
do
7. Zrc () < Zpc (0).
RC functions can also be realised in four different ways. The impedance function of RC networks is given by,

H(s+01)(s+03)...
s(s+07)...

Z(s) =
10.6.1 Foster Realisation
Foster | Form The Foster I form is obtained by partial-fraction expansion of Z(s).

K K K
Z(s)="24 2L 4 22 4 4K,
s s+0] S+0,
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where K, K, K,, ... K_ are residues of Z(s).

K, = SZ(S)L:O
K; =(s+0,)Z(s)|s = —0;
K. - Z(s)
R P

K . . 1
The first term —2 represents the impedance of a capacitor of — farads.
s o

The last term K represents the impedance of a resistor of K_ ohms.

The remaining terms, i.e., represent the impedance of the parallel combination of resistor R, and

capacitor C,. For parallel combinaton of R,and C,

e
CiS _ K,'

2s)=—— =
Ri+— 70

Cl'S
; 1
R, =— and C;, =—
O Kl

Table 10.3  Realisation of Foster-I form of RC network

Impedance function Element
Ky _ 1 R [
s Cos 1
0 Co=—
Ko
K
Ri=—"
O;
(R) L
Ki _ ! Cl'S
S+ 0; Ri + L
C,‘S 1
Ci S—
K;
o—VW—o0
Ko =R. R_=K

The network corresponding to the Foster-I form is shown in

Ry R
. Co
Fig. 10.38. iﬁ o ivﬁ -
. (o2 C

FosterllForm  The Foster-II form is obtained by partial fraction 26)

. . 1 . . .
expansion of Y(s). Since Y(s) = % has negative residue at its
s

()

O

pole, Foster II form is obtained by expanding —— Fig. 10.38 Foster-I form of RC network

n

Y(s) Ky z

s+0',
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Multiplying this equation by s,

n
Y(s)=K,+ 3 Kis

+ K.
o (s+o7)

. 1
The first term K represents the conductance of a resistor of — ohms.
o

The last term K_ s represents the admittance of a capacitor of K_ farads.

is

The remaining terms, i.e., represent the admittance of series combination of resistor R, and capacitor

i

C.with R, = 1 ohms and C; = K farads.

1 Gl

Table 10.4 Realisation of Foster Il form of RC network

Admittance function Element

Fig. 10.39 Foster Il form of RC network

10.6.2 Caver Realisation

Caver | Form The Cauer I form is obtained by removal of the pole from the impedance function Z(s)
at s = oo, This is the same as a continued fraction expansion of the impedance function about infinity. The
impedance Z(s) can be written as a continued fraction expansion.

1
Z(S) = Rl +

Crs+

The network is shown in Fig. 10.40.
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In the network shown in Fig. 10.40, if Z(s) has a zero at s = oo, R,
the first element is the capacitor C|. If Z(s) is a constant at s = oo,
the first element is R . If Z(s) has a pole at s = 0, the last element
is C . If Z(s) is a constant at s = 0, the last element is R .

Rs Rn_4

L
L1

Caver Il Form The Cauer II form is obtained by removal o
of the pole from the impedance function at the origin. This is
the same as a continued fraction expansion of an impedance
function about the origin.

Fig. 10.40 Cauer-I form of RC network

If the given impedance function has a pole at the origin, it is removed as a capacitor C,. The reciprocal
of the remainder function has a minimum value at s = 0 which is removed as a constant of resistor R,. If the
original impedance has no pole at the origin, then the first capacitor is absent and the process is repeated with

the removal of the constant corresponding to the resistor R,
The impedance Z(s) can be written as a continued fraction expansion.

1

1
Z(s)=—+ G

Goll, 1 o—|

+
R,

C}S L+
Ry

O

The network is shown in Fig. 10.41.
In the network shown in Fig. 10.41, if Z (s) has a pole at s =0,
the first element is C,. If Z (s) is a constant at s = 0, the first element

Fig. 10.41 Caver-II form of RC network

is R,. If Z (s) has a zero at s = o, the last element is C,. If Z (s) is constant at s = o, the last element is R .

” ETTI MR  Determine whether following functions are RC impedance function or not.

3(s+2)(s+4)
s(s+3)

As+1)(s+3)

@ )= (s+2)(s+6)

()

Solution

3(s+2)(s+4
(@) 2(5=>02208
s(s+3)
The function Z(s) has poles at s =0 and s =—3 and zeros

at s = —2 and s = —4 as shown in Fig. 10.42. The poles

and zeros are simple and located on the negative real axis o

of the s plane. The poles and zeros are interlaced. The 5 4 3

lowest critical frequency nearest to the origin is a pole.
Hence, the function Z(s) is an RC impedance function.

_2(s+1D(s+3)

®) 2= s +6)

The function Z(s) has poles at s = =2 and s = —6
and zeros at s = —1 and s = —3 as shown in Fig. 10.43.
The poles and zeros are simple and located on the

negative real axis of the s-plane. The poles and zeros
are interlaced. But the lowest critical frequency nearest
to the origin is not a pole, but zero. Hence, the function
Z(s) is not an RC impedance function.
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” ETIIMONEN  Realise the Foster and Cauer forms of the impedance function

(s+1)(s+3)

2= s(s+2)

Solution The function Z(s) has poles at s = 0 and s = -2 and A

zeros at s = —1 and s =3 as shown in Fig. 10.44.

From the pole-zero diagram, it is clear that poles and zeros are
simple and lie on the negative real axis. The poles and zeros are
interlaced and the lowest critical frequency nearest to the origin is

a pole. Hence, the function Z(s) is an RC function.

Foster I Form The Foster | form is obtained by partial fraction
expansion of impedance function Z(s). Since the degree of the
numerator is greater than the degree of the denominator, division

is first carried out.
s +45+3

Z(s) =
2 +2s
$2 +2s)s2 +4s+3(

s2+2s
2s+3
2s+3

Fig. 10.44

1

25+3

He)=1+ 5% +2s -

By partial-fraction expansion,

K,

s+2

_(03) _

2

Z(s)=1+£+
N

where K, = SZ(S)L:O =

Ky =(s+2)Z(s)|_, =

31
Z(s)=1+2+-2_
s s+2

+
s(s+2)

3
2
(22+1)(=2+3) _1

-2 2

The first term represents the impedance of a resistor of 1 Q. The second term represents the impedance of

. 2 . . o .
a capacitor of 3 F. The third term represents the impedance of parallel RC circuit for which

1
G
Zpe($) = ——=—
s+——
RC;
By direct comparison,
rR=1g
4
C=2F

The network is shown in Fig. 10.45.

S}

1Q

jm— et

2F

Al

Fig. 10.45
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Foster II Form The Foster II form is obtained by the partial-fraction expansion of admittance function
Y(s)

§ Y(s)= 1 s(s+2)

Z(s)  (s+1)(s+3)
Y(s) s+2
s (s+1)(s+3)

By partial-fraction expansion,
Yo _ &K, K
N s+1 543

where K=@etpl® _Ccl*2 1
L 1+3) 2

K —aptO] (342 1

S s (34D 2

1
Ys)_ 2 2
K s+1 s+3

1

) )
Y(s)= 2—+-2—

s+1 s+3

These two terms represent the admittance of a series RC circuit. For a series RC circuit.

i)

Yre(s)=
s+
By direct comparison,
O
R=2Q, (= 1 F
2 2Q 2Q
Rz =2Q Cz = l F 1 F 1 F
’ 6 o 12 16
The network is shown in Fig. 10.46. Fig. 10.46
Cauer I Form The Cauer I form is obtained by continued fraction expansion about the pole at infinity.
2
Z(s)= s -21— 45+3
s*+2s

By continued fraction expansion,
st +2s)s2 +4s+3(1 «—Z
s +2s

2s+3)s2 +2s(;s<—Y
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242

;s)2s+3(4 «—Z

2s

2 O—AAA—
1
) *:1F

1 1
2 T2 6
O T
O

The impedances are connected in the series branches whereas admittances
are connected in the parallel branches. The network is shown in Fig. 10.47.

F

Fig. 10.47

Cauer Il Form The Cauer II form is obtained from continued fraction expansion about the pole at the
origin. Arranging the numerator and denominator polynomials of Z(s) in ascending order of s,

3+4s+s2

Z(s) =
25 +5*
By continued fraction expansion,

2s+s2)3+4s+s2(3<—2
2s

2s+—s
ls2 és+ 2 §<—Z
5 2 2s
5
=5
2

I 5F osf
5 ]
0
20 50
The impedances are connected in the series branches whereas
admittances are connected in the parallel branches. The network is shown
Fig. 10.48

in Fig. 10.48.
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” Example OVCON  Determine the Foster form of realisation of the RC impedance function.

1
Z(s)= (s+D(s+3)
s(s+2)(s+4)
Solution
Foster I Form The Foster I form is obtained by the partial-fraction expansion of the impedance function
Z(s).
By partial-fraction expansion,
Z(s):ﬁ+ KK
s s+2 s+4
1
where Ky = SZ(S)‘S—() OC)
- @@ 8

C(24D)(=243) (=D _1
=20 (2)(2+4) (22 4

_ (-4+1)(—4+3) _ (-3)(-D _ 3
= (A)(4+2)  (4)(-2) 8

3
8

Ky =(s+2)Z(s)|

Ky =(s+4)Z(s)|

31
Z(s)=8+-4
s s+2 s+4

. . 8 . .
The first term represents the impedance of a capacitor of — F. The remaining terms represent the impedance
of a parallel RC circuit for which 3

‘ -

C.
Zpc(s)=— I
s+——
RC; 5
1o S.Q
By direct comparison, %F 8 32
! Q C =4 O—‘
R =-Q, 1=4F
8 4F 8¢
R2 = i Q, C2 = § F
32 3 o
The network is shown in Fig. 10.49. Fig. 10.49
Foster II Form The Foster 11 form is obtained by partial-fraction expansion of admittance function @
s
Y(s) = s(s+2)(s+4)
(s+1)(s+3)

@:(s+2)(s+4):s2+6s+8
s (s+D(s+3) 2 +45+3
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Since the degree of the numerator is equal to the degree of the denominator, division is carried out first.

§*+4s+3) 57 +65+8(1

S +45+3
25+5
Y(S)=1+ 22s+5 . 2545
s s +4s5+3 (s+D(s+3)
By partial-fraction expansion,
O, K, K
s s+1 543
where K =(s+1) Ys)f  _(=1+2)=1+4)  (DG) 3
RO (-1+3) 2 2
Ky =(s+3) Yis))  _(B+)(HB+4)_=ho 1
R S (=3+1 -2 2

K s+1 s+3
3 1
=5 ==

Y(s)=s+-2—+-2—
s+1 s+3

The first term represents the admittance of a capacitor of 1 F. The other two terms represent the admittance
of a series RC circuit. For a series RC circuit,

(&)

Ype(s) =
S+——
RC;
By direct comparison, ©
2 3 20 20
R==Q, C==F — 3
1 3 1 o —1F %
3 1
3F 1F
R =2Q, széF . 12 16
The network is shown in Fig. 10.50. Fig. 10.50
” DETII MY  Realise Foster forms of the following RC impedance function
Z(s) = 2(s+2)(s+4)
(s+1)(s+3)

Solution

Foster I Form The Foster | form is obtained by the partial-fraction expansion of the impedance function
Z(s). Since the degree of the numerator is equal to the degree of the denominator, division is carried out
first.
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25 +125+16

4s5+10

Z(s)=
2 +4s+3
s2+4s+3)2s2+125+16(2
2s%+ 8s+ 6
4s5+10
4s+1
Z(s)= 24— o _
s“+4s+3

By partial-fraction expansion,
K K

Z(s)=2+—4+ 2L

s+1 s+3

where Ky =(s+1)Z(s)|

s=—1
Ky = (s+3)Z(s)|

Z(s)=2+i+ !
s+1 s+3

(s+1)(s+3)

_2(-1+2)(-1+4) _3

(-1+3)

_2AB+2(3+4)

s==3

(=3+1)

The first term represents the impedance of a resistor of 2 Q. The remaining terms represent the impedance

of a parallel RC circuit for which
1

G
Zrc(s)= I

s+
R,'C,'

By direct comparison,

1
R=3Q, C=-F

3
RZ:%Q, C,=1F

The network is shown in Fig. 10.51.

W=

3Q
2Q

w|=

Fig. 10.51
Y(s)

Foster I Form The Foster II form is obtained by partial-fraction expansion of admittance function —=.

Y(s) = (s+1D(s+3)
2(s+2)(s+4)
Y(s) (s D(s+3)
s 2s5(s+2)(s+4)
By partial-fraction expansion,
) _Ko K1 | K
s+2 s+4

Q[E)

K s
Y(s)|

where Ky=s

Y|

K, :(S+2)

s e @04 16
(2+1)(-2+3) _ (D@D _

N

s ‘S:_z

2(-2)(-2+4)

1
2-2)2) 8
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K= (saayf Q) (DAY (DD 3
K L:_4 2(-4)(—4+2)  2(-4)(-2) 16
3 1 3
Y _16, 8 , 16
s s s+2 s+4
1 3
3.8 16"
Y(s)=—+
16 s+2 s+4

. . 16 .
The first term represents the admittance of a resistor of — €. The other two terms represent the admittance
of a series RC circuit. For a series RC circuit. 3

!

Yre(s)=
S+
RG;
By direct comparison, ©
16
R=8Q, C=—F L
o ’ 1F S F
16 3 16 64
R=—Q, C,=—F
=30 G . 1 I
The network is shown in Fig. 10.52. Fig. 10.52
” DETIIMOBYN  Obtain the Cauer forms of the RC impedance function
Z(s) = (s+2)(s+6)
2(s+1)(s+3)

Solution
Cauer I Form The Cauer I form is obtained by continued fraction expansion about the pole at infinity.

_(s+2)(s+6) 5T +8s+12
2s+1)(s+3) 25> +8s+6

Z(s)

By continued fraction expansion,
2 2 1
2s +8s+6)s -+-8s+12(2 —Z
s> +4s+ 3

1
4s+9)2s2+85+6(2seY
2s2+2s
2
7s+6)4s+9(SeZ
2 7

4s+ﬁ
7
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7)2 30
7
—s
2
15(°5
6|=|—«Z2 1 8 5
) 7 (14 7 7 147
E o—\VVV
L 1 49
0 f— > F f— 30 F
The impedances are connected in the series branches whereas the

admittances are connected in the parallel branches. The network is
shown in Fig. 10.53. Fig. 10.53

Cauer II Form The Cauer II form is obtained by continued fraction expansion about the pole at the origin.
Arranging the polynomials in ascending order of s,

_12+8s+s”

Z(s)
6+8s+2s°

By continued fraction expansion,
6+8s+2s2)12+8s+s2 (2
12+165+4s”
—8s5—3s”
Since negative term results, continued fraction expansion of ¥(s) is carried out.
12+8s+5°
By continued fraction expansion,
2 2(1
12+8s+s )6+8s+2s (26 Y

6+4s+ls2
2

4s+zsz)12+8s+sz(3<—2
S

12+2s
2
zs+s2 4s+§+s2 §<—Y
2 2 7

4s+§s2
7

is2 zs-i-s2 ﬁeZ
14 2 Ss
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7
—S
2
5 5 1
2 2 5
=5 | =«Y = F = F
y )14S (14 3 49
5 o I |
14° 14
o 2Q Lo e

The impedances are connected in the series branches,
whereas the admittances are connected in the parallel branches.

The network is shown in Fig. 10.54. Fig. 10.54
” ETTIMOIEN  Realise the RC impedance in Cauer I and Foster I forms
Zsy=— ¥t
(s+2)(s+6)
Solution

Caver | Form The Cauer I form is obtained by continued fraction expansion of Z(s) about the pole at
infinity. In the above function, the degree of the numerator is less than the degree of the denominator which
indicates presence of a zero at infinity. Hence, the admittance function ¥(s) has a pole at infinity.

2 +8s+12

Yis)= s+4

By continued fraction expansion,
s+4)s2 +8s+12(s «Y
s* +4s
1
4s+12 |s+4 1 «—Z

s+3

1)4s+12(4s «Y

12)1 L —Z o
12
1 —1F ——4F
0
The impedances are connected in series branches, whereas the
admittances are connected in parallel branches. The network is shown

in Fig. 10.55. Fig. 10.55

Foster I Form The Foster I form is obtained by partial fraction expansion of Z(s).

Z(s) = i
(s+2)(s+6)

[—=

ENE
o)

-

N

By partial-fraction expansion,
K . K,

Z =
() s+2 s+6
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where K]Z(S+2)Z(S)‘_2:( 2+4):l
=T (=2+6) 2
(-6+4) 1
Ky =(s+6)Z(s = =—
2= (H+OZ0] = ey =
1
Z(s)=-2 42
s+2 s+6
These two terms represent the impedance of a parallel RC circuit for which
1
G
Zre(s) = —"—
s+ 1 1
RC; 29 12 °
By direct comparison,
1
R1=ZQ» C=2F 2F 2F

The network is shown in Fig. 10.56. Fig. 10.56
” Example W(VT'S  The RC driving-point impedance function is given as Z(s)= Hw
Realise the impedance function in the ladder form, given Z(-2) = 1. s(s+3)

Solution Putting s =— 2,
(2+1)(-2+4) _ I

Z(-2)=H
(=2)(=2+3)
H=1
Z(s)= (s+D)(s+4)
s(s+3)

Cauer I Form The Cauer I form is obtained by continued fraction expansion of Z(s) about the pole at
infinity.
By continued fraction expansion of Z(s),
s +3s)s2 +5s+4(1 —Z
5% +3s
2s+4)s2 +3s(;s «Y

2425

s)2s+4(2 —7Z
2s

1
4)s(seY
4

N

0
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The impedances are connected in the series branches whereas 1Q 20
admittances are connected in the parallel branches. The network is °——"VVV——
shown in Fig. 10.57.

o)
|
I\Jj
.
A=

I

Cauer II Form The Cauer II form is obtained by continued fraction
expansion about the pole at the origin. Arranging the polynomials in
ascending order of s,

4+5S+S2 Flg. 10.57
Z(s)=——75—
3s+s
By continued fraction expansion,

3s+s2)4+5s+s2 (34<—Z
s

4+ﬁs
3

11s+s2)3s+s2 (9<—Y
3 11

3s+ 2s2
11
2
e Es+s2 EeZ
11 3 6s
11
—=
3
2 2
sz)ﬁs2 (11 «—Y 5 6
aF 21"
2 §2 o I I
il il
11
0 1 1
9 Q 2 @
The impedances are connected in the series branches whereas the
admittances are connected in the parallel branches. The network is

” SETIIROBEN 47 impedance function has the pole-zero diagram as shown in Fig. 10.59. Find the

3
impedance function such that Z(—4) = 7 and realise in Cauer I and Foster Il forms.

jo

Fig. 10.59
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Solution  The function Z(s) has poles at s = 0 and s = —2 and zeros at s =—1 and s = —3.

(s+1)(s+3)

2 =H= 0

Putting s = —4,

(—4+1)(—4+3) — (-3)-1) 3 I

Z(-4)=H =2
(-4)(—4+2) (-H(=2) 8
334
4 8
H=2
Z(s)= 2(s+1)(s+3) _ 252 +8s+6

s(s+2) s2+2s

Cauer I Form The Cauer I form is obtained by continued fraction expansion of Z(s) about the pole at
infinity.
By continued fraction expansion of Z(s),

st +2s)2s2 +8s+6(2 4
257 +4s
2 1
4546 |s” +2s ZS «Y
3
sS4+ s
2
1
—5|4s+6(8«Z
2
4s
1 (1
6)7.? —s«Y
2 \12
1
—s
2
0
. . . 2Q 8Q
The impedances are (‘:onnected in the series branches .Whereas Y
admittances are connected in the parallel branches. The network is shown
in Fig. 10.60. L % E 1172 F
Foster II Form The Foster II form is obtained by partial fraction T
Y(s) °

expansion of .
s Fig. 10.60
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Y(s) s+2
s 2(s+1)(s+3)

By partial fraction expansion,

Y(s) _ K + K,
s s+1 s+3

where Ky =(s+1) Y(s)] S+ 1
s | 2-1+3) 4
K2=(5+3)Y(s)\ _(B3+2 -1 1
s oy 2341 2(-2) 4
1
Ys)_ 4 . 4
s s+1 s+3
1 1
—S5 —S5
Y(S)=47+47
s+1 s+3

Two terms represent the admittance of a series RC circuit. For a series RC circuit,

(a)

4Q

Y
N

4\

Ype(s) =
s+t——o
RC;
O
By direct comparison, 40
Rl = 4 Q, Cl = % F 1
T+
1 o
Ry=4Q, C,=—F
12 Fig. 10.61

The network is shown in Fig. 10.61.

BTXA| REALISATION OF RL FUNCTIONS

RL driving point immittance functions have following properties:

1. The poles and zeros are simple and are located on the negative real axis of the s plane.

. The poles and zeros are interlaced.

. The lowest critical frequency is a zero which may be at s = 0.

. The highest critical frequency is a pole which may be at infinity.

. Residues evaluated at the poles of Z,,(s) are real and negative while that of
positive.

[V VS I ]

Zpi(s)
s

d . .
6. The slope — Zg, is positive.
do

7. Zpr (0) < ZRL(°°) .

are real and
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The admittance of an inductor is similar to the impedance of a capacitor. Hence, properties of an RL
admittance are identical to those of an RC impedance and vice-versa, i.e.,

Zrc (s) =Yr (s)
ZrL (s) =Yrc (s)

An RL admittance can be considered as the dual of an RC impedance and vice-versa.

” SEN MO  ndicate which of the following functions are either RL, RC or LC impedance functions.

(@) Z(s)= 612) (b) Z(s) D16
@ 2= @ 2= s+ 16)
Solution (a) Z(s)= Hs+Dis+3)
s(s+2)

This is an RC impedance function since (i) poles and zeros are on the negative real axis, (ii) they are
interlaced, and (iii) critical frequency nearest to the origin is a pole.
_ S(s+4)(s+8)

(s+D(s+6)

This is an RL impedance function as (i) poles and zeros are on the negative real axis, (ii) they are interlaced,
and (iii) critical frequency nearest to the origin is a zero.

_ (s+1)(s+4)
© 2(s)= s(s+2)

This is an RC impedance function since (i) poles and zeros are on the negative real axis, (ii) they are
interlaced, and (iii) critical frequency nearest to the origin is a pole.
2(s+D(s+3)
(d) Z(9)=—F7—"——
(s+2)(s+6)
This is an RL impedance function as (i) poles and zeros are on the negative real axis, (ii) they are interlaced,
and (iii) critical frequency nearest to the origin is a zero.

(b) Z(s)

” SETNIIMOEYA  Realise following RL impedance function in Foster-I and Foster-II form.

_2s+D)(s+3)

2= 2)516)

Solution
Foster I Form The Foster | form is obtained by partial-fraction expansion of the impedance function Z(s).
By partial-fraction expansion,

K K
Z(s)=——+—12
s+2 s+6
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K=+ 220, = 2223 1

where (2+6) 5
Ky =(s+6)Z(s)| __, = W = —1?5

Since residues of Z (s) are negative, partial fraction expansion of —— is carried out.
s

Z(s)  2As+1)(s+3)
s s(s+2)(s+6)

By partial fraction expansion,
Z)_K K | K
s s s+2 s+6
Z(s)l 23 1

where Ky = = -
s |9 (2)6) 2
K =(s+2) Z(s) _ 2(2+1)(-2+3) _ l
R (2)(-2+6) 4
Ky = (5+6) Z(s) _ 2(-6+1)(—-6+3) _ 5
S s (O)(-06+2) 4
r1r s
Zs)_2, 4 , 4
K s s+2 s+6
1 5
1 ZS ZS
Z(s)=—+——+
2 s+2 s+6

. . 1 .
The first term represents the impedance of the resistor of — Q. The other two terms represent the impedance
of the parallel RL circuit for which 2

RiS
Zpi(s)= R
s+—
L
By direct comparison,
Rl = l Q, Ll = l H
4 8
5 5
R = 4 Q L= 24 H Fig. 10.62

The network is shown in Fig. 10.62.

Foster I Form The Foster II form is obtained by partial fraction expansion of Y (). Since the degree of the
numerator is equal to the degree of the denominator, division is first carried out.

C(s+2)(s+6) 5P +8s+12

B 2(s+1)(s+3) T 25 +85+6

Y(s)
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1
2s2+8s+6)s2+8s+12(2
2 +4s+3
45+9
Y(s):l+ 45+9 L, 4s+9

2 25248546 2 2s+1)(s+3)
By partial-fraction expansion,

yl(s)zﬁzﬁ_,_ﬁ
2(s+1)(s+3) s+1 s+3
(~4+9) 5
Ko =(s+DY, - 2
where 0 =(s+D¥(9)|_, 2-1+3) 4
(-1249) 3
Ki = (s+3)Y, B S0 J
1=(s )I(S)‘s:_3 23+1) 4

5 3

1
Y(s)=—+ 44
2 s+1 s+3
The first term represents the admittance of a resistor of 2 Q. The other two terms represent the admittance
of a series RL circuit. For a series RL circuit,

1
L;
Yr(s) = '
s+
Li O
1 1 4
By direct comparison, ) ) 20 10
R=-Q, L=—H 2Q
5 5 i H 4
5 +H
4 3
R,=4Q, [,= E H o
The network is shown in Fig. 10.63. Fig. 10.63
” SETII MY N  Find the Foster forms of the RL impedance function:
1
Z(s)= (s+D)(s+4)
(s+5)(s+3)
Solution Z(s)
Foster I Form The Foster | form is obtained by partial-fraction expansion of impedance function ——.
s

Z(s) _ (s+D(s+4)
s s(s+5)(s+3)

By partial-faction expansion,
Z
() _ Ko + K + K,
K s  s+3 s+5
VA (4 4
where Koy =s ® _ME_ 4
S g 5B 15
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K]:(s+3)Z(”‘ (B34 () 1
s e (3345 (3)©2) 3
&=“+$Z@\ _(S5HD(5+4) (A 2
s s (5543 (52 5
4 2
Z() _15, .3 . 5
s s s+3 s+5
1o 2
Z(S)=i+37+57
15 s+3 s+5

. . 4
The first term represents the impedance of the resistor of s Q. The other two terms represent the

impedance of a parallel RL circuit for which

RiS
Zpr(s) =

s+—
L

By direct comparison,

R=10 L='n
3 9
2 2
RR=-Q, L,=—H
275 2705
The network is shown in Fig. 10.64. Fig. 10.64

Foster Il Form The Foster I form is obtained by partial fraction expansion of Y (s). Since the degree of the
numerator is equal to the degree of the denominator, division is first carried out.

(s+5)(s+3) s> +8s+15
(s+D(s+4) s’ +55+4
s2+55+4)s? +8s+15(1

Y(s)=

s> +5s+4
3s+11
Y(s)=1+ 3s+11
(s+D)(s+4)
By partial-fraction expansion,
Ky K
Yi(s)=——+
= s
where K0=(s+l)Yl(s)‘ ~ lzw:§
= (-1+4) 3
(-12+11) 1
K =(s+4)Y (s = *=—
=GO, = T
8§ 1
3 3
Yi(s)=——+
1(s) s+1 s+4
8 1
Y(s)=1+——t——
s+1 s+4



10.68 Circuit Theory and Networks—Analysis and Synthesis

The first term represents the admittance of a resistor of 1 Q. The other two terms represent the admittance
of a series RL circuit.
For a series RL circuit,

1
L
Ypo(s)= :
S+— ¢}
, . L 3
By direct comparison, 39 12Q
1Q
3 3
R=-Q, Li=-—H 3
1=gt M=y g 3H
R2 = 12 Q, L2 = 3 H ©
The network is shown in Fig. 10.65. Fig. 10.65
” SETOII MR Find the Cauer forms of the RL impedance function:
2(s+1)(s+
25y~ 28+ Dls+3)
(s+2)(s+6)

Solution
Cauer I Form The Cauer I form is obtained by a continued fraction expansion of Z(s) about the pole at

infinity.
C2(s+1)(s+3) 257 +85+6
(s+2)(s+6) s> +8s+12

Z(s)

By continued fraction expansion,
s*+85+12)2s> +85+6(2 — Z

25° +16s+24
—8s—18
Since a negative term results, continued fraction expansion of Y (s) is carried out.
2
+8s+12
y(sy= 12
25 +8s+6

By continued fraction expansion,

2s2+8s+6)sz+8s+12(;<—Y
s*+4s+ 3

1
4s+9)2sz+8s+6(2seZ
2s2+2s
2
zs+6 45+9 §<—Y
2 7

4s+ﬁ
7



1
5 zs+6 ﬁS<—Z
7)2 30

7

=

2

The impedances are connected in the series branches whereas
the admittances are connected in the parallel branches. The
network is shown in Fig. 10.66.

10.7 Realisation of RL Functions 10.69

e

1 49
o H 30"
000
7 42
2Q s Q 15 Q
Fig. 10.66

Cauer II Form The Cauer II form is obtained from a continued fraction expansion about the pole at the
origin. Arranging the numerator and denominator polynomials of Z(s) in ascending order of s,

6+8s+2s°

Z(s)=
) 12+8s+s°

By continued fraction expansion,

12+8s+s2)6+8s+2s2(;eZ

6+4s+ls2
2
4s+352)12+8s+s2 (3<—Y
2 s
12+23
2

4s+—s
is2 Zs+s2 kL) «7Y
14 )2 Os
7
—s
2
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The impedances are connected in the series branches whereas the admittances are connected in the parallel
branches. The network is shown in Fig. 10.67.

8 5
Q S = Q
7Q

=

Fig. 10.67
” SETIICWONSN  Obtain the Foster I and Cauer I forms of the RL impedance function.
Z(s)= s(s+4)(s+8)
(s+D)(s+6)

Solution
. . . . . Z(s)
Foster I Form The Foster [ form is obtained by partial fraction expansion of —=.
s
Z(s) B (s+4)(s+8)
s (s+1)(s+6)

Since the degree of the numerator is equal to the degree of the denominator, division is first carried out.

s2+7s+6)s? +125+32(1

s> +7s+6
55426
Z(s)=1+ S5s+26 _1 S5s+26
s S +7s+6 (s+1)(s+6)
By partial-fraction expansion,
Z(S):1+ K() n K]
s s+1 s+6
where K_5s+26\ _ 5426 21
7 s+6 ‘.y:—1 -1+6 5
K_5s+26\ _-30+26_4
YTosHl |, 641 5
2
Z() 1,5 .5
s s+1 s+6
21 4
—s =5

Z(s):s+5—+ 3
s+1 s+6
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The first term represents the impedance of the inductor of 1 H. The other two terms represent the impedance

of a parallel RL circuit for which 29 4
R E R
iS
Zpr(s)= )
s+—
L;
By direct comparison,
Rl = 2 Q, Ll = 2 H
5 5
4 4
R=-Q L,=—H Fig. 10.68
2575 2573 g

The network is shown in Fig. 10.68.

Cauer I Form The Cauer I form is obtained by continued fraction expansion of Z(s) about the pole at
infinity.

& +12s% +32s

Z(s)=
s +75+6

By continued fraction expansion,
2 3 2
s +7s+6)s +12s +32s(s —Z
s* +7s% +6s

1
552 +26s)s2 +7s+6(5 «Y

2+,
5
9s+6)5s2+26s(25s<—2
5 9
5s2+$s
3
2
—8s 2s+6 —27 Y
3 )5 140
9
=5
5
6)§s Es Z
3 \18
28
—s
3
0

The impedances are connected in the series branches, whereas the admittances are connected in the parallel
branches. The network is shown in Fig. 10.69.
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25 28
1H o 18"
o—000 000
140
5Q o7 Q
O
Fig. 10.69
Exercises
10.1 Test the following polynomials for Hurwitz o 2ioeal
property: (vi) -
(i) s*+s2+25+2 5" +ds+4
(i) s*+s2+s+1 S 4257 +3s5+1
((i.ii; si + 47ts§ + 2s2+ 221 . (vid) §° 257 4542
iv) s*+ 75>+ 652+ 215+ 3 )
V) st+si+s+1l (viii) w
(vi) s7+ 350+ 855+ 1554+ 1753 + 1257 + 4s s +s+1
(vil) 7+ 25+ 25° + 5 + 453 + 852 + 8s + 4 (ix) s+4
(vill) s7+3s°+2s%+s s2425+1
3 5 3
(ix) s +2s°+s 24443
x) $*+25%+4s+2 x 5—
(xi) s*+s3+4s2+25+3 s2+6s+8
(xii) s+ 8s*+ 2453 + 285+ 235+ 6 (xi) s +1
(xiii) s7—2s%+25°+9s>+ 85+ 4 S +4g
(xiv) SZ+3335+253+3 . 442 1362 +1
xv) $*+s°+s (xi) — 3 5
(xvi) s+ 7s*+58 +5%+5s 52+S +3s57 +2s5+1
(xvil) s*+ 53 +257+ 3542 (xiii) s*+2s+4
10.2 Determine whether the following functions (s+1)(s+3)
are positive real: 25 +4
, (xiv)
(0 s”+5s s+5
- 2
st 257 +1 s"+2s
o)
(ii) s(s+3)(s+5) s +1
(s+1)(s+4) (ovi) s*+4
(iif) 2s% +2s+1 $° 4357 +3s+1

10.3 Determine whether the following functions

S +257 +5+2 -
are LC, RC or RL function:

s34 +s+2

(iv) .  As+1)(s+3)
5 3S3 ; S; +3s " 12 O Fo= (s+2)(s+6)
ST+ 287+ 35+
A T (i) z(s)=20+20+4)

s(s+3)



Exercises 10.73

. _ (s+D)(s+8) .. s*+2s5+2
(i) Z(s)= (5+2)(s+4) (vii)  Z(s)= R
. Ks( 24 4) 10.5 Realise the following functions in Foster II
) 26)= 5 50 form:
. 3 2 4
(szjwﬂm%% O)MFi%ggl
s(s2 +2)
2 2
. As+1)(s+3) i) Z(s)= 206 H9)
(vi) Z(s)= T a6t @ 2(s) s(s2+4)
y (S +D)(s+3) . _A(s+1)(s+3)
V) 29=" ) i) 2= s +6)
1 2
(viii) F(s)= % (iv) Y(s)= 4(s? 4(_421)(5126_; 25)
s(s™ +
. (s+D(s+3)
(ix) Z(s)=——"—= _ (s+2)(s+5)
(s+2)(s+4) ) Z(s)= 7S(S +2)(546)
x) Z(s)= (s+2)(s+4) 10.6 Realise the following functions in Cauer I
(s+1) form:
. _ A+l , 2(s+1)(s+3
O 6+ O PO e
B s+ 1)(s+3) > 2
(xii) Y(s)= 7@ 2)(s+6) (i) Z(s) = (s”+ 12)(s +3)
(i) Z@):s@2+4xf+46) s(s"+2)
(s +9)(s” +25) i) z(s)= EHDE+D
(s+2)(s+4)
(xiv) Z(s)= (> +1)(s* +8) .,
s(s” + 4) (iv) Z(s)= w
10.4 Realise the following functions in Foster I s(s"+4)
form: ) F(s)= (s+D(s+3)
. 3(s+2)(s+4) s(s+2)
) Z(s)= ﬁ
s(s . s+4
) 2= 25D +9) ™) 2= 66
- 214
S(s”+4) PR Cae) Ca)
(i) F(s)= D3 s(s+3)
(s+2)(s+6) Y
) 2= e v
2 2
(s+1)(s+4) ) z(s)= S FDETHS)
() 2= 5 V)
(Vi) Y(s)= (s+2)(s+5) x) Z(s)= s +2s+2

s(s+4)(s+6) s2+s5+1
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10.7 Realise the following function in Cauer II

form:
i Fs )—%
(ii) Z(s)=%
(iii) Z(S)zw
(iv) Z(s)= %
V) F(S)zm
(vi) Z(s):%
(vii) Z(s)zm

(vii) Z(s)_%

10.9

10.10

jo

<O o T
A\

A

-5 —4 -3 -2 1 ‘o

Fig. 10.70

An impedance function has the pole-zero
diagram as shown in Fig. 10.71. Find the

. . 8
impedance function such that Z(—4)=— and
realise in Cauer forms. 3

Fig. 10.71

For the realisation of a given function F(s).

+sK..

F(s)_—+z

11(s +CO1)

where K, K, (i =1, 2, 3, ...
constants.
(1) Mention the type of function (RC, RL or

LO)

n) and K are

10.8 An impedance function has the pole-zero (ii) Giventhat K, =6, K =8, o, =4, K, =
diagram as shown in Fig. 10.70 below. If Z 10, w, =8, K_ =5, find the component
(—2) = 3, synthesise the impedance function values of realised network for F(s) = Z(s)
in Foster and Cauer forms. and F(s) = Y(s). Draw neat diagrams.

Objechve-Type Questions

10.1 The necessary and sufficient condition for a (a) zero (b) one
rational function F{(s) to be the driving-point (c) two (d) three
impedance of an RC network is that all poles » _
and zeros should be 10.3 The first and the last critical frequencies of a

(a) simple and lie on the negative real axis
in the s-plane

(b) complex and lie in the left half of s-plane

(c) complex and lie in the right-half of s-plane

(d) simple and lie on the positive real axis of
the s-plane

10.2 The number of roots of s> + 55> + 7s + 3 =0 in
the left half of s-plane is

driving-point impedance function of a passive
network having two kinds of elements, are
a pole and a zero respectively. The above
property will be satisfied by

(a) RL network only
(b) RC network only

(c) LC network only
(d) RC as well as RL network



10.8 The driving-point impedance Z(s)=

10.4 The pole-zero pattern of a particular network

is shown in Fig. 10.72. It is that of an
jo

Fany
Q

Fig. 10.72

(a) LC network
(c) RL network

(b) RC network
(d) none of these

10.5 The first critical frequency nearest to the

origin of the complex frequency plane for an
RL driving-point impedance function will be

(a) azero in the left-half plane
(b) a zero in the right-half plane
(¢) apole in the left-half plane
(d) apole in the right-half plane

10.6 Consider the following polynomials:

P =58+ 250 +4s*

P,=s5—=3s+ 25"+ 1

P =s'+3s3+ 357+ 25+ 1
P,=s"+255+25" + 453 + 85> + 85 + 4

which one of these polymials is not Hurwitz?

(a) P, (b) P,
(c) P, (d) P,
10.7 For very high frequencies, the driving-point
. . 4(s+1D)(s+
admittance function, Y(s)= Ast+Dist3)
behaves as s(s+2)(s+4)
. 3
(a) aresistance of 5 Q
(b) acapacitance of 4 F
. 1
(¢) an inductance of 2 H
(d) aninductance of 4 H
s+3

behaves as s+4

10.9

10.10

10.11

10.12

10.13

Objective-Type Questions 10.75
(a) aresistance of 0.75 Q at low frequencies
(b) aresistance of 1 Q at high frequencies

(c) both (a) and (b) above
(d) none of the above
An RC driving-point impedance function has

zeros at s = —2 and s = —5. The admissible
poles for the functions would be

(a) s=0,s=-6 (b) s=—1,5s=-3
() s=0,s=-1 d) s=-3,s=—4
Consider the following from the point of
view of possible realisation as driving-point
impedances using passive elements:

1 s+3
1. 2 27
s(s+5) s7(s+5)
243 s+5
LS (s*+5) " os(s+5)
Of these, the realisable are
(a) 1,2and 4 (b) 1,2and 3
(¢c) 3and 4 (d) none of these

The poles and zeros of a driving-point function
of a network are simple and interlace on the
negative real axis with a pole closest to the
origin. It can be realised

(a) by an LC network

(b) as an RC driving point impedance

(c) asan RC driving point admittance

(d) only by an RLC network

If F,(s) and F,(s) are two positive real
functions then the function which is always
positive real, is

Fi(s)
(@) F\(s) Fys) (b) (o)
F(s)F(s) _

(©) F(5)+ Ps) (d) Fi(s) = Fys)

The circuit shown in Fig. 10.73 is

o]

e,

Fig. 10.73

(a) Cauer I form
(c) Cauer II form

(b) Foster I form
(d) Foster IT form
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10.14 For an RC driving-point impedance function, (c) should alternate on the imaginary axis
the poles and zeros (d) can lie anywhere on the left half-plane

(a) should alternate on the real axis
(b) should alternate only on the negative real
axis

Answers to Objective-Type Questions

10.1 (a) 10.2 (a) 10.3 (b) 10.4 (a) 10.5 (a)
10.8 (c) 10.9 (b) 10.10 ()  10.11 (b)  10.12 (c)

10.6 (b) 10.7 (c)
10.13 (b)  10.14 (b)



X%l inTrRODUCTION

Filters are frequency-selective networks that attenuate signals at some frequency and allow others to pass with
or without attenuation. A filter is constructed from purely reactive elements. Ideally, filters should produce
no attenuation in the desired band, called pass band and should provide attenuation at all other frequencies
called attenuation band or stop band. The frequency which separates the pass band and the stop band is called
cut-off frequency. Filter networks are widely used in communication systems to separate various channels in
carrier-frequency telephone circuits.

RN cLASSIFICATION OF FILTERS

On the basis of frequency characteristics, filters are classified into four categories:

(i) Low-pass filter

(i) High-pass filter

(iii) Band-pass filter

(iv) Band-stop filter

A low-pass filter allows all frequencies up to a certain cut-off frequency to pass through it and attenuates
all the other frequencies above the cut-off frequency.

A high-pass filter attenuates all the frequency below the cut-off frequency and allows all other frequencies
above the cut-off frequency to pass through it.

A band-pass filter allows a limited band of frequencies to al Ll
pass through it and attenuates all other frequencies below or é ’—2‘
above the frequency band. 1o L L 2
A band-stop filter attenuates a limited band of frequencies
but allows all other frequencies to pass through it. [] z, Z,
EEEY| T-neTwoRrk v ,

Figure 11.1 shows a T network. .
Fig.11.1 T-network
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11.3.1 Characteristic Impedance

For a T network, the value of input impedance when it is terminated by characteristic impedance Z,), is given by

AEYA
Z, 2
7+7

Zin =
2 £+Z2+Z0
2
But Zin=Z0
7 2Z2(%+Z0)
ZO =7l+7

2 Zi+27,+27,
_ L, L2,+27,L,
2 Ly +27,+27,
L} +2707 + 22,2 + 2102y + 42,7,
272, +27,+27)
274 Zo +48Z0Z0 + 47 =73 + 2747 + 274 Lo + 27,1, + 47,7,
473 =7} +47,Z,

Hence, characteristic impedance for symmetrical 7 section is given by,

2
Zyr = \/%TIJF 7,7,

Characteristic impedance can also be expressed in terms of open-circuit impedance Z . and short-circuit
impedance Z_.

S zZ Z,+27
Open-circuit impedance Z,. = 71+ 7, = ITZ
Z, 7
o Z, S, 1z 7.Z 7} +47,Z
Short-circuit impedance Zg, = —-+ 2 e S ] ot 172
Z, 2 Ly +2Z, 2Z,+4Z,
—+7
2
Z,+22, \(Z7 +42,Z, | Z}
Zachc = 1 2 l 172 = 71+Z1Z2 = Z(Z)T
2 2Z1 + 4Z2 4

ZOT = \er)cZSC

11.3.2 Propagation Constant

The propagation constant y of the network in Fig. 11.2 is given by,



11.3 T-network

11.3

I 2l Ll
y =log, A 2 2
2 1 ] [ 2
L L
Applying KVL to Mesh 1, .
2 O ) [J= ) [
Vi——1-Z,(I; -1,)=0
o h 2 (I = 1) > I b
VS:(Z21+Z2)11—Z2[2 1 4
Fig.11.2 T-network

Applying KVL to Mesh 2,

V4
~Z,(I, —11)—7112 —Zol, =0
V4
_Z2[l +(21+Z2 +Z0)12 =0

Zz[] :(Z21+Z2 +Z0)12

Z,
L7,z
L_2 Ty

I Z,

=e

V4
71+Z2 +Z0 :Zzey

Z
Zo=Zo(" -)-"

The characteristic impedance of the 7-network is given by,

2
Z, = Z71+Z1Z2
V4
1/Z—12+ZZ — 7" -1 L1
4 1442 2 )

7 2y e L v
T+Z1Z2 =Z5(e" 1) +T—Z1Z2(e -1)

23" -1 -Z,Z,(1+e" —1)=0
Z5(e" —1)* ~Z,Z,e" =0
Z,(e" =1)* =Z,e" =0
(e}’ _ 1)2 — Ae}’
Z2
Zl
Zye!
Zl

eV (¥ -2 +1)=—L
( ) z,

e —2e" +1=
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Z
el +e7-2= Z—l
Dividing both the sides by 2, 2
Y 4o
e te’ 1+ Z
2 27,
Z,
coshy =1 +—
72 2
smhy—\/coshzy 1= 1+— +7+71
2Z 2 2Z2
1 Z
=—\|2,Z, +— ==
Z, 4 Z,
tanhy = sinhy Zor __ Lo

But Zor =\Zoo L.

and Z, = % +7Z,

tanhy = f Zs.

Also, smh— /f(coshy )= 1+7_1 =

By ~neTwork

Figure 11.3 shows a m-network.

Z,
10 | 2
I

Jen [ [

O
1’ o’

Fig.11.3 7m-network
11.4.1 Characteristic Impedance

For a 7 network, the value of input impedance when it is terminated by impedance Z,, is given by,
27,7
27, | 7, + —20
7 27, +Z,
in = 2Z,Z
7, +-2%0
27, +7Z,

+27Z,



11.4 mNetwork

But Zi=Zo
s2(7,+ st
7 2Z2 +7Z
O =
o Bl
27, + 7y
2
ZOZ1 +2ZA+ 2Z0Z2 — 2Z2(2Z1Z2 + ZOZI + 2Z0Z2)
27, +1, 27, +1Z,

220212y +Z4Z3 + 27073 + 47,23 + 27,73 = 47,73 + 2707, Z> + 47y Z3
Z,Z3 +42,73 = 47,73
Z3(Z,+4Z,) = 47,73

42,73

2 _
07 7, +47,

| 4773
" \z, +42,

Dividing both the sides by 47,

Hence, characteristic impedance of a symmetrical 7 network is given by

1+ 7.7+ 21
4Z, 15277,

2

—

Zl
But Z0T= T+Z1Z2
7,7
Z07z= Zl 2
0T

11.5

Characteristic impedance can also be expressed in terms of open-circuit impedance Z . and short-circuit

impedance Z_.

2Z2(Z1 + 2Z2) _ 2Z2(Z1 + 2Z2)

Open-circuit impedance Z,. =
27, +7,+ 27, 7,+47,

L 27,7
Short-circuit impedance Z, = ———=—
27, +17,
2
7. 7. =34t _ L1
LAz, L L
47,

Z, =Z,,Z

/4 oc —sc
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11.4.2 Propagation Constant

The propagation constant of a symmetrical 7 network is same as that of a symmetrical 7 network.

BN CcHARACTERISTIC OF FILTERS

A filter transmits or passes desired range of frequencies without loss and attenuates all undesired
frequencies.
The propagation constant

y=a+jp

where o is attenuation constant and f3 is the phase constant. We know that

sinhl = i

2 4Z,
sinh atjB = sinhgcosﬁ+jcoshgsinﬁz L
2 2 2 2 2 4Z,

Depending upon the type of Z, and Z,, there are two cases:

. V/ .
Case (i) IfZ, and Z, are same type of reactances then =L and smh%are real.
2

coshgsiné =0
2 2
. B . o
s1n5 =0 if B=0or nw where n=0,1,2,... |- coshzcannot be zero
cosé =1
2

V4
sinhg = | =L
2 AZ,
V4
o =2sinh™ =L
47,

. . z, . . V7 Z
Case (i) 1If Z, and Z, are opposite types of reactances then S negative, i.e. =<0 and |-
is purely imaginary. 2 4Z, 47,
sinhgcosﬁ =0
2 2

Z
jcoshgsinﬁ = |—=
2 2 4Z,

V4
cosh Zsin B_ %
272 Tz,

The two conditions of operation of the filter, viz. the pass band and stop band are mathematically
obtained from these equations. Both the above equations must be satisfied simultaneously by o
and . Two conditions may arise
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(a) sinh%zo i.e. =0 when B#£0

. z, . . . .
Since —— is negative and s1n£ is real,
47, 2

snB ol |4
2 |\4z,

This signifies the region of zero attenuation or pass band which is limited by the upper limit of sine
terms.

as coshg =1
2

sin— =1
2

V4
-1<—L <0
2

The phase angle in the pass band is given by,

B =sin”! Z
2 4Z,
V/
B=2sin"'| [ L
2
(b) cosﬁ =0
2
sinﬁ =x]
Since /R is negative and coshg is real,
Z, 2
y/
cosh & =| |21
2 zZ,
This signifies a stop band since ¢ # 0.
V4
~ =cosh™| | =L
47,
zZ
a=2cosh™| [ =
2
V7
and R
47,

EEX3| consTANT-k LOW PASS FILTER

A T or network is said to be of the constant & type if Z, and Z, are opposite types of reactances satisfying

the relation
Z1Z2 = k2
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where kis a constant, independent of frequency. k is often referred to as design impedance or nominal impedance
of the constant-« filter. The constant-k, T or m-type filter is also known as the prototype filter because other
complex networks can be derived from it. Figure 11.4 shows constant-k, T and 7-section filters.

z, z,
2 2 Z
O O O O
= =[]
O O O O
(a) T-section (b) 7-section
Fig. 11.4 Constant-k Filter
In constant-k low pass filter,
Z, =joL
o1 1
Ly=-j—=—+
wc  joc
1. Nominal Impedance
1 L
VLZ, = |G )[jch \/;
2. Cut-off Frequency
The cut-off frequencies are obtained when L =0 and ——=-1
47, 47,
. Z
(1) When =9
47,
Z =0
joL=0
0=0
/=0
i Wh Z _
(i1) en 47, =
7, =-4Z,
4
JjoL = 2
woC
o’LC =4
wz — i
LC
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Hence, the pass band starts at f'= 0 and continues up to the cut-off frequency f,. All the frequencies
above f, are in the attenuation or stop band.

3. Attenuation Constant
In pass band, ot =0

Z CL)ZLC a)2
— -1 1| _ -1 _ -1
In stop band, & =2cosh {4Z2 =2cosh™ 4 - 2cosh ,w—cz
o
=2cosh™ (a)) =2cosh™ (fJ
. fe

The attenuation constant ¢ is zero throughout the pass
band but increases gradually from the cut-off frequency.
The variation of « is plotted in Fig. 11.5.

4. Phase Constant
In pass band,

V4
=2sin7! || =L
p 47

In stop band, B=7.

The phase constant 3 is zero at zero frequency and
increases gradually through the pass band, reaches 7 at cut-
off frequency f, and remains at 7 for all frequency beyond f

. . o 0 £,
/. The variation of 3 is plotted in Fig. 11.6.
5. Characteristic Imnpedance Fig.11.6 Variation of B with frequency
7; %
Zor = T+Z1Z 7.7, 1+
2 P ZO/r
c @, e k
7,7,
On' -
Z 2 Zor
o 1- [fJ 0 f, f
Je

Fig.11.7 Variation of characteristic

The plot of characteristic impedance versus frequency is ’ ’
impedance with frequency

shown in Fig. 11.7.
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The characteristic impedance Z. is real when f<f, . Atf=f,Z .= 0. For f>f., Zis imaginary in the
stop band, rising to infinite reactance at infinite frequency. Z,,_is real when f<f. Atf=f,Z is infinite
and for f> f, Z, is imaginary.

6. Design of Filter

1
f‘c —
nNLC
Solving these two equations,
L=k
nf.
1
nf.k

The constant-k, 7 and 7 section filters are shown in Fig. 11.8.

L L
2 2 L
o 7000 000 0 e 7000 o
Le Le Lo
] T 2 T2
O O O O
(a) T-section (b) 7zsection

Fig. 11.8 Constant-k low-pass filter

” Example 8 Find the nominal impedance, cut-off frequency and pass band for the network shown

in Fig. 11.9.
25 mH 25 mH
o 000 000 0
—__02uF
O O
Fig. 11.9

Solution  The network is a low-pass filter.
L
5= 25mH, C=0.2uF
L=50mH
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(a) Nominal Impedance
50x107°
0.2x107°
(b) Cut-off frequency
1 1

= = 3.18 kHz
mNLC  7250x107 x0.2x107

fo=

(c) Passband
The pass band is from zero to 3.18 kHz.

” S ET I U 4 [ow-pass filter is composed of a symmetrical 7 section. Each series branch is a
0.02 H inductor and shunt branch is a 2 uF capacitor. Find (a) cut-off frequency, (b) nominal impedance,

(c) characteristic impedance at 200 Hz and 2000 Hz, (d) attenuation at 200 Hz and 2000 Hz, and (e) phase
shift constant at 200 Hz and 2000 Hz.

C
Solution L=0.02H, By =2 uF

C=4uF
(a) Cut-off frequency

1 1
fo= = =11254Hz
ANLC  10.02x4x107°
(b) Nominal impedance
k:\/f: 0'026 =70.71Q
C 4x10™
(c) Characteristic impedance at 200 Hz
7y = k == 7071 - =71.85Q
I f - 200
£ 11254
Characteristic impedance at 2000 Hz
Zy= k = 70.71 = j48.13Q
(LY (2000 Y
£ 1125.4

(d) Attenuation at 200 Hz and 2000 Hz

The 200 Hz frequency lies in the pass band.

a=0
At 2000 Hz,
o =2cosh™ L =2cosh™ 2000 =235
3 1125.4

(e) Phase shift constant at 200 Hz and 2000 Hz

At 200 Hz,
B=2sin"" (;) =2sin”"! ( 200 ) =20.47°

3 1125.4
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2000 Hz frequency lies in the attenuation band.
B=180°

” SETII MR 1 7 section filter network consists of a series arm inductor of 20 mH and two
shunt-arm capacitors of 0.16 uF each.Calculate the cut-off frequency, and attenuation and phase shifi at 15

kHz. What is the value of the nominal impedance in the pass band?

Solution L =20 mH, % =0.16 uF
C=032pF

(a) Cut-off frequency
1 1

- —3.98 kHz
mJLC 7 J20%1073 x0.32x107°

fe =

(b) Attenuation at 15 kHz

3
o =2cosh™! (f) =2cosh™! 15><7103 =4
Je 3.98x10

(c) Phase shift at 15 kHz
15 kHz frequency lies in the attenuation band.

B=180°

L / 20x107°
k= \/7 =\ =250Q
C 0.32x10~
” SETII MM Each of the two series elements of a T-section low-pass filter consists of an inductor
of 60 mH having negligible resistance and a shunt element having a capacitance of 0.2 uF. Calculate

(a) the cut-off frequency, (b) nominal impedance, and (c) characteristic impedance at frequencies of 1 kHz
and 5 kHz.

(d) Nominal impedance

Solution L=60mH, C=0.2uF

(a) Cut-off frequency
1 1

mNLC  760x107 x0.2x107°

fo= =2.91kHz

(b) Nominal impedance
60x107

TR
2 X

(c) Characteristic impedance at 1 kHz

2 3 2
Zo=k 1—(fJ =547.72,/1- LOS =51436Q
fe 2.91x10
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Characteristic impedance at 5 kHz

2
Zo=k 1—(f) =547.72 1—(
/e

c

2
1 3
259?)((103) = /76529 Q

” Example UMM Design a constant-k low-pass T and 7 section filters having cut-off frequency of

4 kHz and nominal characteristic impedance of 500 €2

f,=4kHz, k=500Q

Solution
L=L=&3=39.79mH
nf. wx4x10
1 1

= = 3 = 0. 1 6 HF

Tfek  mx4x10° x500

The T section consists of an inductor of 2 i.e. 19.9 mH in each series branch and a capacitor of 0.16 puF
in the shunt branch as shown in Fig. 11.10 (a). The z-section consists of an inductor of 39.79 mH in the series

branch and a capacitor of %, i.e. 0.08 uF in each shunt branch as shown in Fig. 11.10 (b).

19.9 mH 19.9 mH 39.79 mH
o 000 000 0 o 00 o
~~0.16 uF —_ 0.08uF ——0.08uF
O O O O
(a) (b)
Fig. 11.10

” ET NI MU Design a constant-k, T section low-pass filter is having 2.5 kHz cut-off frequency
and nominal impedance of 700 €2 Also find the frequency at which this filter produces an attenuation of 19.1
dB. Find its characteristic impedances and phase constant at pass band and stop or attenuation band.

Solution fe=2.5kHz, k=700Q
:L:%:SQBmH
nf, mx2.5%x10
1 1

= = 3 =0.18uF
nf.k  wx2.5x10° X700

The T-section filter consists of an inductor of —, i.e. 44.57 mH in each series arm and a capacitor of 0.18
WF in the shunt arm as shown in Fig. 11.11.
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o =19.1dB=2.197 nepers 44.57 mH 44.57 mH
o 7000 000 o
o= ZCOShl( / )
‘ —0.18 uF
2.197=2cosh™ (fS)
2.5%10
o o)
f=4.17kHz
B is imaginary in pass band. Fig.11.11
In attenuation band, B=180°

IEEEA| CONSTANT-k HIGH-PASS FILTER

A constant-k high-pass filter is obtained by changing the positions of series and shunt arm of the constant-k
low-pass filter, Figure 11.12 shows a constant-k, 7 and 7 section, high-pass filter.

2C 2C c
—] - |

O O O

O
(a) T-section (b) 7-section

Fig. 11.12 Constant-k high-pass filter

In a constant-k high-pass filter

7 -]
oC  joC
Z,=joL
1. Nominal Impedance
/ 1 L
k=JZZ, = || — |(joL) = |—
1 [jwc](J ) \/;
2. Cut-off Frequency
. . Z Z,
The cut-off frequencies are obtained when —— =0 and —=-1
47, 47,
(i) When E/R =0
4Z,
Z,=0
1 _o
joC
Q) = oo
f = o0
(i) When Z __,
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7, =-47,
—j—=4joL
C
@’ LC =
w* = :
4LC
o
2JLC ¢
1
f:f = e—
‘ anLC

Hence, the filter passes all the frequencies beyond
/.. The pass band starts at /' = f and continues up to
infinite frequency. All the frequencies below the
cut-off frequency lie in the attenuation or stop band.

> f
3. Attenuation Constant 0 fo
In pass band, oc =0
V4 f Fig.11.13 Variation of o with frequency
In stop band, o = 2cosh™ [|-=| =2cosh™ (
: 4
The attenuation constant & decreases gradually to zero .

at the cut-off frequency and remains at zero through the
pass band. The variation of ¢ is plotted in Fig. 11.13.

4. Phase Constant

V4
In pass band, §=2sin"" [|——
P h 47

2

In stop band, =7 .

The phase constant 3 remains at constant value 7 in
the stop band and decreases to —7 in at £, and reaches ~ Fig. 11.14  Variation of B with frequency
zero value gradually as fincreases in the pass band. The
variation of 3 is plotted in Fig. 11.14. Z,

5. Characteristic Impedance

z? Z,
Zor = | 2o 202y = |22, | 142
or 1 L7 1 2( 17,

k
2
1
= L(l— 3 j:k 1—(‘/{0
C\ 4w°LC f 0 f
7.7 k
ZOn - Zl 2 B

or 1— Je Fig. 11.15 Variation of characteristic

f impedance with frequency

The variation of characteristic impedance is plotted in Fig. 11.15.
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6. Design of Filter

o= L
C
1

fcz47rx/f

Solving these two equations,

ok
e
R
CAnfik

” SETII UMW Find the characteristic impedance, cut-off frequency and pass band for the network
shown in Fig. 11.16.

0.4 uF 0.4 uF
| | °

50 mH

Fig. 11.16
Solution  The network is a high-pass filter.
2C=04uF, L=50mH
C=02uF
(a) Characteristic impedance
50x107°
02x10¢

(b) Cut-off frequency
1

1
4nLC  47y50%107 x0.2x 107

fe =795.77 Hz

(c) Passband
The pass band is from 795.77 Hz to infinite frequency.

” SETII BRI A high-pass filter section is constructed from two capacitors of 1 uF each and a
15 mH inductance. Find (a) cut-off frequency, (b) infinite frequency characteristic impedance, (c)

characteristic impedance at 200 Hz and 2000 Hz, (d) attenuation at 200 Hz and 2000 Hz, and (e) phase
constant at 200 Hz and 2000 Hz.
Solution L=15mH, 2C=1yuF

C=0.5puF
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(a) Cut-off frequency
fom—r—= 1
= =
AnLC  4z15%1073 x0.5% 107

(b) Infinite-frequency characteristic impedance

L _ [15x107
Atf=cs, Zo=k= L= 22X 193510
¢ Vosx10°

=918.88 Hz

(¢) Characteristic impedance at 200 Hz

2 2
Zoy =k /1—[]}] =17321 /1—(9213(‘)?)8) = j776.72Q

Characteristic impedance at 2000 Hz

2 2
Zoy =k [1- Je | S o[ 2888Y) 53850
f 2000

o =2cosh™ (/;J =2cosh™ (918'88) =441

The frequency of 2000 Hz lies in the pass band.
a=0

(d) Attenuation at 200 Hz

(e) Phase constant
The frequency 200 Hz lies in the attenuation band.

B = 7 radians

B=2sin™" Je ) pgin [ 21888)_ 54 50
f 2000

At 2000 Hz,

” Example MWW Design a constant-k high-pass T and T sections filters having a cut-off frequency of
2000 Hz and infinite frequency characteristic impedance of 300 €2

Solution f. =2000 Hz, k=300Q
k3% o4mn
4rnf. 4mx2000
1 1

Arf.k 4mx2000x300

The T-section filter consists of a capacitor of 2C, i.e. 0.26 uF in each series arm and an inductor of
11.94 mH in shunt arm as shown in Fig. 11.17 (a).

The m-section filter consists of a capacitor of 0.13 pF in the series arm and an inductor of 2L, i.e.
23.88 mH in each shunt arm as shown in Fig. 11.17 (b).
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0.26 uF 0.26 uF 0.13 uF
o 'l 'l o o 'l o
N N N
11.94 mH 23.88 mH % 23.88 mH
O O O O
(a) (b)
Fig. 11.17

” Example UMW ION  Design a T-section constant-k high-pass filter having a cut-off frequency of 10 kHz

and a design impedance of 600 £2. Find its characteristic impedance and phase constant at 25 kHz.

Solution fe =10kHz, k=600Q

= k = 600 3= 4.77 mH
4rfe  4mx10x10 0.026 uF 0.026 uF
! ! o | | o
Anf.k  4rx10x10° x 600
4.77 mH

The T-section filter consists of a capacitor of 2C, i.e. 0.026 pF in
each series arm and an inductor of 4.77 mH in shunt arm as shown o o
in Fig. 11.18. Fig.11.18

(a) Characteristic impedance at 25 kHz

2
Zo =k 1—(ch =600,[1
S

_[10><103

2
by 103J =549.91Q
X

(b) Phase constant at 25 kHz

3
B=2sin" (f"):ZSin_' 10X103 =47.16°
S 25%10

The frequency of 25 kHz lies in the attenuation band.

In the attenuation band, B =180° = r radians

IEEX]| sanD-PAss FILTER

A band-pass filter attenuates all the frequencies below a lower cut-off frequency and above an upper cut-off
frequency. It passes a band of frequencies without attenuation. A band-pass filter is obtained by using a low
pass filter followed by a high-pass filter.

Figure 11.19 shows a band-pass filter. The series arm is a series resonant circuit comprising L, and C,
while its shunt arm is formed by a parallel resonant circuit L, and C,. The resonant frequency of series arm
and shunt arm are made equal.
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Ly L
o 2C 2, 2 Ly G
o—— 00— | |F—wr——o o To— | o
1 G 1
Ly — 2L, ) 2L, J—
o - o o o
(a) T-section (b) 7-section
Fig. 11.19 Band-pass filter
For series arm,
L 1
Wy —=
2 200Cy
1
o) =——
L1C1
1
For shunt arm, =wyl,
0oC,
1
g =
LG,
LG = LG
For series arm, ,
j o L,C -1
Z, = joL -1 = [ LG J
ac, ac,
For shunt arm,
1
joL, — .
J@C, JoL,
= I 1-0’L,C
JoL, +— i
Jac,
77— o’ L,C -1 JjoL, L[ o’LC-1) L, I i
=] = == =—=
e oc, 1-0’L,C, ) Gll1-0’L,C, ) ¢ G
where £ is constant.
For constant £ filter, at cut-off frequency,
7, =-4Z,
7] =-4Z,Z, = -4k’
1 = 7Ly =
7, =+;2k
i.e. the value of Z, at lower cut-off frequency is equal to the negative value of Z, at the upper cut-off
frequency.
- +joL = —( : +jco2L1)
Jo G JoC

1—(012L]C1 = ﬂ(CL)%L]C[ —1)
()
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But oy =——-

(05 — 0 Y, = o (03 — o)
00, — O] 0 = W3 — V0]
(0(%((01 + @) = 0w (W, + @)
w5 =
Wy = \/@
fo=\hh

Thus, resonant frequency is the geometric mean of the cutoff frequencies. The variation of attenuation, phase
constant and characteristic impedance with frequency are shown in Fig. 11.20.

o ‘ ‘ y/j Z

Fig. 11.20 Variation of (a) attenuation, (b) phase constant, and (c) characteristic impedance with
frequency for constant-k band-pass filter

Design of Filter
If the filter is terminated in a load resistance R = k then at lower cut-off frequency,

7, =-2jk
: +jo Ly =-2jk
Jo G
- L =2k
pYe L

1- 0)12L1C1 = 2ka)1C1

2
1 —wilz = 2ka)1C1 ( [0
00

2
1—(?) = 47TkﬁC1

Sto
Il
—_
—

LG

0
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2
=S amic (< = VAR
Jfo = i =4nkh G
c = 2= h
=
Az k1 f>
1 Ankhfa A7 kfi 1o 3 k

LG @ (h-f) 4T R (f-f) A A
For shunt arm,

L
7,2,=-2% Loy

G G
L -t = Ve k
ar fif>

L1

2

TR alh-f)k

” SETIIESEN 7 o constant-k band-pass filter, the ratio of capacitances in the shunt and series
arms is 100:1. The resonant frequency of both arms is 1000 Hz. Find the bandwidth,

Solution g=@=100, fo =1000 Hz
Gy 1
1
Cy=—
Tk(f2 = 1)
- Sr— N
47ckf, f>
C_ 1 4mkfifs
G wk(fa=hH) fa—h
100= 22 -
(2=1H)
2
100=i2
(f2=1)
2fy  2x1000
-fi= = =200
SN T RNy

BW = f, — f; =200 Hz

” SETII MUY Design a band pass constant-k filter with cut-off frequency of 4 kHz and 10 kHz

and nominal characteristic impedance of 500 £2.

Solution fi=4kHz, f,=10kHz, k=500Q
= kK _ 5?0 —=26.53mH
n(f,=f) mw10x10° —4x10°)
- 10x10* —4x10°
¢ =L"h 0107 ~4x10 = 0.024 uF

T ATk f, Amx500x4x10° x10x10°
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(- f)k _(10x10° —4x10%) 500
2T unfif,  4nx4x10° x10x10°
o 1 ~
T rh - Sk wx(10x10° —4x10%)x500

=5.97 mH

) 0.11 uF

L
The T-section filter consists of series combination of an inductor of ?1, i.e. 13.27 mH and a capacitor of
2 C,,i.e.0.048 pF in each series arm and a parallel combination of an inductor of 5.97 mH and a capacitor of
0.11 pF in shunt arm as shown in Fig. 11.21.

13.27 mH 0.048 uF 13.27 mH 0.048 uF
o S || T | —o

597mH —— 0.11 uF

Fig. 11.21

The 7-section filter consists of a series combination of an inductor 26.53 mH and a capacitor of 0.024 pF in
the series arm and a parallel combination of an inductor of 2L,, i.e. 11.94 mH and a capacitor of 72, ie.

0.055 pF in each shunt arm as shown in Fig. 11.22.
26.53 mH 0.024 uF

° O || o
11.94 mH ——0.055uF  11.94 mH —— 0.055uF
e, O
Fig. 11.22

IEEX)| sAnD-sTOP FILTER

A band-stop filter attenuates a specified band of frequencies and allows all frequencies below and above
this band. A band-stop filter is realised by connecting a low-pass filter in parallel with a high-pass filter.
Figure 11.23 shows a band-stop filter.

As in the band-pass filter, the series and shunt arms are chosen to resonate at same frequency .

For series arm,

oLy _ 1
2 2(1)0C1
1
0 =-L
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L 4
2 2 L
000 000 — 000 —
o— —o
| | -
2¢, 2c, o}
L 2L, 2L,
: 1 —— =,
(a) T-section (b) 7section
Fig.11.23 Band-stop filter
For shunt arm,
wyl, =
o L2 00>
1
o =
LG,
L]C] = L2C2
.. L L
Similarly, 7,7, L2 g2
C, G
and Jo=/if2
At cut-off frequencies, Z7,=-47Z,
2,2, = 475 = i
k
Z,=%j—
2 J 5

The variation of attenuation, phase shift and characteristic impedance with frequency are shown in Fig. 11.24.

Fig 11.24

Design of Filter

Variation of (a) attenuation, (b) phase constant, and (c) characteristic inpedance with
frequency for constant-k band-stop filter.

If the load is terminated in load resistance R = k then at lower cut-off frequency,
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1 k
Z,=j|—-wlL, |=j—
2 J(wlcz 12J 12

1
-, L, = k
w,C, 2

k
1-0!L,C, = 0,C, 5

2
o k 1
1-= = S oG ( w§ = )

o LGy

2
1—(?] = k717f1C2

0

= 1_(f1)2 :1(1_1J:1(1’z—ﬁJ: -k
kz fi Jo kx\ fi  f2) kr\  fifa 7k fifs

Lol _ A _ ik
00Cy (= fi) AR SC(f-h) Ar(fa= 1)
k2=£=2
C, (G
L = i2c, = K= f)
Tfifs
_L2_ 1

1

K ATk(fi-fi)

” ETIIWMEWEN  Desion a constant-k band-stop filter having cut-off frequencies at 2000 Hz and

5000 Hz and characteristic resistance of 600 €2

Solution £i=2000Hz, f, =5000Hz, k=600Q
L= k(fa = fi) _ 600(5000-2000) _ . .0
Tt 7% 2000 x 5000)

G = 1 = ! =0.044 puF

Ark(fy — fi)  4mx600x (5000 —2000)
2 = LI 600 =15.92 mH

4r(fr— fi) 4w x (5000 —2000)

szfz—fl __ 5000-2000 — 0.16 uF

mkfi f» X600 %2000 %5000

The T-section filter consists of a parallel combination of ?1, i.e. 28.65 mH and a capacitor of 2 C|, i.e.

0.088 uF in each series arm and a series combination of an inductor of 11.92 mH and a capacitor of 0.16 puF
in shunt arm as shown in Fig. 11.25.
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28.65 mH 28.65 mH 57.3 mH
000 000 OO
o —0 O O
] J ]
0.088 uF 0.088 uF 0.044 uF
31.84 mH 31.84 mH
15.92 mH
0.16 uH ~~0.08 uF ~~0.08uF
o T o © o]
Fig. 11.25 Fig. 11.26

The m-section filter consists of a parallel combination of an inductor of 57.3 mH and a capacitor of 0.044 pF
in the series arm and a series combination of an inductor of 2L,, i.e. 31.84 mH and a capacitor of 72, ie.

0.08 pF in each shunt arm as shown in Fig. 11.26.

JERUH || TERMINATING HALF SECTIONS

A filter is composed of a number of sections. As the characteristic impedance of an equivalent 7 or 7
section does not match with each other, a half section is used for impedance matching between 7 and 7
sections.

The input impedance of the half section is same as the characteristic impedance of a 7 section, while
the output impedance of the half section is same as the characteristic impedance of the 7 section. Hence,
matching can be obtained if a half section is connected in between a 7 and 7 section.

Constant-k Half Sections

Figure 11.27(a) shows a constant-k 7-section filter. If this section is bisected longitudinally, a half section is
obtained as shown in Fig. 11.27(b).

z, z,

2 2

Zy Z
2 2
o o o o

O O O O
(

(a)

o o
b)

Fig. 11.27 (a) Constant-k T-section (b) constant-k half T-section

Similarly, a constant-k 7 section can be bisected into two half sections as shown in Fig. 11.28.
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s

z1
Z 2
O O O O O

2z, 2z, 2z, 2z,

(a) (b)

Fig. 11.28 (a) Constant-k m-section (b) constant-k half r-section

Figure 11.29 shows a constant-k half section. The image impedance of the section as seen from terminals 1-2
and terminals 3-4 can be found from the open circuit and short-circuit impedances.

z Z
(zzz)(zz2 7‘) 2 22 2
Z12 = \]Zoc Zsc = = =2 = Z()ﬂ.' ? L
7,+47Z,

3
27, +%
2z,
V4 V4
Zyy = Y, Zy Ly = (21+ 2Z2)(;) (2> g

7 Fig. 11.29 Constant-k half section
= 2,2, 1+ | =2,
( 4Z, !
Thus, the half section has the impedance characteristics of a 7 section between terminals 1-2 and that of a
T section between terminals 3-4. Hence, this half section can be used to match a 7 section to a 7 section. It
can also be used to match a filter section to a terminating impedance which differs from the characteristic
impedance of a 7 section.

” SETI MU Find the values of shunt and series element of each half section of a constant-k
T-section high-pass filter. The termination is 600 Q and the filter is cut off below 20000 Hz.

Solution k=600Q, f.=20000Hz
0.0133 uF
L= k = 600 =239 mH [
4nf. 4mwx20000 © I ©
1 1

=0.0066 pF P

000

Tanfik  4mx20000%600

The half section consists of a capacitor of 2C, i.e. 0.0133 puF in the series
branch and an inductor of 2L, i.e. 4.78 mH in the shunt branch as shown in
Fig. 11.30. Fig. 11.30




Objective-Type Questions 11.27

Fig. 11.31

EXGI’CISGS
11.1 A T-section low-pass filter has a series  11.4 Design a z-section constant-k high-pass filter
inductance of 80 mH and a shunt capacitance having a cut-off frequency f. =8 kHz and
of 0.022 pF. Find the cut-off frequency nominal characteristic impedance & = 600 €.
and nominal impedance. Also design the Find (a) its characteristic impedance at a
equivalent 7-section. frequency of 12 kHz, (b) phase constant
_ _ _ at frequency of 12 kHz, (c) attenuation at
fe =7.587kHz, k=1.907kQ,L =80 mH, frequency of 800 Hz.
C
5:0.011uF |: L=5971mH, C=0.016 ],LF,:|
11.2 Calculate the frequency of a constant-k, Zon =805Q, [=83.6° =S5 nepers
T-section low-pass filter having a cut-off 11,5 Design a band-pass constant-k filter
frequency of 1000 Hz at which it has an with fi=2kHz and f,=3kHz and
attenuation of 10 dB. k=500 Q.
[f=1170 Hz] L =159 mH, C; =0.026 uF,
11.3 Design a low-pass constant-k (a) 7-section, L, =208 mH, C, =0.637uF
and (b) msection filter with f. =6 kHz 11.6 Design a band-stop constant-k filter with
and Rp =500 Q. Calculate o and f for the .
. cut-off frequencies of 8 kHz and 12 kHz and
filters for f =10 kHz. Also determine the . L
6 t which the att tion is 10 4B nominal characteristic impedance of 500 Q.
requency at which the attenuation is .
dueney g e L =66mH, C =0.0398 uF,
o= 2.2 neper, i radians, L,=99mH, C,=0.0265uF
B=mat10 kHzT — 57 13.25 mH, 11.7 In a constant-k band-pass filter, the ratio of
_ _ capacitance in the shunt and series arms is
€ =0.106 pFz — L = 26.5 mH, 50:1 and the resonant frequency of both arms
< =0.053 uF is 1000 Hz. Find the bandwidth of the filter.
2 [282.84 Hz]
i S =T7kHz|
Objechve—Type Questions
11.1 For the design of low-pass prototype filter (a 1HandIF (b) 1Hand2F
Fig. 11.31 of with load resistance R, = 1 Q (¢c) 2HandIF (d 2Hand2F
and angular frequency w = 1 rad/s the values  11.2 The passband of a typical filter network
of L and C would be with Z, and Z, as the series and shunt-arm
L L impedances is characterised by
2 2 Z Z
o—— 000 TIT—o <l gy —l<2<l
(@) 47, (b) 47,
—_—C Z
(c) 0<—-<1 (d) none ofthe above
47,
© © 11.3 The application of the bisection theorem

finds out an equivalent lattice network if the
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11.4

11.6

original network is

(a) symmetrical and balanced only

(b) unsymmetrical and balanced only

(c) symmetrical, balanced and unbalanced
only

(d) symmetrical and unbalanced only

Z, and Z, are the total series and shunt

impedances of a T or 7z-filter. Consider the
following zones of operation of filters and the
conditions on the impedances

(a) Pass band 1. 4 <—1
47z,
b) Stop band , A
(b) Stop ban e
Z
(c) Transitionband 3. —1<-—-<0
2
Tick the correct combination:
A B C
(a) 1 2 3
(b) 3 1 2
(c) 3 2 1
(d) 2 3 1

Tick out the correct statement in case of a
filter.

(a) Characteristic impedance is resistive in
stop band

(b) Characteristic impedance is reactive in
pass band

(c) Characteristic impedance is resistive in
pass band

(d) None of the above
If L is the total series inductance and C the
total shunt capacitacne of a 7 or z-type low-

11.7

11.8

11.9

1
0to——— Hz
@) 2mLe
1
0 to Hz
(b) N>
0to i Hz
(© e
(d) 0to ! Hz

an|Le

If C is the total series capatance, L is the total
shunt inductance of a 7 or m-type high-pass
filter, the frequency range for the stop band
of the filter is

1

0to Hz
@) 2mLe
1
0 to Hz
(b) N»
2
(c) Oto Hz
T\ Le
(d 0 to 2 Hz

anyLc

If f, and f, are the lower and uppper cut-off
frequencies of the band pass filter, the series
impedance Z, is

(a) capacitive at f|
(b) inductive at f|
(c) resistive at f,

(d) none of the above
The phase constant 3 of a filter during stop

band is

page filter, the pass band frequency range of (a) Zero radian (b) 2
the filter is given as © = (d) 2z
Answers to Objective-Type Questions
1.1 (d) 112 (a) 113 (c) 11.4 (b) 115 (c) 11.6 (b) 117 (d)
11.8 (a) 11.9 (c)



A

Active and Passive Elements 1.7
Active and Passive Networks 1.7
Analysis of Ladder Networks 8.5
Analysis of Non-Ladder Networks 8.15
Attenuation Band 11.1

B

Band-Pass Filter 11.1, 11.18
Band-Stop Filter 11.1, 11.22
Branch 2.1

Branch Admittance Matrix. 5.27

C

Capacitance 1.3

Cascade Connection 9.47

Cauer I Form 10.33

Cauer II Form 10.34

Cauer Realisation or Ladder Realisation 10.33
Characteristic Impedance 11.2

Characteristic of Filters 11.6

Co-Tree 5.4

Coefficient of Coupling (k) 4.2

Complete Incidence Matrix (Aa) 5.6
Condition for Reciprocity 9.2

Condition for Symmetry 9.3

Conductively Coupled Equivalent Circuits 4.37
Connected Graph 5.3

Constant-k Half Sections 11.25

Constant-k High-pass filter 11.14

Constant-k Low Pass Filter 11.7

Cosine Function 7.3

Coupled Circuits 4.15

Critically Damped 6.67

Cumulative Coupling 4.3

Current 1.1

Current Transfer Function 8.2
Current-Controlled Current Source (CCCS) 1.6
Current-Controlled Voltage Source (CCVS) 1.6
Cut-Off Frequency 11.1

Cutset Matrix 5.10

D

Degree of a Node 5.1

Delayed Unit-Ramp Function 7.3

Delayed or Shifted Unit-Step Function 7.2
Dependent Sources 1.5

Differential Coupling 4.4

Directed or Oriented Graph 5.1

Dot Convention 4.9

Driving Point and Transfer Function 8.1
Driving-Point Admittance Function 8.2
Driving-Point Functions 8.1

Driving-Point Impedance at Input Port 9.69
Driving-Point Impedance at Output Port 9.71
Driving-point Impedance Function 8.2

E

Elementary Synthesis Concepts 10.24
Energy 1.1

Exponential Function (e*) 7.3
Exponentially Damped Function 7.4



1.2 Index

F

Farad 1.3

Final Value Theorem 7.7

Forced Response 6.28

Foster I Form 10.31

Foster I Form 10.32

Foster Realisation 10.31
Fundamental Circuit (Tieset) 5.8
Fundamental Circuit Matrix 5.8
Fundamental Cutset 5.11
Fundamental Cutset Matrix 5.11

G

Graphical Method for Determination of Residue
8.42

H

Henry 1.2

High-Pass Filter 11.1

Hurwitz Polynomials 10.1

Hybrid Parameters (h Parameters) 9.24
Hyperbolic Cosine Function 7.4
Hyperbolic Sine Function 7.4

I

Incidence Matrix 5.6

Independent Current Source 1.5
Independent Sources 1.5

Independent Voltage Source 1.5

Inductance 1.2

Inductances in Parallel 4.4

Inductances in Series 4.3

Initial Conditions 6.1

Initial Conditions for the Capacitor 6.2
Initial Conditions for the Inductor 6.2
Initial Conditions for the Resistor 6.1
Initial Value Theorem 7.7

Input Port 8.1

Inter-relationships between the Parameters 9.29
Interconnection of Two-Port Networks 9.47
Inverse Laplace Transform 7.7

K
Kirchhoft’s Current Law 5.24

Kirchhoftf’s Current Law (KCL) 2.1
Kirchhoft’s Laws 2.1

Kirchhoft’s Voltage Law 5.24
Kirchhoft’s Voltage Law (KVL) 2.2

L

Laplace Transformation 7.1

Laplace Transforms of Some Important Functions
7.2

Lattice Networks 9.66

Linear Graph 5.1

Linear and Non-linear Elements 1.6

Loop 2.1

Loop Impedance Matrix 5.27

Loop Matrix or Circuit Matrix 5.8

Loop or Circuit 5.3

Low-Pass Filter 11.1

Lumped and Distributed Elements 1.7

M

Maximum Power Transfer Theorem 3.51, 2.106
Mesh 2.1

Mesh Analysis 2.2, 3.1

Millman’s Theorem 2.122, 3.68

Mutual Inductance 4.2

Mutually Induced Emf 4.2

N

Natural Response 6.28

Network Topology 5.1

Network and Circuit 1.6

Node 2.1

Node Analysis 2.23

Node Analysis 3.9

Non-planar Graph 5.2

Norton’s Theorem 2.82, 3.41

Number of Possible Trees of a Graph 5.7

o

Ohm 1.1

One-Port Network 8.1

Open-Circuit Impedance Parameters (Z Parameters)
9.2

Output Port 8.1

Overdamped 6.67



P

7 Network 9.61, 11.4

Parallel Connection 9.51

Partial Fraction Expansion 7.8

Pass Band 11.1

Path 5.3

Planar Graph 5.2

Poles and Zeros of Network Functions 8.20
Positive Real Functions 10.16

Potential Difference 1.1

Propagation Constant 11.2

Properties of Hurwitz Polynomials 10.1
Properties of Laplace Transform 7.4
Properties of Positive Real Functions 10.16

R

Rank of a Graph 5.3

Realisation of LC Functions 10.30

Realisation of RC Functions 10.47

Realisation of RL Functions 10.63

Reciprocity Theorem 2.118, 3.64

Reduced Incidence Matrix (A) 5.6

Resistance 1.1

Resistor—Capacitor Circuit 6.49, 7.19

Resistor—Inductor Circuit 6.27,7.13

Resistor—Inductor—Capacitor Circuit 6.66, 7.25

Response 6.28, 6.67

Response of RC Circuit to Various Functions 7.31,
7.39

S

Self-Induced emf 4.1

Self-Inductance 4.1

Series Connection 9.57

Series and Paralle] Combination of Capacitors 1.10

Series and Parallel Combination of Inductors 1.9

Series and Parallel Combinations of Resistors 1.7

Series-Parallel Connection 9.59

Short-Circuit Admittance Parameters (Y
Parameters) 9.8

Sine Function 7.3

Source Shifting 1.19

Source Transformation 1.13

Sources 1.4

Stability of the Network 8.42

Index 1.3

Star-Delta Transformation 1.10
Steady-State 6.28

Steady-State Response 6.1

Stop Band 11.1

Sub-graph 5.2

Supermesh Analysis 2.15
Supernode Analysis 2.36
Superposition Theorem 2.42, 3.14

T

T-Network 9.61, 11.1

Terminal Pair or Port 8.1

Terminated Two-Port Networks 9.69

Terminating Half sections 11.25

Thevenin’s Theorem 2.62, 3.27

Time-Domain Behaviour from the Pole-Zero Plot
8.39

Time-invariant and Time-variant Networks 1.7

Transfer Admittance Function 8.3

Transfer Functions 8.2

Transfer Impedance Function 8.3

Transformed Circuit 7.12

Transient Period 6.1

Transient Response 6.1, 6.28

Transients 6.1

Transmission Parameters (ABCD Parameters) 9.18

Tree 5.4

U

Underdamped Response 6.67
Unilateral and Bilateral Elements 1.7
Unit-Impulse Function 7.3
Unit-Ramp Function 7.3

Unit-Step Function 7.2

A\

Voltage 1.1

Voltage Transfer Function 8.2
Voltage-Controlled Current Source (VCCS) 1.5
Voltage-Controlled Voltage Source (VCVS) 1.5

/

Zero Input Response 6.28
Zero State Response 6.28






	Title
	Contents
	1 Basic Circuit Concepts
	2 Analysis of DC Circuits
	3 Analysis of AC Circuits
	4 Magnetic Circuits
	5 Graph Theory
	6 Time Domain Analysis of RLC Circuits
	7 Frequency Domain Analysis of RLC Circuits
	8 Network Functions
	9 Two-Port Networks
	10 Synthesis of RLC Circuits
	11 Filters
	Index

