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Preface

This textbook is exclusively designed for electrical engineering students studying a basic level course in circuit 

analysis offered to undergraduate students of various universities. This edition is prepared with students and 

instructors in mind. The principal objectives of the book continue to be to provide an introduction to basic 

concepts for circuit analysis, and to develop a strong foundation that can be used as the basis for further 

study. To achieve these objectives, emphasis has been placed on basic laws, theorems, and techniques which 

are used to develop a working knowledge of the methods of analysis, used in further topics of electrical 

engineering. The mathematical complexity of the book remains at a level well within the grasp of college 

first-year undergraduate students.

This book is designed for the third semester of EEE/ECE/EI/CSE students of various universities in the 

country. This book enables the student have a firm grasp on the basic principles of Circuits and Networks: 

Analysis and Synthesis. It lays emphasis on the basic laws, theorems, and techniques of analysis which helps 

students develop the ability to design practical circuits that perform the desired operations.

The main objective of the revision was to align this extremely popular content with internationally approved 

learning objectives for the course. Learning Objectives are the heart of every lesson, giving a purpose to 

learning. They are the foundations for lesson planning so that the students have a sense of purpose to learning 

and to know what is expected of them.

We received a great deal of useful feedback on the fourth edition, and we paid careful attention to it. While 

attempting to improve the book in all dimensions, our main aim was increasing its usefulness to students 

and instructors. The revised text and its underlying concepts & principles will be more interesting-to-read, 

easy-to-understand, and logical-to-follow. Given here is a quick review of the principle newness of the fifth 

edition over the fourth.

Each of the 19 chapters follows a common structure with a range of learning and assessment tools for 

instructors and students. 

In bringing out the fifth edition, we have taken advantage 

of recent technological developments to create a wealth 

of useful information not present in the physical book. 

For students using smartphones and tablets, scanning QR 

codes located within the chapters gives them immediate 

access to more resources. 

 The QR code appearing at the last page of each chapter 

gives students access to additional chapter resources which 

include Interactive Quizzes.

For interactive quiz with answers,
visit
http://qrcode.flipick.com/index.php/259
OR scan the QR code given here.



 Learning Objectives

Each chapter begins with a list of key 

Learning Objectives that are directly 

tied to the chapter content. These help 

in focussed planning for instructors and 

methodical studying for students. The 

chapters are now more modularised 

this will  help in systematic concept 

development.

 Arrangement of Pedagogy

The pedagogy is arranged as per levels of difficulty to enable the students to evaluate their learning levels. 

This assessment of levels of difficulty is derived from Bloom’s taxonomy.
r  indicates Level 1 and Level 2 i.e., Knowledge and 

Comprehension based easy-to-solve problems

rr  indicates Level 3 and Level 4 i.e., Application and 

Analysis based medium-difficulty problems

rrr indicates Level 5 and Level 6 i.e., Synthesis and 

Evaluation based high-difficulty problems

 Definitions and  

  Important Formulae

Features like Definition and Important 

Formulas are highlighted within  

the text to draw special attention  

to important concepts

LEARNING OBJECTIVES

Prefacexx 

 

 

 

 

 

     

The average power is expressed in watts. It means the useful power transferred from the source to the 

load, which is also called true power. If we consider a dc source applied to the network, true power is given 

by the product of the voltage and the current. In case of sinusoidal voltage applied to the circuit, the product 

of voltage and current is not the true power or average power. This product is called apparent power. The 

apparent power is expressed in volt amperes, or simply VA.

∴ Apparent power 5 Veff Ieff

In Eq. (6.10), the average power depends on the value of cos u; this is called the power factor of the circuit.

∴ = =Power factor pf( ) cosu
P

V I

av

eff eff

Therefore, power factor is defined as the ratio of average power to the apparent power, whereas apparent 

power is the product of the effective values of the current and the voltage. Power factor is also defined as the 

factor with which the volt amperes are to be multiplied to get true power in the circuit.

In the case of sinusoidal sources, the power factor is the cosine of the phase angle between voltage and 

current

pf 5 cos u

As the phase angle between voltage and total current increases, the power factor decreases. The smaller 

the power factor, the smaller the power dissipation. The power factor varies from 0 to 1. For purely resistive 

circuits, the phase angle between voltage and current is zero, and hence the power factor is unity. For 

purely reactive circuits, the phase angle between voltage and current is 90°, and hence the power factor is 

zero. In an RC circuit, the power factor is referred to as leading power factor because the current leads the 

voltage. In an RL circuit, the power factor is referred to as lagging power factor because the current lags 

behind the voltage.

r

rr

rrr
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Practice Problems linked to LO 2

rr13-2.1 Use step functions to write the expression for 

the function shown in Fig. Q.1.

rrr13-2.2 Step functions can be used to define a window 

function. Thus, u(t – 1) – u(t – 4) defines a 

window 1 unit high and 3 units wide located 

on the time axis between 1 and 4.

  A function f (t) is defined as follows:

  5  

     

     

   

      

Fig. 2.27

EXAMPLE 2.7

Write the mesh current equations in the circuit shown in Fig. 2.27, 

and determine the currents.

Solution Assume two mesh currents in the direction as indicated 

in Fig. 2.28.

The mesh current equations are

5I1 1 2(I1 – I2) 5 10

 

 

  

  

 
   

     

  

  

    

    

Frequently Asked Questions linked to LO8
rr9-8.1 A three-phase motor can be regarded as a balanced Y-load. A three-phase motor draws 5.6 kW 

when the line voltage is 220 V and the line current is 18.2 A. Determine the power factor of the 

motor. [AU Nov./Dec. 2012]
r9-8.2 In a three-phase balanced delta system the voltage across R and Y is 400 0ºV. What will be the 

voltage across Y and B? Assume RYB phase sequence. [AU April/May 2011]

rr9-8.3 A balanced -connected load has one phase current IBC = 2 –90º A. Find the other phase current 

and the three line currents if the system is an ABC system. If the line voltage is 100 V, what is the 

load impedance? [AU April/May 2011]

rr9-8.4 The power consumed in a three-phase, balanced star-connected load is 2 kW at a power factor of 

0.8 lagging. The supply voltage is 400 V, 50 Hz. Calculate the resistance and reactance of each 

phase. [AU April/May 2011]
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Additional Solved Problems,  

PSpice Problems, and  

Objective Type Questions,  
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through QR Codes are  

featured at the  

end of the chapter.

Additional Solved Problems

PROBLEM 9.1

The phase voltage of a star-connected three-phase ac generator is 230 V. Calculate the (a) line voltage, 

(b) active power output if the line current of the system is 15 A at a power factor of 0.7, and (c) active and 

reactive components of the phase currents.

Solution 
 VPh 5 IL 5 IPh 5 f 5 f 5

 

PSpice Problems

PROBLEM 5.1

For the parallel circuit shown in Fig. 5.39, find the magnitude of current in each branch and the total current. 

What is the phase angle between the applied voltage and total current.

Objective-Type Questions

r9.1

3
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The basic approach of the previous edition has been retained. All the elements with definitions, basic laws, 

and configurations of the resistive circuits have been introduced in Chapter 1. Analysis of dc resistive circuits 

using graph theory has been discussed in Chapter 2. Network theorems on resistive circuits have been 

presented in Chapter 3. The concept of alternating currents and voltages has been introduced in Chapter 4. 

Due emphasis has been laid on finding out the average and rms values of different waveforms. Chapters 5 

and 6 introduce the complex impedance, and the concept of power and power factor respectively. 

The steady-state analysis of ac circuits, including network theorems, has been discussed in Chapter 7. In all 

the above chapters, problems, tutorials, and objective questions on dependant sources have been discussed. 

Resonance phenomenon in series and parallel circuits, and locus diagrams are presented in Chapter 8. 

A comprehensive study of polyphase systems and power measurement in both balanced and unbalanced 

circuits is presented in Chapter 9. A brief study of coupled circuits, tuned circuits, and magnetic circuits 

is introduced in Chapter 10. The transient behaviour of dc and ac circuits and their responses has been 

discussed in Chapter 11. The Fourier methods of waveform analysis and their applications in circuit analysis 

have been discussed in Chapter 12. 

Laplace transforms and their applications are presented in Chapters 13 and 14. A brief account of S-domain 

analysis is presented in Chapter 15. The parameters of two-port networks and their inter-relations have been 

discussed in Chapter 16. Various types of basic filters, attenuators, and equalizers have been discussed in 

Chapter 17. Elements of realizability and synthesis of one-port RL, RC networks have been briefly discussed 

in Chapter 18. A chapter on introduction to PSpice has been included as Chapter 19. The book also includes 

brief coverage of active filters and the j-operator as appendices.

The text is supported by an exhaustive website accessible at  

http://highered.mheducation.com/sites/9339219600 with the following supplements:

 - Solutions Manual

 - PowerPoint Lecture Slides

 - Solutions to Frequently Asked Questions

Many people have helped us produce this book. We extend our gratitude to them for assisting us in their 

own individual ways to shape the book into the final form. We would like to express our sincere thanks to 

the management of RVR & JC College of engineering, particularly to the President, Dr K Basava Punnaiah; 

Secretary and Correspondent, Sri R Gopala Krishna; and Treasurer, Dr M Gopalkrishna. Our heartfelt 

gratitude is due to the management of Sir C R Reddy College of Engineering, particularly the President,  

Sri Alluri Indra Kumar; Secretary, Dr M B S V Prasad; Vice Presidents, Sri Maganti Venkateswara Rao and 

Sri K Rajendra Vara Prasada Rao; Joint Secretaries, Sri M B V N Prasad and Sri Kodali Venkata Subba Rao; 

Treasurer, Sri V V Raja Bhushan Prasad; and Correspondent, Sri Chitturi Janaki Ramayya for providing us 

a conductive atmosphere. 



Preface xxiii 

We are indebted to Dr G Sambasiva Rao, Principal of Sir C R Reddy College of Engineering, Prof. K A 

Gopalarao of Andhra University; Sri B Amarendra Reddy of Andhra University; and Dr K K R of Gowtham 

Concepts School for their support throughout the work. We are thankful to Prof. G S N Raju, Prof. M Ravindra 

Reddy, Sri T Sreerama Murthy, and many other colleagues for their invaluable suggestions. We are extremely 

appreciative of Prof. K Swarnasri who selflessly devoted her time in thoroughly reviewing this edition of the 

book and implementing the PSpice Problems. We express thanks to Dr G Sambasiva Rao and Sri N C Kotaiah 

for helping us in preparing solutions to the frequently asked questions. 

We also thank the students of the ECE Department, particularly Ms V Krishna Geethika, Ms P Navya Sindhu 

of RVR & JC College of Engineering and T Jayanth Kumar, T Sumanth Babu, Alapati Haritha, A Siva Kumar, 

and P Alakananda who were involved directly or indirectly with the writing of this book. We acknowledge the 

contribution and help of Mr Srivamsi Krishna Ponnekanti, Project Fellow of Major Research Project (UGC) 

in the ECE department of RVR & JC College of Engineering. We are thankful to Mr D S R Anjaneyalu and 

K Srinivas for the error-free typing of the manuscript.

We acknowledge the following reviewers who took out time to review the manuscript and send us useful 

suggestions:

M S Naruka IEC College of Engineering and Technology, Greater Noida, Uttar Pradesh

Gagan Deep Yadav Yamuna Institute of Engineering and Technology, Lucknow, Uttar Pradesh

Kshipra Shingwekar Jai  Narain College of Engineering, Bhopal, Madhya Pradesh

Mukesh Kumawat NRI Institute of Research and Technology, Bhopal, Madhya Pradesh

Amitava Biswas Academy of Technology, Hooghly, West Bengal

Pravin Patil Vidyalankar Institute of Technology, Mumbai, Maharashtra

Ashwini Kotrashetti Don Bosco Institute of Technology, Mumbai, Maharashtra

Mahadik Shamala Rajaram Dr J J Magdum College of Engineering, Jaysingpur, Maharashtra

Walchand College of Engineering, Sangli, Maharashtra

P Balamurugan Vellore Institute of Technology, Chennai

R Ganesan Sethu Institute of Technology, Virudhunagar, Tamil Nadu

Vishwanath Hegde Malnad College of Engineering, Hassan, Karnataka

V Vijaya Kumar Raju Sri Vishnu Engineering College for Women (SVECW), Bhimavaram,  

 Andhra Pradesh

K Ramalingeswara Prasad Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh

S V D Anil Kumar St. Ann's College of Engineering and Technology, Hyderabad, Telangana

We wish to express our appreciation to the various members of McGraw Hill Education (India) who handled 

the book at different stages.

Finally, we thank our family members—Madhavi, Aparna, A V Yashwanth, P Siddartha, and P Yudhister—

whose invaluable support made the whole project possible.     



Prefacexxiv 

Despite the best efforts put in by us and our team, it is possible that some unintentional errors might have 

eluded us.  We shall acknowledge with gratitude if any of these is pointed out.  Any suggestions or comments 

from the readers for improving future editions of the book may please be sent to the publisher’s email address.

McGraw Hill Education (India) invites suggestions and comments from you, all of which can be sent to  

info.india@mheducation.com (kindly mention the title and author name in the subject line).

Piracy-related issues may also be reported.



1.1 VOLTAGE

According to the structure of an atom, we know that there are two types of 

charges: positive and negative. A force of attraction exists between these positive 

and negative charges. A certain amount of energy (work) is required to overcome 

the force and move the charges through a specific distance. All opposite charges 

possess a certain amount of potential energy because of the separation between 

them. The difference in potential energy of the charges is called the potential difference.

Potential difference in electrical terminology is known as voltage, and is denoted either by V or v. It is 

expressed in terms of energy (W ) per unit charge (Q), i.e.,

V
W

Q
v

dw

dq
= =or

dw is the small change in energy, and

dq is the small change in charge.

where energy (W ) is expressed in joules (J), charge (Q) in coulombs (C), and voltage (V ) in volts (V). One 

volt is the potential difference between two points when one joule of energy is used to pass one coulomb 

of charge from one point to the other.

LEARNING OBJECTIVES
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1



Circuits and Networks2 

EXAMPLE 1.1

If 70 J of energy is available for every 30 C of charge, what is the voltage?

Solution  V
W

Q
= = =

70

30
2 33.  V

1.2 CURRENT

There are free electrons available in all semiconductive and 

conductive materials. These free electrons move at random in 

all directions within the structure in the absence of external 

pressure or voltage. If a certain amount of voltage is applied 

across the material, all the free electrons move in one direction 

depending on the polarity of the applied voltage, as shown in 

Fig. 1.1.

 This movement of electrons from one end of the material 

to the other end constitutes an electric current, denoted by either I or i. The conventional direction of current 

flow is opposite to the flow of 2ve charges, i.e. the electrons.

Current is defined as the rate of flow of electrons in a conductive or semiconductive material. It is measured 

by the number of electrons that flow past a point in unit time. Expressed mathematically,

I
Q

t
=

where I is the current, Q is the charge of electrons, and t is the time, or

i
dq

dt
=

where dq is the small change in charge, and dt is the small change in time.

In practice, the unit ampere is used to measure current, denoted by A. One ampere is equal to one coulomb 

per second. One coulomb is the charge carried by 6.25 3 1018 electrons. For example, an ordinary 80 W 

domestic ceiling fan on 230 V supply takes a current of approximately 0.35 A. This means that electricity 

is passing through the fan at the rate of 0.35 coulomb every second, i.e. 2.187 3 1018 electrons are passing 

through the fan in every second; or simply, the current is 0.35 A.

EXAMPLE 1.2

Five coulombs of charge flow past a given point in a wire in 2 s. How many amperes of current is flowing?

Solution  I
Q

t
= = =

5

2
2 5.  A

1.3 POWER AND ENERGY

Energy is the capacity for doing work, i.e. energy is nothing but stored work. 

Energy may exist in many forms such as mechanical, chemical, electrical and 

so on. Power is the rate of change of energy, and is denoted by either P or p. If a 

certain amount of energy is used over a certain length of time, then

Power
energy

time
    or  ( )P

W

t
p

dw

dt
= = =

where dw is the change in energy and dt is the change in time.

Fig. 1.1

LO  2  

LO 1
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We can also write p
dw

dt

dw

dq

dq

dt
= = ×

 5 v 3 i 5 vi W

Energy is measured in joules (J), time in seconds (s), and power in watts (W).

By definition, one watt is the amount of power generated when one joule of energy is consumed in 

one second. Thus, the number of joules consumed in one second is always equal to the number of watts. 

Amounts of power less than one watt are usually expressed in fraction of watts in the field of electronics; 

viz. milliwatts (mW) and microwatts (mW). In the electrical field, kilowatts (kW) and megawatts (MW) are 

common units. Radio and television stations also use large amounts of power to transmit signals.

EXAMPLE 1.3

What is the power in watts if energy equal to 50 J is used in 2.5 s?

Solution  P= = =
energy

time

50

2.5
20 W

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 2*
rrr1-2.1 A resistor of 30 V has a voltage rating of 500 V; what is its power rating?

rrr1-2.2 A 6.8 kV resistor has burned out in a circuit. It has to be replaced with another resistor with the 

same ohmic value. If the resistor carries 10 mA, what should be its power rating?
rrr1-2.3 A 12 V source is connected to a 10 V resistor.

 (a) How much energy is used in two minutes?

 (b)  If the resistor is disconnected after one minute, does the power absorbed in the resistor 

increase or decrease?
rrr1-2.4 A capacitor is charged to 50 mC. The voltage across the capacitor is 150 V. It is then connected to 

another capacitor four times the capacitance of the first capacitor. Find the loss of energy.

rrr1-2.5 The current in the 5 V resistance of the circuit 

shown in Fig. Q.5 is 5 A. Find the current in the 

10 V resistor. Calculate the power consumed 

by the 5 V resistor.

rrr1-2.6 Find the power absorbed by the 5 V resistor 

shown in Fig. Q.6.

rrr1-2.7 Find the power absorbed by each circuit 

element of Fig. Q.7 it the control for the 

dependent source is (a) 0.8 ix and (b) 0.8 iy.

Fig. Q.5

Fig. Q.6 Fig. Q.7

*Note:  rrr- Level 1 and Level 2 Category 

rrr- Level 3 and Level 4 Category  

rrr- Level 5 and Level  6 Category
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rrr1-2.8 Find the power absorbed by each element and show that the algebraic sum of powers is zero in the 

circuit shown in Fig. Q.8.

Fig. Q.8

rrr1-2.9 Find the power absorbed by the element X in the circuit shown 

in Fig. Q.9 if it is a (a) 4 kV resistor, (b) 20 mA independent 

current source, reference arrow directed towards right, and (c) 

dependent current source, reference arrow directed towards right, 

labeled 2ix.

Frequently Asked Questions linked to LO 2*
rrr1-2.1 A bulb is rated as 230 V, 230 W. Find the rated current and resistance of the filament. 

  [AU April/May 2011]

1.4 THE CIRCUIT

Simply put, an electric circuit consists of three parts: (1) energy source, such 

as battery or generator, (2) the load or sink, such as lamp or motor, and (3) 

connecting wires as shown in Fig. 1.2. This arrangement represents a simple 

circuit. A battery is connected to a lamp with two wires. The purpose of the 

circuit is to transfer energy from source (battery) to the load (lamp). And this is 

accomplished by the passage of electrons through wires around the circuit.

The current flows through the filament of the lamp, causing it to 

emit visible light. The current flows through the battery by chemical 

action. A closed circuit is defined as a circuit in which the current 

has a complete path to flow. When the current path is broken so that 

current cannot flow, the circuit is called an open circuit.

More specifically, interconnection of two or more simple circuit 

elements (viz. voltage sources, resistors, inductors and capacitors) is 

called an electric network. If a network contains at least one closed 

path, it is called an electric circuit. By definition, a simple circuit 

element is the mathematical model of two terminal electrical devices, 

and it can be completely characterised by its voltage and current. Evidently then, a physical circuit must 

provide means for the transfer of energy.

Broadly, network elements may be classified into four groups, viz.,

1. Active or passive

2. Unilateral or bilateral

3. Linear or nonlinear

4. Lumped or distributed

Fig. Q.9

Fig. 1.2

LO  3  

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600
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1.4.1 Active and Passive 

Energy sources (voltage or current sources) are active elements, capable of delivering power to some external 

device. Passive elements are those which are capable only of receiving power. Some passive elements like 

inductors and capacitors are capable of storing a finite amount of energy, and return it later to an external 

element. More specifically, an active element is capable of delivering an average power greater than zero to 

some external device over an infinite time interval. For example, ideal sources are active elements. A passive 

element is defined as one that cannot supply average power that is greater than zero over an infinite time 

interval. Resistors, capacitors, and inductors fall into this category.

1.4.2 Bilateral and Unilateral

In the bilateral element, the voltage-current relation is the same for current flowing in either direction. 

In contrast, a unilateral element has different relations between voltage and current for the two possible 

directions of current. Examples of bilateral elements are elements made of high conductivity materials in 

general. Vacuum diodes, silicon diodes, and metal rectifiers are examples of unilateral elements.

1.4.3 Linear and Nonlinear Elements

An element is said to be linear, if its voltage-current characteristic is at all times a straight line through the 

origin. For example, the current passing through a resistor is proportional to the voltage applied through 

it, and the relation is expressed as V  I or V 5 IR. A linear element or network is one which satisfies the 

principle of superposition, i.e., the principle of homogeneity and additivity. An element which does not 

satisfy the above principle is called a nonlinear element.

1.4.4 Lumped and Distributed

Lumped elements are those elements which are very small in size and in which simultaneous actions take 

place for any given cause at the same instant of time. Typical lumped elements are capacitors, resistors, 

inductors and transformers. Generally, the elements are considered as lumped when their size is very small 

compared to the wave length of the applied signal. Distributed elements, on the other hand, are those which 

are not electrically separable for analytical purposes. For example, a transmission line which has distributed 

resistance, inductance and capacitance along its length may extend for hundreds of miles.

Frequently Asked Questions linked to LO 3
rrr1-3.1 Explain the terms: (a) Linear (b) Bilateral (c) Passive (d) Lumped parameter. [GTU Dec. 2010]
rrr1-3.2 Explain the terms: (a) Nonlinear (b) Unilateral (c) Passive (d) Lumped parameter. [GTU Dec. 2012]
rrr1-3.3 What are the network elements? Explain them. [JNTU Nov. 2012]
rrr1-3.4 What do you mean by a linear bilateral network? [PTU 2011-2012]

1.5 RESISTANCE PARAMETER

When a current flows in a material, the free electrons move through the material 

and collide with other atoms. These collisions cause the electrons to lose some 

of their energy. This loss of energy per unit charge is the drop in potential across 

the material. The amount of energy lost by the electrons is related to the physical property of the material. 

These collisions restrict the movement of electrons. The property of a material to restrict the flow of electrons 

is called resistance, denoted by R. The symbol for the resistor is shown in Fig. 1.3.

LO  4  
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The unit of resistance is ohm (V). Ohm is defined as the resistance offered 

by the material when a current of one ampere flows between two terminals 

with one volt applied across it.

According to Ohm’s law, the current is directly proportional to the voltage and inversely proportional to 

the total resistance of the circuit, i.e.,

I
V

R

i
v

R

=

=or

We can write the above equation in terms of charge as follows.

V R
dq

dt
i

v

R
Gv= = =, or

where G is the conductance of a conductor. The units of resistance and conductance are ohm (V) and mho 

�( ) respectively.

When current flows through any resistive material, heat is generated by the collision of electrons with 

other atomic particles. The power absorbed by the resistor is converted to heat. The power absorbed by the 

resistor is given by

P  5 vi 5 (iR)i 5 i2 R

where i is the current in the resistor in amps, and v is the voltage across the resistor in volts. Energy lost in a 

resistance in time t is given by

W pdt pt i Rt
v

R
t

t

= = = =∫
0

2
2

where v is the volts,

R is in ohms,

t is in seconds, and

W is in joules.

EXAMPLE 1.4

A 10 V resistor is connected across a 12 V battery. How much current flows through the resistor?

Solution  V 5 IR

I
V

R
= = =

12

10
1.2 A

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 4
rrr1-4.1 A resistor with a current of 2 A through it converts 1000 J of electrical energy to heat energy in 15 

s. What is the voltage across the resistor?
rrr1-4.2 The filament of a light bulb in the circuit has a certain amount of resistance. If the bulb operates 

with 120 V and 0.8 A of current, what is the resistance of its filament?

Frequently Asked Questions linked to LO 4
rrr1-4.1 State the limitation of Ohm’s law. [AU May/June 2013]

Fig. 1.3

LO-4
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1.6 INDUCTANCE PARAMETER

A wire of certain length, when twisted into a coil becomes a basic inductor. If 

current is made to pass through an inductor, an electromagnetic field is formed. 

A change in the magnitude of the current changes the electromagnetic field. 

Increase in current expands the fields, and decrease in current reduces it. Therefore, a change in current 

produces change in the electromagnetic field, which induces a voltage across the coil according to Faraday’s 

law of electromagnetic induction.

The unit of inductance is henry, denoted by H. By definition, the inductance is one henry when current 

through the coil, changing at the rate of one ampere per second, induces one volt 

across the coil. The symbol for inductance is shown in Fig. 1.4.

The current-voltage relation is given by

 
v L

di

dt
=

where v is the voltage across inductor in volts, and i is the current through inductor in amps. We can rewrite 

the above equations as

 
di

L
vdt=

1

Integrating both sides, we get

di
L

vdt

t t

t
0 0

1
∫ ∫=

i t i
L

vdt

i t
L

vdt i

t

t

0 0

0

0

0
1

1
0

∫

∫

− =

= +

( ) ( )

( ) ( )

From the above equation, we note that the current in an inductor is dependent upon the integral of the 

voltage across its terminals and the initial current in the coil, i(0).

The power absorbed by the inductor is

P vi Li
di

dt
= = watts

The energy stored by the inductor is

W pdt

Li
di

dt
dt

Li

t

t

=

= =

∫

∫

0

2

0
2

From the above discussion, we can conclude the following:

Fig. 1.4

LO  5  
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1. The induced voltage across an inductor is zero if the current through it is constant. That means an 

inductor acts as short circuit to dc.

2. A small change in current within zero time through an inductor gives an  infinite voltage across the 

inductor, which is physically impossible. In a fixed inductor, the current cannot change abruptly.

3. The inductor can store finite amount of energy, even if the voltage across the inductor is zero, and

4. A pure inductor never dissipates energy, only stores it. That is why it is also called a non-dissipative 

passive element. However, physical inductors  dissipate power due to internal resistance.

EXAMPLE 1.5

The current in a 2 H inductor varies at a rate of 2 A/s. Find the voltage across the inductor and the energy 

stored in the magnetic field after 2 s.

Solution  v L
di

dt

W Li

=

= × =

=

= × × =

2 4 V

1
J

8

1

2

2
2 4 16

2

2( )

1.7 CAPACITANCE PARAMETER

Any two conducting surfaces separated by an insulating medium exhibit the property 

of a capacitor. The conducting surfaces are called electrodes, and the insulating 

medium is called dielectric. A capacitor stores energy in the form of an electric field 

that is established by the opposite charges on the two electrodes. The electric field 

is represented by lines of force between the positive and negative charges, and is concentrated within the 

dielectric. The amount of charge per unit voltage that is capacitor can store is its capacitance, denoted by 

C. The unit of capacitance is Farad denoted by F. By definition, one Farad is 

the amount of capacitance when one coulomb of charge is stored with one volt 

across the plates. The symbol for capacitance is shown in Fig. 1.5.

A capacitor is said to have greater capacitance if it can store more charge per 

unit voltage and the capacitance is given by

C
Q

V
C

q

v
= =, or

(lowercase letters stress instantaneous values)

We can write the above equation in terms of current as

i C
dv

dt
i

dq

dt
= =







∵

where v is the voltage across capacitor and i is the current through it.

dv
C

idt=
1

Fig. 1.5

LO  6  
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Integrating both sides, we have

dv
C

idt

v t v
C

idt

v t
C

idt v

t t

t

t

0 0

0

0

1

0
1

1
0

∫ ∫

∫

∫

=

− =

= +

( ) ( )

( ) ( )

where v (0) indicates the initial voltage across the capacitor.

From the above equation, the voltage in a capacitor is dependent upon the integral of the current through 

it, and the initial voltage across it.

The power absorbed by the capacitor is given by

p vi vC
dv

dt
= =

The energy stored by the capacitor is

W pdt vC
dv

dt
dt

W Cv

t t

= =

=

∫ ∫
0 0

21

2

From the above discussion, we can conclude the following:

1. The current in a capacitor is zero if the voltage across it is constant; that means, the capacitor acts as 

an open circuit to dc

2. A small change in voltage across a capacitance within zero time gives an infinite current through the 

capacitor, which is physically impossible. In a fixed capacitance the voltage cannot change abruptly.

3. The capacitor can store a finite amount of energy, even if the current through it is zero, and

4. A pure capacitor never dissipates energy, but only stores it; that is why it is called non-dissipative 

passive element. However, physical capacitors  dissipate power due to internal resistance.

EXAMPLE 1.6

A capacitor having a capacitance 2 mF is charged to a voltage of 1000 V. Calculate the stored energy in joules.

Solution  W Cv= = × × × =−1

2

1

2
2 10 10002 6 2( ) 1 J

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 6
rrr1-6.1 (a) Determine the current in each of the following cases:

       (i) 75 C in 1 s  (ii) 10 C in 0.5 s  (iii) 5 C in 2 s

  (b) How long does it take 10 C to flow past a point if the current is 5 A?
rrr1-6.2 Find the capacitance of a circuit in which an applied voltage of 20 V gives an energy store  

of 0.3 J.
rrr1-6.3 The voltage across two parallel capacitors of 5 mF and 3 mF changes uniformly from 30 to 75 V 

in 10 ms. Calculate the rate of change of voltage for (a) each capacitor, and (b) the combination.
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Fig. 1.7

Fig. 1.8

Frequently Asked Questions linked to LO 6

rrr1-6.1 When a dc voltage is applied to a capacitor, voltage across its terminals is found to build up in 

accordance with vc = 50(1 – e–100t). After 0.01 s, the current flow is equal to 2 mA.

 (a) Find the value of capacitance in farad.

 (b) How much energy is stored in the electric field?  [AU May/June 2014]
rrr1-6.2 Give the relation between energy (E) and power (P). Derive the equations for the energy stored in a 

capacitor (C) and an inductor (L) using P = VI [GTU May 2011]

1.8 ENERGY SOURCES

According to their terminal voltage–current characteristics, electrical energy sources 

are categorised into ideal voltage sources and ideal current sources. Further they can 

be divided into independent and dependent sources.

An ideal voltage source is a two-terminal element in which the voltage vs is 

completely independent of the current is through its terminals. The representation of ideal constant voltage 

source is shown in Fig. 1.6 (a).

Fig. 1.6

If we observe the v–i characteristics for an ideal voltage source as shown in Fig. 1.6 (c) at any time, the 

value of the terminal voltage vs is constant with respect to the value of current is. Whenever vs 5 0, the voltage 

source is the same as that of a short circuit. Voltage sources need not have constant magnitude; in many 

cases the specified voltage may be time-dependent like a 

sinusoidal waveform. This may be represented as shown in 

Fig. 1.6 (b). In many practical voltage sources, the internal 

resistance is represented in series with the source as shown 

in Fig. 1.7 (a). In this, the voltage across the terminals falls 

as the current through it increases, as shown in Fig. 1.7 (b).

The terminal voltage vt depends on the source current as 

shown in Fig. 1.7 (b), where vt 5 vs – is R.

An ideal constant current source is a two-terminal element in 

which the current is completely independent of the 

voltage vs across its terminals. Like voltage sources 

we can have current sources of constant magnitude is 

or sources whose current varies with time is(t). The 

representation of an ideal current source is shown in 

Fig. 1.8 (a).

If we observe the v – i characteristics for an 

ideal current source as shown in Fig. 1.8 (b), at 

LO-7

LO  7 
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any time the value of the current is is constant with respect to 

the voltage across it. In many practical current sources, the 

resistance is in parallel with a source as shown in Fig. 1.9 (a). 

In this the magnitude of the current falls as the voltage across 

its terminals increases. Its terminal v – i characteristic is 

shown in Fig. 1.9 (b). The terminal current is given by it 5 is 

– (vs/R), where R is the internal resistance of the ideal current 

source.

The two types of ideal sources we have discussed are 

independent sources for which voltage and current are independent and are not affected by other parts of the 

circuit. In the case of dependent sources, the source voltage or current is not fixed, but is dependent on the 

voltage or current existing at some other location in the circuit.

Dependent or controlled sources are of the following types:

1. voltage controlled voltage source (VCVS)

2. current controlled voltage source (CCVS)

3.  voltage controlled current source (VCCS)

4.    current controlled current source (CCCS)

These are represented in a circuit diagram by the symbol shown 

in Fig. 1.10. These types of sources mainly occur in the analysis of 

equivalent circuits of transistors.

Frequently Asked Questions linked to LO 7
rrr1-7.1 Explain about voltage source and current source. Include ideal, practical, independent and dependent 

sources in your explanation. [GTU Dec. 2010]
rrr1-7.2 Explain following in brief: ideal and practical energy sources. [GTU Dec. 2010] 
rrr1-7.3 What are the types of sources? Explain them with suitable diagrams and characteristics.

   [JNTU Nov. 2012]

1.9 KIRCHHOFF’S VOLTAGE LAW

Kirchhoff’s voltage law states that the algebraic sum of all branch voltages 

around any closed path in a circuit is always zero at all instants of time. When 

the current passes through a resistor, there is a loss of energy and, therefore, a 

voltage drop. In any element, the current always flows from higher potential to 

lower potential. Consider the circuit in Fig. 1.11. It is customary to take the direction of current I as indicated in 

the figure, i.e. it leaves the positive terminal of the voltage 

source and enters into the negative terminal.

As the current passes through the circuit, the sum of the 

voltage drop around the loop is equal to the total voltage in 

that loop. Here, the polarities are attributed to the resistors 

to indicate that the voltages at points a, c, and e are more 

than the voltages at b, d, and f, respectively, as the current 

passes from a to f.

Vs 5 V1 1 V2 1 V3

Fig. 1.9

Fig. 1.10

Fig. 1.11

LO  8 
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Fig. 1.12 Fig. 1.13

Consider the problem of finding out the current supplied by the source V in the circuit shown in Fig. 1.12.

Our first step is to assume the reference current direction and to indicate the polarities for different 

elements. (See Fig. 1.13).

By using Ohm’s law, we find the voltage across each resistor as follows.

VR1 5 IR1, VR2 5 IR2, VR3 5 IR3

where VR1, VR2 and VR3 are the voltages across R1, R2 and R3, respectively. Finally, by applying Kirchhoff’s 

law, we can form the equations

V 5 VR1 1 VR2 1 VR3

V 5 IR1 1 IR2 1 IR3

From the above equation, the current delivered by the source is given by

I
V

R R R
=

+ +1 2 3

EXAMPLE 1.7

For the circuit shown in Fig. 1.14, determine the unknown voltage drop V1.

Fig. 1.14

Solution  According to Kirchhoff’s voltage law, the sum of the potential drops is equal to the sum of the 

potential rises.

Therefore, 30 5 2 1 1 1 V1 1 3 1 5

 or V1 5 30 – 11 5 19 V
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EXAMPLE 1.8

What is the current in the circuit shown in Fig. 1.15? Determine the voltage across each resistor.

Fig. 1.15

Solution  We assume the current I in the clockwise direction and indicate polarities (Fig.  1.16). By using 

Ohm’s law, we find the voltage drops across each resistor.

VIM 5 I,  V3.1M 5 3.1 I

V500K 5 0.5 I, V400K 5 0.4 I

Now, by applying Kirchhoff’s voltage law, we form the equation

10 5 I 1 3.1 I 1 0.5 I 1 0.4 I

 or 5 I 5 10

 or I 5 2 mA

voltage across each resistor is as follows:

V1M 5 1 3 2 5 2.0 V

V3.1M 5 3.1 3 2 5 6.2 V

V400K 5 0.4 3 2 5 0.8 V

V500K 5 0.5 3 2 5 1.0 V

EXAMPLE 1.9

In the circuit given in Fig. 1.17, find (a) the current I, and (b) the voltage across 30 V.

Fig. 1.17

Solution  We redraw the circuit as shown in Fig. 1.18 and assume 

current direction and indicate the assumed polarities of resistors.

By using Ohm’s law, we determine the voltage across each 

resistor as

V8 5 8I, V30 5 30I, V2 5 2I

Fig. 1.18

Fig. 1.16
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By applying Kirchhoff’s law, we get

100 5 8I 1 40 1 30I 1 2I

 
40 60

60

40
I I= = =or 1.5A

voltage drop across 30 V 5 V30 5 30 3 1.5 5 45 V

1.10 VOLTAGE DIVISION

The series circuit acts as a voltage divider. Since the same current flows through each resistor, the voltage 

drops are proportional to the values of resistors. Using this principle, different voltages can be obtained from 

a single source, called a voltage divider. For example, the voltage across a 40 V resistor is twice that of 20 V 

in a series circuit shown in Fig. 1.19.

Fig. 1.19 Fig. 1.20

In general, if the circuit consists of a number of series resistors, the total current is given by the total 

voltage divided by equivalent resistance. This is shown in Fig. 1.20.

The current in the circuit is given by I 5 Vs/(R1 1 R2 1 … 1 Rm). The voltage across any resistor is 

nothing but the current passing through it, multiplied by that particular resistor.

Therefore, VR1 5 IR1

 VR2 5 IR2

 VR3 5 IR3

�

 VRm
 5 IRm

or V
V R

R R R
Rm

s m

m

=
( )

+ +…+1 2

From the above equation, we can say that the voltage drop across any resistor, or a combination of resistors 

in a series circuit is equal to the ratio of that resistance value to the total resistance, multiplied by the source 

voltage, i.e.,

V
R

R
Vm

m

T
s=

where Vm is the voltage across mth resistor, Rm is the resistance across which the voltage is to be determined 

and RT is the total series resistance.
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EXAMPLE 1.10

What is the voltage across the 10 V resistor in Fig. 1.21.

Solution  Voltageacross V10 50
10

10 5

500

15
33 310V= = ×

+
= =V .

EXAMPLE 1.11

Find the voltage between A and B in a voltage divider network shown in 

Fig. 1.22.

Solution  Voltage across k V9 100
9

10
909V= = = × =V VAB

1.11 POWER IN A SERIES CIRCUIT

The total power supplied by the source in any series resistive circuit is equal to the sum of the powers in each 

resistor in series, i.e.,

Ps 5 P1 1 P2 1 P3 1 … 1 Pm

where m is the number of resistors in series, PS is the total power supplied by source, and Pm is the power in 

the last resistor in series. The total power in the series circuit is the total voltage applied to a circuit, multiplied 

by the total current. Expressed mathematically,

P V I I R
V

R
s s T

s

T

= = =2
2

where Vs is the total voltage applied, RT is the total resistance, and I is the total current.

EXAMPLE 1.12

Determine the total amount of power in the series circuit in Fig. 1.23.

Fig. 1.23

Solution  Total resistance 5 5 1 2 1 1 1 25 10 V

Fig. 1.21

Fig. 1.22

LO 8
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We know WP
V

R
s

s

T

= = =
2 250

10
250

( )

We find the power absorbed by each resistor.

 
Current A= =

50

10
5

 P5 5 (5)2 3 5 5 125 W

 P2 5 (5)2 3 2 5 50 W

 P1 5 (5)2 3 1 5 25 W

 P2 5 (5)2 3 2 5 50 W

The sum of these powers gives the total power supplied by the source PS 5 250 W.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 8
rrr1-8.1 What is the voltage VAB across the resistor shown in Fig. Q.1?

Fig. Q.1

rrr1-8.2 The source voltage in the circuit shown in Fig. Q.2 is 100 V. How much voltage does each metre 

read?

rrr1-8.3 Find the node voltages for the network shown in Fig. Q.3 for the case when k 5 – 2 using PSpice.

Fig. Q.3Fig. Q.2

rrr1-8.4 If you wish to increase the amount of current in a resistor from 100 mA to 150 mA by changing 

the 20 V source, by how many volts should you change the source? To what new value should you 

set it?

rrr1-8.5 The following voltage drops are measured across each of three resistors in series: 5.5 V, 7.2 V, and 

12.3 V. What is the value of the source voltage to which these resistors are connected? A fourth 

resistor is added to the circuit with a source voltage of 30 V. What should be the drop across the 

fourth resistor?
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Frequently Asked Questions linked to LO 8
rrr1-8.1 State and explain Kirchhoff’s law. [AU May/June 2013]
rrr1-8.2 Find the current I and voltage across 30 Ohms of the circuit shown in Fig. Q.2. [AU May/June 2013]
rrr1-8.3 Determine current in the circuit shown in Fig. Q.3.      [AU May/June 2014]

40V

Fig. Q.2 Fig. Q.3

rrr1-8.4 Determine the current through the resistances in the bridge network shown in Fig. Q.4 using 

Kirchhoff’s laws. [AU May/June 2014]

Fig. Q.4

rrr1-8.5 State the voltage division principle for two resistors in series 

and the current division principle for two resistors in parallel. 

 [AU May/June 2013]
rrr1-8.6 Find the equivalent resistance of the circuit shown in Fig. 

Q.6.                           [AU May/June 2014]

1.12 KIRCHHOFF’S CURRENT LAW

Kirchhoff’s current law states that the sum of the currents entering into any 

node is equal to the sum of the currents leaving that node. The node may be 

an interconnection of two or more branches. In any parallel circuit, the node 

is a junction point of two or more branches. The total current entering into 

a node is equal to the current leaving that node. For example, consider the 

circuit shown in Fig. 1.24, which contains two nodes A and B. The total current IT entering node A is divided 

into I1, I2 and I3. These currents flow out of the node A. According to Kirchhoff’s current law, the current 

into node A is equal to the total current out of the node A: that is, 

IT 5 I1 1 I2 1 I3. If we consider the node B, all three currents I1, 

I2, I3 are entering B, and the total current IT is leaving the node B, 

Kirchhoff’s current law formula at this node is therefore the same 

as at the node A.

I1 1 I2 1 I3 5 IT

In general, the sum of the currents entering any point or node 

or junction equal to sum of the currents leaving from that point or Fig. 1.24

LO-9

LO  9  

2 W

2 W
1.2 WR

T

2 W
1 W

Fig. Q.6
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node or junction as shown in Fig. 1.25.

I1 1 I2 1 I4 1 I7 5 I3 1 I5 1 I6

If all of the terms on the right side are brought over to the left side, their 

signs change to negative and a zero is left on the right side, i.e.

I1 1 I2 1 I4 1 I7 – I3 – I5 – I6 5 0

This means that the algebraic sum of all the currents meeting at a junction 

is equal to zero.

EXAMPLE 1.13

Determine the current in all resistors in the circuit 

shown in Fig. 1.26.

Solution  The above circuit contains a single node ‘A’ 

with the reference node ‘B’. Our first step is to assume 

the voltage V at the node A. In a parallel circuit, the same 

voltage is applied across each element. According to 

Ohm’s law, the currents passing through each element 

are I1 5 V/2, I2 5 V/1, I3 5 V/5.

By applying Kirchhoff’s current law, we have

I I I I

I
V V V

V V

V

= + +

= + +

= + +











= + +[ ]

=

1 2 3

2 1 5

50
1

2

1

1

1

5
0 5 1 0 2

50

1

. .

..
.

7

500

17
29 41= = V

Once we know the voltage V at the node A, we can find the current in any element by using Ohm’s law.

The current in the 2 V resistor is I1 5 29.41/2 5 14.705 A.

Similarly A

A

A

I
V

R

V

I

I I

2
2

3

1 2

1
29 41

29 41

5
5 882

14 7 29 4

= − =

= =

∴ = =

.

.
.

. , . AA,and AI3 5 88= .

EXAMPLE 1.14

For the circuit shown in Fig. 1.27, find the voltage 

across the 10 V resistor and the current passing 

through it.

Fig. 1.26

Fig. 1.25

Fig. 1.27
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Solution  The circuit shown above is a parallel circuit, and consists of a single node A. By assuming voltage 

V at the node A w.r.t. B, we can find out the current in the 10 V branch (See Fig. 1.28).

Fig. 1.28

According to Kirchhoff’s current law,

I1 1 I2 1 I3 1 I4 1 5 5 10

By using Ohm’s law, we have

I
V

I
V

I
V

I
V

V V V
V

V

1 2 3 4
5 10 2 1

5 10 2
5 10

1

5

1

10

1

2
1

= = = =

+ + + + =

+ + +










, , ,



=

+ + +[ ]=

= =

5

0 2 0 1 0 5 1 5

5

1 8
2 78

V

V

. . .

.
. V

the voltage across the 10 V resistor is 2.78 V and the current passing through it is

I
V

2
10

2 78

10
0 278= = =

.
. A

EXAMPLE 1.15

Determine the current through the resistance R3 in the circuit shown in Fig. 1.29.

Fig. 1.29

Solution  According to Kirchhoff’s current law,

IT 5 I1 1 I2 1 I3

where IT is the total current and I1, I2, and I3 are the currents in resistances R1, R2 and R3 respectively.

50 5 30 1 10 1 I3

 or I3 5 10 mA
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1.13 PARALLEL RESISTANCE

When the circuit is connected in parallel, the total resistance of the circuit decreases as the number of resistors 

connected in parallel increases. If we consider m parallel branches in a circuit as shown in Fig. 1.30, the 

current equation is

IT 5 I1 1 I2 1 ... 1 Im

The same voltage is applied across each resistor. By applying Ohm’s law, the current in each branch is 

given by

I
V

R
I

V

R
I

V

R

s s
m

s

m
1

1
2

2

= = =, ,…

According to Kirchhoff’s current law,

IT 5 I1 1 I2 1 I3 1 ... 1 Im

V

R

V

R

V

R

V

R

V

R

s

T

s s s s

m

= + + + +
1 2 3

…

From the above equation, we have

1 1 1 1

1 2R R R RT m

= + + +…

EXAMPLE 1.16

Determine the parallel resistance between points A and B of the circuit shown in Fig. 1.31.

Fig. 1.31

Solution  1 1 1 1 1

1 2 3 4R R R R RT

= + + +

1 1

10

1

20

1

30

1

40RT

= + + +

 5 0.1 1 0.05 1 0.033 1 0.025 5 0.208

 or RT 5 4.8 V

Fig. 1.30

LO 9
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1.14 CURRENT DIVISION

In a parallel circuit, the current divides in all branches. Thus, a parallel 

circuit acts as a current divider. The total current entering into the 

parallel branches is divided into the branches currents according to the 

resistance values. The branch having higher resistance allows lesser 

current, and the branch with lower resistance allows more current. Let 

us find the current division in the parallel circuit shown in Fig. 1.32.

The voltage applied across each resistor is Vs. The current passing 

through each resistor is given by

 
I

V

R
I

V

R

s s
1

1
2

2

= =,

If RT is the total resistance, which is given by R1R2/(R1 1 R2),

Total current

or since

I
V

R

V

R R
R R

I
I R

R R
R R

T
s

T

s

T

= = +( )

= +

1 2
1 2

1 1

1 2
1 2( ) VV I R

I I
R

R R

I I
R

R R

s

T

T

=

= ⋅
+

= ⋅
+

1 1

1
2

1 2

2
1

1 2

Similarly,

From the above equations, we can conclude that the current in any branch is equal to the ratio of the 

opposite branch resistance to the total resistance value, multiplied by the total current in the circuit. In general, 

if the circuit consists of m branches, the current in any branch can be determined by

I
R

R R
Ii

T

i T
T=

+
where Ii represents the current in the ith branch,

 Ri is the resistance in the ith branch,

 RT is the total parallel resistance to the ith branch, and

 IT is the total current entering the circuit.

EXAMPLE 1.17

Determine the current through each resistor in the circuit 

shown in Fig. 1.33.

Solution  I I
R

R R
T

T

T
1

1

= ×
+( )

R
R R

R R

R

I

I

T

T

2 3

2 3

1

1

2

4

12

12
2

2 4

=
+

=

∴ =

=

= ×
+

=

where

A

V

V

44 A

Fig. 1.32

Fig. 1.33

LO 9
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12
2

2 4
4

12
2

2 4
4

2

3

Similarly, A

and A

I

I

= ×
+

=

= ×
+

=

Since all parallel branches have equal values of resistance, they share current equally.

1.15 POWER IN A PARALLEL CIRCUIT

The total power supplied by the source in any parallel resistive circuit is equal to the sum of the powers in 

each resistor in parallel, i.e.,

Ps 5 P1 1 P2 1 P3 1 ... 1 Pm

where m is the number of resistors in parallel, Ps is the total power, and Pm is the power in the last resistor.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 9

rrr1-9.1 Using Ohm’s law and Kirchhoff’s laws on the circuit given in Fig. Q.1, find all the voltages and 

currents.

Fig. Q.1

rrr1-9.2 Using PSpice, solve for the current Iab in the following 

circuit. (Fig. Q.2)

rrr1-9.3 Find Req for the resistive network shown in Fig. Q.3.

Fig. Q.3

Fig. Q.2

LO 9
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rrr1-9.4 For the circuit shown in Fig. Q.4, find the total resistance.

Fig. Q.4

rrr1-9.5 In the network shown in Fig. Q.5, (a) let R 5 80 V, 

find Req; (b) find R if Req 5 80 V; (c) find R if 

R 5 Req.

rrr1-9.6 Using the current divider formula, determine the 

current in each branch of the circuit shown in Fig. 

Q.6.

Fig. Q.6

rrr1-9.7 Six lightbulbs are connected in parallel across 110 V. Each bulb is rated at 75 W. How much 

current flows through each bulb, and what is the total current?

Frequently Asked Questions linked to LO 9
rrr1-9.1 State and explain Kirchhoff’s laws. [AU May/June 2013]

rrr1-9.2 Determine the voltage across the 20 ohm resistor of the network shown in Fig. Q.2.

  [AU May/June 2014]
8 W

10 W5 V 20 W 12 W
–
+

Fig. Q.2

rrr1-9.3 Determine the current through the 20 V source in the circuit of 

shown in Fig. Q.3.  [AU May/June 2014]

Fig. Q.5

Fig. Q.3

10 W20 V 1 A–
+



Circuits and Networks24 

rrr1-9.4 State and explain Kirchhoff’s laws, with an example. [AU April/May 2011]

rrr1-9.5 State and explain Kirchhoff’s laws. [JNTU Nov. 2012]
rrr1-9.6 Find the equivalent conductance Geq.of the circuit shown in Fig. Q.6. [AU Nov./Dec. 2012]

rrr1-9.7 What is the magnitude of current drained from the 10 V source in the circuit shown in Fig. Q.7.

  [JNTU Nov. 2012] 

Fig. Q.6

6 S 8 S

5 S

12 SGeq

Fig. Q.7

1 W
P

2 W

10 V

Q

5 W 3 W3 W 2 W

rrr1-9.8 Three loads A,B, and C are connected in parallel to a 240 V source. Load A takes 9.6 kW, Load B 

takes 60 A and load C has a resistance of 4.8 Ohms. Calculate (a) RA and RB, (b) the total current  

(c) the total power, and (d) equivalent resistance. [AU May/June 2013]

rrr1-9.9 Determine the current in all the resistors of the circuit shown in Fig. Q.9. [AU May/June 2014]
rrr1-9.10 Determine the current through each resistor in the circuit shown in Fig. Q.10. [AU May/June 2014]

A

B

i
1

i
2

i
3

2 W 1 W
5 W50 A

Fig. Q.9

2 A

I
1

I
2

I
3

4 W 4 W 4 W
V

s

Fig. Q.10

rrr1-9.11 Determine the current through the 2 W resistor in the circuit of Fig. Q.11. [AU May/June 2014]

rrr1-9.12 Determine the current delivered by the source in the circuit shown in Fig. Q.12. [AU April/May 2011]

1W 1W

1W2W5A

Fig. Q.11

2 W 2 W

2 W
2 W

1 W1 W

2 W2 W
30 V

+

–

4 WA
C

B D

Fig. Q.12

rrr1-9.13 Calculate the voltage that is to be connected across terminals x-y as shown in Fig. Q. 13 such that 

the voltage across the 2 W resister is 10 V. Also find Ia and Ib. what is the total power loss in the 

circuit? [JNTU Nov. 2012]
4 W

6 W
5 W

Ia

Ib
2 W

x

y
Fig. Q.13 

rrr1-9.14 A resistance of 10 ohms is connected across a supply of 200 V. If a resistances R is now connected 

in parallel with a 10-ohm resistance, the current draw from the supply gets doubled. Find the value 

of unknown resistance. [PTU 2011-12]
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Fig. 1.34

4 kW

4.7 kW
5 kW

3 kW

10 kW

Fig. 1.35

10 k 3 kW (5 k//4.7 k)

Additional Solved Problems

PROBLEM 1.1

For the circuit shown in Fig. 1.34, find the total resistance 

between terminals A and B, the total current drawn from a 6 V 

source connected from A to B, and the current through 4.7  kV; 

voltage across 3 kV.

Solution  The circuit in Fig. 1.34 can be redrawn as shown in 

Fig. 1.35 below.

From Fig. 1.35, the total resistance is

RT 5 10 k || 3 k || [4 k 1 5 k || 4.7 k]

 5 1.7 kV

Total current drawn by the circuit is

IT = =
6

1 7
3 53

V

k
mA

.
.

V

The current in the 10 kV resistor is

∴ = =I10

6

10
0 6k

V

k
mA.

The current in the 3 kV resistor is

I3

6
2k

V

3k
mA=

Ω
=

The remaining current blows through the 4 kV resistor and the parallel combination of (5 kV||4.7 kV).

I4k 5 3.53 mA 2 2.6 mA 5 0.93 mA

The current in the 4.7 kV resistor is

I4 7 0 93
5

5 4 7
0 47. .

.
.k mA= ×

+
=

The voltage across the 3 kV resistor is

V3k 5 I3k R 5 2 3 1023 3 3 3 103 5 6 V

PROBLEM 1.2

A battery of unknown emf is connected across resistances as shown in Fig. 1.36. The voltage drop across the 

8 V resistor is 20 V. What will be the current reading in the ammeter? What is the emf of the battery?
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Fig. 1.36

Solution  From the circuit shown in Fig. 1.36, the current passing through the 8 V resistor is

I8

20

8
2 5= =

V
A

V
.

The current passing through the 15 V resistor is same as the ammeter reading.

the current passing through the 15 V resistor is

I15

2 5 11

11 28
0 71=

×
+

=
.

. A

Reading of the ammeter 5 0.71 A

The voltage across the 28 V (13 V in series with 15 V) resistor is

V28 5 0.71 3 28 5 19.88 volts

The voltage across the series arm (8 V in series with 11 V) resistor is

V19 5 2.5 3 19 5 47.5 volts

The emf of the battery 5 19.88 1 47.5 5 67.38 volts

PROBLEM 1.3

An electric circuit has three terminals A,B,C. Between A and B is connected a 2 V resistor, between B and C 

are connected a 7 V resistor and a 5 V resistor in parallel, and between A and C is connected a 1 V resistor. 

A battery of 10 V is then connected between terminals A and C calculate (a) total current drawn from the 

battery, (b) voltage across the 2 V resistor, and (c) current passing through the 5 V resistor.

Solution   The circuit can be drawn as shown in Fig. 1.37 below.

The current passing through the 1 V resistor is

I1

10
10V = = A

The current passing through the series parallel branch between 

terminals A and C is

I2

10

2 7 5
2V = +

=
( )�

A

Total current drawn from the battery is IT 5 10 1 2 5 12 A

Voltage across the 2 V resistor is V2 V 5 2 3 2 5 4 volts

The current passing though the 5 V resistor is

I5

2 7

5 7
1 17V =

×
+

= . A

Fig. 1.37
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PROBLEM 1.4

Using Ohm’s law and Kirchhoff’s laws on the circuit given in 

Fig. 1.38, find Vin, Vs, and the power provided by the dependent 

source.

Solution  From the circuit shown in Fig. 1.38, applying 

Kirchhoff’s current law, we have

i4V 5 i3V 1 i2V

The current passing through the 4 V branch is i4 5 2 1 6 5 8 A

The voltage across the dependent source is

V ii4 44
4 4 8 32= = × =( ) V

The voltage across the 2 V resistor is V2V 5 6 3 2 5 12 V

the voltage across each branch is

V V Vi= − = − =4 24
32 12 20 V

The voltage across the 4 V branch is

V4 5 4 3 i4 5 4 3 8

  5 32 V

According to Kirchhoff’s voltage law,

V V V

V

V

S

S

− + =
∴ − + =

=

4 0

20 32 0

12S V

Similarly, Kirchhoff’s voltage law is applied to the 3 V branch.

V 2 30 1 V3 2 Vin 5 0

20 2 30 1 6 2 Vin 5 0

From the above equation, the voltage

Vin 5 24 V

The power provided by the dependent source is

P V i

P i

i i i

i

4 4 4

4 4

4 4 4

4
4 6 4 8 6

192

= ×
= × × = × ×
= watts

PROBLEM 1.5

Find the power absorbed by each element in the circuit shown in Fig. 1.39.

Fig. 1.39

1 kW

4 kW

20 mA

Fig. 1.38
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Solution  The circuit shown in Fig. 1.39 can be redrawn as shown  in Fig. 1.40.

Fig. 1.40

4 kW 1 kW

Applying Kirchhoff’s current in the single node circuit shown in Fig. 1.40, we have

3 20 10
4 10

0

10

3 10 20 10 0 25 10

1
3

3 1

1
3

3 3

i
V

i

i V

V

+ × −
×

+ =

=− ×

∴ − × + × − ×

−

−

− − . −− −

− −

− × =

− × =− ×
=

3 3

3 3

10 0

4 25 10 20 10

4 71

V V

V

V

.

. volts
The power absorbed by the 3i1 dependent current source is

P i Vi3 1
3

1
3 3 10

66 55

= = × ×
=+

−( )

.

V V

mW

The power absorbed by the 20 mA current source is

P20 5 20 3 1023 3 V 5 294.2 mW

The power absorbed by the 4 kV resistor is

P4

4 71 4 71

4
5 55k

k
mW=

×
=

. .
.

The power absorbed by the 1kV resistor is

P1

4 71 4 71
22 18k

1k
mW=

×
=

. .
.

PROBLEM 1.6

Determine the total current in the circuit shown in Fig. 1.41.

Solution  Resistances R2, R3 and R4 are in parallel.

 equivalent resistance R5 5 R2 || R3 || R4

=
+ +

1

1 1 12 3 4/ / /R R R

 R5 5 1 V

R1 and R5 are in series,

 equivalent resistance RT 5 R1 1 R5 5 5 1 1 5 6 V

 And the total current AI
V

R
T

s

T

= = =
30

6
5

Fig. 1.41
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PROBLEM 1.7

Find the current in the 10 V resistance, V1, and source 

voltage Vs in the circuit shown in Fig. 1.42.

Solution  Assume voltage at the node C 5 V

By applying Kirchhoff’s current law, we get the current 

in the 10 V resistance as

I10 5 I5 1 I6

 5 4 1 1 5 5 A

The voltage across the 6 V resistor is V6 5 24 V

 voltage at the node C is VC 5 – 24 V.

The voltage across the branch CD is the same as the voltage at the node C.

Voltage across 10 V only 5 10 3 5 5 50 V

 So VC 5 V10 – V1

 –24 5 50 – V1

 V1 5 74 V

Now, consider the loop CABD shown in Fig. 1.43.

If we apply Kirchhoff’s voltage law, we get

Vs 5 5 2 30 2 24 5 2 49 V

PROBLEM 1.8

What is the voltage across A and B in the circuit shown in Fig. 1.44?

Fig. 1.44

Solution  The above circuit can be redrawn as shown in Fig. 1.45.

Fig. 1.45

Fig. 1.43

Fig. 1.42



Circuits and Networks30 

Assume loop currents I1 and I2 as shown in Fig. 1.45.

 

I

I

1

2

6

10
0 6

12

14
0 86

= =

= =

.

. A

A

VA 5 Voltage drop across the 4 V resistor 5 0.6 3 4 5 2.4 V

VB 5 Voltage drop across the 4 V resistor 5 0.86 3 4 5 3.44 V

The voltage between points A and B is the sum of 

voltages as shown in Fig. 1.46.

VAB 5 –2.4 1 12 1 3.44

 5 13.04 V

PROBLEM 1.9

Determine the current delivered by the source in the circuit shown in Fig. 1.47.

Fig. 1.47

Solution  The circuit can be modified as shown in Fig. 1.48, where R10 is the series combination of R2 and R3.

Fig. 1.48

R10 5 R2 1 R3 5 4 V

R11 is the series combination of R4 and R5.

 R11 5 R4 1 R5 5 3 V

Further simplification of the circuit leads to Fig. 1.49 where R12 is the parallel combination of R10 and R9.

 R12 5 (R10 || R9) 5 (4 || 4) 5 2 V

Fig. 1.46
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Fig. 1.49 Fig. 1.50

Similarly, R13 is the parallel combination of R11 and R8.

 R13 5 (R11 || R8) 5 (3 || 2) 5 1.2 V

In Fig. 1.49 as shown, R12 and R13 are in series, which is in parallel with R7 forming R14. This is shown in 

Fig. 1.50.

 R14 5 [(R12 1 R13) || R7]

  5 [(2 1 1.2) || 2] 5 1.23 V

Further, the resistances R14 and R6 are in series, which is in parallel with R1 and gives the total resistance

RT 5 [(R14 1 R6) || R1]

  5 [(1 1 1.23) || (2)] 5 1.05 V

The current delivered by the source 5 30/1.05 5 28.57 A

PROBLEM 1.10

Determine the current in the 10 V resistance and find Vs in the circuit shown in Fig. 1.51.

Fig. 1.51

Solution  The current in the 10 V resistance

 I10 5 total current 3 (RT)/(RT 1 R10)

where RT is the total parallel resistance.

 
I10 4

7

17
1 65= × = . A

Similarly, the current in the resistance R5 is

 
I5 4

10

10 7
2 35= ×

+
= . A

or 4 2 1.65 5 2.35 A

The same current flows through the 2 V resistance.

 voltage across the 2 V resistance, Vs 5 I5 3 2

 5 2.35 3 2 5 4.7 V
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PROBLEM 1.11

Determine the value of the resistance R and current in each branch when 

the total current taken by the circuit shown in Fig. 1.52 is 6 A.

Solution  The current in the branch ADB

 I30 5 50/(25 1 5) 5 1.66 A

The current in the branch ACB, I10 1 R 5 50/ (10 1 R).

According to Kirchhoff’s current law,

 IT 5 I30 1 I10 1 R

6A 5 1.66 A 1 I10 1 R

 I10 1 R 5 6 – 1.66 5 4.34 A

 

∴
+

=

+ = =

50

10
4 34

10
50

4 34
11 52

R

R

.

.
.

 R 5 1.52 V

PROBLEM 1.12

Find the power delivered by the source in the circuit shown in Fig. 1.53.

Solution  Between points C(E) and D, resistances R3 and R4 are in parallel, which gives 

R8 5 (R3 || R4) 5 2.5 V

Fig. 1.52

Fig. 1.53
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Between points B and C(E), resistances R2 and R7 are in parallel, which gives

R9 5 (R2 || R7) 5 1.5 V

Between points C(E) and D, resistances R6 and R8 are in parallel which gives

R10 5 (R6 || R8) 5 1.25 V

The series combination of R1 and R9 gives

R11 5 R1 1 R9 5 3 1 1.5 5 4.5 V

Similarly, the series combination of R5 and R10 gives

R12 5 R5 1 R10 5 5.25 V

The resistances R11 and R12 are in parallel, which gives

Total resistance 5 (R11 || R12) 5 2.42 ohms

These reductions are shown in Figs 1.54 (a), (b), (c), and (d).

Fig. 1.54

Current delivered by the source A= =
10

2 42
4 13

.
.

 Power delivered by the source 5 VI

 5 10 3 4.13 5 41.3 W

PROBLEM 1.13

Determine the voltage drop across the 10 V resistance in the circuit as 

shown in Fig. 1.55.

Fig. 1.55
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Solution  The circuit is redrawn as shown in Fig. 1.56.

This is a single-node pair circuit. Assume voltage VA at the node A. By applying Kirchhoff’s current law 

at the node A, we have

V V V

V

A A A

A

A

20 10 5
10 15

1

20

1

10

1

5
25

0 05 0 1 0 2

+ + = +

+ +











=

+ +(

A

. . . ))=

= =

25

25

0 35
71 42

A

VVA
.

.

The voltage across 10 V is nothing but the voltage at the node A.

V10 5 VA 5 71.42 V

PROBLEM 1.14

In the circuit shown in Fig. 1.57, what are the values of R1 and R2, when the current flowing through R1 is 1 

A and R2 is 5 A? What is the value of R2 when the current flowing through R1 is zero?

Fig. 1.57

Solution  The current in the 5 V resistance

 I5 5 I1 1 I2 5 1 1 5

  5 6 A

Voltage across the resistance 5 V is V5 5 5 3 6 5 30 V

The voltage at the node A, VA 5 100 – 30 5 70 V

∴ =
−

=
−

=
−

= =

=
−

=

I
V

R R

R
I

R
I

A
2

2 2

2
2

1
1

30 70 30

70 30 40

5
8

70 50

V

Similarly, 
220

1
20= V

Fig. 1.56
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When VA 5 50 V, the current I1 in the resistance R1 becomes zero.

∴ =
−

I
R

2
2

50 30

where I2 becomes the total current.

∴ =
−

=
−

=

∴ = = =

I
V

R
I

A
2

2
2

100

5

100 50

5
10

20 20

10
2

A

V

PROBLEM 1.15

Determine the output voltage Vout in the circuit shown in Fig. 1.58.

Fig. 1.58

Solution  The circuit shown in Fig. 1.58 can be redrawn as shown in Fig. 1.59.

Fig. 1.59

In Fig. 1.59, R2 and R3 are in parallel, R4 and R5 are in parallel. The complete circuit is a single-node pair 

circuit. Assuming voltage VA at the node A and applying Kirchhoff’s current law in the circuit, we have

10
4 43

5
2 67

0

1

4 43

1

2 67
5

A A

A

− − − =

∴ +











=

V V

V

A A

A

. .

. .
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0 225 0 3+VA . . 775 5

5

0 6
8 33

[ ]=

∴ = =VA
.

. V

PROBLEM 1.16

Determine the voltage VAB in the circuit shown in Fig. 1.60.

Fig. 1.60

Solution  The circuit in Fig. 1.60 can be redrawn as shown in Fig. 1.61 (a).

Fig. 1.61 (a)

At the node 3, the series combination of R7 and R8 are in parallel with R6, which gives R9 5 [(R7 1 R8) || 

R6] 5 3 V.

At the node 2, the series combination of R3 and R4 are in parallel with R2, which gives R10 5 [(R3 1 R4) 

|| R2] 5 3 V.

It is further reduced and is shown in Fig. 1.61 (b).

Simplifying further, we draw it as shown in Fig. 1.61 (c).

Total current delivered by the source =

= =

100

100

13 8
20

RT

( || )
.22 A

Current in the 8 V resistor is  AI8 20 2
13

13 8
12 5= ×

+
=. .
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Current in the 13 V resistor is I13 20 2
8

13 8
7 69= ×

+
=. . A

So I5 5 12.5 A, and I10 5 7.69 A

Current in the 4 V resistance, I4 5 3.845 A

Current in the 3 V resistance, I3 5 6.25 A

 VAB 5 VA – VB

where VA 5 I3 3 3 V 5 6.25 3 3 5 18.75 V

 VB 5 I4 3 4 V 5 3.845 3 4 5 15.38 V

 VAB 5 18.75 – 15.38 5 3.37 V

PROBLEM 1.17

Determine the value of R in the circuit shown in Fig. 1.62, 

when the current is zero in the branch CD.

Solution  The current in the branch CD is zero, if the potential difference across CD is zero.

That means, voltage at the point C 5 voltage at the point D.

Since no current is flowing, the branch CD is open-circuited. So the same voltage is applied across ACB 

and ADB.

 

V V

V V
R

R

A

R A

10

10

15

20

= ×

= ×
+

 V10 5 VR

 

and  V V
R

R
A A× = ×

+
10

15 20

 R 5 40 V

Fig. 1.61 (b) Fig. 1.61 (c)

Fig. 1.62
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PROBLEM 1.18

Find the power absorbed by each element in the circuit shown in Fig. 1.63.

Fig. 1.63

Solution  Power absorbed by any element 5 VI

where V is the voltage across the element and I is the current passing through that element.

Here, potential rises are taken as (–) sign.

Power absorbed by the 10 V source 5 –10 3 2 5 –20 W

Power absorbed by the resistor R1 5 24 3 2 5 48 W

Power absorbed by the resistor R2 5 14 3 7 5 98 W

Power absorbed by the resistor R3 5 –7 3 9 5 –63 W

Power absorbed by dependent voltage source 5 (1 3 –7) 3 9 5 –63 W

PROBLEM 1.19

Show that the algebraic sum of the five absorbed power values in Fig. 1.64 is zero.

Fig. 1.64

Solution  Power absorbed by the 2 A current source 5 (– 4) 3 2 5 – 8 W

Power absorbed by the 4 V voltage source 5 (– 4) 3 1 5 – 4 W

Power absorbed by the 2 V voltage source 5 (2) 3 3 5 6 W

Power absorbed by the 7 A current source 5 (7) 3 2 5 14 W

Power absorbed by the 2ix dependent current source 5 (– 2) 3 2 3 2 5 – 8 W

Hence, the algebraic sum of the five absorbed power values is zero.
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PROBLEM 1.20

For the circuit shown in Fig. 1.65, find the power absorbed by each of the elements.

Fig. 1.65

Solution  The above circuit can be redrawn as shown in Fig. 1.66.

Fig. 1.66

Assume loop current I as shown in Fig. 1.66.

If we apply Kirchhoff’s voltage law, we get

–12 1 I – 2v1 1 v1 1 4I 5 0

The voltage across the 3 V resistor is v1 5 3 I

Substituting v1 in the loop equation, we get I 5 6 A

Power absorbed by the 12 V source 5 (–12) 3 6 5 –72 W

Power absorbed by the 1 V resistor 5 6 3 6 5 36 W

Power absorbed by 2v1 dependent voltage source 5 (2v1)I 5 2 3 3 3 6 3 6

  5 –216 W

Power absorbed by the 3 V resistor 5 v1 3 I 5 18 3 6 5 108 W

Power absorbed by the 4 V resistor 5 4 3 6 3 6 5 144 W

PROBLEM 1.21

For the circuit shown in Fig. 1.67, find the power absorbed 

by each element.

Fig. 1.67
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Fig. 1.68

Solution  The circuit shown in Fig. 1.67 is a parallel circuit and consists of a single node A. By assuming 

voltage V at the node A, we can find the current in each element.

According to Kirchhoff’s current law,

i3 2 12 2 2i2 2 i2 5 0

By using Ohm’s law, we have

i
V

i
V

V

V

i

3 2

3

3 2

1

3
1

1

2
12

12

1 83
6 56

6 56

3
2 18

= =
−

+ +











=

∴ = =

= =

,

.
.

.
. 77

6 56

2
3 282A; Ai =

−
=−

.
.

Power absorbed by the 3 V resistor 5 (16.56) (2.187) 5 14.35 W

Power absorbed by the 12 A current source 5 (– 6.56) 12 5 – 78.72 W

Power absorbed by the 2i2 dependent current source

5 (– 6.56) 3 2 3 (– 3.28) 5 43.03 W

Power absorbed by the 2 V resistor 5 (– 6.52) (– 3.28) 5 21.51 W

PSpice Problems

PROBLEM 1.1

Determine the total current in the following circuit using 

PSpice (Fig. 1.68).

* PROGRAM TO CALCULATE TOTAL CURRENT

VS 1 0 DC 30V

R1 1 2 5OHM

R2 2 0 4OHM

R3 2 0 2OHM

R4 2 0 4OHM

.OP

.END

OUTPUT

**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE 5 27.000 DEG C
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NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) 30.0000 (2) 5.0000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

VS  –5.000E 1 00

Result

Total current in the circuit is –5 A from the node 1 to the node 0.

Total current in the circuit is 5 A. ( from the node 0 to the node 1).

.OP statement calculates the dc operating point and displays all the node voltages with respect to ground 

node with currents through all the voltage sources in the circuit in the output file. The output can be observed 

by opening the output file.

PROBLEM 1.2

Determine current in the 10 V resistance and find Vs in the 

following circuit (Fig. 1.69).

* TO DETERMINE THE CURRENT IN A RESISTOR

I1 0 1 DC4A

R1 1 2 2OHM

R2 2 4 10OHM

R3 2 3 5OHM

R4 3 0 2OHM

VX 400 V

.OP

.END

OUTPUT

SMALL SIGNAL BIAS SOLUTION TEMPERATURE 5 27.000 DEG C

****************************************************************

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) 24.4710 (2) 16.4710 (3) 4.7059 (4) 0.0000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

VX 1.647E 1 00

Result

Current in the 10 V resistance is current through Vx 5 1.647 A from 4 to 0 and

Vs is voltage across the node ‘3’ 5 4.7059 V.

In order to view the current through a resistor, with bias point calculation (.OP), an additional voltage 

source of 0 V is inserted in series with the element.

Fig. 1.69
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PROBLEM 1.3

What is the voltage across A and B in the circuit shown  in Fig. 1.70?

Fig. 1.70

* PROGRAM TO CALCULATE VAB

V1 0 1 DC 6V

R1 1 2 6OHM

R2 2 0 4OHM

V2 0 3 DC12V

V3 3 4 12V

R3 3 5 4OHM

R4 4 5 10OHM

.OP

.DC V1 661; DC ANALYSIS FOR V 5 6V

.PRINT DC V(2,5); TO PRINT VAB DIRECTLY FROM DC ANALYSIS

.END

OUTPUT

**** DC TRANSFER CURVES TEMPERATURE 5 27.000 DEG C

****************************************************************

V1   V(2,5)

6.000E 1 00  1.303E 1 01

**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE 5 27.000 DEG C

****************************************************************

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) – 6.0000 (2) – 2.4000 (3) – 12.0000 (4) – 24.0000 (5) – 15.4290

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V1 – 6.000E – 01

V2 4.441E – 16

V3 – 8.571E – 01

TOTAL POWER DISSIPATION 1.39E 1 01 WATTS

Result

  VAB 5 – V(4V) 1 12 1 V(4V) 5 (– 0.6X4) 1 12 – (4X – 0.857) 5 13.028 V.

PROBLEM 1.4

Determine the output voltage in the following circuit (Fig.1.71).



Circuit Elements and  Kirchhoff’s Laws 43 

Fig. 1.71

* PROGRAM TO CALCULATE OUTPUT VOLTAGE

I1 0 1 10A

R1 1 2 3

R2 2 0 2

R3 2 0 5

I2 1 0 5

R4 3 1 10

R5 3 1 2

R6 3 0 1

.OP

.END

**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE 5 27.000 DEG C

 ****************************************************************
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) 8.3221 (2) 2.6846 (3) 3.1208
VOLTAGE SOURCE CURRENTS
NAME CURRENT

Result

Output voltage Vout 5 8.3221 V  5 V (1).

PROBLEM 1.5

Use PSpice to calculate all the voltages and currents in the following circuit (Fig. 1.72).

Fig. 1.72

* COMPUTATION OF VOLTAGES AND CURRENTS

V1 1 0 DC 60



Circuits and Networks44 

R1 1 3 20

R2 1 2 5

VX 3 0 DC 0V

G1 0 2 1 3 0.08333

F1 0 2 VX 11.6667

.OP

.END

OUTPUT

**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE 5 27.000 DEG C

****************************************************************

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) 60.0000 (2) 260.0000 (3) 0.0000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V1 3.700E  1 01

VX 3.000E 1 00

Result

i1 5 –37 A; i2 5 3 A; i5 5 –35 A; i4 5 –5 A.

V1 5 –60 V; V2 5 60 V; V3 5 –200 V; V4 5 V5 5 260 V.

ANSWERS TO PRACTICE PROBLEMS

1-6.1 (a) 75 A (b) 20 A (c) 2.5 A; 2 S

1-2.4 0.3 3 1022 J

1-2.6 638 mW

1-2.7 (a) P5A 5 21.389 kW, P10 mS 5 771.6 W, P40 mS 5 3.08 kW

   Pdependent 5 22.469 kW

 (b) P5A 5 2775.9 W, P10 mS 5 240.8 W, P40 mS 5 963.1 W

   Pdependent 5 2428.1 W

1-2.8 P0.2 5 2148.8 W, P20 5 21090.9 W, P4 5 743.8 W, P6 5 495.9 V

1-2.9 (a) 0.156 watts (b) 0.14 watts (c) 5 watts

1-4.1 3.33 V

1-6.2 1.5 mF

1-8.2 V1 5 V2 5 V3 5 100 V

1-8.4 10 V; 30 V

1-8.5 25 V; 5 V

1-9.4 150 V

1-9.5 (a) 60 V; (b) 213.3 V; (c) 51.79 V

1-9.7 0.682 A; 4.092 A
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Objective-Type Questions

rrr1.1 How many coulombs of charge do 50 3 1031 electrons possess?

 (a) 80 3 1012 C (b) 50 3 1031 C (c) 0.02 3 10231 (d) 1/80 3 1012 C
rrr1.2 Determine the voltage of 100 J/25 C.

 (a) 100 V (b) 25 V (c) 4 V (d) 0.25 V
rrr1.3 What is the voltage of a battery that uses 800 J of energy to move 40 C of charge through a resistor?

 (a) 800 V (b) 40 V (c) 25 V (d) 20 V
rrr1.4 Determine the current if a 10-coulomb charge passes a point in 0.5 seconds.

 (a) 10 A (b) 20 A (c) 0.5 A (d) 2 A
rrr1.5 If a resistor has 5.5 V across it and 3 mA flowing through it, what is the power?

 (a) 16.5 mW (b) 15 mW (c) 1.83 mW (d) 16.5 W
rrr1.6 Identify the passive element among the following:

 (a) Voltage source (b) Current source (c) Inductor (d) Transistor
rrr1.7 If a resistor is to carry 1 A of current and handle 100 W of power, how many ohms must it be? Assume that 

voltage can be adjusted to any required value.

 (a) 50 V (b) 100 V (c) 1 V (d) 10 V
rrr1.8 A 100 V resistor is connected across the terminals of a 2.5 V battery. What is the power dissipation in the resistor?

 (a) 25 W (b) 100 W (c) 0.4 W  (d) 6.25 W
rrr1.9 Determine the total inductance of a parallel combination of 100 mH, 50 mH, and 10 mH.

 (a) 7.69 mH  (b) 160 mH  (c) 60 mH (d) 110 mH
rrr1.10 How much energy is stored by a 100 mH inductance with a current of 1 A?

 (a) 100 J (b) 1 J (c) 0.05 J (d) 0.01 J
rrr1.11 Five inductors are connected in series. The lowest value is 5 mH. If the value of each inductor is twice that of 

the preceding one, and if the inductors are connected in order of ascending values, what is the total inductance?

 (a) 155 mH (b) 155 H (c) 155 mH (d) 25 mH
rrr1.12 Determine the charge when C 5 0.001 mF and v 5 1 kV.

 (a) 0.001 C (b) 1 mC (c) 1 C (d) 0.001 C
rrr1.13 If the voltage across a given capacitor is increased, the amount of stored charge

 (a) increases (b) decreases (c) remains constant (d) is exactly doubled
rrr1.14 1 mF, a 2.2 mF, and a 0.05 mF capacitors are connected in series. The total capacitance is less than

 (a) 0.07 (b) 3.25 (c) 0.05 (d) 3.2
rrr1.15 How much energy is stored by a 0.05 mF capacitor with a voltage of 100 V?

 (a) 0.025 J (b) 0.05 J (c) 5 J (d) 100 J
rrr1.16 Which one of the following is an ideal voltage source?

 (a) Voltage independent of current (b) Current independent of voltage

 (c) Both (a) and (b)   (d) None of the above
rrr1.17 The following voltage drops are measured across each of three resistors in series: 5.2 V, 8.5 V and 12.3 V. 

What is the value of the source voltage to which these resistors are connected?

 (a) 8.2 V (b) 12.3 V (c) 5.2 V (d) 26 V
rrr1.18 A certain series circuit has a 100 V, a 270 V, and a 330 V resistor in series. If the 270 V resistor is removed, 

the current

 (a) increases (b) becomes zero (c) decrease (d) remain constant
rrr1.19 A series circuit consists of a 4.7 kV, 5.6 kV, 9 kV, and 10 kV resistor. Which resistor has the most voltage 

across it?

 (a) 4.7 kV (b) 5.6 kV (c) 9 kV (d) 10 kV
rrr1.20 The total power in a series circuit is 10 W. There are five equal-value resistors in the circuit. How much power 

does each resistor dissipate?

 (a) 10 W (b) 5 W (c) 2 W (d) 1 W
rrr1.21 When a 1.2 kV resistor, 100 V resistor, 1 kV resistor, and a 50 V resistor are in parallel, the total resistance 

is less than

 (a) 100 V (b) 50 V (c) 1 kV (d) 1.2 kV
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rrr1.31 The voltage V in Fig. 1.75 is always equal to

 (a) 9 V (b) 5 V (c) 1 V (d) none of the above

rrr1.32 The voltage V in Fig. 1.76 is

 (a) 10 V (b) 15 V (c) 5 V (d) none of the above

rrr1.22 If a 10 V battery is connected across the parallel resistors of 3 V, 5 V, 10 V, and 20 V, how much 
voltage is there across the 5 V resistor?

 (a) 10 V (b) 3 V (c) 5 V (d) 20 V
rrr1.23 If one of the resistors in a parallel circuit is removed, what happens to the total resistance?
 (a) Decreases (b) Increases (c) Remains constant (d) Exactly doubles
rrr1.24 The power dissipation in each of three parallel branches is 1 W. What is the total power dissipation of the circuit?
 (a) 1 W (b) 4 W (c) 3 W (d) zero
rrr1.25 In a four-branch parallel circuit, 10 mA of current flows in each branch. If one of the branch opens, the current 

in each of the other branches
 (a) increases (b) decreases (c) remains unaffected (d) doubles
rrr1.26 Four equal-value resistors are connected in parallel. Five volts are applied across the parallel circuit, and 2.5 

mA are measured from the source. What is the value of each resistor?
 (a) 4 V (b) 8 V (c) 2.5 V (d) 5 V
rrr1.27 Six lightbulbs are connected in parallel across 110 V. Each bulb is related at 75 W. How much current flows 

through each bulb?
 (a) 0.682 A (b) 0.7 A (c) 75 A (d) 110 A

rrr1.28 A 330 V resistor is in series with the parallel combination of four 1 kV resistors. A 100 V source is connected 
to the circuit. Which resistor has the most current through it?

 (a) 330 V resistor   (b) Parallel combination of three 1 kV resistors
 (c) Parallel combination of two 1 kV resistors (d) 1 kV resistor

rrr1.29 The current i4 in the circuit shown in Fig. 1.73 is equal to

 (a) 12 A (b) –12 A (c) 4 A (d) none of the above

rrr1.30 The voltage V in Fig. 1.74 is equal to
 (a) 3 V (b) –3 V (c) 5 V (d) none of the above

Fig. 1.73 Fig. 1.74

Fig. 1.75 Fig. 1.76

For interactive quiz with answers,
scan the QR code given here
OR
visit
http://qrcode.flipick.com/index.php/259



2.1 INTRODUCTION

A division of mathematics called topology or graph theory deals with graphs of networks and provides 

information that helps in the formulation of network equations. In circuit analysis, all the elements in a network 

must satisfy Kirchhoff’s laws, besides their own characteristics. Based on these laws, we can form a number 

of equations. These equations can be easily written by converting the network into a graph. Certain aspects 

of network behaviour are brought into better perspective if a graph of the 

network is drawn. If each element or a branch of a network is represented 

on a diagram by a line irrespective of the characteristics of the elements, we 

get a graph. Hence, network topology is network geometry. A network is an 

interconnection of elements in various branches at different nodes as shown 

in Fig. 2.1. The corresponding graph is shown in Fig. 2.2 (a).

The graphs shown in Figs 2.2 (b) and (c) are also graphs of the network 

in Fig. 2.1.

It is interesting to note that the graphs shown in Fig. 2.2 (a), (b) and (c) 

may appear to be different but they are topologically equivalent. A branch 

is represented by a line segment connecting a pair of nodes in the graph 

of a network. A node is a terminal of a branch, which is represented by a 

point. Nodes are the end points of branches. All these graphs have identical 

relationships between branches and nodes. Fig. 2.1

2

LEARNING OBJECTIVES
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The three graphs in Fig. 2.2 have six branches and four nodes. These graphs 

are also called undirected. If every branch of a graph has a direction as shown 

in Fig. 2.3, then the graph is called a directed graph.

A node and a branch are incident if the node is a terminal of the branch. 

Nodes can be incident to one or more elements. The number of branches 

incident at a node of a graph indicates the degree of the node. For example, in 

Fig. 2.3 the degree of node 1 is three. Similarly, the degree of node 2 is three. 

If each element of the connected graph is assigned a direction as shown in Fig. 

2.3 it is then said to be oriented. A graph is connected if and only if there is a 

path between every pair of nodes. A path is said to exist between any two nodes, 

for example 1 and 4 of the graph in Fig. 2.3, if it is possible to reach the node 4 from the node 1 by traversing 

along any of the branches of the graph. A graph can be drawn if there 

exists a path between any pair of nodes. A loop exists, if there is more 

than one path between two nodes.

� Planar�and�Non-Planar�Graphs� A graph is said to be planar 

if it can be drawn on a plane surface such that no two branches cross 

each other. On the other hand, in a non-planar graph, there will be 

branches which are not in the same plane as others, i.e. a non-planar 

graph cannot be drawn on a plane surface without a crossover. 

Figures 2.2 and 2.4 illustrate a planar graph and  non-planar graph 

respectively.

2.2 TREE AND CO-TREE

A tree is a connected subgraph of a network which consists of all the nodes of the 

original graph but no closed paths. The graph of a network may have a number 

of trees. The number of nodes in a graph is equal to the number nodes in the tree. 

The number of branches in a tree is less than the number of branches in a graph. A 

graph is a tree if there is a unique path between any pair of nodes. Consider a graph 

with four branches and three nodes as shown in Fig. 2.5.

Fig. 2.3

Fig. 2.4

(c)(a) (b)

LO     1 

Fig. 2.2
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Five open-ended graphs based on Fig. 2.5 are represented by Figs 2.6 (a) to (e). 

Since each of these open-ended graphs satisfies all the requirements of a tree, each 

graph in Fig. 2.6 is a tree corresponding to Fig. 2.5.

In Fig. 2.6, there is no closed path or loop; the number of nodes n 5 3 is the same 

for the graph and its tree, where as the number of branches in the tree is only two. In 

general, if a tree contains n nodes, then it has (n – 1) branches.

In forming a tree for a given graph, certain branches are removed or opened. 

The branches thus opened are called links or link branches. The links for Fig. 

2.6 (a) for example are a and d and for Fig. 2.6 (b) are b and c. The set of all links 

of a given tree is called the co-tree of the graph. Obviously, the branches a, d are 

a co-tree for Fig. 2.6 (a). Similarly, for the tree in Fig. 2.6 (b), the branches b, c are the co-tree. Thus the link 

branches and the tree branches combine to form the graph of the entire network.

Fig. 2.5

Fig. 2.6

EXAMPLE 2.1

For the given graph shown in Fig. 2.7, draw the number of possible trees.

Fig. 2.7
Solution� The number of possible trees for Fig. 2.7 are represented by Figs 2.8 (a) – (l).

Fig. 2.8



Circuits and Networks50 

2

3

4

1

a

b

c

d

f

e

Fig. 2.11Fig. 2.10Fig. 2.9

2.3 TWIGS AND LINKS

The branches of a tree are called its twigs. For a given graph, the complementary set of branches of the 

tree is called the co-tree of the graph. The branches of a co-tree are called links, i.e. those elements of the 

connected graph that are not included in the tree links and form a subgraph. For example, the set of branches  

(b, d, f ) represented by dotted lines in Fig. 2.11 form a co-tree of the graph in Fig. 2.9 with respect to the tree 

in Fig. 2.10.

The branches a, c, and e are the twigs while the branches b, d, and f are the links of this tree. It can be 

seen that for a network with b branches and n nodes, the number of twigs for a selected tree is (n – 1) and 

the number of links I with respect to this tree is (b –  n 1 1). The number of twigs (n – 1) is known as the 

tree value of the graph. It is also called the rank of the tree. If a link is added to the tree, the resulting 

graph contains one closed path, called a loop. The addition of each subsequent link forms one or more 

additional loops. Loops which contain only one link are independent and are called basic loops.

Frequently Asked Questions linked to LO1*
rrr2-1.1 Define tree and co-tree. (PTU 2011-12)
rrr2-1.2 Define loop. (PTU 2011-12)

2.4 INCIDENCE MATRIX (A)

The incidence of elements to nodes in a connected graph is shown  

by the element node incidence matrix (A). Arrows indicated in the 

branches of a graph result in an oriented or a directed graph. These arrows 

are the indication for the current flow or voltage rise in the network. It 

can be easily identified from an oriented graph regarding the incidence of branches to nodes. It is possible to have 

an analytical description of an oriented-graph in a matrix form. The dimensions of the matrix A is n 3 b where  

n is the number of nodes and b is number of branches. For a graph having n nodes and b branches, the complete 

incidence matrix A is a rectangular matrix of order n 3 b.

In the matrix A with n rows and b columns, an entry aij in the i th row and j th column has the following 

values.

aij 5 1, if the j th branch is incident to and oriented away from the i th node.

}aij 5 –1, if the j th branch is incident to and oriented towards the i th node.  (2.1)

aij 5 0, if the j th branch is not incident to the ith node.

LO     2 

LO 1

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600

Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category
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Figure 2.12 shows a directed graph.

Following the above convention, its incidence matrix A is given by

nodes branches→
↓

= − −
−

− − −



a b c d e f

A

1

2

3

4

1 0 1 0 0 1

1 1 0 1 0 0

0 1 0 0 1 1

0 0 1 1 1 0

















The entries in the first row indicate that three branches a, c, and f are incident to 

the node 1 and they are oriented away from the node 1 and therefore the entries a11; 

a13 and a16 are 11. Other entries in the first row are zero as they are not connected 

to the node 1. Likewise, we can complete the incidence matrix for the remaining 

nodes 2, 3, and 4.

2.5 PROPERTIES OF INCIDENCE MATRIX A

The following properties are some of the simple conclusions from the incidence matrix A.

1. Each column representing a branch contains two non-zero entries 11 and –1; the rest being zero. The 

unit entries in a column identify the nodes of the branch between which it is connected.

2. The unit entries in a row identify the branches incident at a node. Their number is called the degree 

of the node.

3. A degree of 1 for a row means that there is one branch incident at the node. This is commonly pos-

sible in a tree.

4. If the degree of a node is two, then it indicates that two branches are incident at the node and these 

are in series.

5. Columns of A with unit entries in two identical rows correspond to two branches with same end 

nodes and hence they are in parallel.

6. Given the incidence matrix A, the corresponding graph can be easily constructed since A is a 

complete mathematical replica of the graph.

7. If one row of A is deleted the resulting (n – 1) 3 b matrix is called the reduced incidence matrix 

A1. Given A1, A is easily obtained by using the first property.

It is possible to find the exact number of trees that can be generated from a given graph if the reduced 

incidence matrix A1 is known and the number of possible trees is given by Det ( )A AT1 1  where AT1  is the 

transpose of the matrix A1.

EXAMPLE 2.2

Draw the graph corresponding to the given incidence matrix.

A=

− + +

− − +

− − − −

− +

+ + + +

1 0 0 0 1 0 1 0

0 1 0 0 0 0 1 1

0 0 1 1 0 1 0 1

0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0





























Fig. 2.12

LO 2
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Solution� There are five rows and eight columns which indicate that there are five nodes and eight branches. 

Let us number the columns from a to h and rows as 1 to 5.

a b c d e f g h

A=

−

− −

− − − −

−

1

2

3

4

5

1 0 0 0 1 0 1 0

0 1 0 0 0 0 1 1

0 0 1 1 0 1 0 1

0 0 0 0 1 1 0 0

1 1 1 11 0 0 0 0





























Mark the nodes corresponding to the 

rows 1, 2, 3, 4, and 5 as dots as shown 

in Fig. 2.13 (a). Examine each column of 

A and connect the nodes (unit entries) by 

a branch; label it after marking an arrow.

For example, examine the first column 

of A. There are two unit entries one 

in the first row and 2nd in the last row, 

hence connect branch a between node 1 

and 5. The entry of A11 is –ve and that 

of A51 is 1ve. Hence, the orientation of 

the branch is away from the node 5 and 

towards node 1 as per the convention. 

Proceeding in this manner, we can 

complete the entire graph as shown in Fig. 

2.13 (b).

From the incidence matrix A, it can be verified that branches c and d are in parallel (property 5) and 

branches e and f are in series (property 4).

EXAMPLE 2.3

Obtain the incidence matrix A from the following reduced incidence matrix A1 and draw its graph.

A1

1 1 0 0 0 0 0

0 1 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 1 0 0 1 1

[ ]=

−

−

−

−

− −





























Solution� There are five rows and seven columns in the given reduced incidence matrix [A1]. Therefore, the 

number of rows in the complete incidence matrix A will be 5 1 1 5 6. There will be six nodes and seven 

branches in the graph. The dimensions of matrix A is 6 3 7. The last row in A, i.e. 6th row for the matrix A 

can be obtained by using the first property of the incidence matrix. It is seen that the first column of [A1] has a 

single non-zero element –1. Hence, the first element in the 6th row will be 11(–1 1 1 5 0). Second column 

of A1 has two non-zero elements 11 and –1, hence the second element in the 6th row will be 0. Proceeding 

in this manner we can obtain the 6th row. 

(a) (b)Fig. 2.13
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The complete incidence matrix can therefore be written as

A

a

b

c

d

e

f

[ ]

−

−

−

−

− −

−

=

1 1 0 0 0 0 0

0 1 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 1 0 0 1 1

1 0 0 0 0 0 11

































We have seen that any one of the rows of a complete incidence 

matrix can be obtained from the remaining rows. Thus, it is possible to 

delete any one row from A without loosing any information in A1. Now 

the oriented graph can be constructed from the matrix A. The nodes 

may be placed arbitrarily. The number of nodes to be marked will be 

six. Taking node 6 as reference node the graph is drawn as shown in Fig. 2.14.

2.6 INCIDENCE MATRIX AND KCL

Kirchhoff’s Current Law (KCL) of a graph can be expressed in terms of the reduced incidence matrix as A1 

I 5 0.

A1, I is the matrix representation of KCL, where I represents branch current vectors I1, I2, … I6.

Consider the graph shown in Fig. 2.15. It has four nodes a, b, c, and d.

Let node d be taken as the reference node. The positive reference direction of the branch currents 

corresponds to the orientation of the graph branches. Let the branch currents be i1, i2, … i6. Applying KCL 

at nodes a, b, and c.

 – i1 1 i4 5 0

 – i2 – i4 1 i5 5 0

 – i3 – i5 – i6 5 0

These equations can be written in the matrix form as follows:

 

−

− −

− − −
































1 0 0 1 0 0

0 1 0 1 1 0

0 0 1 0 1 1

1

2

3

4

5

6

i

i

i

i

i

i


















=



















0

0

0

A1 Ib 5 0 (2.2)

Here, Ib represents column matrix or a vector of branch currents.

 

I

i

i

i

b

b

=





















1

2

�

Fig. 2.14

Fig. 2.15

LO 2
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A1 is the reduced incidence matrix of a graph with n nodes and b branches. And it is a (n – 1) 3 b matrix 

obtained from the complete incidence matrix of A deleting one of its rows. The node corresponding to the 

deleted row is called the reference node or datum node. It is to be noted that A1 Ib 5 0 gives a set of n – 1 

linearly independent equations in branch currents i1, i2, … i6. Here, n 5 4. Hence, there are three linearly 

independent equations.

Frequently Asked Questions linked to LO2
rrr2-2.1 Define tree, co-tree, twig, link , and incidence matrix taking a suitable example.  (PTU 2009-10)
rrr2-2.2 Define incidence matrix. (PTU 2009-10)

rrr2-2.3 Explain the formulation of graph, tree, and incidence matrix using suitable examples. Hence, 

discuss the procedure of forming reduced incidence matrix and its advantages.     [GTU Dec. 2012]
rrr2-2.4 Explain about linear oriented graph, incidence matrix and circuit matrix. show Kirchhoff’s laws in 

incidence-matrix formulation and circuit-matrix formulation.   [GTU Dec. 2010]

2.7 LINK CURRENTS: TIE-SET MATRIX

For a given tree of a graph, addition of each link between any two nodes forms 

a loop called the fundamental loop. In a loop there exists a closed path and a 

circulating current, which is called the link current. The current in any branch of 

a graph can be found by using link currents.

The fundamental loop formed by one link has a unique path in the tree joining the two nodes of the link. 

This loop is also called f-loop or a tie-set.

Consider a connected graph shown in Fig. 2.16 (a). It has four nodes and six  branches. One of its trees 

is arbitrarily chosen and is shown in Fig. 2.16 (b). The twigs of this tree are branches 4, 5, and 6. The links 

corresponding to this tree are branches 1, 2, and 3. Every link defines a fundamental loop of the network.

Number of nodes n 5 4

Number of branches b 5 6

Number of tree branches or twigs 5 n – 1 5 3

Number of link branches I 5 b – (n – 1) 5 3

Let i1, i2, … i6 be the branch currents with directions as shown in Fig. 2.16 (a). Let us add a link in its 

proper place to the tree as shown in 2.16(c). It is seen that a loop I1 is formed by the branches 1, 5, and 6. 

There is a formation of link current, let this current be I1. This current passes through the branches 1, 5, and 

6. By convention a fundamental loop is given the same orientation as its defining link, i.e. the link current 

I1 coincides with the branch current direction i1 in ab. A tie set can also be defined as the set of branches 

Fig. 2.16

LO  3 
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that forms a closed loop in which the link current flows. By adding the other link branches 2 and 3, we can 

form two more fundamental loops or f-loops with link currents I2 and I3 respectively as shown in Figs 2.16 

(d) and (e).

Fig. 2.16 (continued)

2.7.1 Tie-Set Matrix

Kirchhoff’s voltage law can be applied to the f-loops to get a set of 

linearly independent equations. Consider Fig. 2.17.

There are three fundamental loops I1, I2 and I3 corresponding 

to the link branches 1, 2, and 3 respectively. If V1, V2, … V6 are 

the branch voltages the KVL equations for the three f-loops can be 

written as

V1 1 V5 – V6 5 0 

V2 1 V4 – V5 5 0     } (2.3)

V3 – V4 5 0

In order to apply KVL to each fundamental loop, we take the reference direction of the loop which 

coincides with the reference direction of the link defining the loop.

The above equation can be written in matrix form as

loop branches → × ×
↓

−

−

−









3 6 6

1 2 3 4 5 6

1 0 0 0 1 1

0 1 0 1 1 0

0 0 1 1 0 0

1

2

3

I

I

I 










































=














V

V

V

V

V

V

1

2

3

4

5

6

0

0

0






B Vb 5 0 (2.4)

where B is an I 3 b matrix called the tie-set matrix or fundamental loop matrix and Vb is a column vector of 

branch voltages.

The tie-set matrix B is written in a compact form as B [bij]. (2.5)

The element bij of B is defined as

bij 5 1 when, the branch bj is in the f-loop Ii (loop current) and their reference directions coincide.

Fig. 2.17
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bij 5 21 when the branch bj is in the f-loop Ii (loop current) and their reference directions are opposite.

bij 5 0 when branch bj is not in the f-loop Ii.

2.7.2 Tie-set Matrix and Branch Currents

It is possible to express branch currents as a linear combination of link current using the matrix B.

If IB and II represents the branch-current matrix and loop-current matrix respectively and B is the tie-set 

matrix, then

[Ib] 5 [BT ] [IL] (2.6)

where [BT] is the transpose of the matrix [B]. Equation (2.6) is known as link current transformation equation.

Consider the tie-set matrix of Fig. 2.17.

B=

−

−

−



















1 0 0 0 1 1

0 1 0 1 1 0

0 0 1 1 0 0

BT =
−

−

−

































1 0 0

0 1 0

0 0 1

0 1 1

1 1 0

1 0 0

The branch-current vector [Ib] is a column vector.

I

i

i

i

i

i

i

b[ ]=





























1

2

3

4

5

6

The loop-current vector [IL] is a column vector.

I

I

I

I
L[ ]=



















1

2

3

Therefore, the link-current transformation equation is given by [Ib] 5 [BT ] [IL]

i

i

i

i

i

i
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1 0 0

0 1 0

0 0 1

0 1 1

1 1 0
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The branch currents are

i1 5 I1

i2 5 I2

i3 5 I3

i4 5 I2 – I3

i5 5 I1 – I2

i6 5 – I1

EXAMPLE 2.4

For the electrical network shown in Fig. 2.18 (a), draw its topological graph and write its incidence matrix, 

tie-set matrix, link current transformation equation and branch currents.

Fig. 2.18 (a)

Solution� The voltage source is short-circuited, the current source is open-

circuited and the points which are electrically at same potential are combined 

to form a single node. The graph is shown in Fig. 2.18 (b).

Combining the simple nodes and arbitrarily selecting the branch current 

directions, the oriented graph is shown in Fig. 2.18 (c). The simplified graph 

consists of three nodes. Let them be x, y, and z and five branches 1, 2, 3, 4, and 5. 

The complete incidence matrix is given by

nodes branches →
↓

−

−

− − −



















1 2 3 4 5

1 0 1 0 1

1 1 0 1 0

0 1 1 1 1

x

A y

z

=

Let us choose the node z as the reference or datum node for writing the 

reduced incidence matrix A1 or we can obtain A1 by deleting the last row 

elements in A.

nodes branches →
↓

=
−

−













1 2 3 4 5

1 0 1 0 1

1 1 0 1 01A

x

y

Fig. 2.18 (b)

Fig. 2.18 (c)
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For writing the tie-set matrix, consider the tree in the graph in Fig. 2.18 (c).

Number of nodes n 5 3

Number of branches 5 5

Number of tree branches or twigs 5 n – 1 5 2

Number of link branches I  5 b – (n – 1) 5 5 – (3 – 1) 5 3

The tree shown in Fig. 2.18 (d) consists of two branches 4 and 5 shown with solid lines and the link 

branches of the tree are 1, 2, and 3 shown with dashed lines. The tie-set matrix or fundamental loop matrix 

is given by

 

loop branches →
↓

−



















1 2 3 4 5

1 0 0 1 1

0 1 0 1 0

0 0 1 0 1

1

2

3

I

B I

I

=

To obtain the link-current transformation equation and thereby branch 

currents, the transpose of B should be calculated.

BT =

−





























1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

The equation [Ib] 5 [BT ] [IL]

i

i

i

i

i

1

2

3

4

5

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1





























=
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I

I

I

1

2

3

The branch currents are given by

i1 5 I1

i2 5 I2

i3 5 I3

i4 5 I1 – I2

5 5 I1 1 I3

Frequently Asked Questions linked to LO3
rrr2-3.1 Draw a tree of the network in Fig. Q.1 taking the branches 

denoted by (b2), (b4), and (b5) as tree branches. Give the 

fundamental loop matrix. Determine the matrix loop equation 

from the fundamental loop matrix. Branch impedances are in 

ohms.

 (GTU May 2011)

Fig. 2.18 (d)

Fig. Q.1
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rrr2-3.2 Define the following terms:

 i. Node  ii. Tree  iii. Incidence matrix iv. Basic tie-set 

rrr2-3.3 Find the branch currents shown in Fig. Q.3 by using the 

concept of the tie-set matrix.

  

(JNTU Nov. 2012)
rrr2-3.4 Derive the relationship between fundamental tie-set 

matrix, impedance matrix, loop current matrix, and loop 

emf matrix.  (PTU 2009-10)
rrr2-3.5 For the network shown in Fig. Q.5, write down the tie-set matrix. (PTU 2009-10)

1 V

5 �

5 �

10
�

10
�

5 �

10

�
l 
+

Fig. Q.5

rrr2-3.6 What is loop matrix?  (PTU 2011-12)
rrr2-3.7  Write down the fundamental loop matrix of the network shown in Fig. Q.7. (PTU 2011-12)

Fig. Q.7

rrr2-3.8 Draw the oriented graph of the network shown in Fig. Q.8. Select loop current variables and write 

the network- equilibrium equation in matrix form.   (PTU 2011-12)

3H

1 �3H2HV–

+

Fig. Q.8

rrr2-3.9 For the network shown in Fig. Q.9 draw the graph and write down the tie-set matrix. 

 (RGTU Dec. 2013)

10 V

1 �

2 �

2
�

2
� 1 �

2 �

+

–

Fig. Q.9

+

–
25 V

5 �

5 �

2 �

1 �6 �

2 �

Fig. Q.3
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2.8 CUT-SET AND TREE BRANCH VOLTAGES

A cut-set is a minimal set of branches of a connected graph such that the removal 

of these branches causes the graph to be cut into exactly two parts. The important 

property of a cut-set is that by restoring any one of the branches of the cut-set, the 

graph should become connected. A cut-set consists of one and only one branch of 

the network tree, together with any links which must be cut to divide the network into two parts.

Consider the graph shown in Fig. 2.19 (a).

If the branches 3, 5, and 8 are removed from the graph, we see that the connected graph of Fig. 2.19 (a) 

is separated into two distinct parts, each of which is connected as shown in Fig. 2.19 (b). One of the parts is 

just an isolated node. Now suppose the removed branch 3 is replaced, all others still removed. Figure 2.19 (c) 

shows the resultant graph. The graph is now connected. Likewise, replacing the removed branches 5 and 8 of 

the set {3, 5, 8} one at a time, all other ones remaining removed, we obtain the resulting graphs as shown in 

Figs 2.19 (d) and (e). The set formed by the branches 3, 5, and 8 is called the cut-set of the connected graph 

of Fig. 2.19 (a).

Fig. 2.19

2.8.1  Cut-Set Orientation

A cut-set is oriented by arbitrarily selecting the direction. A cut-set divides 

a graph into two parts. In the graph shown in Fig. 2.20, the cut-set is {2, 3}. 

It is represented by a dashed line passing through branches 2 and 3. This 

cut-set separates the graph into two parts shown as part-1 and part 2.  

We may take the orientation either from part-1 to part-2 or from part-2 to 

part-1.

The orientation of some branches of the cut-set may coincide with 

the orientation of the cut-set while some branches of the cut-set may not Fig. 2.20

LO     4 
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coincide. Suppose we choose the orientation of the cut-set {2, 3} from part-1 to part-2 as indicated in Fig. 

2.20, then the orientation of the branch 2 coincides with the cut-set, whereas the orientation of the branch 3 

is opposite.

2.8.2  Cut-Set Matrix and KCL for Cut-Sets

KCL is also applicable to a cut-set of a network. For any lumped 

electrical network, the algebraic sum of all the cut-set branch currents 

is equal to zero. While writing the KCL equation for a cut-set, we 

assign positive sign for the current in a branch if its direction coincides 

with the orientation of the cut-set and a negative sign to the current 

in a branch whose direction is opposite to the orientation of the cut-

set. Consider the graph shown in Fig. 2.21. It has five branches and 

four nodes. The branches have been numbered 1 through 5 and their 

orientations are also marked. The following six cut-sets are possible as 

shown in Figs 2.22 (a)-(f ).

cut-set C1 : {1, 4}; cut-set C2 : {4, 2, 3}

cut-set C3 : {3, 5}; cut-set C4 : {1, 2, 5}

cut-set C5 : {4, 2, 5}; cut-set C6 : {1, 2, 3}

Fig. 2.22

Applying KCL for each of the cut-set, we obtain the following equations. Let i1, i2 … i6 be the branch 

currents.

C i i

C i i i

C i i

C i i i

C i i

1 1 4

2 2 3 4

3 3 5

4 1 2 5

5 2 4

0

0

0

0

:

:

:

:

:

− =

− + + =

− + =

− + =

− + +ii

C i i i
5

6 1 2 3

0

0

=

− + =









:

 (2.7)

Fig. 2.21
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These equations can be put into matrix form as

1 0 0 1 0 0

0 1 1 1 0 0

0 0 1 0 1 0

1 1 0 0 1 0

0 1 0 1 1 0

1 1 1 0 0 0

−

−

−

−

−

−

































































=





i

i

i

i

i

i

1

2

3

4

5

6

0

0

0

0

0

0





























or

QIb 5 0 (2.8)

where the matrix Q is called the augmented cut-set matrix of the graph or all cut-set matrix of the graph. The 

matrix Ib is the branch-current vector.

The all cut-set matrix can be written as Q 5 [qij].

where qij is the element in the ith row and jth column. The order of Q is number of cut-sets 3 number of 

branch as in the graph.

qij 5 1, if branch j in the cut-set i and the orientation coincides with each other

qij 5 –1, if branch j is in the cut-set i and the orientation is opposite.     } (2.9)

qij 5 0, if branch j is not present in cut-set i. 

EXAMPLE 2.5

For the network-graph shown in Fig. 2.23 (a) with given orientation, obtain the all cut-set (augmented cut-set) 

matrix.

Fig. 2.23 (a)

Solution� The graph has four nodes and eight branches. There are in all 12 possible cut-sets as shown with 

dashed lines in Figs 2.23 (b) and (c). The orientation of the cut-sets has been marked arbitrarily. The cut-sets 

are

C1 : {1, 46}; C2 {1, 2, 3}; C3: {2, 5, 8}

C4 : {6, 7, 8}; C5 {1, 3, 5, 8}; C6: {1, 4, 7, 8}

C7 : {2, 5, 6, 7}; C8 : {2, 3, 4, 6} C9 : {1, 4, 7, 5, 2}

C10 : {2, 3, 4, 7, 8} ; C11 : {6, 4, 3, 5, 8}; C12 : {1, 3, 5, 7, 6}

Eight cut-sets C1 to C8 are shown if Fig. 2.23 (b) and four cut-sets C9 to C11 are shown in Fig. 2.23 (c) for 

clarity.
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As explained in Section 2.8.2 with the help of Eq. (2.9), the all cut-set matrix Q is given by

 

cut-sets branches →
↓

=

−

1 2 3 4 5 6 7 8

1 01

2

3

4

5

6

7

8

9

10

11

12

Q

C

C

C

C

C

C

C

C

C

C

C

C

00 1 0 1 0 0

1 1 1 0 0 0 0 0

0 1 0 0 1 0 0 1

0 0 0 0 0 1 1 1

1 0 1 0 1 0 0 1

1 0 0 1 0 0 1 1

0 1 0 0

−

− −

−

− −

−

11 1 1 0

0 1 1 1 0 1 0 0

1 1 0 1 1 0 1 0

0 1 1 1 0 0 1 1

0 0 1 1 1 1 0 1

1 0 1 0 1 1

− − −

− − − −

− − −

− −

− − − −−

























































1 0

Matrix Q is a 12 3 8 matrix since there are 12 cut-sets and eight branches in the graph.

2.8.3  Fundamental Cut-Sets

Observe the set of Eq. (2.7) in Section 2.8.2 with respect to the graph in Fig. 2.22. Only the first three equations 

are linearly independent, remaining equations can be obtained as a linear combination of the first three. The 

concept of fundamental cut-set (  f-cut-set) can be used to obtain a set of linearly independent equations in 

branch current variables. The f-cut-sets are defined for a given tree of the graph. From a connected graph, 

first a tree is selected, and then a twig is selected. Removing this twig from the tree separates the tree into 

two parts. All the links which go from one part of the disconnected tree to the other, together with the twig of 

the selected tree, will constitute a cut-set. This cut-set is called a fundamental cut-set or f-cut-set of the graph. 

Thus, a fundamental cut-set of a graph with respect to a tree is a cut-set that is formed by one twig and a 

unique set of links. For each branch of the tree, i.e. for each twig, there will be a f-cut-set. So, for a connected 

graph having n nodes, there will be (n – 1) twigs in a tree, the number of f-cut-sets is also equal to (n – 1).

Fig. 2.23 (b) Fig. 2.23 (c)
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The fundamental cut-set matrix Qf is one in which each row represents a cut-set with respect to a  

given tree of the graph. The rows of Q1 correspond to the fundamental cut-sets and the columns correspond 

to the branches of the graph. The procedure for obtaining a fundamental cut-set matrix is illustrated in 

Example 2.6.

EXAMPLE 2.6

Obtain the fundamental cut-set matrix Qf for the network graph shown in Fig. 2.23 (a).

Solution� A selected tree of the graph is shown in Fig. 2.24 (a).

Fig. 2.24

(a) (b)

The twigs of the tree are {3, 4, 5, 7}. The remaining branches 1, 2, 6, and 8 are the links, corresponding to the 

selected tree. Let us consider the twig 3. The minimum number of links that must be added to twig 3 to form a 

cut-set C1 is {1, 2}. This set is unique for C1. Thus, corresponding to the twig 3. The f-cut-set C1 is {1, 2, 3}. This 

is shown in Fig. 2.24 (b). As a convention the orientation of a cut-set is chosen to coincide with that of its defining 

twig. Similarly, corresponding to the twig 4, the f-cut-set C2 is {1, 4, 6} corresponding to the twig 5, the f-cut-set C3 

is {2, 5, 8} and corresponding to the twig 7, the f-cut-set is {6, 7, 8}. Thus, the f-cut-set matrix is given by

f -cut-sets branches→
↓

=

−

− −

+
Q

C

C

C

C

f

1

2

3

4

1 1 1 0 0 0 0 0

1 0 0 1 0 1 0 0

0 1 0 0 1 0 0 −−

























1

0 0 0 0 0 1 1 1

 (2.10)

2.8.4  Tree Branch Voltages and f-Cut-Set Matrix

From the cut-set matrix, the branch voltages can be expressed in terms of tree branch voltages. Since all tree 

branches are connected to all the nodes in the graph, it is possible to trace a path from one node to any other 

node by traversing through the tree-branches.

Let us consider Example 2.6, there are eight branches. Let the branch voltages be V1, V2, … V8. There are 

four twigs, let the twig voltages be Vt3, Vt4, Vt5 and Vt7 for twigs 3, 4, 5 and 7 respectively.

We can express each branch voltage in terms of twig voltages as follows.

V1 5 – V3 – V4 5 – Vt3 – Vt4
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V2 5 1 V3 1 V5 5 1 Vt3 1 Vt5

V3 5 Vt3

V4 5 Vt4

V5 5 Vt5

V6 5 V7 – V4 5 Vt7 – Vt4

V7 5 Vt7

V8 5 V7 – V5 5 Vt7 – Vt5

The above equations can be written in matrix form as

V

V

V

V

V

V

V

V

1

2

3

4

5

6

7

8

1 1 0 0







































=

− −

+11 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1

0 0 0 1

0 0 1 1

+

−

−

































































V

V

V

V

t

t

t

t

3

4

5

7

 (2.11)

The first matrix on the right-hand side of Eq. (2.11) is the transpose of the f-cut-set matrix Qf given in Eq. 

(2.10) in Ex. 2.6. Hence, Eq. (2.11) can be written as 

V Q Vb f
T

t=  (2.12)

where Vb is the column matrix of branch-voltages Vt is the column matrix of twig voltages corresponding to 

the selected tree and Qf
T  in the transpose of f-cut-set matrix.

Equation (2.12) shows that each branch voltage can be expressed as a linear combination of the tree-

branch voltages. For this purpose, the fundamental cut-set ( f-cut-set) matrix can be used without writing 

loop equations.

Frequently Asked Questions linked to LO4
rrr2-4.1 For the network shown in Fig. Q.1 draw the oriented graph and all 

possible trees. Also prepare (a) incidence matrix, (b) Fundamental 

tie-set matrix, (c) Fundamental cut-set matrix.   (GTU Dec. 2012)
rrr2-4.2 Explain the fundamental cut-set matrix taking a suitable example. 

  (PTU 2009-10)
rrr2-4.3 Write relation between branch voltage matrix [VO], twig voltage 

matrix [VT] and node voltage matrix [VN] in graph theory.

   (PTU 2011-12)
rrr

2.9 MESH ANALYSIS

Mesh and nodal analysis are two basic important techniques used in finding 

solutions for a network. The suitability of either mesh or nodal analysis to 

a particular problem depends mainly on the number of voltage sources or 

current sources. If a network has a large number of voltage sources, it is useful 

to use mesh analysis; as this analysis requires that all the sources in a circuit 

LO     5 

Fig. Q.1
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be voltage sources. Therefore, if there are any current sources in a circuit they are to be converted into equivalent 

voltage sources, if, on the other hand, the network has more current sources, nodal analysis is more useful.

Mesh analysis is applicable only for planar networks. For non-planar circuits, mesh analysis is not 

applicable. A circuit is said to be planar if it can be drawn on a plane surface without crossovers. A non-planar 

circuit cannot be drawn on a plane surface without a crossover.

Figure 2.25 (a) is a planar circuit. Figure 2.25 (b) is a non-planar circuit and Fig. 2.25 (c) is a planar 

circuit which looks like a non-planar circuit. It has already been discussed that a loop is a closed path. A 

mesh is defined as a loop which does not contain any other loops within it. To apply mesh analysis, our first 

step is to check whether the circuit is planar or not and the second is to select mesh currents. Finally, writing 

Kirchhoff’s voltage law equations in terms of unknowns and solving them leads to the final solution.

Observation of Fig. 2.26 indicates that there are two loops abefa, 

and bcdeb in the network. Let us assume loop currents I1 and I2 with 

directions as indicated in the figure. Considering the loop abefa alone, 

we observe that current I1 is passing through R1, and (I1 – I2) is passing 

through R2. By applying Kirchhoff’s voltage law, we can write

Vs 5 I1R1 1 R2(I1 – I2)

Similarly, if we consider the second mesh bcdeb, the current I2 

is passing through R3 and R4, and (I2 – I1) is passing through R2. By 

applying Kirchhoff’s voltage law around the second mesh, we have

R2 (I2 – I1) 1 R3 I2 1  R4 I2 5 0

By rearranging the above equations, the corresponding mesh current equations are

I1(R1 1 R2) – I2 R2 5 Vs

– I1 R2 1 (R2 1 R3 1 R4)I2 5 0

By solving the above equations, we can find the currents I1 and I2. If we observe Fig. 2.26, the circuit 

consists of five branches and four nodes, including the reference node. The number of mesh currents is equal 

to the number of mesh equations.

And the number of equations 5 branches – (nodes – 1). In Fig. 2.26, the required number of mesh currents 

would be 5 – (4 – 1) 5 2.

In general, if we have B branches and N nodes including the reference node then the number of linearly 

independent mesh equations M 5 B – (N – 1).

Fig. 2.26

Fig. 2.25

(a) (b) (c)
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Fig. 2.27

EXAMPLE 2.7

Write the mesh current equations in the circuit shown in Fig. 2.27, 

and determine the currents.

Solution� Assume two mesh currents in the direction as indicated 

in Fig. 2.28.

The mesh current equations are

5I1 1 2(I1 – I2) 5 10

10I2 1 2(I2 – I1) 1 50 5 0

We can rearrange the above equations as

7I1 – 2I2 5 10

– 2I1 1 12I2 5 – 50

By solving the above equations, we have

I1 5 0.25 A, and I2 5 – 4.125 A

Here, the current in the second mesh, I2, is negative; that is the 

actual current I2 flows opposite to the assumed direction of current 

in the circuit of Fig. 2.28.

EXAMPLE 2.8

Determine the mesh current I1 in the circuit shown in Fig. 2.29.

Fig. 2.29

Solution� From the circuit, we can form the following three mesh equations:

10I1 1 5(I1 1 I2) 1 3(I1 – I3) 5 50

2I2 1 5(I2 1 I1) 1 1(I2 1 I3) 5 10

3(I3 – I1) 1 1(I3 1 I2) 5 – 5

Rearranging the above equations, we get

18I1 1 5I2 – 3I3 5 50

5I1 1 8I2 1 I3 5 10

– 3I1 1 I2 1 4I3 5 –5

Fig. 2.28
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According to Cramer’s rule,

I1 =

































=

50 5 3

10 8 1

5 1 4

18 5 3

5 8 1

3 1 4

117

−

−

−

−

55

356

 or I1 5 3.3 A

Similarly,

I2

18 50 3

5 10 1

3 5 4

18 5 3

5 1

3 1 4

=

−

− −

−

−

































=
−

8

3355

356

 or I2 5 – 0.997 A

I3

18 5 50

5 8 10

3 1 5

18 5 3

5 8 1

3 1 4

52
=

− −

−

−

































=
55

356

 or I3 5 1.47 A

∴ I1 5 3.3 A, I2 5 – 0.997 A, I3 5 1.47 A

2.10 MESH EQUATIONS BY INSPECTION METHOD

The mesh equations for a general planar network can be written by inspection without going through the 

detailed steps. Consider three mesh networks as shown in Fig. 2.30.

Fig. 2.30

LO 5
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The loop equations are

 I1R1 1 R2(I1 – I2) 5 V1 (2.13)

 R2(I2 – I1) 1 I2R3 5 –V2 (2.14)

 R4I3 1 R5I3 5 V2 (2.15)

Reordering the above equations, we have

 (R1 1 R2)I1 – R2I2 5 V1 (2.16)

– R2I1 1 (R2 1 R3)I2 5 –V2 (2.17)

 (R4 1 R5)I3 5 V2 (2.18)

The general mesh equations for the three-mesh resistive network can be written as

 R11I1  R12I2  R13I3 5 Va (2.19)

 R21I1 1 R22I2  R23I3 5 Vb (2.20)

 R31I1  R32I2 1 R33I3 5 Vc (2.21)

By comparing equations (2.16), (2.17) and (2.18) with Eqs (2.19), (2.20), and (2.21) respectively, the 

following observations can be taken into account.

1. The self-resistance in each mesh,

2. The mutual resistances between all pairs of meshes, and

3. The algebraic sum of the voltages in each mesh.

The self-resistance of the loop 1, R11 5 R1 1 R2, is the sum of the resistances through which I1 passes.

The mutual resistance of the loop 1, R12 5 – R2, is the sum of the resistances common to loop currents 

I1 and I2. If the directions of the currents passing through the common resistance are the same, the mutual 

resistance will have a positive sign; and if the directions of the currents passing through the common resistance 

are opposite then the mutual resistance will have a negative sign.

Va 5 V1 is the voltage which drives loop one. Here, the positive sign is used if the direction of the current 

is the same as the direction of the source. If the current direction is opposite to the direction of the source, 

then the negative sign is used.

Similarly, R22 5 (R2 1 R3) and R33 5 R4 1 R5 are the self resistances of loops two and three, respectively. 

The mutual resistances R13 5 0, R21 5 – R2, R23 5 0, R31 5 0, R32 5 0 are the sums of the resistances 

common to the mesh currents indicated in their subscripts.

Vb 5 – V2, Vc 5 V2 are the sum of the voltages driving their respective loops.

EXAMPLE 2.9

Write the mesh equations for the circuit shown in Fig. 2.31. 

Fig. 2.31



Circuits and Networks70 

Solution� The general equations for the three-mesh network are

 R11I1  R12I2  R13I3 5 Va (2.22)

  R21I1 1 R22I2  R23I3 5 Vb (2.23)

  R31I1  R32I2 1 R33I3 5 Vc (2.24)

Consider Eq. (2.22).

R11 5 self-resistance of the loop 1 5 (1 V 1 3 V 1 6 V) 5 10 V

R12 5 the mutual resistance common to loops 1 and 2 5 –3 V

Here, the negative sign indicates that the currents are in opposite direction

R13 5 the mutual resistance common to loop 1 and 3 5 –6 V

Va 5 110 V, the voltage driving the loop 1.

Here, the positive sign indicates the loop current I1 is in the same direction as the source element.

Therefore, Eq. (2.22) can be written as

 10I1 – 3I2 – 6I3 5 10 V (2.25)

Consider Eq. (2.23).

R21 5 mutual resistance common to loops 1 and 2 5 –3 V

R22 5 self-resistance of loop 2 5 (3 V 1 2 V 1 5 V) 5 10 V

R23 5 0, there is no common resistance between loops 2 and 3.

Vb  5 –5 V, the voltage driving the loop 2.

Therefore, Eq. (2.23) can be written as

 – 3I1 1 10I2 5 – 5 V (2.26)

Consider Eq. (2.24).

R31 5 mutual resistance common to loops 3 and 1 5 –6 V

R32 5 mutual resistance common to loops 3 and 2 5 0

R33 5 self-resistance of the loop 3 5 (6 V 1 4 V) 5 10 V

 Vc 5 algebraic sum of the voltages driving the loop 3

 5 (5 V 1 20 V) 5 25 V

Therefore, Eq. (2.24) can be written as

 – 6I1 1 10I3 5 25 V (2.27)

The three mesh equations are

 10I1 – 3I2 – 6I3 5 10 V

 – 3I1 1 10I2 5 – 5 V

 – 6I1 1 10I3 5 25 V

2.11 SUPERMESH ANALYSIS

Suppose any of the branches in the network has a current source; then it is slightly difficult to apply mesh 

analysis straightforward because first we should assume an unknown voltage across the current source, 

writing mesh equations as before, and then relate the source current to the assigned mesh currents. This is 

generally a difficult approach. One way to overcome this difficulty is by applying the supermesh technique. 

Here we have to choose the kind of supermesh. A supermesh is constituted by two adjacent loops that have 

LO 5
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a common current source. As an example, consider the network shown in Fig. 2.32.

Fig. 2.32

Here, the current source I is in the common boundary for the two meshes 1 and 2. This current source 

creates a supermesh, which is nothing but a combination of meshes 1 and 2.

R1I1 1 R3(I2 – I3) 5 V

 or R1I1 1 R3I2 – R4I3 5 V

Considering the mesh 3, we have

R3(I3 – I2) 1 R4I3 5 0

Finally, the current I from the current source is equal to the difference between the two mesh currents, i.e.

I1 – I2 5 I

We have, thus, formed three mesh equations which we can solve for the three unknown currents in the 

network.

EXAMPLE 2.10

Determine the current in the 5 V resistor in the network given in Fig. 2.33.

Fig. 2.33

Solution� From the first mesh, i.e. abcda, we have

 50 5 10(I1 – I2) 1 5(I1 – I3)

 or 15I1 – 10I2 – 5I3 5 50 (2.28)

From the second and third meshes, we can form a supermesh

 10(I2 – I1) 1 2I2 1 I3 1 5(I3 – I1) 5 0

 or – 15I1 1 12I2 1 6I3 5 0 (2.29)
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The current source is equal to the difference between II and III mesh currents, 

i.e. I2 – I3 5 2 A (2.30)

Solving 2.28, 2.29, and 2.30, we have

I1 5 19.99 A, I2 5 17.33 A, and I3 5 15.33 A

The current in the 5 V resistor 5 I1 – I3

5 19.99 – 15.33 5 4.66 A

∴ the current in the 5 V resistor is 4.66 A.

EXAMPLE 2.11

Write the mesh equations for the circuit shown in Fig. 2.34 and determine the currents, I1, I2 and I3.

Fig. 2.34

Solution� In Fig. 2.34, the current source lies on the perimeter of the circuit, and the first mesh is ignored. 

Kirchhoff’s voltage law is applied only for second and third meshes.

From the second mesh, we have

3(I2 – I1) 1 2(I2 – I3) 1 10 5 0

 or – 3I1 1 5I2 – 2I3 5 –10 (2.31)

From the third mesh, we have

 I3 1 2(I3 – I2) 5 10

 or – 2I2 1 3I3 5 10 (2.32)

From the first mesh, 

 I1 5 10 A (2.33)

From the above three equations, we get

I1 5 10 A, I2 5 7.27 A, I3 5 8.18 A

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO5
rr2-5.1 In the circuit shown in Fig. Q.1, use mesh analysis to find out the power delivered to the 4 V 

resistor. To what voltage should the 100 V battery be changed so that no power is delivered to the 

4 V resistor?



Methods of Analysing Circuits 73 

Fig. Q.1

rrr2-5.2 Find the voltage between A and B of the circuit shown in Fig. Q.2 by mesh analysis.

Fig. Q.2

rrr2-5.3 Find the value of R1 and R2 in the network shown in Fig. Q.3 using mesh analysis.

Fig. Q.3

rrr2-5.4 Using mesh analysis, determine the voltage across the 10 kV resistor at terminals A and B of the 

circuit shown in Fig. Q.4.

Fig. Q.4
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rrr 2-5.5 In the network shown in Q.5, the resistance R is variable from zero to infinity. The current I 

through R can be expressed as I 5 a 1 bV, where V is the voltage across R as shown in the figure, 

and a and b are constants. Determine a and b.

Fig. Q.5

rrr2-5.6 For the circuit shown in Fig. Q.6, use mesh analysis to find the values of all mesh currents.

Fig. Q.6

rrr2.5.7 Determine the value of current I in the following circuit shown in Fig. Q.7 by using mesh analysis.

Fig. Q.7

rrr2-5.8 Use mesh analysis to find the current supplied by the 31 V source and the current in 4 Ω resistor 

of the circuit shown in Fig. Q.8.

Fig. Q.8
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rrr2-5.9 For the circuit shown in Fig. Q.9, find the value of V2 that will cause the voltage across 20 V to be 

zero by using mesh analysis.

Fig. Q.Q.9

rrr2-5.10 Find the mesh currents I1, I2, I3, and  I4 in the following circuit Fig. Q.10, using PSpice

Fig. Q.10

Frequently Asked Questions linked to LO5
rrr2-5.1 Distinguish between mesh and loop of an electric circuit. (AU May/June 2013)

rrr2-5.2 Using mesh analysis, determine the current through the 1 W resistor in the circuit shown in Fig. Q.2

  (AU May/June 2013)

Fig. Q.2

rrr2-5.3 Find out the current in each branch of the circuit shown in Fig. Q.3.

5 A 5 W10 W

3 W 1 W

10 V
+

–

Fig. Q.3
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rrr2.5.4 Determine current in each mesh of the circuit shown in Fig. Q.4.

10 A
2 W

3 W
1 W

10 V
+

–

Fig. Q.4

rrr2-5.5 Define mesh analysis of a circuit.     (AU Nov./Dec. 2012)

rrr2-5.6 Determine the current l2 in the circuit shown in Fig. Q.6 (AU Nov./Dec. 2012) 

4V

I
2

8V

6V

1W

3W

3W

5W

3W

1W

+
+

+

–

–

–

Fig. Q.6

rrr2-5.7 Using mesh method obtain the loop currents in the network of Fig. Q.7. What is the total power 

loss? (BPUT 2007)

Fig. Q.7

rrr2-5.8 Derive a tree of the graph of the network in Fig. Q.8. Determine the node voltage V1 and V2 using 

the mesh analysis. Resistance values are in ohms. (GTU May 2011)

1 2 2

21 A dc2 V dc

4 V dc

V
1

V
2

+
+

–
–

Fig. Q.8

rrr2-5.9 Find mesh current and determine the voltage across each element in the circuit shown in Fig. Q.9.

 (JNTU Nov. 2012)



Methods of Analysing Circuits 77 

5 W

2 W

8 W

5 A
10 V

4 W

Fig. Q.9

rrr2-5.10 Find the power delivered by the two sources to the circuit shown in Fig. Q.10.  (PTU 2009-10)

1 W 2 W

5 V

3 W4 W

6 A

+

–

Fig. Q.10

rrr2-5.11 Determine the current supplied by each battery in the circuit of Fig. Q.11 using mesh analysis 

method. (PTU 2011-12)

Fig. Q.11

rrr2-5.12 Find the value of K in the circuit shown in Fig. Q.12 such that the power dissipated in the 2 W 

resistor does not exceed 50 watts. (PU 2012)

6A

4 W

2 W

I

8 W +
–

– +
KI

16 V

Fig. Q.12

rrr2-5.13 Determine the current in the 5 W resistor in the network shown in Fig. Q.13.

20 V

10 W 2 W
2 A

1 W5 W

+

–

Fig. Q.13
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rrr2-5.14 In the circuit shown in Fig. Q.14 use loop analysis to find the 

power delivered to the 4 W resistor.

2.12 NODAL ANALYSIS

In Chapter 1, we discussed simple circuits containing only two nodes, 

including the reference node. In general, in an N-node circuit, one of the 

nodes is choosen as reference or datum node, then it is possible to write N – 

1 nodal equations by assuming N – 1 node voltages. For example, a 10-node 

circuit requires nine unknown voltages and nine equations. Each node in a 

circuit can be assigned a number or a letter. The node voltage is the voltage 

of a given node with respect to one particular node, called the reference 

node, which we assume at zero potential. In the circuit shown in Fig. 2.35, the node 3 is assumed as the 

reference node. The voltage at the node 1 is the voltage at that node with respect to the node 3. Similarly, the 

voltage at the node 2 is the voltage at that node with respect to the node 3. Applying Kirchhoff’s current law 

at the node 1; the current entering is equal to the current leaving (see Fig. 2.36).

Fig. 2.35 Fig. 2.36

I
V

R

V V

R
1

1

1

1 2

2

= +
−

Here, V1 and V2 are the voltages at nodes 1 and 2, respectively. Similarly, at the node  2, the current entering 

is equal to the current leaving as shown in Fig. 2.37.

V V

R

V

R

V

R R

2 1

2

2

3

2

4 5

0
−

+ +
+

=

Rearranging the above equations, we have

V
R R

V
R

I1
1 2

2
2

1

1 1 1
+














−














=

−













+ + +

+














=V

R
V

R R R R
1

2
2

2 3 4 5

1 1 1 1
0

Fig. Q.14
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Fig. 2.37
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From the above equations, we can find the voltages at each node.

EXAMPLE 2.12

Write the node voltage equations and determine the currents in each branch for the network shown in Fig. 

2.38.

Fig. 2.38

Solution� The first step is to assign voltages at each node as shown in Fig. 2.39.

Fig. 2.39

Applying Kirchhoff’s current law at the node 1, we have

        5
10 3

1 1 2= +
−V V V

 or 
1

10

1

3

1

3
51 2+












−












=V V  (2.34)

Applying Kirchhoff’s current law at the node 2, we have

V V V V2 1 2 2

3 5

10

1
0

−
+ +

−
=

 or V V1 2

1

3

1

3

1

5
1 10−












+ + +












=  (2.35)

From Eqs (2.34) and (2.35), we can solve for V1 and V2 to get

V1 5 19.85 V, V2 5 10.9 V

I
V

I
V V

10
1

3
1 2

10
1 985

3

19 85 10 9

3
2 98= = =

−
=

−
=. ,

. .
.A A

I
V

I
V

5
2

1
2

5

10 9

5
2 18

10

1
0 9= = = =

−
=

.
. , .A A
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EXAMPLE 2.13

Determine the voltages at each node for the circuit shown in Fig. 2.40.

Fig. 2.40

Solution� At the node 1, assuming that all currents are leaving, we have

V V V V V V

V V

1 1 2 1 1 2

1 2

10

10 3 5 3
0

1

10

1

3

1

5

1

3

1

3

1

−
+

−
+ +

−
=

+ + +











− +or

33
1












=

 0.96V1 – 0.66V2 5 1 (2.36)

At the node 2, assuming that all currents are leaving except the current from the current source, we have

 V V V V V V2 1 2 1 2 3

3 3 2
5

−
+

−
+

−
=

V V V1 2 3

2

3

1

3

1

3

1

2

1
−












+ + +












−

22
5












=

 – 0.66 V1 1 1.16 V2 – 0.5V3 5 5 (2.37)

At node 3, assuming all currents are leaving, we have

 
V V V V3 2 3 3

2 1 6
0

−
+ + =

 – 0.5 V2 1 1.66 V3 5 0 (2.38)

Applying Cramer’s rule, we get

V1

1 0 66 0

5 1 16 0 5

0 0 5 1 66

0 96 0 66 0

0 66 1 16 0 5

0 0 5 1

=

−

−

−

−

− −

−

.

. .

. .

. .

. . .

. .666

7 154

0 887
8 06

































= =
.

.
. V
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Similarly,

V2

0 96 1 0

0 66 5 0 5

0 0 1 66

0 96 0 66 0

0 66 1 16 0 5

0 0 5 1 66

=

− −

−

− −

−

 .

. .

.

. .

. . .

. .





























= =
9 06

0 887
10 2

.

.
. V

V3

0 96 0 66 1

0 66 1 16 5

0 0 5 0

0 96 0 66 0

0 66 1 16 0 5

0 0 5 1

=

−

−

−

−

− −

−

. .

. .

.

. .

. . .

. ..

.

.
.

66

2 73

0 887
3 07

































= = V

2.13 NODAL EQUATIONS BY INSPECTION METHOD

The nodal equations for a general planar network can also be written by inspection, without going through the 

detailed steps. Consider a three-node resistive network, including the reference node, as shown in Fig. 2.41.

In Fig. 2.41, the points a and b are the actual nodes and c is the reference node.

Fig. 2.41

Now consider the nodes a and b separately as shown in Fig. 2.42 (a) and (b).

Fig. 2.42

In Fig. 2.42 (a), according to Kirchhoff’s current law, we have

 I1 1 I2 1 I3 5 0

LO 6
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∴ 
V V

R

V

R

V V

R

a a a b−
+ +

−
=1

1 2 3

0 (2.39)

In Fig. 2.42 (b), if we apply Kirchhoff’s current law, we get

 I4 1 I5 5 I3

∴  V V

R

V

R

V V

R

b a b b−
+ +

−
=

3 4

2

5

0 (2.40)

Rearranging the above equations, we get

1 1 1 1 1

1 2 3 3 1R R R
V

R
V

R
a b+ +












−












=











V1 (2.41)

−











+ + +












=

1 1 1 1

3 3 4 5

2

5R
V

R R R
V

V

R
a b

 (2.42)

In general, the above equations can be written as

Gaa Va 1 Gab Vb 5 I1 (2.43)

Gba Va 1 Gbb Vb 5 I2 (2.44)

By comparing Eqs (2.41), (2.42), and Eqs (2.43), (2.44) we have the self-conductance at node a, Gaa 5 (1/

R1 1 1/R2 1 1/R3) is the sum of the conductances connected to node a. Similarly, Gbb 5 (1/R3 1 1/R4 1 1/R5), is 

the sum of the conductances connected to node b. Gab 5 (–1/R3), is the sum of the mutual conductances connected 

to node a and node b. Here all the mutual conductances have negative signs. Similarly, Gba 5 (–1/R3) is also a 

mutual conductance connected between nodes b and a. I1 and I2 are the sum of the source currents at the node a 

and the node b, respectively. The current which drives into the node has positive sign, while the current that drives 

away from the node has negative sign.

EXAMPLE 2.14

For the circuit shown in Fig. 2.43, write the node equations by the inspection method.

Fig. 2.43

Solution� The general equations are

Gaa Va 1 Gab Vb 5 I1 (2.45)

Gba Va 1 Gbb Vb 5 I2 (2.46)
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Consider Eq. (2.45).

Gaa 5 (1 1 1/2 1 1/3) mho, the self-conductance at the node a is the sum of the conductances connected 

to the node a.

Gbb 5 (1/6 1 1/5 1 1/3) mho the self-conductance at the node b is the sum of the conductances connected 

to the node b.

Gab 5 – (1/3) mho, the mutual conductance between nodes a and b is the sum of the conductances 

connected between nodes a and b.

Similarly, Gba 5 – (1/3), the sum of the mutual conductances between nodes b and a.

I a

I

1

2

10

1
10

2

5

5

6

= =

= +









=

A, thesource current at the node ,

11 23. A, thesource ent at the node .curr b

Therefore, the nodal equations are

1.83 Va – 0.33 Vb 5 10 (2.47)

– 0.33 Va 1 0.7 Vb 5 1.23 (2.48)

2.14 SUPERNODE ANALYSIS

Suppose any of the branches in the network has a voltage source; then it is slightly difficult to apply nodal 

analysis. One way to overcome this difficulty is to apply the supernode technique. In this method, the two 

adjacent nodes that are connected by a voltage source are reduced to a single node and then the equations 

are formed by applying Kirchhoff ’s current law as usual. This is explained with the help of Fig. 2.44.

Fig. 2.44

It is clear from Fig. 2.44, that the node 4 is the reference node. Applying Kirchhoff’s current law at the 

node 1, we get

I
V

R

V V

R
= +

−1

1

1 2

2

Due to the presence of voltage source Vx in between nodes 2 and 3, it is slightly difficult to find out the 

current. The supernode technique can be conveniently applied in this case.

Accordingly, we can write the combined equation for nodes 2 and 3 as under.

V V

R

V

R

V V

R

V

R

y2 1

2

2

3

3

4

3

5

0
−

+ +
−

+ =

LO 6
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The other equation is

V2 – V3 5 Vx

From the above three equations, we can find the three unknown voltages.

EXAMPLE 2.15

Determine the current in the 5 V resistor for the circuit shown in Fig. 2.45.

Fig. 2.45

Solution� At the node 1,

 
10

3 2

1 1 2= +
−V V V

or V
V

1
21

3

1

2 2
10 0+












− − =

 0.83 V1 – 0.5 V2 – 10 5 0 (2.49)

At nodes 2 and 3, the supernode equation is

or 

V V V V V

V
V V

2 1 2 3 3

1
2 3

2 1

10

5 2
0

2

1

2
1

1

5

1

2

−
+ +

−
+ =

−
+ +












+ +












== 2

 – 0.5 V1 1 1.5 V2 1 0.7 V3 – 2 5 0 (2.50)

The voltage between nodes 2 and 3 is given by

V2 – V3 5 20 (2.51)

The current in the 5 V resistor I
V

5
3 10

5
=

−

Solving Eqs (2.49), (2.50), and (2.51), we obtain

V3 5 –8.42 V

∴ =
− −

=−Current AI5

8 42 10

5
3 68

.
.  (current towards node 3) i.e. the current flows towards the node 3.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 6
rr2-6.1 In the circuit shown in Fig. Q.1, use nodal analysis to find out the voltage across 40 V and the 

power supplied by the 5 A source.
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Fig. Q.1

rrr2-6.2 Use nodal analysis in the circuit shown in Fig. Q.2 and determine what value of V will cause V1050.

Fig. Q.2

rrr2-6.3 Find the value of V0 in the network shown in Fig. Q.3, using PSpice.

Fig. Q.3

rrr2-6.4 Find the total power dissipation in the following circuit of Fig. Q.4, using PSpice.

Fig. Q.4
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rrr2-6.5 For the circuit shown in Fig. Q.5 find the currents in all branches of the circuit using the node 

voltage method.

Fig. Q.5

rrr2-6.6 Write nodal equations for the circuit shown in Fig. Q.6, and find the Voltage V1.

Fig. Q.6

rrr2-6.7 Use nodal analysis to find V2 in the circuit shown in Fig. Q.7.

Fig. Q.7

Frequently Asked Questions linked to LO 6

rrr2-6.1 Determine the voltage at each node of the circuit shown in Fig. Q.1.

Fig. Q.1
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rrr2-6.2 Using nodal analysis techniques, determine the current 'i' in the network shown in Fig. Q.2. 

 (JNTU Nov. 2012)
6 W

3 i

3 A 5 A

i

10 W 4 W

Fig. Q.2

rrr2-6.3 Using graph theory, find node voltages at (A) and (B) for the network shown in Fig. Q.3. 

  (PTU 2011-12)

Fig. Q.3

rrr2-6.4 Two batteries having e/m/f of 10 V and 7 V and internal resistance of 2 W and 3 W respectively are 

connected across a load resistance of 1 W. Calculate

 (a)  Individual battery currents.

 (b)  Current through the load.

 (c)  Voltage across the load using nodal analysis. (PTU 2011-12)
rrr2-6.5 Using nodal analysis, find 'I' in the circuit shown in Fig. Q.5 (PU 2012)

4 W

60 60

60

120

I
1202A

12V
+

Fig. Q.5

rrr2-6.6 Find out the current in the 5 W resistance using node voltage analysis and verify the result using 

mesh analysis. (RTU Feb. 2011)

Fig. Q.6
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rrr2-6.7 For the circuit shown in Fig. Q.7 find node voltage V1, V2, and V3. (PU 2012)

– +

+ –

6 A

6V

3 V
1

V
1 V

2

V
3

1 W

1 W

0.5 W

0.2 W

1

3
W

Fig. Q.7

rrr2-6.8 Explain the concept of supernode and supermesh.  (PU 2012)

rrr2-6.9 Find the current in the 6 W resistance in Fig. Q.9 using mesh analysis and verify the result using 

nodal analysis.  (RTU Feb. 2011)

Fig. Q.9

2.15 SOURCE TRANSFORMATION TECHNIQUE

In solving networks to find solutions, one may have to deal with energy 

sources. It has already been discussed in Chapter 1 that basically, energy 

sources are either voltage sources or current sources. Sometimes it is 

necessary to convert a voltage source to a current source and vice-versa. 

Any practical voltage source consists of an ideal voltage source in series 

with an internal resistance. Similarly, a practical current source consists of 

an ideal current source in parallel with an internal resistance as shown in Fig. 2.46. Rv and Ri represent the 

internal resistances of the voltage source Vs, and current source Is, respectively.

Fig. 2.46

LO     7 
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Any source, be it a current source or a voltage source, drives current through its load resistance, and 

the magnitude of the current depends on the value of the load resistance. Figure 2.47 represents a practical 

voltage source and a practical current source connected to the same load resistance RL.

Fig. 2.47

From Fig. 2.47 (a), the load voltage can be calculated by using Kirchhoff’s voltage law as

Vab 5 Vs – IL Rv

The open-circuit voltage VOC 5 Vs

The short-circuit current I
V

R
SC

s

v

=

From Fig. 2.47 (b),

I I I I
V

R
L s S

ab

I

= − = −

The open-circuit voltage VOC 5 IS RI

The short-circuit current ISC 5 IS

The above two sources are said to be equal, if they produce equal amounts of current and voltage when 

they are connected to identical load resistances. Therefore, by equating the open-circuit voltages and short-

circuit currents of the above two sources, we obtain

VOC 5 Is RI 5 VS

I I
V

R
SC S

s

v

= =

It follows that R1 5 RV 5  Rs  ∴ Vs 5 IS RS

where RS is the internal resistance of the voltage or current source. Therefore, any practical voltage source, 

having an ideal voltage VS and internal series resistance RS can be replaced by a current source IS 5 VS /RS in 

parallel with an internal resistance RS. The reverse transformation is also possible. Thus, a practical current 

source in parallel with an internal resistance RS can be replaced by a voltage source VS 5 Is Rs in series with 

an internal resistance RS.
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EXAMPLE 2.16

Determine the equivalent voltage source for the current source 

shown in Fig. 2.48.

Solution� The voltage across terminals A and B is equal to 25 

V. Since the internal resistance for the current source is 5 V, the 

internal resistance of the voltage source is also 5 V. The equivalent 

voltage source is shown in Fig. 2.49.

EXAMPLE 2.17

Determine the equivalent current source for the voltage source shown in 

Fig. 2.50.

Solution� The short-circuit current at terminals A and B is equal to

I= =
50

30
1 66. A

Since the internal resistance for the voltage source is 30  V, the internal 

resistance of the current source is also 30  V. The equivalent current source 

is shown in Fig. 2.51.

Frequently Asked Questions linked to LO 7

r2-7.1 Explain the source-transformation technique. (AU May/June 2013)

Fig. 2.50

Fig. 2.51

Fig. 2.49

Fig. 2.48
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2 W

2 V
x

4 W

5 W

2 W

2 W

3 W

3 W

+ V
x

–

3 A

Fig. Q.6

Fig. 2.52

r2-7.2 Using source transformation replace the current source in the circuit shown in Fig. Q.2 by a voltage 

source and find the current delivered by the 50 V voltage source.  (AU Nov./Dec. 2012)

rr2-7.3 Use source transformation to find I0 in the circuit shown in Fig. Q.3.   (AU April/May 2011)

3 W5 W

2 W
50 V

10 A 10 V+ +
– –

Fig. Q.2       

4 W 2 W 6 W

3 W 24 V6 A

I
0

12 V
+

+
–

–

Fig. Q.3

rr2-7.4 Explain various source-transformation techniques: Using source-transformation techniques, find 

current I in the network shown in Fig. Q.4.  (GTU Dec. 2012)
2 W

+

+

–

–

2 V
2 V

1A

1 W

1 W 1 W

W

W

1

2

1

2

Fig. Q.4

r2-7.5 Explain the source-transformation techniques with 

suitable circuits.                             (JNTU Nov. 2012)

rr2-7.6 Obtain Vx using some shifting and source 

transformation technique. (Fig. Q.6)       (MU 2014)
r2-7.7 Discuss the properties of an ideal current source 

and an ideal voltage source. Explain how a voltage 

source can be converted into an equivalent current 

source and vice versa. (RGTU Dec. 2013)

Additional Solved Problems

PROBLEM 2.1

Determine the currents in bridge circuit by using mesh 

analysis in Fig. 2.52.
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Fig. 2.53

Solution� Consider ia, ib, and ic are three loop currents as 

shown in Fig. 2.53.

By inspection method, we can find the loop equations

3ia2ib2ic 5 10 (2.52)

2ia 1 3ib2ic 5 5 (2.53)

2ia2ib 1 3ic 5 5 (2.54)

From the above equations, we have

3 1 1

1 3 1

1 1 3

10

5

5

− −

− −

− −




































=














i

i

i

a

b

c






The current ia =
∆

∆
1

 where ∆ =

− −

−

−


















=1

10 1 1

5 3 1

5 1 3

120

 and ∆=

− −

− −

− −


















=

3 1 1

1 3 1

1 1 3

16

  ∴  ia =
∆

∆
= =1 120

16
7 5. A

The current 2ib =
∆

∆

 where ∆ =

−

− −

−


















=2

3 10 1

1 5 1

1 5 3

100

  ∴  ib = =
100

16
6 25. A

The current ic =
∆

∆
3

 where  ∆ =

−

−

− −


















=3

3 1 10

1 3 5

1 1 5

100

  ∴  ic = =
100

16
6 25. A

From the loop currents ia, ib, and ic, we can determine the branch currents.

The branch current I   5 ia 5 7.5 A

The branch current I1 5 ia 2 ib 5 1.25 A

The branch current I2 5 ib 5 6.25 A

The branch current I3 5 ib 2 ic 5 0 A

The branch current I4 5 ic 5 6.25 A

The branch current I5 5 ia 2 ic 5 1.25 A
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PROBLEM 2.2

For the circuit shown in Fig. 2.54, use nodal analysis to find the current delivered by the 24 V source.

Fig. 2.54

Solution� The circuit shown in Fig. 2.54 is a single-node circuit. Consider the node voltage V1 across each 

branch in the circuit.

Applying Kirchhoff’s current law at the node, we have

V V V1 1 124

5
2

20

36

10
0

−
− + +

−
=  (2.55)

V1

1

5

1

20

1

10
4 8 2 3 6+ +












= + +. .

  ∴  V1 = 29.7 volts

The current delivered by the 24 V source is

I
V

24
1 24

5
1 14=

−
= . A

PROBLEM 2.3

Determine the current I in the circuit by using loop analysis in Fig. 2.55.

Fig. 2.55

Solution� Consider the loop currents as shown in Fig. 2.56.

Fig. 2.56
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From Fig. 2.56, the supermesh equation can be written as

2(I2 2 I1) 1 2(I2 2 I4) 1 10(I3 2 I1) 1 1.5(I3 2 I5) 5 0 (2.56)

The other equations are

 9I4 2 2I2 2 I5 5 0  (2.57)

 10.5I5 2 1.5I3 2 I4 5 0 (2.58)

 I3 2 I2 5 30 (2.59)

 I1 5 20 (2.60)

The above equations can be reduced as

 15.5I3 2 2I4 2 1.5I5 5 360 (2.61)

 22I3 1 9I4 2 I5 5 2 60 (2.62)

 21.5I3 2 I4 1 10.5I5 5 0 (2.63)

From the above equation, we have

15 5 2 1 5

2 9 1

1 5 1 10 5

33

4

5

. .

. .

− −

− + −

− −




































=

I

I

I

660

60

0

−



















The branch current I 5 I3 2 I5

The loop current I3
3=

∆

∆

where, ∆=

− −

− + −

− −

=

15 5 2 1 5

2 9 1

1 5 1 10 5

1381

. .

. .

and ∆ =

− −

− −

−

=3

360 2 1 5

60 9 1

0 1 10 5

32310

.

.

∴ the current I3
3 32310

1381
23 4=

∆

∆
= = . A

The loop current I5
5=

∆

∆

where, ∆ =

−

− −

− −

=5

15 5 2 360

2 9 60

1 5 1 0

4470

.

.

∴ =
∆

∆
= =the current AI5

5 4470

1381
3 24.

The branch current I 5 I3 2 I5 5 23.4 2 3.24 5 20.16 A
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PROBLEM 2.4

Write nodal equations for the circuit shown in Fig. 2.57 and find the power supplied by the 10 V source.

Fig. 2.57

Solution� Consider the nodes a, b and node voltages Va and Vb as shown in Fig. 2.58.

Fig. 2.58

The nodal equation at the node a,

10
2 2

10

4
0+ +

−
+

+ −
=

V V V V Va a b a b  (2.64)

From the above equation, we have

1.25Va 2 0.75Vb 5 2 12.5 (2.65)

The nodal equation at the node b,

V V V V
V Vb a b a

b

− −
+

−
− + =

10

4 2
4 03  (2.66)

From the above equation, we have

2 4.75Va 1 5.75Vb 5 42.5 (2.67)

Since V3 5 Va 1 10 2 Vb

By solving the equations (2.65) and (2.67), we have

Va 5 2 11.03 volts; Vb 5 2 1.724 volts

The current delivered by the 10 V source is I10.

I
V Va b

10

10

4
=

− +
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The power supplied by the 10 V source

P I
V Va b

10 1010 10
10

4
= =

− +









( )

 P10 5 1.735 watts.

PROBLEM 2.5

Use mesh analysis to find Vx in the circuit shown in Fig. 2.59.

Fig. 2.59

Solution� Consider the loop currents I1, I2, and I3 as shown in Fig. 2.60.

Fig. 2.60

From Fig. 2.60, the loop equations are

30 1 Vx 1 33.33(I1 2 I3) 1 25(I1 2 I2) 1 10 5 0 (2.68)

 210 1 25(I2 2 I1) 2 2Vx 5 0 (2.69)

 I3 5 0.45 A

 and Vx 5 16.67I1

By substituting I3 and Vx and simplifying Eqs (2.68) and (2.69), we get

 75I1 2 25I2 5 25 (2.70)

 and 2 58.35I1 1 25I2 5 10 (2.71)

By solving Eqs (2.70) and (2.71), we get

 I1 5 2.1 A

The voltage across the 16.67 Ω resistor is

Vx 5 I1(16.67) 5 (2.1)(16.67)

Vx 5 35 volts
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PROBLEM 2.6

Determine the voltage ratio Vout /Vin for the circuit shown in Fig. 2.61 by using nodal analysis.

Fig. 2.61

Solution� I10 1 I3 1 I11 5 0

I
V V

I
V

I
V V

A in

A

A out

10

3

11

10

3

6

=
−

=

= ,or

V V V VA in A A−
+ + =

10 3 11
0

 Also 
V VA out

11 6
=

  ∴ VA 5 Vout 3 1.83

From the above equations, Vout / Vin 5 1/9.53 5 0.105

PROBLEM 2.7

Find the voltages V in the circuit shown in Fig. 2.62 which makes the current in the 10 V resistor zero by 

using nodal analysis.

Fig. 2.62

Solution� In the circuit shown, assume voltages V1 and V2 at nodes 1 and 2.

At the node 1, the current equation in Fig. 2.63 (a) is

V V V V V1 1 1 2

3 2 10
0

−
+ +

−
=
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 or 0.93 V1 – 0.1 V2 5 V/3

At the node 2, the current equation in Fig. 2.63 (b) is

V V V V2 1 2 2

10 5

50

7
0

−
+ +

−
=

 or – 0.1 V1 1 0.443 V2 5 7.143

Fig. 2.63 (b)

Since the current in the 10 V resistor is zero, the voltage at the node 1 is equal to the voltage at the node 2.

∴  V1 – V2 5 0

From the above three equations, we can solve for V.

V1 5 20.83 volts and V2 5 20.83 volts

  ∴ V 5 51.87 V

PROBLEM 2.8

Use nodal analysis to find the power dissipated in the 6 V resistor for the circuit shown in Fig. 2.64.

Fig. 2.64

Fig. 2.63 (a)
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Solution� Assume voltage V1, V2 , and V3 at nodes 1, 2, and 3 as shown in Fig. 2.64.

By applying current law at the node 1, we have

V V V V V1 1 2 1 320

3 1 2
0

−
+

−
+

−
=

or 1.83V1 – V2 – 0.5V3 5 6.67 (2.72)

At the node 2,

 
V V V V2 1 2 3

1 6
5

−
+

−
= A

or – V1 – 1.167V2 – 0.167V3 5 5 (2.73)

At the node 3,

 
V V V V V3 1 3 2 3

2 6 5
0

−
+

−
+ =

or – 0.5 V1 – 0.167 V2 1 0.867 V3 5 0 (2.74)

Applying Cramer’s rule to Eqs (2.72), (2.73) and (2.74), we have

V2
2=

∆

∆

where ∆=

− −

− − −

− −


















=−

1 83 1 0 5

1 1 167 0 167

0 5 0 167 0 867

2 6

. .

. .

. . .

. 44

  ∴ 

∆ =

−

− −

−


















=

=

2

2

1 83 6 67 0 5

1 5 0 167

0 5 0 0 867

13 02

13

. . .

.

. .

.

.
V

002

2 64
4 93

−
=−

.
. V

 V2 5 – 4.93 V

Similarly,

V3
3

3

1 83 1 6 67

1 1 167 5

0 5 0 167 0

1 25

=
∆

∆

∆ =

−

− −

− −


















=

. .

.

. .

.

∴ V3

1 25

2 64
0 47=

−
=−

.

.
. V
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The current in the 6 V resistor is

I
V V

6
2 3

6

4 93 0 47

6
0 74

=
−

=
− +

=−
. .

. A

The power absorbed or dissipated 5 I R6
2

6

5 (0.74)2 3 6

5 3.29 W

PROBLEM 2.9

Determine the power dissipated by 5 V resistor in the circuit shown in Fig. 2.65.

Fig. 2.65

Solution� In Fig. 2.65, assume voltages V1, V2, and V3 at nodes 1, 2, and 3. At the node 1, the current law gives

 
V V V V1 3 1 240

4 6
3 5 0

− −
+

−
− − =

or 0.42 V1 – 0.167 V2 – 0.25 V3 5 18

Applying the supernode technique between nodes 2 and 3, the combined equation at node 2 and 3 is

 
V V V V V V2 1 2 3 3 1

6
5

3 5

40

4
0

−
+ + + +

+ −
=

or – 0.42 V1 1 0.5 V2 1 0.45 V3 5 –15

Also, V3 – V2 5 20 V

Solving the above three equations, we get

V1 5 52.89 V, V2 5 – 1.89 V and

V3 5 18.11 V

∴ the current in the 5V resistor I
V

5
3

5
=
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=
18 11

5
3 62

.
. A

The power absorbed by the 5 V resistor P5 5 I R5
2

5

5 (3.62)2 3 5

5 65.52 W

PROBLEM 2.10

Find the power delivered by the 5 A current source in the circuit shown in Fig. 2.66 by using the nodal method.

Fig. 2.66

Solution� Assume the voltages V1, V2, and V3 at nodes 1, 2, and 3, respectively. Here, the 10 V source is 

common between nodes 1 and 2. So applying the supernode technique, the combined equation at nodes 1 

and 2 is

V V V V V1 3 2 3 2

3
2

1
5

5
0

−
+ +

−
− + =

 or 0.34 V1 1 1.2 V2 – 1.34 V3 5 3

At the node 3
3 1 2

03 1 3 2 3,
V V V V V−

+
−

+ =

 or – 0.34 V1 – V2 1 1.83 V3 5 0

Also, V1 – V2 5 10

Solving the above equations, we get

V1 5 13.72 V; V2 5 3.72 V

V3 5 4.567 V

Hence, the power delivered by the source (5 A) 5 V2 3 5

5 3.72 3 5 5 18.6 W

PROBLEM 2.11

Using source transformation, find the power delivered by the 50 V voltage source in the circuit shown in Fig. 

2.67.
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Fig. 2.67

Solution� The current source in the circuit in Fig. 2.67 can be replaced by a voltage source as shown in Fig. 

2.68.

V V V−
+

−
+

−
=

50

5

20

2

10

3
0

 V [0.2 1 0.5 1 0.33] 5 23.33

or V = =
23 33

1 03
22 65

.

.
. V

∴ the current delivered by the 50 V voltage source 

is (50 – V )/5

 
−

=
50 22 65

5
5 47

.
. A

Hence, the power delivered by the 50 V voltage source 5 50 3 5.47 5 273.5 W

PROBLEM 2.12

By using source transformation, source combination and resistance combination convert the circuit shown in 

Fig. 2.69 into a single voltage source and single resistance.

Fig. 2.69

Solution� The voltage source in the circuit of Fig. 2.69 can be replaced by a current source as shown in Fig. 

2.70 (a).

Fig. 2.68
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Fig. 2.70 (a)

Here, the current sources can be combined into a single source. Similarly, all the resistances can be 

combined into a single resistance, as shown in Fig. 2.70 (b).

Figure 2.70 (b) can be replaced by single voltage source and a series resistance as shown in Fig. 2.70 (c).

Fig. 2.70 (b) Fig. 2.70 (c)

PROBLEM 2.13

For the circuit shown in Fig. 2.71 find the voltage across the 4 V resistor by using nodal analysis.

Fig. 2.71

Solution� In the circuit shown, assume voltages V1 and V2 at nodes 1 and 2. At the node 1, the current equation is

5
3

5

4 2
01 1 2 1 2+ +

+ −
+

−
=

V V V V V

 or 1.08 V1 – 0.75 V2 5 – 6.25 (2.75)

At the node 2, the current equation is

V V V V
V

V
x

2 1 2 1 25

4 2
4

1
0

− −
+

−
− + =

Vx 5 V1 1 5 – V2
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 or – 4.75 V1 1 5.75 V2 5 21.25 (2.76)

Applying Cramer’s rule to Eqs (2.75) and (2.76), we have

where 

V2
2

2

1 08 0 75

4 75 5 75
2 65

1 08 6 25

4 75 21 25
6 7

=
∆

∆

∆=
−

−
=

∆ =
−

−
=−

. .

. .
.

. .

. .
. 44

6 74

2 65
2 542

2∴ =
∆

∆
=

−
=−V

.

.
. V

Similarly, V

V

1
1

1

1
1

6 25 0 75

21 25 5 75
20

20

2 65
7 55

=
∆

∆

∆ =
− −

=−

=
∆

∆
=

−
=−

. .

. .

.
. V

The voltage across the 4 V resistor is

Vx 5 V1 1 5 – V2

 5 – 7.55 1 5 – (– 2.54)

Vx 5 – 0.01 volts

PROBLEM 2.14

For the circuit shown in Fig. 2.72, find the current passing through the 5 V resistor by using the nodal method.

Fig. 2.72

Solution� In the circuit shown, assume the voltage V at the node 1.

At the node 1, the current equation is

V V I−
− +

− −
=

30

5
2

36 6

6
01

where I
V

1

30

5
=

−
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From the above equation

V 5 48 V

The current in the 5 V resistor is

I
V

1

30

5
3 6=

−
= . A

PROBLEM 2.15

In the circuit shown in Fig. 2.73, find the power 

delivered by the 4 V source using mesh analysis and 

voltage across the 2 V resistor.

Solution� Since branches BC and DE consist of 

current sources, we use the supermesh technique.

The combined supermesh equation is

2I1 1 6I1 1 4(I1 – I3) 1 (I2 – I3) – 4 1 5I2 5 0

or

12I1 1 6I2– 5I3 5 4

In the branch BC, I2 – I1 5 5

In the branch DE, I
V

3
2

2
=

Solving the above equations,

I1 5 – 2 A; I2 5 3 A

The voltage across the 2 V resistor V2 5 2I1 5 2 3 (–2) 5 – 4 V

Power delivered by the 4 V source P4 5 4I2 5 4(3) 5 12 W

PROBLEM 2.16

For the circuit shown in Fig. 2.74, find the current through the 10 V resistor by using mesh analysis.

Fig. 2.74

Solution� The parallel branches consist of current sources. Here, we use supermesh analysis. The combined 

supermesh equation is.

or – 15 1 10I1 1 20 1 5I2 1 4I3 – 40 5 0

and 10I1 1 5I2 1 4I3 5 35

I1 – I2 5 2

Fig. 2.73



Circuits and Networks106 

I3 – I2 5 2I1

Solving the above equations, we get

I1 5 1.96 A

The current in the 10 V resistor is I1 5 1.96 A

PSpice Problems

PROBLEM 2.1

Determine the currents for the circuit shown in Fig. 2.75.

* CURRENTS WITH DC ANALYSIS
V1 2 1 DC 10 V
V2 5 4 DC 20 V
V3 7 6 DC 30 V
I1 0 3 5 A
I2 5 0 10 A
I3 7 8 15 A
R1 2 3  1
R2 3 4 4
R3 5 6 8
R4 7 0 20
R5 8 1 16
R6 1 0 10
.DC LIN V1 10 10 1
.PRINT DC I(R1) I(R2) I(R3) I(R5)
.END

**** DC TRANSFER CURVES TEMPERATURE 5 27.000 DEG C
****************************************************************

 V1 I(R1) I(R2) I(R3) I(R5) 

 1.000 E 1 01 1.465 E 1 01 1.965 E 1 01 9.651 E 1 00 1.500 E 1 01

Result

I1 5 I(R1) 5 14.65 A

I2 5 I(R2) 5 19.65 A

I3 5 I(R5) 5 15 A

I4 5 I(R3) 5 9.65 A

Fig. 2.75
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PROBLEM 2.2

Determine the power delivered by the 5 A current source in 

the circuit shown in Fig. 2.76.

* POWER DELIVERED BY DC SOURCE

I1 1 0 2 A

V1 1 2 10 V

I2 0 2 5 A

R1 2 3 1

R2 1 3 3

R3 3 0 2

R4 2 0 5

.DC LIN V1 10 10 1

.PRINT DC V(1) V(2) V(3)

.END

**** DC TRANSFER CURVES TEMPERATURE 5 27.000 DEG C

****************************************************************

 V1 V(1) V(2) V(3)

 1.000 E 1 01 1.371 E 1 01 3.710 E 1 00 4.516 E 1 00
Result

Power delivered by the 5 A source = V2 X 5 5 3.71 X 5 5 18.55 W 

PROBLEM 2.3

Determine I in the Fig. 2.77 using PSpice, with I1 varying for 5 A, 10 A and 20 A.

Fig. 2.77

* TO DETERMINE CURRENT IN AN ELEMENT USING DC SWEEP

I1 0 1 20 A

I2 2 3 30

R1 1 2 2

R2 1 3 2

R3 1 4 6

R4 2 0 10

R5 3 0 1.5

R6 4 0 8

R7 3 4 1

Fig. 2.76
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.DC LIN I1 LIST 5 10 20

.PRINT DC I(R5)

.END

OUTPUT

**** DC TRANSFER CURVES TEMPERATURE 5 27.000 DEG C

****************************************************************

 I1 I(R5) 

 5.000 E 1 00 9.993 E 1 00

 1.000 E 1 01 1.338 E 1 01

 2.000 E 1 01 2.016 E 1 01

Result

I 5 I (R5) 5 20.16 A

Answers to Practice Problems

2-5.1 2580 W; –32 V

2-5.3 R1 5 4.88 Ω;
 R2 5 3.82 Ω;
2-5.4 2.65 V

2-5.6 1.2 A; 4.2 A; 2 A; 3.2 A

2-5.7 I 5 11A

2-5.8 I1 5 5 A; I2 5  –11 A

2-6.1 –60.9 V; 195.7 W

2-6.5 I1 5 – 0.92A, I2 5 0.615 A

 I3 5 1.075A, I4 5 1.69 A

2-6.6 V1 5 148.1 volts

Objective-Type Questions

rrr2.1 A tree has

 (a) a closed path (b) no closed paths (c) none

rrr2.2 The number of branches in a tree is _____ the number of branches in a graph.

 (a) less than (b) more than (c) equal to

rrr2.3 The tie-set schedule gives the relation between

 (a) branch currents and link currents (b) branch voltages and link currents

 (c) branch currents and link voltages (d) none of the above

rrr2.4 The cut-set schedule gives the relation between

 (a) branch currents and link currents (b) branch voltages and tree branch voltages

 (c) branch voltages and link voltages (d) branch current and tree currents

rrr2.5 Mesh analysis is based on

 (a) Kirchhoff’s current law   (b) Kirchhoff’s voltage law

 (c) both   (d) none

rrr2.6 If a network contains B branches, and N nodes, then the number of mesh current equations would be

 (a) B – (N – 1) (b) N – (B – 1) (c) B – N – 1 (d) (B 1 N ) – 1

rrr2.7 A network has 10 nodes and 17 branches. The number of different node pair voltages would be

 (a) 7 (b) 9 (c) 45 (d) 10

rrr2.8 A practical voltage source consists of
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 (a) an ideal voltage source in series with an internal resistance

 (b) an ideal voltage source in parallel with an internal resistance

 (c) both (a) and (b) are correct

 (d) none of the above

rrr2.9 A practical current source consists of

 (a) an ideal current source in series with a resistance

 (b) an ideal current source in parallel with a resistance

 (c) both are correct

 (d) none of the above

rrr2.10 A circuit consists of two resistances, R1 and R2, in parallel. The total current passing through the circuit is IT. 

The current passing through R1 is

 (a) 
I R

R R

T 1

1 2+
 (b) 

I R R

R

T 1 2

1

+( )
 (c) 

I R

R R

T 2

1 2+
 (d) 

I R R

R

T 1 2

2

+

rrr2.11 A network has seven nodes and five independent loops. The number of branches in the network is

 (a) 13 (b) 12 (c) 11 (d) 10

rrr2.12 The nodal method of circuit analysis is based on

 (a) KVL and Ohm’s law   (b) KCL and Ohm’s law

 (c) KCL and KVL   (d)  KCL, KVL, and Ohm’s law

rrr2.13 The number of independent loops for a network with n nodes and b branches is

 (a) n – 1   (b) b – n

 (c) b – n 1 1   (d)  independent of the number of nodes

rrr2.14 The two electrical subnetworks N1 and N2 are connected through three resistors as shown in Fig. 2.78. The 

voltage across the 5 V resistor and the 1 V resistor are given to be 10 V and 5 V respectively. The voltage 

across the 15 V resistor is

 (a) – 105 V (b) 1 105 V (c) – 15 V (d) 1 15 V

Fig. 2.78

rrr2.15 Relative to a given fixed tree of a network

 (a) link currents form an independent set (b) branch currents form an independent set

 (c) link voltages form an independent set (d) branch voltages form an independent set

For interactive quiz with answers,
scan the QR code given here
OR
visit
http://qrcode.flipick.com/index.php/260



3.1 STAR-DELTA TRANSFORMATION

In the preceding chapter, a simple technique called the source transformation 

technique was discussed. The star-delta transformation is another technique useful 

in solving complex networks. Basically, any three circuit elements, i.e. resistive, 

inductive or capacitive, may be 

connected in two different ways. One 

way of connecting these elements 

is called the star connection, or the 

Y-connection. The other way of 

connecting these elements is called 

the delta (D) connection. The circuit is 

said to be in star connection, if three 

elements are connected as shown in 

Fig. 3.1 (a), when it appears like a star 

(Y ). Similarly, the circuit is said to be 

in delta connection, if three elements 

are connected as shown in Fig. 3.1 

(b), when it appears like a delta (D).
Fig. 3.1

LEARNING OBJECTIVES

LO   1 

3
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The above two circuits are equal if their respective resistances from the terminals AB, BC, and CA are 

equal. Consider the star-connected circuit in Fig. 3.1 (a); the resistance from the terminals AB, BC, and CA 

respectively are

RAB (Y ) 5 RA  1 RB

RBC (Y ) 5 RB  1 RC

RCA (Y ) 5 RC1 RA

Similarly, in the delta-connected network in Fig. 3.1 (b), the resistances seen from the terminals AB, BC, 

and CA respectively are

R R R R
R R R

R R R

R R R R
R R R

AB

BC

( ) ( )
( )

( ) ( )
(

∆ = + =
+

+ +

∆ = + =
+

1 2 3
1 2 3

1 2 3

3 1 2
3 1 22

1 2 3

2 1 3
2 1 3

1 2 3

)

( ) ( )
( )

R R R

R R R R
R R R

R R R
CA

+ +

∆ = + =
+

+ +

Now, if we equate the resistances of star and delta circuits, we get

R R
R R R

R R R

R R
R R R

R R R

R R
R R

A B

B C

C A

+ =
+

+ +

+ =
+

+ +

+ =
+

1 2 3

1 2 3

3 1 2

1 2 3

2 1

( )

( )

( RR

R R R

3

1 2 3

)

+ +

 (3.1)

 (3.2)

 (3.3)

Subtracting Eq. (3.2) from Eq. (3.1), and adding Eq. (3.3) to the resultant, we have

R
R R

R R R

R
R R

R R R

R
R R

R R R

A

B

C

=
+ +

=
+ +

=
+ +

1 2

1 2 3

1 3

1 2 3

2 3

1 2 3

Similarly,

and

 (3.4)

 (3.5)

 (3.6)

Thus, a delta connection of R1, R2, and R3 may be replaced by a star connection of RA, RB, and RC as 

determined from Eqs (3.4), (3.5) and (3.6). Now if we multiply the Eqs (3.4) and (3.5), (3.5) and (3.6), (3.6) 

and (3.4), and add the three, we get the final equation as under:

R R R R R R
R R R R R R R R R

R R R
A B B C C A+ + =

+ +

+ +
1
2

2 3 3
2

1 2 2
2

1 3

1 2 3
2( )

 (3.7)

In Eq. (3.7) dividing the LHS by RA, gives R3; dividing it by RB gives R2, and doing the same with RC ,  

gives R1.
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Thus

and

R
R R R R R R

R

R
R R R R R R

R

R
R R R R

A B B C C A

C

A B B C C A

B

A B B C

1

2

3

=
+ +

=
+ +

=
+ + RR R

R

C A

A

From the above results, we can say that a star-connected 

circuit can be transformed into a delta-connected circuit and 

vice-versa.

From Fig. 3.2 and the above results, we can conclude that any 

resistance of the delta circuit is equal to the sum of the products 

of all possible pairs of star resistances divided by the opposite 

resistance of the star circuit. Similarly, any resistance of the star 

circuit is equal to the product of two adjacent resistances in the 

delta-connected circuit divided by the sum of all resistances in 

delta-connected circuit.

EXAMPLE 3.1

Obtain the star-connected equivalent for the delta-

connected circuit shown in Fig. 3.3.

Solution  The above circuit can be replaced by a star-

connected circuit as shown in Fig. 3.4 (a).

Performing the D to Y transformation, we obtain

R R

R

1 2

3

13 12

14 13 12

13 14

14 13 12

14 12

14 13 12

=
×

+ +
=

×
+ +

=
×

+ +

,

and

Fig. 3.2

Fig. 3.4

Fig. 3.3



Useful Theorems in  Circuit Analysis 113 

∴ R1 5 4 V, R2 5 4.66 V, R3 5 4.31 V

The star-connected equivalent is shown in Fig. 3.4 (b).

EXAMPLE 3.2

Obtain the delta-connected equivalent for the star-connected circuit shown in Fig. 3.5.

Fig. 3.5

Solution  The above circuit can be replaced by a delta-connected circuit as shown in Fig. 3.6 (a).

Performing the Y to D transformation, we get from Fig. 3.6 (a),

R

R

1

2

20 10 20 5 10 5

20
17 5

20 10 20 5 10 5

10
35

=
× + × + ×

=

=
× + × + ×

=

. V

V

and R3

20 10 20 5 10 5

5
70=

× + × + ×
= V

Fig. 3.6

The equivalent delta circuit is shown in Fig. 3.6 (b).
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NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 1*
rrr3-1.1 For the bridge network shown in Fig. Q.2 (a), determine the total resistance seen from terminals 

AB by using star-delta transformation.

rrr3-1.2 Find the equivalent resistance across the terminals A and B of the network shown in Fig. Q.2 (b) 

using star-delta transformation.

Fig. Q.2

20 V

rrr3-1.3 Determine the voltages and currents 

of the resistances in the circuit 

shown in Fig. Q.3 using source 

transformation technique.

Frequently Asked Questions linked to LO 1*
rrr3-1.1 Derive the expression for star-connected resistances in terms of delta-connected resistances.

   [AU May/June 2013] 
rrr3-1.2 Give a delta circuit it having resistors, write the required expressions to transform the circuit to a 

star circuit.  [AU Nov./Dec. 2012]

rrr3-1.3 Calculate the equivalent resistance Rab when all the resistance values are equal to 1 W for the circuit 

shown below. (Fig. Q.3) [AU Nov./Dec. 2012] 
rrr3-1.4 Transform the circuit shown below, from D to Y. (Fig. Q. 4) [AU April/May 2011]

2.2 k

6.8 k

Fig. Q.3

Fig. Q.3

a c

b d

Reg e
30 W

A

30 W

30 W

B C

Fig. Q.4

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600

Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category
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rrr3-1.5 Use the technique of D-Y conversion to find the equivalent resistance between terminals A-B of the 

circuit shown below. [AU April/May 2011]
A

B

1 W 4 W

5 W2 W

3 W

Fig. Q.5

rrr3-1.6 State and explain star-delta conversion in ac systems. [JNTU Nov. 2012]
rrr3-1.7 Obtain the expressions for star-delta equivalence of an impedance network. [JNTU Nov. 2012]

3.2 SUPERPOSITION THEOREM

The superposition theorem states that in any linear network containing 

two or more sources, the response in any element is equal to the algebraic 

sum of the responses caused by individual sources acting alone, while the 

other sources are non-operative; that is, while considering the effect of 

individual sources, other ideal voltage sources and ideal current sources in 

the network are replaced by short circuit and open circuit across their terminals. This theorem is valid 

only for linear systems. This theorem can be better understood with a numerical example.

Consider the circuit which contains two sources as shown in Fig. 3.7.

Now let us find the current passing through the 3 V resistor in the circuit. According to the superposition 

theorem, the current I2 due to the 20 V voltage source with 5 A source open circuited 5 20/(5 1 3) 5 2.5 A 

(see Fig. 3.8)

Fig. 3.8Fig. 3.7

The current I5 due to the 5 A source with the 20 V source short circuited is

I5 5
5

3 5
3 125= ×

+
=

( )
. A

The total current passing through the 3 V resistor is

(2.5 1 3.125) 5 5.625 A

Let us verify the above result by applying nodal analysis.

LO   2 
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Fig. 3.9 Fig. 3.10

The current passing in the 3 V resistor due to both sources should be 5.625 A.

Applying nodal analysis to Fig. 3.10, we have

V V

V

V

−
+ =

+











= +

= × =

20

5 3
5

1

5

1

3
5 4

9
15

8
16 875. V

The current passing through the 3 V resistor is equal to V/3,

i.e. AI = =
16 875

3
5 625

.
.

So the superposition theorem is verified.

Let us now examine the power responses.

Power dissipated in the 3 V resistor due to the voltage source acting alone

P20 5 (I2)
2R 5 (2.5)2 3 5 18.75 W

Power dissipated in the 3 V resistor due to the current source acting alone

P5 5 (I5)
2R 5 (3.125)2 3 5 29.29 W

Power dissipated in the 3 V resistor when both the sources are acting simultaneously is given by

P 5 (5.625)2 3 3 5 94.92 W

From the above results, the superposition of P20 and P5 gives

P20 1 P5 5 48.04 W

which is not equal to P 5 94.92 W

We can, therefore, state that the superposition theorem is not valid for power responses. It is applicable 

only for computing voltage and current responses.

EXAMPLE 3.3

Find the voltage across the 2 V resistor in Fig. 3.11 by 

using the superposition theorem.

Fig. 3.11
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Solution  Let us find the voltage across the 2 V resistor due to individual sources. The algebraic sum of these voltages 

gives the total voltage across the 2 V resistor.

Our first step is to find the voltage across the 2 V resistor due to the 10 V source, while other sources are 

set equal to zero.

The circuit is redrawn as shown in Fig. 3.12 (a).

Fig. 3.12

Assuming a voltage V at the node ‘A’ as shown in Fig. 3.12 (a), the current equation is

 

V V V−
+ + =

10

10 20 7
0

V [0.1 1 0.05 1 0.143] 5 1

 or V 5 3.41 V

The voltage across the 2 V resistor due to the 10 V source is

V
V

2
7

2 0 97= × = . V

Our second step is to find out the voltage across the 2 V resistor due to the 20 V source, while the other 

sources are set equal to zero. The circuit is redrawn as shown in Fig. 3.12 (b).

Assuming voltage V at the node A as shown in Fig. 3.12 (b), the current equation is

 

V V V−
+ + =

20

7 20 10
0

V [0.143 1 0.05 1 0.1] 5 2.86

or VV = =
2 86

0 293
9 76

.

.
.

The voltage across the 2 V resistor due to the 20 V source is 

V
V

2

20

7
2 2 92=

−





× = − . V

The last step is to find the voltage across the 2 V resistor 

due to the 2 A current source, while the other sources 

are set equal to zero. The circuit is redrawn as shown in 

Fig. 3.12 (c).

Fig. 3.12 (c)
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The current in the 2  resistor

A

V = ×
+

= =

2
5

5 8 67

10

13 67
0 73

.

.
.

The voltage across the 2 V resistor 5 0.73 3 2 5 1.46 V

The algebraic sum of these voltages gives the total voltage across the 2 V resistor in the network

V 5 0.97 – 2.92 – 1.46 5 – 3.41 V

The negative sign of the voltage indicates that the voltage at ‘A’ is negative.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 2
rrr3-2.1 Find the current I in the circuit shown in Fig. Q.1 by 

using the superposition theorem.

rrr3-2.2 Find the current in the 4 V resistor of the circuit 

shown in Fig. Q.2 by using the superposition 

theorem.

Fig. Q.2
rrr3-2.3 Calculate the new current in the circuit shown in 

Fig. Q.3 when the resistor R3 is increased by 30%.

rrr3-2.4 The circuit shown in Fig. Q.4 consists of 

dependent source. Use the superposition 

theorem to find the current I in the 3 V resistor.

rrr3-2.5 Obtain the current passing through the 2 V 

resistor in the circuit shown in Fig. Q.5 by 

using the superposition theorem.

Fig. Q.1

Fig. Q.3

Fig. Q.4 Fig. Q.5
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rrr3-2.6 Using PSPICE, determine V0 in the 

following circuit, shown in Fig. Q.6, using 

the superposition principle. Calculate the 

power delivered to the 3 V resistor.

Frequently Asked Questions linked to LO 2
rrr3-2.1 Calculate the current in the 4  resistor of Fig. Q.1 using the superposition theorem.

  [AU May/June 2014]
2 W3 W

4 W 2 W10 V 1 A

Fig. Q.1

rrr3-2.2 Find the current through various branches of the circuit shown in Fig. Q.2, by employing the 

superposition theorem. [AU Nov./Dec. 2012]
5 W10 W

50 V
5 A10 W

Fig. Q.2

rrr3-2.3 Determine the voltage across the 20  resistance in the circuit shown in Fig. Q.3, using the 

superposition theorem.  [AU April/May 2011]

Fig. Q.3

rrr3-2.4 Find the voltage across the 1 k  resistor in the circuit shown in Fig. Q.4 using the superposition 

theorem.  [GTU Dec. 2010]

15 V10 mA 3 kW

1 kW

4 W

Fig. Q.4

Fig. Q.6
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rrr3-2.5 Determine the node voltage V1 and V2 in the network shown in Fig. Q.5 by applying the superposition 

theorem.  [GTU Dec. 2010]

2 2

2

V
1 V

2

2 V dc 1 A dc

4 V dc

1

GND

Fig. Q.5

rrr3-2.6 State and explain the superposition theorem. Hence, using this, find Vab in Fig. Q.6. 

 [GTU Dec. 2012]

3 A

6 W

8 A 2 W

A

B

30V

4 W

Fig. Q.6

rrr3-2.7 State the superposition theorem. Explain an example.  [PTU 2011-2012]

rrr3-2.8 Find the current through RL = 7.5  using superposition theorem in the network shown in Fig. 

Q.8. [PU 2010]

2 W

4 W

10 A

2 W5 W

20 V

R
L

Fig. Q.8

3.3 THEVENIN’S THEOREM

In many practical applications, it is always not necessary to analyse the complete 

circuit; it requires that the voltage, current, or power in only one resistance of a 

circuit be found. The use of this theorem provides a simple, equivalent circuit 

which can be substituted for the original network. Thevenin’s theorem states  

that any two terminal linear network having a number of voltage current sources 

and resistances can be replaced by a simple equivalent circuit consisting of a single voltage source in series with 

a resistance, where the value of the voltage source is equal to the open-circuit voltage across the two terminals 

of the network, and resistance is equal to the equivalent resistance measured between the terminals with all the 

energy sources are replaced by their internal resistances. According to Thevenin’s theorem, an equivalent circuit 

can be found to replace the circuit in Fig. 3.13.

LO   3 
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In the circuit, if the 24 V load resistance is connected to 

Thevenin’s equivalent circuit, it will have the same current through 

it and the same voltage across its terminals as it experienced in 

the original circuit. To verify this, let us find the current passing 

through the 24 V resistance due to the original circuit.

I I

I

I

T

T

24

24

12

12 24
10

2 12 24

10

10
1

1
12

12 24
0 3

= ×
+

=
+

= =

∴ = ×
+

=

where A
( )

. 33 A

The voltage across the 24 V resistor 5 0.33 3 24 5 7.92 V. 

Now let us find Thevenin’s equivalent circuit.

The Thevenin voltage is equal to the open-circuit voltage across the terminals ‘AB’, i.e. the voltage across 

the 12 V resistor. When the load resistance is disconnected from the circuit, the Thevenin voltage

VTh = × =10
12

14
8 57. V

The resistance into the open-circuit terminals is equal to the 

Thevenin resistance

RTh =
×

=
12 2

14
1 71. V

Thevenin’s equivalent circuit is shown in Fig. 3.14.

Now let us find the current passing through the 24 V resistance 

and voltage across it due to Thevenin’s equivalent circuit.

I24

8 57

24 1 71
0 33=

+
=

.

.
. A

The voltage across the 24 V resistance is equal to 7.92 V. Thus, it is proved that RL (5 24 V) has the same 

values of current and voltage in both the original circuit and Thevenin’s equivalent circuit.

EXAMPLE 3.4

Determine the Thevenin’s equivalent circuit across ‘AB’ for 

the given circuit shown in Fig. 3.15.

Solution  The complete circuit can be replaced by a voltage source in series with a resistance as shown in 

Fig. 3.16 (a)

where VTh is the voltage across terminals AB, and

 RTh is the resistance seen into the terminals AB.

Fig. 3.14

Fig. 3.13

Fig. 3.15
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To solve for VTh, we have to find the voltage drops around the closed path as shown in Fig. 3.16 (b).

Fig. 3.16
We have 50 – 25 5 10I 1 5I

 or 15I 5 25

 
∴ = =I

25

15
1 67. A

Voltage across 10 V 5 16.7 V

Voltage drop across 5 V 5 8.35 V

 or VTh 5 VAB 5 50 – V10

5 50 – 16.7 5 33.3 V

To find RTh, the two voltage sources are removed and replaced 

with short circuit. The resistance at terminals AB then is the parallel 

combination of the 10 V resistor and 5 V resistor; or

RTh =
×

=
10 5

15
3 33. V

Thevenin’s equivalent circuit is shown in Fig. 3.16 (c).

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 3
rrr3-3.1 Determine the current passing through the 2 V resistor 

by using Thevenin’s theorem in the circuit shown in 

Fig. Q.1.

rrr3-3.2 Find Thevenin’s equivalent circuit for the network 

shown in Fig. Q.2 and hence, find the current passing 

through the 10 V resistor.

rrr3-3.3 Find the Thevenin equivalent circuit of the circuit 

seen from AB using PSPICE (Fig. Q.3).

Fig. 3.16 (c)

Fig. Q.1

Fig. Q.2 Fig. Q.3
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Frequently Asked Questions linked to LO 3  

rrr3-3.1 Why do you short circuit the voltage source and open the current source when you find Thevenin's 

voltage of a network? [AU May/Jnue 2014]

rrr3-3.2 For the circuit shown in Fig. Q.2 using Thevenin's theorem, the current in the 10-ohm resistor.

   [AU May/Jnue 2014]

+
–

+
–

10 W

3 W
4 V3 W10 V

2 W 1 W

Fig. Q.2

rrr3-3.3 State Thevenin's theorem. [AU April/May 2011]

rrr3-3.4 State and prove Thevenin's theorem, find Rth and Vth for the network shown in Fig. Q.4.

  [GTU Dec. 2012]

Fig. Q.4

rrr3-3.5 Obtain Thevenin's equivalent circuit (Q.5). Hence, find the current flowing through the 10W load. 

  [MU 2014]

Fig. Q.5

4 W5 W

6 V

8 W 3 I
x

10 W

6 W3 W1 W

4 V

2 W V
x

S W
7 W

8 V
4V

x

I
x

+

–

rrr3-3.6 Obtain the Thevenin's equivalent circuit for the network shown in Fig. Q.6. [PTU 2009-10]

4 V

2 kW

V
1

V
x

3 kW

4000

Fig. Q.6

rrr3-3.7 State Thevenin's theorem and find the current through the 4 W resistor using Thevenin's theorem for 

the circuit shown in Fig. Q.7. [PU 2010]
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15V

5 W

15 W 30 W

60 W
4 W

Fig. Q.7

rrr3-3.8 State and prove Thevenin's theorem. Show with an example how theorem can be usefully employed 

in circuit analysis. 

rrr3-3.9 Draw the Thevenin's equivalent of the circuit shown in Fig. Q.9. [RGTU June 2014]

1 W

1 W

1 W

1 W

10 V
5 V

2 W

2 W

Fig. Q.9

3.4 NORTON’S THEOREM

Another method of analysing the circuit is given by Norton’s theorem, which 

states that any two terminal linear network with current sources, voltage 

sources and resistances can 

be replaced by an equivalent 

circuit consisting of a current 

source in parallel with a resistance. The value of the current 

source is the short-circuit current between the two terminals 

of the network and the resistance is the equivalent resistance 

measured between the terminals of the network with all the 

energy sources are replaced by their internal resistance.

According to Norton’s theorem, an equivalent circuit can 

be found to replace the circuit in Fig. 3.17.

In the circuit, if the load resistance of 6 V is connected to Norton’s equivalent circuit, it will have the same 

current through it and the same voltage across its terminals as it experiences in the original circuit. To verify 

this, let us find the current passing through the 6 V resistor due to the original circuit.

I I

I

I

T

T

6

6

10

10 6

20

5 10 6
2 285

2 285
10

16
1 43

= ×
+

=
+

=

∴ = × =

where A

A

( )
.

. .

i.e. the voltage across the 6 V resistor is 8.58 V. Now let us find Norton’s equivalent circuit. The magnitude 

of the current in the Norton’s equivalent circuit is equal to the current passing through short-circuited terminals 

as shown in Fig. 3.18.

Here, AIN = =
20

5
4

Norton’s resistance is equal to the parallel combination of both the 5 V and 10 V resistors.

Fig. 3.17

LO   4 
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RN =
×

=
5 10

15
3 33. V

Fig. 3.18 Fig. 3.19

The Norton’s equivalent source is shown in Fig. 3.19.

Now let us find the current passing through the 6 V resistor and the voltage across it due to Norton’s 

equivalent circuit.

I6 4
3 33

6 3 33
1 43= ×

+
=

.

.
. A

The voltage across the 6 V resistor 5 1.43 3 6 5 8.58  V

Thus, it is proved that RL (5 6 V) has the same values of current and voltage in both the original circuit 

and Norton’s equivalent circuit.

EXAMPLE 3.5

Determine Norton’s equivalent circuit at terminals AB for the 

circuit shown in Fig. 3.20.

Solution  The complete circuit can be replaced by a current 

source in parallel with a single resistor as shown in Fig. 3.21 

(a), where IN is the current passing through the short circuited 

output terminals AB and RN is the resistance as seen into the output terminals.

To solve for IN , we have to find the current passing through the terminals AB as shown in Fig. 3.21 (b).

From Fig. 3.21 (b), the current passing through the terminals AB is 4 A. The resistance at terminals AB is 

the parallel combination of the 10 V resistor and the 5 V resistor,

or RN =
×
+

=
10 5

10 5
3 33. V

Norton’s equivalent circuit is shown in Fig. 3.21 (c).

Fig. 3.20

Fig. 3.21
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NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 4
rrr3-4.1 Find the Thevenin’s  and Norton’s equivalent circuits across terminals ab for the given circuit 

shown in Fig.  Q.1.

a

b

2 kW 3 kW

Fig. Q.1

rrr3-4.2 Obtain Norton’s equivalent circuit of the network shown in 

Fig. Q.2.

rrr3-4.3 Using PSPICE, for the circuit shown in Fig. Q.3 obtain 

Norton’s equivalent or viewed from terminals
  (a) a – b (b) c – d

Fig. Q.3

Frequently Asked Questions linked to LO 4

rrr3-4.1 Find the voltage drop across the 12 W resistance using Norton's for the circuit shown in Q 1. 

 [AU April/May 2011]
rrr3-4.2 Explain in brief about source transform and Find Norton's equivalent circuit for the network shown 

in Fig. Q.2 and obtain current in the 10 W resistor. [GTU Dec. 2010]

4 V

2 W 12 W
4 W

4 W

14 V

Fig. Q.1 Fig. Q.2

5W

1A

3W

6W
10V 10W

a

b

rrr3-4.3 In Fig. Q.3 if the 2 V source is replaced by an open circuit then find Thevenin's and Norton's 

equivalent circuit across V2 and V3. Resistance values are in ohms. [GTU May 2011]

Fig. Q.2
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rrr3-4.4 In the circuit shown in Fig. Q.4, find the current through RL connected across A-B terminals by 

utilising Thevenin's theorem. Verify the results by Norton's theorem. [JNTU Nov. 2012]

5 W

25 V

A

4 W

2 W

j 5 W

5 A

B

S

Fig. Q.3 Fig. Q.4

rrr3-4.5 Determine the current through the 1 W resistor if connected across AB in the network shown in Fig. 

Q.5 using Norton's theorem. [PU 2010]

Fig. Q.5

rrr3-4.6 Obtain the Thevenin's and Norton's at the  terminals A-B for the circuit shown in Fig. Q.6. [PU 2012]

2 W

4 W
10 V

5 I

A

B

I

Fig. Q.6

3.5 RECIPROCITY THEOREM

In any linear bilateral network, if a single voltage source Va in branch ‘a’ 

produces a current Ib in branch ‘b’, then if the voltage source Va is removed 

and inserted in branch ‘b’ will produce a current Ib in branch ‘a’. The ratio of 

response to excitation is same for the two conditions mentioned above. This is 

called the reciprocity theorem.

Consider the network shown in Fig. 3.22. AA9 denotes input terminals and BB9 denotes output terminals.

Fig. 3.22

LO   5 
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The application of voltage V across AA9 produces current I at BB9. Now if the positions of the source and 

responses are interchanged, by connecting the voltage source across BB9, the resultant current I will be at 

terminals AA9. According to the reciprocity theorem, the ratio of response to excitation is the same in both 

cases.

EXAMPLE 3.6

Verify the reciprocity theorem for the network shown in Fig. 3.23.

Fig. 3.23

Solution  Total resistance in the circuit 5 2 1 [3 || (2 1 2 || 2)] 5 3.5 V

The current drawn by the circuit (See Fig. 3.24 (a)).

IT = =
20

3 5
5 71

.
. V

The current in the 2 V branch cd is I 5 1.43 A.

Fig. 3.24

Applying the reciprocity theorem, by interchanging the source and response, we get Fig. 3.24 (b).

                   Fig. 3.24

Total resistance in the circuit 5 3.23 V.

Total current drawn by the circuit = =
20

3 23
6 19

.
. A

The current in the branch ab is I 5 1.43 A

If we compare the results in both cases, the ratio of input to response is the same, i.e. (20/1.43) 5 13.99
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Frequently Asked Questions linked to LO 5
rrr3-5.1 What is the reciprocity theorem? [AU May/June 2014]

rrr3-5.2 Verify the reciprocity theorem for the circuit shown below. [AU Nov./Dec. 2012]

12 W

14 W100 V 4 W
4 W

3 W

Fig. Q.2

3.6 COMPENSATION THEOREM

The compensation theorem states that any element in the linear, bilateral 

network, may be replaced by a voltage source of magnitude equal to the 

current passing through the element multiplied by the value of the element, 

provided the currents and voltages in other parts of the circuit remain 

unaltered. Consider the circuit shown in Fig. 3.25 (a). The element R can be 

replaced by voltage source V, which is equal to the current I passing through 

R multiplied by R as shown in Fig. 3.25 (b).

Fig. 3.25

This theorem is useful in finding the changes in current or voltage when the value of resistance is changed 

in the circuit. Consider the network containing a resistance  R shown in Fig. 3.26 (a). A small change in 

resistance R, that is (R 1 DR), as shown in Fig. 3.26 (b), causes a change in current in all branches. This 

current increment in other branches is equal to the current produced by the voltage source of voltage I. DR 

which is placed in series with altered resistance as shown in Fig. 3.26 (c).

Fig. 3.26

LO   6 
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EXAMPLE 3.7

Determine the current flowing in the ammeter having 1 V internal 

resistance connected in series with a 3 V resistor as shown in 

Fig. 3.27.

Solution  The current flowing through the 3 V branch is I3 5 1.11 

A. If we connect the ammeter having 1 V resistance to the 3 V 

branch, there is a change in resistance. The changes in currents 

in other branches then result as if a voltage source of voltage I3 

DR 5 1.11 3 1 5 1.11 V is inserted in the 3 V branch as shown 

in Fig. 3.28.

Current due to this 1.11 V source is calculated as follows.

Current I93 5 0.17 A

This current is opposite to the current I3 in the 3 V branch.

Hence the ammeter reading 5 (1.11 – 0.17) 5 0.94 A.

Frequently Asked Questions linked to LO 6

rr3-6.1 In Fig. Q.1, if 1 ohm resistance is changed to 1.2 ohms 

then determine the source-voltage for compensating for 

the change. [GTU May 2014]

3.7 MAXIMUM POWER TRANSFER THEOREM

Many circuits basically consist of sources, supplying voltage, current, or power 

to the load; for example, a radio speaker system, or a microphone supplying the 

input signals to voltage pre-amplifiers. Sometimes it is necessary to transfer 

maximum voltage, current or power from the source to the load. In the simple 

resistive circuit shown in Fig. 3.29, Rs is the source resistance. Our aim is to 

find the necessary conditions so that the power delivered by the source to the 

load is maximum.

It is a fact that more voltage is delivered to the load when 

the load resistance is high as compared to the resistance of the 

source. On the other hand, maximum current is transferred to the 

load when the load resistance is small compared to the source 

resistance.

For many applications, an important consideration is the 

maximum power transfer to the load; for example, maximum 

power transfer is desirable from the output amplifier to the 

Fig. 3.27

Fig. 3.28

2 2

2

V
1

V
2

2 V dc 1 A dc

4 V dc

I

GND

Fig. Q.1

LO   7 

Fig. 3.29
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speaker of an audio sound system. The maximum power transfer theorem states that maximum power is 

delivered from a source to a load when the load resistance is equal to the source resistance. In Fig. 3.29, 

assume that the load resistance is variable.

Current in the circuit is I 5 VS /(RS 1 RL)

Power delivered to the load RL is P 5 I 2RL 5 V 2
S RL/(RS 1 RL)2

To determine the value of RL for maximum power to be transferred to the load, we have to set the first 

derivative of the above equation with respect to RL, i.e. when
dP

dRL

 equals zero.

dP

dR

d

dR

V

R R
R

V R R R R R

L L

S

S L

L

S S L L S L

=
+















=
+ − +

2

2

2 2 2

( )

( ) ( ) ( ){{ }
+( )R R

S L

4

 ∴ (RS 1 RL)2 – 2RL(RS 1 RL) 5 0

R2
S 1 R2

L1 2RS RL – 2R2
L – 2RS RL 5 0

 ∴ RS 5 RL

So, maximum power will be transferred to the load when load resistance is equal to the source resistance.

EXAMPLE 3.8

In the circuit shown in Fig. 3.30, determine the value of load 

resistance when the load resistance draws maximum power. 

Also find the value of the maximum power.

Solution  In Fig. 3.30, the source delivers the maximum power 

when load resistance is equal to the source resistance.

 RL 5 25 V

The current I 5 50/(25 1 RL) 5 50/50 5 1 A

The maximum power delivered to the load P 5 I2RL

 5 1 3 25 5 25 W

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 7
rr3-7.1 For the circuit shown in Fig. Q.1, what will be 

the value of RL to get the maximum power? 

What is the maximum power delivered to the 

load? What is the maximum voltage across 

the load? What is the maximum current 

in it?

Fig. 3.30

Fig. Q.1
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rrr3-7.2 For the circuit shown in Fig. Q.2, determine the value of RL to get the maximum power. Also find the 

maximum power transferred to the  load.
rrr3-7.3 Using PSPICE, find the maximum power transferred to the resistor R in the following circuit  

(Fig. Q.3).

Fig. Q.2

10k 22k

30k40k

Fig. Q.3

Frequently Asked Questions linked to LO 7
rrr3-7.1 State the maximum power transfer theorem for ac circuits. [AU May/June 2013]
rrr3-7.2  In the circuit of Fig. Q.2, find the value if R for maximum power transfer. Also calculate the 

maximum power. [AU May/June 2014]
10 W

2 A12 V R

15 W

Fig. Q.2

rrr3-7.3  Obtain Thevenin's equivalent circuit for the network shown Fig. Q.3, find the power dissipated in  

RL = 5 W resistor. Find RL for maximum power transfer from the source and compute maximum 

power that can be transferred, i.e. Pmaxi. [GTU Dec. 2010]

10W

2A 10 V
20W 5W

a

b

Fig. Q.3

rrr3-7.4  Prove the maximum power transfer theorem for a practical voltage source (VS). What is the 

maximum power that can be delivered Vs = 20 V and Rs = 1 ohm?  [GTU May 2011]
rrr3-7.5  Obtain the equivalent circuit A-B terminals in Fig. Q.5 and find the value of ZL to have maximum 

power.  [JNTU Nov. 2012]

Fig. Q.5

2 W j3 W

j1 W

j2 W100 V j4 W

A

B

Z
L



Useful Theorems in  Circuit Analysis 133 

rrr3-7.6  For the circuit shown in Fig. Q.6, find the value of R that will receive maximum power. Determine 

this maximum power.  [PU 2012]

Fig. Q.6

7.1 W
5.2 W

100 V

10.9 W 19.6 W

R

Fig. 3.32

Fig. 3.31

3.8 DUALS AND DUALITY

In an electrical circuit itself there are pairs of terms which can be interchanged 

to get new circuits. Such pair of dual terms are given below.

 Current — Voltage

 Open — Short

 L — C

 R — G

 Series — Parallel

Voltage source — Current source

 KCL — KVL

Consider a network containing R-L-C elements connected in 

series, and excited by a voltage source as shown in Fig. 3.31.

The integrodifferential equation for the above network is

Ri L
di

dt C
idt+ + =∫

1
V

Similarly, consider a network containing R-L-C elements 

connected in parallel and driven by a current source as shown in 

Fig. 3.32.

The integrodifferential equation for the network in Fig. 3.32 

is

i Gv C
dv

dt L
vdt= + + ∫

1

If we observe both the equations, the solutions of these two equations are the same. These two networks 

are called duals.

To draw the dual of any network, the following steps are to be followed.

1. In each loop of a network place a node; and place an extra node, called the reference node, outside 

the network.

2. Draw the lines connecting adjacent nodes passing through each element, and also to the reference 

node, by placing the dual of each element in the line passing through original elements.

LO   8 
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For example, consider the network shown in Fig. 3.33.

Our first step is to place the nodes in each loop and a 

reference node outside the network.

Drawing the lines connecting the nodes passing through 

each element, and placing the dual of each element as  

shown in Fig. 3.34 (a) we get a new circuit as shown in Fig. 

3.34 (b).

EXAMPLE 3.9

Draw the dual network for the given network shown in Fig. 

3.35.

Solution  Place nodes in each loop and one reference node 

outside the circuit. Joining the nodes through each element, 

and placing the dual of each element in the line, we get the dual 

circuit as shown in Fig. 3.36 (a).

The dual circuit is redrawn as shown in Fig. 3.36 (b).

Fig. 3.33

Fig. 3.34

(a)

Fig. 3.35

(b)

Fig. 3.36
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Frequently Asked Questions linked to LO 8
rrr3-8.1 Explain dual with reference to network. [GTU Dec. 2014]
rrr3-8.2 Explain the principle of duality. Write a graphical procedure to draw a dual network?

  [JNTU Nov. 2012]
rrr3-8.3 Draw the dual of the network shown in Fig. Q.3 and explain its procedure. [JNTU Nov. 2012]

Fig. Q.3

rrr3-8.4 Explain the concept of duality. What relationship does duality have with the incidence matrix?

  [PTU 2009-10]
rrr3.8.5 Find the dual of the following network shown in Fig. Q.5. [PTU 2009-10]
rrr3.8.6 Draw the dual of the network shown in Fig. Q.6. [RGTU Dec. 2013]

Fig. Q.5 Fig. Q.6

V t( )

C

R

L

L2

L1

L3

V t( )

C2C1

L4

C3
R

3.9 TELLEGEN’S THEOREM

Tellegen’s theorem is valid for any lumped network which may be linear or 

nonlinear, passive or active, time-varying or time-invarient. This theorem states 

that in an arbitrary lumped network, the algebraic sum of the powers in all 

branches at any instant is zero. All branch currents and voltages in that network 

must satisfy Kirchhoff’s laws. Otherwise, in a given network, the algebraic sum 

of the powers delivered by all sources is equal to the algebraic sum of the powers absorbed by all elements. 

This theorem is based on Kirchhoff’s two laws, but not on the type of circuit elements.

Consider two networks N1 and N2, having the same graph with different types of elements between the 

corresponding nodes.

Then

and

v i

v i

K K

K

b

K K

K

b

1 2

1

2 1

1

0

0

=

=

=

=

∑

∑

To verify Tellegen’s theorem, consider two circuits having same graphs as shown in Fig. 3.37.

LO   9 
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In Fig. 3.37 (a),

 i1 5 i2 5 2 A; i3 5 2 A

and v1 5 –2 V, v2 5 –8 V, v3 5 10 V

In Fig. 3.37 (b),

 

i i i

v v v

1
1

2
1

3
1

1
1

2
1

3
1

4 4

20 0 20

= = =

= − = =

A A

and V V V

;

; ;

Now

( ) (4) ( 8) (4) (10) (4)

v i v i v i v iK K

K

1
1 1

1
2 2

1
3 3

1

1

3

2

= + +

= − + − +
=

∑
== 0

 

and

( 20) (2) (0) (2) (20) (2)

v i v i v i v iK K

K

1
1
1

1 2
1

2 3
1

3

1

3

= + +

= − + +
=

∑
== 0

Similarly,

 

v i v i v i v iK K

K

= + +
=

∑ 1 1 2 2 3 3

1

3

 = (–2) (2) + (–8) (2) + (10) (2)  = 0

 

and v iK K

K

1 1

1

3

20 4 0 4 20 4 0= − + + =
=

∑ ( )( ) ( )( ) ( )( )

This verifies Tellegen’s theorem.

Frequently Asked Questions linked to LO 9

rrr3-9.1 Verify Tellegen's theorem for the network shown in Fig. Q.1. [PTU 2009-10]

rrr3-9.2 Verify Tellegen's theorem for the pair of networks. [PTU 2011-12]

Fig. Q.1 Fig. Q.2

3.10 MILLMAN’S THEOREM

Millman’s theorem states that in any network, if the voltage sources V1, V2, …, 

Vn in series with internal resistances R1, R2, …, Rn, respectively, are in parallel, 

then these sources may be replaced by a single voltage source V9in series with 

R9 as shown in Fig. 3.38.

Fig. 3.37 (a)

Fig. 3.37 (b)

LO   10 
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Fig. 3.38

where ′ =
+ +
+ + +

V
V G V G V G

G G G

n n

n

1 1 2 2

1 2

�

�

Here, Gn is the conductance of the nth branch,

and ′ =
+ + +

R
G G Gn

1

1 2 �

A similar theorem can be stated for n current sources having internal conductances which can be replaced 

by a single current source I9 in parallel with an equivalent conductance.

where

and

′ =
+ +
+ + +

′ =
+ + +

I
I R I R I R

R R R

G
R R R

n n

n

n

1 1 2 2

1 2

1 2

1

�

�

�

Fig. 3.39

EXAMPLE 3.10

Calculate the current I shown in Fig. 3.40 using 

Millman’s Theorem.

Solution  According to Millman’s theorem, the two 

voltage sources can be replaced by a single voltage 

source in series with resistance as shown in Fig. 3.41.

We have

V

V
V G V G

G G
9 =

+
+

=
+[ ]
+

=

1 1 2 2

1 2

10 1 2 20 1 5

1 2 1 5
12 86

( ) ( )
.

and R
G G

9=
+

=
+

=
1 1

1 2 1 5
1 43

1 2 / /
. V

Fig. 3.40

Fig. 3.41
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Therefore, the current passing through the 3 V resistor is

I =
+

=
12 86

3 1 43
2 9

.

.
. A

Frequently Asked Questions linked to LO 10
rr3-10.1 State Millman's theorem. Obtain the equivalent of a parallel connection of three branches each with 

a voltage source and a series resistance (2 V, 1 ohm), (3 V, 2 ohms), (5 V, 2 ohms). [GTU May 2011]

rr3-10.2 State and explain the following.  

(a) Reciprocity theorem

 (b) Millman's theorem  (RGTU Dec. 2013)

Additional Solved Problems

PROBLEM 3.1

Calculate the voltage across AB in the network shown in Fig. 

3.42 and indicate the polarity of the voltage using star-delta 

transformation.

Solution  The circuit in Fig. 3.42 can be redrawn as shown 

in Fig. 3.43.

By taking star-delta transformation at ABC, we have

The circuit shown in Fig. 3.44 is a single node circuit and V is 

the voltage at mode.

Applying nodal analysis, we have

   
V V V

4 31 6 77

10

2 92
0

. . .
+ +

−
=  (3.8)

From Eq. (3.8), the voltage is V 5 4.744 volts

The voltage across AB is VAB5 VA– VB

V V

V V

A

B

= ×
+

= ×
+

=

= ×
+

= ×

2

2 2 31
4 744

2

2 2 31
2 2

6

6 0 77
4 744

6

6 7

.
.

.
.

.
.

.

volts

77

4 2= . volts

∴ the voltage across AB is VAB 5 VA – VB

 VAB 5 2.2 – 4.2 5 – 2 volts

Fig. 3.42

Fig. 3.43

Fig. 3.44
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PROBLEM 3.2

Determine the current I in the circuit shown in Fig. 3.45 using the superposition theorem.

Fig. 3.45

Solution  The current I' due to 10 V source, when other sources are zero, is shown in Fig. 3.46.

From the Fig. 3.46 (a), the resistances of 2 V, 3 V, and 10 V are in parallel and resultant is in series with 5 V 

and 3 V. The equivalent circuit is shown in Fig. 3.46 (b).

Fig. 3.46

The total equivalent resistance in Fig. 3.46 (b) is

Req 5 [(8 1 1.07) //1] 1 1 5 1.9 V

The current passing through the 1 V resistance is

′ = =I
10

1 9
5 26

.
. A

The current I'' due to the 5  V source, when other sources are zero, is shown in Fig. 3.47.

The circuit in Fig. 3.47 (a) can be further reduced as shown in Fig. 3.47 (b).

Total current delivered by the 5 V source

IT = =
5

5 8
0 86

.
. A



Circuits and Networks140 

Fig. 3.47
The current passing through the 5 V resistor

I5

0 86 10

18 5
0 46=

×
=

.

.
. A

The current passing through the 1 V  resistor

I" =
×

=
0 46 1

2
0 23

.
. A

The current I''' due to the 10 A source, when other sources are set to zero as shown in Fig. 3.48.

Fig. 3.48

The circuit in Fig. 3.48 (a) can be further simplified as shown in Fig. 3.48 (b).

The current passing through the 3 V resistance =
×

+
=

10 6 07

6 07 3 5
6 34

.

. .
. A

The current passing through the 1 V resistor is

′′′ = × =I 6 34
1

2
3 17. . A

The current passing through the 1 V resistor is

I I I I= ′− ′′− ′′′
= − −
=

5 26 0 23 3 17

1 86

. . .

. A
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PROBLEM 3.3

Find the Thevenin’s and Norton’s equivalents 

for the circuit shown in Fig. 3.49 with respect to 

terminals ab.

Solution  To find the Thevenin’s resistance, 

voltage sources are to be short circuited.

Therefore, the resistance seen into the terminals ab is

Rab 5 [20V||40V] 5 13.33 V

 RTh 5 RN 5 Rab 5 13.33 V

In the circuit shown in Fig. 3.50 (a), the open circuit voltage across terminals

ab 5 Vab 5 10 1 I20

 5 10 1 I(20)

 
where AI =

−
+

= =
50 10

40 20

40

60
0 67.

∴ Thevenin’s voltage Vab 5 10 1 (0.67)20 5 23.4 1 V

The short-circuit current through terminals ab as shown in Fig. 3.50 (b) is

 IN 5 I1 1 I2

 where I I1 2

10

20
0 5

50

40
1 25= = = =. .A and A

 ∴ IN 5 1.75 A

∴ Norton’s current IN 5 1.75 A

Fig. 3.50

The Thevenin’s equivalent circuit is shown in Fig. 3.51 (a) and the Norton’s equivalent circuit is shown in 

Fig. 3.51 (b).

Fig. 3.49
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Fig. 3.51

PROBLEM 3.4

Determine the Thevenin’s and Norton’s equivalent circuits with respect to terminals ab for the circuit shown 

in Fig. 3.52.

a

b

Fig. 3.52

Solution  To find out the resistance seen into the terminals, when all the current sources are open circuited.

Rab 5 4 V

By applying the superposition theorem, we get the voltage across the 4 V resistor is

Vab 5 V4 5 V12 1 V5 1 V3

The voltage across the 4 V resistor due to the 12 A source when other sources are set equal to zero is

V12 5 0

The voltage across the 4 V resistor due to the 5 A source when other sources are set equal to zero is

V5 5 5 3 4 5 20 V

The voltage across 4 V resistor due to 3 A source when other sources are set equal to zero

V3 5 4 3 3 5 12 V

 ∴ Vab 5 0 1 20 1 12 5 32 V

The current in the short-circuited terminals

Iab 5 I12 1 I5 1 I3

The current due to only the 12 A source is I12 5 0 A
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The current due to only the 5 A source is I5 5 5 A

The current due to only the 3 A source is I3 5 3 A

 Iab 5 0 1 5 1 3 5 8 A

Therefore, the Thevenin’s equivalent circuit is shown in Fig. 3.53 (a) and the Norton’s equivalent circuit is 

shown in Fig. 3.53 (b).

Fig. 3.53

PROBLEM 3.5

By using source transformation or any other technique, replace the circuit shown in Fig. 3.54 between 

terminals ab with the voltage source in series with a single resistor.

Fig. 3.54

Solution  From Fig. 3.54, the resistances of 30 V and 50 V are in parallel and the resultant resistance (30 V 

||50 V) 5 18.75 V in parallel with the 3 A current source can be replaced by an equivalent voltage source in 

series with the resistance as shown in Fig. 3.55 (b).

a

a

b

b

Fig. 3.55
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Considering the node voltage Vab, by applying Kirchhoff’s current law, we have

V V Vab ab ab−
+

−
+ =

56 25

18 75

20

5 6
0

.

.

 Vab [0.05 1 0.2 1 0.17]–3– 4 5 0

∴ Thevenin’s voltage Vab 5 16.67 V

Resistance seen into the terminals ab when the voltage sources are short circuited in Fig. 3.55 (b).

Thevenin’s resistance Rab 5 [18.75||5||6] 5 2.38 V

∴ the Thevenin’s equivalent circuit is shown in Fig. 3.56.

Fig. 3.56

PROBLEM 3.6

Use Thevenin’s theorem to find the current through the 5 V 

resistor in Fig. 3.57.

Solution  Thevenin’s equivalent circuit can be formed by 

obtaining the voltage across terminals AB as shown in Fig. 3.58 

(a).

Current in the 6  resistor, AV I6

100

16
6 25= = .

Voltage across the 6  resistor, 6 6.25 37.5 V

Current in 

V V6 = × =

tthe 8  resistor, AV I8

100

23
4 35= = .

Voltage across the 8 V resistor is V8 5 4.35 3 8 5 34.8 V

Voltage across the terminals AB is VAB 5 37.5 – 34.8 5 2.7 V

The resistance as seen into the terminals RAB

=
×
+

+
×
+

6 10

6 10

8 15

8 15

5 3.75 1 5.22 5 8.97 V

Thevenin’s equivalent circuit is shown in Fig. 3.58 (b).

Current in the 5 V resistor, I5

2 7

5 8 97
0 193=

+
=

.

.
. A

Fig. 3.57



Useful Theorems in  Circuit Analysis 145 

Fig. 3.58

PROBLEM 3.7

Find Thevenin’s equivalent circuit for the circuit shown in 

Fig.  3.59.

Solution  Thevenin’s voltage is equal to the voltage across the 

terminals AB.

 VAB 5 V3 1 V6 1 10

Here, the current passing through the 3 V resistor is zero.

Hence, V3 5 0

By applying Kirchhoff’s law, we have

50 10 10 6

A

− = +

= =

I I

I
40

16
2 5.

The voltage across 6 V is V6 with polarity as shown in Fig. 3.60 (a), and is given by

V6 5 6 3 2.5 5 15 V

The voltage across terminals AB is VAB 5 0 1 15 1 10 5 25 V.

The resistance as seen into the terminals AB

RAB = +
×
+

=3
10 6

10 6
6 75. V

Thevenin’s equivalent circuit is shown in Fig. 3.60 (b).

Fig. 3.60

Fig. 3.59
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PROBLEM 3.8

Determine the Thevenin’s equivalent circuit across terminals AB for the circuit in Fig. 3.61.

Fig. 3.61

Solution  The given circuit is redrawn as shown in Fig. 3.62 (a).

Voltage VAB 5 V2 1 V1

Fig. 3.62

Applying Kirchhoff’s voltage law to loops 1 and 2, we have the following:

Voltage across the 2 V resistor  VV2 2
10

7
2 85= × = .

Voltage across the 1 V resistor  VV1 1
5

5
1= × =

 ∴ VAB 5 V2 1 V1

5 2.85 – 1 5 1.85 V

The resistance seen into the terminals AB

RAB 5 (5 || 2) 1 (4 || 1)

 
=

×
+

+
×
+

5 2

5 2

4 1

4 1

 5 1.43 1 0.8 5 2.23 V

Thevenin’s equivalent circuit is shown in Fig. 3.62 (b).
Fig. 3.62
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PROBLEM 3.9

Determine Norton’s equivalent circuit for the circuit shown in 

Fig. 3.63.

Solution  Norton’s equivalent circuit is given by Fig. 3.64 (a)

 where IN 5 short-circuit current at terminals AB

RN 5 open-circuit resistance at terminals AB

The current IN can be found as shown in Fig. 3.64 (b).

Fig. 3.64

IN = =
50

3
16 7. A

Norton’s resistance can be found from Fig. 3.64 (c).

R RN AB= =
×
+

=
3 4

3 4
1 71. V

Norton’s equivalent circuit for the given circuit is shown in Fig. 3.64 (d).

Fig. 3.64

Fig. 3.63
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PROBLEM 3.10

Determine Norton’s equivalent circuit for the given 

circuit shown in Fig.  3.65.

Solution  The short-circuit current at terminals AB can be found from Fig. 3.66 (a) and Norton’s resistance 

can be found from Fig. 3.66 (b).

The current IN is same as the current in the 3 V resistor or 4 V resistor.

I IN = = ×
+

=3 25
2

7 2
5 55. A

Fig. 3.66

Fig. 3.65

The resistance as seen into the terminals AB is

RAB 5 5 || (4 1 3 1 2)

 
=

×
+

=
5 9

5 9
3 21. V

Norton’s equivalent circuit is shown in Fig. 3.66 (c).

PROBLEM 3.11

Determine the current flowing through the 5 V resistor in the circuit shown in Fig. 3.67 by using Norton’s 

theorem.
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Fig. 3.68

Fig. 3.67

Solution  The short-circuit current at terminals AB can be found from the circuit as shown in Fig. 3.68 (a). 

Norton’s resistance can be found from Fig. 3.63 (b).

In Fig. 3.68 (a), the current IN 5 30 A.

The resistance in Fig. 3.68 (b)

RAB = +
×








= =
×

=

5 2
1 1

2

5 2 5
5 2 5

7 5
1 67

�

� ( . )
.

.
. V

Norton’s equivalent circuit is shown in Fig. 3.68 (c).

∴ the current in the 5 V resistor

I5 30
1 67

6 67
7 51= × =

.

.
. A

PROBLEM 3.12

Replace the given network shown in Fig. 3.69 by a single current 

source in parallel with a resistance.

Solution  Here, using superposition technique and Norton’s theorem, we can convert the given network.

We have to find a short-circuit current at terminals AB in Fig. 3.70 (a) as shown.

The current I9N is due to the 10 A source. I9N 5 10 A

The current I99N is due to the 20 V source (see Fig. 3.70 (b) and (c)).

Fig. 3.69

Fig. 3.68
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Fig. 3.70

Fig. 3.70

 ′′ = =IN

20

6
3 33. A

The current IN is due to both the sources

 IN 5 I9N 1 IN

    5 10 1 3.33 5 13.33 A

The resistance as seen from terminals AB

 RAB 5 6 V (from Fig. 3.70 (d))

Hence, the required circuit is as shown in Fig. 3.70 (e).

Fig. 3.70

PROBLEM 3.13

Using the compensation theorem, determine the ammeter 

reading where it is connected to the 6 V resistor as shown 

in Fig. 3.71. The internal resistance of the ammeter is 2 V.

Solution  The current flowing through the 5 V branch

I5 20
3

3 6 5
6 315= ×

+
=

.
. A

So the current in the 6 V branch

I6 6 315
2

6 2
1 58= ×

+
=. . A

If we connect the ammeter having 2 V internal resistance to the 6 V branch, there is a change in resistance. The 

changes in currents in other branches results if a voltage source of voltage I6. DR 5 1.58 3 2 5 3.16 V is 

inserted in the 6 V branch as shown in Fig. 3.72.

Fig. 3.71
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The current due to this 3.16 V source is calculated.

The total impedance in the circuit

RT 5 {[(6 || 3) 1 5] || [2]} 1 {6 1 2}

 5 9.56 V

The current due to the 3.16 V source

′ = =I6

3 16

9 56
0 33

.

.
. A

This current is opposite to the current I6 in the 6 V branch.

Hence, the ammeter reading 5 (1.58 – 0.33)

 5 1.25 A

PROBLEM 3.14

Verify the reciprocity theorem for the given circuit shown 

in Fig. 3.73.

Solution  In Fig. 3.73, the current in the 5 V resistor is

I I

I
R

5 2

2

4

8 4
2 14

4

12
0 71

10

= ×
+

= ×

=

=

.

. A

where

and

A

R

I

T =

∴ = =

4 67

10

4 67
2 142

.

.

We interchange the source and response as shown in Fig. 3.74.

In Fig. 3.74, the current in the 2 V resistor is

I I

I
R

R

I

I

T

T

2 3

3

3

2

4

4 2

10

9 33

10

9 33
1 07

1 07
4

= ×
+

=

=

∴ = =

= ×

where

and

A

.

.
.

.

V

66
0 71= . A

In both cases, the ratio of voltage to current is
10

0 71
14 08

.
. .=

Hence, the reciprocity theorem is verified.

Fig. 3.72

Fig. 3.73

Fig. 3.74
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PROBLEM 3.15

Verify the reciprocity theorem in the circuit shown in Fig. 

3.75.

Solution  The voltage V across the 3 V resistor is

 V 5 I3 3 R

where AI3 10
2

2 3
4= ×

+
=

 V 5 4 3 3 5 12 V

We interchange the current source and response as shown in Fig. 3.76.

To find the response, we have to find the voltage across the 

2 V resistor

 V 5 I2 3 R

where AI2 10
3

5
6= × =

 V 5 6 3 2 5 12 V

In both cases, the ratio of current to voltage is the same, i.e. 

it is equal to 0.833. Hence, the reciprocity theorem is verified.

PROBLEM 3.16

Determine the maximum power delivered to the load in the 

circuit shown in Fig.  3.77.

Solution  For the given circuit, let us find out the Thevenin’s 

equivalent circuit across AB as shown in Fig. 3.78 (a).

The total resistance is

RT 5 [{(3 1 2) || 5} 1 10]

 5 [2.5 1 10] 5 12.5 V

Total current drawn by the circuit is

IT = =
50

12 5
4

.
A

The current in the 3 V resistor is

I IT3

5

5 5

4 5

10
2= ×

+
=

×
= A

Fig. 3.76

Fig. 3.75

Fig. 3.77
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Thevenin’s voltage VAB 5 V3 5 3 3 2 5 6 V

Thevenin’s resistance RTh 5 RAB 5 [((10 || 5) 1 2) || 3] V 5 1.92 V

Thevenin’s equivalent circuit is shown in Fig. 3.78 (b).

Fig. 3.78

From Fig. 3.78 (b) and maximum power transfer theorem,

RL 5 1.92 V

∴ current drawn by the load resistance RL

IL =
+

=
6

1 92 1 92
1 56

. .
. A

Power delivered to the load 5 I2
L RL

 5 (1.56)2 3 1.92 5 4.67 W

PROBLEM 3.17

Determine the load resistance to receive maximum power from 

the source; also find the maximum power delivered to the load 

in the circuit shown in Fig. 3.79.

Solution  For the given circuit, we find out the Thevenin’s 

equivalent circuit.

Thevenin’s voltage across terminals A and B

 VAB 5 VA – VB

Voltage at the point  is V

Voltage at the

A VA = ×
+

=100
30

30 10
75

  point  is VB VB = ×
+

=100
40

40 20
66 67.

 VAB 5 75 – 66.67 5 8.33 V

To find Thevenin’s resistance, the circuit in Fig. 3.80 

(a) can be redrawn as shown in Fig. 3.80 (b).

Fig. 3.80

Fig. 3.79
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Fig. 3.80

(b)

From Fig. 3.80 (b), Thevenin’s resistance

RAB 5 [(30 || 10) 1 (20 || 40)]

 5 [7.5 1 13.33] 5 20.83 V

Thevenin’s equivalent circuit is shown in Fig. 3.80 (c).

According to maximum power transfer theorem,

RL 5 20.83 V

Current drawn by the load resistance

IL =
+

=
8 33

20 83 20 83
0 2

.

. .
. A

∴ maximum power delivered to load 5 I2
L RL

 5 (0.2)2 (20.83) 5 0.833 W

PROBLEM 3.18

Draw the dual circuit for the given circuit shown in Fig. 3.81.

Solution  Our first step is to place nodes in each loop, and a reference 

node outside the circuit.

Join the nodes with lines passing through each element and connect 

these lines with the dual of each element as shown in Fig.  3.82 (a).

Fig. 3.80

(a)

Fig. 3.82

Fig. 3.81
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The dual circuit of the given circuit is shown in Fig. 3.82 (b).

(b)

Fig. 3.82

PROBLEM 3.19

Draw the dual circuit of Fig. 3.83 given below.

Solution  Our first step is to mark nodes in each loop and a 

reference node outside the circuit.

Join the nodes with lines passing through each element and 

connect these lines with the dual of each element as shown in Fig. 

3.84 (a).

The dual circuit of the given circuit is shown in Fig. 3.84 (b).

Fig. 3.84

PROBLEM 3.20

For the circuit shown in Fig. 3.85, find the current i4 using the superposition principle.

Fig. 3.83
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Fig. 3.85

Solution  The circuit can be redrawn as shown in Fig. 3.86 (a).

The current i94 due to the 20 V source  can  be found using the circuit shown in Fig. 3.86 (b).

Fig. 3.86

Applying Kirchhoff’s voltage law,

– 20 1 4i94 1 2i94 1 2i94 5 0

 i94  5 2.5 A

The current i''4 due to the 5 A source can be found using the circuit shown in Fig. 3.86 (c).

By assuming V'' at the node shown in Fig. 3.86 (c) and applying Kirchhoff’s current law,

′′
− +

′′− ′′
=

′′ =
− ′′

V V i

i
V

4
5

2

2
0

4

4

4

From the above equations,

 i''4 5 – 1.25 A

 ∴ total current i4 5 i''4 1 i''4 5 1.25 A

PROBLEM 3.21

Determine the current through the 2 V resistor as shown in 

Fig. 3.87 by using the superposition theorem.

Solution  The current I9 due to the 5 V source can be found using 

the circuit shown in Fig. 3.88 (a).

By applying Kirchhoff’s voltage law, we have

3I9 1 5 1 2I9 – 4V93 5 0

Fig. 3.86

Fig. 3.87
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 we know V93 5 – 3I9

From the above equations,

I9 5 – 0.294  A

The current I'' due to the 4 A source can be found using the circuit shown in Fig.  3.88 (b).

Fig. 3.88

By assuming the node voltage V''3, we find

I
V V"

" "

=
+3 34

2

By applying Kirchhoff’s current law at the node, we have

V V V3 3 3

3
4

4

2
0

" " "

− +
+

=

 V''3 5 1.55 V

 
∴ =

+
=I

V V"
" "
3 34

2
3 875. A

Total current in the 2 V resistor I 5 I9 1 I'' 5 – 0.294 1 3.875

∴ I 5 3.581 A

PROBLEM 3.22

For the circuit shown in Fig. 3.89, obtain Thevenin’s equivalent 

circuit.

Solution  The circuit consists of a dependent source. In the presence of 

the dependent source, RTh can be determined by finding vOC and iSC

∴ =R
v

i

OC

SC
Th

Open-circuit voltage can be found from the circuit shown in Fig. 3.90 (a).

Since the output terminals are open, current passes through the 2 V branch only.

vx 5 2 3 0.1 vx 1 4

vx = =
4

0 8
5

.
V

Fig. 3.89
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Short-circuit current can be calculated from the circuit shown in 

Fig. 3.90 (b).

Since vx 5 0, the dependent current source is opened.

The current A

Th

i

R
v

i

SC

OC

SC

=
+

=

∴ = = =

4

2 3
0 8

5

0 8
6 25

.

.
. V

The Thevenin’s equivalent circuit is shown in Fig. 3.90 (c).

PROBLEM 3.23

For the circuit shown in Fig. 3.91, find the current i2 in the 2 V 

resistor by using Thevenin’s theorem.

Solution  From the circuit, there is open voltage at the terminals 

ab which is

VOC 5 – 4Vi

 where Vi 5 –4Vi – 5

 ∴ Vi 5 –1

Thevenin’s voltage VOC 5 4 V

From the circuit, short-circuit current is determined by shorting 

terminals a and b.

Applying Kirchhoff’s voltage law, we have

 4Vi 1 2iSC 5 0

We know Vi 5 – 5

Substituting Vi in the above equation, we get

iSC 5 10 A

∴ = = =R
V

i

OC

SC
Th

4

10
0 4. V

The Thevenin’s equivalent circuit is as shown in Fig. 3.92.

The current in the 2 V resistor  Ai2
4

2 4
1 67= =

.
.

Fig. 3.90

Fig. 3.91

Fig. 3.92
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PROBLEM 3.24

For the circuit shown in Fig. 3.93, find Norton’s equivalent circuit.

Solution  In the case of circuit having only dependent sources (without independent sources), both VOC and iSC 

are zero. We apply a 1 A source externally and determine the resultant voltage across it, and then find R
V

Th =
1

 

or we can also apply the 1 V source externally and determine the 

current through it and then we find RTh 5 1/i.

By applying the 1 A source externally as shown in Fig. 3.94 

(a) and application of Kirchhoff’s current law, we have

V V Vx x x

5

4

2
1+

+
=

 Vx 5 0.37 V

The current in the 4 V branch is

V Vx −
= −

4
1

Substituting Vx in the above equation, we get

 V 5 4.37 V

∴ = =R
V

Th
1

4 37. V

If we short circuit the terminals a and b, we have

V Vx x−
=

4

2
0

Vx 5 0

I
V

SC
x= =

4
0

Therefore, Norton’s equivalent circuit is as shown in Fig. 3.94 (b).

Fig. 3.93

Fig. 3.94
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PSpice Problems

PROBLEM 3.1

Determine the voltage across the terminal AB of the circuit shown in 

Fig. 3.95.

* TO DETERMINE THEVENIN VOLTAGE

V1 1 2 6

I1 0 2 5

R1 1 2 5

V2 2 0 10 V

.TF V(1,0) V1 ; TRANSFER FUNCTION ANALYSIS

.END

**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE 5 27.000 DEG C

****************************************************************

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) 16.0000 (2) 10.0000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V1 –1.200E 1 00

V2 5.000E 1 00

**** SMALL-SIGNAL CHARACTERISTICS

V(1,0)/ V1 5 1.000E 1 00

INPUT RESISTANCE AT V1 5 5.000E 1 00

OUTPUT RESISTANCE AT V(1,0) 5 0.000E 1 00

Result

VAB 5 V(1,0) 5 16 V.

V(1,0) 5 1 3 V1 5 16 V 5 Vth.

PROBLEM 3.2

Use Thevenin's theorem to find the current through the 5 V 

resistor in Fig. 3.96.

* TO DETERMINE THEVENIN CIRCUIT

VS 10 DC 100

R1 1 2 10

R2 2 0 6

R3 1 3 15

R4 3 0 8

.TF V(2, 3) VS

.END

Fig. 3.95

Fig. 3.96
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OUTPUT

**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE 5 27.000 DEG C

****************************************************************

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) 100.0000 (2) 37.5000 (3) 34.7830

VOLTAGE SOURCE CURRENTS

NAME CURRENT

VS  –1.060E 1 01

**** SMALL-SIGNAL CHARACTERISTICS

V(2,3)/VS 5 2.717E – 02

INPUT RESISTANCE AT VS 5 9.436E 1 00

OUTPUT RESISTANCE AT V(2,3) 5 8.967E 1 00

Result

VTH 5 V(2,3)/VS*VS 5 2.717E – 02 * 100 5 2.717 V

RH 5 OUTPUT RESISTANCE AT V(2,3) 5 8.967 V.

RL 5 5 V ; IL 5 VTH/(RTH 1 RL) 5 2.717/(8.967 1 5) 5 0.195A.

PROBLEM 3.3

Determine the load resistance to receive maximum power from 

the source; also find the maximum power delivered to the load 

in the circuit shown in Fig. 3.97 using PSpice.

* NETLIST TO FIND MAX.POWER TRANSFER

VS 10 DC 100

R1 1 2 10

R2 2 0 30

R3 1 3 20

R4 3 0 40

RL 23 RLOAD 1

.MODEL RLOAD RES(R 5 25)

.DC RES RLOAD(R) 0.001 40 0.01

.TF V(2,3) VS

.PROBE

.END

OUTPUT

**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE 5 27.000 DEG C

****************************************************************

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) 100.0000 (2) 73.6360 (3) 69.0910

VOLTAGE SOURCE CURRENTS

NAME CURRENT

VS  – 4.182E 1 00

TOTAL POWER DISSIPATION 4.18E 1 02 WATTS

Fig. 3.97
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F
ig

. 
3

.9
8

**** SMALL-SIGNAL CHARACTERISTICS

V(2,3)/ VS 5 4.545E – 02

INPUT RESISTANCE AT VS 5 2.391E 1 01

OUTPUT RESISTANCE AT V(2,3) 5 1.136E 1 01

Result

From the graph shown in Fig. 3.98, which is obtained with .PROBE statement for W(RL), MAX(W(RL)) is 

found to be 0.833W at RL 5 20.81 V.



Useful Theorems in  Circuit Analysis 163 

Answers to Practice Problems

3-1.1 1.182 V

3-1.2 Req 5 0.6078

3-1.3 (i) I6.8k 5 2.55 mA; I2.2k 5 7.9 mA

 (ii) V6.8k 5 17.34 V ; V2.2k 5 17.38 V

3-2.1 0.82 A

3-2.2 I4V
 5 1.5 V

3-2.3 I1 5 4.6 A; I2 5 2.6 A; I3 5 2 A

3-2.4 4 A

3-3.1 0.5 A

3-4.1 (i) 8 V voltage source is the series with 10 kV resistance

 (ii) 0.8 mA current source is in parallel with 10 kV resistance

3-4.2 

3-7.1 12 V, 0.75 W, 6 V, 0.5 A

3-10.1 I10 5 0.155 A

Objective-Type Questions

r3.1 Three equal resistances of 3 V are connected in star. What is the resistance in one of the arms in an equivalent 

delta circuit?

 (a) 10 V (b) 3 V (c) 9 V (d) 27 V
r3.2 Three equal resistances of 5 V are connected in delta. What is the resistance in one of the arms of the 

equivalent star circuit?

 (a) 5 V (b) 1.33 V

  (c) 15 V (d) 10 V
r3.3 Superposition theorem is valid only for

 (a) linear circuits (c) both linear and nonlinear

 (b) nonlinear circuits (d) neither of the two
r3.4 Superposition theorem is not valid for

 (a) voltage responses  (c) power responses

 (b) current responses (d) all the three
rr3.5 Determine the current I in the circuit shown in Fig. 3.99. It is

 (a) 2.5 A (b) 1 A

 (c) 3.5 A (d) 4.5 A
r3.6 Reduce the circuit shown in Fig. 3.100 to its Thevenin equivalent 

circuit as viewed from terminals A and B.

 (a)  The circuit consists of 15 V battery in series with 100 kV

 (b)  The circuit consists of 15 V battery in series with 22 kV

 (c)  The circuit consists of 15 V battery in series with parallel 

combination of 100 kV and 22 kV

 (d) None of the above

Fig. 3.99

Fig. 3.100
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rrr3.7 Norton’s equivalent circuit consists of

 (a) voltage source in parallel with resistance (b) voltage source in series with resistance

 (c) current source in series with resistance (d) current source in parallel with resistance
rrr3.8 The reciprocity theorem is applicable to

 (a) linear networks only   (c) linear/bilateral networks

 (b) bilateral networks only     (d) neither of the two
rrr3.9 Compensation theorem is applicable to

 (a) linear networks only   (c) linear and nonlinear networks

 (b) nonlinear networks only   (d) neither of the two
rrr3.10 Maximum power is transferred when load impedance is

 (a) equal to source resistance 

 (c) equal to zero

 (b) equal to half of the source resistance

 (d) none of the above
rrr3.11 In the circuit shown in Fig. 3.101, what is the maximum 

power transferred to the load?

 (a) 5 W (c) 10 W

 (b) 2.5 W (d) 25 W
rrr3.12 Indicate the dual of a series network that consists of voltage 

source, capacitance, inductance in

 (a) parallel combination of resistance, capacitance, and inductance

 (b) series combination of current source, capacitance, and inductance

 (c) parallel combination of current source, inductance, and capacitance

 (d) none of the above
rrr3.13 When the superposition theorem is applied to any circuit, the dependent voltage source in that circuit is always.

 (a) opened (b) shorted (c) active (d) none of the above
rrr3.14 Superposition theorem is not applicable to networks containing.

 (a) nonlinear elements   (c) dependent current sources

 (b) dependent voltage sources  (d) transformers
rrr3.15 Thevenin's voltage in the circuit shown in Fig. 3.102 is

 (a) 3 V (b) 2 V (c) 2.5 V (d) 0.1 V
rrr3.16 Norton’s current in the circuit shown in Fig. 3.103 is

 (a) 
2

5

i
 (b) infinite (c) zero (d) none

rrr3.17 A dc circuit shown in Fig. 3.104 has a voltage V, a current source I and several resistors. A particular resistor R 

dissipates a power of 4 W when V alone is active. The same resistor dissipates a power of 9 W when I alone is 

active. The power dissipated by R when both sources are active will be

 (a) 1 W (b) 13 W (c) 5 W         (d) 25 W

Fig. 3.101

Fig. 3.102 Fig. 3.103

Resistive

network

Fig. 3.104

For interactive quiz with answers,
scan the QR code given here
OR
visit
http://qrcode.flipick.com/index.php/261



4.1 THE SINE WAVE

Many a time, alternating voltages and currents are represented by a sinusoidal 

wave, or simply a sinusoid. It is a very common type of alternating current (ac) and 

alternating voltage. The sinusoidal wave is generally referred to as a sine wave. 

Basically, an alternating voltage (current) waveform is defined as the voltage 

(current) that fluctuates with time periodically, with change in polarity and direction. In general, the sine 

wave is more useful than other waveforms, like pulse, sawtooth, square, etc. There are a number of reasons 

for this. One of the reasons is that if we take any second- order system, the response of this system is 

a sinusoid. Secondly, any periodic waveform can be written 

in terms of sinusoidal function according to Fourier theorem. 

Another reason is that its derivatives and integrals are also 

sinusoids. A sinusoidal function is easy to analyse. Lastly, the 

sinusoidal function is easy to generate, and it is more useful 

in the power industry. The shape of a sinusoidal waveform is 

shown in Fig. 4.1.

The waveform may be either a current waveform, or a 

voltage waveform. As seen from Fig. 4.1, the wave changes 

its magnitude and direction with time. If we start at time 

t 5 0, the wave goes to a maximum value and returns to zero, 

and then decreases to a negative maximum value before returning to zero. The sine wave changes with 

time in an orderly manner. During the positive portion of voltage, the current flows in one direction; and 

during the negative portion of voltage, the current flows in the opposite direction. The complete positive 

and negative portion of the wave is one cycle of the sine wave. Time is designated by t. The time taken 

Fig. 4.1

4

LEARNING OBJECTIVES

LO   1 
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for any wave to complete one full cycle is called the period 

(T ). In general, any periodic wave constitutes a number of 

such cycles. For example, one cycle of a sine wave repeats 

a number of times as shown in Fig. 4.2. Mathematically, it 

can be represented as f(t) 5 f(t 1 T ) for any t.

The period can be measured in the following different 

ways (see Fig. 4.3).

1. From zero crossing of one cycle to zero crossing of 

the next cycle

2. From positive peak of one cycle to positive peak of the next cycle

3. From negative peak of one cycle to nega-

tive peak of the next cycle

The frequency of a wave is defined as the number 

of cycles that a wave completes in one second.

In Fig. 4.4, the sine wave completes three 

cycles in one second. Frequency is measured in 

hertz. One hertz is equivalent to one cycle per 

second, 60 hertz is 60 cycles per second, and so 

on. In Fig. 4.4, the frequency denoted by f is 3 

Hz, that is three cycles per second. The relation 

between time period and frequency is given by

f
T

=
1

A sine wave with a longer period consists of fewer cycles than one with a shorter period.

EXAMPLE 4.1

What is the period of the sine wave shown 

in Fig. 4.5?

Solution  From Fig. 4.5, it can be seen the 

sine wave takes two seconds to complete 

one period in each cycle

T 5 2 s

Fig. 4.3

Fig. 4.4

Fig. 4.2

Fig. 4.5
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EXAMPLE 4.2

The period of a sine wave is 20 milliseconds. What is the frequency?

Solution

f
T

=

= =

1

1

20
50

ms
Hz

EXAMPLE 4.3

The frequency of a sine wave is 30 Hz. What is its period?

Solution

T
f

=

= = =

1

1

30
0 03333 33 33. .s  ms

NOTE:  YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 1*
rrr4-1.1 Calculate the frequency of the following values of period.

  (a) 0.2 s   (b) 50 ms   (c) 500 ms      (d) 10 ms
rrr4-1.2 Calculate the period for each of the values of frequency.

  (a) 60 Hz   (b) 500 Hz   (c) 1 kHz       (d) 200 kHz   (e) 5 MHz

4.2 ANGULAR RELATION OF A SINE WAVE

A sine wave can be measured along the X-axis on a time base which is 

frequency- dependent. A sine wave can also be expressed in terms of an 

angular measurement. This angular measurement is expressed in degrees 

or radians. A radian is defined as the angular distance measured along the 

circumference of a circle which is equal to the radius of the circle. One 

radian is equal to 57.3°. In a 360° revolution, there are 2p radians. The angular measurement of a sine wave 

is based on 360° or 2p radians for a complete cycle as shown in Figs 4.6 (a) and (b).

Fig. 4.6

V
V

LO   2 

*Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category
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A sine wave completes a half cycle in 180° or p radians; a quarter cycle in 90° or p/2 radians, and so on.

� Phase of a Sine Wave  The phase of a sine wave is an angular measurement that specifies the position of 

the sine wave relative to a reference. The wave shown in Fig. 4.7 is taken as the reference wave.

When the sine wave is shifted left or right with reference to the wave shown in Fig. 4.7, there occurs a 

phase shift. Figure 4.8 shows the phase shifts of a sine wave.

In Fig. 4.8 (a), the sine wave is shifted to the right by 90° (p/2 rad) shown by the dotted lines. There is a phase 

angle of 90° between A and B. Here, the waveform B is lagging behind waveform A by 90°. In other words, the 

sine wave A is leading the waveform B by 90°. In Fig. 4.8 (b) the sine wave A is lagging behind the waveform B 

by 90°. In both cases, the phase difference is 90°.

Fig. 4.7 Fig. 4.8

V
(volts)

V
(volts)

A

A

B

B

90°

– 90°

θ (degrees)

θ (degrees)

(a)

(b)

EXAMPLE 4.4

What are the phase angles between the two sine waves shown in Figs 4.9 (a) and (b)?

Fig. 4.9

V
(volts)

V
(volts)

A
A

B B

90°45°
– 90° 30°

θ (degrees)
θ (degrees)

(a) (b)

Solution  In Fig. 4.9 (a), the sine wave A is in phase with the reference wave; the sine wave B is out of phase, 

which lags behind the reference wave by 45°. So we say that the sine wave B lags behind the sine wave A by 

45°.

In Fig. 4.9 (b), the sine wave A leads the reference wave by 90°; the sine wave B lags behind the reference 

wave by 30°. So the phase difference between A and B is 120°, which means that sine wave B lags behind sine 

wave A by 120°. In other words, the sine wave A leads the sine wave B by 120°.



Introduction to Alternating Currents and Voltages 169 

4.3 THE SINE WAVE EQUATION

A sine wave is graphically represented as shown in Fig. 4.10 (a). The amplitude of a sine wave is represented 

on vertical axis. The angular measurement (in degrees or radians) is represented on horizontal axis. Amplitude 

A is the maximum value of the voltage or current on the Y-axis.

In general, the sine wave is represented by the equation

v(t) 5 Vmsin vt

The above equation states that any point on the sine wave represented by an instantaneous value v(t) 

is equal to the maximum value times the sine of the angular frequency at that point. For example, if a 

certain sine wave voltage has a peak value of 20 V, the instantaneous voltage at a point p/4 radians along the 

horizontal axis can be calculated as

v t V tm( ) sin

sin . .

=

=






= × =

v

p
20

4
20 0 707 14 14 V

When a sine wave is shifted to the left of the reference wave by a certain angle f, as shown in Fig. 4.10 (b), 

the general expression can be written as

v(t) 5 Vmsin(vt 1 f)

When a sine wave is shifted to the right of the reference wave by a certain angle f, as shown in Fig. 

4.10 (c), the general expression is

v(t) 5 Vmsin(vt 2 f)

Fig. 4.10

EXAMPLE 4.5

Determine the instantaneous value at the 90° point on the X-axis for each 

sine wave shown in Fig. 4.11.

Fig. 4.11

LO 2



Circuits and Networks170 

Solution  From Fig. 4.11, the equation for the sine wave A

v(t) 5 10 sin vt

The value at p/2 in this wave is

v t( ) sin= =10
2

10
p

V

The equation for the sine wave B

v(t) 5 8 sin(vt 2 p/4)

At vt 5 p/2

v t( ) sin

sin

( . )

.

= −








=
=
=

°

8
2 4

8 45

8 0 707

5 66

p p

V

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 2
rrr4-2.1 A certain sine wave has a positive going zero crossing at 0° and an rms value of 20 V. Calculate 

its instantaneous value at each of the following angles.

  (a) 33°    (b) 110°    (c) 145°     (d) 325°

rrr4-2.2 For a particular 0° reference sinusoidal current, the peak value is 200 mA; determine the 

instantaneous values at each of the following.

  (a) 35°    (b) 190°    (c) 200°     (d) 360°

4.4 VOLTAGE AND CURRENT VALUES OF A SINE WAVE

As the magnitude of the waveform is not constant, the waveform can be 

measured in different ways. These are instantaneous, peak, peak to peak, root 

mean square (rms) and average 

values.

�Instantaneous  Value  Consider the sine wave shown in 

Fig. 4.12. At any given time, it has some instantaneous value. This 

value is different at different points along the waveform.

In Fig. 4.12, during the positive cycle, the instantaneous values 

are positive and during the negative cycle, the instantaneous values 

are negative. In Fig. 4.12 shown at time 1 ms, the value is 4.2 V; the 

value is 10 V at 2.5 ms, – 2 V at 6 ms and – 10 V at 7.5, and so on.

�Peak Value  The peak value of the sine wave is the maximum 

value of the wave during positive half cycle, or maximum value 

of wave during negative half cycle. Since the values of these 

two are equal in magnitude, a sine wave is characterised by a 

single peak value. The peak value of the sine wave is shown in 

Fig. 4.13; here the peak value of the sine wave is 4 V.

Fig. 4.12

t (ms)

2.1

– 2

– 8

– 10

4.2

10

1 6

6

107.52.5

V t( ) volts

Fig. 4.13

t (ms)

V t
V

( )
+ 4Vp

– 4V

LO   3 
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 Peak-to-Peak Value  The peak to peak value of a sine wave is the 

value from the positive to the negative peak as shown in Fig. 4.14. Here, 

the peak-to-peak value is 8 V.

 Average Value  In general, the average value of any function v(t), 

with period T is given by

v
T

v t dt

T

av = ∫
1

0

( )

That means that the average value of a curve in the X-Y plane is the total area under the complete curve 

divided by the distance of the curve. The average value of a sine wave over one complete cycle is always zero. 

So the average value of a sine wave is defined over a half-cycle, and not a full cycle period.

The average value of the sine wave is the total area under the half-cycle curve divided by the distance of 

the curve.

The average value of the sine wave

v(t) 5 VP sin vt is given by

v V t d t

V t

V
V

av P

P

P
P

=

= −[ ]

= =

∫
1

1

2
0 637

0

0

p
v v

p
v

p

p

p

sin ( )

cos

.

The average value of a sine wave is shown by the dotted line in Fig. 4.15.

EXAMPLE 4.6

Find the average value of a cosine wave f(t) = cos vt shown in Fig. 4.16.

Solution  The average value of a cosine wave

v t V t

V V t d t

V t

P

av P

P

( ) cos

cos ( )

( sin )

/

/

/
/

=

=

= −

∫

v

p
v v

p
v

p

p

p
p

1

1
2

3 2

2
3 2

==
−

− −[ ]= =
V V

VP P
P

p p
1 1

2
0 637.

 Root Mean Square Value or Effective Value

The root mean square (rms) value of a sine wave is a 

measure of the heating effect of the wave. When a resistor 

is connected across a dc voltage source as shown in Fig. 

4.17 (a), a certain amount of heat is produced in the 

resistor in a given time.  A similar resistor is connected 

across an ac voltage source for the same time as shown Fig. 4.17

Fig. 4.15

Fig. 4.14

t (ms)

V t( )
+ 4V

– 4V

Fig. 4.16
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in Fig. 4.17 (b). The value of the ac voltage is adjusted such that the same amount of heat is produced in the 

resistor as in the case of the dc source. This value is called the rms value.

That means the rms value of a sine wave is equal to the dc voltage that produces the same heating effect. 

In general, the rms value of any function with period T has an effective value given by

V
T

v t dtrms

T

= ∫
1 2

0

( )

Consider a function v(t) 5 VP sin vt

The rms value, V
T

V t d t

T
V

t
d t

rms P

T

P

=

=
−











=

∫

∫

1

1 1 2

2

2

0

2

0

2

( sin ) ( )

cos
( )

v v

v
v

p

VV
VP
P

2
0 707= .

If the function consists of a number of sinusoidal terms, that is

v t V V t V t V t V tc c s s( ) ( cos cos ) ( sin sin )= + + + + + +0 1 2 1 22 2v v v v� �

The rms, or effective value, is given by

V V V V V Vrms c c s s= + + + + + +0
2

1
2

2
2

1
2

2
21

2

1

2
( ) ( )� �

EXAMPLE 4.7

A wire is carrying a direct current of 20 A and a sinusoidal alternating current of peak value 20 A. Find the 

rms value of the resultant current in the wire.

Solution  The rms value of the combined wave

= +

= + = =

20
20

2

400 200 600 24 5

2
2

. A

 Peak Factor  The peak factor of any waveform is defined as the ratio of the peak value of the wave to 

the rms value of the wave.

Peak factor =
V

V

P

rms

Peak factor of the sinusoidal waveform = = =
V

V

P

P /
.

2
2 1 414
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� Form Factor  Form factor of a waveform is defined as the ratio of rms value to the average value of 

the wave.

Form factor =
V

V

rms

av

Form factor of a sinusoidal waveform can be found from the above relation.

For the sinusoidal wave, the form factor = =
V

V

P

P

/

.
.

2

0 637
1 11

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 3
rrr4-3.1 Sine wave A lags the sine wave B by 30°. Both have peak values of 15 V. Sine wave A is the 

reference with a positive going crossing at 0°. Determine the instantaneous value of the sine wave 

B at 30°, 90°, 45°, 180° and 300°.

rrr4-3.2 Find the rms values of

  (a)  v (t) 5 25 cos vt 1 15 sin vt

  (b)  i(t) 5 100 sin vt 2 10 cos 2vt

rrr4-3.3 A sawtooth voltage wave increases linearly 

from 0 to 200 V in the interval from 0 to 2 

seconds. At t1 5 2 s, its value drops to zero 

suddenly. The waveform repeats this pattern. 

Find the rms value of the voltage wave.

rrr4-3.4 Determine the Vrms of the waveform shown in 

Fig. Q.4.

rrr4-3.5 Find the effective value of the resultant current in 

a wire which carries a direct current of 10 A and a 

sinusoidal current with a peak value of 15 A.

rrr4-3.6 Determine the value of K in the waveform 

shown in Fig. Q.6 where K is some function  

of the period T such that the effective value 

is 2.

rrr4-3.7 Determine the average and rms values of 

the waveform shown in Fig. Q.7, where in 

the first interval of v(t) 5 20 e–200t.

rrr4-3.8 Find the effective value of the function 

v 5 100 1 50 sin vt.

rrr4-3.9 A full-wave rectified sine wave is clipped at 

0.707 of its maximum value as shown in Fig. 

Q.9. Find the average and effective values of 

the function.

Fig. Q.7

Fig. Q.9

Fig. Q.4

Fig. Q.6
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rrr4-3.10 Find the rms value of the function shown in 

Fig. Q.10 and described as follows:

  0 , t , 0.1v 5 40 (1 2 e–100t)

  0.1 , t , 0.2v 5 40 e –50(t 2 0.1)

rrr4-3.11 Calculate average and effective values of the 

waveform shown in Fig. Q.11 and, hence, find 

from factor.

rrr4-3.12 A full-wave rectified sine wave is clipped such that the effective value is 0.5 Vm as shown in Fig. 

Q.12. Determine the amplitude at which the wave form is clipped.

Fig. Q.11 Fig. Q.12

Frequently Asked Questions linked to LO 3
rrr4-3.1 Define RMS voltage. [AU May/June 2014] 

rrr4-3.2 A periodic voltage waveform has been shown in Fig. Q.14. 

Determine the following. [JNTU Nov. 2012]

  (a) Frequency of the waveform

  (b) Wave equation for 0 < t < 100 ms

  (c) R.M.S value and

  (d) Average value

rrr4-3.3 A non-alternating periodic waveform has been show in Fig. Q.3. 

Find its form factor and peak factor.  [JNTU Nov. 2012]

20 30 40100

2 A

1 A

x t( )

Fig. Q.3

rrr4-3.4 Explain the rms value and average value of alternating quantity. Derive its necessary expressions.  

 [JNTU Nov. 2012]
rrr4-3.5 Define the following [JNTU Nov. 2012]

  (a) Time period  (b) Frequency  (c) RMS value  (d) Average value

4.5 PHASE RELATION IN A PURE RESISTOR

When a sinusoidal voltage of certain magnitude is applied to a resistor, a certain 

amount of sine wave current passes through it. We know the relation between 

v (t) and i(t) in the case of a resistor. The voltage/current relation in case of a 

resistor is linear,

i.e.  v (t) 5 i(t)R

Fig. Q.10

V t( )

Vm

t (ms)
2pp0

Fig. Q.14

LO   4 

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600
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Consider the function

i t I t IM I e Im m
j t

m( ) sin= = 



 ∠ °v v or 0

If we substitute this in the above equation, we have

where 

v t I R t V t

IM V e V

V I R

m m

m
j t

m

m m

( ) sin sin= =

= 



 ∠ °

=

v v

v or 0

If we draw the waveform for both voltage and current as shown in Fig. 4.18, there is no phase difference 

between these two waveforms. The amplitudes of the waveform may differ according to the value of resistance.

As a result, in pure resistive circuits, the voltages and currents are 

said to be in phase. Here the term impedance is defined as the ratio of 

voltage to current function. With ac voltage applied to elements, the ratio 

of exponential voltage to the corresponding current (impedance) consists of 

magnitude and phase angles. Since the phase difference is zero in case of a 

resistor, the phase angle is zero. The impedance in case of resistor consists 

only of magnitude, i.e.

Z
V

I
Rm

m

=
∠ °
∠ °

=
0

0

4.6 PHASE RELATION IN A PURE INDUCTOR

As discussed earlier in Chapter 1, the voltage current relation in the case of an inductor is given by

v t L
di

dt
( ) =

Consider the function i t I t IM I e Im m
j t

m( ) sin= = 



 ∠ °v v  or 0

v t L
d

dt
I t

L I t L I t

v t V t V

m

m m

m m

( ) ( sin )

cos cos

( ) cos , sin

=

= =

=

v

v v v v

v or (( )

( )

v

v

t

IM V e Vm
j t

m

+ °

= 





∠ °+

90

9090o

or

where Vm 5 vLIm 5 XLIm

and e jj90 1 90° = = ∠ °

If we draw the waveforms for both, voltage and current, as shown in Fig. 

4.19, we can observe the phase difference between these two waveforms.

As a result, in a pure inductor the voltage and current are out of 

phase. The current lags behind the voltage by 90° in a pure inductor as 

shown in Fig. 4.20.

Fig. 4.18

Fig. 4.19

LO 4
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The impedance which is the ratio of exponential voltage to the corresponding current, is given by

Z
V t

I t

V L I

I L t

I t

m

m

m m

m

m

=
+ °

=

=
+ °

=

sin ( )

sin

sin ( )

sin

v

v

v

v v

v

90

90

where

vv

v

L I

I

Z j L jX

m

m

L

∠ °
∠ °

∴ = =

90

0

where XL 5 vL and is called the inductive reactance.

Hence, a pure inductor has an impedance whose value is vL.

4.7 PHASE RELATION IN A PURE CAPACITOR

As discussed in Chapter 1, the relation between voltage and current is given by

v t
C

i t dt( ) ( )= ∫
1

Consider the function i t I t IM I e Im m
j t

m( ) sin= = 



 ∠ °v v  or 0

 

v t
C

I t d t

C
I t

m

m

( ) sin ( )

[ cos ]

=

= −

∫
1

1

v

v
v

= −

∴ = −

= 





−

I

C
t

v t V t

IM I e

m

m

m
j t

v
v

v

v

sin ( )

( ) sin ( )

( )

90

90

90

o

o

o

or VV

V
I

C

V

I
Z

j

C

m

m
m

m

m

∠−

=

∴
∠−

∠
= =

−

90

90

0

o

o

o

where  
v

v

Hence, the impedance is Z
j

C
jXC=

−
=−

v

where X
C

C =
1

v
 and is called the capacitive reactance.

If we draw the waveform for both, voltage and current, as shown 

in Fig. 4.21, there is a phase difference between these two waveforms.

As a result, in a pure capacitor, the current leads the voltage by 90°. 

The impedance value of a pure capacitor

X
C

C =
1

v

Fig. 4.20

Fig. 4.21

LO 4



Introduction to Alternating Currents and Voltages 177 

Fig. 4.22

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 4
r4-4.1 A sinusoidal voltage of v(t) 5 50 sin (500t) applied to a capacitive circuit. Determine the capacitive 

reactance, and the current in the circuit.

Additional Solved Problems

PROBLEM 4.1

Find the average values of the voltages across R1 and R2. In 

Fig. 4.22, values shown are rms.

Solution  The voltage across the 2 V resistor V2 5 30 V

The voltage across the 5 V resistor V5 5 50 V

Peak value of the voltage across the 2 V resistor × =2 30 42 43. V

Peak value of the voltage across the 5 V resistor × =2 50 70 71. V

Average value across the 2 V resistor 5 42.43 3 0.637 5 27.03 V

Average value across the 5 V resistor 5 70.71 3 0.637 5 45 V

PROBLEM 4.2

A sinusoidal voltage is applied to the circuit shown in Fig. 4.23, determine 

rms current, average current, peak current, and peak-to-peak current.

Solution  The equation for the applied voltage v(t) 5 Vpsin vt

  5 10 sin vt

The equation for the current i t
V

t t
p

( ) sin sin= = × −

1
10 10 3

kV
v v

Peak value of the current ip 5 10 mA

rms value of the current irms = =
10

2
7 071. mA

Peak-to-peak value of the current ipp 5 20 mA

Average value of the current iav 5 10 3 0.637 5 6.37 mA.

PROBLEM 4.3

A sinusoidal voltage source in series with a dc source as shown in Fig. 4.24. Sketch the voltage across RL. 

Determine the maximum current through RL and the average voltage across RL.

Fig. 4.24

Fig. 4.23

1 kΩ

Vp 10 V
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Solution  The voltage equation v(t) 5 150 sin vt

The voltage across resistance RL is 

v t tRL
( ) = +200 150sin Vv .

Peak-to-peak value of the voltage is 300 V.

The voltage across RL is shown in Fig. 4.25.

The current through the resistance RL is

i t t

i t t A

R

R

L

L

( ) [ sin ]

( ) . sin

= +

= +

1

100
200 150

2 1 5

v

v

Hence the maximum current is 3.5 A

Average voltage across RL 5 200 V.

PROBLEM 4.4

An alternating current varying sinusoidally, with a frequency of 50 Hz has an rms value of 20 A. Write down the 

equation for the instantaneous value and find this value at (a) 0.0025 s, and (b) 0.0125 s after passing through 

a positive maximum value. At what time, measured from a positive maximum value, will the instantaneous 

current be 14.14 A?

Solution  The rms value of the current waveform

Irms 5 20A

Peak of the current waveform

Im = × =2 20 28 28. volts

The current equation i(t) 5 Imsin vt 5 28.28 sin vt

If it is passing through maximum positive value

i(t) 5 28.28 cos vt 5 28.28 cos 2pft

i(t) 5 28.28 cos100 pt

(a) At t 5 0.0025 s

 i(t) 5 28.28 cos100 p (0.0025) 5 20 A

(b) At t 5 0.0125 s

 i(t) 5 28.28 cos100 p (0.0125) 5 – 20 A

At t =
1

300
s, the instantaneous current becomes 14.14 A.

PROBLEM 4.5

Determine the rms value of the voltage defined by

v( ) sint t= + +






5 5 314

6

p

Solution  If the function consists of a number of sinusoidal terms, i.e.

v  (t) 5 V0 1 (VC1 cos vt 1 VC2 cos 2 vt 1 ...) 1 (VS1 sin vt 1 VS2 sin 2 vt 1 ...)

The rms, or effective value is given by

V V V V V Vrms C C S S= + + + + + +0
2

1
2

2
2

1
2

2
21

2
( ...) ( ...)

Fig. 4.25
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From the equation

v t t( ) sin= + +






5 5 314

6

p

The rms value of the waveform is

Vrms = + = + =5
5

2
25 12 5 6 122

2

. . V.

PROBLEM 4.6

Sine wave ‘A’ has a positive going zero crossing at 45°. Sine wave ‘B’ has 

a positive going zero crossing at 60°. Determine the phase angle between 

the signals. Which of the signals lags behind the other?

Solution  The two signals are shown in Fig. 4.26.

From Fig. 4.26, the signal B lags behind signal A by 15°. In other 

words, the signal A leads the signal B by 15°.

PROBLEM 4.7

One sine wave has a positive peak at 75°, and another has a positive peak at 100°. How much is each sine 

wave shifted in phase from the 0° reference? What is the phase angle between them?

Solution  The two signals are drawn as shown in Fig. 4.27.

Fig. 4.27

The signal A leads the reference signal by 15°.

The signal B lags behind the reference signal by 10°.

The phase angle between these two signals is 25°.

PROBLEM 4.8

A sinusoidal voltage is applied to the resistive circuit shown in Fig. 4.28. 

Determine the following values.
(a) Irms (b) Iav

(c) IP (d) IPP

Solution  The function given to the circuit shown is

v(t) 5 VP sin vt 5 20 sin vt

Fig. 4.26

Fig. 4.28
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The current passing through the resistor

i t
v t

R

i t t

t

IP

( )
( )

( ) sin

sin

=

=
×

= ×

= ×

−

−

20

2 10

10 10

10 10

3

3

3

v

v

A

The peak value IP 5 10 mA

Peak-to-peak value IPP 5 20 mA

rms value Irms  5 0.707 IP

  5 0.707 3 10 mA 5 7.07 mA

Average value Iav  5 (0.637) IP

  5 0.637 3 10 mA 5 6.37 mA

PROBLEM 4.9

A sinusoidal voltage is applied to a capacitor as shown in Fig. 4.29. The frequency 

of the sine wave is 2 kHz. Determine the capacitive reactance.

Solution  X
fC

C =

=
× × × ×

=

−

1

2

1

2 2 10 0 01 10

7 96

3 6

p

p .

. kV

PROBLEM 4.10

Determine the rms current in the circuit shown in Fig. 4.30.

Solution  XC

rms
rms

C

fC

I
V

X K

=

=
× × × ×

=

= = =

−

1

2

1

2 5 10 0 01 10

3 18

5

3 18
1 57

3 6

p

p .

.

.
.

kV

mmA

PROBLEM 4.11

A sinusoidal voltage is applied to the circuit shown in Fig. 4.31. The frequency 

is 3 kHz. Determine the inductive reactance.

Solution  XL 5 2pfL

 5 2p 3 3 3 103 3 2 3 10–3

 5 37.69 V

Fig. 4.29

Fig. 4.30

Fig. 4.31
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PROBLEM 4.12

Determine the rms current in the circuit shown in Fig. 4.32.

Solution  XL 5 2pfL

 5 2p 3 10 3 103 3 50 3 10–3

XL 5 3.141 kV

I
V

X
rms

rms

L

=

=
×

=
10

3 141 10
3 18

3.
. mA

PROBLEM 4.13

Find the form factor of the half-wave rectified sine 

wave shown in Fig. 4.33.

Solution  v 5 Vm sin vt, for 0 , vt , p

 5 0,  for p , vt , 2p

the period is 2p.

Average value V V t d t d t

V

av m= +














=

∫ ∫
1

2
0

0 318
0

2

p
v v v

p

p

p

sin ( ) ( )

. mm

rms m m

rms m

V V t d t V

V V

2 2

0

21

2

1

4

1

2

= ( ) =

=

∫p v v

p

sin ( )

Form factor =

=

=

V

V

V

V

rms

av

m

m

0 5

0 318

1 572

.

.

.

PROBLEM 4.14

Find the average and effective values of the sawtooth wave-form 

shown in Fig. 4.34 below.

Solution  From Fig. 4.34 shown, the period is T.

V
T

V

T
t dt

T

V

T
t dt

V

T

T V

av
m

T

m

T

m m

= =

= =

∫ ∫
1 1

2 2

0 0

2

2

Fig. 4.32

Fig. 4.33

Fig. 4.34
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Effective value  V
T

v dtrms

T

= ∫
1 2

0

 

=












=

∫
1

3

0

2

T

V

T
t dt

V

m

T

m

PROBLEM 4.15

Find the average and rms value of the full-wave rectified sine wave 

shown in Fig. 4.35.

Solution  Average value 
1

5sin ( )

3.185
0

Vav =

=

∫p v v

p

t d t

Effective value or rms value = ( )

= =

∫
1

25

2
3 54

2

0
p

v v

p

5sin t d t( )

.

PROBLEM 4.16

The full-wave rectified sine wave shown in Fig. 4.36 has a delay 

angle of 60°. Calculate Vav and Vrms.

Solution  Average value

o

 Vav t d t

t d t

V

=

=

∫

∫

1
10

1
10

0

60

p

p

sin ( ) ( )

sin ( )

v v

v v

p

p

aav t= − =
10

4 7860
p

p( cos ) .v

Effective value Vrms
= ( )

=
−








∫

∫

1
10

100 1 2

2

2

60

60

p
v v

p

v
v

p

p

sin ( )

cos
( )

t d t

t
d t

o

o

==6 33.

Fig. 4.35

Fig. 4.36
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PROBLEM 4.17

Find the form factor of the square wave as shown in Fig. 4.37.

Solution  v 5 20 for 0 , t , 0.01

5 0 for 0.01 , t , 0.03

The period is 0.03 second.

Average value  V dtav =

= =

∫
1

0 03
20

20 0 01

0 03
6 66

0

0 01

.

( . )

.
.

.

Effective value

Form fact

V dteff = = =∫
1

0 03
20 66 6 0 8162

0

0 01

.
( ) . .

.

oor = =
0 816

6 66
0 123

.

.
.

Answers to Practice Problems

4-1.1 5 Hz: 20 Hz; 2 kHz; 100 kHz

4-2.1 15.4 V; 26.57 V; 16.22 V; 216.22 V

4-3.1 12.99 V; 12.99 V; 14.49 V; 27.5 V; 27.5 V

4-3.2 Vrms 5 20.62 V; Irms 5 71.06 V

4-3.3 Vrms 5 115.47 volts

4-3.4 Vrms 5 
Vm

3

4-3.6 K 5 0.12

4-3.7 Vav 5 2 V; Vrms 5 4.47 V

4-3.10 27.57

4-3.12 0.581 Vm or 35.5°

Objective-Type Questions

rrr4.1 One sine wave has a period of 2 ms, another has a period of 5 ms, and yet other has a period of 10 ms. Which 

sine wave is changing at a faster rate?

 (a) Sine wave with period 2 ms  (b)  Sine wave with period of 5 ms

 (c) All are at the same rate   (d)  Sine wave with period of 10 ms

rrr4.2 How many cycles does a sine wave go through in 10 s when its frequency is 60 Hz?

 (a) 10 cycles (b) 60 cycles (c) 600 cycles (d) 6 cycles

rrr4.3 If the peak value of a certain sine wave voltage is 10 V, what is the peak-to- peak value?

 (a) 20 V (b) 10 V (c) 5 V (d) 7.07 V

rrr4.4 If the peak value of a certain sine wave voltage is 5 V, what is the rms value?

 (a) 0.707 V (b) 3.535 V (c) 5 V (d) 1.17 V

rrr4.5 What is the average value of a sine wave over a full cycle?

 (a) Vm (b) 
Vm

2
 (c) zero (d) 2Vm

Fig. 4.37
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rrr4.6 A sinusoidal current has peak value of 12 A. What is its average value?

 (a) 7.64 A (b) 24 A (c) 8.48 A (d) 12 A

rrr4.7 Sine wave A has a positive going zero crossing at 30°. Sine wave B has a positive going zero crossing at 45°. 

What is the phase angle between two signals?

 (a) 30° (b) 45° (c) 75° (d) 5°

rrr4.8 A sine wave has a positive going zero crossing at 0° and an rms value of 20 V. What is its instantaneous value 

at 145°.

 (a) 7.32 V (b) 16.22 V (c) 26.57 V (d) 21.66 V

rrr4.9 In a pure resistor, the voltage and current are

 (a) out of phase (b) in phase (c) 90° out of phase (d) 45° out of phase

rrr4.10 The rms current through a 10 kV resistor is 5 mA. What is the rms voltage drop across the resistor?

 (a) 10 V (b) 5 V (c) 50 V (d) zero

rrr4.11 In a pure capacitor, the voltage

 (a)  is in phase with the current  (b)  is out of phase with the current

 (c) lags behind the current by 90° (d) leads the current by 90°

rrr4.12 A sine-wave voltage is applied across a capacitor; when the frequency of the voltage is increased, the current

 (a) increases (b) decreases (c) remains the same (d) is zero

rrr4.13 The current in a pure inductor

 (a) lags behind the voltage by 90° (b) leads the voltage by 90°

 (c) is in phase with the voltage  (d)  lags behind the voltage by 45°

rrr4.14 A sine-wave voltage is applied across an inductor; when the frequency of voltage is increased, the current

 (a) increases (b) decreases (c) remains the same (d) is zero

rrr4.15 The rms value of the voltage for a voltage function v 5 10 1 5 cos (628t 1 30°) volts through a circuit is

 (a) 5 V (b) 10 V (c) 10.6 V (d) 15 V

rrr4.16 For the same peak value, which of the following waves will have the highest rms value?

 (a) Sine wave (b) Square wave

 (c) Triangular wave (d)  Half-wave rectified sine wave

rrr4.17 For 100 volts rms value triangular wave, the peak voltage will be

 (a) 100 V (b) 111 V  (c) 141 V (d) 173 V

rrr4.18 The form factor of dc voltage is

 (a) zero (b) infinite (c) unity (d) 0.5

rrr4.19 For the half-wave rectified sine wave shown in Fig. 4.38, 

the peak factor is

 (a) 1.41 (b) 2.0 (c) 2.82 (d) infinite

rrr4.20 For the square wave shown in Fig. 4.39, the form 

factor is

 (a) 2.0 (b) 1.0 (c) 0.5 (d) zero

rrr4.21 The power consumed in a circuit element will be least when the 

phase difference between the current and voltage is

 (a) 0° (b) 30° (c) 90° (d) 180°

rrr4.22 A voltage wave consists of two components: a 50 V dc 

component and a sinusoidal component with a maximum value 

of 50 volts. The average value of the resultant will be

 (a) zero (b) 86.6 V (c) 50 (d) none of the above 

Fig. 4.39

Fig. 4.38

v

Vm

0 2 3 4 t

For�interactive�quiz�with�answers,
scan�the�QR�code�given�here
OR
visit
http://qrcode.flipick.com/index.php/262



5.1 IMPEDANCE DIAGRAM

So far, our discussion has been confined to resistive circuits. Resistance 

restricts the flow of current by opposing free electron movement. Each 

element has some resistance; for example, an inductor has some resistance; a 

capacitance also has some resistance. In the resistive element, there is no phase 

difference between the voltage and the current. In the case of pure inductance, the current lags behind  

the voltage by 90 degrees, whereas in the case of a pure capacitance, the current leads the voltage by 90 

degrees. Almost all electric circuits offer impedance to the flow of current. Impedance is a complex quantity 

having real and imaginary parts; where the real part is the resistance and the imaginary part is the reactance 

of the circuit.

Consider the RL series circuit shown in Fig. 5.1. If we apply the real function Vm cos vt to the circuit, 

the response may be Im cos vt. Similarly, if we apply the imaginary function jVm sin vt to the same circuit, 

the response is jIm sin vt. If we apply a complex function, which is a combination of real and imaginary 

functions, we will get a complex response.

This complex function is Vm e jvt 5 Vm (cos vt 1 j sin vt).

Applying Kirchhoff’s law to the circuit shown in Fig. 5.1,

we get V e Ri t L
di t

dt
m

j tv = +( )
( )

The solution of this differential equation is

i(t) 5 Im ejvt

By substituting i(t) in the above equation, we get

V e R I e L
d

dt
I em

j t
m

j t
m

j tv v v= + ( )Fig. 5.1

Vme jwt

5

LEARNING OBJECTIVES

LO   1 
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Vm e jvt 5 RIm e jvt 1 LIm jve jvt

Vm 5 (R 1 jvL)Im

Impedance is defined as the ratio of the voltage to current function

Z
V e

V

R j L
e

R j Lm
j t

m j t

=

+

= +
v

v

v

v

Complex impedance is the total opposition offered by the circuit elements 

to ac current, and can be displayed on the complex plane. The impedance is 

denoted by Z. Here the resistance R is the real part of the impedance, and the 

reactance XL is the imaginary part of the impedance. The resistance R is located 

on the real axis. The inductive reactance XL is located on the positive j axis. The 

resultant of R and XL is called the complex impedance.

Figure 5.2 is called the impedance diagram for the RL circuit. From Fig. 

5.2, the impedance Z R L= +2 2( )v , and angle u 5 tan21 vL/R. Here, the 

impedance is the vector sum of the resistance and inductive reactance. The 

angle between impedance and resistance is the phase angle between the current 

and voltage applied to the circuit.

Similarly, if we consider the RC series circuit, and apply the complex 

function Vm e jvt to the circuit in Fig. 5.3, we get a complex response as follows.

Applying Kirchhoff’s law to the above circuit, we get

V e Ri t
C

i t dtm
j tv = + ∫( ) ( )

1

Solving this equation, we get

i(t) 5 Im e jvt

V e R I e
C

I
j

e

RI
j

C
I e

m
j t

m
j t

m
j t

m m

v v v

v

v

= +
+









= −












1 1

jj t

m mV R
j

C
I

v

v
= −









The impedance

Z
V e

V R j C e

m
j t

m
j t

=
−

v

vv/ [ / ]

5 [R 2 ( j/vC)]

Here, the impedance Z consists of resistance (R), which is the real part, and 

capacitive reactance (XC 5 1/ vC), which is the imaginary part of the impedance. 

Fig. 5.2

Fig. 5.3

Fig. 5.4
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The resistance, R, is located on the real axis, and the capacitive reactance XC is located on the negative j axis 

in the impedance diagram in Fig. 5.4.

From Fig. 5.4, impedance Z R XC= +2 2  or R C2 2
1+ ( / )v  and angle u 5 tan21 (1/vCR). Here, the 

impedance, Z, is the vector sum of resistance and capacitive reactance. The angle between resistance and 

impedance is the phase angle between the applied voltage and current in the circuit.

5.2 PHASOR DIAGRAM

A phasor diagram can be used to represent a sine wave in terms of its magnitude 

and angular position. Examples of phasor diagrams are shown in Fig. 5.5.

In Fig. 5.5 (a), the length of the arrow represents the magnitude of the sine 

wave; angle u represents the angular position of the sine wave. In Fig. 5.5 (b), 

the magnitude of the sine wave is one and the phase angle is 30°. In Fig. 5.5 (c) 

and (d), the magnitudes are four and three, and phase angles are 135° and 225°, respectively. The position 

of a phasor at any instant can be expressed 

as a positive or negative angle. Positive 

angles are measured counterclockwise from 

0°, whereas negative angles are measured 

clockwise from 0°. For a given positive 

angle u, the corresponding negative angle 

is u 2 360°. This is shown in Fig. 5.6 (a). 

In Fig. 5.6 (b), the positive angle 135° of 

vector A can be represented by a negative 

angle 2225°, (135° 2 360°).

A phasor diagram can be used to represent 

the relation between two or more sine 

waves of the same frequency. For example, 

the sine waves shown in Fig. 5.7 (a) can be 

represented by the phasor diagram shown in 

Fig. 5.7 (b).

In the above figure, the sine wave B lags 

behind the sine wave A by 45°; the sine wave 

C leads the sine wave A by 30°. The length of 

the phasors can be used to represent peak, rms, or average values.

Fig. 5.5

LO   2 

Fig. 5.6
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EXAMPLE 5.1

Draw the phasor diagram to represent the two sine waves 

shown in Fig. 5.8.

Solution  The phasor diagram representing the sine waves is 

shown in Fig. 5.9. The length of the each phasor represents the 

peak value of the sine wave.

Fig. 5.9

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 2

rrr5-2.1 A 250 V, 50 Hz voltage is applied to a coil of 5 H inductance and resistance of 2 V in series with 

a capacitance C. What value must ‘C’ have in order that the voltage across the coil shall be 280 V? 

Draw the phasor diagram.

Fig. 5.7

Fig. 5.8

*Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category
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5.3 SERIES CIRCUITS

The impedance diagram is a useful tool for analysing series ac circuits. 

Basically we can divide the series circuits as RL, RC, and RLC circuits. 

In the analysis of series ac circuits, one must draw the impedance 

diagram. Although the impedance diagram usually is not drawn to 

scale, it does represent a clear picture of the phase relationships.

5.3.1 Series RL Circuit

If we apply a sinusoidal input to an RL circuit, the current in the circuit and all voltages across the elements 

are sinusoidal. In the analysis of the RL series circuit, we can find the impedance, current, phase angle and 

voltage drops. In Fig. 5.10 (a), the resistor voltage (VR) and 

current (I ) are in phase with each other, but lag behind the 

source voltage (VS). The inductor voltage (VL) leads the 

source voltage (VS). The phase angle between current and 

voltage in a pure inductor is always 90°. The amplitudes 

of voltages and currents in the circuit are completely 

dependent on the values of elements (i.e. the resistance and 

inductive reactance). In the circuit shown, the phase angle 

is somewhere between zero and 90° because of the series 

combination of resistance with inductive reactance, which 

depends on the relative values of R and XL.

The phase relation between current and voltages in a 

series RL circuit is shown in Fig. 5.10 (b).

Here, VR and I are in phase. The amplitudes are arbitrarily 

chosen. From Kirchhoff’s voltage law, the sum of the 

voltage drops must equal the applied voltage. Therefore, 

the source voltage VS is the phasor sum of VR and VL.

∴ = +V V Vs R L
2 2

The phase angle between resistor voltage and source voltage is

u 5 tan21 (VL/VR)

where u is also the phase angle between the source voltage and the current. The 

phasor diagram for the series RL circuit that represents the waveforms in Fig. 

5.10 (c).

EXAMPLE 5.2

To the circuit shown in Fig. 5.11, consisting a 1 kV resistor 

connected in series with a 50 mH coil, a 10 V rms, 10 kHz signal 

is applied. Find impedance Z, current I, phase angle u, voltage 

across resistance VR , and the voltage across inductance VL.

Fig. 5.10 (a)

Fig. 5.10 (b)

V
L

V
R

I

θ

90º

0

V

Fig. 5.10 (c)

LO  3 

Fig. 5.11
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Solution  Inductive reactance XL 5 vL

 5 2pf L 5 (6.28) (104) (50 3 1023) 5 3140 V

In rectangular form,

Total impedance Z 5 (1000 1 j3140) V

 

+

+ =

R X
2 2

2 2
1000 3140 3295 4

L

( ) ( ) . V

Current I 5 VS /Z 5 10/3295.4 5 3.03 mA

Phase angle u 5 tan21 (XL/R) 5 tan21 (3140/1000) 5 72.33°

Therefore, in polar form, total impedance Z 5 3295.4 ∠72.33°

Voltage across resistance VR 5 IR

 5 3.03 3 1023 3 1000 5 3.03 V

 Voltage across inductive reactance VL 5 IXL

 5 3.03 3 1023 3 3140 5 9.51 V

EXAMPLE 5.3

Determine the source voltage and the phase angle, if voltage across the 

resistance is 70 V and voltage across the inductive reactance is 20 V as 

shown in Fig. 5.12.

Solution  In Fig. 5.12, the source voltage is given by

VS L= +

= + =

V VR
2 2

2 2
70 20 72 8( ) ( ) . V

The angle between current and source voltage is

u 5 tan21 (VL/VR) 5 tan21 (20/70) 5 15.94°

5.3.2 Series RC Circuit

When a sinusoidal voltage is applied to an RC series circuit, the current in the circuit and voltages across each 

of the elements are sinusoidal. The series RC circuit is shown in Fig. 5.13 (a).

Here, the resistor voltage and current are in phase with each 

other. The capacitor voltage lags behind the source voltage. The 

phase angle between the current and the capacitor voltage is 

always 90°. The amplitudes and the phase relations between the 

voltages and current depend on the ohmic values of the resistance 

and the capacitive reactance. The circuit is a series combination 

of both resistance and capacitance; and the phase angle between 

the applied voltage and the total current is somewhere between 

zero and 90°, depending on the relative values of the resistance 

Fig. 5.12

Fig. 5.13 (a)
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and reactance. In a series RC circuit, the current is the same through the resistor and the capacitor. Thus, the 

resistor voltage is in phase with the current, and the capacitor voltage lags behind the current by 90° as shown 

in Fig. 5.13 (b).

Here, I leads VC by 90°. VR and I are in phase. From Kirchhoff’s voltage law, the sum of the voltage drops 

must be equal to the applied voltage. Therefore, the source voltage is given by

  V V VS R C= +2 2

The phase angle between the resistor voltage and the 

source voltage is

  u 5 tan21 (VC /VR)

Since the resistor voltage and the current are in phase, u 

also represents the phase angle between the source voltage 

and current. The voltage phasor diagram for the series RC 

circuit, voltage, and current phasor diagrams represented by 

the waveforms in Fig. 5.13 (b) are shown in Fig. 5.13 (c).

Fig. 5.13 (c)

EXAMPLE 5.4

A sine-wave generator supplies a 500 Hz, 10 V rms signal to 

a 2 kV resistor in series with a 0.1 mF capacitor as shown in 

Fig. 5.14. Determine the total impedance Z, current I, phase 

angle u, capacitive voltage VC , and resistive voltage VR .

Solution  To find the impedance Z, we first solve for XC

X
fC

C = =
× × × −

1

2

1

6 28 500 0 1 10
6p . .

 5 3184.7 V

In rectangular form,

Total impedance Z 5 (2000 2 j3184.7) V

Z = +( ) ( . )2000 3184 7
2 2

 5 3760.6 V

Phase angle u 5 tan21 (2XC /R) 5 tan21(23184.7/2000) 5 257.87°

Fig. 5.13 (b)

Fig. 5.14
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Current I 5 VS /Z 5 10/3760.6 5 2.66 mA

Capacitive voltage VC 5 IXC

5 2.66 3 1023 3 3184.7 5 8.47 V

Resistive voltage VR 5 IR

5 2.66 3 1023 3 2000 5 5.32 V

The arithmetic sum of VC and VR does not give the applied voltage of 10 volts. In fact, the total applied 

voltage is a complex quantity. In rectangular form,

Total applied voltage VS 5 5.32 2 j8.47 V

In polar form,

VS 5 10 ∠257.87°  V

The applied voltage is complex, since it has a phase angle relative to the resistive current.

EXAMPLE 5.5

Determine the source voltage and phase angle when the voltage across 

the resistor is 20 V and the capacitor is 30 V as shown in Fig. 5.15.

Solution  Since VR and VC are 90° out of phase, they cannot be added 

directly. The source voltage is the phasor sum of VR and VC .

∴ = + = + =V V VS R C
2 2 2 2

20 30 36( ) ( ) V

The angle between the current and source voltage is

u 5 tan–1 (VC /VR) 5 tan–1 (30/20) 5 56.3°

5.3.3 Series RLC Circuit

A series RLC circuit is the series combination 

of resistance, inductance and capacitance. If 

we observe the impedance diagrams of series 

RL and series RC circuits as shown in Fig. 

5.16 (a) and (b), the inductive reactance, XL , 

is displayed on the 1 j axis and the capacitive 

reactance, XC , is displayed on the – j axis. 

These reactance are 180° apart and tend to 

cancel each other.

The magnitude and type of reactance in a 

series RLC circuit is the difference of the two reactance. The impedance for an RLC series circuit is given by 

Z R X XC= + −2 2( )L . Similarly, the phase angle for an RLC circuit is

=
−









−tan 1 X X

R

L C

Fig. 5.15

Fig. 5.16
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EXAMPLE 5.6

In the circuit shown in Fig. 5.17, determine the total 

impedance, current I, phase angle u, and the voltage 

across each element.

Solution  To find impedance Z, we first solve for XC and 

XL

X
fC

C = =
× × × −

1

2

1

6 28 50 10 10
6p .

5 318.5 V

XL 5 2pfL 5 6.28 3 0.5 3 50 5 157 V

Total impedance in rectangular form

Z 5 (10 1 j157 – j 318.5) V

 5 10 1 j(157 – 318.5) V 5 10 – j161.5 V

Here, the capacitive reactance dominates the inductive reactance.

Z

I V ZS

= +

= + =

= = =

( ) ( . )

. .

.
.

10 161 5

100 26082 2 161 8

50

161 8
0

2 2

V

Current 33 A

Phase angle u 5 tan–1 [(XL 2 XC)/R] 5 tan–1 (2161.5/10) 5 2 86.45°

Voltage across the resistor VR 5 IR 5 0.3 3 10 5 3 V

Voltage across the capacitive reactance 5 IXC 5 0.3 3 318.5 5 95.55 V

Voltage across the inductive reactance 5 IXL 5 0.3 3 157 5 47.1 V

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 3

r5-3.1 For the circuit shown in Fig. Q.1, determine the impedance, phase angle, and total current.

Fig. Q.1

Fig. 5.17
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rrr5-3.2 Determine the impedance and phase angle in the circuit shown in Fig. Q.2.

Fig. Q.2

rrr5-3.3 Calculate the impedance at each of the following frequencies; also determine the current at each 

frequency in the circuit shown in Fig. Q.3.

  (a) 100 Hz        (b) 3 kHz

Fig. Q.3

rrr5-3.4 Find the values of R and C in the circuit shown in Fig. Q.4 so that 

Vb 5 4Va and Va, Vb are in phase quardrature.

rrr5-3.5 The applied voltage to a series circuit is v(t) 5 50 sin (2000t225°) 

volts and the resultant current through the circuit is i(t) 5 8 sin 

(2000t 1 5°) amperes. Find the circuit elements.

rrr5-3.6 The three-element series circuit contains one inductance 

L 5 0.02  H. The applied voltage and resulting currents are shown 

on the phasor diagram in Fig. Q.6. If v 5 500 rad/sec, what are the 

two circuit elements?

rrr5-3.7 For the circuit shown in Fig. Q.7, the voltage across the inductor is 

vL 5 15 sin 200 t. Find the total voltage and the angle by which the current lags the total voltage.

Fig. Q.7

Fig. Q.4

Fig. Q.6
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Frequently Asked Questions linked to LO 3
r5-3.1  A coil having a resistance of 10 kW and inductance of 50 mH is connected to a 10-volt, 10 kHz 

power supply. Calculate the impedance. [AU April/May 2011]

rr5-3.2 A two-element series circuit is connected across ac source e(t) = 200 2 sin(wt + 20º)V. The current 

in the circuit is then found to be i(t) =10 2  cos(wt – 25º) A Determine the parameters of the circuit. 

  [JNTU Nov. 2012]

5.4 PARALLEL CIRCUITS

The complex number system simplifies the analysis of parallel ac circuits. 

In series circuits, the current is the same in all parts of the series circuit. In 

parallel ac circuits, the voltage is the same across each element.

5.4.1  Parallel RC Circuits

The voltages for an RC series circuit can be expressed using complex numbers, where the resistive voltage is 

the real part of the complex voltage and the capacitive voltage is the imaginary part. For parallel RC circuits, 

the voltage is the same across each component. Here, the total current can be represented by a complex 

number. The real part of the complex current expression is the resistive current; the capacitive branch current 

is the imaginary part.

EXAMPLE 5.7

A signal generator supplies a sine wave of 20 V, 5 kHz to 

the circuit shown in Fig. 5.18. Determine the total current 

IT , the phase angle and total impedance in the circuit.

Solution  Capacitive reactance

X
fC

C = =
× × × ×

=
−

1

2

1

6 28 5 10 0 2 10

159 2
3 6p . .

. V

Since the voltage across each element is the same as the applied voltage, we can solve for the two branch 

currents.

∴ current in the resistance branch

I
R

R
S= = =

V 20

100
0 2. A

and current in the capacitive branch

IC = = =
V

X

S

C

20

159 2
0 126

.
. A

LO   4 

Fig. 5.18

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600
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The total current is the vector sum of the two branch currents.

∴ total current IT 5 (IR 1 jIC) A 5 (0.2 1 j0.13) A

In polar form, IT 5 0.24 ∠33°

So the phase angle u between applied voltage and total current is 33°. It indicates that the total line current 

is 0.24 A and leads the voltage by 33°. Solving for impedance, we get

Z
IT

= =
∠

∠
= ∠−

VS 20 0

0 24 33

83 3 33

o

o

o

.
. V

5.4.2 Parallel RL Circuits

In a parallel RL circuit, the inductive current is imaginary and lies on the –j axis. The current angle is 

negative when the impedance angle is positive. Here also, the total current can be represented by a complex 

number. The real part of the complex current expression is the resistive current; and inductive branch current 

is the imaginary part.

EXAMPLE 5.8

A 50 V resistor is connected in parallel with an inductive 

reactance of 30 V. A 20 V signal is applied to the circuit. 

Find the total impedance and line current in the circuit 

shown in Fig. 5.19.

Solution  Since the voltage across each element is the same 

as the applied voltage, current in the resistive branch,

IR = =
∠

∠
=

V

R

S 20 0

50 0

0 4

o

o
A.

Current in the inductive branch

IL
L

= =
∠

∠
= ∠−

V

X

S 20 0

30 90

0 66 90

o

o

o.

Total current is IT 5 0.4 2 j0.66

In polar form, IT 5 0.77 ∠258.8°

Here the current lags behind the voltage by 58.8°.

Total impedance Z
V

I

S

T

=

=
–

–-

= –
20 0

0 77 58 8
25 97 58 8

o

o

o

. .
. . V

Fig. 5.19
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NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 4

rrr5-4.1 For the parallel circuit shown in Fig. Q.1, find the currents 

and the total current and construct the phasor diagram.

rrr5-4.2 Determine the voltage across each element in the circuit 

shown in Fig. Q.2. Convert the circuit into an equivalent 

series form. Draw the voltage phasor diagram.

rrr5-4.3 For the circuit shown in Fig. Q.3, the applied voltage v 5 Vm 

cos vt. Determine the current in each branch and obtain the total current in terms of the cosine 

function.

Fig. Q.2 Fig. Q.3

rrr5-4.4 In a parallel circuit having a resistance R 5 5 V and L 5 0.02 H, the applied voltage is v 5 100  

sin (1000 t 1 50°) volts. Find the total current and the angle by which the current lags the applied 

voltage.

rrr5-4.5 In the parallel circuit shown in Fig. Q.5, the current in the inductor is five times greater than the 

current in the capacitor. Find the element values.

rrr5-4.6 For the circuit shown in Fig. Q.6, find the total current and the magnitude of the impedance.

Fig. Q.5 Fig. Q.6

5.5 COMPOUND CIRCUITS

In many cases, ac circuits to be analysed consist of a combination of series 

and parallel impedances. Circuits of this type are known as series-parallel, or 

compound circuits. Compound circuits can be simplified in the same manner as a 

series-parallel dc circuit consisting of pure resistances.

Fig. Q.1

LO   5 
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EXAMPLE 5.9

Determine the equivalent impedance of Fig. 5.20.

Solution  In the circuit, Z1 is in series with the parallel combination 

of Z2 and Z3.

where Z1 5 (5 1 j10) V

Z2 5 (2 2 j4) V

Z3 5 (1 1 j3) V

The total impedance

Z Z
Z Z

Z Z

j
j j

j j

T = +
+

= + +
− +

− + +

1
2 3

2 3

5 10
2 4 1 3

2 4 1 3
( )

( ) ( )

( ) ( )

= + +
–- ∞¥ –+ ∞

-

= + +
– ∞

-

( )
. . . .

( )
.

5 10
4 47 63 4 3 16 71 5

3 1

5 10
14 12 81

3 1

j
j

j
j

== + +
– ∞

–- ∞
( )

.

.
5 10

14 12 81

3 16 18
j

5 5 1 j10 1 4.46 ∠26.1°

5 5 1 j10 1 4 1 j1.96

5 9 1 j11.96

The equivalent circuit for the compound circuit shown in Fig. 5.20 is a series circuit containing 9 V of 

resistance and 11.96 V of inductive reactance. In polar form,

Z 5 14.96 ∠53.03°

The phase angle between current and applied voltage is

u 5 53.03°

EXAMPLE 5.10

In the circuit of Fig. 5.21, determine the values 

of the following (a) ZT  (b) IT  (c) u.

Fig. 5.20

Fig. 5.21
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Solution  First, the inductive reactance is calculated.

XL 5 2p f  L

 5 2p 3 50 3 0.1 5 31.42 V

In Fig. 5.22, the 10 V resistance is in series with the parallel combination of 20 V and j31.42 V.

Fig. 5.22

∴ Z
j

j
T = +

+

= +
∠

∠
= +

10
20 31 42

20 31 42

10
628 4 90

37 24 57 52

10

( ) ( . )

( . )

.

. .

o

o
116 87 32 48. .∠ o

  5 10 1 14.23 1 j9.06 5 24.23 1 j 9.06

In polar form, ZT 5 25.87 ∠20.5°

Here, the current lags behind the applied voltage by 20.5°.

Total current IT
S

T

=

=
∠

= ∠−

V

Z

20

25 87 20 5

0 77 20 5

. .
. .

o

o

The phase angle between voltage and current is

u 5 20.5°

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 5
rrr5-5.1 Determine the total impedance Z T , the total current I T , phase angle u, voltage across inductor 

L, and voltage across resistor R 3 in the circuit shown in Fig. Q.1.

Fig. Q.1
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rrr5-5.2 For the circuit shown in Fig. Q.2, determine 

the total current IT , phase angle u and voltage 

across each element.

rrr5-5.3 In the parallel circuit shown in Fig. Q.3, the 

applied voltage is v 5 100 sin 5000 t  V. Find 

the currents in each branch and also the total 

current in the circuit.

i
T i

1

i
2

Fig. Q.3

rrr5-5.4 Solve for current I using PSpice in the circuit shown in Fig. Q.4.

Fig. Q.4

rrr 5-5.5 Using PSpice, find i0 for the circuit shown in Fig. Q.5.

2i
0

t

Fig. Q.5

rrr5-5.6 Using PSpice, find Thevenin equivalent circuit of the following Fig. Q.6 from terminals a – b and 

c – d.

Fig. Q.2
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∠ ∠

Fig. Q.6

rr5-5.7 With PSpice, obtain i0 using superposition principle (Fig. Q.7).

Fig. Q.7

Frequently Asked Questions linked to LO 5
r5-5.1 For the circuit shown in Fig. Q.1, determine the total current IT, phase angle, and power factor.

  [AU Nov./Dec. 2012]

rr5-5.2 In the two-mesh network shown in Fig. Q.2, determine the [JNTU Nov. 2012]

 a) mesh current, b) power supplied by the source, and c) power dissipated in each resistor.

100 µF 10 W

50 V

100Hz
30 W 0.1 H

IT
– 3j W 3 W2 W – 5j W

j4 W100 V 1 W

Fig. Q.1 Fig. Q.2

Additional Solved Problems

PROBLEM 5.1

Calculate the total current in the circuit in Fig. 5.23, 

and determine the voltage across resistor VR, and across 

capacitor VC.

Fig. 5.23
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Fig. 5.24 (b)

Solution  Total impedance in the circuit shown in Fig. 5.23 is

Z j= × −
× × −

100 10
1

100 0 01 10

3

6p .

Z = × −333 65 10 72 563. . ° V

The current in the circuit is

I
V

Z
= =

× −

50

333 65 10 72 563. . ο

 = × °−0 15 10 72 563. . A

The voltage across resistor

V IRR = = × × × °

= °

−0 15 10 100 10 72 56

15 72 56

3 3. .

. V

The voltage across capacitor

V IXC C= = × °×
− °

× ×

= − °

−
−

0 15 10 72 56
1 90

100 0 01 10

47 75 17 44

3

6
. .

.

. .

p

V

PROBLEM 5.2

A signal generator supplies a sine wave of 10 V, 10 

kHz, to the circuit shown in Fig. 5.24(a). Calculate 

the total current in the circuit. Determine the phase 

angle u for the circuit. If the total inductance in the 

circuit is doubled, does u increase or decrease, and 

by how many degrees?

Solution  In the circuit shown in Fig. 5.24 (a), 

the inductances in mH are converted into ohms as 

shown in Fig. 5.24 (b).

The total impedance in the circuit

Z 5 100 1 ( j125.66 || j314.15) V

= + = °100 89 85 134 43 41 94j . . . V

The total current in the circuit

I = − ° = − °
10

134 43
41 94 0 074 41 94

.
. . .

If the inductance value is doubled, the impedance

Z = + = °100 179 7 205 65 60 90j . . . V

Hence, the u increased by 19°.

Fig. 5.24(a)
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PROBLEM 5.3

For the circuit shown in Fig. 5.25, determine the voltage 

across each element. Is the circuit predominantly 

resistive or inductive? Find the current in each branch 

and the total current.

Solution  The circuit in Fig. 5.25 is converted as 

shown in Fig. 5.26.

Fig. 5.26

Consider the node voltage V1 at the node 1.

By applying Kirchhoff’s current law,

V V V V
1 1 1 1

30 0

100 314 1 90 500 942 5 90
0

− °
+

°
+ +

°
=

. .
 (5.1)

From Eq. (5.1), we get the node voltage

V j
1

23 1 19 71 21 75 7 8= ° = +. . . .

The voltage across the 100 V resistor  = °−30 0 1V

5 30 2 21.75 2 j 7.8

5 8.25 2 j 7.8

= − °11 35 43 4. . V

The voltage across remaining branch element is

V
1

23 1 19 71= °. . V

The current through the 100 V resistance = =
− °

= − °

V

I

100

100

100

11 35 43 4

100

0 113 43 4

. .

. . A

The current through the 500 V resistance

I
V

500
1

500

23 1 19 71

500
0 046 19 71= =

°
= °

. .
. . A

The current through the 1 mH inductor =
°

°
= − °

23 1 19 71

314 1 90
0 073 70 29

. .

.
. . A

Fig. 5.25
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The current through the 3 mH inductor =
°

°
= − °

23 1 19 71

942 5 90
0 024 70 29

. .

.
. . A

Since the total current lags, the circuit is predominantly inductive.

Total current I = − °0 113 43 4. . A .

PROBLEM 5.4

For the circuit shown in Fig. 5.27, determine the value of frequency 

of supply voltage when a 100 V, 50 A current is supplied to the 

circuit.

Solution  Magnitude of the total current 5 50 A

Total impedance Z
j L

j L
T =

+
10

10

( )v

v

Total current in the circuit I
V

Z
T

T

=

I
j L

j L
T =

+100 10

10

( )v

v

∴ = −I j
L

T 10
100

v

The magnitude of the current = +






 =( )10

100
50

2

2

vL

From the above equation, we have

v 5 0.816 and f 5 0.125 Hz.

PROBLEM 5.5

A sine-wave generator supplies a signal of 100 V, 

50 Hz to the circuit shown in Fig. 5.28. Find the 

current in each branch, and total current. Determine 

the voltage across each element.

Solution  The inductance and capacitance values 

are converted into ohms as shown in Fig. 5.29.

The node voltage = °100 0

The current in (3 1 j31.41) V is

I
j

j
1

100 0

3 31 41
0 3 3 15=

°
+

= −
.

( . . ) A

Fig. 5.27

Fig. 5.28
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The current in (5 2 j31.83) V is

I
j

j2

100 0

5 31 83
0 48 3 1=

°
−

= +
.

. . )( A

The current in (10 1 j150.73) V is

I
j

j
3

100 0

10 150 73
0 044 0 66=

°
+

= −
.

( . . ) A

The total current I 5 I1 1 I2 1 I3

I 5 (0.8242j0.71) A

The voltage across the 3 V resistor V j3 3 0 3 3 15 9 51 84 5= − = − °( . . ) . . V

The voltage across the 5 V resistor V j5 5 0 48 3 1 15 49 81 1= + = °( . . ) . . V

The voltage across the 10 V resistor V j10 10 0 044 0 66 6 6 86 2= − = − °( . . ) . . V

The voltage across the 0.1 H inductance

V j j0 1 0 3 3 15 31 41 99 35 5 44. ( . . ) ( . ) . .H V= − = °

The voltage across the 100 mF capacitance

V j j100 0 48 3 1 31 83 99 62 8 8mF V= + × − = − °( . . ) ( . ) . .

The voltage across the 0.5 H inductance

V j j
0 5

0 044 0 66 157 81 103 84 3 8. ( . . ) ( . ) . .H V= − = °

The voltage across the 500 mF capacitance

V j j
500

0 044 0 66 6 37 4 21 176 2mF V= − − = − °( . . ) ( . ) . .

PROBLEM 5.6

Determine the impedance and phase angle in the 

circuit shown in Fig. 5.30.

Solution 

Capacitive reactance X
fC

C =
1

2p

 

=
× × ×

=
−

1

2 50 100 10
31 83

6p
. V

Fig. 5.29

Fig. 5.30
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Capacitivesusceptance B
X

C
C

=

= =

1

1

31 83
0 031

.
. S

Conductance SG
R

= = =
1 1

50
0 02.

Total admittance Y G BC= +

= +

=

2 2

2 2
0 02 0 031

0 037

( . ) ( . )

. S

Total impedance

Phase angle

Z
Y

R

XC

= = =

=





−

1 1

0 037
27 02

1

.
.

tan

V

u





=








= °

−tan
.

.

1 50

31 83

57 52u

PROBLEM 5.7

For the parallel circuit in Fig. 5.31, find the magnitude of current in each branch and the total current. What 

is the phase angle between the applied voltage and total current?

Fig. 5.31

Solution  First let us find the capacitive reactances

X
f

fC

C1
1

6

2
2

1

2

1

2 50 100 10
31 83

1

2

1

2 50 300 10

=

=
× × ×

=

= =
× × ×

−

−

p

p

p p

C

. V

XC 66

10 61= . V
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Here, the voltage across each element is the same as the applied voltage.

Current in the 100 mF capacitor, I
V

X
C

S

C
1

1

10 0

31 83 90

0 31 90

=

=
∠

∠−
= ∠

o

o

o A
.

.

Current in the 300 mF capacitor, I
V

X
C

S

C
2

2

10 0

10 61 90

0 94 90

=

=
∠

∠−
= ∠

o

o

o A
.

.

Current in the 100 V resistor is I
V

R
R

S

1

1

10

100
0 1= = = . A

Current in the 200 V resistor is I
V

R
R

S

2

2

10

200
0 05= = = . A

Total current IT 5 IR1
 1 IR2

 1 j(IC1
 1 IC2

)

 5 0.1 1 0.05 1 j(0.31 1 0.94) 5 1.26 ∠83.2° A

The circuit shown in Fig. 5.31 can be simplified into a single parallel RC circuit as shown in Fig. 5.32.

Fig. 5.32

In Fig. 5.31, the two resistances are in parallel and can be combined into a single resistance. Similarly, the 

two capacitive reactances are in parallel and can be combined into a single capacitive reactance.

R
R R

R R

X
X X

X X
C

C C

C C

=
+

=

=
+

=

1 2

1 2

66 67

7 96
1 2

1 2

.

.

V

V

Phase angle u between voltage and current is

u =










=






 = °− −tan tan

.

.
.1 1 66 67

7 96
83 19

R

XC

Here, the current leads the applied voltage by 83.19°.
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PROBLEM 5.8

For the circuit shown in Fig. 5.33, determine the total impedance, total current, and phase angle.

Fig. 5.33

Solution  First, we calculate the magnitudes of the capacitive reactances.

X

X

C

C

1

2

1

2 50 100 10

31 83

1

2 50 300 10

10 61

6

6

=
× × ×

=

=
× × ×

=

−

−

p

p

.

.

V

V

We find the impedance of the parallel portion by finding the admittance.

G
R

B
X

Y G B

C
C

C

2

2

2 2

2 2 2

1 1

50
0 02

1 1

10 61
0 094

0 02

2

2

2

= = =

= = =

= + = +

.

.
.

( . )

S

S

(( . ) .

.
.

0 094 0 096

1 1

0 096
10 42

2

2

2

=

= = =

S

Z
Y

V

The phase angle associated with the parallel portion of the circuit

uP 5 tan–1 (R2/XC2
) 5 tan–1(50/10.61) 5 78.02°

The series equivalent values for the parallel portion are

Req 5 Z2 cos uP 5 10.42 cos (78.02°) 5 2.16 V

XC(eq) 5 Z2 sin uP 5 10.42 sin (78.02°) 5 10.19 V

The total resistance

RT 5 R1 1 Req

 5 (10 1 2.16) 5 12.16 V

XCT
 5 XC1

 1 XC(eq)

 5 (31.83 1 10.19) 5 42.02 V
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Total impedance

Z R XT T CT
= +

= + =

2 2

2 2
12 16 42 02 43 74( . ) ( . ) . V

We can also find the total current by using Ohm’s law.

I
V

Z
T

S

T

= = =
100

43 74
2 29

.
. A

The phase angle

u=










=






= °

−

−

tan

tan
.

.
.

1

1 42 02

12 16
73 86

X

R

CT

T

PROBLEM 5.9

Determine the voltage across each element of the circuit shown in Fig. 5.34 and draw the voltage phasor 

diagram.

Fig. 5.34

Solution  First we calculate XL1
 and XL2

XL1
 5 2p  f  L1 5 2p 3 50 3 0.5 5 157.08 V

XL2
 5 2p  f  L2 5 2p 3 50 3 1.0 5 314.16 V

Now we determine the impedance of each branch

Z R X

Z R X

L

L

1 1
2 2 2 2

2 2
2 2 2

1

2

100 157 08 186 2

330 314

= + = + =

= + = +

( ) ( . ) .

( ) (

V

.. ) .16 455 632 = V

The current in each branch

I
V

Z

I
V

Z

S

S

1

1

2

2

100

186 2
0 537

100

455 63
0 219

= = =

= = =

.
.

.
.

A

and A



Circuits and Networks210 

The voltage across each element

VR1
 5 I1R1 5 0.537 3 100 5 53.7 V

VL1
 5 I1XL1

 5 0.537 3 157.08 5 84.35 V

VR2
 5 I2R2 5 0.219 3 330 5 72.27 V

VL2
 5 I2XL2

 5 0.219 3 314.16 5 68.8 V

The angles associated with each parallel branch are now determined.

u1
1

1

11
157 08

100

57 52

=









=









=

− −tan tan
.

.

X

R

L

°°

=









=









=

− −u2
1

2

12
314 16

330

43

tan tan
.

.

X

R

L

559°

i.e. I1 lags behind VS by 57.52° and I2 lags behind VS by 

43.59°.

Here, VR1
 and I1 are in phase and therefore, lag behind VS by 

57.52°.

VR2
 and I2 are in phase, and therefore lag behind VS by 

43.59°.

VL1
 leads I1 by 90°, so its angle is 90° – 57.52° 5 32.48°.

VL2
 leads I2 by 90°, so its angle is 90° – 43.59° 5 46.41°.

The phase relations are shown in Fig. 5.35.

PROBLEM 5.10

In the series–parallel circuit shown in Fig. 5.36, the effective value of voltage across the parallel parts of the 

circuits is 50 V. Determine the corresponding magnitude of V.

Fig. 5.36

Solution  Here, we can determine the current in each branch of the parallel part.

Current in the j3 V branch, I1

50

3
16 67= = . A

Fig. 5.35
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Current in (10 1 j30) V branch, I2

50

31 62
1 58= =

.
. A

Total current IT 5 16.67 1 1.58 5 18.25 A

Total impedance ZT

j

j
= ∠ °+

∠ °× +
+ + ∠ °

= ∠

8 5 30
3 90 10 30

10 30 3 90

8 5

.
( )

( )

. 330
3 90 31 62 71 57

10 33

7 36 4 25
94 86 161 57

34 4

°+
∠ °× ∠ °

+

= + +
∠ °

. .

. .
. .

.

j

j
88 73 14∠ °.

 5 7.36 1 j4.25 1 2.75∠88.43°

 5 7.36 1 j4.25 1 0.075 1 j 2.75

 5 (7.435 1 j7) V

 5 10.21 ∠43.27°

In polar form, total impedance is ZT 5 10.21 ∠43.27°

The magnitude of applied voltage V 5 I 3 ZT 5 18.25 3 10.21 5 186.33 V.

PROBLEM 5.11

For the series parallel circuit shown in Fig. 5.37, 

determine (a) the total impedance between the 

terminals a, b and state if it is inductive or capacitive, 

(b) the voltage across in the parallel branch, and (c) 

the phase angle.

Solution  Here, the parallel branch can be combined 

into a single branch

ZP 5 (3 1 j4) || (3 1 j4) 5 (1.5 1 j2) V

Total impedance ZT 5 1 1 j2 1 1.5 1 j2 5 (2.5 1 j4) V

Hence, the total impedance in the circuit is inductive

Total current in the circuit

I
V

Z

j

j
T

S

T

= =
+
+

=
∠ °

∠ °

10 20

2 5 4

22 36 63 43

4 72 57 99

.

. .

. .

Fig. 5.37
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∴ IT = ∠ °4 74 5 44. . A

i.e. the current lags behind the voltage by 57.99°.

Phase angle u 5 57.99°

Voltage across in the parallel branch

VP 5 (1.5 1 j2) 4.74 ∠5.44°

5 2.5 3 4.74 ∠(5.44° 1 53.13°)

5 11.85 ∠58.57° V

PROBLEM 5.12

In the series parallel circuit shown in Fig. 5.38, the two 

parallel branches A and B are in series with C. The 

impedances are ZA 5 10 1 j8, ZB 5 9 – j6, ZC 5 3 1 j2 

and the voltage across the circuit is (100 1 j0) V. 

Find the currents IA, IB and the phase angle between them.

Solution  Total parallel branch impedance,

Z
Z Z

Z Z

j j

j

P
A B

A B

=
+

=
+ −

+

=
∠ °× ∠− °

( ) ( )

. . . .

10 8 9 6

19 2

12 8 38 66 10 82 33 7

19..
. .

1 6
7 25 1 04

∠ °
= ∠− °

In rectangular form,

Total parallel impedance ZP 5 7.25 – j0.13

This parallel impedance is in series with ZC

Total impedance in the circuit

ZT 5 ZP 1 ZC 5 7.25 2 j0.13 1 3 1 j2 5 (10.25 1 j1.87) V

Total current I
V

Z

j

j

T
S

T

=

=
+
+

=
∠ °

∠
( )

( . . ) . .

100 0

10 25 1 87

100 0

10 42 10 344

9 6 10 34

°

= ∠− °. .

The current lags behind the applied voltage by 10.34°.

Fig. 5.38
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Current in the branch A is

I I
Z

Z Z

j

j

A T
B

A B

=
+

= ∠− °×
−
+

=
∠− °× ∠−

9 6 10 34
9 6

19 2

9 6 10 34 10 82 33

. .
( )

. . . ..

.

. .

7

19 1 6

5 44 50 04

°
∠ °

= ∠− °A

Current in the branch B is IB

I I
Z

Z Z

j

j

B T
A

A B

= ×
+

= ∠− °×
+
+

=
∠− °× ∠

9 6 10 34
10 8

19 2

9 6 10 34 12 8 38 6

. .

. . . . 66

19 1 6

6 43 22 32

°
∠ °

= ∠ °

.

. . A

The angle between IA and IB,

u 5 (50.04° 1 22.32°) 5 72.36°

PROBLEM 5.13

A series circuit of two pure elements has the following applied voltage and resulting current.

 V = 15 cos (200 t – 30°) volts

 I = 8.5 cos (200 t + 15) volts

Find the elements comprising the circuit.

Solution  By inspection, the current leads the voltage by 30° 1 15° 5 45°. Hence, the circuit must contain 

resistance and capacitance.

tan

,

45
1

1
1 1

1
22

2
2 2

°=

= ∴ =

= +






 = + =

v

v v

v

CR

CR C
R

V

I
R

C
R R Rm

m

∴ =
×

=R
15

8 5 2

1 248

.
. V

 

1
1 248

vC
= . V

 and FC =
×

= × −1

200 1 248
4 10

3

.
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PROBLEM 5.14

A resistor having a resistance of R 5 10  V and an unknown capacitor are in series. The voltage across 

the resistor is VR 5 50 sin (1000 t 1 45°) volts. If the current leads the applied voltage by 60° what is the 

unknown capacitance C?

Solution  Here, the current leads the applied voltage by 60°.

tan60
1

°=
vCR

Since R 5 10 V

v 5 1000 radians

tan60
1

° =
vCR

C =
× ×

=
1

60 1000 10
57 7

tan
. mF

PROBLEM 5.15

A series circuit consists of two pure elements has the following current and voltage.

 v = 100 sin (2000 t + 50°) V

 i = 20 cos (2000 t + 20°) A

Find the elements in the circuit.

Solution  We can write i 5 20 sin (2000 t 1 20° 1 90°)

Since cos u 5 sin (u 1 90°)

Current i 5 20 sin (2000 t 1 110°) A

The current leads the voltage by 110° – 50° 5 60°

and the circuit must consist of resistance and capacitance.

tan

tan .

u
v

v

v

=

= °=

= +






 =

+

1

1
60 1 73

1 100

20

1

2

2

CR

C
R R

V

I
R

C

R

m

m

(( . )

( . )

.

( . )
.

1 73
100

20

1 99 5

2 5

1

1 73
115 6

2 =

=

=

= =

R

R

C

V

and
R

F
v

m
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PROBLEM 5.16

A two-branch parallel circuit with one branch of R 5 100 V and a single unknown element in the other 

branch has the following applied voltage and total current.

 n 5 2000 cos (1000 t 1 45°) V

 iT 5 45 sin (1000 t 1 135°) A

Find the unknown element.

Solution  Here, the voltage applied is same for both elements.

Current passing through resistor is i
v

R
R =

∴ iR 5 20 cos (1000 t 1 45°)

Total current iT 5 iR 1 iX

where ix is the current in unknown element.

ix 5 iT – iR

5 45 sin (1000 t 1 135°) – 20 cos (1000 t 1 45°)

5 45 sin (1000 t 1 135°) – 20 sin (1000 t 1 135°)

Current passing through the unknown element.

ix 5 25 sin (1000 t 1 135°)

Since the current and voltage are in phase, the element is a resistor.

And the value of the resistor

R
v

iX

= = =
2000

25
80 V

PROBLEM 5.17

Find the total current to the parallel circuit with L 5 0.05 H and C 5 0.667 mF with an applied voltage of 

v 5 200 sin 5000 t V.

Solution  Current in the inductor i
L

vdt

i t

t

i

L

L

L

=

=

=
−

×

=−

∫

∫

1

1

0 05
200 5000

200 5000

0 05 5000

0 8

.
sin

cos

.

. ccos 5000 t

∴

Current in the capacitor  i C
dv

dt
C =

∴ 
i

d

dt
t

C
= ¥

-
0 667 10 200 5000

6. ( sin )
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iC 5 0.667 cos 5000 t

Total current iT 5 iL 1 iC

 5 0.667 cos 5000 t – 0.8 cos 5000 t

 5 20.133 cos (5000 t)

Total current iT 5 0.133 sin (5000 t 2 90°) A

PSpice Problems

PROBLEM 5.1

For the parallel circuit shown in Fig. 5.39, find the magnitude of current in each branch and the total current. 

What is the phase angle between the applied voltage and total current.

Fig. 5.39

* AC ANALYSIS

VS 1 0 AC 10 V0

C1 1 0 100 U

R1 1 0 100

C2 1 0 300 U

R2 1 0 200

.AC LIN 1 50 100

.PRINT AC IM(VS) IP(VS) IM(C1) IP(C1) IM(C2) IP(C2) IM(R1) 1 IP(R1) IM(R2) IP(R2)

.END

OUTPUT

**** AC ANALYSIS TEMPERATURE 5 27.000 DEG C

****************************************************************

 FREQ IM(VS) IP(VS) IM(C1) IP(C1) IM(C2)

 5.000E101 1.266E100 –  9.681E101 3.142E  –   01 9.000E101 9.425E    –    01

 FREQ IP(C2) IM(R1) IP(R1) IM(R2) IP(R2)

 5.000E101 9.000E101 1.000E  –   01 0.000E100 5.000E   –   02 0.000E100

Result

Frequency 5 50 Hz;
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Total current It 5 I(VS) 5 1.266∠– 96.81 A

Ic1 5 0.3142∠90 A

Ic2 5 0.9425∠90 A

IR1 5 0.1∠0 A

IR2 5 0.05∠0 A

PROBLEM 5.2

Determine voltage across each element of circuit shown in Fig. 5.40.

Fig. 5.40

* AC ANALYSIS

VS 1 0 AC 100V  0

R1 1 2 100

L1 2 0 0.5

R2 1 3 330 OHM

L2 3 0 1H

.AC LIN 1 50 100

.PRINT AC V(R1) VP(R1) VM(L1) VP(L1) 1 V(R2) VP(R2) V(L2) VP(L2)

.END

**** AC ANALYSIS TEMPERATURE 5 27.000 DEG C

****************************************************************

 FREQ V(R1) VP(R1) VM(L1) VP(L1) V(R2)

 5.000E101 5.370E101 25.752E101 8.436E101 3.248E101 7.243E101

 FREQ VP(R2) V(L2) VP(L2)

 5.000E101 – 4.359E101 6.895E101 4.641E101

Result

VR1 5 53.7 ∠257.32 V

VL1 5 84.36 ∠32.48 V

VR2 5 72.43 ∠243.59 V

VL2 5 68.95 ∠46.41 V

PROBLEM 5.3

For the series–parallel circuit shown in Fig. 5.41 determine (a) total impedance between a, b, (b) voltage 

across each parallel branch, and (c) phase angle.
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Fig. 5.41

* AC ANALYSIS OF SERIES PARALLEL CIRCUIT

VS 1 0 AC 22.36 63.435

R1 1 2 1

L1 2 3 6.366 M

R2 3 4 3

L2 4 0 12.732 M

R3 3 5 3

L3 5 0 12.732 M

.AC LIN 1 50 100

.PRINT AC IM(R1) IP(R1) VM(3,0) VP(3,0)

.END

OUTPUT

**** AC ANALYSIS TEMPERATURE 5 27.000 DEG C

****************************************************************

 FREQ IM(R1) IP(R1) VM(3,0) VP(3,0)

 5.000E 1 01 4.740E 1 00 5.441E 1 00 1.185E 1 01 5.857E 1 01

Result

(a)  Total impedance between a and b : ZT 5 VS/IT 5 10 1 j20/11.85∠58.57° 5 4.72 ∠57.99°

(b) Voltage across each parallel branch 5 11.85 ∠58.77º

(c) Phase angle 5 63.435° – 5.441° 5 57.994°

Answers to Practice Problems

5-2.1 C 5 19.2 mF

5-3.1 157.4 ∠– 17.6°; 17.6° lead, 0.635 A

5-3.2 55.85 ∠257.5°; 57.5°

5-3.4 R 5 2 V; C 5 2.12 3 1023 F

5-3.5 R 5 5.412 V; C 5 160 3 1026 F

5-3.6 L150.02 H; L250.04 H

5-3.7 VT 5 R L l t
L

R
m

2 2 1+ +








−( ) sin tanv v
v

Phasor diagram

VT
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 u 5 tan−1 vL

R
, where v 5 200 rad/s

5-4.1 10 53 1 5 0

13 6 36

1 2
; ;

.

I I

IT

= ° = °
= °

A A

A

5-4.5 L 5 6.67 mH; C 5 3.33 mF

5-4.6 iT 5 1.74 sin (100t 1 67.4°) A

 u 5 67.4°; Z 5 115 V

5-5.1 944.2 V; 0.053 A; 3.67°; 16.3 V; 30.7 V

5-5.2 1.44 A; 7.05°; V100 mF 5 22.9 V;

 V10 V 5 14.4 V

 V30 V 5 38.93 V; V0.1H 5 38.93 V

Objective-Type Questions

r5.1 A 1 kHz sinusoidal voltage is applied to an RL circuit, what is the frequency of the resulting current?

 (a) 1 kHz (b) 0.1 kHz (c) 100 kHz (d) 2 kHz

r5.2 A series RL circuit has a resistance of 33 kV, and an inductive reactance of 50 kV. What is its impedance and 

phase angle?

 (a) 56.58 W, 59.9° (b) 59.9 kW, 56.58° (c) 59.9 V, 56.58° (d) 5.99 V, 56.58°

r5.3 In a certain RL circuit, VR 5 2 V and VL 5 3 V. What is the magnitude of the total voltage?

 (a) 2 V (b) 3 V (c) 5 V (d) 3.61 V

r5.4 When the frequency of applied voltage in a series RL circuit is increased what happens to the inductive 

reactance?

 (a) Decreases (b) Remains the same (c) Increases (d) Becomes zero

rr5.5 In a certain parallel RL circuit, R 5 0 V, and XL 5 75 V. What is the admittance?

 (a) 0.024 S (b) 75 S (c) 50 S (d) 1.5 S

rr5.6 What is the phase angle between the inductor current and the applied voltage in a parallel RL circuit?

 (a) 0° (b) 45° (c) 90° (d) 30°

rr5.7 When the resistance in an RC circuit is greater than the capacitive reactance, the phase angle between the 

applied voltage and the total current is closer to

 (a) 90° (b) 0° (c) 45° (d) 120°

r5.8 A series RC circuit has a resistance of 33 kV, and a capacitive reactance of 50 kV. What is the value of the 

impedance?

 (a) 50 kV (b) 33 kV (c) 20 kV (d) 59.91 V

r5.9 In a certain series RC circuit, VR 5 4 V and VC 5 6 V. What is the magnitude of the total voltage?

 (a) 7.2 V (b) 4 V (c) 6 V (d) 52 V

r5.10 When the frequency of the applied voltage in a series RC circuit is increased what happens to the capacitive 

reactance?

 (a) It increases (b) It decreases (c) It is zero (d) Remains the same

r5.11 In a certain parallel RC circuit, R 5 50 V and XC 5 75 V. What is Y ?

 (a) 0.01 S (b) 0.02 S (c) 50 S (d) 75 S

r5.12 The admittance of an RC circuit is 0.0035 S, and the applied voltage is 6 V. What is the total current?

 (a) 6 mA (b) 20 mA (c) 21 mA (d) 5 mA
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rrr5.13 What is the phase angle between the capacitor current and the applied voltage in a parallel RC circuit?

 (a) 90° (b) 0° (c) 45° (d) 180°

rrr5.14 In a given series RLC circuit, XC is 150 V, and XL is 80 V, what is the total reactance? What is the type of 

reactance?

 (a) 70 V, inductive (b) 70 V, capacitive (c) 70 V, resistive (d) 150 V, capacitive

rrr5.15 In a certain series RLC circuit, VR 5 24 V, VL 5 15 V, and VC 5 45 V. What is the source voltage?

 (a) 38.42 V (b) 45 V (c) 15 V (d) 24 V

rrr5.16 When R 5 10 V, XC 5 18 V and XL 5 12 V, the current

 (a) leads the applied voltage (b)  lags behind the applied voltage

 (c) is in phase with the voltage (d) is none of the above 

rrr5.17 A current i 5 A sin 500 t A passes through the circuit shown in Fig. 5.42. The total voltage applied will be

 (a) B sin 500 t (b) B sin (500 t – u°) (c) B sin (500 t 1 u°) (d) B cos (200 t 1 u°)

R

i

L

Fig. 5.42

rrr5.18 A current of 100 mA through an inductive reactance of 100 V produces a voltage drop of

 (a) 1 V (b) 6.28 V (c) 10 V (d) 100 V

rrr5.19 When a voltage v 5 100 sin 5000 t volts is applied to a series circuit of L 5 0.05 H and unknown capacitance, 

the resulting current is i 5 2 sin (5000 t 1 90°) amperes. The value of capacitance is

 (a) 66.7 pF (b) 6.67 pF (c) 0.667 mF (d) 6.67 mF

rrr5.20 A series circuit consists of two elements has the following current and applied voltage.

 i 5 4 cos (2000 t 1 11.32°) A

 v 5 200 sin (2000 t 1 50°) V

 The circuit elements are

 (a) resistance and capacitance (b) capacitance and inductance

 (c) inductance and resistance (d) both resistances

rrr5.21 A pure capacitor of C 5 35 mF is in parallel with another single circuit element. The applied voltage and 

resulting current are

 v 5 150 sin 300 t V

 i 5 16.5 sin (3000 t 1 72.4°) A

 The other element is

 (a) capacitor of 30 mF (b) inductor of 30 mH (c) resistor of 30 V (d) none of the above

For interactive quiz with answers,
scan the QR code given here
OR
visit
http://qrcode.flipick.com/index.php/263



6.1 INSTANTANEOUS POWER

In a purely resistive circuit, all the energy delivered by the source is dissipated 

in the form of heat by the resistance. In a purely reactive(inductive or capacitive) 

circuit, all the energy delivered by the source is stored by the inductor or capacitor 

in its magnetic or electric field during a portion of the voltage cycle, and then is 

returned to the source during another portion of the cycle, so that no net energy is transferred. When there is 

complex impedance in a circuit, a part of the energy is alternately stored and returned by the reactive part, 

and part of it is dissipated by the resistance. The amount of energy dissipated is determined by the relative 

values of resistance and reactance.

Consider a circuit having complex impedance. Let v (t) 5 Vm cos vt be the voltage applied to the circuit 

and let i(t) 5 Im cos (vt 1 u) be the corresponding current flowing through the circuit. Then the power at any 

instant of time is

P(t) 5 v (t) i (t)

 5 Vm cos vt Im cos (vt 1 u) (6.1)

From Eq. (6.1), we get

P t
V I

t
m m

( ) cos( ) cos= + +[ ]
2

2v u u  (6.2)

Equation (6.2) represents instantaneous power. It 

consists of two parts. One is a fixed part, and the other 

is time-varying which has a frequency twice that of the 

voltage or current waveforms. The voltage, current and 

power waveforms are shown in Figs. 6.1 and 6.2.Fig. 6.1

6

LEARNING OBJECTIVES

LO   1 
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Here, the negative portion (hatched) of the power 

cycle represents the power returned to the source. 

Figure 6.2 shows that the instantaneous power is 

negative whenever the voltage and current are of 

opposite sign. In Fig. 6.2, the positive portion of the 

power is greater than the negative portion of the power; 

hence, the average power is always positive, which is 

almost equal to the constant part of the instantaneous 

power (Eq. 6.2). The positive portion of the power 

cycle varies with the phase angle between the voltage 

and current waveforms. If the circuit is pure resistive, the phase angle between voltage and current is zero; then 

there is no negative cycle in the P (t) curve. Hence, all the 

power delivered by the source is completely dissipated in 

the resistance.

If u becomes zero in Eq. (6.1), we get

P(t) 5 v (t) i (t)

5 Vm Im cos2 vt

= +( )
V I

tm m

2
1 2cos v  (6.3)

The waveform for Eq. (6.3), is shown in Fig. 6.3, where 

the power wave has a frequency twice that of the voltage or 

current. Here, the average value of power is Vm Im /2.

When phase angle u is increased, the negative portion 

of the power cycle increases and lesser power is dissipated. 

When u becomes p/2, the positive and negative portions 

of the power cycle are equal. At this instant, the power 

dissipated in the circuit is zero, i.e. the power delivered to 

the load is returned to the source.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 1*
rrr6.1.1 Using PSpice, find the instantaneous power on each of the elements in the circuit of Fig. Q.1.

Fig. Q.1

Fig. 6.2

Fig. 6.3

*Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category
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6.2 AVERAGE POWER

To find the average value of any power function, we have to take a particular time 

interval from t1 to t2; by integrating the function from t1 to t2 and dividing the 

result by the time interval t2 – t1, we get the average power.

Average power P
t t

P t dt

t

t

=
− ∫
1

2 1
1

2

( )  (6.4)

In general, the average value over one cycle is

P
T

P t dtav

T

= ∫
1

0

( )  (6.5)

By integrating the instantaneous power P(t) in Eq. (6.5) over one cycle, we get average power

P
T

V I
t dt

T

V I

av
m m

T

m m
T

= + +[ ]










=

∫

∫

1

2
2

1

2

0

0

cos( ) cosv u u

ccos( ) cos2
1

2
0

v u ut dt
T

V I
dt

m m
T

+[ ] + ∫  (6.6)

In Eq. (6.6), the first term becomes zero, and the second term remains. The average power is therefore

P
V I

av

m m=
2

cosu W (6.7)

We can write Eq. (6.7) as

P
V I

av
m m=


















2 2
cosu (6.8)

In Eq. (6.8), Vm 2  and Im 2  are the effective values of both voltage and current.

∴  Pav 5 Veff Ieff cos u

To get average power, we have to take the product of the effective values of both voltage and current 

multiplied by cosine of the phase angle between voltage and the current.

If we consider a purely resistive circuit, the phase angle between voltage and current is zero. Hence, the 

average power is

P V I I Rm m mav = =
1

2

1

2

2

If we consider a purely reactive circuit (i.e. purely capacitive or purely inductive), the phase angle between 

voltage and current is 90°. Hence, the average power is zero or Pav 5 0.

If the circuit contains complex impedance, the average power is the power dissipated in the resistive part 

only.

EXAMPLE 6.1

A voltage of v(t) 5 100 sin vt is applied to a circuit. The current flowing through the circuit is  

i(t) 5 15 sin (vt – 30°). Determine the average power delivered to the circuit.

Solution  The phase angle between voltage and current is 30°.

LO   2 
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Effective value of the voltage Veff =
100

2

Effective value of the current Ieff =
15

2

Average power Pav 5 Veff Ieff cos u

= × °

=
×

× =

100

2

15

2
30

100 15

2
0 866 649 5

cos

. . W

EXAMPLE 6.2

Determine the average power delivered to the circuit consisting of an impedance Z 5 5 1 j8 when the 

current flowing through the circuit is I 5 5  30°.

Solution  The average power is the power dissipated in the resistive part only.

or P
I

Rav
m=
2

2

Current Im 5 5 A

∴ Pav = × =
5

2
5 62 5

2

. W

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 2
rrr6-2.1 Find the average power dissipated by the 500 V resistor shown in Fig. Q.1.

Fig. Q.1

rrr6-2.2 Find the power delivered by current source shown in Fig. Q.2.

Fig. Q.2

rrr6-2.3 Using PSpice, find the average power absorbed by the 10 V resistor (Fig. Q.3).
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Fig. Q.3

6.3 APPARENT POWER AND POWER FACTOR

The power factor is useful in determining useful power (true power) transferred to 

a load. The highest power factor is 1, which indicates that the current to a load is in 

phase with the voltage across it (i.e. in the case of resistive load). When the power 

factor is 0, the current to a load is 90° out of phase with the voltage (i.e. in case of 

reactive load).

Consider the following equation:

P
V I

av

m m=
2

cosu W  (6.9)

In terms of effective values,

P
V I

av
m m=
2 2

cosu

  5 Veff Ieff cos u W (6.10)

The average power is expressed in watts. It means the useful power transferred from the source to the 

load, which is also called true power. If we consider a dc source applied to the network, true power is given 

by the product of the voltage and the current. In case of sinusoidal voltage applied to the circuit, the product 

of voltage and current is not the true power or average power. This product is called apparent power. The 

apparent power is expressed in volt amperes, or simply VA.

∴ Apparent power 5 Veff Ieff

In Eq. (6.10), the average power depends on the value of cos u; this is called the power factor of the circuit.

∴ = =Power factor pf( ) cosu
P

V I

av

eff eff

Therefore, power factor is defined as the ratio of average power to the apparent power, whereas apparent 

power is the product of the effective values of the current and the voltage. Power factor is also defined as the 

factor with which the volt amperes are to be multiplied to get true power in the circuit.

In the case of sinusoidal sources, the power factor is the cosine of the phase angle between voltage and 

current

pf 5 cos u

As the phase angle between voltage and total current increases, the power factor decreases. The smaller 

the power factor, the smaller the power dissipation. The power factor varies from 0 to 1. For purely resistive 

circuits, the phase angle between voltage and current is zero, and hence the power factor is unity. For 

purely reactive circuits, the phase angle between voltage and current is 90°, and hence the power factor is 

zero. In an RC circuit, the power factor is referred to as leading power factor because the current leads the 

voltage. In an RL circuit, the power factor is referred to as lagging power factor because the current lags 

behind the voltage.

LO   3 
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EXAMPLE 6.3

A sinusoidal voltage v 5 50 sin vt is applied to a series RL circuit. The current in the circuit is given by 

i 5 25 sin (vt 2 53°). Determine (a) apparent power, (b) power factor, and (c) average power.

Solution  (a) Apparent power P V I

V I

eff eff

m m

=

= ×

=
×

=

2 2

50 25

2
625 VA

 (b)  Power factor 5 cos u 

 where u is the angle between voltage and current

u 5 53°

 ∴ Power factor 5 cos u 5 cos 53° 5 0.6

 (c)  Average power Pav 5 Veff Ieff cos u

  5 625 3 0.6 5 375 W

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 3
rrr6-3.1 For the circuit shown in Fig. Q.1, a voltage of 250 sin vt is applied. Determine the power factor 

of the circuit, if the voltmeter readings are V1 5 100 V, V2 5 125 V, V3 5 150 V and the ammeter 

reading is 5 A.

Fig. Q.1

rrr6-3.2 A series RL circuit draws a current of i(t) 5 8 sin (50t 1 45°) from the source. Determine the 

circuit constants, if the power delivered by the source is 100 W and there is a lagging power factor 

of 0.707.
rrr6-3.3 The current in a circuit lags the voltage by 30°. If the input power be 400 W and the supply voltage 

be v 5 100 sin (377t 1 10°), find the complex power in voltamperes.

rrr6-3.4 For the circuit shown in Fig. Q.4, determine the power dissipated and the power factor of the circuit.

Fig. Q.4
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rrr6-3.5 For the circuit shown in Fig. Q.5, determine the power factor and the power dissipated in the 

circuit.

Fig. Q.5

rrr6-3.6 In the circuit shown in Fig. Q.6, the total effective 

current is 30 amperes. Determine the three powers.

rrr6-3.7 In the parallel circuit shown in Fig. Q.7, the total power 

is 1100 watts. Find the power in each resistor and the 

reading on the ammeter.
rrr6-3.8 For the circuit shown in Fig. Q.8, determine the true 

power, reactive power, and apparent power in each 

branch. What is the power factor of the total circuit?

Fig. Q.7 Fig. Q.8

rrr6-3.9 Determine the value of the voltage source, and the power factor in the network shown in Fig. Q.9 

if it delivers a power of 500 W to the circuit shown in Fig. Q.9. Also find the reactive power drawn 

from the source.

rrr6-3.10 Find the power dissipated by the voltage source shown in Fig. Q.10.

Fig. Q.9 Fig. Q.10

rrr6-3.11 For the circuit shown in Fig. 

Q.11, find:

  (a) real power dissipated by 

each element

  (b) the total apparant power 

supplied by the circuit

  (c) the power factor of the 

circuit.

Fig. Q.6

Fig. Q.11
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Frequently Asked Questions linked to LO 3*
rrr6-3.1 Write the effect of power factor in energy-consumption billing. [AU May/June 2014] 

rrr6-3.2 (a) Determine the currents in all the branches  

 (b) Calculate the power and power factor of the source

 (c) Show that power delivered by the source is equal to 

power consumed by the 2-ohm resistor.

 [AU May/June 2014]
rrr6-3.3 Calculate the power factor if v(t) = Vm sin wt and i(t) = Im 

sin (wt – 45º).           [AU April/May 2011]

rrr6-3.4 Define power factor. [JNTU Nov. 2012]

6.4 REACTIVE POWER

We know that the average power dissipated is

Pav 5 Veff [Ieff cos u] (6.11)

From the impedance triangle shown in Fig. 6.4,

cosu=
R

Z
 (6.12)

and Veff 5 Ieff Z (6.13)

If we substitute Eqs (6.12) and (6.13) in Eq. (6.11), we get

P I Z I
R

Z
av eff eff=













 5 I 2eff R watts (6.14)

This gives the average power dissipated in a resistive circuit.

If we consider a circuit consisting of a pure inductor, the power in 

the inductor

 Pr 5 ivL (6.15)

 
=iL

di

dt

Consider i 5 Im sin (vt 1 u)

Then Pr 5 I 2m sin (vt 1 u) Lv cos (vt 1 u)

= +
I

L tm
2

2
2( ) sin ( )v v u

∴ Pr 5 I 2eff (vL) sin 2 (vt 1 u) (6.16)

From the above equation, we can say that the average power delivered to the circuit is zero. This is 

called reactive power. It is expressed in volt-amperes reactive (VAR).

Pr 5 I 2eff XL VAR (6.17)

j 2.5 W

2 W – 1j W100Ð0ºV

+

-

Fig. Q.2

LO   4 

Fig. 6.4

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600
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From Fig. 6.4, we have

XL 5 Z sin u (6.18)

Substituting Eq. (6.18) in Eq. (6.17), we get

Pr 5 I 2eff Z sin u

  5 (Ieff Z)Ieff  sin u

  5 Veff Ieff sin u VAR

6.5 THE POWER TRIANGLE

A generalised impedance phase diagram is shown in Fig. 6.5. A phasor relation for 

power can also be represented by a similar diagram because of the fact that true power 

Pav and reactive power Pr differ from R and X by a factor I 2eff , as shown in  Fig. 6.5.

The resultant power phasor I 2eff Z, represents the apparent power Pa.

At any instant in time, Pa is the total power that appears to be transferred between the source and reactive 

circuit. Part of the apparent power is true power and part of it is reactive power.

∴ Pa 5 I 2eff Z

The power triangle is shown in Fig. 6.6.

From Fig. 6.6, we can write

 Ptrue 5 Pa cos u

 or average power Pav 5 Pa cos u

 and reactive power Pr 5 Pa sin u

Fig. 6.5 Fig. 6.6

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 5
rrr6-5.1 Determine the branch and total real and reactive powers in the parallel circuit shown in Fig. Q.1. 

Use j notation.

Fig. Q.1

LO   5 
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r6-5.2 Two impedances Z1 5 (4 1 j5) V and Z2 5 (8 1 j10) V are connected in parallel across a 230 V, 

50 Hz supply. Find (a) total admittance, (b) current drawn from supply and power factor, and (c) 

value of capacitance to be connected in parallel with the above admittances to raise the power factor 

unity.

rr6-5.3 A voltage of v(t) 5 100 sin 500t is applied across a series R-L-C circuit where R 5 10 V, L 5 0.05 

H, and C 5 20 mF. Determine the power supplied by the source, the reactive power supplied by the 

source, the reactive power of the capacitor, the reactive power of the inductor, and the power factor 

of the circuit.

rr6-5.4 For the circuit shown in Fig. Q.4, determine the power factor, active power, reactive power, and 

apparent power.

Fig. Q.4

rrr6-5.5 For the parallel circuit shown in Fig. Q.5, the total power 

dissipated is 1000 W. Determine the apparent power, the 

reactive power, and the power factor.

rrr6-5.6 For the circuit shown in Fig. Q.6, determine the power 

factor, active power, reactive power and apparent power.

Fig. Q.6

Additional Solved Problems

PROBLEM 6.1

For the circuit shown in Fig. 6.7, a voltage v(t) is applied and the resulting 

current in the circuit i(t) 5 15 sin (vt 1 30°) amperes. Determine the active 

power, reactive power, power factor, and the apparent power.

Solution  The voltage applied to the circuit

 

v t t

V

( ) ( )= + °
= °

25  sin 10 00

250 100

v

Fig. Q.5

Fig. 6.7
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The current in the circuit

i t t

I

( ) = + °
= °

15 sin ( 3 )v 0

15 30

 Phase angle u 5 100 2 30 5 70°
Power factor cos u 5 cos 70° 5 0.342

Active power = = × ×

=

VI cos .

.

u
250

2

15

2
0 342

641 25watts

Reactive power = = × × °

=

VI sin sin

.

u
250

2

15

2
70

1762 5VAR

Apparent power = = × =VI
250

2

15

2
1875VA

PROBLEM 6.2

Two impedances, Z1 10 60= − ° V  and Z 16 70= ° V  are in series and pass an effective current of 5 A. 

Determine the active power, reactive power, apparent power and power factor.

Solution   Z
1

10 60= − °  and Z
2

16 70= °

 Total Impedance Z 5 Z1 1 Z2

= − °+ ° = +10 60 16 70 10 47 6 37( . . )j V

The power factor cos
.

.
.u = = =

R

Z

10 47

12 25
0 855

 Active power 5 VI cos u 5 I 2R 5 (5)2 3 10.47 5 261.75 watts

 Apparent power 5 I 2Z 5 (5)2 3 12.25 5 306.25 VA

 Reactive power 5 I 2XL 5 (5)2 3 6.37 5 159.25 VAR

PROBLEM 6.3

For the circuit shown in Fig. 6.8, determine the value of the impedance if 

the source delivers a power of 200 W and there is a lagging power factor 

of 0.707. Also find the apparent power.

Solution  The lagging power factor 

cos .u = =
R

Z
0 707

 R 5 Z(0.707)

Active power 5 VI cos u 5 200 watts

 where V = =
25

2

17 68.

Fig. 6.8
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25

2

200× =I cosu

I 5 16 A

The total impedance Z
V

I
T = =

°
− °

= °
17 68 25

16 20
1 105 45

.
.

 ZT 5 0.78 1 j 0.78

 The impedance Z 5 ZT 2 R 5 (0.28 1 j 0.78) V

 Apparent power 5 VI 5 17.68 3 16 5 282.7 VA.

PROBLEM 6.4

In the parallel circuit shown in Fig. 6.9, the power in the 

5 V resistor is 600 W and the total circuit takes 3000 VA at a 

leading power factor of 0.707. Find the value of Impedance 

Z.

Solution  Power in the 5 V resistor

 I5
2R 5 600 W

I5
2 3 5 5 600 W

Current in the 5 V resistor I5 5 10.95 A

I
V

j
5

0

5 5
=

°
+

A

The magnitude of the current I
V

5
2 2
5 5

=
+

A

∴ V = × =10 95 50 77 42. . volts

 Apparent power Pap 5 3000 VA

Total current I
P

V
T

ap= = =
3000

77 42
38 75

.
. A

IT = °38 75 45. A

I
5

10 95 45= − °. A

The current in Z 5 IZ 5 IT 2 I5

 5 27.4 1 j 27.4 2(7.74 2 j 7.74)

 = + = °19 66 35 14 40 26 60 77. . . .j

 The value of impedance = =
°

Z
V

IZ

0

 
Z =

°
°

77 42 0

40 26 60 77

.

. .

The value of impedance Z = − °1 923 60 77. . V

Fig. 6.9
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PROBLEM 6.5

A voltage source v(t) 5 150 sin vt in series with 5 V resistance is supplying two loads in parallel,  

Z 60 30A =  and Z = 50 -25B . Find the average power delivered to ZA, the average power delivered to 

ZB the average power dissipiated in the circuit, and the power factor of the circuit.

Solution  The circuit shown in Fig. 6.10 indicates 

the voltage source v(t) in series with the 5 V resistor 

provides supply to two parallel impedances ZA and ZB.

where Z ZA B= ° = − °60 30 50 25V V;

Total impedance 

Z
Z Z

Z Z

j

Z

T
A B

A B

T

= +
+

= +
°× − °
°+ − °

= −
=

5 5
60 30 50 25

60 30 50 25

35 709 0 112. .

335 71 0 179. .− °V

Power factor 5 cos(0.179) 5 0.999

The total current I
ZT

= = °
150

2

2 97 0 179. . A

The current in impedance ZA is

I I
Z

Z Z

I

A
B

A B

A

= ×
+

=
°× − °

°+ − °

= − °

( )

. .

. .

2 97 0 179 50 25

60 30 50 25

1 52 30 03 AA

The current in impedance ZB is

I I
Z

Z Z

I

B
A

A B

B

= ×
+

=
°× °

°+ − °

= °

( )

. .

. .

2 97 0 179 60 30

60 30 50 25

1 82 24 96 A

Average power delivered to ZA 5 IA
2RA 5 120 watts

Average power delivered to ZB 5 IB
2RB 5 150 watts

Average power delivered to circuit 5 I 2R 5 314.98 watts

PROBLEM 6.6

A sine wave of v(t) 5 200 sin 50 t is applied to a 10 V resistor in series with a coil. The reading of a voltmeter 

across the resistor is 120 V and across the coil, 75 V. Calculate the power and reactive volt-amperes in the 

coil and the power factor of the circuit.

Solution  The rms value of the sine wave

V = =
200

2

141 4. V

Fig. 6.10
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Voltage across the resistor, VR 5 120 V

Voltage across the coil, VL 5 75 V

∴ =

= =

=

∴ =

IR

I

IX

X

L

L

120 V

The current resistor A

Since 5 V

,
120

10
12

75

112
6 25= . V

Power factor,   pf
R

Z
= =cosu

where   Z 5 10 1 j 6.25 5 11.8∠32°

 ∴ cos
.

.u = = =
R

Z

10

11 8
0 85

 True power Ptrue 5 I 2 R 5 (12)2 3 10 5 1440 W

Reactive power Pr 5 I 2 XL 5 (12)2 3 6.25 5 900 VAR

PROBLEM 6.7

For the circuit shown in Fig. 6.11, determine the true power, 

reactive power, and apparent power in each branch. What is 

the power factor of the total circuit?

Solution  In the circuit shown in Fig. 6.11, we can calculate 

Z1 and Z2.

Impedance

Impedance

1Z j

Z

=
∠ °
∠ °

= ∠ ° = +

=

100 15

50 10
2 5 1 99 0 174

1
2

( . . ) V

000 15

20 30
5 15 4 83 1 29

∠ °
∠ °

= ∠− ° = −( . . )j V

 True power in branch Z1 is Pt
1

 5 I 21 R 5 (50)2 3 1.99 5 4975 W

Reactive power in branch Z1, Pr
1

 5 I 21 XL

  5 (50)2 3 0.174 5 435 VAR

Apparent power in branch Z1, Pa
1

 5 I 21 Z1

  5 (50)2 3 2

  5 2500 3 2 5 5000 VA

True power in branch Z2, Pt
2

 5 I 22 R

  5 (20)2 3 4.83 5 1932 W

 Reactive power in branch Z2, Pr
2

 5 I 22 XC

  5 (20)2 3 1.29 5 516 VAR

Fig. 6.11
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 Apparent power in branch Z2, Pa
2

 5 I 22 Z2

  5 (20)2 3 5 5 2000 VA

Total impedance of the circuit, Z
Z Z

Z Z

j j

=
+

=
∠ × ×∠−

+ + −

=
∠−

1 2

1 2

2 5 5 15

1 99 0 174 4 83 1 29

10 10

6 82

o o

o

. . . .

. −−

=
∠−
∠−

= ∠−

j1 116

10 10

6 9 9 29
1 45 0 71

.

. .
. .

o
o

The phase angle between voltage and current, u 5 0.71°

∴ Power factor pf 5 cos u

  5 cos 0.71° 5 0.99 leading

PROBLEM 6.8

A voltage of v(t) 5 141.4 sin vt is applied to the circuit shown in Fig. 6.12. The circuit dissipates 450 W at a 

lagging power factor, when the voltmeter and ammeter readings are 100 V and 6 A, respectively. Calculate 

the circuit constants.

Fig. 6.12

Solution  The magnitude of the current passing through (10 1 jX2) V is

I 5 6 A

The magnitude of the voltage across the (10 1 jX2) ohms, V 5 100 V. The magnitude of impedance (10 1 jX2) 

is V/I.

Hence 10
100

6
16 67

16 67 10 13 33

2
2
2

2
2 2

+ = =

∴ = − =

X

X

.

( . ) ( ) .

V

V

Total power dissipated in the circuit 5 VI cos u 5 450 W

∴ = =

=
× × =

V

I

141 4

2
100

6

100 6 450

.

cos

V

A

u
 

The power factor pf = = =

= °

cos .

.

u

u

450

600
0 75

41 4
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The current lags behind the voltage by 41.4°

The current passing through the circuit, I = ∠− °6 41 4.

The voltage across (10 1 j13.33) V, V = ∠− °× ∠ °6 41 4 16 66 53 1. . .

 = ∠ °100 11 7.

The voltage across parallel branch,   V
1

100 0 100 11 7= ∠ °− ∠ °.

 5 100 – 97.9 – j20.27

 5 (2.1 – j20.27)V 5 20.38 – 84.08°

The current in (–j20) branch, I
2

20 38 84 08

20 90

1 02 5 92=
∠− °

∠−
= ∠ + °

. .
. .

o

The current in (R1 – jX1) branch, I1

 5 6∠– 41.4° – 1.02 5.92° 5 4.5 – j3.97 – 1.01 – j0.1

 5 3.49 – j4.07 5 5.36 – 49.39°

The impedance Z
V

I
1

1

1

20 38 84 08

5 36 49 39
= =

∠− °
∠− °

. .

. .

 5 3.8∠– 34.69° 5 (3.12 – j2.16) V

Since R1 2 jX1 5 (3.12 – j2.16) V

 R1 5 3.12 V

 X1 5 2.16 V

PROBLEM 6.9

Determine the value of the voltage source and power 

factor in the following network if it delivers a power of 

100 W to the circuit shown in Fig. 6.13. Find also the 

reactive power drawn from the source.

Solution  Total impedance in the circuit,

Z
j j

j j

j

j

eq = +
+ −
+ −

= +
−
−

= +
∠− °

∠−

5
2 2 5

2 2 5

5
10 10

2 3
5

14 14 45

3 6 56

( )( )

.

. .33
5 3 93 11 3

5 3 85 0 77 8 85 0 77 8 88 4 97

o
= + ∠ °

= + + = + = ∠ °

. .

. . . . . .j j

Power delivered to the circuit, PT 5 I 2RT 5 100 W

∴ I 2 3 8.85 5 100

Current in the circuit, I = =
100

8 85
3 36

.
. A

Fig. 6.13
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Power factor pf
R

Z
= =

= =

cos

.

.
.

u

8 85

8 88
0 99

Since VI cos u 5 100 W

V 3 3.36 3 0.99 5 100

∴ V =
×

=
100

3 36 0 99
30 06

. .
. V

The value of the voltage source, V 5 30.06 V

Reactive power Pr 5 VI sin u

  5 30.06 3 3.36 3 sin (4.97°)

  5 30.06 3 3.36 3 0.087

  5 8.8 VAR

PROBLEM 6.10

For the circuit shown in Fig. 6.14, determine the 

circuit constants when a voltage of 100 V is applied 

to the circuit, and the total power absorbed is 600 

W. The circuit constants are adjusted such that the 

currents in the parallel branches are equal and 

the voltage across the inductance is equal and in 

quadrature with the voltage across the parallel 

branch.

Solution  Since the voltages across the parallel branch and the inductance are in 

quadrature, the total voltage becomes 100∠45° as shown in Fig. 6.15.

Total voltage is 100∠45° 5 V 1 j0 1 0 1 jV

From the above result, 70.7 1 j70.7 5 V 1 jV

∴ V 5 70.7

If we take current as the reference, then current passing through the circuit is 

I∠0°. Total power absorbed by the circuit 5 VI cos u 5 600 W

or 100 3 I 3 cos 45° 5 600 W

∴ I  5 8.48 A

Hence, the inductance, X
V

I
1

90

0

70 7 90

8 48
8 33 90=

∠ °
∠ °

=
∠ °

= ∠ °
.

.
.

∴ X1 5 8.33 V

Current through the parallel branch R1 is I/2 5 4.24 A

Fig. 6.15

Fig. 6.14
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Resistance, R
V

I
1

0

2 0

70 7

4 24
16 67=

∠
∠

= =
/

.

.
. V

Current through parallel branch R2 is I/2 5 4.24 A

Resistance is R
2

70 7

4 24
16 67= =

.

.
. V

PROBLEM 6.11

Determine the average power delivered by the 500 0° 

voltage source in Fig. 6.16 and also the dependent source.

Solution  The current I can be determined by using 

Kirchhoff’s voltage law.

I
v

=
∠ °−

+
500 0 3

7 4

4

 where v4 5 4I

I
I

I

=
∠ °

−

= ∠ °

500 0

11

12

11

21 73 0.

Power delivered by the 500 0° voltage source =
×

=
500 21 73

2
5 432

.
. kW

Power delivered by the dependent voltage source =
×

=
× ×

=
3

2

3 4

2
2 8334v I I I
. kW

PROBLEM 6.12

Find the average power delivered by the dependent voltage source in the circuit shown in Fig. 6.17.

Fig. 6.17

Solution  The circuit is redrawn as shown in Fig. 6.18.

Fig. 6.18

Fig. 6.16
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Assume current I1 flowing in the circuit.

The current I1 can be determined by using Kirchhoff’s voltage law.

I
I

j

I
I

j j

I

1
1

1
1

1

100 20 10 5

5 4

50

5 4

100 20

5 4

2 213 154

=
∠ °+ ×

+

−
+

=
∠ °

+

= ∠−. .99°

Average power delivered by the dependent source

= =

=

=
×( )

=

V I

V I

m m

2

10

2

50 2 213

2
122 43

5 1

2

cos

cos

.
.

u

u

W

PROBLEM 6.13

For the circuit shown in Fig. 6.19, find the average power 

delivered by the voltage source.

Solution  Applying Kirchhoff’s current law at the 

node,

V V

j

V V

j

V
V

j

x

x

− ∠ °
+

+
+

−
−

=

=
+

100 0

2 1 3

50

4
0

1 3
volts

Substituting in the above equation, we get

V V

j

V

j j j

− ∠ °
+

+
+

−
−

+( ) −( )
=

100 0

2 1 3 4

50

1 3 4
0

V

V

I
V

= ∠ °

=
− ∠

=
∠ °− ∠ °

= ∠

14 705 157 5

100 0

2

14 705 157 5 100 0

2
56 865 1

. .

. .
.

 

o

777 18. °

Power delivered by the source =
× °100 56 865 177 18

2

. cos .

  5 2.834 kW

Fig. 6.19
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PROBLEM 6.14

For the circuit shown in Fig. 6.20, find the average 

power delivered by the dependent current source.

Solution  Applying Kirchhoff’s current law at the node,

V
V

V

V V

− ∠ °
− + =

= ∠ °−

20 0

10
0 5

20
0

20 0

1.

where 1

 Substituting V1 in the above equation, we get

V

V

= ∠ °

= ∠ °

18 46 0

1 54 01

.

.

 

 

Average power delivered by the dependent source

V Im m cos . . .
.

u

2

18 46 0 5 1 54

2
7 107=

× ×
= W

PSpice Problems

PROBLEM 6.1

Determine the power factor, true power, reactive power, and apparent 

power using PSpice in the circuit shown in Fig. 6.21.

f 5 50 Hz

c
f c

F=
×

=
1

2
15 915

p
m.

* PROGRAM FOR OBTAINING PF, S, P, AND Q

VS 1 0 AC 50 0

R1 1 2 100

C1 2 0 15.915 U

.AC LIN 1 50 100

.PRINT AC IM(R1)IP(R1)

.END

**** AC ANALYSIS TEMPERATURE 5 27.000 DEG C

****************************************************************

Fig. 6.20

Fig. 6.21
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 FREQ IM(R1) IP(R1)

5.000E 1 01 2.236E – 01 6.344E 1 01

Result

Power factor 5 COS(63.44) 5 0.4471 Lead

 True power 5 VICOSf 5 50 3 0.2236 3 COS(63.44)

  5 5 W

Reactive power  5 VISINf 5 50 3 0.2236 3 SIN(63.44)

  5 10 VAr

Apparent power 5 VI 5 50 3 0.2236 5 11.18 VA

PROBLEM 6.2

For the circuit shown in Fig. 6.22, determine the 

average power delivered by the 50  ∠0° voltage source 

and dependent source using PSpice.

V

f

s = =

=

=

⇒ = =

500

2

353 55

0

2
6 366

RMSValue

V

4  rad sec

Hz

.

/

.

v

v

p

* PROGRAM TO FIND AVERAGE POWER

VS 1 0 AC 353.55 0

R1 1 2 4

R2 2 3 7

E3 0 1 2 3

.AC LIN 1 6.366 10

.PRINT AC I(VS), IP(VS), VM(R1), VP(R1)

.END

**** AC ANALYSIS TEMPERATURE 5 27.000 DEG C

****************************************************************

 FREQ I(VS) IP(VS) VM(R1) VP(R1)

 6.366E 1 00 1.537E 1 01 1.800E 1 02 6.149E 1 01 0.000E 1 00

Result   It is a pure resistive circuit.

Power delivered by the 500∠0° source 5 VS 3 I 5 353.55 3 15.37

  5 54.34 kW

Power delivered by dependent source 5 3V4 3 I 5 3 3 61.49 3 15.37

  5 2.835 kW

Fig. 6.22



Circuits and Networks242 

Answers to Practice Problems

6-2.1 0.0812 mW

6-2.2 – 0.114 W

6-3.1 0.97

6-3.2 3.12 V, 9.93 H

6-3.3 Pcomplex = 461.8 VA

6-3.4 486.5; 0.27

6-3.6 Pactive = 2160 watts; Preactive = 483 VAR leading

 Papparent = 2210 VA

6-3.7 P10 = 500 W; P3 = 600 W;

 Ammeter reading = 19 25 36. − °A

6-3.8 15.396 kW; 3944 VAR; 15.87 KVA; 0.97

6-5.1 PT real = 1800 w; PT reactive = 600 VAR lagging

 P10 real = 100 w; P10 reactive = 0; P(8+j6) real = 800 w

 P(8+j6)reactive = 600 VAR

6-5.2  (i) Total admittance = 0 234 51 4. .− ° �

 (ii) Current drawn = 53.825 A

 Power factor = 0.6238

 (iii) C = 5.79 × 1024 F

6-5.4 0.891; 1587.7 W; 806.2 VAR; 1781.9 VA

6-5.5 1136.36 VA; 529.6 VAR; 0.88

Objective-Type Questions

rrr6.1 The phasor combination of resistive power and reactive power is called

 (a) true power (c) reactive power (b) apparent power (d) average power

rrr6.2 Apparent power is expressed in

 (a) volt-amperes (b) watts (c) volt-amperes or watts (d) VAR

rrr6.3 A power factor of ‘1’ indicates

 (a) purely resistive circuit   (c) combination of both (a) and (b)

 (b) purely reactive circuit   (d) none of these

rrr6.4 A power factor of ‘0’ indicates

 (a) purely resistive element   (c) combination of both (a) and (b)

 (b) purely reactive element   (d) none of the above

rrr6.5 For a certain load, the true power is 100 W and the reactive power is 100 VAR. What is the apparent power?

 (a) 200 VA (b) 100 VA (c) 141.4 VA (d) 120 VA

rrr6.6 If a load is purely resistive and the true power is 5 W, what is the apparent power?

 (a) 10 VA (b) 5 VA (c) 25 VA (d) 50  VA

rrr6.7 True power is defined as

 (a) VI cos u (b) VI (c) VI sin u (d) none of these

rrr6.8 In a certain series RC circuit, the true power is 2 W, and the reactive power is 3.5 VAR. What is the apparent 

power?

 (a) 3.5 VA (b) 2 VA (c) 4.03 VA (d) 3 VA

rrr6.9 If the phase angle u is 45°, what is the power factor?

 (a) cos 45° (b) sin 45° (c) tan 45° (d) none of these

rrr6.10 To which component in an RC circuit is the power dissipation due?

 (a) Capacitance (b) Resistance (c) Both (d) None
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rrr6.11 A two element series circuit with an instantaneous current I 5 4.24 sin (5000 t 1 45°) A has a power of 180 

watts and a power factor of 0.8 lagging. The inductance of the circuit must have the value.

 (a) 3 H (c) 3 mH 

 (b) 0.3 H (d) 0.3 mH

rrr6.12 In the circuit shown in Fig. 6.23, if branch A takes 8 KVAR, 

the power of the circuit will be

 (a) 2 kW (c) 6 kW 

(b) 4 kW (d) 8 kW

rrr6.13 In the circuit shown in Fig. 6.24, the voltage across 30 V 

resistor is 45 volts. The reading of the ammeter A will be

 (a) 10 A (c) 22.4 A

 (b) 19.4 A (d) 28 A

rrr6.14 In the circuit shown in Fig. 6.25, V1 and V2 are two 

identical sources of 10∠90°. The power supplied by V1 

is

 (a) 6 W (c) 11 W 

(b) 8.8 W (d) 16 W

Fig. 6.25

Fig. 6.23

Fig. 6.24

For interactive quiz with answers,
scan the QR code given here
OR
visit
http://qrcode.flipick.com/index.php/264



7.1 MESH ANALYSIS

We have earlier discussed mesh analysis but have applied it only to resistive 

circuits. Some of the ac circuits presented in this chapter can also be solved 

by using mesh analysis. In Chapter 2, the two basic techniques for writing 

network equations for mesh analysis and node analysis were presented. These 

concepts can also be used for sinusoidal steady-state condition. In the sinusoidal 

steady-state analysis, we use voltage phasors, current phasors, impedances and 

admittances to write branch equations, KVL and KCL equations. For ac circuits, the method of writing loop 

equations is modified slightly. The voltages and currents in ac circuits change polarity at regular intervals. 

At a given time, the instantaneous voltages are driving in either the positive or negative direction. If the 

impedances are complex, the sum of their voltages is found by vector addition. We shall illustrate the method 

of writing network mesh equations with the following example.

Consider the circuit shown in Fig. 7.1, containing a 

voltage source and impedances.

The current in impedance Z1 is I1, and the current in 

Z2, (assuming a positive direction downwards through the 

impedance) is I1 2 I2. Similarly, the current in the impedance 

Z3 is I2. By applying Kirchhoff’s voltage law for each loop, 

we can get two equations. The voltage across any element 

is the product of the phasor current in the element and the 

complex impedance.Fig. 7.1

7

LEARNING OBJECTIVES

LO   1 
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Equation for the loop 1 is

I1Z1 1 (I1 2 I2)Z2 5 V1 (7.1)

Equation for the loop 2, which contains no source is

Z2(I2 2 I1) 1 Z3I2 5 0 (7.2)

By rearranging the above equations, the corresponding mesh current equations are

I1(Z1 1 Z2) 2 I2Z2 5 V1 (7.3)

– I1Z2 1 I2(Z2 1 Z3) 5 0 (7.4)

By solving the above equations, we can find out currents I1 and I2. In general, if we have M meshes, B 

branches and N nodes including the reference node, we assume M branch currents and write M independent 

equations; then the number of mesh currents is given by M 5 B 2 (N 2 1).

EXAMPLE 7.1

Write the mesh current equations in the circuit shown 

in Fig. 7.2, and determine the currents.

Solution  The equation for the loop 1 is

I1( j4) 1 6(I1 – I2) 5 5 ∠0° (7.5)

The equation for the loop 2 is

6(I2 2 I1) 1 ( j3)I2 1 (2)I2 5 0 (7.6)

By rearranging the above equations, the corresponding mesh current equations are

I1(6 1 j4) 2 6I2 5 5 ∠0° (7.7)

26I1 1 (8 1 j3)I2 5 0 (7.8)

Solving the above equations, we have

I
j

I

j j
I I

I
j

1 2

2 2

2

8 3

6

8 3 6 4

6
6 5 0

8

=
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− = ∠

+
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33 6 4
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6 5 0
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= ∠

j
°

I2 [10.26 ∠ 54.2° 2 6 ∠0°] 5 5 ∠0°

I2 [(6 1 j8.32) 2 6] 5 5 ∠0°

I

I

2

1

5 0

8 32 90
0 6 90

8 54 20 5

6
0 6 90

=
∠

∠
= ∠−

=
∠

× ∠−

°
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°

°
°

.
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. .
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Fig. 7.2
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 I1 5 0.855 ∠269.5°

Current in loop 1, I1 5 0.855 5 ∠269.5°

Current in loop 2, I2 5 0.6 ∠290°

7.2 MESH EQUATIONS BY INSPECTION

In general, mesh equations can be written by observing any network. Consider the three-mesh network shown 

in Fig. 7.3.

Fig. 7.3

The loop equations are

 I1 Z1 1 Z2(I1 2 I2) 5 V1 (7.9)

 Z2(I2 2 I1) 1 Z3 I2 1 Z4(I2 2 I3) 5 0 (7.10)

 Z4(I3 2 I2) 1 Z5 I3 5 2V2 (7.11)

By rearranging the above equations, we have

 (Z1 1 Z2)I1 2 Z2 I2 5 V1 (7.12)

  2 Z2 I1 1 (Z2 1 Z3 1 Z4)I2 2 Z4I3 5 0 (7.13)

  2 Z4 I2 1 (Z4 1 Z5)I3 5 2V2 (7.14)

In general, the above equations can be written as

  Z11 I1 6 Z12 I2 1 Z13 I3 5 Va (7.15)

  6 Z21 I1 1 Z22 I2 6 Z23 I3 5 Vb (7.16)

  6 Z31 I1 6 Z32 I2 1 Z33 I3 5 Vc (7.17)

If we compare the general equations with the circuit equations, we get the self-impedance of the loop 1

Z11 5 Z1 1 Z2

i.e. the sum of the impedances through which I1 passes. Similarly, Z22 5 (Z2 1 Z3 1 Z4), and Z33 5 (Z4 1 Z5) 

are the self-impedances of loops 2 and 3. This is equal to the sum of the impedances in their respective loops, 

through which I2 and I3 passes, respectively.

Z12 is the sum of the impedances common to loop currents I1 and I2. Similarly Z21 is the sum of the 

impedances common to loop currents I2 and I1. In the circuit shown in Fig. 7.3, Z12 5 2Z2, and Z21 5 2Z2. 

Here, the positive sign is used if both currents passing through the common impedance are in the same 

direction; and the negative sign is used if the currents are in opposite directions. Similarly, Z13, Z23, Z31, Z32 

are the sums of the impedances common to the mesh currents indicated in their subscripts. Va, Vb, and Vc are 

LO 1
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sums of the voltages driving their respective loops. Positive sign is used, if the direction of the loop current 

is the same as the direction of the source current. In Fig. 7.3, Vb 5 0 because no source is driving the loop 2. 

Since the source, V2 drives against the loop current I3, Vc 5 2V2.

EXAMPLE 7.2

For the circuit shown in Fig. 7.4, write the mesh equations 

using the inspection method.

Solution  The general equations are

 Z11 I1 6 Z12 I2 6 Z13 I3 5 Va (7.18)

  6 Z21 I1 1 Z22 I2 6 Z23 I3 5 Vb (7.19)

  6 Z31 I1 6 Z32 I2 1 Z33 I3 5 Vc (7.20)

Consider Eq. (7.18)

Z11 5 the self-impedance of the loop 1 5 (5 1 3 2 j4) V

Z12 5 the impedance common to both loops 1 and 2 5 25 V

The negative sign is used because the currents are in opposite directions.

Z13 5 0, because there is no common impedance between loop 1 and loop 3.

Va 5 0, because no source is driving the loop 1.

∴ Eq. (7.18) can be written as

(8 2 j4)I1 2 5I2 5 0 (7.21)

Now, consider Eq. (7.19).

Z21 5 25, the impedance common to loops 1 and 2.

Z22 5 (5 1 j5 2 j6), the self-impedance of the loop 2.

Z23 5 2 (2 j6), the impedance common to loops 2 and 3.

Vb 5 210 ∠30°, the source driving the loop 2.

The negative sign indicates that the source is driving against the loop current, I2.

Hence, Eq. (7.19) can be written as

 2 5I1 1 (5 2 j1)I2 1 ( j6)I3 5 2 10 ∠30° (7.22)

Consider Eq. (7.20).

Z31 5 0, there is no common impedance between loops 3 and 1

Z32 5 2 (2 j6), the impedance common to loops 2 and 3

Z33 5 (4 2 j6), the self impedance of the loop 3

Vb 5 20 ∠50°, the source driving the loop 3

The positive sign is used because the source is driving in the same direction as the loop current 3. Hence, 

the equation can be written as

 ( j6)I2 1 (4 2 j6)I3 5 20 ∠50° (7.23)

The three mesh equations are

 (8 2 j4)I1 2 5I2 5 0

 2 5I1 1 (5 2 j1)I2 1 ( j6)I3 5 210 ∠30°

 ( j6)I2 1 (4 2 j6)I3 5 20 ∠50

Fig. 7.4
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NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 1*

rrr7-1.1 For the circuit shown in Fig. Q.1, determine the 

value of the current Ix in the impedance Z 5 4 1 j5 

between nodes a and b.

rrr7-1.2 For the given network shown in Fig. Q.2, find the 

current through (2 1 j3) V impedance using mesh 

analysis.

Fig. Q.2

rrr7-1.3 For the circuit shown in Fig. Q.3, find the voltage across the dependent source branch by using mesh 

analysis.

Fig. Q.3

rrr7-1.4 By application of Thèvenin’s theorem, find the 

current I in the circuit shown in Fig. Q.4. The 

voltage source shown is sinusoidal having a 10  V 

rms value and frequency is such that the inductor 

has an impedance of 20 V magnitude and each 

capacitor has an impedance of 10 V magnitude.

Frequently Asked Questions linked to LO 1*
rrr7-1.1 Define ‘mesh analysis’ of a circuit. [AU April/May 2011]

rrr7-1.2 For the network shown in Fig. Q.2, obtain the current 

ratio (I1/I3) using mesh analysis.

                  [AU April/May 2011]

Fig. Q.1

Fig. Q.4

*For answers to Frequently Asked Questions, please visit the link http://highered.

mheducation.com/sites/9339219600

*Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category

5 W

j 2 W

–j 4 Wj 2 W

5 W

V
1

I
3I

2
I
1

Fig. Q.2
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rrr7-1.3 Using mesh analysis, determine the current the 1 W resistor of the network shown in Fig. Q.3. [BPUT 2008]

rrr7-1.4 For the circuit shown in Fig. Q.4, determine the value of V2 such that the current through (3+j4) W 

impedance is zero. (AU Nov./Dec. 2012)

10 V50V

4 W

4 W

4 W

6 W

1 W

Fig. Q.3

4 W

V
1
= 20 0° I

1
I
2

I
3

V
2

3 W j4 W

- 3j W
- 5j W

5 W

Fig. Q.4

7.3 NODAL ANALYSIS

The node-voltage 

method can also be 

used with networks 

containing complex 

i m p e d a n c e s 

and excited by 

sinusoidal voltage sources. In general, in an 

N-node network, we can choose any node as the 

reference or datum node. In many circuits, this 

reference is most conveniently choosen as the 

common terminal or ground terminal. Then it is possible to write (N 2 1) nodal equations using KCL. We 

shall illustrate nodal analysis with the following example.

Consider the circuit shown in Fig. 7.5.

Let us take a and b as nodes, and c as reference node. Va is the voltage between nodes a and c. Vb is the voltage 

between nodes b and c. Applying Kirchhoff’s current law at each 

node, the unknowns Va and Vb are obtained.

In Fig. 7.6, node a is redrawn with all its branches, 

assuming that all currents are leaving the node a.

In Fig. 7.6, the sum of the currents leaving the node a is 

zero.

∴ I1 1 I2 1 I3 5 0 (7.24)

 where  I
V V

Z
I

V

Z
I

V V

Z

a a a b
1

1

1

2

2

3

3

=
−

= =
−

, ,

Substituting I1, I2 and I3 in Eq. (7.24), we get

V V

Z

V

Z

V V

Z

a a a b−
+ +

−
=1

1 2 3

0  (7.25)

Similarly, in Fig. 7.7, the node b is redrawn with all its 

branches, assuming that all currents are leaving the node b.

Fig. 7.6

LO   2 

Fig. 7.7

Fig. 7.5
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In Fig. 7.7, the sum of the currents leaving the node b is zero.

∴ I3 1 I4 1 I5 5 0 (7.26)

where I
V V

Z
I

V

Z
I

V

Z Z

b a b b
3

3

4

4

5

5 6

=
−

= =
+

, ,

Substituting I3, I4 and I5 in Eq. (7.26)

we get  
V V

Z

V

Z

V

Z Z

b a b b−
+ +

+
=

3 4 5 6

0  (7.27)

Rearranging Eqs 7.25 and 7.27, we get

 
1 1 1 1 1
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V
1

 (7.28)
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=

1 1 1 1
0

3 3 4 5 6
Z

V
Z Z Z Z

Va b  (7.29)

From Eqs 7.28 and 7.29, we can find the unknown voltages Va and Vb.

EXAMPLE 7.3

In the network shown in Fig. 7.8, determine Va and Vb.

Fig. 7.8

Solution  To obtain the voltage Va at a, consider the branch currents leaving the node a as shown in Fig. 7.9 (a).

In Fig. 7.9 (a), I
V

j
I

V

j
I

V Va a a b
1 2 3

10 0

6 6 3
=

− ∠ °
=

−
=

−
, ,

Fig. 7.9(a) 

Since the sum of the currents leaving the node a is zero,

 I1 1 I2 1 I3 5 0
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V

j

V

j

V V

j j
V V

a a a b

a b

− ∠ °
+

−
+

−
=

− +










− =
∠

10 0

6 6 3
0

1

6

1

6

1

3

1

3

10 00

6

°

j

 (7.30)

 ∴ − =
∠ °1

3

1

3

10 0

6
V

j
a Vb  (7.31)

To obtain the voltage Vb at b, consider the branch 

currents leaving the node b as shown in Fig. 7.9 (b).

In Fig. 7.9 (b), I
V V

I
V

j
I

V

j j

b a b b
3 4 5

3 4 5 4
=

−
= =

−
, ,

( )

Since the sum of the currents leaving the node b is zero,

I3 1 I4 1 I5 5 0

V V V

j

V

j

b a b b−
+ + =

3 4 1
0 (7.32)

− + + +










=
1

3

1

3

1

4

1

1
0V

j j
Va b  (7.33)

From Eqs (7.31) and (7.33), we can solve for Va and Vb,

0.33Va 2 0.33Vb 5 1.67 ∠290° (7.34)

20.33Va 1 (0.33 2 0.25j 2 j)Vb 5 0 (7.35)

Adding Eqs (7.34) and (7.35), we get (21.25j)Vb 5 1.67 ∠290°

21.25 ∠90° Vb 5 1.67 ∠290°

Vb =
∠− °

− ∠ °

1 67 90

1 25 90

.

.

5 21.34 ∠2180°

Substituting Vb in Eq. (7.34), we get

0.33Va 2 (0.33) (21.34 ∠2180°) 5 1.67 ∠290°

Va =
∠− °

= −
1 67 90

0 33
1 31

.

.
. V

Va 5 5.22 ∠2104.5° V

Voltages Va and Vb are 5.22 ∠2104.5° V and 21.34 ∠2180° V respectively.

Fig. 7.9(b) 
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7.4 NODAL EQUATIONS BY INSPECTION

In general, nodal equations can also be written 

by observing the network. Consider a four-node 

network including a reference node as shown in 

Fig. 7.10.

Consider nodes a, b, and c separately as shown 

in Figs 7.11 (a), (b), and (c).

Assuming that all the currents are leaving the 

nodes, the nodal equations at a, b and c are

I1 1 I2 1 I3 5 0

I3 1 I4 1 I5 5 0

I5 1 I6 1 I7 5 0

Fig. 7.11

V V

Z

V

Z

V V

Z

a a a b−
+ +

−
=1

1 2 3

0  (7.36)

V V

Z

V

Z

V V

Z

b a b b c−
+ +

−
=

3 4 5

0  (7.37)

V V

Z

V

Z

V V

Z

c b c c−
+ +

−
=

5 6

2

7

0  (7.38)

Fig. 7.10

LO 2
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Rearranging the above equations, we get
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1 1 1 1 1

5 5 6 7 7Z
V

Z Z Z
V

Z
b c 

V2 (7.41)

In general, the above equations can be written as

YaaVa 1 YabVb 1 YacVc 5 I1

YbaVa 1 YbbVb 1 YbcVc 5 I2

YcaVa 1 YcbVb 1 YccVc 5 I3

If we compare the general equations with the circuit equations, the self-admittance at the node a is

Y
Z Z Z

aa = + +
1 1 1

1 2 3

which is the sum of the admittances connected to the node a.

Similarly,    and Y
Z Z Z

Y
Z Z Z

bb cc= + + = + +
1 1 1 1 1 1

3 4 5 5 6 7

,

are the self admittances at nodes b and c, respectively. Yab is the mutual admittance between nodes a and b, 

i.e. it is the sum of all the admittances connecting nodes a and b. Yab 5 21/Z3 has a negative sign. All the 

mutual admittances have negative signs. Similarly, Yac, Yba, Ybc, Yca, and Ycb are also mutual admittances. 

These are equal to the sums of the admittances connecting to nodes indicated in their subscripts. I1 is the 

sum of all the source currents at node a. The current which drives into the node has a positive sign, while 

the current driving away from the node has a negative sign.

EXAMPLE 7.4

For the circuit shown in Fig. 7.12, write the node equations by the inspection method.

Fig. 7.12

Solution  The general equations are

Yaa Va 1 Yab Vb 5 I1 (7.42)

Yba Va 1 Ybb Vb 5 I2 (7.43)
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Consider Eq. (7.42)

Y
j j

aa = + +
−

1

3

1

4

1

6

The self-admittance at the node a is the sum of admittances connected to the node a.

Y
j j

bb =
−

+ +
1

6

1

5

1

5 

The self-admittance at the node b is the sum of admittances connected to the node b.

Y
j

ab = −
−











1

6

The mutual admittance between nodes a and b is the sum of admittances connected between nodes a and 

b. Similarly, Yba 52 (21/j6), the mutual admittance between nodes b and a is the sum of the admittances 

connected between nodes b and a.

I1

10 0

3
=

∠ °

The source current at the node a

I2

10 30

5
=

− ∠ °
 = source current leaving at the node b.

Therefore, the nodal equations are
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1

5

1

5

1

6

10 30

5j
V

j j
Va b  (7.45)

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 2
rrr7-2.1 Determine the value of source currents by loop analysis for the circuit shown in Fig. Q.1 and 

verify the results by using node analysis.

Fig. Q.1

rrr7-2.2 Determine the power out of the source in the 

circuit shown in Fig. Q.2 by nodal analysis and 

verify the results by using loop analysis.

Fig. Q.2
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rrr7-2.3 For the circuit shown in Fig. Q.3, obtain the voltage across 500 kV resistor.

Fig. Q.3

Frequently Asked Questions linked to LO 2
rrr7-2.1 In the network system shown in Fig. Q.1, find the current through Z3 using nodal method. The 

values of voltages are given volts and the impedances in ohms. [BPUT 2008]

rrr7-2.2 Using nodal analysis find voltage V1 and V2 for the circuit shown in Fig. Q.2. [GTU Dec. 2010]

2 A 4 W

2 W 4 W

2 W 1 A
Z

3
= j10

Z = j
2

6– 8Z = j
1

6+ 8

V
2
=
1
0
0

–
6
0
º

–

V
=

1
1
0
0
<
0
º

Fig. Q.1 Fig. Q.2

rrr7-2.3 Solve for the nodal voltage V1, V2, V3, and V4 as shown in the network in Fig. Q.3, using the nodal 

analysis.  

 [GTU May 2011]

rrr7-2.4 Find the current through the 2 V source in Fig. Q.4, using 

node voltage analysis. [GTU Dec. 2012]

rrr7-2.5 Find the source voltage Vs by using nodal technique, 

assume I = 5E45º A. [JNTU Nov. 2012]

rrr7-2.6 By applying nodal analysis for the circuit shown Fig. Q.6, determine the power output of the source 

and the power in each resistor of the circuit. [AU May/June 2013]

Fig. Q.4

1 W

1 W
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2

1

4
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5 V

1

2
W

1 W

x

20  30° V
2 W- 4j W

- 5j W8 W A

Fig. Q.6
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Fig. Q.5

Fig. Q.3
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7.5 SUPERPOSITION THEOREM

The superposition theorem also can be used to analyse ac circuits containing more 

than one source. The superposition theorem states that the response in any element 

in a circuit is the vector sum of the responses that can be expected to flow if each 

source acts independently of other sources. As each source is considered, all of the 

other sources are replaced by their internal impedances, which are mostly short 

circuits in the case of a voltage source, and open circuits in the case of a current source. This theorem is valid 

only for linear systems. In a network containing complex 

impedance, all quantities must be treated as complex 

numbers.

Consider a circuit which contains two sources as 

shown in Fig. 7.13.

Now let us find the current I passing through 

the impedance Z2 in the circuit. According to the 

superposition theorem, the current due to voltage 

source V ∠0° V is I1 with current source Ia ∠0° A open-

circuited.

I
V

Z Z
1

1 2

0
=

∠

+

°

The current due to Ia ∠0° A is I2 with voltage source V ∠0° short circuited.

 ∴ I I
Z

Z Z
a2

1

1 2

0= ∠ ×
+

°

The total current passing through the impedance Z2 is

 I 5 I1 1 I2

Fig. 7.14 Fig. 7.15

EXAMPLE 7.5

Determine the voltage across the (2 1 j5) V 

impedance as shown in Fig. 7.16 by using the 

superposition theorem.

Fig. 7.13

LO   3 

Fig. 7.16
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Solution  According to the superposition theorem, the current due to the 50 ∠0° V voltage source is I1 as 

shown in Fig. 7.17 with current source 20 ∠30° A open-circuited.

Current I
j j j

1

50 0

2 4 5

50 0

2 9

50 0

9 22 77 47
5 42

=
∠ °

+ +
=

∠ °

+

=
∠ °

∠
= ∠

( )

. .
. −− °77 47. A

Voltage across (2 1 j5) V due to the current I1 is

V1 5 5.42 ∠ 2 77.47° (2 1 j5)

 5 (5.38) (5.42) ∠277.47° 1 68.19°

 5 29.16 ∠29.28°

The current due to the 20 ∠30° A current source is I2 as shown 

in Fig. 7.18, with the voltage source 50 ∠0° V short-circuited.

Current

4 90

I
j

j
2 20 30

4

2 9

20 30

9 22 77 47

= ∠ °×
( )
+( )

=
∠ °× ∠ °

∠ °

V

V

. .

∴ I2 5 8.68 ∠120° 2 77.47° 5 8.68 ∠42.53°

Voltage across (2 1 j5) V due to the current I2 is

V2 5 8.68 ∠42.53° (2 1 j5)

 5 (8.68) (5.38) ∠42.53° 1 68.19°

 5 46.69 ∠110.72°

Voltage across (2 1 j5) V due to both sources is

V 5 V1 1 V2

 5 29.16 ∠29.28° 1 46.69 ∠110.72°

 5 28.78 2 j4.7 2 16.52 1 j43.67

 5 (12.26 1 j38.97) V

Voltage across (2 1 j5) V is V 5 40.85 ∠72.53°.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 3
rrr7.3.1 Apply the superposition theorem to the circuit shown in Fig. Q.1 and find the current I.

Fig. Q.1

Fig. 7.17

Fig. 7.18
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Frequently Asked Questions linked to LO 3

rrr7-3.1 Use the superposition theorem to find the current through the 4  resistor in the circuit shown in 

Fig. Q.1.  [AU May/June 2013]

Fig. Q.1

rrr7-3.2 Find the current through the capacitor of –j 5  reactance as shown in Fig. Q.2 using the superposition 

theorem.  [JNTU Nov. 2012]

Fig. Q.2

rrr7-3.3 By the superposition theorem, calculate the current the (2 + j3)  impedance branch of the circuit 

in Fig. Q.3.  [PTU 2011-12]

Fig. Q.3

7.6 TH�VENIN’S THEOREM

Thèvenin’s theorem gives us a method for simplifying a given circuit. The 

Thèvenin equivalent form of any complex impedance circuit consists of an 

equivalent voltage source VTh, 

and an equivalent impedance Z Th, 

arranged as shown in Fig. 7.19. The 

values of equivalent voltage and impedance depend on the values 

in the original circuit.

Though the Thèvenin equivalent circuit is not the same as its 

original circuit, the output voltage and output current are the same 

in both cases. Here, the Thèvenin voltage is equal to the open-

LO   4 

Fig. 7.19
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circuit voltage across the output terminals, and impedance is equal 

to the impedance seen into the network across the output terminals.

Consider the circuit shown in Fig. 7.20.

Thèvenin equivalent for the circuit shown in Fig. 7.20 between 

points A and B is found as follows.

The voltage across points A and B is the Thèvenin equivalent 

voltage. In the circuit shown in Fig. 7.20, the voltage across A and 

B is the same as the voltage across Z2 because there is no current 

through Z3.

=
+











V V

Z

Z Z
Th

2

1 2

The impedance between points A and B with the source replaced 

by short circuit is the Thèvenin equivalent impedance. In Fig. 

7.20, the impedance from A to B is Z3 in series with the parallel 

combination of Z1 and Z2.

= +
+

Z Z
Z Z

Z Z
Th 3

1 2

1 2

The Thèvenin equivalent circuit is shown in Fig. 7.21.

EXAMPLE 7.6

For the circuit shown in Fig. 7.22, determine Thèvenin’s equivalent 

between the output terminals.

Solution  The Thèvenin voltage, VTh, is equal to the voltage across 

the (4 1 j6) V impedance. The voltage across (4 1 j6) V is

V
j

j j

j

j

= ∠ ×
+

+ + −

= ∠ ×
+

+

= ∠ ×
∠

50 0
4 6

4 6 3 4

50 0
4 6

7 2

50 0
7 21 56 3

°

°

°

( )

( ) ( )

. . °°

°7 28 15 95. .∠

  5 50 ∠0° 3 0.99 ∠40.35°

  5 49.5 ∠40.35° V

The impedance seen from terminals A and B is

 
Z j j

j j

j j
Th = − +

− +

− + +
( )

( ) ( )
5 4

3 4 4 6

3 4 4 6

= +
∠ °× ∠ °

∠ °
j1

5 53 13 7 21 56 3

7 28 15 95

. . .

. .

 5 j1 1 4.95 ∠212.78° 5 j1 1 4.83 2 j1.095

 5 4.83 2 j0.095

∴ ZTh 5 4.83 ∠21.13° V

The Thèvenin equivalent circuit is shown in Fig. 7.23.

Fig. 7.20

Fig. 7.21

Fig. 7.22

Fig. 7.23
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NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 4
rrr7-4.1 Find the current in the 15 V resistor in the network shown in Fig. Q.1 by Thèvenin’s theorem.

Fig. Q.1

rrr7-4.2 Use Thèvenin’s theorem to find the current through the (5 1 j4) V impedance in Fig. Q.2. Verify the 

results using Norton’s theorem.

rrr7-4.3 Find Thèvenin’s equivalent for the network shown in Fig.  Q.3.

Fig. Q.2 Fig. Q.3

rrr7-4.4 For the circuit shown in Fig. Q.4, obtain the Thèvenin’s 

equivalent circuit at terminals ab.

Frequently Asked Questions linked to LO 4 
rrr7-4.1 Find the current through the branch a-b of the network shown in Fig. Q.1 using Thevenin’s theorem. 

  [AU May/June 2013]

rrr7-4.2 Find the current in the (1 + j1) W resistor across A, B of the network shown in Fig. Q.2 using 

Thevenin’s theorem. [PTU 2009-10]

1 W
j1 W

1 W

1 W

1 W

j1 W

V
1
= 10Ð0ºVolts V

2
= 10Ð60º volts

A

B

Fig. Q.2Fig. Q.1

5 W

5 W

j 5 W

8 W

j 4 W

10 ºVÐ0

a

b

Fig. Q.4
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7.7 NORTON’S THEOREM

Another method of analysing a complex 

impedance circuit is given by Norton’s 

theorem. The Norton equivalent form of 

any complex impedance circuit consists 

of an equivalent current source IN and 

an equivalent impedance ZN, arranged as shown in Fig. 7.24. The 

values of equivalent current and impedance depend on the values in 

the original circuit.

Though Norton’s equivalent circuit is not the same as its original 

circuit, the output voltage and current are the same in both cases; 

Norton’s current is equal to the current passing through the short-

circuited output terminals and the value of impedance is equal to the 

impedance seen into the network across the output terminals.

Consider the circuit shown in Fig. 7.25.

Norton’s equivalent for the circuit shown in Fig. 7.25 between 

points A and B is found as follows. The current passing through points 

A and B when it is short-circuited is the Norton’s equivalent current, 

as shown in Fig. 7.26.

Norton’s current IN 5 V/Z1

The impedance between points A and B, with the source replaced 

by a short circuit, is Norton’s equivalent impedance.

In Fig. 7.25, the impedance 

from A to B,

Z2 is in parallel with Z1.

∴ =
+

Z
Z Z

Z Z
N

1 2

1 2

Norton’s equivalent circuit is shown in Fig. 7.27.

EXAMPLE 7.7

For the circuit shown in Fig. 7.28, determine Norton’s 

equivalent circuit between the output terminals, AB.

Solution  Norton’s current IN is equal to the current passing 

through the short-circuited terminals AB as shown in Fig. 

7.29.

Fig. 7.29

Fig. 7.27

Fig. 7.24

Fig. 7.26

Fig. 7.25

Fig. 7.28

LO   5 
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The current through terminals AB is

I
j

N =
∠

+
=

∠

∠

= ∠−

25 0

3 4

25 0

5 53 13

5 53 13

° °

°

°

.

.

The impedance seen from terminals AB is

 

Z
j j

j j
N =

+ −

+ + −

=
∠ °× ∠− °

∠−

( ) ( )

( ) ( )

. . .

. .

3 4 4 5

3 4 4 5

5 53 13 6 4 51 34

7 07 8 133

4 53 9 92

°

= ∠ °. .

Norton’s equivalent circuit is shown in Fig. 7.30.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 5
rrr7-5.1 Determine Thèvenin’s and Norton’s equivalent circuits across terminals AB, in Fig. Q.1.
rrr7-5.2 Determine Norton’s and Thèvenin’s equivalent circuits for the circuit shown in Fig. Q.2.

Fig. Q.2Fig. Q.1

Frequently Asked Questions linked to LO 5

 rrr7-5.1 Find the current through the 10-ohm resistor in the following 

circuit using Norton’s theorem. (Fig. Q.1)

 [JNTU Nov. 2012]

7.8 MAXIMUM POWER TRANSFER THEOREM

In Chapter 3, the maximum power transfer theorem has been discussed for 

resistive loads. The maximum power transfer theorem states that the maximum 

power is delivered from a source to its load when the load resistance is equal to 

the source resistance. It is for this reason that the ability to obtain impedance 

matching between circuits is so important. For example, the audio output 

transformer must match the high impedance of the audio power amplifier 

1 W

– 2j W

10 V

5 W

10 W

2 W

A

B

5Ð30º V

Fig. Q.1

Fig. 7.30

LO   6 
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output to the low input impedance of the speaker. Maximum power transfer is not always desirable, since the 

transfer occurs at a 50 per cent efficiency. In many situations, a maximum voltage transfer is desired which 

means that unmatched impedances are necessary. If maximum power transfer is required, the load resistance 

should equal the given source resistance. The maximum power transfer theorem can be applied to complex 

impedance circuits. If the source impedance is complex, then the maximum power transfer occurs when the 

load impedance is the complex conjugate of the source impedance.

Consider the circuit shown in Fig. 7.31, consisting of a source impedance delivering power to a complex 

load.

Current passing through the circuit shown

I
V

R j X R j X

I I
V

R R

s

s s L L

s

s L

=
+ + +

= =
+ +

( ) ( )

( ) (
Magnitude of current 

2 XX Xs L+ )2

Power delivered to the circuit is

 

P I R
V R

R R X X
L

s L

s L s L

= =
+ + +

2
2

2 2( ) ( )

In the above equation, if RL is fixed, the value of P is maximum when

Xs 52XL

Then the power  P
V R

R R

s L

s L

=
+

2

2( )

Let us assume that RL is variable. In this case, the maximum power is transferred when the load resistance 

is equal to the source resistance (already discussed in Chapter 3). If RL 5 Rs and XL 52Xs, then ZL 5 Z *s. 

This means that the maximum power transfer occurs when the load impedance is equal to the complex 

conjugate of source impedance Zs.

EXAMPLE 7.8

For the circuit shown in Fig. 7.32, find the value of load 

impedance for which the source delivers maximum power. 

Calculate the value of the maximum power.

Solution  In the circuit shown in Fig. 7.32, the maximum power 

transfer occurs when the load impedance is complex conjugate 

of the source impedance.

∴ ZL 5 Z *s 5 15 2 j20

When ZL 5 15 2j20, the current passing through circuit is

I
V

R R j j

s

s L

=
+

=
∠ °

+ + −
=

∠ °
= ∠ °

50 0

15 20 15 20

50 0

30
1 66 0.

The maximum power delivered to the load is

P 5 I 2RL 5 (1.66)2 3 15 5 41.33 W

Fig. 7.31

Fig. 7.32
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NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 6
rrr7-6.1 For the circuit shown in Fig. Q.1, find the value of Z that will receive the maximum power. Also 

determine this power.
rrr7-6.2 Determine the power output of the voltage source by loop analysis for the network shown in Fig. 

Q.2. Also determine the power extended in the resistors.

Fig. Q.1 Fig. Q.2

rrr7-6.3 Obtain the Thèvenin’s equivalent circuit at terminals AB shown in Fig. Q.3.

rrr7-6.4 In the circuit shown in Fig. Q.4, the resistance Rg is variable between 2  and 55 ohms. What value 

of Rg results in maximum power transfer across terminals  AB?

Fig. Q.3 Fig. Q.4

rrr7-6.5 For the power transmission system, shown in Fig. Q.5, VS 5 240∠0°. Using PSpice, find the 

average power absorbed by the load.

rrr7-6.6 For the circuit shown in Fig. Q.6, determine the value of Z that will result in the maximum power 

being delivered to Z. Calculate the value of maximum power using PSpice.

Fig. Q.5 Fig. Q.6

rrr7-6.7 For the circuit shown in Fig. Q.7, 

the load resistance RL is adjusted 

until it absorbs the maximum 

average power. Calculate the value 

of RL and the maximum average 

power. Use PSpice.

Fig. Q.7
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Frequently Asked Questions linked to LO 6
r7-6.1 In the circuit shown below, find the value of the load impedance ZL for maximum power transfer to 

the load.  [AU Nov./Dec. 2012]
10 + 10j W

5 0º
V ZL

Fig. Q.1

Additional Solved Problems

PROBLEM 7.1

Determine (a) the equivalent voltage generator, and (b) 

the equivalent current generator which may be used to 

represent the given network in Fig. 7.33 at the terminals 

AB.

Solution  The impedance seen into the terminals when 

the voltage source is short- circuited

Z

Z j

AB

AB

= − = − °

= − Ω

{[( || ) ] || } . .

( . . )

2 8 2 6 2 99 16 32

2 87 0 84

j j j

Considering the node voltage V across j8 V and applying nodal analysis at the node, we have

V V

j

V

j

V

−
+ + =

+ +











=

10 0

2 8 4
0

0 5
1

8 90

1

4 90
5 0

°

° °
°.

∴ = °V 8 36 87. V

The voltage across AB is

V V
j

j j

j

j
AB = ⋅

−
= × =

6

6 2
8 36 87

6

4
12 36 87. .° ° V

The current in the short-circuited terminals AB

I
V

j
A =

−
=

−
=

2

8 36 87

2 90
4126 87

.
.

°

°
° A

Therefore, the voltage generator is shown in Fig 7.34 (a) and the current generator is shown in Fig 7.34 (b).

Fig. 7.34

Fig. 7.33
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PROBLEM 7.2

Determine the voltage Vab and Vbc in the network shown in Fig 7.35 by loop analysis, where source voltage 

e(t) 5 100 cos (314t 1 45).

Fig. 7.35

Solution  The circuit is redrawn as shown in Fig. 7.36.

Fig. 7.36

From Fig. 7.36 shown, the loop-current equations are given by

( ) ( )3 8 4 100 45
1 2

+ − =j i j i °  (7.46)

− + =j i j i4 2 0
1 2

( )  (7.47)

From the above equations, we have

3 8

4

4

2

100 45

0

1

2

+

−

−
























=













j

j

j

j

i

i

°

The loop current i
1

1=




Where 







=
+ −

−
=

=
° −

= °

∴ = =

3 8 4

4 2
6

100 45 4

0 2
200135

33 33

1

1

1

j j

j j
j

j

j

i . 445° A

The loop current 

where

i

j

j

i

2

2

2

2

3 8 100 45

4 0
400135

=

=
+ °

−
= °

∴ =








22

66 67 45


= °. A
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The voltage across ab is V i jab = + = °
1
3 4 166 65 98 13( ) . . V

The voltage across bc is V i i jbc = − = −( ) .
1 2 4

133 4 45° V

PROBLEM 7.3

In the circuit shown in Fig 7.37, determine the power 

in the impedance (2 1 j5) V connected between A 

and B using Norton’s theorem.

Solution  To find the current in the short-circuited 

terminals AB, the circuit is redrawn as shown in Fig. 

7.38.

Fig. 7.38

The total impedance in the circuit shown in Fig. 7.38,

Z j jT = − + +[ ] =( || ) ( ) . .4 5 3 5 6 24 29 26V °

The total current IT = = −
10 0

6 24 29 26
1 6 29 26

°

°
° A

. .
. .

The current I I
j

j
N T= ×

−

−
= −

5

4 5
1 24 67 92. . ° A

Open-circuit impedance seen into the terminals AB,

Z
j j

jN = +
+ −

= −4
3 5 5

3
12 33 5

( )( )
( . ) V

The Norton’s equivalent circuit is shown in Fig. 7.39.

Fig. 7.39

Fig. 7.37
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∴ the current in (2 1 j5)V is

I I
j

j j
j N( )

.

.

. .

2 5

12 33 5

12 33 5 2 5

1 16 90 02

+ = ×
−

− + +

= −

V

° A

The power in the (2 1 j5) V impedance,

P2 1 j5 5 (1.16)2 3 2 5 2.69 watts

PROBLEM 7.4

For the circuit shown in Fig. 7.40, find the current in each resistor using the superposition theorem.

Fig. 7.40

Solution  Consider the currents I1, I2, and I3 are flowing in the branches 10 V, (3 1 j4) V and (5 2 j5) V 

respectively.

The branch currents due to the 100 0°  voltage source can be determined by the circuit shown in Fig. 7.41, 

where the 50 30°  source is short-circuited.

Fig. 7.41

Total impedance Z j j

I

T = − + +[ ]= °

=

{( ) || ( )} . .5 5 3 4 10 14 28 4 64

100
1

V

9 00

14 28 4 64
6 97 0 57

5 5

5 5 3 4
4 53

2 1
1

°

°
= −

= ×
− Ω

− + +
= −

. .
( . . )

( )
( .

j

I I
j

j j

A

9 jj

I I
j

j
j

4 15

3 4

8 1
2 45 3 53 1

1

. )

( )
( . . )

A

A9 = ×
+

−
= +

The branch current due to 50 30°V  source can be determined by the circuit shown in Fig. 7.42.

Total impedance in the circuit shown in Fig 7.42.
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Z j j

I

T = + + −[ ]
= − °

′′=
°

( || ( ))

. .

.

10 3 4 5 5

8 46 19 6

50 30

8 46
3

V

The current
−− °

= +

′′= ′′×
+ +

= +

′′=

19 6
3 83 4 5

10

10 3 4
3 66 2 33

2 3

1

.
( . . )

( . . )

j

I I
j

j

I

A

A

′′′×
+

+ +
= +I

j

j
j

3

3 4

10 3 4
0 16 2 16( . . ) A

The current in the 10 V resistor

 
I I I
1 1 1

7 34 21 84= ′− ′′= − °. . A

The current in the (3 1 j4) V branch

 I I I2 2 2 8 39 12 53= ′ + ′′ = − °. . A

The current in the (52j5) V branch

 I I I3 3 3 1 7 35 9= ′′− ′ = °. . A

PROBLEM 7.5

Determine the maximum power delivered to the load in the circuit shown in Fig. 7.43.

Fig. 7.43

Solution  The circuit is replaced by Thèvenin’s equivalent circuit in series with ZL as shown in Fig. 7.44

where voltsV I j

I
j

j j

AB j

j

= × +

=
°× −

− + +

+

+

( )

( )

( )

( )

3 4

3 4

3 4

50 0 10

5 6 3 4

V

V
−−

= − °

= − °×

j

AB VAB

10
34 67 33 7

34 67 33 7 5 53

. .

. .

A

Voltage across  is ..

. .

13

173 3519 43

°

= °V

Impedance across terminals AB is

Z j j j j

Z j

AB

AB

= + − + − +

= ° = +

{[( ) || ( )] ( )} ||

. .

10 15 10 5 6 3 4

5 27 41 16 4 3..5

Fig. 7.42
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To get the maximum power delivered to the load impedance, the load 

impedance must be equal to complex conjugate of source impedance.

Therefore, the total impedance in the circuit shown in Fig. 7.44 is 8 V.

The current in the circuit is

I
VAB

2
8

173 35

8
21 66= = =

.
. A

The maximum power transferred to the load is

P I RL L= = × =2 2
21 66 4 1874 9( . ) . watts

PROBLEM 7.6

For the circuit shown in Fig. 7.45, determine the power 

output of the source and the power in each resistor of 

the circuit.

Solution  Assume that the voltage at the node A is VA.

By applying nodal analysis, we have

V V

j

V

j

V
j j

A A A

A

− ∠
+

−
+

+
=

+
+

−











=

∠

20 30

3 4 2 5
0

1

3

1

2 5

1

4

20 30

3

°

°

VA [0.33 1 0.068 1 j0.078] 5 6.67 ∠30°

=
∠

∠
= ∠VA

6 67 30

0 41 11 09
16 27 18 91

.

. .
. .

°

°
°

Current in the 2 V resistor

I
V

j

A
2

2 5

16 27 18 91

5 38 68 19
=

+
=

∠

∠

. .

. .

°

°

∴ I2 5 3.02 ∠249.28°

Power dissipated in the 2 V resistor

P2 5 I2
2 R 5 (3.02)2 3 2 5 18.24 W

Current in the 3 V resistor

I
3

20 30 16 27 18 91

3
=

− ∠ + ∠° °. .

 5 2 6.67 ∠30° 1 5.42 ∠18.91°

 5 25.78 – j3.34 1 5.13 1 j1.76 520.65 2 j1.58

I3 5 1.71 ∠2112°

Fig. 7.44

Fig. 7.45
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Power dissipated in the 3 V resistor

 5 (1.71)2 3 3 5 8.77 W

Total power delivered by the source

 5 VI cos f 5 20 3 1.71 cos 142° 5 26.95 W

PROBLEM 7.7

For the circuit shown in Fig. 7.46, determine the voltage VAB using the superposition theorem.

Fig. 7.46

Solution  Let the source 50 ∠0° V act on the circuit and set the source 4 ∠0° A equal to zero. If the current 

source is zero, it becomes open-circuited. Then the voltage across AB is VAB 5 50 ∠0°.

Now set the voltage source 50 ∠0° V at zero, and it is short-circuited, or the voltage drop across AB is zero.

The total voltage is the sum of the two voltages.

∴ VT 5 50 ∠0°

PROBLEM 7.8

For the circuit shown in Fig. 7.47, determine the current in (2 1 j3) V by using the superposition theorem.

Fig. 7.47

Solution  The current in (2 1 j3) V, when the voltage source 50 ∠0° is acting alone is

I
j

1

50 0

6 3

50 0

6 7 26 56
=

∠

+
=

∠

∠

° °

°( ) . .

∴ I1 5 7.46 ∠226.56° A

Current in (2 1 j3) V, when the current source 20 ∠90° A is acting alone is

I
j

2 20 90
4

6 3

80 90

6 7 26 56
11 94 63 44

= ∠ ×
+

=
∠

∠
= ∠

°

°

°
° A

( )

. .
. .
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Total current in (2 1 j3) V due to both sources is

I 5 I1 1 I2

 5 7.46 ∠226.56° 1 11.94 ∠63.44°

 5 6.67 2 j3.33 1 5.34 1 j10.68

 5 12.01 1 j7.35 5 14.08 ∠31.46°

Total current in (2 1 j3) V is I 5 14.08 ∠31.46°

PROBLEM 7.9

For the circuit shown in Fig. 7.48, determine the load current 

by applying Thèvenin’s theorem.

Solution  Let us find the Thèvenin equivalent circuit for the 

circuit shown in Fig. 7.49 (a).

Fig. 7.49

Voltage across AB is the voltage across ( j3) V

∴ = ∠ ×
+

= ∠ = ∠

V
j

j j

j

j

AB 100 0
3

3 4

100 0
3

7
42 86 0

°

° °

( )

( ) ( )

( )
.

Impedance seen from terminals AB

Z j
j j

j
AB = +( )

( ) ( )
5

4 3

7

 5 j5 1 j1.71 5 j6.71 V

Thèvenin’s equivalent circuit is shown in Fig. 7.49 (b).

If we connect a load to Fig. 7.49 (b), the current passing through the ( j5) V impedance is

I
j j

L =
∠

+
=

∠

∠
= ∠−

42 86 0

6 71 5

42 86 0

11 71 90
3 66 90

.

( . )

.

.
.

° °

°
°

Fig. 7.48
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PROBLEM 7.10

For the circuit shown in Fig. 7.50, determine the Thèvenin’s equivalent circuit.

Fig. 7.50

Solution  Voltage across (2 j4) V is

V
j

jj− =
∠

+
−

=
∠

∠
= ∠−

4

5 90

2 2
4

20 0

2 83 45
7 07 45

°

°

°
°

( )
( )

.
.

Voltage across AB is VAB 52V10 1 V5 2 V–j4

 5 –10 ∠0° 1 5 ∠90° – 7.07 ∠– 45°

 5 j5 2 10 2 4.99 1 j4.99

 5 214.99 1 j9.99

VAB 5 18 ∠146.31°

The impedance seen from terminals AB, when all voltage sources are short- circuited is

Z
j j

j
AB = +

+ −

+

= +
∠ × ∠−

∠

4
2 6 4

2 2

4
6 32 71 56 4 90

2 83 45

( ) ( )

. .

.

° °

°

 5 4 1 8.93 ∠263.44°

 5 4 1 4 2 j 7.98 5 (8 2 j7.98) V

Thèvenin’s equivalent circuit is shown in Fig. 7.51.

PROBLEM 7.11

For the circuit shown in Fig. 7.52, determine the load 

current IL by using Norton’s theorem.

Solution  Norton’s impedance seen from terminals 

AB is

Z
j j

j j j
AB =

−

−
=

( ) ( )

( ) ( )

3 2

3 2

6

1

∴ ZAB 5 6 ∠290°

Fig. 7.51

Fig. 7.52
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Current passing through AB, when it is shorted

IN =
∠

∠
+

∠

∠−

10 0

3 90

5 90

2 90

°

°

°

°

∴ IN 5 3.33 ∠290° 1 2.5 ∠180°

 52j3.33 2 2.5

IN 5 4.16 ∠2126.8°

Norton’s equivalent circuit is shown in Fig. 7.53.

Load current is I IL N= ×
∠− °

+ ∠− °

= ∠− °×
∠− °

−

6 90

5 6 90

4 16 126 8
6 90

5
. .

jj6

4 16 6 216 8

7 81 50 19
=

× ∠−

∠−

. .

. .

°

°

  5 3.19 ∠2166.61°

PROBLEM 7.12

For the circuit shown in Fig. 7.54, determine Norton’s equivalent circuit. 

Fig. 7.54

Solution  The impedance seen from the terminals when the source is 

reduced to zero,

ZAB 5 (5 1 j6) V

Current passing through the short circuited terminals, A and B, 

is

IN 5 30 ∠30° A

Norton’s equivalent circuit is shown in Fig. 7.55.

PROBLEM 7.13

Convert the active network shown in Fig. 7.56 by a single 

voltage source in series with impedance.

Solution  Using the superposition theorem, we can find 

Thèvenin’s equivalent circuit. The voltage across AB, with 20 

∠0° V source acting alone, is V9AB, and can be calculated from 

Fig. 7.57 (a).

Fig. 7.53

Fig. 7.55

Fig. 7.56
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Since no current is passing through the (3 1 j4) V impedance, the voltage

V 9AB 5 20 ∠0°

The voltage across AB, with 5 ∠0° A source acting alone, is V9AB, and can be calculated from Fig. 7.57 (b).

V AB 5 5 ∠0 (3 1 j4) 5 5 ∠0 3 5 ∠53.13 5 25 ∠53.13 V

Fig. 7.57

The voltage across AB, with the 10 ∠90° A source acting alone, is V AB, and can be calculated from Fig. 

7.57 (c).

V AB 5 0

According to the superposition theorem, the voltage across AB due to all sources is

VAB 5 V9AB 1 V AB 1 V AB

VAB 5 20 ∠0° 1 25 ∠53.13° 5 20 1 15 1 j19.99

 5 (35 1 j19.99) V 5 40.3 ∠29.73° V

The impedance seen from terminals AB

ZTh 5 ZAB 5 (3 1 j4) V

∴ the required Thèvenin circuit is shown in Fig. 7.57 (d).

Fig. 7.57

PROBLEM 7.14

For the circuit shown in Fig. 7.58, find the value of Z that will receive 

maximum power; also determine this power.

Fig. 7.58
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Solution  The equivalent impedance at terminals AB with the source set equal to zero is

Z
j

j

j

j
AB =

+
+

−

−

=
∠

∠
+

∠−

5 10

5 10

7 20

7 20

50 90

11 18 63 43

140 90

( ) ( )

( )

. .

°

°

°

221 19 70 7. .∠− °

  5 4.47 ∠26.57° 1 6.6 ∠219.3°

  5 3.99 1 j1.99 1 6.23 2 j2.18

  5 10.22 2 j0.19

The Thèvenin equivalent circuit is shown in Fig. 7.59 (a).

The circuit in Fig. 7.59 (a) is redrawn as shown in Fig. 7.59 (b).

Fig. 7.59

Current

A

I
j

1

100 0

5 10

100 0

11 18 63 43
8 94 63 43

=
∠ °

+

=
∠ °

∠ °
= ∠− °

. .
. .

Current I
j

2

100 0

7 20

100 0

21 19 70 7
4 72 70 7=

∠ °

−
=

∠ °

∠− °
= ∠ °

. .
. .

Voltage at A, VA 5 8.94 ∠263.43° 3 j10 5 89.4 ∠26.57°

Voltage at B, VB 5 4.72 ∠70.7° 32j20 5 94.4 ∠219.3°

Voltage across terminals AB

VAB 5 VA 2 VB

  5 89.4 ∠26.57° 2 94.4 ∠219.3°

  5 79.96 1 j39.98 2 89.09 1 j31.2

  5 2 9.13 1 j71.18

VTh 5 VAB 5 71.76 ∠97.3° V

To get maximum power, the load must be the complex conjugate of the source impedance.

 ∴ load Z 5 10.22 1 j0.19
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Current passing through the load Z

 
I

V

Z Z
=

+
=

∠ °
= ∠ °Th

Th

71 76 97 3

20 44
3 51 97 3

. .

.
. .

Maximum power delivered to the load is

  5 (3.51)2 3 10.22 5 125.91 W

PROBLEM 7.15

For the circuit shown in Fig. 7.60, the resistance Rs is variable 

from 2 V to 50  V. What value of Rs results in maximum power 

transfer across the terminals AB?

Solution  In the circuit shown, the resistance RL is fixed. 

Here, the maximum power transfer theorem does not apply. 

Maximum current flows in the circuit when Rs is minimum. 

For the maximum current,

 Rs 5 2

But ZT 5 Rs 2 j5 1 RL 5 2 2 j5 1 20 5 (22 2 j5) 5 22.56 ∠212.8°

 
= = −

∠

∠−
= ∠I

V

Z

s

T

50 0

22 56 12 8
2 22 12 8

°

°
°

. .
. .

Maximum power P 5 I 2R 5 (2.22)2 3 20 5 98.6 W

PROBLEM 7.16

Determine the voltage V which results in a zero current through the 2 1 j3 V impedance in the circuit shown 

in Fig. 7.61.

Fig. 7.61

Solution  Choosing mesh currents as shown in Fig. 7.61, the three loop equations are

 (5 1 j5) I1 2 j5 I2 5 30 ∠0°

 2 j5 I1 1 (2 1 j8) I2 5 – 2V4

  2 2V4 1 V4 1 V 5 0

 V4 5 V

Since the current in (2 1 j3) V is zero,

 
I
2

2
0= =





Fig. 7.60
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where 
2

5 5 30 0

5 2
0=

+ ∠ °
− −

=
j

j V

(5 1 j5) (2 2V) 1 ( j5) 30 ∠0° 5 0

V
j

j
=

∠

+
=

∠

∠

30 0 5

2 5 5

150 90

14 14 45

° °

°

( )

( ) .

V 5 10.608 ∠45° volts

PROBLEM 7.17

Find the value of the voltage V which results 

in V0 5 5 ∠0° V in the circuit shown in Fig. 

7.62.

Solution  Assuming all currents are leaving 

the nodes, the nodal equations are

V
j j

V
j

V

j

V
j

V

1 2

1

1

5 2

1

3

1

5

1

5 5 2

1

5

−
+ +












−












=

−

−











+ 22 5

1

5

1

2 2
2

j j
V+

−












=

where V
V V

j
5

15
5 2

=
−

−











The second equation becomes

V
j j

V
j j

V

j
1 2

1

5

10

5 2

1

5

1

2 2

10

5 2

−
−

−












+ +

−












=

−

−

V V
0 2

2
5 0= = = ∠




°

1

5 2

1

3

1

5 5 2

1

5

10

5 2

10

5 2

1

5 2

1

3

1

5

1

5

1

5

1

−
+ +

−

−
−

−

−

−

−
+ +

−

−
−

j j

V

j

j j

V

j

j j j

j

00

5 2

1

5

1

2 2

5 0

−
+

−

= <

j j j

°

The source voltage V 5 2.428 ∠288.74° volts.

Fig. 7.62
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PROBLEM 7.18

For the circuit shown in Fig. 7.63, find the current in the 

j 2  V inductance by using Thèvenin’s theorem.

Solution  From the circuit shown in Fig. 7.63, the open-

circuit voltage at terminals a and b is

Voc 529 Vi

 where Vi 529Vi 2 100 ∠0°

10Vi 52100 ∠0°

 Vi 5210 ∠0°

Thèvenin’s voltage Voc 5 90 ∠0°

From the circuit, short-circuit current is determined by shorting terminals a and b. Applying Kirchhoff’s 

voltage law, we have

 9Vi 2 j10 isc 5 0

 isc 5 9∠90°

 ∴ Z
V

I

oc

sc

Th

°

°
°= =

∠

∠
= ∠−

90 0

9 90
10 90

ZTh 52 j 10 V

The Thèvenin’s equivalent circuit is shown in Fig. 7.64.

The current in the j 2 V inductor is 
90 0

8

∠ °

j
 5 11.25 ∠90°

PROBLEM 7.19

For the circuit shown in Fig. 7.65, find the value of Z that 

will receive maximum power; also determine this power.

Solution  The equivalent impedance can be obtained by 

finding Voc and isc at terminals a b. Assume that current i 

is passing in the circuit.

 

i
V

j

j

i

j

=
∠ −

+

=
∠

+
−

×

+

100 0 5

4 10

100 0

4 10

5 4

4 10

4
°

°

 i 5 3.85 ∠222.62°

 Voc 5 100 ∠0° 2 4 3 3.85 ∠222.62°

 5 86 ∠3.94°

isc 5 25 1 j50 5 56 ∠63.44°

Thèvenin’s equivalent impedance

 
Z

V

i

oc

sc
Th = = ∠− °1 54 59 5. .

  5 0.78 – j1.33

Fig. 7.64

Fig. 7.63

Fig. 7.65
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The circuit is drawn as shown in Fig. 7.66.

To get maximum power, the load must be the complex conjugate 

of the source impedance.

∴ load Z 5 0.78 1 j 1.33

Current passing through the load Z

I
V

Z Z
=

∠ °
= ∠ °Th

Th

86 3 94

1 56
55 13 3 94

.

.
. .

Maximum power delivered to the load is 

(55.13)2 3 (0.78) 5 2370.7 W.

PSpice Problems

PROBLEM 7.1

For the circuit shown in Fig. 7.67, determine the power 

output of the source and the power in each resistor.

* AC ANALYSIS

VS 1 0 AC 20 30

R1 1 2 3

R2 2 3 2

C1 2 0 795.77 U

L1 3 0 15.9 M

.AC LIN 1 50 100

.PRINT AC IM(VS) IP(VS) IM(R1) IP(R1)

1 VM(R1) VP(R1) IM(R2) IP(R2) VM(R2)

1 VP(R2)

.END

OUTPUT

**** AC ANALYSIS TEMPERATURE 5 27.000 DEG C

*******************************************************************

FREQ IM(VS) IP(VS) IM(R1) IP(R1) VM(R1)

5.000E 1 01 1.688E 1 00  2 1.126E 1 02 1.688E 1 00 6.738E 1 01 5.065E 1 00

FREQ VP(R1) IM(R2) IP(R2) VM(R2) VP(R2)

5.000E 1 01 6.738E 1 01 3.023E 1 00 – 4.908E 1 01 6.047E 1 00  2 4.908E 1 01

Result  Power dissipated in R1 5 Re{5.065∠67.38 3 1.688∠267.35}

  5 Re{V(R1) 3 I(R1)*} 5 8.55 W

Power dissipated in R2 5 Re{6.049∠– 49.08 3 3.023∠49.08} 5 Re{V(R2) 3 I(R2)*}.

 5 18.28 W

Power output of source 5 Re{20∠30° 3 1.688∠112.6°} 5 26.82 W 5 Re {Vs 3 Is*}.

Fig. 7.66

Fig. 7.67
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PROBLEM 7.2

Using PSpice, for the circuit shown in Fig. 7.68, determine Thèvenin’s equivalent circuit.

Fig. 7.68

* NETLIST TO FIND VTH

V1 1 3 AC 5 90

R1 1 2 2

L1 2 0 19.108 MH

C1 3 0 796.18 UF

R2 1 4 4

V2 4 5 AC 10 0

.AC LIN 1 50 50

.PRINT AC VM(5,0) VP(5,0) IM(V2) IP(V2)

.END

* NETLIST TO FIND ZTH

V1 1 3 AC 0 0

R1 1 2 2

L1 2 0 19.108 MH

C1 3 0 796.18 UF

R2 1 4 4

V2 4 5 AC 0 0

VX 0 5 AC 1 0

.AC LIN 1 50 50

.PRINT AC IM(VX) IP(VX)

.END

**** AC ANALYSIS TEMPERATURE 5 27.000 DEG C

****************************************************************

FREQ VM(5,0) VP(5,0) IM(V2) IP(V2)

5.000E 1 01 1.801E 1 01 1.463E 1 02 1.000E 2 30 0.000E 1 00

**** AC ANALYSIS TEMPERATURE 5 27.000 DEG C

****************************************************************

FREQ IM(VX) IP(VX)

5.000E 1 01 8.850E 2 02  21.350E 1 02

Result

Vth 5 V(5) 5 180.1∠146.3°
Zth 5 2 1/I(VX) 5 1/0.0850∠135° 5 8.318∠– 45°

Fig. 7.69
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Answers to Practice Problems

7-1.1 3.39 ∠297.3°

7-1.2 I j2 3
1 74 40 1+ = °. . A

7-1.4 I 5 0.25 A

7-3.1 I 5 OA

7-4.1 4.37 A

7-4.3 (20.18 2 j0.6)V1 volts in series with (100 2 j30) V

7-4.4 0.894 ∠263.4° in series with (0.4 1 j1.25) V

7-5.1 (1.1 1 j4.7) V in series with (0.93 1 j0.75) V

  (3.2 1 j2.4) A in parallel with (0.93 1 j0.75) V

7-6.1 (3.82 2  j1.03) V; 15.11 W

7-6.3 The voltage source 11 39 264 4. . ° V is in series with impedance (10.97 − j2.16)  V

7-6.4 PAB 5 593 watts

Objective-Type Questions

rrr7.1 The superposition theorem is valid

 (a) only for ac circuits   (b) only for dc circuits

 (c) For both, ac and dc circuits  (d) neither of the two

rrr7.2 When applying the superposition theorem to any circuit,

 (a) the voltage source is shorted, the current source is opened

 (b) the voltage source is opened, the current source is shorted

 (c) both are opened

 (d) both are shorted

rrr7.3 While applying Thèvenin’s theorem, the Thèvenin’s voltage is equal to

 (a) short-circuit voltage at the terminals

 (b) open-circuit voltage at the terminals

 (c) voltage of the source

 (d) total voltage available in the circuit

rrr7.4 Thèvenin impedance ZTh is found

 (a) by short-circuiting the given two terminals

 (b) between any two open terminals

 (c) by removing voltage sources along with the internal 

resistances

 (d) between same open terminals as for VTh

rrr7.5 Thèvenin impedance of the circuit at its terminals A and 

B in Fig. 7.70 is

 (a) 5 H (b) 2 V

 (c) 1.4 V (d) 7 H

rrr7.6 Norton’s equivalent form in any complex impedance circuit consists of

 (a) an equivalent current source in parallel with an equivalent resistance

 (b) an equivalent voltage source in series with an equivalent conductance

Fig. 7.70
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 (c) an equivalent current source in parallel with an equivalent impedance

 (d) None of the above

rrr7.7 The maximum power transfer theorem can be applied

 (a) only to dc circuits   (b) only to ac circuits

 (c) to both dc and ac circuits  (d) neither of the two

rrr7.8 In a complex impedance circuit, the maximum power transfer occurs when the load impedance is equal to

 (a) complex conjugate of source impedance (b) source impedance

 (c) source resistance   (d) none of the above

rrr7.9 Maximum power transfer occurs at a

 (a) 100% efficiency (b) 50% efficiency

 (c) 25% efficiency (d) 75% efficiency

rrr7.10 In the circuit shown in Fig. 7.71, the power supplied by 

the 10 V source is

 (a) 6.6 W (b) 21.7 W

 (c) 30 W (d) 36.7 W

rrr7.11 The Thèvenin equivalent impedance of the circuit in 

Fig. 7.72 is

 (a) (1 1 j5) V (b)  (2.5 1 j25) V

 (c) (6.25 1 j6.25) V (d)  (2.5 1 j6.25) V

rrr7.12 A source has an emf of 10 V and an impedance of 

500 1 j100 V. The amount of maximum power 

transferred to the load will be

 (a) 0.5 mW (b) 0.05 mW 

(c) 0.05 W (d) 0.5 W

rrr7.13 For the circuit shown in Fig. 7.73, find the voltage 

across the dependent source.

 (a) 8 ∠0° (b) 4 ∠0°

 (c) 4 ∠90° (d) 8 ∠290°

Fig. 7.71

Fig. 7.72

Fig. 7.73

For interactive quiz with answers,
scan the QR code given here
OR
visit
http://qrcode.flipick.com/index.php/265



8.1 SERIES RESONANCE

In many electrical circuits, resonance is a very important phenomenon. 

The study of resonance is very useful, particularly in the area of 

communications. For example, the ability of a radio receiver to select a 

certain frequency, transmitted by a station and to eliminate frequencies 

from other stations is based on the principle of resonance. In a series RLC 

circuit, the current lags behind, or leads the applied voltage depending 

upon the values of XL and XC. XL causes the total current to lag behind the applied voltage, while 

XC causes the total current to lead the applied voltage. When XL > XC, the circuit is predominantly 

inductive, and when XC > XL, the circuit is predominantly capacitive. However, if one of the parameters 

of the series RLC circuits is varied in such a way that the current in the circuit is in phase with the 

applied voltage, then the circuit is said to be in resonance.

Consider the series RLC circuit shown in Fig. 8.1.

The total impedance for the series RLC circuit is

  
Z R j X X R j L

C
L C= + − = + −











( ) v
v

1

It is clear from the circuit that the current I 5 VS /Z.

The circuit is said to be in resonance if the current is in phase Fig. 8.1

8
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with the applied voltage. In a series RLC circuit, series resonance occurs when XL 5 XC. The frequency at which 

the resonance occurs is called the resonant frequency.

Since XL 5 XC, the impedance in a series RLC circuit is purely resistive. At the resonant frequency, fr, the 

voltages across capacitance and inductance are equal in magnitude. Since they are 180° out of phase with 

each other, they cancel each other and, hence zero voltage appears across the LC combination.

At resonance,

X X L
C

L C= =, ,i.e. v
v

1

Solving for resonant frequency, we get

2
1

2

1

4
1

2

2

2

p
p

p

p

f L
f C

f
LC

f
LC

r
r

r

r

=

=

∴ =

In a series RLC circuit, resonance may be produced by varying the frequency, keeping L and C constant; 

otherwise, resonance may be produced by varying either L or C for a fixed frequency.

EXAMPLE 8.1

For the circuit shown in Fig. 8.2, determine the value of capacitive 

reactance and impedance at resonance.

Solution  At resonance,

 XL 5 XC

 Since XL 5 25 V

X
C

C = ∴ =25
1

25V
v

The value of impedance at resonance is

 Z 5 R

 Z 5 50 V

EXAMPLE 8.2

Determine the resonant frequency for the circuit shown in Fig. 8.3.

Solution  The resonant frequency is

f
LC

r =
1

2p

× × ×− −

1

2 10 10 0 5 106 3p .

 fr 5 2.25 kHz

Fig. 8.2

Fig. 8.3
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Frequently Asked Questions linked to LO 1*
rrr8-1.1 When do you say that a given ac circuit is at resonance? [AU April/May 2011]
rrr8-1.2 What do you understand by resonance? [RGTU June 2014]

8.2 IMPEDANCE AND PHASE ANGLE OF A SERIES RESONANT CIRCUIT

The impedance of a series RLC circuit is

Z R L
C

= + −










2
2

1
v

v

The variation of XC and XL with frequency is shown in Fig. 8.4.

Fig. 8.4

At zero frequency, both XC and Z are infinitely large, and XL is zero because at zero frequency, the capacitor 

acts as an open circuit and the inductor acts as a short circuit. As the frequency increases, XC decreases and XL 

increases. Since XC is larger than XL, at frequencies below the resonant frequency fr, Z decreases along with 

XC. At resonant frequency fr, XC 5 XL, and Z 5 R. At frequencies above the resonant frequency fr, XL is larger 

than XC, causing Z to increase. The phase angle as a function of frequency is shown in Fig. 8.5.

At a frequency below the resonant frequency, current leads the source voltage because the capacitive 

reactance is greater than the inductive reactance. The phase angle decreases as the frequency approaches the 

resonant value, and is 0° at resonance. At frequencies above resonance, the current lags behind the source 

voltage, because the inductive reactance is greater than capacitive reactance. As the frequency goes higher, 

the phase angle approaches 90°.

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600

Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category

LO 2 
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EXAMPLE 8.3

For the circuit shown in Fig. 8.6, determine the impedance at 

resonant frequency, 10 Hz above resonant frequency, and 10 Hz 

below resonant frequency.

Solution  Resonant frequency

  

Hz

f
LC

r =

=
× ×

=
−

1

2

1

2 0 1 10 10
159 2

6

p

p .
.

At 10 Hz below fr 5 159.2 2 10 5 149.2 Hz

 At 10 Hz above fr 5 159.2 1 10 5 169.2 Hz

Impedance at resonance is equal to R

 ∴ Z 5 10 V

Capacitive reactance at 149.2 Hz is

X
C

C1

1 1

2 149 2 10 101
6

= =
× × ×−v p .

 ∴ XC1
 5 106.6 V

Capacitive reactance at 169.2 Hz is

X
C

C2

1 1

2 169 2 10 102
6

= =
× × × −v p .

 ∴ XC2
 5 94.06 V

Fig. 8.5

Fig. 8.6
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Inductive reactance at 149.2 Hz is

XL1
 5 v2L 5 2p 3 149.2 3 0.1 5 93.75 V

Inductive reactance at 169.2 Hz is

XL2
 5 v2L 5 2p 3 169.2 3 0.1 5 106.31 V

Impedance at 149.2 Hz is

Z R X XL C= + −

= + −

=

2 2

2 2

1 1

10 93 75 106 6

16 28

( )

( ) ( . . )

. V

Here XC1
 is greater than XL1

, so Z is capacitive.

Impedance at 169.2 Hz is

Z R X XL C= + −

= + −

=

2 2

2 2

2 2

10 106 31 94 06

15 81

( )

( ) ( . . )

. V

Here, XL1
 is greater than XC1

, so Z is inductive.

Frequently Asked Questions linked to LO 2
rrr8-2.1 For the circuit shown in Fig. Q.1, determine the impedance 

at resonant frequency, 10 Hz above resonant frequency, 

and 10 Hz below resonant frequency.

 [AU May/June 2014]
rrr8-2.2 Define the following:         [JNTU Nov. 2012]

 (a) Impedance (b) Phase angle

8.3 VOLTAGES AND CURRENTS IN A SERIES RESONANT CIRCUIT

The variation 

of impedance 

and current with 

frequency is 

shown in Fig. 

8.7.

At resonant 

frequency, the capacitive reactance is equal to 

inductive reactance, and hence the impedance 

is minimum. Because of minimum impedance, 

maximum current flows through the circuit. The 

current variation with frequency is plotted.

10 W 0.1 H

Vs

10nF

Fig. Q.1

Fig. 8.7

LO 3 
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Fig. 8.8

The voltage drop across resistance, inductance and capacitance also varies with frequency. At f 5 0, the 

capacitor acts as an open circuit and blocks current. The complete source voltage appears across the capacitor. 

As the frequency increases, XC decreases and XL increases, causing total reactance XC – XL to decrease. As 

a result, the impedance decreases and the current increases. As the current increases, VR also increases, and 

both VC and VL increase.

When the frequency reaches its resonant value fr, the impedance is equal to R, and hence, the current 

reaches its maximum value, and VR is at its maximum value.

As the frequency is increased above resonance, XL continues to increase and XC continues to decrease, 

causing the total reactance, XL – XC to increase. 

As a result there is an increase in impedance and 

a decrease in current. As the current decreases, 

VR also decreases, and both VC and VL decrease. 

As the frequency becomes very high, the current 

approaches zero, both VR and VC approach zero, 

and VL approaches Vs.

The response of different voltages with 

frequency is shown in Fig. 8.8.

The drop across the resistance reaches its 

maximum when f 5 fr. The maximum voltage 

across the capacitor occurs at f 5 fc. Similarly, the 

maximum voltage across the inductor occurs at 

f 5 fL.

The voltage drop across the inductor is

 VL 5 IXL

where I
V

Z

V
LV

R L
C

L

=

∴ =

+ −










v

v
v

2
2

1

To obtain the condition for maximum voltage across the inductor, we have to take the derivative of the above 

equation with respect to frequency, and make it equal to zero.

 ∴ =
dV

d

L

v
0

If we solve for v, we obtain the value of v when VL is maximum.

dV

d

d

d
LV R L

C

L

v v
v v

v
= + −
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1
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1 2
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2 1

2

2

v
v

v
v

/

++








 −










+ − +

=

1
2

2

2 1
0

2 2

2

3 2

2 2 2

2 2

v
v

v

v
v

C
L

C

R L
L
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From this,

R
L

C
C

L
LC R C LC R C

L

f
LC R C

L

L

2 2 2

2 2 2

2

2
2 0

2

2

1 2

2

1

2

1

1
2

− + =

∴ =
−

=

−

=

−

/ v

v

p

Similarly, the voltage across the capacitor is

V IX
C

V
V

R L
C

C

C C

C

= =

∴ =

+ −










×

1

1

1

2
2

v

v
v

v

To get maximum value  
dV

d

C

v
= 0

If we solve for v, we obtain the value of v when VC is maximum.

dV

d
C R L

C
L

C

C

v
v v

v
v

v
= + −



























−






−

1

2

1
2

12
2

1 2/




+






















+ + −










=

L
C

R L
C

C

1

1
0

2

2
2

v

v
v

From this,

v

v

p

C

C

C

LC

R

L

LC

R

L

f
LC

R

L

2
2

2

2

1

2

1

2

1

2

1

2

= −

= −

∴ = −

The maximum voltage across the capacitor occurs below the resonant frequency; and the maximum 

voltage across the inductor occurs above the resonant frequency.

EXAMPLE 8.4

A series circuit with R 5 10 V, L 5 0.1 H and C 5 50 mF has an applied voltage V 5 50∠0° with a 

variable frequency. Find the resonant frequency, the value of frequency at which maximum voltage occurs 

across the inductor and the value of frequency at which maximum voltage occurs across the capacitor.
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Solution  The frequency at which maximum voltage occurs across the inductor is

f
LC R C

L

L =

−












=
× ×

−
( ) × ×−

1

2

1

1
2

1

2 0 1 50 10

1

1
10 50 10

2

6 2

p

p . −−

×













6

2 0 1.

 5 72.08 Hz

Similarly, f
LC

R

L
C = −

=
× ×

−
( )
×

= −

−

1

2

1

2

1

2

1

0 1 50 10

10

2 0 1

1

2
200000 500

2

6

2

p

p

p

. .

 5 71.08 Hz

Resonant frequency f
LC

r = =
× ×

=
−

1

2

1

2 0 1 50 10
71 18

6p p .
. Hz

It is clear that the maximum voltage across the capacitor occurs below the resonant frequency and the 

maximum inductor voltage occurs above the resonant frequency.

8.4 BANDWIDTH OF AN RLC CIRCUIT

The bandwidth of any system is the range of frequencies for which the current or output voltage is equal to 

70.7% of its value at the resonant frequency, and it is denoted by BW. Figure 8.9 shows the response of a 

series RLC circuit.

The frequency f1 is the frequency at 

which the current is 0.707 times the current 

at resonant value, and it is called the 

lower cut-off frequency. The frequency  f2 

is the frequency at which the current is 

0.707 times the current at resonant value 

(i.e. maximum value), and is called the 

upper cut-off frequency. The bandwidth, 

or  BW, is defined as the frequency 

difference between f2 and f1.

∴ BW 5 f2 – f1

The unit of BW is hertz (Hz).

Fig. 8.9
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If the current at P1 is 0.707Imax, the impedance of the circuit at this point is 2R, and hence

 
1

1
1

v
v

C
L R− =  (8.1)

Similarly, v
v

2
2

1
L

C
R− =  (8.2)

If we equate both the above equations, we get

1 1

1
1 2

2v
v v

vC
L L

C
− = −

 

L
C

( )v v
v v

v v
1 2

1 2

1 2

1
+ =

+









 (8.3)

From Eq. (8.3), we get

v v

v

1 2

2

1

1

=

=

LC

LC
rwe have

 ∴ v2
r 5 v1v2 (8.4)

If we add Eqs (8.1) and (8.2), we get

1 1
2

1
1 2

2v
v v

vC
L L

C
R− + − =

 ( )v v
v v

v v
2 1

2 1

1 2

1
2− +

−









=L

C
R  (8.5)

 Since C
Lr

=
1
2v

 and v1v2 5 v2
r

( )
( )

v v
v v v

v
2 1

2
2 1

2
2− +

−
=L

L
Rr

r

 (8.6)

From Eq. (8.6), we have

v v2 1− =
R

L
 (8.7)

 ∴ f f
R

L
2 1

2
− =

p
 (8.8)

 or BW
R

L
=

2p
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From Eq. (8.8), we have

f f
R

L

f f
R

L

f f
R

L

r

r

2 1

1

2

2

4

4

− =

∴ − =

− =

p

p

p

The lower frequency limit  f f
R

L
r1

4
= −

p
 (8.9)

The upper frequency limit f f
R

L
r2

4
= +

p
 (8.10)

If we divide the equation on both sides by fr, we get

f f

f

R

f Lr r

2 1

2

−
=

p
 (8.11)

Here, an important property of a coil is defined. It is the ratio of the reactance of the coil to its resistance. 

This ratio is defined as the Q of the coil. Q is known as a figure of merit, it is also called quality factor and is an 

indication of the quality of a coil.

Q
X

R

f L

R

L r= =
2p

 (8.12)

If we substitute Eq. (8.11) in Eq. (8.12), we get

f f

f Qr

2 1 1−
=  (8.13)

The upper and lower cut-off frequencies are sometimes called the half-power frequencies. At these 

frequencies, the power from the source is half of the power delivered at the resonant frequency.

At resonant frequency, the power is

Pmax 5 I 2max R

At frequency , the power is maxf P
I

R
I

1 1

2 2

2
=











= max RR

2

Similarly, at frequency f2, the power is

P
I

R

I R

2

2

2

2

2

=










=

max

max

The response curve in Fig. 8.9 is also called the selectivity curve of the circuit. Selectivity indicates how 

well a resonant circuit responds to a certain frequency and eliminates all other frequencies. The narrower the 

bandwidth, the greater the selectivity.

EXAMPLE 8.5

Determine the quality factor of a coil for the series circuit consisting of R 5 10 V, L 5 0.1 H and C 5 10 mF.
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Solution  Quality factor

Hz

Q =

= =
× ×

=
−

f

BW

f
LC

r

r

1

2

1

2 0 1 10 10
159 2

6p p .
.

At lower half-power frequency, XC > XL

1

2
2

4

4

1
1

1

2

p
p

p

f C
f L R

f
R R L C

L

− =

=
− + +

From which  
/

At upper half-power frequency, XL > XC

2
1

2

4

4

2
2

2

2

p
p

p

f L
f C

R

f
R R L C

L

− =

=
+ + +

From which
/

Bandwidth BW f f
R

L
= − =2 1

2p

Hence Q
f

BW

f L

R

Q
f

BW

r r

r

0

0

2 2 159 2 0 1

10

10

= = =
× × ×

= =

p p . .

8.5 THE QUALITY FACTOR (Q) AND ITS EFFECT ON BANDWIDTH

The quality factor, Q, is the ratio of the reactive power in the inductor or capacitor to the true power in the 

resistance in series with the coil or capacitor.

The quality factor

Q = ×2p
maximum energy stored

energy dissipated per cycle

In an inductor, the maximum energy stored is given by  
LI 2

2

Energy dissipated per cycle =

Qual

I
R T

I RT

2 2

2 2









× =

∴ iity factor of the coil Q

LI

I R

f
f L

R

L

= ×

×

= =

2

1

2

2

1

2

2

2

2
p

p v

Similarly, in a capacitor, the maximum energy stored is given by CV 2

2
The energy dissipated per cycle 5 ( / )I 2 2  R × T
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The quality factor of the capacitance circuit

 

Q

C
C

I
R

f

CR
=











×

=

2
1

2

1

2

1

1

2

2

p
v

v

In series circuits, the quality factor Q
L

R CR
= =

v

v

1

We have already discussed the relation between bandwidth and quality factor, which is Q
f

BW

r= .

A higher value of the circuit Q results in a smaller bandwidth. A lower value of Q causes a larger bandwidth.

EXAMPLE 8.6

For the circuit shown in Fig. 8.10, determine the value 

of Q at resonance and bandwidth of the circuit.

Solution  The resonant frequency,

f
LC

r =

=
× × −

1

2
1

2 5 100 10 6

p

p

 5 7.12 Hz

Quality factor Q 5 XL/R 5 2pfr  L/R

 
=

× ×
=

2 7 12 5

100
2 24

p .
.

Bandwidth of the circuit is BW
f

Q

r= = =
7 12

2 24
3 178

.

.
. Hz

8.6 MAGNIFICATION IN RESONANCE

If we assume that the voltage applied to the series RLC circuit is V, and the current at resonance is I, then the 

voltage across L is VL 5 IXL 5 (V/R) vrL

Similarly, the voltage across C

V IX
V

R C
C C

r

= =
v

Since Q 5 1/vrCR 5 vr L/R

where vr is the frequency at resonance.

Fig. 8.10

LO 3
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Therefore, VL 5 VQ

 VC 5 VQ

The ratio of voltage across either L or C to the voltage applied at resonance can be defined as magnification.

magnification 5 Q 5 VL  /  V or VC  / V

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 3
rrr8-3.1 A voltage v(t) 5 50 sin vt is applied to a series RLC circuit. At the resonant frequency of the 

circuit, the maximum voltage across the capacitor is found to be 400 V. The bandwidth is known 

to be 500 rad/sec and the impedance at resonance is 100 V. Find the resonant frequency, and 

compute the upper and lower limits of the bandwidth. 

Determine the values of L and C of the circuit.

rrr8-3.2 For the circuit shown in Fig. Q.2, determine the 

frequency at which the circuit resonates. Also find 

the voltage across the capacitor at resonance, and the 

Q-factor of the circuit.

rrr8-3.3 A series RLC circuit has a quality factor of 10 at 

200 rad/s. The current flowing through the circuit at 

resonance is 0.5 A and the supply voltage is 10 V. The 

total impedance of the circuit is 40 V. Find the circuit 

constants.

rrr8-3.4 An RLC series circuit is to be chosen to produce a 

magnification of 10 at 100 rad/s. The source can 

supply a maximum current of 10 A and the supply 

voltage is 100 V. The power frequency impedance of 

the circuit should not be more than 14.14 V. Find the 

values of R, L, and C.

rrr8-3.5 For the circuit shown in Fig. Q.5, the applied voltage 

v(t) 515 sin 1800 t. Determine the resonant frequency. 

Calculate the quality factor and bandwidth. Compute 

the lower and upper limits of the bandwidth.

rrr8-3.6 In the circuit shown in Fig. Q.6, the 

current is at its maximum value with 

inductor value L 5 0.5 H, and 0.707 

times of its maximum value with 

L 5 0.2 H. Find the value of Q at 

v 5 200 rad/ s and circuit constants.

rrr8-3.7 In a series RLC circuit, if the applied 

voltage is 10 V, what is the maximum 

voltage across the inductor, if the resonance frequency is 1 kHz, and Q-factor is 10.

rrr8-3.8 Obtain the expression for the frequency at which the maximum voltage occurs across the capacitor 

in series resonance circuit in terms of Q-factor and resonance frequency.

Fig. Q.5

Fig. Q.6

Fig. Q.2
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r8-3.9 The voltage applied to the series RLC circuit is 5 V. The Q of the coil is 25 and the value of 

the capacitor is 200 PF. The resonant frequency of the circuit is 200 kHz. Find the value of 

inductance, the circuit current and the voltage across the capacitor.

rr8-3.10 The resonance frequency of a series RLC circuit is 1 kH; the quality factor is 10, the source 

voltage is 10 V. (a) Find the voltage across the conductor at resonance (b) Also, find the frequency 

for which the voltage across the inductor is maximum.

Frequently Asked Questions linked to LO 3
r8-3.1 Draw the frequency response of an RLC series circuit.
r8-3.2 Define bandwidth of a resonant circuit. [AU May/June 2013]
r8-3.3 An RLC series circuit consists of R = 16 W, L = 5 mH, and C = 2 mF. Calculate the quality factor 

at resonance, bandwidth, and half-power frequencies. [AU May/June 2014]
r8-3.4 State the concept of bandwidth of a series RLC circuit. [AU Nov./Dec. 2012]
r8-3.5 Calculate the halfpower frequencies of a series resonant circuit where the resonance frequency is 

250 × 103 Hz and bandwidth is 150 kHz. [BPUT 2007]
r8-3.6 Under what condition will the power in a series RLC circuit will half that at resonance?

  [BPTU 2008]
r8-3.7 Derive the expression for bandwidth of a series RLC circuit. [JNTU Nov. 2012]

rr8-3.8 A series RLC circuit has the following parameters: R = 15 ohms, L = 2 H, C = 100 micro F. 

Calculate the resonant frequency. Under resonant condition, calculate current, power, and voltage 

drops across various elements if the applied voltage is 100 V. [JNTU Nov. 2012]

rr8-3.9 In a series resonancetype bandpass filter, L = 60 mHz, C = 150 nF, and R = 70 W. [PTU 2011-12]

 Determine

 (a) Resonance frequency in Hz, (b) Bandwidth, (c) Cut-off frequencies

 Assume the load resistance to be 600 W.

rrr8-3.10 A capacitor of 400 pF is in series with a coil resonant at 1 MHz. The halfpower frequencies are 

0.9 MHz. Specify values of R and L. Also find second halfpower frequency. [PU 2010]
r8-3.11 Derive the expression for bandwidth of a series resonant circuit. [PU 2012]
r8-3.12 Define quality factor in the resonant circuit. [AU May/June 2014]
r8-3.13 Determine the quality factor of a coil for series resonant circuit of R = 10 ohms, L = 0.1 H, and  

C = 10 microfarads. [AU May/June 2014]
r8-3.14 Determine the quality factor of a coil for the series circuit consisting of R = 10 , L = 0.1 H, and 

C = 10 F. Derive the formula used. [AU April/May 2011]
r8-3.15 Derive the expression for the impedance of a series resonating circuit in the terms of Q0 and .  

 [PU 2010]
r8-3.16 A series RLC circuit consists of a resistance of 1 k  and an inductance of 100 mH in series with 

a capacitance of 10 pF. If 100 V is applied at input across the combination, determine [PU 2010]

 (a) Resonant frequency      (b) Maximum current in the circuit

 (c) Quality factor of the circuit   (d) Half-power frequencies.

rr8-3.17 R L C V

rr

L
r RLC mF
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Q

r RLC R L C Q

r

Q
r Q0

8.7 PARALLEL RESONANCE

Basically, parallel resonance occurs when XC 5 XL. The frequency at 

which resonance occurs is called the resonant frequency. When XC 5 XL, 

the two branch currents are equal in magnitude and 180° out of phase with 

each other. Therefore, the two currents cancel each other out, and the total 

current is zero. Consider the circuit shown in Fig. 8.11. The 

condition for resonance occurs when XL 5 XC.

In Fig. 8.11, the total admittance

 Y
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=
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1 1
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−
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 (8.14)

At resonance, the susceptance part becomes zero.

 ∴
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=

+

v

v

v
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2 2 2
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1
 (8.15)
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Fig. 8.11
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vr
L

CLC

R L C

R L C
=

−( )

−( )

1
2

2

/

/
 (8.16)

The condition for resonant frequency is given by Eq. (8.16.) As a special case, if RL 5 RC, then Eq. (8.16) 

becomes

v

p

r

r

LC

f
LC

=

=

1

1

2
Therefore  

EXAMPLE 8.7

Find the resonant frequency in the ideal parallel LC 

circuit shown in Fig. 8.12.

Solution  f
LC

r =

=
× × ×

=

− −

1

2

1

2 50 10 0 01 10

7117 6

3 6

p

p .

. Hz

8.8 RESONANT FREQUENCY FOR A TANK CIRCUIT

The parallel resonant circuit is generally called a tank circuit 

because of the fact that the circuit stores energy in the magnetic 

field of the coil and in the electric field of the capacitor. The stored 

energy is transferred back and forth between the capacitor and coil 

and vice-versa. The tank circuit is shown in Fig. 8.13. The circuit 

is said to be in resonant condition when the susceptance part of 

admittance is zero.

The total admittance is 

 Y
R jX jXL L C

=
+

+
−

1 1
 (8.17)

Simplifying Eq. (8.17), we have

Y
R jX

R X

j

X

R

R X
j

X

X

R X

L L

L L C

L

L L C

L

L L

=
−

+
+

=
+

+ −
+

















2 2

2 2 2 2

1

To satisfy the condition for resonance, the susceptance part is zero.

 ∴ =
+

1
2 2X

X

R XC

L

L L

 (8.18)

Fig. 8.13

Fig. 8.12

LO 4



Circuits and Networks300 

 v
v

v
C

L

R LL

=
+2 2 2

 (8.19)

From Eq. (8.19), we get

R L
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R

L

LC

R

L

L

L

L

L

2 2 2
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2
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+ =

= −
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∴ = −

v

v

v

v  (8.20)

The resonant frequency for the tank circuit is

 f
LC

R

L
r

L= −
1

2

1
2

2p
 (8.21)

EXAMPLE 8.8

For the tank circuit shown in Fig. 8.14, find the resonant frequency.

Solution  The resonant frequency

f
LC

R

L
r

L= −

=
× ×

−
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Frequently Asked Questions linked to LO 4
rrr fr
rrr fr

V

R
L

L

R
L

C

Fig. Q.1

R
C X

C

R
L

X
L

V

Fig. Q.2

Fig. 8.14



Resonance 301 

rr R

rr X

10 W

j10 W

R
L

– 2j W

Fig. Q.3

5 W 8 W

j3 W
–j X

C

Fig. Q.4

r

r

r fr
rr L

W

–jX
C

jX
L

R
L

Fig. Q.7

5 W
10 W

– 20j WL

V

Fig. Q.8

r

r

rr Q

8.9 VARIATION OF IMPEDANCE WITH FREQUENCY

The impedance of a parallel resonant circuit is maximum at the resonant 

frequency and decreases at lower 

and higher frequencies as shown in 

Fig. 8.15.

At very low frequencies, XL is 

very small and XC is very large, so 

the total impedance is essentially 

inductive. As the frequency 

increases, the impedance also 

increases, and the inductive reactance dominates until the resonant 

frequency is reached. At this point XL 5 XC, and the impedance is 

at its maximum. As the frequency goes above resonance, capacitive 

reactance dominates and the impedance decreases.

C
L

V

25 W

100W

Fig. Q.9

LO 5 

Fig. 8.15
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8.10 Q-FACTOR OF PARALLEL RESONANCE

Consider the parallel RLC circuit shown in Fig. 8.16.

In the circuit shown, the condition for resonance occurs when the susceptance part is zero.

Admittance Y G jB= +  (8.22)

= + +
1 1

R
j C

j L
v

v

= + −










1 1

R
j C

L
v

v
 (8.23)

The frequency at which resonance occurs is

v
v

r
r

C
L

− =
1

0  (8.24)

 vr
LC

=
1

 (8.25)

The voltage and current variation with frequency is shown in Fig. 8.17. At resonant frequency, the current 

is minimum.

The bandwidth, BW 5 f2 – f1

For parallel circuit, to obtain the lower half-power frequency,

v
v

1
1

1 1
C

L R
− = −  (8.26)

From Eq. (8.26), we have

v
v

1
2 1 1

0+ − =
RC LC

 (8.27)

Fig. 8.16

Fig. 8.17
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If we simplify Eq. (8.27), we get

v1

2
1

2

1

2

1
=

−
+











+
RC RC LC

 (8.28)

Similarly, to obtain the upper half-power frequency

v
v

2
2

1 1
C

L R
− =  (8.29)

From Eq. (8.29), we have

v2

2
1

2

1

2

1
= +











+
RC RC LC

 (8.30)

Bandwidth BW
RC

= − =v v2 1

1

The quality factor is defined as Q

Q
RC

RC

r
r

r
r

r

=
−

= =

v

v v

v
v

2 1

1/

In other words,

Q = ×2p
maximum energy stored

Energy dissipated /cycle

In the case of an inductor,

The maximum energy stored  =
1

2

2LI

Energy dissipated per cycle  =
I

R T
2

2









× ×

The quality factor Q
LI

I
R

f

Q

L
V

L

= ×

×

∴ = ×











2
1 2

2

1

2

1

2

2

2
p

p
v

/ ( )



×

= =

2

2

2 2

2

1

2

R

V

f

f LR

L

R

L

p

v v

For a capacitor, maximum energy stored 5 1/2 (CV 2)

Energy dissipated per cycle  = P T
V

R f
× =

×
×

2

2

1
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The quality factor Q
CV

V

R f

= ×

×

2
1 2

2

1

2

2
p

/ ( )

 5 2pfCR 5 vCR

8.11 MAGNIFICATION

Current magnification occurs in a parallel resonant circuit. The voltage applied to the parallel circuit, V 5 IR

Since I
V

L

IR

L
IQL

r r
r= = =

v v

For the capacitor, I
V

C
IR C IQC

r
r r= = =

1/ v
v

Therefore, the quality factor Qr 5 IL/I or IC/I

8.12 REACTANCE CURVES IN PARALLEL RESONANCE

The effect of variation of frequency on the reactance of the parallel circuit is shown in Fig. 8.18.

Fig. 8.18

The effect of inductive susceptance,

B
f L

L =
−1

2p

Inductive susceptance is inversely proportional to the frequency or v. Hence, it is represented by a rectangular 

hyperbola, MN. It is drawn in fourth quadrant, since BL is negative. Capacitive susceptance, BC 5 2pfC. It is directly 

proportional to the frequency f or v. Hence it is represented by OP, passing through the origin. Net susceptance 

B 5 BC – BL. It is represented by the curve JK, which is a hyperbola. At the point vr, the total susceptance is zero, 

and resonance takes place. The variation of the admittance Y and the current I is represented by curve VW. The 

current will be minimum at resonant frequency.

LO 5

LO 5
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NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 5
rrr8-5.1 The impedance Z1 5 (5 1 j3) V and  

Z2 5 (10 – j30) V are connected in parallel as 

shown in Fig. Q.1. Find the value of X3 which 

will produce resonance at the terminals a and b.
rrr8-5.2 A current source is applied to the parallel 

arrangement of R, L, and C where R 5 12  V, 

L 5 2 H and C 5 3 mF. Compute the resonant 

frequency in rad/s. Find the quality factor. 

Calculate the value of bandwidth. Compute the 

lower and upper frequency of the bandwidth. Compute the voltage appearing across the parallel 

elements when the input signal is i(t) 510 sin 1800 t.
rrr8-5.3 For the circuit shown in Fig. Q.3, determine the value of RC for which the given circuit resonates.

rrr8-5.4 Using PSpice, obtain the frequency response of the circuit shown in Fig. Q.4. Use a linear 

frequency sweep. Consider 1 , f , 1000 with 100 points.

Fig. Q.4Fig. Q.3

rrr8-5.5 Using PSpice, obtain bodeplots for V0 over a frequency from 1 kHz to 100 kHz for the circuit 

shown in Fig. Q.5, using 20 points per decade.

Fig. Q.5

rrr8-5.6 In a parallel resonance circuit shown in Fig. Q.6 

find the (a) resonance frequency, (b) dynamic 

resistance, and (c) bandwidth.

Frequently Asked Questions linked to LO 5

rrr Q

Fig. Q.1

Fig. Q.6
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rrr

rrr RL

20 W

– 10j W– 20j W

R
L

Fig. Q.3

rrr8-5.4 A parallel resonant circuit is a current amplifier. Justify. [PU 2010]

8.13 LOCUS DIAGRAMS

A phasor diagram may be drawn and is expanded to develop a curve; known as 

a locus. Locus diagrams are useful in determining the behaviour or response 

of an RLC circuit when one of its parameters is varied while the frequency and 

voltage kept constant. The magnitude and phase of the current vector in the 

circuit depends upon the values of R, L, and C and frequency at the fixed source 

voltage. The path traced by the terminus of the current vector when the parameters R, L, or C are varied while 

f and v are kept constant is called the current locus.

The term circle diagram identifies locus plots that are either circular or semicircular loci of the terminus 

(the tip of the arrow) of a current phasor or voltage phasor. Circle diagrams are often employed as aids in 

analysing the operating characteristics of circuits like equivalent circuit of transmission lines and some types 

of ac machines.

Locus diagrams can be also drawn for reactance, impedance, susceptance, and admittance when frequency is 

variable. Loci of these parameters furnish important information for use in circuit analysis. Such plots are particularly 

useful in the design of electric wave filters.

8.13.1 Series Circuits

To discuss the basis of representing a series circuit by means of a circle diagram, consider the circuit shown in Fig. 

8.19 (a). The analytical procedure is greatly simplified by assuming that inductance elements have no resistance and 

that capacitors have no leakage current.

The circuit under consideration has constant reactance but variable resistance. 

The applied voltage will be assumed with constant rms voltage V. The power 

factor angle is designated by u. If R 5 0, IL is obviously equal to 
V

X L

 and has 

maximum value. Also, I lags V by 90°. This is shown in Fig. 8.19 (b). If R is 

increased from zero value, the magnitude of I becomes less than 
V

X L

 and u 

becomes less than 90° and finally when the limit is reached, i.e. when R equals 

to infinity, I equals to zero and u equals to zero. It is observed that the tip of the 

current vector represents a semicircle as indicated in Fig. 8.19 (b).

In general,

 I
V

Z
L =

LO 6 

Fig. 8.19 (a)
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sin

sin

sin

u

u

u

=

=

=

X

Z

Z
X

I
V

X

L

L

or

 (8.31)

For constant V and X, Eq. (8.31) is the polar equation of a 

circle with diameter V

X L

. Figure 8.19 (b) shows the plot of Eq. 

(8.31) with respect to V as reference.

The active component of the current IL in Fig. 8.19 (b) is OIL cos 

u which is proportional to the power consumed in the RL circuit. In a 

similar way we can draw the loci of current if the inductive reactance is 

replaced by a capacitive reactance as shown in Fig. 8.19 (c). The  current 

semicircle for the RC circuit with variable R will be on the left-hand side 

of the voltage vector OV with diameter 
V

X L

 as shown in Fig. 8.19 (d). The 

current vector OIC leads V 

by u°. The active component of the current IC X in Fig. 8.19 (d) 

is OIC cos u which is proportional to the power consumed in the 

RC circuit.

    Circle Equations for an RL Circuit

Fixed reactance and variable resistance. The X-co-ordinate and 

Y-co-ordinate of IL in Fig. 8.19 (b) respectively are IX 5 IL sin u; 

Iy 5 IL cos u,

Where I
V

Z

X

Z

R

Z
Z R X

I
V

Z

X

Z
V

X

Z

I
V

Z

L
L

L

X
L L

Y

= = = = +

∴ = ⋅ = ⋅

=

; sin ; cos ;u u 2 2

2

⋅⋅ = ⋅
R

Z
V

R

Z 2

 (8.32)

 (8.33)

Squaring and adding Eqs (8.32) and (8.33), we obtain

I I
V

R X
X Y

L

2 2
2

2 2
+ =

+
 (8.34)

From Eq. (8.32),

Z R X V
X

I
L

L

X

2 2 2= + = ⋅

∴ Eq. (8.34) can be written as I I
V

X
IX Y

L
X

2 2+ = ⋅

or I I
V

X
IX Y

L
X

2 2 0+ − ⋅ =

Fig. 8.19 (b) 

Fig. 8.19 (d) 

Fig. 8.19 (c)
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Adding 
V

X L2

2









to both sides the above equation can be written as

I
V

X
I

V

X
X

L
Y

L

−










+ =










2 2

2

2

2

 (8.35)

Equation (8.35) represents a circle whose radius is  
V

X L2
and the coordinates of the centre are  

V

X L2
0, .

In a similar way, we can prove that for a series RC circuit as in Fig. 8.19 (c), with variable R, the locus 

of the tip of the current vector is a semicircle and is given by

I
V

X
I

V

X
X

C
Y

C

+











+ =

2 4

2

2
2

2
 (8.36)

The centre has co-ordinates of  0 and radius as −
V

X

V

XL L2 2
, .

  Fixed Resistance, Variable Reactance  Consider the series RL circuit with constant resistance R but 

variable reactance XL as shown in Fig. 8.20 (a).

When XL 5 0; IL assumes maximum value of 
V

R
 and u 5 0, the power factor of the circuit becomes unity; 

as the value XL is increased from zero, IL is reduced and finally when XL is a, current becomes zero and u will 

be lagging behind the voltage by 90° as shown in Fig. 8.20 (b). The current vector describes a semicircle with 

diameter V

R
 and lies in the right-hand side of voltage vector OV. The active component of the current OIL cos u 

is proportional to the power consumed in the RL circuit.

(b) (a) Fig. 8.20 

  Equation of Circle

Consider Eq. (8.34) I I
V

R X
X Y

L

2 2
2

2 2
+ =

+

 From Eq. (8.33) Z2 2 2= + =R X
VR

I
L

Y

 (8.37)

Substituting Eq. (8.37) in Eq. (8.34),

 I I
V

R
IX Y Y

2 2+ =  (8.38)
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I I
V

R
IX Y Y

2 2 0+ − =

Adding
V

R2

2









to both sides the above equation can be written as

I I
V

R

V

R
X Y
2

2 2

2 2
+ −











=










 (8.39)

Equation (8.39) represents a circle whose radius is 
V

R2
 and the coordinates of the centre are 0;

V

R2
.

Let the inductive reactance in Fig. 8.20 (a) be replaced  by a capacitive reactance as shown in Fig. 8.21 (a).

The current semicircle of a RC circuit with variable XC will be on the left-hand side of the voltage vector 

OV with diameter 
V

R
. The current vector OIC leads V by u°. As before, it may be proved that the equation of 

the circle shown in Fig. 8.21 (b) is

I I
V

R

V

R
X Y
2

2 2

2 2
+ −











=










(b) Fig. 8.21 (a) 

EXAMPLE 8.9

For the circuit shown in Fig.  8.22 (a), plot the locus of the current, mark the 

range of I for maximum and minimum values of R, and the maximum power 

consumed in the circuit. Assume XL 5 25 V and R 5 50 V. The voltage is 

200 V; 50 Hz.

Solution  Maximum value of current

 A;Imax = = = °
200

25
8 90u

Minimum value of current

  A; 27.76Imin .=

( ) +( )
= = °

200

50 25

3 777
2 2

u

Fig. 8.22 (a)
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The locus of the current is shown in Fig. 8.22 (b).

Power consumed in the circuit is proportional to I cos u for 

constant V. The maximum ordinate possible in the semicircle (AB 

in Fig. 8.22 (b)) represents the maximum power consumed in the 

circuit. This is possible when u 5 45°, under the condition power 

factor cos u 5 cos 45° 5 
1

2
.

Hence, the maximum power consumed in the circuit 

× = ×V AB V
I

L

max

I
V

X

P
V

X

L

L

max

max

= =

= =
( )

×
=

84

2

200

2 25
800

2 2

A

W

EXAMPLE 8.10

For the circuit shown in Fig. 8.22 (a), if the reactance is variable, plot the range of I for maximum and 

minimum values of XL and maximum power consumed in the circuit.

Solution

Maximum value of current A;

Minimum value of

Imax = = =
200

50
4 0u

  current 

A

Imin

. ; .

=

( ) +( )

= = °

200

50 25

3 777 27 76

2 2

u

The locus of current is shown in Fig. 8.23.

Maximum power will be when I 5 4 A

Hence, Pmax 5 4 3 200 5 800 W

EXAMPLE 8.11

For the circuit shown in Fig.  8.24 (a), draw the locus of the current. Mark the 

range of I for maximum and minimum values. Assume XC 5 50 V; R 5 10 V; 

V 5 400 V.

Solution

I

I

max

min . tan .

= = = °

=

( ) +( )
= = =−

400

10
40

400

50 10

7 716 5 77
2 2

1

A; 0

A.

u

u 88°

The locus of the current is shown in Fig. 8.24 (b).

Fig. 8.22 (b) 

Fig. 8.23

Fig. 8.24 (a)

Fig. 8.24 (b)
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8.13.2 Parallel Circuits

  Variable X
L 

Locus plots are drawn for parallel branches containing RLC elements in a similar way 

as for series circuits. Here we have more than one current locus. Consider the parallel circuit shown in Fig. 

8.25 (a). The quantities that may be varied are XL, XC, RL and RC for a given voltage and frequency.

Let us consider the variation of XL from zero to  `. Let OV shown in 

Fig. 8.25  (b), be the voltage vector, taken as reference. A current, IC, will flow 

in the condenser branch whose parameters are held constant and leads V by an 

angle uC
C

C

X

R
=












−tan ,1  when XL 5 0, the current  IL, through the inductive 

branch is maximum and is given by 
V

RL

 and it is in phase with the applied 

voltage. When XL is increased from zero, the current through the inductive 

branch IL decreases and lags V by uL
L

L

X

R
= −tan 1

 as shown in Fig. 8.25 (b). 

For any value of  IL, the IL RL drop and IL XL drop must add at right angles to 

give the applied voltage. These drops are shown as OA and  AV respectively. The locus of IL is a semicircle, and 

the locus of ILRL drop is also a semicircle. When XL 5 0, i.e. IL is maximum, IL coincides with the diameter of 

its semicircle and ILRL drop also coincides with the diameter of its semi-circle as shown in the figure; both these 

semicircles are shown with dotted circles as OILB and OAV respectively.

Since the total current is IC 1 IL. For example, for a particular value of IC and IL, the total current is represented by 

OC on the total current semicircle. As XL is varied, the locus of the resultant current is therefore, the circle IC CB as 

shown with thick line in the Fig. 8.25 (b).

Fig. 8.25 (b) 

  Variable XC  A similar procedure can be adopted as outlined above to draw the locus plots of Il  and I 

when XC is varying while RL, RC, XL, V and f are held constant. The curves are shown in Fig. 8.25 (c).

OV presents the voltage vector, OB is the maximum current through RC branch when XL 5 0; OIL is the 

current through the RL branch lagging OV by an angle uL
L

L

C

R
= −tan .1  As XC is increased from zero, the 

current through the capacitive branch IC decreases and leads V by uC
C

C

X

R
= −tan .1  For a particular IC, the 

Fig. 8.25 (a)
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resultant current I 5 IL 1 IC and is given by OC. The dotted semicircle OICB is the locus of the IC, thick circle 

ILCB is the locus of the resultant current.

Fig. 8.25 (c) 

  Variable RL  The locus of current for the variation of RL in Fig. 8.26 (a) is shown in Fig. 8.26 (b). OV 

represents the reference voltage, OILB represents the locus of IL and IC CB represents the resultant current 

locus. Maximum I
V

X
L

L

=  is represented by OB.

(a) 
Fig. 8.26 

(b) 

  Variable RC  The locus of currents for the variation of RC in Fig. 8.27 (a) is plotted in Fig. 8.27 (b) 

where OV is the source voltage and semicircle OAB represents the locus of IC. The resultant current locus is 

given by BCIL.
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(a) Fig. 8.27 (b) 

EXAMPLE 8.12

For the parallel circuit shown in Fig. 8.28 (a), draw the locus 

of I1 and I. Mark the range of values for R1 between 10  V and 

100 V. Assume XL 5 25 V and R2 5 25 V. The supply voltage 

is 200 V and frequency is 50 Hz, both held constant.

Solution  Let us take voltage as reference; on the positive X-axis. I2 is given by I2

200

25
= = 8 A  and is in 

phase with V.

When A; 

When

R I

R

1 1 1
1

2

10
200

100 625
7 42

25

10
68 19= =

+( )
= = = °−V . tan .u

== =
+( )

= = = °−100
200

10000 625
1 94

25

100
14 01 2

1V I . tan .A; u

The variation of I1 and I are shown in Fig. 8.28 (b).

Fig. 8.28 (a) 
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Fig. 8.28 (b) 

EXAMPLE 8.13

Draw  the locus of I2 and I for the parallel circuit shown 

in Fig. 8.29 (a).

Solution  I1 

leads the voltage by a fixed angle u1 given by tan−1

1

X

R

C
.

I2 varies according to the value of XC2.

I2 is maximum when XC2
 5 0 and is in phase with V.

I2 is zero when XC2
 5 ` as shown in Fig. 8.29 (b).

EXAMPLE 8.14

For a parallel circuit shown in Fig. 8.30 (a), plot the locus of 

currents.

Fig. 8.29 (a) 

Fig. 8.30 (a)

Fig. 8.29 (b) 
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Solution  Current I1 leads the voltage by a fixed angle u1 given by 

tan ,−1

1

X

R

C  current I2 leads the voltage by 90°. I3 varies according to 

the value of XL, when XL 5 0, I3 is maximum and is given by V

RL

;  is 

in phase with V; when XL 5 `, I3 is zero. Both these extremities are 

shown in Fig. 8.30 (b). For a particular value of I3 the total current I 

is given by I1 1 I2 1 I3 5 OA 1 AB 1 BC.

Additional Solved Problems

PROBLEM 8.1

For the circuit shown in Fig. 8.31, determine the frequency at which 

the circuit resonates. Also find the voltage across the inductor at 

resonance and the Q-factor of the circuit.

Solution  The frequency of resonance occurs when XL 5 XC

v
v

L
C

=
1

 

∴ =

=
× ×

=

= ( ) =

−

v

p

1

1

0 1 50 10
447 2

1

2
447 2 71 17

6

LC

fr

rad/sec

rad/sec
.

.

. . HHz

The current passing through the circuit at resonance,

I
V

R
= = =

100

10
10 A

The voltage drop across the inductor

 VL 5 IXL 5 IvL

 5 10 3 447.2 3 0.1 5 447.2 V

The quality factor  Q
L

R
= =

×
=

v 447 2 0 1

10
4 47

. .
.

Fig. 8.30 (b) 

Fig. 8.31 
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PROBLEM 8.2

A series RLC circuit has a quality factor of 5 at 50 rad/s. The current flowing through the circuit at resonance 

is 10 A and the supply voltage is 100 V. The total impedance of the circuit is 20 V. Find the circuit constants.

Solution  The quality factor Q 5 5

At resonance, the impedance becomes resistance.

The current at resonance is

Since

I
V

R

R

R

Q
L

R

Q R

=

=

∴ =

=

= =

10
100

10

5 10

V

v

,

vv

v

v

m

L

L

Q
CR

C
Q R

C

=

∴ = =

=

∴ =

=
× ×

=

50

50
1

1

1

1

5 50 10

400

H

F

PROBLEM 8.3

A voltage v(t) 5 10 sin vt is applied to a series RLC circuit. At the resonant frequency of the circuit, the 

maximum voltage across the capacitor is found to be 500 V. Moreover, the bandwidth is known to be 400 

rad/s and the impedance at resonance is 100 V. Find the resonant frequency. Also find the values of L and C 

of the circuit.

Solution  The applied voltage to the circuit is

V

V

max

.

=

= =

10

10

2
7 07

V

Vrms

The voltage across capacitor VC 5 500 V

The magnification factor  Q
V

V

C= = =
500

7 07
70 7

.
.

The bandwidth BW 5 400 rad/s

 v2 – v1 5 400 rad/s
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The impedance at resonance Z 5 R 5 100 V

 Since Q r=
−

v

v v2 1

 vr 5 Q (v2 – v1) 5 28280 rad/s

 
fr = =

28280

2
4499

p
Hz

The bandwidth

H

Since  

v v

v v

p

2 1

2 1

100

400
0 25

1

2

− =

∴ =
−

= =

=

R

L

L
R

f
LC

C

r

.

==
( ) ×

=
×( ) ×

=
1

2

1

2 4499 0 25
5

2 2
p pf L

n

r .
F

PROBLEM 8.4

Find the value of L at which the circuit resonates at a frequency of 1000 

rad/s in the circuit shown in Fig. 8.32.

Solution  Y
j jX

Y
j jX

X

L

L

L

=
−

+
+

=
+

+
+

−

+

=
+

+
+

1

10 12

1

5

10 12

10 12

5

25

10

10 12

5

25

2 2 2

2 2 XX
j

X

XL

L

L
2 2 2 2

12

10 12 25
+

+
−

+

















At resonance, the susceptance becomes zero.

Then
X

X

L

L25

12

10 122 2 2+
=

+

12XL
2 – 244 XL 1 300 5 0

From the above equation,

XL
2 – 20.3 XL 1 25 5 0

 

X L =
+ ± ( ) − ×

=
+ − − −

20 3 20 3 4 25

2

20 3 412 100

2

20 3 412 100

2

2
. .

. .
or

 5 18.98 V or 1.32 V

 ∴ XL 5 vL 5 18.98 or 1.32 V

Fig. 8.32
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L =

18 98

1000

1 32

1000

. .
or

 L 5 18.98 mH or 1.32 mH

PROBLEM 8.5

Two impedances Z1 5 20 1 j10 and Z2 5 10 – j30 are connected in parallel and this combination is connected 

in series with Z3 5 30 1 jX. Find the value of X which will produce resonance.

Solution  Total impedance is

Z Z Z Z

jX
j j

j j

= +

= +( )+
+( ) −( )
+ + −








3 1 2

30
20 10 10 30

20 10 10 30

( || )








= +( )+
− + +

−

= + +
−

−

30
200 600 100 300

30 20

30
500 500

30

jX
j j

j

jX
j

jj20











= + +
−( ) +( )

( ) +( )

















= +( )+

30
500 1 30 20

30 20

30
500 30

2 2
jX

j j

jX
++ − +( )

+

















= + + −( )

= + ×

j j

jX j

20 30 20

900 400

30
5

13
50 10

30
5

13
500

5

13
10










+ − ×











j X

At resonance, the imaginary part is zero

∴ − =

= =

X

X

50

13
0

50

13
3 85. V

PROBLEM 8.6

A 50 V resistor is connected in series with an inductor having 

internal resistance, a capacitor and 100 V variable frequency 

supply as shown in Fig. 8.33. At a frequency of 200 Hz, a maximum 

current of 0.7  A flows through the circuit and voltage across the 

capacitor is 200 V. Determine the circuit constants. 

Solution  At resonance, current in the circuit is maximum.

I 5 0.7 A Fig. 8.33
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Voltage across capacitor is VC 5 IXC

 Since VC 5 200, I 5 0.7

X
C

C =
1

v

v

p
m

C

C

=

∴ =
× ×

=

0 7

200
0 7

200 2 200
2 785

.

.
. F

At resonance,
X L C

L C

C

L

X

X X

X
C

X L

L

− =

∴ =

= = =

= =

∴ =

0

1 200

0 7
285 7

285 7

285 7

Since
v

v

.
.

.

.

V

V

22 200
0 23

p×
= . H

At resonance, the total impedance

Z R

R
V

I

R

R

= +

∴ + = =

+ =

∴ =

50

50
100

0 7

50 142 86

92 86

.

.

.

V

V

PROBLEM 8.7

In the circuit shown in Fig. 8.34, a maximum current of 0.1 A flows 

through the circuit when the capacitor is at 5 µF with a fixed 

frequency and a voltage of 5 V. Determine the frequency at which 

the circuit resonates, the bandwidth, the quality factor Q and the 

value of resistance at resonant frequency.

Solution  At resonance, the current is maximum in the circuits.

I
V

R

R
V

I

=

∴ = = =
5

0 1
50

.
V

The resonant frequency is

v

p

r

r

LC

f

=

=
× ×

=

= =

−

1

1

0 1 5 10
1414 2

1414 2

2
225

6.
.

.

rad/sec

Hz

Fig. 8.34
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The quality factor is

Since

The b

Q
L

R
f

BW
Qr

= =
×

=

=

v 1414 2 0 1

50
28

. .

aandwidth HzBW
f

Q

r= = =
225

2 8
80 36

.
.

PROBLEM 8.8

In the circuit shown in Fig. 8.35, determine the circuit constants 

when the circuit draws a maximum current at 10 µF with a 10 V, 100 

Hz supply. When the capacitance is changed to 12 µF, the current 

that flows through the circuit becomes 0.707 times its maximum 

value. Determine Q of the coil at 900 rad/sec. Also find the maximum 

current that flows through the circuit.

Solution  At resonant frequency, the circuit draws maximum 

current. So, the resonant frequency fr 5 100 Hz

f
LC

L
C f

C

r

r

=

=
×( )

=
× ×( )

=

− =

−

1

2
1

2

1

10 10 2 100
0 25

1

2

6 2

p

p

p

v
v

. H

We have L RR

R

R

900 0 25
1

900 12 10
132 4

6
× −

× ×
=

∴ =

−
.

. V

The quality factor  Q
L

R
= =

×
=

v 900 0 25

132 4
1 69

.

.
.

The maximum current in the circuit is  AI = =
10

132 4
0 075

.
.

PROBLEM 8.9

In the circuit shown in Fig. 8.36, the current is at its 

maximum value with capacitor value C 5 20 µF and 

0.707 times its maximum value with C 5 30 µF. Find the 

value of Q at v 5 500 rad/s, and circuit constants.

Fig. 8.35

Fig. 8.36
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Solution  The voltage applied to the circuit is V 5 20 V. At resonance, the current in the circuit is maximum. 

The resonant frequency vr 5 500 rad/s.

Since

H

Since we have

v

v

v

r

L

r

LC

X
C

L

=

∴ = =
( ) × ×

=

−

−

1

1 1

500 20 10
0 2

1

2 2 6
.

vvC
R

R

=

× −
× ×

=
−

500 0 2
1

500 30 10 6
.

 

∴ = − =

= =
×

=

R

Q
L

R

100 66 6 33 4

500 0 2

33 4
2

. .

.

.
.The quality factor is  

v
999

PROBLEM 8.10

In the circuit shown in Fig.  8.37, an inductance of 0.1 H having a Q of 5 is 

in parallel with a capacitor. Determine the value of capacitance and coil 

resistance at resonant frequency of 500 rad/s.

Solution  The quality factor  Q
L

R

r=
v

Since H and  rad

Si

L Q

Q
R

R

r= = =

=
×

∴ =
×

=

0 1 5 500

500 0 1

500 0 1

5
10

. , /s

.

.

v

V

nnce vr
LC

C

2

2

1

500
1

0 1

=

( ) =
×.

∴ The capacitance value C =
×( )

=
1

0 1 500
40

2
.

mF

PROBLEM 8.11

A series RLC circuit consists of a 50 V resistance, 0.2 H inductance, and 10 µF capacitor with an applied 

voltage of 20 V. Determine the resonant frequency. Find the Q-factor of the circuit. Compute the lower and 

upper frequency limits and also find the bandwidth of the circuit.

Solution  Resonant frequency

f
LC

Q
L

R

r = =
× ×

=

= =
×

−

1

2

1

2 0 2 10 10
112 5

2 112

6p p

v p

.
.

.

Hz

Quality factor
55 0 2

50
2 83

×
=

.
.

Fig. 8.37
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Lower frequency limit

f f
R

L
r1

4
112 5

50

4 0 2
92 6= − = −

× ×
=

p p
.

.
. Hz

Upper frequency limit

f f
R

L
r2

4
112 5

50

4 0 2
112 5 19 89 132 39= + = +

×
= + =

p p
.

.
. . . Hz

Bandwidth of the circuit

BW 5 f2 – f1 5 132.39 – 92.6 5 39.79 Hz

PROBLEM 8.12

A tumed circuit consists of a coil having an inductance of 200 µH and a resistance of 15  V in parallel with a 

series combination of a variable capacitance and resistor of 80 V. It is supplied by a 60 V source. If the supply 

frequency is 1 MHz. what is the value of C to give resonance?

Fig. 8.38

Solution  Total admittance of the circuit y
R j L

R
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Rationalising the above equation,
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At resonance, susceptance part 5 0
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PROBLEM 8.13

For the parallel circuit shown in Fig. 8.39; V 5 200 V; R2 5 50 V; X1 5 25 V . R1 is varied from 10 V to 

50 V, draw the locus diagram. Find maximum and minimum values of source current.

Fig. 8.39

Solution  I I + I I
V

R
I

V

R X
X

R

I

1 2 2 1= = =

+










=
°

=

−

;

tan 12

1
2

1
2 1

1

2

200 0

50

;

44 A

When

tan 1

R I1 = =
°

+










= − °
−

10
200 0

100 625
25

10

7 42 68 21V ; . .



Circuits and Networks324 

Wheen

tan 1

R I1 = =
°

+










= − °
−

50
200 0

2500 625
25

50

3 57 26 61V ; . .

Maximum value of I

j

j

= + − °

= + −

= − = −

4 7 42 68 2

4 2 76 6 9

6 76 6 9 9 66 45

. .

. .

. . . ..

. .

. .

.

58

4 3 57 26 6

4 3 192 1 6

7 192

°

= + − °

= + −

= − =

Minimum value of

1.6

I

j

j 77 36 12 54. .− °

The locus diagram is shown in Fig. 8.40.

Fig. 8.40

PROBLEM 8.14

A series circuit has a resonance frequency of 120 kHz, a bandwidth of 50 kHz, and Q52. Determine the cut-

off frequencies.

Solution  Since Q < 10, we cannot use the formulas f f
B W

r2
2

= +
⋅

f f
B W

B W f f

f f

f f

f f f

r

r

1

2 1

2 1

2 1

1 2

2

50 000

50 000

= −
⋅

⋅ = −
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= +

=

,

,

also

,,
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f
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1

2 2
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195 245

=
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PROBLEM 8.15

A series RLC circuit is supplied at 220 V : 

50 Hz. At resonance, the voltage across the 

capacitor 5 550 V, I 5 1 A. Determine R, L, and C.

Solution  At resonance, XL 5 Xc

Current at resonance,

I
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Fig. 8.41
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Hence, the elements are R 5 220 V

L 5 1.75 H

C 5 5.78 mF

PSpice Problems

PROBLEM 8.1

Using PSpice, for the circuit shown in Fig 8.42, determine the 

frequency at which the circuit resonates. Also find the voltage 

across the inductor at resonance and Q-factor of the circuit.

*  TO OBTAIN RESONANT FREQUENCY

VS 1 0 AC 100 0

R 1 2 10

L 2 3 0.1

C 3 0 50 U

.AC LIN 1000 1 100

.PROBE I(L)

.PLOT AC VM(L) VP(L)

.END

*** AC ANALYSIS TEMPERATURE 5 27.000 DEG C

***************************************************************

LEGEND:

* : VM(L)
  1: VP(L)

FREQ VM(L)

(*)------ 1.0000E–02 1.0000E100 1.0000E102 1.0000E104 1.0000E106

(1)------ 0.0000E100 5.0000E101 1.0000E102 1.5000E102 2.0000E102

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1.000E 1 00 1.974E – 02 . * . . .  1  .

1.099E 1 00 2.385E – 02 . * . . .  1  .

1.198E 1 00 2.835E – 02 . * . . .  1  .

1.297E 1 00 3.323E – 02 . * . . .  1  .

1.396E 1 00 3.850E – 02 . * . . .  1  .

1.496E 1 00 4.417E – 02 . * . . .  1  .

1.595E 1 00 5.022E – 02 . * . . .  1  .

1.694E 1 00 5.666E – 02 . * . . .  1  .

1.793E 1 00 6.348E – 02 . * . . .  1  .

9.960E 1 01 1.943E 1 02 .  1  . . * . .

9.970E 1 01 1.939E 1 02 .  1  . . * . .

Fig. 8.42
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9.980E 1 01 1.936E 1 02 .  1  . . * . .

9.990E 1 01 1.932E 1 02 .  1  . . * . .

1.000E 1 02 1.929E 1 02 .  1  . . * . .

1.001E 1 02 1.926E 1 02 .  1  . . * . .

 - - - - - - - - - - - - - - - - - - - - - - - - - - -

JOB CONCLUDED

Result

Q- Factor 5 vr /BW 5 71.618/15.878 5 4.51, Refer Fig. 8.43.
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PROBLEM 8.2

For circuit shown in Fig. 8.44, the applied voltage is 

v(t) 5 15 sin1800 t. Determine the resonant frequency. 

Calculate the quality factor and bandwidth. Compute the 

lower and upper limits of the bandwidth.

 f = =
v

p p2

1800

2

Vrms V= =
15

2
10 607.

*

VS 1 0 AC 10.607 0

R 1 2 15

L 2 3 5

C 3 0 2U

.AC LIN 100 40 60

.PROBE I(VS)

.PLOT AC IM(VS) IP(VS)

.END

**** AC ANALYSIS TEMPERATURE 5 27.000 DEG C

***************************************************************

LEGEND:

*: IM(VS)

 1: IP(VS)

 FREQ IM(VS)

(*)----- 1.0000E–02 1.0000E–01 1.0000E100 1.0000E101 1.0000E102

(1)----- –2.0000E102 –1.0000E102  0.0000E100 1.0000E102 2.0000E102

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4.000E 1 01 1.447E – 02 . * . 1  . . .

4.020E 1 01 1.480E – 02 . * . 1  . . .

4.040E 1 01 1.514E – 02 . * . 1  . . .

4.061E 1 01 1.550E – 02 . * . 1  . . .

4.869E 1 01 1.001E – 01 .  1* . . .

4.889E 1 01 1.140E – 01 .  1*  . . .

4.909E 1 01 1.323E – 01 .  1 *  . . .

4.929E 1 01 1.572E – 01 .  1 *  . . .

4.950E 1 01 1.930E – 01 .  1. * . . .

4.970E 1 01 2.484E – 01 .  1. *  . . .

4.990E 1 01 3.420E – 01 .  1 . *  . . .

5.010E 1 01 5.106E – 01 .  1 . * . . .

5.030E 1 01 7.029E – 01 . 1 . * . . .

5.051E 1 01 5.697E – 01 . . *  . . 1 .

5.071E 1 01 3.787E – 01 . . *  . . 1 .

Fig. 8.44
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5.091E 1 01 2.705E – 01 . .  *  . . 1 .

5.111E 1 01 2.079E – 01 . . * . .1  .

5.131E 1 01 1.683E – 01 . . * .  1  .

5.152E 1 01 1.411E – 01 . .* . 1  .

5.172E 1 01 1.215E – 01 . .*  . 1 .

5.192E 1 01 1.066E – 01 . .*  . 1  .

5.212E 1 01 9.498E – 02 . * . 1  .

Result

Q-FACTOR 5 105.35, Refer Fig. 8.45.
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Answers to Practice Problems

8-3.1 875.35 Hz; 914.42 Hz; 836.28 Hz; 0.2 H; 

  0.165 mF

8-3.2 50.3 Hz; 63.2 V; 3 (approx.)

8-3.6 Q 5 1; R 5 60 V; C 5 50 mF

8-3.7 100 V

8-3.8 

f
f

Q

L

CR
c

r= −












2

1

2

 

R

L

C
f

LC
r =

1 1

2
where Q = and;

p

8-3.10 (i) 100 V (ii) 1002.5 Hz

8-5.1 2.07 V

8-5.3 1.77

8-5.6 (i) fr 5 1559.4 Hz (ii) 50 V (iii) 318.31 Hz

Objective-Type Questions

rrr8.1 What is the total reactance of a series RLC circuit at resonance?

 (a) equal to XL (b) equal to XC (c) equal to R (d) zero
rrr8.2 What is the phase angle of a series RLC circuit at resonance?

 (a) zero (b) 90° (c) 45° (d) 30°
rrr8.3 In a series circuit of L 5 15 mH, C 5 0.015 mF, and R 5 80 V, what is the impedance at the resonant 

frequency?

 (a) (15 mH) v  (c) 80 V (b) (0.015 F) v (d) 1/(v 3 (0.015))
rrr8.4 In a series RLC circuit operating below the resonant frequency, the current

 (a) I leads VS (b) I lags behind VS    (c) I is in phase with VS

rrr8.5 In a series RLC circuit, if C is increased, what happens to the resonant frequency?

 (a) It increases  (c) It remains the same (b) It decreases (d) It is zero

rrr8.6 In a certain series resonant circuit, VC 5 150 V, VL 5 150 V, and VR 5 50 V. What is the value of the source 

voltage?

 (a) Zero (b) 50 V (c) 150 V (d) 200 V
rrr8.7 A certain series resonant circuit has a bandwidth of 1000 Hz. If the existing coil is replaced by a coil with a 

lower Q, what happens to the bandwidth?

 (a) It increases (c) It is zero (b) It decreases (d) It remains the same
rrr8.8 In a parallel resonance circuit, why does the current lag behind the source voltage at frequencies below 

resonance?

 (a) Because the circuit is predominantly resistive  (b) Because the circuit is predominantly inductive

 (c) Because the circuit is predominantly capacitive  (d) None of the above
rrr8.9 In order to tune a parallel resonant circuit to a lower frequency, the capacitance must

 (a) be increased   (c) be zero (b) be decreased (d) remain the same
rrr8.10 What is the impedance of an ideal parallel resonant circuit without resistance in either branch?

 (a) Zero (b) Inductive (c) Capacitive (d) I0nfinite
rrr8.11 If the lower cut-off frequency is 2400 Hz and the upper cut-off frequency is 2800 Hz, what is the bandwidth?

 (a) 400 Hz (b) 2800 Hz (c) 2400 Hz (d) 5200 Hz
rrr8.12 What values of L and C should be used in a tank circuit to obtain a resonant frequency of 8 kHz? The 

bandwidth must be 800 Hz. The winding resistance of the coil is 10 V.

 (a) 2 mH, 1 mF (c) 1.99 mH, 0.2 mF (b) 10 H, 0.2 mF (d) 1.99 mH, 10 mF

For interactive quiz with answers,
scan the QR code given here
OR
visit
http://qrcode.flipick.com/index.php/266



9.1 POLYPHASE SYSTEM

In an ac system, it is possible to connect two or more individual circuits to a common polyphase source. 

Though it is possible to have any number of sources in a polyphase system, the increase in the available power 

is not significant beyond the three-phase system. The power generated by the same machine increases 41.4 

per cent from single phase to two-phase, and the increase in the power is 50 per cent from single phase to 

three-phase. Beyond three-phase, the maximum possible increase is only seven per cent, but the complications 

are many. So, an increase beyond three-phase does not justify the extra complications. In view of this, it is 

only in exceptional cases where more than three phases are used. Circuits supplied by six, twelve, and more 

phases are used in high power radio transmitter stations. Two-phase systems are used to supply two-phase 

servo motors in feedback control systems.

In general, a three-phase system of voltages (currents) is merely a combination of three single-phase 

systems of voltages (currents) of which the three voltages (currents) differ in phase by 120 electrical degrees 

from each other in a particular sequence. One such three-phase system of sinusoidal voltages is shown in 

Fig. 9.1.

9

LEARNING OBJECTIVES
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Fig. 9.1

9.2 ADVANTAGES OF A THREE-PHASE SYSTEM

It is observed that the polyphase, especially three-phase, system has many advantages 

over the single-phase system, both from the utility point of view as well as from the 

consumer point of view. Some of the advantages are as under.

1. The power in a single-phase circuit is pulsating. When the power factor of 

the circuit is unity, the power becomes zero 100 times in a second in a 50 Hz 

supply. Therefore, single-phase motors have a pulsating torque. Although the power supplied by each 

phase is pulsating, the total three-phase power supplied to a balanced three-phase circuit is constant 

at every instant of time. Because of this, three-phase motors have an absolutely uniform torque.

2. To transmit a given amount of power over a given length, a three-phase  transmission circuit requires less 

conductor material than a single-phase  circuit.

3. In a given frame size, a three-phase motor or a three-phase generator  produces more output than its 

single-phase counterpart.

4. Three-phase motors are more easily started than single-phase motors.  Single phase motors are not 

self-starting, whereas three-phase motors are.

In general, we can conclude that the operating characteristics of a three-phase apparatus are superior 

than those of a similar single-phase apparatus. All three-phase machines are superior in performance. Their 

control equipment are smaller, cheaper, lighter in weight and more efficient. Therefore, the study of three-

phase circuits is of great importance.

Frequently Asked Questions linked to LO1*
rrr9-1.1 What are the advantages of a three-phase system? [AU May/June 2013]

9.3 GENERATION OF THREE-PHASE VOLTAGES

Three-phase voltages can be generated in a stationary armature with a rotating field 

structure, or in a rotating armature with a stationary field as shown in Fig. 9.2 (a) and (b).

LO   1 

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600

Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category

LO   2 
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Fig. 9.2

Single-phase voltages and currents are generated by single-phase generators as shown in Fig. 9.3 (a). 

The armature (here a stationary armature) of such a generator has only one winding, or one set of coils. In 

a two-phase generator, the armature has two distinct windings, or two sets of coils that are displaced 90° 

(electrical degrees) apart, so that the generated voltages in the two phases have 90° phase displacement as 

shown in Fig. 9.3 (b). Similarly, three-phase voltages are generated in three separate but identical sets of 

windings or coils that are displaced by 120 electrical degrees in the armature, so that the voltages generated 

in them are 120° apart in time phase. This arrangement is shown in Fig. 9.3 (c). Here, RR9 constitutes one 

coil (R-phase); YY9 another coil (Y-phase), and BB9 constitutes the third phase (B-phase). The field magnets 

are assumed in clockwise rotation.

The voltages generated by a three-phase alternator is shown in Fig. 9.3 (d). The three voltages are of 

the same magnitude and frequency, but are displaced from one another by 120°. Assuming the voltages to 

be sinusoidal, we can write the equations for the instantaneous values of the voltages of the three phases. 

Counting the time from the instant when the voltage in phase R is zero. 

The equations are

vRR9 5 Vm sin vt

vYY 9 5 Vm sin (vt – 120°)

vBB 9 5 Vm sin (vt – 240°)

At any given instant, the algebraic sum of the three voltages must be zero.
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Fig. 9.3

9.4 PHASE SEQUENCE

The sequence of voltages in the three phases are in the order vRR9 – vYY9 – vBB9, and 

they undergo changes one after the other in the above mentioned order. This is called 

the phase sequence. It can be observed that this sequence depends on the rotation of 

the field. If the field system is rotated in the anticlockwise direction, then the sequence of the voltages in the 

three-phases are in the order vRR9 – vBB9 – vYY9; briefly we say that the sequence is RBY. Now the equations 

can be written as

vRR9 5 Vm sin vt

vBB9 5 Vm sin (vt – 120°)

vYY9 5 Vm sin (vt – 240°)

EXAMPLE 9.1

What is  the phase sequence of the voltages induced in the three 

coils of an alternator shown in Fig. 9.4? Write the equations for 

the three voltages.

LO   3 

Fig. 9.4
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Solution  Here, the field system is stationary and 

the three coils, RR9, YY9 and BB9, are rotating in the 

anticlockwise direction, so the sequence of voltages 

is RBY, and the induced voltages are as shown in Fig. 

9.4.

vRR9 5 Vm sin vt

vBB9 5 Vm sin (vt – 120°)

vYY9 5 Vm sin (vt – 240°) or Vm s  in (vt 1 120°)

EXAMPLE 9.2

What is the possible number of phase sequences in Fig. 9.4? What are they?

Solution  There are only two possible phase sequences; they are RBY and RYB.

Frequently Asked Questions linked to LO3
rrr9-3.1 What is phase sequence of a 3-phase system? [AU May/June 2013]

9.5 INTERCONNECTION OF THREE-PHASE SOURCES AND LOADS

9.5.1 Interconnection of Three-phase Sources

In a three-phase alternator, there are three independent phase windings or coils. 

Each phase or coil has two terminals, viz. start and finish. The end connections 

of the three sets of the coils may be brought out of the machine, to form three 

separate single phase sources to feed three individual circuits as shown in 

Fig. 9.6 (a) and (b).

The coils are interconnected to form a wye (Y ) or delta (D) connected three-phase system to achieve 

economy and to reduce the number of conductors, and thereby, the complexity in the circuit. The three-

phase sources so obtained serve all the functions of the three separate single phase sources.

Fig. 9.6

9.5.2 Wye or Star-Connection

In this connection, similar ends (start or finish) of the three phases are joined together within the alternator as 

shown in Fig. 9.7. The common terminal so formed is referred to as the neutral point (N), or neutral terminal. 

Three lines are run from the other free ends (R, Y, B) to feed power to the three-phase load.

Fig. 9.5

LO   4 
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Figure 9.7 represents a three-phase, four-wire, star-connected 

system. The terminals R, Y, and B are called the line terminals of the 

source. The voltage between any line and the neutral point is called 

the phase voltage (VRN, VYN, and VBN), while the voltage between 

any two lines is called the line voltage (VRY, VYB, and VBR). The 

currents flowing through the phases are called the phase currents, 

while those flowing in the lines are called the line currents. If the 

neutral wire is not available for external connection, the system 

is called a three-phase, three-wire, star-connected system. The 

system so formed will supply equal line voltages displaced 120° 

from one another and acting simultaneously in the circuit like 

three independent single phase sources in the same frame of a 

three-phase alternator.

EXAMPLE 9.3

Figure 9.8 represents three phases of an alternator. Arrange the possible number 

of three-phase star connections and indicate phase voltages and line voltages in 

each case. (VRR9 5 VYY 9 5 VBB9)

Solution  There are two possible star-connections and they can be arranged as 

shown in Fig. 9.9 (a).

The phase voltages are

VRN, VYN, VBN and VR9N, VY9N, VB9N

The line voltages are

VRY, VYB, VBR and VR9Y9, VY9B9, VB9R9

Note The phases can also be arranged as shown in Fig. 9.9 (b), in which case they do not look like a 

star; so the name star or wye-connection is only a convention.

Fig. 9.7

Fig. 9.8

(a)
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9.5.3 Delta or Mesh-Connection

In this method of connection, the dissimilar ends of the windings are joined together, i.e. R9 is connected to 

Y, Y 9 to B and B9 to R as shown in Fig. 9.10.

The three line conductors are taken from the three 

junctions of the mesh or delta connection to feed the 

three-phase load. This constitutes a three-phase, three-

wire, delta-connected system. Here there is no common 

terminal; only three line voltages VRY, VYB and VBR are 

available.

These line voltages are also referred to as phase voltages in 

the delta-connected system. When the sources are connected 

in delta, loads can be connected only across the three line 

terminals, R, Y, and B. In general, a three-phase source, star or delta, can be either balanced or unbalanced. A balanced 

three-phase source is one in which the three individual sources have equal magnitude, with 120° phase difference as 

shown in Fig. 9.3 (d).

EXAMPLE 9.4

Figure 9.11 represents three phases of an alternator. Arrange the possible number 

of three-phase, delta connections and indicate phase voltages and line voltages in 

each case (Note VRR9 5 VYY 9  5 VBB9).

Solution  There are two possible delta connections which are shown as follows.

Vphase 5 Vline

The line voltages are

VRY, VYB, and VBR from Fig. 9.12 (a) and VRB, VBY, and VYR from Fig. 9.12 (b).

Fig. 9.9

Fig. 9.10

Fig. 9.11

(b)
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Fig. 9.12

9.5.4 Interconnection of Loads

The primary question in a star or delta-connected three-phase supply is how to apply the load to the three-

phase supply. An impedance, or load, connected across any two terminals of an active network (source) will 

draw power from the source, and is called a single-phase load. Like alternator phase windings, a load can also 

be connected across any two terminals, or between line and neutral terminal (if the source is star-connected). 

Usually, the three-phase load impedances are connected in star or delta formation, and then connected to the 

three-phase source as shown in Fig. 9.13.

Figure 9.13 (a) represents the typical interconnections of loads and sources in a three-phase star system, 

and is of a three-phase four-wire system. A three-phase star- connected load is connected to a three-phase star-

connected source, terminal to terminal, and both the neutrals are joined with a fourth wire. Figure 9.13 (b) is a 

three -phase, three-wire system. A three-phase, delta-connected load is connected to a three-phase star-connected 

source, terminal to terminal, as shown in Fig. 9.13 (b). When either source or load, or both are connected in delta, 

only three wires will suffice to connect the load to source.

Fig. 9.13
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Just as in the case of a three-phase source, a three-phase load can be either balanced or unbalanced. A 

balanced three-phase load is one in which all the branches have identical impedances, i.e. each impedance 

has the same magnitude and phase angle. The resistive and reactive components of each phase are equal. 

Any load which does not satisfy the above requirements is said to be an unbalanced load.

EXAMPLE 9.5

Draw the interconnection between a three-phase, delta-connected source and a star-connected load.

Solution  When either source or load, or both are connected in delta, only three wires are required to connect, 

the load to source, and the system is said to be a three-phase, three-wire system. The connection diagram is 

shown in Fig. 9.14.

Fig. 9.14

The three line voltages are VRY, VYB, and VBR.

EXAMPLE 9.6

Draw the interconnection between a three-phase, delta-connected source and delta-connected load.

Solution  Since the source and load are connected in delta, it is a three-wire system. The connection diagram 

is shown in Fig. 9.15.

Fig. 9.15

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 4
rrr9-4.1 A three-phase, four-wire symmetrical 440 V; RYB system supplies a star-connected load in which 

ZR 5 10 ∠0° V, ZY 5 10 ∠26.8° V and ZB 5 10 ∠–26.8° V. Find the line currents, the neutral 

current and the load power.
rrr9-4.2 Three impedances of (7 1 j4) V; (3 1 j2) V and (9 1 j2) V are connected between neutral and 

the red, yellow and blue phases, respectively of a three-phase, four-wire system; the line voltage 

is 440 V. Calculate (a) the current in each line, and (b) the current in the neutral wire.
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rrr9-4.3 A symmetrical 3-phase, 3-wire, 440 V is connected to a star-connected load. The impedances in 

each branch are Z1 5 (2 1 j3)  V, Z2 5 (1– j2)  V, Z3 5 (3– j4)  V. Find its equivalent delta 

connected load. Hence find the phase and line currents and the total power consumed in the 

circuit.
rrr9-4.4 Three impedances of (7 1 j4)  V; (3 1 j2)  V, and (9 1 j2)  V are connected between neutral and 

R,Y, and B phases. The line voltage of a 3-phase, four-wire system is 440 V; calculate the active 

power in each phase and the total power drawn by the circuit.

Frequently Asked Questions linked to LO 4
rrr9-4.1 Three inductive coils each having a resistance of 16  and a reactance of j 12  are connected in 

star across a 400 V, 3 f, 50 Hz supply. Calculate phase voltage. [AU Nov./Dec. 2012]

9.6 STAR-TO-DELTA AND DELTA-TO-STAR TRANSFORMATION

While dealing with currents and voltages in loads, it is often necessary to convert 

a star load to delta load, and vice versa. It has already been shown in Chapter 3 

that delta (D) connection of resistances can be replaced by an equivalent star (Y ) 

connection and vice versa. Similar methods can be applied in the case of networks 

containing general impedances in complex form. So also with ac, where the same 

formulae hold good, except that resistances are replaced by the impedances. These formulae can be applied 

even if the loads are unbalanced. Thus, considering Fig. 9.16 (a), star load can be replaced by an equivalent 

delta-load with branch impedances as shown.

Delta impedances, in terms of star impedances, are

Z
Z Z Z Z Z Z

Z

Z
Z Z Z Z Z Z

Z

Z
Z Z Z Z Z

RY
R Y Y B B R

B

YB
R Y Y B B R

R

BR
R Y Y B

=
+ +

=
+ +

=
+ +

and BB R

Y

Z

Z

The converted network is shown in Fig. 9.16 (b). Similarly, we can replace the delta load of Fig. 9.16 (b) 

by an equivalent star load with branch impedances as

 Z
Z Z

Z Z Z
R

RY BR

RY YB BR

=
+ +

Z
Z Z

Z Z Z

Z
Z Z

Z Z Z

Y
RY YB

RY YB BR

B
BR YB

RY YB BR

=
+ +

=
+ +

and

It should be noted that all impedances are to be expressed in their complex form.

Fig. 9.16
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EXAMPLE 9.7

A symmetrical three-phase, three-wire 440 V supply is connected 

to a star-connected load as shown in Fig. 9.17 (a). The impedances 

in each branch are ZR 5 (2 1 j3) V, ZY 5 (1 – j2) V and 

ZB 5 (3 1 j4) V. Find its equivalent delta-connected load. The 

phase sequence is RYB.

Solution  The equivalent delta network is shown in Fig. 9.17 (b). 

From Section 9.6, we can write the equations to find ZRY, ZYB, 

and ZBR. We have

 

Z
Z Z Z Z Z Z

Z
RY

R Y Y B B R

B

=
+ +

 ZR 5 2 1 j3 5 3.61 ∠56.3°

 ZY 5 1 – j2 5 2.23 ∠–63.4°

 ZB 5 3 1 j4 5 5 ∠53.13°

ZRZY 1 ZYZB 1 ZBZR 5 (3.61 ∠56.3°)

  (2.23 ∠–63.4°) 1 (2.23∠–63.4°)

  (5∠53.13°) 1 (5∠53.13°) (3.61∠56.3°)

 5 8.05 ∠–7.1° 1 11.15 ∠–10.27° 

  1 18.05 ∠109.43°

 5 12.95 1 j14.04 5 19.10 ∠47.3°

 

Z j

Z
Z Z Z Z

RY

YB
R Y Y B

=
∠

∠
= ∠− = −

=
+

19 10 47 3

5 53 13
3 82 5 83 3 8 0 38

. .

.
. . . .

°

°
°

++Z Z

Z

B R

R

=
∠
∠

= ∠− = −

=
+ +

19 10 47 3

3 61 56 3
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. .

. .
. . .

°

°
° j

Z
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BR
R Y Y B B ZZ

Z

j

R

Y

=
∠

∠−
= ∠ = − +

19 10 47 3

2 23 63 4
8 56 110 7 3 02 8

. .

. .
. . .

°

°
°

The equivalent delta impedances are

ZRY 5 (3.8 – j0.38) V

ZYB 5 (5.22 – j0.82) V

ZBR 5 (– 3.02 1 j8) V

Fig. 9.17 (b)

Fig. 9.17 (a)



Circuits and Networks342 

EXAMPLE 9.8

A symmetrical three-phase, three-wire 400 V, supply is connected 

to a delta-connected load as shown in Fig. 9.18 (a). Impedances 

in each branch are ZRY 510 ∠30°  V; ZYB 5 10 ∠–45°  V and 

ZBR 5 2.5 ∠60° V. Find its equivalent star-connected load; the 

phase sequence is RYB.

Solution  The equivalent star network is shown in Fig. 9.18 (b). 

From Section 9.6, we  can write the equations to find ZR, ZY, 

and ZB as

 

Z
Z Z

Z Z Z
R

RY BR

RY YB BR

=
+ +

ZRY 1 ZYB 1 ZBR 5 10 ∠30 1 10 ∠– 45 1 2.5 ∠60

 5 (8.66 1 j5) 1 (7.07 – j7.07) 1 (1.25 1 j2.17)

 5 16.98 1 j0.1 5 16.98 ∠0.33 V

 
ZR =

−( ) −( )
−

= ∠
10 30 2 5 60

16 98 0 33
1 47 89 67

.

. .
. . °

 5 (0.008 1 j1.47) V

Z
Z Z

Z Z Z
Y

RY YB

RY YB BR

=
+ +

=
− −

−
= ∠− °

=
+ +

( )( )

. .
. .

10 30 10 45

16 98 0 33
5 89 15 33 V

Z
Z Z

Z Z Z
B

BR YB

RY YB BRR

=
− −

−
= ∠ °

( . )( )

. .
. .

2 5 60 10 45

16 98 0 33
1 47 14 67 V

The equivalent star impedances are

ZR 5 1.47 ∠89.67 V, ZY 5 5.89 ∠–15.33° V and ZB 5 1.47 ∠14.67 V

Balanced Star-Delta and Delta-Star Conversion

If the three-phase load is balanced, then the conversion formulae in Section 9.6 get simplified. Consider a 

Fig. 9.18 (b)

Fig. 9.18 (a)
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balanced star-connected load having an impedance Z1 in each phase as shown in Fig. 9.19 (a).

Fig. 9.19

Let the equivalent delta-connected load have an impedance of Z2 in each phase as shown in Fig. 9.19 (b). 

Applying the conversion formulae from Section 9.6 for delta impedances in terms of star impedances, we 

have

Z2 5 3Z1

Similarly, we can express star impedances in terms of delta as Z1 5 Z2/3.

EXAMPLE 9.9

Three identical impedances are connected in delta as shown in Fig. 

9.20 (a). Find an equivalent star network such that the line current 

is the same when connected to the same supply.

Solution  The equivalent star network is shown in Fig. 9.20 (b). 

From Section 9.6.1, we can write the equation to find Z1 5 Z2/3

 Z2 5 3 1 j4

 5 5 ∠53.13 V

\ Z1 5 
5

3
 ∠53.13

  5 1.66 ∠53.15

  5 (1.0 1 j1.33) V

Fig. 9.20 (a)

Fig. 9.20 (b)
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Frequently Asked Questions linked to LO 5
rrr9-5.1 A symmetrical three-phase; threewire 440 V supply goes to a star-connected load. The impedances 

in each branch are ZR = 2 + j3 , ZY = 1– j2  and ZB = 3 + j4 . Find its equivalent delta 

connected load.  [AU May/June 2014]
rrr9-5.2 A asymmetrical three-phase, three-wire 400 V supply is connected to a delta-connected load. 

Impedances in each branch are ZRY = 10 30° W, ZYB = 10 45º W, and ZBR = 2.5 60º . Find its 

equivalent star-connected load.  [AU May/June 2014]

9.7 VOLTAGE, CURRENT, AND POWER IN A STAR CONNECTED SYSTEM

9.7.1 Star-Connected System

Figure 9.21 shows a 

balanced three-phase, 

Y-connected system. 

The voltage induced in 

each winding is called 

the phase voltage (VPh). Likewise VRN, VYN , and VBN 

represent the rms values of the induced voltages in 

each phase. The voltage available between any pair of 

terminals is called the line voltage (VL). Likewise VRY, 

VYB and VBR are known as line voltages. The double 

subscript notation is purposefully used to represent 

voltages and currents in polyphase circuits. Thus, VRY 

indicates a voltage V between points R and Y, with R 

being positive with respect to the point Y during its 

positive half cycle.

Similarly, VYB means that Y is positive with respect to the point B during its positive half cycle; it also 

means that VRY 5 – VYR.

� Voltage Relations  The phasors corresponding to the phase voltages constituting a three-phase sys-

tem can be represented by a phasor diagram as shown in Fig. 9.22.

From Fig. 9.22, considering the lines R, Y, and B, the line voltage VRY is equal to the phasor sum of VRN 

and VNY which is also equal to the phasor difference of VRN and VYN (VNY 5 – VYN). Hence, VRY is found by 

compounding VRN and VYN reversed. To subtract VYN from VRN, we reverse the phasor VYN and find its phasor 

sum with VRN as shown in Fig. 9.22. The two phasors, VRN and – VYN, are equal in length and are 60° apart.

 |VRN | 5 – |VYN | 5 VPh

   V V VRY Ph Ph= =2 60 2 3cos /

Similarly, the line voltage VYB is equal to the phasor difference of VYN and VBN, and is equal to 3 VPh

. The line voltage VBR is equal to the phasor difference of VBN and VRN, and is equal to 3 VPh .  Hence, in a 

balanced star-connected system

(i) Line voltage 5 3 VPh ,

(ii) All line voltages are equal in magnitude and are displaced by 120°, and

(iii) All line voltages are 30° ahead of their respective phase voltages (from Fig. 9.22).

Fig. 9.21

LO   6 
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EXAMPLE 9.10

A symmetrical star-connected system is shown in Fig. 9.23 (a). Calculate the 

three line voltages, given VRN 5 230 ∠0°. The phase sequence is RYB.

Solution  Since the system is a balanced system, all the phase voltages are 

equal in magnitude, but displaced by 120° as shown in Fig. 9.23 (b).

 VRN 5 230 ∠0° V

 VYN 5 230 ∠–120° V

 VBN 5 230 ∠–240° V

Corresponding line voltages 

are equal to 3  times the phase 

voltages, and are 30° ahead of the 

respective phase voltages.

\ = × ∠ + ∠

= × ∠− + ∠−

V

V

RY

YB

3 230 0 30 30

3 230 120 30

° V =398.37 ° V

° ° V =398.37 990

3 230 240 30 210

° V

° ° V =398.37 ° VVBR = × ∠− + ∠−

 Current Relations  Figure 9.24 (a) shows a balanced three-phase, wye-connected system indicating 

phase currents and line currents. The arrows placed alongside the currents IR, IY, and IB flowing in the three 

phases indicate the directions of currents when they are assumed to be positive and not the directions at 

Fig. 9.22

Fig. 9.23 (a)

Fig. 9.23 (b)
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that particular instant. The phasor diagram for phase currents with respect to their phase voltages is shown 

in Fig. 9.24 (b). All the phase currents are displaced by 120° with respect to each other, ‘f’ is the phase 

angle between phase voltage and phase current (lagging load is assumed). For a balanced load, all the phase 

currents are equal in magnitude. It can be observed from Fig. 9.24 (a) that each line conductor is connected 

in series with its individual phase winding Therefore, the current in a line conductor is the same as that in the 

phase to which the line conductor is connected.

 IL 5 IPh 5 IR 5 IY 5 IB

It can be observed from Fig. 9.24 (b) that the angle between the line (phase) current and the corresponding 

line voltage is (30 1 f)° for a lagging load. Consequently, if the load is leading, then the angle between the 

line (phase) current and corresponding line voltage will be (30 – f)°.

Fig. 9.24

EXAMPLE 9.11

In Fig. 9.24 (a), the value of the current in phase R is IR 5 10 ∠20  A. Calculate the values of the three line currents. 

Assume an RYB phase sequence.

Solution  In a balanced star-connected system IL 5 IPh, and is displaced by 120°. Therefore the three line 

currents are

IR 5 10 ∠20° A

IY 5 10 ∠20° – 120° A 5 10 ∠–100° A

IB 5 10 ∠20° – 240° A 5 10 ∠–220° A

  Power in the Star-Connected Network  The total active power or true power in the three-phase load 

is the sum of the powers in the three phases. For a balanced load, the power in each load is the same; hence, 

total power 5 3 3 power in each phase

or P 5 3 3 VPh 3 IPh cos f

It is the usual practice to express the three-phase power in terms of line quantities as follows.

V V I I

P V I

L Ph L Ph

L L

= =

=

3

3

,

cosfW

or 3 V IL L cosf  is the active power in the circuit.
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Total reactive power is given by

Q V IL L= 3 sinfVAR

Total apparent power or volt-amperes

 = 3 V IL L VA

9.7.2  n-Phase Star System

It is to be noted that star and mesh are general terms applicable to any number of phases; but wye and delta 

are special cases of star and mesh when the system is a three-phase system. Consider an n-phase balanced 

star system with two adjacent phases as shown in Fig. 9.25 (a). Its vector diagram is shown in Fig. 9.25 (b).

Fig. 9.25

The angle of phase difference between adjacent phase voltages is 360°/n. Let EPh be the voltage of each 

phase. The line voltage, i.e. the voltage between A and B is equal to EAB 5 EL 5 EAO 1 EOB. The vector 

addition is shown in Fig. 9.25 (c). It is evident that the line current and phase current are same.

EAB 5 EAO 1 EOB

Consider the parallelogram OABC.

OB OC OA OA OC

E E E
n

ph ph ph

= + + × × ×

= + + −






2 2

2 2 2

2

2 180
360

cos

cos

u

°
°




=

= −



















2 2
360

2 1 2
180

2 2E E
n

E
n

ph ph

ph

cos

cos
°



=








=

2 2
180

2
180

2E
n

E E
n

ph

L ph

sin

sin

°

Fig. 9.25 (c)
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The above equation is a general equation for line voltage, for example, for a three- phase system, n 5 3; 

EL 5 2 Eph sin 60° 5 3 EPh .

EXAMPLE 9.12

A balanced star-connected load of (4 1 J3) V per phase is connected to a balanced 3-phase 400 V supply. 

The phase current is 12 A. Find (a) the total active power, (b) reactive power, and (c) total apparent power.

Solution  The voltage given in the data is always the rms value of the line voltage unless otherwise specified.

\ = + =

= = = =

=

Z

PF
R

Z

Ph

Ph

Ph

4 3 5

4

5
0 8

0 6

2 2 V

cos .

sin .

f

f

(a) Active power  5 3  VLIL cos f W

 5 3  3 400 3 12 3 0.8 5 6651 W

 (b) Reactive power  5 3  VL IL sin f VAR

 5 3  3 400 3 12 3 0.6 5 4988.36 VAR

   (c) Apparent power 5 3  VLIL

 5 3  3 400 3 12 5 8313.84 VA

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 6
rrr9-6.1 Three non-reactive resistors of 5 V, 10 V and 15 V are star-connected to R, Y and B phase of a 440 

V symmetrical system. Determine the current and power in each resistor and the voltage between 

star point and neutral; assume the phase sequence as RYB.
rrr9-6.2 A three-phase, three-wire symmetrical 440 V source is supplying power to an unbalanced, delta-

connected load in which ZRY 5 20 ∠30° V, ZYB 5 20 ∠0° V and ZBR 5 20 ∠– 30° V. If the phase 

sequence is RYB, calculate the line currents.
rrr9-6.3 Three non-inductive resistances of 25  V, 10  V and 15  V are connected in star to a 400 V 

symmetrical supply. Calculate the line currents and the voltage across the each load phase.
rrr9-6.4 Three impedances Z1 5 (10 1 j0)  V; Z2 5 (3 1 j4)  V and (0 – j10)  V are connected in star across 

a balanced line voltage of 100 volts. Find the neutral shift voltage between supply and load. Use 

Millsman’s theorem.

Frequently Asked Questions linked to LO 6
rrr9-6.1 A balanced star-connected load having an impedance  

15 + j20  per phase is connected to 3f, 440 V, 50 H Z. Find 

the line current and power absorbed by the load.  

  [AU May/June 2014]
rrr9-6.2 A star-connected balanced load draws a current of 35 A per 

phase when connected to a 440 V supply. Determine the 

apparent power. [AU May/June 2014]

rrr9-6.3 For the circuit shown in Q.3, calculate the line current, the 

power and the power factor. The values of R, L, and C in 

each phase are 10 , 1 H and 100 F respectively.

 [AU Nov./Dec. 2012] Fig. Q.3
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9.8 VOLTAGE, CURRENT, AND POWER IN A DELTA-CONNECTED SYSTEM

9.8.1  Delta-Connected System

Figure 9.26 shows a balanced three-phase, three-wire, delta-connected system. 

This arrangement is referred to as mesh connection because it forms a closed 

circuit. It is also known as delta connection because the three branches in the 

circuit can also be arranged in the shape of delta (D).

From the manner of 

interconnection of the three phases in the circuit, it may 

appear that the three phases are short-circuited among 

themselves. However, this is not the case. Since the system 

is balanced, the sum of the three voltages round the closed 

mesh is zero; consequently, no current can flow around the 

mesh when the terminals are open.

The arrows placed alongside the voltages, VRY, VYB and 

VBR, of the three phases indicate that the terminals R, Y and 

B are positive with respect to Y, B and R, respectively, during their respective positive half cycles.

� Voltage  Relations  From Fig. 9.27, we notice that only 

one phase is connected between any two lines. Hence, the voltage 

between any two lines (VL) is equal to the phase voltage (VPh).

 VRY  5 VL 5 VPh

Since the system is balanced, all the phase voltages are equal, 

but displaced by 120° from one another as shown in the phasor 

diagram in Fig. 9.27. The phase sequence RYB is assumed.

 |VRY| 5 |VYB| 5 |VBR| 5 VL 5 VPh

EXAMPLE 9.13

In Fig. 9.27, the voltage across the terminals R and Y is 400 ∠0 . Calculate the values of the three line voltages. 

Assume RYB phase sequence.

Solution  In a balanced delta-connected system, |VL| 5 |VPh|, and is displaced by 120°; therefore, the three 

line voltages are

VRY 5 400 ∠0° V

VYB 5 400 ∠–120° V

VBR 5 400 ∠–240° V

 Current Relations  In Fig. 9.28, we notice that since the system is balanced, the three phase cur-

rents (IPh), i.e. IR, IY, IB are equal in magnitude but displaced by 120° from one another as shown in Fig. 

9.28 (b). I1, I2, and I3 are the line currents (IL), i.e. I1 is the line current in the line 1 connected to the com-

mon point of R. Similarly, I2 and I3 are the line currents in lines 2 and 3, connected to common points Y 

and B, respectively. Though here all the line currents are directed outwards, at no instant will all the three 

Fig. 9.27

Fig. 9.26
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line currents flow in the same direction, either outwards or inwards. Because the three line currents are 

displaced 120° from one another, when one is positive, the other two might both be negative, or one posi-

tive and one negative. Also it is to be noted that arrows placed alongside phase currents in Fig. 9.28 (a), 

indicate the direction of currents when they are assumed to be positive and not their actual direction at a 

particular instant. We can easily determine the line currents in Fig. 9.28 (a), I1, I2, and I3 by applying KCL 

at the three terminals R, Y and B, respectively. Thus, the current in line 1, I1 5 IR – IB; i.e. the current in 

any line is equal to the phasor difference of the currents in the two phases attached to that line. Similarly, 

the current in the line 2, I2 5 IY – IR, and the current in the line 3, I3 5 IB – IY.

The phasor addition of these currents is shown in Fig. 9.28 (b). From the figure,

I1 5 IR – IB

 I I I I IR B R B1
2 2 2 60= + + cos °

I1 5 3  IPh, since IR 5 IB 5 IPh

Similarly, the remaining two line currents, I2 and I3, are also equal to 3  times the phase currents; i.e. 

IL 5 3  IPh.

As can be seen from Fig. 9.28 (b), all the line currents are equal in magnitude but displaced by 120° from 

one another; and the line currents are 30° behind the respective phase currents.

Fig. 9.28

(a) (a)
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EXAMPLE 9.14

Three identical loads are connected in delta to a 

three-phase supply of 440 ∠0  V as shown in Fig. 

9.29 (a). If the phase current IR is 15 ∠0  A, calculate 

the three line currents.

Solution  All the line currents are equal and 30  

behind their respective phase currents, and 3  

times their phase values, displaced by 120  from one 

another, assuming RYB phase sequence.

Let the line currents in line 1, 2, and 3 be I1, I2 and 

I3, respectively.

I1 5 3  3 IR ∠(f – 30°)

 5 3  3 15 ∠– 30° 5 25.98 ∠– 30° A

I2 5 3  3 15 ∠(– 30 – 120)° 5 25.98 ∠– 150° A

I3 5 3  3 15 ∠(– 30 – 240)° 5 25.98 ∠– 270° A

The phasor diagram is shown in Fig. 9.29 (b).

  Power in the Delta-Connected System    Obviously, the total power in the delta circuit is the sum of 

the powers in the three phases. Since the load is balanced, 

the power consumed in each phase is the same. Total 

power is equal to three times the power in each phase.

Power per phase 5 VPh IPh cos f

where f is the phase angle between phase voltage and 

phase current.

Total power P 5 3 3 VPh IPh cos f

In terms of line quantities,

P 5 3  VL IL cos f W

Since V V I
I

Ph L Ph
L= = and 
3

for a balanced system, whether star or delta, the expression 

for the total power is the same.

EXAMPLE 9.15

A balanced delta-connected load of (2 1 j3) V per phase is connected to a balanced three-phase 440 V supply. 

The phase current is 10 A. Find the (a) total active power (b) reactive power, and (c) apparent power in the circuit.

Solution   ZPh = ( ) +( ) = ∠ °2 3 3 6 56 3
2 2

. . V

(b)

Fig. 9.29

(a)
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cos

.
. f = = =

R

Z

Ph

Ph

2

3 6
0 55

So, sin f 5 0.83

 IL 5 3  3 IPh 5 3  3 10 5 17.32 A

(a) Active power  5 3  VLIL cos f

 5 3  3 440 3 17.32 3 0.55 5 7259.78 W

(b) Reactive power  5 3  VLIL sin f

 5 3  3 440 3 17.32 3 0.83 5 10955.67 VAR

(c) Apparent power  5 3  VLIL

 5 3  3 440 3 17.32 5 13199.61 VA

9.8.2  n-Phase Mesh System

Figure 9.30 (a) shows part of an n-phase balanced mesh system. Its vector diagram is shown in Fig. 9.30 (b).

Let the current in line BB9 be IL. This is same in all the remaining lines of the n-phase system. IAB, IBC are 

the phase currents in AB and BC phases respectively. The vector addition of the line current is shown in Fig. 

9.30 (c). It is evident from the Fig. 9.30 (b) that the line and phase voltages are equal.

(a) (b)

(c)

Fig. 9.30
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    IBB5 IL  5 IAB  1 ICB

      5 IAB – IBC

Consider the parallelogram OABC.

OB OA OC OA OC
n

I I IPh Ph Ph

= + + × × × −








=

2 2

2 2 2

2 180
360

2

cos

cos
3360

2 1 2
180

2 2
180

2
180

2

n

I
n

I
n

I I
n

Ph

Ph

L Ph

=








=

=

cos

sin

sin

The above equation is a general equation for the line current in a balanced n-phase mesh system.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 7
rrr9-7.1 Three equal resistances connected in star across a three-phase balanced supply consume 1000 W. 

If the same three resistors were reconnected in delta across the same supply, determine the power 

consumed.
rrr9-7.2 The currents in RY, YB, and BR branches of a mesh connected system with symmetrical voltages are 

20 A at 0.7 lagging power factor, 20 A at 0.8 leading power factor, and 10 A at UPF respectively. 

Determine the current in each line. Phase sequence is RYB. Draw a phasor diagram.

rrr9-7.3 Three identical impedances 10 ∠30°  V in a delta connection, and three identical impedances  

5 ∠35°  V in a star connection are on the same three-phase, three-wire 173  V system. Find the line 

currents and the total power.
rrr9-7.4 Three capacitors, each of 100 mF are connected in delta to a 440 V, three -phase, 50 Hz supply. 

What will be the capacitance of each of the three capacitors if the same three capacitors are 

connected in star across the same supply to draw the same line current.

rrr9-7.5 Three impedances, ZR 5 (3 1 j2) V; ZY 5 j9  V and ZB 5 3  V are connected in star across a  

400 V, 3-wire system. Find the loads on the equivalent delta-connected system phase-sequence RYB.

Frequently Asked Questions linked to LO 7
rrr9-7.1 A delta-connected load has (30 + j40)  impedance per phase. Determine the phase current if it is 

connected to a 415 V, 3-phase, 50 Hz supply. [AU May/June 2013]
rrr9-7.2 Prove that the total instantaneous power in a balanced three-phase system is constant and is equal 

to the average power whether the load is star or delta-connected. [AU May/June 2013]
rrr9-7.3 A three-phase balanced delta-connected load of 4 + j8  is connected across a 400 V, 3 f balanced 

supply. Determine the phase currents and line currents. (Phase sequence is RYB).

  [AU May/June 2014]
rrr9-7.4 Write the relation the line and phase value of voltage and current in a balanced delta-connected 

system.  [AU May/June 2014]

rrr9-7.5 A 3-phase, 3-wire 120 V RYB system feeds a -connected load whose phase impedance is 30 45º 

. Find the phase and line current in this system and draw the phasor diagram. [AU Nov./Dec. 2012]
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9.9� THREE-PHASE BALANCED CIRCUITS

The analysis of three-phase balanced systems is presented in this section. It is no 

way different from the analysis of ac systems in general. The relation between 

voltages, currents and power in delta-connected and star-connected systems 

has already been discussed in the previous sections. We can make use of those 

relations and expressions while solving the circuits.

9.9.1  Balanced Three-Phase System-Delta Load

Figure 9.31 (a) shows a three-phase, three-wire, balanced system supplying power to a balanced three-phase 

delta load. The phase sequence is RYB. We are required to find out the currents in all branches and lines.

Let us assume the line voltage VRY 5 V ∠0° as the reference phasor. Then the three source voltages are 

given by

VRY 5 V ∠0° V

VYB 5 V ∠–120° V

VBR 5 V ∠–240° V

These voltages are represented by phasors in Fig. 9.31 (b). Since the load is delta-connected, the line 

voltage of the source is equal to the phase voltage of the load. The current in phase RY, IR will lag (lead) 

behind (ahead of ) the phase voltage VRY by an angle f as dictated by the nature of the load impedance. The 

angle of lag of IY with respect to VYB, as well as the angle of lag of IB with respect to VBR will be f as the load 

is balanced. All these quantities are represented in Fig. 9.31 (b).

Fig. 9.31

If the load impedance is Z ∠f, the current flowing in the three load impedances are then

 

I
V

Z

V

Z

I
V

Z

V

Z

I
V

Z

V

Z

R
RY

Y
YB

B
BR

=
−

−
= ∠−

=
−
−

= ∠− °−

=
−
−

= ∠

0

120
120

240

f
f

f
f

f
−− °−240 f

LO   8 
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The line currents are 3  times the phase currents and are 30° behind their respective phase currents.

 current in the line 1 is given by

I
V

Z
I IR B1 3 30= ∠ − − ° −( ), ( )f or phasor difference

Similarly, the current in the line 2

I
V

Z
2 3 120 30= ∠ − − − °( ),f

or phasor difference andI I
V

Z
Y R− ( ) = ∠ − − °( )3 150f ,

I
V

Z
I I

V

Z

B Y3 3 240 30

3 270

= ∠ − − − ° −

= − − −

( ), ( )

(

f

f

or phasor difference

))

To draw all these quantities vectorially, VRY 5 V∠0° is taken as the reference vector.

EXAMPLE 9.16

A three-phase, balanced delta-connected load of (4 1 j8) V is connected across a 400 V, 3 – f balanced 

supply. Determine the phase currents and line currents. Assume the phase sequence to be RYB. Also calculate 

the power drawn by the load.

Solution  Refering to Fig. 9.31 (a), taking the line voltage VRY 5 V∠0° as reference VRY 5 400 ∠0° V; 

VYB 5 400 ∠–120° V, VBR 5 400 ∠–240° V

Impedance per phase 5 (4 1 j8) V 5 8.94 ∠63.4° V

Phase currents are: AI

I

R

Y

=
∠ °

∠ °
= ∠− °

=

400 0

8 94 63 4
44 74 63 4

40

. .
. .

00 120

8 94 63 4
44 74 183 4

400 240

8 94 63 4
44 74 3

−
−

= ∠− °

=
−
−

= ∠−

. .
. .

. .
.

A

IB 003 4. ° A

The three line currents are

I1 5 IR – IB 5 (44.74 ∠–63.4° –44.74 ∠–303.4°)

 5 (20.03 – j40) – (24.62 1 j37.35) 5 (–4.59 – j77.35) A

 5 77.49 ∠266.6° A

or the line current I1 is equal to the 3  times the phase current and 30° behind its respective phase current

I1 5 3  3 44.74 ∠–63.4° –30° 5 77.49 ∠–93.4°

or 5 77.49 ∠266.6° A

Similarly, I2 5 IY – IR

 5 3  3 44.74 ∠–183.4° –30° 5 77.49 –213.4° A 
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 5 77.49 ∠146.6° A

 I3 5 IB – IY

 5 3  3 44.74 ∠– 303.4° –30° 5 77.49 –333.4° A 

 5 77.49 ∠26.6° A

Power drawn by the load is P 5 3VPh IPh cos f

or   3  3 VL 3 IL cos 63.4° 5 24.039 kW

9.9.2  Balanced Three Phase System-Star Connected Load

Figure 9.32 (a) shows a three-phase, three-wire system supplying power to a balanced three phase star 

connected load. The phase sequence RYB is assumed.

In star connection, whatever current is flowing in the phase is also flowing in the line. The three line 

(phase) currents are IR, IY, and IB.

Fig. 9.32 (a)

VRN, VYN, and VBN represent three phase voltages of the network, i.e. the voltage between any line and 

neutral. Let us assume the voltage VRN 5 V∠0° as the reference phasor. Consequently, the phase voltage

VRN 5 V ∠0°

VYN 5 V ∠–120°

VBN 5 V ∠–240°

Hence I
V

Z

V

Z

V

Z
R

RN=
∠

=
−
−

= ∠−
f f

f
0

 

I
V

Z

V

Z

V

Z

I
V

Z

V

Z

V

Z

Y
YN

B
BN

=
−

=
−
−

= ∠− °−

=
−

=
−
−

= ∠− °−

f f
f

f f
f

120
120

240
240
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As seen from the above expressions, the currents, IR, 

IY, and IB, are equal in magnitude and have a 120° phase 

difference. The disposition of these vectors is shown in 

Fig.  9.32 (b). Sometimes, a fourth wire, called neutral 

wire is run from the neutral point, if the source is also 

star-connected. This gives three-phase, four-wire star-

connected system. However, if the three line currents are 

balanced, the current in the fourth wire is zero; removing 

this connecting wire between the source neutral and load 

neutral is, therefore, not going to make any change in the 

condition of the system. The availability of the neutral 

wire makes it possible to use all the three phase voltages, 

as well as the three line voltages. Usually, the neutral is 

grounded for safety and for the design of insulation.

It makes no difference to the current flowing in the 

load phases, as well as to the line currents, whether the 

sources have been connected in star or in delta, provided 

the voltage across each phase of the delta connected source is 3  times the voltage across each phase of the 

star-connected source.

EXAMPLE 9.17

A balanced star-connected load having an impedance (15 1 j20) V per phase is connected to a three-phase, 

440 V; 50 Hz supply. Find the line currents and the power absorbed by the load. Assume RYB phase sequence.

Solution  Referring to Fig. 9.32 (a), taking VRN as the reference voltage, we have

VRN =
∠ °

= ∠ °
440 0

3
254 0

 VYN 5 254 ∠–120°

 VBN 5 254 ∠–240°

Impedance per phase, ZPh 5 15 1 j20 5 25 ∠53.13° V

 
The phase currents are  

V
I

Z
R

RN

Ph

= =
−

−
= ∠−

254 0

25 53 13
10 16 53 1

.
. . 33°A

I
Z

I
Z

Y
YN

Ph

B
BN

Ph

= =
−

−
= ∠− °

= =
−

V
A

V

254 120

25 53 13
10 16 173 13

254 240

.
. .

225 53 13
10 16 293 13

−
= ∠−

.
. . ° A

The three phase currents are equal in magnitude and displaced by 120° from one another. Since the load 

is star-connected, these currents also represents line currents.

The power absorbed by the load (P) 

5 3  3 VPh 3 IPh cos f

or 5 3  3 VL 3 IL cos f

5 3  3 440 3 10.16 3 cos 53.13° 5 4645.78 W

Fig. 9.32 (b)
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9.10 THREE-PHASE-UNBALANCED CIRCUITS

9.10.1  Types of Unbalanced Loads

An unbalance exists in a circuit when the impedances in one or more phases differ from the impedances of 

the other phases. In such a case, line or phase currents are different and are displaced from one another by 

unequal angles. So far, we have considered balanced loads connected to balanced systems. It is enough to solve 

problems, considering one phase only on balanced loads; the conditions on other two phases being similar. 

Problems on unbalanced three-phase loads are difficult to handle because conditions in the three phases are 

different. However, the source voltages are assumed to be balanced. If the system is a three-wire system, the 

currents f lowing towards the load in the three lines must add to zero at any given instant. If the system is a 

four-wire system, the sum of the three outgoing line currents is equal to the return current in the neutral wire. 

We will now consider different methods to handle unbalanced star-connected and delta-connected loads. In 

practice, we may come across the following unbalanced loads:

1. Unbalanced delta-connected load,

2. Unbalanced three-wire star-connected load, and

3. Unbalanced four-wire star-connected load.

 Unbalanced Delta-connected Load  Figure 9.33 

shows an unbalanced delta-load connected to a balanced 

three-phase supply.

The unbalanced delta-connected load supplied from 

a balanced three-phase supply does not present any new 

problems because the voltage across the load phase is 

fixed. It is independent of the nature of the load and is 

equal to the line voltage of the supply. The current in 

each load phase is equal to the line voltage divided by 

the impedance of that phase. The line current will be the 

phasor difference of the corresponding phase currents, 

taking VRY as the reference phasor.

Assuming RYB phase sequence, we have

VRY 5 V ∠0° V, VYB 5 V ∠–120° V, VBR 5 V ∠–240° V

Phase currents are

I
V

Z

V

Z

V

Z

I
V

Z

V

Z

V

Z

R
RY

Y
YB

=
∠

=
∠ °
∠

= ∠−

=
∠

=
∠− °

∠
= ∠

1 1 1 1
1

2 2 2 2 2

0

120

f f
f

f f

A

−− −

=
∠

=
∠− °

∠
= ∠− −

120

240
240

2

3 3 3 3 3
3

° A

° A

f

f f
fI

V

Z

V

Z

V

Z
B

BR

The three line currents are

I1 5 IR – IB phasor difference

I2 5 IY – IR phasor difference

I3 5 IB – IY phasor difference

Fig. 9.33

LO 8
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EXAMPLE 9.18

Three impedances Z1 5 20 ∠30°  V, Z2 5 40 ∠60°  V and Z3 5 10 ∠–90°  V are delta-connected to a 400 V, 

3 –  f system as shown in Fig. 9.34. Determine the (a) phase currents, (b) line currents, and (c) total power 

consumed by the load.

Fig. 9.34

Solution  The three phase currents are IR, IY, and IB, and the three line currents are I1, I2 and I3. Taking 

VRY 5 V ∠0° V as reference phasor, and assuming RYB phase sequence, we have

VRY 5 400 ∠0° V, VYB 5 400 ∠–120° V,

VBR 5 400 ∠–240° V

 Z1 5 20 ∠30° V 5 (17.32 1 j10) V;

 Z2 5 40 ∠60° V 5 (20 1 j34.64) V;

 Z3 5 10 ∠–90° V 5 (0 – j10) V

   (a) I
V

Z
R

RY=
∠

=
∠ °

∠ °
∠− °

1 1

400 0

20 30f
A = 20 30 A

  5 (17.32 – j10) A

 
I

V

Z
Y

YB=
∠

=
∠− °
∠ °

∠− °
2 2

400 120

40 60
180

f
A = 10 A

  5 (–10 1 j0) A

 
I

V

Z
B

BR=
∠

=
∠− °
∠− °

∠− °
3 3

400 240

10 90
150

f
A = 40 A

  5 (–34.64 – j20) A

(b) Now, the three line currents are

I1 5 IR – IB 5 [(17.32 – j10) – (–34.64 – j20)]

 5 (51.96 1 j10) A 5 52.91 ∠10.89° A

I2 5 IY – IR 5 [(–10 1 j0) – (17.32 – j10)]

 5 (–27.32 1 j10) A 5 29.09 ∠159.89° A

I3 5 IB – IY 5 [(–34.64 – j20) – (–10 1 j0)]

 5 (–24.64 – j20) A 5 31.73 ∠–140.94° A
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(c)  To calculate the total power, first the powers in the individual phases are to be calculated, then 

they are added up to get the total power in the unbalanced load.

 Power in R phase 5 I 2 
R 3 RR 5 (20)2 3 17.32 5 6928 W

 Power in Y phase 5 I       2 
Y 3 RY 5 (10)2 3 20 5 2000 W

 Power in B phase 5 I 2 
B 3 RB 5 (40)2 3 0 5 0

 total power in the load 5 6928 1 2000 5 8928 W

 Unbalanced  Four-Wire  Star-Connected  Load  Figure 9.35 shows an unbalanced star load con-

nected to a balanced 3-phase, 4-wire supply.

Fig. 9.35

The star point, NL, of the load is connected to the star point, NS of the supply. It is the simplest case of 

an unbalanced load because of the presence of the neutral wire; the star points of the supply NS (generator) 

and the load NL are at the same potential. It means that the voltage across each load impedance is equal to 

the phase voltage of the supply (generator), i.e. the voltages across the three load impedances are equalised 

even though load impedances are unequal. However, the current in each phase (or line) will be different. 

Obviously, the vector sum of the currents in the three lines is not zero, but is equal to neutral current. Phase 

currents can be calculated in similar way as that followed in an unbalanced delta-connected load.

Taking the phase voltage VRN 5 V∠0° V as reference, and assuming RYB phase sequences, we have the 

three phase voltages as follows:

VRN 5 V ∠0° V, VYN 5 V ∠–120° V, VBN 5 V ∠–240° V

The phase currents are
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Incidentally, IR, IY and IB are also the line currents; the current in the neutral wire is the vector sum of the 

three line currents.

EXAMPLE 9.19

An unbalanced four-wire, star-connected load has a balanced voltage of 400 V, the loads are

Z1 5 (4 1 j8) V; Z2 5 (3 1 j4) V; Z3 5 (15 1 j20) V

Calculate the (a) line currents, (b) current in the neutral wire, and (c) the total power.

Solution   Z1 5 (4 1 j8) V; Z2 5 (3 1 j4) V; Z3 5 (15 1 j20) V

Z1 5 8.94 ∠63.40° V; Z2 5 5 ∠53.1° V; Z3 5 25 ∠53.13° V

Let us assume RYB phase sequence.

The phase voltage V VRN = =
400

3
230 94.

Taking VRN as the reference phasor, we have

VRN 5 230.94 ∠0° V, VYN 5 230.94 ∠–120° V

VBN 5 230.94 ∠–240° V

The three line currents are

(a) I
V

Z
R

RN= =
∠ °

∠ °
∠− °

1

230 94 0

8 94 63 4
63 4

.

. .
.A = 25.83 A

 
I

V

Z
Y

YN= =
∠− °

∠
∠− °

2

230 94 120

5 53 1
173 1

.

.
.A = 46.188 A

 

I
V

Z
B

BN= =
∠− °

∠
∠− °

3

230 94 120

25 53 13
293 13

.

.
.A = 9.23 A

(b)  To find the neutral current, we must add the three line currents. The neutral current must then be 

equal and opposite to this sum.

 Thus, IN  5 – (IR 1 IY 1 IB)

 5 – (25.83 ∠–63.4° 1 46.188 ∠–173.1° 1 9.23 ∠–293.13°) A

IN 5 – [(11.56 – j23.09) 1 (–45.85 – j5.54) 1 (3.62 1 j8.48)] A

IN 5 – [(–30.67 – j20.15)] A 5 (30.67 1 j20.15) A

IN 5 36.69 ∠33.30° A

Its phase with respect to VRN is 33.3°, the disposition of all the currents is shown in Fig. 9.36.

(c) Power in R phase 5 I 2R 3 RR 5 (25.83)2 3 4 5 2668.75 W

 Power in Y phase 5 I 2Y 3 RY 5 (46.18)2 3 3 5 6397.77 W
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 Power in B phase 5 I 2B 3 RB 5 (9.23)2 3 15 5 1277.89 W

Total power absorbed by the load

5 2668.75 1 6397.77 1 1277.89 5 10344.41 W

 Unbalanced Three-Wire Star-Connected Load  In a three-phase, four-wire system if the connection 

between supply neutral and load neutral is broken, it would result in an unbalanced three-wire star-load. This 

type of load is rarely found in practice, because all the three-wire star loads are balanced. Such as system is 

shown in Fig. 9.37. Note that the supply star point (NS) is isolated from the load star point (NL). The potential 

of the load star point is different from that of the supply star point. The result is that the load phase voltages 

is not equal to the supply phase voltage; and they are not only unequal in magnitude, but also subtend angles 

other than 120° with one another. The magnitude of each phase voltage depends upon the individual phase 

loads. The potential of the load neutral point changes according  to changes in the impedances of the phases, 

that is why sometimes the load neutral is also called a f loating neutral point. All star-connected, unbalanced 

loads supplied from polyphase systems without a neutral wire have f loating neutral point. The phasor sum of 

the three unbalanced line currents is zero. The phase voltage of the load is not 1 3/  of the line voltage. The 

Fig. 9.36

Fig. 9.37
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unbalanced three-wire star load is difficult to deal with. It is because load phase voltages cannot be determined 

directly from the given supply line voltages. There are many methods to solve such unbalanced Y-connected 

loads. Two frequently used methods are presented here. They are

1. Star-delta conversion method, and

2. The application of Millman’s theorem

9.10.2  Star-Delta Method of Solving Unbalanced Load

Figure 9.38 (a) shows an unbalanced wye-connected load. It has already been shown in Section 9.6 that a 

three-phase star-connected load can be replaced by an equivalent delta-connected load. Thus, the star load 

of Fig. 9.38 (a) can be replaced by equivalent delta as shown in Fig. 9.38 (b), where the impedances in each 

phase is given by

Z
Z Z Z Z Z Z

Z

Z
Z Z Z Z Z Z

Z

Z
Z Z Z Z Z Z

RY
R Y Y B B R

B

YB
R Y Y B B R

R

BR
R Y Y B B R

=
+ +

=
+ +

=
+ +

ZZY

Fig. 9.38

The problem is then solved as an unbalanced delta-connected system. The line currents so calculated are 

equal in magnitude and phase to those taken by the original unbalanced wye (Y ) connected load.

EXAMPLE 9.20

A 400 V, three-phase supply feeds an unbalanced three-wire, star-connected load. The branch impedances of 

the load are ZR 5 (4 1 j8) V; Zy 5 (3 1 j4) V and ZB 5 (15 1 j20) V. Find the line currents and voltage 

across each phase impedance. Assume RYB phase sequence.

Solution  The unbalanced star load and its equivalent delta (D) is shown in Fig. 9.39 (a) and (b) respectively.

ZR 5 (4 1 j8) V 5 8.944 ∠63.4° V

ZY 5 (3 1 j4) V 5 5 ∠53.1° V

ZB 5 (15 1 j20) V 5 25 ∠53.1° V
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Fig. 9.39

Using the expression in Section 9.10.2, we can calculate ZRY, ZYB and ZBR

ZRZY 1 ZYZB 1 ZBZR

 5 (8.94 ∠63.4°) (5 ∠53.1°) 1 (5 ∠53.1°) (25 ∠53.1°)

 1 (25 ∠53.1°) (8.94 ∠63.4°)

 5 391.80 ∠113.23°

Z
Z Z Z Z Z Z

Z

Z

RY
R Y Y B B R

B

Y

=
+ +

=
∠

∠
= ∠

391 80 113 23

25 53 1
15 67 60 13

. .

.
. .

°

°
°

BB
R Y Y B B R

R

Z Z Z Z Z Z

Z
=

+ +
=

∠
∠

= ∠
391 80 113 23

8 94 63 4
43 83 49 83

. .

. .
. .

°

°
°

ZBBR
R Y Y B B R

Y

Z Z Z Z Z Z

Z
=

+ +
=

∠
∠

= ∠
391 80 113 23

5 53 1
78 36 60 13

. .

.
. .

°

°
°

Taking VRY as reference, VRY 5 400 ∠0

VYB 5 400 ∠–120°; VBR 5 400 ∠–240°
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The various line currents in the delta load are

 I1 5 IR – IB 5 25.52 ∠–60.13° – 5.1 ∠–300.13°

 5 28.41 ∠–69.07° A
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 I2 5 IY – IR 5 9.12 ∠–169.83° – 5.52 ∠–60.13°

 5 29.85 ∠136.58° A

 I3 5 IB – IY 5 5.1 ∠–300.13° – 9.12 ∠–169.83°

 5 13 ∠27.60° A

These line currents are also equal to the line (phase) currents of the original star-connected load. The voltage 

drop across each star-connected load will be as follows.

Voltage drop across ZR 5 I1ZR

 5 (28.41 ∠–69.070°) (8.94 ∠63.4°) 5 253.89 ∠–5.67° V

Voltage drop across ZY 5 I2ZY

 5 (29.85 ∠136.58°) (5 ∠53.1°) 5 149.2 ∠189.68° V

Voltage drop across ZB 5 I3ZB

5 (13 ∠27.60°) (25 ∠53.1°) 5 325 ∠80.70° V

9.10.3 Millman’s Method of Solving Unbalanced Load

One method of solving an unbalanced three-wire star-connected load by star-delta conversion is described in 

Section 9.10.2. But this method is laborious and involves lengthy calculations. By using Millman’s theorem, 

we can solve this type of problems in a much easier way. Consider an unbalanced wye (Y ) load connected 

to a balanced three-phase supply as shown in Fig. 9.40 (a). VRO, VYO and VBO are the phase voltages of the 

supply. They are equal in magnitude, but displaced by 120° from one another. VRO9, VYO9 and VBO9 are the 

load phase voltages; they are unequal in magnitude as well as differ in phase by unequal angles. ZR, ZY and 

ZB are the impedances of the branches of the unbalanced wye (Y ) connected load. Figure 9.40 (b) shows the 

triangular phasor diagram of the complete system. Distances RY, YB, and BR represent the line voltages of 

the supply as well as load. They are equal in magnitude, but displaced by 120°. Here, O is the star-point of 

the supply and is located at the centre of the equilateral triangle RYB. O9 is the load star point. The star point 

of the supply which is at the zero potential is different from that of the star point at the load, due to the load 

being unbalanced. O9 has some potential with respect to O and is shifted away from the centre of the triangle. 

Distance O9O represents the voltage of the load star point with respect to the star point of the supply Vo9o.

Fig. 9.40 (a)
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Vo9o is calculated using Millman’s theorem. If Vo9o is known, the load phase voltages and corresponding 

currents in the unbalanced wye load can be easily determined.

According to Millman’s theorem, Vo9o is given by

V
V Y V Y V Y

Y Y Y
o o

Ro R Yo Y Bo B

R Y B

′ =
+ +

+ +

where the parameters YR, YY, and YB are the admittances of the branches 

of the unbalanced wye connected load. From Fig. 9.40 (a), we can write 

the equation

 VRo 5 VRo9 1 Vo9o

or the load phase voltage

 VRo9 5 VRo – Vo9o

Similarly, VYo9 5 VYo – Vo9o and VBo9 5 VB o– Vo9o can be calculated. The line currents in the load are

I
V

Z
V V Y

I
V

Z
V V Y

I
V

Z
V

R
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R
Ro o o R

Y
Yo

Y
Yo o o Y

B
Bo

B
Bo

= = −( )

= = −( )

= = −

′
′

′
′

′
VV Yo o B′( )

The unbalanced three-wire star-connected loads can also be determined by using Kirchhoff’s laws, and 

Maxwell's mesh or loop equation. In general, any method which gives quick results in a particular case should 

be used.

EXAMPLE 9.21

To illustrate the application of Millman's method to unbalanced loads, let us take the problem in example 

given in Section 9.10.2.

Solution  The circuit diagram is shown in Fig. 9.41.

Fig. 9.41

Fig. 9.40 (b)
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Taking VRY as reference line voltage 5 400 ∠0°, phase voltages lag 30° behind their respective line 

voltages. Therefore, the three phase voltages are

VRo = ∠− °
400

3
30 V

V

V

Yo

Bo

= ∠− °

= ∠− °

400

3
150

400

3
270

V

V

The admittances of the branches of the wye load are
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VRoYR 1 VYoYY 1 VBoYB 5 (230.94 ∠–30°) (0.11 ∠–63.40°)

 1 (230.94 ∠–150°) (0.2 ∠–53.1°)

 1 (230.94 ∠–270°) (0.04 ∠–53.1°) 5 36.68 ∠182.66°

 YR  1 YY 1 YB 5 0.11 ∠–63.4° 1 0.2 ∠–53.1° 1 0.04 ∠–53.1°

 5 0.35 ∠–56.2°

Substituting the above values in the Millman's theorem, we have

V
V Y V Y V Y

Y Y Y
o o

Ro R Yo Y Bo B

R Y B

′ =
+ +

=
∠ °
∠− °

=

+ +

36 68 182 66

0 35 56 2
10

. .

. .
44 8 238 86. .∠ °

The three load phase voltages are

VRo9 5 VRo – Vo9o

 5 230.94 ∠–30° –104.8 ∠238.86° 5 253.89 ∠–5.67° V

VYo9 5 VYo – Vo9o

 5 230.94 ∠–150° –104.8 ∠238.86° 5 149.2 ∠189.68° V

VBo9 5 VBo – Vo9o

 5 230.94 ∠–270° –104.8 ∠238.86° 5 325 ∠80.7° V
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NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 8
rrr9-8-1 A balanced three-phase, star-connected voltage source has VRN 5230 ∠60° V Vrms with RYB 

phase sequence, and it supplies a balanced delta-connected three-phase load. The total power 

drawn by the load is 15 kW at 0.8 lagging power factor. Find the line currents, load and phase 

currents.

rrr9-8.2 A 400 V, three-phase supply feeds an unbalanced three-wire, star-connected load, consisting of 

impedances ZR 5 7 ∠10°  V, ZY 5 8 ∠30°  V and ZB 5 8  ∠50° V. The phase sequence is RYB. 

Determine the line currents and total power taken by the load.
rrr9-8.3 The circuit shown in Fig. Q.3 is supplied from a 3-f balanced supply. Use PSpice to calculate rms 

magnitudes and phase angles of currents: Ia, Ib, Ic, and IN.

Fig. Q.3

rrr9-8.4 A balanced star-connected load is supplied from a symmetrical 3-phase, 440  V; 50  Hz supply. The 

current in phase is 20 A and lags its respective phase voltage by an angle 40°. Calculate (a) load 

parameters, (b) total power, and (c) readings of two wattmeters in load current to measure total power.

rrr9-8.5 Consider the unbalanced D – D circuit shown in Fig. Q.5. Use PSpice to find generator currents, 

the line currents and phase currents.

Fig. Q.5

rrr9-8.6 For the unbalanced circuit shown in Fig. Q.6, 

calculate

  (a) the line currents,

  (b) the real power absorbed by the load, and

  (c) the total complex power supplied by the 

source. Use PSpice.

Fig. Q.6
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Frequently Asked Questions linked to LO8
rrr9-8.1 A three-phase motor can be regarded as a balanced Y-load. A three-phase motor draws 5.6 kW 

when the line voltage is 220 V and the line current is 18.2 A. Determine the power factor of the 

motor. [AU Nov./Dec. 2012]
rrr9-8.2 In a three-phase balanced delta system the voltage across R and Y is 400 0ºV. What will be the 

voltage across Y and B? Assume RYB phase sequence. [AU April/May 2011]

rrr9-8.3 A balanced -connected load has one phase current IBC = 2 –90º A. Find the other phase current 

and the three line currents if the system is an ABC system. If the line voltage is 100 V, what is the 

load impedance? [AU April/May 2011]

rrr9-8.4 The power consumed in a three-phase, balanced star-connected load is 2 kW at a power factor of 

0.8 lagging. The supply voltage is 400 V, 50 Hz. Calculate the resistance and reactance of each 

phase. [AU April/May 2011]
rrr9-8.5 Give examples for balanced networks. Why are they called so? [PTU 2011-12] 

rrr9-8.6 An unbalanced star-connected load has balanced voltage of 100 V and RBY phase sequence. 

Calculate the line currents and the neutral current. [AU May/June 2013]

 Take: ZA = 15 , ZB = (10 + j5) , ZC = (6 – j8) .
rrr9-8.7 Distinguish between unbalanced source and unbalanced load. [AU May/June 2013]

rrr9-8.8 A symmetrical 3-phase, 100 V, 3-wire supply feeds an unbalanced star-connected load with 

impedances of the load as ZR = 5 0º , ZY =2 90º , and ZB = 4 –90º . Find the line currents, 

voltage across the impedances and draw the phasor diagram. Also calculate the power consumed 

by the load. [AU May/June 2014]

rrr9-8.9 A three-phase four-wire 120 V ABC system feeds an unbalanced Y-connected load with ZA = 5 0º 

, ZB = 10 30º , and ZC = 20 60º , Obtain the four line currents. [AU Nov./Dec. 2012]

rrr9-8.10 Three impedances Z1 = (17.32 + j10), Z2 = (20 + j34.64), and Z3 = (0 –j10) ohms are delta-

connected to a 400 V, three-phase system. Determine the phase currents, line current, and total 

power consumed by the load.  [AU Nov./Dec. 2012]

9.11 POWER MEASUREMENT IN THREE-PHASE CIRCUITS

9.11.1 Power Measurement in a Single-Phase Circuit by Wattmeter

Wattmeters are generally used to measure power in the circuits. A wattmeter 

principally consists of two coils, one coil is called the current coil, and 

the other the pressure or voltage coil. A diagramatric representation of a 

wattmeter connected to measure power in a single-phase circuit is shown 

in Fig. 9.42.

Fig. 9.42

LO   9 
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The coil represented with less number of turns between M and L is the current coil, which carries the 

current in the load and has very low impedance. The coil with more number of turns between the common 

terminal (comn) and V is the pressure coil, which is connected across the load and has high impedance. 

The load voltage is impressed across the pressure coil. The terminal M denotes the mains side, L denotes 

load side, common denotes the common point of current coil and pressure coil, and V denotes the second 

terminal of the pressure coil, usually selected as per the range of the load voltage in the circuit. From the 

figure, it is clear that a wattmeter has four terminals, two for current coil and two for potential coil. When 

the current f low through the two coils, they set up magnetic fields in space. An electromagnetic torque 

is produced by the interaction of the two magnetic fields. Under the influence of the torque, one of the 

coils (which is movable) moves on a calibrated scale against the action of a spring. The instantaneous 

torque produced by electromagnetic action is proportional to the product of the instantaneous values of 

the currents in the two coils. The small current in the pressure coil is equal to the input voltage divided 

by the impedance of the pressure coil. The inertia of the moving system does not permit it to follow the 

instantaneous f luctuations in torque. The wattmeter def lection is therefore, proportional to the average 

power (VI cos f) delivered to the circuit. Sometimes, a wattmeter connected in the circuit to measure 

power gives downscale reading or backward 

def lection. This is due to improper connection 

of the current coil and pressure coil.

To obtain up scale reading, the terminal marked 

as ‘Comn’ of the pressure coil is connected to one 

of the terminals of the current coil as shown in 

Fig. 9.43. Note that the connection between the 

current coil terminal and pressure coil terminal 

is not inherent, but has to be made externally. 

Even with proper connections, sometimes the 

wattmeter will give downscale reading whenever 

the phase angle between the voltage across the 

pressure coil and the current through the current 

coil is more than 90°. In such a case, connection 

of either the current coil or the pressure coil must 

be reversed.

9.11.2  Power in Three-Phase Circuits

Measurement of power by a wattmeter in a single-phase circuit can be extended to measure power in a three-

phase circuit. From Section 9.11.1, it is clear that we require three wattmeters, one in each phase to measure 

the power consumed in a three-phase system. Obviously, the total power is the algebraic sum of the readings 

of the three wattmeters. In this way we can measure power in balanced and unbalanced loads. In a balanced 

case it would be necessary to measure power only in one phase and the reading is multiplied by three to get 

the total power in all the three phases. This is true in principle, but presents a few difficulties in practice. To 

verify this fact let us examine the circuit diagram in Figs 9.44 (a) and (b).

Observation of Figs 9.44 (a) and (b) reveals that for a star-connected load, the neutral must be available for 

connecting the pressure coil terminals. The current coils must be inserted in each phase for a delta-connected 

load. Such connections sometimes may not be practicable, because the neutral terminal is not available all the 

time in a star-connected load, and the phases of the delta-connected load are not accessible for connecting the 

current coils of the wattmeter. In most of the commercially available practical three-phase loads, only three 

line terminals are available. We, therefore, require a method where we can measure power in the three-phases 

Fig. 9.43
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with an access to the three lines connecting the source to the load. Two such methods are discussed here.

9.11.3  Three-Wattmeter and Two-Wattmeter Methods

In this method, the three wattmeters are connected in the three lines as shown in Fig. 9.45, i.e. the current 

coils of the three wattmeters are introduced in the three lines, and one terminal of each potential coil is 

connected to one terminal of the corresponding current coil, the other three being connected to some common 

point which forms an effective neutral n.

The load may be either star-connected or delta-connected. Let us assume a star-connected load, and let the 

neutral of this load be denoted by N. Now the reading on the wattmeter WR will correspond to the average value 

of the product of the instantaneous value of the current IR f lowing in line 1, with the voltage drop VRn, where 

VRn is the voltage between points R and n. This can be written as VRn 5 VRN 1 VNn, where VRN is the load phase 

voltage and VNn is the voltage between load neutral, N, and the common point, n. Similarly, VYn 5 VYN 1 VNn, 

Fig. 9.44 (b)

Fig. 9.44 (a)
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and VBn 5 VBN 1 VNn. Therefore, the average power, WR indicated by the wattmeter is given by
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Since the system in the problem is a three-wire system, the sum of the three currents IR, IY, and IB at any 

given instant is zero. Hence, the power read by the three wattmeters is given by

W W W
T

V I V I V I dtR Y B RN R YN Y BN B

o

T

+ + = + +( )∫
1

If the system has a fourth wire, i.e. if the neutral wire is available, then the common point, n is to be 

connected to the system neutral, N. In that case, VNn would be zero, and the above equation for power would 

Fig. 9.45
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still be valid. In other words, whatever be the value of VNn, the algebraic sum of the three currents IR, IY, and 

IB is zero. Hence, the term VNn (IR 1 IY 1 IB) would be zero. Keeping this advantage in mind, suppose the 

common point, n, in Fig. 9.45 is connected to line B. In such case, VNn 5 VNB; then the voltage across the 

potential coil of wattmeter WB will be zero and this wattmeter will read zero. Hence, this can be removed 

from the circuit. The total power is read by the remaining two wattmeters, WR and WY.

 total power 5 WR 1 WY

Let us verify this fact from Fig. 9.46.

Fig. 9.46

The average power indicated by the wattmeter WR is
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and that by   

 Also VRB 5 VRN 1 VNB

 VYB 5 VYN 1 VNB
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We know that IR 1 IY 1 IB 5 0

 IR 1 IY 5 – IB
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Substituting this value in the above equation, we get

W W
T

V I V I I V dtR Y RN R YN Y B NB

o

T

+ = +( )+ −( ){ }∫
1

 VNB 5 –VBN

W W
T

V I V I V I dtR Y RN R YN Y BN B

o

T

+ = + ⋅ + ⋅( ){ }∫
1

which indicates the total power in the load.

From the above discussion, it is clear that the power in a three-phase load, whether balanced or unbalanced, 

star-connected or delta-connected, three-wire or four-wire, can be measured with only two wattmeters as 

shown in Fig. 9.46. In fact, the two wattmeter method of measuring power in three-phase loads has become a 

universal method. If neutral wire is available in this method it should not carry any current, or the neutral of 

the load should be isolated from the neutral of the source.

The current f lowing through the current coil of each wattmeter is the line current, and the voltage across 

the pressure coil is the line voltage. In case the phase angle between line voltage and current is greater 

than 90°, the corresponding wattmeter would indicate downscale reading. To obtain upscale reading, the 

connections of either the current coil, or the pressure coil has to be interchanged. Reading obtained after 

reversal of coil connection should be taken as negative. Then, the algebraic sum of the two wattmeter readings 

gives the total power.

9.11.4  Power Factor by Two-Wattmeter Method

When we talk about the power factor in three-phase circuits, it applies only to balanced circuits, since the 

power factor in a balanced load is the power factor of any phase. We cannot strictly define the power factor 

in three-phase unbalanced circuits, as every phase has a separate power factor. The two-wattmeter method, 

when applied to measure power in a three-phase balanced circuits, provides information that help us to 

calculate the power factor of the load.

Figure 9.47 shows the vector diagram of the circuit shown in Fig. 9.46. Since the load is assumed to be 

balanced, we can take Z1 ∠f1 5 Z2 ∠f2 5 Z3 ∠f3 5 Z ∠f for the star-connected load. Assuming RYB phase 

sequence, the three rms load phase voltages are VRN, VYN and VBN ? IR, IY and IB are the rms line (phase) currents. 

These currents will lag behind their respective phase voltages by an angle f. (An inductive load is considered).

Now consider the readings of the two wattmeters in Fig. 9.46. 

WR measures the product of effective value of the current through 

its current coil IR, effective value of the voltage across its pressure 

coil VRB and the cosine of the angle between the phasors IR and 

VRB. The voltage across the pressure coil of WR is given as follows.

VRB 5 VRN – VBN phasor difference

It is clear from the phasor diagram that the phase angle 

between

VRB and IR is (30° – f)

 WR 5 VRB IR cos (30° – f)

Similarly, WY measures the product of effective value of 

the current through its current coil IY, the effective value of the 

voltage across its pressure coil, VYB and the cosine of the angle 

between the phasors VYB and IY.Fig. 9.47
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VYB 5 VYN – VBN

From Fig. 9.47, it is clear that the phase angle between VYB and IY is (30° 1 f).

 WY 5 VYB IY cos (30° 1 f)

Since the load is balanced, the line voltage VRB 5 VYB 5 VL and the line current IR 5 IY 5 IL

 WR 5 VL·IL cos (30° – f)

 WY 5 VLIL cos (30° 1 f)

Adding WR and WY gives total power in the circuit, thus

W W V IR Y L L+ = 3 cosf

From the two wattmeter readings, it is clear that for the same load angle f, wattmeter WR registers more 

power when the load is inductive. It is also connected in the leading phase as the phase sequence is RYB. 

Therefore, WR is higher reading wattmeter in the circuit of Fig. 9.46. In other words, if the load is capacitive, 

the wattmeter connected in the leading phase reads less for the same load angle. So, if we know the nature 

of the load, we can easily identify the phase sequence of the system. The higher reading wattmeter always 

reads positive. By proper manipulation of two wattmeter readings, we can obtain the power factor of the load.

 WR 5 VLIL cos (30° – f) (Higher reading)

 WY 5 VLIL cos (30° 1 f) (Lower reading)

W W V IR Y L L+ = 3 cosf

 WR – WY 5 VLIL sin f

Taking the ratio of the above two values, we get
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Thereafter, we can find cos f.

EXAMPLE 9.22

The two-wattmeter method is used to measure power in a three-phase load. The wattmeter readings are 400 

W and –35 W. Calculate (a) total active power, (b) power factor, and (c) reactive power.

Solution  From the given data, the two wattmeter readings WR 5 400 W (Higher reading wattmeter) WY 5 –35 

W (Lower reading wattmeter).

(a) Total active power 5 W1 1 W2

 5 400 1 (–35) 5 365 W

(b) tanf = =
− −( )
+ −( )

= × =3 3
400 35

400 35
3

435

365
2 064

W W

W W

R Y

R Y

.
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 f 5 tan–1 2.064 5 64.15°; P.F 5 0.43

(c) Reactive power  5 3 V IL L sinf

We know that WR – WY 5 VLIL sin f

 WR – WY 5 400 – (– 35) 5 435

 Reactive power 5 3  3 435 5 753.44 VAR

EXAMPLE 9.23

The input power to a three-phase load is 10 kW at 0.8 Pf. Two wattmeters are connected to measure the 

power, find the individual readings of the wattmeters.

Solution  Let WR be the higher reading wattmeter and WY the lower reading wattmeter

 WR 1 WY 5 10 kW (9.1)

 f 5 cos–1 0.8 5 36.8°

tan .

. .

f = =
−
+

− =
( )

+( ) = ×

0 75 3

0 75

3

0 75

3
10

W W

W W

W W W W

R Y

R Y

R Y R Yor kW

 5 4.33 kW (9.2)

From Eqs (9.1) and (9.2), we get

 WR 1 WY 5 10 kW

 
W W

W

R Y

R

− −
−

4 33

2 14 33

.

.

kW

kW

or WR 5 7.165 kW

 WY 5 2.835 kW

9.11.5  Variation in Wattmeter Readings with Load Power Factor

It is useful to study the effect of the power factor on the readings of the wattmeter. In Section 9.11.4, we have 

proved that the readings of the two wattmeters depend on the load power factor angle f, such that

WR 5 VLIL cos (30 – f)°

WY 5 VLIL cos (30 1 f)°

We can, therefore, make the following deductions

1. When f is zero, i.e. power factor is unity, from the above expressions we can conclude that the two 

wattmeters indicate equal and positive values.

2. When f rises from 0 to 60°, i.e. upto power factor 0.5, the wattmeter WR reads positive (since it 

is connected in the leading phase); whereas wattmeter WY reads positive, but less than WR. When 

f 5 60°, WY 5 0 and the total power is being measured only by wattmeter WR.

3. If the power factor is further reduced from 0.5, i.e. when f is greater than 60°, WR indicates positive 

value, whereas WY reads down scale reading in such case. As already explained in Section 9.11.3, 
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the connections of either the current coil, or the pressure coil of the corresponding wattmeter have to 

be interchanged to obtain an upscale reading, and the reading thus obtained must be given a negative 

sign. Then the total power in the circuit would be WR 1 (– WY) 5 WR – WY. Wattmeter WY reads 

downscale for the phase angle between 60° and 90°. When the power factor is zero (i.e. f 5 90°), 

the two wattmeters will read equal and opposite values.

i.e. WR 5 VLIL cos (30 – 90)° 5 0.5 VLIL

WY 5 VLIL cos (30 1 90)° 5 –0.5 VLIL

9.11.6  Leading Power Factor Load

The above observations are made considering the lagging power 

factor. Suppose the load in Fig. 9.46 (a) is capacitive, the wattmeter 

connected in the leading phase would read less value. In that case, 

WR will be the lower reading wattmeter, and WY will be the higher 

reading wattmeter. Figure 9.48 shows the phasor diagram for the 

leading power factor.

As the power factor is leading, the phase currents, IR, IY and IB 

are leading their respective phase voltage by an angle f. From Fig. 

9.48, the reading of the wattmeter connected in the leading phase 

is given by

   WR 5 VRB . IR cos (30 1 f)°

      5 VLIL cos (30 1 f)° (lower reading wattmeter)

Similarly, the reading of the wattmeter connected in the lagging 

phase is given by

 WY 5 VYB IY cos (30 – f)°

 5 VLIL cos (30 – f)° (higher reading wattmeter)

Again, the total power is given by

W W V IR Y L L+ = 3 cosf

 WY – WR 5 VLIL sin f

 
Hence tanf =

−
+

3
W W

W W

Y R

Y R

A comparison of this expression with that of lagging power factor reveals the fact that the two wattmeter 

readings are interchanged, i.e. for lagging power factor, WR is the higher reading wattmeter, and WY is the lower 

reading wattmeter; where as for leading power factor, WR is the lower reading wattmeter and WY is the higher 

reading wattmeter. While using the expression for power factor, whatever may be the nature of the load, the lower 

reading is to be subtracted from the higher reading in the numerator. The variation in the wattmeter reading with 

the capacitive load follows the same sequence as in inductive load, with a change in the roles of wattmeters.

EXAMPLE 9.24

The readings of the two wattmeters used to measure power in a capacitive load are –3000 W and 8000 W, 

respectively. Calculate (a) the input power, and (b) the power factor at the load. Assume RYB sequence.

Solution  (a) Total power 5 WR 1 WY 5 –3000 1 8000 5 5000 W

Fig. 9.48
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 (b)  As the load is capacitive, the wattmeter connected in the leading phase gives less value.

 WR 5 –3000

 Consequently, WY 5 8000

 tan .f =
−
+

=
− −( )( )

=3 3
8000 3000

5000
3 81

W W

W W

Y R

Y R

 f 5 75.29° (lead); cos f 5 0.25

9.11.7  Reactive Power with Wattmeter

We have already seen in the preceding section that the difference between higher reading wattmeter and 

lower reading wattmeter yields VL IL sin f. So, the total reactive power 5 3 V IL L sinf . Reactive power in 

a balanced three-phase load can also be calculated by using a single wattmeter.

As shown in Fig. 9.49 (a), the current coil of the wattmeters is connected in any one line (R in this case), 

and the pressure coil across the other two lines (between Y and B in this case). Assuming phase sequence RYB 

and an inductive load of angle f, the phasor diagram for the circuit in Fig. 9.49 (a) is shown in Fig. 9.49 (b).

Fig. 9.49

From Fig. 9.49 (a), it is clear that the wattmeter power is proportional to the product of current through its 

current coil, IR, voltage across its pressure coil, VYB, and cosine of the angle between VYB and IR.

or VYB 5 VYN – VBN 5 VL

From the vector diagram the angle between VYB and IR is (90 – f)°

  wattmeter reading 5 VYB IR cos (90 – f)°

 5 VL IL sin f VAR

If the above expression is multiplied by 3 , we get the total reactive power in the load.
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EXAMPLE 9.25

A single wattmeter is connected to measure reactive power of a three-phase, three-wire balanced load as 

shown in Fig. 9.49 (a). The line current is 17 A and the line voltage is 440 V. Calculate the power factor of 

the load if the reading of the wattmeter is 4488 VAR.

Solution  We know that wattmeter reading is equal to VL IL sin f.

 4488 5 440 3 17 sin f

 sin f 5 0.6

Power factor 5 cos f 5 0.8

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 9
rrr9-9.1 In the two-wattmeter method of power measurement, the power registered by one wattmeter is 3500 

W, while the other reads down scale. After reversing the later, it reads 300 W. Determine the total 

power in the circuit and the power factor.

rrr9-9.2 Three impedances 20 0 16 20 25 90° ° °V V V; and  are connected in delta across a balanced 

supply of 250 0° V.  Find phase currents; active power, and Reactive power in each phase and 

total apparent power.

Frequently Asked Questions linked to LO9
rrr9-9.1 The two-wattmeter method produces wattmeter readings P1 = 1560 W and P2 = 2100 W when 

connected to a delta-connected load. If the line voltage is 220 V, calculate (a) the per-phase average 

power, (b) the per-phase reactive power, (c) the power factor, and (d) the phase impedance. 

 [AU May/June 2013]

rrr9-9.2 The two-wattmeter method is used to measure power in a three-phase delta-connected load. The 

dlta-connected load consists of ZRY = 10 j 10 , ZYB = 15 – j15 , and ZBR = 20 + j 10  and it is 

connected to a 400 V, three-phase supply of phase sequence RYB. Calculate the readings of the 

wattmeter with current coil in lines R and B. [AU May/June 2014]
rrr9-9.3 Show that two wattmeters are sufficient to measure power in a balanced or un-balanced three-

phase load connected to a balanced supply. [AU April/May 2011]

rrr9-9.4 A three-phase, 220 V, 50 Hz, 11.2 kW induction motor has a full-load efficiency of 88% and draws 

a line current of 38 A under full load, when connected to a three-phase, 220 V supply. Find the 

readings on two wattmeters connected in the circuit to measure the input to the motor. Determine 

also the power factor at which the motor is operating. [AU April/May 2011]

9.12 EFFECTS OF HARMONICS

The relationship between line and phase quantities for wye and delta 

connections as derived earlier are strictly valid only if the source voltage is 

purely sinusoidal. Such a waveform is an ideal one. Modern alternations are 

designed to give a terminal voltage which is almost sinusoidal. But it is nearly 

impossible to realise an ideal waveform in practice. All sinusoidally varying alternating waveforms deviate 

to a greater or lesser degree, from an ideal sinusoidal shape. Due to non-uniform distribution of the field flux 

and armature reaction in ac. machines, the current and voltage waves may get distorted. Such waveforms are 

referred to as non-sinusoidal or complex waveforms. In modern machines this distortion is relatively small. 

All non-sinusoidal waves can be broken up into a series of sinusoidal waves whose frequencies are integral 

LO   10 
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multiples of the frequency of the fundamental wave. The sinusoidal components of a complex wave are called 

harmonics. It is therefore necessary to consider the effect of certain harmonics on currents and voltages in the 

phase of three-phase wye and delta systems in effecting the line and phase quantities.

The fundamental wave is called the basic wave or first harmonic. The second harmonic has a frequency 

of twice the fundamental, the third harmonic frequency is three times the fundamental frequency, and so on. 

Each harmonic is a pure sinusoid. Waves having 2f, 4f, 6f, etc. are called even harmonics and those having 

frequencies 3f, 5f, 7f, etc. are called odd harmonics. Since the negative half of the wave is a reproduction of 

the positive half, the even harmonics are absent. Therefore, a complex wave can be represented as a sum of 

fundamental and odd harmonics.

9.12.1  Harmonic Effect in Wye

Let us consider a wye connected generator winding, whose arrangement is shown diagrammatically in Fig. 9.50. 

The voltage induced in phase a of the three-phase symmetrical 

system, including odd harmonics is given by

Vna 5 Em1
sin(vt 1 u1) 1 Em3

 sin(3vt 1 u3)

 1 Em5
 sin(5vt 1 u5) 1 … (9.3)

where Em1
, Em3

, Em5
, etc. are the peak values of the fundamental 

and other harmonics and u1, u3, u5, etc. are phase angles. 

Assuming abc phase sequence. The voltage in phase b will be

Vnb 5 Em1
 sin (vt 1 u1 – 120°)

  1 Em3
 sin (3vt – 360° 1 u3)

 1 Em5
 sin (5vt – 600° 1 u5) 1 …

  5 Em1
 sin (vt 1 u1 – 120°) 1 Em3

 sin (3vt 1 u3)

 1 Em5
 sin (5vt 1 u5 – 240°) 1 … (9.4)

The voltage in phase c will be

Vnc 5 Em1
 sin (vt 1 u1 – 240°) 1 Em3

 sin (3vt 1 u3 – 720°)

 1 Em5
 sin (5vt 1 u5 – 1200°) 1 …

 5 Em1
 sin (vt 1 u1 – 240°) 1 Em3

 sin (3vt 1 u3)

 1 Em5
 sin (5vt 1 u5 – 120°) 1 … (9.5)

Equations (9.3), (9.4), and (9.5) show that all third harmonics are in time phase with each other in all the 

three phases as shown in Fig. 9.51 (a). The same applies to the, ninth, fifteenth, twenty first… harmonics, i.e. 

all odd multiples of 3. Other than odd multiples of 3, the fifth, seventh, eleventh… and all other harmonics 

are displaced 120° in time phase mutually with either the same phase sequence or opposite phase sequence 

compared with that of the fundamentals. Fifth harmonics and seventh harmonic sequences are shown in Figs 

9.5 (c) and 9.5 (d) respectively.

Summarising the above facts, the fundamental and all those harmonics obtained by adding a multiple of 

6, i.e. 1, 7, 13, 19,…, etc. will have the same sequence. Similarly, the fifths and all harmonics obtained by 

adding a multiple of 6, i.e. 5, 11, 17, 23,…, etc. will have sequence opposite to that of the fundamental.

Fig. 9.50
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Fig. 9.51

  Voltage Relations  The voltage between lines ab in the wye connected winding in Fig. 9.50 may be 

written as

 eab 5 ean 1 enb

Adding of each harmonic separately is shown in Fig. 9.52.

Fig. 9.52

It is seen from the vector diagrams of Fig. 9.52 that there is no third harmonic component in the line 

voltage. Hence, the rms value of the line voltage is given by

E
E E E

ab

m m m=
+ + +

3
2

1 5 7

2 2 2
…

 (9.6)
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and the rms value of the phase voltage is

E
E E E E

na

m m m m=
+ + + +

1 3 5 7

2 2 2 2

2

…
 (9.7)

It is seen from the above equations that in a wye-connected system, the line voltage is not equal to 3  

times the phase voltage if harmonics are present. This is true only when the third harmonics are absent.

  Current Relations  Similar to the complex voltage wave, the instantaneous value of the complex cur-

rent wave can be written as

i 5 Im1
 sin (vt 1 f1) 1 Im3

 sin (3vt 1 f3) 1 Im5
 sin (5vt 1 f5) (9.8)

where Im1
, Im3

, Im5
, etc. are the peak values of fundamental and other harmonics; (f1 –  f1) is the phase 

difference between fundamental component of the harmonic voltage and current and (f3 – f3) is the phase 

difference between 3rd harmonics and so on. Applying KCL for the three phase wye connected winding in 

Fig. 9.50.

ina 1 inb 1 inc 5 0 (9.9)

The equations for ina, inb and inc can be obtained by replacing currents in the place of voltages in Eqs 

(9.3), (9.4) and (9.5) under balanced conditions the sum of the three currents is equal to zero, only when 

they have equal magnitudes and displaced by 120° apart in time phase in the three phases. All harmonics 

fulfil the above condition except the third harmonics and their odd multiples as they are in the same phase 

as shown in Fig. 9.51 (a) or 9.52 (b). Hence, the resultant of ina 1 inb 1 inc consists of the arithmetic sum 

of the third harmonics in the three phases. Hence, there must be a neutral wire or fourth wire to provide a 

return path for the third harmonic. We can summarise the above facts as follows. In a balanced three-wire 

wye connection, all harmonics are present except third and its odd multiples. In a four-wire wye connection, 

i.e. with a neutral wire, all harmonics will exist.

9.12.2  Harmonic Effect in Delta

Let the three windings of the generator be delta-connected as shown in Fig. 9.53. Let vna, vnb and vnc be the 

phase emfs and vna, vnb and vnc be the terminal voltages of 

the three phases a, b and c respectively. According to KVL, 

the algebraic sum of the three terminal voltages in the closed 

loop is given by

vna 1 vnb 1 vnc 

  5 vca 1 vab 1 vbc 5 0 (9.10)

There will be a circulating current in the closed loop due to 

the resultant third harmonic and their multiple induced emfs. 

This resultant emf is dropped in the closed loop impedance. 

Hence, the third harmonic voltage does not appear across the 

terminals of the delta. Hence, the terminal voltages in delta 

connection vca, vab and vbc are given by equations 1, 2, and 3 

respectively without third harmonic terms.
Fig. 9.53
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  Current Relations  The three phase windings in Fig. 9.53, carry all the harmonics internally and are given 

by

ina 5 ica 5 Im1
 sin (vt 1 u1) 1 Im2

 sin (3vt 1 u3) 1 Im5
 sin (5vt 1 u5) 1 …  (9.11)

inb 5 iab 5 Im1
 sin (vt 1 u1 – 120°) 1 Im3

 sin (3vt 1 u3 – 360°)

 1 Im5
 sin (5vt 1 u5 – 600°) 1 …

 5 Im1
 sin (vt 1 u1 – 120°) 1 Im3

 sin (3vt 1 u3) 1 Im5
 sin (5vt 1 u5 – 240°) 1 … (9.12)

inc 5 ibc 5 Im1
 sin (vt 1 u1 – 240°) 1 Im3

 sin (3vt 1 u3 – 720°) 1 Im5
 sin (5vt 1 u5 – 1200°)

 5 Im1
 sin (vt 1 u1 – 240°) 1 Im3

 sin (3vt 1 u3) 1 Im5
 sin (5vt 1 u5 – 120°) (9.13)

Equations (9.11), (9.12) and (9.13) represent the phase currents in the delta connection. The line currents 

IAa IBb and ICc can be obtained by applying KCL at the three junctions of the delta in Fig. 9.53. The current 

vector diagrams are similar to the voltage vector diagrams shown in Fig. 9.52 except that the voltages are to 

be replaced with currents. The line currents can be obtained in terms of phase currents by applying KCL at 

three junctions as follows:

iAa 5 iab – iCa

 5 Im1
 sin (vt 1 u1 – 120°) 1 Im5

 sin (5vt 1 u5 – 240°)

 – Im1
 sin (vt 1 u1) – Im5

 sin (5vt 1 u5) (9.14)

iBb 5 ibc – iab

 5 Im1
 sin (vt 1 u1 – 240°) 1 Im5

 sin (5vt 1 u5 – 120°)

 – Im1
 sin (vt 1 u1 – 120°) – Im5

 sin (5vt 1 u5 – 240°) (9.15)

iCc 5 ica – ibc

 5 Im1
 sin (vt 1 u1) 1 Im5

 sin (5vt 1 u5) – Im1
 sin (vt 1 u1 – 240°)

 – Im5
 sin (5vt 1 u5 – 120°) (9.16)

Equations (9.14), (9.15) and (9.16) indicate that no third harmonic currents can exist in the line currents 

of a delta connection.

The rms value of the line current from the above equation is

I
I I

L

m m=
+ +

3
2

1 5

2 2
…

 (9.17)

The rms value of the phase current from Eqs (9.11), (9.12) and (9.13) is given by

I
I I I

ph

m m m=
+ + +

1 3 5

2 2 2

2

…
 (9.18)

It is seen from Eqs (9.17) and (9.18), that in a delta-connected system the line current is not equal to 3  

times the phase current. It is only true when there are no third harmonic currents in the system.

9.13 EFFECTS OF PHASE-SEQUENCE

The effects of phase sequence of the source voltages are not of considerable 

importance for applications like lighting, heating, etc. but in case of a three-phase 

induction motor, reversal of sequence results in the reversal of its direction. In 

the case of an unbalanced polyphase system, a reversal of the voltage phase 

LO   11 
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sequence will, in general, cause certain branch currents to change in magnitude as well as in phase position. 

Even though the system is balanced, the readings of the two-wattmeters in the two wattmeter method of 

measuring power interchange when subjected to a reversal of phase sequence when two or more three-phase 

generators are running parallel to supply a common load, reversing the phase sequence of any one machine 

cause severe damage to the entire system. Hence, when working on such systems, it is very important to 

consider the phase sequence of the system. Unless otherwise stated, the term “phase sequence” refers to 

voltage phase sequence. The line currents and phase currents follow the same sequence as the system voltage. 

The phase sequence of a given system, is a small meter with three long connecting leads in side which it has a 

circular disc. The rotation of which previously been checked against a known phase sequence. In three-phase 

systems, only two different phase sequences are possible. The three leads are connected to the three lines 

whose sequence is to be determined, the rotation of the disc can be used as an indicator of phase sequence.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 11
rrr9-11.1 The power taken by a 440 V, 50 Hz, three-phase induction motor on full load is measured by two 

wattmeters, which indicate 250 W and 1000 W, respectively. Calculate (a) the input, (b) the 

power factor, (c) the current, and (d) the motor output, if the efficiency is 80%.

9.14 POWER FACTOR OF AN UNBALANCED SYSTEM

The concept of power factor in three-phase balanced circuits has been discussed in 

Section 9.11.4. It is the ratio of the phase watts to the phase volt-amperes of any 

one of the three phases. We cannot strictly define the power factor in three-phase 

unbalanced circuits, as each phase has a separate power factor. Generally, for 

three-phase unbalanced loads, the ratio of total watts 3VL LI cosu( )  to total volt-amperes 3V IL L( )  is a 

good general indication of the power factor.

Another recognised definition for an unbalanced polyphase system is called the vector power factor, given 

by

Power factor = 
∑

∑
VI

VI

cosu

where ∑VIcosu  is the algebraic sum of the active powers of all individual phases given by

 ∑VIcosu  5 Va Ia cos ua 1 Vb Ib cos ub 1 Vc Ic cos uc 1 …

and ∑ = ∑( ) + ∑( )VI VI VIcos sinu u
2 2

∑VI sinu  is the algebraic sum of the individual phase reactive volt-amperes. The following example 

illustrates the application of vector power factor for unbalanced loads.

Consider Example 9.19 where the phase voltage and currents have been already calculated. Here VRN 5 230.94 

∠0° V, VYN 5 230.94 ∠–120° V, VBN 5 230.94 ∠–240° V

IR 5 24.83 ∠– 63.4° A; IY 5 46.188 ∠– 173.1° A; IB 5 9.23 ∠– 293.13° A

Active power of phase R 5 230.94 3 25.83 3 cos 63.4°  5 2.6709 kW

Active power of phase Y 5 230.94 3 46.188 3 cos 53.1°  5 6.4044 kW
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Active power of phase B 5 230.94 3 9.23 3 cos 53.13°  5 1.2789 kW

 10.3542 kW

 ∑VI cosu  5 10.3542 kW

Reactive power of phase R 5 230.94 3 25.83 3 sin 63.4°  5 5.3197 KVAR

Reactive power of phase Y 5 230.94 3 46.188 3 sin 53.1°  5 8.5299 KVAR

Reactive power of phase B 5 230.94 3 9.23 3 sin 53.13°  5 1.7052 KVAR

 15.5548 KVAR

 ∑VI sinu  5 15.5548 KVAR

  

Power factor = 
10 3542

15 5548 10 3542

0 5541
2 2

.

. .

.

( ) +( )
=

Additional Solved Problems

PROBLEM 9.1

The phase voltage of a star-connected three-phase ac generator is 230 V. Calculate the (a) line voltage, 

(b) active power output if the line current of the system is 15 A at a power factor of 0.7, and (c) active and 

reactive components of the phase currents.

Solution  The supply voltage (generator) is always assumed to be balanced

 VPh 5 230 V; IL 5 IPh 5 15 A, cos f 5 0.7, sin f 5 0.71

(a) In a star-connected system VL 5 3  VPh 5 398.37 V

(b) Power output 5 3  VL IL cos f

 5 3  3 398.37 3 15 3 0.7 5 7244.96 W

(c) Active component of the current 5 IPh cos f

 5 15 3 0.7 5 10.5 A

Reactive component of the current 5 IPh sin f

 5 15 3 0.71 5 10.65 A

PROBLEM 9.2

A three-phase delta-connected RYB system with an effective voltage of 400 V, has a balanced load with 

impedances 3 1 j4 V. Calculate the (a) phase currents, (b) line currents, and (c) power in each phase.

Solution

VL 5 VPh 5 400 V

Assuming RYB phase sequence, we have

VRY 5 400 ∠0°; VYB 5 400 ∠–120°; VBR 5 400 ∠– 240°

 Z 5 3 1 j4 5 5 ∠53.1°
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Fig. 9.54

(a) The three phase currents are

I
V

Z

I
V

Z

R
RY

Y
YB

= =
∠

∠
= ∠−

= =
∠−
∠

=

400 0

5 53 1
80 53 1

400 120

5 53 1
80

°

°
°

°

°

.
.

.
∠∠−

= =
∠−
∠

= ∠−

173 1

400 240

5 53 1
80 293 1

.

.
.

°

°

°
°I

V

Z
B

YB

 IR 5 80 ∠– 53.1° 5 48.03 – j63.97

 IY 5 80 ∠– 173.1° 5 – 79.42 – j9.61

 IB 5 80 ∠– 293.1° 5 31.38 1 j73.58

(b) The three line currents are

 I1 5 IR – IB 5 138.55 ∠– 83.09°

 I2 5 IY – IR 5 138.55 ∠156.9°

 I3 5 IB – IY 5 138.55 ∠36.89°

cos .f = = =
R

Z

Ph

Ph

3

5
0 6

(c) Power consumed in each phase 5 VPh IPh cos f

 5 400 3 80 3 0.6 5 19200 W

 Total power 5 3 3 19200 5 57600 W

PROBLEM 9.3

The load in Problem 9.2 is connected in star with the same phase sequence across the same system. 

Calculate (a) the phase and line currents (b) the total power in the circuit, and (c) phasor sum of the three 

line currents.

Solution  The circuit is shown in Fig. 9.55.
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Fig. 9.55

Assuming RYB phase sequence, since

V

V

L

Ph

=

= =

400

400

3
230 94

V

V.

Taking VRN as reference, the three phase voltages are VRN 5 230.94∠0°; VYN 5 230.94 ∠–120°; and 

VBN 5 230.9 ∠–240°.

The three line voltages, VRY, VYB and VBR are 30° ahead of their respective phase voltages.

IPh 5 IL; ZPh 5 3 1 j4 5 5 ∠53.1°

(a) The three phase currents are

I
V

Z

I
V

Z

R
RN

Ph

Y
YN

Ph

= =
∠

∠
= ∠−

= =
∠−

230 94 0

5 53 1
46 18 53 1

230 09 1

.

.
. .

.

°

°
°

220

5 53 1
46 18 173 1

°

°
°

∠
= ∠−

.
. .

I
V

Z
B

BN

Ph

= =
∠−

∠
= ∠−

230 09 240

5 53 1
46 18 293 1

.

.
. .

°

°
°

 (b)  Total power 5 3  VL IL cos f

 5 3  3 400 3 46.18 3 0.6 5 19196.6 W

Thus, it can be observed that the power consumed in a delta load will be three times more than that in the 

star connection

 (c)  Phasor sum of the three line currents

5 IR 1 IY 1 IB

5 46.18 ∠–53.1° 1 46.18 ∠–173.1° 1 46.18 ∠–293.1° 5 0
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PROBLEM 9.4

A three-phase balanced delta-connected load with line voltage of 200 V, has line currents as I1 5 10 ∠90°; 

I2 5 10 ∠–150° and I3 5 10 ∠–30°. (a) What is the phase sequence? (b) What are the impedances?

Solution  Figure 9.56 (a) represents all the three line currents in the phasor diagram.

(a)  It can be observed from Figs 9.56 (a) and (b) that the current f lowing in the 

line B, i.e. I3 lags behind I1 by 120°, and the current f lowing in line Y, i.e. I2 

lags behind i3 by 120°.  The phase sequence is RBY.

(b) VPh 5 VL 5 200

 

I
I

Z
V

I

Ph
L

Ph
Ph

Ph

= =

= = =

3

10

3

200 3

10
34 64. V

Fig. 9.56 (a)

Fig. 9.56 (b)

PROBLEM 9.5

Three equal inductors connected in star take 5 kW at 0.7 Pf when connected to a 400 V, 50 Hz three-phase, 

three-wire supply. Calculate the line currents (a) if one of the inductors is disconnected, and (b) If one of the 

inductors is short circuited.

Solution  Total power when they are connected to the 400 V supply

P 5 3  VL IL cos f 5 5000 W

I IPh L= =
× ×

=
5000

3 400 0 7
10 31

.
. A

Impedance/phase = 
V

I

Ph

Ph

=
×

=
400

3 10 31
22 4

.
. V

 RPh 5 ZPh cos f 5 22.4 3 0.7 5 15.68 V

 XPh 5 ZPh sin f 5 22.4 3 0.714 5 16 V
Fig. 9.57 (a)
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(a) If the phase Y is disconnected from the circuit, the other two inductors are connected in series 

across the line voltage of 400 V as shown in Fig. 9.57 (a).

I I
Z

I

R B
Ph

Y

= =
×

=

=

400

2
8 928

0

. A

(b) If phases Y and N are short circuited as shown in Fig. 9.57 (b), the phase voltages VRN and VBN will 

be equal to the line voltage 400 V.

I I I
Z

Ph R B
Ph

= = = = =
400 400

22 4
17 85

.
. A

The current in the Y phase is equal to the phasor sum of the 

R and B.

\ = ×






 =I IY Ph2

60

2
30 91cos . A

PROBLEM 9.6

For the circuit shown in Fig. 9.58, calculate the line current, 

the power and the power factor. The value of R, L, and C 

in each phase are 10 ohms, 1 H and 100 mF, respectively.

Solution  Let us assume RYB sequence.

V V VRN YN BN= ∠ ∠ = ∠− = ∠−
400

3
0 231 120 231 240° = 231 0°; °; °

Admittance of each phase Y
R j L

j C

j
j

Ph = + +

= + + ×

1 1

1

10

1

314
314 100

v
v

×× −10 6

 YPh 5 0.1 1 j28.22 3 10–3

 = ∠0 103 15 75. . ° �

 IPh 5 VPh YPh

 5 (231 ∠0°) (0.103 ∠15.75°)

 5 23.8 ∠15.75° A

 Power 5 3  VL IL cos f

 5 3  3 400 3 23.8 cos 15.75°

 5 15869.57 W

 Power factor 5 cos 15.75° 5 0.96 leading

Fig. 9.57 (b)

Fig. 9.58
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PROBLEM 9.7

For the circuit shown in Fig. 9.59, an impedance is 

connected across YB, and a coil of resistance 3 V and 

inductive reactance of 4 V is connected across RY. 

Find the value of R and X of the impedance across 

YB such that I2 5 0. Assume a balanced three-phase 

supply with RYB sequence.

Solution  As usual IR, IY, and IB are phase currents, 

and I1, I2, and I3 are line currents.

Applying KCL at the node Y, we have

I I IY R2 = −

I I I

I

I I

I
V

j
I

V

Z

V V V V

Y R

Y R

R
RY

Y
YB

YB

RY YB

2

2 0

3 4

0

= −

=

=

=
+

=

= ∠ ° = ∠−

Since

,

, 1120°



V

j

V

Z

Z
V

V
j

j

YB

YB

∠
+

=
∠−

=
∠−

∠
+( )

= −

0

3 4

120

120

0
3 4

1 96 4 6

° °

°

°

. .

  R 5 1.96 V; X 5 4.6 V (capacitive reactance)

PROBLEM 9.8

A symmetrical three-phase 440 V system supplies a balanced delta-connected load. The branch current is 

10 A at a phase angle of 30°, lagging. Find (a) the line current, (b) the total active power, and (c) the total 

reactive power. Draw the phasor diagram.

Solution  (a) In a balanced delta-connected system

IL 5 3 IPh 5 3  3 10 5 17.32 A

 (b)  Total active power

 5 3 VL IL cos f

 5 3 3 440 3 17.32 3 cos 30° 5 11.431 kW

(c) Total reactive power

 5 3 VL IL sin f

Fig. 9.59
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 5 3 3 440 3 17.32 3 sin 30° 5 6.5998 KVAR

The phasor diagram is as under.

Fig. 9.60

VR, VY, and VB are phase voltages, and are equal to the line values. IR, IY, and IB are the phase currents, and 

lag behind their respective phase voltages by 30°. Line currents (IR – IB), (IY – IR) and (IB – IY) lag behind their 

respective phase currents by 30°.

PROBLEM 9.9

Find the line currents and the total power consumed by the unbalanced delta-connected load shown in Fig. 

9.61.

Fig. 9.61

Solution  Assuming RYB phase sequence, from the given data,

IR 5 10 ∠–36.88°; IY 5 5 ∠45.57°; IB 5 7 ∠0°

Line currents are

I1 5 IR – IB 5 6.08 ∠–80°

I2 5 IY – IR 5 10.57 ∠11.518°

I3 5 IB – IY 5 5 ∠– 45.56°

Total power is the sum of the powers consumed in all the three phases.

 Power in RY 5 VRY 3 IR 3 0.8

 5 400 3 10 3 0.8 5 3200 W
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 Power in YB 5 VYB 3 IY 3 0.7

 5 400 3 5 3 0.7 5 1400 W

 Power in BY 5 VBR 3 IB 3 1

 5 400 3 7 3 1 5 2800 W

 Total power 5 3200 1 1400 1 2800 5 7400 W

PROBLEM 9.10

A delta-connected three-phase load has 10 V between R and Y, 6.36 mH between Y and B, and 636 mF 

between B and R. The supply voltage is 400 V, 50 Hz. Calculate the line currents for RBY phase sequence.

Solution  ZRY 5 10 1 j0 5 10 ∠0°; ZYB 5 0 1 jXL 5 0 1 jXL

 5 0 1 j2p f L 5 2 ∠90°3

 
Z jX

j

fC
BR C= − = − = ∠−0 0

2
5 90

p
°

Fig. 9.62

Since the phase sequence is RBY, taking VRY as reference voltage, we have

VRY 5 400 ∠0°; VBR 5 400 ∠–120°; VYB 5 400 ∠–240°

I
V

I
V

R
RY

Y
YB

=
∠

=
∠−
∠

= ∠

=
∠

=
∠−
∠

=

10 0

400 0

10 0
40 0

2 90

400 240

2 90
2

°

°

°
°

°

°

°
000 330

5 90

400 120

5 90
80 30

∠−

=
∠−

=
∠−

∠−
= ∠−

°

°

°

°
°I

V
B

BR

The three line currents are

 I1 5 IR – IB 5 40 ∠0° – 80 ∠–30° 5 49.57 ∠126.2°

 I2 5 IY – IR 5 200 ∠–300° ∠– 40 ∠0° 5 166.56 ∠36.89°

 I3 5 IB – IY 5 80 ∠– 30° – 200 ∠–330° 5 174.35 ∠233.41°
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PROBLEM 9.11

The power consumed in a three-phase balanced star-connected load is 2 kW at a power factor of 0.8 lagging. 

The supply voltage is 400 V, 50 Hz. Calculate the resistance and reactance of each phase.

Solution  Phase voltage = 
400

3

Power consumed 5 2000 W 5 3 VL IL cos f

Phase current or line current AIL =
× ×

=
2000

3 400 0 8
3 6

.
.

Impedance of each phase

 
Z

V

I
Ph

Ph

Ph

= =
×

=
400

3 3 6
64 15

.
. A

Since the power factor of the load is lagging, the reactance is 

inductive reactance. From the impedance triangle shown in Fig. 

9.63, we have

Resistance of each phase RPh 5 ZPh cos f

 5 64.15 3 0.8 5 51.32 V

Reactance of each phase XPh 5 ZPh sin f

 5 64.15 3 0.6 5 38.5 V

PROBLEM 9.12

A symmetrical three-phase 100 V; three-wire supply feeds an unbalanced star-connected load, with 

impedances of the load as ZR 5 5 ∠0° V, ZY 5 2 ∠90° V and ZB 5 4 ∠–90° V. Find the (a) line currents, 

(b) voltage across the impedances, and (c) the displacement neutral voltage.

Solution  As explained earlier, this type of unbalanced Y-connected three-wire load can be solved either by 

star-delta conversion method or by applying Millman’s theorem.

(a) Star-Delta Conversion Method

The unbalanced star-connected load and its equivalent delta load are shown in Figs 9.64 (a) and (b).

ZR ZY 1 ZY ZB 1 ZB ZR 5 (5 ∠0°) (2 ∠90°) 1 (2 ∠90°) (4 ∠–90°)

 1 (4 ∠–90°) (5 ∠0°)5 8 – j10

 5 12.8 ∠–51.34°

Z
Z Z Z Z Z Z

Z
RY

R Y Y B B R

B

=
+ +

=
∠−
∠−

= ∠
12 8 51 34

4 90
3 2 38 66

. .
. .

°

°
°

Fig. 9.63
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Fig. 9.64

Z

Z

YB
R Y Y B B R

R

BR
R Y

Z Z Z Z Z Z

Z

Z Z

=
+ +

=
∠−

∠
= ∠−

=

12 8 51 34

5 0
2 56 51 34

. .
. .

++ +
=

∠−
∠

= ∠−
Z Z Z Z

Z

Y B B R

Y

12 8 51 34

2 90
6 4 141 34

. .
. .

°

°
°

Taking VRY as the reference, we have

VRY 5 100 ∠0°; VYB 5 100 ∠–120°; VBR 5 100 ∠–240°

The three phase currents in the equivalent delta load are

I
V

Z

I
V

Z

R
RY

RY

Y
YB

YB

= =
∠

∠
= ∠−

= =
∠−

100 0

3 2 38 66
31 25 38 66

100 120

°

°
°

. .
. .

°°

°
°

°

2 56 51 34
39 06 68 66

100 240

6 4 141 34

. .
. .

. .

∠−
= ∠−

= =
∠−

∠−
I

V

Z
B

BR

BR °°
°= ∠−15 62 98 66. .

The line currents are

 I1 5 IR – IB 5 31.25 ∠–38.66° –15.62 ∠–98.66°

 5 (24.4 – j19.52) – (– 2.35 1 j15.44) 5 (26.75 – j4.08)

 5 27.06 ∠–8.671°

 I2 5 IY – IR 5 39.06 ∠–68.66° – 31.25 ∠–38.66°

 5 (14.21 – j36.38) – (24.4 – j19.52) 5 (–10.19 – j16.86)

 5 19.7 ∠238.85°

 I3 5 IB – IY 5 15.62 ∠–98.66° – 39.06 ∠–98.66°

 5 (–2.35 – j15.44) – (14.21 – j36.38) 5 (–16.56 1 j20.94)

 5 26.7 ∠128.33°
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These line currents are also equal to the line (phase) currents of the original star connected load.

(b) Voltage drop across each star-connected load will be as under.

 Voltage across ZR 5 I1 3 ZR

 5 (27.06 ∠–8.671°) (5 ∠0°) 5 135.3° ∠–8.67°

 Voltage across ZY 5 I2 3 ZY

 5 (19.7 ∠238.85°) (2 ∠90°) 5 39.4° ∠328.85°

 Voltage across ZB 5 I3 3 ZB

 5 (26.7 ∠128.33°) (4 ∠–90°) 5 106.8° ∠38.33°

(c) By Applying Millman’s Theorem

Consider Fig. 9.64 (c), taking VRY as reference line voltage 5 100 ∠0°.

Fig. 9.64 (c)

Phase voltages log 30° behind their respective line voltages. Therefore, the three phase voltages are

V

V

V

RO

YO

BO

= ∠−

= ∠−

= ∠−

100

3
30

100

3
150

100

3
270

°

°

°

 

Y
Z

Y
Z

Y
Z

R
R

Y
Y

B
B

= =
∠

= ∠

= =
∠

= ∠−

= =
∠−

=

1 1

5 0
0 2 0

1 1

2 90
0 5 90

1 1

4 90
0

°
°

°
°

°

.

.

.225 90∠ °

VROYR 1 VYOYY 1 YBOYB 5 (57.73 ∠–30°) (0.2 ∠0°)
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 1 (57.73 ∠–150°) (0.5 ∠– 90°)

 1 (57.73 ∠–270°) (0.25 ∠90°)

 5 11.54 ∠–30° 1 28.86 ∠–240° 1 14.43 ∠–180°

 5 (10 – j5.77) 1 (–14.43 1 j25) 1 (–14.43 1 j0)

 5 –18.86 1 j19.23 5 26.93 ∠134.44°

 YR 1 YY 1 YB 5 0.2 1 0.5 ∠–90° 1 0.25 ∠90°

 5 0.32 ∠–51.34°

 

V
V Y V Y V Y

Y Y Y
O O

RO R YO Y BO B

R Y B

′ =
+ +

+ +
=

∠ °
∠− °

26 93 134 44

0 32 51 34

. .

. .

 5 84.15 ∠185.78°

The three load phase voltages are

VRO9 5 VRO – VO9O

 5 57.73 ∠–30° – 84.15 ∠185.78°

 5 (50 – j28.86) – (– 83.72 – j8.47)

 5 (133.72 – j20.4) 5 135.26 ∠–8.67°

VYO9 5 VYO – VO9O

 5 57.73 ∠–150° – 84.15 ∠185.78°

 5 (–50 – j28.86) – (– 83.72 – j8.47)

 5 33.72 – j20.4 5 39.4 ∠–31.17° or 39.4 ∠328.8°

VBO9 5 VBO – VO9O

 5 57.73 ∠–270° –84.15 ∠185.78°

 5 0 1 j57.73 1 83.72 1 j8.47

 5 83.72 1 j66.2 5 106.73 ∠38.33°

 

I

I

R

Y

=
∠−
∠

= ∠−

=
∠
∠

=

135 26 8 67

5 0
20 06 8 67

39 4 328 80

2 90
19 7

. .
. .

. .
.

°

°
°

°

°
∠∠

=
∠

∠−

238 8

106 73 38 33

4 90

.

. .

°

°

°
IB

 5 26.68 ∠128.33°
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PROBLEM 9.13

A three-phase three-wire unbalanced load is star-connected. The phase voltages of two of the arms are

VR 5 100 ∠–10°; VY 5 150 ∠100°

Calculate voltage between star point of the load and the supply neutral.

Solution  As shown in Fig. 9.65,

Fig. 9.65

VRO 5 VRO9 1 VO9O

or VO9O 5 VRO – VRO9 (9.19)

 Also VO9O 5 VYO – VYO9 (9.20)

 Let VRO 5 V ∠0°

Assuming RYB phase sequence,

 VYO 5 V ∠–120°

Substituting in Eqs (9.19) and (9.20), we have

 VO9O 5 V ∠0° – 100 ∠–10° (9.21)

 VO9O 5 V ∠– 120° –  50 ∠100° (9.22)

Subtracting Eq. (9.22) from Eq. (9.21), we get

 O 5 [(V 1 jO) – (98.48 – j17.36)] – [(0.5V 1 j0.866V ) – (–26.04 1 j147.72)]

 O 5 1.5V – j0.8666V – 124.52 1 j165.08

 5 V (1.5 – j0.866) 5 124.52 – j165.08

 
V

j

j
=

−
−

=
∠−
∠−

124 52 165 08

1 5 0 866

206 77 52 97

1 732 30

. .

. .

. .

.

° °

°

 V 5 119.38 ∠–22.97°

Voltage between O9O 5 VRO – VRO9

 VO9O 5 119.38 ∠–22.97° – 100 ∠–10°

 5 109.91 – j46.58 – 98.48 1 j17.36

 5 11.43 – j29.22 5 31.37 ∠– 68.63°
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PROBLEM 9.14

Find the reading of a wattmeter in the circuit shown in Fig.  9.66 (a). Assume a symmetrical 400 V supply with 

RYB phase sequence and draw the vector diagram.

Fig. 9.66 (a)

Solution  The reading in the wattmeter is equal to the product of the current through the current coil I1 

voltage across its pressure coil VYB and cos of the angle between the VYB and I1.

I
V

j

I
V

j

R
RY

B
BR

=
−

=
∠

∠−
= ∠

=
+

=
∠−
∠

50

400 0

50 90
8 90

30 40

400 240

50 53

°

°
°

°

.113

8 293 13

°

° or 8 66.87°= ∠− ∠.

Line current

I1 5 IR – IB

5 8∠90° – 8 ∠–293.13°

 5 0 1 j8 – 3.14 – j7.35 5 –3.14

 1 j0.65 5 3.2 ∠168.3°

From the vector diagram in Fig. 9.66 (b), it is clear that 

the angle between VYB and I1 is 71.7°.

 Wattmeter reading is equal to VYB 3 I1 cos 71.7°

5 400 3 3.2 3 cos 71.7 5 402 W

PROBLEM 9.15

Calculate the total power input and readings of the two wattmeters connected to measure power in a three-

phase balanced load, if the reactive power input is 15 kVAR, and the load pf is 0.8.

Fig. 9.66 (b)
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Solution  Let W1 be the lower reading wattmeter and W2 the higher reading wattmeter.

 

cos .

.

tan

f

f

f

=

= °

=

0 8

36 86

Reactive power

Active power

or

Reactive power

W

=
−
+

= − =

= − =

3

3 15000

8660 508

2 1

2 1

2 1

2 1

W W

W W

W W

W W

( )

.

\\ =
+

0 75 3
15000

2 1

.
W W

 (9.23)

or total power input W2 1 W1 5 34641.01 W (9.24)

From Eqs (9.23) and (9.24), we get

W2 5 21650.76 W

W1 5 12990.24 W

PROBLEM 9.16

Two wattmeters are connected to measure power in a three-phase circuit. The reading of one of the meters is 

5 kW when the load power factor is unity. If the power factor of the load is changed to 0.707 lagging, without 

changing the total input power, calculate the readings of the two wattmeters.

Solution  Both wattmeters indicate equal values when the power factor is unity

 W1 1 W2 5 10 kW (Total power input) (9.25)

Let W2 be the higher reading wattmeter.

Then W1 is the lower reading wattmeter.

cos .

tan

f f

f

= \ = °

=
−
+

=
−

0 707 45

3 1 3
10

2 1

2 1

2 1W W

W W

W W

\ − = =W W2 1

10

3
5 773. kW  (9.26)

From Eqs (9.25) and (9.26),

W2 5 7.886 kW

W1 5 2.113 kW

PROBLEM 9.17

The line currents in a balanced six-phase mesh connected generator are 35.35 A. What is the magnitude of 

the phase current?
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Solution  From Section 9.8.2,

I I
n

I

L Ph

Ph

=

=
°

=

2
180

35 35

2
180

6

35 35

sin

.

sin

.

°

PROBLEM 9.18

Find the voltage between the adjacent lines of a balanced six-phase star-connected system with a phase 

voltage of 132.8 volts.

Solution  From Section 9.7.2, E E
n

L Ph=
°

2
180

sin

EL = × × =2 132 8
180

6
132 8. sin .

°
V

PROBLEM 9.19

In the wye- connected system shown in Fig. 9.67, it is assumed 

that only fundamental and third harmonic voltages are present 

when the voltages are measured with a voltmeter between na and 

ba. They are given by 230 and 340 volts respectively. Calculate 

the magnitude of the third harmonic voltages in the system.

Solution  Only phase voltage Vna of the system shown in Fig. 

9.67 contains third harmonic whereas line voltage Vba contains 

only first harmonic. Hence,

Fundamental component of the phase = 
340

3

 

Third harmonic component = V220
340

3
99 332

2

−








 = .

PROBLEM 9.20

Illustrate the effect of reversal of voltage sequence up on the magnitudes of the currents in the system shown 

in Example 9.20.

Solution  The line currents for RYB sequence have already been calculated. I1 5 28.41 ∠–69.07°, I2 5 29.85 

∠136.58°, and I3 5 13 ∠27.60° A.

Fig. 9.67
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If the phase sequence is reversed by RBY then

I
V

Z
R

RY

RY

= =
∠

∠
= ∠−

400 0

15 67 60 13
25 52 60 13

°

°
° A

. .
. .

I
V

Z

I
V

Z

Y
YB

YB

B
BR

BR

= =
∠−
∠

= ∠−

= =

400 240

43 83 49 83
9 12 289 83

40

°

°
° A

. .
. .

00 120

78 36 60 13
5 1 180 13

∠−
∠

= ∠−
°

°
° A

. .
. .

Various line currents are given by

I1 5 IR – IB 5 25.52 ∠–60.13° – 5.1 ∠–180.13° 5 28.41 ∠–51.189° A

I2 5 IY – IR 5 9.12 ∠–289.83° – 25.52 ∠–60.13° 5 32.175 ∠107.37° A

I3 5 IB – IY 5 5.1 ∠–180.13° – 9.12 ∠–289.83° 5 11.85 ∠46.26° A

From the above calculations, it can be verified that the magnitudes of the line currents are not same when 

the phase sequence is changed.

PROBLEM 9.21

A balanced delta load is supplied from a symmetrical 3-phase, 400 V, 50 Hz supply system. The current in 

each phase is 20 A and lags behind its phase voltage by an angle of 40°. Calculate

 (a) The line current

 (b) Total power

 (c) Also draw the phasor diagram

 (d) The wattmeter readings if two wattmeters are used

Solution

(a) I IL ph= = × =3 3 20 34 64. A

(b) Total power =

= × × × °

=

3

3 400 34 64 40

18 384

V IL L cos

. cos

.

f

kW

(c) Phasor diagram is shown in Fig. 9.68 (a).

(d) Total active power = W1+W2

 

=

= × × × °

=

3

3 400 34 64 40

18 384

V IL L cos

. cos

.

f

kW  (9.27)

 W W V IL L1 2− = sinf

 5 400 3 34.64 3 sin 40°

 5 8.906 kW  (9.28)

On solving, W1 5 13.645 kW

 W2 5 4.739 kW
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Fig. 9.69

Fig. 9.68

PROBLEM 9.22

Three identical impedances are star connected across a balanced 440  V; 50  Hz supply. The three line currents 

are IR = − °20 40 , IY = − °20 160 and IB = °20 80 ; Find the values of the elements. Total power and the 

readings of wattmeters to measure the power.

Solution

 
V VR ph Y ph=

°
= ° =

− °
= − °

440 0

3
254 0

440 120

3
254 120;

 
VB ph =

− °
= − °

440 240

3
254 240

 Given I I IR Y B= − ° = − ° = °20 40 20 160 20 80; ;
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Z j

Z

R

Y

=
°

− °
= ° = +

=
− °

− °
=

254 0

20 40
12 7 40 9 728 8 16

254 120

20 160
1

. ( . . )V V

22 7 40 9 728 8 16

254 240

20 80
12 7 40 9 728 8

. ( . . )

. ( .

° = +

=
− °

°
= ° = +

V V

V

j

Z jB .. )16 V

Power consumed 5 3 3 I 2 Rph

 5 3 3 (20)2 3 9.728

 5 11673 W

Wattmeter readings

W1 5 VL IL cos (30° – )

W2 5 VL IL cos (30° 1 )

where  is the power factor angle between Vph and Iph i.e,  5 40°

W1 5 440 3 20 3 cos (30-40)° 5 8666.3 W

W2 5 440 3 20 3 cos (30140)° 5 3009.7 W

Total power 5 W1 1 W2

  5 8666.3 1 3009.7

 PT 5 11676 W

PROBLEM 9.23

A 3-phase, 3-wire, 208  V, CBA system has a star-connected load with 

Z Z ZA B C= ° Ω = ° Ω = − ° Ω5 0 5 30 10 60; ; .  Find line currents and voltage across each load impedance. 

Draw the phasor diagram.

Solution 

Fig. 9.70



Circuits and Networks404 

By converting Y-network into D,

Z
Z Z Z Z Z Z

Z

Z
Z Z

BC
A B B C C A

A

CA
A

=
+ +

=
− °

°
= − °

=

105 85 31 81

5 0
21 17 31 81

. .
. . V

BB B C C A

B

BA
A B B

Z Z Z Z

Z

Z
Z Z Z Z

+ +
=

− °
°

= − °

=
+

105 85 31 81

5 30
21 17 61 81

. .
. . V

CC C A

C

Z Z

Z

+
=

− °
− °

= − °
105 85 31 81

10 60
10 5 61 81

. .
. . V

Phase sequence is CBA.

\ = ° = − ° = − °V V VCB BA AC208 0 208 120 208 240; ;

Phase currents

 

I
V

Z

I
V

Z

C
CB

BC

B
BA

AB

= =
°

− °
= °

= =
− °

208 0

21 17 31 81
9 82 31 81

208 120

10

. .
. .

.. .
.

. .
.

58 28 19
19 65 148

208 240

21 17 61 81
9 825

°
= − °

= =
− °
− °

= −I
V

Z
A

AC

AC

1179°

IA

IB

IC

Fig. 9.71 Fig. 9.72

Line currents are

 

I I I

I I I

C A

B C

1

2

9 82 31 81 9 825 179 19

18 9316 30

19

= − = °− − °

= °

= − =

. . . .

. .

.

A

665 148 19 9 82 31 81

29 47 148 19

9 825 179 193

− °− °

= − °

= − = −

. . .

. .

. .

A

I I IA B °°− − °

= °

19 65 148 19

12 3156 06

. .

. . A
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Voltages across each load impedance are

V I Z

V I Z

ZC C

ZB B

= × = ° − °

= − °

= × =

1

2

18 9316 3 10 60

189 3 43 7

29 4

( . . )( )

. .

( .

V

77 148 19 5 30

147 35 118 19

12 3156 06 53

− ° °

= − °

= × = °

. )( )

. .

( . . )(

V

V I ZZA C 00

61 55 56 06

°

= °

)

. . V

PROBLEM 9.24

A 3-phase, 3-wire star-connected unbalanced load is connected as shown. Find the line currents by node 

voltage method. Assume the line voltage as 415 V and abc phase sequence.

Solution

Fig. 9.73

Taking B as reference, the circuit can be redrawn as shown below.

Fig. 9.74
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If the voltage at o is Vo w.r.t the reference node B.

Then the single-node path equation can be written as

V V

Z

V

Z

V V

Z

V
Z Z Z

V

Z

V

Z

o AB

A

o

B

o BC

C

o
A B C

AB

A

BC

C

−
+ +

+
=

+ +











− + =

0

1 1 1
00

1

10 0

1

8 30

1

5 45

415 0

10 0

415 120

5 45

0 1

V

V

o

o

°
+

°
+

°












=

°
°

−
− °

°

( . 00 0 125 30 0 2 45 41 5 0 83 165

0 404 30 26 123

°+ − °+ − ° = °− − °

− ° =

. . ) .

( . . ) .Vo 55510

305 8 40 26

°

= °Vo . .

V V V

V V V

OA o AB

OC o BC

= − = °− ° = °

= + =

305 8 40 26 415 0 268 4 132

305 8 40 2

. . .

. . 66 415 120 163 83 80 9°+ − ° = − °. .

Line currents/phase currents are given by

I
V

Z

I
V

Z

A
OA

A

B
OB

B

=
−

=
− °

°
= − °

=
−

=
− °

268 4 132

10 0
26 8132

305 8 40 26

8

.
.

. .

A

330
38 22510 26

163 83 80 9

5 45
32 766 125

°
= − °

=
−

=
− − °

°
= − −

. .

. .
.

A

I
V

Z
C

OC

C

..9° A

PROBLEM 9.25

A 3-phase, 4-wire, 380  V supply is connected to an unbalanced load having phase impedances of ZR 5 4 1 j3; 

ZY 5 4 2 j3; and ZB 5 2  V . Impedance of the neutral wire is Zn 5 (1 1 j2) V. Find the phase currents and 

voltages of the load using Millman’s theorem.

Solution 

Fig. 9.75
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Y
Z j

j

Y
Z j

j

R
R

Y
Y

= =
+

= − = − °

= =
−

= +

1 1

4 3
0 16 0 12 0 2 36 86

1 1

4 3
0 16 0 12

. . . .

. .

�

��

�

= °

= = = = °

=
+

= − = −

0 2 36 86

1 1

2
0 5 0 5 0

1

1 2
0 2 0 4 0 447 63

. .

. .

. . .

Y
Z

Y
j

j

B
B

N ..43°

Assuming RYB sequence, VR = ° = °
380

3
0 219 4 0.

Similarly, V VY B= − ° = − °219 4 12 219 4 240. , .

According to Millman’s theorem, the voltage between two nodes is given by

V
V Y V Y V Y

Y Y Y Y

V

N N
R R Y Y B B

R Y B N

N N

′

′

=
+ +

+ + +

=
° − ° +( . )( . . ) (219 4 0 0 2 36 86 2219 4 120 0 2 36 86 219 4 240 0 5

0 2 36 86 0 2 36

. )( . . ) ( . )( . )

. . .

− ° − ° + − °
− °+ .. . . .

. . . . .

86 0 5 0 0 447 63 43

43 88 36 86 43 88 83 14 109 7 2

°+ °+ − °

=
− °+ − °+ − 440

1 02 0 4

14 51 25 12

1 02 0 4

29 120

1 09 21 4

°
−

=
− +

−

=
°

− °

. .

. .

. .

. .

j

j

j

= °

= °

= − +

′

26 6 141 4

26 6 141 4

20 93 16 41

. .

. .

. .

V

j

N N

The three phase voltages can be found as

′ = −

= − − +

= − °

′ = −

= −

′

′

V V V

j

V V V

R R N N

Y Y N N

219 4 20 93 16 41

2409 39

11

. ( . . )

( 00 190 20 93 16 41+ − − +j j) ( . . )

 = °256 3 246 65. .
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′ = −

= − + − − +

= °

′V V V

j j

B B N N

( ) ( . . )

. .

110 190 20 93 16 41

195 1117 16

Phase currents are given by

I V Y

I V Y

R R Y

Y Y Y

= ′ = − ° − ° = − °

= ′ =

( . . ) ( . . ) . .

(

290 9 3 9 0 2 36 86 48 18 40 76

2566 3 246 65 0 2 36 86 51 26 283 51

195 1117 16

. . ) ( . . ) . .

( . .

° ° = °

= ′ = °I V YB B B ))( . ) . .

( . . )( . . )

0 5 0 97 55117 10

26 5141 9 0 447 63 43

° = °

= ′ = ° − ° =I V YN N N 111 89 78 4. . °

PSpice Problems

PROBLEM 9.1

A 3-phase, D-connected RYB system is shown in 

Fig. 9.76 with an effective voltage of 400 V, has a 

balanced load with impedances 3 1 j4  V. Using 

PSpice, calculate (a) phase currents, (b) line 

currents, and (c) power in each phase.

 L 5 12.73 mH

 R 5 3 V

* 3 PHASE BALANCED ANALYSIS

VR 1 0 AC 230.94 -30

VY 3 0 AC 230.94 -150

VB 2 0 AC 230.94 90

R1 2 4 3

L1 1 4 12.732 M

R2 2 5 3

L2 5 3 12.732 M

R3 3 6 3

L3 1 6 12.732 M

Fig. 9.76 (a)

Fig. 9.76 (b)
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.AC LIN 1 50 50

.PRINT AC IM(VR) IP(VR) IM(VY) IP(VY) IM(VB) IP(VB)

1 IM(R1) IP(R1) IM(R2) IP(R2) IM(R3) IP(R3)

.PROBE

.END

**** AC ANALYSIS TEMPERATURE 5 27.000 DEG C

****************************************************************

 FREQ IM(VR) IP(VR) IM(VY) IP(VY) IM(VB)

5.000E101 1.386E102ty 9.687E101 1.386E102 –2.313E101 1.386E102

 FREQ IP(VB) IM(R1) IP(R1) IM(R2) IP(R2)

5.000E101 –1.431E102 8.000E101 6.687E101 8.000E101 6.871E100

 FREQ IM(R3) IP(R3)

5.000E101 8.000E101 1.269E102

Result

IR 5 –I(R3) 5 48.03 – J63.97

IY 5 –I(R2) 5 –79.42 – J9.61

IB 5 I(R1) 5 31.38 1 J73.58

I1 5 IR – IB 5 138.55∠–83.09

I2 5 IY – IR 5 138.55∠156.9

I3 5 IB – IY 5 138.55∠36.89

POWER CONSUMED IN EACH PHASE 5 VPH    IPH COS f 5 400 3 80 3 0.6 5 19.2 kW

TOTAL POWER 5 3 3 19.2 K 5 57.6 kW

PROBLEM 9.2

The ac circuit of Fig. 9.77 is supplied from a three-phase balanced supply. Use PSpice to calculate RMS 

magnitudes and phase angles of currents, IR, IY , IB, and IN.

Fig. 9.77 (a)



Circuits and Networks410 

9.2 THREE PHASE CIRCUIT

VRN 1 0 AC 120 0

VYN 2 0 AC 120 120

VBN 3 0 AC 120 -120

RR 1 4 0.5

RY 2 5 0.5

RB 3 6 0.5

RXL 4 7 1

RYL 5 8 1

RZL 6 9 1

R1 7 10 5

R2 8 11 10

R3 9 12 10

C1 10 12 150 UF

L2 11 12 120 MH

VX 12 0 DC 0V

.AC LIN 1 50 100

.PRINT AC IM(RR) IP(RR) IM(RY) IP(RY) IM(RB) IP(RB)

1 VM(7,12) VP(7,12) VM(8,12) VP(8,12) VM(9,12) VP(9,12)

.PRINT AC IM(VX) IP(VX)

.END

**** AC ANALYSIS TEMPERATURE 5 27.000 DEG C

****************************************************************

 FREQ IM(RR) IP(RR) IM(RY) IP(RY) IM(RB)

5.000E101 5.407E100 7.297E101 3.045E100 4.696E101 1.043E101

 FREQ IP(RB) VM(7,12) VP(7,12) VM(8,12) VP(8,12)

5.000E101 –1.200E102 1.179E102 –3.772E100 1.187E102 1.221E102

 FREQ VM(9,12) VP(9,12)

5.000E101 1.043E102 –1.200E102

 FREQ IM(VX) IP(VX)

5.000E101 2.262E100 –1.335E102

Answers to Practice Problems

9-4.1 Taking VRN reference

 iR 5 25.4 ∠0°; iY 5 25.4 ∠– 146.8°; iB 5 25.4 ∠146.8°

 iN 5 17.1 ∠0°; Power 5 17967.7 W

9-4.3 Delta impedances:

 Z Z ZRY YB BR= − ° = − ° = − °3 822 5 97 5 3 9 15 8 546 110 59. . ; . . . .V V Vand

 Line or phase currents in star load:

 63 83 146 55 169 66 118 12 117 58 103 13. . ; . . . .− ° − ° − °A A; A 

 Phase currents in delta load: 115 12 35 97 83 01 80 85 51 486 320 59. . ; . . ; . .° − ° − °

 Power consumed = 78.4 kW

Fig. 9.77 (b)
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9-4.4 Powers PR = 8007.69 W; PY = 17,923.37 W; PB = 6998 W

 Total power = 32.929 kW

9-6.1 iR 5 50.8 ∠0°; iY 5 25.4 ∠–120°; iB 5 16.936 ∠120°

 PR 5 12903.2 W; PY 5 6451.6 W; PB 5 4302.4 W

 (Taking R-phase voltage reference)

9-6.3 Taking VRY reference

 iR 5 11.25 ∠–23.42°; iY 5 18.06 ∠ 218.25°; iB 5 16.12 ∠ 76°

 281.32 ∠–23.42°; 180.6 ∠ 218.25°; 241.8 ∠ 76°

9-6.4 VON = − °87 43 142 98. . V

9-7.1 3000 W

9-7.3 iR 5 50 ∠– 62°; iY 5 50 ∠– 182°; iB 5 50 ∠ 58°; Power 5 12705 W

9-7.4 173 mF

9-8.4 R = 9.72 V; L = 25.9 mH; P = 23.352 kW; W1=3 kW; W2=8.6 kW

9-9.2 Phase currents : 10 90 15 625 140 12 5 120− ° − ° °; . ; .

 Active powers : 0 W; 3662 W; 3125 W

 Reactive powers : 2500 VAR; 1333 VAR; 0 VAR

 Apparent power : 7794 5 29. ° VA

9-11.1 1250 W; 0.693; 2.36 A; 1000 W

Objective-Type Questions

rrr9.1 The resultant voltage in a closed balanced delta circuit is given by

 (a) three times the phase voltage (b) 3  times the phase voltage

 (c) zero

rrr9.2 Three coils A, B, C, displaced by 120° from each other are mounted on the same axis and rotated in a 

uniform magnetic field in clockwise direction. If the instantaneous value of emf in coil A is Emax sin vt, the 

instantaneous value of emf in B and C coils will be

  

( ) sin ; sin

( )

a

b

E E t

E

max max
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v
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p
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rrr9.3 The current in the neutral wire of a balanced three-phase, four-wire star connected load is given by

 (a) zero

 (b) 3  times the current in each phase

 (c) 3 times the current in each phase

rrr9.4 In a three-phase system, the volt ampere rating is given by

 (a) 3VL IL (b) 3 VL IL (c) VL IL
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rrr9.5 In a three-phase balanced star connected system, the phase relation between the line voltages and their 

respective phase voltage is given as under

 (a) the line voltages lead their respective phase voltages by 30°

 (b) the phase voltages lead their respective line voltage by 30°

 (c) the line voltages and their respective phase voltages are in phase

rrr9.6 In a three-phase balanced delta connected system, the phase relation between the line currents and their 

respective phase currents is given by

 (a) the line currents lag behind their respective phase currents by 30°

 (b) the phase currents lag behind their respective line currents by 30°

 (c) the line currents and their respective phase currents are in phase

rrr9.7 In a three-phase unbalanced, four-wire star-connected system, the current in the neutral wire is given by

 (a) zero

 (b) three times the current in individual phases

 (c) the vector sum of the currents in the three lines

rrr9.8 In a three-phase unbalanced star-connected system, the vector sum of the currents in the three lines is

 (a) zero

 (b) not zero

 (c) three times the current in the each phase

rrr9.9 Wattmeter deflection in ac circuit is proportional to the

 (a) maximum power in the circuit

 (b) instantaneous power in the circuit

 (c) average power in the circuit

rrr9.10 The three-wattmeter method of power measurement can be used to measure power in

 (a) balanced circuits

 (b) unbalanced circuits

 (c) both balanced and unbalanced circuits

rrr9.11 The two-wattmeter method of power measurement can be used to measure power in

 (a) balanced circuits

 (b) unbalanced circuits

 (c) both balanced and unbalanced circuits

rrr9.12 In the two-wattmeter method of power measurements, when the pf is 0.5,

 (a) the readings of the two wattmeters are equal and positive

 (b) the readings of the two wattmeters are equal and opposite

 (c) the total power is measured by only one wattmeter

rrr9.13 The reading of the wattmeter connected to measure the reactive power in a three-phase circuit is given by 

zero, the line voltage is 400 V and line current 15 A; then the pf of the circuit is

 (a) zero (b) unity (c) 0.8

For�interactive�quiz�with�answers,
scan�the�QR�code�given�here
OR
visit
http://qrcode.flipick.com/index.php/267



10.1 INTRODUCTION

Two circuits are said to be ‘coupled’ when energy transfer takes place from one circuit to the other when 

one of the circuits is energised. There are many types of couplings like conductive coupling as shown by the 

potential divider in Fig. 10.1 (a), inductive or magnetic coupling as shown by a two-winding transformer 

in Fig. 10.1 (b), or conductive and inductive coupling as shown by an auto transformer in Fig. 10.1 (c). A 

majority of the electrical circuits in practice are conductively or electromagnetically coupled. Certain coupled 

elements are frequently used in network analysis and synthesis. Transformer, transistor, and electronic pots, 

10

LEARNING OBJECTIVES

Fig. 10.1
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etc., are some among these circuits. Each of these elements may be represented as a two-port network as 

shown in Fig. 10.1 (d).

10.2 CONDUCTIVELY COUPLED CIRCUIT AND MUTUAL IMPEDANCE

A conductively coupled circuit which does not involve magnetic coupling is 

shown in Fig. 10.2 (a).

In the circuit shown, the impedance Z12 or Z21 common to loops 1 and 2 is 

called mutual impedance. It may consists of a pure resistance, a pure inductance, 

a  pure capacitance, or a combination of any of these elements. Mesh analysis, nodal 

analysis or Kirchhoff’s laws can be used to solve these type of circuits as described in Chapter 7.

The general definition of mutual impedance is explained with the help of Fig. 10.2 (b).

(a) Fig. 10.2 (b)

The network in the box may be of any configuration of circuit elements with two ports having two pairs 

of terminals 1-1′ and 2-2′ available for measurement. The mutual impedance between port 1 and 2 can be 

measured at 1-1′ or 2-2′. If it is measured at 2-2′. It can be defined as the voltage developed (V2) at 2-2′ 
per unit current (I1) at port 1-1′. If the box contains linear bilateral elements, then the mutual impedance 

measured at 2-2′ is same as the impedance measured at 1-1′ and is defined as the voltage developed (V1) at 

1-1′ per unit current (I2) at port 2-2′.

EXAMPLE 10.1

Find the mutual impedance for the circuit shown in Fig. 10.3.

Solution  Mutual impedance is given by

or 

V

I

V

I

V I
V

I

V I
V

I

2

1

1

2

2 1
2

1

1 2
2

2
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2
1 5

5
3

10
1 5

  

  

 or 
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or= =

= × × =

.

.

V

V

10.3 MUTUAL INDUCTANCE

The property of inductance of a coil was introduced in Section 1.6. A voltage 

is induced in a coil when there is a time rate of change of current through it. 

The inductance parameter L, is defined in terms of the voltage across it and the 

time rate of change of current through it v t L
di t

dt
( )= ( )

,  where v(t) is the voltage 

Fig. 10.3

LO   1 

LO   2 
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across the coil, I(t) is the current through the coil and L is the inductance of the coil. Strictly speaking, this 

definition is of self-inductance and this is considered as a circuit element with a pair of terminals. Whereas 

in a circuit element “mutual inductor” does not exist. Mutual inductance is a property associated with two or 

more coils or inductors which are in close proximity and the presence of common magnetic flux which links 

the coils. A transformer is such a device whose operation is based on mutual inductance.

Let us consider two coils, L1 and L2, as shown in Fig. 10.4  (a), which are sufficiently close together, so 

that the flux produced by i1 in the coil L1 also link the coil L2. We assume that the coils do not move with 

respect to one another, and the medium in which the flux is established has a constant permeability. The two 

coils may be also arranged on a common magnetic core, as shown in Fig. 10.4 (b). The two coils are said 

to be magnetically coupled, but act as a separate circuits. It is possible to relate the voltage induced in one 

coil to the time rate of change of current in the other coil. When a voltage v1 is applied across L1, a current 

i1 will start flowing in this coil, and produce a flux f. This flux also links the coil L2. If i1 were to change 

with respect to time, the flux ‘f’ would also change with respect to time. The time-varying flux surrounding 

the second coil, L2 induces an emf, or voltage, across the terminals of L2; this voltage is proportional to 

the time rate of change of current flowing through the first coil L1. The two coils, or circuits, are said to be 

inductively coupled, because of this property they are called coupled elements or coupled circuits and the 

induced voltage, or emf is called the voltage/emf of mutual induction and is given by v t M
di t

dt
2 1

1( )= ( )
 

volts, where v2 is the voltage induced in coil L2 and M1 is the coefficient of proportionality, and is called the 

coefficient of mutual inductance, or simple mutual inductance.

If current i2 is made to pass through coil L2 as shown in Fig. 10.4 (c) with coil L1 open, a change of i2 

would cause a voltage v1 in coil L1, given by v t M
di t

dt
1 2

2( )=
( )

.

In the above equation, another coefficient of proportionality M2 is involved. Though it appears that two 

mutual inductances are involved in determining the mutually induced voltages in the two coils, it can be 

shown from energy considerations that the two coefficients are equal and, therefore, need not be represented 

by two different letters. Thus, M1 5 M2 5 M.

 

∴ =

=

v t M
di t

dt

v t M
di t

dt

2
1

1
2

( )
( )

( )
( )

volts

volts

In general, in a pair of linear time invariant coupled coils or inductors, a non-zero current in each of the two 

coils produces a mutual voltage in each coil due to the flow of current in the other coil. This mutual voltage is 

present independently of, and in addition to, the voltage due to self induction. Mutual inductance is also measured 

Fig. 10.4

(c)
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in henries and is positive, but the mutually induced voltage, M
di

dt
 may be either positive or negative, depending 

on the physical construction of the coil and reference directions. To determine the polarity of the mutually induced 

voltage (i.e. the sign to be used for the mutual inductance), the dot convention is used.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 2*
rrr10-2.1 Two inductively coupled coils have self-inductances L1540 mH and L25150 mH. If the 

coefficient of coupling is 0.7, (a) find the value of mutual inductance between the coils, and 

(b) the maximum possible mutual inductance.

rrr10-2.2 Two coils connected in series have an equivalent inductance of 0.8 H when connected in aiding, 

and an equivalent inductance of 0.5 H when the connection is opposing. Calculate the mutual 

inductance of the coils.

rrr10-2.3 Calculate the effective inductance of the circuit shown in Fig. Q.3 across XY.

rrr10-2.4 Calculate the effective inductance of the circuit shown in Fig. Q.4.

rrr10-2.5 Find the equivalent inductance between the terminals across ab for the coupled circuit shown, 

M 5 0.5 H. All the coils are coupled. (Fig. Q.5)

Fig. Q.5

a

b

1H 1H

1H

Fig. Q.3 Fig. Q.4

Frequently Asked Questions linked to LO 2*
rrr

rrr

50Ð0ºV

3 W

5 W

j5 W j10 W

j6 W

–j4 W

I
1

I
2

Fig. Q.1

3 W

j 5W

J 10 W

5 W

F E D

A B C

I
1

I
2

k = 0.5

50Ð0º

–J 4 W

Fig. Q.2

rrr10-2.3 Write the expression which relates the self and mutual inductance. [AU May/June 2014]
rrr10-2.4 Define mutual inductance. [AU Nov./Dec. 2012]
rrr10-2.5 Two coupled coils have self-inductances of L1 = 100 mH and L2 = 400 mH. The coupling 
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coefficient is 0.8. Find M. If N1 is 1000 turns, what is the values of N2? If a current i1 = 2 sin (500t) 

A through the coil 1, find the flux f1 and the mutually induced voltage V2M. [AU Nov./Dec. 2012]

rrr10-2.6 Two inductively coupled coil have self-inductances L1 = 

50 mH and L2 = 200 mH. If the coefficient of coupling is 

0.5, compute the value of mutual inductance between the 

coils.          [AU April/May 2011]

rrr10-2.7  For the network shown in Fig. Q.7, find the voltage across 

the load resistance RL.  [JNTU Nov. 2012]

10.4 DOT CONVENTION

Dot convention is used to establish the choice of correct sign for the mutually 

induced voltages in coupled circuits.

Circular dot marks and/or special symbols are placed at one end of each 

of two coils which are mutually coupled to simplify the diagrammatic 

representation of the windings around its core.

Let us consider Fig. 10.5, which shows a pair of linear, time-invariant, coupled 

inductors with self- inductances L1 and L2 and a mutual inductance M. If these inductors form a portion of a 

network, currents i1 and i2 are shown, each arbitrarily assumed entering at the dotted terminals, and voltages v1 

and v2 are developed across the inductors. The voltage across L1 is, thus composed of two parts and is given by

v t L
di t

dt
M

di t

dt
1 1

1 2( )
( ) ( )

= ±

The first term on the RHS of the above equation is the self induced voltage 

due to i1, and the second term represents the mutually induced voltage due to 

i2.

Similarly, v t L
di t

dt
M

di t

dt
2 2

2 1( )
( ) ( )

= ±

Although the self-induced voltages are designated with positive sign, 

mutually induced voltages can be either positive or negative depending on the 

direction of the winding of the coil and can be decided by the presence of the 

dots placed at one end of each of the two coils. The convention is as follows.

If two terminals belonging to different coils in a coupled circuit are marked identically with dots then for 

the same direction of current relative to like terminals, the magnetic flux of self- and mutual induction in each 

coil add together. The physical basis of the dot convention can be verified by examining Fig. 10.6. Two coils 

ab and cd are shown wound on a common iron core.

It is evident from Fig. 10.6 that the direction of the winding of the coil ab is clock - wise around the core as 

viewed at X, and that of cd is anti-clockwise as viewed at Y. Let the direction of the current i1 in the first coil 

be from a to b, and increasing with time. The flux produced by i1 in the core has a direction which may be 

Fig. 10.5

j 3 W

j2 Wj5 W

k = 0.5

RL = 5 WV

Fig. Q.7

LO   3 

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600

Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category
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found by right hand rule, and which is downwards in the 

left limb of the core. The flux also increases with time in 

the direction shown at X. Now suppose that the current i2 

in the second coil is from c to d, and increasing with time. 

The application of the right hand rule indicates that the 

flux produced by i2 in the core has an upward direction in 

the right limb of the core. The flux also increases with time 

in the direction shown at Y. The assumed currents i1 and 

i2 produce flux in the core that are additive. The terminals 

a and c of the two coils attain similar polarities simultaneously. The two 

simultaneously positive terminals are identified by two dots by the side of 

the terminals as shown in Fig. 10.7.

The other possible location of the dots is the other ends of the coil to 

get additive fluxes in the core, i.e. at b and d. It can be concluded that the 

mutually induced voltage is positive when currents i1 and i2 both enter (or 

leave) the windings by the dotted terminals. If the current in one winding 

enters at the dot-marked terminals and the current in the other winding 

leaves at the dot-marked terminal, the voltages due to self and mutual 

induction in any coil have opposite signs.

EXAMPLE 10.2

Using dot convention, write voltage equations for the coils shown in 

Fig. 10.8.

Solution  Since the currents are entering at the dot-marked terminals, 

the mutually induced voltages or the sign of the mutual inductance is 

positive; using the sign convention for the self inductance, the equations 

for the voltages are

v L
di

dt
M

di

dt

v L
di

dt
M

di

dt

1 1
1 2

2 2
2 1

= +

= +

EXAMPLE 10.3

Write the equation for voltage v0 for the circuits shown in Fig. 10.9.

Fig. 10.6

Fig. 10.7

Fig. 10.8
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Fig. 10.9

Solution  v0 is assumed positive with respect to the terminal C and the equation is given by

(a) v M
di

dt
0 =  (b) v M

di

dt
0 =−  (c) v M

di

dt
0 =−  (d) v M

di

dt
0 =

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 3
r10-3.1 Using the dot convention, write the voltage equations for the coils shown in Fig. Q.3.

Fig. Q.3

Frequently Asked Questions linked to LO 3
r10-3.1 What is dot convention in coupled circuit? [BPUT 2007]

rr10-3.2 Explain the dot convention rule, for the magnetically coupled network using network shown in 

Fig.Q.2. Also formulate KVL equations. [GTU Dec. 2012]

V
1

I
2

R
L

I
1
r
1

L
1 L

2

Fig. Q.2

10.5 COEFFICIENT OF COUPLING

The amount of coupling between the inductively coupled coils is expressed in 

terms of the coefficient of coupling, which is defined as K M L L= / 1 2

where M 5 mutual inductance between the coils,

 L1 5 self-inductance of the first coil, and

 L2 5 self-inductance of the second coil.

Coefficient of coupling is always less than unity, and has a maximum value of 1 (or 100%). This case, for 

LO   4 
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which K 5 1, is called perfect coupling, when the entire flux of one coil 

links the other. The greater the coefficient of coupling between the two coils, 

the greater the mutual inductance between them, and vice versa. It can be 

expressed as the fraction of the magnetic flux produced by the current in one 

coil that links the other coil.

For a pair of mutually coupled circuits shown in Fig. 10.10, let us assume 

initially that i1, i2 are zero at t 5 0.

Then v t L
di t

dt
M

di t

dt
1 1

1 2( )
( ) ( )

= +

and v t L
di t

dt
M

di t

dt
2 2

2 1( )
( ) ( )

= +

Initial energy in the coupled circuit at t 5 0 is also zero. The net energy input to the system shown in Fig. 

10.10 at time t is given by

W t v t i t v t i t dt

t

( ) ( ) ( ) ( ) ( )= +[ ]∫ 1 1 2 2

0

Substituting the values of v1(t) and v2(t) in the above equation yields

W t L i t
di t

dt
L i t

di t

dt

M i t
di t

t

( ) ( )
( )

( )
( )

( )
( )

= +






+ ( )

∫ 1 1
1

2 2
2

0

1
2

ddt
i t

di t

dt
dt+





2

1( )
( )

from which, we get

W t L i t L i t M i t i t( ) ( ) ( ) ( ) ( )= [ ] + [ ] + [ ]1

2
1 1

2

2 2

2

1 2

1

2

If one current enters a dot-marked terminal while the other leaves a dot-marked terminal, the above 

equation becomes

W t L i t L i t M i t i t( ) ( ) ( ) ( ) ( )= [ ] + [ ] − [ ]1

2

1

2
1 1

2

2 2

2

1 2

According to the definition of passivity, the net electrical energy input to the system is non-negative. W(t) 

represents the energy stored within a passive network, it cannot be negative.

∴ W (t) $ 0 for all values of i1, i2; L1, L2 or M

The statement can be proved in the following way. If i1 and i2 are both positive or negative, W(t) is positive. 

The other condition where the energy equation could be negative is

W t L i t L i t M i t i t( ) ( ) ( ) ( ) ( )= [ ] + [ ] − [ ]1

2

1

2
1 1

2

2 2

2

1 2

The above equation can be rearranged as

W t L i
M

L
i L

M

L
i( ) = −












+ −











1

2

1

2
1 1

1

2

2

2

2

1
2
2

Fig. 10.10
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The first term in the parenthesis of the right side of the above equation is positive for all values of i1 and 

i2, and, thus, the last term cannot be negative; hence,

L
M

L

L L M

L

2

2

1

1 2
2

1

0

0

− ≥

−
≥

 L1L2 – M 2 ≥ 0

 

L L M

M L L

1 2

1 2

≥

≤

Obviously, the maximum value of the mutual inductance is L L1 2 .  Thus, we define the coefficient of 

coupling for the coupled circuit as

K
M

L L
=

1 2

The coefficient, K, is a non-negative number and is independent of the reference directions of the currents 

in the coils. If the two coils are a great distance apart in space, the mutual inductance is very small, and K is 

also very small. For iron-core coupled circuits, the value of K may be as high as 0.99, for air-core coupled 

circuits, K varies between 0.4 to 0.8.

EXAMPLE 10.4

Two inductively coupled coils have self inductances L1 5 50 mH and L2 5 200 mH. If the coefficient of coupling 

is 0.5 (a), find the value of mutual inductance between the coils, and (b) what is the maximum possible mutual 

inductance?

Solution  (a) M K L L=

= × × × = ×− − −

1 2

3 3 30 5 50 10 200 10 50 10. H

 (b) Maximum value of the inductance when K 5 1,

 M L L= =1 2 100 mH

Frequently Asked Questions linked to LO 4
r

r

N N

rr

 f f N

N i

K, L

L M, Fig. Q.3

M

N
2

N
1

f
12

f
11

I
1
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10.6 IDEAL TRANSFORMER

Transfer of energy from one circuit to another circuit through mutual induction 

is widely utilised in power systems. This purpose is served by transformers. 

Most often, they transform energy at one voltage (or current) into energy at 

some other voltage (or current).

A transformer is a static piece of apparatus, having two or more windings or coils arranged on a common 

magnetic core. The transformer winding to which the supply source is connected is called the primary, while 

the winding connected to load is called the secondary. Accordingly, the voltage across the primary is called 

the primary voltage, and that across the secondary, the secondary voltage. Correspondingly, i1 and i2 are the 

currents in the primary and secondary windings. One such transformer is shown in Fig. 10.11 (a). In circuit 

diagrams, ideal transformers are represented by Fig. 10.11 (b). 

Fig. 10.11

The vertical lines between the coils represent the iron core; the currents are assumed such that the mutual 

inductance is positive. An ideal transformer is characterised by assuming (i) zero power dissipation in the 

primary and secondary windings, i.e. resistances in the coils are assumed to be zero, (ii) the self inductances 

of the primary and secondary are extremely large in comparison with the load impedance, and (iii) the 

coefficient of coupling is equal to unity, i.e. the coils are tightly coupled without having any leakage flux. If 

the flux produced by the current flowing in a coil links all the turns, the self inductance of either the primary 

or secondary coil is proportional to the square of the number of turns of the coil. This can be verified from 

the following results.

The magnitude of the self induced emf is given by

v L
di

dt
=

If the flux linkages of the coil with N turns and current are known, then the self- induced emf can be 

expressed as

 

v N
d

dt

L
di

dt
N

d

dt

=

=

f

f

L N
d

di

Ni

=

=

f

f
reluctance
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∴ =









=

L N
d

di

Ni

L
N

reluctance

reluctance

2

 L a N 2

From the above relation, it follows that

 

L

L

N

N
a2

1

2
2

1
2

2= =

where a 5 N2/N1 is called the turns ratio of the transformer. The turns ratio, a, can also be expressed in terms of 

primary and secondary voltages. If the magnetic permeability of the core is infinitely large then the flux would be 

confined to the core. If f is the flux through a single turn coil on the core and N1, N2 are the number of turns of the 

primary and secondary, respectively, then the total flux through windings 1 and 2, respectively, are

f1 5 N1 f; f2 5 N2 f

Also, we have v
d

dt
v

d

dt
1

1
2

2= =
f f

, and 

 so that 
v

v

N
d

dt

N
d

dt

N

N

2

1

2

1

2

1

= =

f

f

Figure 10.12 shows an ideal transformer to which the secondary is 

connected to a load impedance ZL. The turns ratio 
N

N
a2

1

= .

The ideal transformer is a very useful model for circuit calculations, because with few additional elements 

like R, L, and C, the actual behaviour of the physical transformer can be accurately represented. Let us 

analyse this transformer with sinusoidal excitations. When the excitations are sinusoidal voltages or currents, 

the steady state response will also be sinusoidal. We can use phasors for representing these voltages and 

currents. The input impedance of the transformer can be determined by writing mesh equations for the circuit 

shown in Fig. 10.12.

 V1 5 jvL1I1 – jvMI2 (10.1)

0 5 – jvMI1 1 (ZL 1 jvL2)I2 (10.2)

where V1, V2 are the voltage phasors, and I1, I2 are the current phasors in the two windings. jvL1 and jvL2 are 

the impedances of the self inductances and jvM is the impedance of the mutual inductance, v is the angular 

frequency.

From Eq. (10.2), I
j MI

Z j LL
2

1

2

=
+( )
v

v

Substituting in Eq. (10.1), we have

V I j L
I M

Z j LL
1 1 1

1
2 2

2

= +
+

v
v

v

Fig. 10.12
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The input impedance  Z
V

I
in =

1

1

∴  Z j L
M

Z j L
in

L

= +
+( )

v
v

v
1

2 2

2

When the coefficient of coupling is assumed to be equal to unity,

∴ 

M L L

Z j L
L L

Z j L
in

L

=

= +
+( )

1 2

1

2
1 2

2

v
v

v

We have already established that 
L

L
a2

1

2=

where a is the turns ratio N2 / N1.

∴    Z j L
L a

Z j L
in

L

= +
+( )

v
v

v
1

2
1
2 2

2

Further simplication leads to

Z
Z j L j L L a

Z j L

Z
j L Z

Z j L

in
L

L

in
L

L

=
+( ) +

+( )

=
+( )

v v v

v

v

v

2 1
2

1
2 2

2

1

2

As L2 is assumed to be infinitely large compared to ZL,

Z
j L Z

j a L

Z

a

N

N
Zin

L L
L= = =











v

v

1

2
1

2

1

2

2

The above result has an interesting interpretation, that is the 

ideal transformers change the impedance of a load, and can be used 

to match circuits with different impedances in order to achieve 

maximum power transfer. For example, the input impedance of a 

loudspeaker is usually very small, say 3 V to 12 V, for connecting 

directly to an amplifier. The transformer with proper turns ratio 

can be placed between the output of the amplifier and the input of 

the loudspeaker to match the impedances as shown in Fig. 10.13.

EXAMPLE 10.5

An ideal transformer has N1 5 10 turns, and N2 5 100 turns. What is the value of the impedance referred to 

as the primary, if a 1000 V resistor is placed across the secondary?

Solution  The turns ratio  a

Z
Z

a
in

L

 = =

= = =

100

10
10

1000

100
10

2
V

Fig. 10.13
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The primary and secondary currents can also be expressed in terms of turns ratio. From Eq. (10.2), we 

have

I1 jvM 5 I2(ZL 1 jvL2)

I

I

Z j L

j M

L1

2

2=
+ v

v

When L2 is very large compared to ZL,

I

I

j L

j M

L

M

1

2

2 2= =
v

v

Substituting the value of M L L= 1 2  in the above equation, 
I

I

L

M

1

2

2=

I

I

L

L L

L

L

I

I

L

L
a

N

N

1

2

2

1 2

2

1

1

2

2

1

2

1

= =

= = =

EXAMPLE 10.6

An amplifier with an output impedance of 1936 V is to feed a loudspeaker with an impedance of 4 V.

(a) Calculate the desired turns ratio for an ideal transformer to connect the two systems.

(b) An rms current of 20 mA at 500 Hz is flowing in the primary. Calculate the rms value of current in the 

secondary at 500 Hz.

(c) What is the power delivered to the load?

Solution  (a)  To have maximum power transfer, the output impedance of the amplifier =
Load impedance

a2

∴ 1936
4
2

=
a

  ∴ a = =
4

1936

1

22

N

N

2

1

1

22
=

 (b) I1 5 20 mA

 
We have 

I

I
a1

2

=

 RMS value of the current in the secondary winding

= =
×

=
−I

a

1
320 10

1 22
0 44

/
. A

(c) The power delivered to the load (speaker)

5 (0.44)2 3 4 5 0.774 W
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The impedance changing properties of an ideal transformer may be utilised to simplify circuits. Using this 

property, we can transfer all the parameters of the primary side of the transformer to the secondary side, and 

vice versa. Consider the coupled circuit shown in Fig. 10.14 (a).

To transfer the secondary side load and voltage to the primary side, the secondary voltage is to be divided 

by the ratio, a, and the load impedance is to be divided by a2. The simplified equivalent circuits is shown in 

Fig. 10.14 (b).

Fig. 10.14

EXAMPLE 10.7

For the circuit shown in Fig. 10.15 with turns ratio, a 5 5, draw the equivalent circuit referring (a) to 

primary, and (b) secondary. Take source resistance as 10 V.

Fig. 10.15

Solution  (a) Equivalent circuit referred to primary is as shown in Fig. 10.16 (a).

Fig. 10.16 (a)
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 (b) Equivalent circuit referred to secondary is as shown in Fig. 10.16 (b).

Fig. 10.16 (b)

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 5
rrr10-5.1 In Fig. Q.1, L1 5 2 H; L2 5 6 H; K 5 0.5; i1 5 4 sin (40t 2 30°) A; i2 5 2 sin (40t 2 30°) A. 

Find the values of (a) v1, and (b) v2.

rrr10-5.2 For the circuit shown in Fig. Q.2, write the mesh equations.

Fig. Q.1 Fig. Q.2

rrr10-5.3  Write the mesh equations for the network shown in Fig. Q.3.

Fig. Q.3

Frequently Asked Questions linked to LO 5
rrr10-5.1 A voltage of 100 V at a frequency of 106/2p Hz is applied to the primary of coupled circuit. 

Calculate primary and secondary currents. [RTU Feb. 2011]
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C
2
= 0.01mf

r
2
= 8 W

L
1
= 200 mH

r
1
= 15W K = 0.53

C
1
= 5000mf

100Ð0º

Fig. Q. 1

OR

rrr10-5.2 In the figure, two coils A (R1 = 5 W, L1 = 0.01 H) and B (R2 = 100 W, L2 = 5 H) have coefficient of 

coupling 0.8. Calculating the percentage change in effective resistance of the coil A at a frequency of 

50 Hz when resistance connected across terminals of the coil B becomes 0 ohms. [RTU Feb. 2011]

R = 200W

R
2

= 100 W

L
1

R
1
= 5W M

L
2I

1
V

1
I
2

Fig. Q.2

10.7 ANALYSIS OF MULTI-WINDING COUPLED CIRCUITS

Inductively coupled multi-mesh circuits can be analysed using Kirchhoff’s 

laws and by loop current methods. Consider Fig. 10.17, where three coils are 

inductively coupled. For such a system of inductors, we can define a inductance 

matrix L as

L

L L L

L L L

L L L

=



















11 12 13

21 22 23

31 32 33

where L11, L22 and L33 are self-inductances of the coupled circuits, and L12 5 L21; L23 5 L32 and L13 5 L31 

are mutual inductances. More precisely, L12 is the mutual inductance between coils 1 and 2, L13 is the mutual 

inductance between coils 1 and 3, and L23 is the mutual inductance between coils 2 and 3. The inductance 

matrix has its order equal to the number of inductors and is symmetric. In terms of voltages across the coils, 

we have a voltage vector related to i by

v L
di

dt
[ ]= [ ]













where v and i are the vectors of the branch voltages and currents, respectively. Thus, the branch volt-ampere 

relationships of the three inductors are given by

v

v

v

L L L

L L L

L L L

1

2

3

11 12 13

21 22 23

31 32 33


















=



















ddi dt

di dt

di dt

1

2

3

/

/

/
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Using KVL and KCL, the effective inductances can be calculated. The polarity for the inductances can be 

determined by using passivity criteria, whereas the signs of the mutual inductances can be determined by 

using the dot convention.

EXAMPLE 10.8

For the circuit shown in Fig. 10.18, write the inductance matrix.

Fig. 10.18

Solution  Let L1, L2, and L3 be the self-inductances, and L12 5 L21, L23 5 L32 and L13 5 L31 be the mutual 

inductances between coils, 1, 2, 2, 3 and 1, 3, respectively.

L12 5 L21 is positive, as both the currents are entering at dot marked terminals, whereas L13 5 L31 and 

L23 5 L32 are negative.

Fig. 10.17



Circuits and Networks430 

∴ The inductance matrix is  L

L L L

L L L

L L L

=
−
−

− −



















1 12 13

21 2 23

31 32 3

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 6
rrr10-6.1 For the circuit shown in Fig. Q.1, write the inductance matrix.

Fig. Q.1

10.8 SERIES CONNECTION OF COUPLED INDUCTORS

Let there be two inductors connected in series, with self-inductances L1 and L2 and 

mutual inductance of M. Two kinds of series connections are possible; series aiding 

as in Fig. 10.19 (a), and series opposition as in Fig. 10.19 (b).

In the case of series-aiding 

connection, the currents in both inductors at any instant 

of time are in the same direction relative to like terminals 

as shown in Fig. 10.19 (a). For this reason, the magnetic 

fluxes of self-induction and of mutual induction linking 

with each element add together.

In the case of series-opposition connection, the 

currents in the two inductors at any instant of time 

are in opposite direction relative to like terminals as 

shown in Fig. 10.19 (b). The inductance of an element 

is given by L 5 f/i, where f is the flux produced by 

the inductor.

∴ f 5 Li

For the series-aiding circuit, if f1 and f2 are the flux produced by the coils 1 and 2, respectively, then the 

total flux

 f 5 f1 1 f2

Fig. 10.19
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 where f1 5 L1i1 1 Mi2

 f2 5 L2i2 1 Mi1

 ∴ f 5 Li 5 L1i1 1 Mi2 1 L2i2 1 Mi1

Since i1 5 i2 5 i

 L 5 L1 1 L2 1 2M

Similarly, for the series opposition,

 f 5 f1 1 f2

 where f1 5 L1i1 – Mi2

 f2 5 L2i2 – Mi1

 f 5 Li 5 L1i1 – Mi2 1 L2i2 – Mi1

 Since i1 5 i2 5 i

 L 5 L1 1 L2 – 2M

In general, the inductance of two inductively coupled elements in series is given by L 5 L1 1 L2 6 2M.

Positive sign is applied to the series aiding connection, and negative sign to the series opposition connection.

EXAMPLE 10.9

Two coils connected in series have an equivalent inductance of 0.4 H when connected in aiding, and an 

equivalent inductance 0.2 H when the connection is opposing. Calculate the mutual inductance of the coils.

Solution  When the coils are arranged in aiding connection, the inductance of the combination is 

L1 1 L2 1 2M 5 0.4; and for opposing connection, it is L1 1 L2 – 2M 5 0.2. Solving the two equations, 

we get

 4M 5 0.2 H

 M 5 0.05 H

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 7
rrr10-7.1 The inductance matrix for the circuit of a three series connected coupled coils is given below. Find the 

inductances and indicate the dots for the coils.

L =
−

− −
−



















8 2 1

2 4 6

1 6 6

Frequently Asked Questions linked to LO 7
rrr10-7.1 What is the expression for the total induce. lance of the three series connected coupled coils shown 

in Fig. Q.1. [BPUT 2007]
M

12

M
12 M

13

L
1

L
2

L
3

L

Fig. Q.1
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10.9 PARALLEL CONNECTION OF COUPLED COILS

Consider two inductors with self-inductances L1 and L2 connected parallel which 

are mutually coupled with mutual inductance M as shown in Fig. 10.20.

Fig. 10.20

Let us consider Fig. 10.20 (a) where the self-induced emf in each coil assists the mutually induced emf as 

shown by the dot convention.

i 5 i1 1 i2

di

dt

di

dt

di

dt
= +1 2  (10.3)

The voltage across the parallel branch is given by

v L
di

dt
M

di

dt
L

di

dt
M

di

dt

L
di

dt
M

di

dt
L

di

= + +

+ =

1
1 2

2
2 1

1
1 2

2

 or 

Also, 22 1

1
1

2
2

dt
M

di

dt

di

dt
L M

di

dt
L M

+

−( )= −( )

 ∴ =
−( )
−( )

di

dt

di

dt

L M

L M

1 2 2

1

 (10.4)

Substituting Eq. (10.4) in Eq. (10.3), we get

di

dt

di

dt

L M

L M

di

dt

L M

L M
=

−( )
−( )

+
−( )
−

+














2 2

1

2 2

1

1  (10.5)

If Leq is the equivalent inductance of the parallel circuit in Fig. 10.20 (a) then v is given by

v L
di

dt

L
di

dt
L

di

dt
M

di

dt

di

dt L
L

di

dt
M

di

dt

eq

eq

eq

=

= +

= +






1
1 2

1
1 21 
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Substituting Eq. (10.4) in the above equation, we get

di

dt L
L

di L M

dt L M
M

di

dteq

=
−( )
−( )

+
















1
1

2 2

2

2

 =
−( )
−( )

+
















1
1

2

1

2

L
L

L M

L M
M

di

dteq

 (10.6)

Equating Eq. (10.6) and Eq. (10.5), we get

L M

L M L
L

L M

L M
M

eq

2

2
1

2

1

1
1−

−
+ =

−
−










+















Rearranging and simplifying the above equation results in

L
L L M

L L M
eq =

−
+ −
1 2

2

1 2 2

If the voltage induced due to mutual inductance opposes the self-induced emf in each coil as shown by the dot 

convention in Fig. 10.20 (b), the equivalent inductance is given by

L
L L M

L L M
eq =

−
+ +
1 2

2

1 2 2

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 8
rrr10-8.1 Find the source voltage if the voltage across 100 ohms is 50 V for the network in Fig. Q.1.

rrr10-8.2 Using PSpice, find V0 in the circuit shown in Fig. Q.2.

Fig. Q.1 Fig. Q.2

Frequently Asked Questions linked to LO 8
rrr10-8.1 A coil having an inductance of 100 mH is magnetically 

coupled to another coil having an inductance of 900 

mH. The coefficient of coupled between the coil is 

0.45. Calculate the equivalent inductance if the two coil 

are connected in (a) series opposing, and (b) parallel 

opposing. [AU May/June 2014]

rrr10-8.2 Find the voltage drop across the resistance “r” in the 

network shown in Fig. Q.2. [BPUT 2007]
rrr10-8.3 Two coils in differential connection have self-inductances 

of 2 mH and 4 mH and a mutual inductance of 0.15 mH. Fig. Q.2

12Ð0º

K = 0.6

16 W 12 W

r = 10 W

–15 W+

–
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What is the equivalent inductance? [BPUT 2008]
rrr L L

M

10.10 TUNED CIRCUITS

Tuned circuits are, in general, single-tuned and double-tuned. Double-tuned circuits 

are used in radio receivers to produce uniform response to modulated signals over 

a specified bandwidth; double-tuned circuits are very useful in a communication 

system.

10.10.1  Single Tuned Circuit

Consider the circuit in Fig. 10.21. A tank circuit (i.e. a parallel resonant circuit) on the secondary side is 

inductively coupled to the coil 1 which is excited by a source, vi. Let Rs be the source resistance and R1, R2 be 

the resistances of coils 1 and 2, respectively. Also let L1, L2 be the 

self inductances of the coils, 1 and 2, respectively.

Let Rs 1 R1 1 jvL1 5 Rs

with the assumption that Rs >> R1 >> jvL1 The mesh equations for 

the circuit shown in Fig. 10.21 are

i1Rs – jvMi2 5 vi

− + + −






 =j Mi R j L

j

C
iv v

v
1 2 2 2 0

i
R v

j M

R j M

j M R j L
j

C

s i
s

2
2 20

=
−

−

−( ) + −






v

v

v v
v

( )

i
jv M
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j

C
M

i

s
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=
+ −







+

v
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The output voltage v i
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o

o
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s

= ⋅

=
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v
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The voltage transfer function, or voltage amplification, is given by

v

v
A

M

C R R j L
C

M

o

i
s

= =

+ −


















 +












2 2

2 21
v

v
v
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When the secondary side is tuned, i.e. when the value of the frequency v is such that vL2 5 1/vC, or at 

resonance frequency vr, the amplification is given by

A
v

v

M

C R R M

o

i s r

= =
+



2

2 2v

The current  at resonance i i
jv M

R R M

i r

s r

2 2

2
2 2

=
+

v

v

Thus, it can be observed that the output voltage, current, and amplification depend on the mutual 

inductance M at resonance frequency, when M K L L= 1 2 .  The maximum output voltage or the maximum 

amplification depends on M. To get the condition for maximum output voltage, make dvo/dM 5 0.

dv

d M

d

d M

v M

C R R M

o i

s r

=
+





















2

2 2v

  5 1 2 2M 2 v2
r [RsR2 1 v2

rM
 2]21 5 0

From which, Rs R2 5 v2
r M

 2

or M
R Rs

r

= 2

v

From the above value of M, we can calculate the maximum output voltage. Thus,

v
v

C R R
oM

i

r s

=
2 2v

,

or the maximum amplification is given by

A
C R R

i
jv

R R
m

r s

i

s

= =
1

2 22

2

2v
 and 

The variation of the amplification factor or output voltage with the coefficient of coupling is shown in Fig. 

10.22.

Fig. 10.22
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EXAMPLE 10.10

Consider the single-tuned circuit shown in Fig. 10.23 and determine (a) the resonant frequency, (b) the output 

voltage at resonance, and (c) the maximum output voltage. Assume Rs >> vr L1, and K 5 0.9.

Fig. 10.23

Solution  M K L L=

= × × ×
=

− −

1 2

6 60 9 1 10 100 10

9

.

mH

(a) Resonance frequency

vr
L C

= =
× × ×− −

1 1

100 10 0 1 102
6 6.

 

=

=

= × =−

10

10

50 292

10

10
1 10

6

1

6
6

rad/sec

or kHz

he value of 

.

.f

L

r

rv 00 316.

Thus, the assumption that vr L1 < Rs is justified.

(b) Output voltage

v
Mv

C R R M
o

i

s r

=
+





=
× ×

× × +







−

−

2
2

6

6
6

9 10 15

0 1 10 10 10
10

10

v

.


× ×

















=

−
2

69 10

1 5. mV

(c) Maximum value of output voltage

v
v

C R R
oM

i

r s

=
2 2v
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=

× × ×

=

−

15

2
10

10
0 1 10 100

23 7

6
6.

. VvoM

10.10.2  Double-Tuned Coupled Circuits

Figure 10.24 shows a double-tuned transformer circuit involving two series resonant circuits.

Fig. 10.24

For the circuit shown in the figure, a special case where the primary and secondary resonate at the same 

frequency vr, is considered here,

i.e vr
L C L C

2

1 1 2 2

1 1
= =

The two mesh equations for the circuit are

v i R R j L
j

C
i j Min s= + + −










−1 1 1

1
2v

v
v

0 1 2 2 2
2

=− + + −










j Mi i R j L
j

C
v v

v

from which,
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v j M
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s
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1 1
1

2 2

1 1
=

+( )+ −






















+ −
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v
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Also,  at resonancevr
L C L C

= =
1 1

1 1 2 2

v
v M
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o in
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where A is the amplification factor given by

A
M

C R R R Ms r

=
+( ) +



2 1 2

2 2v

The maximum amplification or the maximum output voltage can be obtained by taking the first derivative 

of vo with respect to M, and equating it to zero.

 

∴ = =

= +( ) + − =

dv

dM

dA

dM

dA

dM
R R R M M

o

s r r

0 0

2 01 2
2 2 2 2

, or 

v v

 v2
r M

 2 5 R2(R1 1 Rs)

 
M

R R R
c

s

r

=
+( )2 1

v

where Mc is the critical value of mutual inductance. Substituting the value of Mc in the equation of vo, we 

obtain the maximum output voltage as

v
v

C M

v

C R R R

i
v

M

v

o
in

r c

in

r s

in

r c

in

= =
+( )

= =

2 2

2 2

2
2 2 2 1

2

v v

v
and       

RR R Rs2 1 +( )

By definition, M K L L= 1 2 ,  the coefficient of coupling, K at M 5 Mc is called the critical coefficient of 

coupling, and is given by K M L Lc c= / 2 1 .

The critical coupling causes the secondary current to have the maximum possible value. At resonance, the 

maximum value of amplification is obtained by changing M, or by changing the coupling coefficient for a given 

value of L1 and L2. The variation of output voltage with frequency for different coupling coefficients is shown 

in Fig. 10.25.

Fig. 10.25

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 9
rrr10-9.1 For the circuit shown in Fig. Q.1, find the ratio of output voltage to the input voltage.
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rrr10-9.2 Using PSpice, find I1 and I2 in the circuit shown in Fig. Q.2. Also calculate the power absorbed by the 

4 V resistor.

Fig. Q.2Fig. Q.1

rrr10-9.3 Using PSpice, find the Thevenin equivalent circuit for the circuit shown in Fig. Q.3 at a2b.

Fig. Q.3

rrr10-9.4 Solve for the currents I1 and I2 in the circuit shown. Also find the ratio of 
V

V

2

1

.
rrr10-9.5 For the coupled circuit shown in Fig. Q.5. Find Leq across xy.

Fig. Q.5

2Ω10 0°
L1 = 1H

L2 = 4H

ω = 2r/sec

V1

+

–

+

–

1Ω

V2

Frequently Asked Questions linked to LO 9
rrr10-9.1 Give the applications of tuned circuits. [AU May/June 2013]

rrr10-9.2 For the circuit shown in Fig. Q.2 determine the voltage 

ratio V1/V2. Which will make the current I1 equal to zero.

   [AU May/June 2014]
rrr10-9.3 Derive the expressions for maximum output voltage and 

maximum amplification of a single-tuned circuit.

   [AU April/May 2011]

rrr10-9.4 Explain in detail the following:  [RGTU June 2014]

 (a) Double-tuned circuit

 (b) Single-tuned air-core transformer

2 W
j 2 W

5 W

j 8 W j 4 W
V

1

I
1 I

2

V
2

Fig. Q.2
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10.11 ANALYSIS OF MAGNETIC CIRCUITS

The presence of charges in space or in a medium creates an electric field; similarly, 

the flow of current in a conductor sets up a magnetic field. Electric field is represented 

by electric flux lines, and magnetic flux lines are used to describe the magnetic field. 

The path of the magnetic flux lines is called the magnetic circuit. Just as a flow of current in the electric circuit 

requires the presence of an electromotive force, so the production of magnetic flux requires the presence of 

magneto-motive force (mmf ). We now discuss some properties related to magnetic flux.

  Flux Density (B)  The magnetic flux lines start and end in such a way that they form closed loops. 

Weber (Wb) is the unit of magnetic flux (f). Flux density (B) is the flux per unit area. Tesla (T) or Wb/m2 is 

the unit of flux density.

B
A

=
f

Wb/m   or  Tesla2

where B is a quantity called magnetic flux density in teslas, f is the total flux in webers, and A is the area 

perpendicular to the lines in m2.

  Magneto-motive force, MMF (  )  A measure of the ability of a coil to produce a flux is called the 

magneto-motive force. It may be considered as a magnetic pressure, just as emf is considered as an electric 

pressure. A coil with N turns which is carrying a current of I amperes constitutes a magnetic circuit and pro-

duces an mmf of NI ampere turns. The source of flux (f) in the magnetic circuit is the mmf. The flux produced 

in the circuit depends on mmf and the length of the circuit.

 Magnetic Field Strength (H)  The magnetic field strength of a circuit is given by the mmf per unit 

length.

 
H

l

NI

l
=

ℑ
= AT/ms

The magnetic flux density (B) and its intensity (field strength) in a medium can be related by the following 

equation

 B 5 mH

where m 5 m0 mr is the permeability of the medium in Henrys/metre (H/m),

 m0 5 absolute permeability of free space and is equal to 4p 3 10–7 H/m, and

and mr 5 relative permeability of the medium.

Relative permeability is a nondimensional numeric which indicates the degree to which the medium is a 

better conductor of magnetic flux as compared to free space. The value of mr 5 1 for air and nonmagnetic 

materials. It varies from 1,000 to 10,000 for some types of ferromagnetic materials.

  Reluctance ( )  It is the property of the medium which opposes the passage of magnetic flux. The 

magnetic reluctance is analogous to resistance in the electric circuit. Its unit is AT/Wb. Air has a much higher 

reluctance than does iron or steel. For this reason, magnetic circuits used in electrical machines are designed 

with very small air gaps.

According to definition, reluctance = 
mmf

flux

LO   10 
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The reciprocal of reluctance is known as permeance 
1

ℜ
=

ℑ
f

Thus, reluctance is a measure of the opposition offered by a magnetic circuit to the setting up of the flux. The 

reluctance of the magnetic circuit is given by ℜ=
1

m

l

a
. 

where l is the length, a is the cross-sectional area of the magnetic circuit and m is the permeability of the 

medium.

From the above equations,

1

1

1

1

1

m f

m

f

m

m

m

⋅ =
ℑ

ℑ
= ⋅

= ⋅

= ⋅

=

l

a

a

NI

l
B

H B

B

or

or H

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 10
rrr10-10.1 An iron ring has a mean diameter of 25 cm and a cross-sectional area of 4 cm2. It is wound 

with a coil of 1200 turns. An air gap of 1.5 mm width is cut in the ring. Determine the current 

required in the coil to produce a flux of 0.48 mwb in the air gap. The relative permeability of 

iron under this condition is 800. Neglect leakage.

Frequently Asked Questions linked to LO 10
rrr10-10.1 Find the net impedance the central mesh and then find the net input impedance of the circuit 

shown in Fig. Q.1. [BPUT 2007]
R

1
R

1

M
23

I
1 L

1 I
2L

2
L
3

L
4
I
3

R
3

M
12

Fig. Q.1

10.12 SERIES MAGNETIC CIRCUIT

A series magnetic circuit is analogous to a series electric circuit. Kirchhoff’s laws are applicable to magnetic 

circuits also. Consider a ring specimen having a magnetic path of l metres, area of cross section (A)m2 with a 

mean radius of R metres having a coil of N turns carrying I amperes wound uniformly as shown in Fig. 10.26. 

The mmf is responsible for the establishment of flux in the magnetic medium. This mmf acts along the 

magnetic lines of force.

LO 10
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The flux produced by the circuit is given by

f =
mmf

reluctance

The magnetic field intensity of the ring is given by 

H
l

NI

l
= = =

mmf
AT/m

where l is the mean length of the magnetic path and is given 

by 2pR.

Flux density  Wb/mB H
NI

l
r r= =m m m m0 0

2

 Flux f 5 mHA webers

 = ×

=

m m

m m

0

0

r

r

NI

l
A

NI

l A

Wb

Wbf 
/

NI is the mmf of the magnetic circuit, which is analogous to emf in electric circuit. l/m0 mr A is the reluctance 

of the magnetic circuit which is analogous to resistance in electric circuit.

10.13 COMPARISON OF ELECTRIC AND MAGNETIC CIRCUITS

Series electric and magnetic circuits are shown in Figs. 10.27 (a) and (b) respectively.

Figure 10.27 (a) represents an electric circuit with three resistances connected in 

series, the dc source E drives the current I through all the three resistances whose 

voltage drops are V1, V2 and V3. Hence, E 5 V1 1 V2 1 V3, also E 5 I (R1 1 R2 1 R3). 

We also know that R
l

=
ρ

2
,  where r is the specific resistance of the material, l is the length of the wire of the 

resistive material and a is the area of cross section of the wire.

Fig. 10.27

The drop across each resistor  V RI l
I

a
= = ρ

 
or =

V

l

I

a
ρ

Voltage drop per unit length 5 Specific resistance 3 Current density.

Let us consider the magnetic circuit in Fig. 10.27 (b). The MMF of the circuit is given by ℑ 5 NI, drives 

Fig. 10.26

LO   11 
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the flux f around the three parts of the circuit which are in series. Each part has a reluctance ℜ= ⋅
1

m

l

a
,  

where l is the length and a is the area of cross section of each arm. The mmf of the magnetic circuit is given 

by ℑ 5  ℑ1 1 ℑ2 1 ℑ3. ℑ 5 f(ℜ1 1 ℜ2 1 ℜ3) where ℜ1, ℜ2 and ℜ3 are the reluctances of the portions 1, 2, 

and 3 respectively.

Also  ℑ= ⋅ ⋅

ℑ
= ⋅

= ⋅

1

1

1

m
f

m

f

m

l

a

l a

H B.

1

m
 can be termed the reluctance of a cubic metre of magnetic material from which, the above equation 

gives the mmf per unit length (intensity) which is analogous to the voltage per unit length. Parallels between 

electric-circuit and magnetic-circuit quantities are shown in Table 10.1.

Thus, it is seen that the magnetic reluctance is analogous to resistance, mmf is analogous to emf, and flux 

is analogous to current. These analogies are useful in magnetic-circuit calculations. Though we can draw 

many parallels between the two circuits, the following differences do exists.

The electric current is a true flow but there is no flow in a magnetic flux. For a given temperature, r is 

independent of the strength of the current, but m is not independent of the flux.

In an electric circuit, energy is expended so long as the current flows, but in a magnetic circuit energy is 

expended only in creating the flux, and not in maintaining it. Parallels between the quantities are shown in 

Table 10.1.

Table 10.1 Analogy between magnetic and electric circuits

Electric circuit Magnetic circuit

Exciting force 5 emf in volts mmf in AT

Response 5 current in amps f lux in webers

Voltage drop 5 VI volts mmf drop 5 ℜf AT

Electric field density = volt/m
V

l
Magnetic field Intensity = AT/m

ℑ
1

Current AI
E

R
( )= Flux Webf( )= ℑ

R

Current density Amp/mJ
I

a
( )= 2

Flux density Web/mB
A

( )= f 2

Resistance ohmR
l

a
( )= ρ

Reluctance AT/Webℜ( )= ⋅
1

m

l

a

Conductance MhoG
R

( )= 1
Permeance = Web/AT

1

ℜ
= ⋅

m

m

a l

a
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NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 11
rr10.11.1 A steel ring of 25 cm mean diameter and of circular section of 3 cm in diameter has an air gap of 

1.5 mm length. It is wound uniformly with 700 turns of were carrying a current of 2 A. Calculate

  (a) magnetomotive force, (b) flux density, and (c) magnetic flux

Frequently Asked Questions linked to LO 11
r10-11.1 Contrast between magnetic circuits and electrical circuits. [JNTU Nov. 2012]

10.14 MAGNETIC LEAKAGE AND FRINGING

Figure 10.28 shows a magnetised iron ring with a narrow air gap, and the flux which 

crosses the gap can be regarded as useful flux. Some of the total flux produced by 

the ring does not cross the air gap, but instead takes a shorter route as shown in 

Fig. 10.28 and is known as leakage flux. The flux while crossing the air gap bulges 

outwards due to variation in reluctance. This is known 

as fringing. This is because the lines of force repel 

each other when passing through the air as a result the 

flux density in the air gap decreases. For the purpose of 

calculation, it is assumed that the iron carries the whole 

of the total flux throughout its length. The ratio of total 

flux to useful flux is called the leakage coefficient or 

leakage factor.

Leakage factor 5 Total flux/Useful flux.

EXAMPLE 10.11

A coil of 100 turns is wound uniformly over a insulator ring with a mean circumference of 2 m and a uniform 

sectional area of 0.025 cm2. If the coil is carrying a current of 2 A. Calculate (a) the mmf of the circuit, (b) 

magnetic field intensity, (c) flux density, and (d) the total flux.

Solution  (a) mmf 5 NI 5 100 3 2 5 2000 AT

 (b) H
I

= = =
mmf

AT/m
2000

2
1000

 (c) B 5 m0H 5 4p 3 10 –7 3 1000 5 1.2565 mWb/m2

 (d) f 5 B 3 A 51.2565 3 10–3 3 0.025 3 10 – 4 5 0.00314 3 10 – 6 Wb

EXAMPLE 10.12

Calculate the mmf required to produce a flux of 5 mWb across an air gap 

of 2.5 mm of length having an effective area of 100 cm2 of a cast steel ring 

of mean iron path of 0.5 m and cross-sectional area of 150 cm2 as shown 

in Fig. 10.29. The relative permeability of the cast steel is 800. Neglect 

leakage flux.

Solution  Area of the gap  5 100 3 1024 m2

Fig. 10.28

Fig. 10.29

LO   12 
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Flux density of the gap  = T
5 10 10

100
0 5

3 4× ×
=

−

.

H
B

of the gap = 
m p0

7

0 5

4 10
=

× −

.

  5 0.39 3 106 A/m

 Length of the gap 5 2.5 3 1023 m

mmf required for the gap 5 0.39 3 106 3 2.5 3 10–3 5 975 AT

Flux density in the cast steel ring is = 
Area

f

 

=
× ×

=

−5 10 10

100

0 333

3 4

. T

∴ = =
×

=
−

H
B

rm m p0
7

0 333

4 10 800
332

.
A T/m

Length of the cast steel path 5 0.5 m

The required mmf for the cast steel to produce the necessary flux 5 0.5 3 332  5 166 AT

Therefore, total mmf 5 975 1 166  5 1141 AT 

10.15 COMPOSITE SERIES CIRCUIT

Consider a toroid composed of three different magnetic materials of different 

permeabilities, areas and lengths excited by a 

coil of N turns.

With a current of I amperes as shown 

in Fig. 10.30. The lengths of sections AB, BC and CA are l1, l2 and l3 

respectively. Each section will have its own reluctance and permeability. 

Since all of them are joined in series, the total reluctance of the combined 

magnetic circuit is given by

ℜ =

= + +

Total

1

1

1 1

2

2 2

3

3 3

m

m m m

A

l

A

l

A

l

A

The flux produced in the circuit is given by   = 
mmf

Total reluctance
Wbf

 

∴ =
+ +























f

m m m

NI

l

A

l

A

l

A

1

1 1

2

2 2

3

3 3

 Wb

Fig. 10.30
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10.16 PARALLEL MAGNETIC CIRCUIT

We have seen that a series magnetic circuit carries the same flux and the total mmf required to produce a given 

quantity of flux is the sum of the mmf’s for the separate parts. In a parallel magnetic circuit, different parts 

of the circuit are in parallel. For such circuits the Kirchhoff’s laws, in their analogous magnetic form can be 

applied for the analysis. Consider an iron core having three limbs A, B, and C as shown in Fig. 10.31 (a). A 

coil with N turns is arranged around limb A which carries a current I amperes. The flux is produced by the 

coil in the limb A. fA is divided between limbs B and C and each equal to fA/2. The reluctance offered by the 

two parallel paths is equal to the half the reluctance of each path (Assuming equal lengths and cross-sectional 

areas). Similar to Kirchhoff’s current law in an electric circuit, the total magnetic flux directed towards a 

junction in a magnetic circuit is equal to the sum of the magnetic fluxes directed away from that junction. 

Accordingly fA 5 fB 1 fC or fA 2 fB2 fC  5 0. The electrical equivalent of the above circuit is shown in 

Fig. 10.31 (b). Similar to Kirchhoff’s second law, in a closed magnetic circuit, the resultant mmf is equal to the 

algebraic sum of the products of field strength and the length of each part in the closed path. Thus applying the 

law to the first loop in Fig. 10.31 (a), we get

 NI 5 HA lA 1 HB lB

or NI 5 fA ℜA 1 fB ℜB

The mmf across the two parallel paths is identical.

Therefore, NI is also equal to

 NI 5 fA ℜA 1 fC ℜC

Fig. 10.31

Frequently Asked Questions linked to LO 13

rrr10-13.1 Two coil with 300 turns and 700 turns are wound side by side on a closed magnetic circuit of area 

of 400 cm2 cross section and 80 cm mean length. The magnetic circuit has a relative permeability 

of 4000. Determine the mutual inductance, self-induced emf, and mutually induced emf when the 

current in the coil with 300 turns grows from zero to 25 A in a time of 0.3 second. [JNTU Nov. 2012]

Additional Solved Problems

PROBLEM 10.1

In the circuit shown in Fig. 10.32, write the equation for the voltages across the coils ab and cd; also mention 

the polarities of the terminals.

LO 13
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Fig. 10.32

Solution  Current i1 is only flowing in coil ab, whereas coil cd is open. Therefore, there is no current in coil 

cd. The emf due to self induction is zero on coil cd.

∴ =v t M
di t

dt
2

1( )
( )

  with C being positive

Similarly, the emf due to mutual induction in coil ab is zero.

∴ =v t L
di t

dt
1

1( )
( )

PROBLEM 10.2

In the circuit shown in Fig. 10.33, write the equation for the voltages 

v1 and v2. L1 and L2 are the coefficients of self-inductances of coils 

1 and 2, respectively, and M is the mutual inductance.

Solution  In the figure, a and d are like terminals.

Currents i1 and i2 are entering at dot-marked terminals.

v L
di t

dt

M di t

dt

v L
di t

dt

M di t

dt

1 1
1 2

2 2
2 1

= +

= +

( ) ( )

( ) ( )

PROBLEM 10.3

In Fig. 10.34, L15 4 H; L2 5 9 H, K 5 0.5, i1 5 5 cos (50 t 2 30°) A, i2 5 2 

cos (50 t 2 30°) A. Find the values of (a) v1; (b) v2, and (c) the total energy 

stored in the system at t 5 0.

Solution  Since the current in the coil ab is entering at the dot marked 

terminal, whereas in coil cd the current is leaving, we can write the 

equations as

v L
di

dt
M

di

dt

v M
di

dt
L

di

dt

M K L L

1 1
1 2

2
1

2
2

1 2 0 5 36 3

= −

=− +

= = =.

Fig. 10.33

Fig. 10.34
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(a) v
d

dt
t

d

dt
t

v

1

1

4 5 50 30 3 2 50 30

20 5

= −( )− −( )












= −

cos cos

[ sin (

° °

00 30 50 6 50 30 50

0

500 150 3501

t t

t

v

− ° × − − − °

=

= − =

) ] [ sin ( ) ]

at

V

(b) v
d

dt
t

d

dt
t

v

2

2

3 5 50 30 9 2 50 30

15

=− −( )



 + −( )





=− −

cos cos

[ sin

° °

(( ) ] [ sin ( ) ]50 30 50 18 50 30 50

0

375 450 752

t t

t

v

− ° × − − − °

=

=− + =

at

V

(c) The total energy stored in the system

W t L i t L i t M i t i t( )= [ ] + [ ] − [ ]1

2

1

2
1 1

2

2 2

2

1 2( ) ( ) ( ) ( )

   

= × −[ ] + × −[ ]

− − °

1

2
4 5 50 30

1

2
9 2 50 30

3 5 50 30

2 2
cos ( ) cos ( )

[ cos ( )

t t

t

° °

×× − °

= =

2 50 30

0 28 5

cos ( )]

( ) .

t

t W tat j

PROBLEM 10.4

For the circuit shown in Fig. 10.35, write the mesh equations.

Fig. 10.35

Solution  There exists mutual coupling between coils 1 and 3, and 2 and 3. Assuming branch currents i1, i2, 

and i3 in coils 1, 2, and 3, respectively, the equation for mesh 1 is

v 5 v1 1 v2

v 5 i1 j2 2 i3 j4 1 i2 j4 2 i3 j6 (10.7)

j4i3 is the mutual inductance drop between coils 1 and 3, and is considered negative according to dot 

convention and i3 j6 is the mutual inductance drop between coils 2 and 3.
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For the second mesh, 0 5 2 v2 1 v3

  5 2 ( j4i2 2 j6i3) 1 j3i3 2 j6i2 2 j4i1 (10.8)

  5 2 j4i1 2 j10i2 1 j9i3 (10.9)

 i1 5 i3 1 i2

PROBLEM 10.5

Calculate the effective inductance of the circuit shown in Fig. 10.36 

across terminals a and b.

Solution  Let the current in the circuit be i.

v
di

dt

di

dt

di

dt

di

dt
= − + −8 4 10 4

+ + +5 6 5
di

dt

di

dt

di

dt

r
di

dt

di

dt
v34 8 26−[ ]= =

Let L be the effective inductance of the circuit across ab. Then the voltage across ab v L
di

dt

di

dt
= = = 26

Hence, the equivalent inductance of the circuit is given by 26 H.

PROBLEM 10.6

For the circuit shown in Fig. 10.37, find the ratio of output 

voltage to the source voltage.

Solution  Let us consider i1 and i2 as mesh currents in the 

primary and secondary windings.

As the current i1 is entering at the dot-marked terminal, 

and current i2 is leaving the dot-marked terminal, the sign of 

the mutual inductance is to be negative. Using Kirchhoff’s 

voltage law, the voltage equation for the first mesh is

i1(R1 1 jvL1) 2 i2  jvM 5 v1

i1(10 1 j500) 2 i2  j250 5 10 (10.10)

Similarly, for the second mesh,

i2(R2 1 jvL2) 2 i1 jvM 5 0

i2(400 1 j5000) 2 i1 j250 5 0 (10.11)

i

j

j

j j

j j

2

10 500 10

250 0

10 500 250

250 400 5000

=

+( )
−

+( ) −
− +( )

Fig. 10.36

Fig. 10.37
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i2 5 0.00102 ∠284.13°

v2 5 i2 3 R2

  5 0.00102 ∠284.13° 3 400

  5 0.408 ∠284.13°

v

v

v

v

2

1

2

1

3

0 408

10
84 13

40 8 10 84 13

= ∠−

= × ∠−−

.
.

. .

°

°

PROBLEM 10.7

Calculate the effective inductance of the circuit shown in Fig. 10.38 

across AB.

Solution  The inductance matrix is

L L L

L L L

L L L

11 12 13

21 22 23

31 32 33

5 0 2

0 6 3

2 3 17


















=

−
−

− −



















From KVL, v 5 v1 1 v2 (10.12)

and v2 5 v3 (10.13)

from KCL, i1 5 i2 1 i3 (10.14)

v

v

v

di dt

di dt

d

1

2

3

1

2

5 0 2

0 6 3

2 3 17


















=

−
−

− −



















/

/

ii dt3 /



















 v
di

dt

di

dt
1

1 35 2= −  (10.15)

and v
di

dt

di

dt
2

2 36 3= −  (10.16)

 v
di

dt

di

dt

di

dt
3

1 2 32 3 17=− − +  (10.17)

From Eq. (10.12), we have

v 5 v1 1 v2

Fig. 10.38
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= − + −5 2 6 31 3 2 3di

dt

di

dt

di

dt

di

dt

 v
di

dt

di

dt

di

dt
= + −5 6 51 2 3  (10.18)

From Eq. (10.14),

di

dt

di

dt

di

dt

1 2 3= +  (10.19)

Substituting Eq. (10.19) in Eq. (10.17), we have

v
di

dt

di

dt

di

dt

di

dt
3

2 3 2 32 3 17=− +











−












+













or − + =5
di

dt

di

dt
v2 3

315  (10.20)

Multiplying Eq. (10.16) by 5, we get

30 15 52 3
2

di

dt

di

dt
v− =  (10.21)

Adding Eqs (10.20) and (10.21), we get

25 5

25 6

6

2
3 2

2
2

3 3

di

dt
v v

di

dt
v

v v v

= +

=

= =, since 2

or v
di

dt
2

225

6
=

From Eq. (10.16),

25

6
6 3

18

11

2 2 3

2 3

di

dt

di

dt

di

dt

di

dt

di

dt

= −

=from which

From Eq. (10.19),

di

dt

di

dt

di

dt

di

dt

1 2 2 211

18

29

18
= + =
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Substituting the values of  and
di

dt

di

dt

2 3  in Eq. (10.18) yields

v
di

dt

di

dt

di

dt

di

dt

di

dt

d

= + −

= + −

5 6
18

29
5

11

18

5
108

29

55

18

18

29

1 1 2

1 1 ii

dt

v
di

dt

di

dt

1

1 1198

29
6 827= = .

∴ equivalent inductance across AB 5 6.827 H

PROBLEM 10.8

Write the mesh equations for the network shown in Fig. 10.39.

Solution  The circuit contains three meshes. Let us assume 

three loop currents i1, i2 and i3.

For the first mesh,

5i1 1 j3(i1 2 i2) 1 j4(i3 2 i2) 5 v1 (10.22)

The drop due to self-inductance is j3(i1 2 i2) is written by considering the current (i1  2  i2) entering at 

dot-marked terminal in the first coil, j4(i3 2 i2) is the mutually induced voltage in coil 1 due to current (i3 2 

i2) entering at dot-marked terminal of the coil 2.

Similarly, for the second mesh,

j3(i2 2 i1) 1 j5(i2 2 i3) 2 j2i2 1 j4(i2 2 i3) 1 j4(i2 2 i1) 5 0 (10.23)

j4(i2 2 i1) is the mutually induced voltage in the coil 2 due to the current in the coil 1, and j4(i2 2 i3) is the 

mutually induced voltage in the coil 1 due to the current in the coil 2.

For the third mesh,

3i3 1 j5(i3 2 i2) 1 j4(i1 2 i2) 5 0 (10.24)

Further simplification of Eqs (10.22), (10.23), and (10.24) leads to

(5 1 j3)i1 2 j7i2 1 j4i3 5 v1 (10.25)

  2 j7i1 1 j14i2 2 j9i3 5 0 (10.26)

 j4i1 2 j9i2 1 (3 1 j5)i3 5 0 (10.27)

PROBLEM 10.9

The inductance matrix for the circuit of three series connected 

coupled coils is given in Fig. 10.40. Find the inductances, and 

indicate the dots for the coils.

L =
−

− −
−



















4 4 1

4 2 3

1 3 6

All elements are in henries.

Fig. 10.39

Fig. 10.40
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Solution  The diagonal elements (4, 2, 6) in the matrix represent 

the self-inductances of the three coils 1, 2, and 3, respectively. 

The second element in the first row (24) is the mutual inductance 

between coils 1 and 2, the negative sign indicates that the current 

in the first coil enters the dotted terminal, and the current in 

the second coil enters at the undotted terminal. Similarly, the 

remaining elements are fixed. The values of inductances and the 

dot convention is shown in Fig. 10.41.

PROBLEM 10.10

Find the voltage across the 10 V resistor for the network 

shown in Fig. 10.42.

Solution  From Fig. 10.42, it is clear that

v2 5 i2 10 (10.28)

Mesh equation for the first mesh is

j4i1 2 j15 (i1 2 i2) 1 j3i2 5 10 ∠0°

  2 j11i1 1 j18i2 5 10 ∠0° (10.29)

Mesh equation for the second mesh is

j2i2 1 10i2 2 j15(i2 2 i1) 1 j3i1 5 0

 j18i1 2 j13i2 1 10i2 5 0

 j18i1 1 i2(10 2 j13) 5 0 (10.30)

Solving for i2 from Eqs (10.29) and (10.30), we get

i
j

j

j j

j j
2

11 10 0

18 0

11 18

18 10 3

180 90

29

=
− ∠











−
−













=
− ∠

°

°

11 110

180 90

311 20 70
0 578 110 7

−

=
− ∠

∠
=− ∠

j

°

°
°

.
. .

∴ v2 5 i2 10 5 25.78 ∠110.7°

 |v2| 5 5.78

Fig. 10.41

Fig. 10.42
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PROBLEM 10.11

The resonant frequency of the tuned circuit shown in Fig. 

10.43 is 1000 rad/sec. Calculate the self- inductances of the 

two coils and the optimum value of the mutual inductance.

Solution  From Section 10.7, we know that

v

v

v

r

r

r

L C L C

L
C

L
C

2

1 1 2 2

1 2
1

2 6

2 2
2

1 1

1 1

1000 1 10
1

1 1

1000

= =

= =
( ) ×

=

= =
(

−
H

)) × ×
=

−2 62 10
0 5. H

Optimum value of the mutual inductance is given by

M
R R

r
optimum = 1 2

v

where R1 and R2 are the resistances of the primary and secondary coils

M = =
15

1000
3 87. mH

PROBLEM 10.12

The tuned frequency of a double-tuned circuit shown in Fig. 10.44 is 10  4 rad/s. If the source voltage is 2 V 

and has a resistance of 0.1 V, calculate the maximum output voltage at resonance if R1 5 0.01 V, L1 52 mH; 

R2 5 0.1 V, and L2 5 25 mH.

Fig. 10.44

Solution  The maximum output voltage  v
v

C M

i

r c

0 2
22

=
v

Fig. 10.43
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where Mc is the critical value of the mutual inductance given by

M
R R R

M

c

s

r

c

r

=
+( )

=
+( )

=

2 1

4

2

0 1 0 01 0 1

10
10 48

v

m

v

. . .
. H

At resonance,  ==

= =
( ) × ×

= ×

=
( ) × ×

−

−

1

1 1

10 25 10

0 4 10

2

2 10 0 4

2 2

2 2
2

4
2

6

3

0
4

2

L C

C
L

v

rv
.

.

F

110 10 48 10

2 385

3 6− −× ×

=

.

. V

PROBLEM 10.13

An iron ring of 10 cm diameter and 15 cm2 cross section is wound with 250 turns of wire for a flux density 

of 1.5 Web/m2 and permeability 500. Find the exciting current, the inductance and stored energy. Find 

corresponding quantities when there is a 2 mm air gap.

Solution  (a) Without air gap

Length of the flux path 5 pD 5 p 3 10 5 31.41 cm

  5 0.3141 m

Area of flux path 5 15 cm2 5 15 3 10 24 m2

mmf 5 A.T

 

A
T

H
B

r

=

= =
× ×

=
−

mmf

m m p0
7

1 5

4 10 500
2387

.

 mmf 5 H 3 l 5 2387 3 0.3141 5 750 AT

Exciting current  
mmf

A

Reluctance  

= = =

= =

T

Ar

750

250
3

1 0 314

0m m

. 11

4 10 500 15 10

333270

7 4p − −× × ×

=

Self-inductance  
Reluctance

H

Energy 

= =
( )

=
N 2 2

250

333270
0 1875.

== = × ×( )

=

 

joules

1

2

1

2
0 1875 3

0 843

2 2
LI .

.
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(b) With air gap

Reluctance of the gap = =
×

× × ×

= ×

−

− −
 

A/Wb

1 2 10

4 10 15 10

1 06 10

0

3

7 4

6

m pA

.

 Total reluctance 5 (0.333 1 1.06) 106 5 1.393 3 106 A/Wb

 mmf 5 f 3 reluctance

  5 1.5 3 15 3 1024 3 1.393 3 106

  5 3134 AT

Exciting current  A= =

=
ℜ

=
( )

×
=

3134

250
12 536

250

1 393 10
44

2 2

6

.

.
L

N
..8mH

 
Energy  

joules

=

= × × ×( )

=

−

1

2

1

2
44 8 10 12 536

3 52

2

3 2

LI

. .

.

PROBLEM 10.14

A 700-turn coil is wound on the central limb of the cast steel 

frame as shown in Fig. 10.45. A total flux of 1.8 m Wb is required 

in the gap. What is the current required? Assume that the gap 

density is uniform and that all lines pass straight across the gap. 

All dimensions are in centimeters. Assume mr as 600.

Solution  Each of the side limbs carry half the total flux as their 

reluctances are equal.

Total mmf required is equal to the sum of the mmf required for gap, central limb and side limb.

Reluctance of gap and central limb are in series and they carry the same flux.

Air Gap

 fg 5 1.8 3 1023 Wb

 Ag 5 4 3 4 3 1024 m2

B

H
B

g

g

g

=
×

×
=

= =
×

= ×

−

−

−

1 8 10

16 10
1 125

1 125

4 10
8 95 10

3

4

2

0
7

5

.
.

.
.

Wb/m

m p
AAT/m

Required mmf for the gap 5 Hg lg

  5 8.95 3 105 3 0.001 5 895 AT

Fig. 10.45
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Central Limb

 fc 5 1.8 3 1023 Wb

 Ac 5 4 3 4 3 1024 m2

 Bc 5 1.125 Wb/m2

H
B

c
c

r

= =
× ×

=
−m m p0

7

1 125

4 10 600
1492

.
AT/m

Required mmf for central limb 5 Hc lc

  5 1492 3 0.24 5 358 AT

Side Limb

 

fs = ×

× × = ×− −

1

2

1

2
1 8 10 0 9 103 3

flux in central limb

= Wb. .

sB =
×0 9 1. 00

16 10
0 5625

0 5625

4 10 600
746

3

4

2

0
7

−

−

−

×
=

= =
× ×

=

.

.

Wb/m

AT/mH
B

s
s

rm m p

Required mmf for side limb 5 Hs ls

  5 746 3 0.6 5 447.6 ≅ 448

Total mmf 5 895 1 358 1 448 5 1701 AT

Required current  = A
1701

700
2 43= .

PROBLEM 10.15

Determine i1(t) and i2(t) in the circuit shown in Fig. 10.46. if L1 5 0.4 H; 

L2 5 0.4 H; v1 5 15 sin t and M 5 0.2 H.

Solution 
v L

di

dt
M

di

dt

t
di

dt

di

dt

M
di

dt
L

di

dt

1 1
1 2

1 2

1
2

2

15 0 4 0 2

0

= −

= −

=− +

sin . .

00 2 0 4

2

15 0 4 2 0 2

1 2

1 2

2 2

. .

. .

di

dt

di

dt

di

dt

di

dt

t
di

dt

di

dt

=

=

= × −sin

Fig. 10.46
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15ssin

sin

cos

t
di

dt
di

dt
t

i t t dt t

i t

t
t

=

=

= =−∫

0 6

25

25 25

2

2

2 0
0

2

.

( ) sin ]

( )) ( )

( )
( ) ( ) ( )

= −

= ⇒ = = −

25 1

2 2 50 11 2
1 2

cos

cos

t

di

dt

di t

dt
i t i t t

PROBLEM 10.16

Obtain V1(t) and V2(t) at t 5 2 s for the circuit shown in Fig. 10.47. 

If L1 5 0.5 H; L2 5 0.125 H; M 5 0.2 H.

Solution   V t L
di t

dt
M

di t

dt

d

dt
te

d

dt
t et t

1 1
1 2

2 20 5 0 2

0 5

( )
( ) ( )

. ( ) . ( )

.

= +

= +

=

− −

tt e e t e tet t t t( ) . ( )− +



 + − +





− − − −2 0 2 1 22 2 2

At t 5 2 s,

  

V t e e e e1
4 4 2 2 20 5 2 2 0 2 2 1 2 2

0 4056

( ) . ( ) . ( ) ( )

.

= − +



 + − +





=

− − − −

voolts

Similarly, 2V t L
di t

dt
M

di t

dt
d

dt
t e

d

d

t

( )
( ) ( )

. ( ) .

= +

= +−

2
2 1

20 125 0 2
tt

te t( )−2

 
V t te t e e tet t t t

2
2 2 20 125 2 0 2 2( )=− −[ ]+ −[ ]− − − −. .

At t 5 2 s,

 

V e e e e2
2 2 2 2 2 2 22 0 125 2 2 2 0 2 2 2

0 01

( )=− ( ) −[ ]+ − ( ) 

=−

− − − ( ) − ( )
. .

. 0098 volts

PROBLEM 10.17

For the coupled circuit shown in Fig. 10.48, obtain i1(t), i2(t) when the switch is closed at t 5 0 using Laplace 

transform.

Fig. 10.47
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Fig. 10.48

Solution  Applying KVL for the first loop when the switch is closed at t 5 0,

 
1 1 1

1 2= + −Ri t L
di t

dt
M

di t

dt
( )

( ) ( )

Taking Laplace transform of the above equation with zero initial conditions,

1

1
1 2

1 1 2

1 2

S
I S R L S MSI S

S
I S S SI S

= ( ) +[ ]− ( )

= ( ) +[ ]− ( )  (10.31)

KVL for the second loop

0 2 2
2 1= + −Ri t L

di t

dt
M

di t

dt
( )

( ) ( )

Taking Laplace transform,

= ( )+ ( )− ( )

=− ( )+ +( ) ( )
RI S L SI S MSI S

MSI S R L S I S

2 2 2 1

1 2 2

Substituting the values,

0 2 1 4

1 4

2

1 2

1 2

=− ( )+ +( ) ( )

( )= ( ) +
SI S S I S

I S I S
S

S
 (10.32)

Substituting in Eq. (10.31),

 

1

S
S

S

S
I S SI S

S
I S

S

S
S S

= +( ) +( )
( )− ( )

= ( ) +( )
+( )−









1
1 4

2
2

1 1

2
1 4 2

2 2

2




= ( ) + + + −











1 1 4 4 4

2
2

2 2

S
I S

S S S S

S
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from which

and

I S
S

I S I S
S

S

S

S

S

2

1

( )=
+

( )= ( ) +( )

=
+( )

+( )

2

1 5

1 4

2

2

1 5

1 4

2

2

II S
S

S S S S S
S

1

1 4

1 5

1 1

1 5

1 1

5
1

5

( )=
+
+( )

= −
+

= −
+









Taking inverse Laplace transform of the above equation,

i t t e

I S
S

S

i t e

t

t

1
5

2

2
5

1

5

2

1 5

2 5

1

5

2

5

( )

( )

/

( )

/= −

=
+

=
+









= ⋅

−

−

PROBLEM 10.18

An iron ring has a mean circumferential length of 60 cm and a uniform winding of 300 turns. An air gap 

has been made by a saw cut across the section of the ring. When a current of 1 A flows through the coil, the 

fluxdensity in the air gap is found to be 0.126 m web/m2. How long is the air gap? Assume iron has a relative 

permeability of 300. Also calculate the reluctance.

Solution  Mean circumferential length 5 60 cm

  5 0.6 m

2pr 5 0.6 m

 r 5 0.09549 m

Given N 5 300; I 5 1 A; AT 5 300

Cross-sectional area 5 pr2 5 0.02864 m2

Reluctance =

AT/wb

R
l

am p
=

× × ×
=

−

0 6

4 10 300 0 02864

55570 86

7

.

.

.

Total ampere turns 5 Ampere turns of gap 1 Ampere turns of iron path
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AT AT AT

B l B l
I

g i

g g i i

r
g

= +

= +

=

300

300
0 1

0 0m m m
where -length of air gap

. 226 10

4 10

0 126 10 0 6

4 10 300

3

7

3

7

×

×
+

× −( )
× ×

−

−

−

−

l l
g g

p p

. .

from which metreslg = =
90 345

299
0 3021

.
.

PROBLEM 10.19

Calculate the current to be passed through the coil ‘C’ having 500 turns so that a flux of 1 m is produced 

in the air gap in the Fig. 10.49 shown the core is of square cross section over the entire length and has 

permeability of 800.

8 cm4 cm

4 cm

4
 c

m

24 cm

I

8 cm

10 cm

10 cm

1 mm

10 cm 10 cm

Fig. 10.49
.

Solution  Total flux =
total mmf

total reluctance

Given figure can be considered as different sections

 

∴ =
+ +

f

m m m

mmf

l

A

l

A

l

A

1

1 1

2

2 2

3

3 3

1 10
3 500

20 20 10
2

800 4 10
7

16 10
4

20 8 10
2

800

× − =
×

+ × −

× × − × × − +
+ × −( ) ( )

I

p ×× × − × × − +
× −

× − × × −
4 10

7
64 10

4

1 10
3

4 10
7

64 10
4

p p

=
× × × −

+ +

=
× × −

=

I

I

I

500 4 0 7

0 3125 0 05459 2 5

6283 10 7

2 867

4 563

p 1

. . .

.

. A
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PSpice Problems

PROBLEM 10.1

Using PSpice, calculate the effective inductance of the 

circuit shown in Fig. 10.50 across AB.

* CALCULATION OF EFFECTIVE INDUCTANCE

IS 0 1 AC 1 0

L1 1 

  2

   5

L2 2 0 6

L3 2 3 8

L4 3 4 9

R4 01 UOHM

K23 L2 L3 20.433

K13 L1 L3 20.316

.AC LIN 1 50 50

.PRINT AC VM(1) VP(1)

.END

**** AC ANALYSIS TEMPERATURE 5 27.000 DEG C

****************************************************************

FREQ VM(1) VP(1)

5.000E 1 01 2.145E 1 03 9.000E 1 01

Result

ZEFF 5 XEFF 5 V(1)/IS 5 2145∠90/1∠0 5 j2145

LEFF 5 j2145/(2pf ) 5 6.828 H

Inject 1∠0 current to AB.

After obtaining the driving point impedance across AB, Leff can be calculated.

PSpice will not allow a pure inductor to connect across a voltage source. Hence, inductor voltage source 

loop is to be breaked with a small negligible resistance.

Fig. 10.50



Coupled Circuits 463 

PROBLEM 10.2

Using PSpice, for the circuit shown in Fig. 10.51, find the ratio of output voltage to input voltage.

Fig. 10.51

fz =

=

v

p2

7 958. Hz

K
M

L L
12

1 2

5

10 100
0 158= =

×
= . H.

* CALCULATION OF VO / VI

VS 1 0 AC 10 0

R1 1 2 10

L1 2 0 10 H

L2 3 0 100 H

K12 L1 L2 0.158H

R2 3 0 400

.AC LIN 1 7.958 7.958

.PRINT AC VM(R2) VP(R2)

.END

**** AC ANALYSIS TEMPERATURE 5 27.000 DEG C

****************************************************************

 FREQ VM(R2) VP(R2)

7.958E 1 00 4.085E 2 01 28.413E 1 01

Result

V2 / V1 5 0.4085 ∠284.13/10 ∠0 5 0.04085 ∠284.13 5 40.85m ∠284.13
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ANSWERS TO PRACTICE PROBLEMS

10-2.3 L 5 13 H

10-2.4 L =
2

3
M

10-2.5 Leq =
1

3
H

10-3.1 v L
di

dt
M

di

dt
v

di

dt
M

di

dt
1 1

1 2
2

2 1= + +;

10-5.1 v1 5 181.44 cos (40t 2 30°)

 v2 5 202.88 cos (40t 2 30°)

10-6.1 2 5 2

5 4 0

2 0 6

−

−



















10-8.1 1 ∠290 V

10-9.4 I1 5 6.75 2 j0.54; I2 5 23.243 2j0.54 

 

V

V

2

1

0 657 170 537= − °. .

10-9.5 L L
M

L
eq = −









1

2

2

H

10-10.1 299.6 A

10-11.1 (i)  MMR 5 1400 AT  (ii) B 5 1.120 AT  

(iii) f 5 0.784 mweb

Objective-Type Questions

rrr10.1 Mutual inductance is a property associated with

 (a) only one coil

 (b) two or more coils

 (c) two or more coils with magnetic coupling

rrr10.2 Dot convention in coupled circuits is used

 (a) to measure the mutual inductance

 (b) to determine the polarity of the mutually induced voltage in coils

 (c) to determine the polarity of the self induced voltage in coils

rrr10.3 Mutually induced voltage is present independently of, and in addition to, the voltage due to self-induction.

 (a) true (b) false

rrr10.4 Two terminals belonging to different coils are marked identically with dots, if for the different direction  

of current relative to like terminals the magnetic flux of self and mutual induction in each circuit add 

together.

 (a) true (b) false

rrr10.5 The maximum value of the coefficient of coupling is

 (a) 100% (b) more than 100% (c) 90%

rrr10.6 The case for which the coefficient of coupling K 5 1 is called perfect coupling is

 (a) true (b) false

rrr10.7 The maximum possible mutual inductance of two inductively coupled coils with self-inductances L1 5 25 

mH and L2 5 100 mH is given by

 (a) 125 mH (b) 75 mH (c) 50 mH
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rrr10.8 The value of the coefficient of coupling is more for aircored coupled circuits compared to the iron core 

coupled circuits.

 (a) true (b) false

rrr10.9 Two inductors are connected as shown in Fig. 10.52. What is the value of the effective inductance of the 

combination?

 (a) 8 H (b) 10 H (c) 4 H

Fig. 10.52

rrr10.10 Two coils connected in series have an equivalent inductance of 3 H when connected in aiding. If the self-

inductance of the first coil is 1 H, what is the self inductance of the second coil (Assume M 5 0.5 H)

 (a) 1 H (b) 2 H (c) 3 H

rrr10.11 For Fig. 10.53 shown below, the inductance matrix is given by

 (a) 2 3 1

3 1 2

1 2 3



















 (b) 2 3 1

3 1 2

1 2 3

−
− −

−



















 (c) 2 3 1

3 1 2

1 2 3

−
−



















Fig. 10.53

For interactive quiz with answers,
scan the QR code given here
OR
visit
http://qrcode.flipick.com/index.php/268



11.1 STEADY STATE AND TRANSIENT RESPONSE

A circuit having constant sources is said to be in steady state if the currents 

and voltages do not change with time. Thus, circuits with currents and voltages 

having constant amplitude and constant frequency, sinusoidal functions are also 

considered to be in a steady state. That means that the amplitude or frequency of 

a sinusoid never changes in a steady state circuit.

In a network containing energy storage elements, with change in excitation, the currents and voltages change 

from one state to another state. The behaviour of the voltage or current when it is changed from one state to 

another is called the transient state. The time taken for the circuit to change from one steady state to another 

steady state is called the transient time. The application of KVL and KCL to circuits containing energy storage 

elements results in differential, rather than algebraic, equations. When we consider a circuit containing storage 

elements which are independent of the sources, the response depends upon the nature of the circuit and is called 

the natural response. Storage elements deliver their energy to the resistances. Hence, the response changes with 

time, gets saturated after some time, and is referred to as the transient response. When we consider sources 

acting on a circuit, the response depends on the nature of the source or sources. This response is called forced 

response. In other words, the complete response of a circuit consists of two parts: the forced response and the 

transient response. When we consider a differential equation, the complete solution consists of two parts: the 

complementary function and the particular solution. The complementary function dies out after a short interval, 

and is referred to as the transient response or source free response. The particular solution is the steady state 

response, or the forced response. The first step in finding the complete solution of a circuit is to form a differential 

equation for the circuit. By obtaining the differential equation, several methods can be used to find out the 

complete solution.

11

LEARNING OBJECTIVES

LO   1 
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NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 1*
rrr11-1.1 What do you understand by transient and steady-state parts of response? How can they be 

identified in a general solution?

Frequently Asked Questions linked to LO 1*
rrr11-1.1 Distinguish between natural and forced response. [AU May/June 2013]
rrr11-1.2 What is free and forced response? [AU May/June 2014]
rrr11-1.3 What is natural response? [RGTU June 2014]
rrr11-1.4 What do you mean by forced response? [RGTU June 2014]

11.2 DC RESPONSE OF AN R-L CIRCUIT

Consider a circuit consisting of a resistance and inductance as shown in 

Fig. 11.1. The inductor in the circuit is 

initially uncharged and is in series with 

the resistor. When the switch S is closed, 

we can find the complete solution for the 

current. Application of Kirchhoff’s voltage 

law to the circuit results in the following differential equation.

 V Ri L
di

dt
= +  (11.1)

 or
di

dt

R

L
i

V

L
+ =  (11.2)

In the above equation, the current i is the solution to be found and V is the applied constant voltage. The 

voltage V is applied to the circuit only when the switch S is closed. The above equation is a linear differential 

equation of first order. Comparing it with a non-homogeneous differential equation

dx

dt
Px K+ =  (11.3)

whose solution is

x e Ke dt cept Pt Pt= +− + −∫  (11.4)

where c is an arbitrary constant. In a similar way, we can write the current equation as

i ce e
V

L
e dt

R L t R L t R L t= +−( ) −( ) ( )∫/ / /

 ∴ i ce
V

R

R L t= +−( )/
 (11.5)

To determine the value of c in Eq. (11.5), we use the initial conditions. In the circuit shown in Fig. 11.1, 

the switch S is closed at t 5 0. At t 5 02, i.e. just before closing the switch S, the current in the inductor is 

LO   2 

Fig. 11.1

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600

*Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category
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zero. Since the inductor does not allow sudden changes in currents, at t 5 0 just after the switch is closed, 

the current remains zero.

Thus, at t 5 0, i 5 0

Substituting the above condition in Eq. (11.5), we have

0 = +

= −

c
V

R

c
V

R
Hence,                    

Substituting the value of c in Eq. (11.5), we get

i
V

R

V

R

R

L
t= − −







exp

i
V

R

R

L
t= − −

















1 exp  (11.6)

Equation (11.6) consists of two parts, the steady state part V/R, 

and the transient part (V/R)e– (R/L)t. When the switch S is closed, the 

response reaches a steady-state value after a time interval as shown 

in Fig. 11.2.

Here, the transition period is defined as the time taken for the 

current to reach its final or steady state value from its initial value. 

In the transient part of the solution, the quantity L/R is important 

in describing the curve since L/R is the time required for the 

current to reach from its initial value of zero to the final value 

V/R. The time constant of a function 
V

R
e

R

L
t−








 is the time at which 

the exponent of e is unity, where e is the base of the natural logarithms. The term L/R is called the time 

constant and is denoted by t

 ∴ t =
L

R
sec

∴ the transient part of the solution is

 

i
V

R

R

L
t

V

R
e t= − −







 = −exp /t

At one TC, i.e. at one time constant, the transient term reaches 36.8 percent of its initial value.

i
V

R
e

V

R
e

V

R

t( ) ./t t= − = − = −− −1 0 368

Similarly,

i
V

R
e

V

R

i
V

R
e

V

R

i
V

R
e

( ) .

( ) .

( )

2 0 135

3 0 0498

5 0

2

3

5

t

t

t

= − = −

= − = −

= − = −

−

−

− ..0067
V

R

Fig. 11.2
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After 5 TC, the transient part reaches more than 99 percent of its final value.

In Fig. 11.1, we can find out the voltages and powers across each element by using the current.

Voltage across the resistor is

∴ 

v Ri R
V

R

R

L
t

v V
R

L
t

R

R

= = × − −




















= − −







1

1

exp

exp 












Similarly, the voltage across the inductance is

   v L
di

dt
L =

           
L

V

R

R

L

R

L
t V

R

L
t= × −







 = −







exp exp

The responses are shown in Fig. 11.3.

Power in the resistor is

p v i V
R

L
t

R

L
tR R= = − −

















 − −







1 1exp exp 











= − −






+ −








V

R

V

R

R

L
t

R

L
t

2

1 2
2

exp exp 










Power in the inductor is

  

p v i V
R

L
t

V

R

R

L
tL L= = −







× − −

















exp exp1 

= −






− −



















V

R

R

L
t

R

L
t

2 2
exp exp

The responses are shown in Fig. 11.4.

EXAMPLE 11.1

A series RL circuit with R 5 30 V and L  5 15 H has a constant 

voltage V 5 60 V applied at t 5 0 as shown in Fig. 11.5. Determine 

the current i, the voltage across resistor and the voltage across the 

inductor.

Solution  By applying Kirchhoff’s voltage law, we get

15 30 60

2 4

di

dt
i

di

dt
i

+ =

∴ + =

Fig. 11.3

Fig. 11.4

Fig. 11.5
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The general solution for a linear differential equation is

i ce e Ke dtPt Pt Pt= +− − ∫
where P 5 2, K 5 4

 ∴ = +− − ∫i ce e e dtt t t2 2 24

 ∴ i 5 ce22t  2

At t 5 0, the switch S is closed.

Since the inductor never allows sudden changes in currents, at t 5 0, the current in the circuit is zero.

Therefore, at t  5 0, i 5 0

 ∴ 0 5 c  2

 ∴ c 5 2 2

Substituting the value of c in the current equation, we have

i 5 2(1 2 e22t) A

Voltage across the resistor vR 5 iR

 5 2(1 2 e22t) 3 30 5 60 (1 2 e22t) V

Voltage across the inductor v L
di

dt
d

dt
e e

L

t

=

= × − = ×−15 2 1 30 22( ) −− −=2 260t te V

11.3 DC RESPONSE OF AN R-C CIRCUIT

Consider a circuit consisting of resistance and capacitance as shown in Fig. 11.6. The capacitor in the circuit 

is initially uncharged, and is in series with a resistor. When the switch 

S is closed at t 5 0, we can determine the complete solution for the 

current. Application of the Kirchhoff’s voltage law to the circuit results 

in the following differential equation.

V Ri
C

i dt= + ∫
1

 (11.7)

By differentiating the above equation, we get

0 = +R
di

dt

i

C
 (11.8)

or 
di

dt RC
i+ =

1
0  (11.9)

Equation (11.9) is a linear differential equation with only the complementary function. The particular 

solution for the above equation is zero. The solution for this type of differential equation is

i 5 ce2t/RC (11.10)

Here, to find the value of c, we use the initial conditions.

Fig. 11.6

LO 2
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In the circuit shown in Fig. 11.6, the switch S is closed at t 5 0. Since the capacitor never allows sudden 

changes in voltage, it will act as a short circuit at t 5 0. So, the current in the circuit at t 5 0 is V/R

∴ = =At the current t i
V

R
0,

Substituting this current in Eq. (11.10), we get

V

R
c=

∴ the current equation becomes

i
V

R
e t RC= − /  (11.11)

When the switch S is closed, the response decays with time as shown in Fig. 11.7.

In the solution, the quantity RC is the time constant, and is 

denoted by t,

where t 5 RC seconds

After 5 TC, the curve reaches 99 percent of its final value. In Fig. 

11.6, we can find out the voltage across each element by using the 

current equation.

Voltage across the resistor is

v Ri R
V

R
e v VeR

RC t
R

t RC= = × =− −( / ) /;1

Similarly, voltage across the capacitor is

v
C

i dt

C

V

R
e dt

V

RC
RC e c Ve

C

t RC

t RC t R

=

=

= − ×






+ = −

∫

∫ −

− −

1

1 /

/ / CC c+

At t 5 0, voltage across capacitor is zero

 ∴ c 5 V

 ∴ vC 5 V(1 2 e2t/RC)

The responses are shown in Fig. 11.8.

Power in the resistor

p v i Ve
V

R
e

V

R
eR R

t RC t RC t RC= = × =− − −/ / /
2

2

Power in the capacitor

p v i V e
V

R
e

V

R
e e

C C
t RC t RC

t RC t RC

= = −

= −

− −

− −

( )

( )

/ /

/ /

1

2
2

The responses are shown in Fig. 11.9.

Fig. 11.7

Fig. 11.8

Fig. 11.9
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EXAMPLE 11.2

A series RC circuit consists of a resistor of 10 V and a capacitor 

of 0.1 F as shown in Fig. 11.10. A constant voltage of 20 V is 

applied to the circuit at t 5 0. Obtain the current equation. 

Determine the voltages across the resistor and the capacitor.

Solution  By applying Kirchhoff’s law, we get

10
1

0 1
20i i dt+ =∫.

Differentiating with respect to t, we get

10
0 1

0

0

di

dt

i

di

dt
i

+ =

∴ + =

.

The solution for the above equation is i 5 ce2t

At t 5 0, the switch S is closed. Since the capacitor does not allow sudden changes in the voltage, the 

current in the circuit is i 5 V/R 5 20/10 5 2 A.

At t 5 0, i 5 2 A.

∴ the current equation i 5 2e2t

Voltage across the resistor is vR 5 i 3 R 5 2e2t 3 10 5 20e2t V

Voltage across the capacitor is v V eC

t

RC= −












−
1

 

 5 20(1 2 e2t ) V

11.4 DC RESPONSE OF AN R-L-C CIRCUIT

Consider a circuit consisting of resistance, inductance, and capacitance 

as shown in Fig. 11.11. The capacitor and inductor are initially 

uncharged, and are in series with a resistor. When the switch S is 

closed at t 5 0, we can determine the complete solution for the current. 

Application of Kirchhoff’s voltage law to the circuit results in the 

following differential equation.

 V Ri L
di

dt C
idt= + + ∫

1
 (11.12)

By differentiating the above equation, we have

 0
12

2
= + +R

di

dt
L

d i

dt C
i (11.13)

Fig. 11.11

s

iV

L

R

C

+
–

Fig. 11.10

LO 2
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or 
d i

dt

R

L

di

dt LC
i

2

2

1
0+ + =  (11.14)

The above equation is a second-order linear differential equation, with only complementary function. The 

particular solution for the above equation is zero. Characteristic equation for the above differential equation is

D
R

L
D

LC

2 1
0+ +







 =  (11.15)

The roots of Eq. (11.15) are

D D
R

L

R

L LC

K
R

L
K

R

1 2

2

1 2

2 2

1

2 2

, = − ±






 −

= − =By assuming and 
LL LC







 −

2
1

 D1 5 K1  K2 and D2 5 K1 2 K2

Here, K2 may be positive, negative or zero.

K
R

L
LC2

2

2
1 is positive, when /







 >

The roots are real and unequal, and give the over damped response 

as shown in Fig. 11.12. Then Eq. (11.14) becomes

 [D – (K1   K2)] [D – (K1 – K2)] i 5 0

The solution for the above equation is

 i 5 c1e
(K1  K2)t  c2 e

(K1 – K2)t

The current curve for the overdamped case is shown in Fig. 11.12.

K2 is negative, when (R/2L)2 , 1/LC

The roots are complex conjugate, and give the underdamped 

response as shown in Fig. 11.13. Then Eq. (11.14) becomes

 [D – (K1  jK2)] [D – (K1 – jK2)]i 5 0

The solution for the above equation is

 i 5 eK
1
t [c1 cos K2t  c2 sin K2t]

The current curve for the underdamped case is shown in Fig. 

11.13.

K2 is zero, when (R/2L)2 5 1/LC

The roots are equal, and give the critically damped response as 

shown in Fig. 11.14. Then Eq. (11.14) becomes

(D – K1) (D – K1)i 5 0

The solution for the above equation is

i 5 eK
1
t(c1  c2t)

The current curve for the critically damped case is shown in Fig. 11.14.

Fig. 11.12

Fig. 11.13

Fig. 11.14
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EXAMPLE 11.3

The circuit shown in Fig. 11.15 consists of resistance, 

inductance, and capacitance in series with a 100 V constant 

source when the switch is closed at t 5 0. Find the current 

transient.

Solution  At the t 5 0, the switch S is closed when the 100 V source is applied to the circuit and results in the 

following differential equation.

100 20 0 05
1

20 10 6
= + +

× − ∫i
di

dt
idt.  (11.16)

Differentiating Eq. (11.16), we get

0 05 20
1

20 10
0

400 10 0

2

2 6

2

2

6

.
d i

dt

di

dt
i

d i

dt

di

dt
i

+ +
×

=

+ + =

−

 ∴ (D2  400D  106)i 5 0

D D1 2

2
6

2 6

400

2

400

2
10

200 200 10

, = − ±






 −

= − ± ( ) −

 D1 5 2200  j979.8

 D2 5 2200 2 j979.8

Therefore, the current

i 5 ek1t [c1 cos K2t  c2 sin K2t]

i 5 e–200t [c1 cos 979.8t  c2 sin 979.8t] A

At t 5 0, the current flowing through the circuit is zero.

i 5 0 5 (1) [c1 cos 0  c2 sin 0]

 ∴ c1 5 0

 ∴ i 5 e–200t c2 sin 979.8t A

Differentiating, we have

 

di

dt
c e t e tt t= + −





− −
2

200 200979 8 979 8 200 979 8. cos . ( )sin .

At t 5 0, the voltage across the inductor is 100 V.

Fig. 11.15
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∴ =

=

= = =

∴ =

L
di

dt

di

dt

t
di

dt
c

c

100

2000

0 2000 979 8 0

2000

97

2

2

or

At . cos

99 8
2 04

.
.=

The current equation is

i 5 e–200t (2.04 sin 979.8t) A

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 2
rrr11-2.1  Obtain an expression for the current i(t) from the differential equation

  

d i t

dt

di t

dt
i t

2

2
10 25 0

( ) ( )
( )+ + =

  with initial conditions

  
i

di

dt
( )

( )
0 2

0
0+

+

= =

rrr11-2.2 In the given circuit shown in Fig. Q.2, the 

switch K is closed at time t 5 0, the steady-

state condition having reached previously. 

Obtain expression for the current in the circuit 

at any time  t. If R1 5 R2 5 100 ohms, V 5 10 

volts, and L 5 1 henry. Calculate at time 

t 5 5 ms, (a) current i, (b) voltage drop across 

R2 , and (c) voltage across L.

rrr11-2.3 In the circuit shown in Fig. Q.3, the capacitor 

C has an initial voltage vc(20) 5 10 volts and 

at the same instant, the current in the inductor is zero. Switch K is closed at time t 5 0. Obtain 

the expression for the voltage v(t) across the inductor L.

Fig. Q.3

rrr11-2.4 The network shown in Fig. Q.4 is initially under steady-state condition with the switch in the 

position 1. The switch is moved from the position 1 to the position 2 at t  0. Calculate the 

Fig. Q.2
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current i(t) through R1 after switching.

Fig. Q.4

rrr11-2.5 In the network shown in Fig. Q.5, the capacitor c1 is charged to a voltage of 100 V and the 

switch S is closed at t 5 0. Determine the current expressions i1 and i2.

rrr11-2.6 In the circuit shown in Fig. Q.6, the switch K is closed at t 5 0. The current waveform is 

observed with CRO. The initial value of the current is measured to be 0.0 1amp. The transient 

appears to disappear in 0.1 second. Find the value of R and C.

Fig. Q.5 Fig. Q.6

rrr11-2.7 In the circuit shown in Fig. Q.7, steady-state conditions are reached with the switch K in the 

position 1. At t 5 0, the switch is changed over to the position 2. Using time domain methods, 

determine the current through the inductor i(t) for all t $ 0.

Fig. Q.7

rrr11-2.8 In the circuit shown in Fig. Q.8, the initial 

current in the inductance is 2 A and its 

direction is as shown in the figure. The 

initial charge on the capacitor is 200 C 

with polarity as shown when the switch is 

closed. Determine the current expression in 

the inductance.
rrr11-2.9 In the circuit shown in Fig. Q.9, the switch 

is closed at t 5 0 with zero capacitor 

voltage and zero inductor current. Determine V1 and V2 at t 5 0.

Fig. Q.8



Transients 477 

rrr11-2.10 In the network shown in Fig. Q.10, determine the current expression for i1(t) and i2(t) when the 

switch is closed at t 5 0. The network has no initial energy.

Fig. Q.9 Fig. Q.10

rrr11-2.11 In the network shown in Fig. Q.11, the switch is moved from the position 1 to the position 2 at 

t 5 0. Determine the current expression.

rrr11-2.12 Calculate the voltage v1(t) across the inductance for t . 0 in the circuit shown in Fig. Q.12.

Fig. Q.11 Fig. Q.12

Frequently Asked Questions linked to LO 2
rrr11-2.1  Find the time constant of RL circuit having R = 10  and L = 0.1 mH. [AU May/June 2013]
rrr11-2.2   A series RL circuit with R = 30  and L = 15H has a 

constant voltage V = 60 V applied at t = 0 as shown in Fig 

Q.2 Determine the current i, the voltage across resistor 

and the voltage across the inductor.

  [AU May/June 2014]
rrr11-2.3   What is the time constant of an RL circuit with R = 10 

ohms and L = 20 mH? [AU May/June 2014]
rrr11-2.4 Derive the transient response of a series R-L circuit with 

dc input. Sketch the variation of current and of the voltage across the inductor. 

 [AU Nov./Dec. 2012]
rrr11-2.5 Solve for i and V as functions of time in the circuit shown in Fig. Q.5, when the switch is closed 

at time t = 0.  [AU Nov./Dec. 2012]
rrr11-2.6 Define the term ‘Time constant’ of a circuit, in general.  [AU Nov./Dec. 2012]
rrr11-2.7 In the circuit shown in Fig. Q.7, find the expression for the transient current. The initial current is 

as shown in the figure.  [AU April/May 2011]

5 W
i t( )

100 V

3 H
i(0)=6A

Fig. Q.7

+

V

s

i

10 mH10 V

10 W 10 W

t = 0

Fig. Q.5

60 V

30 W

S

15 H
Iº

Fig. Q. 2
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rrr11-2.8 In the network shown in Fig. Q.8, the switch is closed at t = 0. Find the value of current in each 

loop. [JNTU Nov. 2012]

rrr11-2.9 In the circuit of Fig. Q.9 the switch is closed at t = 0. Determine the mesh currents i1 (t) and i2 (t).

  [AU May/June 2014]

5 W

t = 0

100 V 1 W 20 W

1 H 3 H

Fig. Q.8 Fig. Q.9

t = 0

50 V
i t1 ( ) i t2 ( )

2 µF100 W

100 W

+
–

rrr11-2.10 For the circuit shown in Fig. Q.10 the switch “S” is at 

position “I” and the steady-state condition is reached. 

The switch is moved to a position “2” at t = 0. Find the 

current i(t) in both the cases, i.e., with switch at the 

position I and switch at the position 2.  

[GTU Dec. 2010]
rrr11-2.11 Explain how to determine the initial conditions in 

an RL network and the current i(t) based on these 

conditions. [GTU May 2011]
rrr11-2.12 Using Laplace transformation technique, find current in each loop at t = 0+ following switching at 

t = 0 of the switch K as shown in Fig. Q.12. Assume the network previously de-energized. 

     [JNTU Nov. 2012]
rrr11-2.13 In the network shown in Fig. Q.13, find the current through the inductor for all values of ‘t’. 

    [JNTU Nov. 2012]

Fig. Q.12 Fig. Q. 13

rrr11-2.14 Find i(t) in the circuit of fig. Q.14 when the switch is moved from the position 1 to 2. Initially, it 

was under a steady state.  [PU 2010]

rrr11-2.15 In the circuit shown in Fig. Q.15 the switch is closed at t = 0, here steady state is reached before  

t = 0, determine current through the inductor of 3 H.  [PU 2010]

Fig. Q.14 Fig. Q.16Fig. Q.15

rrr11-2.16 In the network shown in Fig. Q.16, the voltage source follows the law v(t) = Ve–as, where  is a 

constant. The switch is closed at t = 0.  [RGTU Dec. 2013]

 a) Solve for the current assuming that =
R

L
,
  
b) Solve for the current when  = 

R

L

Fig. Q.10

50 V

10 W 15 W

0.5 H

t = 0

1

2
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rrr11-2.17 Derive the equation for decay of current in R-L circuits. Discuss the role of time constant. 

 [RGTU June 2014]
rrr11-2.18 Derive the step responses of RL and RC circuit. Compare their performances.

 [AU May/June 2013]
rrr11-2.19 What is the time constant for RL and RC circuit? [AU May/June 2014]
rrr11-2.20 Obtain the response Vc(t) and iL(t) for the source-free RC and RL circuits respectively. Assume 

initial voltage Vo and initial current Io respectively.  [GTU Dec. 2010]
rrr11-2.21 Define the time constant of RL and RC networks and explain the significance of the time 

constant. [GTU May 2011]

rrr11-2.22 Write down voltage and current relationships in resistor, inductor, and capacitor. Also mention the 

initial and final condition for R, L and C components in the different cases. [GTU Dec. 2012]

rrr11-2.23 In the figure Q.23, the initial voltage in the capacitor is 1 V as the polarity shown. Find the voltage 

appearing across with application of the step voltage.  [JNTU Nov. 2012]

rrr11-2.24 Find UC (t), i1 (t) for t > 0, if the switch is closed at t = 0 after being open for a long time. Refer 

Fig. Q.24. [PU 2010]

Fig. Q.23

4 W

2 u t( )
2

I
1

3 I
2

2 W

1 F

Fig. Q.24

2 W

2 W

2 W

t = 0

2 F 1 FV t( )C

i t( )1

rrr11-2.25 What are initial conditions in a network? [PU 2010]
rrr11-2.26 For the network shown in Fig. Q.26 the switch K is closed at t = 0, with the capacitor uncharged. 

Find the values of i, di/dt, d2i/dt2 at t = 0+. [PU 2012]
rrr11-2.27 Discuss the initial conditions in a network. Outline the procedure for evaluating the initial 

conditions in network problems.    [RGTU Dec. 2013]
rrr11-2.28 For the circuit shown in the following Fig. Q.28, find the current equation when the switch S is 

opened at t = 0+. [RGTU June 2014]

Fig. Q.26

10 W

5 W

2µF

10 W
50 V

Fig. Q.28

rrr11-2.29 An RLC series circuit has R = 10 , L = 2 H. What value of capacitance will make the circuit 

critically damped? [AU May/June 2013]
rrr11-2.31 The circuit shown in Fig. Q.31 consists of resistance, inductance, and capacitance in series with 

100 V dc when the switch is closed at t = 0. Find the current transient.

  [AU May/June 2013] [BPUT 2008]

rrr11-2.32 In the circuit shown in Fig. Q.32, the capacitor C has an initial voltage VC = 10 V and at the same 

instant when current through the inductor L is zero, the switch K is closed at time t = 0. Find out 

the expression for the voltage V(t) across the inductor L. [BPUT 2008]
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Fig. Q.33

L = 1 HR = 5 ohms

3 (  – 3)u t
C = 1/4 F

R

20µF

20 W

0.05L

t = 0

Fig. Q.31 Fig. Q.32

10 V

t = 0

1 F

R = 1/4ohms
V t( ) L = 1/4 H

rrr11-2.33 A step voltage 3u (t – 3) is applied to a series RLC circuit comprising a resistor R = 5 , inductor L = 1 H, and

   capacitor C = 
1

4
F. Find the expression for the current i(t) in the circuit. (Fig. Q.33)  [BPUT 2008] 

rrr11-2.34 How can volt classify that the given circuit is of first order or second order? Obtain second-order 

circuit models for series RLC and parallel RLC circuit in time domain and in “s” domain. [GTU 

Dec. 2010]

rrr11-2.35 In the circuit shown in Fig. Q.35, S1 is closed at t = 0, and S2 is opened at t = 4 msec. Determine 

i(t) for t > 0, Assume the inductor is initially de-energized. [PUT 2011-12]

rrr11-2.36 In the circuit shown in Fig. Q.36, the switch S is closed at t = 0. Determine the initial value of i, 

di/dt, d2ildt2. [PU 2010]

Fig. Q.35

50 W

100 W

100 V

0.14

t = 0
t = 4 ms

S
1

S
2

Fig. Q.36

100 V

S
t = 0 2 H

i t( )
1 F

10 W

rrr11-2.37 In the circuit shown in Fig. Q.37 switch S is closed at t = 0. Determine the initial value of i, di/dt, 

d2ildt2.  [PU 2012]

rrr11-2.38 In the network shown in Fig. Q.38, the switch K is closed at t = 0, with zero capacitor voltage and 

zero inductor current. [RGTU Dec. 2013]

 Solve for  (a) v1 and v2 at t = 0,   (b) v1
 and v2 at t = `       (c) 

dv

dt

dv

dt

1 2and at t = 0

rrr11-2.39 Find the current i(t) in a series RLC circuit comprising R = 3 ohms, L = 1 H, and C = 0.5 F, when 

a ramp voltage of 10 volts is applied. Assume initial condition as zero. [RGTU Dec. 2013]

rrr11-2.40 Figure Q.40 shows a parallel RLC circuit. The switch is suddenly opened at t = 0. Assuming no, 

charge on the capacitor and no current in the inductor before switching, find the voltage across the 

switch.    [RTU Feb. 2011]

s

1 F
1 H 1 W

I( )

Fig. Q.40

R
1

K

Cv

R
2

L v
1

v
2

Fig. Q.38Fig. Q.37

R

L

1 kW
2H

2

1 FmC

10 V
1

t = 0
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11.5 SINUSOIDAL RESPONSE OF AN R-L CIRCUIT

Consider a circuit consisting of resistance and inductance as shown in Fig. 11.16. 

The switch, S, is closed at t 5 0. At t 5 0, a sinusoidal voltage V cos (vt  u) 

is applied to the series R-L circuit, 

where V is the amplitude of the 

wave and u is the phase angle. 

Application of Kirchhoff’s voltage 

law to the circuit results in the following differential equation.

V t Ri L
di

dt

di

dt

R

L
i

V

L
t

cos ( )

cos( )

v u

v u

+ = +

∴ + = +

 (11.17)

The corresponding characteristic equation is

D
R

L
i

V

L
t+







 = +cos( )v u  (11.18)

For the above equation, the solution consists of two parts, viz., complementary function and particular 

integral.

The complementary function of the solution i is

ic 5 ce–t(R/L) (11.19)

The particular solution can be obtained by using undetermined coefficients.

By assuming ip 5 A cos (vt  u)  B sin (vt  u) (11.20)

 i9p 5 – Av sin (vt  u)  Bv cos (vt  u) (11.21)

Substituting Eqs (11.20) and (11.21) in Eq. (11.18), we have

 or 

− + + +{ }+ +{

+ + } =

A t B t
R

L
A t

B t
V

L

v v u v v u v u

v u

sin( ) cos( ) cos ( )

sin ( ) cos (( )

sin( ) cos (

v u

v v u v v

t

A
BR

L
t B

AR

L
t

+

− +






 + + +







 ++ = +u v u) cos( )

V

L
t

Comparing cosine terms and sine terms, we get

− + =

+ =

A
BR

L

B
AR

L

V

L

v

v

0

From the above equations, we have

A V
R

R L

B V
L

R L

=
+

=
+

2 2

2 2

( )

( )

v

v

v

Fig. 11.16

LO   3 
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Substituting the values of A and B in Eq. (11.20), we get

i V
R

R L
t V

L

R L
tp =

+
+ +

+
+

2 2 2 2( )
cos( )

( )
sin( )

v
v u

v

v
v u  (11.22)

Putting 

and

M
VR

R L

M V
L

R L

cos
( )

sin
( )

f
v

f
v

v

=
+

=
+

2 2

2 2

To find M and f, we divide one equation by the other.

M

M

L

R

sin

cos
tan

f

f
f

v
= =

Squaring both equations and adding, we get

M M
V

R L

M
V

R L

2 2 2 2
2

2 2

2 2

cos sin
( )

( )

f f
v

v

+ =
+

=
+

or

∴ the particular current becomes

i
V

R L
t

L

R
p =

+
+ −









−

2 2

1

( )
cos tan

v
v u

v
 (11.23)

The complete solution for the current i 5 ic  ip

i ce
V

R L
t

L

R

t R L= +
+

+ −








− −( / )

( )
cos tan

2 2

1

v
v u

v

Since the inductor does not allow sudden changes in currents, at t 5 0, i 5 0

∴ = −
+

−








−c
V

R L

L

R2 2

1

( )
cos tan

v
u

v

The complete solution for the current is

i e
V

R L

L

R

V

R

R L t=
−

+
−

























+

− −( / )

( )
cos tan

2 2

1

2

v
u

v

++
+ −









−

( )
cos tan

v
v u

v

L
t

L

R2

1

EXAMPLE 11.4

In the circuit shown in Fig. 11.17, determine the complete solution for the current, when switch S is closed 

at t 5 0. Applied voltage is v(t) 5 100 cos (103t  p/2). Resistance R 5 20 V and inductance L 5 0.1 H.
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Fig. 11.17

Solution  By applying Kirchhoff’s voltage law to the circuit, we have

20 0 1 100 10 2

200 1000 1000 2

3i
di

dt
t

di

dt
i t

+ = +

+ = +

. cos ( / )

cos ( / )

p

p

 (D  200)i 5 1000 cos (1000t  p/2)

The complementary function ic 5 ce–200t

By assuming particular integral as

ip 5 A cos (vt  u)  B sin (vt  u)

we get

i
V

R L
t

L

R
p =

+
+ −









−

2 2

1

( )
cos tan

v
v u

v

where v 5 1000 rad/s, V 5 100 V

u 5 p/2

L 5 0.1 H, R 5 20 V

Substituting the values in the above equation, we get

i tp =
+ ×( )

+ −








=

−100

20 1000 0 1

1000
2

100

20

1

2 2

1

( ) .

cos tan
p

000

101 9
1000

2
78 6

0 98 1000
2

78 6

.
cos .

. cos .

t

t

+ − °








= + − °

p

p







The complete solution is

i ce tt= + + − °








−200 0 98 1000
2

78 6. cos .
p

At t 5 0, the current flowing through the circuit is zero, i.e., i 5 0

 
∴ = − −







c 0 98

2
78 6. cos .

p
°

∴ the complete solution is

i e tt= − − °


















 + +−0 98

2
78 6 0 98 1000200. cos . . cos

p p

22
78 6− °







.
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11.6 SINUSOIDAL RESPONSE OF AN R-C CIRCUIT

Consider a circuit consisting of resistance and capacitance in 

series as shown in Fig. 11.18. The switch, S, is closed at t 5 0. 

At t 5 0, a sinusoidal voltage V cos (vt  u) is applied to the 

R-C circuit, where V is the amplitude of the wave  and u is the 

phase angle. Applying Kirchhoff’s voltage law to the circuit 

results in the following differential equation.

V t Ri
C

idt

R
di

dt

i

C
V t

cos ( )

sin ( )

v u

v v u

+ = +

+ = − +

∫
1

 (11.24)

D
RC

i
V

R
t+







 = − +

1 v
v usin ( )  (11.25)

The complementary function iC 5 ce–t/RC (11.26)

The particular solution can be obtained by using undetermined coefficients.

ip 5 A cos (vt  u)  B sin (vt  u) (11.27)

i9P 5 – Av sin (vt  u)  Bv cos (vt  u) (11.28)

Substituting Eqs (11.27) and (11.28) in Eq. (11.25), we get

− + + +{ }+ + + +{ }

= −

A t B t
RC

A t B t

V

R

v v u v v u v u v u

v

sin ( ) cos ( ) cos ( ) sin ( )
1

ssin ( )v ut +

Comparing both sides, − + = −

+ =

A
B

RC

V

R

B
A

RC

v
v

v 0

From which,

A
VR

R
c

B
V

C R

=

+








=
−

+

2
2

2

1

1

v

v
v

and                       

cc

























2

Substituting the values of A and B in Eq. (11.27), we have

i
VR

R
c

t
V

C R
C

p =

+








+ +
−

+
















2
2

2
2

1 1

v

v u

v
v

cos ( )








+sin( )v ut

VR

Fig. 11.18

LO 3
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=

+









cosf

v

M
VR

R
C

Putting          

2
2

1















V

and 

 

=

+








 M
V

C R
C

sinf

v
v

2 1
22















To find M and f, we divide one equation by the other.

M

M CR

sin

cos
tan

f

f
f

v
= =

1

Squaring both equations and adding, we get

M M
V

R
C

M
V

R
C

2 2 2 2
2

2
2

2

1

1

cos sinf f

v

v

+ =

+
























∴ =

+








2

The particular current becomes

i
V

R
C

t
CR

p =

+








+ +








−

2
2

1

1

1

v

v u
v

cos tan  (11.29)

The complete solution for the current i 5 ic  ip

∴ = +

+








+ +








−( ) −i ce
V

R
C

t
CR

t RC/
cos tan

2
2

1

1

1

v

v u
v  (11.30)

Since the capacitor does not allow sudden changes in voltages at t 5 0, i
V

R
= cosu

∴ = +

+








+








=

−V

R
c

V

R
C

CR

c
V

R

cos cos tan

c

u

v

u
v

2
2

1

1

1

oos cos tanu

v

u
v

−

+








+








−V

R
C

CR
2

2

1

1

1
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The complete solution for the current is

i e
V

R

V

R
C

CR

t RC= −

+








+






−( ) −/

cos cos tanu

v

u
v

2
2

1

1

1




























 +

+








+ +








−V

R
C

t
CR

2
2

1

1

1

v

v u
v

cos tan  (11.31)

EXAMPLE 11.5

In the circuit shown in Fig. 11.19, determine the complete 

solution for the current when the switch S is closed 

at t 5 0. Applied voltage is v t t( ) cos .= +






50 10

4

2 p  

Resistance R 5 10 V and capacitance C 5 1 F.

Solution  By applying Kirchhoff’s voltage law to the 

circuit, we have

10
1

1 10
50 100

4

10
1 10

5 10

6

6

i idt t

di

dt

i

+
×

= +








+
×

= −

−

−

∫ cos
p

(( ) +








+ = − +








−

3

5

100
4

10
500 100

4

sin

sin

t

di

dt

i
t

p

p


+






 = − +







−

D i t
1

10
500 100

45
sin

p

The complementary function is iC 5 ce–t/10 2 5
. By assuming the particular integral as ip 5 A cos 

(vt  u)  B sin (vt  u),

we get  i
V

R
C

t
CR

p =

+








+ +








−

2
2

1

1

1

v

v u
v

cos tan

where v 5 100 rad/s u 5 p/4

C 5 1 F     R 5 10 V

Fig. 11.19
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Substituting the values in the above equation, we have

i tp =

( ) +
×









+ +
× ×



−

−
−

50

10
1

100 10

4

1

100 10 10
2

6

2

1

6
cos tanv

p








= × + + °








−i tp 4 99 10 100
4

89 943. cos .
p

At t 5 0, the current flowing through the circuit is

V

R
cos cos / .u p= =

50

10
4 3 53A

R

i
V

R

i ce t

cos .

./

u= =

∴ = + ×− −−

10

3 53

4 99 1010 5

A

33 100
4

89 94cos .t + + °








p

 At t 5 0,

 
c = − × + °









−3 53 4 99 10
4

89 943. . cos .
p

Hence, the complete solution is

i e t= − × +




















+

− − −

3 53 4 99 10
4

89 943 10 5

. . cos . ( / )p
°

44 99 10 100
4

89 943. cos .× + +








− t
p

°

11.7 SINUSOIDAL RESPONSE OF AN R-L-C CIRCUIT

Consider a circuit consisting of resistance, inductance, and capacitance in series as shown in Fig. 11.20. 

Switch S is closed at t 5 0. At t 5 0, a sinusoidal voltage V 

cos (vt  u) is applied to the RLC series circuit, where V is the 

amplitude of the wave and u is the phase angle. Application of 

Kirchhoff’s voltage law to the circuit results in the following 

differential equation.

V Ri L
di

dt C
idtcos( )v ut + = + + ∫

1
 (11.32)

Differentiating the above equation, we get

R
di

dt
L

d i

dt
i C V t+ + = − +

2

2
/ sin( )v v u 

D
R

L
D

LC
i

V

L
t2 1

+ +






 = − +( )v

v usin  (11.33)

Fig. 11.20

LO 3
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The particular solution can be obtained by using undetermined coefficients. By assuming

ip 5 A cos (vt  u)  B sin (vt  u) (11.34)

i9p 5 – Av sin (vt  u)  Bv cos (vt  u) (11.35)

ip 5 – Av2 cos (vt  u) – Bv2 sin (vt  u) (11.36)

Substituting ip, i9p and ip in Eq. (11.33), we have

− + − +{ }+ − + + +{ }A t B t
R

L
A t B tv v u v v u v v u v v u2 2cos( ) sin( ) sin( ) cos( )

+ + + +{ } = − +
1

LC
A t B t

V

L
tcos( ) sin( ) sin( )v u v u

v
v u  (11.37)

Comparing both sides, we have

Sine coefficients

− − + = −B A
R

L

B

LC

V

L
v

v v2

A
R

L
B

LC

V

L

v
v

v





+ −







 =2 1

 (11.38)

Cosine coefficients

− + + =A B
R

L

A

LC
v

v2 0

A
LC

B
R

L
v

v2 1
0−







−







 =  (11.39)

Solving Eqs (11.38) and (11.39), we get

A

V
R

L

R

L LC

B
L

=
×







 − −

























=
−

v

v
v

v

2

2

2
2

2

2

1

1

CC
V

L
R

L LC















 − −

























v

v
v

2
2

2
1

Substituting the values of A and B in Eq. (11.34), we get

i

V
R

L

R

L LC

tp =






 − −

























+

v

v
v

v

2

2

2
2

2
1

cos ( uu)
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 +
−















 − −



















v v

v
v

2

2
2

2

1

1

LC
V

L
R

L LC 





+sin( )v ut  (11.40)

Putting

and

M

V
R

L

R

L LC

M

cos

sin

f

v

v
v

=






 − −









2

2

2
2

2
1

ff

v v

v
v

=
−















 − −
















V
LC

L
R

L LC

2

2
2

2

1

1











To find M and f, we divide one equation by the other.

 
or

M

M

L
C

R

sin

cos
tan

f

f
f

v
v

= =
−









1

 
f v

v
= −





















−tan 1 1
L

C
R

Squaring both equations and adding, we get

M
V

R L

M
V

R
C

L

2 2 2 2
2

2
2

2

1

1

cos sinf f

v
v

v
v

+M

C

=

+ −








∴ =

+ −








2

The particular current becomes

i
V

R
C

L

t
C

L

R
p =

+ −








+ +
−














 −

2
2

1

1

1

v
v

v u
v

v

cos tan















 (11.41)

The complementary function is similar to that of a dc series RLC circuit. 

To find out the complementary function, we have the characteristic equation

D
R

L
D

LC

2 1
0+ +







 =  (11.42)
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The roots of Eq. (11.42), are

D D
R

L

R

L LC

K
R

L
K

R

L

1 2

2

1 2

2 2

1

2 2

, =
−

±






 −

= − =By assuming  and 






 −

2
1

LC

 ∴ D1 5 K1  K2 and D2 5 K1 2 K2

K2 becomes positive, when (R/2L)2 . 1/LC

The roots are real and unequal, which gives an overdamped response. Then Eq. (11.42) becomes

[D 2 (K1  K2)] [D 2 (K1 2 K2)]i 5 0

The complementary function for the above equation is

i c e c ec
K K t K K t= ++ −

1 2
1 2 1 2( ) ( )

Therefore, the complete solution is

i 5 ic  ip

i c e c e
V

R
C

L

tc
K K t K K t= + +

+ −








+ ++ −
1 2

2
2

1 2 1 2

1

( ) ( )
cos ta

v
v

v u nn− −




















1 1

v

v

CR

L

R

K2 becomes negative, when R

L LC2

1
2






 <

Then the roots are complex conjugate, which gives an underdamped response. Equation (11.42) becomes

[D 2 (K1  jK2)] [D 2 (K1 2 jK2)]i 5 0

The solution for the above equation is

ic 5 eK
1
t [c1 cos K2t  c2 sin K2t]

Therefore, the complete solution is

i 5 ic  ip

i 5 eK
1
t [c1 cos K2t  c2 sin K2t]

+

+ −








+ + −














−V

R
C

L

t
CR

L

R
2

2

1

1

1

v
v

v u
v

v
cos tan







K2 becomes zero, when 
R

L
LC

2
1

2





 = /
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Then the roots are equal which gives critically damped response. Then, Eq. (11.42) becomes (D – K1) 

(D – K1)i 5 0.

The complementary function for the above equation is

 ic 5 eK
1
t (c1  c2t)

Therefore, the complete solution is i 5 ic  ip

∴ i 5 eK
1
t[c1  c2t] +

+ −








+ + −














−V

R
C

L

t
CR

L

R
2

2

1

1

1

v
v

v u
v

v
cos tan







EXAMPLE 11.6

In the circuit shown in Fig. 11.21, determine the complete solution for the current, when the switch is closed 

at t 5 0. Applied voltage is v t t( ) .cos= +

 

400 500
4

p
 Resistance R 5 15 V, inductance L 5 0.2 H, and 

capacitance C 5 3 F.

Fig. 11.21

Solution  By applying Kirchhoff’s voltage law to the circuit,

15 0 2
1

3 10
400 500

46
i t

di t

dt
i t dt t( ) .

( )
( ) cos+ +

×
= +







− ∫

p

Differentiating the above equation once, we get

15 0 2
3 10

2 10 500
4

75

2

6

5

2

di

dt

d i

dt

i
t

D D

+ +
×

= − × +








+

−
. sin

(

p

++ × =
− ×

+






16 7 10

2 10

0 2
500

4

5
5

. )
.

sini t
p

The roots of the characteristic equation are

D1 5 237.5  j1290 and D2 5 237.5 2 j1290

The complementary current

ic 5 e–37.5t (c1 cos 1290t  c2 sin 1290t)

Particular solution is

i
V

R
C

L

t
CR

L

R
p =

+ −








+ −












−

2
2

1

1

1

v
v

v u
v

v
cos + tan








∴ = + +






i tp 0 71 500

4
88 5. cos .

p
°
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The complete solution is

i 5 e–37.5t (c1 cos 1290t  c2 sin 1290t)  0.71 cos (500t  45°  88.5°)

At t 5 0, i0 5 0

∴ c1 5 20.71 cos (133.5°) 5  0.49

Differentiating the current equation, we have

di

dt
e c t c tt= − +−37 5

1 21290 1290 1290 1290. ( sin cos )

 237.5e237.5t(c1 cos 1290t  c2 sin 1290t)

 20.71 3 500 sin (500t  45°  88.5°)

At t
di

dt
= =0 1414,

∴ 1414 5 1290c2 2 37.5 3 0.49 2 0.71 3 500 sin (133.5°)

 1414 5 1290c2 2 18.38 2 257.5

∴ c2 5 1.31

The complete solution is

 i 5 e–37.5t (0.49 cos 1290t  1.31 sin 1290t)  0.71 cos (500t  133.5°)

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 3
rrr11-3.1 In the network shown in Fig. Q.1, find i2(t) for t . 0, if i1(0) 5 5 A.

rrr11-3.2 The switch in Fig. Q.2 was open for a long time but closed at t 5 0. If i (0) 5 10 A, find i (t) for 

t . 0 by hand and also PSpice.

Fig. Q.2Fig. Q.1

rrr11-3.3 Using PSpice, find V (t) for t , 0 and t . 0 in the circuit shown in Fig. Q.3.
rrr11-3.4 In the network shown in Fig. Q.4, the switch is closed at t 5 0 and there is no initial charge on 

either of the capacitances. Find the resulting current i(t).

Fig. Q.3 Fig. Q.4
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rrr11-3.5 In the RC circuit shown in Fig. Q.5, the capacitor has an initial charge q0 5 25 3 1026 C with 

polarity as shown. A sinusoidal voltage v 5 100 sin (200t  f) is applied to the circuit at a time 

corresponding to f 5 30°. Determine the expression for the current i(t).

Fig. Q.5

rrr11-3.6 For the circuit shown in Fig. Q.6, find v5, if the switch is opened for t . 0.

Fig. Q.6

rrr11-3.7 Determine the response V (t) using PSpice for the circuit shown in Fig. Q.7.

Fig. Q.7

rrr11-3.8 In the network shown in Fig. Q.8, the values of R, L, and C are 
1

4

1

4
ohm H,  and 1 F respectively. 

If I 5 5 amp and the switch K is opened at t 5 0. Obtain an expression for voltage of the node 

a for t $ 0.

Fig. Q.8
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Frequently Asked Questions linked to LO 3
r11-3.1 An RL series circuit is excited by a sinusoidal source e(t) = 10 sin 100t volts, by closing the switch 

at t = 0. Take R = 10  and L = 0.1 H. Determine the current i(t) flowing through the RL circuit.                      

 [AU May/June 2014]

rr11-3.2 Obtain the current at t > 0, if ac voltage V is 

applied when the switch K is moved to 2 from 

1 at t = 0. Assume a steady-state current of 1 

A in LR circuit when the switch was at the 

position 1.                          [RTU Feb. 2011]

rr11-3.3 Derive the expression for the complete 

solution of the current response of an RC 

series circuit with an excitation of V cos( t + f). Briefly explain the significance of phase angle 

in the solution. [AU Nov./Dec. 2012]

rr11-3.4 Derive the expression for the complete solution of the current response of an RC series circuit with 

an excitation of V cos( t + f). Briefly explain the significance of phase angle in the solution. 

  [AU April/May 2011]
r11-3.5 Write down the condition for critically damped response of a series 

RLC circuit excited by a sinusoidal ac source.         [AU Nov./Dec. 2012]

rrr11-3.6 In the network shown in Fig. Q.6, the switch k is closed at t = 0, 

connecting voltage Vo sin t to the parallel RL- RC circuit. Find

 (a) di1/dt and (b) di2/ dt at t = 0.                                    [JNTU Nov. 2012]

rr11-3.7 Plot the response of RLC circuit to sinusoidal input. [RGTU June 2014]

rr11-3.8 Derive an expression for the current response of an RLC series circuit 

with sinusoidal excitation. Assume that the circuit is working in critical 

damping condition.  [AU May/June 2013]

Additional Solved Problems

PROBLEM 11.1

A series circuit shown in Fig. 11.22 comprising of a resistance of 

10 V and an inductance of 0.5 H, is connected to a 100 V source 

at t 5 0. Determine the complete expression for the current i(t).

Solution  The current equation for the circuit is shown in Fig. 

11.22 by using Kirchhoff’s voltage law when the switch is 

closed.

10 0 5 100

20 200

i t
di t

dt
di t

dt
i t

( ) .
( )

( )
( )

+ =

+ =

The general solution for a linear differential equation is

i t Ce e Ke dtpt pt pt( ) = +− − ∫
where p 5 20, K 5 200

Fig. Q.2

2

V = 100

sin 314 t

K

0.1 H

1

100 W

Fig. Q.6

L

RI
2

I
1

R

C

V
1

Vasinwt

+
–

Fig. 11.22
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∴ = +

= +

− −

−
∫i t Ce e e dt

i t Ce

t t t

t

( )

( )

20 20 20

20

200

10

At t 5 0, the switch S is closed.

Since the inductor never allows sudden changes in currents, At t 5 0, the current in the circuit is zero.

∴  At t 5 0, i 5 0

∴   0 5 C  10

∴  C 5 210

Substituting the value of C in the current equation, we have

i 5 10(1 2 e220t) A

PROBLEM 11.2

A series RLC circuit shown in Fig 11.23, comprising R 5 10 V, 

L 5 0.5 H, and C 5 1 F, is excited by a constant voltage source 

of 100 v. Obtain the expression for the current. Assume that the 

circuit is relaxed initially.

Solution  At t 5 0, the switch S is closed when the 100 V source 

is applied to the circuit and results in the following differential 

equation:

100 10 0 5
1

1 10 6
= + +

× − ∫i
di

dt
idt.

Differentiating the above equation, we get

0 5 10
1

1 10
0

20 2 10 0

20 2

2

2 6

2

2

6

2

.

(

d i

dt

di

dt
i

d i

dt

di

dt
i

D D

+ +
×

=

+ + × =

+ +

−

×× =10 06 )i

D D

D j

1 2

2
6

2 6

1

20

2

20

2
2 10

10 10 2 10

10 141

, =
−

±






 − ×

= − ± ( ) − ×

= − + 44 2

10 1414 22

.

.D j= − −

Therefore, the current

e c K t c K t

i e c t c t

k t

t

= +[ ]
= +[−

1

1 2 2 2

10
1 21414 2 1414 2

cos sin

cos . sin . ]]A

At t 5 0, the current flowing through the circuit is zero.

Fig. 11.23
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i c c

c

i e c tt

= = +[ ]
=

∴ = −

0 1 0 0

0

1414 2

1 2

1
10

2

( ) cos sin

sin . A

Differentiating, we have

di

dt
c e t e tt t= + −





− −
2

10 101414 2 1414 2 10 1414 2. cos . ( )sin .

At t 5 0, the voltage across the inductor is 100 V.

L
di

dt
=100

di

dt

t
di

dt
c

c

= =

= = = ×

=

100

0 5
200

0 200 1414 2 0

20

2

2

or

At

.

. cos

00

1414 2
0 1414

.
.=

The current equation is

i e tt= −10 0 1414 1414 2( sin A. . )

PROBLEM 11.3

In the network shown in Fig. 11.24, the switch is moved from the position 1 to the position 2 at t 5 0. The 

switch is in position 1 for a long time. Determine the current expression i(t).

Fig. 11.24

Solution  At t 5 0, the switch S is moved to the position 2 and the 50 V source is applied to the circuit and 

results in the following differential Eq. (11.43).

50 10 2
1

3

0

3
= + + +∫i

di

dt
idt

q( )
 (11.43)
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Differentiating Eq. (11.43), we get

2 10
1

3
0

5
1

6
0

5
1

6
0

2

2

2

d i

dt

di

dt
i

d i

dt

di

dt
i

D D i

+ + =

+ + =

+ +






 =

D D1 2

2
5

2

5

2

1

6
, =

−
±







 −









 2 5 6 25 0 167. . .= − ± −
= − ±

 2 5.= − ± 22 47.

D D i− −[ ] − −[ ] =( . ) ( . )0 03 4 97 0

The solution for the above equation is

i c e c et t= +− −
1

0 03
2

4 97. .

At t 5 0 , i 5 0

∴ c1  c2 5 0

di

dt
c e c et t= − −− −0 03 4 971

0 03
2

4 97. .. .  (11.44)

At t 5 0, the voltage across the inductor is 50 V.

L
di

dt

di

dt

=

=

50

25

At t 5 0, Eq. (11.44) becomes

25 0 03 4 97

5 06 5 06

1 2

1 2

= − −

∴ = = −

. .

. , .

c c

c c

The current equation is

i e et t= −− −5 06 5 060 03 4 97. .. .

PROBLEM 11.4

In the network in Fig. 11.25, the switch is moved from the position 1 to the position 2 at t 5 0. The switch is 

in the position 1 for a long time. Initial charge on the capacitor is 7 3 1024 coulombs. Determine the current 

expression i(t), when v 5 1000 rad/s.
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Fig. 11.25

Solution  When the switch is at the position 2, by applying Kirchhoff’s law, the differential equation is

100
1

20 10
0

100
1

20 10
0 0

6

0

6

i i dt

i i dt v

t

+
×

=

+
×

+ =

−

−

∫

∫ ( )

Where v(0) = initial voltage across capacitor

100
1

20 10

7 10

20 106

4

6
i i dt+

×
+

×

×
=

−

−

−∫  (11.45)

Differentiating Eq. (11.45), we get

100
1

20 10
0

1

20 10
0

6

4

di

dt
i

D i

+
×

=

+
×







 =

−

−

The transient current is

i c e

i c e

t

t

=
=

−
×

−

−

1

20 10

50

4

At t 5 0, the switch is moved from the position 1 to the position 2. Hence, the current passing through the 

circuit is same as the steady-state current passing through the circuit, when the switch is in the position 1.

v

z R j c j

i

i

= =
°

−
=

°
−

=
°

− °

= °

100 30 100 30

50 50

100 30

70 71 45

1 414 75

/

.

.

v

A

Therefore, the steady-state current passing through the circuit, when the switch is in the position 1 is

t= + °( )1 414 1000 75. sin A

t i= = ° =0 1 414 75 1 365; . sin .t A

Therefore, the current equation is i 5 1.365 e250t A
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PROBLEM 11.5

The switch in the circuit shown in Fig. 11.26 is closed at t 5 0. Find v2(t) for all t $ 0 by time domain method. 

Assume zero initial current in the inductance.

Fig. 11.26

Solution  By applying KVL to the loop 1, we get

10 30 10

40 30 10

1 2 1= +[ ]+
+ =

i t i t i t

i t i t

( ) ( ) ( )

( ) ( )  (11.46)

By applying KVL to the loop 2, we get

0 0 2 101 2
2i t i t

di t

dt
( )+ ( )  +

( )
=.  (11.47)

From Eq. (11.46),

i(t) 5 0.25 – 0.75i2(t) (11.48)

Substituting Eq. (11.48) into Eq. (11.47), we get

di t

dt
i t

D i

2
2

2

37 5 2 5

37 5 2 5

( )
. ( ) .

( . ) .

− =

− =

 (11.49)

 i2(t) 5 0.066  c e237.5t

At t 5 0 ; i2(t) 5 0

 c 5 20.066

∴ i2(t) 5 0.066[1 – e237.5t] A

v t L
di t

dt

d

dt
e

v t e

t

2
2

37 5

2
37

0 2 0 066 1

0 495

( )
( )

. . ( )

( ) .

.

.

=

= −





=

−

− 55t V

PROBLEM 11.6

The circuit shown in Fig. 11.27, consists of series RL elements with R 5 150 V and L 5 0.5 H. The switch is 

closed when f 5 30°. Determine the resultant current when voltage V 5 50 cos (100t  f) is applied to the 

circuit at f 5 30°.
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Fig. 11.27

Solution  By using Kirchhoff’s laws, the differential equation, when the switch is closed at f 5 30°, is

150 0 5 50 100i
di

dt
t+ = +( ). cos f

0.5Di  150i 5 50 cos (100t  30°)

 (D  300)i 5 100 cos (100t  30°)

The complementary current ic 5 ce–300t

To determine the particular current, first we assume a particular current.

ip 5 A cos (100t  30°)  B sin (100t  30°)

Then i9p 5 – 100 A sin (100t  30°)  100 B cos (100t  30°)

Substituting ip and i9p in the differential equation and equating the coefficients, we get

– 100 A sin (100t  30°)  100 B cos (100t  30°)  300 A cos (100t  30°)

  300B sin (100t  30°) 5 100 cos (100t  30°)

 –100 A  300 B 5 0

 300 A  100 B 5 100

From the above equation, we get

A 5 0.3 and B 5 0.1

The particular current is

 ip 5 0.3 cos (100t  30°)  0.1 sin (100t  30°)

∴ ip 5 0.316 cos (100t  11.57°) A

The complete equation for the current is i 5 ip  ic

∴ i 5 ce–300t  0.316 cos (100t  11.57°)

At t 5 0, the current i0 5 0

∴ c 5 – 0.316 cos (11.57°) 5 – 0.309

Therefore, the complete solution for the current is

i 5 – 0.309e–300t  0.316 cos (100t  11.57°) A

PROBLEM 11.7

The circuit shown in Fig. 11.28, consists of series RC 

elements with R 5 15 V and C 5 100 F. A sinusoidal 

voltage v 5 100 sin (500t  f) volts is applied to the 

circuit at time corresponding to f 5 45°. Obtain the 

current transient.

Fig. 11.28
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Solution  By using Kirchhoff’s laws, the differential equation is

15
1

100 10
100 500

6
i idt t+

×
= +

− ∫ sin ( )f

Differentiating once, we have

15
1

100 10
100 500 500

1

1500 10

6

6

di

dt
i t

D

+
×

= +

+
×








−

−

( ) ( ) cos( )f

 = +i t3333 3 500. cos( )f

 (D  666.67)i 5 3333.3 cos (500t  f)

The complementary function ic 5 ce–666.67t

To determine the particular current, first we assume a particular current.

ip 5 A cos (500t  45°)  B sin (500t  45°)

i9p 5 – 500 A sin (500t  45°)  500 B cos (500t  45°)

Substituting ip and i9p in the differential equation, we get

– 500 A sin (500t  45°)  500 B cos (500t  45°)

   666.67 A cos (500t  45°)  666.67 B sin (500t  45°)

   5 3333.3 cos (500t  f)

By equating coefficients, we get

500 B  666.67 A 5 3333.3

 666.67 B – 500 A 5 0

From which, the coefficients

A 5 3.2; B 5 2.4

Therefore, the particular current is

ip 5 3.2 cos (500t  45°)  2.4 sin (500t  45°)

ip 5 4 sin (500t  98.13°)

The complete equation for the current is

i 5 ic  ip

i 5 ce–666.67t  4 sin (500t  98.13°)

At t 5 0, the differential equation becomes

15i 5 100 sin 45°

 
i = ° =

100

15
45 4 71sin . A

∴ at t 5 0,

 4.71 5 c  4 sin (98.13°)

∴  c 5 0.75

The complete current is

i 5 0.75 e–666.67t  4 sin (500t  98.13°)
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PROBLEM 11.8

The circuit shown in Fig. 11.29 consisting of series RLC 

elements with R 5 10  V, L 5 0.5  H and C 5 200 F 

has a sinusoidal voltage v 5 150 sin (200t  f). If the 

switch is closed when f 5 30°, determine the current 

equation.

Solution  By using Kirchhoff’s laws, the differential 

equation is

10 0 5
1

200 10
150 200

6
i

di

dt
idt t+ +

×
= +

− ∫. sin ( )f

Differentiating once, we have

(D2  20D  104)i 5 60000 cos (200t  f)

The roots of the characteristics equation are

D1 5 210  j99.49 and D2 5 210 2 j99.49

The complementary function is

ic 5 e–10t (c1 cos 99.49t  c2 sin 99.49)

We can find the particular current by using the undetermined coefficient method.

Let us assume

ip 5 A cos (200t  30°)  B sin (200t  30°)

i9p 5 – 200 A sin (200t  30°)  200 B cos (200t  30°)

ip 5 – (200)2 A cos (200t  30°) – (200)2 B sin (200t  30°)

Substituting these values in the equation, and equating the coefficients, we get

A 5 0.1 B 5 0.067

Therefore, the particular current is

ip 5 1.98 cos (200t – 52.4°) A

The complete current is

i 5 e–10t (c1 cos 99.49t  c2 sin 99.49t)  1.98 cos (200t – 52.4°) A

From the differential equation at t i
di

dt
= = =0 0 3000, and 

∴ At   t 5 0

c1 5 21.98 cos (252.4°) 5 21.21

Differentiating the current equation, we have

di

dt
e c t c tt= − +−10

1 299 49 99 49 99 49 99 49( . sin . . cos . )

– 200 (1.98) sin (200t – 52.4°) – 10e–10t (c1 cos 99.49t  c2 sin 99.49t)

Fig. 11.29
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At and t
di

dt
c= = = −0 300 1 211, .

300 5 99.49 c2 2 396 sin (252.4°) 2 10(21.21)

300 5 99.49 c2  313.7  12.1

 c2 5 225.8

Therefore, the complete current equation is

i 5 e –10t (0.07 cos 99.49t 2 25.8 sin 99.49t)  1.98 cos (200t 2 52.4°) A

PROBLEM 11.9

For the circuit shown in Fig. 11.30, determine the 

transient current when the switch is moved from 

the position 1 to the position 2 at t 5 0. The circuit 

is in steady state with the switch in position 1. 

The voltage applied to the circuit is v 5 150 cos 

(200t  30°) V.

Solution  When the switch is at the position 2, by applying Kirchhoff’s law, the differential equation is

200 0 5 0i
di

dt
+ =.

 (D  400)i 5 0

∴ the transient current is

i 5 ce – 400t

At t 5 0, the switch is moved from the position 1 to the position 2. Hence, the current passing through 

the circuit is the same as the steady state-current passing through the circuit when the switch is in position 1.

When the switch is in the position 1, the current passing through the circuit is

v

z R j L

j

= =
∠ °

+

=
∠ °

+ ( ) ( )
=

∠ °
∠

150 30

150 30

200 200 0 5

150 30

223 6 26 5

v

. . . 66
0 67 3 44

°
= ∠ °. .

Therefore, the steady-state current passing through the circuit when the switch is in the position 1 is

i 5 0.67 cos (200t  3.44°)

Now substituting this equation in the transient current equation, we get

0.67 cos (200t  3.44°) 5 ce – 400t

At t 5 0; c 5 0.67 cos (3.44°) 5 0.66

Therefore, the current equation is i 5 0.66e – 400t

Fig. 11.30
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PROBLEM 11.10

In the circuit shown in Fig. 11.31, determine the current 

equations for i1 and i2 when the switch is closed at t 5 0.

Solution  By applying Kirchhoff’s laws, we get two equations:

 35i1  20i2 5 100 (11.50)

20 20 0 5 1001 2
2i i

di

dt
+ + =.  (11.51)

From Eq. (11.50), we have

35i1 5 100 – 20i2

 
i i1 2

100

35

20

35
= −

Substituting i1 in Eq. (11.51), we get

20
100

35

20

35
20 0 5 1002 2

2−






+ + =i i

di

dt
.  (11.52)

 
57 14 11 43 20 0 5 1002 2

2. . .− + + =i i
di

dt

 (D  17.14)i2 5 85.72

From the above equation,

i2 5 ce –17.14t  5

Loop current i2 passes through inductor and must be zero at t 5 0

At  t 5 0, i2 5 0

∴ c 5 – 5

∴ i2 5 5(1 – e –17.14t) A

and the current i1 5 2.86 – {0.57 3 5(1 – e –17.14t)}

  5 (0.01  2.85 e –17.14t) A

PROBLEM 11.11

For the circuit shown in Fig. 11.32, find the current equation when 

the switch is changed from the position 1 to the position 2 at t 5 0.

Solution  By using Kirchhoff’s voltage law, the current equation 

is given by

0 0 4 10i
di

dt
i+ =.

Fig. 11.31

Fig. 11.32
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At t 5 0 –, the switch is at the position 1, the current passing through the circuit is

i

di

dt
i

D i

i ce t

( )

.

.

0
500

100
5

0 4 50 0

50

0 4
0

125

−

−

= =

+ =

+






 =

=

A

At t 5 0, the initial current passing through the circuit is same as the current passing through the circuit 

when the switch is at the position 1.

At t 5 0, i(0) 5 i(0 –) 5 5 A

At t 5 0, c 5 5 A

∴ the current I 5 5e –125t

PROBLEM 11.12

For the circuit shown in Fig. 11.33, find the current equation 

when the switch S is opened at t 5 0.

Solution  When the switch is closed for a long time,

At the current At i= = =− −0 0
100

20
5, ( )

When the switch is opened at t 5 0, the current equation by using Kirchhoff’s voltage law is given by

1

4 10
10 5

1

4 10
5 0

6

6

×
+ =

×
+ =

−

−

∫

∫

i dt i i

i dt i

Differentiating the above equation,

∴ 

5
1

4 10
0

1

20 10
0

6

6

1

20 10 6

di

dt
i

D i

i ce
t

+
×

=

+
×



 =

=

−

−

−
× −

At t 5 0–, just before the switch S is opened, the current passing through the 10 V resistor is 5 A. The same 

current passes through 10 V at t 5 0.

∴ At t 5 0, i(0) 5 5 A

At t 5 0, c1 5 5 A

The current equation is e

t

=
−

× −
5 20 10 6

Fig. 11.33
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PROBLEM 11.13

For the circuit shown in Fig. 11.34, find the current in the 20 V 

when the switch is opened at t 5 0.

Solution  When the switch is closed, the loop currents i1 and i2 are 

flowing in the circuit.

The loop equations are 30(i1 – i2)  10i2 5 50

 30(i2 – i1)  20i2 5 10i2

From the above equations, the current in the 20 V resistor i2 5 2.5 A.

The same initial current is flowing when the switch is opened at t 5 0.

When the switch is opened, the current equations

0 20 2 10

40
2

0

i i
di

dt
i

i
di

dt

+ + =

+ =

 (D  20)i 5 0

 i 5 ce–20t

At t 5 0, the current i(0) 5 2.5 A

∴  At t 5 0, c 5 2.5

The current in the 20 V resistor is i 5 2.5 e –20t

PROBLEM 11.14

For the circuit shown in Fig. 11.35, find the current equation when the switch is opened at t 5 0.

Fig. 11.35

Solution  When the switch is closed, the current in the 20 V resistor i can be obtained using Kirchhoff’s 

voltage law.

10i  20i  20i 5 100

50i 5 100, ∴ i 5 2 A

The same initial current passes through the 20 V resistor when the switch is opened at t 5 0.

The current equation is

20 10
1

2 10
20

10
1

2 10
0

6

6

i i idt i

i idt

+ +
×

=

+
×

=

−

−

∫

∫

Fig. 11.34
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Differentiating the above equation, we get

10
1

2 10
0

1

20 10
0

6

6

di

dt
i

D i

+
×

=

+
×







 =

−

−

The solution for the above equation is

i ce
t

=
−
× −

1

20 10 6

At t 5 0, i(0) 5 i(0 –) 5 2 A

∴ At t 5 0, c 5 2 A

The current equation is

i e
t

=
−
× −

2

1

20 10 6

PSpice Problems

PROBLEM 11.1

Using PSpice, for the circuit shown in Fig. 11.36, find the complete expression for the current when the switch 

is closed at t 5 0.

Fig. 11.36

RL TRANSIENT WITH SWITCH

VS 1 0 PWL(0 100 1N 100 1U 100 1 100)

R1 1 2 20

R2 2 3 30

L3 0 0.1H IC 5 2

W1 2 3 VS SMOD

.MODEL SMOD ISWITCH(ION 5 0 IOFF 5 2)

.TRAN 1U 50M UIC

.PROBE

.END
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F
ig

. 
1

1
.3

7

Result  I( ) ( )
/

t e t m

= 5 2 5
5

+ −
−

  5 5 2 3e2200t

PROBLEM 11.2

A series RLC circuit shown in Fig. 11.38, comprising 

R 5 10 V, L 5 0.5 H, and C 5 1 F, is excited by a 

constant voltage source of 100 V, using PSpice, obtain the 

expression for current.

Fig. 11.38
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F
ig

. 
1

1
.3

9

* RLC UNDERDAMPED OSCILLATIONS 

V1 1 0 PWL(0 0 0.1N 100 1 100)

R 1 2 10 OHM

L 2 3 0.5 H

C 3 0 1 UF

.TRAN 10 U 50 M

.PROBE

.END

FROM EVAL GOAL FUNCTION

PEIROD(I(C)) 5 4.4715m Sec

Wd 5 1405.16 rad/sec
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Answers to Practice Problems

11-2.1 i(t) 5 (2  10t)e–5t

11-2.2 i V VR L= = =69 7 6 97 3 03
2

. ; . ; .mA volts volts

11-2.3 v(t) 5 –5e2t  15e23t volts

11-2.5 i1(t) 5 9.99 – 8.49 e–53104 t; i2(t)55e–5 3 104 t

11-2.6 R 5 10 K ; c 5 2.5 F

11-2.7 i(t) 5 5 cos100t

11-2.8 i(t) 5 101.2  30.9 e–0.1t – 52.11 e–4.94t

11-2.12 V1(t) 5 – 4e–0.4t  4e–4999.8t

11-3.1 5e–5.71t

11-3.4 i(t) 5 3.8  e–0.05t  0.12 e–0.31t

11-3.8 v(t) 5 5t e–2t volts

Objective-Type Questions

rrr11.1 Transient behaviour occurs in any circuit when

 (a) there are sudden changes of applied voltage

 (b) the voltage source is shorted

 (c) the circuit is connected or disconnected from the supply

 (d) all of the above happen

rrr11.2 The transient response occurs

 (a) only in resistive circuits   (c) only in capacitive circuits

 (b) only in inductive circuits  (d) both in (b) and (c)

rrr11.3 Inductor does not allow sudden changes

 (a) in currents   (c) in both (a) and (b)

 (b) in voltages   (d) in none of the above

rrr11.4 When a series RL circuit is connected to a voltage source V at t 5 0, the current passing through the inductor 

L at t 5 0 is

 (a) 
V

R
 (b) infinite (c) zero (d) 

V

L
rrr11.5 The time constant of a series RL circuit is

 (a) LR (b) 
L

R
 (c) 

R

L
 (d) e –R/L

rrr11.6 A capacitor does not allow sudden changes

 (a) in currents (c) in both currents and voltages

 (b) in voltages (d) in neither of the two

rrr11.7 When a series RC circuit is connected to a constant voltage at t 5 0, the current passing through the circuit at 

t 5 0 is

 (a) infinite (b) zero (c) 
V

R
  (d) 

V

Cv
rrr11.8 The time constant of a series RC circuit is

 (a) 
1

RC
  (b) 

R

C
 (c) RC (d) e –RC

rrr11.9 The transient current in a lossfree LC circuit when excited from an ac source is an ______ sine wave.

 (a) undamped (c) underdamped

 (b) overdamped (d) critically damped



Transients 511 

rrr11.10 Transient current in an RLC circuit is oscillatory when

 (a) R L C= 2 /  (b) R 5 0 (c) R L C> 2 /  (d) R L C< 2 /

rrr11.11 The initial current in the circuit shown in Fig. 11.40 when 

the switch is opened for t . 0 is

 (a) 1.67 A (c) 0 A

 (b) 3 A (d) 2 A

rrr11.12 The initial current in the circuit shown in Fig. 11.41 below 

when the switch is opened for t . 0 is

 (a) 1.5 A (c) 2 A

 (b) 0 A (d) 10 A

rrr11.13 For the circuit shown in Fig. 11.42 the current in the 10 V 

resistor when the switch is changed from 1 to 2 is

 (a) 5 e20t (c) 20 e5t

 (b) 5 e –20t (d) 20e –5t

rrr11.14 For the circuit shown in Fig. 11.43, the current in the 5 V resistor when the switch is changed from 1 to 2 is

 (a) 2 5

1

2 10 6

. e × −
 (c) 2.5 e –10t (b) 0 (d) 5e –5t

Fig. 11.42 Fig. 11.43

Fig. 11.40

Fig. 11.41

For interactive quiz with answers,
scan the QR code given here
OR
visit
http://qrcode.flipick.com/index.php/269



12.1 INTRODUCTION TO FOURIER ANALYSIS

Fourier series are series of cosine and sine terms and are used to represent general periodic signals. The ideas 

and techniques of Fourier series can be extended to non-periodic signals. The signal representation for such 

non-periodic signals are given by Fourier integrals and Fourier transforms.

Fourier analysis deals with Fourier series and Fourier transforms and has several applications in 

mathematics, science and engineering, particularly in the area of communications and signal processing. 

Any periodic signal can be represented as the sum of a finite or infinite number of sinusoidal functions, the 

responses of linear systems to nonsinusoidal excitations can be determined by applying the superposition 

integral. The Fourier analysis provides the ways of solving the above problem.

12.2 TRIGONOMETRIC SERIES

Periodic signals can be represented by the sum of sinusoids whose frequencies 

are harmonics or integer multiples of fundamental frequency. The Fourier 

series representation of a periodic signal will be of the form

x(t) 5 a0 1 a1 cos vt 1 a1 cos 2vt 1 ........... 1 b1 sin vt 

1 b2 sin 2vt 1 ...

where a0, a1, a2 ........, b1, b2 .......... are real constants. Such a series is called 

trigonometric series and an and bn are called the coefficients of the series.

12

LEARNING OBJECTIVES

LO  1  
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Using summation, we may write this series as

x t a a n t b n tn n

n

( ) ( cos sin )= + +
=

∞

∑0

1

v v

Let us assume x(t) is a periodic function of period 
2p
v

 and is integrable over a period 
2p
v

. Assume x(t) 

can be represented by a trigonometric series.

x t a a n t b n tn n

n

( ) ( cos sin )= + +
=

∞

∑0

1

v v  (12.1)

We assume that this series converges and has x(t) as its sum. From the function x(t), we can determine the 

coefficients an and bn.

12.2.1 Determination of Constant Term a0

Integrating both sides of Eq. (12.1) from 
−p

v

p

v
to ,

we get x t dt a a n t b n t dtn n

n

( ) cos sin[ ]= + +
− =

∞

−
∫ ∑∫

p

v

p

v

p

v

p

v

v v0

1

 (12.2)

The term-by-term integration gives

x t dt a dt a n t dt b n t dtn n

n

( ) cos sin[ ]
− − −=

∞

∫ ∫ ∫∑= + +
p

v

p

v

p

v

p

v

p

v

p

v

v v0

1−−
∫

p

v

p

v

 (12.3)

The first term, on the right equals 
2

0

p

v
a . All the other integrals on the right are  zero.

x t dt a

a x t dt

( )

( )

=

=

∫

∫

2

2

0

0

2

0

0

2

p

v

v

p

p

v

p

v

An alternate form of the evaluation integral with the variable vt and the corresponding period of 2p 

radians is 

a x t d t0

0

2
1

2
= ∫p

v

p

( ) ( )  (12.4)

12.2.2 Determination of the Coefficients an of the Cosine Terms

We multiply Eq. (12.1) by cos mvt, where m is any fixed positive integer and integrate from 
−p

v

p

v
to .
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x t m t dt a a n t b n t mn n

n

( ) cos ( cos sin ) cos[ ]v v v

p

v

p

v

p

v

p

v

− =

∞

−
∫ ∑∫= + +0

1

vvt dt  (12.5)

Integrating term-by-term, the right-hand side becomes,

a m t dt a n t m t dt b n t m t dtn n0 cos cos cos sin cos[ ]v v v v v

p

v

p

v

p

v

p

v

+ +
− −
∫ ∫

nn=

∞

−
∑∫

1p

v

p

v  (12.6)

The first and third integrals are zero. The second integral becomes 
amp

v
 when n 5 m

∴ =

=

−
∫

∫

a x t n t dt

x t n t d t

n

v

p
v

p
v v

p

v

p

v

p

( ) cos

( ) cos ( )
1

0

2

 (12.7)

12.2.3 Determination of the Coefficients bn of the Sine Terms 

We multiply Eq. (12.1) by sin mvt, where m is the fixed positive integer and integrate 
−p

v

p

v
to

x t m t dt a a n t b n t mn n

n

( )sin cos sin sin[ ]v v v

p

v

p

v

p

v

p

v

= + +( )
− =

∞

−
∫ ∑∫ 0

1

vvt dt  (12.8)

Integrating term-by-term, the right hand-side becomes,

a m t dt a n t m t dt b n t m t dtn n0 sin cos sin sin sin[ ]v v v v v

p

v

p

v

p

v

p

v

+ +
− −
∫ ∫

nn=

∞

−
∑∫

1p

v

p

v

 (12.9)

The first two integrals are zero and the last integral becomes 
bnp

v
 when n 5 m

b x t n t dtn =
−
∫

v

p
v

p

v

p

v

( )sin

or

b x t n t d tn = ∫
1

0

2

p
v v

p

( )sin ( )  (12.10)

The coefficients a0, an, and bn are called the Fourier coefficients of x(t).
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12.3 COMPACT TRIGONOMETRIC FOURIER SERIES

The sine and cosine terms of the same frequency can be combined as single sine or cosine with a phase angle.

a n t b n t c n tn n n ncos sin cos( )v v v u+ = +

or

a n t b n t c n tn n n ncos sin sin( )v v v f+ = +  (12.11)

where

c a b

b

a

a

b

n n n

n
n

n
n

n

n

= +

=
−









=








− −

2 2

1 1u ftan tanand 

The Fourier series in Eq. (12.1) can be expressed in the compact form

x t c c n to n n

n

( ) cos( )= + +
=

∞

∑ v u
1

 (12.12)

where c0 5 a0 is the average value of x(t) and cn; un are computed from an and bn.

12.3.1 Existence of the Fourier Series, Dirichlet Conditions

Any periodic function x(t) 5 x(t 1 T ) can be expressed by a Fourier series provided the following conditions 

are satisfied.

 The function x(t) is absolutely integrable over one period.

| ( ) |x t dt

T

< ∞∫

 where T is the period.

 The function x(t) has only a finite number of positive and negative maxima in one period.

 The function x(t) has a finite number of discontinuities in one period.

The above conditions are known as Dirichlet conditions and hence possess a convergent Fourier series.

EXAMPLE 12.1

Find the Fourier series for the waveform shown in Fig. 12.1.

Fig. 12.1

LO 1
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Solution  The waveform equation is given by

v t t( ) =
20

2p
v

The average value of the waveform is

a t d t
t

an

0

2

0

2

0

2

1

2

20

2
20

2
10

1 20

2

= = ×










 =

=




∫p p
v v

v

p p

p p

( )
( )






= +












∫ v v v

p

v
v v

p

t n t d t

t

n
n t

n
n t

0

2

2 2
0

20

2

1

cos ( )

sin cos

22

2 2

20

2
2 0

p

p
p= −[ ]

n
ncos cos

 5 0 for all integer values of n

b t n t d t

t

n
n t

n

n =








=
−

+

∫
1 20

2

20

2

1

0

2

2 2

p p
v v v

p

v
v

p

sin ( )

cos sinn n t
n

v
p

p











=
−

0

2
20

Using these sine term coefficients and the average term, the series is

v t t t t( ) sin sin sin= − − −10
20 20

2
2

20

3
3

p
v

p
v

p
v

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 1*
rrr12-1.1 Find the trigonometric Fourier series for sawtooth wave shown in Fig. Q.1 and plot the spectrum.

rrr12-1.2 Find the trigonometric Fourier series for the waveform shown in Fig. Q.2.

Fig. Q.1 Fig. Q.2

*Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category



Fourier Method of  Waveform Analysis 517 

rrr12-1.3 Find the trigonometric Fourier series for the waveform shown in Fig. Q.3.

rrr12-1.4 Find the exponential Fourier series for the waveform shown is Fig. Q.4 and plot the spectrum. Concert the 
coefficients obtained into the trigonometric series coefficients.

Fig. Q.3 Fig. Q.4

Frequently Asked Questions linked to LO 1*
rrr12-1.1 Find the trigonometric form of Fourier series for the 

waveform shown in Fig. Q.1. [BPUT 2007]
rrr12-1.2 Explain time invariant. [GTU Dec. 2010]

rrr12-1.3 Discuss the effect of symmetry for a periodic 

function to determine the trigonometric Fourier series 

coefficients. [RGTU Dec. 2013]

rrr12-1.4 Find the Fourier coefficients for the waveform shown 

in Fig. Q.4. [RGTU Dec. 2010]

rrr12-1.5 Obtain trigonometric Fourier series of the signal shown in Fig. Q. 5. [RTU Feb. 2011]

V

–2T –T T

2

T

2

3T

2

0 T 2T

v
t( 
)

t

Fig. Q. 4 Fig. Q.5

f t( )

0p2–3 p2– p2 p23–p p

1

–1
t

12.4 FUNCTIONS OF ANY PERIOD 2T

The functions considered so far had period 2p. In several applications, periodic 

functions will generally have other periods.

If a functions x(t) of period 2T has a Fourier serie, then this series is

x t a a
n

T
t b

n

T
tn n

n

( ) cos sin= + +








=

∞

∑0

1

p
v

p
v  (12.13)

With the Fourier coefficients of x(t) given by

a
T

x t d t

a
T

x t
n t

T
d t n

T

T

n

0

1

2

1
1

=

=






 =

−
∫ ( ) ( )

( ) cos ( ) ,

v

pv
v for 22....

−
∫

T

T

V

–v

0
2p

3pp

wt

Fig. Q. 1

LO   2 

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600
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b
T

x t
n t

T
d t nn

T

T

=






 =

−
∫

1
1 2( )sin ( ) , ....

pv
v for

EXAMPLE 12.2

Find the Fourier series of the function shown in Fig. 12.2.

v t

if t

k if t

if t

( ) =
− < < −

− < <
< <










0 2

0 2

p v p

p v p

p v p

 (12.14)

Fig. 12.2

Solution  From Eq. (12.14), the Fourier coefficients are

a v t d t k d t
k

0

2

2
1

4

1

4 2
= = =

− −
∫ ∫p

v
p

v

p

p

p

p

( ) ( ) ( )  (12.15)

a v t
n t

d t k
n t

d t

k

n

n = =

=

− −
∫ ∫

1

2 2

1

2 2

2

2

2

p

pv
v

pv
v

p

p

p

p

p

( ) cos ( ) cos ( )

sin
nnp

2
 (12.16)

Thus, an 5 0 if n is even and

a
k

n
n a

k

n
nn n= = =

−
=

2
1 5 9

2
3 7 11

p p
if if, , , ....., , , ....

we also find that bn 5 0 for n 5 1,2... Hence, the result is

v t
k k

t t t( ) cos cos cos .....= + − + +










2

2

2

1

3

3

2

1

5

5

2p

p
v

p
v

p
v  (12.17)

12.4.1 Even and Odd Functions

A function x(t) is even if x(2t) 5 x(t). The waveform of such a function is symmetric with respect to the 

y-axis. A function x(t) is odd if x(2t) 5 2x(t). The function cos nvt is even and sin nvt is odd. The even and 

odd functions are shown in Figs 12.3 (a and b).
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The sum of two or more even functions is an even function and with the addition of a constant, the even 

nature of the function remains. The sum of two or more odd functions is an odd function, but the addition 

of a constant removes the odd nature of the function. The product of two odd functions is an even function.

The Fourier series of an even function of period 2T is a Fourier cosine series.

x t a a
n

T
tn

n

( ) cos= +
=

∞

∑0

1

p
v  (12.18)

with coefficients

 

a
T

x t d t

a
T

x t
n t

T
d t

T

n

T

0

0

0

1

2

=

=

∫

∫

( ) ( );

( ) cos ( )

v

pv
v

The Fourier series of an odd function of period 2T is a Fourier sine series.

x t b
n

T
tn

n

( ) sin ( )=
=

∞

∑ p
v

1

 (12.19)

with coefficients

 

b
T

x t
n t

T
d tn

T

= ∫
2

0

( ) sin ( )
pv

v

A periodic function x(t) is said to have half-wave symmetry if x t x t
T

( ) = − +






2

 where T is the period. If 

the waveform has half-wave symmetry, only odd harmonics are present in the series. This series will contain 

both sine and cosine terms unless the function is also odd or even. In any case, an and bn are equal to zero for 

n 5 2,4,6 … for any waveform with half-wave symmetry.

EXAMPLE 12.3

Find the trigonometric Fourier series for the triangular even waveform shown in Fig. 12.4.

Fig. 12.3
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Fig. 12.4

Solution  The waveform shown in Fig. 12.4 is an even function

since v(t) 5 v(–t)

By observation, the average value of the wave

 a0 5 5

The waveform has half-wave symmetry

v t v t T( ) = − +( )
2

The equation for the waveform

v(t) 5 10 1 (10/p)vt for 2p , vt , 0

 5 10 – (10/p)vt for 0 , vt , p (12.20)

Since even waveforms have only cosine terms,

 bn 5 0 for all n

a t n t d tn = +


















 + −




−
∫

1
10

10 1
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10
0

p p
v v v

p p
p

cos ( ) 
















= +

∫

∫
−

v v v

p
v v

v

p

p

p

p

t n t d t

n t d t
t

0

10

cos ( )

cos ( ) coos ( ) cos ( )n t d t
t

n t d t

n

v v
v

p
v v

p

p

p

−














=

∫∫
− 0

0

2

10 1
22

0

2
0

1
cos sin cos sinn t

t
n t

n
n t

t
n tv

v

p
v v

v

p
v

p

+












− +










−

pp

p
p p















= °− − − + °{ }

=

10
0 0

2 2n
n n

an

cos cos( ) cos cos

220
1

2 2p
p

n
n( cos )−

 an 5 0 for n 5 2,4,6…
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a
n

nn = =
40

1 3 5
2 2p

for , , ...

The Fourier series is

v t t t t( ) cos
( )

cos
( )

cos= + + + +5
40 40

3
3

40

5
5

2 2 2p
v

p
v

p
v �

EXAMPLE 12.4

Find the trigonometric Fourier series for the waveform shown in Fig. 12.5.

Fig. 12.5

Solution  By inspection, the average value of the waveform an 5 0. The waveform is odd and contains only 

sine terms. The expression of the waveform

v t t t( ) =






 − < <

20

p
v p v pfor  (12.21)

b t n t d t

n
n t

t

n
n

n =








= −

−
∫

1 20

20 1
2 2

p p
v v v

p
v

v
v

p

p

sin ( )

sin cos tt
n

n












=
−

−p

p

p
p

40
cos  (12.22)

The Fourier series is

v t t t t t( ) sin sin sin sin= − + − +{ }40 1

2
2

1

3
3

1

4
4

p
v v v v �  (12.23)

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 2

rrr12-2.1 Find the trigonometric Fourier series for the waveform 

shown in Fig. Q.1 and plot the line spectrum.

Fig. Q.1



Circuits and Networks522 

rrr12-2.2 Find the trigonometric Fourier series for the half-wave rectified-wave shown in Fig. Q.2 and plot 

the spectrum.

rrr12-2.3 Find the exponential Fourier series for the square wave shown in Fig. Q.3 and plot the spectrum.

Fig. Q.2 Fig. Q.3

Frequently Asked Questions linked to LO 2
rrr12-2.1 Find the Fourier series of the waveform shown in Fig. Q.1 and also find the line spectrum.

  [RTU Feb. 2011]

f( )t

2p 3pp wt0

Fig. Q.1

12.5 COMPLEX FOURIER SERIES

The Fourier series

x t a a n t b n tn n

n

( ) ( cos sin )= + +
=

∞

∑0

1

v v  (12.24)

can be written in the complex form

We know that

ejnvt 5 cos nvt 1 j sin nvt (12.25)

e2jnvt 5 cos nvt 2 j sin nvt (12.26)

By adding the Eqs (12.25) and (12.26), we get

cos ( )n t e ejn t jn tv v v= + −1

2

LO   3 
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Subtracting Eq. (12.26) from Eq. (12.25) and dividing by 2j, we get

sin ( )

cos sin (

n t
j

e e

a n t b n t a e e

jn t jn t

n n n
jn t jn

v

v v

v v

v v

= −

+ = +

−

−

1

2

1

2

tt
n

jn t jn t

n n
jn t

n n
jn t

j
b e e

a jb e a jb e

) ( )

( ) ( )

+ −

= − + +

−

−

1

2

1

2

1

2

v v

v v

Consider a0 5 c0

1

2

1

2

( )

( )

a jb c

a jb c

n n n

n n n

− =

+ = −and

Equation (12.24) becomes

x t c c e c e

c a jb

x t n

n
jn t

n
jn t

n

n n n

( ) ( )

( )

( )(cos

= + +

= −

=

−
−

=

∞

∑0

1

1

2

1

2

v v

p
vv v v

p
v

p

p

v

p

p

t j n t d t

x t e d t

c a jb

jn t

n n n

−

=

= +

−

−

−

−

∫

∫

sin ) ( )

( ) ( )

( )

1

2

1

2

== +

=

−

−

∫

∫

1

2

1

2

p
v v v

p
v

p

p

v

p

p

x t n t j n t d t

x t e d tjn t

( )(cos sin ) ( )

( ) ( )

 (12.27)

By combining the two formulas and writing cn 5 c2n, we get

x t c en
jn t

n

( ) =
=−∞

∞

∑ v
 (12.28)

 where c x t e d t nn
jn t= = ± ±

−

−∫
1

2
0 1 2

p
v

p

p
v( ) ( ) , ,for �

This is called complex form of Fourier series or complex Fourier series of x(t). The cn are called the 

complex Fourier coefficients of x(t).
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EXAMPLE 12.5

Find the complex Fourier series for the square wave shown 

in Fig. 12.6.

Solution  The expression of the waveform

 v(t) 5 210 for 2p , vt , 0

 5 10 for 0 , vt , p

The average value of the wave is zero

 

c e d t e d tn
jn t jn t= − +










− −

−
∫∫

1
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p
v vv v

p

p

( ) ( ) ( ) ( )




= −
−













+
−















 −

−

−10

2

1 1
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=
−

− + + −( )

= −( )
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0 0

j n
e e e e
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n
e

jn jn

jn

p

p

p p

p

 (12.29)

For n even, e jnp 5 1  and cn 5 0

For n odd,   e c
j

n

jn
n

p

p
= − =

−
1

20
and

( )

The Fourier series is

x t j e j e j e j ej t j t j t j t( ) = + − − −− −n
20

3

20 20 20

3

3 3

p p p p

v v v v  (12.30)

12.6 AMPLITUDE AND PHASE SPECTRUMS

Fourier coefficient cn of the exponential form is a complex quantity and can be represented by

cn 5 Re[cn] 1 j Im[cn] (12.31)

The real part of cn is

Re[ ] ( ) cosc x t n tn = ∫
1

2
0

2

p
v

p

 (12.32)

The imaginary part of cn is

Im[ ] ( )sinc x t n tn = ∫
1

2
0

2

p
v

p

 (12.33)

Fig. 12.6

LO 3
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Re[cn] is an even function of n, where as Im [cn] is an odd function of n. Therefore, the amplitude spectrum 

of the Fourier series is given by

| | {Re [ ] [ ]} /c c cn n n= +2 2 1 2Im  (12.34)

while the phase spectrum is given by

un
n

n

c

c
=













−tan
[ ]

Re[ ]

1 Im
 (12.35)

12.7 THE FREQUENCY SPECTRUM

Consider the Fourier series

x t a a n t b n tn n

n

( ) ( cos sin )= + +
=

∞

∑0

1

v v

Let an 5 cn cos an

and bn 5 cn sin an (12.36)

Therefore, x t a c n t c n t

a c

n n n n

n

n

( ) ( cos cos sin sin )= + +

= +

=

∞

∑0

1

0

a v a v

ccos( )n t n

n

v a−
=

∞

∑
1

 (12.37)

From Eq. (12.36), we have

tan

tan

a

a

n
n

n

n
n

n

b

a

b

a

=

=










−1  (12.38)

Also, we have

c a bn n n= +2 2  (12.39)

The magnitude of Cn is plotted against nv, the graph obtained is called the frequency spectrum of the 

given waveform x(t). The amplitudes decreases rapidly for waves with rapidly convergent series. Waves with 

discontinuities such as sawtooth and square waves have spectra with slowly decreasing amplitudes since their 

series have strong high harmonics.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 3
rrr12-3.1 Find the exponential Fourier series for the full- 

wave rectified sine wave shown in Fig. Q.1 and 

plot the spectrum.

rrr12-3.2 Find the exponential Fourier series for the 

waveform shown in Fig. Q.2 and plot the line 

spectrum.

Fig. Q.1

LO 3
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rrr12-3.3 Find the exponential Fourier series for the waveform shown in Fig. Q.3 and plot the spectrum.

Fig. Q.2 Fig. Q.3

rrr12-3.4 Find and sketch the frequency spectrum of rectangular pulse shown in Fig.Q.4.

rrr12-3.5 Find and sketch the Fourier transform of the modulated signal x(t) cos 10t in which x(t) is shown 

in Fig. Q.5.

Fig. Q.4 Fig. Q.5

Frequently Asked Questions linked to LO 3
rrr12-3.1 Expand the square-wave voltage signal, as shown in the following figure into a Fourier series. 

 [RGTU June 2014]

3T

4

1

f t( )

– 4T 0

–1

T 4

3 T

4

t

Fig. Q.1

12.8 FOURIER TRANSFORM

Fourier series are powerful tools in dealing various problems involving periodic 

functions. In several applications, many practical problems involve non-periodic 

functions. The method of Fourier series can be extended to such non-periodic 

functions.

The exponential form of Fourier series for periodic signal is given below for 

convenience.

 �x t X en
jn t

n

( ) =
=−∞

∞

∑ v0  (12.40)

LO   4 
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X
T

x t e dt

X
T

x t e dt

n
jn t
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n
jn f t

T

T

=

=

−

−

−

−

∫

∫

1

1

0

2

2

0

2

2

2

0

0

�

�

( )

( )

v

p

where f0 is the fundamental frequency of the periodic signal x(t).

If we define non-periodic signal

x t x t t
T

( ) ( ) | |= <� for 0

2
 (12.42)

 5 0 otherwise

Fig. 12.7

X
T

x t e dtn

T

T

jn f t=
−

−∫
1

0

2

2
2

0

0

0( )
p

 (12.43)

T X x t e dtn
jn f t

0
2 0=

−∞

∞
−∫ ( )

p
 (12.44)

We can define the envelope T0 Xn as

X x t e dtj t( ) ( )v v=
−∞

∞
−∫  (12.45)

where v 5 2p n f0

Therefore, the coefficient Xn becomes

or 

X
T

X

X
T

X n

n

n

=

=

1

1

0

0
0

( )

( )

v

v  (12.46)
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Substituting Eq. (12.46) in Eq. (12.45), we get

�

�

x t
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X n e

x t
T

X n

n

jn t

n

( ) ( )

( ) ( )
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=
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x t X n e

x t X n e
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( ) ( )

( ) ( )
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p
v v

v

v

0
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0 0

2

1

2

0

0  (12.47)

In the above complex sum, let the frequency v0 approach to zero, the index n approach to infinity such 

that the product nv0 approaches a continuous frequency variable v and the discrete sum is replaced by a 

continuous integral.

Therefore, �x t x t( ) ( )→  as v0 approaches zero.

Then Eq. (12.45) becomes

X x t e dtj t( ) ( )v v= −

−∞

∞

∫  (12.48)

and Eq. (12.47) becomes

x t X e dj t( ) ( )=
−∞

∞

∫
1

2p
v vv  (12.49)

These expressions define a Fourier transform pair for the signal x(t) and are denoted by the notation

x(t) ↔X(v)

The integral Eq. (12.44) is referred to as Fourier transform of x(t) and is denoted by

X(v) 5 F[x(t)]

The integral Eq. (12.49) is referred to as the inverse Fourier transform and is often denoted by the symbol 

x t F X( ) [ ( )]= −1 v .

Fourier transform is essentially a transformation from a function of the time variable t to the frequency 

variable v. Not all functions can be transformed but satisfying the Dirichlet conditions in any finite interval 

and

| ( ) |x t dt < ∞
−∞

∞

∫
are sufficient conditions for the existence of Fourier transforms.

Fourier transform may be represented by writing X(v) in terms of magnitude and phase as

X X e j( ) | ( ) | ( )v v u v= −  (12.50)
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Plots of |X(v)| and u v v( ) ( )= X  versus frequency f are referred to as the amplitude and phase spectra of 

x(t) respectively.

12.9 THE ENERGY SPECTRUM

The signal is defined as an energy signal if it has finite energy over the interval (2`,`). So that power is zero. 

The energy of a signal can be expressed in the frequency domain.

The normalised energy for a signal is defined

E x t dt=
−∞

∞

∫ 2 ( )  (12.51)

Using the Fourier transform representation for x(t), that is

x t X e dj t( ) ( )=
−∞

∞

∫
1

2p
v vv  (12.52)

we can write the energy as

E x t dt x t X e d dt

X

j t= =
















=

−∞

∞

−∞

∞

−∞

∞

∫ ∫∫2 1
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p
v v

p
v

v

)) ( )

−∞

∞

−∞

∞

∫ ∫
















x t e dt dj tv v

= −
−∞

∞

∫
1

2p
v v vX X d( ) ( )  (12.53)

Therefore, the energy

E X X d X X

X d

= − =

=

−∞

∞
∗ ∗

−∞

∞

∫

∫

1

2

1

2

2

p
v v v v v

p
v v

( ) ( ) ( ) ( )

| ( ) |

since  

 (12.54)

E x t dt X d= =
−∞

∞

−∞

∞

∫ ∫2 21

2
( ) | ( ) |

p
v v  (12.55)

This is referred to as Parseval’s theorem for Fourier transforms. Thus, |X(v)|2 has the units of energy density 

with frequency and is called energy density spectrum of x(t).

G X( ) | ( ) |v v= 2

Integration of G(v) over all frequencies gives the total energy contained in a signal. Similarly, integration 

of G(v) over a finite range of frequencies gives the energy contained in a signal within the limits of integration.

LO 4
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Frequently Asked Questions linked to LO 4
rrr12-4.1 Find the exponential form of Fourier series for the waveform shown in Fig. Q.1. [BPUT 2007]

V

–v

0
2p

3pp

wt

Fig. Q.1

12.10 FOURIER TRANSFORM OF POWER SIGNALS

The signal is defined as power signal if and only if it has finite power and infinite 

energy. The power signals are not absolutely integrable. Power signals do not satisfy 

the condition.

| ( ) |x t dt < ∞
−∞

∞

∫
This class of signals are called power signals because the signal energy is infinite over the entire internal, 

but the power is finite. Therefore, the power

P
T

x t dt
T T

T

= < ∞
→∞ −∫lim ( )

1 2

2

2  (12.56)

EXAMPLE 12.6

Determine the Fourier transform of a signal given in Fig. 

12.8.

Solution  From the waveform shown in Fig. 12.8,

x t V
T

t
T

( ) =
−

< <

=

for

otherwise

0 0

2 2
0  (12.57)

The Fourier transform of the expression

X V e dt

V

j e e

j t

T

T

j
T

j
T

( )v

v

v

v v

=

=
−







−

−

−

∫
0

0

0 0

2

2

2 2
 (12.58)

LO   5 

Fig. 12.8
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X VT
e e

j
T

VT

T

j
T

j
T

( )

sin

v

v

v

v v

=
−





















=





−

0

2 2

0

0

0

0 0

2
2

2





v
T0

2

 (12.59)

The Fourier transform of the signal is illustrated in Fig. 12.9.

Fig. 12.9

EXAMPLE 12.7

Determine the Fourier transform of the general impulse, x(t) 5 Ad(t).

Solution  The impulse function for the given equation is shown in Fig. 12.10.

The transform of the above function is

X A t e dt

X A

j t( ) ( )

( )

v d

v

v=

=

−

−∞

∞

∫  (12.60)

The transform of the impulse function is shown in Fig. 12.11.

Fig. 12.10 Fig. 12.11
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EXAMPLE 12.8

Determine the Fourier transform of the signal shown in Fig. 

12.12.

Solution  This waveform does not satisfy the condition

| ( ) |X t dt < ∞
−∞

∞

∫  (12.61)

However, the transform of x(t) in Fig. 12.12 can be found, 

if a is allowed to tend to zero. Therefore, Fig. 12.12 can be represented by Fig. 12.13.

The transform of the signal in Fig. 12.13 can be determined.

X e e dt e e dt

a j a j

a

a

at j t at j t( )v

v v v

v v= +

=
−

+
+

=
+

−

−∞

− −
∞

∫ ∫
0

0

2 2

1 1 2  (12.62)

As a → 0, X(v) is zero except when v 5 0

where X
aa

( ) limv = = ∞
→0

2

2

Thus, the transform is an impulse whose strength 

may be obtained by integrating X(v) over the frequency 

range.

Therefore, X d
a

a
d( )v v

v
v p

−∞

∞

−∞

∞

∫ ∫=
+

=
2

2
2 2

 (12.63)

The transform of the signal is shown in Fig. 12.14

EXAMPLE 12.9

Determine the Fourier transform of the signum function shown is Fig. 12.15.

Fig. 12.15

Fig. 12.13

Fig. 12.14

Fig. 12.12
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Solution  The function is defined as

sign(t) 5 1 for t . 0

 5 0 for t 5 0 (12.64)

 5 21 for t , 0

The Fourier transform of the function

X x t e dt

e dt e dt

j t

j t j t

( ) ( )

( )

v v

v v

=

= − +

−

−∞

∞

−

−∞

−
∞

∫

∫ ∫1

0

0

 (12.65)

X
j j j

( )v
v v v

=
+

+ =
1 1 2

 (12.66)

The Fourier transform of signum function is shown in Fig. 12.16.

Fig. 12.16

EXAMPLE 12.10

Determine the Fourier transform of unit step function shown in Fig. 12.17.

Fig. 12.17

Solution  The function is defined as

u(t) 5 1 for t . 0

 5 0 for t , 0 (12.67)

This function is obtained by the sum of two functions shown in Fig. 12.14 and in Fig. 12.16 and dividing 

by 2. The transform is half the sum of transforms of individual time functions.
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X
j j

( ) ( ) ( )v
v

pd v
v

pd v= +











= +

1

2

2
2

1
 (12.68)

The Fourier transform is given below.

X
j

( ) ( )v
v

pd v= +
1

 (12.69)

Fig. 12.18

12.11 FOURIER TRANSFORM OF PERIODIC SIGNALS

In the previous section, Fourier transform representation for non-periodic signals have been discussed. Fourier 

transform of periodic signals have been discussed in this section. In general, Fourier transform of periodic 

signals are not absolutely integrable and have infinite discontinuities. Here, we obtain the Fourier transform 

of a periodic signal by Fourier transforming its complex Fourier series term-by-term. The Fourier transform 

consists of a train of impulses in the frequency domain. The area of these impulses is directly proportional to 

the Fourier series coefficients.

Consider a signal x(t) with Fourier transform X(v).

X ( ) ( )v pd v v= −2 0 ; an impulse at v 5 v0. To determine the signal x(t) for the Fourier transform X(v), 

we use inverse Fourier transform relation

x t X e dj t( ) ( )=
−∞

∞

∫
1

2p
v vv  (12.70)

= −

=
−∞

∞

∫
1

2
2 0

0

p
pd v v vv

v

( )

( )

e d

x t e

j t

j t

 (12.71)

Any periodic signal is represented by a linear combination of impulses equally spaced in frequency.

X X nn

n

( ) ( )v p d v v= −
=−∞

∞

∑ 2 0
 (12.72)

From the Fourier inverse transform,

x t X e dj t( ) ( )=
−∞

∞

∫
1

2p
v vv  (12.73)

LO 5
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x t X n e dn

n

j t( ) ( )= −










=−∞

∞

−∞

∞

∑∫
1

2
2 0

p
p d v v vv  (12.74)

x t X en
jn t

n

( ) =
=−∞

∞

∑ v0  (12.75)

Equation (12.75) gives the exponential form of the Fourier series.

EXAMPLE 12.11

Find the Fourier transform of a periodic unit 

impulse train shown in Fig. 12.19.

Solution  The periodic signal is represented 

by

x t t nT
n

( ) ( )= −
=−∞

∞

∑ d  (12.76)

By expanding x(t) in a Fourier series

x t X en
jn t

n

( ) =
=−∞

∞

∑ v0  (12.77)

where X
T

x t e dt

X
T

t e dt

X
T

n
jn t

T

T

n
jn t

T

T

n

=

=

=

−

−

−

−

∫

∫

1

1

1

0

0

2

2

2

2

( )

( )

/

/

/

/

v

v
d

 (12.78)

Each of the Xn gives the same constant 
1

T
∴ Fourier series representation of the unit impulse train is

 f t
T

e
jn t

n

( ) =
=−∞

∞

∑1
0v

 (12.79)

If we take the Fourier transform on both sides, we get

  

X
T

e

T
n

T

jn t

n

n

( ) { }

( )

v

p
d v v

v
p

v=

= −

=

=−∞

∞

=−∞

∞

∑

∑

1

2

2

0

0

0where
 (12.80)

Fig. 12.19
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Therefore, a unit impulse train in the time domain is transformed into a impulse train in the frequency 

domain with an area of an each impulse as v0.

Practice Problems linked to LO 5
rrr12-5.1 Find the Fourier transform of the signal shown in Fig. Q.1.
rrr12-5.2 Find the Fourier transform of the signal shown in Fig.  Q.2.

Fig. Q.1 Fig. Q.2

rrr12-5.3 Find the Fourier transform of the functions.

 (i) v(t) 5 e2t u(t) (ii) v(t) 5 e2|t| u(2t)
rrr12-5.4 Find the Fourier transform of the functions given below.

(i) x(t) 5 e2at cos bt (ii) x(t) 5 sin (vct 1 u)

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

12.12 PROPERTIES OF THE FOURIER TRANSFORM

Properties of the Fourier transform facilitate the transformation from the time 

domain to the frequency domain and vice versa.

12.2.1 Linearity

The Fourier transform satisfies linearity and principle of superposition. Consider two signals x1(t) and x2(t).

If x1(t) ↔ X1(v)

x2(t) ↔ X2(v)

then a x t a x t a X a X1 1 2 2 1 1 2 2( ) ( ) ( ) ( )+ ↔ +v v  (12.81)

Proof: F a x t a x t

a F x t a F x t

a X a X

[ ( ) ( )]

[ ( )] [ ( )]

( ) ( )

1 1 2 2

1 1 2 2

1 1 2 2

+
= +
= +v v (12.82)

Therefore, the linearity is proved.

12.12.2 Scaling

Consider the Fourier transform of x(t) is X(v).

If  x(t) ↔ X(v)

then for real constant a

x at
a

X
a

( )
| |

↔








1 v
 (12.83)

LO   6 
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Proof: Assume a . 0. Then Fourier transform of x(at) is

F x at x at e dtj t{ ( )} ( )=
−∞

∞
−∫ v  (12.84)

Let m 5 at

Then dm 5 adt

∴ F x at x m e
dm

a a
X

a

j
m

a{ ( )} ( )= ⋅ =








−∞

∞ −








∫
v v1

 (12.85)

If a , 0 then

F x at x at e dtj t{ ( )} ( )=
−∞

∞
−∫ v  (12.86)

Now, 2m 5  1 at

F x at x m e
dm

a

j
a

m

{ ( )} ( )= − −








−∞

∞ −






 −( )

∫
v

 

=
−

−

=
−

−∞

∞ −
−








∫
1

1

a
x m e dm

a
X

j
m

a( )

( )

v

v  (12.87)

Combining these two values, we get

x at
a

X( )
| |

( )↔
1

v  (12.88)

12.12.3 Symmetry

If x(t) ↔ X(v)

then

 X(t) ↔ 2p X(2v)

Proof: x t X e dj t( ) ( )=
−∞

∞
+∫

1

2p
v vv  (12.89)

Then replacing the dummy variable v by v9,

2p v vvx t X e dj t( ) ( )− = ′ ′′

−∞

∞

∫  (12.90)

Now replace t by v

2p v v vv vx X e dj( ) ( )− = ′ ′′

−∞

∞

∫  (12.91)

Finally, replace v9 by t, thus

2p v vx X t e dt F X tj t( ) ( ) { ( )}− = =
−∞

∞

∫  (12.92)

X(t) ↔ 2p X(2v)
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12.12.4 Convolution

Fourier transform makes the convolution of two signals into the product of their Fourier transforms. There are 

two types of convolution properties, one for the time domain and one for the frequency domain.

  Time Convolution

 If x1(t) ↔ X1(v)

 x2(t) ↔ X2(v)

then

y t x x t d Y

X X

( ) ( ) ( ) ( )

( ) ( )

= − ↔

=
−∞

∞

∫ 1 2

1 2

t t t v

v v

 (12.93)

Proof: F y t Y e x x t d dtj t{ ( )} ( ) ( ) ( )= = −
















−

−∞

∞

−∞

∞

∫ ∫v t t tv
1 2  (12.94)

 = −














−∞

∞
−

−∞

∞

∫ ∫x x t e dt dj t
1 2( ) ( )t t tv  (12.95)

Now, let k 5 t2t, then dk 5 dt and t 5 k 1 t

∴ Y x x k e dt dj k( ) ( ) ( ) ( )v t tv t=














−∞

∞
− +

−∞

∞

∫ ∫1 2  (12.96)

= −

−∞

∞
−

−∞

∞

∫ ∫x e x k e dkj j k
1 2( ) ( )t vt v  (12.97)

Y(v) 5 X1(v) X2(v) (12.98)

  Frequency Convolution

If x1(t) ↔ X1(v)

 x2(t) ↔ X2(v)

then

x t x t X X1 2 1 2

1

2
( ) ( ) ( ) ( )↔ ∗

p
v v  (12.99)

Proof: Considering the inverse transform of [ ( ) ( )] /X X1 2 2v v p∗ ,

we have

F
X X

e X uj t−

−∞

∞∗









=






 ∫1 1 2

2

1
2

1

2

( ) ( )
( )

v v

p p

v XX u du d

X u X u e dj t

2

2

1 2

1

2

( )

( ) ( )

v v

p
v vv

− ⋅

=






 −

−∞

∞

−∞

∞

−∞

∞

∫

∫ ∫ ⋅⋅du  (12.100)
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Let m 5 v2u then dm 5 dv and v 5 m 1 u

Thus,

F
x x

X u X m−

−∞

∞∗









=






 ∫1 1 2

2

1 2
2

1

2

( ) ( )
( ) (

v v

p p
))

( ) ( )

( )e dm du

x u e dt x m e dm

j m u t

jut jmt

+

−∞

∞

−∞

∞

−∞

∞

∫

∫ ∫

⋅

= ⋅

=

1

2

1

2
1 2

p p

xx t x t1 2( ) ( )⋅  (12.101)

Therefore, x t x t X X1 2 1 2

1

2
( ) ( ) ( ) )⋅ ↔ ∗ (

p
v v  (12.102)

12.12.5 Frequency Differentiation and Integration

If x(t) ↔ X(v)

then ( ) ( )
( )

− ↔jt x t
dx

d

v

v

Proof: Consider the Fourier transform x(t).

 X x t e dtj t( ) ( )v v= −

−∞

∞

∫  (12.103)

Differentiating with respect to v,

dX

d
jt x t e dtj t( )

( ) ( )
v

v

v= −
−∞

∞
−∫  (12.104)

Fourier transform of (2jt) x(t) is 
dX

d

( )v

v

( ) ( )
( )

− ↔jt x t
dX

d

v

v
 (12.105)

In general,

( ) ( )
( )

− ↔jt x t
d X

d

n
n

n

v

v
 (12.106)

Similarly, in the frequency integration,

If x(t) ↔ X(v)

then
x t

jt
X d

( )

−
↔ ∫ ( )v v

v

0

 (12.107)

X x t e dt

X d x t dt e d

x t dt
e

j t

j t

( ) ( )

( ) ( )

( )

v

v v v

v

v
v

v

=

=

=

−

−∞

∞

−∞

∞
−

∫

∫ ∫ ∫
0 0

−−
−

−∞

∞

−∞

∞

−
=

− ∫∫
j t

j t

jt jt
x t e dt

v
v1

( )

 (12.108)
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x t

jt
X d

( )
( )

−
↔ ∫ v v

v

0

 (12.109)

12.12.6 Time Shifting

If x(t) ↔ X(v)

Then x t t e X
j t

( ) ( )− ↔ −
0

0v
v

From the above, we can say that shift in time domain implies shift in phase in the transform.

Proof: F x t t x t t e dtj t( )−[ ]= −( ) −

−∞

∞

∫0 0
v  (12.110)

Let t 2 t0 5 m or t 5 m 1 t0 : dt 5 dm

Therefore, F x t t x m e dm

e x m e

j t m

j t j

−( )



 = ( )

= ( )

−∞

∞
− +( )

− −

∫0
0

0

v

v vmm j t
dm e X

−∞

∞
−∫ = ( )v

v0

 (12.111)

∴ −( ) ↔ −
x t t e X

j t
0

0v
v( )  (12.112)

12.12.7 Frequency Shifting

If x(t) ↔ X(v)

then x t e X
j t

( ) ( )
v

v v0

0↔ −  (12.113)

Frequency shifting or translation has an important significance in communication engineering. This 

process is known as modulated signal.

Proof : F x t e x t e e dt

x t e

j t j t j t

j t

( ) ( )

( )
( )

v v v

v v

0 0

0

{ } =

=

−

−∞

∞

− −

−∞

∞

∫

∫ ddt

X= −( )v v0

 (12.114)

Therefore, x t e X
j t

( ) ( )
v

v v0

0↔ −  (12.115)

1. Transformation x(t) ↔ X(v)

2. Linearity a1x1(t) 1 a2x2(t) ↔ a1X1(v) 1 a2X2(v)

3. Scaling x at
a

X
a

( ) ↔








1 v

4. Symmetry X jt X( ) ( )↔ −2p v

Table 12.1 Properties of the Fourier Transform
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NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 6
rrr12-6.1 Find the Inverse Fourier transform shown in 

Fig.  Q.1. Use properties of Fourier transform to 

help to determine the time function.

Frequently Asked Questions linked to LO 6
rrr

12.13 APPLICATIONS IN CIRCUIT ANALYSIS

A voltage v(t) represented by Fourier series can be applied to a linear circuit to obtain 

the corresponding harmonic terms of the current series. This result is obtained by 

superposition principle. We consider each term of the Fourier series representing the 

voltage as a single source as shown in Fig. 12.20. The equivalent impedance of the 

network at each harmonic frequency is used to compute the current at that harmonic.  

The sum of these individual responses is the total response i in series form due to the applied voltage.

LO   7 

Fig. Q.1

5. Time shifting x t t e X
j t

( ) ( )− ↔ −
0

0v
v

6. Frequency shifting e x t X
j tv

v v0

0( ) ( )↔ −

7. Time convolution x1(t) * x2(t) ↔ X1(v) X2(v)

8. Frequency convolution x t x t X X1 2 1 2

1

2
( ) ( ) ( ) * ( )↔

p
v v

9. Reversal x(–t) ↔ X(–v)

10. Time differentiation
d

dt
x t j X

n

n

n( ) ( ) ( )↔ v v

11. Time integration x t dt
X

j
X

t

( )
( )

( ) ( )

−∞
∫ ↔ +

v

v
p d v0

12. Frequency differentiation − ↔jt x t
dX

d
( )

( )v

v

13. Frequency Integration
x t

jt
X d

( )
( )

−
↔ ∫ v v

v

0
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Fig. 12.20

The non-sinusoidal voltage v(t) is represented by a Fourier series

v t a a n t b n tn n

n

( ) = + +
=

∞

∑0

1

( cos sin )v v  (12.116)

The effective value of a voltage waveform is given by

V
T

v t dt

T

eff = ∫
1 2

0

( )

From Eq. (12.116), we have

V V
T

a a n t b n t dtn n

n

T

rms eff= = + +
















=

∞

∑∫
1

0

1

2

0

( cos sin )v v












1 2/

= + + + + + + + +















=

a a a a b b b0
2

1
2

2
2

3
2

1
2

2
2

3
2

1 2
1

2
� �

/

AA A A A0
2

1
2

2
2

3
2

1 2
1

2
+ + + +( )











�

/

 (12.117)

where A a b An n n
2 2 2

0= + ,  is the average value and A1, A2, A3... are the amplitudes of the harmonics

If

and

v t V V n t

i t I I n t

n n

n n

( ) = + +( )

( ) = + +( )

∑
∑

0

0

sin

sin

v f

v u

Then their effective values are given by

V V V V V

I I I I I

rms

rms

= + + + +( )











= + + +

0
2

1
2

2
2

3
2

1 2

0
2

1
2

2
2

3

1

2

1

2

�

/

22
1 2

+( )











�

/

or

V V V V Vrms rms1 rms2 rms3= + + + +



0

2 2 2 2
1 2

�
/

 (12.118)
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I I I I Irms rms1 rms2 rms3= + + + +



0

2 2 2 2
1 2

�
/

 (12.119)

The average power is given by

P
T

v t i t dt

T
V V n t I I n t

T

n n n n

=

= + +( )



 + +(

∫

∑

1

1

0

0 0

( ) ( )

sin sinv f v u ))



∑∫ dt

T

0

After simplification, we get

P
T

V I dt
T

V n t n t dt

T

n n

T

n n= + +( ) +( )∫ ∫
1 1

0 0

0 0

sin I sinv f v u  (12.120)

 

= + −( )

= +

∑
∑

V I V I

V I V I

n n n n

n n n

0 0

0 0

1

2
cos

cos

f u

rms rms  (12.121)

where n 5 fn – un

and rms rmsV
V

I
I

n
n

n
n= =

2 2
;

The power factor is the ratio of average power to the apparent power.

Apparent power rms rms rms1 rms2 rms1 rV I V V V I I I= + + +( )× + +0
2 2 2

0
2 2

� mms2
2 +( )�

 

The power factor p.f
rms rms

rms1 rms2

=
+( )

+ + +

V I V I

V V V

n n n0 0

0
2 2 2

cosf

�� �( ) + + +( )I I I0
2 2 2

rms1 rms2

EXAMPLE 12.12

For the circuit shown in Fig. 12.21, find the current and the average power where v(t) 5 100 1 50 sin vt 1 25 

sin3 vt.

Fig. 12.21

Solution  At each frequency, we have to calculate the equivalent impedance of the circuit.

At v 5 0, impedance Z 5 5 V

and AI
V

R
0 = = =0 100

5
20
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At v 5 500 rad/s, impedance Z1 5 5 1 j (500)(0.02)

 5 5 1 j 10 V

i t
V

Z
t t

i t t

1
1

1
1

1

50

11 15
63 4

4 48 6

( ) = −( ) = − °( )

( ) = −

sin
.

sin .

. sin

v u v

v 33 4. °( ) A

At v 5 1500 rad/s, impedance Z3 5 5 1 j (1500)(0.02)

 5 5 1 j 30

i t
V

Z
t t

i t

3
3

3
3

3

3
25

30 4
3 80 54

0 823 3

( ) = −( ) = − °( )

( ) =

sin
.

sin .

. sin

v u v

vvt − °( )80 54. A

The total current

i(t) 5 20 1 4.48 sin(vt – 63.4°) 1 0.823 sin (3vt – 80.54°) A

The effective value of the current i(t)

I rms A= + + =20
4 48

2

0 823

2
20 252

2 2. .
.

The average power

P I R=

= ( ) =
rms

W

2

410 6 5 2053.

Additional Solved Problems

PROBLEM 12.1

Find the Fourier series of the periodic function v(t) as shown in Fig. 12.22.

Fig. 12.22

Solution  The equation for Fig. 12.22 is given by

v t t

t

( ) = − −
=

10

10

for < < 0

for 0 < <

p v

v p  (12.122)
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We obtain a0 5 0, since the area under the curve of v(t) between –p and p is zero.

a v t n t d t

n t d t n t

n =

= − ( )+

−

−

∫

∫

1

1
10 10

0

p
v v

p
v v v

p

p

p

( ) cos ( )

( ) cos ( ) cos dd t

n t

n

n t

n

( )

sin sin

v

p

v v

p

p

p

0

0

0

1
10 10

∫
















= −


 +







−









  5 0 because sin vnt 5 0 at –p, 0 and p for n 5 1, 2...

b v t n t d t

n t d t n t

n =

= − ( )+

−

−

∫

∫

1

1
10 10

0

p
v v

p
v v v

p

p

p

( ) sin ( )

( ) sin ( ) sin dd t

n t

n

n t

n

( )

( )
cos cos

v

p

v v

p

p

p

0

0

0

1
10 10

∫
















=


 −





−













b
n

n n

n
n

n = − −( )− +[ ]

= −( ) = −

10
0 0

20
1 1

p
p p

p
p p

cos cos cos cos

cos cos , co∵ ss , cos2 1 3 1p p= = −( )

1 – cos np 5 2 for odd n

 5 0 for even n

The Fourier series of v(t) is

v t t t t( ) sin sin sin= + + +








40 1

3
3

1

5
5

p
v v v �  (12.123)

PROBLEM 12.2

Find the trigonometric Fourier series for the waveform shown in Fig. 12.23 and plot the spectrum.

Fig. 12.23
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Solution  The equation for Fig. 12.23 is given by

v t t t

t

( ) = < <

= < <

50
0

0 2

p
v v p

p v p

 (12.124)

The average value of the wave is

a t d t

t

v =

=



















=

∫
1

2

50

1

2

50

2

50

2

0

0
2

p p
v v

p p

v

p

p

p

p

( )

22
0

25

4

12 5
−












= =

p p

.

Since the wave is neither even nor odd, the series contains both sine and cosine terms.

a t n t d t

n
n t

t

n
n t

n =








= +

∫
1 50

50 1

0

2 2

p p
v v v

p
v

v
v

p

cos ( )

cos sin












= −[ ]

0

2 2

50
1

p

p
p

n
ncos

a n nn = − =0 1 0for is even ( cos )∵ p

a
n

n

b t n t d t

n

n

=
−

=






∫

100

1 50

2 2

0

p

p p
v v v

p

for odd

sin ( )

 

= −












=
−50 1 50

2 2
0p

v
v

v
p

p

p

n
t

t

n
n t

n
nsin cos cos

 

b
n

n

b
n

n

n

n

=
−

=
−

50

50

p

p

for even

for odd

The Fourier series of the waveform is

v t t t t( ) . cos
( )

cos
( )

cos

si

= − − − −

+

12 5
100 100

3
3

100

5
5

50

2 2 5p
v

p
v

p
v

p

…

nn sin sinv
p

v
p

vt t t− +
50

2
2

50

3
3  (12.125)

The spectrum is given in Fig. 12.24.
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Fig. 12.24

PROBLEM 12.3

Find the exponential Fourier series for the waveform shown in Fig. 12.25 and sketch the spectrum.

Fig. 12.25

Solution  The equation for the waveform shown in Fig. 12.25 is given by

v t t t

v t

( )

( )

= +






 < <

= −








100
100

0

100
100

p
v v p

p

for

 − < <v p vt tfor 0  (12.126)

The waveform is even and the coefficients of An are pure real. By inspection, the average value is
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 Cn 5 0 for n even

 

C
n

nn =
200

2 2p
for odd

The exponential Fourier series is
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The spectrum is shown in Fig. 12.26.

PROBLEM 12.4

Find the exponential Fourier series of the triangular 

waveform shown in Fig. 12.27.

Solution  The voltage equation for the waveform is shown 

in Fig. 12.27.
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 (12.128)

The coefficients of the exponential series
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PROBLEM 12.5

Find the trigonometric Fourier series for the half-wave rectified sine wave shown in Fig. 12.28 and sketch the 

spectrum.

Fig. 12.26

Fig. 12.27
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Fig. 12.28

The average value of the waveform
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The series contains both sine terms and cosine terms
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However, this expression is indeterminate for n 5 1 and, therefore, we must integrate seperately for a1,
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Here again, the expression is indeterminate for n 5 1, and b1 is evaluated separately.
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Then the Fourier series is

v t t t t t( ) sin cos cos cos= + − − − −







50

1
2

2

3
2

2

15
4

2

35
6

p

p
v v v v …


 (12.129)

The spectrum is shown in Fig. 12.29.

Fig. 12.29
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PROBLEM 12.6

Find the Fourier transform of a single triangular pulse shown in Fig. 12.30 and 

draw its spectrum.

Solution  The equation for the waveform is
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T

t( ) | |= −






50 1

2
 (12.130)
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The spectrum is shown in Fig. 12.31.

PROBLEM 12.7

Determine the Fourier transform of the pulse shown in Fig. 12.32.

Solution  The equation of the waveform in Fig. 12.32 is given by

v t t t( ) cos=
−

< <100
2 2

v
p

v
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for  (12.132)

V t e d tj tv v vv
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( ) = ⋅ ( )−

−
∫ 100
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cos  (12.133)

Fig. 12.31

Fig. 12.30

Fig. 12.32
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PROBLEM 12.8

Obtain the Fourier transform of the function shown in Fig. 12.33.

Solution  The Fourier transform of the waveform shown in Fig. 12.33 is
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Fig. 12.33
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PROBLEM 12.9

Obtain the magnitude and phase spectrum of the waveform shown 

in Fig. 12.34.

Solution  The equation of the voltage waveform in Fig. 12.34 is 

given by
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The magnitude of the spectrum is
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Fig. 12.34
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Phase spectrum is
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 (12.140)

The magnitude and phase spectrum are shown in Fig. (12.35).

Fig. 12.35

PROBLEM 12.10

Determine the Fourier transform of the sin c function shown in 

Fig.  12.36.

x(t) = 50 sin c (2Tt) 

Solution  The transform pair is given by

A x
t

T
AT c T







 ↔ ( )sin v

Applying duality and scaling property,

50 2
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2 2
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T
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 (12.141)

Rectangular function is an even function, we get

50 2
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2 2
sin Tt

T
X

T
( ) ↔









v
 (12.142)

The spectrum of sinc function is shown in Fig. 12.37.

Fig. 12.36

Fig. 12.37
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PROBLEM 12.11

Find the Fourier transform of exponentially damped sinusoidal 

waveform shown in Fig.  12.38.

Solution  The equation for the damped sinusoidal waveform in 

Fig. 12.38 is given by

x(t) 5 e–10t sin vct u(t) (12.143)

The above equation can be written as

x t e
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j
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From the transform pair,
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 (12.145)

Applying the frequency shifting property to the equation of x(t),
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PROBLEM 12.12

Find the Fourier transform of the normalised Gaussian pulse shown in 

Fig. 12.39 is given by

Solution  Let x(t) ↔ X(v)

Differentiating x(t) with respect to t, we get

 dx t
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t e t( )

= − −2
2

p p  (12.147)

j
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Taking Fourier transform both sides,
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Using differentiation property, we get
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Fig. 12.38

Fig. 12.39
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Integrating with respect to v on both sides,

ln X Cv
v

p
( ) =

−
+

2

4
 (12.151)

where C is the constant of integration.

At v 5 0; C 5 ln{x(0)} (12.152)

By definition,
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The area under the curve is one X(0) 5 1

If we substitute in Eq. (12.152), we get
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The spectrum of the normalized Gaussian pulse is shown in Fig. 

12.40.

PROBLEM 12.13

Find the Fourier transform of the trapezoidal pulse shown in Fig. 12.41.

Solution  By differentiating twice, we get
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Fig. 12.40

Fig. 12.41
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Using the time-shifting property, we get
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Using time differentiation, we get
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By simplyfying Eq. (12.158),
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PROBLEM 12.14

Find the Fourier transform of a periodic pulse train shown in Fig. 12.42.

Solution  The Fourier series representation of v(t) is given
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n
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Therefore, the Fourier transform of the continuous function is
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PROBLEM 12.15

Find the Fourier transform of the train of unit impulses 

shown in Fig. 12.43.

Solution  The periodic function is given by
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∑ d  (12.164)

v(t) can be expanded in Fourier series
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Therefore, v t
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e
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Taking Fourier transform on both sides,
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Fig. 12.43
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∴ d v d v vt nT n
n n
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∑ ∑0 0
 (12.170)

The unit impulse train in the time domain has a transform of an impulse train is the frequency domain.

PROBLEM 12.16

A waveform shown in Fig. 12.44 (a) is applied to the network shown in Fig. 12.44(b). Calculate the current 

through the resistor. Assume v 5 1 rad / s.

Fig. 12.44

(a) (b)

Solution  From Fig. 12.44 (a), the voltage waveform

v(t) 5 50 sin vt 0 # vt # p

  5 2 50 sin vt vt # 2p

The function v(t) is an even function and hence, bn 5 0 for all values of n.
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  (12.171)

The average current will be zero, since the capacitor does not allow dc current. Taking transform of the 

given circuit, we have

where V t
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n
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200

12
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From the circuit shown in Fig. 12.45, the current

i t
v t

j

n
v t n

n n

( )
( )

( )
tan

=
−

=
+









−

10

100 1

1

102 2

1

v
v

v v

By substituting the value of v(t) and v 5 1 rad /s, we get
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PROBLEM 12.17

Find the value of R if the average power dissipated in the resistor is 1000 watts if the voltage has the 

following Fourier series.

v(t) = 200 sin vt 1 100 sin 3 vt 1 50 sin 5 vt

Solution  The current through resistance R is

i t
v t

R R
t t t( )

( )
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PROBLEM 12.18

Find the average power supplied to a network if the applied voltage and resulting current are given by

 v(t) 5 100 + 25 sin 30t + 80 sin 60t + 40 sin 90t volts.

 i(t) 5 12 sin (30t + 65°) + 20 sin (60t + 45°) + 15 sin (90t + 25°)  amperes.

Solution  The total average power is the sum of the harmonic power

P = × × ×

= × +

1

2
100 12 65 20 45 15 25

1

2
1200 0 423 1

[ cos cos cos ]

[ .

°+80 °+40 °

6600 0 707 600 0 906
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507 6 1131 2 543 6 1091 2

× + ×

= + + =

. . ]

[ . . . ] . watts.

Fig. 12.45
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PROBLEM 12.19

For the circuit shown in Fig. 12.46, find the output voltage v0(t) by 

using the Fourier transform method.

Solution  According to Kirchhoff’s law,

i(t) 5 i1(t) 1 i2(t) (12.173)

and v0 (t) 5 i2 (t)
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Converting Eq. (12.174) into Fourier transform, we have
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Taking partial fractions,
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+
By taking inverse Fourier transform, we have

 v0(t) 5 2 e2tu(t) 2 2 e22t u(t)

ANSWERS TO PRACTICE PROBLEMS
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12-3.4 V T

T

T
v

v

v
( ) =









2
2

2

sin

12-3.5 X c cv v v( ) = +[ ]+ −[ ]2 2 10 2 2 10sin ( ) sin ( )

Fig. 12.62

12-5.1 V(v) 5 2sinv 1 4sin2v

12-6.1 x t
A

t
at t( ) sin cos=

2
0

p
v

Objective-Type Questions

rrr12.1 In a periodic signal, the period T0 is doubled, the fundamental frequency v0 in the spectrum becomes

 (a) doubled (c) increased 4 times (b) halved (d) no change

rrr12.2 Any periodic function can be expressed by a Fourier series when the function has

 (a) infinite number of finite discontinuities in a period

 (b) finite number of infinite discontinuities in a period

 (c) finite number of finite discontinuities in a period

 (d) infinite number of infinite discontinuities

rrr12.3 A function x(t) is said to be even, if x(t) is

 (a) x(2t) (b) 2x(t) (c) x(2t) (d) x(t)

rrr12.4 A function x(t) is said to be odd, if x(2t) is

 (a) x(2t) (b) x(2t) (c) x(22t) (d) 2x(t)

rrr12.5 A periodic function x(t) is said to have half-wave symmetry if x(t) is

 (a) − +






x t

T

2
 (b) x t

T
+







2

 (c) x t
T

−






2

 (d) − −






x t

T

2
rrr12.6 Fourier transform for the signal e2at u(t) does not exist if

 (a) a . 0 (b) a 5 0 (c) a 5 1 (d) a , 0

rrr12.7 The Fourier transform

 (a) satisfies linearity   (b) does not satisfy linearity

rrr12.8 The Fourier transform exists, if the following condition is satisfied.

 (a) f t dt K( ) >
−∞

∞

∫  (c) f t dt( ) =
−∞

∞

∫ 0  (b) f t dt( ) < ∞
−∞

∞

∫  (d) none
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rrr12.9 Fourier transform of the unit impulse d(t) is

 (a) 0 (b) p (c) 1 (d) d(v)

rrr12.10 What is the spectrum of a dc signal?

 (a) 0 (b) 1 (c) 2p (d) 2pd(v)

rrr12.11 Inverse Fourier transform of d(v – v0) is

 (a) 
1

2
0

p

v
e

j t
 (b) 

1

2p
 (c) e

j t− v0

 (d) e
j tv0

rrr12.12 The Fourier transform of the signal x(t) is

 (a) –X(v) (b) X(–v) (c) –X(–v) (d) X(v)

rrr12.13 Time convolution property states that

 (a) f1(t) * f2(t) (c) F1(v) * F1*(v) (b) f1(t) f2(t) (d) F1(v) / F2(v)

rrr12.14 Frequency convolution property states that

 (a) f1(t) * f2(t) (c) F1(v) F2(v) (b) F1(v) * F2(v) (d) F1(v) / F2(v)

rrr12.15 Fourier transform of the sgn(t) function is

 (a) 
2

jv
 (b) 

1

jv
 (c) jv (d) 2jv

For interactive quiz with answers,
scan the QR code given here
OR
visit
http://qrcode.flipick.com/index.php/270



13.1 DEFINITION OF THE LAPLACE TRANSFORM

The Laplace transform is a powerful analytical technique that is widely 

used to study the behaviour of linear, lumped parameter circuits. Laplace 

transforms are useful in engineering, particularly when the driving function 

has discontinuities and appears for a short period only.

In circuit analysis, the input and output functions do not exist forever in time. For causal functions, the 

function can be defined as f (t) u(t). The integral for the Laplace transform is taken with the lower limit at 

t 5 0 in order to include the effect of any discontinuity at t 5 0.

Consider a function f (t) which is to be continuous and defined for values of t $ 0. The Laplace transform 

is then

L [ ( )] ( ) ( ) ( )f t F s e f t u t dt f t e dtst st= ( )= =−

−∞

∞
−

∞

∫ ∫
0

 (13.1)

f (t) is a continuous function for t $ 0 multiplied by e–st which is integrated with respect to t between the 

limits 0 and `. The resultant function of the variables is called Laplace transform of f (t). Laplace transform 

is a function of independent variable s corresponding to the complex variable in the exponent of e–st. The 

complex variable S is, in general, of the form S 5 s 1 jv and s and v being the real and imaginary parts 

respectively. For a function to have a Laplace transform, it must satisfy the condition f t e dtst( ) <∞−
∞

∫ .  

Laplace transform changes the time-domain function f (t) to the frequency-domain function F(s). Similarly, 

the inverse Laplace transformation converts frequency-domain function F(s) to the time-domain function f (t) 

as follows.

L
−

−

+

= = ∫1 1

2
[ ( )] ( ) ( )F s f t

j
F s e dsst

j

j


 (13.2)

13

LEARNING OBJECTIVES

LO  1  
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Here, the inverse transform involves a complex integration. f (t) can be represented as a weighted integral 

of complex exponentials. We will denote the transform relationship between f (t) and F(s) as

f t F s( ) ( )
L← →

In Eq. (13.1), if the lower limit is 0 then the transform is referred to as one-sided, or unilateral, Laplace 

transform. In the two-sided, or bilateral, Laplace transform, the lower limit is –`.

In the following discussion, we divide the Laplace transforms into two types: functional transforms 

and operational transforms. A functional transform is the Laplace transform of a specific function, such as 

sinvt, t, e2at, and so on. An operational transform defines a general mathematical property of the Laplace 

transform, such as binding the transform of the derivative of f (t). Before considering functional and 

operational transforms, we used to introduce the step and impulse functions.

Frequently Asked Questions linked to LO 1
rrr

13.2 STEP FUNCTION

In switching operations, abrupt changes may occur in current and voltages. On 

some functions, discontinuity may appear at the origin. We accommodate these 

discontinuities mathematically by introducing the step and impulse functions.

Figure 13.1 shows the 

step function. It is zero for t < 0. It is denoted by k u(t).

Mathematically, it is defined as

  k u(t) 5 0, t < 0

  k u(t) 5 k, t > 0 (13.3)

If k is 1, the function defined by Eq. (13.3) is the 

unit step. The step function is not defined at t 5 0. In 

situations where we need to define the transition between 

0 – and 01, we assume that it is linear and that

k u(0) 5 0.5 K (13.4)

Figure 13.2 shows the linear transition from 0 – to 01.

A discontinuity may occur at some time other than 

t 5 0, for example, in sequential switching. The step 

function occuring at t 5 a when a > 0 is shown in Fig. 

13.3. A step occurs at t 5 a is expressed as k u(t – a). 

Thus,

 k u(t – a) 5 0, t < a

 k u(t – a) 5 k, t > a (13.5)Fig. 13.2

Fig. 13.1

LO  2  

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600
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If a > 0, the step occurs to the right of the origin, and if a < 0, 

the step occurs to the left of the origin. Step function is 0 when 

the argument t – a is negative, and it is k when the argument is 

positive.

A step function equal to k for t < a is written as k u(a – t). Thus,

k u(a – t) 5 k, t < a

k u(a – t) 5 0, t > 0 (13.6)

The discontinuity is to the left of the origin when a < 0. A step 

function k u(a – t) for a > 0 is shown in Fig. 13.4.

Step function is useful to define a finite-width pulse, by adding 

two step functions. For example, the function k[u(t – 1) – u(t – 3)] 

has the value k for 1 < t < 3 and the value 0 everywhere else, so it 

is a finite-width pulse of height k initiated at t 5 1 and terminated 

at t 5 3. Here, u(t – 1) is a function “turning on” the constant value 

k at t 5 1, and the step function – u(t 5 3) as “turning off ” the 

constant value k at t 5 3. We use step functions to turn on and turn 

off linear functions.

EXAMPLE 13.1

Use step functions to write an expression for the function shown in 

Fig. 13.5.

Solution  The function shown in Fig. 13.5 is made up of linear 

segments with break points at 0, 1, 3, and 4 seconds. Figure 13.5 

consists of three linear segments as shown in Fig. 13.6.

(i) f1(t) 5 10t for 0 , t , 1

(ii) f2(t) 5 –10t 1 20 for 1 , t , 3

(iii) f3(t) 5 20t – 40 for 3 , t , 4 (13.7)

We use the step function to initiate and terminate these linear segments at the proper times.

(i)  f1(t) 5 10t[u(t) – u(t – 1)], this function turns on at 

t 5 0, turns off at t 5 1.

(ii)  f2(t) 5 (– 10t 1 20) [u(t – 1) – u(t – 3)], this function 

turns on at t 5 1, turns off at t 5 3.

(iii)  f3(t) 5 (20t – 40) [u(t – 3) – u(t – 4)], this function turns 

on at t 5 3, turns off at t 5 4.

The expression for f (t) is

f (t) 5 10t[u(t) – u(t – 1)] 1 (– 10t 1 20) [u(t – 1) – u(t – 3)

 1 (20t – 40) [u(t – 3) – u(t – 4)] (13.8)

Fig. 13.4

Fig. 13.6

Fig. 13.3

Fig. 13.5
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EXAMPLE 13.2

Use step function to write the expression for the 

following function.

Solution  The function shown in Fig. 13.7 is a 

combination of linear segments at break points 0, 2, 6, 

8. To construct this function, we must add and subtract 

linear functions of the proper slope. We use the step 

function to start and terminate these linear segments at 

the proper times.

Figure 13.7 consists of the three linear segments with the following equations.

f1(t) 5 5t for 0 , t , 2

f2(t) 5 10 for 2 , t , 6 (13.9)

f3(t) 5 – 5t 1 40 for 6 , t , 8

Using step function, the above equations can be written as

f1(t) 5 5t [u(t) – u(t – 2)]

f2(t) 5 10 [u(t – 2) – u(t – 6)]

f3(t) 5 (– 5t 1 40) [u(t – 6) – u(t – 8)] (13.10)

 The expression for f (t) is

f (t) 5 f1(t) 1 f2(t) 1 f3(t)

f (t) 5 5t [u(t) – u(t – 2)] 1 10 [u(t – 2) – u(t – 6)]  

  1 (– 5t 1 40) [u(t – 6) – u(t – 8)] (13.11)

EXAMPLE 13.3

Use step function to write the expression for the following waveform.

Solution  The waveform shown in Fig. 13.8 starts at t 5 0 and ends at 

t 5 5 seconds. The equation for the above waveform is f (t) 5 4t. In terms 

of unit function, the waveform can be expressed as

f (t) 5 4t [u(t) – u(t – 5)] (13.12)

EXAMPLE 13.4

Use step function to write the expression for the following 

sinusoidal waveform.

Solution  The sine wave shown in Fig. 13.9 originates at t 5 0 

and ends at t 5 2 seconds. The wave equation

f (t) 5 10 sin vt for 0 , t , 2

In terms of unit step functions, the equation

f (t) 5 10 sin vt [u(t) – u(t – 2)] (13.13)

Fig. 13.7

Fig. 13.8

Fig. 13.9
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EXAMPLE 13.5

Use step function to write the expression for the function shown in Fig. 13.10.

Fig. 13.10

Solution  The waveform in Fig. 13.10 consists of three linear segments. The function f (t) is defined as follows.

f1(t) 5 80t 1 120 for – 4 , t , 0

f2(t) 5 – 30t 1 120 for 0 , t , 8

f3(t) 5 30t – 360 for 8 , t , 12 (13.14)

In terms of unit step function

f1(t) 5 (80t 1 120) [u(t 1 4) – u(t)]

f2(t) 5 (– 30t 1 120) [u(t) – u(t – 8)]

f3(t) 5 (30t – 360) [u(t – 8) – u(t – 12)] (13.15)

The expression for f (t) is

f (t) 5 f1(t) 1 f2(t) 1 f3(t)

f (t) 5 (80t 1 120) [u(t 1 4) – u(t)] 1 (– 30t 1 120) [u(t) – u(t – 8)]

1(30t – 360) [u(t – 8) – u(t – 12)] (13.16)

13.3 IMPULSE FUNCTION

An impulse is a signal of infinite amplitude 

and zero duration. In general, an impulse 

signal doesn’t exist in nature, but some circuit 

signals come very close to approximating 

this definition. Due to switching operations, 

impulsive voltages and currents occur 

in circuit analysis. The impulse function 

enables us to define the derivative at a 

discontinuity, and thus to define the Laplace 

transform of that derivative.

To define derivative of a function at a 

discontinuity, consider that the function 

varies linearly across the discontinuity as shown in Fig. 13.11.

Fig. 13.11

LO 2
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In Fig. 13.11 shown as  → 0, an abrupt 

discontinuity occurs at the origin. When we 

differentiate the function, the derivative between 

– and 1 is constant at a value of 
1

2
. For  

t > , the derivative is – ae–a(t – ). The derivative 

of the function shown in Fig. 13.11 is shown in 

Fig. 13.12.

As  approaches zero, the value of f 9(t) 

between 6 approaches infinity. At the same 

time, the duration of this large value is approaching zero. Furthermore, the area under f 9(t) between 6 

remains constant as  → 0. In this example, the area is unity. As  approaches zero, we say that the function 

between 6 approaches a unit impulse function; denoted d(t). Thus, the derivative of f (t) at the origin 

approaches a unit impulse function as  approaches zero, or

f 9(0) → d(t) as  → 0

If the area under the impulse function curve is other than unity, the impulse function is denoted by K d(t), 

where K is the area. K is often referred to as the strength of the impulse function.

Mathematically, the impulse function is defined

K t dt kd

−∞

∞

∫ ( ) =  (13.17)

d(t) 5 0, t  0 (13.18)

Equation (13.17) states that the area under the impulse function is 

constant. This area represents the strength of the impulse. Equation 

(13.18) states that the impulse is zero everywhere except at t 5 0. An 

impulse that occurs at t 5 a is denoted by K d(t – a). The graphical 

symbol is shown in Fig. 13.13. The impulse K d(t – a) is also shown 

in Fig. 13.13.

An important property of the impulse function is the shifting property, 

which is expressed as

f t t a dt f a( ) ( ) ( )d − =
−∞

∞

∫  (13.19)

Equation (13.19) shows that the impulse function shifts out everything except the value of f (t) at t 5 a. The value 

of d(t – a) is zero everywhere except at t 5 a, and, hence, the integral can be written

I f t t a dt f t t a dt

a

a

= − = −
−∈

+∈

−∞

∞

∫∫ ( ) ( ) ( ) ( )d d  (13.20)

But because f (t) is continuous at a, it takes on the value f (a) as t → a, so

I f a t a dt f a t a dt f a

a

a

a

a

= − = − =
−∈

+∈

−∈

+∈

∫ ∫( ) ( ) ( ) ( ) ( )d d  (13.21)

Fig. 13.12

Fig. 13.13
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We use the shifting property of the impulse function to find its Laplace transform.

L d d d( ) ( ) ( )t t e dt t dtst[ ]= = =
− −

∞
−

∞

∫ ∫
0 0

1  (13.22)

Which is important Laplace transform pair that we make good use of the circuit analysis.

We can also define the derivatives of the impulse function and the Laplace transform of these derivatives.

The function illustrated in Fig. 13.14 (a) generates an impulse function as  → 0. Figure 13.14 (b) shows 

the derivative of the impulse generating function, which is defined as the derivative of the impulse [d9(t)] as 

Œ → 0. The derivative of the impulse function sometimes is referred to as a moment function, or unit doublet.

To find the Laplace transform of d9(t), we simply apply the defining integral to the function shown in  

Fig. 13.14 (b) and, after integrating, let  → 0. Then,

L t e dt e dtst st{ ( )} lim′ = +
−
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s=  (13.23)

 (a) (b)
 Fig. 13.14

For the nth derivative of the impulse function, we find that its Laplace transform simply is sn; that is,

L d n nt s( ){ }=  (13.24)

An impulse function can be thought of as a derivative of a step function, that is,

d( )
( )

t
du t

dt
=  (13.25)

Figure 13.15 (a) approaches a unit step function as  → 0. The function shown in Fig. 13.15 (b), the 

derivative of the function in 13.15 (b), approaches a unit impulse as  → 0.
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  (a) (b)
Fig. 13.15

The impulse function is an extremely useful concept in circuit analysis where discontinuities occur at the 

origin.

EXAMPLE 13.6

(a) Find the area under the function shown in Fig. 13.16. (b) What is the duration 

of the function when  5 0? (c) What is the magnitude of f (0) when  5 0?

Solution  (a) Area under the function is

A f t dt=
−
∫ ( )





 (13.26)

 

= +

= +






 +

−
+





−

−

∫ ∫
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=
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dt

t t t t
11  (13.27)

(b) As  → 0, the above function shown in Fig. 13.16 becomes an impulse function. The duration of 

the function becomes zero.

(c) For an impulse function, the magnitude becomes infinite. Therefore, as  → 0, the magnitude of 

the above function becomes infinite.

13.4 FUNCTIONAL TRANSFORMS

A functional transform is simply the Laplace transform of a specified function of t. Because we are 

limiting our introduction to the unilateral, or one-sided, Laplace transform, we define all functions to be 

zero for t , 0–.

  Unit Step Function  f (t) 5 u(t) (13.28)

 where u(t) 5 1 for t  0

  5 0 for t , 0

Fig. 13.16

LO 2
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L

L

f t f t e dt

e dt
e

s s

u t
s

st

st
st

( ) ( )

( )

[ ]=

= =
−

=

[ ]=

−
∞

−
∞ − ∞

∫

∫

0

0 0

1
1

1
 (13.29)

  Exponential Function  f (t) 5 e–at (13.30)

   

L( )

( ) ( )

e e e dt

e
s a

e

at at st

s a t s a t

− − −
∞

− +
∞

− + ∞

= ⋅

= =
−
+





 =

∫

∫

0

0
0

1 1

ss a

e
s a

at

+





 = +

−
L

1
 (13.31)

  Cosine Function  cos vt (13.32)

L (cos ) cosv v

v v

t t e dt

e
e e

dt

e

st

st
j t j t

=

=
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L (cos )  (13.33)

  Sine Function  sin vt (13.34)

L (sin ) sin

(

v v

v v

t t e dt

e
e e

j
dt

j
e
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j t j t

=
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s j t
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e
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1
2 2
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L (sin )  (13.35)

� Function tn  where n is a positive Integer

L( )t t e dtn n st= ⋅
∞

−∫
0

 (13.36)

=
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L L

 (13.37)

Similarly,

By taking Laplace transformations of t n – 2, t n – 3 ... and substituting in the above equation, we get

L L

L

L

( ) ( )

( )

(

t
n

s

n

s

n

s s s
t

n

s
t

n

s s
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n n m

n n n

=
− −

……

=
∠

° =
∠

× =
∠

∴

−

+

1 2 2 1

1
1

)) =
1
2s

 (13.38)

  Hyperbolic Sine and Cosine Functions

 L (cosh ) coshat at e dtst= −
∞

∫
0

 (13.39)

=
+













−
−

∞

∞ ∞

∫
e e
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at at
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∞
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1 1
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2 2

 (13.40)

Similarly,

L (sinh ) sinh ( )at at e dtst= −
∞

∫
0

 (13.41)
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−













=
−
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at at
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2

1
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 (13.42)

Table 13.1  List of Laplace transform pairs

Type f (t) F(s)

 Impulse d(t) 1

 Step U(t) 1

s

 Ramp t 1
2s

 Exponential e – at

 

1

s a+

 Sine sin vt v

vs2 2+

 Cosine cos vt s

s2 2+v

 Hyperbolic sine sinh at
a

s a2 2−

 Hyperbolic cosine cosh at
s

s a2 2−

 Damped ramp te – at 1
2( )s a+

 Damped sine e – at sin vt v

v( )s a+ +2 2

 Damped cosine e – at cos vt s a

s a

+

+ +( )2 2v

13.5 OPERATIONAL TRANSFORMS

Operational transforms indicate how mathematical operations performed on either f (t) or F(s) are converted 

into the opposite domain. The operations of primary interest are

(1) multiplication by a constant

(2) addition (subtraction)

(3) differentiation

(4) integration

(5) translation in the time domain

(6) translation in the frequency domain

(7) scale charging

LO 2
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13.5.1  Multiplication by a Constant

From the defining integral, if

 L [  f (t)] 5 F(s),

then L {K f (t)} 5 K F(s) (13.43)

Consider a function f (t) multiplied by a constant K.

The Laplace transform of this function is given by

 L [ ( )] ( )Kf t Kf t e dtst= −
∞

∫
0

 (13.44)

 = =−
∞

∫K f t e dt KF sst( ) ( ) (13.45)

This property is called linearity property.

13.5.2  Addition (Subtraction)

Addition (subtraction) in the time domain translates into addition (subtraction) in the frequency domain.

Thus, if

f t F s

f t F s

1 1

2 2

( ) ( )

( ) ( ),

L

L

← →

← →

and

then

L [ f1(t) 6 f2(t)] 5 F1(s) 6 F2(s) (13.46)

Consider two functions f1(t) and f2(t). The Laplace transform of the sum or difference of these two functions 

is given by

 

L f t f t f t f t e dt

f t e dt f t e

st

st s

1 2 1 2

0

1 2

( ) ( ) ( ) ( )

( ) ( )

±{ }= ±{ }

= ±

−
∞

− −

∫

ttdt

00

∞∞

∫∫

  5 F1(s) 6 F2(s)

∴ L { f1(t) 6 f2(t)} 5 F1(s) 6 F2(s) (13.47)

The Laplace transform of the sum of the two or more functions is equal to the sum of transforms of the 

individual function. This is called superposition property.

If we can use the linearity and superposition properties jointly, we have

L [K1 f1(t) 1 K2 f2(t)] 5 K1 L [ f1(t)] 1 K2 L [F2(t)]

  5 K1 F1(s) 1 K2 F2(s) (13.48)

EXAMPLE 13.7

Find the Laplace transform of the function.

 f (t) 5 4t3 1 t2 – 6t 1 7 (13.49)
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Solution  L (4t3 1 t2 – 6t 1 7) 5 4L (t3) 1 L (t2) – 6L (t) 1 7L (1)

  

= ×
∠

+
∠

−
∠

+

= + − +

4
3 2

6
1

7
1

24 2 6 7

4 3 2

4 3 2

s s s s

s s s s
 (13.50)

EXAMPLE 13.8

Find the Laplace transform of the function.

 f (t) 5 cos2 t (13.51)

Solution  L L

L L

(cos )
cos

cos

2 1 2

2

1

2

2

2

t
t

t

=
+








=






+







= +[ ]1

2
1 2L L( ) (cos )t

 = +
+

=
+

+

1

2 2 4

2 4

2 4
2

2

2s

s

s

s

s s( ) ( )
 (13.52)

EXAMPLE 13.9

Find the Laplace transform of the function.

 f (t) 5 3t4 – 2t3 1 4e–3t – 2 sin 5t 1 3 cos 2t (13.53)

Solution  L (3t4 – 2t3 1 4e–3t – 2 sin 5t 1 3 cos 2t)

 5 3 L (t4) – 2 L (t3) 1 4 L (e–3t) – 2 L (sin 5t) 1 3 L (cos 2t)

  

=
∠

−
∠

+
+

− ×
+

+ ×
+

= − +
+

−
+

3
4

2
3

4
1

3
2

5

25
3

4

72 12 4

3

10

25

5 4 2 2

5 4 2

s s s s

s

s

s s s s
++

+

3

42

s

s
 (13.54)

13.5.3  Differentiation

If a function f (t) is piecewise continuous then the Laplace transform of its derivative 
d

dt
f t[ ( )]  is given by

 L
df t

dt
SF s f

( )
( ) ( )












= − 0  (13.55)

By definition,

 

L
d

dt
f t

df t

dt
e dt

e d f t

st

st

( )
( )

( )












=













= { }

∞
−

−
∞

∫

∫

0

0

 (13.56)
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Integrating by parts, we get

 

= +

=− +

− ∞ −
∞

∫[ ( )] ( )

( ) ( )

e f t se f t dt

f SF s

st st
0

0

0  (13.57)

Hence, we have

 L [ f 9(t)] 5 SF(s) – f (0) (13.58)

This is applicable to higher order derivatives also. The Laplace transform of the second derivative of f (t) is

 
L Lf t

d

dt
f t0 9( ) ( ( ))[ ]=













  5 SL [ f 9(t)] – f 9(0) 5 S{SF(s) – f (0)} – f 9(0)

  5 S2 F(s) – Sf (0) – f 9(0) (13.59)

where f 9(0) is the initial value of the first derivative of f (t). We find the Laplace transform of the nth derivative 

by successively applying the proceeding process, which leads to the general result.

 

L
d f t

dt
S F s S f S

dt

dt

S

n

n

n n n

n

( )
( ) ( )

( )










= − −

−

− − −

−

1 2

3

0
0

dd f

dt

d

dt
f

n

n

2

2

1

1

0
0

( )
( )

− −

−
−− −K  (13.60)

EXAMPLE 13.10

Using the formula for Laplace transform of derivatives, obtain the Laplace transform of (a) sin 3t (b) t3.

Solution  (a) Let f (t) 5 sin 3t

 f 9(t) 5 3 cos 3t

 f 0(t) 5 – 9 sin 3t

 L [  f 0(t)] 5 s2[L f (t)] – sf (0) – f 9(0) (13.61)

 f (0) 5 0, f 9(0) 5 3

 L [  f 0(t)] 5 L [– 9 sin 3t]

Substituting in Eq. (13.61), we get

 L [– 9 sin 3t] 5 s2 L [ f (t)] – 3

 L [– 9 sin 3t]– s2 [L (sin 3t)] 5 – 3

L L[( )sin ] (sin )s t t
s

2

2
9 3 3 3

3

9
+ = ∴ =

+
 (13.62)

(b) Let f (t) 5 t3 (13.63)

 Differentiating successively, we get

 f 9(t) 5 3t2, f 0(t) 5 6t, f  (t) 5 6
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 By using the differentiation theorem, we get

 L [ f (t)] 5 s3 L [ f (t)] – s2 f (0) – sf 9(0) – f 0(0) (13.64)

 Substituting all initial conditions, we get

 L [  f (t)] 5 s3 L [ f (t)]

 L [6] 5 s3 L [ f (t)]

 

6

6

3

4

s
s f t

F s f t
s

=

= =

L

L

[ ( )]

( ) ( )][  (13.65)

13.5.4 Integration

If a function f (t) is continuous then the Laplace transform of its integral f t dt( )∫ is given by

 L f t dt
s

F s

t

( ) ( )

0

1
∫















=  (13.66)

By definition,

 L f t dt f t dt e dt

t t

st( ) ( )

0 00

∫ ∫∫















=

















−
∞

 (13.67)

Integrating by parts, we get

 =
−

















+
−

∞

−
∞

∫ ∫
e

s
f t dt

s
e f t dt

st t

st( ) ( )

0 0 0

1
 (13.68)

Since the first term is zero, we have

 L Lf t dt
s

f t
F s

s

t

( ) [ ( )]
( )

0

1
∫















= =  (13.69)

EXAMPLE 13.11

Find the Laplace transform of the ramp function r(t) 5 t.

Solution  We know that u t r t t

t

( ) ( )= =∫  (13.70)

Integration of unit step function gives the ramp function.

 
L L[r t u t dt

t

( )] ( )=
















∫
0

Using the integration theorem, we get

L L

L

u t dt
s

u t
s

u t

t

( ) [ ( )]

[ ( )]

0

2

1 1

1

∫















= =

=since          
ss

 (13.71)
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13.5.5  Differentiation of Transforms

If the Laplace transform of the function f (t) exists then the derivative of the corresponding transform with 

respect to s in the frequency domain is equal to its multiplication by t in the time domain.

i.e. L [ ( )] ( )t f t
d

ds
F s=

−
 (13.72)

By definition,

 
d

ds
F s

d

ds
f t e dtst( ) ( )= −

∞

∫  (13.73)

Since s and t are independent variables, and the limits 0, ` are constants not depending on s, we can 

differentiate partially with respect to s within the integration and then integrate the function obtained with 

respect to t.

Hence, 

d

ds
F s

d

ds
f t e dt

f t te dt

t f t e

st

st

( ) [ ( ) ]

( )[ ]

( )

=

= −

=− { }

−
∞

−
∞

∞
−

∫

∫

∫

0

0

0

sst dt t f t

t f t
d

ds
F s

=−

=
−

L

L

[ ( )]

[ ( )] ( )  (13.74)

EXAMPLE 13.12

Find the Laplace transform of function.

 f (t) 5 t sin 2t (13.75)

Solution  Let f1(t) 5 sin 2t

L [ f1(t)] 5 L [sin 2t] 5 F1(s)

where       F s
s

t f t t t
d

ds s

1 2

1 2

2

4

2
2

4

( )

[ ( )] [ sin ]

=
+

= =
−

+










L L  = +

+

4

42 2

s

s( )
 (13.76)

13.5.6  Integration of Transforms

If the Laplace transform of the function f (t) exists then the integral of corresponding transform with respect 

to s in the complex frequency domain is equal to its division by t in the time domain.

i.e. L
f t

t
F s ds

s

( )
( )












=

∞

∫  (13.77)

 

i.e.  f t F s

F s f t f t e dtst

( ) ( )

( ) ( ) ( )

↔

= [ ]= −
∞

∫L

0

 (13.78)
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Integrating both sides from s to `,

 F s ds f t e dt dsst

ss

( ) ( )=
















−
∞∞∞

∫∫∫  (13.79)

By changing the order of integration, we get

 =
















=










−
∞∞

−∞

∫∫

∫

f t e ds dt

f t
e

t
dt

st

s

st

( )

( )

0

0

 (13.80)

 =












=












∞
−∫

f t

t
e dt

f t

t

st( ) ( )

0

L  (13.81)

 F s ds
f t

t
( )

( )
=













∞

∫ L

0

 (13.82)

EXAMPLE 13.13

Find the Laplace transform of the function

f t
e

t

t

( ) =
− −

2 2
2

Solution   Let f1(t) 5 2 – 2e22t . Then

L [ f1(t)] 5 L [2 – 2e22t] (13.83)

 

= − = −
+

=
+ −
+

=
+

−
L L( ) ( )

( ) ( )

2 2
2 2

2

2 4 2

2

4

2

2e
s s

s s

s s s s

t

Hence L
2 2

4

2

2

1

0

−












=

=
+

− ∞

∞

∫

∫

e

t
F s ds

s s
ds

t

s

( )

( )
 (13.84)

By taking the partial fraction expansion (discussed in later section), we get

4

2 2

2 2

2

2
2 2

2
2

s s

A

s

B

s s s

e

t
e ds

t
t

s

( )

[ ]

+
= +

+
= −

+

∴
−












= −

−
−

∞

∫L L

∞ ∞
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== −
+

= − +

=
+















∞ ∞

∞

∫ ∫
2 2

2

2 2 2

2
1

1
2

s s
ds

s s

s

s s

s

ds

[ log log( )]

log







=−
+









−












=

+

∞

−

s

t

s

s

e

t

s

s

2
2

2 2
2

22

log

logL





  (13.85)

13.5.7  Translation in the Time Domain

If the function f (t) has the transform F(s) then the Laplace transform of f (t – a) u(t – a) is e2as F(s). By 

definition,

L [ ( ) ( )] [ ( ) ( )]f t a u t a f t a u t a e dtst− − = − − −
∞

∫
0

 (13.86)

Since f (t – a) u(t – a) 5 0 for t < a

 5 f (t – a) for t > a

∴ − − = − −
∞

∫L [ ( ) ( )] ( )f t a u t a f t a e dtst

v

 (13.87)

Put t – a 5 t then t 1 a 5 t

 dt 5 dt

Therefore, the above becomes

 L [ ( ) ( )] ( )

( ) (

( )f t a u t a f t e d

e f e d e F

s a

as s as

− − =

= =

− +
∞

−
∞

− −

∫

∫

t

t

t

t t

0

0

ss)

 (13.88)

∴    L [ ( ) ( )] ( )f t a u t a e F sas− − = −  (13.89)

Translation in the time domain corresponds to multiplication by an exponential in the frequency domain.

EXAMPLE 13.14

If u(t) 5 1 for t $ 0 and u(t) 5 0 for t , 0, determine the Laplace transform of [u(t) – u(t – a)].

Solution  The function f (t) 5 u(t) – u(t – a) is shown in Fig. 13.17.

 L [  f (t)] 5 L [u(t) – u(t – a)] (13.90)

 5 L [u(t)] – L [u(t – a)]

Fig. 13.17
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= − = −

= −

− −

−

1 1 1
1

1
1

s
e

s s
e

f t
s

e

as as

as

( )

[ ( ) ( )L  (13.91)

13.5.8  Translation in the Frequency Domain

If the function f (t) has the transform F(s) then the Laplace transform of e2at f (t) is F(s 1 a).

By definition,

and therefore,

F s f t e dt

F s a f t e

st( ) ( )

( ) ( )

=

+ =

−
∞

∫
0

−− +
∞

−
∞

− −

∫

∫= =

( )

( ) [ ( )]

s a t

at st at

dt

e f t e dt e f t

0

0

L

 (13.92)

 (13.93)

  (13.94)

∴  F(s 1 a) 5 L [e2at f (t)] (13.95)

Similarly, we have

 L [eat f (t)] 5 F(s – a) (13.96)

Translation in the frequency domain corresponds to multiplication by an exponential in the time domain.

EXAMPLE 13.15

Find the Laplace transform of eat sin bt.

Solution  Let f (t) 5 sin bt (13.97)

L L[ ( )] [sin ]f t bt
b

s b
= =

+2 2

Since L [eat f (t)] 5 F(s – a)

L [ sin ]
( )

e bt
b

s a b

at =
− +

 (13.98)

EXAMPLE 13.16

Find the Laplace transform of (t 1 2)2 et.

Solution  Let f (t) 5 (t 1 2)2 5 t2 1 2t 1 4 (13.99)

 
L L[ ( )] [ ]f t t t

s s s
= + + = + +2

3 2
2 4

2 2 4

 Since L [eat f (t)] 5 F(s – a)

 L [ ( )]
( ) ( )

e f t
s s s

t =
−

+
−

+
−

2

1

2

1

4

13 2
 (13.100)
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Table 13.2 List of operational transforms

Operation f (t) F(s)

Multiplication by a constant K f (t) K F(s)

Addition/Subtraction f1(t) 6 f2(t) F1(s) 6 F2(s)

First derivative (time) df t

dt

( ) SF(s) – f (0)

Second derivative (time) d f t

dt

2

2

( ) S F s Sf
df

dt

2 0
0

( ) ( )
( )

− −

nth derivative (time) d f t

dt

n

n

( ) S n F(s) – S n – 1 f (0) – S n – 2 f 9(0) – S n – 3 f 0(0) ... f (0)
n – 1

Operation f (t) F(s)

Time integral f t dt

t

( )

0

∫
F s

s

( )

Translation in time f (t – a) u(t – a), a > 0 e2as F(s)

Translation in frequency e2at f (t) F(s 1 a)

Scale changing f (at), a > 0

a
F

s

a











First derivative (s) t f (t) −
dF s

ds

( )

nth derivative (s)
tn f (t)

( )
( )

−1 n
n

n

d F s

ds

S integral
f t

t

( )
F u du

s

( )

∞

∫

13.5.9  Scale Changing

The scale-change property gives the relationship between f (t) and F(s) when the time variable is multiplied 

by a positive constant.

 L f at
a

F
s

a
a( ) ,{ }=







 >

1
0  (13.101)

By definition,

 L [ ( )] ( )f at f at e dtst= −
∞

∫  (13.102)

Put at 5 t

 
dt

a
d= t
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L [ ( )] ( )f at f e
a

d

s

a= ⋅
−

∞

∫ t t
t 1

0

 

( )
a

f e d

a
F

s

a

s

a=

=








−
∞

∫ t t
t1

1

0

  (13.103)

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 2*
rrr13-2.1 Use step functions to write the expression for the function shown in Fig. Q.1.

rrr13-2.2 Step functions can be used to define a window 

function. Thus, u(t – 1) – u(t – 4) defines a 

window 1 unit high and 3 units wide located 

on the time axis between 1 and 4.

  A function f (t) is defined as follows:

  f (t) 5 0, t # 0

   5 30t, 0 # t # 2s

   5 60, 2s # t # 4s

   = −






 ≤ ≤60

4
4 8,cos ,


t s t s

   5 30t – 300, 8s # t # 10s

   5 0, 10s # t # `

  Sketch f (t) over the internal – 2s # t # 12s.

rrr13-2.3 Evaluate the following integrals

  

( ( ) [ ( ) ( )]

( [ ( ) ( . ) (

a)

b)

I t t t dt

I t t t t

= + + −

= + + + −

−
∫ 3

1

3

2

2 8 1

1 5 3

d d

d d d ))] dt

−
∫

1

2

rrr13-2.4 Explain why the following function generates an impulse function as  → 0

  
f t

t
t( )

/
,=

+
−∞≤ ≤∞

 



rrr13-2.5 Find the Laplace transform of the signal t(0.5)t u(t).

rrr13-2.6 Make a sketch of f (t) for – 25s # t # 25s when f (t) is given by the following expression:

  f (t) 5 – (20t 1 400) u(t 1 20) 1 (40t 1 400) u(t 1 10)

      1 (400 – 40t) u(t – 10) 1 (20t – 400) u(t – 20)
rrr13-2.7 Find the Laplace transform of each of the following functions:

  (a) te–at  (b) sin vt  (c) sin (vt 1 u)

  (d) cosht  (e) cosh (t 1 u) 

Fig. Q.1

*Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category
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rrr13-2.8 Use the appropriate operational transform to find the Laplace transform of each function

  (a) t2 e–at  (b) 
d

dt
e tat( sinh )− b   (c) t cos vt

rrr13-2.9 Find the Laplace transforms for (a) and (b):

  (a) f t
d

dt
e tat( ) ( sin )= − v

  (b) f t e x dxax

t

( ) cos= −

−
∫ v

0

  (c)  Verify the results obtained in (a) and (b) by first carrying out the mathematical operation 

and the finding the Laplace transform.

rrr13-2.10 ( [ ( )]a) Show that L f at
a

F
s

a
=









1

  (b) Show that if F s f t
f t

t
( ) [ ( )]

( )
=













L and  is Laplace transformable then

   F u du
f t

t
s

( )
( )

=










∞

∫ L

   Hint: Use the determing integral to write

   F u du f t e dt duut

ss

( ) ( )=











−

∞∞∞

∫∫∫
0

   and then reverse the order of integration.

rrr13-2.11 Find the signal y(t), the Laplace transform of signal which is

  

Y s
s s s

s s
( ) =

+ + +

+ +

3 2

2

7 18 20

5 6

rrr13-2.12 Find if f t F s
s

s s s
( ) ( )

( )

( ) ( )
=

+

+ + +

10 119

5 10 169

2

2

rrr13-2.13 Find f (t) for each of the following functions:

  

(a) F s
s s

s s s
( )

( ) ( ) ( )
=

+ +
+ + +
18 66 54

1 2 3

2

 

( ( )
( ) ( )

b) F s
s s

s s s
=

+ +

+ + +

11 172 700

2 12 100

2

2

  

( ( )
( )

c) F s
s s

s s s
=

+ +

+ +

56 112 5000

14 625

2

2

rrr13-2.14 Find f (t) of the following functions:

  (a) F s
s s

( )
( )

=
+ +

40

4 52 2
  (b) F s

s s

s s
( )

( ) ( )
=

+ +
+ +

5 29 32

2 4

2

  (c) F s
s s s

s s
( ) =

+ + −

+ +

2 8 2 4

5 4

3 2

2
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Frequently Asked Questions linked to LO 2
r13-2.1 What are the Laplace transforms of the following voltage 

waveform shown in Fig. Q.1? [BPTU 2008]

r13-2.2 a

a

rr H s

h t

 H s
s s+ +

r

r

r

rr i

i

r13-2.8

13.6 LAPLACE TRANSFORM OF PERIODIC FUNCTIONS

Periodic functions appear in many practical problems. Let the function f (t) be a 

periodic function which satisfies the condition f (t) 5 f (t 1 T ) for all t > 0 where 

T is the period of the function.

L [ ( )] ( ) ( )

( )

( )

f t f t e dt f t e dt

f t e dt

st

T

st

T

T

st

nT

n

= + +

+ +

− −

−
+

∫ ∫
0

2

1

…

…

TT

∫  (13.104)

 

= + +

+ +

=

− − −

− −

∫ ∫

∫

f t e dt f t e e dt

f t e e dt

st

T T

st sT

st nsT

T

( ) ( )

( )

(

0 0

0

1

…

…

++ + + + +− − − −∫e e e f t e dtsT sT nsT st

T

2

0

… …) ( )  (13.105)

 =
− −

−∫
1

1
0

e
f t e dt

sT

st

T

( )  (13.106)

O

V
O

T
t

Fig. Q.1

336 V

t = 0
8.4 H

42 W 48 W

10 H

i
2i

1

Fig. Q.7
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EXAMPLE 13.17

Find the transform of the waveform shown in  

Fig. 13.18.

Solution  Here,. the period is 2T

 

L [ ( )] ( )

( )

f t
e

f t e dt

e
Ae dt A e

sT

st

T

sT

st

T

st

=
−

=
−

+ −

−
−

−
− −

∫

∫

1

1

1

1

2

0

2

2

0

ddt

e

A

s
e

A

s
e

T

T

sT

st
T

st

T

T

2

2
0

2
1

1

1

1

∫
















=
−

− +
















=

−
− −

−−
− − + −










−

− − −

e

A

s
e

A

s
e e

sT

sT sT sT

2

21( ) ( )

 (13.107)

1−−  

=
−

−
−

−

e

e

A

s
e

sT

s

2

1

1
1( TT

sT

sT

A

s

e

e
)2 1

1












=

−

+











−

−

∴ =
−

+











−

−
L [ ( )]f t

A

s

e

e

sT

sT

1

1
 (13.108)

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 3
rrr13-3.1 Find the Laplace transform of the waveform shown in Fig. Q.1.

Fig. Q.1

Fig. 13.18
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rr13-3.2 Find the Laplace transform of the periodic waveform shown in Fig. Q.2.

Fig. Q.2

Frequently Asked Questions linked to LO 3
r u t
r f t t f t te
r

rr

k t

r s

r

r

t e t t

rr

d i

dt

di

dt

2

2
+  = t t i

di

dt
 

di

dt
 i t t i

di

dt
 

13.7 INVERSE TRANSFORMS

So far, we have discussed Laplace transform of a functions f (t). If the function 

is a rational function of s, which can be expressed in the form of a ratio of two 

polynomials in s such that no non-integral powers of s appear in the polynomials. 

In fact, for linear, lumped-parameter circuits whose component values are constant, 

the s-domain expressions for the unknown voltages and currents are always rational 

functions of s. If we can inverse transform rational functions of s, we can solve for 

the time domain expressions for the voltages and currents.

In general, we need to find the inverse transform of a function that has the form.

F s
N s

D s

a s a s a s a

b s b s b s b

n
n

n
n

m
m

m
m

( )
( )

( )
= =

+ + + +

+ + + +
−

−

−
−

1

1

1 0

1

1

1 0

…

…

 (13.109)

V t e( ) = 6
–2t

K 5W 1H

0.25Fi

Fig. Q.4

LO   4 
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The coefficients a and b are real constants, and the exponents m and n are positive integers. The ratio 

N s

D s

( )

( )
 is called a proper rational function if m > n, and an improper rational function if m # n. Only a proper 

rational function can be expanded as a sum of partial fractions.

13.7.1  Partial Fraction Expansion: Proper Rational Functions

A proper rational function is expanded into a sum of partial fractions by writing a term or a series of terms for 

each root of D(s). Thus, D(s) must be in factored form before we can make a partial fraction expansion. The 

roots of D(s) are either (1) real and distinct, (2) complex and distinct, (3) real and repeated, or (H ) complex 

and repeated.

  When the Roots are Real and Distinct

In this case, F s
N s

D s
( )

( )

( )
=  (13.110)

where D(s) 5 (s – a) (s – b) (s – c) (13.111)

Expanding F(s) into partial fractions, we get

 F s
A

s a

B

s b

C

s c
( ) =

−
+

−
+

−
 (13.112)

 To obtain the constant A, multiplying Eq. (13.112) with (s – a) and putting s 5 a, we get

F(s) (s – a)|s 5 a 5 A

Similarly, we can get the other constants.

B 5 (s – b) F(s)|s 5 b

C 5 (s – c) F(s)|s 5 c

EXAMPLE 13.18

Determine the partial fraction expansion for

F s
s s

s s s
( )

( )( )
=

+ +

+ +

2
1

5 3

Solution  F s
s s

s s s
( )

( )( )
=

+ +
+ +

2
1

5 3
 (13.113)

 s s

s s s

A

s

B

s

C

s

2
1

5 3 5 3

+ +
+ +

= +
+

+
+( )( )

 (13.114)

 

A sF s
s s

s s

B s F s
s s

s

s

s

s

= =
+ +

+ +
=

= + =
+ +

=
=

=−

( )
( )( )

( ) ( )
(

0

2

0

5

2

1

5 3

1

15

5
1

ss

C s F s
s s

s s

s

s

s

+
=

= + =
+ +
+

=−

=−

=−
=−

3
2 1

3
1

5
1 17

5

3

2

3

)
.

( ) ( )
( )

.
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 s s

s s s s s s

2
1

5 3

1

15

2 1

5

1 17

3

+ +
+ +

= +
+

−
+( )( )

. .  (13.115)

  When Roots are Real and Repeated

In this case, F s
N s

D s
( )

( )

( )
=

where D(s) 5 (s – a)n D1(s)

The partial fraction expansion of F(s) is

 F s
A

s a

A

s a

A

s a

N s

D sn n

n( )
( ) ( )

( )

( )
=

−
+

−
+ +

−
+

−
−0 1

1

1 1

1

…  (13.116)

where 
N s

D s

( )

( )
 represents the remainder terms of expansion.

To obtain the constant A0, A1, ... An – 1, let us multiply both sides of Eq. (13.116) by (s – a)n.

Thus,

 (s – a)n F(s) 5 F1(s) 5 A0 1 A1 (s – a) 1 A2 (s – a)2 1 ...

  1 An – 1 (s – a)n – 1 1 R(s) (s – a)n (13.117)

where R(s) indicates the remainder terms

Putting s 5 a, we get

 A0 5 (s – a)n F(s)|s 5 a

Differentiating Eq. (13.117) with respect to s, and putting s 5 a, we get

 Similarly, 

A
d

ds
F s

A
d

ds
F s

s a

s a

1 1

2

2

2 1

1

2

=

=

=

=

( )

!
( )

In general,   A
n

d F s

ds
n

n

n

s a

=
=

!

( )
 (13.118)

EXAMPLE 13.19

Determine the partial fraction expansion for

F s
s

s s

( )
( )

=
−

+

5

2
2

.

Solution  F s
s

s s

A

s

B

s

B

s
( )

( ) ( )
=

−

+
= +

+
+

+
5

2 2 22 2

1

 

A F s S
s

s
s

s

= =
−

+
=− =−

−

=
=

( )
( )

.
0 2

0

5

2

5

4
1 25
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N s s F s
s

s

B F

= + =
−

=

( ) ( ) ( )1
2

0

2
5

(( ) ( ) .

( )

s s
s

s

B
d

ds
F s

d

ds

s

s

s

+ =
−

=

=

= −








=
=−

=−

2
5

3 5

1
5

3

2
2

2

1 1 2

 = = =
=− =−s ss2

2
2

5 5

4
1 25.

  When Roots are Distinct Complex Roots of D(s)

Consider a function F s
N s

D s s j s j
( )

( )

( )( )( )
=

− + − −a b a b
 (13.119)

The partial fraction expansion of F(s) is

 F s
A

s j

B

s j

N s

D s
( )

( )

( )
=

− −
+

− +
+

a b a b
 (13.120)

where 
N s

D s

( )

( )
 is the remainder term.

Multiplying Eq. (13.120) by (s – a – jb) and putting

 S 5 a 1 jb,

we get A
N j

D j j
=

+
+ +
( )

( )( )

a b

a b b
1

2
 (13.121)

Similarly  B
N j

j D j
=

−
− −

( )

( ) ( )

a b

b a b2 1

 (13.122)

In general, B 5 A* where A* is complex conjugate of A.

If we denote the inverse transform of the complex conjugate terms as f (t)

f t
A

s j

B

s j

A

s j

A

s j

( )

*

=
− −

+
− +













=
− −

+
− +












−

−

L

L

1

1

a b a b

a b a b



 (13.123)

where A and A* are conjugate terms.

If we denote A 5 C 1 jD, then

 B 5 C – jD 5 A*

∴ f (t) 5 eat (Ae jbt 1 A* e2jbt ) (13.124)
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EXAMPLE 13.20

Find the inverse transform of the function.

F s
s

s s s

( )
( )

=
+

+ +

5

2 5
2

Solution  F s
s

s s s
( )

( )
=

+

+ +

5

2 52
 (13.125)

By taking partial fractions, we have

F s
s

s s s

A

s

B

s j

B

s j

A F s s
s

s ss

( )
( )

( )

*

=
+

+ +
= +

+ −
+

+ +

= =
+

+ +=

5

2 5 1 2 1 2

5

2

2

0 2 55
1

1 2
5

1 2

4 2

1 2

1 2 1 2

=

= + − =
+

+ +

=
+

− +

=− + =− +B F s s j
s

s s j

j

j j

s j s j( )( )
( )

( ) 44

2

2 1 2

2

2 4

1

2

1 2
5

1 2

=
+

− +
=

+
− −

=
−

= + + =
+

+=− −

j

j j

j

j

B F s s j
s

s ss j

( )

( ) ( )
(

*

11 2
1 2− =− −

j
s j

)

 (13.126)

      

=
− − +

− − − − + −

=
−

− +
=

−
−

=
−

1 2 5

1 2 1 2 1 2

4 2

1 2 4

4 2

4 8

2 2

j

j j j

j

j j

j

j

j

( )( )

( )( )

( ))

( )− −
=

−
4 2

1

2j

∴ = −
+ −

−
+ +

F s
s s j s j

( )
( ) ( )

1 1

2 1 2

1

2 1 2
 (13.127)

The inverse transform of F(s) is f (t)

f t F s
s s j s j

s

( ) [ ( )]
( ) ( )

= = −
+ −

−
+ +













=




− −

−

L L

L

1 1

1

1 1

2 1 2

1

2 1 2

1






−

+ −











 − + +













= −

− −1

2

1

1 2

1

2

1

1 2

1
1

2

1 1
L L

( )

(

s j s j

e −− + − −−1 2 1 21

2

j t j te) ( )  (13.128)

  When Roots are Repeated and Complex of D(S)   The complex roots always appear in conju-

gate pairs and that the coefficients associated with a conjugate pair are also conjugate, so that only half the 

Ks need to be evolved.

Consider the function F s
s s s

( )
( )

=
+ +

768

6 2
2 2

 (13.129)
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By factoring the denominator polynomial, we have

F s
s j s j

K

s j

K

s j

K

s j

( )
( ) ( )

( )

(

*

=
+ − + +

=
+ −

+
+ −

+
+ +

768

3 4 3 4

3 4 3 4

3 4

2 2

1

2

2

1

))

*

2

2

3 4
+

+ +
K

s j
 (13.130)

Now we need to evaluate only K1 and K2, because K1* and K2* are conjugate values.

The value of K1, is

K
s j j

s j1 2 3 4 2

768

3 4

768

8

12=
+ +

= =−=− +
( ) ( )

 (13.131)

The value of K2 is

K
d

ds s j

s j

s j

s j

2 2

3 4

3 3

768

3 4

2 768

3 4

=
+ +













=−
+ +

=− +

=− +

( )

( )

( )
44 3

2 768

8

3 3 90

=−

=− = ∠− °

( )

( )j

j  (13.132)

From Eqs (13.131) and (13.132)

K1* 5 – 12, K2* 5 j3 5 3 ∠ 90º (13.133)

We now group the partial fraction expansion by conjugate terms to obtain

F s
s j s j

s j

( )
( ) ( )

=
−

+ −
+

−

+ +













+
∠−
+ −

+
∠

12

3 4

12

3 4

3 90

3 4

3 90

2 2

° °°

s j+ +









3 4

 (13.134)

Inverse transform of the above function is

 f (t) 5 [–24t e–3tcos 4t 1 6e–3tcos (4t – 90º)] u(t) (13.135)

Table 13.3 Useful transform pairs

Nature of roots F(s) f (t)

Distinct real
k

s a+
Ke–at u(t)

Repeated real
k

s a( )+ 2
Kt e–at u(t)

Distinct complex
k

s j

k

s j+ −
+

+ +a b a b
2|k|e–at cos (bt 1 u) u(t)

Repeated complex
k

s j

k

s j( ) ( )

*

+ −
+

+ +a b a b2 2
2t|k|e–at cos (bt 1 u) u(t)
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13.7.2  Partial Fraction Expansion: Improper Rational Function

An improper rational function can always be expanded into a polynomial plus a proper rational function. The 

polynomial is then inverse-transformed into impulse functions and derivatives of impulse functions.

Consider a function

F s
s s s s

s s
( ) =

+ + + +

+ +

4 3 2

2

13 66 200 300

9 20

 (13.136)

Dividing the denominator into the numerator until the remainder is a proper rational function gives

F s s s
s

s s
( ) = + + +

+

+ +
2

2
4 10

30 100

9 20

 (13.137)

Now we expand the proper rational function into a sum of partial fractions.

30 100

9 20

30 100

4 5

20

4

50

52

s

s s

s

s s s s

+

+ +
=

+
+ +

=
−
+

+
+( ) ( )

 (13.138)

Substituting Eq. (13.138) into Eq. (13.137) yields

F s s s
s s

( ) = + + −
+

+
+

2
4 10

20

4

50

5
 (13.139)

By taking inverse transform, we get

f t
d t

dt

d t

dt
t e e u tt t( )

( ) ( )
( ) ( ) ( )= + + − −− −

2

2

4 54 10 20 50
d d

d  (13.140)

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 4

rrr13-4.1 Find (t) if f f t F e d

F
j

j
d

jtw( ) ( )

( ) ( )

=

=
+
+

−∞

∞

∫
1

2

4

9


v v

v
v

v
 v

rrr13-4.2 Find the inverse transforms of the following functions

  (a) 
1

9
2s +

 (b) 


s+

  (c) 
8

3 5( ) ( )s s+ +
 (d) 

5

9
2s +

  (e) 
K

s

K

s

K

s

1 2

2

3

3
+ +

rrr13-4.3 Find the inverse Laplace transform of

  

F s
s

( )
( )

=
+

1

2
2
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13.8 INITIAL AND FINAL VALUE THEOREMS

The initial- and final-value theorems are useful because they enable us to 

determine from F(s) the behaviour of f (t) at 0 and `. Hence, we can check the 

initial and final values of f (t) to see if they conform with known circuit behaviour, 

before actually finding the inverse transform of F(s).

The initial-value theorem states that

lim ( ) lim ( )
t s

f t SF s
→ →∞

=
0

 (13.141)

and the final-value theorem states that

lim ( ) lim ( )
t s

f t SF s
→∞ →

=
0

 (13.142)

The initial-value theorem is based on the assumption that f (t) contains no impulse functions.

To prove the initial-value theorem, we start with the operational transform of the first derivative.

L
df

dt
SF s f

df

dt
e dtst












= −

= −
∞

∫

( ) ( )0

0

 (13.143)

Now, we take the limit as s → `

lim [ ( ) ( )] lim
s s

stSF s f
df

dt
e dt

→∞ →∞

−
∞

− = ∫  (13.144)

The right-hand side of the above equation becomes zero as s → `

∴ − =

= =
→∞

→∞ →

lim [ ( ) ( )]

lim ( ) ( ) lim ( )
s

s t

SF s f

SF s f f t

0 0

0
0

 (13.145)

The proof of the final-value theorem also starts with Eq. (13.143). Here, we take the limit as s → 0.

lim [ ( ) ( )] lim
s s

stSF s f
df

dt
e dt

→∞ →

−
∞

− =










∫0
0

0

 (13.146)

lim [ ( ) ( )] [ ( )]

lim ( ) ( ) lim ( ) (

s

s t

SF s f f t

SF s f f t f

→

∞

→ →∞

− =

− = −
0

0

0

0

0 0))

 (13.147)

Since f (0) is not a function of s, it gets cancelled from both sides.

∴ =
→∞ →
lim ( ) lim ( )
t s

f t SF s  (13.148)

The final-value theorem is useful only if f (`) exists.

The Application of Initial- and Final-Value Theorems

Consider the transform pair given by

 
100 3

6 6 25

12 20 4 53 13
2

6 3( )

( )( )
[ cos( . ( )

s

s s s
e e t u tt t+

+ + +
↔ − + −− − °)]  (13.149)

LO   5 
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The initial-value theorem gives

lim [ ( ) lim
s s

SF s

s
s

s
s s

→∞ →∞
=

+








+












+ +

100 1
3

1
6

1
6 2

2

3 55
0

2s













=  (13.150)

lim ( ) [ cos( .
t

f t
→

= − + − =− =
0

12 20 53 13°)](1) 12 + 12 0 (13.151)

The final-value theorem gives

 lim ( ) lim
( )

( ) ( )s s
SF s

s s

s s s→ →
=

+

+ + +
=

0 0 2

100 3

6 6 25
0  (13.152)

 lim ( ) lim [ cos( . ( )
t t

t tf t e e t u t
→∞ →∞

− −= − + − =12 20 4 53 13 0
6 3 °)]  (13.153)

EXAMPLE 13.21

Verify the initial-value theorem for the following functions.

(a) 5e–4t (b) 2 – e5t

Solution  (a) Let f (t) 5 5e–4t (13.154)

 

then                   F s
s

SF s
s

s

SF s
s

( )

( )

lim ( ) lim

=
+

=
+

=
→∞

5

4

5

4

ss

t t

t

s

f t e

→∞

→ →

−

+
=

= =

5

1 4
5

5 5
0 0

4lim ( ) lim  (13.155)

Hence, the initial-value theorem is proved.

(b) Let f (t) 5 2 – e5t (13.156)

Then F(s) 5 L (2 – e5t) 5 L (2) – L (e5t)

 

= −
−

=
−
−

=
−
−

=
−









→∞

2 1

5

10

5

10

5

1
10

s s

s

s s

SF s
s

s

SF s
s

s

( )

( )

lim ( )


−








=
1

5
1

s

 lim ( ) lim ( )
t t

tf t e
→ →

= − =
0 0

5
2 1 (13.157)

Hence, the initial-value theorem is proved. 
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EXAMPLE 13.22

Verify the final-value theorem for the following functions.

 (a) 2 1 e–3t cos 2t (b) 6(1 – e–t)

Solution  (a) Let f (t) 5 2 1 e–3t cos 2t (13.158)

then              F s
s

s

s

SF s
s

s

s

( )
( )

( )
( )

= +
+

+ +

= +
+ +

+

2 3

3 4

2
3 4

3

2

2

2 (( )

lim ( ) lim
( )

( )

lim

s

SF s
s s

ss s

+ +

= +
+

+ +












=

→ →

3 4

2
3

3 4
2

2

0 0 2

tt t

tf t e t
→∞ →∞

−= + =( ) lim [ cos ]2 2 23  (13.159)

Hence, the final-value theorem is proved.

(b) Let f (t) 5 6(1 – e–t) (13.160)

then                  F s
s s s s

SF s
s

s

( )
( )

( )

lim

= −
+

=
+

=
+

→

6 6

1

6

1

6

1

0
SSF s

f t e
t t

t

( )

lim ( ) lim ( )

=

= − =
→∞ →∞

−

6

6 1 6  (13.161)

Hence, the final value theorem is proved.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 5

rrr13-5.1 Apply the initial- and final-value theorems to each transform pair in Problem 13.2.13 (refer 

page 584).

rrr13-5.2 Use the initial- and final-value theorems to find the initial- and final-values of f (t) for the 

following functions.

  (a) F s
s s

s s s
( )

( ) ( ) ( )
=

+ +
+ + +
7 63 134

3 4 5

2

 (b) F s
s s

s s
( )

( )
=

+ +

+

4 7 1

1

2

2

  (c) F s
s s

( )
( )

=
+ +

40

4 52 2

rrr13-5.3 Using the initial-value theorem, find the initial value of the signal corresponding to the Laplace 

transform.

  

Y s
s

s s
( )

( )
=

+
+
1

2

  Verity that the answer obtained is correct.
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Frequently Asked Questions linked to LO 5
rrr f t

u t e t  value

rrr

Additional Solved Problems

PROBLEM 13.1

Find the Laplace transforms of the following functions.

(a) t3 1 at2 1 bt 1 3  (b) sin2 5t  (c) e5t16  (d) cosh2 3t

Solution  (a) t3 1 at2 1 bt 1 3

Taking Laplace transforms,

L[ ]
! !

t at bt
s

a

s

b

s s

s

a

s

b

s s

as bs

3 2

4 3 2

4 3 2

2

3
3 2 3

6 2 3

6 2

+ + + = + + +

= + + +

=
+ + ++3 3

4

s

s

(b) L L L L[sin ]
cos

cos2 5
1 10

2

1

2

1

2
10t

t
t=

−










=











−













== −
+

=
+

1

2 2 100

100

2 100

2

2

s

s

s

s s

( )

( )

(c) L L[ ] [ . ]e e e
e

s

t t5 6 6 5
6

5

+ = =
−

(d) L L

L

[cosh ]2
3 3

2

6 6

3
2

2

4

t
e e

e e

t t

t t

=
+




















=
+ +



−

−










=
−

+
+

+












=
−

− +

1

4

1

6

1

6

2

18

6 6

2

s s s

s

s s s( )( )
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PROBLEM 13.2

Find the inverse transforms of the following functions.

 (a) 5 4

1 2 5
2

s

s s s

+

− + +( )( )

 (b) 
4 2

2 5
2

s

s s

+

+ +

 (c) s

s s
2

2 5− +
 (d) s s

s s

( )+

+ +

1

4 5
2

Solution  (a) L
− +

− + +













1

2

5 4

1 2 5

s

s s s( )( )

By taking partial fraction of the given function,

F s
s

s s s

A

s

BS C

S S
( )

( )( )
=

+

− + +
=

−
+

+

+ +

5 4

1 2 5 1 2 5
2 2

Finding the values of A, B, C, we have

A B C= =
−

=
9

8

9

8

11

8
; ;

∴
+

− + +












=

−
−

+ +
+− −

L L
1

2

1

2

5 4

1 2 5

9

8 1

9

8

2 5

11 8s

s s s s

s

s s s( )( ) ( )

/
22 2 5

9

8

9

8
2

11

8
2

+ +



















= − −− −

s

e e t e tt t tcos sin

(b) L L
− −+

+ +












=

+

+ +
−

+ +













1

2

1

2 2 2 2

4 2

2 5

4 4

1 2

2

1 2

s

s s

s

s s( ) ( )

== +−e t tt [ cos sin ]4 2 2

 (c) L L
− −

− +












=

−

− +
−

− +













=

1

2

1

2 2 2 22 5

1

1 2

1

1 2

2

s

s s

s

s s

et

( ) ( )

[[ cos sin ]2 2 2t t+

PROBLEM 13.3

Find the transforms of the following functions.

 (a) t e t
t

t

t− +2
2

2
sin

cos
 (b) log

( )

s

s s

2
1

1

−

+













 (c) (1 1 2t e25t)3 (d) s

s s

+

+ +

4

5 12
2 2

( )
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Solution  (a) L

L L

t e t
t

t

t e t
t

t

t

t

−

−

+












= +












=

2

2

2
2

2
2

4

sin
cos

[ sin ]
cos

(( )

[( ) ]
(cos )

( )

[( ) ]
log

s

s
L t ds

s

s s

s

+

+ +
+

=
+

+ +
+

+

∞

∫
2

2 4
2

4 2

2 4

1

4

2 2

2 2 2











(b) By taking inverse transform,
 

L L

L

− −−
+











 =

−



















=
−

1
2

11

1

1

1

log
( )

log
s

s s

s

s

t

−−

−

−



















=
−

−
−{ }









 =

−

1

1

1

1 1

1

1 1

d

ds

s

s

t s s t
eL [ ++ − = −t t

t
e1

1
1] ( )

(c) L L[ ] [ ]

( )

1 2 1 8 6 12

1 8 3

15

6

5 3 3 15 5 2 10

4

+ = + + +

= +
+

+

− − − −t e t e t e t e

s s

t t t t

(( )
.
( )

( ) ( ) ( )

s s

s s s s

+
+

+

= +
+

+
+

+
+

5
12

2

10

1 48

15

6

5

24

10

2 3

4 2 3

(d) L L
− −+

+ +












=

+

+






 +










1

2 2

1

2

4

5 12

4

5

2

23

4

s

s s

s

s
( )








=
+ +

+






 +


























−
L

1

2 2

5

2

3

2

5

2

23

2

s

s








=
+

+






 +



























−

L
1

2 2

5

2

5

2

23

2

s

s






+

+






 +





























=

−3

2

1

5

2

23

2

1

2 2
L

s

ee t e t

e

t t

t

−
−

−









 +

=





5

2

5

2

5

2

23

2

3

2

2

23

23

2

23

2

cos sin

cos



 +



























t t
3

23

23

2
sin
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PROBLEM 13.4

Find the Laplace transform of a sawtooth waveform f (t) which is periodic, with period equal to unity, 

and is given by f (t) 5 at for 0 , t , 1.

Solution  Laplace transform of a periodic function f (t) is

F s
e

f t e dt
ST

st
T

( ) ( )=
− −

−∫
1

1 0

Here, f (t) 5 at for 0 , t , 1

∴ =
−

=
− −

−












=

−
−

−

− −

∫F s
e

e dt

a

e

t e

s

e

s

a

ST

st

s

st st

( )
1

1

1

1

0

1

2
0

1

at

−− −
− +











−

− −

e

e

s

e

s ss

s s

2 2

1

PROBLEM 13.5

For the given function f (t) 5 3u(t) 1 2e2t, find its final value f (`) using final-value theorem.

Solution  The final-value theorem is given by

 
lim ( ) lim ( )
t s

f t SF s
→∞ →

=

 f (t) 5 3u(t) 1 2e2t

By taking Laplace transform,

F s
s s

SF s
s

s

SF s
s

ss s

( )

( )

lim ( ) lim

= +
+

= +
+

= +
+












=

→ →

3 2

1

3
2

1

3
2

0 0
33

3∴ = ∞ =
→∞
lim ( ) ( )
t

f t f

PROBLEM 13.6

Determine the inverse Laplace transform of the function.

 

4

64
2

s +











Solution  4

64

4

82 2 2s s+
=

+

 

 (13.162)
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4

8

8

8

1

2

8

8

2 2

2 2

s

s

=
+











=
+










( )



 L L
− −

+










=







 +











1

2

1

2 2

4

64

1

2

8

8s s 
 (13.163)

 

=
+











=

−1

2

8

8

1

2
8

1

2 2
L

s

tsin  (13.164)

PROBLEM 13.7 

Determine the inverse Laplace transform of the function.

 F s
s

s s
s

( ) =
−

+ +

3

4 13

Solution  F s
s

s s

s

s

s

s
( )

( )

( )

( )
=

−

+ +
=

−

+ +
=

+ −

+ +

3

4 13

3

2 9

2 5

2 9
2 2 2

 (13.165)

We can write the above equation as

s

s s

+

+ +
−

+ +

2

2 9

5

2 9
2 2( ) ( )

By taking the inverse transform, we get

L L L
− − −

−

=
+

+ +












−

+ +













=

1 1

2

1

2

2

2 9

5

2 9
F s

s

s s

e

( )
( ) ( )

22 2

2

3
5

3
3

3
3 3 5 3

t t

t

t e t

e
t t

cos sin

[ cos sin ]

−

= −

−

−

 (13.166)

PROBLEM 13.8

Find the inverse transform of the following.

 (a) log
s

s

+

+









5

6
 (b) 

1

5
2 2 2

( )s +

Solution  (a) Let F s
s

s
( ) log=

+
+









5

6
 (13.167)

Then 
d

ds
F s

d

ds

s

s s s
[ ( )] log=

+
+



















 = +

−
+

5

6

1

5

1

6
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We know that

L

L L

−

− −












=−

∴











=

+
−

+



1

1 1 1

5

1

6

d

ds
F s tf t

d

ds
F s

s s

( ) ( )

( )









= −− −e et t5 6

 (13.168)

Hence, – t f (t) 5 e–5t – e–6t

f t
e e

t

t t

( ) =
−− −6 5

 (13.169)

(b)   Let F s
s

s s

s

s

( )
( )

( ) ( )

=
+

+
= ⋅

+

1

5

1

5

1

5

2 2 2

2 2 2 2 2 2

 (13.170)

Therefore  L L
− −

+












=

+













1

2 2 2

1

2 2 2

1

5

1

5( ) ( )s s

s

s
 (13.171)

According to integration theorem,

L L
− −

+












=

+













∫1

2 2 2

1

2 2

0

1

5 5s

s

s

s

s
dt

t

( ) ( )

if                         then L L[ ( )] ( ),
( )

( )f t F s
f t

t
F s d=












= ss

s

s
ds

s s

s

s s

∞

∞ ∞

∫

∫ +
=

−

+











 = ⋅Here,       

( )2 2 2 2 2 25

1

2

1

5

1

2

1

++52

 (13.172)

Therefore,               
f t

t s

( )
= ⋅

+









=

−
L

1

2 2

1

2

1

5

1

100
5

10
5

1

5

1

2 2 2

sin

( ) sin

( )

s

t

f t
t

t

s

s

s

t

∴ =

+












=−

or        L
iin 5

10
0

t
dt

t

∫  (13.173)

 

=
−





+













= −

1

10

5

5

5

25

1

250
5 5 5

0

t
t t

t t

t
cos sin

sin cos tt[ ]  (13.174)

PROBLEM 13.9

Find the Laplace transform of the full-wave rectified output as shown in Fig. 13.19.
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Fig. 13.19

Solution  We have

f t t for t( ) sin= < <10 0v


v
  (13.175)

Hence, L[ ( )]
( ( ))

( sin )

/

/

f t
e f t dt

e

e t dt

e

st

s

w

st

s

=

−

=

−

−

−

−

−

∫
1

10

1

0

0



 v



v


v

ww

s

st

e

e

s
s t t

e

∫

=

−
+

− −














=

−

−

−10

1

10

1

2 2

0



v

 v

v
v v v( sin cos )

/

−−

−












+

+














s

s

s

e


v



v

v

v v

( )2 2

 (13.176)

 

=
+

+












−












=

−

−

10

1

1

10

2 2

v

v

v



v



v
s

e

e

s

s

s

22 2

2 2

2 2

2 2

10

2

+

+

−

=
+









−

−v

v

v



v



v



v



v



v

e e

e e

s

s

s s

s s

cosh  (13.177)

PROBLEM 13.10

Find the Laplace transform of the square wave shown in Fig. 13.20.
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Fig. 13.20

Solution  We have

f (t) 5 A, 0 , t , a

  5 – A, a , t , 2a (13.178)

 

L [ ( )] ( )

(

f t
e

Ae dt A e dt

A

s

as

st

a

st

a

a

=
−

+ −
















=
−

−
− −∫ ∫

1

1

1 2

2

0

2

ee e

e

A

s

e

e e

A

s

as

as as

as

as

as as

− −

−

−

− −

+

−

=
−

+ −
=



2

2

2

1

1

1 1 2

)

( )

( )( )
tanh






  (13.179)

PROBLEM 13.11

Determine the form of the partial fraction expansion for the proper fraction.

s

s s s s s

−

+ + + + +

1

9 4 3 2 7
2 2 2

( ) ( )( )( )

Solution 
s

s s s s s

K

s

K

s

K

s

K s K

s

−

+ + + + +
=

+
+

+
+

+

+
+

1

9 4 3 2 7 9 9 42 2 2

1

2

2 3

4 5

( ) ( )( )( ) ( )

22

6

2

7

3 2 7 7+ +
+

+
+

+s

K

s

K

s( )

 

(13.180)

Alternatively, (s2 1 3s 1 2) can be factored and written as (s 1 2) (s 1 1), and the resulting partial 

fraction expansion can be written as

s

s s s s s

K

s

K

s

K

s

K−

+ + + + +
=

+
+

+
+

+
+

1

9 4 2 1 7 9 9 42 2

1

2

2 3 4

( ) ( )( )( )( ) ( ) ( ) ( ) ss

K

s

K

s

K

s

+

+
+

+
+

+
+

2

1 7 7

5 6

2

7

( )
 (13.181)
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PROBLEM 13.12

Determine the form for a partial fraction expansion for the improper fraction.

6 100 85 52

7 14 8

3 2

3 2

s s s

s s s

+ + +

+ + +

Solution  Because the expression is not a proper fraction, it cannot be expanded into partial fractions. 

However, if the denominator is divided into the numerator, a part of the expression becomes a proper fraction, 

and that part can be expanded.

6 100 85 52

7 14 8
6

58 4

7 14 8

6
58

3 2

3 2

2

3 2

2

s s s

s s s

s s

s s s

s

+ + +

+ + +
= +

+ +

+ + +

= +
++ +

+ + +
s

s s s

4

1 2 4( )( )( )
 (13.182)

∴
+ + +

+ + +
= +

+
+

+
+

+
6 100 85 52

7 14 8

6
1 2 4

3 2

3 2

1 2 3s s s

s s s

K

s

K

s

K

s
 (13.183)

PROBLEM 13.13

Determine the inverse Laplace transform of F(s), where

F s
s

s s

( )
( ) ( )

=
+ +1 4

2
.

Solution  From the rules given for expanding proper fractions,

s

s s

K

s

K

s

K

s( ) ( ) ( )+ +
=

+
+

+
+

+1 4 1 1 42

1

2

2 3  (13.184)

 K F s s

s

s

K F s s

s

s

s

s

s

1

2

1

1

3 4

2

1

4

1

3

4

1

4

9

= +

=
+

=
−

= +

=
+

=
−

=

=−

=−

( ) ( )

( ) ( )

( )

We can determine K2 by putting the right side of the equation on a common denominator and equating 

numerators.

s

s s

K s K s s K s

s s( ) ( )

( ) ( )( ) ( )

( ) ( )+ +
=

+ + + + + +

+ +1 4

4 1 4 1

1 4
2

1 2 3

2

2

Since     and K K
1 3

1

3

4

9
=

−
=

−

 (13.185)

Equating numerators results in

s K s K s K=
−

+






 + −







 +

−
+







11

9
5

4

9

16

9
4

2 2

2

2
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Equating coefficients results in

−
+ =

=

=
+ +

=

−







+
+

11

9
5 1

4

9

1 4

1

3

1

4 9

2

2

2 2

K

K

F s
s

s s s
( )

( ) ( ) ( )

( / )

ss s

F s
s s s

+
+

−
+

{ }=
−

+
+

+
+

−
+






− −

1

4 9

4

1

3

1

4 9

1

4 9

4

1 1

2

( / )

( )
( )

( / ) ( / )
L L
















From the rules,

f t t e e et t t( ) =
−

+ −− − −1

3

4

9

4

9

4
 (13.186)

PROBLEM 13.14

Expand the following proper fraction into partial fraction.

F s

s s s

( )
( )( )

=
+ + +

1

3 2 4
2

Solution  By expanding proper fractions,

1

3 2 4 3 2 4

4

1

2

1 2

2

3

3 4

2

( )( ) ( )

( ) ( )

(

s s s

K s K

s s

K

s

K F s s

s

s

+ + +
=

+

+ +
+

+

= +

=

=−

++ +

=

=−
3 2

1

6

4

3

s

K

s
)

 (13.187)

Putting the right-hand side of the expanded equation over a common denominator to determine K1 and K2 

results in

 

1

3 2 4 3 2

1

6

4

4 4
1

6

2

1 2

2

1
2

1 2 2

( ) ( ) ( )s s s

K s K

s s s

K s s K K s K

+ + +
=

+

+ +
+

+

=
+ + + +







 +







 +

+ + +

=
+








s s

s s s

K

2

2

1

1

2
1 3

3 2 4

1

6

/

( ) ( )

 + + +






 + +

+ + +

s K K s K

s s s

2
1 2 2

2

4 4
1

2
4 1 3

3 2 4

( / )

( ) ( )
 (13.188)
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Equating numerators, we get

K

K K

K

1

1 2

2

1

6
0

4
1

2
0

4
1

3
1

+ =

+ + =

+ =

From the above equations, we get

K K
1 2

1

6

1

6
=

−
=,

The required partial fraction expansion is

F s

s

s s s
( ) =

−





 +









+ +
+









+

1

6

1

6

3 2

1

6

42
 (13.189)

PROBLEM 13.15

Determine the inverse Laplace transform of the following function.

F s
s s

s s s
( )

( )
=

+ +

+ +

96 17 60

14 48

2

3 2

Solution  The function F(s) can be factorised as given.

F s
s s

s s s

F s
K

s

K

s

K

s

( )
( )( )

( )( )

( )

=
+ +
+ +

= +
+

+
+

96 5 12

8 6

8 6

1 2 3

 (13.190)

To find K1, we multiply both sides by s and then put s 5 0

K F s s
s s

s s
s s1 0 0

96 5 12

8 6
120= =

+ +
+ +

== =( )
( ) ( )

( ) ( )

To find the value of K2, we multiply both sides by s 1 8 and then evaluate both sides at s 5 2 8

K F s s
s s

s s
s s2 8 8

8
96 5 12

6
72= + =

+ +
+

=−=− =−( ) ( )
( ) ( )

( )

Then K3 is

96 5 12

8
48

6 3

( ) ( )

( )

s s

s s
Ks

+ +
+

= ==−

Therefore,

96 5 12

8 6

120 48

6

72

8

( ) ( )

( ) ( )

s s

s s s s s s

+ +
+ +

= +
+

−
+

 (13.191)
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By taking inverse transform of the above function, we get

 

L L
− −+ +

+ +










= +

+
−1 196 5 12

8 6

120 48

6

72( )( )

( ) ( )

s s

s s s s s ss+









8

5 120 1 48e–6t – 72e–8t (13.192)

PROBLEM 13.16

Determine the inverse Laplace transform of the following function.

F s
s

s s s
( )

( )

( )( )
=

+

+ + +

100 3

6 6 252

Solution  By factoring denominator, we have

100 3

6 6 25 6 3 4 3 42

1 2 3( )

( ) ( )

s

s s s

K

s

K

s j

K

s j

+

+ + +
=

+
+

+ −
+

+ +
 (13.193)

To find K1, K2, and K3, we use the same process as before:

K
s

s s

K
s

s s

s1 2 6

2 2

100 3

6 25

100 3

25
12

100 3

6 3

=
+

+ +
=

−
=−

=
+

+ +

=−
( ) ( )

( )

( ) ( ++
=

+

=
+

+ + −

=− +

=−

j

j

j j

K
s

s s j

s j

s

4

100 4

3 4 8

100 3

6 3 4

3 4

3 2

)

( )

( ) ( )

( )

( ) ( )
33 4

100 4

3 4 8
− =

−
− −j

j

j j

( )

( )( )

Then

100 3

6 6 25

12

6

10 53 13

3 4

10 53 13
2

( )

( ) ( )

. .s

s s s s s j s

+

+ + +
=

−
+

+
∠−
+ −

+
∠° °

++ +3 4j
 (13.194)

By taking inverse Laplace transform, we get

L
− − −+

+ + +












=− +1

2

6 53 1100 3

6 6 25
12 10

( )

( ) ( )

.s

s s s
e et j 33 3 4° ⋅ − −e j t( )

  1 10e j53.13º ? e–(3 1j4)t

By simplifying, we get

L
− − −+

+ + +












= − +1

2

6 3100 3

6 6 25
12 20

( )

( ) ( )
cos

s

s s s
e et t (( .4 53 13t−{ }°)  (13.195)
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PROBLEM 13.17

Obtain inverse Laplace transform of the following function.

F s
s

s s
( )

( )

( )
=

+

+

100 25

5 3

Solution  By factorising the denominator, we have

 100 25

5 5 5 53

1 2

3

3

2

4( )

( ) ( ) ( )

s

s s

K

s

K

s

K

s

K

s

+

+
= +

+
+

+
+

+
 (13.196)

We find K1, as

 

K
s

s
s1 3 0

100 25

5

20=
+

+
==

( )

( )

To find K2, we multiply both sides by (s 1 5)3 and then evaluate both sides at –5.

 

100 25 5
5 5

5

1

3

5 2 3 5 4

2

5

( ) ( )
( ) ( )

s

s

K s

s
K K s K ss s s s

+
=

+
+ + + + +=− =− =− =−

∴ K2 5 –400

To find K3, we first multiply both sides by (s 1 5)3. Next we differentiate both sides once with respect to 

s and then evaluate at s 5 – 5.

d

ds

s

s

d

ds

K s

s

d

ds
K

s s

100 25 5

5

1
3

5

( ) ( )
[

+











=
+















+
=− =−

22 5

3 5 4
2

5

2

5 5

100
25

]

[ ( )] [ ( ) ]

( )

s

s s

d

ds
K s

d

ds
K s

s s

s

=−

=− =−+ + + +

− +











= =−
=−s

K
5

3 100

To find K4, we first multiply both sides by (s 1 5)3. Next we differentiate both sides twice with respect to s 

and then evaluate both sides at s 5 –5. After simplifying the first derivative, the second derivative becomes

100
25 5 2 5

2

5

1

2

2

5

d

ds s
K

d

ds

s s

ss s

−











=
+ −













+
=− =−

( ) ( )
00

2 5

3 5

4 5

+

+ +

=−

=−

d

ds
K

d

ds
K s

s

s

[ ]

[ ( )]

or

 – 40 5 2K4

 K4 5 – 20

Then

100 25

5

20 400

5

100

5

20

53 3 2

( )

( ) ( ) ( )

s

s s s s s s

+

+
= −

+
−

+
−

+
 (13.197)



Circuits and Networks610 

By taking inverse transform, we get

L
− − −+

+












= − − −1

3

2 5 5100 25

5
20 200 100 20

( )

( )

s

s s
t e tet t ee t−5  (13.198)

PROBLEM 13.18

Verify the initial- and final-value theorems for the function.

f (t) 5 e–t (sin 3t 1 cos 5t)

Solution  f (t) 5 e –t (sin 3t 1 cos 5t) (13.199)

F(s) 5 L [ f (t)] 5 L [e–t (sin 3t 1 cos 5t)] (13.200)

Since L( sin )
( )

e t
s

t− =
+ +

3
3

1 32 2

and L

L

( cos )
( )

( ) [ ( )]
( ) (

e t
s

s

F s f t
s

s

s

t− =
+

+ +

∴ = =
+ +

+
+

+

5
1

1 5

3

1 3

1

2 2

2 2 11 52 2) +
 (13.201)

According to initial-value theorem,

Lt f t Lt SF s

F s
s s

s

s s

SF s
s

s

t s→ →∞
=

=
+ +

+
+

+

=
+

0

2 2

2

3

2 10

1

2 26

3

1
2

( ) ( )

( )

( )

ss s

s s

s
s s

s
s s

+








+
+

+ +








=
+ +





10
1

2 26

3

1
2 10

2

2

2

2

2




+
+ +

+
+ +









=
→∞

1

1
2

8

26

1

1
2 26

1

2 2s
s

s s

SF s
s
lim ( )

 (13.202)

f (t) 5 e –t (sin 3t 1 cos 5t)

lim ( )
t

f t
→

=
0

1

Hence, the initial-value theorem is proved.

According to the final-value theorem,

lim ( ) lim ( )

lim ( )

lim ( )

t s

s

t

f t SF s

SF s

f t

→∞ →

→

→∞

=

=

=

0

0
0

0

Hence, the final-value theorem is proved.
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PROBLEM 13.19

Find the value of i(01) using the initial-value theorem for the function given

I s
s

s s
( )

( )( )
=

+
+ +
2 3

1 3

Verify the result by solving it for i(t).

Solution  The initial-value theorem is given by

lim ( ) lim ( )

lim
( )

( ) ( )

t s

s

i t SI s

s s

s s

→ →∞

→∞

=

=
+

+ +

0

2 3

1 3
 (13.203)

Taking S common and putting S 5 `, we get

lim
s

s
s

s
s s

→∞

+








+






 +








=

2

2

2
3

1
1

1
3

2  (13.204)

To verify the result, we solve for i(t) and put t → `.

Taking partial fractions,

I s
A

s

B

s

A s
s

s s

B s
s

s

( )

( )
( ) ( )

( )

=
+

+
+

= +
+

+ +
=

= +
+

=−

1 3

1
2 3

1 3

1

2

3
2

1

where  

33

1 3

3

2

1

2 1

3

2 3

3
( ) ( )

( )
( ) ( )

s s

I s
s s

s
+ +

=

∴ =
+

+
+

=−

 (13.205)

Taking inverse transform, we get

i t e et t( ) = +− −1

2

3

2

3  (13.206)

Answers to Practice Problems

13-2.1 f (t) 5 sin 
t

2
 [u(t) – u(t – 4)]

13-2.3 (a) I 5 26 (b) I 5 0 (c) I 5 0

13-2.5 
−

−

−

− −

e

e e

s

s s( . )[log( . )]0 5 0 5
2
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13-2.8 (a) 
2

3( )s a+
 (b) 

S

s a

b

b( )+ −2 2  (c) 
S

s

2 2

2 2 2

−

+

v

v( )

13-2.11 y t
d

dt
t t e u t e u tt t( ) ( ) ( ) ( ) ( )= + − +− −d d2 2 43 2

13-2.12 f (t) 5 e25t 10
25

3
12−









sin t

13-2.14 (a) f (t) 5 220e22t (t cos t 2 sint)

 (b) f (t) 5 5 d(t) 2 3e22t 1 2e24t

 (c) f (t) 5 2 
d

dt
 d(t) 2 2d(t) 1 4e24t

13-3.1 X s
s

e e e eST ST ST ST( ) [ ]= − + − +− − − −1
1 3 4 4 2

2 4 5

13-4.3 f (t) 5 t e22t u(t)

13-5.2 (a) f (0) 5 7, f (`) 5 0

 (b) f (0) 5 4, f (`) 5 1

 (c) f (0) 5 0, f (`) 5 0

13-5.3 Lt SY s
s→∞

=( ) 1

Objective-Type Questions

rrr13.1 Laplace transform analysis gives

 (a) time-domain response only (b) frequency-domain response only

 (c) both (a) and (b)   (d) none

rrr13.2 The Laplace transform of a unit step function is

 (a) 
1

s
 (b) 1 (c) 

1

2s
 (d) 

s a+

rrr13.3 The Laplace transform of the first derivative of a function f (t) is

 (a) F(s)/s (b) SF(s) – f (0) (c) F(s) – f (0) (d) f (0)

rrr13.4 The Laplace transform of the integral of function f (t) is

 (a) 
s

F s( )   (b) SF(s) – f (0) (c) F (s) – f (0) (d) f 9(0)

rrr13.5 The Laplace transform of e5t f (t) is

 (a) F(s) (b) F(s – 1) (c) F
s







 (d) F(s – 5)

rrr13.6 The inverse Laplace transform of 
1

s
 (1 – e–as) is

 (a) u(t) – u(t – a) (b) u(t) (c) u(t – a) (d) zero
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rrr13.7 The inverse transform of 
6
4S

 is

 (a) 3 (b) t2 (c) t3 (d) 3t

rrr13.8 The inverse transform of 2 log
s

s

+





  is

 (a) 
2 2− −e

t

t

 (b) 
e

t

t−2

 (c) 
2

t
 (d) 

2 2+ −e

t

t

rrr13.9 The Laplace transform of a square wave with amplitude of peak value A and period T is

 (a) 
1

1

+

−

−

−

e

e

sT

sT
 (b) 

A

s

e

e

sT

sT

1

1

−

+











−

−
 (c) 

A

s

e

e

sT

sT

1

1

+

−











 (d) 
A

s

e

e

sT

sT

1

1

−

+











rrr13.10 The inverse Laplace transform of the function 
s

s s

+
+ +

5

1 3( ) ( )
 is

 (a) 2et – e–3t (b) 2e–t 1 e–3t (c) e–t – 2e–3t (d) e–t 1 2e–3t

rrr13.11 The Laplace transform of a unit ramp function at t 5 a is

 (a) 
1

2( )s a+
 (b) 

e

s a

as−

+( )2
 (c) 

e

s

as−

2
 (d) 

a

s2

rrr13.12 The initial value of 
2 1

8 164 3 2

s

s s s s

+

+ + +
 is

 (a) 2 (b) infinite (c) zero (d) 1

rrr13.13 The initial value of 20 – 10t – e25t is

 (a) 20 (b) 19 (c) 10 (d) 25

rrr13.14 L [ ( )]
( )

,f t
s

s s
=

+

+ +

2 1

2 52
 then f (0 1) and f (`) are given by

 (a) 0, 2 respectively   (b) 2, 0 respectively 

 (c) 0, 1 respectively   (d) 
2

5
0, respectively

rrr13.15 The final-value theorem is used to find the

 (a) steady-state value of the system output (b) initial value of the system output

 (c) transient behaviour of the system output (d) none of these

For�interactive�quiz�with�answers,
scan�the�QR�code�given�here
OR
visit
http://qrcode.flipick.com/index.php/271



The Laplace transform is an attractive tool in circuit analysis. It transforms a set of linear constant-

coefficient    differential    equations into a set of linear polynomial equations. It automatically introduces into 

the polynomial equations the initial values of the current and voltage variables. In the circuit analysis, we can 

develop the s-domain circuit models for various elements and s-domain equations can be written directly.

14.1 CIRCUIT ELEMENTS IN THE S-DOMAIN

For any element, we write the time-domain equation that relates the terminal 

voltage to the terminal current. Then, we take the Laplace transform of the time-

domain equation. This gives an algebraic relation between the s-domain current 

and voltage. The dimensions of a transformed voltage is volt- seconds, and the 

dimension of a transformed current is ampere-seconds. A voltage-to-current ratio in the s-domain carries 

the dimension of volts per ampere. An impedance in the s-domain is measured in ohms, and admittance is 

measured in Siemens.

14.1.1  A Resistor in the s-Domain

Consider the resistive element shown in Fig. 14.1 From Ohm’s law,

v 5 Ri (14.1)

The Laplace transform of Eq. (14.1) is

V 5 RI (14.2)

where V 5 L [v] and I 5 L [i]

14

LEARNING OBJECTIVES

LO  1  
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Equation (14.2) states that the s-domain 

equivalent circuit of a resistor is simply a resistance 

of R ohms that carries a current of I ampere seconds 

and has a terminal voltage of V volt-seconds.

Figures 14.1 (a) and (b) show the time- and 

frequency-domain circuits of the resistor respectively.

The resistance element does not change while going from the time domain to the frequency domain.

14.1.2  An Inductor in the s-Domain

Consider an inductor shown in Fig. 14.2 with an initial current of I0 amperes.

The time domain relation between voltage and current is

v L
di

dt
=  (14.3)

The Laplace transform of Eq. (14.3) gives

V 5 L [SI – i(0)] 5 SLI – LI0 (14.4)

The above equation satisfies two circuits. The 

first consists of an impedance of SL ohms in 

series with an independent voltage source of LI0 

volt-seconds as shown in Fig. 14.3 (a).

The second s-domain equivalent circuit that 

satisfies Eq. (14.4) consists of an impedance of 

SL ohms in parallel with an independent current 

source of I0/S ampere- seconds, as shown in  

Fig. 14.3 (b).

By solving Eq. (14.4) for the current I, we can 

construct the circuit shown in Fig. 14.3 (b).

I
V LI

SL

V

SL

I

S
=

+
= +0 0  (14.5)

If the initial energy stored in the inductor is zero, i.e., if I0 5 0, the 

s-domain equivalent circuit of the inductor reduces to an inductor with an 

impedance of SL ohms as shown in Fig. 14.4.

14.1.3  A Capacitor in the s-domain

Consider an initially charged capacitor shown in Fig. 14.5. The initial 

voltage on the capacitor is V0 volts.

The voltage–current relation in the time domain is

i c
dv

dt
=  (14.6)

By taking Laplace transforms both sides, we get

I 5 C [SV – v(0)]

I 5 SCV – CV0 (14.7)

Fig. 14.2

(a) (b)Fig. 14.3

Fig. 14.4

Fig. 14.5

Fig. 14.1
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The Equation 14.7 represents two circuits. First, the parallel equivalent 

circuit for capacitor initially charged to V0 volts is shown in Fig. 14.6.

Secondly, the series equivalent circuit can be derived for the charged 

capacitor by solving Eq. (14.7) for V.

 V
SC

I
V

S
=






 +

1 0  (14.8)

Figure 14.7(a) shows the circuit that satisfies Eq. (14.8).

The s-domain circuit for a capacitor when the initial voltage is zero is 

shown in Fig. 14.7 (b).

Fig. 14.7 (a) Fig. 14.7 (b)

Frequently Asked Questions linked to LO 1*

rrr

s

14.2 APPLICATIONS

In this section, we illustrate how to use the Laplace transform to determine 

the transient behaviour of several linear lumped-parameter circuits. In analysis 

of familiar circuits, the Laplace transform approach yields the same results 

like the time-domain analysis. In all the examples, the ease of manipulating 

algebraic equations instead of differential equations should be apparent.

14.2.1  Natural Response of an RC Circuit

In this section, we find the natural response of an RC circuit through Laplace transform techniques. Consider 

the capacitor discharge circuit shown in Fig. 14.8. Assume the capacitor is initially charged to V0 volts. The 

series equivalent s-domain circuit is shown in Fig. 14.9.

Fig. 14.8 Fig. 14.9

Fig. 14.6

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600

LO  2  
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From the circuit shown in Fig. 14.9(b), applying Kirchhoff’s voltage law around the loop, we have

V

S SC
I RI0 1

= +  (14.9)

Solving for the above equation yields

I
CV

RCS

V R

S
RC

=
+

=
+












0 0

1 1

/
 (14.10)

By taking the inverse transform of Eq. (14.10), we get

i
V

R
e

t

RC=
−

0  (14.11)

We can determine v by simply applying Ohm’s law from the circuit

v Ri V e

t

RC= =
−

0
 (14.12)

Now we can use the parallel equivalent circuit of Fig. 14.9 (a). 

Figure 14.10 shows the new s-domain equivalent circuit.

By taking node voltage equation, we get

V

R
SCV CV+ = 0

 (14.13)

Solving Eq. (14.13) for V gives

 V
V

S
RC

=
+

0

1
 (14.14)

By taking inverse transform, we get

 v = =
− −

V e V e

t

RC

t

0 0
t  (14.15)

where t is the time constant t 5 RC

14.2.2  Step Response of a Parallel Circuit

Consider the parallel RLC circuit shown in Fig. 14.11. We can find the expression for iL after the constant 

current source is switched across the parallel elements. 

The initial energy stored in the circuit is zero.

The s-domain equivalent circuit is shown in Fig. 14.12. 

Here, an independent source can be transformed easily 

from the time domain to the frequency domain. Opening 

the switch results in a step change in the current applied 

to the circuit.

By applying Kirchhoff’s current law, we get

SCR
V

R

V

SL

I

S
+ + = dc . (14.16)

Fig. 14.10

Fig. 14.11



Circuits and Networks618 

Solving Eq. (14.16) for V gives

V
I C

S
RC

S
LC

=
+






 +

dc /

2 1 1
 (14.17)

We know the current in inductor IL

I
V

SL
L =  (14.18)

Substituting Eq. (14.17) into Eq. (14.18) gives

I
I LC

S S
RC

S
LC

L =
+






 +













dc /

2 1 1
 (14.19)

By taking the inverse transform, we can obtain IL.

14.2.3  Transient Response of a Parallel RLC Circuit

The transient behaviour of a circuit arises from replacing the dc current source in the circuit shown in Fig. 

14.11 with a sinusoidal current source. The new current source is

ig 5 Im cos vt (14.20)

The s-domain expression for the source current is

I
SI

S
g

M=
+2 2v

 (14.21)

The voltage across the parallel elements is

V
I C S

S
RC

S
LC

g=
+






 +









( / )

2 1 1
 (14.22)

Substituting Eq. (14.21) into Eq. (14.22) results in

V
I C S

S S
RC

S
LC

m=
+ +







 +





















( / )

( )

2

2 2 2 1 1
v

 (14.23)

from which

I
V

SL

I LC S

S S
RC

S
LC

L
m= =

+ +






 +
















( / )

( )2 2 2 1 1
v





 (14.24)

14.2.4 Use of Thevenin’s Equivalent

In this section, we show how to use Thevenin’s equivalent in the s-domain. Consider a circuit shown in Fig. 

14.13. We find the capacitor current that results from closing the switch. The energy stored in the circuit prior 

to closing is zero.

Fig. 14.12
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To find ic, we first construct the s-domain equivalent circuit and the find the Thevenin equivalent of this 

circuit with respect to the terminals of the capacitor. Figure 14.14 shows the s-domain circuit.

The open-circuit voltage across terminals a, b is

V
S S

Th 4
=

480
(0.0025)

20 + 0.002
=

480

+10

S









 (14.25)

The Thevenin impedance seen from terminals a and b equals the 60 V resistor in series with the parallel 

combination of the 20 V resistor and the 2 mH inductor. 

Thus, Z
S

S

S

S
Th = +

+
=

+

+
60

0 002 20

20 0 002

80 7500

10
4

. ( )

.

( )
 (14.26)

A simplified version of the Thevenin equivalent circuit is shown in Fig. 14.15.

Fig. 14.15

Thus, the capacitor current IC equals the Thevenin voltage divided by the total series impedance.

Thus,

I
S

S S S
C =

+

+ + + ×











480 10

80 7500 10 2 10

4

4 5

/ ( )

( ) / ( ) ( ) /
 (14.27)

We simplify Eq. (14.27) to

I
S

S S

S

S

C =
+ + ×

=
+

6

10 000 25 10

6

5000

2 6

2

,

( )
 (14.28)

Fig. 14.13 Fig. 14.14
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By taking partial fraction expansion, we get

I
S S

C =
−

+
+

+
3000

5000

6

50002( ) ( )
 (14.29)

By taking inverse transform, we get

ic 5 (– 30,000t e–5000t 1 6 e–5000t) A (14.30)

Now the voltage across capacitor is

V
I

SC S

S

S S
C

C= =
×

+
=

×

+

2 10 6

5000

12 10

5000

5

2

5

2( ) ( )
 (14.31)

By taking inverse transform, we get

vc 5 12 3 105 t e25000t (14.32)

14.2.5  Circuit with Mutual Inductance

In this section, we illustrate an example how to use the Laplace transform to analyze the transient response of 

a circuit that contains mutual inductance as shown in Fig. 14.16.

Fig. 14.16

To make-before break switch has been in position ‘a’ for a long time. At t 5 0, the switch moves 

instantaneously to the position b. The problem is to derive the time- domain expression for i2.

We begin by redrawing the circuit in Fig. 14.16, with the switch in the position b and the magnetically 

coupled coils replaced with a T equivalent circuit as shown in Fig. 14.17.

The s-domain equivalent circuit for the circuit of Fig. 14.17 is shown in Fig. 14.18.

The initial currents are

i
1
0

60

12
5( ) = = A  (14.33)

i2(0) 5 0  (14.34)

The initial value of the current in the 2 H inductor is

i1(0) 1 i2(0) 5 5 A (14.35)

The s-domain mesh equations in Fig. 14.18 are

 (3 1 2S ) I1 1 2SI2 5 0 (14.36)

2SI1 1 (12 1 8S )I2 5 10 (14.37)
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Fig. 14.17

Fig. 14.18

Solving for I2 yields

I
S S

2

2 5

1 3
=

+ +
.

( ) ( )
 (14.38)

By taking partial fraction expansion gives

I
S S

2

1 25

1

1 25

3
=

+
−

+
. .

 (14.39)

By taking inverse transform of Eq. (14.39) gives

i2 5 (1.25 e2t – 1.25 e23t) A (14.40)

14.2.6  Use of Superposition

Consider a circuit shown in Fig. 14.19 having two sources and the inductor is carrying and initial current iL (0) 

amperes and the capacitor is carrying an initial voltage of vc (0) volts. The desired response of the circuit is the 

voltage across the resistor R2, labeled v2.

The s-domain equivalent circuit for Fig. 14.19 is shown in Fig. 14.20. Here, we have taken parallel 

equivalents for L and C into consideration. Now we find V2 using node-voltage method.

To find V2 by superposition, we calculate the voltage V2 resulting from each source acting alone, and then 

we sum the voltages. We consider Vg acting alone by setting the other three current sources equal to zero. 

Figure 14.21 shows the resulting circuit.

Fig. 14.19
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Fig. 14.20

V19 and V29 are the voltages across the inductor and 

resistor when Vg acting alone.

The two equations described in the circuit in Fig. 

14.21 are

1 1

1

1
1 2

1

1
2

R SL
SC V SCV

V

R

SC V
R

SC

g+ +










′− ′ =

− ′+ +










′ =V2 0

 (14.41)

 (14.42)

The above equations can be written as

 Y V Y V
V

R

g

11 1 12 2
1

′+ ′ =  (14.43)

Y21 V19 1 Y22 V29 5 0 (14.44)

 
where Y

R SL
SC11

1

1 1
= + +

 Y12 5 – SC 5 Y21

 
Y

R
SC

22

2

1
= +

Solving Eqs (14.43) and (14.44) for V29 gives

         ′ =
−

−
V

Y R

Y Y Y
Vg2

12 1

11 22 12

2

/
 (14.45)

With the current source Ig acting alone, the circuit 

shown in Fig. 14.20 reduces to the one shown in 

Fig. 14.22.

The two node-voltage equations are given by

Y11 V10 1 Y12 V20 5 0 (14.46)

Fig. 14.21

Fig. 14.22
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Y21 V10 1 Y22 V20 5 Ig (14.47)

Solving for V20 yields

′′=
−

V
Y

Y Y Y
Ig2

11

11 22 12

2
 (14.48)

The circuit shown in Fig. 14.23 gives when the 

energised inductor acting alone on the circuit of Fig. 

14.20.

The two node-voltage equations are given by

Y V Y V
i

S

Y V Y V

L
11 1 12 2

21 1 22 2

0

0

′′′ + ′′′ =−

′′′ + ′′′ =

( )
 (14.49)

 (14.50)

Thus,

V
Y S

Y Y Y
iL2

12

11 22 12
2

0′′′ =
−

−
/

( )  (14.51)

The circuit shown in Fig. 14.24 gives when the energy stored in the capacitor acting alone.

The node-voltage equations describing this circuit are

Y11 V100 1 Y12 V200 5 vc(0)C (14.52)

Y21 V100 1 Y22 V200 5 – vc(0)C (14.53)

Solving for V200 yields

V 00=
− +

−

( )
( )

Y Y C

Y Y Y
vc

11 12

11 22 12

2
0  (14.54)

The expression for V2 is

V2 5 V291V20 1 V21V200
               

=
−

−
+

−

+
−

( )Y R

Y Y Y
V

Y

Y Y Y
I

Y S

Y Y Y
i

g g
12 1

11 22 12
2

11

11 22 12
2

12

11 22 12
2

/

/
LL c

C Y Y

Y Y Y
v( )

( )
( )0 011 12

11 22 12
2

+
− +

−
 (14.55)

By taking inverse transform, we can obtain time domain voltage across the resistor R2.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 2*
rrr14-2.1 A 500 V resistor, a 16 mH inductor, and a 25 nF capacitor are connected in parallel which is 

placed in series with a 2000 V resistor. Express the impedance of this series combination as a 

rational function of s.
rrr14-2.2 A 1 kV resistor is in series with a 500 mH inductor. This series combination is in parallel with 

a 0.4 mF capacitor. Express the equivalent s-domain impedance of these parallel branches as a 

Fig. 14.23

Fig. 14.24

*Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category
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rational function.
rrr14-2.3 The energy stored in the circuit shown is zero at the time when the switch is closed.

  (a) Find the s-domain expression for I.

  (b) Find the s-domain expression for i when t > 0.

  (c) Find the s-domain expression for V.

  (d) Find the time-domain expression for v when t > 0.

Fig. Q.3

rrr14-2.4 The dc current and voltage sources are applied simultaneously to the circuit shown. No energy 

is stored in the circuit at the instant of application.

  (a) Derive the s-domain expressions for V1 and V2.

  (b) For t > 0, derive the time-domain expressions for v1 and v2.

  (c) Calculate v1(01) and v2(01).

  (d) Compute the steady state value of v1 and v2.

Fig. Q.4

rrr14-2.5 The energy stored in the circuit shown is zero at the instant the two sources are turned on.

  (a) Find the component of v for t > 0 owing to the voltage source.

  (b) Find the component of v for t > 0 owing to the current source.

  (c) Find the expression for v when t > 0.

Fig. Q.5

rrr14-2.6 In the circuit shown in Fig. Q.6, there is no energy stored at the time the current source turns on. 

Given that ig 5 100 u(t) A;
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  (a) Find I0(s).

  (b)  Use the initial- and final value theorems to find i0(01) and i0(`).

  (c)  Determine if the results obtained in (b) agree with known circuit behaviour.

  (d) Find i0(t).

rrr14-2.7 There is no energy stored in the circuit seen in Fig. Q.7 at the time the two sources are  

energised.

  (a)  Use the principle of superposition to find V0. (b) Find v0 for t > 0.

Fig. Q.6 Fig. Q.7

rrr14-2.8 Find (a) the unit step, and (b) the unit impulse response of the circuit shown in Fig. Q.8.
rrr14-2.9 There is no energy stored in the circuit shown in Fig. Q.9 at the time the impulse voltage is 

applied. Find v0(t) for t $ 0.

Fig. Q.9Fig. Q.8

rrr14-2.10 The switch in the circuit shown in Fig. Q.10 has been in position a for a long time. At t 5 0, the 

switch moves to the position b. Compute (a) v1(0) (b) v1(0 –) (c) v3(0 –) (d) i(t) (e) v1 (01) (f) v2 

(01) (g) v3 (01).
rrr14-2.11 Find v0 (t) in the circuit shown in Fig. Q.11, is 5 5 u(t) A, Using PSpice.

Fig. Q.10 Fig. Q.11

rrr14-2.12 For the RLC circuit shown in Fig. Q.12, find the complete response if v (0) 5 2 V when the 

switch is closed. Use PSpice.
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Fig. Q.12

Frequently Asked Questions linked to LO 2
rr a b t i t V t

1 W1 W
a b

10 V

t = 0

6F i t( ) 3 F V t( )
c

Fig. Q.1

rr a

t b

1

2
F 

Fig. Q.2

1 W 2 W

1 W

2 H

10 V

b

a

1

2
F

e
–1

u t( )

rr
2

1

( )

( )

V s

V s
. 

1 W 1 W

1 W
V

1

V
2

2V
1

I
o

2I
o

Fig. Q.3

14.3 TRANSFER FUNCTION

The transfer function is defined as the s-domain ratio of the Laplace transform of 

the output (response) to the Laplace transform of the input (source). In computing 

the transfer function, we restrict our attention to circuits where all initial conditions 

are zero. If a circuit has a multiple independent sources, we can find the transfer 

LO   3 
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function for each source and use superposition to find the response to all sources.

The transfer function is

H S
Y S

X S
( )

( )

( )
=  (14.56)

where Y(S ) is the Laplace transform of the output signal, and 

X(S ) is the Laplace transform of the input signal. Note that the 

transfer function depends on what is defined as the output signal. 

Consider a series circuit shown in Fig. 14.25.

If the current is defined as the response signal of the circuit 

then the transfer function

H S
I

V
R SL

SC

SC

S LC RCSg

( ) = =
+ +

=
+ +

1

1 1
2

 (14.57)

In the above equation, we recognised that I corresponds to the output Y(S ) and Vg corresponds to the input 

X(S ). If the voltage across the capacitor is defined as the output signal of the circuit in Fig. 14.25, the transfer 

function is

H S
V

V

SC

R SL
SC

S LC RCSg

( ) = =
+ +

=
+ +

1

1

1

1
2

/
 (14.58)

Thus, because circuits may have multiple sources and because the definition of the output signal of interest 

can vary, a single circuit can generate many transfer functions. When multiple sources are involved, no single 

transfer function represent the total output-transfer functions associated with each source must be combined 

using superposition to yield the total response. We can write the circuit output as the product of the transfer 

function and the driving function

Y(S ) 5 H(S ) X(S ) (14.59)

H(S ) is a rational function of S and X(S ) is also a rational function of S for the excitation functions of most 

interest in circuit analysis. We can expand the right-hand side of Eq. (14.58) into a sum of partial fractions.

14.4 USE OF TRANSFER FUNCTION IN CIRCUIT ANALYSIS

Consider the response of the circuit to a delayed input. If the input is delayed by a seconds

L [x(t – a) u(t – a)] 5 e2as2X(S ) (14.60)

The response becomes

 Y(S ) 5 H(S ) X(S )e2as (14.61)

 If y(t) 5 L21 [H(S ) X(S )], then from Eq. 14.61,

y(t – a) u(t – a) 5 L21 [H(S ) X(S ) e2as] (14.62)

Therefore, delaying the input by a seconds simply delays the response function by a seconds. A circuit that 

exhibits this characteristic is said to be time invariant.

If a unit impulse source drives the circuit, the response of the circuit equals the inverse transform of the 

Fig. 14.25

LO 3
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transfer function. Thus, if

x(t) 5 d(t), then X(S ) 5 1

and Y(S ) 5  H(S ) (14.63)

Hence, y(t) 5 h(t) (14.64)

where the inverse transform of the transfer function equals the unit impulse response of the circuit. The unit 

impulse response of the circuit h(t) contains enough information to compute the response to any source that 

drives the circuit.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 3
r14-3.1 Derive the numerical expression for the transfer 

function v0/Ig for the circuit shown in Fig. Q.1.
r14-3.2 The unit impulse response of a circuit is

  v0(t) 5 10,000 e–70t cos (240 t 1 u) u(t) V

  
where tanu=

7

24

  (a) Find the transfer function of the circuit.

  (b) Find the unit step response of the circuit.

Frequently Asked Questions linked to LO 3
rr

V s

V s R C

S

S R C
R C R C C

R R C C R R C C

2

1 1 2 2
1 2

1 2 2 1 2

1 2 1 2 1 2 1 2

( )

( ) ( )
=

+ +

+ +

+

1

1

r

V s

V s

b s b s b s b

a s a s a s a

2

1

3
3

2

3 2 1 0

( )

( )
=

+ + +

+ + +

2
1 0

3 2

a b R  R  R  C  C  C

 a R  R  C  C  C  R  R C  C R  R  C  C

 b R  R  R  C  C

 a R  C  C  R C  C  C  R  

 b R C  C

 a b

14.5 THE TRANSFER FUNCTION AND THE CONVOLUTION INTEGRAL

The convolution integral relates the output y(t) of a linear time invariant circuit 

to the input x(t) of the circuit and the circuits impulse response h(t). The 

convolution integral is defined as

y t h x t d h t x d( ) ( ) ( ) ( ) ( )= − = −
−∞

∞

−∞

∞

∫∫ t t t t t t (14.65)

Fig. Q.1

R
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R
2

V
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V
1

Fig. Q.1

Fig. Q.2
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R
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C
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V
2

C
2
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The above equation is based on the assumption that the circuit is 

linear and time invariant. Because the circuit is linear, the principle of 

superposition is valid, and because it is time invariant, the amount of the 

response delay is exactly the same as that of the input delay. Consider 

block diagram of a general circuit shown in Fig. 14.26 in which h(t) 

represents any linear time-invariant circuit whose impulse response is known, x(t) represents the excitation 

signal and y(t) represents the desired output signal.

We assume that x(t) is the general excitation signal shown in Fig. 14.27 (a). Also assume that x(t) 5 0 for 

t , 0.

Now we see approximate x(t) by a series of rectangular pulses of uniform width Dt as shown in Fig. 

14.27 (b). Thus,

x(t) 5 x0(t) 1 x1(t) 1 ... 1 xi(t) 1 ... (14.66)

Fig. 14.26

Fig. 14.27 
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where xi(t) is a rectangular pulse that equals x(ti) between ti and ti 1 1 and is zero elsewhere. Note that the ith 

pulse can be expressed in terms of step functions; that is

xi(t) 5 x(ti) [u(t – ti) – u(t – (ti 1 Dt))] (14.67)

The next step in the approximation of x(t) is to 

make Dt small enough that the ith component can be 

approximated by an impulse function of strength x(ti) Dt. 

Figure 14.27 (c) shows the impulse representation, with 

the strength of each impulse shown in brackets beside 

each arrow. The impulse representation of x(t) is

x(t) 5 x (t0) Dt d (t – t0) 1 x (t1) Dt d (t – t1) 1 ....

 1 x (ti) Dt d (t – ti) 1 .... (14.68)

Now when x(t) is represented by a series of impulse 

functions, the response function y (t) consists of the sum 

of a series of uniformly delayed impulse responses. The 

strength of each response depends on the strength of the 

impulse driving the circuit. For example, let’s assume that 

the unit impulse response of the circuit contained within 

the box in Fig. 14.26 is the exponential decay function 

shown in Fig. 14.28 (a). Then the approximation of y (t) is 

the sum of the impulse responses shown in Fig. 14.28 (b).

Analytically, the expression for y(t) is

y(t)  5 x(t0) Dt h(t – t0) 1 x(t1) Dt h(t – t1)

  1 x(t2) Dt h(t – t2) 1 ...

 1 x(ti) Dt h(t – ti) 1 ... (14.69) 

As Dt → 0, the summation in Eq. (14.69) approaches a continuous integration, or

x h t x h t di i

i

( ) ( ) ( ) ( )t t t t t t− ∆ → −
∞

=

∞

∫∑
00

 (14.70)

Therefore,

y t x h t d( ) ( ) ( )= −
∞

∫ t t t

0

 (14.71)

If x(t) exists over all time, then the lower limit on Eq. (14.71) becomes – ̀ , thus, in general

y t x h t d( ) ( ) ( )= −
−∞

∞

∫ t t t 

 (14.72)

The integral relation between y(t), h(t) and x(t) is written in a shorthand notation

y(t) 5  h(t) * x(t) 5 x(t) * h(t) (14.73)

Fig. 14.28
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Thus, h(t) * x(t) is read as “h(t) is 

convolved with x(t)” and implies that

x t h t x h t d( ) * ( ) ( ) ( )= −
−∞

∞

∫ t t t (14.74)

The above integral gives the most 

general relation for the convolution of two 

functions. However, in our applications, 

we can change the lower limit to zero 

and the upper limit to t. Then the above 

equation can be written as

y t x h t d

h x t d

t

t

( ) ( ) ( )

( ) ( )

= −

= −

∫

∫

t t t

t t t

0

0

 (14.75)

For physically realizable circuits, h(t) 

is zero for t , 0. In other words, there can 

be no impulse response before an impulse 

is applied. We start measuring time at the 

instant the excitation x(t) is turned on, 

therefore x(t) 5 0 for t , 0.

A graphical interpretation of the 

convolution integrals contained in  

Eq. (14.75) is important in the use 

of integral as a computational tool.  

Consider the impulse response of our 

circuit is the exponential decay function 

shown in Fig. 14.29 (a) and the excitation 

function has the waveform shown in Fig. 

14.29 (b).

Replacing t with –t simply 

folds the excitation function over 

the vertical axis and replacing 

– l with t –l slides the folded function to the right. This folding and sliding 

operation gives rise to the term convolution. At any specified value of t, the response  

function y(t) is the area under the product function l(t) x(t – t) as shown in Fig. 14.29 (c). For t , 0, the 

product l(t) x(t – t) is zero because h(t) is zero. For t . t, the product h(t) x(t – t) is zero because x(t – t) 

is zero.

Fig. 14.29
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14.6 THE TRANSFER FUNCTION AND THE STEADY-STATE SINUSOIDAL RESPONSE

We use the transfer function to relate the steady-state response to the excitation source. First we assume that

x(t) 5 A cos (vt 1 f) (14.76)

and we use the equation

Y(S ) 5 H(S ) X(S ) (14.77)

to find the steady-state solution of y(t).

To find the Laplace transform of x(t), we first write x(t) as

x(t) 5 A cos vt cos f – A sin vt sin f (14.78)

from which

X S
A S

S

A

S

A S

S

( )
cos sin

( cos sin )

=
+

−
+

=
−

+

f

v

f v

v

f v f

v

2 2 2 2

2 2
 (14.79)

Substituting Eq. (14.79) into Eq. (14.77) gives the s-domain expression for the response

Y S H s
A S

S
( ) ( )

( cos sin )
=

−

+

f v f

v2 2
 (14.80)

By taking partial fractions

Y S
k

S j

k

S j
( )

*

=
−

+
+

1 1

v v

 1 S terms generated by the poles of H(S ) (14.81)

In Eq. (14.81), the first two terms result from the complex conjugate poles of the deriving source. However, 

the terms generated by the poles of H(s) do not contribute to the steady-state response of y(t), because all 

these poles lie in the left half of the s-plane, consequently, the corresponding time-domain terms approach 

zero as t increases.

Thus, the first two terms on the right-hand side of Eq. (14.81) determine the steady- state response. Now 

K1 can be determined.

k
H S A S

S j

H j A j

j

H j

S j

1

2

=
−

+

=
−

=

=

( ) ( cos sin )

( ) ( cos sin )

(

f v f

v

v v f v f

v

v

v

))
(cos sin )

( )
A j

H j Ae jf f
v f+

=
2

1

2
 (14.82)

In general, H( jv) is a complex quantity, thus

H( jv) 5 |H( jv)| e ju(v) (14.83)

where |H( jv)| is the magnitude, and phase angle is u(v) of the transfer function vary with the frequency v, 

LO 4
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the expression for K1 becomes

K
A

H j e j
1

[ ( )+ ]| ( )| =
2

v u v f
 (14.84)

We obtain the steady-state solution for y(t) by taking inverse transform of Eq. (14.81) ignoring the terms 

generated by the poles of H(S ). Thus,

yss(t)  5 A|H( jv)| cos [vt 1 f 1 u(v)] (14.85)

which indicates how to use the transfer function to find the steady-state sinusoidal response of a circuit.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 4
rrr14-4.1 A rectangular voltage pulse vi 5 [u(t) – u(t – 1)] V is 

applied to the circuit shown in Fig. Q.1. Use convolution 

to find v0.

rrr14-4.2 Interchange the inductor and resistor in Problem 14.4.1 

and again use the convolution integral to find v0.

rrr14-4.3 The current source in the circuit shown is delivering 

10 cos 4t  A. Use the transfer function to compute the 

steady-state expression for v0.

Fig. Q.3

14.7 THE IMPULSE FUNCTION IN CIRCUIT ANALYSIS

Impulse functions occur in circuit analysis either because of a switching operation 

or because a circuit is excited by an impulse source. The Laplace transform can be 

used to predict the impulsive currents and voltages created during switching and 

the response of a circuit to an impulsive source.

14.7.1  Switching Operation

We use two different circuits to illustrate how an impulse function can be created with a switching operation: 

a capacitor circuit and a series inductor circuit.

� Capacitor�Circuit� In the circuit shown in Fig. 14.30, the ca-

pacitor C1 is charged to an initial voltage of V0 at the time the switch 

is closed.

In the circuit, the initial charge on C2 is zero. Figure 14.31 shows 

the s-domain equivalent circuit.

Fig. 14.30

Fig. Q.1

LO   5 
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From Fig. 14.31,

I
V S

R
SC SC

V R

S
RCe

=

+









+










=

+





0

1 2

0

1 1

1

/

/






 (14.86)

where the equivalent capacitance 
C C

C C

1 2

1 2
+  is replaced by Ce.

By taking inverse transform of Eq. (14.86), we obtain

i
V

R
e

t RCe= −0 /
 (14.87)

which indicates that as R decreases, the initial current 
V

R

0









 increases and the time constant (RCe) decreases. 

Thus, R gets smaller, the current starts from a larger initial value 

and then dropped off more rapidly. Figure 14.32 shows these 

characteristics of i.

The characteristics show, i is approaching an impulse function as 

R approaching to zero because the initial value of i is approaching 

infinity and time duration of i is approaching zero. We still have to 

determine whether the area under the current function is independent 

of R. Physically, the total area under the i versus t curve represents 

the total charge transferred to C2 after the switch is closed. Thus,

Area = q
V

R
e dt V C

t RC
e

e= =
−

∞
−∫ 0

0

0
/

 (14.88)

which says that the total charge transferred to C2 is independent of time and equals V0Ce coulombs. Thus, as 

R approaches zero, the current approaches an impulse strength V0Ce.

i → V0Ce d(t) (14.89)

when R 5 0, a finite amount of charge is transferred to C2 instantaneously. When the switch is closed, the 

voltage across C2 does not jump to V0 but its final value of

v
C V

C C
2

1 0

1 2

=
+

 (14.90)

If we set R equal to zero, the Laplace transform analysis will predict the impulsive current response.

Thus,

I
V S

SC SC

C C V

C C
C Ve=










+










=
+

=0

1 2

1 2 0

1 2

0

1 1

/
 (14.91)

The inverse transform of the above equation is

i 5 Ce V0 d(t) (14.92)

Fig. 14.31

Fig. 14.32
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� Series�Inductor�Circuit� The circuit shown 

in Fig. 14.33 illustrates a second switching op-

eration that produces an impulsive response. The 

problem is to find the time-domain expression for 

v0– after the switch has been opened. Note that 

opening the switch forces an instantaneous change 

in the current of L2, which causes v0 to contain an 

impulsive component.

Figure 14.34 shows the s-domain equivalent 

with the switch open. The current in the 3 H 

inductor at t 5 0 is 10 A, and the current in 2 H 

inductor at t 5 0 is zero.

Applying Kirchhoff’s current law, we get

V

S

V S

S

0 0

2 15

100 30

3 10
0

+
+

− +
+

=
[( ) ]/

 (14.93)

Solving for V0 yields

V
S

S S

S

S
0

40 7 5

5

12 7 5

5
=

+
+

+
+
+

( . )

( )

( . )
 (14.94)

By taking partial fractions, we get

V
S S S

S S

0

60 20

5
12

30

5

12
60 10

5

= −
+

+ +
+

= + +
+  (14.95)

By taking inverse transform, we have

v0 5 12 d(t) 1 (60 1 10e–5t) u(t) volts (14.96)

Let us derive the expression for the current when t . 0. After the switch has been opened, the current in 

L1 is the same as the current in L2. The current equation is

I
S

S S S S

S S S

=







+

+
=

+
+

+

= −
+

+
+

100
30

5 25

20

5

6

5

4 4

5

6

5

( )

S S
= +

+
4 2

55
 (14.97)

By taking inverse transform gives

i 5 (4 1 2e–5t) u(t) A (14.98)

Before the switch is opened, the current in L1 is 10 A, and the current in L2 is 0 A. We know that at 

t 5 0, the current in L1 and in L2 is 6 A. Then, the current in L1 changes instantaneously from 10 A to 6 A, 

Fig. 14.33

Fig. 14.34
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while the current in L2 changes instantaneously from 

0 to 6 A. From this value of 6 A, the current decreases 

exponentially to a final value of 4 A. Figure 14.35 

shows these characteristics of i1 and i2.

Impulse�Sources

Impulse functions can occur in sources as well as 

responses. Such sources are called impulsive sources. 

An impulse source driving a circuit imparts a finite 

amount of energy into the system instantaneously. In 

the circuit shown in Fig. 

14.36 (a), an impulsive 

voltage source having a strength of V0 volt-seconds is applied to a series 

connection of a resistor and an inductor. When the voltage source is applied, the 

initial energy in the inductor is zero, therefore the initial current is zero. There is 

no voltage drop across R. So the impulse voltage source appears directly across 

L. An impulse voltage at the terminals of an inductor establishes an instantaneous 

current. The current is

i
L

V x dx

t

= ∫
1

0

0

d( )   (14.99)

The integral of d(t) over any interval that includes zero is one; thus, we have

i
V

L
( )0 0= A   (14.100)

For an infinitesimal moment, the impulsive voltage source has stored in the inductor.

W L
V

L

V

L
=









 =

1

2

1

2

0

2

0

2

J (14.101)

The current 
V

L

0  decays to zero in accordance with the natural response of the circuit, that is,

i
V

L
e u t

L

R

t=

=

−0 / ( )

.

t

twhere                   

 (14.102)

When a circuit is driven by only an impulsive source, the total response 

is completely defined by the natural response. The duration of the impulse 

source is so infinitesimal that it does not contribute to any forced response.

We may also obtain Eq. (14.102) by direct application of the Laplace 

transform method. Figure 14.36 (b) shows the s-domain equivalent of the 

circuit in Fig. 14.36 (a).

The current I in the circuit is

I
V

R SL

V L

S R L
=

+
=

+
0 0 /

/
 (14.103(a))

Taking inverse Laplace transform, we get

i
V

L
e

V

L
e u t

R

L
t

t= =
−






 −0 0 / ( )t  (14.103(b))

Thus, the Laplace transform method gives the correct solution for i $ 0.

Fig. 14.35

Fig. 14.36 (a)

Fig. 14.36 (b)
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Additional Solved Problems

PROBLEM 14.1

A 500 V resistor, a 16 mH inductor, and a 25 mF capacitor are connected in parallel. Express the admittance 

of this parallel combination of elements as a rational function of S.

Solution� The circuit represented in s-domain of the above problem is shown in Fig. 14.37.

The admittance of terminals ab is

   Y S
R SL

SC( ) = + +
1 1

 (14.104)

Substituting the numerical values in the above 

equation,

Y S
S

S( ) = +
× ×

+ × ×
−

−1

500

1

16 10

25 10
3

9 (14.105)

Simplifying the above equation, we have

Y S
S

S S( ) ( , )=
×

+ + ×
−

25 10
80 000 25 10

9

2 8  (14.106)

PROBLEM 14.2

The switch in the circuit shown has been in the position a for a long time. At t 5 0, the switch is thrown to 

the position b. Find the current I as rational function of s. Find the time-domain expression for the current i.

Solution � When the switch is at position for a long time, both the capacitors are charged to 100 V. 

When the switch is at the position b, the s-domain circuit is shown in Fig. 14.39.

Fig. 14.38 Fig. 14.39

By applying Kirchhoff’s voltage law, we have

V

S

V

S C S
I

C S
I I K1 2

1 2

1 1
5+ = + + ( )

 (14.107)

Fig. 14.37
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S
V V

I

S
1 2 6 6

1 1

0 2 10

1

0 8 10
5+ =

×
+

×
+

− −
( )

. .
××













=
×

+ ×












=
+

−

10

100
1

0 16 10
5 10

0 02

1250

3

6

3I

S

I

S

I
S

.

.
 (14.108)

By taking inverse transform, we get the time-domain expression for i

i 5 0.02 e21250t A. (14.109)

PROBLEM 14.3

Obtain the current s-domain expression for the current IL in the circuit shown in Fig. 14.40. Also obtain the 

time-domain expression for the inductor current. The switch is opened at t 5 0. Assume initial energy stored 

in the circuit is zero.

Fig. 14.40

Solution  The s-domain equivalent circuit for the circuit shown in Fig. 14.40 is shown in Fig. 14.41.

Fig. 14.41

By applying Kirchhoff’s current law, we get

SCV
V

R

V

SL

I

S
+ + = dc

 (14.110)

V
I C

S
RC

S
LC

=
+






 +

dc /

2 1 1
 (14.111)

We know           I
V

SL
L =  (14.112)
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Substituting Eq. (14.111) into Eq. (14.112), we get

I
I LC

S S
RC

S
LC

L =
+






 +





















dc /

2 1 1

 (14.113)

Substituting the numerical values yields

I
S S S

L =
×

+ + ×

384 10

64000 16 10

5

2 8( )
 (14.114)

By taking partial fractions, we get

I
S S j S j

I
K

S

K

S

L

L

=
×

+ − + +

= +
+

384 10

32000 24000 32000 24000

3200

5

1 2

( ) ( )

00 24000 32000 24000

2

−
+

+ −j

K

S j

*

 (14.115)

 (14.116)

The partial fraction coefficients are

K

K
j j

1

5

8

3

2

5

384 10

16 10
24 10

384 10

32000 24000 48000

=
×

×
= ×

=
×

− +

−

( ) ( )

  5 20 3 1023 ∠126.87° (14.117)

Substituting the numerical values of K1 and K2 into Eq. (14.116) and inverse transforming the resulting 

expression yields 

iL 5 [24 1 40 e232,000 t cos (24000 t 1 126.87°)] mA (14.118)

PROBLEM 14.4

Obtain the s-domain expression for the current IL in the circuit shown in Fig. 14.40 when the dc current 

source is replaced by a sinusoidal current source ig 5 Im cos vt. Where Im 5 24 mA and v 5 40,000 rad/s. 

Assume initial energy stored in the circuit is zero.

Solution � The s-domain expression for the source current is

I
SI

s
g

m=
+2 2v

 (14.119)

The voltage across the parallel elements is

V
I C s

s
RC

s
LC

g=
+






 +

( )/

2 1 1

 (14.120)
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Substituting Eq. (14.119) into Eq. (14.120) results in

V
I C s

s s
RC

s
LC

m=
+ +







 +



















( )

( )

/ 2

2 2 2 1 1
v 

 (14.121)

from which

I
V

SL

I LC s

s s
RC

s
LC

L
m= =

+ +






 +
















( )

( )

/

2 2 2 1 1
v





 (14.122)

Substituting the numerical values of Im, v, R, L, and C in Eq. (14.122) gives

I
s

s s s
L =

×

+ × + + ×

384 10

16 10 64000 16 10

5

2 8 2 8( ) ( )
 (14.123)

By factoring the denominator, we get

I
s

s j s j s j s j
L =

×

− + + − + +

384 10
5

2( ) ( ) ( ) ( )v v a b a b
 (14.124)

where v 5 40000, a 5 32000 and b 5 24000

By taking partial fractions, we get

I
K

s j

K

s j

K

s j

K

s j

L =
−

+
+

+
+ −

+
+ +

1 1

2 2

40000 40000

32000 24000 32000 240

*

*

000
 (14.125)

The coefficients K1 and K2 are

K
j

j j j
1

5384 10 40000

80000 32000 16000 32000 64000
=

×
+ +

( )

( ) ( ) ( )

  5 7.5 3 10–3 –90° (14.126)

K
j

j j j
2

5
384 10 32000 24000

32000 16000 32000 64000 4
=

× − +
− − − +

( )

( ) ( ) ( 88000)

  5 12.5 3 10–3 90° (14.127)

Substituting the numerical values from (14.126) and (14.127) into (14.125) and inverse- transforming the 

resulting expression yields

iL 5 [15 cos (40000 t – 90°) 1 25 e232000 t cos (24000 t 1 90°)] mA

 iL 5 [15 sin 40000 t – 25 e232000 t sin 24000 t] mA  (14.128)

PROBLEM 14.5

Obtain the expression for i1 and i2 in the circuit shown in Fig. 14.42 when dc voltage source is applied 

suddenly. Assume that the initial energy stored in the circuit is zero.
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Fig. 14.42

Solution � Figure 14.43 shows the s-domain equivalent circuit for the circuit shown in Fig. 14.42.

Fig. 14.43

The two mesh current equations are

 
336

42 8 4 42
1 2

s
s I I= + −( . )  (14.129)

 0 5 – 42 I1 1 (90 1 10 s) I2 (14.130)

Using Cramer’s method to solve for I1 and I2, we get

 
D =

+ −
− +

42 8 4 42

42 90 10

. s

s

  5 84 (s2 1 14 s 1 24)

  5 84 (s 1 2) (s 1 12) (14.131)

D

D

1

2

336 42

0 90 10

3360 9

42 8 4 336

42 0

14112

=
−
+

=
+

=
+
−

=

/

/

s

s

s

s

s s

s

( )

.

 (14.132)

 (14.133)

Based on Eqs (14.131) to (14.133),

I
s

s s s

I
s s s

1
1

2
2

40 9

2 12

168

2 12

= =
+

+ +

= =
+ +

D

D

D

D

( )

( ) ( )

( ) ( )

 (14.134)

 (14.135)

Expanding I1 and I2 into a sum of partial fractions gives

I
s s s

I
s s s

1

2

15 14

2

1

12

7 8 4

2

1 4

12

= −
+

−
+

= −
+

+
+

. .

 (14.136)

 (14.137)
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We obtain the expressions for i1 and i2 by inverse transforming Eq. (14.136) and (14.137) respectively

i1 5 (15 – 14 e22t – e212t) A (14.138)

i2 5 (7 – 8.4 e22t 1 1.4 e212t) A (14.139)

PROBLEM 14.6

Transform the circuit shown in Fig. 14.44 to the s-domain and 

determine the Laplace impedance.

Solution� The transformed circuit for the above circuit is shown in 

Fig. 14.45.

The parallel combination of inductor and capacitor is in series 

with the resistor.

 

z s
s

s

s
s

z
s

= +

















= +









+

=

3
4

3

4

5

4

3 2

�

++ +

+

4 12

42

s

s
 (14.140)

PROBLEM 14.7

Determine the current i if the circuit is driven by a voltage 

source as shown in Fig. 14.46. The initial value of the voltage 

across the capacitor and the initial current through the inductor 

are both zero.

Solution  The transformed circuit is as shown in Fig. 14.47.

Total Laplace impedance across the voltage source is

Z s
s

Z
s s

s

= + +

=
+ +

3
2

3 22

 (14.141)

Thus, the current is

I
V

Z

s

s s s
= =

+

+ +

40 4

3 22

/ ( )

( ) /
 (14.142)

I
s

s s s
=

+ + +

40

4 3 22( ) ( )
 (14.143)

By taking partial fractions,

I
K

s

K

s

K

s
=

+
+

+
+

+
1 2 3

1 2 4
 (14.144)

Fig. 14.45

Fig. 14.44

Fig. 14.46

Fig. 14.47
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The coefficients K1, K2, and K3 are

K I s

K I s

K I s

s

s

s

1 1

2 2

3 4

1
40

3

2 40

4
80

3

= + =
−

= + =

= × + =
−

=−

=−

=−

( )

( )

( )

Substituting the coefficients and taking inverse Laplace transform, we get

i e e et t t= − −− − −
40

40

3

80

3

2 4  (14.145)

PROBLEM 14.8

Determine the current i for t $ 0 if initial current i(0) 5 1 for the 

circuit shown in Fig. 14.48.

Solution�  The s-domain circuit with series initial current in the 

inductor is shown in Fig. 14.49.

Applying Kirchhoff’s voltage law results in

 
10

4 2 2 0
s

I sI− − + =  (14.146)

10 – 4sI – 2s2I 1 2s 5 0

I
s

s s
=

+
+

10 2

2 2( )

I
s

s s
=

+
+

5

2( )
 (14.147)

Taking partial fractions

I
K

s

K

s
= +

+
1 2

2

 (14.148)

The coefficients K1 and K2 are

K K
1 2

5

2

3

2
= =

−
;

Substituting coefficients and taking inverse Laplace transform of Eq. (14.148) gives

i e t= − −5

2

3

2

2  (14.149)

Alternatively, the inductor initial condition can be represented parallelly as shown in Fig. 14.50.

Fig. 14.50

Fig. 14.48

Fig. 14.49
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By inspection,

I
s

2

1
=

By applying Kirchhoff’s voltage law to the mesh, we get

10
4 2 2 0

1 1 2
s

I sI s− − + =I  (14.150)

From the figure, I I I
s

1 2

1
= =and 

10
4 2 2

1
0

5

2

s
I sI s

s

I
s

s s

− − +





=

=
+
+( )

  (14.151)

Taking partial fractions and inverse Laplace transform, we get

i e t= − −5

2

3

2

2  (14.152)

PROBLEM 14.9

Determine the current i for t $ 0 if Vc (0) 5 4 V for the circuit shown in 

Fig. 14.51.

Solution�  The transformed s-domain circuit is shown in Fig. 14.52.

Application of Kirchhoff’s voltage law gives

20
4

8

5

4
0

4

2

s
I I

s

I
s

− −






 − =

=
+

 (14.153)

Taking inverse Laplace transform gives

i 5 4 e22t (14.154)

Alternatively, the initial condition can be represented as shown 

in Fig. 14.53.

Fig. 14.53

Fig. 14.51

Fig. 14.52
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By inspection, we have

I
2

1

2
=

−

Applying Kirchhoff’s voltage law to the mesh 1 results in

20
4

8 8 1

2
0

1 1
s

I
S

I
s

− − +






−





=

 (14.155)

Because and I I I

s
I

s
I

s

1 2

1

2
20

4
8 8 1

2

= =
−

− − +






−





=

=
+

0

4

2
I

s
 (14.156)

Taking inverse transform, we get

i 5 4 e22t (14.157)

PROBLEM 14.10

Convert the current source in Fig. 14.54 to a voltage source in the 

s-domain.

Solution� Converting the circuit in Fig. 14.54 into the voltage source 

results in the circuit shown in Fig. 14.55.

Fig. 14.55

PROBLEM 14.11

Convert the voltage source in Fig. 14.56 to a current source in the 

s-domain.

Fig. 14.54

Fig. 14.56
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Solution� Converting Fig. 14.56 into a current source in the s-domain results in the circuit shown in Fig. 14.57.

Fig. 14.57

PROBLEM 14.12

Determine v0 for the circuit shown in Fig. 14.58.

Solution� The circuit in Fig. 14.58 in the s-domain is as 

shown in Fig. 14.59.

Total impedance in the circuit

Zeq 5 Z1 1 Z2 1 Z3 (14.158)

 

V
Z

Z Z Z
V

s
s

0
1

1 2 3

4

2 4
2

=
+ +











=
+ +




















+



















1

2

4s
 (14.159)

=
+ + +

=
+ +

s

s s s

s

s s

( ) ( )

( ) ( )

4 2 1

4 1

2

2  (14.160)

Taking partial fractions,

V
K

s

K

s

K

s
0

1

2

2 3

1 1 4
=

+
+

+
+

+( )
 (14.161)

The coefficients K1, K2, and K3 are

K K K
1 2 3

1

3

4

9

4

9
=

−
= =

−
, ,

Fig. 14.58

Fig. 14.59
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Thus,

V
s s s

0 2

1 3

1

4 9

1

4 9

4
=

−

+
+

+
+

−
+

( )

( )

( )/ / /

Taking inverse transform on both sides,

v t e e et t t
0

41

3

4

9

4

9
= + −− − −  (14.162)

PROBLEM 14.13

Determine i1, i2, V and V1, for the circuit in Fig. 14.60.

Solution� The transformed circuit in the s-domain is 

shown in Fig. 14.61.

Applying current division to the circuit in the s-domain, we get

Z
s s

eq = +






4

4

3

4
储  (14.163)

I
Z

Z Z s

s s

eq

1
1 2

6

24

4

=
+





















=
+( )

 (14.164)

By taking partial fraction expansion,

I
K

s

K

s

K K

I
s s

1
1 2

1 2

1

4

6 6

6 6

4

= +
+

= =−

= +
−
+

;

( )
 (14.165)

Taking inverse transform, we get

i1 5 6 – 6 e24t (14.166)

Fig. 14.61

Fig. 14.60
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From Kirchhoff’s current law,

6

24

4

6 24

4

6

4

2 1

2

2

2

s
I I

I
s s

I
s s s

I
s

= +

= +
+

= −
+

=
+

( )

( )

 (14.167)

 (14.168)

We know

V I
s

V
s

I

s

s s

= =
+

=










=








 +

4
24

4

3

4

3

4

24

4

2

1 1

( ))











=
+

V
s

1

18

4

 (14.169)

 (14.170)

Taking inverse transforms,

i I
s

e

v V
s

t
2

1
2

1 4

1 1

6

4
6

24

4

= { }=
+










=

= { }=
+





− − −

− −

L L

L L 






= −24 4e t

 (14.171)

 (14.172)

= { }=
+










=− − −18

4
181

1
1

1 4v V
s

eL L  (14.173)

PROBLEM 14.14

Determine the voltage v for the circuit shown in Fig. 14.62.

Fig. 14.62
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Solution� The circuit in Fig. 14.62 is transformed into s-domain as shown in Fig. 14.63.

Fig. 14.63

By using mesh analysis, the current I2 in the circuit is

I

s s s

s

s

I
s s

2

2

1
1 12 4

1 2

1
1

1

1 1 1

2 1
1 8

=

+ −

−

+ −

− + +

=
+







+








+






 + −

=
+

+ +
1

1
2 1

2 10

2 22

s
s

s

s s
( )

 (14.174)

 (14.175)

The voltage across the 1 V resistor is

V R I
s

s s
= =

+

+ +
2 2

2 10

2 2

 (14.176)

The above equation can be written as

V
s

s s

s

s s s s

=
+ +

+ +

=
+

+ +










+

+ +






2 2 8

2 2

2
1

2 2
8

1

2 2

2

2 2






=
+

+ +












+

+ +












2

1

1 1
8

1

1 12 2

s

s s( ) ( ) 
 (14.177)

Taking inverse Laplace transform on both sides,

v
s

s s
=

+

+ +












+

+ +












− −

2
1

1 1

8
1

1 1

1

2

1

2
L L

( ) ( ) 

v 5 2 e2t cos t 1 8 e2t sin t (14.178)
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PROBLEM 14.15

Determine the voltage v for the circuit in Fig. 14.64. Assume vc(0) 5 0.

Fig. 14.64

Solution� The circuit in Fig. 14.64 is transformed into the s-domain resulting in the circuit in Fig. 14.65.

Fig. 14.65

Replacing the Laplace impedance for R and C with Laplace admittance, we get Fig. 14.66

Fig. 14.66

By using nodal analysis, we get

V

s

s

s

s

s s

s s

1

1

4

4
2

4

1
4 4

4
2

4

=

−

+

+
−

−
+

 (14.179)
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V
s

s

1

1
2

4
=






 +


















−







−







+












4

4

1
4

s

s

s








+

















−

−






−


2
4 4 4

s s s




=







 +








+








5

3

8

3

8

3

s

s s

 (14.180)

 (14.181)

Taking partial fraction expansion,

V
K

s

K

s
1

1 2

8

3

= +
+

The coefficients K1 and K2 are

K K

V
s

s

1 2

1

1
2

3

1 2 3

8

3

= =

= +
+

;

/ (14.182)

Taking the inverse Laplace transform of each side of the equation results in

L L
− −{ }= +

+




























1
1

1 1 2 3

8

3

V
s

s

( / )



=





+ +











= +

− −

−

v
s s

v e

1
1 1

1

8

3

1 2

3

1

8 3

1
2

3

L L
/

tt

 (14.183)

and because v 5 v1

v e
t

= +
−








1
2

3

8

3  (14.184)

PROBLEM 14.16

Determine the voltage v for the circuit shown in 

Fig. 14.67 using Thevenin’s theorem.

Fig. 14.67
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Solution� We have to find out the open-circuit voltage as shown in Fig. 14.68.

Fig. 14.68

Applying the superposition method results in the circuits in Figs 14.69 and 14.70, where V9T and V0T are the 

contributions to VT from the Laplace transformed sources 
1

s






 and 

4

s







 respectively.

 Fig. 14.69   Fig. 14.70

From Fig. 14.69, the open- circuit voltage is

′ = =





 +






=

+
V IZ

s s

s

s
T

1 4 1

2

8

2
2

 (14.185)

From Fig. 14.70, the open-circuit voltage is

′′= =













=V IZ

s s
T

4 1

2

2
 (14.186)

because no current flows through the capacitor.

From the superposition method,

V V V

s

s s

s s

s

V
s

s

T T T

T

= ′ + ′′

=
+

+

=
+ +

=
+

8

2

2

8 4

2

5 8

2

2

2

2

 (14.187)

 (14.188)
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Replacing both current sources by opens, as 

required, Thevenin’s theorem to determine the Thevenin 

impedance results in Fig. 14.71.

The impedance seen into the terminals ab

Z
s

T = +
4 1

2

 
s

s
=

+8

2
 (14.189)

and the Thevenin equivalent circuit for terminals a–b is shown in Fig. 14.72.

If the 1 V resistor is reconnected across terminals ab then V can be determined in Fig. 14.73.

Fig. 14.72 Fig. 14.73

V
s

s

s

s
=

+
+





















+









=

1

1
8

2

5 8

2
2

22

3 8

5 8

2

5 8

3 8

2

s

s

s

s

V
s

s s

+











+









=
+
+( )

 (14.190)

 (14.191)

The inverse Laplace transform of V is

v e
t

= +








−







1
2

3

8

3  (14.192)

PROBLEM 14.17

Determine the voltage V for the circuit shown in Fig. 14.74, 

using Norton’s theorem.

Solution� The application of Norton’s theorem in the 

s-domain requires the removal of the 1 V resistor as 

shown in Fig. 14.75 and the determination of resulting 

short- circuited current.

Fig. 14.71

Fig. 14.74
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Fig. 14.75

Applying the superposition method results in the circuits in Figs 14.76 and 14.77, where IN9 and IN0 are the 

contributions to IN from the Laplace transformed current sources 
1

s







 and 

4

s








 respectively

By inspection of the circuit in Fig. 14.76,

′ =I
s

N

1
 (14.193)

Fig. 14.76 Fig. 14.77

Applying current division to the circuit in Fig. 14.77 results in

′′ =















+

























I

s

N

1

2

1

2

4
















=

+
4 4

8s s
 (14.194)

From the superposition method,

 IN 5 I9N 1 IN0

= +
+

=
+
+

1 4

8

5 8

8

s s

I
s

s s
N

( )
 (14.195)

Because Thevenin and Norton impedances are equal,

Z
s

s
N =

+8

2

 (14.196)

The Norton equivalent circuit for terminals a–b is as shown in Fig. 14.78.

If the 1 V resistor is reconnected across terminals ab, the voltage V can be determined in the circuit shown 

in Fig. 14.79.
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Fig. 14.78 Fig. 14.79

Z
s

s

s

s

s

s

=
+






 =

+





{ }

+
+

8

2

8

2
1

1
8

2

储 (1)  (14.197)

Z
s

s
=

+
+

8

3 8
 (14.198)

We know V 5 ZI

=
+
+











+
+











=
+
+

s

s

s

s s

V
s

s s

8

3 8

5 8

8

5 8

3 8

( )

( ))
 (14.199)

Taking inverse Laplace transform of  V, we get

v e
t

= +








−







1
2

3

8

3  (14.200)

PROBLEM 14.18

The initial charge on the capacitor in the circuit shown in Fig. 14.80 is zero.

(a) Find the s-domain Thevenin equivalent circuit with respect to terminals a and b.

(b) Find the s-domain expression for the current that the circuit delivers to a load consisting of a 1 H inductor 

in series with a 2 V resistor. 

Fig. 14.80

Solution� First, we have to find out the Thevenin's equivalent circuit from the s-domain circuit shown in Fig. 

14.81.

Thevenin's voltage across terminals ab is

Vab 5 Vx 1 0.2 Vx – I(1) (14.201)
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Fig. 14.81

By applying Kirchhoff’s voltage law, we can determine the current I

0 2 1
1

0 5

0 1

1 0 5

.
.

.

( . )

V I
s

I
sV

s

x

x

= +












=
+

 (14.202)

Since no current is passing through the 5 V resistor,

The voltage V
s

x =
20

 (14.203)

Substituting Vx and I in Eq. (14.201), we get

V
s

s

s s

V
s

s

ab

ab

=






− +









=
+

1 2
20 0 1

1 0 5

20

20 2 4

.
.

.

.

ss+











2

 (14.204)

 (14.205)

The Thevenin’s impedance after short-circuiting the voltage sources is shown in Fig. 14.82.

Z =
1

0.5
(1) + 5

Z =
5( + 2.4)

+ 2

ab

ab

s

s

s



















储

 (14.206)

The Thevenin’s equivalent circuit is shown in Fig. 14.83.

Fig. 14.83Fig. 14.82
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The current I in the circuit of Fig. 14.83 is

I
s

s

s

s

s
s

s

s

s s

=

+
+









+
+

+ +

=
+

+ + +

20 2 4

2

5 2 4

2
2

20 2 4

5 12 2

.

( . )

( . )

44 4s+













 (14.207)

 (14.208)

20 2 4

9 162
I

s

s

s s
=

+

+ +













.
 (14.209)

PROBLEM 14.19

The voltage source vg drives the circuit shown in 

Fig. 14.84. The response signal is the voltage across 

the capacitor vo. Calculate the numerical expression 

for the transfer function.

Solution� The s-domain equivalent circuit is shown in 

Fig. 14.85.

Fig. 14.85

By definition, transfer function is the ratio vo/vg.

By applying Kirchhoff’s current law, we get

V V V

s

V sg0 0 0

61000 250 0 05 10

0
−

+
+

+ =
.

 (14.210)

Solving for V0 yields

V
s V

s s

g

0 2 6

1000 5000

6000 25 10

=
+

+ + ×

( )
 (14.211)

Hence, the transfer function is

H s
V

V

s

s sg

( )
( )

= =
+

+ + ×
0

2 6

1000 5000

6000 25 10

 (14.212)

Fig. 14.84
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PROBLEM 14.20

The circuit shown in Fig. 14.86 is driven by a voltage 

source whose voltage increases linearly with time, 

namely, v0 5 50 t u(t).

 (a) Use the transfer function to find v0.

 (b) Identify the transient component of the 

response.

 (c) Identify the steady-state component of the 

response.

Solution� From the previous example

H S
s

s s
( )

( )
=

+

+ + ×

1000 5000

6000 25 10
2 6

 (14.213)

The transform of the driving voltage is 50/s2, therefore, the s-domain expression for the output voltage is

V
s

s s s
0 2 6 2

1000 5000

6000 25 10

50
=

+

+ + ×

( )

( )
 (14.214)

The partial fraction expansion of V0 is

V
K

s j

K

s j

K

s

K

s
0

1 1 2

2

3

3000 4000 3000 4000
=

+ −
+

+ +
+ +

*

 (14.215)

The involves of coefficients are

K1 5 5 5  3 10– 4 79.70°

K1
* 5 5 5  3 10– 4 –79.70°

K2 5 10

K3 5 – 4 3 10– 4

(a) The time domain expression for v0 is

v0 5 [10 5  3 10 – 4 e–3000t cos (4000 t 1 79.70°)

 1 10 t – 4 3 10 – 4] V (14.216)

(b) The transient component of v0 is

10 5  3 10 – 4 e–3000t cos(4000 t 1 79.70°) V (14.217)

(c) The steady-state component of the response is

(10 t – 4 3 10 – 4) V (14.218)

PROBLEM 14.21

The excitation voltage vi for the circuit shown in Fig. 14.87 is shown in Fig. 14.88.

 (a) Use convolution integral to find v0.

 (b) Plot v0 over the range of 0 # t # 15 s.

Fig. 14.86
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Fig. 14.87 Fig. 14.88

Solution� The first step in using the convolution integral is to find the unit impulse response of the circuit. 

Obtain the expression for V0 from the s-domain equivalent of the circuit in Fig. 14.87.

V
V

s

i
0

1
1=

+
( ) (14.219)

When vi is a unit impulse function d(t),

vo 5 h(t)

 5 e–t u(t) (14.220)

from which

 h(t) 5 e–l u(t) (14.221)

The impulse response and the folded excitation function is shown in Fig. 14.89.

Sliding the folded excitation function to the right requires breaking the integration into intervals: 

0 # t # 5; 5 # t # 10; and 10 # t # `. The breaks in the excitation function at 0.5, and 10s dictate these 

break points. Figure 14.90 shows the positioning of the folded excitation for each of these intervals. The 

analytical expression for vi in the time interval 0 # t # 5 is

vi 5 4t; 0 # t # 5s (14.222)

Fig. 14.89

Hence, the analytical expression for the folded excitation function in the interval t – 5 # t # t is

vi (t – t) 5 4 (t – t), t – 5 # t # t (14.223)

We can now set up the three integral expression for v0.

(a) (b)
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Fig. 14.90

For 0 # t # 5s,

v t e d

t

0

0

4= −∫ −( )t tt

 5 4(e – t 1 t – 1) V (14.224)

For 5 # t # 10s,

v e d t e d

t

t

t

0

0

5

5

20 4= + −−
−

−

−
∫ ∫t tt t t( )

 5 4 (5 1 e – t – e – (t – 5)) V (14.225)
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For 0 # t # ` s,

    

v e d t e d

t

t

t

t

0

10

5

5

20 4= + −−

−

−
−

−
∫ ∫t tt t t( )

 5 4 (e – t – e – (t – 5) 1 5e – (t – 10)) V (14.226)

The results are computed for v0 and tabulated in Table 14.1. 

The voltage response is shown graphically in Fig. 14.91.
Fig. 14.91

Table 14.1 Numerical Values of v0 (t)

t v0 t v0 t v0

1 1.47 6 18.54 11 7.35

2 4.54 7 19.56 12 2.70

3 8.20 8 19.8 13 0.99

4 12.07 9 19.93 14 0.37

5 16.03 10 19.97 15 0.13

PROBLEM 14.22

For the circuit shown in Fig. 14.92, the sinusiodal 

source voltage is vg 5 120 cos (5000 t 1 30°) V. Find 

the steady-state expression for V0.

Solution� From Problem 14.19,

H S
s

s s
( )

( )
=

+

+ + ×

1000 5000

6000 25 102 6
 (14.227)

The frequency of the voltage source is 5000 rad/s; 

Hence, we evaluate H(S ) at H(j5000).

H j
j

j

j

j

( )
( )

( )
5000

1000 5000 5000

25 10 5000 6000 25 10

1 1

6 6
=

+

− × + + ×

=
+

−

66

1 1

6

2

6
45=

−
= ∠−

j
°

Then the steady-state voltage is

v t

t

ss0

120 2

6
5000 30

20 2 5000 15

= + −

= −

cos( )

cos( )

° 45°

° V.

Fig. 14.92
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PSpice Problems

PROBLEM 14.1

The circuit shown in Fig. 14.93 consists of series RL elements. The sine 

wave is applied to the circuit when the switch ‘S’ is closed at t 5 0. Find 

i (t) using PSpice.

f = =
25

2
3 979


.

RL TRANSIENT WITH SINE WAVE INPUT

VS 1 0 SIN(0 5 3.979 0)

R 1 2 10

L 2 0 5

.TRAN 0.1 1

.PROBE

.PLOT TRAN I(L)

.END

**** TRANSIENT ANALYSIS TEMPERATURE 5 27.000 DEG C

****************************************************************

 TIME I(L) 

0.000E 1 00 0.000E 1 00

1.000E – 01 6.417E – 02

2.000E – 01 1.264E – 02

3.000E – 01 1.102E – 02

4.000E – 01 4.784E – 02

5.000E – 01 –2.371E – 02

6.000E – 01 4.252E – 02

7.000E – 01 –1.548E – 03

8.000E – 01 – 4.937E – 03

9.000E – 01 3.820E – 02

1.000E 1 00 –3.371E – 02

PROBLEM 14.2

Using PSpice, for the circuit shown in Fig. 14.94, 

find the voltage across the 0.5 V resistor when switch 

s is opened at t 5 0. Assume there is no charge on 

the capacitor and no current in the inductor before  

switching.

Fig. 14.93

Fig. 14.94
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I1 0 1 PWL( 0 5 0.1N 5 10 5)

R 1 0 0.5

L1 0 1 1

C1 0  1 1

.TRAN 0.05 0.5

.PROBE 

F
ig

. 
1

4
.9

5
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.PRINT TRAN V(R)

.END

**** TRANSIENT ANALYSIS TEMPERATURE 5 27.000 DEG C

****************************************************************

TIME V(R) 

0.000E 1 00  0.000E 1 00

5.000E – 02 –8.794E – 18

1.000E – 01 –8.794E – 18

1.500E – 01 –8.794E – 18

2.000E – 01 –8.794E – 18

2.500E – 01 –8.794E – 18

3.000E – 01 –8.794E – 18

3.500E – 01 –8.794E – 18

4.000E – 01 –8.794E – 18

4.500E – 01 –8.794E – 18

5.000E – 01 –8.281E – 18

Answers to Practice Problems

14-2.1 2000 (S 1 50000)2/(S2 1 80000S 1 25 3 108)

14-2.3 (a) I 5 40/(S2 1 12S 1 1)

 (b) i 5 50e–0.6t sin 0.8t A

 (c) V 5 16S/(S2 1 1.2S 1 1)

 (d) v 5 200 e–0.6t cos(0.8t 1 36.87°) V

14-2.5 (a) ( / )100 3
100

3

2 8e et t− −−






 V

 (b) 
50

3

50

3

2 8e et t− −−  V

 (c) 50 e–2t – 50 e–8t V

14-2.8 (a) 2
10

3
3 126 87+ − °−e tt cos( . ) V  (b) 10.54e–t cos (3t – 18.43°) V

14-2.10 (a) 80 V (b) 20 V (c) 0 V (d) 32 d(t) mA

 (e) 16 V (f) 4 V (g) 20 V

14-3.1 H(S ) 5 10(S 1 2)/S2 1 2S 1 10

14-4.1 v 5 (1 – e–t) V 0 # t # 1

 V 5 (e – 1)e–t V 1 # t # `

14-4.3 44.7 cos (4t – 63.43°) V
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Objective-Type Questions

rrr14.1 An inductor in the s-domain consists of

 (a) current source in series with an inductor

 (b) voltage source in parallel with an inductor

 (c) voltage source of LI0 in series with an inductor

 (d) current source I0/s in series with an inductor

rrr14.2 A capacitor in the s-domain consists of

 (a) current source CV0 in parallel with capcitor

 (b) current source in series with capacitor

 (c) voltage source 
V

s

0  in parallel with capacitor

 (d) voltage source CV0 in parallel with capacitor

rrr14.3 The current in the circuit when the switch is closed at t 5 0.

 (a) 10 e–100 t  (b) 0.01 e–1000 t

 (c) 0.1 e–1000 t  (d) 10 e–0.1 t

rrr14.4 The initial voltage across the capacitor when the switch s is 

opened at t 5 0.

Fig. 14.97

 (a) zero    (b) C
I

s
. dc     (c) 

1

CS
Idc    (d) CS I( )dc

rrr14.5 Thevenins equivalent circuit across terminals ab.

 (a) The voltage source 10 V with (20 1 2s) impedance in 

series

 (b) The voltage source 10 V in parallel with (20 1 2s) V 

impedance

 (c) The voltage source 
10

s
 in series with an impedance of 

(20 1 2s) V

 (d) The voltage source 
10

s
 in series with an impedance 

  of 22 V

rrr14.6 The transfer function of multiple independent sources can 

easily be obtained by 

 (a) superposition theorem   (c) Norton’s theorem

 (b) Thevenin’s theorem   (d) reciprocity

Fig. 14.96

Fig. 14.98
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rrr14.7 In the circuit shown in Fig. 14.99, the current is defined as 

the response signal then the transfer function

 (a) 
10

10 1

6

12 2

−

− + +

s

s s
  

 (b) 
s

s s2
1+ +

 (c) 
s

s2 1+

 (d) 
s

s+1

rrr14.8 The circuit is driven by an unit impulse source then the response equals to

 (a) transfer function (c) zero

 (b) one (d) inverse of transfer function

rrr14.9 If the input of a circuit is represented by series of impulse functions, the response consists of 

 (a) sum of the series of uniformly delayed impulse responses

 (b) sum of the series of responses

 (c) one

 (d) zero

rrr14.10 For physically realizable circuit, impulse response is

 (a) zero for t < 0 (c) one for t < 0

 (b) zero for t > 0 (d) infinite for t > 0

rrr14.11 The instantaneous current in an inductor when an impulse voltage V0 applied to the terminals of an inductor

 (a) zero (b) unity (c) 
V

L

0  (d) 
V

L
t0 d( )

I

Fig. 14.99

For interactive quiz with answers,
scan the QR code given here
OR
visit
http://qrcode.flipick.com/index.php/272



15.1 CONCEPT OF COMPLEX FREQUENCY

The solution of differential equations for networks is of the form

i(t) 5 Kn 
e

S tn

 (15.1)

where Sn is a complex number which is a root of the characteristic equation 

and may, therefore, be expressed as

Sn 5 sn 1 jvn (15.2)

The complex number consists of two parts, the real part sn and the imaginary part vn. The real part of the 

complex frequency sn is neper frequency, while the imaginary part vn is the radian frequency. The neper 

frequency has dimensions of neper per second. In the time-domain equations, vn is in the form of sin vnt or 

cos vnt. The radian frequency vn is expressed in radians/second and is related to the frequency fn in cycles/

sec or the periodic time T (in seconds) by the relation.

v p
p

n nf
T

= =2
2

 (15.3)

From Eq. (15.2), we see that the real part sn and the imaginary part vn must have identical dimensions. 

Radian frequency vn is 
2p

T
 has dimensions (time)21. Therefore, the dimensions of sn must also be (time)–1 or 

15

LEARNING OBJECTIVES

LO  1  
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the unit of sn must be “something per unit time”. Since sn appears as an exponential factor,

 I 5 I0 e
snt (15.4)

Such that

sn
t

I

I
=










1

0

ln  (15.5)

It is fact that “something per unit time” should be nondimensional logarithmic unit. The usual unit for 

the natural logarithm is the neper, making the dimensions for s the neper per second. The complex quantity

     (15.6)

is defined as the complex frequency. Thus, complex frequency consists of a real part sn called the neper frequency 

and an imaginary part vn is called radian frequency (or real frequency).

15.2 PHYSICAL INTERPRETATION OF COMPLEX FREQUENCY

The complex frequency appears in the exponential form e
S tn . Let us consider the physical significance of complex 

frequency and a number of special cases for the values of Sn.

� Case�(i)� Let Sn 5 sn 1 jo having zero radian frequency. The exponential function becomes

Kn e
Snt 5 Kne

snt (15.7)

The above exponential function increases exponentially for sn . 0 

and decreases exponentially for sn , 0. For sn 5 0, the exponential 

function reduces to Kn and it is a time-invariant resulting current i(t) 

which is a dc current. Figure 15.1 shows the variation of exponential 

term Kn e
snt with time t for the cases of sn . 0, sn , 0 and sn 5 0.

� Case� (ii)� Let Sn 5 0 6 jvn having radian frequency and zero 

neper frequency. The exponential becomes

 i(t) 5 Kn e
 6jvnt

 5 Kn (cos vnt 6 j sin vnt) (15.8)

The exponential e6jvnt may be interpreted in terms of the physical model of a rotating phasor of unit 

length. A positive sign of exponential e6jvnt implies counter- clockwise or positive rotation, while a negative 

sign e–jvnt implies clockwise or negative rotation.

For positive or counter-clockwise rotation, the real part of e1jvnt or the projection on the real axis equals 

cos vnt, while the imaginary part of e1jvnt or the projection on the imaginary axis equals sin vnt (Fig. 15.2).

The variation of exponential function e1jvnt with time is thus sinusoidal and hence constitutes the case of 

sinusoidal steady state.

� Case�(iii)� Let Sn 5 sn 1 jvn is the general case and the frequency is complex and the exponential is 

given by

i(t) 5 Kn e
Snt 5 Kn e

(sn 1 jvn)t

i(t) 5 Kn e
snt ? e jvnt (15.9)

Fig. 15.1

LO 1
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Equation (15.9) shows that with complex frequency, the time variation of response i(t) is the product of 

the response for Sn 5 sn 1 jo and the response for Sn 5 0 1 jvn. The response esnt for the case of neper 

frequency alone, Sn 5 sn 1 jo is an exponentially increasing or decaying function. The response ejvnt for 

the case of radian frequency alone Sn 5 0 1 jvn may be represented by a rotating phasor. The product e nts
 

? e
j tnv

 may then be visualized as a rotating phasor whose magnitude is not constant at unity but changes 

continuously with time. Such phasors are illustrated in Fig. 15.3.

Fig. 15.3 (a)
Fig. 15.3 (b)

The real and imaginary projections of this phasor are

Re(eSnt) 5 esnt cos vnt (15.10)

and Im(eSnt) 5 esnt sin vnt

Consider the projections of this rotating phasor on the real and imaginary axes for the two cases. These 

projections for the case sn , 0 are known as a damped sinusoid and for sn . 0, the increasing oscillations are 

shown in Figs 15.4 (a) and (b) respectively.

From the above discussion, it is clear that the imaginary part of complex frequency governs sinusoidal 

oscillations and the real part of complex frequency governs the exponential decay or rise.

The roles of two types of frequency are similar even though the variations caused by them are different. 

This is the justification of unifying the two concepts under the name of complex frequency.

Fig. 15.2
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(a)

(b)

Fig. 15.4

15.3 TRANSFORM IMPEDANCE AND TRANSFORM CIRCUITS

In this section, we determine the transform impedance and admittance 

representations for each of the elements and initial condition sources.

15.3.1 Resistance

For a resistance, the voltage and current are related in the time domain by Ohm’s law.

V t Ri t i t GV t G
R

R R R R( ) ( ) ( ) ( );= = =or
1

 (15.11)

The corresponding transform equations are

VR(S ) 5 RIR(S )

IR(S )  5 GVR(S ) (15.12)

The ratio of transform voltage VR(S ) to the transform current IR(S ) is defined as the transform impedance 

of the resistor, expressed as

 (15.13)

Similarly, the reciprocal of this ratio is the transform admittance for the resistor, expressed as

 (15.14)

LO  2  
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From the above results, we can say that the resistor is frequency 

insensitive to the complex frequency.

Figure 15.5 (a) shows a network representing resistor R current 

iR(t) and voltage VR(t) in time domain. Figure 15.5 (b) gives the 

network representation of the same resistor and also transform 

current IR(S ) and voltage VR(S ).

15.3.2  Inductance

For inductance, the time-domain relation between the current in inductance iL(t) and the voltage VL(t) across 

it is expressed as

v t L
di t

dt

i t
L

v t dt

L
L

L L

t

( )
( )

( ) ( )

=

=
-∞
∫and

1
 (15.15)

The equivalent transform equation for the voltage expression is

 VL(S ) 5 L [SIL(S ) – iL(01)] (15.16)

which, on rearranging, results

 LS IL(S ) 5 VL(S ) 1 LiL(01) (15.17)

In Eqs (15.15) and (15.16), VL(S ) is the transform of the applied voltage vL(t) and LiL(01) is the transform 

voltage caused by the initial current iL(01) present in the inductor at time t 5 01.

Considering the sum of the transform voltage and the initial current voltage as V1(S ), we have the transform 

impedance for the inductor.

 Z S
V S

I S
SLL

L

( )
( )

( )
= =1

 (15.18)

Figure 15.6 (a) shows the time-domain network representation of the inductor  

L, the current iL(t) through it, and the applied voltage vL(t ). Figure 15.6 (b) gives  

the transform representation of same inductor in terms of impedance using Eq. 

(15.16).

The transform equation for the current expression of Eq. (15.17) is

I S
V S

S

v t dt

S L

v t dt Li

L
L

L

L L

( )
( )

( )

( ) (

= +





















=

-∞

+

∫
0

1

0But ++
-∞

+

∫ )

0

 (15.19)

 (15.20)

Fig. 15.6 (a)

Fig. 15.6 (b)

Fig. 15.5 (a) Fig. 15.5 (b)
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Hence, Eq. (15.19) becomes

 I S
L

V S

S

i

S

LS
V S I S

i

S

L
L L

L L
L

( )
( ) ( )

( ) ( )
( )

= ⋅ +
+

= -
+

1 0

1 0
or

 (15.21)

 (15.22)

In the above equation, iL(01)/S is the transform caused by the initial current iL(01) in the inductor.

 Let I S I S
i

S
L

L
1

0
( ) ( )

( )
= -

+
 (15.23)

Then Eq. (15.22) becomes

 
1

1
LS

V S I SL ( ) ( )=  (15.24)

where I1(S ) is the total transform current through the inductor L. The transform admittance becomes

 Y S
I S

V S LS
L

L

( )
( )

( )
= =1 1

 (15.25)

Figure 15.7 (a) shows the time-domain 

representation of inductor L with initial current iL(01). 

Figure 15.7 (b) shows equivalent transform circuit thus 

contains an admittance of value 
1

LS
 and equivalent 

transform current source.

15.3.3 Capacitance

For capacitance, the time-domain relation between voltage and current is expressed as

 

i t c
dv t

dt

t
C

i t dt

c
c

c c

t

( )
( )

( ) ( )

=

=
-∞
∫and 

1  (15.26)

The equivalent transform equation for the voltage expression is

 V S
C

I S

S

q

S
C

C( )
( ) ( )

= +
+











1 0
 (15.27)

where 
q

C
vC

( )
( )

0
0

+
= +  is the initial voltage across the capacitor.

The above equation becomes

 
1 0

CS
I S V S

v

S
C C

C( ) ( )
( )

= -
+

 (15.28)

Considering the total transform voltage across the capacitor as V1(S ).

 V S V S
v

S
C

C
1

0
( ) ( )

( )
= -

+
 (15.29)

Fig. 15.7 (a) Fig. 15.7 (b)
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Then, Eq. (15.28) becomes

 
1

1
CS

I S V SC ( ) ( )=  (15.30)

The transform impedance of the capacitor is the ratio of transform voltage V1(S ) to the transform current 

IC(S ) and is

 Z S
V S

I S CS
C

C

( )
( )

( )
= =1 1

 (15.31)

Figure 15.8 (a) shows the time-domain representation 

of capacitor C with initial voltage VC (01) across it. 

Voltage V1(S ) includes the initial voltage VC (01). Figure 

15.8 (b) gives the transform representation of the same 

capacitor in terms of transform impedance.

Considering the current expression, the transform 

equation corresponding to Eq. (15.26) is

 IC (S ) 5 C [SVC (S ) – nC (01)] (15.32)

On rearranging,

 CSVC (S ) 5 IC (S ) 1 CVC (01) (15.33)

Considering the transform current through YC (S ) as I1(S ), Eq. (15.32) may be put as

 CSVC (S ) 5 I1(S ) (15.34)

Then the transform admittance of the capacitor C is the ratio of transform current I1(S ) to transform 

voltage VC (S ), expressed as

Y S
I S

V S
CSC

C

( )
( )

( )
= =1  (15.35)

Figure 15.9 (a) shows the time-domain representation 

of the capacitor C with initial voltage VC (01) across it. 

Figure 15.9 (b) gives the transform representation of the 

same capacitor in terms of admittance.

Frequently Asked Questions linked to LO 2*
rrr15-2.1 Obtain the transfer impedance for the circuit shown in 

Fig. Q.1. [BPUT 2008]

Fig. 15.8 (a)  Fig. 15.8 (b)

Fig. 15.9 (a) Fig. 15.9 (b)

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600

1H

C
1

L
2

L = 1H
1

R1 ohm V
2

1F

Fig. Q.1
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15.4 SERIES AND PARALLEL COMBINATIONS OF ELEMENTS

In general, any network can be connected in series, parallel, and series-parallel 

combinations. Consider the series combination of elements shown in Fig. 15.10.

Assume that all 

initial conditions are 

zero, i.e. the current in all inductors is zero and that 

the initial voltage of all capacitors is also zero. By 

application of Kirchhoff’s voltage law, we get

 n(t) 5 nR1
 1 nR2

 1 … 1 nL1
 1 nL2

 1 … 1 nC1
 1 nC2

 1 … (15.36)

Taking transform for the above equation, we get

 V(S ) 5 VR1
(S ) 1 … 1 VL1

(S ) 1 … 1 VC1
(S ) 1 … (15.37)

Dividing the equation by I(S ), the transform current through the series circuit, we get

 Z(S ) 5 ZR1
(S ) 1 … 1 ZL1

(S ) 1 … 1 ZC1
(S ) (15.38)

or

 Z S Z SK

k

n

( ) ( )=
=
∑

1

 (15.39)

where n is the total number of elements of all 

kinds in series.

Figure 15.11 shows the transform 

representation of the series circuit and 

represents Eq. (15.38).

Consider a parallel combination of resistors, 

inductors, and capacitors as shown in Fig. 15.12. Here, we 

assume that the inductors have zero initial currents and 

capacitors have zero initial voltages. Let v(t) be the common 

voltage applied to all the elements in the circuit.

Applying Kirchhoff’s current law to the above circuit 

yields

 i(t) 5 iG1
(t) 1 iG2

(t) 1 … 1 iL1
(t)

     1 iL2
(t) 1 … 1 iC1

(t) 1 iC2
(t) 1 … (15.40)

and the corresponding transform equation is

 I(S ) 5 IG1
(S ) 1 IG2

(S ) 1 … 1 IL1
(S ) 1 IL2

(S ) 1 … 1 IC1(S ) 

1 IC2 
(S ) 1 … (15.41)

If this equation is divided by V(S ), we get the transform admittance which is the ratio of the current 

transform to the voltage transform and is

  Y(S ) 5 YG1
(S) 1 YG2

(S) 1 … 1 YL1
(S) 1 YL2

(S) 1 …1 YC1
(S ) 

1 YC2
(S ) 1 … (15.42)

Fig. 15.12

Fig. 15.11

Fig. 15.10

LO  3  
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or

 Y S Y SK

k

n

( ) ( )=
=
∑

1

 (15.43)

where n is the total number of all kinds of elements in parallel.

Figure 15.13 gives the transform representation of the parallel network and represents Eq. (15.42).

For a series-parallel combination, rules for the combination of impedance and of admittance can be 

used to reduce a network to a single equivalent impedance or admittance.

Fig. 15.13

EXAMPLE 15.1

In the circuit shown, the switch K is moved from the position 1 to the position 2 at time t 5 0. At time t 5 02, 

the current through inductor L is I0 and the voltage across capacitor is V0. Find the transform current I(S).

Solution� The inductor has an initial current of I0. It is represented by a transform impedance LS in series with 

a voltage source LI0 as shown in Fig. 15.15. The capacitor has an initial voltage V0 across it. It is represented 

by a transform impedance of 
1

CS
 with an initial voltage 

V

S

0
. The transform circuit derived from the circuit 

of Fig.  15.14 is shown in Fig. 15.15.

Fig. 15.14 Fig. 15.15

The current I(S ) is given as the total transform voltage in the circuit divided by the total transform 

impedance. Then

I S
V S

Z S

V S LI
V

S

R LS
CS

SV S SLI V

LS RS

( )
( )

( )

( )
( )

= =
+ -

+ +
=

+ -

+ +

1 0
0

1 0 0

21 1

CC

 (15.44)

EXAMPLE 15.2

The network shown in Fig. 15.16 is a parallel combination 

of L, R and C connected across a current source I. At time 

t 5 0 –, the current through inductor L is I0 and the voltage 

across capacitor C is V0. At time t 5 01, the current source 

I1(t) is connected to the parallel RLC circuit. Find the 

transform voltage V(S). 

Fig. 15.16
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Solution� Figure 15.17 gives the transform network 

corresponding to the given network with the switch 

K moved to the position 2.

From the above transform circuit, the transform 

voltage V(S ) may be obtained by taking the ratio 

of the total transform current to the total transform 

admittance.

The total transform current in the network is given by

I S I S
I

S
CV( ) ( )= - +1

0
0

Total transform admittance is given by

Y S G
LS

CS( )= + +
1

Hence, the transform voltage is given by

V S
I S

Y S

I S CV
I

S

G
LS

CS

( )
( )

( )

( )

= =
+ -

+ +

1 0
0

1

EXAMPLE 15.3

Obtain the transform impedance of the network shown in Fig. 15.18.

Solution� The transform network of Fig. 15.18 is shown in Fig. 15.19.

The admittance of the last two elements is the parallel combination.

 Y1(S ) 5 4 1 S

Therefore, impedance is Z S
S

1

1

4
( )=

+
Series combination of last elements

 Z S
S S

S S

S S

S

S S
2

1

2

1

4

4 2

2 4

3 4

2 4
( )

( ) ( )
= +

+
=

+ +
+

=
+
+

Parallel combination of elements

Y S
S S

S

S s S

S

S S

S
2

21

2

2 4

3 4

3 4 4 4

6 8

4 19 4

6 8
( )

( ) ( ) ( )
= +

+
+

=
+ + +

+
=

+ +
+

 Hence, the impedence Z S
Y S

s

S S
( )

( )
= =

+

+ +

1 6 8

4 19 42
2

EXAMPLE 15.4

In the given network in Fig. 15.20, the switch S is opened at t 5 0, 

the steady state having established previously. With the switch S 

open, draw the transform network for analysis on the loop basis 

representing all elements and all initial conditions. Write transform 

equation for current in the loop.

Fig. 15.17

Fig. 15.18

Fig. 15.19

Fig. 15.20



S-Domain Analysis 677 

Solution� Under steady-state conditions, the capacitor is open-circuited and the 

inductor is short-circuited. The current through the inductor is i0
10

2
5= = A. 

The voltage across the capacitor is V0 5 10 V. Hence, the corresponding transform 

network is shown in Fig. 15.21.

Hence, I S
V S

Z S

S

S
S

S

S S
( )

( )

( )

( )
= =

+

+ + +
=

+

+ +

5
10

2 4
1

5 2

6 12

15.5 TERMINAL PAIRS OR PORTS

Consider an arbitrary network made up of passive elements. It can be represented by a rectangular box shown 

in Fig. 15.22.

For the network shown in Fig. 15.22 (a), only one 

voltage and one current exist and only one network 

function is defined. It constitutes one pair of terminals 

called a port. Generally, a driving source is connected 

to the pair of terminals. For the two-terminal pair 

network shown in Fig. 15.22 (b), two currents and two 

voltages must exist. Normally, in Fig. 15.22 (b), 1-19 

and 2-29 are called ports. Hence, it is a called two-port network. If the driving source is connected across 1-19, the 

load is connected across 2-29. Otherwise, if the source is connected across 2-29, the output is taken across 1-19.

15.6 NETWORK FUNCTIONS FOR ONE-PORT AND TWO-PORT NETWORKS

For a one-port network, the driving-point impedance or impedance of the 

network is defined as

 Z s
V s

I s
( )

( )

( )
=  (15.45)

The reciprocal of the impedance function is the driving-point admittance function, and is denoted by Y(s).

For the two-port network without internal sources, the driving-point impedance function at the port 1-19 is 

the ratio of the transform voltage at port 1-19 to the transform current at the same port.

 Z s
V s

I s
11

1

1

( )
( )

( )
=  (15.46)

Similarly, the driving-point impedance at the port 2-29 is the ratio of transform voltage at port 2-29 to the 

transform current at the same port.

 Z s
V s

I s
22

2

2

( )
( )

( )
=  (15.47)

For the two-port network, the driving-point admittance is defined as the ratio of the transform current at 

any port to the transform voltage at the same port.

Therefore, Y s
I s

V s
11

1

1

( )
( )

( )
=  (15.48)

Fig. 15.21

Fig. 15.22

LO  4  

LO 3
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 or Y s
I s

V s
22

2

2

( )
( )

( )
,=  which is the driving-point admittance.

The four other network functions are called transfer functions. These functions give the relation between 

voltage or current at one port to the voltage or current at the other port as shown hereunder.

� Voltage-Transfer�Ratio� This is the ratio of voltage transform at one port to the voltage transform at 

the other port, and is denoted by G(s).

G s
V s

V s

G s
V s

V s

21
2

1

12
1

2

( )
( )

( )

( )
( )

( )

=

=and  (15.49)

� Current-Transfer�Ratio� This is the ratio of current transform at one port to current transform at 

other port, and is denoted by a(s).

 

a

a

12
1

2

21
2

1

( )
( )

( )

( )
( )

( )

s
I s

I s

s
I s

I s

=

=and  (15.50)

� Transfer�Impedance� It is defined as the ratio of voltage transform at one port to the current trans-

form at the other port, and is denoted by Z(s).

Z s
V s

I s

Z s
V s

I s

21
2

1

12
1

2

( )
( )

( )

( )
( )

( )

=

=and (15.51)

� Transfer�Admittance� It is defined as the ratio of current transform at one port to the voltage trans-

form at the other port, and is denoted by Y(s).

Y s
I s

V s
21

2

1

( )
( )

( )
=

and Y s
I s

V s
12

1

2

( )
( )

( )
=  (15.52)

The above network functions are found by forming the system of equations using node or mesh analysis, 

and taking the transforms of equations by setting the initial conditions to zero and solving for ratio of the 

response to excitation.

EXAMPLE 15.5

For the network shown in Fig. 15.23, obtain the driving-

point impedance.

Solution�  Applying Kirchhoff’s law at the port 1-19,

Z S
V S

I S
( )

( )

( )
=

Fig. 15.23
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where V(S ) is applied at the port 1-19 and I(S ) is the current flowing through the network. Then

Z S
V S

I S
S

S

Z S
S S

S

( )
( )

( )

( )

= = + +

=
+ +

2
1

2 12

EXAMPLE 15.6

For the network shown in Fig. 15.24, obtain the transfer 

functions G21(S) and Z21(S) and the driving-point impedance 

Z11(S).

Solution� Applying Kirchhoff’s law,

 V1(S ) 5 2I1(S ) 1 2SI1(S )

 V2(S ) 5 I1(S ) 3 2S

Hence,

 

G S
V S

V S

S

S

S

S

Z S
V S

I S
S

Z S
V

21
2

1

21
2

1

11
1

2

2 2 1

2

( )
( )

( )

( )
( )

( )

( )

= =
+

=
+

= =

=
(( )

( )
( )

S

I S
S

1

2 1= +

EXAMPLE 15.7

For the network shown in Fig. 15.25, obtain the transfer 

functions G21(S ), Z21(S), and driving-point impedance Z11(S).

Solution� From the circuit, the parallel combination of 

resistance and capacitance can be combined into equivalent 

impedance.

Z S

S
S

eq ( )=
+

=
+

1

2
1

2

2

4 1

Applying Kirchhoff’s laws, we have

 V2(S ) 5 2I1(S )

 and V S I S
S

I S
S

S

1 1

1

2

4 1
2

8 4

4 1

( ) ( )

( )

=
+
+













=
+
+













Fig. 15.24

Fig. 15.25
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The transfer functions

 

G S
V S

V S

I S

S

S
I S

S

S

Z

21
2

1

1

1

2

2

8 4

4 1

8 2

8 4
( )

( )

( )

( )

( )

= =
+
+









=
+
+

11
2

1

2( )
( )

( )
S

V S

I S
= =

The driving-point function is

Z S
V S

I S

S

S
11

1

1

8 4

4 1
( )

( )

( )
= =

+
+

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 4
rrr15-4.1 Calculate the driving-point functions for the following circuit shown in Fig.Q.1.
rrr15-4.2 Find the transfer function G21(s) for the two-port network shown in Fig. Q.2.

Fig. Q.1 Fig. Q.2

rrr15-4.3 Determine the driving-point impedance Zd of the network shown in Fig. Q.3.

Fig. Q.3

Frequently Asked Questions linked to LO 4*
rrr I s I s V s

rrr15-4.2 State and explain the initial and final-value theorems. 

[GTU Dec. 2012]
rrr15-4.3 Compute the driving-point impedance for the network 

shown in Fig. Q.3. [PTU 2011-12]

rrr

Z s Z s s
Fig. Q.1

10 W0.5S

10 W
5

8V (S)
1

I (S)
1

I (S)
2

V (S)
2

*Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category
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Fig. Q.3 Fig. Q.4

Y S( )

L

CZ S( )

R
1

R
3

R
2

R
2

L
2

C
3

R
1

L
1

C
1

2F2F

1� 1/4�

Z S( )

rrr15-4.5 Find the driving-point function of the network shown in Fig. Q.5. [PU 2010]
rrr15-4.6 For the network shown in the Fig. Q.6, determine the transfer impedance.

  [RGTU June 2014]

Fig. Q.5

s

3 s

V s( )

1
5s

½ s

10�

Z S( )

20�

2 H 5 H

I
1

I

Fig. Q. 6

rrr15-4.7 Calculate the transfer impedance of given circuit shown in Fig. Q.7. [RTU Feb. 2011]

rrr
V s

I s
[RTU Feb. 2011]

Fig. Q.7 Fig. Q.8

R
1

L
1

R
2

C
C

I t( )
v t( )

15.7 POLES AND ZEROS OF NETWORK FUNCTIONS

In general, the network function N(s) may be written as

   N s
P s

Q s

a s a s a s a

b s b s b s b

n n
n n

m m
m m

( )
( )

( )
= =

+ + + +

+ + + +

-
-

-
-

0 1
1

1

0 1
1

1

…

…

 (15.53)

where a0, a1,..., an and b0, b1, ..., bm are the coefficients of the polynomials P(s) and Q(s); they are real 

and positive for a passive network. If the numerator and denominator of polynomial N(s) are factorised, the 

network function can be written as

 N s
P s

Q s

a s z s z s z

b s p s p s p

n

m

( )
( )

( )

( )( ) ( )

( )( ) ( )
= =

- - -
- - -

0 1 2

0 1 2

…

…

 (15.54)

where z1, z2, ..., zn are the n roots for P(s) 5 0

and p1, p2, ..., pm are the m roots for Q(s) 5 0

LO  5  
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and a0/b0 5 H is a constant called the scale factor.

z1, z2,..., zn in the transfer function are called zeros, and are denoted by 0. Similarly, p1, p2,..., pm are called 

poles, and are denoted by 3. The network function N(s) becomes zero when s is equal to any one of the zeros. 

N(s) becomes infinite when s is equal to any one of the poles. The network function is completely defined 

by its poles and zeros. If the poles or zeros are not repeated, then the function is said to have simple poles 

or simple zeros. If the poles or zeros are repeated, then the function is said to have multiple poles, multiple 

zeros. When n . m, then (n – m) zeros are at s 5 `, and for m . n, (m – n) poles are at s 5 `.

Consider the network function

 N s
s s

s s j s j
( )

( ) ( )

( )( )( )
=

+ +
+ + + + -

1 5

2 3 2 3 2

2

 (15.55)

that has double zeros at s 5 –1 and a zero at s 5 –5; and three 

finite poles at s 5 –2, s 5 –3 1 j2, and s 5 –3 – j2 as shown 

in Fig. 15.26.

The network function is said to be stable when the real parts 

of the poles and zeros are negative. Otherwise, the poles and 

zeros must lie within the left half of the s-plane.

15.8 SIGNIFICANCE OF POLES AND ZEROS

Poles and zeros are critical frequencies. At poles, the network function become infinite, while at zeros, the 

network function becomes zero. At other complex frequencies, the network function has a finite non-zero 

value.

Poles and zeros provide useful information in network functions. Consider the following cases.

� Driving�Point�Impedance

 Z S
V S

I S
( )

( )

( )
=  (15.56)

A pole of Z(S ) implies zero current for a finite voltage which means an open circuit. A zero of Z(S ) 

implies no voltage for a finite current or a short circuit.

Consider Z S
CS

( )=
1

 (15.57)

The above function has a pole at S 5 0 and zero at S 5 `.

Therefore, the above function represented by capacitor acts an open circuit at pole frequency and acts 

as short circuit at zero frequency.

� Driving�Point�Admittance

 Y S
I S

V S
( )

( )

( )
=  (15.58)

A pole of Y(S ) implies zero voltage for a finite value of current which gives a short circuit. A zero of 

Y(S ) implies zero current for a finite value of voltage which gives an open circuit.

� Voltage�Transform�Ratio

 G S
V S

V S
21

2

1

( )
( )

( )
=  (15.59)

 V2(S ) 5 G21(S ) V1(S )

Fig. 15.26

LO 5
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To obtain output voltage, we require the product of input and transfer function. The expression for G21(S ). 

V1(S ) is obtained in the form of a ratio of polynomials in S.

 By making use of partial fractions, we can obtain a pole of either G21 (S ) or V1(S ) and no repeated 

roots.

 G S V S
A

S a

A

S ai jj

m

i

n

21 1

11

( ) ( )=
-

+
-==

∑∑  (15.60)

where n and m are the number of poles of G21(S ) and V1(S ) respectively.

 The frequencies ai from the natural complex frequencies corresponding to free oscillations and depend 

on the network function G21(S ). While frequencies aj constitute the complex frequencies corresponding 

to the forced oscillations and depend on the driving force V1(S ). From the above discussion, we can say 

that the poles determine the time variation of the response whereas the zeros determine the magnitude 

response.

�Other�Network�Functions� Significance of poles and zeros in other transfer functions is the same 

as discussed above. In each of the cases, poles determine the time-domain behaviour and zeros deter-

mine the magnitude of each of the terms of the response.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 5
rrr15-5.1 For the given network function, draw the pole zero diagram and, hence, obtain the time-domain 

response. Verify the result analytically.

V s
s

s s
( )

( )

( ) ( )
=

+
+ +
5 5

2 7

rrr15-5.2 Obtain the pole zero configuration of the impedance function of 

the network shown in Fig.Q.2.
rrr15-5.3 Draw the pole zero diagram for the given network function and 

hence, obtain v(t).

V s
s

s s
( )

( ) ( )
=

+ +
4

2 3

rrr15-5.4 For the network shown in Fig. Q.4, determine the following transfer functions (a) G21(s), (b) 

Y21(s), and (c) a21(s).

rrr15-5.5 For the network shown in Fig. Q.5, determine the following functions (a) Z11(s), (b) Y11(s), (c) 

G21(s), and (d) a21(s).

Fig. Q.4 Fig. Q.5

Fig. Q.2
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Frequently Asked Questions linked to LO 5
r

r15-5.2 Explain the significance of poles and zeros.

15.9 PROPERTIES OF DRIVING POINT FUNCTIONS

1. The driving-point function is a ratio of polynomials in S. Polynomials 

are obtained from the transform impedances of the elements and 

their combinations.

Let

and

P S a S a S a S a

Q S b S b S b S

n n
n n

m m
m

( )

( )

= + + + +
= + + + +

-
-

-
-

0 1
1

1

0 1
1

1

…

… bbm






 (15.61)

 be the numerator and the denominator polynomials respectively. The above equations can be factorised 

and therefore written as

 
P S S Z S Z S Z

Q S S P S P S P
n

m

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= - - -
= - - -






1 2

1 2

…

…

  (15.62)

 The driving-point function N(S ) may be written as

  (15.63)

 The quantities Z1, Z2  Zn are called zeros of N(S ) as N(Z1) 5 N(Z2) 5 ... N(Zn) 5 0.

 The quantities P1, P2  Pm are called poles of N(S ) as N(P1) 5 N(P2) 5  

N(Pm) 5 `.

 That is, pole is that finite value of S for which N(S ) becomes infinity.

  If the zeros and poles are not repeated then the poles or zeros are said to be distinct or simple.

  A zero or a pole is said to be of multiplicity ‘r’ if (S – Z )r or (S – P)r is a factor of P(S ) or Q(S ). 

A function N(S ) is said to have a pole (or zero) at infinity, if the function N
S

1




  has a pole (or zero) 

at S 5 0.

 Consider the function

 N S
S

S S
( )

( )( )
=

+
+ +

1

2 4
 (15.64)

 N
S

S

S S

S S

S

1

1
1

1
2

1
4

1

1 2






=

+

+






 +








=
+

+
( )

( ))( )1 4+ S
 (15.65)

 i.e. N
S

1




  has a zero at S 5 0

N(S ) has a zero at S 5 `

From the above example, we say that the number of zeros including zeros at ` equals the number 

of poles including poles at `.

LO  6  
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2. (a) N(S ) be a driving-point impedance, i.e. Z(S )

Z S
V S

I S
( )

( )

( )
=  (15.66)

A zero of N(S ) is a zero of V(S ), it signifies a short circuit. Similarly, a pole of Z(S ) is a zero of 

I(S ). The poles of Z(S ) are those frequencies corresponding to open circuit conditions.

 (b) Consider a driving-point admittance function

Y S
I S

V S
( )

( )

( )
=  (15.67)

   A zero of Y(S ) means a zero of I(S ), i.e. the open-circuit condition and a pole of Y(S ) means a 

zero of V(S ) signifies a short circuit.

3. Since all the elements in the circuit are real positive quantities the coefficients a0, a1, a2, ... an and b0, 

b1, b2 ... bm are real and positive. Therefore, any zeros or poles, if complex, must occur in conjugate 

pairs.

4. The real parts of all zeros and poles must be negative or zero. Consider a pole ‘P’ of N(S ), i.e. (S – P) 

is a factor of the denominator of N(S ). Using partial fractions, we know that this gives rise to a term 

 of the form 
A

S P-
 whose inverse Laplace transform contains the term ept. The real part of ept tends 

 to zero as t tends to infinity if the real part P is negative. Therefore, for a finite input the response is 

finite as t tends to infinity if the real part of P is negative. A network function whose response is finite 

for all t, for a given finite input is said to be stable. Thus, a driving-point impedance Z(S ) is stable if 

all the poles lie in the negative half of the S-plane.

  Since Y S
Z S

( )
( )

=
1

, poles of Y(S ) are zeros of Z(S ). Therefore Y(S ) is stable if all the zeros of 

Z(S ) also lie in the negative half of the S-plane. Thus, the real parts of all zeros and poles of a driving 

point function must be negative or zero.

5. Poles or zeros lying on the jv-axis must be simple. Consider a pole ‘P’ lying on the jv-axis. If it is not 

simple then in the time response of the function of which it is a pole contains the term tk ejvt which 

tends to infinity as t tends to infinite. Therefore, the function becomes unstable. Since zeros of one 

function will be poles of the other, therefore, the zeros of driving point function should also satisfy 

this condition.

6. The degree of P(S ) and Q(S ) may differ by zero or one only.

  At very high frequencies, the term a0 S
n dominates over the other terms in the numerator and the 

term b0 S
m dominates over other terms in the denominator.

Lt Lt
S S

n mN S
a

b
S

→∞ →∞

-=( ) 0

0

 (15.68)

 Consider the network elements R, L, C, and M. R is independent of frequency.

 ∴ if n 5 m, then the function behaves as a resistance R
a

b
= 0

0

 at high frequency. The impedance LS 

of an inductor increases linearly with the complex frequency S and, therefore, is an open circuit at 

S 5 `. Thus if n 5 m 1 1, the function N(S ) behaves as an inductance as S approaches infinity. A 

capacitor is a short circuit at infinite frequencies. Thus, N(S ) behaves as a capacitance if m 5 n 1 16.

Now, consider the driving-point impedance Z(S ). Z(S ) will behave as an inductor as LS increases 

with increasing S while 
1

CS
 decreases with increasing S and, therefore, the impedance of an inductance 
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dominates over the capacitive impedance. If inductors are not present in the circuit, then R dominates 

over 
1

CS
 as S tends to infinity. Thus, Z(S ) 5 LS or R as S tends infinity.

 ∴ n – m 5 0 or 1

 If N(S ) is a driving-point impedance.

  On the other hand, the admittance of an inductance 
1

LS
 tends to zero as S tends to infinity. 

Similarly, the admittance of a capacitance CS tends to infinity as S tends to infinity. Therefore, CS 

dominates over 
1

LS
 as S tends to infinity. If the network does not contain capacitors then the 

resistance R dominates over 
1

LS
 at higher frequencies.

 ∴ If N(S ) is a driving-point admittance function, m – n 5 0 or 1.

 Therefore, |n – m| 5 0 or 1

7. The lowest degree terms in P(S ) and Q(S ) may differ in degree by zero or one only.

  As S approaches zero, the higher power of S tends to zero faster than S, therefore N(S ) can be 

approximated by

N S
a S a

b S b

n n

m n m

( )=
+
+

-

-

1  (15.69)

 The impedance of an inductance ‘LS’ approaches zero as S tends to zero while that of a capacitor 
1

CS
 approaches infinity as S tends to zero. 

1

CS
dominates over LS as S tends to zero. Therefore, for 

Z(S ), the capacitance dominates over an inductance as S tends to zero. If the network does not contain 

capacitors then R dominates over LS and S tends to zero. Thus, the network can be replaced by R or 
1

CS
 if Z(S ) is of interest. Similarly, for Y S

R LS
( ); ,

1 1
 dominate over CS as S tends to zero. Therefore, 

for purposes of Y(S ), the network is just a conductance or an inductance. Thus, the network is just one 

inductor or one capacitance or one resistance as S tends to zero.

 ∴ N(S ) is of the form K1 or K2 S or 
K

S

3
 where K1, K2, K3 are constants.

 Hence, the lowest degree of P(S ) and Q(S ) can differ at most in one degree.

8. P(S ) and Q(S ) cannot have missing terms unless all even or all odd degree terms are absent.

 We know that

P(S ) 5 a0 S
n 1 a1 S

n – 1 1 ... 1 ai 1 1 S
n –i – 1 1 ai S

n – i. 1 ... 1 an – 1 S 1 an

and Q(S ) 5 b0 S
m 1 b1 S

m – 1 1 ... 1 bi 1 1 S
m – i 21 1 bi S

m – i 

1 ... 1 bm – 1 S 1 bm  (15.70)

  The above requirement means that for any i, ai or bi cannot be zero unless aj 5 0 or bj 5 0 

for all i $ j. The only exception to this rule is when all even or all odd powers of S are missing. To 

understand this, consider the network under study contains only elements like R, L, C, M whose 

transfer impedances are R, LS, 
1

CS
, MS respectively.

  Also, R, L, C, M are positive quantities. A combination of RL or RC will give rise to a term of 

the form (aS 1 b) or a
b

S
+ . Since a

b

S

aS b

S
+







=

+
 means (aS 1 b) in the numerator and S in the 

denominator. Similarly, R, L, C give rise terms of the form (aS 2 1 bS 1 C ) and a combination of only L 
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and C gives rise to a term of the form (aS 2 1 b). Therefore, when two such factors are multiplied, since 

all the coefficients in each term are positive, in the expansion of the product no term can be zero. If all the 

terms are of the form (aS 2 1 b), then their product contains only even powers of S. If this is multiplied 

by S, the resulting function contains only odd powers of S. Given a ratio of polynomials N(S ), these 

properties can therefore be used to find out if N(S ) represents a driving point function of a network.

15.10 PROPERTIES OF TRANSFER FUNCTIONS

1. The transfer function is a ratio of polynomials in S.

2. The coefficients of P(S ), the numerators polynomial and of Q(S ), the denominator polynomial must 

be real. Therefore, all poles and zeros, if complex, must occur in conjugate pairs.

3. The real parts of all poles must be negative and any pole on the jv-axis must be simple. As in the case 

of driving-point functions, this follows from the stability considerations.

4. Since poles of the transfer function are zeros of Q(S ), it follows that the zeroes of Q(S ) must lie in the 

negative half plane and any zero lying on the jv-axis must be simple.

  Let P1, P2, ... Pm be the zeros of Q(S )

  Then Q(S ) 5 K ? (S – P1) (S – P2) (S – P3) ... (S – Pm)

  Since all poles have negative real parts and complex poles occur in conjugate pairs, the product 

of these factors contains all powers of S whose 

coefficients are positive. Therefore, Q(S ) does 

not have missing terms unless all even or all odd 

powers are missing. Since there are no restrictions 

on the zeroes of the transfer function, P(S ) can 

have missing terms. Also coefficients of powers of 

S in P(S ) can be negative.

5.  For G(S ) and a(S ), the degree of the numerator 

polynomial P(S ) is less than or equal to the degree 

of Q(S ).

 To prove this, we use the fact that a two-port net-

work can be  represented by an equivalent T(star) 

or P (delta) shown in Fig. 15.27.

 Let a source of known voltage V1(S ) be applied to a T-

network of the port 119. Let a source of known cur-

rent I1(S ) be applied to the p-network at 111 and 

221 be short-circuited, then assuming I2(S ) 5 0.

G S
V S

V S

Z S

Z S Z S
( )

( )

( )

( )

( ) ( )
= =

+
2

1

2

1 2

 (15.71)

 and a( )
( )

( )

( )

( ) ( )
S

I S

I S

Y S

Y S Y S
= =

+
2

1

2

1 2

 (15.72)

Since Z1(S ), Z2(S ), Z3(S ); Y1(S ), Y2(S ), and Y3(S ) can be thought off as the driving point functions of some 

one ports, they have to satisfy the properties of driving point immittance functions.

Fig. 15.27

LO 6
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Since Z1(S ) and Z2(S ) are ratio of polynomials,

 Let Z S K
S S S

S S S

Z S
K

n

m
1

1 2 1

1 2 1

2
2

( )
( )( ) ( )

( )( ) ( )

( )

=
+ + +
+ + +

=

a a a

  

…

…

(( )( ) ( )

( )( ) ( )

S r S r S r

S S S

n

m

+ + +
+ + +

1 2 2

1 2 2

…

…d d d

 (15.73)

 (15.74)

Substituting these expression in G(S ),

G S
Z S

Z S Z S

K S S S S Sn m

( )
( )

( ) ( )

( )( ) ( )( ) ( )

=
+

=
+ + + + +

2

1 2

1 1 2 1 1 2a a a d d… …

(( )( ) ( )( ) ( )( )

( )( ) (

S S S S S S

S S S

n m+ + + + + +

+ + +

a a a d d 

  

1 2 1 1 2 1

2 3

… …

… nn mS S2 1 1)( ) ( )+ + …

 (15.75)

  Let P(S ) denote the numerator polynomial of G(S ) and Q(S ), the  denominator polynomial of 

G(S ).

  Then degree of P(S ) 5 n1 1 m2 and degree of Q(S ) 5 n1 1 m2 or n2 1 m1, whichever is greater.

  Thus, if n1 1 m2 . n2 1 m1, the degree of P(S ) equals the degree of Q(S ).

  If n1 1 m2 , n2 1 m1, degree of Q(S ) 5 n2 1 m1 and the degree of P(S ) is less than the degree 

of Q(S ).

  Similarly, assuming Y1(S ) and Y2(S ) as ratios of polynomials and substituting those expressions 

in a(S ), it can be shown that the degree of the numerator of a(S ) is less than or equal to the degree of 

the denominator.

(f ) The degree of the numerator polynomial of Z21(S ) or Y21(S ) is less than or equal to the degree of the 

denominator polynomial plus one.

  Referring to the T and p equivalent networks of two-port network shown in Fig. 15.27,

Z S
V S

I S

Z S I S

I S
Z S

Y S
I S

I

21
2

1 0

2 1

1
2

21
2

2

( )
( )

( )

( ) ( )

( )
( )

( )
( )

= = =

=

=

and
VV S

V S I S

I S
Y S

V1 0

2 1

1
2

2

( )

( ) ( )

( )
( )

=

=
-

=-

 (15.76)

 (15.77)

Thus, the highest degree of the numerator of Z21(S ) equals the highest degree of the numerator of Z2(S ). 

But as Z2(S ) is a driving-point impedance, the highest degree of the numerator of Z2(S ) is the degree of 

denominator plus one. Therefore, the highest degree of the numerator of Z12(S ) is the degree of its denominator 

plus one. Similarly, since Y2(S ) is a driving-point admittance, the highest degree of the numerator or Y21(S ), 

which is also the numerator of Y2(S ) is equal to the degree of the denominator plus one.

15.11 NECESSARY CONDITIONS FOR A DRIVING POINT FUNCTION

The restrictions on pole and zero locations in the driving-point function with common factors in P(s) and Q(s) 

cancelled are listed below.

1. The coefficients in the polynomials P(s) and Q(s) of network function N(s) 5 P(s)/Q(s) must be real 

and positive.

LO 6



S-Domain Analysis 689 

2. Complex or imaginary poles and zeros must occur in conjugate pairs.

3. (a) The real parts of all poles and zeros must be zero, or negative.

 (b) If the real part is zero, then the pole and zero must be simple.

4. The polynomials P(s) and Q(s) may not have any missing terms between the highest and the lowest 

degrees, unless all even or all odd terms are missing.

5. The degree of P(s) and Q(s) may differ by zero, or one only.

6. The lowest degree in P(s) and Q(s) may differ in degree by at the most one.

15.12 NECESSARY CONDITIONS FOR TRANSFER FUNCTIONS

The restrictions on pole and zero location in transfer functions with common factors in P(s) and Q(s) cancelled 

are listed below.

1. (a)  The coefficients in the polynomials P(s) and Q(s) of N(s) 5 P(s)/Q(s) must be real.

 (b)  The coefficients in Q(s) must be positive, but some of the coefficients in P(s) may be negative.

2. Complex or imaginary poles and zeros must occur in conjugate pairs.

3. The real part of poles must be negative, or zero. If the real part is zero, then the pole must be simple.

4. The polynomial Q(s) may not have any missing terms between the highest and the lowest degree, 

unless all even or all odd terms are missing.

5. The polynomial P(s) may have missing terms between the lowest and the highest degree.

6. The degree of P(s) may be as small as zero, independent of the degree of Q(s).

7. (a)  For the voltage transfer ratio and the current transfer ratio, the maximum degree of P(s) must 

equal the degree of Q(s).

 (b)  For transfer impedance and transfer admittance, the maximum degree of P(s) must equal the 

degree of Q(s) plus one.

Frequently Asked Questions linked to LO 6

rrr14-6.1 Explain the complete procedure for making a bode plot for different types of transfer functions.

rrr

rrr

s

R

L

C
RInput

Fig. Q.3

rrr s

rrr14-6.5 Write the necessary conditions for driving-point function and transfer function.

LO 6
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15.13 TIME-DOMAIN RESPONSE FROM POLE ZERO PLOT

For the given network function, a pole zero plot can be drawn which gives useful 

information regarding the critical frequencies. The time-domain response can also be 

obtained from pole zero plot of a network function. Consider an array of poles shown in 

Fig. 15.28.

In Fig. 15.28, s1 and s3 are complex conjugate poles, whereas s2 and s4 are 

real poles. If the poles 

are real, the quadratic function is

s sn n
2 22 1+ + >dv v dfor

where d is the damping ratio and vn is the 

undamped natural frequency.

The roots of the equation are

 
s s n n2 4

2 1 1, ;=- ± - >dv v d d

For these poles, the time domain response is given by

 i(t) 5 k2e
s2t 1 k4e

s4t

The response due to the pole s4 dies faster compared to that of s2 as 

shown in Fig. 15.29.

s1 and s3 constitute complex conjugate poles. If the poles are 

complex conjugate, then the quadratic function is

s2 1 2dvns 1 v2
n for d , 1

The roots are s1, s jn n1
21 1* =- ± - <dv v d dfor

For these poles, the time domain response is given by

 

i t k e k e

ke

n n n n

n

t j t t j t

t
n

( )

sin

*= +

=

- + -( ) - - -( )

-
1

1

1

12 2
dv v d dv v d

dv
v 11 2-( )d t

From the above equation, we can conclude that the response for the conjugate poles is damped sinusoid. 

Similarly, s3, s3
* are also a complex conjugate pair. 

Here, the response due to s3 dies down faster than that 

due to s1 as shown in Fig. 15.30.

Consider a network having transfer admittance Y(s). 

If the input voltage V(s) is applied to the network, the 

corresponding current is given by

I s V s Y s
P s

Q s
( ) ( ) ( )

( )

( )
= =

This may be taken as

I s H
s s s s s s

s s s s s s

a b n

m

( )
( )( ) ( )

( )( ) ( )
=

- - -
- - -

…

…1 2

where H is the scale factor.

Fig. 15.28

LO  7  
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By taking the partial fractions, we get

I s
k

s s

k

s s

k

s s

m

m

( )=
-

+
-

+ +
-

1

1

2

2

…

The time-domain response can be obtained by taking the inverse transform

 
i t

k

s s

k

s s

k

s s

m

m

( )=
-

+
-

+…+
-













-
L

1 1

1

2

2

Any of the above coefficients can be obtained by using the Heavisides method.

To find the coefficient kl,

 

k H
s s s s s s

s s s s s s
s sa b n

m
l

s

1
1 2

=
- - -
- - -












-

=

( )( ) ( )

( )( ) ( )
( )

…

…

ssl

Here, sl, sm, sn are all complex numbers, the difference of (sl – sn) is also a complex number.

(sl – sn) 5 Mln e jfln

 Hence k H
M M M

M M M
ela lb ln

l l lm

j la lb ln l l

1
1 2

1 2= × + + + - + +…

…

… …( ) (f f f f f ++flm )

Similarly, all coefficients k1, k2, , km may be obtained, which constitute the magnitude and phase angle.

The residues may also be obtained by pole zero plot in the following way.

1. Obtain the pole zero plot for the given network function.

2. Measure the distances Mla, Mlb, , Mln of a given pole from each of the other zeros.

3. Measure the distances Ml1, Ml2, , Mlm of a given pole from each of the other poles.

4. Measure the angle fla, flb, ..., fln of the line joining that pole to each of the other zeros.

5. Measure the angle fl1, fl2, ..., flm of the line joining that pole to each of the other poles.

6. Substitute these values in required residue equation.

15.14 AMPLITUDE AND PHASE RESPONSE FROM POLE ZERO PLOT

The steady-state response can be obtained from the pole zero plot, and it is given by

N( jv) 5 M(v)e jf(v)

where M(v) is the amplitude

f(v) is the phase

These amplitude and phase responses are useful in the design and analysis of network functions. For different 

values of v, corresponding values of M(v) and f(v) can be obtained and these are plotted to get amplitude and 

phase response of the given network.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 7
rrr15-7.1 For the given network function, draw the pole zero diagram and hence, obtain the time domain response. Verify 

the result analytically.

I s
s

s s s
( )

( )( )
=

+ + +

5

3 2 22

LO 7
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Frequently Asked Questions linked to LO 7

r V s
3

1 4

s

s s( ) ( )+ +

S

rr I s I s
S

s s s+ + +

rr RLC R L C F

rr I s I s
s

s s+ +

s

rr

 H s s s s s

x t e t

r Y S i t

Y S

2� 2 H

1 F

4 Wi t( )

Fig. Q.6

15.15 STABILITY CRITERION FOR AN ACTIVE NETWORK

Passive networks are said to be stable only when all the poles lie in the left half of 

the s-plane. Active networks (containing controlled sources) are not always stable. 

Consider transformed active network shown in Fig. 15.31.

By applying the Millman theorem, we get

V s
V s kV s

s s

s V s kV s

s s

2
1 2

1 2

2

6 5

6 5

( )
( ) ( )

/

[ ( ) ( )]

=
+

+ +

=
+

+ +

V2(s) [s2 1 6s 1 5] – ksV2(s) 5 sV1(s)

 V2(s) [s2 1 (6 – k)s 1 5] 5 sV1(s)

 ∴ =
+ - +

V s

V s

s

s k s

2

1
2 6 5

( )

( ) ( )

From the above transformed equation, the poles are dependent upon the value of k.

Fig. 15.31
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The roots of the equation are

 
s

k k
=
- - ± - - ×( ) ( )6 6 4 5

2

2

For k 5 0, the poles are at –1, –5, which lie on the left half of the s-plane. As k increases, the poles move 

towards each other and meet at a point ( )6 20 02- - =k , when k 5 1.53 or 10.47. The root locus plot is 

shown in Fig. 15.32.

The root locus is obtained from the characteristic 

equation s2 1 (6 – k)s 1 5 5 0. As the value of 

k increases beyond 1.53, the locus of the root is 

a circle. The poles are located on the imaginary 

axis at 6j2.24 for k 5 6. At –2.24, the poles are 

coincident for k 5 1.53 while at 12.24, the poles 

are coincident for k 5 10.47. When k . 10.47, the 

poles again lie on the real axis but remain on the 

right half of the s-plane, one pole moving towards 

the origin and the other moving towards infinity. 

From this, we can conclude, as long as k is less 

than 6, the poles lie on the left half of the s-plane 

and the system is said to be stable. For k 5 6, the 

poles lie on the imaginary axis and the system is 

oscillatory in nature. For values of k greater than 6, 

the poles lie on the right half of the s-plane. Then the system is said to be unstable.

15.16 ROUTH CRITERIA

The locations of the poles gives us an idea about stability of the active network. Consider the denominator 

polynomial

Q(s) 5 b0 s
m 1 b1s

m – 1 1  ... 1 bm (15.78)

To get a stable system, all the roots must have negative real parts. There should not be any positive or zero 

real parts. This condition is not sufficient.

Let us consider the polynomial

s3 1 4s2 1 15s 1 100 5 (s 1 5) (s2 – s 1 20)

In the above polynomial, though the coefficients are positive and real, the two roots have positive 

real parts. From this, we conclude that the coefficients of Q(s) being positive and real is not a sufficient 

condition to get a stable system. Therefore, we have to seek the condition for stability which is necessary 

and sufficient.

Consider the polynomial Q(s) 5 0. After factorisation, we get

b0 (s – s1) (s – s2)  ... (s – sm) 5 0 (15.79)

Fig. 15.32

LO 8
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On multiplication of these factors, we get

Q(s) 5 b0s
m – b0(s1 1 s2 1 ... 1 sm)sm – 1

 1 b0(s1s2 1 s2s3 1 ... ) sm – 2

 1 b0 (–1)m (s1s2 ... sm) 5 0 (15.80)

Equating the coefficients of Eqs (15.78) and (15.80), we have

b

b
s s sm

1

0
1 2= + + +-( )…  (15.81)

  5 - sum of the roots

b

b
s s s s2

0
1 2 2 31= + +( )…  (15.82)

  5 sum of the products of the roots taken two at a time

b

b
s s s s s s3

0
1 2 3 2 3 4=- + +( )…  (15.83)

  5 - sum of the products of the roots taken three at a time.

( ) ( )- =1
0

1 2 3
m m

m

b

b
s s s s…  5 product of the roots (15.84)

If all the roots have negative real parts, then from the above equations, it is clear that all the coefficients 

must have the same sign. This condition is not sufficient due to the fact that the zero value of a coefficient 

involves cancellation, which requires some root to have positive real parts.

The Routh criterion for stability is discussed below. Consider a polynomial

Q(s) 5 b0s
m 1 b1s

m – 1 1 b2s
m – 2 1  ... 1 bm

Taking first-row coefficients and second-row coefficients separately, we have

b0 b2 b4 ...

b1 b3 b5 ...

Now, we complete the Routh array as follows.

For m 5 5,

s b b b

s b b b

s c c

s d d

s e

s f

5
0 2 4

4
1 3 5

3
1 2

2
1 2

1
1

0
1
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where c1, c2, d1, d2, el, f1 are determined by the algorithm given below.

c

b b

b b

b

b b b b

b
1

0 2

1 3

1

1 2 0 3

1

= =
-

c

b b

b b

b

b b b b

b
2

0 4

1 5

1

1 4 0 5

1

= =
-

d

b b

c c

c

c b b c

c
1

1 3

1 2

1

1 3 1 2

1

= =
-

d

b b

c

c

b c

c
2

1 5

1

1

5 1

1

0 0
= =

-

e

c c

d d

d

c d c d

d
1

1 2

1 2

1

2 1 1 2

1

= =
-

f

d d

e

e

d e

e
1

1 2

1

1

2 1

1

0 0
= =

-

In order to find out the element in the kth row and jth column, it is required to know the four elements. These 

elements in the row (k – 1) and the row (k – 2) just above the elements are in the column 1 of the array and the 

(J 1 1) column of the array. The product of the elements joined by a line with positive slope has positive sign while 

the product of elements joined with a line with negative slope has a negative sign. The difference of these products 

is divided by the element of the column 1 and row (k – 1). The above process is repeated till m 1 1 rows are found 

in the Routh array.

According to the Routh–Hurwitz theorem, the number of changes in the sign of the first column to the right 

of the vertical line in an array moving from top to bottom is equal to the number of roots of Q(s) 5 0 with 

positive real parts. To get a stable system, the roots must have negative real parts.

According to the Routh-Hurwitz criterion, the system is stable, if and only if, there are no changes in signs 

of the first column of the array. This requirement is, both the necessary and sufficient condition for stability.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 8
rrr15-8.1 For the given denominator polynomial of a network function, verify the stability of the network 

using Routh criteria.

  Q(s) 5 s4 1 s3 1 2s2 1 2s 1 12

rrr15-8.2 Apply the Routh criterion to the following equations and determine the number of roots (i) with 

positive real parts, (ii) with zero real parts, and (iii) with negative real parts:

  (a) 6s3 1 2s2 1 5s 1 2 5 0

  (b) s6 1 5s5 1 13s4 1 21s3 1 20s2 1 16s 1 8 5 0

  (c) s6 – s5 – 2s4 1 4s3 – 5s2 1 21s 1 30 5 0
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Frequently Asked Questions linked to LO 8
r

rr P s s s s s

r

 P s s s s s s

 (a) With positive real roots

 (b) With zero real parts

Additional Solved Problems

PROBLEM 15.1

For the two-port network shown in Fig. 15.33, determine the driving-point impedance z11(s), the transfer 

impedance z21(s) and the voltage transfer ratio G21(s).

Fig. 15.33

Solution� The transformed circuit is shown in Fig. 15.34.

Fig. 15.34

From the above figure, by application of Kirchhoff’s laws, we get

V s s I s sI s

I s s
s

I s s

V

1 1 2

2 1

5 2 2

0 2 2
2

2

( )= +( ) ( )- ( )

= ( ) + +






- ( )

22 2

2
s I s

s
( )= ( )

 (15.85)

 (15.86)

 (15.87)
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From Eq. (15.86),

I s
s

s s
I s2

2

2 1

2

2 2 2
( )=

+ +
( )  (15.88)

Substituting Eq. (15.88) in Eq. (15.85),

V s s I s
s

s s
I s1 1

3

2 15 2
4

2 2 2
( )= +( ) ( )-

+ +
( )

The driving-point impedance,

Z s
V s

I s

s s

s s
11

1

1

2

2

7 7 5

1
( )=

( )

( )
=

+ +

+ +

From Eqs (15.87) and (15.88),

V s
s

s s
I s2 2 1

4

2 2 2
( )=

+ +
( )

The transfer impedance at the port 2 is

Z s
V s

I s

s

s s
21

2

1
2

2

1
( )=

( )

( )
=

+ +

The voltage transfer ratio is

G s
V s

V s

s

s s
21

2

1
2

2

7 7 5
( )=

( )

( )
=

+ +

PROBLEM 15.2

For the network shown in Fig. 15.35, determine the following transfer functions: (a) G21(s) (b) Z21(s).

Fig. 15.35

Solution� The transformed circuit is shown in Fig. 

15.36.

The voltage across the port 2 is

V s V s
s

s

s

s

2 1

2

2

2 2

1

( )= ( )

+
+

/

Fig. 15.36
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The voltage transfer ratio at the port 1 is

 

G s
V s

V s

s

s
12

1

2

2

2

1

2 1
( )=

( )

( )
=

+

+

The voltage at the port 1 is

 
V s I s

s
1

2( )= ( )

where
1
V s

I s
s s

s

s

s s

I s( )=
( )





×







+
+
+

= (
2

2

2

2 2

2 2

1

2
)) +( )

+( )
4 1

6 4

2

2

s

s s

The transfer impedance at the port 1 is

 

Z s
V s

I s

s

s s
12

1

2

2

2

1

3

2
1

( )=
( )

( )
=

+

+








PROBLEM 15.3

For the network shown in Fig. 15.37, determine transfer 

impedance Z21(s) and Y21(s). Also find the transfer voltage 

ratio G21(s) and the transfer current ratio a21(s).

Solution� The transformed circuit is shown in Fig. 15.38.

The voltage at the port 1 is

 

V s I s
s

s
1 1 2

5

1
( )= ( )

+

The voltage at the port 2 is

 

V s I s
s

s
2 1 2

5

1
( )= ( )

+

The voltage transfer ratio at the port 2 is

 

G s
V s

V s
21

2

1

1( )=
( )

( )
=

The transfer impedance at the port 2 is

 

Z s
V s

I s

s

s
21

2

1
2

5

1
( )=

( )

( )
=

+

Fig. 15.38

Fig. 15.37
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The transfer admittance at the port 1 is

Y s
I s

V s

s

s
12

1

2

2 1

5
( )=

( )

( )
=

+

PROBLEM 15.4

For the given network function, draw the pole zero diagram and hence obtain the time-domain response. 

Verify this result analytically.

I s
s

s s
( )=

+( ) +( )
3

1 3

Solution� In the network function,

 

P s s

s s

( )=
+( ) +( )

3

1 3and Q(s) =

By taking partial fractions, I(s) can be written as

I s
A

s

B

s
( )=

+
+

+1 3

Therefore, the time-domain response is

 i(t) 5 Ae2t 1 Be23t

Here, the coefficients A and B are determined by using the pole zero plot as shown in Fig.15.39.

Consider the pole at –1

The distance between zero to pole at –1 is

 M01 5 1

The angle between the line joining the pole at –1 to the zero is

 f01 5 180°

Similarly, the distance between the pole at –3 to the pole to –1 is

 M31 5 2

The angle between the line joining the pole at –1 to the pole at –3 

is

 f31 5 0°

 H 5 3

Hence,  = 

Similarly,  = 

A H
M e

M e

B H
M e

M e

j

j

j

01

31

03

13

01

31

03

3

2

f

f

f

=
-

jj

M

M

f

f

f

13

9

2

3 180

2 180

03

13 13

=

= = °

= = °

where 03 ;

;

Fig. 15.39
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Substituting these values, we get

 
i t e et t( )=

-
+









- -3

2

9

2

3 A

Analytically,

 

I s
s

s s
( )=

+( ) +( )
3

1 3

By taking partial fractions,

 

I s
A

s

B

s

A I s s

B I s s

s

s

( )

( )( )

( )( )

=
+
+

+

= + =
-

= + =

=-

=-

1 3

1
3

2

3
9

2

1

3

By substituting these values in the above equation ,

 

I s
s s

( )=
-
+( )

+
+( )

3

2 1

9

2 3

Taking inverse transform, we get

 
i t e et t( )=

-
+- -3

2

9

2

3

PROBLEM 15.5

For the given denominator polynomial of a network function, verify the stability of the network using Routh 

criteria.

 Q(s) 5 s5 1 3s4 1 4s4 1 5s2 1 6s 1 1

Solution� The Routh array for this polynomial is given below.

s

s

s

s

s

5

4

3

2

1

1 4 6

3 5 1

2 33 5 67

2 3 1

6 68

. .

.

.

-

Since there is –ve sign in the first column, the system is unstable.

PROBLEM 15.6

Draw the pole zero diagram for the given network function and hence, obtain n(t).

V s
s s

s s
( )

( )

( )( )
=

+
+ +
4 2

1 3
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Solution� In the network function,

 p(s) 5 4s(s 1 2)

 and Q(s) 5 (s 1 1) (s 1 3) 5 0

By taking partial fractions, we have

V s
k

s

k

s
( )=

+
+

+
1 2

1 3

The time-domain response can be obtained by taking the inverse transform

v(t) 5 k1 e
–t 1 k2 e

–3t

Here, the coefficients k1 and k2 may be determined 

by using the pole zero plot as shown in Fig. 15.40.

To determine k1, we have to find out the distances 

and phase angles from other zeros and poles to that 

particular pole.

Hence, k H
M M e

M e

j

j1
01 21

31

01 21

31

=
+( )

( )

f f

f

where M01 and M21 are the distances between the 

zeros at 0 and –2 to the pole at –1, f01, f21 are the 

phase angle between the corresponding zeros to the pole.

Similarly, M31 and f31 are the distance and phase angle, respectively, from the pole at –3 to the pole at –1.

 ∴ M01 5 1; f01 5 180°

 M21 5 1; f21 5 0

 M31 5 2; f31 5 0°

 ∴ k e j
1

1804
1 1

2
= ×

× °( )

 k1 5 –2

Similarly,

 

k H
M M

M
e

j
2

03 23

13

03 23 13= + + -( )f f f

 where M03 5 3, f03 5 180°

M23 5 1, f23 5 180°

M13 5 2, f13 5 180°

 ∴ =
× × + -k e j

2
180 180 1804 3 1

2

( )

 k2 5 –6

Substituting the values, we get

 (t) 5 (–2e–t – 6e–3t) V

Fig. 15.40
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PROBLEM 15.7

For the given network function, draw the pole zero diagram and hence, obtain the time-domain response i(t).

I s
s

s s s
( )

( )( )
=

+ + +
5

1 4 82

Solution� In the network function,

 P (s) 5 5s

 Q(s) 5 (s 1 1) (s2 1 4s 1 8) 5 0

By taking the partial fraction expansion of I(s), we get

 I s
k

s

k

s j

k

s j
( )

( ) ( )
=

+
+

+ +
+

+ -
1 2 3

1 2 2 2 2
 (15.89)

The time-domain response can be obtained by taking the inverse transform as under,

i(t) 5 k1e
–t 1 k2 e

–(2 1 j2)t 1 k2 e
–(2 – j2)t (15.90)

To find the value of k1, we have to find out the 

distances and phase angles from other zeros and poles 

to that particular pole as shown in Fig. 15.41.

Hence, k
H M e

M M e

j

p p

j p p
1

01

11 21

01

11 21

=
+





( )f

f f

 M01 5 1; f01 5 180°

 Mp11 5 5 ; fp11 5 –63.44°

 Mp21 5 5 ; fp21 5 63.44°

 ∴ k
e

e

j

j1

180

63 44 63 44

5 1

5 5
=

×

×

°

- °+ °( . . )

 k1 5 –1

Similarly, k
HM e

M M e

p

j

p p p

j

p

p p p
2

0

1

1

0 1

1 2 1

1 1 2 1

=
+

f

f f( )

 M0p1
 5 8 ; f0p1

 5 135°

 M1p1
 5 5 ; f1p1

 5 116.56°

 Mp1 p2
 5 4; fp2

 p
1
 5 90°

 Hence, k e j
2

135 116 56 905 8

5 4
=

×

×
°- °- °( . )

Fig. 15.41
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 5 1.58 e–j(71.56°)

 

k
H M e

M M e

e

e

p

j

p p p

j

j

j

p

p p p
2

0

1

135

2

0 2

2 1 2

1 2 1 2

5 8

5 4

*

( )

( )

(

=

=
×

×

+

- °

-

f

f f

1116 56 90

71 561 58

. )

..

°- °

°= e j

If we substitute the values in Eq. (15.90), we get

i(t) 5 [–1e–t 1 1.58 e–j(71.56°) e–(2 1 j2)t 1 1.58e j(71.56°) e–(2 – j2)t] A

PROBLEM 15.8

For the given denominator polynomial of a network function, verify the stability of the network by using the 

Routh criterion.

Q(s) 5 s3 1 2s2 1 8s 1 10

Solution� The Routh array for this polynomial is given below.

s

s

s

s

3

2

1

0

1 8

2 10

3

10

There is no change in sign in the first column of the array. Hence, there are no roots with positive real parts. 

Therefore, the network is stable.

PROBLEM 15.9

For the given denominator polynomial of a network function, verify the stability of the network using the 

Routh criterion.

Q(s) 5 s3 1 s2 1 3s 1 8

Solution� The Routh array for this polynomial is given below.

s

s

s

s

3

2

1

0

1 3

1 8

5

8

-

+
There are two changes in sign of the first column, one from 1 to –5 and the other from –5 to 18. Therefore, the 

two roots have positive real parts. Hence, the network is not stable.

PROBLEM 15.10

For the given denominator polynomial of a network function, determine the value of k for which the network 

to stable.

Q(s) 5 s3 1 2s2 1 4s 1 k
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Solution� The Routh array for the given polynomial is given below.

s

s k

s
k

s k

3

2

1

0

1 4

2

8

2

-

When k , 8, all the terms in the first column are positive. Therefore, there is no sign change in the first 

column. Hence, the network is stable. When k . 8, the 8 – k/2 is negative. Therefore, there are two sign 

changes in the first column. There are two roots which have positive real parts. Hence, the network is unstable.

When k 5 8, the Routh array becomes

s

s

s

s

3

2

1

0

1 4

2 8

8

a

The element in the first column and third row is zero. But we can take it as a small number. In this case, 

there are no changes in the sign of the first column. Hence, the network is stable.

PROBLEM 15.11

Apply the Routh criterion to the given polynomial and determine the number of roots (a) with positive real 

parts, (b) with zero real parts, and (c) with negative real parts.

Q(s) 5 s4 1 4s3 1 8s2 1 12s 1 15

Solution� The Routh array for the polynomial is

s

s

s

s

s

4

3

2

1

0

1 8 15

4 12

5 15

0 0

? ?

In this case, all the elements in the fourth row have become zero and the array cannot be completed.

The given equation is reduced by taking the new polynomial from the third row

 5s2 1 15 5 0

5(s2 1 3) 5 0

Hence, the other polynomial

Q s
s s s s

s
2

4 3 2

2

4 8 12 15

5 3
( )

( )
=

+ + + +

+

The equation reduces to the following polynomial.

(s2 1 3) (s2 1 4s 1 5) 5 0
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The roots of the equation s2 1 3 5 0 are s =± j 3

These two roots have zero real parts.

Again, forming the Routh array for the polynomial,

s 2 + 4s + 5 = 0

s

s

s

2

1

0

1 5

4 0

5

There are no changes in the sign of the first column. Hence, all the roots have negative real parts. Therefore, 

out of the four roots, two roots have negative real parts and two roots have zero real parts.

ANSWERS TO PRACTICE PROBLEMS

15-4.1 Z s
s s s

s s s

Y s
s s s

s s s

( )=
+ + +

+ + +

( )=
+ + +

+ + +

2 3 2 1

2 3 2

2 3 2

2 3 2 1

3 2

3 2

3 2

3 2

15-4.2 G s
s s

s s
21

2

2

2 1

3 1
( )=

+ +

+ +

15-4.3 z s
s s

s
d
( )=

+ +
+

10 27 30

5 4

2

15-5.1 G21 2

2

7 7 5
( )S

s

s s
=

+ +

15-5.2 The zeros are lying at s 5 –0.5 and s 5 –0.04

15-5.3 v t e et t( )=- +- -8 122 3

15-5.4 1
1

3

2

15

3 3 5- +- - -e et t/ ( )/

15-7.1 The poles are lying at s 5 –0.98 and s 5 –0.02

15-8.2 i (t) 5 4.5e23t – 1.5e2t

Objective-Type Questions

rrr15.1 The driving-point impedance is defined as

 (a) the ratio of transform voltage to transform current at the same port

 (b)  the ratio of transform voltage at one port to the transform current at the other port

 (c) both (a) and (b)

 (d) none of the above

rrr15.2 The transfer impedance is defined as

 (a) the ratio of transform voltage to transform current at the same port

 (b)  the ratio of transform voltage at one port to the current transform at the other port

 (c) both (a) and (b)

 (d) none of the above

rrr15.3 The function is said to be having simple poles and zeros only if

 (a) the poles are not repeated

 (b) the zeros are not repeated

 (c) both poles and zeros are not repeated

 (d) none of the above
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rrr15.4 The necessary condition for a driving-point function is

 (a) the real part of all poles and zeros must not be zero or negative

 (b)  the polynomials P(s) and Q(s) may not have any missing terms between the highest and lowest degree 

unless all even or all odd terms are missing

 (c) the degree of P(s) and Q(s) may differ by more than one

 (d)  the lowest degree in P(s) and Q(s) may differ in degree by more than two

rrr15.5 The necessary condition for the transfer functions is that

 (a) the coefficients in the polynomials P(s) and Q(s) must be real

 (b) coefficients in Q(s) may be negative

 (c) complex or imaginary poles and zeros may not conjugate

 (d) if the real part of pole is zero, then that pole must be multiple

rrr15.6 The system is said to be stable, if and only if

 (a) all the poles lie on the right half of the s-plane 

 (b) some poles lie on the right half of the s-plane

 (c) all the poles does not lie on the right half of the s-plane

 (d) none of the above

For interactive quiz with answers,
scan the QR code given here
OR
visit
http://qrcode.flipick.com/index.php/273



16.1 TWO-PORT NETWORK

Generally, any network may be represented schematically by a rectangular box. 

A network may be used for representing either source or load, or for a variety of 

purposes. A pair of terminals at which a signal may enter or leave a network is 

called a port. A port is defined as any pair of terminals into which energy is supplied, or from which energy 

is withdrawn, or where the network variables may be measured. One such network having only one pair of 

terminals (1-19) is shown in Fig. 16.1 (a).

p

LEARNING OBJECTIVES

16

LO  1  

Fig. 16.1

(a) (b)



Circuits and Networks708 

A two-port network is simply a network inside a black box, and the network has only two pairs of accessible 

terminals; usually one pair represents the input and the other represents the output. Such a building block is 

very common in electronic systems, communication systems, transmission, and distribution systems. Figure 

16.1(b) shows a two-port network, or a two terminal pair network, in which the four terminals have been paired 

into ports 1-19 and 2-29. The terminals 1-19 together constitute a port. Similarly, the terminals 2-29 constitute 

another port. Two ports containing no sources in their branches are called passive ports; among them are power 

transmission lines and transformers. Two ports containing sources in their branches are called active ports.  

A voltage and current assigned to each of the two ports. The voltage and current at the input terminals are V1 and 

I1; whereas V2 and I2 are specified at the output port. It is also assumed that the currents I1 and I2 are entering 

into the network at the upper terminals 1 and 2, respectively. The variables of the two-port network are V1, V2, 

and I1, I2. Two of these are dependent variables, the other two are independent variables. The number of possible 

combinations generated by the four variables, taken two at a time, is six. Thus, there are six possible sets of 

equations describing a two-port network.

16.2 OPEN-CIRCUIT IMPEDANCE (Z) PARAMETERS

A general linear two-port network defined in Section 16.1 which does not 

contain any independent sources is shown in Fig. 16.2.

The Z-parameters of a two‑port for the positive directions of voltages and 

currents may be defined by expressing the port voltages V1 and V2 in terms of 

the currents I1 and I2. Here, 

V1 and V2 are dependent 

variables, and I1, I2 are 

independent variables. The voltage at port 1‑19 is the 

response produced by the two currents I1 and I2. Thus,

 V1 5 Z11 I1 1 Z12 I2 (16.1)

Similarly, V2 5 Z21 I1 1 Z22 I2 (16.2)

Z11, Z12, Z21, and Z22 are the network functions, and are called impedance (Z ) parameters, and are 

defined by Eqs (16.1) and (16.2). These parameters can be represented by matrices.

We may write the matrix equation as [V ] 5 [Z ] [I ]

where V is the column matrix 5 
V

V

1

2















Z is the square matrix 5 
Z

Z

Z

Z

11

21

12

22















and we may write |I | in the column matrix 5 
I

I

1

2















Thus, 
V

V

Z Z

Z Z

I

I

1

2

11 12

21 22

1

2














=





























Fig. 16.2 

LO  2  
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The individual Z-parameters for a given network can be defined by setting each of the port currents 

equal to zero. Suppose the port 2-29 is left open-circuited, then I2 5 0.

Thus, Z
V

I
I

11
1

1 02

=
=

where Z11 is the driving-point impedance at the port 1-19 with the port 2-29 open circuited. It is called 

the open‑circuit input impedance.

Similarly, Z
V

I
I

21

2

1 0
2

=
=

where Z21 is the transfer impedance at the port 1-19 with the port 2-29 open-circuited. It is also called the 

open‑circuit forward transfer impedance. Suppose the port 1-19 is left open circuited, then I1 5 0.

Thus, Z
V

I
I

12
1

2 01

=
=

where Z12 is the transfer impedance at the port 2-29, with the port 1-19 open- circuited. It is also called 

the open‑circuit reverse transfer impedance.

Z
V

I
I

22
2

2 01

=
=

where Z22 is the open-circuit driving-point impedance at the port 2-29 with the port 1-19 open circuited. It 

is also called the open‑circuit output impedance. The equivalent circuit of the two-port networks governed 

by Eqs (16.1) and (16.2), i.e. open-circuit impedance parameters is shown in Fig. 16.3.

Fig. 16.3

If the network under study is reciprocal or bilateral, then in accordance with the reciprocity principle,

V

I

V

I
I I

2

1 0

1

2 02 1= =

=

or Z21 5 Z12

It is observed that all the parameters have the dimensions of impedance. Moreover, individual parameters 

are specified only when the current in one of the ports is zero. This corresponds to one of the ports being 

open-circuited from which the Z-parameters also derive the name open‑circuit impedance parameters.
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EXAMPLE 16.1

Find the Z‑parameters for the circuit shown in Fig. 16.4.

Fig. 16.4

Solution  The circuit in the problem is a T-network. From Eqs (16.1) and (16.2) we have

V1 5 Z11 I1 1 Z12 I2

V2 5 Z21 I1 1 Z22 I2

When the port b-b9 is open-circuited, Z
V

I
11

1

1

=

where V1 5 I1(Za 1 Zb)

 ∴ Z11 5 (Za 1 Zb)

 

Z
V

I
I

21
2

1 02

=
=

where V2 5 I1 Zb

 ∴ Z21 5 Zb

When the port a-a9 is open-circuited, I1 5 0

Z
V

I
I

22
2

2 01

=
=

where V2 5 I2(Zb 1 Zc)

 ∴ Z22 5 (Zb 1 Zc)

 

Z
V

I
I

12
1

2 01

=
=

where V1 5 I2 Zb

 ∴ Z12 5 Zb

It can be observed that Z12 5 Z21, so the network is a bilateral network which satisfies the principle of 

reciprocity.
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16.3 SHORT-CIRCUIT ADMITTANCE (Y) PARAMETERS

A general two-port network which is considered in Section 16.2 is shown in Fig. 16.5.

Fig. 16.5

The Y-parameters of a two‑port network for the positive directions of voltages and currents may be defined 

by expressing the port currents I1 and I2 in terms of the voltages V1 and V2. Here, I1, I2 are dependent variables 

and V1 and V2 are independent variables. I1 may be considered to be the superposition of two components, 

one caused by V1 and the other by V2.

Thus,

 I1 5 Y11 V1 1 Y12 V2 (16.3)

Similarly, I2 5 Y21 V1 1 Y22 V2 (16.4)

Y11, Y12, Y21, and Y22 are the network functions and are also called the admittance (Y ) parameters. They are 

defined by Eqs (16.3) and (16.4). These parameters can be represented by matrices as follows:

 [I ] 5 [Y ] [V ]

where I
I

I
Y

Y Y

Y Y

V
V

V

I

I

=














=














=




















1

2

11 12

21 22

1

2

1

2

;









=





























Y Y

Y Y

V

V

11 12

21 22

1

2

and

Thus,

The individual Y-parameters for a given network can be defined by setting each port voltage to zero. If we 

let V2 be zero by short-circuiting the port 2-29, then

Y
I

V
V

11
1

1 02

=
=

Y11 is the driving-point admittance at the port 1-19, with the port 2-29 short- circuited. It is also called the 

short‑circuit input admittance.

Y
I

V
V

21
2

1 02

=
=

LO 2
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Y21 is the transfer admittance at the port 1-19 with the port 2-29 short-circuited. It is also called short‑circuited 

forward transfer admittance. If we let V1 be zero by short- circuiting the port 1-19, then

Y
I

V
V

12
1

2 01

=
=

Y12 is the transfer admittance at the port 2-29 with the port 1-19 short-circuited. It is also called the short‑circuit 

reverse transfer admittance.

Y
I

V
V

22
2

2 01

=
=

Y22 is the short-circuit driving-point admittance at the port 2-29 with the port 1-19 short circuited. It is also 

called the short‑circuit output admittance. The equivalent circuit of the network governed by Eqs (16.3) and 

(16.4) is shown in Fig . 16.6.

Fig. 16.6

If the network under study is reciprocal, or bilateral, then

 

I

V

I

V
V V

1

2 0

2

1 01 2= =

=

or Y12 5 Y21

It is observed that all the parameters have the dimensions of admittance which are obtained by short-circuiting 

either the output or the input port from which the parameters also derive their name, i.e. the short‑circuit 

admittance parameters.

EXAMPLE 16.2

Find the Y‑parameters for the network shown in Fig. 16.7.

Fig. 16.7
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Solution  Y
I

V
V

11
1

1 02

=
=

When b-b9 is short-circuited, V2 5 0 and the network looks as shown in Fig. 16.8 (a).

Fig. 16.8 (a) 

 V1 5 I1 Zeq

 Zeq 5 2 V

∴ V1 5 I1 2

 

Y
I

V
11

1

1

1

2
= = 

 

Y
I

V
V

21
2

2 02

=
=

With the port b-b9 short-circuited, − = × =I I
I

2 1
12

4 2

∴ − =I
V

2
1

4

 Y
I

V
V

21
2

1 02

1

4
= = −

=



Similarly, when the port a-a9 is short circuited, V1 5 0 and the network looks as shown in Fig. 16.8 (b).

Fig. 16.8 (b) 

Y
I

V
V

22
2

2 01

=
=

V2 5 I2 Zeq

where Zeq is the equivalent impedance as viewed from b-b9.



Circuits and Networks714 

Zeq =
8

5
V

V I2 2

8

5
= ×

Y
I

V
V

22
2

2 01

5

8
= =

=



Y
I

V
V

12
1

2 01

=
=

With a-a9 short-circuited, − =I I1 2

2

5

Since I
V

2
25

8
=

 
− = × =I V

V
1 2

22

5

5

8 4

 ∴ Y
I

V
12

1

2

1

4
= = − 

The describing equations in terms of the admittance parameters are

I1 5 0.5 V1 – 0.25 V2

I2 5 – 0.25 V1 1 0.625 V2

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 2*
rrr16-2.1 Find the Z-parameters of the network shown in Fig. Q.1.
rrr16-2.2 Determine the impedance parameters for the T‑network shown in Fig. Q.2 and draw the 

Z‑parameter equivalent circuit.

Fig. Q.2

j

Fig. Q.1

*Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category
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rrr16-2.3 Determine the input and output impedances for the Z-parameter equivalent circuit shown in Fig. 

Q.3.

Fig. Q.3

rrr16-2.4 The Z-parameters of a two-port network shown in Fig. Q.4 are Z11 5 5 V; Z12 5 4 V; Z22 5 10 

V; Z21 5 5 V. If the source voltage is 25 V, determine I1,  V2 I2, and the driving-point impedance 

at the input port.

Fig. Q.4

rrr16-2.5 For the network shown in Fig. 

Q.5, determine all four open-

circuit impedance parameters.

rrr16-2.6 Find the inverse transmission 

parameters for the network in 

Fig. Q.6.
rrr16-2.7 Determine the admittance 

parameters for the p-network 

shown in Fig. Q.7 and draw the 

Y-parameter equivalent circuit.

Fig. Q.6 Fig. Q.7

Fig. Q.5
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rrr16-2.8 For the network shown in Fig. Q.8, determine y12 and y21.

Fig. Q.8

rrr16-2.9 For the network shown in Fig. Q.9, determine Y-parameters.

rrr16-2.10 Using PSpice, obtain g-parameters of the two-port network shown in Fig. Q.10.

Fig. Q.9 Fig. Q.10

rrr16-2.11 Find Y-parameters of the network shown in Fig. Q.11.

Fig. Q.11

V1
V2

I1 I2

rrr16-2.12 Find Z‑ and Y-parameters of the given -network. (Fig. Q. 12)

rrr16-2.13 Find the Y-parameters of the two-port network shown in Fig. Q.13.

Fig. Q.12

1 1

Fig. Q.13
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Frequently Asked Questions linked to LO 2*
rrr Z s Z s

rrr Y

V
1 V

2

1 W

2 F

1 W

2 F

Fig. Q.1 Fig. Q.2

rrr16-2.3 Find the Z-parameters for the network shown 

in Fig. Q.3. [BPUT 2007]
rrr16-2.4 Why are Z-parameters known as open-circuit 

parameters? [BPTU 2008]

rrr16-2.5 A two-port device is defined by the following 

pair of equations: 2V1 + V2 and i2 = V1 + V2. 

Write its impedance parameters Z11, Z12, Z21, 

Z22,. [BPTU 2008]

rrr16-2.6 Explain reciprocal. [GTU Dec. 2010]

rrr16-2.7 Find the Z-parameters for the network shown in Fig. Q.7. [GTU Dec. 2010]

rrr16-2.8 Obtain Z-parameters and transmission parameters of the network shown in Fig. Q.8.

  [JNTU Nov. 2012]

Fig. Q.7 Fig. Q.8

10 W 20 W

5 W

0,5V2

V2V1

I1 I2

+

–

2 W 5 W

4 W

I
2I

1

V
2

3I
1

rrr16-2.9 Obtain transmission parameters in terms of Z-parameters. [MU 2014]

rrr16-2.10 Determine the expression for Z-parameters of lattice networks. [PTU 2011-12]
rrr16-2.11  Find the Z-parameters for the network shown in Fig. Q.11. [PU 2010]

rrr16-2.12  Find the Z-parameters for the network shown in Fig. Q.12. [RTU Feb. 2011]

Fig. Q.12Fig. Q.11

2 W
1 2

1'
2'

2 W

2 W

1 W

1 W

1.5 Vx
V

2

I
2I

1

V
1

V
x

+

–
+

–

1 W 1 W

2 W 2 W

V
1

I
1

I
2

V
2

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600

Fig. Q.3

2 W

1 W1 W

I
1

I
2

V
2V

1
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rrr16-2.13 What is a reciprocal network? Derive the condition for reciprocity in terms of Z-parameters.   

 [RGTU Dec. 2013]
rrr16-2.14 Find the Z-parameters for the circuit shown in the Fig. Q.14. [RGTU Dec. 2013]
rrr16-2.15 Find the Z-parameters for the network given in Fig. Q.15. [RTU Feb. 2011]

Fig. Q.14 Fig. Q.15

Z
b

Z
a

a b

Z
c

b
1

a
1

2 W1 W

2 W

4 W

V
1

I
1

I
2

V
2

rrr16-2.16 Find Y11(s) of the circuit shown in Fig. Q.16 [BPUT 2007]

rrr16-2.17 Determine the Y-parameters of the given network shown in Fig. Q.17 [BPUT 2008]

V s( )
1

R

I s( )
1

V s( )
2

1

C
1

1H

V
2

V
1

I
1

I
2

1F

2 ohms

Fig. Q.16 Fig. Q.17

rrr16-2.18 Determine the voltage across the capacitor in the RLC circuit as shown in 

Fig. Q.18, if R = 400 ohms using Laplace transform.    [GTU May 2011]
rrr16-2.19 Explain the short-circuit admittance and the open-circuit impedance 

parameters for a two-port network. [GTU May 2011]

rrr16-2.20 Find the open-circuit impedance parameters of the circuit shown in Fig. 

Q.20. Also find the Y-parameters. [JNTU Nov. 2012]

rrr16-2.21 Determine Y-parameters of the network shown in Fig. Q.21. [JNTU Nov. 2012]

4 W1 W

2 W 3 WV
1

V
2

I
2I

1

2V
1

Fig. Q.20

2 W

3 W

4 W V
2

3I
2

I
2I

1

V
1

Fig. Q.21

rrr16-2.22 Find the Y and Z parameters of the network in Fig. Q.22  

 [PTU 2009-10]
rrr16-2.23 Derive the condition of reciprocity and symmetry for 

y-parameters. [PU 2010]
rrr16-2.24 Obtain the reciprocity and symmetry conditions for 

Z-and Y-parameters. [PU 2012]

R 10 mH

1 micro-F
u t( )+

–

Fig. Q.18

Fig. Q.22

2 W

2 W 3 WV
1

V
2

V
2
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rrr16-2.25 The network shown in Fig. Q.25 contains a current-controlled current source. For this network 

find the Y-parameters. [RGTU Dec. 2012]
rrr16-2.26 Find the Y-parameters for the network of Fig. Q.26. [RTU Feb. 2011]

2 W

2 W1 WV
1

I
1

I
2

3I
1

V
2

Fig. Q.25

2 W

1 W 2 W

4 WV
1

Fig. Q.26

16.4 TRANSMISSION (ABCD) PARAMETERS

Transmission parameters, or ABCD parameters, are widely used in transmission- 

line theory and cascade networks. In describing the transmission parameters, 

the input variables V1 and I1 at the port 1-19, usually called the sending end, 

are expressed in terms of the output variables V2 and I2 at the port 2-29, called 

the receiving end. The transmission parameters provide a direct relationship 

between input and output. Transmission parameters are also called general circuit parameters, or chain 

parameters. They are defined by

V1 5 AV2 – BI2 (16.5)

I1 5 CV2 – DI2 (16.6)

The negative sign is used with I2, and not for the parameters B and D. Both the port currents I1 and – 

I2 are directed to the right, i.e. with a negative sign in Eqs (16.5) and (16.6), the current at the port 2-29 

which leaves the port is designated as positive. The parameters A, B, C and D are called the transmission 

parameters. In the matrix form, Eqs (16.5) and (16.6) are expressed as

V

I

A

C

B

D

V

I

1

1

2

2














=











 −















The matrix 
A

C

B

D













  is called the transmission matrix.

For a given network, these parameters can be determined 

as follows. With the port 2-29 open, i.e. I2 5 0; applying a 

voltage V1 at the port 1-19, using Eq. (16.5), we have

A
V

V
C

I

V
I I

=
= =

1

2 0

1

2 02 2

and =

1 2

1 0
0

2

2A

V

V
g

I
I

=
=

=
= 21

1/A is called the open-circuit voltage gain, a dimensionless parameter. And 
1 2

1 0

21

2

C

V

I
Z

I

= =
=

,  which is the 

open-circuit transfer impedance. With the port 2-29 short circuited, i.e. with V2 5 0, applying the voltage V1 at 

Fig. 16.9

LO  3  
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the port 1-19, from Eq. (16.6), we have

− = −
= =

B
V

I
D

I

I
V V

1

2 0

1

2 02 2

and =

− =
=

1 2

1 0

21

2

B

I

V
Y

V

= ,  which is the short-circuit transfer admittance

− = =
=

=

1 2

1 0

21 0

2

2D

I

I
V

V
 ,  which is the short-circuit current gain, a dimensionless parameter.

16.4.1  Cascade Connection

The main use of the transmission matrix is in dealing with a cascade connection of two-port networks as 

shown in Fig. 16.10.

Fig. 16.10

Let us consider two two-port networks Nx and Ny connected in cascade with port voltages and currents as 

indicated in Fig. 16.10. The matrix representation of ABCD parameters for the network X is as under.

V

I

A B

C D

V

I

x x

x x

x

x

1

1

2

2














=













 −















And for the network Y, the matrix representation is

V

I

A B

C D

V

I

y

y

y y

y y

y

y

1

1

2

2
















=















 −

















It can also be observed that at 2-29,

V2x 5 V1y and I2x 5 – I1y.

Combining the results, we have

V

I

A B

C D

A B

C D

V

I

x x

x x

y y

y y

1

1

2

1














=





























 −















V

I

A B

C D

V

I

1

1

2

2














=











 −















where 
A B

C D












 is the transmission-parameters matrix for the overall network.

Thus, the transmission matrix of a cascade of a two-port networks is the product of transmission matrices 
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of the individual two-port networks. This property is used in the design of telephone systems, microwave 

networks, radars, etc.

EXAMPLE 16.3

Find the transmission or general circuit parameters for the circuit shown in Fig. 16.11.

Fig. 16.11

Solution  From Eqs (16.5) and (16.6) in Section 16.4, we have

V1 5 AV2 – BI2

I1 5 CV2 – DI2

When b-b9 is open, I A
V

V
I

2
1

2 0

0

2

= =
=

;

where V1 5 6I1 and V2 5 5I1

∴ A =
6

5

 

C
I

V
I

= =
=

1

2 02

1

5


When b-b9 is short-circuited; V2 5 0 (see Fig. 16.12)

B
V

I
D

I

I
V V

=
−

=
−

= =

1

2 0

1

2 02 2

;

Fig. 16.12
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In the circuit, − =I V2 1

5

17

 ∴ B =
17

5
V

 Similarly, I V I V1 1 1

7

17

5

17
= − =and 2

 ∴ D =
7

5

16.5 INVERSE TRANSMISSION (A9 B9 C9 D9) PARAMETERS

In the preceding section, the input port voltage and current are expressed in terms of output port voltage 

and current to describe the transmission parameters. While defining the transmission parameters, it is 

customary to designate the input port as the sending end and the output port as the receiving end. The 

voltage and current at the receiving end can also be expressed in terms of the sending end voltage and 

current. If the voltage and current at the port 2-29 are expressed in terms of voltage and current at the port 

1-19, we may write the following equations.

V2 5 A9V1 – B9I1 (16.7)

I2 5 C9V1 – D9I1 (16.8)

The coefficients A9, B9, C9, and D9 in the above equations are called inverse transmission parameters. 

Because of the similarities of Eqs (16.7) and (16.8) with Eqs (16.5) and (16.6) in Section 16.4, the A9, B9, 

C9, D9 parameters have properties similar to ABCD parameters. Thus, when the port 1-19 is open, I1 5 0.

′ = ′ =
= =

A
V

V
C

I

V
I I

2

1 0

2

1 01 1

;

If the port 1-19 is short-circuited, V1 5 0

′ =
−

=
−

= =

B
V

I
D

I

I
V V

2

1 0

2

1 01 1

;

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 3
rrr16-3.1 Find the transmission parameters for the R–C network shown in Fig. Q.1.

Fig. Q.1

Fig. 16.13

LO 3
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rrr16-3.2 Calculate the overall transmission parameters for the cascaded network shown in Fig. Q.2.

Fig. Q.2

rrr16-3.3 Determine the impedance parameters and the transmission parameters for the network in Fig. Q.3.
rrr16-3.4 Using PSpice, find transmission parameters of the network shown in Fig. Q.4.

Fig. Q.3 Fig. Q.4

Frequently Asked Questions linked to LO 3
rrr16-3.1 ABCD-parameters are also known as transmission parameters and they are derived from the basic 

two-port network parameters. Show that, for reciprocal linear time invariant two-port network, 

AD‑BC = 1. [GTU Dec. 2010]

rrr16-3.2 Find ABCD-parameters for the two-port network shown in Fig. Q.2. Also derive Y-parameters 

from the ABCD-parameters. [GTU Dec. 2012]
rrr16-3.3 For the network shown in Fig. Q.3, find ABCD-parameters. [JNTU Nov. 2012]

V
1

V
22 W

2 W 2 W
1 2

1' 2'

1 W

W

3 W

2 W

1 W 5 W

I
1

I 2

2
1

Fig. Q.3Fig. Q.2

rrr16-3.4 Find transmission parameters for the network shown in Fig. 

Q.4. [PU 2010]

rrr16-3.5 Define ABCD parameters for a two-port network.

  [RGTU June 2014]

1 W 2 W

5 WV
1

V
2

I
1 I

2

Fig. Q.4
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rrr16-3-6 Find the ABCD-parameters of the network shown 

in Fig. Q.6. Also find the image parameters for the 

network.

 [RTU Feb. 2011]

16.6 HYBRID (H) PARAMETERS

Hybrid parameters, or h-parameters find extensive use in transistor circuits. They 

are well suited to transistor circuits as these parameters can be most conveniently 

measured. The hybrid matrices describe a two-port network, when the voltage of one 

port and the current of other port are taken as the independent variables. Consider the 

network in Fig. 16.14.

If the voltage at the port 1-19 and current at the port 2-29 are taken as dependent variables, we can express 

them in terms of I1 and V2.

V1 5 h11 I1 1 h12 V2 (16.9)

I2 5 h21 I1 1 h22 V2 (16.10)

The coefficients in the above equations are called 

hybrid parameters. In matrix notation,

V

I

h h

h h

I

V

1

2

11 12

21 22

1

2














=





























From Eqs (16.9) and (16.10), the individual 

h-parameters may be defined by letting I1 5 0 and V2 5 0.

When V2 5 0, the port 2-29 is short-circuited.

Then h
V

I
V

11
1

1 02

=
=

 = Short-circuit input impedance = 
1

11Y











 h
I

I
V

21
2

1 02

=
=

 = Short-circuit forward current gain = 
Y

Y

21

11











Similarly, by letting port 1-19 open, I1 5 0

h
V

V
I

12
1

2 01

=
=

 Open-circuit reverse voltage gain = 
Z

Z

12

22











h
I

V
I

22
2

2 01

=
=

 Open-circuit output admittance = 
1

22Z











Since the h-parameters represent dimensionally an impedance, an admittance, a voltage gain, and a 

current gain, these are called hybrid parameters. An equivalent circuit of a two-port network in terms of 

Fig. 16.14

2 W

5 W

3 W

2 WV
1

Fig. Q.6

LO  4  
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hybrid parameters is shown in Fig. 16.15.

Fig. 16.15

EXAMPLE 16.4

Find the h‑parameters of the network shown in Fig. 16.16.

Fig. 16.16

Solution  From Eqs (16.9) and (16.10), we have

h
V

I
h

I

I
h

V

V
h

I

V
V V I I

11
1

1 0

21
2

1 0

12
1

2 0

22
2

2 02 2 1 1

= = = =
= = = =

; ; ;

If the port b-b9 is short-circuited, V2 5 0. The circuit is shown in Fig. 16.17 (a).

h
V

I
V I Z

V

11
1

1 0

1 1

2

= =
=

; eq

Fig. 16.17 (a) 

The equivalent impedance as viewed from the port a-a9 is 2 V.

 ∴ V1 5 I1 2 V

 

h
V

I
11

1

1

2= = V
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h
I

I
V I

I

V

21
2

1 0

2
1

2

0
2

= = − =
=

when 2 ;

∴ h21

1

2
= −

If the port a-a9 is let open, I1 5 0. The circuit is shown in Fig. 16.17 (b).

Fig. 16.17 (b) 

Then,

h
V

V
I

12
1

2 01

=
=

 
V I I

I
y y1

22
2

= =;

 
V I I

I
X X2

24
2

= =;

∴ h
V

V
I

12
1

2 01

1

2
= =

=

 

h
I

V
I

22
2

2 01

1

2
= =

=



16.7 INVERSE HYBRID (g) PARAMETERS

Another set of hybrid matrix parameters can be defined in a similar way as was done in Section 16.6. This 

time the current at the input port I1 and the voltage at the output port V2 can be expressed in terms of I2 

and V1. The equations are as follows.

 I1 5 g11 V1 1 g12 I2 (16.11)

 V2 5 g21 V1 1 g22 I2 (16.12)

The coefficients in the above equations are called the inverse hybrid parameters. In matrix notation,

I

V

g g

g g

V

I

1

2

11 12

21 22

1

2














=





























LO 4
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It can be verified that 
h h

h h

g g

g g

11 12

21 22

1

11 12

21 22















=














−

The individual g-parameters may be defined by letting I2 5 0 and V1 5 0 in Eqs (16.11) and (16.12).

Thus, when I2 5 0

 g
I

V
I

11
1

1 02

=
=

 5 Open-circuit input admittance = 
1

11Z











g
V

V
I

21
2

1 02

=
=

 5 Open-circuit voltage gain

 When V1 5 0,

g
I

I
V

12
1

2 01

=
=

 5 Short-circuit reverse current gain

g
V

I
V

22
2

2 01

=
=

 5 Short-circuit output impedance = 
1

22Y











NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 4
rrr16-4.1 For the two-port network shown in Fig. Q.1, find the h-parameters and the inverse h-parameters.

rrr16-4.2 For the hybrid equivalent circuit shown in Fig. Q.2, determine (a) the input impedance, and (b) 

the output impedance.

Fig. Q.2Fig. Q.1

rrr16-4.3 For the network shown in Fig. Q.3, determine h-parameters at v 5 108 rad/ s.

Fig. Q.3

rrr16-4.4 Using PSpice, find hybrid parameters of the network shown in Fig. Q.4.
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Fig. Q.4

Frequently Asked Questions linked to LO 4

rrr16-4.1 Determine the Z-ABCD-and h-parameters of the given network as shown in Fig. Q.1 [BPUT 2008]

Fig. Q.1

2I
1

2I
2

V
2

V
1

I
1

I
1

1 ohm

1 ohm

1 ohm

rrr16-4.2 Explain hybrid parameters for two-port networks and state where one makes use of these 

parameters. [GTU Dec. 2010]

rrr16-4.3 Obtain hybrid parameters of the interconnected ‘two’ 2-port networks. [MU 2014]
10 W 8 W

6 W4 W

10 W

4 WV
X

3V
X

Fig. Q.3

rrr16-4.4 Explain the concepts of reciprocity and symmetry. Derive the above conditions for h and ABCD 

parameters. [PTU 2009-10]

rrr16-4.5 Find the h-parameters of the network shown in Fig. Q.5. [PTU 2009-10]

rrr16-4.6 Determine hybrid-parameters for the network shown in Fig. Q.6. [PU 2010]

1 W

1 W

1 F

V
1

V
2

2 I
1

I
1

1 W 2 W

2 W
4 W

I
1 I

2

V
1

V
2

I
2

I
3

I
1

Fig. Q.5 Fig. Q.6
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rrr16-4.7 Find the current transfer ratio i2/i1 for the network shown in Fig. Q. 7. [PU 2012]

Fig. Q.7

22 W

1 W 1 W

1 WV
1

I
1

V
2

I
2

2I
a

Ia I /2
1

1
1

1

2
1

rrr16-4.8 Define hybrid parameters. [RGTU June 2014]

16.8 INTER-RELATIONSHIPS OF DIFFERENT PARAMETERS

16.8.1  Expression of Z-Parameters in Terms of Y-Parameters and Vice 

Versa

From Eqs (16.1), (16.2), (16.3) and (16.4), it is easy to derive the relation 

between the open circuit impedance parameters and the short-circuit admittance 

parameters by means of two matrix equations of the respective parameters. By 

solving Eqs (16.1) and (16.2) for I1 and I2, we get

I
V Z

V Z
I

Z V

V V
z z1

1 12

2 22

11 1

21 2

= =D D; and 2

where Dz is the determinant of the Z-matrix

Dz

Z Z

Z Z
=















11 12

21 22

I
Z

V
Z

V
z z

1
22

1
12

2= −
D D

 (16.13)

I
Z

V
Z

V
z z

2
21

1
11

2=
−

+
D D

 (16.14)

Comparing Eqs (16.13) and (16.14) with Eqs (16.3) and (16.4) we have

Y
Z

Y
Z

z z
11

22
12

12= =
−

D D
;

Y
Z

Y
Z

z z
21

21
22

11= =
D D

;

In a similar manner, the Z-parameters may be expressed in terms of the admittance parameters by solving 

Eqs (16.3) and (16.4) for V1 and V2.

V
I Y

I Y
V

Y I

Y I
y y1

1 12

2 22

11 1

21 2

= =D D; and 2

LO  5  
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where Dy is the determinant of the Y-matrix

D y

Y Y

Y Y
= 11 12

21 22

V
Y

I
Y

I
y y

1
22

1
12

2= −
D D

 (16.15)

V
Y

I
Y

I
y y

2
21

1
11

2=
−

+
D D

 (16.16)

Comparing Eqs (16.15) and (16.16) with Eqs (16.1) and (16.2), we obtain

Z
Y

Z
Y

y y
11

22
12

12= =
−

D D
;

Z
Y

Z
Y

y y
21

21
22

11=
−

=
D D

;

EXAMPLE 16.5

For a given, Z11 5 3 V; Z12 5 1 V; Z21 5 2 V, and Z22 5 1 V, find the admittance matrix, and the product 

of Dy and Dz.

Solution  The admittance matrix 5 
Y Y

Y Y

Z Z

Z Z

z z

z z

11 12

21 22

22 12

21 11














=

∆

−

∆

−

∆ ∆

























 given Z =












3 1

2 1

 ∴ Dz 5 3 – 2 5 1

 ∴ D y =
− −

−












=

1 1

2 3
1

(Dy) (Dz) 5 1

16.8.2  General Circuit Parameters or ABCD-Parameters in Terms of Z-Parameters and Y-Parameters

We know that

V1 5 AV2 – BI2; V1 5 Z11 I1 1 Z12 I2; I1 5 Y11 V1 1 Y12 V2

I1 5 CV2 – DI2; V2 5 Z21 I1 1 Z22 I2; I2 5 Y21 V1 1 Y22 V2

A
V

V
C

I

V
B

V

I
D

I

I
I I V V

= = =
−

=
−

= = = =

1

2 0

1

2 0

1

2 0

1

2 02 2 2 2

; ; ;

Substituting the condition I2 5 0 in Eqs (16.1) and (16.2), we get

V

V

Z

Z
A

I

1

2 0

11

21
2 =

= =
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Substituting the condition I2 5 0 in Eq. (16.4), we get

V

V

Y

Y
A

I

1

2 0

22

21
2 =

=
−

=

Substituting the condition I2 5 0 in (Eq. 16.2), we get

 I

V Z
C

I

1

2 0 21
2

1

=

= =

Substituting the condition I2 5 0 in Eqs (16.3) and (16.4), and solving for V2 gives 
−I Y

y

1 21

D
where Dy is the determinant of the admittance matrix.

I

V Y
C

I

y1

2 0 21
2 =

=
−

=
D

Substituting the condition V2 5 0 in Eq. (16.4), we get

V

I Y
B

V

1

2 0 21
2

1

=

= − =

Substituting the condition V2 5 0 in Eqs (16.1) and (16.2) and solving for I
V Z

z
2

1 21=
−

D
, we get

− = =
=

V

I Z
B

V

z1

2 0 21
2

D

where Dz is the determinant of the impedance matrix.

Substituting V2 5 0 in Eq. (16.2), we get

 
−

= =
=

I

I

Z

Z
D

V

1

2 0

22

21
2

Substituting V2 5 0 in Eqs (16.3) and (16.4), we get

−
=

−
=

=

I

I

Y

Y
D

V

1

2 0

11

21
2

The determinant of the transmission matrix is given by

– AD 1 BC

Substituting the impedance parameters in A, B, C, and D, we have

BC AD
Z Z

Z

Z

Z

Z

z− = −
D

21 21

11

21

22

21

1

 

=
( )

−
( )

Dz

Z

Z Z

Z21

2

11 22

21

2

BC AD
Z

Z
− =

− 12

21

For a bilateral network, Z12 5 Z21

∴ BC – AD 5 – 1

or AD – BC 5 1
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Therefore, in a two-port bilateral network, if three transmission parameters are known, the fourth may be 

found from the equation AD – BC 5 1.

In a similar manner, the h-parameters may be expressed in terms of the admittance parameters, 

impedance parameters, or transmission parameters. Transformations of this nature are possible between 

any of the various parameters. Each parameter has its own utility. However, we often find that it is 

necessary to convert from one set of parameters to another. Transformations between different parameters, 

and the condition under which the two-port network is reciprocal are given in Table  16.1.

Table 16.1 Reciprocality condition for a two-port network

Z Y ABCD A' B' C' D' h g

Z

Z11 Z12

Z21 Z22

Y Y

y y

22 12

∆

−

∆

Y Y

y y

21 11−

∆ ∆

A

C C

T∆

C

D

C

1

D

C C

9

9 9

1

C

A

C

T

9

9

9

9∆

∆h

h h22

22

22

h

−h

h h

21

22 22

1

1

11

12

11g

g

g

−

21

11 11

g

g g

g∆

Y

Z Z

z z

22 12

∆

−

∆

Z Z

z z

21 11−

∆

−

∆

Y11 Y12

Y21 Y22

D

B B
A

T−∆

−1

B

A

B

−1

A

B B

9

9 9

−1

B

D

B

T

9

9

9

9−∆

1

11

12

11
h

h

h

h

−

∆
21

11 11

h

h h

h∆

∆g

g

g

g

g
22

12

22

1−g

g g

21

22 22

1

AB

CD

Z

Z Z

Z

z11

21 21

1

∆

Z

Z

Z
21

22

21

1

− −Y

Y Y

Y Y

22

21 21

1

∆ −Y

Y

Y

Y
21

11

21

A B

C D

D B

C A
T T

9 9

9 9∆ ∆

C A

T T

9 9

9 9∆ ∆

∆h

h

h

h

h
21

11

21

− −h

h h

22

21 21

1

1

21

22

21g

g

g

∆

11

21 21

g

g g

g∆

A9 B9

C9 D9

Z

Z Z

Z

Z

Z

z22

12 12

12

11

12

1

∆ − −

−∆ −

Y

Y Y

Y

Y

Y

Y

11

12 12

12

22

12

1 D B

C A

T T

T T

∆ ∆

∆ ∆

A9 B9

C9 D9

1

12

11

12

22

12 12

h

h

h

h

h h

h∆

−∆ −

− −

g

g

g

g

g

g g

12

22

12

11

12 12

1

h

∆

−

z

Z

Z

Z

Z

Z Z

22

12

22

21

22 22

1

1

11

12

11

21

11 11

Y

Y

Y

Y

Y Y

Y

−

∆

B

D D

D

C

D

T∆

−1

B

A A

A

C

A

T

9

9 9

9

9

9

9

1

∆

h11 h12

h21 h22

g g

g g

g g

g g

22 12

21 11

∆

−

∆

−

∆ ∆

g

1

11

12

11

21

11 11

Z

Z

Z

Z

Z Z

z

−

∆

∆

−

Y

Y

Y

Y

Y

Y Y

22

12

22

21

22 22

1

C

A A

A

B

A

T−∆

1

C

D D

D

B

D

T

9

9 9

9

9

9

9

−

∆

1 h h

h h

h h

h h

22 12

21 11

∆

−

∆

−

∆ ∆

g11 g12

g21 g22

The two-port is 

reciprocal if

Z12 5 Z21 Y12 5 Y21 The deter-
minant of the 
transmission 
matrix 5 1 

(DT 5 1)

The deter- 
minant of 
the inverse 
t ransmission 

matrix 5 1

h12 5 – h21 g12 5 – g21
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EXAMPLE 16.6

The impedance parameters of a two‑port network are Z11 5 6  V; Z22 5 4 V; Z12 5 Z21 5 3 V. Compute the 

Y‑parameters and ABCD‑ parameters and write the describing equations.

Solution  ABCD-parameters are given by

A
Z

Z
B

Z Z Z Z

Z

C
Z

D
Z

Z

= = = =
−

=

= = = =

11

21

11 22 12 21

21

21

22

21

6

3
2 5

1 1

3

4

3

;

;

V



Y-parameters are given by

Y
Z

Z Z Z Z
Y

Z

Z Z Z Z

Y Y

11
22

11 22 12 21
12

12

11 22 12 21

21 1

4

15

1

5
=

−
= =

−

−
=

−

=

 ;

22
12

22
11

11 22 12 21

1

5

2

5
=

−

∆
=

−
=

−
=

Z
Y

Z

Z Z Z ZZ

 ;

The equations, using Z, parameters, are

V1 5 6I1 1 3I2

V2 5 3I1 1 4I2

Using Y‑parameters,

I V V

I V V

1 1 2

2 1 2

4

15

1

5

1

5

2

5

= −

=
−

+

Using ABCD-parameters,

V1 5 2V2 – 5I2

I V I1 2 2

1

3

4

3
= −

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 5
rrr16-5.1 The hybrid parameters of a two-port network shown in Fig. Q.1 are h11 5 1.5 K; h12 5 2 3 10–3; h21 5 250; 

h22 5 150 3 10–6  (a) Find V2 (b). Draw the Z‑ parameter equivalent circuit.

Fig. Q.1
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Frequently Asked Questions linked to LO 5
r ABCD y
r

r

rr Z Z Z Z Z

ABCD

16.9 INTERCONNECTION OF TWO-PORT NETWORKS

16.9.1  Series Connection of a Two-port Network

It has already been shown in Section 16.4.1 that when two-port networks are 

connected in cascade, the parameters of the interconnected network can be 

conveniently expressed with the help of ABCD-parameters. In a similar way, the 

Z-parameters can be used to describe the 

parameters of series-connected two-port 

networks; and Y-parameters can be used to 

describe parameters of parallel connected 

two-port networks. A series connection of 

two-port networks is shown in Fig. 16.18.

Let us consider two two-port networks, 

connected in series as shown. If each port 

has a common reference node for its input 

and output, and if these references are 

connected together then the equations 

of the networks X and Y in terms of Z‑ 

parameters are

V1X 5 Z11X I1X 1 Z12X I2X

V2X 5 Z21X I1X 1 Z22X I2X

V1Y 5 Z11Y I1Y 1 Z12Y I2Y

V2Y 5 Z21Y I1Y 1 Z22Y I2Y

From the interconnection of the networks, it is clear that

 I1 5 I1X 5 I1Y ; I2 5 I2X 5 I2Y

 and V1 5 V1X 1 V1Y ; V2 5 V2X 1 V2Y

 ∴ V1 5 Z11X I1 1 Z12X I2 1 Z11Y I1 1 Z12Y I2

  5 (Z11X 1 Z11Y)I1 1 (Z12X 1 Z12Y) I2

V2 5 Z21X I1 1 Z22X I2 1 Z21Y I1 1 Z22Y I2

  5 (Z21X 1 X21Y)I1 1 (Z22X 1 Z22Y)I2

LO  6  

Fig. 16.18
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The describing equations for the series-connected two-port network are

V1 5 Z11 I1 1 Z12 I2

V2 5 Z21 I1 1 Z22 I2

where Z11 5 Z11X 1 Z11Y; Z12 5 Z12X 1 Z12Y

Z21 5 Z21X 1 Z21Y; Z22 5  Z22X 1 Z22Y

Thus, we see that each Z-parameter of the series network is given as the sum of the corresponding 

parameters of the individual networks.

16.9.2  Parallel Connection of Two Two-port Networks

Let us consider two two-port networks connected in parallel as shown in Fig. 16.19. If each two-port has a 

reference node that is common to its input and output port, and if the two ports are connected so that they have 

a common reference node, then the equations of the networks X and Y in terms of Y-parameters are given by

Fig. 16.19

I1X 5 Y11X V1X 1 Y12X V2X

I2X 5 Y21X V1X 1 Y22X V2X

I1Y 5 Y11Y V1Y 1 Y12Y V2Y

I2Y 5 Y21Y V1Y 1 Y22Y V2Y

From the interconnection of the networks, it is clear that

V1 5 V1X 5 V1Y; V2 5 V2X 5 V2Y

 and I1 5 I1X 1 I1Y; I2 5 I2X 1 I2Y

 ∴ I1 5 Y11X V1 1 Y12X V2 1 Y11Y V1 1 Y12Y V2

 5 (Y11X 1 Y11Y) V1 1 (Y12X 1 Y12Y) V2

 I2 5 Y21X V1 1 Y22X V2 1 Y21Y V1 1 Y22Y V2

  5 (Y21X 1 Y21Y) V1 1 (Y22X 1 Y22Y) V2

The describing equations for the parallel connected two-port networks are

 I1 5 Y11 V1 1 Y12 V2

 I2 5 Y21 V1 1 Y22 V2
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 where Y11 5 Y11X 1 Y11Y; Y12 5 Y12X 1 Y12Y

Y21 5 Y21X 1 Y21Y; Y22 5 Y22X 1  Y22Y

Thus, we see that each Y-parameter of the parallel network is given as the sum of the corresponding 

parameters of the individual networks.

EXAMPLE 16.7

Two networks shown in Figs 16.20 (a) and (b) are connected in series. Obtain the Z‑parameters of the 

combination. Also verify by direct calculation.

Fig. 16.20

Solution  The Z-parameters of the network in Fig. 16.20 (a) are

Z11X 5 3 V Z12X 5 Z21X 5 2 V Z22X 5 3 V

The Z-parameters of the network in Fig. 16.20 (b) are

Z11Y 5 15 V Z21Y 5 5 V Z22Y 5 25 V Z12Y 5 5 V

The Z-parameters of the combined network are

Z11 5 Z11X 1 Z11Y 5 18 V

Z12 5 Z12X 1 Z12Y 5 7 V

Z21 5 Z21X 1 Z21Y 5 7 V

Z22 5 Z22X 1 Z22Y 5 28 V

Check   If the two networks are connected in series as shown in Fig. 16.20 (c), the Z-parameters are

 

Z
V

I
I

11
1

1 02

18= = Ω
=

 

Z
V

I
I

21
2

1 02

7= = Ω
=

 

Z
V

I
I

22
2

2 01

28= = Ω
=

 

Z
V

I
I

12
1

2 01

7= = Ω
=

Fig. 16.20 (c)
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EXAMPLE 16.8

Two identical sections of the network shown in Fig. 16.21 are connected in parallel. Obtain the Y‑parameters 

of the combination.

Fig. 16.21

Solution  The Y-parameters of the network in Fig. 16.21 are (see Example 16.2)

Y Y Y Y11 21 22 12

1

2

1

4

5

8

1

4
= =

−
= =

−
   

If two such networks are connected in parallel then the Y-parameters of the combined network are

Y Y11 21

1

2

1

2
1

1

4
2

1

2
= + = =

−
× =

−
 

Y Y22 12

5

8
2

5

4

1

4
2

1

2
= × = =

−
× =

−
 

16.10 T-   AND p-REPRESENTATIONS

A two-port network with any number of elements may be converted into a two-

port three-element network. Thus, a two-port network may be represented by an 

equivalent T-network, i.e. three impedances are connected together in the form of 

a T as shown in Fig. 16.22.

It is possible to express the elements of the T-network in terms of Z-parameters, or ABCD-parameters as 

explained below.

 Z-parameters of the network

Z
V

I
Z Z

Z
V

I
Z

Z
V

I
Z Z

Z
V

I

I

a c

I

c

I

b c

11
1

1 0

21
2

1 0

22
2

2 0

12
1

2

2

1

= = +

= =

= = +

=

=

=

=

22 01I

cZ

=

=

Fig. 16.22

LO  7  

p
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From the above relations, it is clear that

Za 5 Z11 – Z21

Zb 5 Z22 – Z12

Zc 5 Z12 5 Z21

ABCD‑parameters of the network

A
V

V

Z Z

Z

B
V

I

I

a c

c

V

= =
+

=
−

=

=

1

2 0

1

2 0

2

2

When 2-29 is short-circuited,

− =
+ +( )

= +( )+

= =

=
−

=

I
V Z

Z Z Z Z Z

B Z Z
Z Z

Z

C
I

V Z

D
I

I

c

b c a b c

a b
a b

c

I c

2
1

1

2 0

1

2

1

22 02V =

When 2-29 is short-circuited,

− =
+

=
+

I I
Z

Z Z

D
Z Z

Z

c

b c

b c

c

2 1

From the above relations, we can obtain

Z
A

C
Z

D

C
Z

C
a b c=

−
=

−
=

1 1 1
; ;

EXAMPLE 16.9

The Z‑parameters of a two‑port network are Z11 5 10 V; Z22 5 15 V; Z12 5 Z21 5 5 V. Find the equivalent 

T‑network and ABCD‑parameters.

Solution  The equivalent T-network is shown in Fig. 16.23,

 where Za 5 Z11 – Z21 5 5 V

Zb 5 Z22 – Z12 5 10 V

 and Zc 5 5 V
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The ABCD-parameters of the network are

A
Z

Z
B Z Z

Z Z

Z

a

c
a b

a b

c

= + = = +( )+ = Ω1 2 25;

C
Z

D
Z

Zc

b

c

= = = + =
1

0 2 1 3. 

In a similar way, a two-port network may be represented by an equivalent p-network, i.e. three 

impedances or admittances are connected together in the form of p as shown in Fig. 16.24.

Fig. 16.24Fig. 16.23

It is possible to express the elements of the p-network in terms of Y-parameters or ABCD‑parameters 

as explained below.

Y‑parameters of the network are

Y
I

V
Y Y

Y
I

V
Y

Y
I

V
Y Y

Y
I

V

V

V

11
1

1 0

1 2

21
2

1 0

2

22
2

2 0

3 2

12
1

2

2

1

= = +

= = −

= = +

=

=

=

=

VV
Y

V2 0

2

1=

= −

From the above relations, it is clear that

Y1 5 Y11 1 Y21

Y2 5 – Y12

Y3 5 Y22 1 Y21

Writing ABCD-parameters in terms of Y-parameters yields the following results.

A
Y

Y

Y Y

Y

B
Y Y

=
−

=
+

=
−

=

22

21

3 2

2

21 2

1 1
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C
y

Y
Y Y

Y Y

Y

D
Y

Y

=
−∆

= + +

=
−

21
1 3

1 3

2

11

21

==
+Y Y

Y

1 2

2

From the above results, we can obtain

Y
D

B

Y
B

Y
A

B

1

2

3

1

1

1

=
−

=

=
−

EXAMPLE 16.10

The port currents of a two‑port network are given by

    I1 5 2.5V1 – V2

    I2 5 – V1 1 5V2

Find the equivalent p‑network.

Solution  Let us first find the Y-parameters of the network.

Y
I

V
Y

I

V
V V

11
1

1 0

21
2

1 02 2

2 5 1= = = = −
= =

. ; 

Y
I

V
Y

I

V
V V

12
1

2 0

22
2

2 01 1

1 5= = − = =
= =

 ;

The equivalent p-network is shown in Fig. 16.25.

 where Y1 5 Y11 1 Y21 5 1.5  ;

 Y2 5 – Y12 5 – 1

 and Y3 5 Y22 1 Y12 5 4 

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 7
rrr16-7.1 Obtain a -equivalent circuit for Fig. Q.1.

Fig. Q.1

I
2

Fig. 16.25
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Frequently Asked Questions linked to LO 7
rrr T

6 W

1 W 4 W

2 W OutputInput

Fig. Q.1

16.11 TERMINATED TWO-PORT NETWORK

16.11.1  Driving-Point Impedance at the Input Port of a Load-Terminated Network

Figure 16.26 shows a two-port network connected to an ideal generator 

at the input port and to a load impedance at the output port. The input 

impedance of this network can be expressed in terms of parameters of the 

two-port network.

Fig. 16.26

  In Terms of Z-Parameters

The load at the output port 2-29 imposes the following constraints on the port voltage and current,

 i.e., V2 5 – ZL I2

Recalling Eqs (16.1) and (16.2), we have

 V1 5 Z11 I1 1 Z12 I2

 V2 5 Z21 I1 1 Z22 I2

LO  8  
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Substituting the value of V2 in Eq. (16.2), we have

 – ZL I2 5 Z21 I1 1 Z22 I2

from which I
I Z

Z ZL
2

1 21

22

=
−

+

Substituting the value of I2 in Eq. (16.1) gives

 

V Z I
Z Z I

Z Z

V I Z
Z Z

Z Z

L

L

1 11 1
12 21 1

22

1 1 11
12 21

22

= −
+

= −
+











Hence, the driving-point impedance at 1-19 is

 

V

I
Z

Z Z

Z ZL

1

1
11

12 21

22

= −
+

If the output port is open, i.e. ZL → `, the input impedance is given by V1/I1 5 Z11

If the output port is short-circuited, i.e. ZL → 0,

The short-circuit driving-point impedance is given by

Z Z Z Z

Z Y

11 22 12 21

22 11

1−
=

  In Terms of Y-Parameters

If a load admittance YL is connected across the output port, the constraint imposed on the output port voltage 

and current is

 
− = =I V Y Y

Z
L L

L
2 2

1
, where

Recalling Eqs (16.3) and (16.4), we have

 I1 5 Y11 V1 1 Y12 V2

 I2 5 Y21 V1 1 Y22 V2

Substituting the value of I2 in Eq. (16.4), we have

 – V2 YL 5 Y21 V1 1 Y22 V2

 

V
Y

Y Y
V

L
2

21

22
1= −

+











Substituting the value of V2 in Eq. (16.3), we have

 

I Y V
Y Y V

Y YL
1 11 1

12 21 1

22

= −
+

From which 
I

V
Y

Y Y

Y YL

1

1
11

12 21

22

= −
+
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Hence, the driving-point impedance is given by

 

V

I

Y Y

Y Y Y Y Y

L1

1

22

11 1 22 12 21

=
+

+( )−

If the output port is open, i.e., YL → 0

 

V

I

Y
Z

y

1

1

22
11= =

D

If the output port is short-circuited, i.e. YL → `

 Then Yin 5 Y11

In a similar way, the input impedance of the load-terminated two-port network may be expressed in terms 

of other parameters by simple mathematical manipulations. The results are given in Table 16.2.

Table 16.2 Output impedance

In terms of

Driving- point 
impedance 
at the input 
port, or input 
impedance

 V

I












Z parameters

∆ +

+
z L

L

Z Z

Z Z

11

22

Y parameters

Y Y

Y Y

L

y L

22

11

+

∆ +

ABCD

AZ B

CZ D

L

L

+

+
 

A9B9C9D9

′ − ′

′ − ′

B D Z

C Z A

L

L

h parameter

∆ +

+
h L

L

Z h

h Z

11

22
1

g parameter

1
22

11

+

∆ +

g Y

g

L

gYL

Driving- point 
impedance 
at the output 
port, or output 
impedance

V

I












∆ +

+
z sZ Z

Z Z

22

1 11

Y Y

Y Y

s

y s

11

22

+

∆ +

DZ B

CZ A

s

s

+

+

′ + ′

′ + ′

A Z B

C Z D

s

s

h Z

h Z

s

h s

11

22

+

∆ +

g

g Z

s

s

22

11
1

+ ∆

+

Note  The above relations are obtained when Vs = 0 and Is = 0 at the input port.

16.11.2  Driving-Point Impedance at the Output Port with Source Impedance at the Input Port

Let us consider a two-port network connected to a generator at the input port with a source impedance Zs 

as shown in Fig. 16.27. The output impedance, or the driving- point impedance, at the output port can be 

evaluated in terms of the parameters of the two-port network.

Fig. 16.27
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  In terms of Z-parameters  If I1 is the current due to Vs at the port 1-19, from Eqs (16.1) and (16.2), 

we have

V2 5 Z21I1 1 Z22I2

V1 5 Vs – I1Zs

 5 Z11 I1 1 Z12I2 – (I1) (Zs 1 Z11) 5 Z12I2 – Vs

− =
−

+
I

Z I V

Z Z

s

s
1

12 2

11

Substituting I1 in Eq. (16.2), we get

 
V Z

Z I V

Z Z
Z I

s

s
2 21

12 2

11
22 2= −

−( )
+

+

With no source voltage at the port 1-19, i.e. if the source Vs is short-circuited,

 
V

Z Z

Z Z
I Z I

s
2

21 12

11
2 22 2=

−

+
+

Hence, the driving-point impedance at the port 2-29 5 V

I

2

2

 

V

I

Z Z Z Z Z Z

Z Z

Z Z

Z Z

s

s

z s

s

2

2

22 22 11 21 12

11

22

11

=
+ −

+

∆ +

+
or

If the input port is open, i.e. Zs → `

 Then 
V

I

Z
Z

Z

Z

Z

z

s

s Zs

2

2

22

11
22

1

=

∆
+

+























=

=∞

If the source impedance is zero with a short-circuited input port, the driving-point impedance at the output 

port is given by

 

V

I Z Y

z2

2 11 22

1
=

∆
=

  In terms of  Y-parameters  Let us consider a two-port network connected to a current source at the 

input port with a source admittance Ys as shown in Fig. 16.28.

At the port 1-19, I1 5 Is – V1 Ys

Recalling Eqs (16.3) and (16.4), we have

I1 5 Y11 V1 1 Y12 V2

I2 5 Y21 V1 1 Y22 V2

Substituting I1 in Eq. (16.3), we get

 Is – V1Ys 5 Y11V1 1 Y12V2
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–V1(Ys 1 Y11) 5 Y12 V2 – Is

 
− =

−

+
V

Y V I

Y Y

s

s
1

12 2

11

Substituting V1 in Eq. (16.4), we get

 

I Y
Y V I

Y Y
Y Vs

s
2 21

12 2

11
22 2= −

−

+










+

With no source current at 1-19, i.e. if the current source is open-circuited,

 

I
Y Y V

Y Y
Y V

s
2

21 12 2

11
22 2=

−

+
+

Hence, the driving-point admittance at the output port is given by

 

I

V

Y Y Y Y Y Y

Y Y

Y Y

Y Y

s

s

y s

s

2

2

22 22 11 21 12

11

22

11

=
+ −

+

+

+
or

D

If the source admittance is zero, with an open-circuited input port, the driving-point admittance at the output 

port is given by

 

I

V Y Z
Y

y2

2 11 22
22

1
= = =

D

In a similar way, the output impedance may be expressed in terms of the other two-port parameters by simple 

mathematical manipulations. The results are given in Table 16.2.

EXAMPLE 16.11

Calculate the input impedance of the network shown in Fig. 16.29.

Fig. 16.29

Fig. 16.28
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Solution  Let us calculate the input impedance in terms of Z-parameters. The Z-parameters of the given 

network (see Solved Problem 16.1) are Z11 5 2.5 V; Z21 5 1 V; Z22 5 2 V; Z12 5 1 V

From Section 16.11.1, we have the relation

V

I
Z

Z Z

Z ZL

1

1
11

12 21

22

= −
+

where ZL is the load impedance 5 2 V

V

I

1

1

2 5
1

2 2
2 25= −

+
= Ω. .

The source resistance is 1 V.

 ∴ Zin 5 1 1 2.25 5 3.25 V

EXAMPLE 16.12

Calculate the output impedance of the network shown in Fig. 16.30 with a source admittance of 1  at the 

input port.

Fig. 16.30

Solution  Let us calculate the output impedance in terms of Y-parameters. The Y-parameters of the given 

network (see Example 16.2) are

Y Y Y Y11 22 21 12

1

2

5

8

1

4
= = = =

−
  ; ;

From Section 16.11.2, we have the relation

 

I

V

Y Y Y Y Y Y

Y Y

s

s

2

2

22 22 11 21 12

11

=
+ −

+

where Ys is the source admittance 5 1 mho

Y
I

V
22

2

2

5

8
1

5

8

1

2

1

16

1
1

2

7

12
= =

× + × −

+

= 

 or Z22

12

7
= 
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16.12 LATTICE NETWORKS

One of the common four-terminal two-port networks is the lattice, or bridge 

network shown in Fig. 16.31 (a). Lattice networks are used in filter sections and 

are also used as attenuaters. Lattice structures are sometimes used in preference 

to ladder structures in some special applications. Za and Zd are called series arms, and Zb and Zc are called the 

diagonal arms. It can be observed that, if Zd is zero, the lattice structure becomes a p-section. The lattice network 

is redrawn as a bridge network as shown in Fig. 16.31 (b).

Fig. 16.31
16.12.1  Z-Parameters

 
Z

V

I
I

11
1

1 02

=
=

When I2 5 0; V I
Z Z Z Z

Z Z Z Z

a b d c

a b c d
1 1=

+( ) +( )
+ + +

 (16.17)

 ∴ =
+( ) +( )
+ + +

Z
Z Z Z Z

Z Z Z Z

a b d c

a b c d
11

If the network is symmetric, then Za 5 Zd and Zb 5 Zc

 ∴ Z
Z Za b

11
2

=
+

 

Z
V

I
I

21
2

1 02

=
=

When I2 5 0, V2 is the voltage across 2229.

 

V V
Z

Z Z

Z

Z Z

b

a b

d

c d
2 1

=
+

−
+













Substituting the value of V1 from Eq. (16.17), we have

 

V
I Z Z Z Z

Z Z Z Z

Z Z Z Z Z Za b d c

a b c d

b c d d a b
2

1=
+( ) +( )

+ + +

















+( )− +( ))
+( ) +( )

















=
+( )− +( )
+ +

Z Z Z Z

V

I

Z Z Z Z Z Z

Z Z Z

a b c d

b c d d a b

a b c

2

1 ++
=

−

+ + +

∴ =
−

+ + +

Z

Z Z Z Z

Z Z Z Z

Z
Z Z Z Z

Z Z Z Z

d

b c a d

a b c d

b c a d

a b c d
21

LO  9  
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If the network is symmetric, Za 5 Zd, Zb 5 Zc

 
Z

Z Zb a
21

2
=

−

When the input port is open, I1 5 0

 

Z
V

I
I

12

1

2 0
1

=
=

The network can be redrawn as shown in Fig. 16.31 (c).

V V
Z

Z Z

Z

Z Z

c

a c

d

b d
1 2

=
+

−
+












 (16.18)

V I
Z Z Z Z

Z Z Z Z

a c d b

a b c d

=
+( ) +( )
+ + +













  (16.19)

Substituting the value of V2 in Eq. (16.18), we get

V I
Z Z Z Z Z Z

Z Z Z Z

c b d d a c

a b c d
1 2

=
+( )− +( )
+ + +















V

I

Z Z Z Z

Z Z Z Z

c b a d

a b c d

1

2

=
−

+ + +

If the network is symmetric, Za 5 Zd; Zb 5 Zc

V

I

Z Z

Z Z

b a

a b

1

2

2 2

2
=

−

+( )

∴ Z
Z Zb a

12
2

=
−

Z
V

I
I

22

2

2 0
2

=
=

From Eq. (16.19), we have

 

V

I

Z Z Z Z

Z Z Z Z

a c d b

a b c d

2

2

=
+( )− +( )
+ + +

If the network is symmetric,

 Za 5 Zd; Zb 5 Zc

Z
Z Z

Za b
22 11

2
=

+
=

Fig. 16.31 (c)
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From the above equations, Z Z
Z Za b

11 22
2

= =
+

 and Z Z
Z Zb a

12 21
2

= =
−

∴ Zb 5 Z11 1 Z12

 Za 5 Z11 – Z12.

EXAMPLE 16.13

Obtain the lattice equivalent of a symmetrical T‑network shown in Fig. 16.32.

Fig. 16.32

Solution  A two-port network can be realised as a symmetric lattice if it is reciprocal and symmetric. The 

Z-parameters of the network are (see Example 16.1). Z11 5 3 V; Z12 5 Z21 5 2 V; Z22 5 3 V.

Since Z11 5 Z22; Z12 5 Z21, the given network is symmetrical and 

reciprocal 

∴ the parameters of the lattice network are

Za 5 Z11 – Z12 5 1 V

Zb 5 Z11 1 Z12 5 5 V

The lattice network is shown in Fig. 16.33.

EXAMPLE 16.14

Obtain the lattice equivalent of a symmetric p‑network shown in Fig. 16.34.

Fig. 16.34

Fig. 16.33
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Solution  The Z-parameters of the given network are

Z11 5 6 V 5 Z22; Z12 5 Z21 5 4 V

Hence, the parameters of the lattice network are

Za 5 Z11 – Z12 5 2 V

Zb 5 Z11 1 Z12 5 10 V

The lattice network is shown in Fig.16.35

16.13 IMAGE PARAMETERS

The image impedance ZI1 and ZI2 of a two-port network shown in Fig. 16.36 are 

two values of impedance such that, if the port 1-19 of the network is terminated 

in ZI1, the input impedance of the port 2-29 is ZI2; and if the port 2-29 is 

terminated in ZI2, the input impedance at the port 1-19 is ZI1.

Fig. 16.36

Then, ZI1 and ZI2 are called image impedances of the two-port network shown in Fig. 16.36. These 

parameters can be obtained in terms of two-port parameters. Recalling Eqs (16.5) and (16.6) in Section 16.4, 

we have

V1 5 AV2 – BI2

 I1 5 CV2 – DI2

Fig. 16.37

If the network is terminated in ZI2 at 2-29 as shown in Fig. 16.37,

 V2 5 –I2 ZI2

Fig. 16.35

LO  10  
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V

I

AV BI

CV DI
ZI

1

1

2 2

2 2

1
=

−

−
=

Z
AI Z BI

CI Z DI
I

I

I
1

2 2 2

2 2 2

=
− −

− −

Z
AZ B

CZ D
I

I

I
1

2

2

=
− −

− −

 or Z
AZ B

CZ D
I

I

I
1

2

2

=
+

+

Fig. 16.38

Similarly, if the network is terminated in ZI1 at the port 1-19 as shown in Fig. 16.38, then

 V1 5 – I1ZI1

 

V

I
ZI=

 ∴ − = =
−

−
Z

V

I

AV BI

CV DI
I1

1

1

2 2

2 2

 

− =
−

−
Z

AI Z BI

CI Z DI
I

I

I

1

2 2 2

2 2 2

 

− =
−

−
Z

AZ B

CZ D
I

I

I

1

2

2

from which, Z
DZ B

CZ A
I

I

I

2

1

1

=
+

+

Substituting the value of ZI1 in the above equation,

Z C
AZ B

CZ D
A D

AZ B

CZ D
BI

I

I

I

I
2

2

2

2

2

− +( )
−( )

+















=

− +

−












+
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from which, Z
BD

AC
I =

Similarly, we can find Z
AB

CD
I =

If the network is symmetrical, then A 5 D

∴ Z Z
B

C
I I1 2

= =

If the network is symmetrical, the image impedances ZI1 and ZI2 are equal to each other; the image 

impedance is then called the characteristic impedance, or the iterative impedance, i.e. if a symmetrical 

network is terminated in ZL, its input impedance will also be ZL, or its impedance transformation ratio is 

unity. Since a reciprocal symmetric network can be described by two independent parameters, the image 

parameters ZI1 and ZI2 are sufficient to characterise reciprocal symmetric networks. ZI1 and ZI2, the two image 

parameters, do not completely define a network. A third parameter called image transfer constant f is also 

used to describe reciprocal networks. This parameter may be obtained from the voltage and current ratios.

If the image impedance ZI2 is connected across the port 2-29, then

V1 5 AV2 – BI2 (16.20)

V2 5 – I2 ZI2 (16.21)

 ∴ V A
B

Z
V

I
1

2

2
= +













 (16.22)

I1 5 CV2 – DI2 (16.23)

I1 5 – [CZI2 1 D]I2 (16.24)

From Eq. (16.22),

V

V
A

B

Z
A B

AC

BDI

1

2 2

= +











= +

V

V
A

ABCD

D

1

2

= +  (16.25)

From Eq. (16.24),

−
= + = +

I

I
CZ D D C

BD

AC
I

1

2

2[ ]

−
= +

I

I
D

ABCD

A

1

2

 (16.26)

Multiplying Eqs (16.25) and (16.26), we have

−
× =

+









+









V

V

I

I

AD ABCD

D

AD ABCD

A

1

2

1

2
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−
× = +( )V

V

I

I
AD BC1

2

1

2

2

or AD BC
V

V

I

I
+ =

−
×1

2

1

2

AD AD
V

V

I

I
AD BC+ − =

−
× − =1 11

2

1

2

( )∵

 Let cos ; sinh AD h ADf f= = −1

 

tan h
AD

AD

BC

AD
f =

−
=

1

 ∴ f = −
tan h

BC

AD

1

 Also, e h h
V I

V I

f f f= + = −cos sin
1 1

2 2

 

f = −










=










log loge e

V I

V I

V

V

I

I

1 1

2 2

1

2

1

2

1

2

 Since V1 5 ZI1 I1; V2 5 – I2 ZI2

 

f =











+













1

2

1

2

1

2

log loge
I

I

Z

Z

I

I

For symmetrical reciprocal networks, ZI1 5 ZI2

 

f g=











=loge

I

I

1

2

where g is called the propagation constant.

EXAMPLE 16.15

Determine the image parameters of the T‑network shown in Fig.16.39.

Solution The ABCD-parameters of the network are

A B C D= = = =
6

5

17

5

1

5

7

5
; ; ;  (See Ex. 16.3)

Fig. 16.39
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Since the network is not symmetrical, f, ZI1, and ZI2 are to be evaluated to describe the network.

Z
AB

CD
I1

6

5

17

5
1

5

7

5

3 817= =
×

×

= . V

Z
BC

AC
I 2

17

5

7

5

6

5

1

5

4 453= =
×

×

= . V

 
f = =− −

tan tanh
BC

AD
h1 1 17

42

 or f = + −[ ]ln AD AD 1

 f 5 0.75

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 10

rrr16-10.1 Obtain the image parameters of the symmetric 

lattice network given in Fig. Q.1.

rrr16-10.2 Determine the Z-parameters and image 

parameters of a symmetric lattice network whose 

series arm impedance is 10 V and diagonal arm 

impedance is 20 V.

Frequently Asked Questions linked to LO 10
rrr

rrr Z

Z

rrr

rrr T

Additional Solved Problems

PROBLEM 16.1

Find the Z‑parameters for the circuit shown in Fig. 16.40.

Fig. Q.1

Fig. Q.4

2 W

5 W

1 W
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Fig. 16.40

Solution  Z
V

I
I

11

1

1 0
2

=
=

When I2 5 0; V1 can be expressed in terms of I1 and the equivalent impedance of the circuit looking from the 

terminal a-a9 is as shown in Fig. 16.41 (a).

Zeq = +
×

+
=1

6 2

6 2
2 5. V

 V1 5 I1 Zeq 5 I1 2.5

 

Z
V

I
I

11
1

1 02

2 5= =
=

. V

Z
V

I
I

21

2

1 0
2

=
=

V2 is the voltage across the 4 V impedance as shown in Fig. 16.41 (b).

Fig. 16.41 (b) 

Let the current in the 4 V impedance be Ix.

I I
I

x = × =
1

12

8 4

V I
I

Ix2

1

1
4

4
4= = × =

Z
V

I
I

21

2

2 0
2

1= = Ω
=

Z
V

I
I

22

2

2 0
1

=
=

Fig. 16.41 (a) 
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When the port a-a9 is open-circuited, the voltage at the port b-b9 can be expressed in terms of I2, and the equivalent 

impedance of the circuit viewed from b-b9 is as shown in Fig. 16.41 (c).

Fig. 16.41 (c) 

 V2 5 I2 3 2

 ∴  5 5 V

5

22

2

2 0
1

2
V

I
I

Z
V

I
I

12

1

2 0
1

=
=

V1 is the voltage across the 2 V (parallel) impedance and let the current in the 2 V (parallel) impedance is 

IY as shown in Fig. 16.41 (d).

Fig. 16.41 (d) 

I
I

Y =

 V1 5 2IY

 
V

I
1

2
2
2

=

∴ Z
V

I
I

12

1

2 0
1

1= =
=

V

Here, Z12 5 Z21, which indicates the bilateral property of the network. The describing equations for 

this two-port network in terms of impedance parameters are

V1 5 2.5I1 1 I2

V2 5 I1 1 2I2
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PROBLEM 16.2

Find the short‑circuit admittance parameters for the circuit shown in Fig. 16.42.

Fig. 16.42

Solution  The elements in the branches of the given two-port network are admittances. The admittance 

parameters can be determined by short-circuiting the two-ports.

When the port b-b9 is short-circuited, V2 5 0. This circuit is shown in Fig. 16.43 (a).

V1 5 I1 Zeq

where Zeq is the equivalent impedance as viewed from a-a9.

Z
Y

eq

eq

=
1

 Yeq 5 YA 1 YB

 

V
I

Y YA B

=
+

 

Y
I

V
Y Y

V

A B11
1

1 02

= = +( )
=

With the port b-b9 short-circuited, the nodal equation at the node 1 gives

– I2 5 V1 YB

 ∴ Y
I

V
Y

V

B21

2

1 0
2

= = −
=

When the port a-a9 is short-circuited; V1 5 0. This circuit is shown in Fig. 16.43 (b).

V2 5 I2 Zeq

where Zeq is the equivalent impedance as viewed from b-b9.

Z
Y

eq

eq

=
1

Yeq 5 Yb 1 Yc

∴ V
I

Y YB C

=
+

Fig. 16.43 (a) 

Fig. 16.43 (b) 



Circuits and Networks758 

Y
I

V
Y Y

V

B C22

2

2 0
1

= = +( )
=

With the port a-a9 short-circuited, the nodal equation at the node 2 gives

– I1 5 V2 YB

 

Y
I

V
Y

V

B12

1

2 0
1

= = −
=

The describing equations in terms of the admittance parameters are

I1 5 (YA 1 YB)V1 – YBV2

I2 5 – YBV1 1 (YC 1 YB)V2

PROBLEM 16.3

Find the Z‑parameters of the RC ladder network shown in Fig. 16.44.

Fig. 16.44

Solution  With the port b-b9 open-circuited and assuming mesh currents with V1(S ) as the voltage at a-a9, the 

corresponding network is shown in Fig. 16.45 (a).

Fig. 16.45 (a) 

The KVL equations are as follows:

 V2(S ) 5 I3(S ) (16.27)

 I S
S

I S
3 1

2
1

( )× +








 = ( )  (16.28)

1
1

1 3 1
+











( )− ( ) = ( )
S

I S I S V S  (16.29)
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From Eq. (16.28), I S I S
S

S
3 1

1 2

( ) = ( )
+











From Eq. (16.29), 
S

S
I S I S

S

S
V S

+









( )− ( )
+

= ( )
1

1 2
1 1 1

 

I S
S

S

S

S
V S

1 1

1

1 2

( )
+

−
+









 = ( )

 
I S

S S

S S
V S

1

2

1

3 1

1 2

( )
+ +

+( )











= ( )

Z
V S

I S

S S

S S
I

11

1

1 0

2

2

3 1

1 2
=

( )

( )
=

+ +( )

+( )
=

Also, V S I S I S
S

S
2 3 1

1 2
( ) ( )= = ( )

+

Z
V S

I S

S

S
I

21

2

1 0
2

1 2
=

( )

( )
=

+
=

With the port a-a9 open-circuited and assuming mesh currents with V2(S ) as the voltage as b-b9, the 

corresponding network is shown in Fig. 16.45 (b).

Fig. 16.45 (b)

The KVL equations are as follows:

 V1(S ) 5 I3(S ) (16.30)

 2
1

3 2+








 =

S
I S I S( ) ( )  (16.31)

 V2(S ) 5 I2(S ) – I3(S ) (16.32)

 From Eq. (16.31), I S I S
S

S
3 2

2 1

( ) = ( )
+











From Eq. (16.32), V S I S I S
S

S
2 2 2

2 1
( ) = ( )− ( )

+













Circuits and Networks760 

 

V S I S
S

S
2 2

1
2 1

( ) = ( ) −
+











 

Z
V S

I S

S

S
I S

22

2

2 0
1

1

2 1
=

( )

( )
=

+

+( )=

 Also, V S I S I S
S

S
1 3 2

2 1

( ) = ( ) = ( )
+











 

Z
V S

I S

S

S
I S

12

1

2 0
1

2 1
=

( )

( )
=

+











( )=

The describing equations are

V S
S S

S
I

S

S
I

1

2

1 2

3 1

3 2 1 2 1

( ) =
+ +

+( )













 +

+













V S
S

S
I

S

S
I2 1 2

2 1

1

2 1
( ) =

+













+
+

+













PROBLEM 16.4

Find the transmission parameters for the circuit shown in Fig. 16.46.

Fig. 16.46

a b

b′a′

Solution  Recalling Eqs (16.5) and (16.6), we have

V1 5 AV2 – BI2

I1 5 CV2 – DI2

When the port b-b9 is short- circuited with V1 across 

a-a9, V2 5 0, B
V

I
=

−
1

2

 and the circuit is as shown in 

Fig. 16.47 (a).

− = =I
V

I V2
1

1 1
2

∴ B 5 2 V

 
D

I

I
=

−
=1

2

2Fig. 16.47 (a) 
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When the port b-b9 is open-circuited with V1 across 

a-a9, I2 5 0, A 5 V1/V2 and the circuit is as shown in Fig. 

16.47 (b), where V1 is the voltage across the 2 V resistor 

across the port a-a9 and V2 is the voltage across the 2 V 

resistor across the port b-b9 when I2 5 0.

From Fig. 16.47 (b), I
V

Y = 1

4

V I
V

Y2

1
2

2
= × =

   A 5 2

From Fig. 16.47 (b), I
V

x = 1

2

 

C
I

V
= 1

2

where I
V

1

1
3

4
=

Therefore, C =
3

2


PROBLEM 16.5

Find the h‑ parameters for the network in Fig. 16.48.

Solution  When V2 5 0, the network is as shown in Fig. 

16.49.

h
V

I
V

11
1

1 02

2= =
=

V

h
I

I
I I

V

21
2

1 0

2 1

2

= = −
=

;

∴ h21 5 – 1

 When I h
V

V
h

I

V
I I

1 12
1

2 0

22
2

2 0

0

1 1

= = =
= =

; ;

V1 5 I2 4, V2 5 I2 4

 ∴ h h12 221
1

4
= =  

Fig. 16.49

Fig. 16.47 (b) 

I2
I1

V1 V2

2 Ω

4 Ω

Fig. 16.48
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PROBLEM 16.6

For the hybrid equivalent circuit shown in Fig. 16.50, (a) determine the current gain, and (b) determine the 

voltage gain.

Fig. 16.50

Solution  From the port 2-29 we can find

 

I
I

2

1

6

6

25 0 05 10

1500 0 05 10

=
( ) ×( )

+ ×( )

.

.

(a) Current gain 
I

I

2

1

6

6

1 25 10

0 0515 10

24 3=
×

×
=

.

.

.

(b) Applying KVL at the port 1-19,

 V1 5 500 I1 1 2 3 10–4 V2

 I
V V

1
1

4
22 10

500
=

− × −

 (16.33)

Applying KCL at the port 2-29,

 
I I

V
2 1

2 6
25

0 05
10= + × −

.

 also I
V

2

2

1500
=

−

 

−
= + × −V

I
V

2

1

2 6

1500
25

0 05
10

.

Substituting the value of I1 from Eq. (16.33), in the above equation, we get

 

−
=

− ×







+ ×

−
−V V V V

2 1

4

2 2 6

1500
25

2 10

500 0 05
10

.

– 6.6 3 10–4 V2 5 0.05V1 – 0.1 3 10–4 V2 1 0.2 3 10–4 V2

 ∴ 
V

V

2

1

73 89= − .

The negative sign indicates that there is a 180° phase shift between input and output voltages.
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PROBLEM 16.7

The hybrid parameters of a two‑port network shown in Fig. 16.51 are h11 5 1 K; h12 5 0.003; h21 5 100; 

h22 5 50 m. Find V2 and Z‑parameters of the network.

Fig. 16.51

Solution   V1 5 h11 I1 1 h12 V2 (16.34)

 I2 5 h21 I1 1 h22 V2 (16.35)

At the port 2-29,   V2 5 – I2 2000

Substituting in Eq. (16.35), we have

I2 5 h21I1 – h22I2 2000

I2 (1 1 h22 2000) 5 h21 I1

I2(1 1 50 3 10–6 3 2000) 5 100 I1

 
I

I
2

1
100

1 1
=

.

Substituting the value of V2 in Eq. (16.34), we have

 V1 5 h11 I1 – h12 I2 2000

Also, at the port 1-19, V1 5 VS – I1 500

 ∴ V I h I h
I

s − = − ×1 11 1 12
1500

100

1 1
2000

.

10 10 500 1000 0 003
100

1 1
2000

3

1 1 1
×( )− = − × ×− I I I.

.

 954.54I1 5 10 3 10–3

 I1 5 10.05 3 10–6 A

 V1 5 VS – I1 3 500

 5 10 3 10–3 – 10.5 3 10–6 3 500 5 4.75 3 10–3 V

 
V

V h I

h
2

1 11 1

12

=
−



Circuits and Networks764 

 
V2

3 64 75 10 1000 10 5 10

0 003
1 916=

× − × ×
= −

− −. .

.
. V

(b) Z-parameters of the network can be found from Table 16.1.

Z
h

h h h h

h

h
11

22

11 22 21 12

22

3 6

6

1 10 50 10 100 0 003

50 10
=

∆
=

−
=

× × × − ×

×

−

−

.

 5 – 5000 V

Z
h

h
12

12

22
6

0 003

50 10
60= =

×
=

−

.
V

Z
h

h
21

21

22
6

6100

50 10
2 10=

−
=

−

×
= − ×

−
V

Z
h

22
22

31
20 10= = × V

PROBLEM 16.8

The Z‑parameters of a two‑port network shown in Fig. 16.52 are Z11 5 Z22 5 10 V; Z21 5 Z12 5 4 V. If the 

source voltage is 20 V, determine I1, V2, I2, and input impedance.

Fig. 16.52

Solution  Given V1 5 VS 5 20 V

From Section 16.11.1, V I Z
Z Z

Z ZL
1 1 11

12 21

22

= −
+











where ZL 5 20 V

 ∴ 20 10
4 4

20 10
1

= −
×

+









I

 I1 5 2.11 A

 
I I

Z

Z ZL
2 1

21

22

2 11
4

20 10
0 281= −

+
= − ×

+
= −. .
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At the port 2-29,

 V2 5 – I2 3 20 5 0.281 3 20 5 5.626 V

Input impedance 5 
V

I

1

1

20

2 11
9 478= =

.
. V

PROBLEM 16.9

The Y‑parameters of the two‑port network shown in Fig. 16.53 are Y11 5 Y22 5 6  ; Y12 5 Y21 5 4 

Determine the driving‑point admittance at the port 2‑29 if the source voltage is 100 V and has an impedance 

of 1 ohm.

Fig. 16.53

Solution  From Section 16.11.2,

I

V

Y Y Y Y Y Y

Y Y

s

s

2

2

22 22 11 21 12

11

=
+ −

+

where YS is the source admittance 5 

∴ the driving-point admittance = 
6 1 6 6 4 4

1 6
3 714

× + × − ×

+
= . 

Or the driving-point impedance at the port 2-29 5 
1

3 714.
V

PROBLEM 16.10

Obtain the Z‑parameters for the two‑port unsymmetrical 

lattice network shown in Fig. 16.54.

Solution  From Section 16.12, we have

Z
Z Z Z Z

Z Z Z Z

a b d c

a b c d
11

1 3 2 5

1 3 5 2
2 545=

+( ) +( )
+ + +

=
+( ) +( )

+ + +
= . V

 

Z
Z Z Z Z

Z Z Z Z

b c a d

a b c d
21

3 5 1 2

11
1 181=

−

+ + +
=

× − ×
= . V

 Z21 5 Z12

Z
Z Z Z Z

Z Z Z Z

a c d b

a b c d
22

1 5 2 3

11
2 727=

+( ) +( )
+ + +

=
+( ) +( )

= . V

Fig. 16.54
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PROBLEM 16.11

For the ladder two‑port network shown in Fig. 16.55, find the open‑circuit driving‑point impedance at the 

port 1‑2.

Fig. 16.55

Solution  The Laplace transform of the given network is shown in Fig. 16.56.

Fig. 16.56

Then the open-circuit driving-point impedance at the port 1-2 is given by

Z s

s

s

s

s
s

11 1
1

1

1
1

1

1
1

= +( )+

+

+( )+

+

+( )+

 

=
+ + + + + +

+ + + +

s s s s s s

s s s s s

6 5 4 3 2

5 4 3 2

3 8 11 11 6 1

2 5 4 3

PROBLEM 16.12

For the bridged T‑network shown in Fig. 16.57, find the driving‑ point admittance y11 and transfer admittance 

y21 with a 2 V load resistor connected across the port 2.
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Fig. 16.57

Solution  The corresponding Laplace transform network is shown in Fig. 16.58.

Fig. 16.58

The loop equations are

 
I

s
I

s
I V1 2 3 11

1 1
+









+









− =

 
I

s
I

s
I1 2 3

1
1

1
0









+ +









+ =

I I I
s

1 2 31 2
1

0−( )+ + +








 =

Therefore,

 

D =

+








 −

+

− +

=
+

1
1 1

1

1
1

1
1

1 1 2
1

2
2

s s

s s

s

s

s

Similarly, D11

2

2

1
1 1

1 2
1

3 1
=

+










+










=
+ +s s

s

s s

s
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 and D
12

2

2

1
1

1 2
1

2 1
=

+

+ +










=
+ +s

s

s s

s

 Hence, Y
s s

s
11

11

2
3 1

2
= =

+ +

+

D

D

 and Y
s s

s
21

12
2 2 1

2
= =

− + +( )

+

D

D

PROBLEM 16.13

For the two‑port network shown in Fig. 16.59, determine the h‑parameters. Using these parameters, calculate 

the output (Port 2) voltage, V2, when the output port is terminated in a 3 V resistance and a 1V(dc) is applied 

at the input port (V1 5 1 V).

Fig. 16.59

Solution  The h-parameters are defined as

V

I

h

h

h

h

I

V

1

2

11

21

12

22

1

2














=





























For V2 5 0, the circuit is redrawn as shown in Fig. 16.60 

(a).

h
V

I

i i

i
V

11

1

1 0

1 1

1
2

1 3
4= =

× +
=

=

h
I

I

i

i

i i

i
V

21
2

1 0

2

1

1 1

1
2

2
1= = =

−
=

=

For I1 5 0, the circuit is redrawn as shown in Fig. 16.60 (b).

h
V

V
h

I

V
12

1

2

22
2

2

1
1

2
0 5= = = = =; .

Fig. 16.60 (a) 
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 Hence, h =












4 1

1 0 5.

 V1 5 1 V

 V1 5 4I1 1 V2

 I2 5 I1 1 0.5 V2

Eliminating I1 from the above equations and putting

V I
V

V21
21

3

3

7
= =

−
=

−
and we get V2 ,

PROBLEM 16.14

Find the current transfer ratio I

I

2

1

 for the network shown in Fig. 16.61.

Fig. 16.61

Solution  By transforming the current source into voltage source, the given circuit can be redrawn as shown 

in Fig. 16.62.

Applying Kirchhoff’s nodal analysis,

V I I V V V1 1 3 1 1 2
2

1 1 2
0

− +( )
+ +

−
=

 and 
V V I

I2 1 1
2

2 2
0

−
− − =

Putting V1 5 – I3 and V2 5 – I2

The above equations becomes

− − − − +
−

=I I I I
I I

3 1 3 3

2 3
2

2
0

 and 
I I I

I2 3 1
2

2 2
0

−
− − =

 or I1 0.5I2 – 4.5 I3 5 0

 and – 0.5 I1 – 1.5I2 1 0.5I3 5 0

By eliminating I3, we get

I

I

2

1

5 5

13
0 42=

−
= −

.
.

Fig. 16.60 (b) 

Fig. 16.62
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PROBLEM 16.15

Obtain Y‑parameters of the two‑port network shown in Fig.  16.63.

Fig. 16.63

Solution  The above network is the parallel connection of two-port networks. Y-parameters of such networks 

can be found by finding individual Y-parameters of the respective networks.

T-and p-networks of the above figure are shown separately.

Fig. 16.64

(a) (b)

Y-parameters of the T-network are given by 

Y Y Y Y11 22 21 12

6

7

5

7

4

7
= = = =

−
; ;

The Y-parameters of the p-network are given by

Y11 5 2; Y12 5 1; Y22 5 3; Y21 5 21

Y-parameters of the combination are given by

Y Y11 22

6

7
2

20

7

5

7
3

26

7
= + = = + =,

Y Y12 21

4

7
1

5

7
= =

−
− =

−

PROBLEM 16.16

Find the transmission parameters for the network shown in Fig. 16.65.

Fig. 16.65
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Solution  Equations of transmission parameters are

V AV BI

I CV DI

A
V

V
B

V

I

C
I

V
D

I

I V

I

1 2 2

1 2 2

1

2 0

1

2 0

1

2 0

1

2 2

2

= −

= −

= − =

= − =

= =

=

;

;
II

V2 02 =

When I2 5 0; V1 5 I1 1 4I1 5 5I1

and 2V223I1 1 4I1 5 0

V I
I

I

V V
V

V

2 1
1

2

1 2
1

2

1

5 5

= ⇒ =

∴ = ⇒ =

When V2 5 0; the network is shown in Fig. 16.66.

Fig. 16.66

Loop equations V1 5 5I1 1 4I2

23I1 1 2I2 1 4I2 1 4I1 5 0

from which, I I
I

I
1 2

1

2

6 6= − ⇒ = −

 ∴ V1 5 230I2 1 4I2

  5 226I2

V

I

A
V

V
B

V

I

C
I

V
D

I

I

1

2

1

2

1

2

1

2

1

2

26

5 26

1 6

= −

= = =
−

=

= = =
−

=

;

;
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PROBLEM 16.17

Determine Z‑ and Y‑parameters for the circuit shown in Fig.  16.67.

Fig. 16.67

Solution  Z‑parameters

Let I3 be the current in 2 V resistor

V I I V1 3 3 12 2= ⇒ = /

Applying KVL to the outer loop,

2 3 0

3 2 4

3 1 3 1 1 2 3

1 1 2 3

2 1 3 2

2

I I I V I I I

V I I I

V I I I

V I

− − − − + − =

= − − +

= − +

=

( ) ( )

11 2
1

2
+ −I

V

3 2 2

2

1

2
2

2
3

2

1 1 2 1

1 1 2

2 1 2 1 2

2 1 2

V I I V

V I I

V I I I I

V I I

Z

= − − +

= − −

= + − − −

= +

∴

( )

111 12 21 222 1 2
3

2
= − = − = =; ; ;Z Z Z

Y‑parameters

From the above equations,

V V I I
V

I I

I V V

2 1 1 2
1

1 2

1 1 2

2
2

3

2

+ = + − − −

=
−

−

Multiply equations V2 with 2 and add the equation V1

2 2 2

2 2 2 2

2

2 1 1 2 1

2 1 1 2

1 1 2

V V I I V

V V I I

V I I

+ = + −

+ = +

= − −Also
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∴

  

2 3

3

2

1

3

2

2 1 2

11

12

21

22

V V I

Y

Y

Y

Y

+ =

=
−

= −

=

=









PROBLEM 16.18

Find Z21 and Z22 for the network shown in Fig. 16.68.

Fig. 16.68

I2I1
++

Solution  Transforming the dependent current source into voltage source, the network is shown as follows:

Fig. 16.69

−
−

−

Let I3 be the current through 2 V. KVL to the outer loop,

2V2 1 2V1 1 I2 2 I3 + V15 0

2V2 1 3V1 1 I2 2 I3 5 0

Also, 2V1 1 (I1 1 I2 2 I3) 1 2V2 5 0

V1 5 I1 1 I2 2 I3 1 2V2

from which

27V2 2 3I1 2 2I2 1 2I3 5 0

where I
V

V
I I

3
2

2
1 2

2

2 3

=

∴ =
−

−

Hence, Z Z21 22

1

2

1

3
=

−
=

−
;



Circuits and Networks774 

PROBLEM 16.19

Obtain the transmission parameters for the following T‑network and verify the reciprocity theorem.

Fig. 16.70

Solution

V1 5 AV2 2 BI2

I1 5 CV2 2 DI2

Fig. 16.71

When I2 5 0, 

V1 5 I1 (8 1 2j)

V2 5 I1 (324j)

A
V

V

I j

I j

j

j
j

C
I

V

I

I

= =
+

−
=

+

−
= +

= =
−

1

2

1

1

1

2

1

1

8 2

3 4

8 2

3 4
0 64 1 52

3 4

( )

( )
. .

( jj j
j

)
. .=

−
= +

1

3 4
0 12 0 16 

When V2 5 0,

Fig. 16.72

V1

6j

−4j
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B
V

I

I
I j

j

=
−

− =
−

−

1

2

2
1 3 4

6 4

( )

2I2 5 I1 (0.65 2 0.23j)

 V1 5 I1{(5 1 6j) 1 [(3 2 4j)||3]}

 = I1[6.96 1 5.3j]

 
B

V

I

I j

I j
=

−
=

+

−
1

2

1

1

6 96 5 3

0 65 0 23

( . . )

( . . )

 ∴ B 5 6.95 1 10.61j

 

D I I
I

I j
j= − =

−
= +1 2

1

1 0 65 0 23
1 367 0 48/

( . . )
. .

Reciprocity condition is satisfied when AD 2 BC 5 1.

0 0 0 0 0. . . . . . . .64 1 52  1 367+ 48 6 95+1 61 12+ 16+( ) ( )



 − ( )( )

j j j j 


= − × = −−1 00 1 6 10 1 008 0 009 14. . . . 

Hence, the condition of reciprocity is verified.

PSpice Problems

PROBLEM 16.1

Using PSpice, find the Z‑parameters for the circuit in Fig. 16.73.

Fig. 16.73

   V1 5 Z11 I1 1 Z12 I2

V2 5 Z21 I1 1 Z22 I2

* DETERMINATION OF Z PARAMETERS

.SUBCKT AMP 1 3

R1 1 6 1
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R2 6 3 2

R3 0 6 2

R4 0 3 4

.ENDS

I1 0 1 1

I2 0 3 0

I3 0 5 1

I4 0 4 0

X1 1 3 AMP

X2 4 5 AMP

.OP

.END

**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE 5 27.000 DEG C

****************************************************************

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) 2.5000 (3) 1.0000 (4) 1.0000 (5) 2.0000

(X1.6) 1.5000 (X2.6) 1.0000

Result

Subcircuit 1 is with I2 5 0 (I2 5 0)

 output port is open-circuited.

Z
V

I
11

1

1

2 5= = Ω.

Z
V

I
21

3

1

1= = Ω

Subcircuit 2 is with I4 5 0

 input port open-circuited.

Z
V

I

V
12

4

3

4

1
1= = = V

Z
V

I
22

5

3

2= = V

PROBLEM 16.2

Using PSpice, find the transmission parameters for the circuit shown in Fig. 16.74.

Fig. 16.74
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   V1 5 AV2 – BI2

V1 5 CV2 – DI2

* TRANSMISSION PARAMETERS

.SUBCKT AMP 1 2

R1 1 2 2

R2 1 0 2

R3 2 0 2

.ENDS

I1A 0 1 1

I2A 0 2 0

I1B 0 3 1

V2B 4 0 0

X1 1 2 AMP

X2 3 4 AMP

.OP

.END

**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE 5 27.000 DEG C

****************************************************************

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) 1.3333  (2) .6667  (3) 1.0000  (4) 0.0000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V2B 5.000E – 01

Result

Subcircuit 1 is with output node open-circuited.

A
V

V
= = =1

2

1 333

0 667
2

.

.

C
I

V
= = =1

2

1

0 667
1 5

.
. 

Subcircuit 2 is with output node short-circuited

B
V

I
=

−
=

−
=3

2

1

0 5
2

.
V

D
I

I
=

−
=

−
=1

2

1

0 5
2

.
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Answers to Practice Problems

16-2.1 Z
Y Y

Y
Z Z

Y

Y
Z

Y Y

Y

B C C A C
11 12 21 22=

+
= = =

+

D D D
; ;

 DY 5 YA YB 1 YB YC 1 YCYA

16-2.5 
5 71 4 29

2 14 2 14

. .

. .

−











16-2.6 A9 5 3; B9 5 2; C9 5 4; D9 5 3

16-2.7 Y11 5 (0.5 – j0.2)10–3; 

 Y12 5 Y21 5 (  j0.2 3 10–3)

 Y22 5 j(0.02 3 10–3)

16-2.11 Y115 −0.5 Y12 = 0.25 Y22= 0.2

16-2.12 Z Y=












=
−

−













0 75 0 25

0 25 0 75

1 5 0 5

0 5 1 5

. .

. .
;

. .

. .

16-2.13 Y Y11 12 21 22

2

3

1

3

5

3

1

3
= =

−
= =

−
; ; ;

16-4.1 h h h h11 21 22 12

4

3

2

3

1

6

2

3
= =

−
= =; ; ;

 
g g g g11 12 21 22

1

4
1 1 2= = − = =; ; ;

16-4.2 Zi 5 1.5 kV; Z0 5 0.033 3 10–3 V

16-4.3 
0 857 31 0 17 59

8 58 32 1 1 89 61 1

. .

. . . .

∠− ° ∠ °

∠− ° ∠ °













k

m

V

16-7.1 Y
R R

Z
Y

R

Z

Y
R

Z
Z

R R R

R R R R

1
2 3

2
2

3
1 1 2 2

2 3 2 3

2 0 8

0 2

=
−

=
−

= =
+

− +

.
;

;
.

D D

D
D
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Objective-Type Questions

rrr16.1 A two-port network is simply a network inside a black box, and the network has only

 (a) two terminals (b) two pairs of accessible terminals      (c) two pairs of ports

rrr16.2 The number of possible combinations generated by four variables taken two at a time in a two-port network 

is

 (a) four (b) two (c) six

rrr16.3 What is the driving-point impedance at port one with port 

two open- circuited for the network in Fig. 16.75?

 (a) 4 V (c) 3 V

 (b) 5 V

rrr16.4 What is the transfer impedance of the two-port network 

shown in Practice Problem 1 of LO 10?

 (a) 1 V (b) 2 V 

(c) 3 V

rrr16.5 If the two-port network in Practice Problem 1 of LO 10 is reciprocal or bilateral then

 (a) Z11 5 Z22 (b) Z12 5 Z21 (c) Z11 5 Z12

rrr16.6 What is the transfer admittance of the network shown in 

Fig. 16.76.

 (a) –2  (c) –4 

 (b) –3 

rrr16.7 If the two-port network in Practice Problem 5 of LO 2 is 

reciprocal then

 (a) Y11 5 Y22 (b) Y12 5 Y22 

(c) Y12 5 Y11

rrr16.8 In describing the transmission parameters,

 (a)  the input voltage and current are expressed in terms of output voltage and current

 (b)  the input voltage and output voltage are expressed in terms of output current and input current

 (c)  the input voltage and output current are expressed in terms of input current and output voltage

rrr16.9 If Z11 5 2 V; Z12 5 1 V; Z21 5 1 V; and Z22 5 3 V, what is the determinant of admittance matrix?

 (a) 5 (b) 1/5 (c) 1

rrr16.10 For a two-port bilateral network, the three transmission parameters are given by A B C= =
6

5

17

5

1

5
; and =

, what is the value of D?

 (a) 1 (b) 
1

5

 (c) 
7

5

Fig. 16.75

Fig. 16.76
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rrr16.11 The impedance matrices of two two-port networks are given by 
3 2

2 3

15 5

5 25

























and . If the two networks 

are connected in series, what is the impedance matrix of the combination?

 (a) 
3 5

2 25











  (b) 

18 7

7 28











  (c) 

15 2

5 3













rrr16.12 The admittance matrices of two two-port networks are given by 
1 2 1 4

1 4 5 8

1 1 2

1 2 5 4

/ /

/ /

/

/ /

−

−













−

−













and . If 

the two networks are connected in parallel, what is the admittance matrix of the combination?

 (a) 
1 1 2

1 2 5 4

−

−













/

/ /
 (b) 

2 1

1 5 2

−

−











/

 (c) 
3 2 3 4

3 4 15 8

/ /

/ /

−

−













rrr16.13 If the Z-parameters of a two-port network are Z11 5 5 V Z22 5 7 V; Z12 5 Z21 5 3 V then the A, B, C, D 

parameters are respectively given by

 (a) 
5

3

26

3

1

3

7

3
; ; ;  (b) 

10

3

52

3

2

3

14

3
; ; ;  (c) 

15

3

78

3

3

3

21

3
; ; ;

rrr16.14 For a symmetric lattice network, the value of the series impedance is 3 V and that of the diagonal impedance 

is 5 V, then the Z-parameters of the network are given by

 (a) Z11 5 Z22 5 2 V (b) Z11 5 Z22 5 4 V (c) Z11 5 Z22 5 8 V

   Z12 5 Z21 5 1/2 V  Z12 5 Z21 5 1 V  Z12 5 Z21 5 2 V

rrr16.15 For a two-port network to be reciprocal,

 (a) Z11 5 Z22 (b) y21 5 y22 (c) h21 5 – h12 (d) AD – BC 5 0

rrr16.16 Two-port networks are connected in cascade. The combination is to be represented as a single two-port 

network. The parameters of the network are obtained by adding the individual

 (a) Z-parameter matrix   (c) A1 B1 C1 D1 matrix

 (b) h-parameter matrix   (d) ABCD-parameter matrix

rrr16.17 The h-parameters h11 and h12 are obtained

 (a) by shorting output terminals (c) by shorting input terminals

 (b)  by opening input terminals  (d)  by opening output terminals

rrr16.18 Which parameters are widely used in transmission-line theory?

 (a) Z-parameters (b) Y-parameters (c) ABCD-parameters (d) h-parameters

For interactive quiz with answers,
scan the QR code given here
OR
visit
http://qrcode.flipick.com/index.php/274



17.1 CLASSIFICATION OF FILTERS

Wave filters were first invented by G A Campbell and O I Lobel of the Bell Telephone 

Laboratories. A filter is a reactive network that freely passes the desired bands of 

frequencies while almost totally suppressing all other bands. A filter is constructed 

from purely reactive elements, for otherwise the attenuation would never become 

zero in the passband of the filter network. Filters differ from simple resonant circuits in providing a substantially 

constant transmission over the band which they accept; this band may lie between any limits depending on the 

design. Ideally, filters should produce no attenuation in the desired band, called the transmission band or pass 

band, and should provide total or infinite attenuation at all other frequencies, called attenuation band or stop 

band. The frequency which separates the transmission band and the attenuation band is defined as the cut-off 

frequency of the wave filters, and is designated by fc.

Filter networks are widely used in communication systems to separate various voice channels in carrier 

frequency telephone circuits. Filters also find applications in instrumentation, telemetering equipment, etc. 

where it is necessary to transmit or attenuate a limited range of frequencies.

A filter may, in principle, have any number of pass bands separated by attenuation bands. However, they 

are classified into four common types, viz. low-pass, high-pass, band-pass and band-elimination.

17.1.1 Decibel and Neper

The attenuation of a wave filter can be expressed in decibels or nepers. Neper is defined as the natural 

logarithm of the ratio of input voltage (or current) to the output voltage (or current), provided that the network 

is properly terminated in its characteristic impedance Z0.

17

LEARNING OBJECTIVES

LO  1  
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From Fig. 17.1 (a), the number of  

nepers, N
V

V

I

I
e e= log log1

2

1

2

or .

A neper can also be expressed in terms of input power, P1 

and the output power P2 as N 5 1/2 loge
 P1/P2.

A decibel is defined as ten times the common logarithms of 

the ratio of the input power to the output power.

∴  Decibel D
P

P
=10 10

1

2

log

The decibel can be expressed in terms of the ratio of input voltage (or current) and the output voltage (or 

current.)

 D
V

V

I

I
= =20 2010

1

2
10

1

2

log log

∴  One decibel is equal to 0.115 N.

17.1.2 Low-pass Filter

By definition, a low-pass (LP) filter is one which passes without attenuation all frequencies up to the cut-off 

frequency fc, and attenuates all other frequencies greater than fc. The attenuation characteristic of an ideal LP 

filter is shown in Fig. 17.1 (b). This transmits currents of all frequencies from zero up to the cut-off frequency. 

The band is called pass band or transmission band. Thus, the pass band for the LP filter is the frequency range 

0 to fc. The frequency range over which transmission does not take place is called the stop band or attenuation 

band. The stop band for an LP filter is the frequency range above fc.

Fig. 17.1 (b)

Pass

band

Pass

band

bandband
band

band band band bandbandband

- filter

Low-Pass filter

Band-Pass filter

High-Pass filter

Fig. 17.1 (a)

Two port

Network
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17.1.3 High-Pass Filter

A high-pass (HP) filter attenuates all frequencies below a designated cut-off frequency, fc, and passes all 

frequencies above fc. Thus, the pass band of this filter is the frequency range above fc, and the stop band is the 

frequency range below fc. The attenuation characteristic of an HP filter is shown in Fig. 17.1 (b).

17.1.4 Band-Pass Filter

A band-pass filter passes frequencies between two designated cut-off frequencies and attenuates all other 

frequencies. It is abbreviated as BP filter. As shown in Fig. 17.1 (b), a BP filter has two cut-off frequencies 

and will have the pass band f2 – f1; f1 is called the lower cut-off frequency, while f2 is called the upper cut-off 

frequency.

17.1.5 Band-Elimination Filter

A band-elimination filter passes all frequencies lying outside a certain range, while it attenuates all frequencies 

between the two designated frequencies. It is also referred as band stop filter. The characteristic of an ideal 

band elimination filter is shown in Fig. 17.1 (b).

All frequencies between f1 and f2 will be attenuated while frequencies below f1 and above f2 will be passed.

Frequently Asked Questions linked to LO 1*
rrr17-1.1 What are the properties of filters? [JNTU Nov. 2012]

rrr17-1.2 What are the classifications of filter? Discuss them briefly. [JNTU Nov. 2012]

rrr17-1.3 Explain the concept of insertion loss. [PU 2012]

17.2 FILTER NETWORKS

Ideally a filter should have zero attenuation in the pass band. This condition can 

only be satisfied if the elements of the filter are dissipationless, which cannot be 

realised in practice. Filters are designed with an assumption that the elements of 

the filters are purely reactive. Filters are made of symmetrical T, or p sections. T 

and p sections can be considered as combinations of unsymmetrical L sections as 

shown in Fig. 17.2.

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600

LO  2  
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Fig. 17.2

The ladder structure is one of the commonest forms of filter network. A cascade connection of several T 

and p sections constitutes a ladder network. A common form of the ladder network is shown in Fig. 17.3.

Figure 17.3 (a) represents a T-section ladder network, whereas Fig. 17.3 (b) represents the p-section 

ladder network. It can be observed that both networks are identical except at the ends.

Fig. 17.3

17.3 EQUATIONS OF FILTER NETWORKS

The study of the behaviour of any filter requires the calculation of its propagation constant g, attenuation a, 

phase shift b, and its characteristic impedance Z0.

17.3.1 T-Network

Consider a symmetrical T-network as shown in Fig. 17.4.

As has already been mentioned in Section 16.13, if the image 

impedances at the port 1-19 and port 2-29 are equal to each 

other, the image impedance is then called the characteristic, or 

the iterative impedance, Z0. Thus, if the network in Fig. 17.4 is 

terminated in Z0, its input impedance will also be Z0. The value 

of input impedance for the T-network when it is terminated in Z0 Fig. 17.4

LO 2
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is given by

Z
Z

Z
Z

Z

Z
Z Z

Z
Z

Z
Z

in

in 0also Z Z

= +
+











+ +

=

∴ = +

1
2

1
0

1
2 0

0
1

2
1

2

2

2

2

2
22

2 2

2

2

2 2

0

1 2 0

0
1 1 2 2 0

1 2 0

+










+ +

= +
+

+ +

Z

Z Z Z

Z
Z Z Z Z Z

Z Z Z

( )

Z
Z Z Z Z Z Z Z Z Z

Z Z Z

Z Z Z Z

Z

0
1
2

1 2 1 0 1 2 0 2

1 2 0

0
2

1
2

1 2

2 2 2 4

2 2 2

4 4

=
+ + + +

+ +

= +

( )

00
2 1

2

1 2
4

= +
Z

Z Z

The characteristic impedance of a symmetrical T-section is

Z
Z

Z ZT0
1
2

1 2
4

= +  (17.1)

Z0T can also be expressed in terms of open-circuit impedance Z0c and short circuit impedance Zsc of the 

T-network. From Fig. 17.4, the open-circuit impedance Z
Z

Zc0
1

2
2

= +  and

 

Z
Z

Z
Z

Z
Z

Z
Z Z Z

Z Z

Z Z Z Z
Z

sc

sc

c sc

= +
×

+

=
+

+

× = +

=

1

1
2

1
2

1
2

1 2

1 2

0 1 2
1
2

2

2

2

4

2 4

4

ZZ Z Z ZT T c sc0
2

0 0or =  (17.2)

� Propagation�Constant�of�T-Network� By definition,  

the propagation constant g of the network in Fig. 17.5 is given 

by g 5 loge I1/I2

Fig. 17.5
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Writing the mesh equation for the second mesh, we get

I Z I
Z

Z Z

I

I

Z
Z Z

Z
e

1 2 2
1

2 0

1

2

1
2 0

2

2

2

= + +










=
+ +

= g

∴ + + =

= − −

Z
Z Z Z e

Z Z e
Z

1
2 0 2

0 2
1

2

1
2

g

g( )  (17.3)

The characteristic impedance of a T-network is given by

 Z
Z

Z ZT0
1
2

1 2
4

= +  (17.4)

Squaring Eqs (17.3) and (17.4) and subtracting Eq. (17.4) from Eq. (17.3), we get

Z e
Z

Z Z e
Z

Z Z

Z e Z Z e

2
2 2 1

2

1 2
1
2

1 2

2
2 2

1 2

1
4

1
4

0

1 1

( ) ( )

( ) (

g g

g g

− + − − − − =

− − + −− =

− − =

− − =

1 0

1 0

1 0

2
2 2

1 2

2
2

1

)

( )

( )

Z e Z Z e

Z e Z e

g g

g g

( )e
Z e

Z

e e
Z

Z e

g
g

g g

g

− =

+ − =
−

1

1 2

2 1

2

2 1

2

Rearranging the above equation, we have

 e e e
Z

Z

− + − =g g g( )2 1

2

1 2

 ( )e e
Z

Z

g g+ − =− 2 1

2

Dividing both sides by 2, we have

e e Z

Z

g g+
= +

−

2
1

2

1

2

cosh g= +1
2

1

2

Z

Z
 (17.5)

Still another expression may be obtained for the complex propagation constant in terms of the hyperbolic 

tangent rather than hyperbolic cosine.
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 sinh cosg g= −

= +









− = +











h

Z

Z

Z

Z

Z

Z

2

1

2

2

1

1

1

2

1

1
2

1
2 

2

 sinh g= + =
1

42
1 2

1
2

0

2Z
Z Z

Z Z

Z

T
 (17.6)

Dividing Eq. (17.6) by Eq. (17.5), we get

 tanh g=

+

Z

Z
Z

T0

2
1

2

But Z
Z

Z c2

1

0
2

+ =

Also, from Eq. (17.2), Z Z ZT c sc0 0=

 

tanh g=
Z

Z

sc

c0

Also, sinh (cosh )
g

g
2

1

2
1= −

where cosh ( )g= +1 21 2Z Z/

 =
Z

Z

1

2
4

 (17.7)

17.3.2 p-Network

Consider an asymmetrical p-section shown in Fig. 17.6. When the network is terminated in Z0 at the port 

2-29, its input impedance is given by

 
Z

Z Z
Z Z

Z Z

Z
Z Z

Z Z
Z

in
=

+
+













+
+

+

2
2

2

2

2
2

2 1

2 0

2 0

1

2 0

2 0

2

By definition of characteristic impedance, Zin 5 Z0

Z

Z Z
Z Z

Z Z

Z
Z Z

Z Z
Z

0

2 1

2 0

2 0

1

2 0

2 0

2

2
2

2

2

2
2

=

+
+













+
+

+

Fig. 17.6
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Z Z
Z Z

Z Z
Z Z

Z Z Z Z Z Z Z

Z Z

Z Z

0 1
2 0

2

2 0
0 2

2 1 2 0 1 0 2

2 0

0 1

2

2
2

2 2 2

2

2

+
+

+ =
+ +

+

( )

( )

ZZ Z Z Z Z Z Z Z Z

Z Z Z Z Z Z Z

Z Z

2 1 0
2

0
2

2 2
2

0 2 0
2

1 2
2

0 1 2 0 2
2

1 0
2

2 4 2

4 2 4

+ + + +

= + +

+44 4

4 4

4

4

2 0
2

1 2
2

0
2

1 2 1 2
2

0
2 1 2

2

1 2

Z Z Z Z

Z Z Z Z Z

Z
Z Z

Z Z

=

+ =

=
+

( )

Rearranging the above equation leads to

 Z
Z Z

Z Z
0

1 2

1 2
1 4

=
+ /

 (17.8)

which is the characteristic impedance of a symmetrical p-network,

 

Z
Z Z

Z Z Z
0

1 2

1 2 1

2
4

p =
+ /

From Eq. (17.1), Z
Z

Z ZT0
1

2

1 2
4

= +

  ∴  Z
Z Z

Z T
0

1 2

0

p =  (17.9)

Z0p can be expressed in terms of the open-circuit impedance Z0c and short-circuit impedance Zsc of the p 

network shown in Fig. 17.6 exclusive of the load Z0.

From Fig. 17.6, the input impedance at the port 1-19 when the port 2-29 is open is given by 

Z
Z Z Z

Z Z
C0

2 1 2

1 2

2 2

4
=

+

+

( )

Similarly, the input impedance at the port 1-19 when the port 2-29 is short-circuited is given by 

Z
Z Z

Z Z
sc =

+

2

2

1 2

2 1

 Hence, Z Z
Z Z

Z Z

Z Z

Z Z
c sc0

1 2

2

1 2

1 2

1 2

4

4 1 4
× =

+
=
+ /

Thus, from Eq. (17.8),

 Z Z Zc sc0 0p =  (17.10)
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� Propagation�Constant�of�p-Network The propagation constant of a symmetrical p-section is the 

same as that for a symmetrical T-section,

i.e., cosh g= +1
2

1

2

Z

Z

Frequently Asked Questions linked to LO 2
rrr17-2.1 Compare a first-order low-pass filter to a second-order low-pass filter in terms of (a) voltage gain 

and (b) cut-off frequency, etc. [BPUT 2008]

rrr17-2.2 Find the characteristic impedance of a T-section as shown in Fig. Q.2. Verify the value of 

impedance with the help of open-and short-circuit impedances. [PU 2010]

rrr17-2.3 A symmetrical T-network consisting of pure resistances has open-and short-circuit impedances 

Zoc = 800 –0º , and Zsc = 600 –0º . Design a symmetrical T-network. [PU 2010]

rrr17-2.4 For a symmetrical T-network, prove that: [PU 2010]

R1/2 = R0 
— 1

1

N

N

 
 

+ 

R2 = R0 2

2

— 1

N

N

 
 
 

rrr17-2.5 Design a suitable matching half-section to match a 

symmetrical T-network with ZOT = 500  to a generator 

having internal resistance equal to 200 . [PU 2012]

rrr17-2.6 Design a -type attenuator to give 20 dB attenuation and to 

have a characteristic impedance of 100 . [PTU 2011-12]

rrr17-2.7 Calculate image impedance and iterative impedance of the 

T-network shown in Fig. Q.7 [PU 2010]

17.4 CLASSIFICATION OF PASS BAND AND STOP BAND

It is possible to verify the characteristics of filters from the propagation 

constant of the network. The propagation constant g, being a function of 

frequency, the pass band, stop band, and the cut-off point, i.e. the point 

of separation between the two bands, can be identified. For symmetrical 

T or p-sections, the expression for propagation constant g in terms of the 

hyperbolic functions is given by Eqs (17.5) and (17.7) in Section 17.3. From Eq. (17.7), sin h
g

2 4

1

2

=
Z

Z
.

Fig. Q.2

LO  3  

*Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category

Fig. Q.7
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If Z1 and Z2 are both pure imaginary values, their ratio, and hence Z1/4Z2, will be a pure real number. Since 

Z1 and Z2 may be anywhere in the range from – j  t0 1 j, Z1/4Z2 may also have any real value between the 

infinite limits. Then sinh /
g

2
4

1 2
= Z Z  will also have infinite limits, but may be either real or imaginary 

depending upon whether Z1/4Z2 is positive or negative.

We know that the propagation constant is a complex function g 5 a 1 jb, the real part of the complex 

propagation constant a, is a measure of the change in magnitude of the current or voltage in the network, 

known as the attenuation constant. b is a measure of the difference in phase between the input and output 

currents or voltages, known as phase shift constant. Therefore, a and b take on different values depending 

upon the range of Z1/4Z2. From Eq. (17.7), we have

 sinh sinh sinh cos cosh sin
g

2 2 2 2 2 2 2
= +









= +

a b a b a bj
j

 =
Z

Z

1

2
4

 (17.11)

� Case�A� If Z1 and Z2 are the same type of reactances, then 
Z

Z

1

2
4

 is real and equal to say a + x.

The imaginary part of the Eq. (17.11) must be zero.

∴  cosh sin
a b

2 2
0=  (17.12)

 sinh cos
a b

2 2
= x  (17.13)

a and b must satisfy both the above equations.

Equation (17.12) can be satisfied if b/2 5 0 or np, where n 5 0, 1, 2, ..., then cos b/2 = 1 and sinh a/2 

=  x
Z

Z
= 1

2
4

That x should be always positive implies that

 
Z

Z

Z

Z

1

2

1 1

2
4

0 2
4

> = −
and a sinh  (17.14)

Since a ≠ 0, it indicates that the attenuation exists.

� Case�B� Consider the case of Z1 and Z2 being opposite type of reactances, i.e. Z1/4Z2 is negative, mak-

ing Z Z
1 2

4/  imaginary and equal to say Jx

∴ the real part of Eq. (17.11) must be zero.

 sinh cos
a b

2 2
0=  (17.15)

 cosh sin
a b

2 2
= x  (17.16)
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Both the above equations must be satisfied simultaneously by a and b. Equation (17.15) may be satisfied 

when a 5 0, or when b 5 p. These conditions are considered separately hereunder.

1. When a 5 0; from Eq. (17.15), sinh a/2 5 0. And from Eq. (17.16) sin / /b 2 4
1 2

= =x Z Z . But 

the sine can have a maximum value of 1. Therefore, the above solution is valid only for negative Z1/4Z2, and 

having maximum value of unity. It indicates the condition of pass band with zero attenuation and follows the 

condition as

− ≤ ≤1
4

0
1

2

Z

Z

 b= −
2

4

1 1

2

sin
Z

Z
 (17.17)

2. When b 5 p, from Eq. (17.15), cos b/2 5 0. And from Eq. (17.16), sin b/2 5  1; cosh a/2 = 

x Z Z=
1 2

4/ .

Since cosh a/2 $ 1, this solution is valid for negative Z1/4Z2, and having magnitude greater than, or equal 

to unity. It indicates the condition of stop band since a ≠ 0.

− ≤ ≤−a
Z

Z

1

2
4

1

 a= −
2

4

1 1

2

cosh
Z

Z
 (17.18a)

It can be observed that there are three limits for case A and B. Knowing the values of Z1 and Z2, it is 

possible to determine the case to be applied to the filter. Z1 and Z2 are made of different types of reactances, 

or combinations of reactances, so that, as the frequency changes, a filter may pass from one case to another. 

Case A and (ii) in case B are attenuation bands, whereas (i) in Case B is the transmission band.

The frequency which separates the attenuation band from pass band or vice versa is called cut-off 

frequency. The cut-off frequency is denoted by fc, and is also termed nominal frequency. Since Z0 is real in 

the pass band and imaginary in an attenuation band, fc is the frequency at which Z0 changes from being real 

to being imaginary. These frequencies occur at

Z

Z
Z

Z

Z
Z Z

1

2

1

1

2

1 2

4
0 0

4
1 4 0

= =

=− + =











or

or

 (17.18b)

 (17.18c)

The above conditions can be represented graphically, as in Fig. 17.7.

Fig. 17.7

band band band
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7.5 CHARACTERISTIC IMPEDANCE IN THE PASS AND STOP BANDS

Referring to the characteristic impedance of a symmetrical T-network, from Eq. (17.1), we have

Z
Z

Z Z Z Z
Z

Z
T0

1

2

1 2 1 2

1

2
4

1
4

= + = +










If Z1 and Z2 are purely reactive, let Z1 5 jx1 and Z2 5 jx2, then

Z x x
x

x
T0 1 2

1

2

1
4

= − +










 (17.19)

A pass band exists when x1 and x2 are of opposite reactances and

− < <1
4

0
1

2

x

x

Substituting these conditions in Eq. (17.19), we find that Z0T is positive and real. Now consider the stop 

band. A stop band exists when x1 and x2 are of the same type of reactances; then x1/4x2 . 0. Substituting these 

conditions in Eq. (17.19), we find that Z0T is purely imaginary in this attenuation region. Another stop band 

exists when x1 and x2 are of the same type of reactances, but with x1/4x2 , – 1. Then from Eq. (17.19), Z0T is 

again purely imaginary in the attenuation region.

Thus, in a pass band if a network is terminated in a pure resistance R0(Z0T 5 R0), the input impedance 

is R0 and the network transmits the power received from the source to R0 without any attenuation. In a stop 

band, Z0T is reactive. Therefore, if the network is terminated in a pure reactance (Z0 5 pure reactance), the 

input impedance is reactive, and cannot receive or transmit power. However, the network transmits voltage 

and current with 90° phase difference and with attenuation. It has already been shown that the characteristic 

impedance of a symmetrical p-section can be expressed in terms of T. Thus, from Eq. (17.9), Z0p 5 Z1Z2/Z0T.

Since Z1 and Z2 are purely reactive, Z0p is real if Z0T is real, and Z0x is imaginary if Z0T is imaginary. Thus, 

the conditions developed for T-sections are valid for p-sections.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 3*
rrr17-3.1. For a p-section filter network shown in Fig. Q.1. calculate the cut-off frequency and the value 

of nominal impedance in the pass band.
rrr17-3.2 A p-section filter network is shown in Fig. Q.2. Calculate the cut-off frequency and phase shift 

at 10 kHz. What is the value of nominal impedance in the pass band?

Fig. Q.1   Fig. Q.2

LO 3
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17.6 CONSTANT-K LOW-PASS FILTER

A network, either T or p, is said to be of the constant-k type if Z1 and Z2 

of the network satisfy the relation

Z1Z2 5 k 2 (17.20)

where Z1 and Z2 are impedances in the T and p-sections as shown in Fig. 17.8. Equation (17.20) states that 

Z1 and Z2 are inverse if their product is a constant, independent of frequency. k is a real constant, that is the 

resistance. k is often termed as design impedance or nominal impedance of the constant k-filter.

Fig. 17.8

The constant k, T or p-type filter is also known as the prototype because other more complex networks 

can be derived from it. A prototype T and p-sections are shown in Fig. 17.8 (a) and (b), where Z1 5 jvL and 

Z2 5 1/jvC. Hence, Z Z
L

C
k

1 2

2= =  which is independent of frequency.

 Z Z k
L

C
k

L

C
1 2

2= = =or  (17.21)

Since the product Z1 and Z2 is constant, the filter is a constant-k type. From Eq. (17.18 (a)), the cut-off 

frequencies are Z1/4Z2 5 0,

i.e., −
=

v2

4
0

LC

i.e., f
Z

Z

LC

= =−

−
=−

0
4

1

4
1

1

2

2

and

v

or f
LC

c =
1

p
 (17.22)

The pass band can be determined graphically. The reactances of Z1 and 4Z2 will vary with frequency as 

drawn in Fig. 17.9. The cut-off frequency at the intersection of the curves Z1 and – 4Z2 is indicated as fc. On 

the X-axis, as Z1 5 –4Z2 at the cut-off frequency, the pass band lies between the frequencies at which Z1 5 0, 

and Z1 5 – 4Z2. All the frequencies above fc lie in a stop or attenuation band. Thus, the network is called a 

low-pass filter.

LO  4  
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Fig. 17.9

band

band

We also have from Eq. (17.7) that

 

sinh
g v v

2 4 4 2

1

2

2

= =
−

=
Z

Z

LC J LC

From Eq. (17.22), LC
fc

=
1

p

∴ sinh
g p

p2

2

2
= =

j f

f
j

f

fc c

We also know that in the pass band

 
− < <1

4
0

1

2

Z

Z

 
− <

−
<1

4
0

2v LC

 − <−









<1 0

2
f

fc

or  
f

fc
<1

and b a=










=−
2 0

1
sin ;

f

fc

In the attenuation band,

Z

Z

f

fc

1

24
1 1<− <, .i.e

a b p=











=











=− −
2

4
2

1 1

2

1
cosh cosh ;

Z

Z

f

fc

The plots of a and b for pass and stop bands are shown 

in Fig. 17.10. Fig. 17.10
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Thus, from Fig. 17.10,

a b= =










<−
0 2

1
, sinh

f

f
f f

c
cfor

a b p=










= >−
2

1
cosh ;

f

f
f f

c
cfor

The characteristic impedance can be calculated as follows:

Z Z Z
Z

Z

L

C

LC

T0 1 2

1

2

2

1
4

1
4

= +











= −










v

Z k
f

f
T

c
0

2

1= −










 (17.23)

From Eq. (17.23), Z0T is real when f , fc, i.e. in the pass 

band at f 5 fc, Z0T 5 0; and for f . fc, Z0T is imaginary in 

the attenuation band, rising to infinite reactance at infinite 

frequency. The variation of Z0T with frequency is shown in 

Fig. 17.11.

Similarly, the characteristic impedance of a p-network 

is given by

Z
Z Z

Z

k

f

f

T

c

0

1 2

0
2

1

p = =

−










 (17.24)

The variation of Z0p with frequency is shown in Fig. 17.11. For f , fc, Z0p is real; at f 5 fc, Z0p is infinite, 

and for f . fc, Z0p is imaginary. A low-pass filter can be designed from the specifications of cut-off frequency 

and load resistance.

At cut-off frequency, Z1 5 – 4Z2

 j L
j C

c
c

v
v

=
−4

 p2fc
2LC 5 1

Also, we know that k L C= /  is called the design impedance or the load resistance

∴ k
L

C

2 =

 p2fc
2 k2C 2 5 1

C
f kc

=
1

p
 gives the value of the shunt capacitance

and L k C
k

fc
= =2

p
 gives the value of the series inductance.

Fig. 17.11
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EXAMPLE 17.1

Design a low-pass filter (both p and T-sections) having a cut-off frequency of 2 kHz to operate with a 

terminated load resistance of 500 V.

Solution� It is given that k
L

C
=  5 500 V, and fc 5 2000 Hz

We know that L
k

fc
= =

×
=

p

500

3 14 2000
79 6

.
. mH

 

C
f kc

= =
⋅ ⋅

=
1 1

3 14 2000 500
0 318

p
m

.
. F

The T and p-sections of this filter are shown in Fig. 17.12 (a) and (b) respectively.

Fig. 17.12

17.7 CONSTANT-K HIGH PASS FILTER

A constant-K high-pass filter can be obtained by changing the positions of series and shunt-arms of the 

networks shown in Fig. 17.8. The prototype high-pass filters are shown in Fig. 17.13, where Z1 5 – j/vC and 

Z2 5 jvL.

Fig. 17.13

Again, it can be observed that the product of Z1 and Z2 is independent of frequency, and the filter design 

obtained will be of the constant-k type. Thus, Z1Z2 are given by

 Z Z
j

C
j L

L

C
k

k
L

C

1 2

2=
−

= =

=

v
v

LO 4
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The cut-off frequencies are given by Z1 5 0 and Z1 5 – 4Z2.

 Z1 5 0 indicates 
j

Cv
= 0 , or v → 

From Z1 5 – 4Z2,

 

−
=−

j

C
j L

v
v4

 
v2 1

4
LC =

or f
LC

c =
1

4p
 (17.25)

The reactances of Z1 and Z2 are sketched as functions of 

frequency as shown in Fig. (17.14).

As seen from Fig. 17.14, the filter transmits all frequencies between f 5 fc and f 5 . The point fc from the 

graph is a point at which Z1 5 – 4Z2.

From Eq. (17.7),

sinh
g

v2 4

1

4

1

2
2

= =
−Z

Z LC

From Eq. (17.25), f
LC

c =
1

4p

∴ LC
fc

=
1

4p

∴ sinh
( ) ( )g p

v2

4

4

2 2

2
=

−
=

f
j
f

f

c c

In the pass band,− < <1
4

0
1

2

Z

Z
, a 5 0 or the region in which 

f

f

c <1  is a pass band b=










−
2

1
sin

f

f

c

In the attenuation band, 
Z

Z

f

f

c1

24
1 1<− >, .i.e

 a=














−
2

4

1 1

2

cosh
Z

Z

   

=










=−−
2

1
cos ;

f

f

c b p

The plots of a and b for pass and stop bands of a high-

pass filter network are shown in Fig. 17.15.

A high-pass filter may be designed similar to the low-pass 

filter by choosing a resistive load r equal to the constant k, 

such that R k L C= = /

Fig. 17.14

Fig. 17.15



Circuits and Networks798 

 f
L C

c =
1

4p /

 f
k

L Ck
c = =

4

1

4p p

Since C
L

k
= ,

 

L
k

f
C

f kc c

= =
4

1

4p p
and

The characteristic impedance can be calculated using the relation

Z Z Z
Z

Z

L

C LC

Z k
f

f

T

T
c

0 1 2

1

2

2

0

1
4

1
1

4

1

= +









= −











= −

v











2

Similarly, the characteristic impedance of a p-network is 

given by

Z
Z Z

Z

k

Z

k

f

f

T T

c

0

1 2

0

2

0

2

1

p = =

=

−










 (17.26)

The plot of characteristic impedances with respect to 

frequency is shown in Fig. 17.16.

EXAMPLE 17.2

Design a high-pass filter having a cut-off frequency of 1 kHz with a load resistance of 600 V.

Solution� It is given that RL 5 K 5 600 V and fc 5 1000 Hz

∴ L
K

fc
= =

× ×
=

4

600

4 1000
47 74

p p
. mH

 

C
kfc

= =
× ×

=
1

4

1

4 600 1000
0 133

p p
m. F

The T and p-sections of the filter are shown in Fig. 17.17.

Fig. 17.16
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Fig. 17.17

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 4
rrr17-4.1 Design a high-pass filter with a cut-off frequency of 1 kHz with a terminated design impedance 

of 800 V.

Frequently Asked Questions linked to LO 4
rrr17-4.1 Analyse a prototype low-pass filter with derivation of all necessary equations and also discuss the 

different characteristics of the filter. [BPUT 2007]

rrr17-4.2 A constant-K low-pass filter is designed to cut-off at a frequency of 1000 Hz and the resistance 

of the load circuit is 50 . Calculate the values of the components required and the attenuation 

constant per section at a frequency of 1500 Hz. [BPUT 2008]
rrr17-4.3 Design a constant-k low-pass filter having fc = 2 kHz and design impedance Ro = 600 ,. Obtain 

the value of attenuation at 25 kHz. [JNTU Nov. 2012]
rrr17-4.4 Design constant-k low-pass T and -section filter to be terminated in 600  having cut-off 

frequency of 3 kHz. [PTU 2009-10]
rrr17-4.5 Draw the reactance curve for a constant k low-pass filter and derive the expression for cut-off 

frequency and design impedance (R0). [PU 2012]
rrr17-4.6 Design a constant-K high-pass filter, having fc = 4 kHz and design impedance Ro = 600 .

 [BPUT 2007]
rrr17-4.7 Can you design a filter (low and high-pass) for a cut-off frequency of 50 Hz. If you can, what is 

the value of parameters? [BPUT 2008]
rrr17-4.8 A constant-K high-pass filter is required for a cut-off frequency of 1500 Hz. The resistance of the 

load circuit is 600 . Determine the values of the components required. [BPUT 2008]
rrr17-4.9 Design a T-section constant-K high-pass filter having cut-off frequency of 10 kHZ and design 

impedance Ro = 600 ohms. Find its characteristic impedance and constant at 25 kHz.

 [JNTU Nov. 2012]
rrr17-4.10 A prototype high-pass filter has a cut-off frequency of 10 kHz and design impedance of 600 . 

Find the values of L and C. Also find attenuation in dB and phase shift in degrees at a frequency 

of 8 kHz. [PU 2010]

17.8 m-DERIVED T-SECTION

It is clear from Figs 17.10 and 17.15 that the attenuation is not sharp in the 

stop band for k-type filters. The characteristic impedance, Z0 is a function 

of frequency and varies widely in the transmission band. Attenuation can be 

LO  5  
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increased in the stop band by using ladder section, i.e. by connecting two or more identical sections. In order 

to join the filter sections, it would be necessary that their characteristic impedances be equal to each other at 

all frequencies. If their characteristic impedances match at all frequencies, they would also have the same pass 

band. However, cascading is not a proper solution from a practical point of view. This is because practical 

elements have a certain resistance, which gives rise to attenuation in the pass band also. Therefore, any 

attempt to increase attenuation in stop band by cascading also results in an increase of ‘a’ in the pass band. If 

the constant-k section is regarded as the prototype, it is possible to design a filter to have rapid attenuation in 

the stop band, and the same characteristic impedance as the prototype at all frequencies. Such a filter is called 

m-derived filter. Suppose a prototype T-network shown in Fig. 17.18 (a) has the series arm modified as shown 

in Fig. 17.18 (b), where m is a constant. Equating the characteristic impedance of the networks in Fig. 17.18, 

we have where Z0T 9 is the characteristic impedance of the modified (m-derived) T-network.

Fig. 17.18

 Z0T 5 Z0T 9

  
Z

Z Z
m Z

mZ Z1

2

1 2

2

1

2

1 2
4 4
+ = + ′

Z
Z Z

m Z
mZ Z

mZ Z
Z

m Z Z

Z
Z

m
m

1
2

1 2

2
1
2

1 2

1 2
1
2

2
1 2

2
1 2

4 4

4
1

4
1

+ = + ′

′ = − +

′ = −

( )

( ))+
Z

m

2  (17.27)

It appears that the shunt-arm ′Z2 consists of two impedances in series 

as shown in Fig. 17.19.

From Eq. (17.27), 
1

4

2−m

m
 should be positive to realise the impedance ′Z2 physically, i.e. 0 , m , 1. Thus, the 

m-derived section can be obtained from the prototype by modifying its series and shunt-arms. The same technique 

can be applied to p-section network. Suppose a prototype p-network shown in Fig. 17.20 (a) has the shunt-arm 

modified as shown in Fig. 17.20 (b).

The characteristic impedances of the prototype and its modified sections have to be equal for matching.

Fig. 17.19
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Fig. 17.20

 
Z Z0 0p p= ′

where Z90p is the characteristic impedance of the modified (m-derived) p-network.

∴ 
Z Z

Z

Z

Z
Z

m

Z

Z m

1 2

1

2

1

2

1

2

1
4

1
4

+

=

′

+
′

⋅ /

Squaring and cross multiplying the above equation results as under.

 

( )4
4

4
4

1 2 1 1
1 2 1 1

1
1 2

1 1

Z Z mZ Z
Z Z Z Z

m

Z
Z

m

Z

m
mZ Z Z

+ ′ =
′ + ′

′ + −








= 22

or 

′ =

+ −

=

+ −

Z
Z Z

Z

m

Z

m

mZ

Z Z

Z

m

Z

m
m

1
1 2

1 2 1

1 2

2 1 2

4 4

4
1( )

′ =
−

−
+

=
−

+
−

Z

Z Z
m

m

Z m

m m
Z m

mZ
Z m

m

mZ
Z m1

1 2

2

2

2
2

2 1

1
2

2

1
2

4

1

4

1

4

1

4

1

( )

( )

( )

( mm2 )

 (17.28)

It appears that the series arm of the m-derived p-section is a 

parallel combination of mZ1 and 4mZ2
 / 1 – m2. The derived m-section 

is shown in Fig. 17.21.

17.8.1  m-Derived Low-Pass Filter

In Fig. 17.22, both m-derived low-pass T and p-filter sections are shown. For the T-section shown in Fig. 17.22 

(a), the shunt-arm is to be chosen so that it is resonant at some frequency f above cut-off frequency fc.

Fig. 17.21
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Fig. 17.22

If the shunt-arm is series resonant, its impedance will be minimum or zero. Therefore, the output is zero 

and will correspond to infinite attenuation at this particular frequency. Thus, at f

1 1

4

2

m C

m

mrv
=
− vr L, where vr is the resonant frequency

 

v

p

r

r

m LC

f
LC m

f

2

2

2

4

1

1

1

=
−

=
−

= ∝

( )

( )

Since the cut-off frequency for the low-pass filter is f
LC

c =
1

p

 f
f

m

c
 =

−1 2

 (17.29)

or m
f

f

c= −










1

2



 (17.30)

If a sharp cut-off is desired, f should be near to fc. From Eq. (17.29), it is clear that the smaller the value 

of m, f comes close to fc. Equation (17.30) shows that if fc and f are specified, the necessary value of m 

may then be calculated. Similarly, for m-derived p-section, the inductance and capacitance in the series arm 

constitute a resonant circuit. Thus, at f a frequency corresponds to infinite attenuation, i.e., at f

m L
m

m
C

LC m

f
LC m

r

r

r

r

v

v

v

p

=
−









=
−

=
−

1

1

4

4

1

1

1

2

2

2

2

( )

( )
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Since, f
LC

c =
1

p

 f
f

m
fr

c=
−

= ∝
1

2

 (17.31)

Thus, for both m-derived low-pass networks for a positive value of m (0 , m , 1), f . fc. Equations 

(17.30) or (17.31) can be used to choose the value of m, knowing fc and fr. After the value of m is evaluated, 

the elements of the T or p-networks can be found from Fig. 17.22. The variation of attenuation for a low-pass 

m-derived section can be verified from a= −
2 4

1

1 2
cosh /Z Z  for fc , f , f. For Z1 5 jvL and Z2 5 – j/

vC for the prototype.

∴ a=

−










−

∝

2

1

1

2

cosh

m
f

f

f

f

c

and b= =

−










−

− −2
4

2

1 1

1 1

1

1

2
2

sin sin

( )

Z

Z

m
f

f

f

f
m

c

c

Figure 17.23 Shows the variation of a, b, and Z0 with respect to frequency for an m-derived low-pass filter.

Fig. 17.23

EXAMPLE 17.3

Design a m-derived low-pass filter having cut-off frequency of 1 kHz, design impedance of 400 V, and the 

resonant frequency of 1100 Hz.

Solution� k 5 400 V, fc 5 1000 Hz; f 5 1100 Hz
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From Eq. (17.30),

 

m
f

f

c= −









= −









 =1 1

1000

1100
0 416

2 2



.

Let us design the values of L and C for a low-pass, K-type filter (prototype filter). Thus,

 

L
k

f

C
kf

c

c

= =
×

=

= =
× ×

=

p

400

1000
127 32

1 1

400 1000
0 795

p

p p
m

.

.

mH

F

The elements of m-derived low-pass sections can be obtained with reference to Fig. 17.22.

Thus, the T-section elements are

 mL

2

0 416 127 32 10

2
26 48

3

=
× ×

=
−

. .
. mH

 mC 5 0.416 3 0.795 3 10–6 5 0.33 mF

 
1

4

1 0 416

4 0 416
127 32 10 63 27

2 2
3−

=
−

⋅
× × =−m

m
L

( . )

.
. . mH

The p-section elements are

 

mC

2

0 416 0 795 10

2
0 165

6

=
× ×

=
−

. .
. mF

 

1

4

1 0 416

4 0 416
0 795 10 0 395

2 2
6−

× =
−

×
× × =−m

m
C

( . )

.
. . mF

 mL 5 0.416 3 127.32 3 10–3 5 52.965 mH

The m-derived LP filter sections are shown in Fig. 17.24.

Fig. 17.24

17.8.2 m-derived High-Pass Filter

In Fig. 17.25, both m-derived high-pass T and p- sections are shown.
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If the shunt-arm in T-section is series resonant, it offers minimum or zero impedance. Therefore, the 

output is zero and, thus, at resonance frequency, or the frequency corresponds to infinite attenuation.

 
v

v
r

r

L

m m

m
C

=

−

1

4

1
2

Fig. 17.25

v vr L

m

m

m
C

m

LC

2 2

2

2
1

4

1

1

4
= =

−

=
−

∝

 v
p

∝ ∝=
−

=
−1

2

1

4

2 2m

LC
f

m

LC
or

From Eq. (17.25), the cut-off frequency fc of a high-pass prototype filter is given by

 f
LC

c =
1

4p

 f f mc∝ = −1 2
 (17.32)

 m
f

fc
= −











∝
1

2

 (17.33)

Similarly, for the m-derived p-section, the resonant circuit is constituted by the series arm inductance and 

capacitance. Thus, at f

 

4

1

1

2

m

m
L

m
C

r
r−

=v
v

 

v vr

m

LC

2 2

2
1

4
= =

−
∝

 v∝ =
−1

2

2m

LC
 or f

m

LC


p
=

−1

4

2
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Thus, the frequency corresponding to infinite attenuation is the 

same for both sections.

Equation (17.33) may be used to determine m for a given f and fc. The elements of the m-derived high-

pass T or p-sections can be found from Fig. 17.25. The variation of a, b and Z0 with frequency is shown in 

Fig. 17.26.

Fig. 17.26

EXAMPLE 17.4

Design an m-derived high-pass filter with a cut-off frequency of 10 kHz; design impedance of 5 V and 

m 5 0.4.

Solution For the prototype high-pass filter,

 

L
k

fc
= =

× ×
=

4

500

4 10000
3 978

p p
. mH

 

C
fc

= =
× ×

=
1

4

1

4 500 10000
0 0159

p p
m

k
. F

The elements of an m-derived high-pass sections can be obtained with reference to Fig. 17.25. Thus, the 

T-section elements are

 

2 2 0 0159 10

0 4
0 0795

6C

m
=

× ×
=

−
.

.
. mF

 

L

m
=

×
=

−
3 978 10

0 4
9 945

3
.

.
. mH

 

4

1

4 0 4

1 0 4
0 0159 10 0 0302

2 2

6m

m
C

−
=

×

−
× × =−.

( . )
. . mF

The p-section elements are

 

2 2 0 0159 10

0 4
19 89

3L

m
=

× ×
=

−
.

.
. mH



Filters and Attenuators 807 

 

4

1

4 0 4

1 0 4
3 978 10 7 577

2 2

3m

m
L

−
× =

×

−
× × =−.

( . )
. . mH

 

C

m
= × =−0 0159

0 4
10 0 0397

6.

.
. mF

T and p-sections of the m-derived high-pass filter are shown in Fig. 17.27.

Fig. 17.27

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 5
rrr17-5.1 Design a low-pass T-section filter having a cut-off frequency of 1.5 kHz to operate with a 

terminated load resistance of 600 V.
rrr17-5.2 A T-section low-pass filter has series inductance of 80 mH 

and a shunt capacitance of 0.022 mF. Determine the cut-

off frequency and nominal design impedance. Obtain the 

equivalent p-section.
rrr17-5.3 Design an m-derived high-pass filter having a design 

impedance of 500 V and a cut-off frequency of 1 kHz. Take 

m 5 0.2.
rrr17-5.4 Design an m-derived high-pass filter with a cut-off frequency 

of 10 kHz, design impedance of 600 V and m 5 0.3.
rrr17-5.5 Determine the cut-off frequency and design impedance for 

the T-section shown in Fig. Q.5.

Frequently Asked Questions linked to LO 5
rrr17-5.1 Design an m-derived T-section low-pass filter having cut-off frequency, fc = 7000 Hz, design 

impedance Ro = 600 , and frequency of infinite attenuation. [JNTU Nov. 2012]
rrr17-5.2 Explain the concept of m-derived filters. [JNTU Nov. 2012]
rrr17-5.3 The T-section of an m-derived LP filter is shown in Q.3. 

 [PTU 2011-12]
rrr17-5.4 Draw the m-derived figh-pass filter. Plot attenuation phase shift, 

and characteristic impedance vs frequency for m-derived filter.

 [PTU 2011-12]

rrr17-5.5 Design a composite low-pass T-section filter having a design 

impedance of 600 , a cut-off frequency of 2000 Hz, and a 

frequency of infinite attenuation of 2100 Hz. [PU 2012]

Fig. Q.5

40 mH

40 mH 0.25 Fm

175.31 mH

Fig. Q.3
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17.9 BAND-PASS FILTER

As already explained in Section 17.1, a band-pass filter is one which 

attenuates all frequencies below a lower cut-off frequency f1 and above an 

upper cut-off frequency f2. Frequencies lying between f1 and f2 comprise 

the pass band, and are transmitted with zero attenuation. A band-pass filter 

may be obtained by using a low-pass filter followed by a high-pass filter in which the cut-off frequency of the 

LP filter is above the cut-off frequency of the HP filter, the overlap thus allowing only a band of frequencies 

to pass. This is not economical in practice; it is more economical to combine the low and high pass functions 

into a single filter section.

Consider the circuit in Fig. 17.28, each arm has a resonant circuit with same resonant frequency, i.e. the 

resonant frequency of the series arm and the resonant frequency of the shunt-arm are made equal to obtain 

the band-pass characteristic.

Fig. 17.28

For this condition of equal resonant frequencies.

 v
v

0

1

0 1
2

1

2

L

C
=  for the series arm

from which, v2
0 L1C1 5 1 (17.34)

and 
1

0 2

0 2
v

v
C

L=  for the shunt-arm

from which, v
0

2

2 2
1L C =  (17.35)

v v
0

2

1 1 0

2

2 2
1L C L C= =

 L1C1 5 L2C2 (17.36)

The impedance of the series arm, Z1 is given by

 Z j L
j

C
j

L C

C
1 1

1

2

1 1

1

1
= −









=

−










v

v

v

v

LO  6  
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The impedance of the shunt-arm, Z2 is given by

 

Z

j L
j C

j L
j C

j L

L C
2

2

2

2

2

2

2

2 2

1

1 1

=

+

=
−

v
v

v
v

v

v

 Z Z j
L C

C

j L

L C
1 2

2

1 1

1

2

2

2 2

1

1

=
−









 −












v

v

v

v

 
=
− −

−













L

C

L C

L C

2

1

2
1 1

2
2 2

1

1

v

v

From Eq. (17.36), L1C1 5 L2C2

 Z Z
L

C

L

C
k

1 2

2

1

1

2

2= = =

where k is constant. Thus, the filter is a constant k-type. Therefore, for a constant k-type in the pass band,

− < <1
4

0
1

2

Z

Z
, and at cut-off frequency

 Z1 5 – 4Z2

 Z Z Z k1
2

1 2
24 4=− =−

∴ Z1 5  j2k

i.e. the value of Z1 at lower cut-off frequency is equal to the negative of the value of Z1 at the upper cut-off 

frequency.

∴ 1 1

1 1

1 1

2 1

2 1
j C

j L
j C

j L
v

v
v

v+









=− +











or v
v v

v
1 1

1 1 2 1

2 1

1 1
L

C C
L−










= −










 ( ) ( )1 11
2

1 1
1

2
2
2

1 1− = −v
v

v
vL C L C  (17.37)

From Eq. (17.34), L C
1 1

0

2

1
=

v

Hence, Eq. (17.37) may be written as

 

1 1
1

2

0

2

1

2

2

2

0

2
−












= −













v

v

v

v

v

v

( ) ( )

( )

v v v v v v

v v v v v v v v

v v v v

0
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1
2

2 1 2
2

0
2

0
2

2 1
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2 1 2
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1 0
2

0
2

1 2

− = −

− = −

+ = 11 2 2 1

0
2

1 2
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 f f f
0 1 2
=  (17.38)

Thus, the resonant frequency is the geometric mean of the cut-off frequencies. The variation of the reactances 

with respect to frequency is shown in Fig. 17.29.

Design� If the filter is terminated in a load resistance 

R 5 K, then at the lower cut-off frequency,

1
2

1 1

1 1
j C

j L jk
v

+









=−v

 

1
2

1 1

1 1
v

v
C

L k− =

 

1 – v2
1C1L1 5 2kv1C1

Since L C
1 1

0

2

1
=

v

 
1 2

1

2

0

2 1 1
− =

v

v
vk C

or 1 41

0

2

1 1−










=

f

f
kf Cp

 

1 41
2

1 2
1 1 0 1 2− = =

f

f f
kf C f f fp ( )∵

 f2 – f1 5 4pkf1 f2C1

 C
f f

kf f
1

2 1

1 2
4

=
−

p
 (17.39)

Since L C
1 1

0

2

1
=

v

 L
C

kf f

f f
1

0
2

1

1 2

0
2

2 1

1 4
= =

−v

p

v ( )

 L
k

f f
1

2 1

=
−p( )

 (17.40)

To evaluate the values for the shunt-arm, consider the equation

 Z Z
L

C

L

C
k

1 2

2

1

1

2

2= = =

∴ L C k
f f k

f f
2 1

2 2 1

1 24
= =

−( )

p
 (17.41)

Fig. 17.29
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and C
L

k f f k
2

1

2
2 1

1
= =

−p( )
 (17.42)

Equations (17.39) through (17.42) are the design equations of a prototype band- pass filter. The variation 

of a, b with respect to frequency is shown in Fig. 17.30.

Fig. 17.30

EXAMPLE 17.5

Design a k-type band-pass filter having a design impedance of 500 V and cut-off frequencies 1 kHz and 10 

kHz.

Solution k 5 500 V; f1 5 1000 Hz; f2 5 10000 Hz

From Eq. (17.40),

 L
k

f f
1

2 1

500

9000

55 55
16 68=

−
= = =

p p p( )

.
.mH mH

From Eq. (17.39),

 C
f f

kf f
1

2 1

1 24

9000

4 500 1000 10000
0 143=

−
=

× × × ×
=

p p
m. F

From Eq. (17.41),

 L2 5 C1k
2 5 3.57 mH

From Eq. (17.42),

 C
L

k
2

1

2
0 0707= = . mF

Each of the two series arms of the constant k, T-section filter is given by

 
L
1

2

17 68

2
8 84= =

.
. mH

 2C1 5 2 3 0.143 5 0.286 mF
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And the shunt-arm elements of the network are given by

 C2 5 0.0707 mF and L2 5 3.57 mH

For the constant-k, p-section filter, the elements of the series arm are

 C1 5 0.143 mF and L1 5 16.68 mH

The elements of the shunt-arms are

 

C2

2

0 0707

2
0 035= =

.
. mF

 2L2 5 2 3 0.0358 5 0.0716 H 

17.10 BAND-ELIMINATION FILTER

A band-elimination filter is one which passes without attenuation all frequencies less than the lower cut-

off frequency f1, and greater than the upper cut-off frequency f2. Frequencies lying between f1 and f2 are 

attenuated. It is also known as band-stop filter. Therefore, a band-stop filter can be realised by connecting a 

low-pass filter in parallel with a highpass section, in which the cut-off frequency of low-pass filter is below that 

of a high pass filter. The configurations of T and p constant k band-stop sections are shown in Fig. 17.31. The 

band-elimination filter is designed in the same manner as is the band-pass filter.

Fig. 17.31

As for the band-pass filter, the series and shunt-arms are chosen to resonate at the same frequency v0. 

Therefore, from Fig. 17.31 (a), for the condition of equal resonant frequencies,

 
v

v

0 1

0 1
2

1

2

L

C
=  for the series arm

or v
0

2

1 1

1
=

L C
 (17.43)

 v
v

0 2

0 2

1
L

C
=  for the shunt-arm

 v
0

2

2 2

1
=

L C
 (17.44)

LO 6
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1 1

1 1 2 2
L C L C

k= =

Thus, L1C1 5 L2C2 (17.45)

It can be also verified that

 Z Z
L

C

L

C
k

1 2

1

2

2

1

2= = =  (17.46)

and f f f
0 1 2
=  (17.47)

At cut-off frequencies, Z1 5 – 4Z2

Multiplying both sides with Z2, we get

 

Z Z Z k

Z j
k

1 2 2
2 2

2

4

2

=− =

=±  (17.48)

If the load is terminated in a load resistance, R 5 k, then at lower cut-off frequency,

 Z j
C

L j
k

2

1 2

1 2

1

2
= −










=
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2
1 2

1 2
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L
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2 2 1 2
− =v vC L C
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From Eq. (17.44), L C
2 2
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1
=
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 1
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1
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1 2
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=
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0 1 2
=

 
C

k f f
2

1 2

1 1 1
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 C
k

f f

f f
2

2 1

1 2

1
=

−









p
 (17.49)

From Eq. (17.44), v
0

2

2 2

1
=

L C

 
L

C

kf f

f f
2

0
2

2

1 2

0
2

2 1

1
= =

−v

p

v ( )

Since f f f
0 1 2
=

 L
k

f f
2

2 14
=

−p( )
 (17.50)

Also, from Eq. (17.46),

 k
L

C

L

C

2 1

2

2

1

= =

∴       L k C
k f f

f f
1

2

2

2 1

1 2

= =
−







p
 (17.51)

and C
L

k

k f f

1
2

2

2 1

1

4

=

=
−p ( )

 (17.52)

The variation of the reactances with respect to frequency 

is shown in Fig. 17.32.

Equation (17.49) through Eq. (17.52) are the design 

equations of a prototype band elimination filter. The variation 

of a, b with respect to frequency is shown in Fig. 17.33.

Fig. 17.33

Fig. 17.32
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EXAMPLE 17.6

Design a band-elimination filter having a design impedance of 600 V and cut-off frequencies f1 5 2 kHz and 

f2 5 6 kHz.

Solution (  f2 – f1) 5 4 kHz

Makinkg use of Eqs (17.49) through (17.52) in Section 17.10, we have

 L
k f f

f f
1

2 1

2 1

600 4000

2000 6000
63=

−








=

×

× ×
=

p p
mH

 C
k f f

1
2 1

1

4

1

4 600 4000
0 033=

−
=

× ×
=

p p
m

( ) ( )
. F

 L
k f f

2
2 1

1

4

600

4 4000
12=

−
= =

p p( ) ( )
mH

C
k

f f

f f
2

2 1

1 2

1 1

600

4000

2000 6000
0 176=

−










=

× ×












=

p p
m. FF

Each of the two series arms of the constant-k, T-section filter is given by

 
L
1

2
31 5= . mH

 2C1 5 0.066 mF

And the shunt-arm elements of the network are

 L2 5 12 mH and C2 5 0.176 mF

For the constant k, p-section filter, the elements of the series arm are

 L1 5 63 mH, C1 5 0.033 mF

and the elements of the shunt-arms are

 2L2 5 24 mH and 
C
2

2
0 088= . mF

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 6
rrr17-6.1 Design a prototype band-pass filter with both T and p-sections having cut-off frequencies of 

3000 Hz and 6000 Hz and nominal characteristic impedance of 600 V. Also, find the resonant 

frequency of shunt-arm or series arm.

rrr17-6.2 Using PSpice, determine center frequency and bandwidth of the band-pass filter shown in 

Fig. Q.2 (a) and (b).
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Fig. Q.2

rrr17-6.3 A low-quality factor, double-tuned band-pass filter is shown in Fig. Q.3. Use PSpice, to generate 

the magnitude plot of V0 (w).

rrr17-6.4 Using PSpice, find the bandwidth and center frequency of the band stop filter of Fig. Q.4.

Fig. Q.3 Fig. Q.4

Frequently Asked Questions linked to LO 6
rrr17-6.1 In a series resonance-type band-pass filter, L = 60 mH, C = 150 nF, and R = 70. [BPUT 2007]
rrr17-6.2 Explain the analysis of band-pass filter. [JNTU Nov. 2012]
rrr17-6.3 With neat diagrams, explain the resistance curves for a band-pass filter. Also obtain the design 

equations for a band-pass filter. [PU 2012]
rrr17-6.4 Explain various types of filters. [MU 2014]
rrr17-6.5 Draw T-section and -section of a band-stop filter. [PTU 2011-12]
rrr17-6.6 How is a band-stop filter designed? [PTU 2011-12]

rrr17-6.7 Design a prototype band-stop filter section having cut-off frequencies of 2000 Hz and 5000 Hz 

and design resistance of 600 . [JNTU Nov. 2012]

17.11 ATTENUATORS

An attenuator is a two-port resistive network and is used to reduce the signal 

level by a given amount. In a number of applications, it is necessary to introduce 

a specified loss between source and a matched load without altering the 

impedance relationship. Attenuators may be used for this purpose. Attenuators 

may be symmetrical or asymmetrical, and can be either fixed or variable. A fixed attenuator with constant attenuation 

is called a pad. Variable attenuators are used as volume controls in radio broadcasting sections. Attenuators are also 

used the in laboratory to obtain small values of voltage or current for testing circuits.

The increase or decrease in power due to insertion or substitution of a new element in a network can 

be conveniently expressed in decibels (dB), or in nepers. In other words, attenuation is expressed either in 

decibels (dB) or in nepers. 

LO  7  
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Accordingly, the attenuation offered by a network in decibels is

 Attenuation in dB=











10 10

1

2

log
P

P
 (17.53)

where P1 is the input power and P2 is the output power.

For a properly matched network, both terminal pairs are matched to the characteristic resistance, R0 of the 

attenuator.\

Hence, 
P

P

I R

I R

I

I

1

2

1

2

0

2

2

0

1

2

2

2
= =  (17.54)

where I1 is the input current and I2 is the output current leaving the port.

or 
P

P

V

V

1

2

1

2

2

2
=  (17.55)

where V1 is the voltage at the port 1 and V2 is the voltage at the port 2

 Hence, attenuation in dB=











20 10

1

2

log
V

V
 (17.56)

 =











20 10

1

2

log
I

I
 (17.57)

If 
V

V

I

I
N1

2

1

2

= =  (17.58)

then 
P

P
N1

2

2=

and dB 5 20 log10 N (17.59)

or N =








antilog

dB

20
 (17.60)

17.12 T-TYPE ATTENUATOR

Basically, there are four types of attenuators, T, p, lattice and bridged T-type. The basic design principles are 

discussed in the following sections. Figure 17.34 shows the 

symmetrical T-attenuator. An attenuator is to be designed for desired 

values of characteristic resistance, R0 and attenuation.

The values of the arms of the network can be specified in terms 

of characteristic impedance, Z0, and propagation constant, g, of the 

network. The network in the figure is a symmetrical resistive circuit; 

hence, Z0 5 R0 and g 5 a. The design equations can be obtained by 

applying Kirchhoff’s law to the network in Fig. 17.34.

 R2 (I1 – I2) 5 I2 (R1 1 R0)

 I2 (R2 1 R1 1 R0) 5 I1R2

 
I

I

R R R

R
N1

2

1 0 2

2

=
+ +

=  (17.61)

Fig. 17.34
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The characteristic impedance of the attenuator is R0 when it is terminated in a load of R0

Hence, R R
R R R

R R R
0 1

2 1 0

1 0 2

= +
+

+ +

( )

Substituting in Eq. (17.61), we have

 R R
R R

N
0 1

1 0= +
+( )

 NR0 5 NR1 1 R1 1 R0

 R0(N – 1) 5 R1 (N 1 1)

 R
R N

N
1

0 1

1
=

−

+

( )
 (17.62)

From Eq. (17.61), we have

 NR2 5 R1 1 R0 1 R2

 (N – 1)R2 5 (R1 1 R0)

Substituting the value of R1 from Eq. (17.62), we have

 ( )
( )

N R R
N

N
R− =

−

+
+1

1

1
2 0 0

 ( )
( )

N R
NR

N
− =

+
1

2

1
2

0

 R
NR

N
2

0

2

2

1

=
−

 (17.63)

Equations (17.62) and (17.63) are the design equations for the symmetrical T-attenuator.

EXAMPLE 17.7

Design a T-pad attenuator to give an attenuation of 60 dB and to work in a line of 500 V impedance.

Solution N
I

I

D
= =1

2 20
antilog

 
= =antilog

60

20
1000

Each of the series arm is given by

 R
R N

N
1

0 1

1
500

1000 1

1000 1
499=

−

+
=

−

+
=

( ) ( )

( )
V

The shunt-arm resistor R2 is given by

 R
N

N
R2 2 0 2

2

1

2 1000

1000 1
500 1=

−
= =

×

−
× =

( )
V
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17.13 p-TYPE ATTENUATOR

Figure 17.35 shows a symmetrical attenuator. The series and shunt-arms of the attenuator can be specified in 

terms of Z0 and propagation constant g. In this case also, the 

network is formed by resistors and is symmetrical, hence 

Z0 5 R0 and g 5 a. From the fundamental equations, we have

 R 1  5  R 0 

sinh a (17.64)

 R2 5 R0 coth a/2 (17.65)

∴ R R
e e

1 0
2

=
− −a a

 (17.66)

By definition of propagation constant,

e
I

I
Ng = =1

2

Here, g 5 a and ea 5 N

Therefore, Eq. (17.66) can be written as

 R R

N
N R

N

N
1 0 0

2

1

2

1

2
=

−
=

−
 (17.67)

Similarly, from Eq. (17.65),

 R R R
e e

e e
2 0 0

2 2

2 2

2

2
= =

+

−

−

−

cosh /

sinh /

/ /

/ /

a

a

a a

a a

 R R
e

e
R

N

N
2 0 0

1

1

1

1
=

+

−
=

−( )

+

a

a ( )
 (17.68)

Equations (17.67) and (17.68) are the design equations for the symmetrical p-attenuator.

EXAMPLE 17.8

Design a p-type attenuator to give 20 dB attenuation and to have a characteristic impedance of 100 V.

Solution Given R0 5 100 V, D 5 20 dB.

 N 5 Antilog D

20
10=

 R R
N

N
1 0

2 21

2
100

10 1

2 10
495=

−
=

−

+
=

( ) ( )
V

 R R
N

N
2 0

1

1
100

10 1

10 1
122 22=

+

−
=

+

−









=

( )

( )
. V

Fig. 17.35
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17.14 LATTICE ATTENUATOR

A symmetrical resistance lattice is shown in Fig. 17.36. The 

series and the diagonal arm of the network can be specified in 

terms of the characteristic impedance Z0 and propagation 

constant g.

It has already been stated and proved that characteristic 

impedance of symmetrical network is the geometric mean of the 

open and short- circuit impedance. The circuit in Fig. 17.36 is 

redrawn as in Fig. 17.37 to calculate the open-and short-circuit 

impedances.

Thus, Z
R R

R R
sc =

+

2
1 2

1 2

 Z
R R

c0
1 2

2
=

+

Hence, Z R Z Zc sc0 0 0= =

 
R R R
0 1 2
=

In Fig. 17.37, the input impedance at 1-19 is R0 

when the network is terminated in R0 at 2-29. By applying Kirchhoff’s voltage law, we get

 V1 5 I1R0 5 (I1 – I )R1 1 I2R0 1 (1 1 I2)R1

 I1R0 5 R1(I1 1 I2) 1 I2R0

 I1(R0 – R1) 5 I2(R1 1 R0)

 I

I

R R

R R

R

R

R

R

1

2

1 0

0 1

1

0

1

0

1

1

=
+

−
=

+

−

 (17.69)

 N e
I

I

R

R

R

R

= = =

+

−

a 1

2

1

0

1

0

1

1

 (17.70)

 e
R R

R R

a =
+

−

1

1

1 2

1 2

/

/

Fig. 17.36

Fig. 17.37
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The propagation constant a=

+

−

























log

1

1

1

2

1

2

R

R

R

R

 (17.71)

From Eq. (17.70),

 N
R

R

R

R
1 1

1

0

1

0

−









= +










 R R
N

N
1 0

1

1
=

−

+

( )

( )
 (17.72)

Similarly, we can express R R
N

N
2 0

1

1
=

+

−

( )

( )
 (17.73)

Equations (17.72) and (17.73) are the design equations for lattice attenuator.

EXAMPLE 17.9

Design a symmetrical lattice attenuator to have characteristic impedance of 800  V and attenuation of 20 dB.

Solution Given R0 5 800 V and D 5 20 dB

 
N

D
= = =antilog antilog

20

20

20
10

From the design equations of lattice attenuator,

Series-arm resistance R R
N

N
1 0

1

1
=

−

+

( )

( )

=
−

+
=800

10 1

10 1
654 545

( )

( )
. V

Diagonal-arm resistance R R
N

N
2 0

1

1
=

+

−

( )

( )

=
+

−
=800

10 1

10 1
977 777

( )

( )
. V

The resulting lattice attenuator is shown in Fig. 17.38.

17.15 BRIDGED-T ATTENUATOR

A bridged-T attenuator is shown in Fig. 17.39. In this case also, since the attenuator is formed by resistors 

only, Z0 5 R0 and g 5 a. The bridged-T network may be designed to have any characteristic resistance 

R0 and desired attenuation by making RA RB 5 R2
0. Here, RA and RB are variable resistances and all other 

resistances are equal to the characteristic resistance R0 of the network.

Fig. 17.38
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A symmetrical resistance lattice network can be converted into an 

equivalent T, p or bridged-T resistance network using the bisection 

theorem. We can obtain the design equations of the bridged-T 

attenuator by bisection theorem. A bisected half-section is shown in 

Fig. 17.40. According to the bisection theorem, a network having 

mirror image symmetry can be reduced to an equivalent lattice 

structure. The series arm of the equivalent lattice is found by bisecting 

the given network into two parts, short-circuiting all the cut wires and 

equating the series impedance of the lattice to the input impedance of 

the bisected network; the diagonal arm is equal to the input impedance 

of the bisected network when cut wires are open circuited.

From Fig. 17.40, when the cut wires A, B, C are shorted, the 

input resistance of the network is given by

 R
R R

R R

R R

R R
sc

A

A

A

A

=
×

+
=

+
0 2

0 2

0

0
2

/

/

 (17.74)

This resistance is equal to the series-arm resistance of the lattice 

network shown in Fig. 17.36.

∴ 
R R

R R
RA

A

0

0

1
2 +

=  (17.75)

From Eq. (17.72), we have

 

R R
N

N
1 0

1

1
=

−

+

( )

( )

Hence, 
R R

R R
R

N

N

A

A

0

0
0

2

1

1( )

( )

( )+
=

−

+

from which, RA 5 R0 (N – 1) (17.76)

From Fig. 17.40, when the cut wires A, B, C are open, the input resistance of the network is given by

 R0c 5 (R0 1 2RB) (17.77)

This resistance is equal to the diagonal arm resistance of the lattice network shown in Fig. 17.36.

∴ R0 1 2RB 5 R2 (17.78)

From Eq. (17.73), we have

 R R
N

N
2 0

1

1
=

+

−

( )

( )

Hence, ( )
( )

( )
R R R

N

N
B0 02

1

1
+ =

+

−

from which, R
R

N
B =

−
0

1
 (17.79)

Equations (17.76) and (17.79) are the design equations for bridged-T attenuator.

Fig. 17.39

Fig. 17.40



Filters and Attenuators 823 

EXAMPLE 17.10

Design a symmetrical bridged-T attenuator with an attenuation of 20 dB and terminated into a load of 500 V.

Solution D 5 20 dB; R0 5 500 V
N

D
= = =antilog antilog

20

20

20
10

RA 5 R0 (N – 1) 5 500 (10 – 1) 5 4500 V
R

R

N
B=

−
=

−
=0

1

500

10 1
55 555

( ) ( )
. V

The desired configuration of the attenuator is shown in 

Fig.17.41.

17.16 L-TYPE ATTENUATOR

An L-type asymmetrical attenuator is shown in Fig. 17.42. The attenuator is connected between a source with 

source resistance Rs 5 R0 and load resistance RL 5 R0.

The design equations can be obtained by applying 

simple laws.

V2 5 (I1 – I2)R2 5 I2RL

or I1R2 5 I2(R2 1 RL)

I

I

R R

R
NL1

2

2

2

=
+

=  (17.80)

1

2

+ =
R

R
NL

R
R

N

L
2

1
=

−
 (17.81)

As RL 5 R0, Eq. (17.81) can be written as

R
R

N
2

0

1
=

−
 (17.82)

The resistance of the network as viewed from 1-19 into the network is

R R
R R

R R
0 1

2 0

2 0

= +
+

 R
R

R R
1

0

2

2 0

=
+

 (17.83)

Fig. 17.41

Fig. 17.42
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Substituting the value of R2 from Eq. (17.82), we have

 R
R

R

N
R

R N

R R N
1

0
2

0
0

0
2

0 0

1

1

1
=

−
+

=
−

+ −

( )

( )

 R R
N

N
1 0

1
=

−( )
 (17.84)

Equations (17.82) and (17.84) are the design equations. Attenuation N of the network can be varied by 

varying the values of R1 and R2.

EXAMPLE 17.11

Design a L-type attenuator to operate into a load resistance of 600 V with an attenuation of 20 dB.

Solution N 5 antilog 
dB

20

 5 antilog
20

20

 5 10

The series arm of the attenuator is given by

 
R R

N

N
1 0

1
600

10 1

10
540=

−







=

−







= V

The shunt-arm of the attenuator is given by

R
R

N
2

0

1

600

9
66 66=

−
− = . V

The desired configuration of the network is shown in Fig. 17.43.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 7
rrr17-7.1 An attenuator is composed of symmetrical p-section having a series arm of 275 V and shunt-

arm each of 450 V. Find

 (a) The characteristic impedance of the network

 (b) Attenuation per section

Frequently Asked Questions linked to LO 7
rrr17-7.1 Derive the relationship between neper and decibel. [PU 2012]
rrr17-7.2 Design a -type attenuator with the following specifications: Attenuation = 20 dB, characteristic 

resistance = 20 . [PU 2012]

rrr17-7.3 Design an asymmetrical T-attenuator so that it works between a source and load impedance of 260 

 and 490  respectively and provides an attenuation of 40 dB. [PTU 2011-12]

17.17 EQUALISERS

Equalisers are networks designed to provide compensation against distortions 

that occur in a signal while passing through an electrical network. In general, 

any electrical network has attenuation distortion and phase distortion. 

Fig. 17.43

LO  8  
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Attenuation distortion occurs due to non-uniform attenuation against frequency characteristics. Phase distortion 

occurs due to phase delay against frequency characteristics. An attenuation equaliser is used to compensate 

attenuation distortion in any network. These equalisers are used in medium to high frequency-carrier telephone 

systems, amplifiers, transmission lines, and speech reproduction, etc. A phase equaliser is used to compensate 

phase distortion in any network. These equalisers are used in TV signal transmission lines and in facsimile.

17.18 INVERSE NETWORK

The geometrical mean of two impedances Z1 and Z2 is a real number and they are said to be inverse if

 Z Z R
1 2 0

2=

where R0 is a resistance.

Consider Z1 5 R1 and Z2 5 R2

The product Z1 Z2 is a real number.

Therefore, the two impedances are said to be inverse if they satisfy the relation 

Z1Z2 5 R1R2 5 R 0
2.

In another case, consider Z1 5 jvL and Z
j C

2

1
=

v

Z Z
j L

j C

L

C
1 2

= =
v

v

The product Z1Z2 is a real number.

Therefore, the two impedances are inverse.

Similarly,

 Let Z1 5 R1 1 jvL (17.85)

and Z

R
j C

R
j C

jR

CR j

CR j

CR j
2

2

2

2

2

2

2

1

1
=

+

=
−

−
⋅

+

+

v

v

v

v

v
 (17.86)

 =
−

+

R j CR

C R

2 2

2

2 2

2

2
1

v

v

 Z Z R j L
R j CR

C R
1 2 1

2 2
2

2 2
2
21

= +
−

+












( )v

v

v

 =
+ + −

+

R R R LC j LR CR R

C R

1 2
2

2
2

2 1 2
2

2 2
2
21

v v v

v

( )
 (17.87)

The imaginary part of the above equation must be zero.

Therefore, we get vLR2 5 vCR1R2
2

L

C
R R R= =
1 2 0

2  (17.88)

Fig. 17.44

Fig. 17.45
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The two impedances Z1 and Z2 are inverse, when the above condition is satisfied.

An inverse network may be obtained by

1. Converting each series branch into parallel branch and vice versa.

2. Converting each resistance element R into a corresponding resistive element 
R

R

0

2

.

3. Converting each inductance L into capacitance C
L

R

1

0

2
= .

4. Converting each capacitance C into inductance L CR1

0

2= .

EXAMPLE 17.12

Obtain the inverse network of the network shown in Fig. 17.46.

Fig. 17.46

Solution The parallel branch is converted into a series branch and vice versa. The capacitance is replaced by 

inductance and vice versa. The resistance is replaced by another resistance as shown in Fig. 17.47.

Fig. 17.47

Here, C
L

R
iL C R R

R

R
1
1 1

0
2 1

1
1 0

2
1
1 0

2

1

= = =, ,

 C
L

R
iL C R R

R

R
2
1 2

0
2 2

1
2 0

2
2
1 0

2

2

= = =, ,

 C
L

R
3

1 3

0

2
= and R0 5 design impedance.
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17.19 SERIES EQUALISER

The series equaliser is a two-terminal network connected in series with a network to be corrected. (see Fig. 

17.48)

Let  N 5  Input to output power ratio of the load

 D 5  Attenuation in decibels

 R0 5 resistance of the load as well as source

 P1 5 input power

 P1 5 load power

 2X1 5 reactance of the equaliser

 Vmax 5 Voltage applied to the network

Attenuation D 5 log10 N

 or N 5 antilog D

10










 (17.89)

N =
Maximumpower delivered to the loadwhenequlizer is not present

Powwer delivered to the loadwhenequalizer is present

N
P

P

i

l

=

P
V

R
R

V

R
i =










=max max

2 4
0

2

0

2

0

When the equaliser is connected,

 
l

V

R X
1

0
2

1
22 2

=
+

max

( ) ( )

 P
V

R X
Rl =

+

















max

( ) ( )2 20
2

1
2

2

0

 =
+

















V

R X
Rmax

( )

2

0
2

1
2 0

4
 (17.90)

Therefore, N
P

P

V R

V R

R X

X

R

i

l

= =

+

= +max

max

/

( )

2
0

2
0

0
2

1
2

1
2

0
2

4

4

1  (17.91)

By knowing the values of R0 and N, X1 can be determined.

17.20 FULL-SERIES EQUALISER

Figure 17.49 shows the configuration of a full-series equaliser.

Fig. 17.48
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Fig. 17.49

The circuit is a constant resistance equaliser satisfying the relation Z Z R
1 2 0

2= . The input impedance is 

given by

 Z
R Z

R Z

R Z

R Z
i =

+
+

+
0 1

0 1

0 2

0 2

 =
+ +

+ + +

R Z Z R Z Z

R R Z Z Z Z

0 1 2 0 1 2

0
2

0 1 2 1 2

2[ ( )]

( )
 (17.92)

If we substitute Z Z R
1 2 0

2=  in the above equation,

 Zi 5 R0

 |Vi| 5 IiZi 5 Ii R0

| |V I Z I
R Z

R Z
l i i i= =

+
0 2

0 2

 (17.93)

 N
V

V

R Z

Z

R

X

i

l

= =
+

= +
2

0 2

2

2

0

2

2

2
1  (17.94)

 = +1 1

2

0

2

X

R

Since Z1 and Z2 are pure reactances and X1X2 5 R 0
2

1. When X1 5 vL,

 X
C

2

1

1
=

v
 since both are inverse.

The full-series equaliser is shown in Fig. 17.50.

where 
L

C
R1

1

0

2=

From the equation, N
X

R
= +1 1

2

0

2

 = +1
2

1

2

0

2

v L

R
Fig. 17.50
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By knowing the values of N and R0, the elemental values of L1, C1 may be obtained.

2. When X
C

1

1

1
=

v
,

 X2 5 vL1

The full, series equaliser is shown in Fig. 17.51.

Here, 
L

C
R1

1

0

2=

From the equation, N
R

X

R

L
= + = +1 1

0

2

2

2

0

2

2

1

2v

By knowing the values of N and R0, the values of L1, 

C1 may be obtained.

17.21 SHUNT EQUALISER

The shunt equaliser is a two-terminal network connected in shunt with a network to be corrected.

 Let N 5 input to output power ratio

 D 5 attenuation in decibels

 R0 5 source resistance/load resistance

 Is 5 source current

 Il 5 load current

 Pi 5 input power

 Pl 5 load power

X
1

2

 5 reactance of shunt equaliser

The shunt equaliser connected to the network is shown in Fig. 17.52.

Source current I
V

R R
jX

s =

+










max

/ /
0 0

1

2

 (17.95)

 =

+
+













V

R
jX R

R jX

max

0

1 0

0 1
2

 =
+

+

V R jX

R R jX

max[ ]

( )

2

2

0 1

0 0 1

Load current I I
jX

R
jX

I
jX

R jX
l s s=

+

=
+

1

0

1

1

0 1

2

2

2

/
 (17.96)

Fig. 17.51

Fig. 17.52
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Substituting Is in the above equation,

 I
V jX

R R jX
l = +

max

( )

1

0 0 12
 (17.97)

Power delivered to the load

 P I R
V X

R R X
l l= =

+
| |

( )

max2
0

2
1
2

0 0
2

1
24

 (17.98)

and P V Ri = max
/

2

0
4

Therefore, N
P

P

V

R

V X

R R X

i

l

= =

+

max

max

( )

2

0

2
1
2

0 0
2

1
2

4

4

∴ N
R

X
= +











1
0

1

2

 (17.99)

By knowing the values of R0 and N, X1 can be determined.

17.22 FULL-SHUNT EQUALISER

Figure 17.53 shows the full-shunt equaliser. It is also a constant-resistance equaliser which satisfies the 

equation Z1Z2 5 R2
0.

Fig. 17.53

The input impedance is given by

Z
R Z R Z

R Z Z
i =

+ +

+ +

( )( )0 2 0 1

0 1 22
 (17.100)

 =
+ + +

+ +

Z Z R R Z Z

R Z Z

1 2 0
2

0 1 2

0 1 22

( )

 Zl 5 R0

Since Z1Z2 5 R0
2,
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 Vi 5 IiZi 5 IiR0

 Vl 5 Il R0

 
V

V

I

I

i

l

i

l

=

But I I
R Z

R Z Z
l i=

+

+ +

( )0 2

0 1 22
 (17.101)

 
I

I

Z Z R

R Z

i

l

=
+ +

+
1 2 0

0 2

2
 (17.102)

Multiplying both numerator and denominator by Z1, we get

I

I

Z Z Z R Z

Z R Z Z

i

l

=
+ +

+
1

2

1 2 0 1

1 0 1 2

2

I

I

Z R

R Z R

Z R

R

i

l

=
+

+
=

+( )

( )

1 0
2

0 1 0

1 0

0

Therefore, N
V

V

I

I

R Z

R

i

l

i

l

= = =
+

2 2

0 1

0

2

 N
X

R

R

X
= + = +1 1

1

2

0

2

0

2

2

2
 (17.103)

since Z1 and Z2 are pure reactances and are equal to X1 and X2 respectively.

 By knowing the values or R0 and N1 the elemental values X1 and X2 can be obtained.

1. When X1 5 vL1

 X2 becomes 
1

1vC

 The circuit is shown in Fig. 17.54.

Fig. 17.54

2. When X
C

1

1

1
=

v
,

 X2 becomes vL1
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 The circuit is shown in Fig. 17.55.

Fig. 17.55

17.23 CONSTANT-RESISTANCE EQUALISER

The disadvantage of a reactance equaliser either in a shunt equaliser or a series equaliser is that, the variation 

of impedance with frequency causes impedance mismatch which results in reflection losses. A four-terminal 

equaliser which offers a constant resistance at all frequencies avoids reflection loss when terminated in its 

design impedance. Constant-resistance equaliser is a four terminal network which can be T, p, lattice and 

bridged-T network type. All these types have characteristic impedance satisfying the relation Z1Z2 5 R0
2.

17.24 BRIDGED-T ATTENUATION EQUALISER

The network shown in Fig. 17.56 is a bridged-T attenuation equaliser. Let Z1 be a parallel combination of 

resistor R1 and inductance L1. To provide a constant resistance, the impedance Z2 must be an inverse of Z1 

which is a series combination of R2 and a capacitor C1. Let R0 be the design resistance.

Then, Z1Z2 5 R0
2

Fig. 17.56 Bridged-T attenuation equaliser

The propagation constant for a bridged-T network is given by

g= +











= +













ln ln1 1
1

0

0

2

Z

Z

Z

Z
 (17.104)

LO 8

LO 8
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 But Z0 5 R0

 And Z
jR L

R L
1

1 1

1 1

=
+

v

v
 (17.105)

Therefore, the propagation constant

g
v

v
= +

+













ln
( )

1 1 1

0 1 1

jR L

R R j L
 (17.106)

 a b
v

v
+ =

+ +

+













j
R R j L R R

R R j L R
ln

( )0 1 1 0 1

0 1 1 0

 (17.107)

Equating real parts on both sides

a
v v v

v
=

+ + +

+





ln
( )R R L R L R L R R

R R L R

0 1
2 2

1
2

0
2 2

1
2

1
2 2

1
2

0 1

2
1
2 2

1
2

0
2

2

0












1 2/

 = +
+

+

















1

2
1

22
1
2

1 0 1

0
2

1
2 2

1
2

ln
( )

( )

v

v

L R R R

R R L
 (17.108)

and R R R
L

C
1 2 0

2 1

1

= =  (17.109)

The elements may be calculated from the above design from Eqs (17.108) and (17.109).

17.25 BRIDGED-T PHASE EQUALISER

A bridged-T phase equaliser is shown in Fig. 17.57.

Fig. 17.57

It consists of only pure reactances.

The characteristics impedance is given by

 Z
Z Z Z Z

Z Z
0

1 3 1 2

1 3

1 2
4

4
=

+

+













( )

( )

/

 (17.110)
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From Fig. 17.57, Z3 5 jX3,
Z

jX1

1
2
= , Z2 5 jX2 and Z0 5 R0.

R
jX jX jX jX

jX jX
0
2 1 3 1 2

1 3

2 2 4

4 2 4
=

⋅ +

+

( )

( )
 (17.111)

 =
− +

+

X X X X

X X

1 3 1 2

1 3

2

2

( )

Let X1 and X3 be made inverse.

jX jX R
1 3 0

2
. =

 
− =X X R

1 3 0

2

 (17.112)

Substituting this in the above equation, we get

 X
X X

2

1 3

2
=

+
 (17.113)

The propagation constant is given by

 e
Z Z Z Z Z

Z Z Z Z Z

g =
+ +

+ −
0 1 3 1 3

0 1 3 1 3

2

2

( ) ( / )

( ) ( / )
 (17.114)

 e
Z Z

Z Z Z Z Z

g− =
+ −

1
2

1 3

0 1 3 1 3( ) ( / )

and similarly,

 e
Z Z Z

Z Z Z
Z Z

g + =
+

+ −










1
2

2

0 1 3

0 1 3
1 3

( )

( )

From the above equations,

e

e

Z Z

Z Z Z

jX jX

R jX jX

g

g

g−

+
= =

+
=

⋅

+

1

1 2 2

2

2 2

1 3

0 1 3

1 3

0 1 3

tanh
( ) ( )

 =
+

2

2 2

0
2

0 1 3

R

R j X X( )
 (17.115)

 tanh
g

2

2

2 2

0

2

0 1

0

2

1

=

−












R

R j X
R

X

 
g

2 2

1 0 1

0

2

1

2
=

−

−
tanh

jR X

R X
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∴ a b+ =
−

−j j
R X

R X
2

2

1 0 1

0

2

1

2
tan

Equating the real and imaginary parts, we get

 a 5 0

 b=
−











−

2

2

1 0 1

0

2

1

2
tan

R X

R X
 (17.116)

Equations (17.112), (17.113), and (17.116) are the design equations of a bridged-T phase equaliser.

17.26 LATTICE-ATTENUATION EQUALISER

The constant-resistance lattice attenuation equaliser is shown in Fig. 17.58. The element Z1 represents series arm 

and Z2 represents diagonal arm as shown in Fig. 17.58. The equaliser is a constant-resistance equaliser such that 

Z1 must be inverse of Z2 to the design resistance R0.

Fig. 17.58

Z1Z2 5 R0
2

R R
L

C
R

1 2

1

1

0

2=  (17.117)

The propagation constant of a lattice network is given by

 g=

+

−













=

+

−



ln ln

1

1

1

1

1

0

1

0

2

0

2

0

Z

R

Z

R

Z

R

Z

R









 (17.118)

a b

v

v
+ =

+
+

−
+













j

R j L

R

R j L

R

ln

1

1

1 1

0

1 1

0

 (17.119)

a b
v

v
+ =

+ +

− −













j
R R j L

R R j L
ln

( )

( )

0 1 1

0 1 1
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Equating real parts on both sides,

 a
v

v
=

+ +

− +

















ln
( )

( )

/
R R L

R R L

0 1
2 2

1
2

0 1
2 2

1
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1 2

 N e
R R L

R R L
= =

+ +

− +

















a v
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1
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0 1
2 2

1
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1 2

 (17.120)

On the other hand, if X
C

1

1

1
=

v

 N e

R R
C

R R
C

= =

+ +

− +























a v

v

( )

( )

/

0 1
2

2
1
2

0 1
2

2
1
2

1 2
1

1
 (17.121)

Equations (17.117) and (17.121) are called design equations for the lattice- attenuator network.

17.27 LATTICE-PHASE EQUALISER

The lattice-phase equaliser is shown in Fig. 17.59. It consists of only reactive components. This is also a 

constant-resistance equaliser which satisfies the equation Z1Z2 5 R2
0.

Z1 is the series-arm impedance and Z2 is the shunt-arm impedance as shown in Fig. 17.59.

Fig. 17.59

The propagation constant is given by

tanh
g

2

1

0

1

2








=










=

Z

R

Z

Z

∴ tanh
/g

2 1

1 1

0 1

1








=
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j L j C

R j L
j C

v v

v
v
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tanh
( )

g v

v2 1

1

0
2

1 1








=

−

j L

R L C

 

g
v

v
=
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−2
1

1 1
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1 1
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j L
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=
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1 1
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1 1
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2
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Here, a 5 0

 

b
v

v
=

−















−2
1

1 1

0
2

1 1

tan
( )

L

R L C

The above expression gives the phase delay in a lattice phase equaliser.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 8
rrr17-8.1 Design a full series equaliser for a design resistance R0 5 600 V and attenuation of 20 dB at 

400 Hz. Calculate the attenuation M at 1000 MHz.
rrr17-8.2 Design the full-shunt equaliser, for design resistance R0 5 600 V and attenuation at frequencies 

of 600 Hz and 1200 Hz.
rrr17-8.3 Design a constant-resistance lattice attenuation equaliser to produce an attenuation of 20 dB at 

50 Hz and 3 dB at 3000 Hz. Calculate its loss at 500 Hz. The equaliser is working between two 

impedances of 500 V each.

Additional Solved Problems

PROBLEM 17.1

Design a low-pass p-section filter with a cut-off frequency of 2 kHz to operate with a load resistance of 

400 V.

Solution The p-section low-pass filter is shown in Fig. 17.60.

Cut-off frequency fc 5 2 kHz

Load resistance K 5 400 V 5 RL

Inductance L
K

fc

= =
× ×

=
p p

400

2 10
63 66

3
. mH

Capacitance C
K fc

= =
× × ×

=
1 1

400 2 10

0 3978
3p p

m. F

Fig. 17.60
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PROBLEM 17.2

Design an m-derived low-pass filter having cut-off frequency of 1.5 kHz with a nominal impedance of 500 V, 

and resonant frequency is 1600 Hz.

Solution We have fc 5 1.5 kHz ; k 5 500 V, and fa 5 1600 Hz

For an m-derived section, the value of m
f

f

c= −










1

2

a

 

= −
×







 =1

1 5 10

1600
0 3479

3
2

.
.

For the prototype low-pass section, L
k

fc
=

p

 
=

× ×
=

500

1 5 10

0 1061
3p .

. H= z
1

 C
kfc

= =
× × ×

= =
1 1

500 1 5 10
0 4244

3p p
m

.
. F  z

The T-section elements are

 
mz mL1

2 2

0 3479 0 1061

2
18 45= =

×
=

. .
. mH

 mz 5 mc 5 0.3479 3 0.4244 3 106 5 0.147 mF

 and mH
1

4

1

4
6

2

1

2−







 =

−







 =

m

m
z

m

m
L

The p-section elements are

 
mc

2

0 3479 0 4244 10

2
0 0738

6

=
× ×

=
−. .

. mF

 mL 5 0.3479 3 0.1061 5 36.91 mH

 and F
1

4
0 268

2−







 =

m

m
c . m

The filter sections are shown in Fig. 17.61.

Fig. 17.61
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PROBLEM 17.3

Design a band-elimination filter having a design impedance of 500 V and cut-off frequencies f1 5 1 kHz and 

f2 5 5 kHz.

Solution We have f1 5 1 kHz ; f2 5 5 kHz ; k 5 500 V
and kHz

B  = kHz

0
f f f

f f

= =

− =

1 2

2 1

2 236

4

.

v

 

L
k f f

f f
1

2 1

1 2

3

3 3

500 4 10

1 10 5 10
0 127=

−
=

× ×

× × × ×
=

( )
.

p p
H

C
k f f

1
2 1

3

81

4

1

4 500 4 10
3 971 10=

−
=

× × ×
= × −

p p( ) ( )
. F

L
k

f f
2

2 1
34

500

4 4 10
9 94=

−
=

× × ×
=

p p( )
. mH

 

C
f f

k f f
2

2 1

2 1

3

3 3

1 4 10

500 10 5 10
0 5=

−
=

×

× × × ×
=

( )

( )
.

p p
mF

Each of the two series arms of the constant K, T-section filter is given by
L

C1

2
63 5 0 08= =. .mH; 2 F1 m  

and the shunt-arm elements of the network are

L2 5 9.9 mH; C2 5 0.5 mF

For constant-K, p-section filter, the elements of the series arm are L1 5 127 mH; C1 5 0.04 mF and 

elements of the shunt arm are

 
2 19 8

2
0 252

2L
C

= =. .mH; Fm

PROBLEM 17.4

A T - section filter is shown is Fig. 17.62. Calculate the value of cut-off frequency and determine the iterative 

impedance and the phase shift of the network at 1.5 kHz.

Solution We have 
L

L
2

20= ⇒ =mH 40 mH

 C 5 0.12 mF

Fig. 17.62
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The cut-off frequency

 

f
Lc

f

c

c

= =
× × ×

=

− −

1 1

40 10 0 12 10

4 6

3 6p p

`

.

. kHz

The iterative impedance is given by

 

z
L

C

f

f
T

c
o
= −











= −








 =

1

577 1
1 5

4 6
545 5

2

2
.

.
. V

Phase shift b=









=









= °− −

2 2
1 5

4 6
38

1 1
sin sin

.

.

f

fc

PROBLEM 17.5

Find the frequency at which a prototype p-section low-pass filter having a cut-off frequency fc has an 

attenuation of 20 dB.

Solution We have a= 20
20

8 696
dB= nepers

= 2.23 nepers.

.

If f is the desired frequency for 20 dB, then

 

a=










=










−

−

2

2 23 2

1

1

cosh

. cosh

f

f

f

f

c

c

 
cosh .1 115( )=

f

fc

f 5 fc cosh 1.115 5 1.689 fc

The frequency at which low-pass p-section filter has an attenuation of 20 dB will be 1.689 times the cut-

off frequency.

PROBLEM 17.6

Design an m-derived LPF (T-section) having a cut-off frequency of 6 kHz and a design impedance of 500 V. 

The frequency of infinite attenuation should be 1.75 times the cut-off frequency.

Solution We have fc 5 6000 Hz; k 5 500 V, and f∝ 5 1.75 fc.

For the prototype low-pass section, L
k

fc
=

p

 =
⋅

=
500

6000
26 525

p
. mH
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and C
kfc

= =
× ×

=
1 1

500 6000
0 106

p p
m. F

For an m-derived section, the value of m
f

f

c= −










∝

1

2

 

= −
×









 =1

6000

1 75 6000
0 820

2

.
.

Now each of the series element of low-pass T-section is given by

m
L

2

0 820 26 525 10

2
10 68

3

=
× ×

=
−

. .
. mH

The shunt-arm elements are mC 5 0.82 3 0.106 3 10–6 5 0.087 mF

and 
1

4

1 0 82

4 0 82
26 525 10

2 65

2 2
3−

× =
−

⋅
× ×

=

−m

m
L

( . )

.
( . )

. mH

The required m-derived network is shown in Fig. 17.63.

PROBLEM 17.7

A p-section filter network consists of a series-arm inductance of 10 mH and two shunt-arm capacitances of 

0.16 mF each. Calculate the cut-off frequency, attenuation and phase shift at 12 kHz. What is the value of 

nominal impedance in the pass band?

Solution The given filter is shown in Fig. 17.64, it is a low-pass filter; given L 5 10 mH; C/2 5 0.16 mF; C 5 0.32 

mF.

For p-section low-pass filter,

 
f

LC
c =

1

p

 

=
× × ×− −

1

10 10 0 32 10
3 6p .

 5 5.627 kHz

Nominal terminating impedance is given by

k
L

C
=

 

=
×

×
=

−

−

10 10

0 32 10

176 77

3

6
.

. V

Fig. 17.63

Fig. 17.64
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The attenuation constant 5 2 cosh–1 
v

vc











 nepers

 

=









=

×

×











− −2 2

12 10

5 627 10

1 1
3

3
cosh cosh

.

f

fc

== 2 78. nepers

The phase shift introduced by the LPF will be p rad in the attenuation band.

PROBLEM 17.8

Each of the two series elements of a T-type low-pass filter consists of an inductance of 30 mH having negligible 

resistance and a shunt element having capacitance of 0.16 mF. Calculate the value of cut-off frequency and 

determine the iterative impedance and the phase shift of the network at 2 kHz.

Solution We have L/2 5 30 mH ⇒ L 5 60 mH, C 5 0.16 mF

The cut-off frequency f
LC

c =
1

p

 

=
× × ×− −

1

60 10 0 16 10
3 6p .

 fc 5 3.24 kHz

The characteristic impedance is given by

Z
L

C
T

c
0

2

1= −










v

v

 
= −











L

C

f

fc
1

2

 

=
×

×
−

×

×
= =

−

−

60 10

0 16 10
1

2 10

3 248 10
612 0 619 379 05

3

6

3

3. .
( ) ( . ) . V

Since f , fc the attenuation a 5 0 and the phase shift in the pass band is given by

b
v

v
=










=









= °− −

2 2
2

3 248
76

1 1
sin sin

.c

PROBLEM 17.9

Design the full- series equaliser shown in Fig. 17.65. The design 

resistance R0 5 600 V and attenuation of 12 dB at 800 Hz. Compute 

the elemental values.

Solution D 5 10 log N

 12 5 10 log N

N 5 Antilog 12

10








 Fig. 17.65
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  5 15.85

We know that N
L

R
= +1

2

1

2

0

2

v

 
L

R N
1

0
1

=
−

v

 
L1

600 15 58 1

2 800
0 46=

× −

×
=

.
.

p
henry

 

L

C
R1

1

0

2=

 

C
L

R
1

1

0

2

0 46

600 600
1 28= =

×
=

.
. mF

PROBLEM 17.10

Design the full- shunt equaliser shown in Fig. 17.66 for a design resistance R0 5 600 V and attenuation of 

10 dB at 600 Hz. Calculate the elemental values.

Solution  D 5 10 log N

 D 5 10 dB

 N 5 Antilog 1 5 10

 

N
X

R

R

X
= + = +1 11

2

0
2

0
2

1
2

X R N1 0 1= −

 
vL R N

1 0
1= −

 

L
R N

f
1

0
1

2

600 10 1

2 600
=

−
=

−

×p p

 L1 5 0.48 H

 

X
R

N
2

0

1

600

3
=

−
=

 

1 600

3
1

vC
=

 
C
1

3

2 600 600
1 33=

× ×
=

p
m. F

PROBLEM 17.11

Design a constant-resistance lattice attenuation equaliser shown in Fig. 17.67. The series arm consists of 

R1 5 2 kV in series with L1 5 30 mH. If R2 5 300 V, calculate the values of R0 and capacitance C1 of the 

shunt arm.

Fig. 17.66
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Solution R1 5 2000 V L1 5 30 mH

 R2 5 300 V

 R1R2 5 R0
2

 
R R R= =

1 2
774 6. V

 

C
L

R
1

1

0
2 2

0 03

774 6
0 049= = =

.

( . )
. mF

PROBLEM 17.12

Determine the series arm of a constant-resistance lattice- attenuation equaliser shown in Fig. 17.68 having 

design impedance of 2 V, the shunt arm consists of R2 5 2 V in series with a capacitor C2 5 0.1 F.

Solution The shunt-arm values are given as follows:

 R2 5 2 V

 C2 5 0.1 F

 R0 5 2 V

 
R R

L

C
R

1 2

1

2

0

2= =

 R
1

4

2
2= = Ω

 L1 5 C2 R 0
2

 5 (0.1) (2)2 = 0.4 H

PROBLEM 17.13

Obtain the inverse network for the network shown in Fig. 17.69.

Fig. 17.69

Solution The elements of the inverse network are given by

C
L

R
C

L

R
L C R R

R

R

C
L

R
L C R L

1
1 1

0
2 3

1 3

0
2 2

1
2 0

2
1
1 0

2

1

2
1 2

0
2 1

1
1 0

2
3
1

= = = =

= = =CC R R
R

R
R

R

R
3 0

2
2
1 0

2

2
3
1 0

2

3

= =

Fig. 17.67

Fig. 17.68
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The inverse network is shown in Fig. 17.70.

Fig. 17.70

PSpice Problems

PROBLEM 17.1

Determine the response of the twin t-band stop filter shown in Fig.  17.71(a) using PSpice.

Fig. 17.71 (a) Fig. 17.71 (b)

TWIN-T BANDSTOP FILTER

V1 1 0 AC 1 0

R1 1 2 200

C1 2 0 2 U

R2 2 3 200

C2 1 4 1 U

R3 4 0 100

C3 4 3 1 U

RLOAD 3 0 1K

.AC DEC 20 1 1000K

.PLOT AC V(3)
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F
ig

. 
1

7
.7

2

.PROBE

.END

Result

FREQ V(3)

(*)--------- 1.0000E – 04 1.0000E – 03 1.0000E – 02 1.0000E – 01 

1.0000E 1 00
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  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1.000E 1 00 7.143E – 01.  . . . *.

1.122E 1 00 7.143E – 01.  . . . *.

1.259E 1 00 7.143E – 01.  . . . *.

1.413E 1 00 7.143E – 01.  . . . *.

1.585E 1 00 7.143E – 01.  . . . *.

1.778E 1 00 7.143E – 01.  . . . *.

1.995E 1 00 7.143E – 01.  . . . *.

2.239E 1 00 7.143E – 01.  . . . *.

2.512E 1 00 7.142E – 01.  . . . *.

2.818E 1 00 7.142E – 01.  . . . *.

3.162E 1 00 7.142E – 01.  . . . *.

3.548E 1 00 7.142E – 01.  . . . *.

3.981E 1 00 7.142E – 01.  . . . *.

4.467E 1 00 7.142E – 01.  . . . *.

3.162E 1 02 3.926E – 01.  . . . * .

3.548E 1 02 3.483E – 01.  . . . * .

3.981E 1 02 3.019E – 01.  . . . * .

4.467E 1 02 2.539E – 01.  . . . * .

5.012E 1 02 2.047E – 01.  . . . * .

5.623E 1 02 1.547E – 01.  . . . * .

6.310E 1 02 1.039E – 01.  . . .* .

7.079E 1 02 5.265E – 02.  . . *. .

7.943E 1 02 8.235E – 04.  *. . . .

8.913E 1 02 5.159E – 02.  . . *. .

1.000E 1 03 1.047E – 01.  . . .* .

1.122E 1 03 1.585E – 01.  . . . * .

1.259E 1 03 2.132E – 01.  . . . * .
1.413E 1 03 2.687E – 01.  . . . * .
1.585E 1 03 3.249E – 01.  . . . * .
1.778E 1 03 3.815E – 01.  . . . * .
1.995E 1 03 4.381E – 01.  . . . * .
2.239E 1 03 4.943E – 01.  . . . * .
 - - - - - - - - - - - - - - - - - - - - - - - - 

PROBLEM 17.2

Using PSpice, determine the response of the LC low-pass filter shown in Fig. 17.73 (a).

Fig. 17.73 (a)
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LC LOWPASS FILTER

V1 1 0 AC 1 0

L1 1 2 100 M

C1 2 0 1 U

L2 2 3 100 M

RLOAD 3 0 1K

.AC LIN 20 100 1.5 K

.PLOT AC V(3)

.PROBE

.END

Result

FREQ V(3)

(*)-------- 1.0000E – 04 1.0000E – 02 1.0000E 1 001.0000E 1 02 1.0000E 1 04

F
ig

. 
1

7
.7

4

  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

1.000E 1 01 1.000E 1 00 . . .* . .

5.358E 1 02 3.117E 1 00 . . . * . .

1.062E 1 03 2.620E – 01 . . * . . .

Fig. 17.73 (b)
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1.587E 1 03 8.366E – 02 . . * . . .

2.113E 1 03 3.761E – 02 . . * . . .

2.639E 1 03 2.005E – 02 . . * . . .

3.165E 1 03 1.190E – 02 . .* . . .

3.691E 1 03 7.626E – 03 . * . . .

4.216E 1 03 5.170E – 03 . *. . . .

4.742E 1 03 3.662E – 03 . * . . . .

5.268E 1 03 2.687E – 03 . * . . . .

5.794E 1 03 2.028E – 03 . * . . . .

6.319E 1 03 1.568E – 03 . * . . . .

6.845E 1 03 1.237E – 03 . * . . . .

7.371E 1 03 9.930E – 04 . * . . . .

7.897E 1 03 8.090E – 04 . * . . . .

8.423E 1 03 6.677E – 04 . * . . . .

8.948E 1 03 5.574E – 04 . * . . . .

9.474E 1 03 4.701E – 04 . * . . . .

1.000E 1 04 4.001E – 04 . * . . . .

 - - - - - - - - - - - - - - - - - - - - - - - - - - -

Answers to Practice Problems

17-4.1 0.09 mF; 0.06 H

17.5.1 L 5 0.127 H; 

C 5 0.35 mF

17-5.2 fc 5 7.587 kHz;

R0 5 1.907 kV

17-5.3 

17-5.4  For T-section; series arm component 6.66 3 10–9 F; shunt arm 0.015 mH, 1.3 3 10–9 F

 For p-section series arm 6.19 mH: 3.33 3 10–9 F; shunt arm 0.031 H

17-5.5 1.779 kHz; 89.44 V
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17-6.1 f0 5 4242.7 Hz

17-6.5

17-7.1 (a) R0 5 217.731 V

  (b) 9.17 dB
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Objective-Type Questions

rrr17.1 A low-pass filter is one which

 (a) passes all low frequencies

 (b) attenuates all high frequencies

 (c) passes all frequencies up to cut-off frequency, and attenuates all other frequencies

rrr17.2 A high-pass filter is one which

 (a) passes all high frequencies

 (b) attenuates all low frequencies

 (c)  attenuates all frequencies below a designated cut-off frequency, and passes all frequencies above cut-off

rrr17.3 A band-pass filter is one which

 (a) attenuates frequencies between two designated cut-off frequencies and passes all other frequencies

 (b)  passes frequencies between two designated cut-off frequencies, and attenuates all other frequencies

 (c) passes all frequencies

rrr17.4 An ideal filter should have

 (a) zero attenuation in the pass band

 (b) infinite attenuation in the pass band

 (c) zero attenuation in the attenuation band

rrr17.5 The propagation constant of a symmetrical T-section and p-section are the same.

 (a) true   (b) false

rrr17.6 The values of L and C for a low-pass filter with cut-off frequency of 2.5 kHz to operate with a terminated 

load resistance of 450 ohms are given by

 (a) 57.32 mH; 0.283 mF (b) 28.66 mH; 0.14 mF (c) 114.64 mH; 0.566 mF

rrr17.7 The attenuation is sharp in the stop band for K-type filter.

 (a) True   (b) False

rrr17.8 The attenuation is not sharp in the stop band for an m-derived filter.

 (a) True   (b) False

rrr17.9 In m-derived low-pass filters, the resonant frequency is to be chosen so that it is

 (a) above the cut-off frequency (b)  below the cut-off frequency

 (c) none of the above

rrr17.10 In m-derived high-pass filters, the resonant frequency is to be chosen so that it is

 (a)  above the cut-off frequency (b)  below the cut-off frequency

 (c) none of the above

rrr17.11 A band-pass filter may be obtained by using a high-pass filter followed by a low-pass filter

 (a) true   (b) false

rrr17.12 A band-elimination filter is one

 (a) which attenuates all frequencies less than lower cut-off frequency f1
 (b) which attenuates all frequencies greater than upper cut-off frequency f2
 (c) frequencies lying between f1 and f2 are attenuated and all other frequencies are passed

For interactive quiz with answers,
scan the QR code given here
OR
visit
http://qrcode.flipick.com/index.php/275
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18.1 HURWITZ POLYNOMIALS

As stated in Chapter 15, the poles of the stable system must lie on the left half of 

the s-plane. Any network function can be written as the ratio of two polynomials, 

and is given by

 

Z s
P s

Q s
( )

( )

( )
=

A polynomial must satisfy the following conditions.

(a) Z(s) must be a real function of s

Z s
P s

Q s

a s a s a s a

b s b s b s b

n n
n n

m m
m m

( )
( )

( )
= =

+ + + +

+ + + +

−
−

−
−

0 1
1

1

0 1
1

1

�

�

   where all the quotients ai, bj are real, and hence, Z(s) is real if s is real.

(b) All the roots of P(s) must have zero real parts, or negative real parts.

Hurwitz polynomials have the following properties.

1. All the quotients in the polynomial

  P(s) 5 a0s
n 1 a1s

n 2 1 1 ···· 1 an 2 1 s 1 an

  are positive. A polynomial may not have any missing terms between the highest and the 

lowest order unless all even or all odd terms are missing. For example, the polynomial 

P(s) 5 s5 1 3s3 1 5s2 1 2s 1 1 is not Hurwitz as the term s4 is missing. At the same time, the 

polynomial P(s) 5 s3 1 3s is Hurwitz because all quo tient terms are positive and all even terms are 

missing.

LEARNING OBJECTIVES

18
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2. The roots of the odd and even parts of a Hurwitz polynomial P(s) lie on the jv axis. Consider the 

polynomial P(s) having odd and even parts o(s) and e(s), respectively; then

  P(s) 5 o(s) 1 e(s)

  Both have roots on the jv axis.

3. If the polynomial P(s) is either even or odd, the roots of P(s) lie on the jv axis.

4. All the quotient terms are positive in the continued fraction expansion of the ratio of the odd to even, 

or even to odd parts of the polynomial P(s). Consider a polynomial

   P(s) 5 s4 1 s3 1 6s2 1 3s 1 4

  The even parts of the polynomial, e(s) 5 s4 1 6s2 1 4

  The odd parts of the polynomial o(s) 5 s3 1 3s

  The continued fraction expansion is given by

s s s s s

s s

s s s
s

s
s

s
s

s

s

3 4 2

4 2

2 3

3

2

2

3 6 4

3

3 4 3
3

4

3

5

3
3 4

9

5

3

+ + +

+

+ +

+

+

) (

) (

) (

44
5

3

5

12

5

3

0

) (
s s

s

  The continued fraction expansion can be written as

c s
e s

o s
s

s

s

s

( ) =
( )

( )
= +

+

+

1

3

1

9

5

1

5

12

  Since all the quotient terms are positive, the polynomial P(s) is Hurwitz.

5. If the polynomial satisfies the condition of Hurwitz, then the polynomial must be Hurwitz to within 

an even multiplicative factor v(s), that is, if

   P1(s) 5 v(s) P(s), then P(s) is Hurwitz

  If v(s) is Hurwitz, P1(s) must be Hurwitz.

  Consider the polynomial P1(s) 5 s3 1 3s2 1 6s 1 18

  The continued fraction expansion is obtained from the division

 

3 18 6 3

6

0

2 3

3

s s s s

s s

+ ) + (
+

/
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  The continued fraction expansion has been terminated abruptly. So, the polynomial can be written 

as

 
P s s s

s
1

3 6 1
3

( ) ( )= + +










  Here, (1 1 3/s) term is Hurwitz. Since the terms (s3 1 6s) is Hurwitz, then P1(s) also is Hurwitz.

6. If the ratio of the polynomial P(s) and its derivative P(s) gives a continued fraction expansion with 

all positive coeffi cients, then the polynomial P(s) is Hurwitz.

 Consider the polynomial

P(s) 5 s4 1 3s2 1 2

 The derivative is P9(s) 5 4s3 1 6s

 By taking continued fraction expansion, we get

4 6 3 2 4

6

4
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2
2 4 6
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3

4
16
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Since all the quotients in the continued fraction expansion are positive, the polynomial P(s) is Hurwitz.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 1*
rrr18-1.1 Test whether the following polynomials are Hurwitz.

  (a) P(s) 5 s3 1 2s2 1 4s 1 2

  (b) P(s) 5 s4 1 s3 1 4s2 1 2s 1 3

  (c) P(s) 5 s4 1 2s3 1 2s2 1 6s 1 10

*Note:  rrr- Level 1 and Level 2 Category 

 rrr- Level 3 and Level 4 Category  

 rrr- Level 5 and Level  6 Category
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Frequently Asked Questions linked to LO 1*
rrr18-1.1 Check the following for Hurwitz polynominal: [MU 2014]

 Q(s) = s5 + s3 + s1

 Q(s) = s4 + 6s3 + 8s2 + 10
rrr18-1.2 What are the conditions to be satisfied for a polynomial P(s) to be Hurwitz? [PTU 2011-12]

18.2 POSITIVE REAL FUNCTIONS

As discussed in Chapter 15, the driving-point impedance func tion Z(s) and driving-

point admittance function Y(s) of a one-port network can be expressed as the ratio of 

two polynomials,

Z s Y s
P s

Q s

a s a s a s a

b s b s b

n n
n n

m
m

m
( ) ( )

( )

( )
= = =

+ + + +

+ + +

−
−

−
−

0 1
1

1

0 1
1

�

� 11s bm+

Functions possessing the following properties are called positive real functions, and are abbreviated as prf.

1. When s is real, Z(s) and Y(s) are real functions because the quotients of the polynomials P(s) and 

Q(s), that is, ak and bk are real. When Z(s) is determined from the impedances of the individual 

branches, the quotients ak and bk are obtained by adding together, multiplying or dividing the branch 

parameters which are real.

2. The poles are zeros of Z(s) and Y(s) all lie in the left half of the s-plane, or on the imaginary axis of 

the s-plane. In the latter case, the poles and zeros are simple.

  From the above property, it should be noted that if the roots of the characteristic equation were 

lying on the imaginary axis, and the roots s 5 ± jv, were multiples, the solution of the charac teristic 

equation would be of the form

xt 5 (c0 1 c1t 1 c2t
2 1 … 1 cm21 t 

m21)sin v1t

  This would cause the transients to build up, which cannot happen in a passive one-port. Under these 

conditions, all quotients an and bn of the polynomials P(s) and Q(s) must be positive. This can be 

proved by writing the polynomial P(s) as

 P(s) 5 a0s
n 1 a1s

n21 1 ··· 1 an

   5 a0(s 2 s1) (s 2 s2) ··· (s 2 sn)

  For each pair of complex and conjugate roots, sk 5 + jvk and sk+1 5 2 jvk, we have

(s 2 sk)(s 2 sk 1 1) 5 (s 2 jvk) (s 1 jvk)

   5 s2 1 v2
k

  For real roots of sk, all the quotients of s in s2 1 v2
k of the polynomial P(s) are non-negative. So by 

multiplying all factors in P(s), we find that all quotients a0, a1, , an are positive.

3. The real parts of the driving-point functions Z(s) and Y(s) are positive, or zero, that is, Re Z(s) > 0 or 

Re Y(s) > 0 pro vided for all Re(s) > 0.

Let Z s
P s

Q s
( )

( )

( )
=

  where P(s) and Q(s) are polynomials in s and have real coeffi cients. Hence, Z(s) is real, when s is 

real. Further, P(s) and Q(s), are real when s is real. Since the poles and zeros of a network function 

Z(s) are real, complex zeros must appear in conjugate pairs.

LO  2  

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600



Circuits and Networks856 

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 2
rrr18-2.1 Check the positive realness of the following functions.

  (a) 
( )2 4

5

s

s

+

+
 (b) 

( ) ( )

2 4

3 1

2s s

s s

+ +

+ +
 (c) (s2 1 2s)/(s2 1 1)

rrr18-2.2 Investigate if the following partially factored driving-point impedance function is a minimum 

positive real function.

  

Z s
s s s s

s s s
( )

( )( )
=

+ + + +

+ + +

2 3 5 5 1

1 2 2 1

4 3 2

2 2

Frequently Asked Questions linked to LO 2

rrr18-2.1 Check whether F(s) = 
s

s

+

+

2

1
 is a positive real function. [BPUT 2007]

rrr18-2.2 Check whether the following function is positive real. [BPUT 2008]

 F(s) = 
s s

s s

2

2

8

2 2

– –

–+

rrr18-2.3 Define positive real function and mention its properties. Also write the properties of RL, RC, and 

LC driving-point functions. [PTU 2009-10]

18.3 FREQUENCY RESPONSE OF REACTIVE ONE-PORTS

Based on the locations of zeros and poles, a reactive one-port can have the 

following four types of frequency response.

1. A frequency response with two external poles is shown in Fig. 18.1 (a). 

In this case, the driving-point impedance with poles at v 5 0 and v 5  

must have an s in the denominator polynomial and one excess term (s2 1 v2
n) in the numerator than 

in the denomina tor.

∴ Z s
H s s

s s s

n

n

( )
( ) ( )

( ) ( )
=

+ +

+ + −

2
1
2 2 2

2
2
2 2

1
2

v v

v v

�

�

  The driving-point impedance of the one-port is infinite, and it will not pass either direct current 

(v 5 0) or alternating cur rent of an infinitely high frequency.

Fig. 18.1 (a)

LO  3  
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2. A frequency response with two external zeros 

is shown in Fig. 18.1 (b). In this case, the driv-

ing- point impedance with zeros at v 5 0 and 

v 5  must have an s term in the numerator 

and an excess (s2 1 v2
n) term in the denomi-

nator polynomial.

∴    Z s
Hs s s

s s

n

n

( )
( ) ( )

( ) ( )
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+ +

+ +
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2

2
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2
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v v

v v

�

�

  The driving-point impedance of the one-

port is zero, and it will pass both direct 

current and an alternating current of an infi nitely high frequency.

3. A frequency response with an external zero at v 5 0 and an external pole at v 5  is shown in 

Fig. 18.1 (c). In this case, the driving- point 

impedance with zero at v 5 0 and pole at 

v 5  must have a term s in the numerator 

and equal number of (s2 1 v2
n) type terms in 

the numerator and the denominator.

∴ Z s
Hs s s

s s

n

n
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( ) ( )
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+ + −
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  In this case, the one-port will pass direct 

current and block an alternating current of 

an infinitely high frequency.

4. A frequency response with an external pole at v 5 0 and an external zero at v 5  is shown in Fig. 

18.1 (d). In this case, the driving-point impedance with pole at v 5 0 and zero at v 5  must have a 

term s in the denominator and equal number of (s2 1 v2
n) terms in the numerator and the denominator.

∴  Z s
H s s

s s s
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n
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  Here, the one-port will block direct current and pass an alter nating current of an infinitely high 

frequency.

Fig. 18.1 (d)

The function of factor H is to fix the scale of the reactance, and hence it is referred to as the multiplying 

factor, or the scale factor. It is to be noted that as the number of zeros and poles in Xin (v) increases, there 

will be an increasing number of reactive one-ports having the same form of frequency response.

Fig. 18.1 (b)

Fig. 18.1 (c)
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18.4 SYNTHESIS OF REACTIVE ONE-PORTS BY FOSTER’S METHOD

The driving-point function of a reactive one-port Z(s) is given by

Z s
H s s s
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 (18.1)

Let us determine the circuit and parameters that implement its frequency response Zin(  jv) 5 jXin (v). 

There are two forms of Foster networks for reactive one ports. One is a series combination of parallel LC 

circuits with capacitance C0 and inductance L

 

as shown in Fig. 18.2 known as first Foster form 

or impedance form.

The other form (known as second Foster form 

or admittance form) is a parallel combination 

of series LC circuits with inductance L0 and 

capacitance C

 as shown in Fig. 18.3.

To synthesize the impedance form or first Foster form, we shall write the expression for LC parallel 

combination in the network of Fig. (18.2)
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1
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 (18.2)

To synthesise the first Foster network, the first step is to express Z(s) as the sum of rational fractions of the 

form of Eq. (18.2), to which is added the term 1/C0s and L

s

Equation (18.1) can be written as

Z s
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P s

s

P s

s
Hs( ) = +

+
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+
+ +0 2
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2
2

4

2
4
2

2 2
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�

 (18.3)

If we divide the total impedance into a series combination of impedances Z1(s), Z2(s), , Zn(s).

Z(s) 5 Z1(s) 1 Z2(s) 1 Z3(s) 11 Zn(s) (18.4)

By comparing Eqs (18.3) and (18.4), we have impedance Z1(s) 5 P0/s that represents a capacitor C0 of 

value 1/P0, and the impedance Zn(s) 5 Hs that represents an inductor L

 of value H henrys. The remaining 

intermediate terms represents parallel combination of an inductor and a capacitor. By comparing Eq. 18.2 and 

the middle terms of Eq. (18.3), we get

C
P

n
n

=
1

2
 and L

P
n

n

n

=
2

2
v

where n refers to the term 2Pn s/s2 1 v2
n in Eq. (18.3).

The presence of first element capacitor C0 and the last element inductor L

 depends on the pole-zero 

configuration. If there is pole at v 5 0, the first element C0 is present in the network. Similarly, if there is 

pole at v 5 , the last element L

 is present in the network.

The second canonical form, known as the second Foster network, is a parallel combination of series 

LC circuits. Because all branches in the network of Fig. 18.3 are connected in parallel, the network can be 

LO  4  

Fig. 18.2
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simplified by taking the driving-point admit tance Y(s). Therefore, we have

Y s
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s

s s
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( )

( ) ( )

( ) ( )
=

+ +
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 (18.5)

To synthesise the parallel Foster network, we shall write the expression for LC series combination in the 

network of Fig. 18.3.

Y s
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s L

s
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/

=

+

=
( )

+

1

1 12

 (18.6)

Now, to synthesise the second Foster network, the first step is to express Y(s) as the sum of rational 

fractions of Eq. (18.6), to which is added the term C

s and 1/L0s.

Equation (18.5) can be written as

Y s
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s

P s

s
Hs( ) = +

+
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+
+ +0 2

2
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4

2
4
2

2 2

v v
�  (18.7)

If we divide the total admittance into a parallel combination of admittance Y1(s), Y2(s), , Yn(s)

∴ Y(s) 5 Y1(s) 1 Y2(s) 1 ··· 1 Yn(s) (18.8)

By comparing Eqs (18.7) and (18.8), we have the admittance Y1(s) 5 P0/s which represents an inductor 

L0 of value 1/P0, and the admittance Yn(s) 5 Hs which represents a capacitor C

 of value H. The remaining 

intermediate terms represents series combination of an inductor and a capacitor. By comparing Eq. (18.6) and 

middle terms of Eq. (18.7), we get

 

L
P

C
P

n
n

n
n

n

= =
1

2

2
2

 and  
v

where n refers to the terms 2Pn s/(s2 1 v2
n) in Eq. (18.7).

The presence of first element inductor L0 and the last element capacitor C

 depends on the pole-zero 

configuration. If there is pole at v 5 0, the first element L0 is present in the network. Similarly, if there is pole 

at v 5 , the last element C

 is present in the network.

EXAMPLE 18.1

The driving-point impedance of a one-port reactive network is given by

Z(s) = 5
(s + 4)(s + 25)

s(s + 16)

2 2

2

Obtain the first and second Foster networks.

Fig. 18.3
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Solution  Since there is an extra term in the numerator compared to the denominator, and also an s term in 

the denominator, the two poles exists at v 5 0 and at v 5 . Therefore, the network consists of first element 

and last element.

By taking the partial fraction expansion of Z(s), we have

Z s
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s j
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s j
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= 0 2 2

4 4
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−
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By applying the Heaviside method, from the above equation, we have
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By inspection, H 5 5

Therefore, C
P

0
0

1 4

125
= =  farad

 L

 5 H 5 5 H

 

C
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P
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2
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2
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8
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8
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16 8
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= =
×

=

= =
×

×
=

F

H
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The element values in the first Foster form are 

shown in Fig. 18.4.

To find the second Foster form, first we have to 

take the func tion into admittance form.

Y s
s s

s s
( )

( )

( ) ( )
=

+

+ +

2

2 2

16

5 4 25

Since, there is an s term in the numerator and 

an excess term in the denominator, the two zeros 

exists at v 5 0 and at v 5 . Therefore, the 

network consists of a series LC combination of 

parallel elements.

By taking the partial fraction expansion of Y(s), we get

Y s
P s

s

P s

s
( ) =

+
+

+

2

4

2

25

1

2

2

2

Fig. 18.4



Elements of Realizability and Synthesis of One-port Networks 861 

By applying the Heaviside method, we get
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Therefore, the elemental values are
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The circuit of the second Foster form is shown in Fig. 18.5.

18.5 SYNTHESIS OF REACTIVE ONE-PORTS BY THE CAUER METHOD

In the Cauer method, there are two types of ladder networks to realise the one-port network. In one type of 

network, the series arms are inductors and the shunt arms are capacitors as shown in Fig. 18.6 (a).

Fig. 18.6 (a)

In the other network, the series arms are 

capacitors and the shunt arms are inductors 

as shown in Fig. 18.6 (b).

From the driving-point function Z(s) 

or Y(s), there is always a zero or a pole 

at s 5 . We can remove this pole or 

zero by remaining an impedance Z1(s) 

or admittance Y1(s). Then from each 

remainder left, an inductor or a capacitor 

Fig. 18.5

Fig. 18.6 (b)

LO 4
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is removed, depending upon the driving-point function. It may be an impedance or an admittance function. 

This process continues until the remainder is zero. From the above, the impedance Z(s) may be written as a 

continued fraction as under.

Z s Z s
Y s

Z s
Y s

Z s

( ) ( )
( )

( )
( )

( )

= +
+

+
+

+

1
2

3
4

5

1
1

1
1

�

Let us realise the first Cauer form. Consider a driving-point function having a pole at infinity. This implies 

that the degree of the numerator is greater than that of the denominator. We always remove pole at infinity 

by inverting the remainder, and dividing. That means an LC driving-point function can be synthe sised by the 

continued fraction expansion.

If Z(s) is the function to be synthesised, then the continued fraction expansion is as follows.

Z s L s
C s

L s
C s

( ) = +
+

+
+

1
1

2

2

1
1

1

�

Therefore, in the first Cauer network shown in Fig. 18.6 (a), the inductors are connected in series and the 

capacitors are connect ed in shunt.

If the driving-point function, Z(s) has zero at infinite, that is, if the degree of its numerator is less than 

that of its denominator, the driving-point function is inverted. In this case, the continued fraction will give a 

capacitive admittance as first element, and a series inductance.

Now let us realise the second Cauer network. In this case, the removal of the pole at zero gives the network 

shown in Fig. 18.6 (b), where the capacitors are connected in series and the inductors are connected in shunt. 

If Z(s) is the function to be synthesised, then the continued fraction expansion is

Z s
C s

L s

C s

L s

( ) = +

+

+

+

1 1

1 1

1 1

1

1

1

2

2

�

If the driving-point function, Z(s) has a zero at zero, the continued fraction expansion will give an inductive 

admittance as first element and a series capacitance.

From the above discussion, we can conclude that in the first Cauer network, the first element in a series 

inductor when the driving-point function consists of a pole at infinity, and it is a shunt capacitor when the 

driving-point function consists of zero at infinity. Similarly, the last element is an inductor when the function 

consists of zero at v 5 0, and it is a capacitor when the function consists of pole at v 5 0.

In case of second Cauer network, the first element is a series capacitor when the driving-point function 

consists of a pole at zero and it is shunt inductance when the function consists of a zero at zero. Similarly, the 

last element is an inductor when the driving-point function consists of a pole at infinity; and it is a capacitor 

when impedance function consists of zero at infinity.
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EXAMPLE 18.2

The driving-point impedance of an LC network is given by Z(s) =
2s + 12s + 16s

s + 4s + 3

5 3

4 2
Determine the first Cauer form of the network.

Solution  By taking continued fraction expansion, we get

s s s s s s L

s s s

s s s s
s

C

4 2 5 3
1

5 3

3 4 2

4 3 2 12 16 2

2 8 6

4 10 4 3
4

+ + + + −

+ +

+ + + −

) (

) ( 22

4 2

2
3

3

3

2

3

2

5

2

3

2
3 4 10

8

3

4 8

2
3

2
3

3

4
3

2

3

s s

s
s s s L

s s

s
s

s C

s

+

+ + −

+

+ −

) (

) (

) 22
2

3
2

0

5s s L

s

( −

 Hence,

Z s s
s

s

s

s

( ) = +

+

+

+

2
1

4

1

8

3

1

3

4

1

2

3

The resulting network shown in Fig. 18.7 is called the 

first Cauer form.

EXAMPLE 18.3

The driving-point impedance of an LC network is given by

Z(s) 5 s4 1 4s2 1 3/(s3 1 2s)

Determine the second Cauer form of the network.

Solution  To obtain the second Cauer form, we have to arrange the numerator and the denominator of given 

Z(s) in assending powers of s before starting the continued fraction expansion.

Fig. 18.7



Circuits and Networks864 

By taking continued fraction expansion, we get

2 3 4
3

2

3
3

2

5

2
2

4

5

2
4

5

5

3 2 4
1
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2
4 3

2

3

3

s s s s
s

C

s

s
s s s

s
L

s s

s

+ + + −

+

+ + −

+

) (

) (

)
55

2

25

2

5

2

5

1

5

5

0

2
4

3

2

4
3

4

3

s
s

s
C

s

s
s

s
L

s

+ −

−

(

) (

Hence, Z s
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s

( ) = +
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+
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4
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1

25

2

1

1

5
The resulting network shown in Fig. 18.8 is called the second Cauer form.

NOTE: YOU ARE NOW READY TO ATTEMPT THE FOLLOWING PROBLEMS

Practice Problems linked to LO 4
rrr18-4.1 Find the two canonical Foster networks with elements for the impedance function Z(s) given by

  Z s
s s

s s
( )

( )( )

( )
=

+ +

+

1 3

2
rrr18-4.2 Find the first and second Foster forms of the function

  
Z s

s s

s s s
( ) =

+ ×

+ × + ×

10 16 10

37 10 36 10

9 3 21

4 12 2 2

rrr18-4.3 Synthesise the first and second Foster form of LC network for the impedance

  
Z s

s s

s s
( )

( )( )

( )( )
=

+ +

+

2 2 2 2

2 2 2

1 3

2

rrr18-4.4 Find the first and second Cauer networks of the given functions.

  

Z s
s s

s

Z s
s s

s s

1

3

2

2

3

4 2

2 8

1

4

2 20 18

( )

( )

=
+

+

=
+

+ +

Fig. 18.8
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rrr18-4.5 An impedance function has the pole-zero diagram as shown 

in Fig. Q.2 Find the impedance function to z( )− =4
3

8
 and 

realise it in Cauer form.

rrr18-4.6 Find the first Foster form and the second Cauer form of the 

function

  
Z s

s s

s s
( )

( )( )

( )( )
=

+ +

+ +

2 1 3

2 6

rrr18-4.7 Find the second Cauer form of the function

  
Z s

s s

s s
( ) =

+ +

+ +

2

2

4 3

8 12

rrr18-4.8 Find the first Foster form and the second Cauer form after synthesising the impedance function 

given by

  
Z s

s s

s s
( )

( )( )

( )( )
=

+ +

+ +

2 1 3

2 6

rrr18-4.9 For the given function

  
Z s

s s s

s s s s
( )

( )( )( )

( )( )( )
=

+ + +

+ + +

1 3 5

2 4 6

  determine the first and second Foster forms of realisation, and the Cauer, first and second forms 

of realisation.

Frequently Asked Questions linked to LO 4
rrr18-4.1 The driving point impedance of an LC network is given by

 Z(s) = 
10 12 1

2 1

4 2

2

s s

s s

+ +

+( )

 Obtain the first form of Cauer LC network. [BPUT 2007]

rrr18-4.2 A function is given by [BPUT 2008]

 Z(s) = 
( ) ( )

( )

s s

s s

2 2

2

1 16

4

+ +

+

.

 Realise it in the first and second form of foster LC forms

rrr18-4.3 Compare and obtain Forter form I and form II using an example of RC circuit 

 Zo(s) = 
s S

s s s

+ +

+ +

 Also give a example of LC and RL circuits. [MU 2014]

rrr18-4.4 Synthesise the Foster I and II forms of realization of the following driving-point function: 

 Zo(s) = 
2 12 16

4 3

s s

s s

2

2

+ +

+ +

  [PTU 2009-10]

rrr18-4.5 Synthesise in Foster II form, Z(s) = 
( ) ( )

( ) ( ) ( )

s s

s s s

+ +

+ + +

5 7

1 6 8
 [PTU 2011-12]

rrr18-4.6 Synthesise

 Z(s) = 
( ) ( )

( )

s s

s s

+ +

+

1 3

2
 in Cauer I form. [BPUT 2008]

rrr18-4.7 Compare Cauer form I and Cauer form II of the network. [MU 2014]

 Z(s) = 
s s

s s

( )

( ) ( )

2

2 2

4

1 9

+

+ +

Fig. Q.2
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rrr18-4.8 Differentiate between Foster form and Cauer form. [PTU 2011-12]

rrr18-4.9 Given the driving-point impedance function of an LC network, determine the Cauer first and 

second forms of realization for the LC network given as Z(s) = 
s s

s s

( )

( ) ( )

2

2 2

4

1 9

+

+ +
 [PTU 2011-12]

rrr18-4.10 An impedance function is given by [PTU 2011-12]

 Z(s) = 8(s2 + 4) (s2 + 25)/s(s2 + 16)

 Find the Foster I, II forms and Cauer I and II forms. 
rrr18-4.11 (a) Find the Cauer II form of the RC function. [RTU Feb. 2011]

  Z(s) = 
s s

s s

2

2

4 3

2

+ +

+( ) ( )

 (b) Find the Cauer II form of the RC network.

  Z(s) = 
2 12 16

4 3

2

2

s s

s s

+ +

+ +

rrr18-4.12 Find the Cauer I and II forms of the RL function. [RTU Feb. 2011]

 ZRL = 
s s s

s s

( ) ( )

( )( )

+ +

+ +

2 4

1 3

rrr18-4.13 Synthesise the network F(s) in Cauer form if [RTU Feb. 2011]

 (a) F(s) is an impedance function

 (b) F(s) is an admittance function

 F(s) = 
3 2 4

3

( ) ( )

( )

s s

s s

+ +

+

18.6 SYNTHESIS OF R-L NETWORK BY THE FOSTER METHOD

The driving-point impedance function of an RL network Z(s) is given by

Z s
H s s

s s
( )

( )( )

( )( )
=

+ +

+ +

s s

s s

1 3

2 4

�

�

 (18.9)

The first form of the Foster network is shown in Fig. 18.9.

Fig. 18.9

The above impedance function possess the following properties.

1. The poles and zeros of the RL driving-point impedance func tion are located on the negative real axis 

of the s-plane.

2. Poles and zeros alternate along the negative real axis.

LO   5 
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3. The singularity at the origin, or s 5 0 is a zero.

4. The singularity at s 5  is a pole.

5. The slope of the impedance curve is positive.

6. The impedance at s 5  is always greater than the impedance at v 5 0.

7. The residues at the poles of Z(s) are real and negative. The residues of Z(s)/s are real and positive.

To synthesise the first Foster network, we shall write the expression for the RL parallel combination in the 

network of Fig. 18.9.

where 

Z s
R s

s

R

L

Z s

s

R

s

1
1

1

1
1

1

1 1

1

( )

( )

=
+

=

=
+

s

s

s
or

 (18.10)

We have another form of the equation as discussed in Chapter 15.

Z s
a s a s a

b s b s b

n n
n

m m
m

( ) =
+ + +

+ + +

−

−
0 1

1

0 1
1

�

�

 (18.11)

where n > m

The degree of the numerator is greater than that of the denomina tor by one.

At s 5 0,

Z s
a

b
a

a

s Z s s
a

b

n

n
n

n

( ) ( )

( )

, ( )

= ≠

= =

= =






when 

when 

And at 

0

0 0

0

0

 






≠

= =

( )

( )

when 

when 

a

a

b
a

0

1

1
0

0

0

By separating the constant term and linear term in Eq. (18.11), the RL impedance function can be written as

Z s P
P s

s
Hsi

i

( ) = +
+

+ +0
s

�  (18.12)

If we divide the total impedance into a series combination of impedance Z1(s), Z2(s),  Zn(s)

Z(s) 5 Z1(s) 1 Z2(s) 1 ··· 1 Zn(s) (18.13)

By comparing Eqs (18.12) and (18.13), we have the impedance Z1(s) 5 P0, which is constant. The term P0 

represents a resistor R0, and the impedance Zn(s) 5 Hs represents L

 of value H henries. The remaining terms 

represent parallel combination of an inductor and a resistor. By comparing Eq. (18.10) and middle terms of Eq. 

(18.12), we have

P R
R

L
n n n

n

n

= =and s

where n refers to the term Pns/(s 1 sn) in Eq. (18.12).
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Consider a function Z s
s s

s s
( )

( )( )

( )( )
=

+ +

+ +
5

1 4

3 5

Z(s) represents RL impedance, because it satisfies all the prop erties, but the signs of Z(s) at its poles are 

negative as shown.

Z s
s s

s s s s
( )

( )( )

( )( )
=

+ +

+ +
= −

+
−

+

5 1 4

3 5
5

5

3

10

5

Therefore, we have to expand 
Z s

s

( )

Z s

s

s s

s s s s s s

( ) ( )( )

( )( ) ( )
=

+ +

+ +
= +

+
+

+

5 1 4

3 5

4

3

5

3 3

2

5

If we multiply both sides by s, we get

Z s
s

s

s

s
( ) = +

+
+

+

4

3

5

3 3

2

5

Hence, the impedance Z(s) can be realised 

as a series Foster form of RL network shown in 

Fig. 18.10.

Similarly, the driving-point admittance 

function of the RL net work, Y(s) is given by

Y s
b s b s b

a s a s a

m m
m

n n
n

( ) =
+ + +

+ + +

−

−
0 1

1

0 1
1

�

�

 (18.14)

The second form of the Foster network is 

shown in Fig. 18.11.

The above admittance function must possess 

the following proper ties.

1. The poles and zeros of the RL driving-

point admittance func tion are located on 

the negative real axis of the s-plane.

2. Poles and zeros alternate along the 

negative real axis.

3. The singularity at the origin, or s 5 0, is a 

pole.

4. The singularity at s 5  is a zero.

5. The slope of the admittance curve is negative.

6. The admittance at s 5 0 is always greater than the admit tance at s 5 .

7. The residues at the poles of Y(s) are real and positive.

The RL admittance function can be written as

Y s
P

s

P

s
Hi

i

( ) = +
+

+ +0

s
�  (18.15)

Fig. 18.10

Fig. 18.11
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If we observe Eq. (18.15), we have the first term P0/s representing inductance L0 5 1/P0, and the last term 

representing a resistance R

 5 H. The intermediate terms represent admittance function of the series RL 

network. We, therefore, have

Y
R sL

n
n n

=
+

1
 (18.16)

Comparing Eq. (18.16) with the middle terms of Eq. (18.15), we have Rn 5 sn/Pn and Ln 5 1/Pn 

where n refers to the nth term of Eq. (18.15), i.e. Pn /(s 1 sn),

Consider an admittance function

Y s
s s

s s
( ) =

+ +

+ +

2 16 30

6 8

2

2

The poles and zeros are positive, real and simple. The poles are at 22, 24, and the zeros are at 23, 

and 25. For the second Foster form of realisation by partial fraction expansion,

Y s
s

s s

A

s

B

s

A
s

s

B

s

( ) = +
+

+ +

= +
+

+
+

=
+

+( )
=

=

=−

2
4 14

6 8

2
2 4

4 14

4
3

4

2

2

where  

ss

s s

+

+
=

=−

14

2
1

4

The residues are positive. Hence,

Y s
s s

( ) = +
+

+
+

2
3

2

1

4

Comparing with Eq. (18.15), we have R

 5 2, 

R1 5 2/3 V, L1 5 1/3 H and R2 5 4 V, L2 5 1 H.

The second Foster form of the RL admittance 

function with various values is shown in Fig. 18.12.

18.7 SYNTHESIS OF R-L NETWORK BY THE CAUER METHOD

To synthesise the RL network, the basic step to know is that the impedance function at infinity is always greater 

than the impedance function at zero. Similarly, the admittance function at zero is always greater than the 

admittance function at infinity. In case of RL network synthesis, we remove the minimum real part from the 

function Z(s). If the minimum real part is Re [Z(  jv)] 5 Z(0), by removing Z(0) from Z(s), the remainder will 

have a zero at s 5 0. After inverting the remaining function, we can remove the pole at s 5 0. By carrying on 

this process, we obtain a continued fraction expansion. 

Fig. 18.12

LO 5
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The first form of continued frac tion expansion is called the first Cauer form, which is

Z s sL

R
sL

R

( ) = +

+

+

+

1

1
2

2

1

1 1

1

1
�

Fig. 18.13

The Cauer network for realising the above function is shown in Fig. 18.13.

In the network shown above, if Z(s) has a pole at s 5 , the first element is L1. If Z(s) is a constant at 

s 5 , the first element is R1. If Z(s) has a zero at s 5 0, the last element is Ln. If Z(s) is a constant at s 5 0, 

the last element is Rn.

The second form of the continued fraction expansion is

Z s R

sL
R

sL R

( ) = +

+

+

+
+

1

1
2

2 3

1

1 1

1

1 1

�

The second Cauer form of the network for the above function Z(s) is shown in Fig. 18.14.

Fig. 18.14

Here also, the presence of the first and the last element depends on the characteristics of impedance 

function, Z(s). If Z(s) has a zero at s 5 0, the first element is L1. If Z(s) is a constant at s 5 0, the first element 

is R1. If Z(s) has a pole at s 5 , the last element is Ln. If Z(s) is a constant at s 5 , the last element is Rn.

The first form of the Cauer network can be obtained by continued fraction expansion and arranging the 

numerator and denominator polynomials of Z(s) in descending powers of s. The second form of the Cauer 
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network can be obtained by continued fraction expansion and arranging the numerator and denominator 

polynomials of Z(s) in ascending powers of s. Consider a function

Z s
s s

s s
( )

( )( )

( )( )
=

+ +

+ +

4 8

2 6

To find out the first Cauer form, let us take the continued fraction expansion of Z(s).

s s s s

s s

s s s
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s s

2 2
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Z s
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+
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1

3

4

1

1

3

Therefore, the impedance function Z(s) can be realised as an RL network as shown in Fig. 18.15.

Fig. 18.15

Similarly, consider another function

Z s
s s

s s
( ) =

+ +

+ +

2 8 6

8 12

2

2

To find out the second Cauer network, we have to write the impedance function in ascending powers. 
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By taking the continued fraction expansion of Z(s), we have
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Therefore, the impedance function Z(s) can be 

realised as an RL network shown in Fig. 18.16.

18.8 SYNTHESIS OF R-C NETWORK BY THE FOSTER METHOD

The driving-point impedance RC network, Z(s) is given by

Z s
s s

s s s
( )

)( )

( )( )
=

+ +

+ +

H( s s

s s

1 3

2 4

�

�

 (18.17)

The first form of the RC Foster network is shown in Fig. 18.17.

Here, the RC impedance possesses the same properties as the RL admittance function. To synthesise the 

first Foster form of the RC network, we shall write the expression for the RC parallel combination in the 

network of Fig. 18.17.

Fig. 18.16

LO   6 
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Fig. 18.17

Z s
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R C

R C
P
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1
1

1 1

1
1 1

1
1

1

1

1 1

( ) =

+

= =s

 (18.18)

where

We have the other form of the impedance function

Z s
a s a s a

b s b s b s

n n
n

m m
n

( ) =
+ + +

+ + +

−

−
0 1

1

0 1
1

�

�

 (18.19)

Obviously, the degree in s of the numerator polynomial is greater than that of the denominator polynomial 

by one. The roots of the polynomials are real and negative.

At when s Z s
a

b
R a= ∞ = = ≠∞, ( ) ,

0

0
0 0

 

   5 0, when a0 5 0

The total impedance can be written as the combination of impe dances Z1(s), Z2(s),, Zn(s)

Z(s) 5 Z1(s) 1 Z2(s) 1 ··· 1 Zn(s) (18.20)

From Fig. 18.18, we have the impedance

Z s
P

s

P

s

i

i

( ) = +
+

+ +0

s
� H  (18.21)

By comparing Eqs (18.20) and (18.21), we have the impedance Z1(s) 5 P0/s representing a capacitance term 

1/P0, and the impedance Zn(s) 5 H, a constant term representing resistor R

. The remaining terms represent a 

parallel combination of a capacitor and resis tor. By comparing Eq. (18.18) with the middle terms of Eq. (18.21), 

we have

P
C

R C

n
n

n
n n

=

=

1

1
and s

where n refers to the term Pn/(s 1 sn) in Eq. (18.21).
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Similarly, the driving-point function of an RC network Y(s) is given by

Y s
b s b s b s

a s a s a

m m
m

n n
n

( ) =
+ + +

+ + +

−

−
0 1

1

0 1
1

�

�

 (18.22)

The second form of the Foster network is shown in Fig. 18.18.

Fig. 18.18

The RC admittance function possesses the same properties as the RL impedance function. By taking the 

partial fraction expansion of Eq. (18.22) we can write the RC admittance function as

Y s P
P s

s
si

i

( ) = +
+

+ +0
s

� H  (18.23)

If we observe Eq. (18.23), we have the first term P0 representing resistance R0 5 1/ P0, and the last term 

represents capacitance C

 5 H and the intermediate terms representing admittance function of series RC 

network.

Y

R
sC

n

n
n

=

+

1

1  (18.24)

Comparing Eq. (18.24) and the middle terms of Eq. (18.23), we have

R
P

C
R

n
n

n
n n

= =
1 1

 and 
s  

Consider a function Z s
s s

s s
( )

( )( )

( )( )
=

+ +

+ +

3 2 4

1 3

The first Foster form can be realised by taking the partial fraction of Z(s)
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The residues are positive, and hence

Z s
s s

( )
/ /

= +
+

+
+

3
9 2

1

3 2

3

Comparing with Eq. (18.21), we have
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3
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2

2

3
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2 2

, ,

,

F

and                  F

The network with elemental values is shown in Fig. 18.19.

Fig. 18.19

The second Foster form can be realised by taking the reciprocal of the impedance function and partial 

fraction expansion as
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The network with elemental values is shown in Fig. 18.20.
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Fig. 18.20

18.9 SYNTHESIS OF R-C NETWORK BY THE CAUER METHOD

To synthesise the RC network function, the basic step to know is that the impedance function at zero is always 

greater than the impedance function at infinity. Similarly, the admittance func tion at infinite is always greater 

than the admittance function at zero.

To synthesise an RC network, we remove the minimum real part from the function, Z(s). If the minimum 

real part is Re [Z( j v)] 5 Z(), by removing Z() from Z(s), the remainder will have a zero at s 5 . After 

inverting the remaining function, we can remove a pole at s 5 . By carrying on this process, we obtain a 

continued fraction expansion. The first form of continued fraction expan sion is called the first Cauer form, 

and is given by

Z s R

C s

R
C s

( ) = +

+

+
+

1

1

2
2

1

1

1

�

The Cauer network for realising the above function is shown in Fig. 18.21.

In the network shown, if Z(s) has a zero at s 5 , the 

first element is C1. If Z(s) is a constant at s 5 , the first 

element is R1. If Z(s) has a pole at s 5 0, the last element 

is Cn. If Z(s) is constant at s 5 0, the last element is R n.

The second form of continued fraction expansion is

Z s
C s

R

C s

R

( ) = +

+

+

+

1 1

1 1

1 1

1

1

1

2

2

�

The second Cauer form of network for the above 

function Z(s) is shown in Fig. 18.22.

In the network shown in Fig. 18.22, if Z(s) has a pole 

at s 5 0, the first element is C1. If Z(s) is a constant 

at s 5 0, the first element is R2. If Z(s) has a zero at  

s 5 , the last ele ment is Cn. If Z(s) is constant at s 5 , 

the last element is Rn.

Fig. 18.21

Fig. 18.22

LO 6
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Consider a function Z(s) 5 (s 1 2) (s 1 4)/s(s 1 3). To find the first Cauer form, we take the continued 

fraction expansion by the divide, invert, divide procedure as follows.

s s s s R

s s

s s s
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s
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s
s R

2 2
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( ) = +
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+

1
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3

1

9
1

24
Therefore, the impedance function Z(s) can be realised as an RC 

network shown in Fig. 18.23.

Similarly, the second Cauer network can be obtained by arranging 

the numerator and denominator polynomials of Z(s) in ascending 

powers of s. The continued fraction expansion is
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Z s
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1

100

3

1

1

10

Therefore, the impedance function Z(s) can be realised as an 

RC network shown in Fig. 18.24.

Additional Solved Problems

PROBLEM 18.1

Find the two Foster realisations of the given function.

 
Z(s) =

2s + 8s

s +1

3

2

Solution  For the first Foster network, we expand Z(s) into partial fractions.
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s
A

s j

A

s j

( )

*

= +
+

= +
+

+
−

2
6

1

2

2

By applying Heaviside method, we get

A
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By inspection, H 5 2
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2
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6

2 2
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v

The first Foster network with elemental values is 

shown in Fig. 18.25.

Fig. 18.24

Fig. 18.25
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The second Foster network can be obtained by taking the admittance function

Y s
s

s s
( )

( )
=

+

+

2 1

2 4

By taking partial fractions, we have

Y s
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By applying the Heaviside method, we get
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Therefore, the elemental values are
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The second Foster network with elemental values is shown in Fig. 18.26.

PROBLEM 18.2

Find the two Foster realisations of the given function.

 
z(s) =

3(s +1)(s +16)

s(s + 9)

2 2

2

Solution  For the first Foster network, we expand Z(s) into partial fractions
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By applying the Heaviside method,
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Fig. 18.26
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By inspection H 5 L
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The first Foster network with elemental values is shown 

in Fig. 18.27.

The second Foster network can be obtained by taking 

admittance function
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By taking partial fraction expansion, we have
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By applying the Heaviside method, we get
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The second Foster network with elemental values is shown in Fig. 18.28.

Fig. 18.28

Fig. 18.27
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PROBLEM 18.3

Find the second Cauer network of the given function.

 
z s

s s

s s

( ) =
+ +

+

4 2

3

6 4

2

Solution  The second Cauer network can be realised by arranging the numerator and denominator polynomials 

of Z(s) in ascending power of s and taking continued fraction expansion, we get
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Therefore, the impedance function, Z(s), can be realised as the RC network shown in Fig. 18.29.

Fig. 18.29

PROBLEM 18.4

Find the first and second Cauer forms of the function.
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( ) =
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Solution  The first Cauer network can be realised by taking continued fraction expansion
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Therefore, the impedance function Z(s) can be realised as 

RC network shown in Fig. 18.30.

The second Cauer network can be realised by arranging the 

numerator and denominator polynomials of Z(s) in ascending 

power of s and taking continued fraction expansion, we get
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Therefore, the impedance function, Z(s), can be realised as 

the RC network shown in Fig. 18.31.

Fig. 18.30

Fig. 18.31
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PROBLEM 18.5

Find the second Foster form and the first Cauer form of the network whose driving-point admittance is
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Solution  By taking partial fraction expansion, we get
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By applying the Heaviside method, we get
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Therefore, the elemental values are
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Therefore, the second Foster network 

is shown in Fig. 18.32.

To get the first Cauer realisation, we 

take continued fraction expansion from 

the expression.
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∴ Y s
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Therefore, the admittance, Y(s), can be 

realised as RL network shown in Fig. 18.33.

PROBLEM 18.6

Find the two Foster realisations of
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Solution  For the first Foster network, we expand Z(s) into par tial fractions.
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By applying the Heaviside method, from the above equation we have
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The first Foster network with elemental values is shown in Fig. 

18.34 (a).

The second Foster network can be obtained by taking admittance 

func tion
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Fig. 18.33

Fig. 18.34 (a)
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Let us take the partial fraction expansion, we have
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By applying the Heaviside method, we get
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The second Foster network with elemental values is shown in 

Fig. 18.34 (b). 

PROBLEM 18.7

Find the two Cauer realisations of driving-point function given by
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Solution  By taking the continued fraction expansion, we get
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Hence Z s s
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The resulting network is called the first Cauer form with elemen-

tal values shown in Fig. 18.35 (a).

To realise the second Cauer network, we have to take ascending 

powers of the impedance function.

Continued fraction expansion gives
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The resulting network shown in Fig. 18.35 (b) is called the 

second Cauer form.

PROBLEM 18.8

Find the first Foster form of the driving-point function of
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Fig. 18.35 (b)

Fig. 18.35 (a)
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Solution  If we take the partial fraction of Z(s), the signs of the function and its poles are negative as shown.
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Hence, impedance Z(s) can be realised as a series 

Foster form of RL network shown in Fig. 18.36.

PROBLEM 18.9

Find the second Foster form of RL network for the function.
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Solution  By taking partial fraction expansion, we get
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The residues are positive. Hence,
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The second Foster form of RL admittance 

function with various elemental values is shown in 

Fig. 18.37.

Fig. 18.36

Fig. 18.37
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PROBLEM 18.10

Find the first Cauer form of the function.

 
Z(s) =

(s + 3) (s + 7)

(s + 2) (s + 4)

Solution  By taking continued fraction expansion, we get
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Therefore, the impedance function can be realised as the RL network shown in Fig. 18.38.

Fig. 18.38
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PROBLEM 18.11

Find the first and second Foster forms of the function.

 
Z(s) =

(s + 1) (s + 3)

s(s + 2)

Solution  By taking the partial fraction expansion, we get
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Hence, the impedance function Z (s) can be 

realised as series Foster form of RC network shown 

in Fig. 18.39 (a).

The second Foster form can be realised by taking 

Y (s) as under.
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Since negative quotients appear, we have to expand Y(s)/s as follows.
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Multiplying both sides by s, we get
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The network with elemental values are shown in Fig. 18.39 (b).

Fig. 18.39 (b)

Fig. 18.39 (a)
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PROBLEM 18.12

Find the first and second Cauer forms of the given function.

 
Z(s) =

(s + 1) (s + 3)

s(s + 2)

Solution  The first Cauer network can be realised by taking con tinued fraction expansion.
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Therefore, the impedance function, Z(s), can be realised as the RC network shown in Fig. 18.40 (a).

Fig. 18.40 (a)
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The second Cauer network can be realised by arranging the numera tor and denominator polynomials of 

Z(s) in ascending power of s and taking continued fraction expansion; we get
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Therefore, the impedance function, Z(s), can be realised as the RC network shown in Fig. 18.40 (b).

Answers to Practice Problems

18-1.1 (a) Hurwitz (b) Hurwitz (c) Not Hurwitz

18-2.2 The function is a minimum positive real function

18-4.1 

 (a) First Foster form  (b) Second Foster form

Fig. 18.40 (b)
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18.4.3 

 (a) First Foster form  (b) Second Foster form

18-4.4 

18-4.5 Z s
s s

s s
( )

( )( )

( )
=

+ +

+

1 3

2

Fig. 18.44

 (b) Second Cauer form

 (a) First Cauer form
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18-4.6

 I Foster form  II Cauer form

18.4.8 

 (b) Second Cauer form

 (a) First Foster form

Objective-Type Questions

r18.1 A polynomial must satisfy the condition that

 (a) Z(s) is a real function

 (b) all the roots of P(s) have zero real parts, or negative real parts

 (c) both (a) and (b)

 (d) none of the above

r18.2 Hurwitz polynomial possesses one of the conditions that

 (a) all the quotients in the polynomial P(s) must be positive

 (b) the roots of P(s) must lie on the right half of the S-plane

 (c) the ratio of P(s) and P 9(s) gives negative quotients

 (d) P(s) may have missing terms
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rrr18.3 The function is said to be positive real, when

 (a) the poles and zeros lie on the right half of the S-plane

 (b) the poles and zeros lie on the left half of the S-plane

 (c) the poles and zeros are simple and lie on the imaginary axis

 (d) both (b) and (c)

rrr18.4 The driving-point impedance with poles at v 5 0 and v 5  must have the

 (a) s terms in the denominator and an excess term in the numera tor

 (b) s term in the numerator and an excess term in the denominator

 (c)  s term in the numerator and equal number of terms in the numerator and the denominator

 (d)  s term in the denominator and equal number of terms in the numerator and the denominator

rrr18.5 In the first Foster form, the presence of the first element ca pacitor C0 indicates

 (a) pole at v 5 0 (b) pole at v 5  (c) zero at v 5 0 (d) zero at v 5 

rrr18.6 In the first Foster form, the presence of last element induc tor L

 indicates

 (a) pole at v 5 0 (b) pole at v 5  (c) zero at v 5 0 (d) zero at v 5 

rrr18.7 Pole at infinity indicates that the

 (a) degree of numerator is greater than that of denominator

 (b) degree of denominator is greater than that of numerator

 (c) degree of numerator is equal to the degree of denominator

 (d) none of the above

rrr18.8 In the first Cauer LC network, the first element is a series inductor when the driving-point function consists 

of

 (a) pole at v 5  (b) zero at v 5  (c) pole at v 5 0 (d) zero at v 5 0

rrr18.9 In the second Cauer LC network, the last element is an induc tor, when the driving-point function consists of

 (a) pole at v 5 0 (b) pole at v 5  (c) zero at v 5  (d) zero at v 5 0

For interactive quiz with answers,
scan the QR code given here
OR
visit
http://qrcode.flipick.com/index.php/276



19.1 INTRODUCTION

SPICE is a universal standard simulator used to simulate the operation of various electric circuits and devices. 

PSpice is one of the many commercial derivatives of SPICE. PSpice helps to simulate electrical circuit 

design before they are set up. This allows the designer to decide if changes are needed, without touching any 

hardware. PSpice also helps check the design and response of the network. In short, PSpice is a simulated lab 

bench on which the test circuit can be created and measurement can be made.

SPICE stands for Simulation Program with Integrated Circuit Emphasis. PSpice is a member of the spice 

family of circuit simulators, developed at the University of California, Berkeley. PSpice is a commercial 

product developed by Microsim Corporation.

19.2 WHAT IS PSPICE?

In 1968, a junior faculty member at the University of California, Berkeley, started a 

course on circuit simulation, hoping to develop a new circuit simulator for his work 

in circuit optimisation. He, along with a few students, assembled a non-linear circuit 

simulator which was to become the foundation for SPICE. The first simulator was named CANCER (Computer 

Analysis of Non-linear Circuits Excluding Radiation). But its capability was limited as it could not handle more 

components and/or circuit nodes.

During the 1970s, improvements in CANCER continued. In 1971, an improved version of CANCER 

named SPICE 1 (Simulation Program with Integrated Circuit Emphasis 1) was released. The next major 

breakthrough was in 1975 with the introduction of SPICE 2. From 1975 through 1983, Berkeley continued 

Learning Objectives
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improving and upgrading the SPICE 2 program. In 1983, SPICE 2G.6 version was released. All these versions 

were written in FORTRAN source code. Later it was rewritten in C. The new C version of the program 

was known as SPICE 3. SPICE 3 offers several technical advantages as compared to SPICE 2. Several 

vendor-offered versions of SPICE are there in the market. Some of the better-known simulators include Meta-

Software’s HSPICE, Intusoft’s  IS-SPICE, Spectrum Software’s MICRO-CAP, and Microsim’s PSpice. All 

these were developed from the original SPICE 2. Although many other SPICE-based programs exist, these 

four represent the best known simulators. Majority of the SPICE-like simulators are still based on SPICE 

2G.6, that is, a SPICE 2 version. PSpice, which uses the same algorithms as SPICE 2 (and confirms to its 

output syntax), shares this emphasis on micro circuit technology. However, the electrical concepts are general 

and are useful for all sizes of circuits and a wide range of applications.

19.3 GETTING STARTED WITH PSPICE 

SPICE is widely used in the academic and industrial worlds to simulate the 

operation of various electric circuits and devices. In order to use the educational 

version of PSpice from Microsim or elsewhere, the minimum requirement for 

any PC are PC/XT/AT with atleast 512 KB of RAM, a fixed disk, MS-DOS 

version 3.0 or later and a monochrome or colour graphic monitor with a 20 MB 

hard disc. PSpice was developed by Microsim Corporation in California and 

made available in 1984, and later by ORCAD. PSpice has been made available in different operating 

systems such as DOS; WINDOWS or UNIX, etc. Though the Windows version of PSpice is becoming 

more and more popular, a general description is presented in this chapter. PSpice can analyse upto roughly 

125 elements and over 100 nodes. It is capable of performing dc analysis transient analysis and ac analysis. 

In addition it can also perform transfer function analysis, Fourier analysis and operating point analysis. 

The circuit may contain resistors, inductors, capacitors, independent and dependent sources, OP amps, 

transformers, transmission lines, and semiconductor devices.

Make sure that the operating system and PSpice is already installed in your P.C. with the necessary 

configuration. The best way to learn a circuit simulator is to do simulations. Running this simulation involves 

the following main steps.

1. Create the input file or circuit file. It is also called a program for the simulator.

2. Run the simulator.

3. Find where the output is available.

4. Check the output. A text editor is required to create the input file, then the PSpice program can be 

run specifying the input file. If everything works, PSpice will read the input file executes and place 

the results in an output file. This output file may also be directed to a printer to get a print out.

Though PSpice is a powerful program that can carry out many different procedures, a brief introduction 

for the elementary types of dc, ac and transient analysis is presented in this chapter. The procedure described 

in this chapter is general, many advanced versions of spice packages are now available, students are advised 

to consult the user’s guide supplied by the vendor for a specific PSpice simulation and design.

19.4 SIMULATION STEPS

As a first step in simulation, an input file must be created for the given circuit which is also called the circuit 

file. Always begin with a complete sketch of the circuit. Label the nodes using distinct markings. There must 

be always a zero (0) node, which will be the reference node. The other nodes can have either numerical or 

alphabetical designations.

LO   2 
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Title or Comment Line

The input file must be given a name (title or description of the file). Any line beginning with an asterisk 

(*) will be printed or displayed with the program, but will otherwise be ignored by the computer. Any line 

may be a title line, by starting it with a “*” in the first column. It is always better to include a statement for 

every element in the circuit. PSpice allows the user to insert comments or statements on any line by starting 

the comment with a “;” (semicolon). Everything on the line after the “;” is ignored. PSpice always expects the 

first line of the circuit file to be a title line. If it describes an element, it will be ignored. Any statement that 

begins with a “.” (period) is called a control statement. The last statement must be the .END statement which 

completes the description of the entire circuit. After the .END statement, PSpice will let you start another 

completely different circuit simulation. Upper and lowercase alphabetic characters may be used in PSpice; 

RSHUNT, Rshunt, refer to the same device.

19.5 COMPONENT VALUES

While representing either large or small component values, the following letters with corresponding scale 

factors are to be used in PSpice.

Table 19.1 Letters used in PSpice

Symbol Meaning Value Exponential form

 F  Femto 10–15 IE-15

 P  Pico 10–12 IE-12

 N  Nano 10–9 IE-9

 U  Micro 10–6 IE-6

 M  Milli 10–3 IE-3

 K  Kilo 103 IE 3

 MEG  Mega 106 IE 6

 G  Giga 109 IE 9

 T  Tera 1012 IE 12

The symbolic form may be written either using upper or lower case letters. For example M or m indicates 

milli or 10–3; mega or 106 is written by MEG or meg. All the quantities, or values, in PSpice may be expressed 

as decimal or floating point values as used by all computer programs. The symbols in Table 19.1, when used 

as suffixes multiply the number they follow by a power of ten as an example 25N indicates the value of 

25 3 1029 5 0.025E-6.

19.6 DC ANALYSIS AND CONTROL STATEMENTS

In dc circuit for SPICE, only seven circuit elements are used. These are the 

resistors—two independent sources and four dependent sources. Let us consider 

the voltage divider circuit shown in Fig. 19.1 (a) to investigate using PSpice.

Figure 19.1 (a) shows a series circuit with a dc voltage source and 3 resistors 

R1, R2, and R3. To specify the device or element in the circuit file we have to include the name of the 
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element; the location of the element i.e. the nodes between which the 

element is connected and its value. PSpice uses the basic electrical 

units for voltage (volts); current (amps) and also uses, ohms, Farads and 

Henrys. We can specify the elements merely by using appropriate letter 

as the first letter of the device name as R for resistor, L for inductor C 

for capacitor, V for independent voltage source and I for independent 

current source. Now let us write the input file or circuit file for the circuit 

shown in Fig. 19.1 (a).

*voltage divider circuit

VIN 1 0 100 V

R1 1 2 1 K

R2 2 3 5 K

R3 3 0 4 K

.OP

.END

An editor such as the MS-DOS editor notepad or MS word from MS Office is to be used to enter the 

circuit file. The file might be suitably named. After running the PSpice program, the result would appear in 

the output file as follows:

� Simulation�Result�of�Fig.�19.1�(a).

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) 100.0 (2) 90.000 (3) 40.000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

 VIN –1.00E 2 02

TOTAL POWER DISSIPATION 1.00 E 1 00 W

Total job time 1.05.

Let us examine the statements in the input file. There is a statement for each element of the circuit. 

Each line of the input file is a statement. The first line in the program indicates the title of the file. Four 

lines are used to describe four elements in the circuit. The second line describes the independent voltage 

source. It is identified by using the first letter of the source (It can be followed by any combination of 

seven additional letters or numbers). The name (VIN) is followed by a blank, the node (1) to which the 

positive reference to the source is connected, another blank, and then the node (0) at which the negative 

terminal is located. Another blank precedes the numerical value of the voltage in volts. 3rd, 4th and 

5th lines describes the three resistances in the circuit. A resistor is identified by its first letter (It can be 

followed by another seven additional letters or integers), the name R1 is followed by one or more blanks, 

followed by the first node (1), followed by one or more blanks and then the second node (2) and one more 

blank precedes the value (1 kV) of R1. The last two lines in the input file are called control statements. 

After incorporating all the circuit data in the program, it is necessary to specify the operations that are to 

be performed. This is done by control statements.

19.6.1  .OP Statement

The .OP Statement is a control statement which instructs the computer to calculate the dc voltage between 

each node and the reference node.

Fig. 19.1 (a)
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19.6.2  .END Statement

The .END statement is the another most important control statement which must be used as the last line in 

every input file program. The .END statement marks the end of the circuit. All the data and commands must 

come before it. When the .END statement is reached, PSpice does all the specified analysis on the circuit.

There may be more than one circuits in an input file. Each circuit and its commands are marked by a .END 

statement. PSpice processes all the analysis for each circuit before going on to the next one. Everything is 

reset at the beginning of each circuit. Having several circuits in one file gives the same results as having them 

in separate files and running each one separately. Having finished with the file, exit the editor and run the 

PSpice program. If there are no errors the output analysis of the circuit will be available in the output file.

The control statement .OP gives maximum amount of information. It produces detailed bias point 

information, that is the voltage of all nodes, the currents and power dissipation of all the voltage sources. If 

the number of nodes are more, the computer generates a lot of output data that we may not really need.

19.6.3  .PRINT Statement

Instead of the .OP statement, we can use another control statement the .PRINT, for specific outputs. The 

print control statement consists of .PRINT followed by a space and DC, another space, and the desired node 

voltage or node voltages separated by at least one space. For example the following statement indicates the 

voltage at the node 2 and the node 3 with reference to zero node.

PRINT DC V(2) V(3)

In addition, the voltage between two nodes current values may be specified by .PRINT statement as 

.PRINT DC V(1, 3) I(R1). The above statement indicates in the output file, the voltage between nodes 1 

and 3, and the current through resistor R1. One important point is that the .PRINT command does not result 

in printing of any value on paper. It is merely made available in the output file in computer memory. If 

the printer is connected to the system, then the appropriate command will produce a printed output. The 

currents through the branches can be measured in PSpice. If an independent voltage source exists in that 

branch. Thus, if, we want to calculate the value of current in some branch of a circuit that does not contain 

an independent voltage source, then we have to insert a voltage source with a value of 0 volts in the branch. 

Let us consider Fig. 19.1 (b). It is required to write the input file to calculate the current through 3 V resistor 

with the indicated direction where no voltage source exists. The four nodes and the reference node have been 

numbered, the current through 3 V is desired, we shall therefore insert 

(V
3
) a 0 volt voltage source in the branch as shown in Fig. 19.1 (c). In 

SPICE a voltage source current is positive if it were directed from plus to 

minus through V. Hence, the assumed polarities for V
3
 are correct.

The data for the circuit file is given by

*current measurement

VIN 1 0 10 V

R
1

1 2 10

R
2

2 3 5

R
3

2 4 3

R
4

3 0 6

V
3

4 0

.PRINT DC I (R3)

.END

Fig. 19.1 (b)

Fig. 19.1 (c)
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The result of this program is as follows

� Simulation�Result�of�Fig.�19.1�(c)

NODE VOLTAGE N V N V N V

(1) 10.0000 (2) 1.9075 (3) 1.040 (4) 0.0000

VOLTAGE SOURCE CURRENTS

VIN – 8.092 E 2 01

V3 6.358 E 2 01

Total power dissipation 8.09E + 00 WATTS

As mentioned earlier, the .PRINT statement can be used for several outputs in one table, and mix voltages 

and currents. The output values you can print are basically node voltages and device (also source) currents. 

Node voltages can be printed relative to ground (0 node) or relative to another node. Examine the following 

statements for the circuit shown in Fig. 19.1 (c).

.PRINT DC V(1) to print voltage at node 1 (i.e. source voltage 10 V)

.PRINT DC V(1,2) to print voltage between node 1 & 2.

.PRINT DC V(R4) to print voltage across R4

.PRINT DC V(2) V(3) I(R1) to print voltage at node 2, node 3 and current 

through R1.

19.6.4  Current Source

If a current source is present in the circuit, the first node listed in the SPICE 

statement is the one at the tail of the current arrow and the rest of the listing 

is similar to the voltage source representation. As an example consider the 

circuit in Fig. 19.1 (d).

Now the statement for the independent current source in the input file is 

I I N 0 1 100 M.

19.7 DEPENDENT SOURCES

In the seven circuit elements/devices mentioned in dc analysis, we have discussed 

only three; they are resistor, independent current, and voltage sources. The other 

four elements are dependent sources. They are (VCVS) voltage-controlled voltage 

sources, (CCCS) current-controlled current source, (VCCS) voltage-controlled 

current source, and (CCVS) current-controlled voltage source. These sources are 

described in the input file in a way that is similar 

to the passive devices. The names of VCVS; and 

VCCS are identified in the circuit file with a name 

beginning with letters E and G respectively followed 

by the connecting nodes, control nodes, and gain 

factor in the order mentioned, of course with blanks 

in between. The following examples illustrate the 

description of the dependent sources in the file. Let 

us consider the current in Fig. 19.2 (a) where we 

have one.
Fig. 19.2 (a)

Fig. 19.1 (d)
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The VCVS in the circuit of Fig. 19.2 (a) is written in the input file as

E 2 3 1 0 0.5

where, E—Device name

 2—Positive node of the device

 3—Negative node of the device

 1—Controlled voltage positive node

 0—Controlled voltage negative node

 0.5—Gain factor of the voltage

Similarly, VCCS in the circuit of Fig. 19.2 (a) is written in the input file as

 G 0 3 1 0 10

 G—Device name

 0—node at the tail of the arrow in current source

 3—node at the head of the arrow in current source

 1—Controlled voltage positive node

 0—Controlled voltage 2nd node

 10—Gain factor.

Let us consider the current in Fig. 19.2 (b) 

where we have a CCCS and a CCVS.

The statement for current controlled sources 

has a name beginning with F and H for CCCS 

and CCVS respectively, followed by the two 

nodes defining the direction of the current flow 

through the dependent source and the name of 

the V-device that has the controlling current, as 

PSpice measures the currents through voltage 

sources only. In the circuit shown, the controlling 

current I
2
 is in the branch R

2
 which does not have 

an independent voltage source, that is, no V-type 

element. Hence, a slight modification is required 

in the above circuit. Insert a zero volt independent 

voltage source in the branch R
2
 and name this as 

VO, and change the above circuit to the circuit 

shown in Fig. 19.2 (c).

Now, the CCVS in the circuit of Fig. 19.2 (c) is 

written in the circuit file as

H 4 3 VO 100

where, H—Device name

 4—Positive node of the device

 2—Second node (negative node) of the device

 VO—The name of the zero volt source in the control branch

 100—Gain factor of the controlling current.

Similarly, CCCS of Fig. 19.2 (c) in the circuit file is listed as

 F 4 0 VIN –0.1

where, F—Device name

 4—Node at the tail of the arrow of the CCCS

Fig. 19.2 (c)

Fig. 19.2 (b)
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 0—Node at the head of the arrow of the CCCS

  VIN—Name of the independent voltage source through which the controlling current is carried.

 – 0.1—Gain factor of the controlling current.

The reason for using minus sign is that the controlling current I is directed from minus to plus through 

VIN in the circuit.

ExamplE 19.1

Write a SPICE program for the circuit shown in Fig. 19.2 (a) to determine the voltages at node 2 and 3, if 

VIN 5 10  volts dc.

Solution� *Voltage   Dependent sources

VIN 1 0 10

R1 1 0 1K

R2 1 2 2K

R3 3 0 3K

E 2 3 1 0 0.5

G 0 3 1 0 10

 .OP

 .END

Simulation Result of Example 19.1

NODE VOLTAGE N V N V

(1) 10 (2) 12.01EW 1 03 (3) 12.00E 1 03

VOLTAGE SOURCE CURRENTS

VIN 5.989E 1 00

POWER DISSIPATION 2 5.99E 1 01W; Time 2.43.

ExamplE 19.2

Write a SPICE program for the circuit shown in Fig. 19.2 (c) to determine the voltages of all nodes, and the 

power dissipation of all sources. Assume VIN 5 100 volts; R
1
 5 R

2
 5 2 kV; R

3
 5 R

4
 5 0.5 kV.

Solution� * Current Dependent source

 VIN 1 0 100

 R1 1 2 2K

 R2 2 20 2K

 R3 2 3 0.5K

 R4 4 0 0.5K

 VO 20 0

 H 4 3 VO 100

 F 4 0 VIN 20.1

 .OP

 .END

Simulation Result of Example 19.2

NODE VOLTAGE N V N V N V N V

(1) 100 (2) 18.4810 (3) 4.2208 (4) 5.1948 (20) 0.000

Voltage source currents

NAME CURRENT
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VIN 24.026E 2 0.2

VO 9.740E 2 03

Total power dissipation 4.03 W.

Current–controlled sources

NAME F

I SOURCE 2.013E 2 02

Current–controlled voltage sources

NAME

V-SOURCE 9.740E 2 01

I-SOURCE 23.052E 2 02

Total job time 2.32.

19.8 DC SWEEP

In the calculations so far, the values for sources maintained fixed values. 

But when the PSpice analysis is used with a range of input voltages which is 

called dc sweep, where the sources vary, though the analysis will still calculate 

quiescent operation. Using this analysis allows to look at the results from many .OP analysis in a single 

simulation run. That is, when you sweep a source the simulator starts with one value for a source 

(voltage or current), calculate the dc bias point as it does for the .OP statement, then increments the 

value and does another dc bias point calculation and so on until the last source value has been analysed.

19.8.1   .DC Statement

The dc sweep analysis is controlled with a .DC statement. The .DC statement gives a range to voltages/currents. 

This is called a sweep of voltage/current. This statement specifies the values used during the dc sweep. The 

statement says which source value is to be swept, the starting value, the end value and the amount of increment 

in each step. Let us insert the .DC statement in the circuit file of Fig. 19.1 (a) and rewrite the file.

*voltage divider circuit

VIN 1 0 100V

R1 1 2 1K

R2 2 3 5K

R3 3 0 4K

.OP

.DC  VIN 0 100 10

.END

While adding a .DC statement to the circuit file, the other lines used to describe the circuit need not 

be changed. Adding the .DC statement will override the fixed value indicated by the independent source 

VIN during DC sweep analysis. After running the PSpice program, the output file contains the following 

simulation result.

� Small-Signal�Bias�Solution

N V N V N V

(1) 100 (2) 90 (3) 40

LO   5 
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VOLTAGE SOURCE CURRENTS

NAME CURRENT

VIN 21.00E 2 02

Total power dissipation 1.00 1 0.0 watt

Time 1.66.

The .DC statement followed by name of the source VIN whose voltage is to be swept, the next two values 

0 and 100, are for the start and stop voltage values of the sweep, and the last value 10 is the increment.

19.8.2  .PROBE Statement

In PSpice, we have a facility called PROBE which provides us the powerful graphic capability of PSpice. To 

use the above statement, we must instruct PSPICE to create a data file for probe which is done by including 

the .PROBE statement in the input file. This statement is similar to the .PRINT with the .PROBE you may 

select node voltages and device currents to be output from the simulation. The .PROBE statement writes the 

results from dc, ac and transient analysis to a data file named PROBE.DAT for graphics analysis by post-

processor. The general forms of the .PROBE statement are

.PROBE

.PROBE V (1) V (4 3) I (R4)

The first form without any output variable writes all the node voltages and all the device currents to 

the data file. The second form writes the following output variables to the data file. The voltage of node 1, 

voltage between node, 4 and 3 and the current through R
4
. Another important difference between .PRINT 

and .PROBE statement is that the analysis name (dc, ac or transient) is absent before the output variable in 

.PROBE statement.

19.9 AC ANALYSIS AND CONTROL STATEMENTS

Another important application of the PSpice simulator is to verify the frequency 

response of various devices and circuits. The response calculates all the ac node 

voltages and branch currents over a specified range of frequencies. PSpice 

calculates the dc node voltage without any special requirements, but in ac analysis, 

we must specifically ask for it.

Let us consider the circuit shown in Fig. 19.3 (a) 

which is a series RLC circuit with a voltage source of 

100 V at an angle of 15°. Each independent voltage 

and current source in ac analysis is characterised by 

its amplitude and phase with the source statement in 

the file. The source frequency is specified in a control 

statement. (.AC statement). Let us write a suitable 

input file for the circuit shown in Fig. 19.3 (a).

*RLC SERIES CIRCUIT

VIN 1 0 AC 100 15

R 1 2 1K

L 2 3 2mH

C 3 0 5mF

.AC LIN 1 50 50

LO   6 

Fig. 19.3
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.PRINT AC IM (R) IR(R) II(R) IP(R)

.END

The statement VIN 1 0 AC 100 15 indicates the ac source which is connected between nodes 1 and zero 

with an amplitude of 100 V and a phase angle of 15º. If the phase angle is 0º, the last term in the statement 

can be omitted.

Simulation Result

FREQ IM(R) IR(R) II(R) IP(R)

5.00E 1 0.1 8.438 3 10–2 5.705 3 10–2 6.217 3 10–2 4.746 3 101

Time 2.28.

19.9.1  .AC Statement

This statement begins with the specification .AC and continues with four additional terms. The first term 

indicates the type of frequency sweep (linear, octave and decade). The second term indictes the number 

of points in the sweep and the third and fourth terms indicate the beginning and ending frequencies. 

Hence, .AC LIN 1 50 50 statement gives a linear sweep for one frequency only with beginning and 

ending value of 50 Hz that is it selects only one frequency. If it is required to seep 10 frequencies linearly 

from 5 Hz to 50 Hz then the ac statement would be

(.AC LIN 10 5 50)

This statement would provide results at the starting and stopping frequencies and eight intermediate 

frequencies that are uniformly spaced (5, 10, 15, 20, 25, 30, 35, 40, 45, 50).

19.9.2  .PRINT AC Statement

Output from ac analysis may be generated by .PRINT statement, just as in dc analysis. The phase ac 

replaces dc. The output values that can be printed are node voltages and device currents (source currents) 

with some special considerations for ac analysis. The voltages and currents may be specified as magnitude, 

phase, real part, imaginary part or magnitude in dB by adding M, P, R, I and DB respectively as a suffix 

to “V” (Voltage magnitude) or “I” (Current magnitude). Thus the statement.

(.PRINT AC IM(R) IR(R) II(R) IP(R))

would yield the magnitude, the real component, the imaginary component and the phase angle in degree 

of the current through R. This is shown in the input file and its simulation result of Fig. 19.3 (a). As 

mentioned earlier, the frequency sweep can be done in octave and decade also. Their syntax is similar, 

only thing required is, .AC DEC is used for decade sweep and .AC OCT is used for octave sweep.

19.10 TRANSIENT ANALYSIS

PSpice can be effectively used for transient or time domain analysis. It is 

used very often for circuit simulation, because this analysis is the tedious and 

difficult analysis as it involves lengthy integro-differential equations with 

boundary conditions.

In PSpice, we can investigate the circuit transient response for various types of input waveforms, like exponential 

(EXP), pulse (PULSE); piecewise-linear (PWL); frequency modulated wave (SFFM) and for sinusoidal wave 

(SIN) forms. Hence, the independent voltage and current sources may be specified in any of the above  

time-varying waveforms by giving a proper format. The following are the General formats of the statements 

LO   7 
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used to describe the applied voltages (waveforms) in transient analysis.

PWL (T1, V1 T2, V2 … TNVN) describes a piecewise linear waveform. The arguments in parenthesis 

represent time voltage pairs at the corners of the waveform.

EXP (V1 V2 TD1 TR1 TD2 TR2) describes the exponential waveform initial voltage V1 upto a delay time 

of TD1 seconds. V2 is the peak voltage with a fall delay time of TD2, TR1 and TR2 are the rise time constant 

and fall time constants respectively.

PULSE (V1 V2 TD TR TF PW PER) describes the pulse form of voltage with initial voltage (V1); peak 

value of pulse (V2); delay time (TD); rise time (TR); fall time (TF); width of the pulse (PW); and period of 

the pulse (PER).

SFFM (VO VA FC MD FS) describes the single frequencies modulated wave, with offset voltage VO peak 

amplitude (VA): Carrier Frequency (FC), Modulation Index (MD), and Single Frequency (FS).

SIN (VO VA FREQ TD DF PHASE) describes the sinusoidal waveform with an offset voltage of VO, peak 

value of VA, frequency FREQ, delay time td, damping factor DF, and a phase angle. The SIN waveform format 

is only for transient analysis only.

19.10.1  .TRAN Statement

.TRAN statement specifies the time interval over which the transient analysis takes place. This statement 

is followed by two values. The first value indicates the print-step (interval) value and the second value 

indicates the final value of time (length of the time for the analysis). Observe the following .TRAN 

statement.

.TRAN 2 ms 20 ms

wherein the time interval (time step) is 2 ms and the maximum value of time limit is 20 ms. Apart from the time 

step and final time some more options like starting 

time (default value is zero), max time for analysis 

and initial conditions can also be used along with 

.TRAN statement. Output from transient analysis 

may be generated by .PRINT statement just as in dc 

and ac analysis. Hence, transient analysis requires 

a .PRINT command similar to dc or ac analysis 

except that the term dc/ac is replaced by TRAN. The 

statement form is .PRINT TRAN (Any of the eight 

output variables).

As an example of transient analysis, let us calculate 

the voltage at node 2 in the circuit shown in Fig. 19.4 (a).

Let us apply piecewise linear transition

*RL TRANSIENT

 VIN 1 0 PWL (0, 0 10 ms, 1 V 10 ms, 10 V)

 R1 1 2 150

 R2 2 0 1K

 L 2 0 5M IC 5 0

 TRAN 1 ms 10 ms

 .PRINT TRAN V(2)

 .END

Fig. 19.4 (a)
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IC 5 0 in the above file indicates zero initial current in the inductor. After running the PSpice analysis, we 

obtain the following simulation result.

� Simulation�Result

N V N V

(1) 0.40 (2) 0.40

Voltage source currents

 V 0.000E 1 00

 Total power dissipation 0.00E 1 00W

� Transient�Analysis Temperature 27 DEG C

Time V(2)

0.000E 1 00 0.000E 1 00

1.000E 2 03 3.002E 2 02

2.000E 2 03 3.003E 2 02

3.000E 2 03 3.003E 2 02

4.000E 2 03 3.003E 2 02

5.000E 2 03 3.003E 2 02

6.000E 2 03 3.003E 2 02

7.000E 2 03 3.003E 2 02

8.000E 2 03 3.003E 2 02

9.000E 2 03 3.003E 2 02

1.000E 2 03 3.003E 2 02

Total job time 0.08 second

19.10.2  .PROBE Statement

Using probe with transient analysis is identical to what we have 

done with dc and ac analysis. Include a .PROBE statement to the 

circuit file. Try the above example with .PROBE statement, and 

verify on the graph the voltage variation.

Consider another example with non-zero initial current as shown in 

Fig. 19.4 (b). The switch is closed at t 5 0.

The switch is opened before t 5 0, the initial current before the 

closure of the switch is i(o) 5 10/25 5 0.4 A (through inductor). 

After the switch is closed, the current rises exponentially. The 

following is the input file for the transient analysis of the circuit in 

Fig. 19.4 (b).

*Transient analysis with I.C.

VIN 1 0 PWL (0,    4 V 1 ms, 10 V 1 ms, 10 V)

R 2 3 10              

L 3 0 0.5M IC 5 0.5A

.TRAN 10 ms 1 ms

.PROBE

.END

Fig. 19.4 (b)
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Notice that, the first time voltage pair in PWL parenthesis is written as 0, 4. This is because when the 

switch is closed at t (o1)  the voltage 4 V will appear across R.(0.5 3 10 5 4 V). Run the PSpice program and 

verify the result.

Sometimes, capacitors have initial voltages, if a 0.5 mF capacitor connected between nodes 3 and 4, 

carrying an initial voltage of 50 V may be specified in input with the following description.

C 3 4 0.5 mF IC 5 50

We can also use sinusoidal excitation in transient analysis to verify the frequency response of the circuit. 

If the input source is a simple sinusoidal voltage source without any offset values and time delays with a 

maximum value of 215 V and frequency of 50 Hz. It can be represented in the input file as

VIN 0 1 sin (0 215 50 Hz).

additional Solved problems

pROBlEm 19.1

For the circuit shown in Fig. 19.5 write the input file, 

run the PSpice program and obtain the current through 

R
1 
; R

5
,voltage at nodes 2 and voltage between node 2 and 

3.

Solution� *TWO VOLTAGE SOURCES

 V1 1 0 10

 R1 1 2 1K

 R2 2 3 2K

 R3 2 0 1K

 R4 3 0 2K

 R5 3 4 3K

 V2 4 0 5

 .OP

 .DC VI 50 50 5

 .PRINT DC 1(R1) 1(R5) V(2) V(2,3)

 .ENDs

(.DC is a sweep statement it allows to sweep through a set of voltage of source V1. Though we are not 

interested in sweep in this problem, it is required for the next (.PRINT) statement. Without .DC statement, 

.PRINT is not valid).

The order in which the elements in the input file are listed makes no difference in the PSpice analysis.

Simulation Result

 DC transfer curves

 VI I(R1) I(R5) V(2) V(2,3)

 5.0 3 109 2.811 3 10–2 1.486 3 10–3 2.189 3 109 1.243 3 109

 Small signal bias solution i

 N V N V N V N V

 (1) 10 (2) 4.5946 (3) 2.9730 (4) 5.000

 Voltage source currents

Fig. 19.5
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 V1 – 5.405 3 10–3

 V2 – 6.757 3 10–4

Total power dissipation 5.74 3 10–2 watts

Total job time 2.24.

pROBlEm 19.2

For the circuit shown in Fig. 19.6, write the input file to obtain voltage 

across R
L
 and current through R

1
 when the input voltage varies from 0 

to 100 V.

Solution� *DC SWEEP

 VIN 1 0 100

 R1 1 2 50

 R2 2 0 100

 R3 2 3 25

 RL 3 0 75

 .OP

 .DC VIN 0 100 10

 .PRINT DC V(RL) I(RI)

 .END

The variation of the source voltage from 0 to 100 is set with 10 V increment.

After running the PSpice program, the output file consists a table; showing the relation between VIN 

V(RL) and I(RI).

Following is the simulation result.

DC Transfer Curves

VIN V(RL) I(RI)

0 0 0

10 3.750 1 3 10–1

20 7.5 2 3 10–1

30 1.125 3 101 3 3 10–1

40 1.5 3 101 4 3 10–1

50 1.875 3 101 5 3 10–1

60 2.25 3 101 6 3 10–1

70 2.625 3 101 7 3 10–1

80 3 3 101 8 3 10–1

90 3.375 3 101 9 3 10–1

100 3.75 3 101 1.00

Small signal bias solution

N V N V N V

(1) 100 (2) 50 (3) 37.5

VOLTAGE SOURCE CURRENTS

VIN –1.00

Total power dissipation 1 3 102  W

Time 1.47.

Fig. 19.6



Circuits and Networks910 

pROBlEm 19.3

Obtain the SPICE solution for the voltages at all nodes for 

the circuit shown in Fig. 19.7.

Assume V
IN

 5 100 V; R
1
 5 1 K; R

2
 5 500  V; R

3
 5 100 V; 

R
4
 5 2 K; I

1
 5 20 mA and I

2
 5 25  mA.

Solution� *CURRENT SOURCES

 VIN 1 0 100

 R1 1 2 1K

 R2 2 0 500

 R3 2 3 100

 R4 3 0 2K

 I1 0 2 20M

 I2 0 3 25M

 .OP

 .END

Run the PSpice analysis and the output of the result is as follows.

Small signal bias solution

N V N V N V

(1) 100 (2) 4.37 (3) 41.7810

Voltage source currents

VIN –5.863 3 10–2

Total power dissipation = 5.86 W

Total time = 1.31.

pROBlEm 19.4

For the circuit shown in Fig. 19.8 (a). Find the current, I, and voltage at 

node 3.

Solution� Since the branch in which the current is to be found, does not have an 

independent voltage source, assume 5 0-volt voltage source with proper polarities as shown in Fig. 19.8 (b).

*CURRENT DEPENDENT SOURCE

 VIN 1 0 50

 R1 1 2 2K

 R2 2 20 1.5K

 R3 3 0 2K

 VO 20 0

 H 2 3 VO 0.5

 .OP

 .END Fig. 19.8 (b)

Fig. 19.7

Fig. 19.8 (a)
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Simulation Result

Small signal bias solution

N V N V N V N V

(1) 50 (2) 15 (3) 14.997 20 0.0

Voltage source currents

VI 21.75 3 10–2

VO 1 3 10–2

Total power dissipation 8.75 3 10–1

Current-controlled voltage sources

Name H

V-SOURCE 5 3 10–3

I-SOURCE 7.498 3 10–3

Time 5.12.

pROBlEm 19.5

Find the magnitude of the current, its real, imaginary components, and its 

phase with respect to source in the series R-L circuit shown in Fig. 19.9.

Solution� *AC RL series circuit

 V
IN
 1 0 AC 10 30

 R 1 2 100

 L 2 0 2.5 M

 .AC LIN 1 50 50

 .PRINT AC IM(R) IR(R) II(R) IP(R)

 .END

Simulation Result

Small signal bias solution

In dc bias calculations, all node voltages; source currents and powers 

are zero.

AC Analysis

FREQ IM(R) IR(R) II(R) IP(R)

5.00E 1 01 1.000E 2 01 8.699E 2 02 4.932E 2 02 2.955E 1 01

Total job time 0.96.

pROBlEm 19.6

For the given series RLC circuit shown in Fig. 19.10, find the resonant 

condition and plot the graphs using PSpice program.

Assume R 5 25 V; L 5 10 mH and C 5 100 mF; V 5 100 V.

Solution� The resonance frequencies fr =

× × ×

=

− −

1

2 10 10 100 10

159

3 6

Hz

Fig. 19.9

Fig. 19.10
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It is observed that the resonance frequency is 159 Hz. Hence, to plot a wide range of frequencies in ac sweep, the 

.AC statement calls for a linear sweep. Let us fix the starting frequency as 5 Hz and stop frequency as 1000 Hz in 100 

steps. Now the input file is given by

*RLC series resonance

 VIN 1 0 AC 100

 R 1 2 25

 L 2 3 10M

 C 3 0 100u

 .AC LIN  100 5 1000

 .PROBE

 .PRINT   AC I(R)

 .END

Run the PSpice analysis and see the PROBE screen display. There are many variables that can be 

displayed. These are all menu-driven and can be easily learned on screen. You can simultaneously display 

many quantities on the same graph by incorporating .PROBE statement.

In the AC analysis you will find a linear sweep of 100 frequencies starting from 5 Hz to 1000 Hz. The 

maximum current 3.999 A is observed at 1.558 3 102 Hz.

Total job time is 1.31.

pROBlEm 19.7

For the coupled circuit shown in Fig. 19.11, the coefficient 

of coupling is 0.5. Use the SPICE program to find currents 

in L
1
, L

2
. Take R

1
 5 R

2
 5 10 V; L

1
 5 L

2
 5 20 mH; C 5 5 mF and 

R
L
 5 50 V.

Solution� Coupled coils may also be specified in a SPICE input 

file. The coefficient of coupling is always greater than zero and 

maximum value is one. If two coils with self-inductances of 

L
1
 and L

2
 are mutually coupled with a mutual inductance of M 

then the coefficient of coupling is given by K
M

L L
=

1 2*Coupled coils

 VIN 1 0 AC 230

 R1 1 2 10

 R2 3 4 10

 L1 2 0 20M

 L2 3 0 20M

 RL 5 0 50

 C 4 5 5u

 K L1 L2 0.5

 .AC LIN 1 50Hz 50Hz

 .PRINT AC I(R1) I(R2)

 .END

Simulation Output

Small signal DC biasing values will be zero.

Fig. 19.11
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AC analysis

FREQ I(R1) I(R2)

5.000E 1 01 1.946E 1 01 9.655E 2 02

Time 1.66.

pROBlEm 19.8

For the circuit shown in Fig. 19.12, determine the voltage at 

nodes 1 and 2, when the switch is closed at time t 5 0. Use 

piecewise linear function. Use R
1
 5 R

2
 5 50 V and L 5 10 mH.

Solution� As already mentioned in transient analysis, the .TRAN 

statement should specify time interval (TSTEP) and length of 

time. Generally, PSpice employs a variable time interval which 

is larger when the output is relatively constant, and smaller when 

the output changes more rapidly. Generally, for a circuit having 

a time constant of t, we can use TSTEP as 0.1 t and a maximum 

time of 10 t or use the step time as one tenth of the length of the time for analysis.

t m= =

×

=

−L

Req

10 10

100
100

3

sec

Therefore, let us use TSTEP as 10 ms and max time as 100 ms. Now the input file for the transient analysis 

is given by

*RL TRANSIENT

 I 0 1 PWL (0,0 10 µs, 2 M 100 µs, 2 M)

 R1 1 0 50

 R2 1 2 50

 L 2 0 10 M

 .TRAN  10 µs 100 µs

 .PRINT  TRAN v(1) v(2)

 .END

TRANSIENT ANALYSIS

TIME V(1) V(2)

 0 0 0

  1 3 10–5 9.758 3 10–2 9.516 3 10–2

  2 3 10–5 9.306 3 10–2 8.611 3 10–2

  3 3 10–5 8.896 3 10–2 7.792 3 10–2

  4 3 10–5 8.525 3 10–2 6.379 3 10–2

  5 3 10–5 8.19 3 1–2 5.772 3 10–2

  6 3 10–5 7.886 3 10–2 5.772 3 10–2

  7 3 10–5 7.611 3 10–2 5.223 3 10–2

  8 3 10–5 7.363 3 10–2 4.726 3 10–2

  9 3 10–5 7.138 3 10–2 4.276 3 10–2

 10 3 10–5 6.935 3 10–2 3.869 3 10–2

Time 2.53 seconds

Fig. 19.12
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pROBlEm 19.9

For the source- free circuit shown in Fig. 19.13 (a) the initial 

current in the inductor is 50 mA and the switch is closed at time 

t 5 0. Obtain the growth of the current through L. Assume R 5 50; 

L 5 5 H.

Solution� To find I in L where the source is absent, we assume a 

zero volt voltage source with proper polarities as shown in Fig. 

19.13 (b).

*SOURCE FREE RL CIRCUIT

VO O 10

L 10 1 5 IC 5 50M

R 1 0 50

F 0 1 VO 0.5

.TRAN IM 300M UIC

.PRINT TRAN I(L)

.END

UIC indicates the use initial condition. The transient analysis results are given  up to 10 milliseconds. The current 

through the inductor will be zero at ≈ 275 ms. By incorporating the .PROBE statement, the variation of I(L) can be 

observed in the graphic display.

Time I(L)

0.0 5 3 10–2

1 3 10–3 4.926 3 10–2

2 3 10–3 4.825 3 10–2

3 3 10–3 4.78 3 10–2

4 3 10–3 4.709 3 10–2

5 3 10–3 4.639 3 10–2

6 3 10–3 4.570 3 10–2

7 3 10–3 4.502 3 10–2

8 3 10–3 4.435 3 10–2

9 3 10–3 4.369 3 10–2

 10 3 10–3 4.30 3 10–2

pROBlEm 19.10

For the circuit shown in Fig. 19.14, observe the voltage at the node 2 and current through R
1
 up to 1 s from 

the instant when the switch is closed at t 5 0; before the closure of the switch the voltage across the capacitor 

is 5 mV.

Fig. 19.13 (b)

Fig. 19.13 (a)
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Fig. 19.14

*RC TRANSIENT

 VIN 1 0 PWL (0,0 10 µ 10M, 1,10M)

 R1 1 2 50

 R2 2 3 50

 C 3 0 5µ IC 5 5M

 .TRAN 10M I

 .PRINT

 .PRINT TRAN V(2) I(R1)

 .END

Simulation Result

Initial Transient Solution

N V N V N V

(1) 0 (2) 0.0025 (3) 0.0050

VOLTAGE SOURCE CURRENTS

VIN 5 3 10–5

TRANSIENT ANALYSIS

TIME V(2) I(R1)

0 2.5 3 10–3 25 3 10–5

1 3 10–2 1 3 10–2 4.476 3 10–7

2 3 10–2 1.178 3 10–2 4.514 3 10–7

… … …

… … …

… … …

1 sec 9.998 3 10–2 4.5 3 10–7

Total job time 2.82. The inclusion of .PROBE statement provides the variation of V2 and I with respect to 

time up to 1 second in the circuit.
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Test Your Skill in pSpice

19.1 For the circuit shown in Fig. 19.15, find the voltage across 40 V.

Fig. 19.15

19.2 Write an input file to print the current through 4 

V source for the circuit in Fig. 19.16.

19.3 Find the current in R
2
 and total power in the 

circuit of Fig. 19.17.

Fig. 19.17

19.4 Find current I and voltage at the node 2 for the circuit 

in Fig. 19.18.

Fig. 19.16

Fig. 19.18
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19.5 Find the magnitude of current, its real, imaginary components and its phase angle with respect to the source in the 

series RL circuit shown in Fig. 19.19.

19.6 For the given RLC circuit shown in Fig. 19.20, find the resonant condition using PSpice, R 5 20 ohms; 

L 5 5 mH; C 5 80 mF; V 5 120 V.

Fig. 19.20Fig. 19.19

19.7 For the coupled circuit shown in Fig. 19.21, find the primary and secondary currents with the following data M 5 10 

mH; L
1
 5 L

2
 5 15 mH; R

1
 5 R

2
 5 25 ohms. C 5 10 mF, R

L
 5 40 ohms.

19.8 For the circuit shown in Fig. 19.22, calculate the growth of voltages at Node 1 and Node 2 when the switch is 

closed at time t 5 0; R
1
 5 R

2
 5 40 ohms, L 5 5 mH.

Fig. 19.21
Fig. 19.22

19.9  For the source-free circuit shown in Fig. 19.23, calculate the variation of current through the inductor, 

when the switch is closed at t 5 0. Before the closure of the switch, the current through L is 10 mA. Take 

R 5 60 V; L 5 5 mH.

19.10   For the circuit shown in Fig. 19.24, write an input file in SPICE and run to display the variation of current 

through the inductor up to five time constants when the switch is closed at t 5 0, before the closure of the 

switch the current through the inductor is 40 mA. (L 5 2 H; R 5 25 V).

Fig. 19.23 Fig. 19.24



A.1 INTRODUCTION

A filter is generally a frequency-selective circuit. Signals having certain frequencies are passed, whereas 

signals having other frequencies are blocked or attenuated. The bands of frequencies that are passed through 

the filter are called passbands and those that are blocked in bands are called stopbands. The frequency band 

between the passband and stopband is the transition band. Filters circuits are classified into two groups as per 

the type of elements used in the circuit. Filter circuits having passive elements such as resistors, capacitors, 

and inductors are passive filters. On the other hand, filter circuits employing active elements like transistors 

or op-amps in addition to resistors and capacitors are active filters. Active filters eliminate use of inductors 

that are problematic at audio frequencies as the inductors are bulky and expensive. Also, op-amps use in 

active filters offer high input impedance and low output impedance. This will reduce the loading effect. The 

active filters have few disadvantages. High frequency response is limited by the gain-bandwidth product and 

slow rate of the op-amp. The most commonly used active filter circuits are

1.  Low-pass filter – Passes all frequencies less than the cut-off frequency fC and attenuates or stops 

beyond the cut-off frequency fC.

2. High-pass filter –  Passes higher frequency signals above the cut-off frequency fC.

3. Band-pass filter – Passes a band of frequencies and blocks other frequencies.

4. Band-reject filter – Blocks a band of frequencies and passes other frequencies.

The frequency response of these filter circuits are shown in Fig. A.1 where the dashed curve indicates the 

ideal response and the solid curve represents the practical filter response.

Active filters are specified by voltage transfer function

H s
V s

V si

( )
( )

( )
= 0

 (1)

Under-steady state condition, (i.e., s 5 jv),

H j H j( ) | ( ) | ( )v v f= v  (2)

where |H( jv)| is the magnitude or the amplitude function and f(v) is the phase function.

Filters are classified based on their frequency response and depend on the order of S in the transfer 

function. These circuits are further classified according to their characteristics.

1. Butterworth filters

2. Chebyshev filters

Butterworth, Chebyshev filters are some of the most commonly used practical filters that approximate the 

ideal response.

A
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Fig. A.1 Frequency response of the major active filters

A.2 FIRST-ORDER LOW-PASS BUTTERWORTH FILTER

A first-order low-pass Butterworth filter is shown in Fig. A.2. It consists of a single RC network connected to 

the non-inverting input terminal of an op-amp.

The voltage V1 at the non-inventing terminal across the capacitor C is

Fig. A.2 First-order low-pass Butterworth filter: (a) Circuit (b) Frequency response

V SC

R
SC

Vi1

1

1
=

+
 (3)

Simplifying Eq. (3), we get

V

V RCsi

1 1

1
=

+
 (4)
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and the output voltage

V
R

R

f

i
0 V= +












1 1

Therefore,

V
R V

RCs

f

i

i
0

R
= 1

1
+











 +

or

V

V

R

R

RCsi

f

i0 =

+












+

1

1

V

V

A

j RC

A

j
f

f

i

f f

H

=
+

=

+











1
1

v
 (5)

where 
V

Vi

0 =  gain of the filter as a function of frequency

 A
R

R
f

f

i

= + =1  pass-band gain of the filter

 f 5 frequency of the input singal

 f
RC

H = =
1

2
 high cut-off frequency of the filter

The polar form of Eq. (5)

V

V

A

f

f

i

f

H

0 =

+










1

2
 (6)

 
f=−











−tan 1 f

fH

From Eq. (6), at very low frequencies, that is, f < fH, the filter has a constant gain Af . At f 5 fH, the gain is 

0.707H, and at f > fH the gain decreases at a constant rate with an increase in frequency.

The following steps are to be implemented to design a low-pass filter.

1.  Choose values of high cut-off frequency fH and capacitor C. (normally selecting value of C less than 

1mF).



Active Filters 921 

2. Calculate the value of R by using the formula

R
f CH

=
1

2

3. Desired passband gain Af can be obtained by selecting values of Ri and Rf.

A.3 SECOND-ORDER LOW-PASS BUTTERWORTH FILTER

A second-order low-pass Butterworth filter is shown in Fig. A.3.

Fig. A.3 Second-order low-pass Butterworth filter: (a) Circuit (b) Frequency response

The high cut-off frequency fH is determined by values R1, C1, R2, and C2 and is given by

f
R R C C

H =
1

2 1 2 1 2
 (7)

The pass-band gain of the filter is

A
R

R
f

f

i

= +1

The voltage gain magnitude equation is

V

V

A

f

f

i

f

H

0

4

1

=

+











 (8)

A stopband response having a 40 dB/decade roll-off is obtained with the second- order filter.

The following steps are implemented to design second order low-pass Butterworth filter.

1. Set R1 5 R2 5 R and C1 5 C2 5 C and choose a value of C  1mF.

2. Choose a value of higher cut-off frequency fH.

3. Calculate the value of R by using the equation

R
f CH

=
1

2

4. Choose values of Rf and Ri to obtain passband voltage gain Af.
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A.4 FIRST-ORDER HIGH-PASS BUTTERWORTH FILTER

A first-order high-pass Butterworth filter is shown in Fig. A.4 (a) and its frequency response is shown in Fig. 

A.4 (b). The frequency fL is the frequency at which the magnitude of the gain is 0.707 times the maximum 

value in its passband.

Fig. A.4 (a) First-order high-pass Butterworth filter (b) Frequency response

The output voltage V
R

R

sRC

sRC
V

f

i
i0 1

1
= +










 +

or
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j
f

f

j
f
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L
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 (9)

The magnitude of the voltage gain

V

V

A
f

f

f

f

i

f
L

L

0

2

1

=












+











 (10)

where A
R

R
f

f

i

= + =1  passband gain of the filter

 f 5 frequency of the input signal

 f
RC

L = =
1

2
 lower cut-off frequency
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A.5 SECOND-ORDER HIGH-PASS BUTTERWORTH FILTER

A second-order high-pass Butterworth filter is shown in Fig. A.5(a) and its frequency response is shown in 

Fig. A.5(b). The stopband gain of the second-order filter changes at the rate of 40 dB/decade.

/

Fig. A.5 (a) Second-order high-pass Butterworth filter: (b) Frequency response

The magnitude of the voltage gain of the second-order high-pass filter is

V

V

A

f

f

i

f

L

0

4

1

=

+










 (11)

where Af 5 passband gain

 f 5 frequency of the input signal

 fL 5 lower cutoff frequency.

A.6 HIGHER ORDER FILTERS

Higher order filters can be obtained by connecting in series or cascading a proper number of first and second-

order filters. For n-th order filter, the roll-off rate will be n × 20 dB/decade.

The transfer function will be given by

H s
A

s

A

s s

A

s s
( )=

+
+

+ +
+

+ +

1 2

2
1

3

2
2

1 1 1 
 (12)

The transfer function of a low-pass Butterworth filter is

H s
B s

n
n

( )
( )

=
1

where Bn(s) is a Butterworth polynomial.
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Table A.1 The first five Butterworth polynomials

order m Butterworth polynomials Bm(s)

s 1 1

s s2 2 1+ +

(s2 1 s 1 1)(s 1 1)

(s2 1 0.76536s 1 1)(s2 1 1.84776s 1 1)

(s 1 1)(s2 1 0.6180s 1 1)(s2 1 1.6180s 1 1)

A.7 BANDPASS FILTER

A bandpass filter and its frequency response is shown in Fig. A.6. A bandpass filter has a passband between 

two cut-off frequencies fL and fH such that fH > fL. The width of passband in a filter depends on its figure of 

merit or quality factor Q. If Q < 10, the filter is called wide bandpass filter on the otherhand, if Q > 10, the 

filter is a narrow band-pass filter.

The quality factor is given by

Q
f f

f f

C C

H L

= =
−BW

 (13)

where f f fC H L=

 and fH 5 higher cut-off frequency

 fL 5 lower cut-off frequency

- - --

Fig. A.6 (a) Band-pass filter

Fig. A.6 (b) Frequency response
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A bandpass filter can be obtained by cascading high-pass and low-pass sections. The magnitude of the 

voltage gain for the bandpass filter is equal to the product of the magnitudes of voltage gain of the high-pass 

and low-pass filters.

Therefore, the voltage gain of the bandpass filter is

V

V

A
f

f

f

f

i

f
L

L

0 =












+






















+1 1

2
ff

fH
























2  (14)

where Af 5 total passband gain

 f 5 frequency of the input signal

 fL  5 lower cut-off frequency

 fH  5 higher cut-off frequency

A.8 BAND-REJECT FILTERS

A band-reject filter and its frequency response is shown in Fig. A.7. The band reject filter is also called a 

bandstop or band-elimination filter. A band-reject filter can be made using a low-pass filter, high-pass filter, 

and a summer. The lower cut-off frequency fL of the high-pass filter should be much greater than the higher 

cut-off frequency fH of the low pass filter and the passband gain of both the filters should be same.

Fig. A.7 (a) Band-reject filter circuit (b) Frequency response
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The voltage gain changes at the rate of 20 dB/decade above fH and below fL, with a maximum attenuation 

occuring at fC. f f fC H L=

A.9 CHEBYSHEV FILTERS

The magnitude function of a normalised low-pass Chebyshev filter is characterised by 

H j
C

m

m

( )
( )

V
2

2 2

1

1
=
+∈ V

 (15)

where Cm(V) is a Chebyshev function of order m, which can be written in its trigonometric form as

C
m

m
m ( )

cos( cos ),

cosh ( cos ),
V

V V

V V
=

≤ ≤

>







−

−

1

1

0 1

1

 (16)

The Chebyshev polynominals can also be generated and defined from the following recursive formula

Cm(V) 5 2VCm-1(V)−Cm-2(V), m > 2 (17)

with T0(V) 5 1 and T1(V) 5 V

A list of the first five Chebyshev polynominals is given in,Table A. 2 for reference

Table A.2 The first five Chebyshev polynominals

m Tm(V)

0 1

V

2V2 − 1

4V3 − 3V

8V4 − 8V2 1 1

16V5 − 20V3 1 5V

Taking logarithm for the magnitude function, we get 

20 10 1 10 1 2 2log | ( ) | log log[ ( )]H jΩ = − +∈ ΩCm  (18)

Since Cm(V) 5 1 at V 5 1, we have attenuation at the passband frequency

Ap 5 AdB(1) 5 10 log10[1 1 ∈2]

and then

∈ 10 10 1. Ap −

From equations (15) and (16), when V 5 Vr, we find attenuation at the stopband frequency

Ar 5 AdB(Vr) 5 10 log10[1 1 ∈2 cosh2(mcosh-1Vr)]

and thus the order of the normalized low-pass Chebyshev filter that satisfies the required stopband attenuation 

is the smallest integer number that satisfies



Active Filters 927 

m

r

≥

−

∈

−

−

cos

cos ( )

.

h

h

1
0 1

2

1

10 1
Ar

V

The magnitude responses for the normalised Chebyshev filter of odd and even n is shown in Fig. A.8.

Fig. A.8 Magnitude response for normalised Chebyshev filter of odd and even m

It is interesting to note that in a Butterworth filter, the frequency response is monotonic in both passband 

and stop band and is maximally flat at V 5 0, where the magnitude response of the Chebyshev filter exhibits 

ripples in the passband or stopband. Chebyshev filters usually require lower-order transfer functions than 

Butterworth filters.

Frequently Asked Questions
rrr Explain the advantages of active filters in comparison to passive filters.  [PTU 2011-12]

 The specifications of a LPF are

 Pass band ripple = 1 db

 Pass band = 0 to 1.75 MHz

 Stop band loss = 20 db at 2.5 MHz

 Find h and e.

*For answers to Frequently Asked Questions, please visit the link http://highered.mheducation.com/sites/9339219600



B.1 DEFINITION OF j FACTOR

j is used in all electrical circuits to denote imaginary numbers. Alternate symbol for j is −1 , and is known 

as j factor or j operator.

Thus

 

− = − =

− = − =

− = − =

− = − =

1 1 1 1

2 1 2 2

4 1 4 2

5 1 5 5

( )( ) ( )

( )

( )

( )

j

j

j

j

Since j is defined as −1, it follows that ( )( ) ( )( )j j j= = − − =−
2 1 1 1

∴ =( )( )j j j3 3 32 2

Since j2 5 1

 ( j3)( j3) 5 9

(i.e.) the square root of 9 is j3.

Therefore, j3 is a square root of 9.

The use of j factor provides a solution to an equation of the form x2 5 4

Thus,

With

x

x

j x j

= − = −

= −

= − =

4 1 4

1 2

1 2

( )

( )

,

The real number 9 when multiplied three times by j becomes j9.

 ( j) ( j) ( j) 5 ( j)2 j 5 (1)j 5 j

Finally, when the real number 10 is multiplied four times by j, it becomes 10.

j  5  1 j

j 2 5 ( j) ( j) 5  1

j 3 5 ( j2) ( j) 5 (1)j 5 j

j 4 5 ( j2) ( j)2 5 (1) (1) 5 11

B
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ExamplE B.1

Express the following imaginary numbers using the j factor:

(a) −13  (b) −9  (c) −29  (d) −49

Solution 

( ( )( )

( ) ( )

( ) ( )

( ) (

a)

b

c

d

− = − =

− = − =

− = − =

− =

13 1 13 13

9 1 9 3

29 1 29 29

49

j

j

j

−− =1 49 7)( ) j

B.2 RECTANGULAR AND POLAR FORMS

A complex number (a 1 jb) can be represented by a point whose coordinates are (a, b). Thus, the complex 

number 3 1 j4 is located on the complex plane at a point having 

rectangular coordinates (3, 4).

This method of representing complex numbers is known as the 

rectangular form. In ac analysis, impedances, currents, and voltages 

are commonly represented by complex numbers that may be either 

in the rectangular form or in the polar form. In Fig. B.1, the complex 

number in the polar form is represented. Here, R is the magnitude of 

the complex number and f is the angle of the complex number. Thus, 

the polar form of the complex number is R f. If the rectangular 

coordinates (a, b) are known, they can be converted into polar form. 

Similarly, if the polar coordinates (R, f) are known, they can be 

converted into rectangular form.

In Fig. B.1, a and b are the horizontal and vertical components of the vector R, respectively. From Fig. B.1, 

R can be found as R a b= +
2 2 .

Also from Fig. B.1,

sin

cos

tan

tan

f

f

f

f

=

=

=

=

= +

−

b

R
a

R
b

a
b

a

R a b

1

2 2

Fig. B.1
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ExamplE B.2

Express 10 –53.1° in rectangular form.

Solution a 1  jb 5 R (cos f 1  j sin f)

 R 5 10; f 5 53.1°

a 1 jb 5 R cos f 1  jR sin f

 R cos f 5 10 cos 53.1° 5 6

 R sin f 5 10 sin 53.1° 5 8

 a 1  jb 5 6 1 j8

ExamplE B.3

Express 3 1 j4 in polar form.

Solution R cos f 5 3 (1)

R sin f 5 4 (2)

Squaring and adding the above equations, we get

R2 5 32 1 42

R= + =3 4 52 2

From (1) and (2), tan f 5 4/3

f= = °
−tan .1 4

3
53 13

Hence, the polar form is 5 53.13°

B.3 OPERATIONS WITH COMPLEX NUMBERS

The basic operations such as addition, subtraction, multiplication, and division can be performed using 

complex numbers.

� Addition� It is very easy to add two complex numbers in the rectangular form. The real parts of the two 

complex numbers are added and the imaginary parts of the two complex numbers are added. For example,

(3 1 j4) 1 (4 1 j5) 5 (3 1 4) 1 j(4 1 5)

 5 7 1 j9

� Subtraction Subtraction can also be performed by using the rectangular form. To subtract, the sign of 

the subtrehand is changed and the components are added. For example, subtract 5 1 j3 from 10 1 j6:

10 1 j6  5  j3 5 5 1 j3

� Multiplication To multiply two complex numbers, it is easy to operate in polar form. Here, we mul-

tiply the magnitudes of the two numbers and add the angles algebraically. For example, when we multiply 3 

30° with 4 20°, it becomes  (3) (4) 30° 1 20° 5 12 50°.

� Division To divide two complex numbers, it is easy to operate in polar form. Here, we divide the mag-

nitudes of the two numbers and subtract the angles. For example, the division of

9 50
9 50

3 15
3 50∠ ∠ =

∠

∠
=° by3 15°

°

°
° 15° =3 35°.
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Stability criterion 692

Star-connected network 346

Star-connected system 344

Star-connection 335

Star-delta method of solving unbalanced load 363

Star-delta transformation 110

Star-to-delta and delta-to-star transformation 340

Steady-state sinusoidal response 632

Step function 564

Step response 617

Supermesh analysis 70

Supernode analysis 83

Superposition 621

Superposition theorem 115, 256

Switching operation 633

Symmetry 537

T

Tank circuit 299

Tellegen’s theorem 135

Terminal pairs 677

Terminated two-port network 741

Thevenin’s equivalent 618

Three-phase balanced circuits 354

Three-phase, three-wire, star-connected system 336

Three-phase-unbalanced circuits 358

Three-wattmeter and two-wattmeter methods 371

Th venin’s theorem 258

Tie-set matrix 54

Time convolution 538

Time domain 580

Time-domain response 690

Time shifting 540

Title 897

T-network 737, 784

Transfer admittance 678

Transfer function 626, 687

Transfer impedance 678

Transform circuits 670

Transform impedance 670

Transient analysis 905

Transient response 466, 618

Transient state 466

Transmission matrix 719

Transmission parameters 719

Tree 48

Tree branch voltages 60

Trigonometric series 512

T-type attenuator 817

Tuned circuits 434

Twigs 50

Two-port network 677, 707

U

Unbalanced delta-connected load 358

Unbalanced four-wire star-connected load 360

Unbalanced three-wire star-connected load 362
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Unilateral elements 5

Unit step function 570

Upper cut-off frequency 291

V

Voltage 1

Voltage controlled current source (VCCS) 11

Voltage controlled voltage source (VCVS) 11

Voltage divider 14

Voltage division 14

Voltage relations 344, 349

Voltage-transfer ratio 678

Voltage transform ratio 682

W

Wattmeter 369

Wye-connection 336

Y

Y-parameters 711

Z

Zeros 681

Z-parameters 708
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