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Preface

This book caters to the needs of first and second-year undergraduate students of EEE/ECE/EI/CSE 

pursuing course on Circuits and Networks. It will prove to be a great aid in preparation for semesterial 

examination of various universities. Readers who want to refresh, deepen and systemize their knowledge 

on subject matter will find this book as an ultimate resort.

Students often find Circuits and Networks a back-breaking course because of the mathematical 

complexity involved and importance that it enjoys in later semesters. The market is flooded with 

exhaustive and heavy volumes on Circuits and Networks but there is no individual textbook that 

provides holistic, simple yet concise and quality coverage on all the key topics. This further adds up to 

the challenge specially during “the exam days”.

This book has a perfect blend of focused content coverage and key pedagogical aids following 

question-and-answer format based on the real questions that students ask. The pedagogical aids have 

been designed using 5Es Approach: Engage, Explore, Explain, Elaborate and Evaluate. Hence, this 

book fills the void in the market.

We may consider this book to be an attempt to supplement excellent comprehensive circuits and 

networks textbooks like Circuits and Networks (A Sudhakar, Fifth Edition, 2015), Engineering Circuit 

Analysis (William H. Hayt, Eighth Edition, 2013)

Highlights

 ∑ Focus on basic concepts

 ∑ Just enough theory with emphasis on theorems, transient response, network functions, 

techniques of analysis, etc., which are frequently asked in exams

 ∑ Solutions to previous year questions from universities such as AKTU, GTU, RGPV, RTU, 

GTU, PU, MU, AU, etc.

 ∑ Summary at the end of each chapter to quickly review the concepts

 ∑ Clearly labeled illustrations with proper notations

 ∑ Examination-oriented pedagogy:

 u 229 step-wise Solved Examples

 u 144 Practice Problems

 u 100 Multiple Choice Questions



vi  Preface

Organization of the Book

The book is divided into 13 chapters.

Chapter 1 deals with the basic network concepts. It discusses the circuit elements, series and parallel 

combination of these elements, star-delta transformation and source shifting. Chapter 2 on Methods 

of Analysing Circuits discusses the network topology, Kirchoff’s law, mesh and nodal analysis. 

Then Chapter 3 on Network Theorem discusses the various theorems beneficial for the analysis and 

determination of voltages and currents. Steady state AC analysis and transient response are discussed in 

Chapter 4. The chapter also deals with various theorems involved in the analysis. 

Chapter 5 on Resonance explores the frequency response of circuits and evaluates the resonance 

frequency. It also talks about half power frequency, band width and quality factor. Then is Chapter 6 

on Coupled Circuits. This chapter discusses different types of coupling and analysis of coupled circuits. 

Chapter 7 on Polyphase Circuits explains the analysis of three-phase 3-wire and 4-wire circuits, phasor 

diagrams and star-delta conversion. Transfer functions and driving-point functions are discussed in 

Chapter 8 on Network Functions.

Chapter 9 on Two-Port Networks discusses about different parameters involved and also the 

relationship between the parameters. Chapter 10 explains the Fourier method of waveform analysis. It 

also discusses Fourier transform. Chapter 11 gives an introduction to Laplace Transform, and hence 

the name of the chapter. It highlights the different properties of the transform, nodal and mesh analysis 

and modelling of R, L, and C in s-domain and additional circuit analysis techniques in s-domain. 

Chapter 12 on Network Synthesis defines Hurwitz polynomial and the methods to determine it. Finally, 

Chapter 13 on Filters and Attenuator describes their design and analysis.

Web Supplements

The text is supported by additional content which can be accessed at http://www.mhhe.com/exam_prep/cn. 

 ∑ Solutions Manual (for Instructors and Students)
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1.1  INTRODUCTION

An electric network is defined as the interconnection of various electric components in a prescribed 

manner to form a closed path. Therefore, it is important to know the basic concepts of electric networks 

and the properties of the electric components to carry out computational analysis of networks. 

1.2
   CIRCUIT ELEMENTS: RESISTANCE, 

INDUCTANCE AND CAPACITANCE

1.2.1 Resistance

Resistance of a material is defined as its property to obstruct 

the flow of electric current through the material. Based on the value of resistance, 

materials can be classified into good conductors and bad conductors of electric current. 

It is denoted as R and the unit of resistance is Ohm (W). The symbol of resistance is 

as shown in Figure 1.1.

The resistance of a conductor depends on the resistivity of the material of the conductor (r), length of 

the conductor (l) and the area of cross section of the conductor (A). The relationship is given by 

 R = 
rl

A

Ohm’s law states that the potential difference V between the two ends of a conductor is directly 

proportional to the current I flowing through the conductor at constant temperature and the constant of 

proportionality is the resistance of the conductor R. The mathematical expression of Ohm’s law is given as 

 V = IR

University Question

1.  State the limitation of Ohm’s law.

 [AU, 2013]

Figure 1.1
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  Circuit elements: Resistance, Inductance 

and Capacitance

  Series and parallel combination of resistors, 

inductors and capacitors

 Sources and source transformation

 Star-delta transformation

 Source shifting

Chapter Outline



1.2  Circuits and Networks

When a current flows through a resistive material or a resistor, the electrical energy absorbed by 

the resistor is converted into heat energy. The amount of heat dissipated in the resistor or the power is 

denoted by the letter P and measured in units of Watts (W). It is given by 

 P = VI = I2
R

Note: Remember that while solving problems the basic quantities must be used in the formula, i.e. 

VOLTS, OHMS and AMPERES (not milli, kilo, etc).

 A bulb is rated as 230 V, 230 W. Find the rated current and resistance of the filament.

 [AU, 2011]

Solution Given data: Voltage V = 230 V; Power P = 230 W 

Required data: Current I = ? Resistance R = ? 

 Power P = Voltage × Current = V × I

 230 = 230 × I or I = 1 A 

Resistance of the filament R = V/I = 230/1 or R = 230 W

1.2.2 Inductance

An inductor is a device made of wire wound according to various designs that can store energy in a 

magnetic field. Inductance is the quantitative measure of the property of an inductor to oppose any 

sudden change in the current flowing in it. Inductance is developed by the voltage induced across the 

inductor from the electromagnetic field arising due to the current flowing in it. It is denoted as L and the 

unit of inductance is Henry (H). The symbol of inductance is as shown in Figure 1.2. 

The current voltage relationship is given as 

 v = 
di

L
dt

where, v is the voltage across inductor in volts, and i is the current through inductor in amps.

Inductance is also defined as the ratio of magnetic flux linking with the coil to the current producing 

the flux.

 L = 
fN

I

where N is the number of turns in the coil, f is the flux in weber and I is the current in the coil in 

amps.

Inductance of a solenoid, which is the most common configuration of coil of wire, is given as 

 L = 
2

N A

l

m

where µ is the relative permeability of the core, A is the cross-sectional area of the solenoid and l is the 

length of solenoid.

Example 1.1

Figure 1.2

Note: Difficulty Level    — Easy;  — Medium;  — Difficult
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The energy stored by inductor in the magnetic field is given as 

 W = 
2

2

LI

 An air cored solenoid 1 m in length and 10 cm in diameter has 5000 turns. Calculate the inductance 

and energy stored in the magnetic field when a current of 2 A flows in the solenoid. [VTU, 2011]

Solution Given data: length of solenoid l = 1 m, diameter m = 10 cm = 0.1 m, air cored so m = m0 

= 4p × 10–7

Number of turns N = 5000, Current I = 2 A

Required data inductance L = ? Energy stored W = ?

Area of cross section 
2

3 2 7.854 1 0 m
4

d
A

p -= = ¥

Inductance L = 
2

N A

l

m
 = 

7 34  1 0  50002  7.854 1 0
0.2467 H

1

p - -¥ ¥ ¥
=

¥

Energy stored 
¥

= = =
2 20.2467  2

0.4934 J
2 2

LI
W  

1.2.3 Capacitance

A capacitor consists of two conducting surfaces or plates separated by an insulating material or dielectric. 

The property of a capacitor to store charge on its conducting surfaces, in the form of an electrostatic 

field when a steady voltage is applied across it, is called the capacitance. Capacitance is 

also the quantitative measure of the property of a capacitor to oppose any sudden change 

in the voltage across it. It is denoted as C and the unit of capacitance is Farad (F). The 

symbol of capacitance is as shown in Figure 1.3. 

Capacitance is given by 
Q

C
V

=  where Q is the amount of charge on capacitor plate and V is the voltage 

across the plates. The capacitance is proportional to the area of plates A and inversely proportional to the 

distance between the plates d. It is also given as 

 C = 0

A

d
e

where e0 is the absolute permittivity. 

The current voltage relationship is given as 

 i = 
dv

C
dt

Example 1.2

Figure 1.3
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The energy stored by the capacitor in the electrostatic field is given by 

 W = 

2

2

CV

 When a dc voltage is applied to a capacitor, voltage across its terminals is found to build up in 

accordance with vC = 50 (1 – e–100t). After 0.01s, the current flow is equal to 2 mA. (a) Find the value 

of capacitance in farad. (b) How much energy is stored in the electric field?

 [AU, 2014]

Solution Given data: Applied voltage v = 50 (1 – e–100t), time = 0.01 s, current i = 2 mA = 2 × 10–3 A.

Required data capacitance C = ? Energy stored W = ? 

 (a) 
dv

i C
dt

=  or 100 100 50 (1 )   50 1 00t td
i C e C e

dt

- -= - = ¥ ¥

  At t = 0.01 s, i = 2 × 10–3 A.

  Therefore 2 × 10–3 = C × 50 × 100e
–100 × 0.01

 C = 1.089 mF

(b) W = 
2

2

CV

  At t = 0.01 s, v = 50(1 – e–100 × 0.01) = 31.6 V

  Therefore, W = 
1

2
 × 1.089 × 10–6 × (31.6)2 = 0.543 mJ

1.3
   SERIES AND PARALLEL COMBINATION OF RESISTORS, 

INDUCTORS AND CAPACITORS

1.3.1 Resistors in Series

Consider the connection of resistors shown in Figure 1.4. The 

resistors are said to be connected in series. In a series circuit 

the current flowing through each element is same but the 

voltage drops are proportional to the values of resistors. So, 

the series circuit acts a voltage divider. The total voltage is 

given by the addition of the individual voltage drops. The total 

equivalent resistance of the combination is equal to the sum of 

the individual resistances.

 Req = R1 + R2 + R3 + … + Rm

The total power in the series circuit is the total voltage applied to a circuit, multiplied by the total 

current.

Example 1.3

Figure 1.4
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1.3.2 Resistors in Parallel
Consider the connection of resistors shown in Figure 1.5. The resistors are said to be connected in parallel. 

In a parallel connection, the total current entering the parallel branches is divided into the branches currents 

according to the resistance values. The voltage across each 

element is the same and equal to the applied voltage. So, 

the parallel connection acts as a current divider. The total 

equivalent resistance of the combination is given as 

       

= + + + +L
1 2 3

1 1 1 1 1

eq mR R R R R

 Find the equivalent resistance between terminals A and B of the network shown in Figure 1.6.

 [JNTU, 2006]

Solution

Step 1: The 50 W and 30 W are in series [Figure 1.7(a)(i)]. So 

the equivalent resistance is 50 + 30 = 80 W. Similarly, 

the 8 W and the 24 W are in series. The equivalent 

resistance will be 8 + 24 = 32 W.

Step 2: The 32 W and 32 W are in parallel [Figure 1.7(a)(ii)]. 

So the equivalent resistance is 
32  32

32 32

¥
+

 = 16 W.

Step 3: This 16 W and 14 W are in series [Figure 1.7(b)(i)]. So the equivalent resistance is 

16 +14 = 30 W.
Step 4: This 30 W and 60 W are in parallel [Figure 1.7(b)(ii)]. So the equivalent resistance is 

30  60

30 60

¥
+

 = 20 W.

Step 5: This 20 W and 80 W are in series [Figure 1.7(c)(i)]. So the equivalent resistance is 

20 + 80 = 100 W.

Step 6: Finally both the 100 W are in parallel [Figure 1.7(c)(ii)]. So the equivalent resistance is 

100 1 00

100 100

¥
+

 = 50 W.

The equivalent resistance between terminals A and B of the network is 50 W.

Figure 1.7(a)

Figure 1.5

Example 1.4

Figure 1.6
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Figure 1.7(b)

Figure 1.7(c)

1.3.3 Inductors in Series

Consider n number of inductors connected in series shown in Figure 1.8. When a voltage is applied to 

such a combination, the current passing through each inductor is the same. The total combined equivalent 

inductance of any number of inductors is the sum of the individual inductances. It is given as 

 Leq = L1 + L2 + L3 + L + Ln

1.3.4 Inductors in Parallel

Consider n number of inductors connected in parallel shown in Figure 1.9. In a parallel connection, the 

current flowing in each inductor is different. The voltage across each inductor is same and equal to the 

applied voltage. The total equivalent inductance of the combination is given by 

                      1 2

1 1 1 1

eq nL L L L
= + + +L

1.3.5 Capacitors in Series

Consider n number of capacitors connected in series shown in Figure 1.10. When a voltage is applied to 

such a combination, the total applied voltage is equal to the sum of voltages across individual capacitors. 

The total equivalent capacitance is given as

                      1 2

1 1 1 1

eq nC C C C
= + + +L

Figure 1.8

Figure 1.9

Figure 1.10
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1.3.6 Capacitors in Parallel

Consider n number of capacitors connected in parallel. In 

a parallel connection, the current flowing in each capacitor 

is different. The voltage across each capacitor is same 

and equal to the applied voltage. The total equivalent 

capacitance of the combination is given as 

 Ceq = C1 + C2 + C3 + … + Cn

 Find the total equivalent capacitance and total energy stored if the applied voltage is 100 V for the 

circuit shown in Figure 1.12.                    [JNTU, 2010]

Solution:

Step 1: 4 F and 3 F are in series. So the equivalent capacitance 

is 
4   3

4 3

¥
+

 = 12/7 F

Step 2: This 12/7 F and 5 F are in parallel. So the equivalent 

capacitance is 
12

5
7

+  = 47/7 F

Step 3: The 2 F and 1 F are in series. So the equivalent capacitance is 
2 1 

2 1

¥
+

 = 2/3 F

Step 4: The 2/3 F and the 47/7 F are in parallel. 

  So the total equivalent capacitance is 
2 47

3 7
+  = 155/21 F or 7.38 F

Step 5: Applied voltage V = 100 V. Energy stored in the network is W = 21

2
CV

 W = 
1

 7.38 1 00 100
2

¥ ¥ ¥  = 36900 J

1.4
   SOURCES AND SOURCE 

TRANSFORMATION

1.4.1 Sources

The energy source in an electric circuit is the one which 

drives the electrons to flow in the circuit. They are classified 

on the basis of their terminal voltage–current characteristics 

as shown in Figure 1.13.

Figure 1.11

Example 1.5

Figure 1.12

University Questions

1.  Explain about voltage source and 

current source. Include ideal, practical, 

independent and dependent sources in 

your explanation. [GTU, 2010]

2.  Explain source transformation techniques 

with suitable circuits. [JNTU, 2012]
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Figure 1.13

An independent source is the one in which the source voltage or current is independent and unaffected 

by any other part of the circuit whereas, in a dependent source, the source voltage or current is variable 

and depends on another element in the circuit.

The most common energy sources used in electric circuits, their features and symbols are given in 

Table 1.1.

Table 1.1 Energy sources and their properties

Type of Source Important Feature Symbol

Independent ideal voltage source 

with constant magnitude

Zero internal resistance 

Independent ideal voltage source 

with time varying magnitude

Zero internal resistance 

Independent practical voltage 

source with constant magnitude

Has an internal resistance which 

is represented in series with the 

source

Independent ideal current source 

with constant magnitude

Infinite internal resistance

Independent ideal current source 

with time varying magnitude

Infinite internal resistance

Independent practical current 

source with constant magnitude

Internal resistance is represented 

in parallel with the source

(Continued)
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Type of Source Important Feature Symbol

Dependent voltage source

Dependent current source

1.4.2 Source Transformation

Sometimes while solving a problem, it may be more convenient to transform a voltage source to a 

current source or vice versa to simplify the circuit. The thumb rule is that any practical voltage source 

represented by a voltage V and its internal resistance R in series can be transformed into an equivalent 

current source with the same resistance now connected in parallel, where the value of current source 

is given by I = V/R. Similarly, any practical current source represented by a current I and its internal 

resistance R in parallel can be transformed into an equivalent 

voltage source with the same resistance now connected in series, 

where the value of voltage source is given by V = IR. Remember, 

that the terminal conditions, voltage and current of the original 

and the transformed network must remain same before and after 

the transformation.

Note that the arrow of the current source is directed towards the positive terminal of the voltage source.

 Find the voltage and current source equivalent representation of 

the network (Figure 1.15) across AB. [JNTU, 2010]

Solution

Step 1: Transforming the 4 V voltage source into equivalent current 

source of value = 4/2 = 2 A and connecting the 2 W we get 

the network shown in Figure 1.16 (a)

Step 2: Combining the current sources 

we get 2 + 2 = 4 A and combining 

the resistances in parallel we get 

2  2

2 2

¥
+

 = 1 W. So the current source 

equivalent representation is as shown in Figure 1.16 (b).

Step 3: We can find the voltage source equivalent representation from 

the circuit obtained in step 2. Transforming the current source of 

4 A into voltage source of 4 × 1 = 4 V and connecting the 1 W 

resistance in series we get the voltage source equivalent 

representation as shown in Figure 1.16 (c).

Figure 1.14

Example 1.6

Figure 1.15

 (a) (b)

(c)

Figure 1.16

Table 1.1 (Continued)
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 Using source transformation, reduce the network, shown in 

Figure 1.17, between A and B into an equivalent voltage source.  

                [JNTU, 2006]

Solution

Step 1: Transforming all the voltage sources into respective current 

sources and connecting the corresponding resistances in 

parallel, the circuit becomes Figure 1.18 (a).

Step 2: Combining the current sources and the resistances in 

parallel, the circuit becomes as shown in Figure 1.18 (b).

Step 3: Transforming the current sources to respective voltage 

sources and connecting the corresponding resistances in 

series, the circuit becomes as shown in Figure 1.18 (c).

Step 4: Combining the voltage sources and the resistances in series, 

the reduced network is obtained as as shown in Figure 1.18 (d).

Figure 1.18

 Reduce the network shown in Figure 1.19 to a single 

loop network by successive source transformation, to 

obtain the current in the 12 W resistor.

    [JNTU, 2006]

Solution

Step 1: Transform the 15 A current source into 

equivalent voltage source of value 15 × 4 = 60 V and connect the 4 W resistor in series. Also 

transform the 180 V voltage source into equivalent current source of value 180/24 = 7.5 A and 

connect the 24 W resistor in parallel. The circuit now becomes as shown in Figure 1.20 (a).

Example 1.7

Figure 1.17

Example 1.8

Figure 1.19
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Step 2: Combine the 7.5 A and 45 A current sources [Net value = 45 – 7.5 = 37.5 A] and the resistors 

12 W and 24 W in parallel. Also combine the 60 V and 30 V voltage sources and the resistors 

2 W and 4 W in series. The circuit becomes as shown in Figure 1.20 (b).

Figure 1.20

Step 3: Transform the 90 V voltage source into equivalent current source of value 90/6 = 15 A and 

connect 6 W in parallel as shown in Figure 1.20 (c).

Step 4: Keeping 12 W separate, as we need to find the current flowing in it, combine the current 

sources [37.5 – 15 = 22.5 A] and the resistors 24 W and 6 W in parallel as shown in Figure 

1.20 (b).

Figure 1.20

Step 5: Transform the 22.5 A source into voltage source of value 22.5 × 4.8 = 108 V and connect the 

4.8 W in series. Apply Ohm’s law to find the current I = 108/(4.8 + 12) = 6.428 A

1.5  STAR-DELTA TRANSFORMATION

Star connection and delta connection are two different 

ways of connecting resistances. If three resistors are 

connected such that one end of each resistor is connected 

together to form a junction point then the resistors are said 

to be connected in star. The connection is shown in 

Figure 1.21.

If three resistors are connected such that they 

form a closed loop or path then the resistors are said 

to be connected in delta. The connection is shown in 

Figure 1.22.

 Figure 1.21   Figure 1.22

University Question

1.  Given a delta circuit having resistors, write 

the required expressions to transform the 

circuit to a star circuit. [AU, 2012]
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Both the connections can be transformed into each other and the transformation technique is useful 

in solving complex networks and reducing the number of equations. 

1.5.1 Delta to Star Transformation

Consider three resistances R12, R23 and R31 connected in delta between terminals A, B and C as shown in 

Figure 1.23(a) and it is desired to convert it into star formation as shown by dotted lines. The equivalent 

star formation between the same terminals is shown in Figure 1.23(b).

The formulae for converting delta to star are 

as follows.

12 31
1

12 23 31

 
 

R R
R

R R R
=

+ +

12 23
2

12 23 31

 
 

R R
R

R R R
=

+ +

23 31
3

12 23 31

 
 

R R
R

R R R
=

+ +

1.5.2 Star to Delta Transformation

Consider three resistances R1, R2 and R3 connected in star between terminals A, B and C as shown in 

Figure 1.24 (a) and it is desired to convert it into delta formation as shown by dotted lines. The equivalent 

star formation between the same terminals is shown in Figure 1.24(b).

The formulae for converting star to delta are as follows.

             

1 2 2 3 3 1
12

3

   
 
R R R R R R

R
R

+ ¥+¥ ¥
=

1 2 2 3 3 1
23

1

 
R R R R R R

R
R

¥ ¥ ¥+ +
=

1 2 2 3 3 1
31

2

   
 
R R R R R R

R
R

¥ + ¥ + ¥
=

 Find the equivalent resistance between A and B as shown 

in Figure 1.25.              [AU, 2013]

Solution

Step 1: Convert the two deltas formed by 4.5 W, 3 W 

and 7.5 W into equivalent star formations. The 

transformed circuit will look like Figure 1.26(a).

Figure 1.23

Figure 1.24

Example 1.9

Figure 1.25
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  The values will be 

                       
1 6

4.5  7.5
  2.25 

4.5 7.5 3
R R

¥
= = = W

+ +

2 5

7.5  3
  1.5 

4.5 7.5 3
R R

¥
= = = W

+ +

3 4

4.5  3
  0.9 

4.5 7.5 3
R R

¥
= = = W

+ +

  as shown in Figure 1.26 (b).

Step 2: The 0.9 W, 4 W and 0.9 W are in series so 

the equivalent resistance is 0.9 + 4 + 0.9 = 

5.8 W
  Similarly the 1.5 W, 3 W and 1.5 W are in 

series. So the equivalent resistance is 1.5 + 3 + 1.5 = 6 W. The network becomes as shown in 

Figure 1.26 (c).

Step 3: The 5.8 W and 6 W are in parallel. So the equivalent resistance is 
5.8 6

5.8 6

¥
+

 = 2.95 W. The 

network becomes as shown in Figure 1.26 (d).

Step 4: This 2.95 W, 2.25 W and 2.25 W are in series. So the total equivalent resistance of the network 

is 2.25 + 2.95 +2.25 = 7.45 W as shown in Figure 1.26 (e).

  
 Figure 1.26(c)  Figure 1.26 (d) and (e)

 Calculate the total current supplied by the battery in the network 

shown in Figure 1.27.        (JNTU, 2013)

Solution

Step 1: The 3 W and 2 W are in series. So the equivalent resistance 

is 3 + 2 = 5 W. as shown in Figure 1.28 (a)

Step 2: Transform the delta of the three 5 W resistances into star. 

The value of each transformed resistance is 
5  5

5 5 5

¥
+ +

 = 

5

3
 W. as shown in Figure 1.28 (b)

Figure 1.26(a)

Figure 1.26(b)

Example 1.10

Figure 1.27
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Step 3: The 5/3 W and 8 W are in series. So the equivalent resistance is 
5

8  
3

+  = 9.67 W

  Similarly, the 5/3 W and 6 W are in 

series. So the equivalent resistance 

is 
5

6  
3

+  = 7.67 W as shown in 

Figure 1.28 (d)

 Step 4: The 9.67 W and 7.67 W resistances 

are in parallel. So the equivalent 

resistance is 
9.67  7.67

9.67 7.67

¥
+

 = 4.28 W 

as shown in Figure 1.28 (d)

Step 5: All the resistances are in series. So 

the total equivalent resistance is 

2 + 1.67 + 4.28 + 3 = 10.95 W.
Step 6: The total current supplied by the 24 V 

battery as calculated using Ohm’s law is I = 24/10.95 = 2.2 A.

 Determine the equivalent resistance of the circuit shown in 

Figure 1.29, using the star-delta transformation.

Solution

Step 1: There are two star connections – one consisting of the 

5 W, 4 W and 3 W resistors and another of 6 W, 4 W and 

8 W resistors. Transform both the connections into delta 

form as shown in Figure 1.30 (a) and (b).

The values are

          

¥ + ¥ + ¥
= = W

¥ + ¥ + ¥
= = W

¥ + ¥ + ¥
= = W

1

2

3

5 3 4 3 5 4
11.75   

4

5 3 4 3 5 4
15.67

3

5 3 4 3 5 4
 9.4

5

R

R

R

Figure 1.28

Example 1.11

Figure 1.29

Figure 1.30(a)
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Similarly,

The values are 

                        

¥ + ¥ + ¥
= = W

¥ + ¥ + ¥
= = W

¥ + ¥ + ¥
= = W

1

2

3

6  4 4 8 8 6
13  

8

6 4 4 8 8  6
26  

4

6  4 4  8 8  6
 17.3  

6

R

R

R

The circuit becomes as shown in Figure 1.30 (c)

Step 2: The three resistors 9.4 W, 17.3 W and 10 W are 

in parallel. So the equivalent resistance is 

  
1 1 1 1

   
9.4 17.3 10eqR

= + +  or Req = 3.78 W

Step 3: The resistances 13 W and 11.75 W are in parallel. 

So the equivalent resistance is 
13 11.75

13 11.75

¥
+

 = 

6.17 W

Step 4: The resistances 26 W and 15.67 W are in parallel. 

So the equivalent resistance is 
26 15.67

26 15.67

¥
+

 = 

9.78 W. The final transformed network is as 

shown in Figure 1.30 (d)

Step 5: The resistances 6.17 W and 3.78 W are in series. So the equivalent resistance is 6.17 + 3.78 

= 9.95 W
Step 6: The resistances 9.78 W and 9.95 W are in parallel. 

  So, the total equivalent resistance is 
9.78 9.95

9.78 9.95

¥
+

 = 4.93 W

1.6  SOURCE SHIFTING

In a network, if there is no resistance in series with a voltage source or if there is no resistance in 

parallel with a current source, then before applying source transformation it may be required to carry out 

“shifting of source” first. The shifting of voltage source is known as ‘V shift method’ while the shifting 

of current source is known as ‘I shift method’. Remember that the voltage and current configurations of 

the given network should not change while doing the source shifting.

Figure 1.30(b)

Figure 1.30(c)

Figure 1.30(d)
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1.6.1 Voltage Source Shifting

Consider the case where at a node in a network, a voltage source is connected to a couple of resistances 

and voltage source transformation cannot be carried out as shown in Figure 1.31 (a). In that case “pushing” 

of voltage source can be done through the node towards the individual branches of the network. The 

voltage source as shown in Figure 1.31 (b) now appears at every branch of the network in series with 

the resistances present in each of them. Remember the current distribution through the circuit remains 

unaffected. 

Consider another case where there are a couple of resistances joined at either ends of the voltage 

source as shown in Figure 1.32 (b). In this case, the voltage source may be either pulled or pushed while 

maintaining the same current distribution through the network as shown in Figure 1.32 (b).

Figure 1.31 Figure 1.32

1.6.2 Current Source Shifting

Consider the case in which there is a current source connected between two nodes as shown in 

Figure 1.33 (a). The source can be shifted to facilitate current source transformation while maintaining 

the same current at all the nodes of the network as shown in Figure 1.33 (b).

Consider another case where the current source is connected between two nodes as shown in 

Figure 1.34 (a). In this case, though there is a parallel resistance with the current source, the current 

source can be shifted as shown without affecting the original current distribution at the nodes of the 

network as shown in Figure 1.34 (b).

Figure 1.33 Figure 1.34
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 Using source shifting and source transformation find out the volt-

age Vx across the circuit shown in Figure 1.35. 

Solution

Step 1: Shift the voltage source through node while keeping in mind 

the polarities as shown in Figure 1.36 (a).

Step 2: Convert both the voltage sources into current sources as shown 

in Figure 1.36 (b).

Step 3: Both the 2 W resistances are in 

parallel. So the equivalent resistance 

is 
¥

= W
+

2 2
1

2 2
 as shown in Figure 

1.36 (c).

Step 4: Convert the 1 A current source to 

voltage source as shown in Figure 1.36 (d).

Figure 1.36

Step 5: Both the 1 W resistances are in series. So the equivalent 

resistance is 1 + 1 = 2 W as shown in Figure 1.36 (e).

Step 6: Convert the 1 V into current source of value 1/2 A and the 

same resistance in parallel as shown in Figure 1.36 (f).

Step 7: Combine the two current sources (2/3 + 1/2 = 7/6 

A). Also combine the 3 W and 2 W in parallel. So the 

equivalent resistance is 
¥

= W
+

3 2
1.2

3 2
 as shown in 

Figure 1.36 (g).

Figure 1.36

Step 8: The current flowing through the 5 W resistance is given by

 I = 
7 1.2 

 
6 1.2 5

¥
+

 = 0.2258 A

So the voltage Vx = 0.2258 × 5 = 1.129 V

Example 1.12

Figure 1.35

Figure 1.36

Figure 1.36(e)
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P O I N T S  T O  R E M E M B E R

  Electrical energy is measured in terms of watt-hour or kilowatt-hour given by the product of power in watts and 

time in hours.

  Resistance, inductance and capacitance are known as passive elements.

  The summary of three basic network elements is

Element Voltage Across Element Current Through Element

R v = iR i = v/R

L =
di

v L
dt

1
i v dt

L
= Ú

C
1

v i dt
C

= Ú
dv

i C
dt

=

  Ohm’s Law is given by V = IR where V is the applied voltage in the circuit, I is the total current and R is the total 

resistance of the circuit. 

  Ohm’s law is not applicable for nonlinear devices such as diodes and non-metallic conductors.

  Since source transformation cannot be applied to ideal sources, it is essential to shift the source within the 

network.

  Currents through the elements of a network and the voltages across them must not be affected by the shifting 

operation.

  Shifting of current source is called I-shift and shifting of voltage source is called V-shift.

  Summary of the equivalent of basic elements in series

Element Equivalent

Req = R1 + R2 + R3 + … + Rn

1 2

1 1 1 1

eq nL L L L
= + + +L

Ceq = C1 + C2 + C3 + … + Cn

  In a series resistive circuit, the same current flows in all the resistances.

  According to the voltage divider rule, voltage drop across any resistor in a series circuit is equal to the ratio of 

that resistance to the total resistance multiplied by the source voltage.

  Summary of the equivalent of basic elements in parallel is:

Element Equivalent

1 2 3

1 1 1 1 1

eq nR R R R R
= + + + +L
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Element Equivalent

Leq = L1 + L2 + L3 + … + Ln

1 2

1 1 1 1

eq nC C C C
= + + +L

  In a parallel circuit the voltage is same across all the resistances.

  According to the current divider rule, the current in any branch resistor of a parallel circuit is equal to the ratio 

of the value of resistance in the opposite branch to the total resistance of the two branches multiplied by the total 

current in the network.

  An independent ideal voltage source with constant magnitude has zero internal resistance whereas an ideal 

current source has infinite internal resistance.

  If a voltage source has internal resistance it is represented as a resistor in series with the source whereas, if a 

current source has internal resistance it is represented as a resistor in parallel with the source.

  Source transformation is the method of replacing a voltage source in series with a resistor anywhere in the 

network by an equivalent current source in parallel with the same resistance value or vice versa to simplify 

networks and facilitate combination.

  Source transformation is not applicable for ideal sources.

  In source transformation the head of the current source arrow corresponds to the positive terminal of the voltage 

source.

  To convert a star network to a delta network, the new resistor values are calculated using

             

1 2 2 3 3 1

12

3

     R R R R R R
R

R

¥¥ + + ¥
= 1 2 2 3 3 1

23

1

      
 
R R R R R R

R
R

¥ + ¥ + ¥
=

1 2 2 3 3 1

31

2

      
 
R R R R R R

R
R

¥ + ¥ + ¥
=

  To convert a delta network to a star network, the new resistor values are calculated using

                         

12 31

1

12 23 31

 
 

R R
R

R R R
=

+ +
12 23

2

12 23 31

 
 

R R
R

R R R
=

+ +
23 31

3

12 23 31

 
R R

R
R R R

=
+ +

PRACTICE PROBLEM

 1. A heater is operated at 220 V and has an 

efficient of 99%. The energy consumed is 

1.5 kWhr in one hour. If it is required to 

boil a liquid that requires 100 kJ of energy, 

find the time needed to boil it. What is the 

resistance of the heater?

 2. A circuit consists of two parallel resistors 

having resistances of 20 W and 30 W 

respectively, connected in series with a 

15 W resistor. If the current through 30 W 

resistor is 1.2 A, find (i) currents in 20 W 

and 15 W (ii) the voltage across the whole 

circuit (iii) voltage across 15 W and 20 W 

resistor (iv) total power consumed in the 

circuit.

 3. Find the equivalent resistance between A 

and B.
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Figure 1.37

 4. Replace the given circuit between A and B 

to a single voltage source and a resistor. 

Figure 1.38

 5. Find the equivalent resistance between 

A and B using star delta transformation 

technique.

Figure 1.39

 6. Find the equivalent resistance between 

A and B using star delta transformation 

technique.

Figure 1.40

 7. Calculate the voltage across the 6 W 

resistance using source–shifting and source 

transformation technique. 

Figure 1.41

MULTIPLE CHOICE QUESTIONS

 1. An electric heater is rated to 2 kW, 200 V. The resistance of the heater coil is 

 (a) 10 W (b) 0.1 W (c) 20 W (d) 200 W

 2. The condition for the validity under Ohm’s Law is that the

 (a) temperature should remain constant (b) current should be proportional to voltage

 (c) resistance should be wire wound type (d) all of the above

 3. Three resistors of 4 W, 6 W and 9 W are connected in parallel in a network. Maximum power will be 

consumed by 

 (a) 4 W (b) 6 W  (c) 9 W  (d) All resistors

 4. Three resistances each of equal value R are connected in star formation. The equivalent delta will have 

three resistances of equal value which is 

 (a) R/3  (b) 3R  (c) 2/3R  (d) R/2

 5. Three resistances each of equal value R are connected in delta formation. The equivalent star will have 

three resistances of equal value which is 

 (a) R/3 (b) 3R  (c) 2/3R (d) R/2

ANSwerS To MUlTiple ChoiCe QUeSTioNS

 1. (c) 2. (a) 3. (b) 4. (c) and (d) 5. (c)



  

2.1  INTRODUCTION

2.1.1  Application of Graph Theory in 
Electrical Circuit Analysis

Topology or Graph Theory is a branch of Mathematics which can be utilised to study an electrical 

network. Certain aspects of electrical network behaviour can be easily analysed by converting it into a 

graph. For example, network equations based on Kirchhoff’s law can be formulated with relative ease 

and therefore can be visualised better from a graph of an electrical network.

2.1.2  Some Definitions Relating to Graph Theory 

a. Graph

A graph of an electrical network consists of nodes and branches in which each branch represents the 

corresponding element in the electrical circuit such as resistor, capacitor or inductor, while nodes relate 

to similar terminals of the electrical circuit.

A branch is represented by a line segment, which connects a pair of nodes in the graph. Nodes are 

end points of a branch.

University Question

1.  Explain the formulation of graph, tree, and 

incidence matrix using suitable examples.

 [GTU, 2012] 

 

Methods of Analysing 
Circuits

2

 Network topology

 Planar and non-planar graphs

  Incidence matrix (A), and its properties

 Link currents: Tie-set matrix

 Cut set and tree branch voltage

 Kirchoff’s current law (KCL)

 Kirchoff’s voltage law (KVL)

 Mesh analysis

 Mesh equations by inspection method

 Supermesh analysis

 Nodal analysis

 Nodal equations by inspection method

 Supernode analysis

 Network equilibrium equations

 Duality

Chapter Outline
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b. Directed Graph

Every branch of a directed graph is indicated with direction corresponding to the assumed direction of 

current in the electrical network.

c. Degree of Node

It is the number of branches which are incident or connected to a node.

d. Planar and Non-Planar Graphs

Planar graph can be drawn on a plane surface with no two branches intersecting each other. But there are 

some pairs of branches in a Non-Planar graph which are not in a same plane. 

2.1.3 Conversion of an Electrical Network to a Graph 

Figure 2.1 presents an equivalent graph of the electrical 

network. It can be noted from the figure that each circuit 

element of electrical network is represented as a line 

segment in the associated graph. Additionally, there are 

5 nodes and the directions of branches corresponding to 

voltage and current sources are similar to those indicated 

in the electrical circuit. On the other hand, the directions 

of branches corresponding to resistances are indicated 

arbitrarily. 

2.2  NETWORK TOPOLOGY

2.2.1  Tree and Twigs

A tree is a connected subgraph of a network, which consists 

of all the nodes of the original graph but no closed paths. 

Following points can be noted in this respect:

 ∑ A graph of an electrical network may have a number of trees.

 ∑ The number of nodes in a tree is equal to the number nodes in the corresponding graph. 

 ∑ The number of branches in a tree is less than the number of branches in a graph. 

 ∑ Branches of a tree are called Twig.

2.2.2 Co-Tree and Links

A co-tree is the remaining branches of a graph which are not utilised in a particular tree. 

 ∑ Every tree has a corresponding co-tree.

 ∑ Branches of tree are called as Links.

It is clear from above that every pair of tree and co-tree when combined re-constructs the original 

graph.

 ∑ Graph = Tree + Co-Tree

 ∑ Number of branches of a Graph = Twigs + Links

Figure 2.1

University Questions

1.  Define tree and co-tree. [PTU, 2011-12]

2.  Define tree, co-tree, twig, and link.

 [PTU, 2009-10] 
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For a graph of an electrical network, if b = number of branches and n = number of nodes, then for a 

particular set of tree and co-Tree, 

 ∑ Number of Twigs (also known as Rank of a Tree) = n – 1

 ∑ Number of links l = b – n + 1

 ∑ If a link is added to a tree, then that tree 

subsequently contains one closed path. This 

closed path is called a loop.

For example, the following graph (Figure 2.2) has 

one possible combination of a tree and co-tree.

 Graph = Tree + Co-tree

 Draw the graph, one tree and co-tree of the network shown in Figure 2.3.

Solution We find that there are four nodes (N = 4) and seven branches 

(B = 7). Figure 2.4(a) represents the graph of the given network. It may be 

noted that node d, represented in the graph, represents 

both the nodes d and e of the network.

The tree is made up of branches 2, 5 and 6. The co-tree 

for this tree is obtained by considering the branches other 

than the tree branches. The co-tree has L = B − N + 1 

= 7 − 4 + 1 = 4 links as shown in Figure 2.4(b). 

 Draw a tree of the network shown in Figure 2.5 taking the branches 

denoted by (b2), (b4), and (b5) as tree branches.   [GTU, 2011]

Solution The associated graph network can be obtained as shown 

in Figure 2.6(a).

+–

+
–

10 V

( 2)b
2

1
3

0

2 W
5 W j5

( 4)b

5 ( 3)W b

( 5)b

2 W– 4j

10 V

( 6)b( 1)b

fi

b1

b2

b3

b4

b5 b6

Figure 2.6 (a)

The required tree is drawn from the above graph and is shown in 

Figure 2.6(b).

Figure 2.2

Example 2.1

Figure 2.3

 
Figure 2.4

Example 2.2

Figure 2.5

Figure 2.6 (b)

Note: Difficulty Level    — Easy;  — Medium;  — Difficult
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2.3  INCIDENCE MATRIX (A)

Incidence Matrix (A) shows an incidence of elements to 

nodes in a connected graph. It is a mathematical replica 

of the graph, therefore, the associated graph can be easily 

constructed and vice versa.

The dimension of the matrix A is n × b where n is the 

number of nodes and b is number of branches. 

2.3.1   Procedure of Obtaining Incidence 
Matrix (A)

Rows of Incidence Matrix refer to nodes while columns 

refer to branches of the connected graph. Each entry in 

Matrix A could be either 0, 1 or –1 depending upon the 

relation between the node and branch under consideration. 

It obeys the following rules:

 ∑ 0 = If a branch is not connected with the node under 

consideration.

 ∑ 1 = If a branch is connected with the node under consideration but its direction is away from the 

node.

 ∑ –1 = If a branch is not connected with the node under consideration but its direction is towards 

the node.

2.3.2  Reduced Incidence Matrix (AI) 

All rows of an Incidence Matrix are not linearly independent, i.e., any one row of an Incidence Matrix 

can be expressed in a linear combination of all remaining rows. This gives rise to a concept of a Reduced 

Incidence Matrix (AI) wherein all rows are linearly independent and number of rows are one-less than 

from an Incidence Matrix.

For a graph having n nodes and b branches, the dimension of a complete Incidence Matrix A is 

n × b, while the dimension of Reduced Incidence Matrix is (n – 1) × b.

 ∑ Incidence Matrix (A) to Reduced Incidence Matrix (AI): It is noted that numerical sum of all 

entries of a column of Incidence Matrix is ZERO. A Reduced Incidence Matrix AI is obtained 

by removing any one row of the incidence matrix.

 ∑ Reduced Incidence Matrix (AI) to Incidence Matrix (A): As we know that the number of 

rows in A is one-more than AI, therefore, this additional row in AI can be obtained by generating 

additional entries such that a total sum of all entries in every column of A is ZERO. This is 

explained in the following two matrices:

University Questions

1.  Define incidence matrix. [PTU, 2009-10] 

2.  Discuss the procedure of forming reduced 

incidence matrix and its advantages.

 [GTU, 2012]

3.  Explain about linear oriented graph, 

incidence matrix and circuit matrix. Show 

Kirchhoff’s laws in incidence-matrix 

formulation and circuit-matrix formulation.

 [GTU, 2010]

4.  Discuss the procedure of forming tie-set 

matrix and its advantages.

5.  Define basic cut-sets and procedure for 

formulation of cut-set matrix.

6.  Define basic cut-set. [PTU, 2011–12]

7.  Explain the fundamental cut-set matrix tak-

ing a suitable example. [PTU, 2009–10]
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0 1 1 1 0 0 0

0 0 0 1 1 0 0
[ ] [ ]0 0 0 1 1 0 0

0 0 0 0 1 1 0
0 0 0 0 1 1 0

0 0 1 0 0 1 1
0 0 1 0 0 1 1

1 0 0 0 0 0 1

a

b

c
A A

d

e

f

-
-

-
-

-
= =-

-
-

- -
- -

-

It can be noted from above that the order of AI is 5 × 7 while the order of A is 6 × 7. The additional 

6th row of A is obtained by ensuring that a total sum of all entries in every column is zero. 

 Refer the network shown in Figure 2.7, obtain the corresponding 

incidence matrix.

Solution The given network has five nodes and eight branches. The 

corresponding graph is drawn as in Figure 2.8.

Utilising the methodology given in relevant section of this chapter 

for obtaining Incidence matrix:

  Node         Branches

a b c d e f g h

1 –1 0 0 1 0 1 0 0

2 1 –1 0 0 0 0 1 0

3 0 1 –1 0 1 0 0 0

4 0 0 1 –1 0 0 0 1

5 0 0 0 0 –1 –1 –1 –1

 For the network shown in Figure 2.9, draw the oriented graph and all 

possible trees and also prepare incidence matrix. [GTU Dec. 2012]

Solution The oriented graph is (Figure 2.10a)

Figure 2.10 (a)

Example 2.3

Figure 2.7

Figure 2.8

[A] =

Example 2.4

Figure 2.9
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The possible trees are (Figure 2.10b)

Figure 2.10 (b)

The incidence matrix is

-È ˘
Í ˙-Í ˙
Í ˙- -
Í ˙

- -Î ˚

1 1 0 0 0 1

1 0 1 0 1 0

0 0 1 1 0 1

0 1 0 1 1 0

elements

Nodes 1 2 3 4 5 6

0

1

2

3

2.4  TIE-SET AND TIE-SET MATRIX (B) 

A tree of a graph does not contain any closed path or loop, while if a link (i.e. a branch of associated co-

tree) is added to this tree then a loop will be formed. This loop is called Fundamental Loop or Tie-Set. It 

can be easily deduced that the number of fundamental loops for a tree will be equal to number of links 

(i.e. l = b – n + 1) of the associated co-tree.

The currents in every fundamental loop associated with every link are called link currents. These 

link/loop currents can be utilised to write Kirchhoff’s voltage equations for the associated fundamental 

loops, which in turn, can be solved to obtain branch currents of a graph.

2.4.1  Procedure of Obtaining Tie-Set Matrix (B)

The dimension of a tie-set matrix is l × b. Following procedure is utilised to construct a tie-set matrix:

 ∑ Arbitrarily select a tree in the graph.

 ∑ Form fundamental loops with each link in the graph for the entire tree.

 ∑ Assume directions of loop currents oriented in the same direction as that of the link.
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 ∑ Rows of tie-set matrix refer to loop currents while columns refer to branch currents of the 

connected graph. Each entry in Matrix B could be either 0, 1 or –1 depending upon the relation 

between the loop currents and branch current under consideration. It obeys the following rules:

  0 = If a branch current is not the part of fundamental loop under consideration

  1 = If a branch current is in same direction to that of loop current under consideration 

  –1= If a branch current is in opposite direction to that of loop current under consideration

 Formulate the tie-set matrix for the graph shown in Figure 2.11. 

Solution Tree branches: d, e, f

Links: a, b, c

Link current directions will be similar to loop currents. Following is the 

procedure for constructing the tie-set matrix as outlined in relevant section:

 Link    Branches

a b c d e f

a 1 0 0 1 –1 0

b 0 1 0 0 1 –1

c 0 0 1 –1 0 1

 Draw a tree of the electrical circuit and tie-set matrix as shown in 

Figure 2.12.

Solution The following tree [Figure 2.13(a)] is considered for the 

given problem:

Figure 2.13 (a)

Arbitrary directions are assumed for each branch of the graph, therefore direction graph is obtained 

as given in Figure 2.13(b).

Let l1, l3, l6 be the links with loop currents I1, I3, I6 respectively.

The tie-set matrix is

 Link      Branches + Links

b1 b2 b3 b4 b5 b6

l1 1 1 0 0 1 0

l3 0 –1 1 –1 0 0

l6 0 0 0 1 –1 1

Example 2.5

Figure 2.11

[B] =

Example 2.6

Figure 2.12

Figure 2.13 (b)

[B] =
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2.5  CUT-SETS

A cut-set is a minimal set of branches of a connected graph such that the removal of these branches 

causes the graph to be cut into exactly two parts. A cut-set is defined using the expression {x, y, z}, 

wherein x, y, and z represent the graph branches/links which cut the graph into two equal parts. 

Following points can be noted in this respect:

 ∑ A cut-set consists of one and only one twig and links.

 ∑ The important property of a cut-set is that by restoring any one of the branches of the cut-set, 

the graph should become connected. 

 ∑ The direction for cut-set is selected arbitrarily. The directions of some graph branches may 

coincide with the cut-set direction while other branches may have opposite direction. 

2.5.1  Procedure of Obtaining Cut-Sets Matrix (Q)

Based on the direction of graph branches with respect to cut-set direction, Cut-Set Matrix (Q) is 

formulated. Rows of Cut-Set Matrix Q refer to cut-sets, which are identified for a graph while columns 

refer to branch currents of the connected graph. Each entry in Matrix Q could be either 0, 1 or –1 

depending upon whether direction of a branch coincides with the cut-set direction or not. It obeys 

following rule:

 ∑ 0 = If a branch does not form the part of cut-set under consideration 

 ∑ 1 = If a branch current is in same direction to that of cut-set direction under consideration 

 ∑ –1= If a branch current is in opposite direction to that of cut-set direction under consideration

An augmented cut-set matrix is formed by utilising all possible number of cut-sets (q) associated 

with the graph. Following expression is utilised to form augmented cut-set matrix.

 Q × Ib = 0

where Q is augmented cut-set matrix of order (q × b),

Ib is branch-current vector of order (b × 1)

0 is zero vector of order (b × 1)

2.5.2 Fundamental Cut-Sets

The concept of fundamental cut-set (f-cut-set) can be used to obtain a set of linearly independent 

equations in branch current variables. The f-cut-sets are defined for a given tree of the graph.

Following procedure is utilised to obtain f-cut-sets 

 ∑ From a connected graph, first select a tree and then select a twig. 

 ∑ Identify the links which are required along with this twig to form the other part of the tree. Thus, 

a fundamental cut-set of a graph, with respect to a tree, is a cut-set that is formed by one twig 

and a unique set of links. 

 ∑ For each branch of the tree, i.e. for each twig, there will be a f-cut-set. Therefore, for a connected 

graph having n nodes, there will be (n – 1) twigs in a tree, and the number of f-cut-sets will also 

be equal to (n – 1).
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The fundamental cut-set matrix (Qf) is one in which each row represents a cut-set associated with 

a twig of the selected tree. The rows of Qf correspond to the fundamental cut-sets and the columns 

correspond to the branches of the graph.

The only difference between augmented cut-set matrix and fundamental cut-set matrix is that the 

latter represents a set of t (number of twigs in a tree under consideration) linearly independent equations 

which can be solved to obtain actual branch current values.

 Explain the fundamental cut-set matrix taking a suitable example.    [PTU 2009–10]

Solution The fundamental cut-set matrix (Qf) is one in which each row represents a cut-set 

associated with a twig of the selected tree. The rows of Qf correspond to the fundamental cut-sets and 

the columns correspond to the branches of the graph.

Consider the electrical network shown in Figure 2.14(a).

Fundamental cut-set C1, C2 and C3 can be drawn for the network given 

in Figure 2.14(b):

The fundamental cut-sets are identified as,

 f-cut-set-1: [1, 4, 6]

 f-cut-set-2: [3, 5, 6]

 f-cut-set-3: [1, 2, 3]

The fundamental cut-set matrix is given as:

1 2 3 4 5 6

C1 –1 0 0 1 0 1

C2 0 0 –1 0 –1 –1

C3 –1 –1 1 0 0 0

 For the network shown in Figure 2.15, obtain (a) Fundamental tie-set 

matrix (b) Fundamental cut-set matrix.    [GTU, 2012]

Solution The fundamental tie-set matrix is [Figure 2.16(a)]

- - +È ˘
Í ˙
Í ˙
Í ˙Î ˚

elements

1

2

3

1 2 3 4 5 6

1 0 1 0 0 1

Basic loop currents 1 1 1 1 0 0

1 1 0 0 1 0

I

I

I

Figure 2.16 (a)

Example 2.7

Figure 2.14 (a)

Figure 2.14 (b)

Qf =

Example 2.8

Figure 2.15
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The fundamental cut-set matrix is [Figure 2.16(b)]

    
- -È ˘

Í ˙- -Í ˙
Í ˙- -Î ˚

elements

1

2

3

1 2 3 4 5 6

1 0 0 1 1 1

Cut-sets 0 1 0 1 1 0

0 0 1 1 1 1

C

C

C

Figure 2.16 (b)

2.6  KIRCHOFF’S CURRENT LAW (KCL)

KCL (Kirchhoff’s current law) law states that the algebraic 

sum of currents entering a node is zero. For applying KCL, 

we need to add each branch current entering the node and 

subtract each branch current leaving the node.

Â Current entering at the node – Â Current leaving at the node = 0

KCL holds for every node in a network and it works at every point in time. KCL is essentially the 

conservation of charge that charge can neither be created nor be destroyed. 

For example, a node of an electrical network has current configuration as 

shown in Figure 2.17.

Applying KCL leads to the following equation:

  iA + iB – iC – iD = 0

KCL in Tie-Set Matrix (B)

Tie-set matrix results in linear independent equation in terms of branch and link currents.

 [Ib] = [BT
] [IL]

where Ib is branch current vector of order (b × 1)

[BT
] is the transpose of the Tie-Set Matrix of order (b × l)

IL is loop current vector of order (l × 1)

KCL in Cut-Set Matrix (Q)

Cut-set matrix results in linearly independent equations in terms of branch currents.

 [Qf][Ib] = 0

where Ib is branch current vector of order (b × 1)

[Qf] is the augmented Cut-Set Matrix of order (b × t)

University Question

1.  Show Kirchhoff’s current law in incidence-

matrix and tie-set matrix formulation.

 [GTU, 2010]

Figure 2.17
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 Find the current in 20 W resistance by applying KCL 

(Figure 2.18).       [PTU, 2011-12]

Solution Applying KCL for Node A:

              
0

15 0
10 10

A A BV V V- -
- + + =

fi                                  2VA – VB = 150 (2.1)

Applying KCL for Node B:

         
0 0

0
10 10 20

B A B BV V V V- - -
+ + =

fi             VA = 5VB (2.2)

Solving Eqs (2.1) and (2.2) gives VB = 83.33 V

Current in 20 W resistance = VB/20 = 83.33/20 = 4.165 A

 Use KCL to find the current delivered by the 24V source (Figure 2.19).

Solution Applying Kirchhoff’s current law at the node assuming 

that voltage of this node is V1, we have

            

1 1 124 36
2 0

5 20 10

V V V- -
+ + - =

Solving above equation, we get, V1 = 29.7 V

Current delivered by the 24V source is: 

                I = 1 24
1.14 A

5

V -
=

2.7  KIRCHOFF’S VOLTAGE LAW (KVL)

This law states that the algebraic sum of voltages around any closed path 

(loop) is zero. For applying KVL, beginning with one node, add voltages 

across each branch in the loop (if you encounter a + sign first, i.e. a 

voltage drop) and subtract voltages (if you encounter a – sign first, i.e. a 

voltage rise).

Â voltage drops across the loop – Â voltage rises across the loop = 0

Applying KVL in the electrical network shown in Figure 2.20.

                     v1 + (–v2) + (−v3) = 0

Example 2.9

Figure 2.18

Example 2.10

Figure 2.19

Figure 2.20
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KVL in Tie-Set Matrix (B)

Tie-set matrix results in linearly independent equations for branch voltages.

                                  [BT
][Vb] = 0

where Vb is branch voltage vector of order (b × 1)

[B] is the transpose of the Tie-Set Matrix of order (l × b),

KVL in Fundamental Cut-Sets Matrix (Qf)

Cut-set matrix results in linearly independent equations in terms of branch and twig voltages.

 [Vb] = [Qf
T
][Vt]

where Vb is branch-voltage vector of order (b × 1)

[Qf
T
] is the transpose of the Fundamental Cut-Set Matrix of order (b × t)

Vt is twig-voltage vector of order (t × 1)

 Determine the current IL in the electrical circuit shown in Figure 2.21 

using KVL.               [AU, 2012]

Solution Applying mesh analysis for Mesh 1,

 –3(I1 – I3) – 5(I1 – I2) – I1 + 8 = 0

         3(I1 – I3) + 5(I1 – I2) + I1 = 8

                          9I1 – 5I2 – 3I3 = 8 (2.3)

Applying mesh analysis for Mesh 2,

  –3(I2 – I3) –I2 – 6 – 5(I2 – I1) = 0

  3(I2 – I3) + I2 + 6 + 5(I2 – I1) = 0

                       –5I1 + 9I2 – 3I3 = –6 (2.4)

Applying mesh analysis for Mesh 3,

 4 – 3I3 – 3(I3 – I2) – 3(I3 – I1) = 0

                         3I1 + 3I2 – 9I3 = –4 (2.5)

Solving Eqs (2.3), (2.4), and (2.5), we get,

         I1 = 1.67 A

         I2 = 0.67 A

         I3 = 1.22 A

         IL = I1 – I2 = 1.67 – 0.67 = 1 A

Example 2.11

Figure 2.21
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2.8  MESH ANALYSIS

Mesh Analysis is a useful technique for solving electrical 

circuits, which involves a number of voltage sources. 

The technique involves writing KVL equations for each 

identified mesh or closed circuit paths. In general, if we 

have B branches and N nodes, including the reference node, then the number of linearly independent 

mesh equations M = B – (N – 1).

A mesh is a loop which does not contain any other loop within it. Following procedure is adopted for 

performing Mesh Analysis:

 ∑ Identify all possible meshes or closed paths in the given circuit.

 ∑ Assume current I1, I2, ….etc. for each identified mesh.

 ∑ Voltage drops for each impedance element should be indicated along the direction of current 

(i.e. + sign for current entering position and – sign for current leaving position). 

 ∑ Write KVL equations for each mesh. 

 ∑ Solve these KVL equations for unknowns.

 Using mesh analysis, determine the current through the 1 W resistor 

in the circuit shown in Figure 2.22.      [AU, 2013]

Solution Applying KVL 

For the loop 1: 18I1 – 5I2 – 3I3 = 50 (2.6)

For the loop 2: 8I2 – 5I1 – I3 = –10 (2.7)

For the loop 3: 4I3 – 3I1 – I2 = –5 (2.8)

By solving Eqs (2.6), (2.7), and (2.8), we can get

 I1 = 3.30 A,

 I2 = 0.9972 A,

 I3 = 1.4747 A

Current through the 1 W resistor is (I3 – I2) = (1.4747 – 0.9972) = 0.4775 A

2.9  SUPERMESH ANALYSIS

Supermesh Analysis technique is suitable for electrical circuits involving current sources where it is 

tedious to write mesh analysis equations because the voltage drop across a current source is unknown.

For Supermesh analysis, we consider a Supermesh for those two meshes, which contain a common 

current source, and write KVL equations bypassing the current source instead of writing KVL equations 

separately for both meshes. Additionally, we write a current equation (current source constraint equation) 

involving both mesh current and current source. 

University Question

1.  Distinguish between mesh and loop of an 

electric circuit. [AU, 2013]

Example 2.12

Figure 2.22



2.14  Circuits and Networks

 Find currents in various branches of the circuit shown in Figure 2.23. 

Solution The given circuit can be re-drawn as shown in 

Figure 2.24 by considering two meshes.

As we cannot write KVL for meshes a and b because there is 

no way to express the voltage drop across the current source in 

terms of the mesh currents. 

Therefore, we define a “Supermesh” – a mesh which does not 

involve a branch containing the current source. Apply KVL for 

this Supermesh. 

 18 – 3Ia – 9Ib + 15 = 0 (2.9)

Constraint due to current source:

 Ib – Ia = 3 (2.10)

Substituting Eq. (2.9) in Eq. (2.10)

 Ia = 0.5 A, Ib = 3.5 A 

2.10  MESH EQUATIONS BY INSPECTION METHOD

The mesh equations for a general planar network can be written by inspection without going through the 

detailed steps. Consider three mesh networks as shown in Figure 2.25.

The general equations for the three-mesh network are:

  ± R11I1 ± R12I2 ± R13I3 = Va

 ± R21I1 ± R22I2 ± R23I3 = Vb

 ± R31I1 ± R32I2 ± R33I3 =Vc

where,

Rii = Self-resistance in mesh i

Rij = Mutual resistance between mesh i and j

 Vi = Sum of driving voltage in mesh i

 Formulate the mesh equation matrix through inspection method 

for the electrical circuit in Figure 2.26. 

Solution Applying direct inspection method described in the 

relevant section of this chapter. The input voltage vector v in 

volts:

 v1 = 4, v2 = 10 – 4 = 6,

 v3 = –12 + 6 = –6, v4 = 0, v5 = –6

Example 2.13

Figure 2.23

Figure 2.24

Figure 2.25

Example 2.14

Figure 2.26
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The mesh-current equations are:
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2.11  NODE ANALYSIS

Node Analysis is a useful technique for solving electrical circuits, which involves a number of current 

sources. The technique involves writing KCL equations for each identified node except reference node 

or ground node. In general, if we have B branches and N nodes, including the reference node, then the 

number of linearly independent mesh equation is M = B – (N – 1).

The following procedure is adopted for performing Mesh Analysis:

 ∑ Identify all possible nodes in the given circuit.

 ∑ Assume voltages V1, V2, ….etc. for each identified node and zero voltage for reference node.

 ∑ Expression for current in each circuit element can be obtained using Ohm’s law, i.e. current will 

be voltage difference (across the element) divided by the impedance. 

 ∑ Write KCL equations for each node.

 ∑ Solve these KCL equations for unknowns.

 Using nodal analysis techniques, determine the current ‘i’ in the 

network shown in Figure 2.27.     [JNTU, 2012]

Solution

Applying KCL for node A: A A B V V V
i

0
3 3 0

10 10

- -
+ + + =  (2.11)

Applying KCL for node B: B AV V
i i5 3 0

6

-
+ - - =  (2.12)

Solving Eqs (2.11) and (2.12); VA = –226.74 V, VB = 98.69 V

Current ‘i’ can be obtained using Ohm’s law:

fi i = 
98.69

24.67
4 4

BV
A= =

Example 2.15

Figure 2.27
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2.12  NODAL EQUATIONS BY INSPECTION METHOD

The nodal equations for a general planar network can also be written by inspection, without going 

through the detailed steps. The general equations for the two-node network are:

 GaaVa + GabVb = I1

 GbaVa+ GbbVb= I2

where, Gii = Self-conductance at node i

 Gij = Mutual conductance between node i and j

   Ii = Sum of driving current node i

 Write the node equations by the inspection method shown in  

Figure 2.28.

Solution Self-inductances at various nodes can be determined as 

follows.

 ∑ The self-conductance at the node a is the sum of the 

conductances connected to the node a.

 Gaa = (1 + 1/2 + 1/3) mho

 ∑ The self-conductance at the node b is the sum of the conductances connected to the node b.

 Gbb = (1/6 +1/5 + 1/3) mho 

 ∑ The mutual conductance between nodes a and b is the sum of the conductances connected 

between nodes a and b.

 Gab = (1/3) mho

The sum of the mutual conductances between nodes b and a.

 Gba = –(1/3)

Source current at node a: I1 = 10/1 = 10A

Source current at node b: I2 = (2/5 +5/6) = 1.23A

Therefore, nodal equations can be written as follows:

 1.83Va – 0.33Vb = 10

 –0.33Va + 0.7Vb = 1.23

2.13  SUPERNODE ANALYSIS

Supernode Analysis technique is suitable for electrical circuits involving voltage sources connected 

between adjacent nodes.

In this method, the two adjacent nodes that are connected by a voltage source are reduced to a single 

node and then the equations are formed by applying KCL as usual.

Example 2.16

Figure 2.28
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 What is the current through a voltage source connected between 

nodes shown in Figure 2.29?

Solution The given problem can be solved using nodal analysis as 

there is no resistance in branch containing 22 V source. However, we 

can eliminate the need for introducing a current variable in this branch 

by applying KCL to the Supernode consisting of node 2 and node 3 

(Figure 2.30).

Applying KCL at Node 1 and the Supernode (node 2 and node 3) 

and writing constraint equation for Supernode.

Applying KCL at Node 1:

     
V VV V --

+ = - -1 31 2 3 8
3 4

 (2.13)

Applying KCL for Supernode consisting of Node 2 and 3:

    --
+ + + = - - - -3 3 12 2 1 ( 25) ( 3)

1 3 5 4

V V VV V V  (2.14)

Equation for Supernode:

 v3 – v2 = 22 (2.15)

Solving Eqs (2.13), (2.14) and (2.15);

 v1 = 1.071 V

2.14  NETWORK EQUILIBRIUM EQUATIONS

The Network Equilibrium Equations are a set of equations that completely and uniquely determine the 

state of a network at any instant of time. These equations are written in terms of suitably chosen current 

variables or voltage variables.

These equations will be unique if the number of independent variables chosen for the given network 

are equal to the number of independent equations.

 For the network shown in Figure 2.31, draw the graph and write down 

the tie-set matrix. Obtain network equilibrium equations for this 

network.                [RGTU, 2013]

Solution The graph of given network can be drawn as shown in 

Figure 2.32. Tie-set Matrix of above graph is 

Tie-set matrix = 
1

2

3

1 1 0 0 1 0

0 1 1 0 0 1

0 0 0 1 1 1

a b c d e f

i

i

i

-È ˘
Í ˙-Í ˙
Í ˙-Î ˚

Example 2.17

Figure 2.29

Figure 2.30

Example 2.18

Figure 2.31

Figure 2.32
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Network Equilibrium Equations involving branch voltage can be obtained from the rows of above 

tie-set matrix:

 V1 – V2 + V5 = 0

 V2 + V3 – V6 = 0

 V4 – V5 + V6 = 0

V1 V2 V3 V4 V5 and V6 are branch voltages.

2.15  DUALITY

Two electrical networks are dual if electrical 

parameters in both the networks are dual to each 

other. Table 2.1 lists the duality which exists 

between various electrical circuit parameters and 

properties:

Procedure of Obtaining a Dual Network

 ∑ Place a node at the center of each mesh of 

the circuit.

 ∑ Place a reference node (ground) outside 

the circuit.

 ∑ Draw lines between nodes such that each 

line crosses an element.

 ∑ Replace the element by its dual pair.

 ∑ Determine the polarity of the voltage source and direction of the current source. The underlying 

principle is: A voltage source that produces a positive mesh current has as its dual a current 

source that forces current to flow from the reference ground to the node associated with that 

mesh. 

 Find the dual of the electrical circuit shown in Figure 2.33?

Figure 2.33

Table 2.1 Duality Between Electrical Quantities

Duality between

Voltage (V) Current (I)

Series Parallel

Resistance (R) Conductance (G)

Capacitance (C) Inductance (L)

Reactance (X) Susceptance (B)

Short circuit Open circuit

KCL KVL

Example 2.19
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Solution The dual circuit for the given network can be found by following the steps listed above.

Step 1: Step 2:

Figure 2.34 (a)
Figure 2.34 (b)

Step 3:

Figure 2.34 (c)

Step 4:

Component in 

Original circuit

Its Dual

Voltage source (4 V) Current source (4 (A)

Resistor Ra (1 KW) Conductor R1 (1/1 kW = 1 mW)

Resistor Rb (4 kW) Conductor R2 (1/4 kW = 0.25 mW)

Resistor Rc (4 kW) Conductor R3 (1/1 kW = 1 mW)

Inductor La (3 mH) Capacitor C1 (3 mF)

Capacitor Ca (50 mF) Inductor L1 (50 mH)

Current Source (20 mA) Voltage source (20 mV)

Step 5: 

  The voltage source forces current to flow towards 

Ra. Its dual force current flows from the reference 

ground to the node that is shared by the current 

source and R1, the dual of Ra.

  The current source causes current to flow from the 

node where Rc is connected towards the other meshes. Its dual should cause current to flow 

from the node between it and R3 to distributed node (reference) of the rest of the circuit.

 Find the dual of the electrical circuit shown in Figure 2.35?

Solution The dual circuit for the given network can be found by the 

steps listed above (Figure 2.36(a)).

 
 Figure 2.36

Figure 2.34 (d)

Example 2.20

Figure 2.35
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P O I N T S  T O  R E M E M B E R

  A graph of an electrical network consists of nodes and branches wherein each branch represents corresponding 

element in the electrical circuit.

  A tree is a connected subgraph of a network, which consists of all the nodes of the original graph but no closed 

paths.

  Graph = Tree + Co-Tree

  Number of branches of a Graph = Twigs + Links

  Number of Twigs (also known as Rank of a Tree) = n – 1

  Number of links l = b – n + 1 

  Incidence Matrix (A) shows an incidence of elements to nodes in a connected graph. It is a mathematical replica 

of the graph; therefore, the associated graph can be easily constructed and vice versa.

  The dimension of the matrix A is n × b where n is the number of nodes and b is number of branches.

  A Reduced Incidence Matrix AI is obtained by removing any one row of the incidence matrix.

  The number of fundamental loops for a tree will be equal to number of links (i.e. l = b – n + 1) of the associated 

co-tree.

  A cut-set is a minimal set of branches of a connected graph such that the removal of these branches causes the 

graph to be cut into exactly two parts. A cut-set is defined using the expression {x, y, z}, wherein x, y, and z 

represent the graph branches/links which cut the graph into two equal parts.

  KCL states that the algebraic sum of currents entering a node is zero. 

  For applying KCL, add each branch current entering the node and subtract each branch current leaving the 

node.

  KCL is essentially the conservation of charge that charge can neither be created nor be destroyed. 

  KCL holds for every node in a network and it works at every point in time.

  KVL states that the algebraic sum of voltages around any closed path (loop) is zero. For applying KVL, beginning 

with one node, add voltages across each branch in the loop.

  A mesh is a loop which doesn’t contain any other loops within it.

  Mesh Analysis is a useful technique for solving electrical circuits, which involves a number of voltage sources. 

  Mesh Analysis technique involves writing KVL equations for each identified mesh or closed circuit paths. 

  Supermesh Analysis technique is suitable for electrical circuits involving current sources wherein two meshes 

contain a common current source.

  Supermesh Analysis technique involves writing combined KVL equation for both the meshes bypassing the 

current source. Additionally, writing a current equation (current source constraint equation) involving both mesh 

current and current source. 

  The general equations for the three-mesh network are:

  ± R11I1 ± R12I2 ± R13I3 = Va

  ± R21I1 ± R22I2 ± R23I3 = Vb

  ± R31I1 ± R32I2 ± R33I3 = Vc

  where, Rij is resistance between mesh i and j.

  Node Analysis is a useful technique for solving electrical circuits, which involves a number of current sources. 
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  The technique involves writing KCL equations for each identified node except reference node or ground node.

  Supernode Analysis technique is suitable for electrical circuits involving voltage sources connected between 

adjacent nodes.

  These two nodes are reduced to a single node and under this technique a common KCL is written.

  A dual of a relationship is formed by interchanging voltage and current in an expression. Duality means that the 

current or voltage in one circuit behaves in a similar manner as the voltage or current, respectively, in another 

circuit.

  Two circuits are said to be duals of one another if they are described by the same characterising equations with 

the dual pairs interchanged.

PRACTICE PROBLEMS

 1. Determine the current I1 in the following 

electrical circuit using KCL.

Figure 2.37

 2. Write KVL equations for each of the 

indicated loops in the following circuit.

Figure 2.38

 3. Write KCL equations for nodes a and b.

Figure 2.39

 4. Find the value of K in the circuit shown in 

Figure 2.40 such that the power dissipated 

in the 2W resistor does not exceed 50 watts.

 [PU 2012]

Figure 2.40

 5. For the following circuit, find I1, I2, I3 and 

I4 using mesh analysis.

 
Figure 2.41

 6. Find the current through the 10 V resistor 

by using mesh analysis.

Figure 2.42

 7. Find the mesh equations through inspection 

of the following network.
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Figure 2.43

 8. Find the power delivered by the current 

source in the following circuit.

Figure 2.44

 9. Write nodal equations for the following 

network and obtain node voltages. 

Figure 2.45

 10. Find current I using nodal analysis.

Figure 2.46

 11. Formulate the nodal mesh equation 

matrix through inspection method for the 

following electrical circuit.

Figure 2.47

 12. Find the node voltages in the following 

circuit nodal analysis.

Figure 2.48

MULTIPLE CHOICE QUESTIONS

 1. A branch of a tree and co-tree are respectively called

 (a) Link and Twig (b) Twig and Link (c) Cut-set and Tie-set (d) Tie-set and Cut-set

 2. For a graph having n nodes and b branches, the order of Reduced Incidence Matrix is

 (a) n × (b – 1) (b) n × b (c) (n – 1) × b (d) (n – 1) × (b – 1)

 3. For a graph having n nodes and b branches, the order of Reduced Incidence Matrix is

 (a) n × (b – 1) (d) n × b (c) (n – 1) × b (d) (n – 1) × (b – 1)

 4. For a graph having n nodes and b branches including the reference node, the number of linearly independent 

mesh equations which can be written are

 (a) b – n + 1 (b) b – n – 1 (c) b + n – 1  (d) b + n + 1

 5. Which of the following is not a dual pair (where symbols have usual meanings)?

 (a) R – Z (b) L – C  (c) V – I (d) X – B

ANSweRS To MULTIPLe ChoICe QUeSTIoNS

 1. (b) 2. (c) 3. (c) 4. (a) 5. (a)



  

3.1  INTRODUCTION

Network theorems are beneficial for the analysis and determination of various voltages and currents in 

multi loop circuits. These theorems use the fundamental laws of electrical and electronics and the basic 

equations of mathematics to analyse the parameters such as voltage, current, resistance, and so on in a 

circuit. 

The network theorems discussed in this chapter include the Superposition theorem, Thevenin’s 

theorem, Norton’s theorem, Reciprocity theorem, Maximum Power Transfer theorem, Millman’s 

theorem, Tellegan’s theorem, and Compensation theorem.

3.2  SUPERPOSITION THEOREM

 • Superposition theorem states that in any linear 

circuit, the total current in the circuit is equal to 

the algebraic sum of the currents produced by each 

source acting alone, while the other sources are 

non-operative.

 • While considering the individual sources to evaluate the current through the source, the other 

current sources are replaced by an open circuit and the voltage sources are replaced by a short 

circuit across their terminals.

University Questions

1.  State Superposition theorem. Explain with 

an example. [PTU, 2011-2012]

2.  Explain the use of network theorem in 

various circuit analyses.

 

Network Theorem 3

 Superposition theorem

 Thevenin’s theorem

 Norton’s theorem

 Maximum power transfer theorem

 Reciprocity theorem

 Millman’s theorem

 Tellegen’s theorem

 Substitution theorem

 Compensation theorem

Chapter Outline
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 • The superposition theorem can be applied only for linear networks.

Steps to Solve Problems

 • Consider a single source. The other voltage sources have to be shorted while opening the current 

sources, if internal impedances are not known. If known, replace them with their internal 

impedances.

 • Determine the voltage across or current through the required element, depending on the source 

under consideration.

 • Repeat the above steps for all the sources.

 • Sum the individual effects produced by the individual sources. This results in determining the 

total current or voltage across the required element.

Using the superposition theorem, calculate the current in 

the 4 W resistor given in Figure 3.1.  [AU, 2014]

Solution Replace the 1 A current source with open 

circuit (Figure 3.2(a)).

By 10 V source,

 fi

 

Figure 3.2 (a)

By 1 A source (Figure 3.2(b)),

 
Figure 3.2 (b)

 

= ¥ = =

+
1

2 14 7
1

26 40 20
2

7

i

1
1

3
0.15

20
i A= =

So, the total current through the 4 Ohm resistor = 0.15 + 1 = 1.15 A

Example 3.1

Figure 3.1

Note: Difficulty Level    — Easy;  — Medium;  — Difficult



Network Theorem   3.3

Find the current through the various branches of the circuits as shown 

in Figure 3.3 by using superposition theorem.   [AU, 2012]

Solution Replace the 5 A source with an open circuit.

By 50 V supply, we get (Figure 3.4(a))

Since the 5 W is in series with an infinite 

resistance, it can be neglected. The current i1 is 

found to be 2.5 A.

By 5 A source, we get (Figure 3.4(b))

The current splits equally in both the 10 W 

resistors to give 2.5 A each.

The total current through the 10 W branch is 

2.5A + 2.5A = 5 A.

Find the voltage across 1 kW resistor in the circuit shown in 

Figure 3.5.             [GTU, 2010]

Solution Short the 15 V supply. A short circuit is present across 

the 4 kW resistor and therefore, it can be ignored.

The current flowing in the 1 kW is given as

 
1

3 k
10 m 7.5 mA

1k 3k
I = ¥ =

+

Open the 10 mA current source. The voltage applied is 15 V.

The current is given as

 
2

15
3.75 mA

4 k
I = =

The total current is 7.5 mA + 3.75 mA = 11.25 mA

3.3  THEVENIN’S THEOREM

 • Thevenin’s theorem states that any two terminal 

network having number of voltage and current 

sources and resistances can be replaced by a single 

equivalent voltage source with a single resistance 

in series with it.

 • The voltage at the voltage source is equal to the open circuit voltage across the two terminals of 

the network.

Example 3.2

Figure 3.3

  
 (a)  (b)

Figure 3.4

Example 3.3

Figure 3.5

University Question

1.  Why do you short circuit the voltage 

source and open the current source when 

you find Thevenin’s voltage of a network?

 [AU, 2014]
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 • The resistance is equal to the equivalent resistance measured between the terminals with all the 

energy sources replaced by their internal resistances.

Consider the circuit given below in Figure 3.6.

After the Thevenin conversion, the Thevenin’s equivalent circuit is 

as shown in Figure 3.7.

 • The load resistor is removed and is replaced with an open 

circuit.

 • Then, the voltage across the open circuit is determined. This 

gives the Thevenin’s voltage.

 • The Thevenin’s equivalent resistance is calculated by replacing 

the voltage sources with short circuit and current sources with 

open circuit and the load resistor remaining open.

 • Required current through the branch is given by I = th

l eq

V

R R+

Obtain the Thevenin’s equivalent circuit for the network shown in 

Figure 3.8.              [PTU, 2009-10]

Solution To find Rth,

Step 1: Making the output port open circuited and finding VO.C

 

34 2 10
4000

x
x

V
V = - ¥

2
4

4
xV= -

8
4

2 2

x x
x

V V
V

-
= - =

2Vx = 8 – Vx

    
.

8

3
x O CV V= =

Step 2: Finding the short circuit current, IS.C (Figure 3.8(a))

  
. 3

4

5 10
S CI A=

¥

¥
¥

= = = =

3
3

.

.

8
10

40 10 103  K ohm
4 12 3

5

O C
th

S C

V
R

I

Therefore, the Thevenin’s equivalent circuit is as shown in 

Figure 3.8(b).

Figure 3.6

Figure 3.7

Example 3.4

Figure 3.8

Figure 3.8 (a)

Figure 3.8 (b)
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Find the current through the 4 W resistor using Thevenin’s theorem for 

the circuit shown in Figure 3.9.        [PU, 2010]

Solution According to Thevenin’s theorem, we first need to open the 

4 W resistor (Figure 3.10).

The 15 W and the 5 W resistors are in series. The 30 W and the 60 W 

resistors are also in series.

Therefore, the equivalent Thevenin resistance is

 
= + + = = W(15 5) / /(30 60) 20 / /90 16.363  thR

By applying nodal analysis, we get

 

= - = - =
+ +

15 15 15 15
0.5834 V

15 5 30 60 20 90
thV

Therefore, the current across the 4W resistor is

 

0.583
35.63 mA

16.363
I = =

3.4  NORTON’S THEOREM

 • Norton’s theorem states that any two terminal 

networks having number of voltage and current 

sources and resistances can be replaced by a single 

equivalent current source with a single resistance in parallel with it.

 • The current across the current source is equal to the short circuit current between the two 

terminals.

 • The resistance is equal to the equivalent resistance between the specified terminals of the 

network with all the voltage sources replaced by short circuit and current sources replaced by 

open circuit.

Consider the circuit given in Figure 3.11.

After the Norton’s conversion, the Norton’s equivalent circuit is 

as shown in Figure 3.12.

 • The load resistor is replaced by short circuit. The current 

through the load resistor is then determined which in the 

given circuit is the sum of currents through the resistors R1 

and R3.

 • The obtained current is the Norton’s current.

 • The Norton’s equivalent resistance is calculated by 

replacing the voltage sources with short circuit and current 

sources with open circuit and the load resistor being open.

Example 3.5

Figure 3.9

Figure 3.10

Probe

1.  How can you relate Thevenin’s and 

Norton’s theorems?

Figure 3.11

Figure 3.12
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Find the Norton’s equivalent circuit for the network shown in 

Figure 3.13 and obtain the current in the 10 W 

resistor.              [GTU, 2010]

Solution By source transformation (Figures 3.14 (a), (b) and (c)),

  
 Figure 3.14 (a) Figure 3.14 (b)

 

= ¥ =
+

.

13 2
1.238 A

3 2 5
S CI

The Norton’s resistance, R, is

 

¥
= + =

+

6 3
 5 7 ohm
6 3

R

The total equivalent circuit is as shown in Figure 3.14 (d).

Current through the 10 ohm resistor is 

 

= ¥ =
+

10

7
1.238 0.5098 A

7 10
I

Obtain the Norton’s equivalent circuit for the circuit shown in 

Figure 3.15.               [PU, 2012]

Solution By Norton’s theorem, we need to find the short-circuit 

current through terminals A and B.

The current I is given as

       
= =

10
5 A

2
I

Since both the currents flowing into terminal A are in the same direction, we have to add them

        IN = 5 A + 5 × 5 A = 30 A

We need to now find the equivalent Norton resistance. 

      

2 4
1.33  

2 4
NR

¥
= = W

+

The equivalent Norton circuit is shown in Figure 3.16(a).

Example 3.6

Figure 3.13

Figure 3.14 (c)

Figure 3.14 (d)

Example 3.7

Figure 3.15

Figure 3.16 (a)
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3.5
   MAXIMUM POWER TRANSFER 

THEOREM

 • Maximum power transfer theorem states that 

maximum power is transferred from a source to a 

load when the load resistance is equal to the source 

resistance.

 • If the resistance across the load is lower or higher than the source resistance of the network, the 

power dissipated will be less than the maximum.

Consider the circuit given in Figure 3.17.

 • Current in the circuit is S

S L

V
I

R R
=

+

 • Power delivered to the load is 

2
2

2( )

S L
L

S L

V R
P I R

R R
= =

+

 • Maximum power is transferred when 0
L

dP

dR
=

 • Solving this gives RS = RL.

 • Therefore, maximum power is transferred from source to load when RS = RL.

In the circuit shown in Figure 3.18, find the value of R for maximum 

power transfer. Also, calculate the maximum power.

[AU, 2014]

Solution To find the Thevenin’s voltage, the load is open 

circuited as shown in Figure 3.19(a).

  

12
2

15

aV -
=

Therefore,

 Va = Vth = 42 V

The Thevenin’s resistance is as shown in Figure 3.19 (b).

Therefore,

 Rth = R = 15 W

 

= = =
¥

2 242
Maximum power 29.4 watts

4 4 15

th

th

V

R

Probe

1.  Why should maximum power be 

transferred to the load in any circuit?

Figure 3.17

Example 3.8

Figure 3.18

Figure 3.19 (a)

Figure 3.19 (b)



3.8  Circuits and Networks

Obtain the Thevenin’s equivalent circuit for the network shown in 

Figure 3.20, where RL = 5 W. Find RL for maximum power transfer.  

                   [GTU, 2010]

Solution The Thevenin resistance is given by removing all the 

sources. Therefore, the equivalent resistance is given as

 
10 / /20  6.667  thR = = W

The Thevenin equivalent voltage for the circuit shown in Figure 3.21 is given by

Applying Nodal analysis,

  

1 1 10
2

20 10

V V -
+ = -

= = - = -1

20
 6.667 V

3
thV V

The maximum power transferred is given as

  

= =

2
1

1.667 W 
4

th
max

th

V
P

R

Find the value of R that will receive maximum power transfer 

(Figure 3.22). 

Solution Short the 100 V voltage source and find the equivalent re-

sistance. The equivalent resistance is given as

  

= + = W
+ +

1 32 4

2 4 1 3

10
R RR R

R
R R R R

where, 

R1 = 5.2 W; R2 = 10.9 W; R3 = 7.1 W; R4 = 19.6 W

3.6  RECIPROCITY THEOREM

Reciprocity theorem states that in any bilateral linear 

network, if a voltage source of one branch of the circuit 

produces current in the other branch, then when the voltage 

and current sources are interchanged, the current produced 

in the first branch will be the same current the second branch 

has produced as shown in Figure 3.23.

Example 3.9

Figure 3.20

Figure 3.21

Example 3.10

Figure 3.22

Probe

1.  Can a voltage source be interchanged with a 

current source producing the same current?

Figure 3.23
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Verify the reciprocity theorem for the circuit shown in Figure 3.24. 

                   [AU, 2012]

Solution Applying KCL at node 1 (Figure 3.25(a)):

  1 1 1 2100
0

3 14 12

V V V V- -
+ + =  (3.1)

Applying KCL at node 2:

  2 1 2 2 0
12 4 4

V V V V-
+ + =  (3.2)

Solving Eqs (3.1) and (3.2), we get V1 = 69.87 V, V2 = 9.968 V

  
= = =2 9.968

2.497 A
4 4

V
I

Using reciprocity (Figure 3.25(b)),

Applying KCL at node 1:

  1 1 1 2100
0

4 4 12

V V V V- -
+ + =  (3.3)

Applying KCL at node 2: 

  2 2 2 1 0
3 14 12

V V V V-
+ + =  (3.4)

Solving Eqs (3.3) and (3.4), we get V1 = 41.86 V and V2 = 7.22 V

  
= = =2 7.22

2.407 A
3 3

V
I

Therefore, the given circuit verifies reciprocity theorem.

3.7  MILLMAN’S THEOREM

 • Millman’s theorem states that in any network, if a 

number of voltage sources, V1, V2, ..., Vn, in series 

with their respective internal resistances, R1, R2, ..., 

Rn, are connected in parallel then these voltage sources can be replaced by a single voltage source, 

V, in series with resistance, R, where 
1 2

1

n

R
G G G

=
+ + +

 and 
+ + +

=
+ + +





1 1 2 2

1 2

 n n

n

V G V G V G
V

G G G
, 

Gn is the conductance of the nth branch.

 • Figure 3.26 shows a circuit with several voltage sources in parallel and its Millman’s circuit 

with a single voltage source and equivalent resistance. 

Example 3.11

Figure 3.24

Figure 3.25 (a)

Figure 3.25 (b)

Probe

1.  Can Millman’s theorem be applicable for 

both voltage and current sources?
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 • The Millman’s theorem is also applicable in circuits with a number of current sources in parallel 

with their respective internal conductances and the combination in series.

 • Consider the circuit given in Figure 3.27 and its Millman’s equivalence.

  
 Figure 3.26 Figure 3.27

The total current I is

 
1 1 2 2

1 2

n n

n

I R I R I R
I

R R R

+ + +
=

+ + +





  and  
1 2

1

n

G
R R R

=
+ + +

Obtain the equivalent of a parallel connection of three branches each with a voltage source and a 

series resistance (2 V, 1 W), (3 V, 2 W), (5 V, 2 W).            [GTU, 2011]

Solution The Millman’s equivalent voltage can be found by

  

¥ + ¥ + ¥
= =

+ +

2 1 3 2 5 2
3.6 V

1 2 2
eqV

The Millman’s equivalent resistance can be found by

  

1 1

1 2 2eqR
=

+ +

Therefore, 

  Req = 5 W 

3.8  TELLEGEN’S THEOREM

 • Tellegen’s theorem states that in any lumped 

network, the algebraic sum of powers in all the 

branches at any instant is zero.

 • Tellegen’s theorem is applicable for any lumped network and is based on the Kirchhoff’s 

laws.

 • Suppose there are n number of branches in a network having instantaneous currents, i1, i2,…

in, and satisfying the Kirchhoff’s current law and the instantaneous voltages across them, v1, 

v2,…vn, satisfying the Kirchhoff’s voltage law, then 
=

=Â
1

 . 0,
n

k k

k

v i  where vk is the instantaneous 

voltage across the kth branch and ik is the instantaneous current flowing through that branch.

Example 3.12

Probe

1.  What laws must the circuit obey for 

Tellegen’s theorem to be applied?



Network Theorem   3.11

Verify Tellegen’s theorem for the network shown in the 

Figure 3.28.          [PTU, 2009-10]

Solution Consider the given circuit with loop currents as 

shown in Figure 3.29.

Applying KVL in three loops, we get

   2I1 – I2 – I3 = 10 (3.5)

  –I1 + 3I2 – I3 = 0 (3.6)

  –I1 + 3I2 – I3 = 0 (3.7)

Solving the Eqs (3.5), (3.6), and (3.6), we get I1 = 10 A, 

I2 = 5 A, and I3 = 5 A. 

Power delivered by the source,

  P = V1 × I1 = 10 × 10 = 100 W

Power dissipated by each resistor

  P1 + P2 + P3 + P4 + P5 = 100 W

Therefore, the Tellegen’s theorem is verified.

3.9  SUBSTITUTION THEOREM

 • Substitution theorem states that if an element in a 

network is replaced by a voltage source, where the 

voltage at any time is equal to the voltage across 

the element before being replaced by source then 

the initial condition in the rest of the network will be unaltered.

 • This also applies for a current source whose current at any instant of time is equal to the current 

through the element before being replaced by the source with the initial condition in the rest of 

the network being unaltered.

Consider the given circuit:

 • First determine the respective branch voltage and current flowing 

through the branch given by Vxy and Ixy.

 • The branch may be substituted by an independent voltage source 

as shown in Figure 3.30.

 • The branch can also be substituted by an independent current 

source as shown in Figure 3.31.

 • Therefore, it may be seen that the voltage drop and the current 

flowing through the circuit is the same even after being replaced 

by an independent voltage or current source.

Example 3.13

Figure 3.28

Figure 3.29

Probe

1.  What will be the effect of replacing a 5 W 

resistance having a drop of 1 V across it 

with a 1 V voltage source?

Figure 3.30

Figure 3.31
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3.10  COMPENSATION THEOREM

 • The compensation theorem states that any element 

in a linear, bilateral network may be replaced by a 

voltage source with zero internal resistance and a 

voltage that is equal to the voltage drop across the 

replaced element due to the current which was flowing 

in that element.

 • This theorem is useful to determine the change in the 

voltage or current when there is a change in the value 

of resistance.

In Figure 3.33, if the 1 W resistance is changed to 1.4 W 

then determine the source-voltage to compensate for the 

change.            [GTU, 2014]

Solution Consider the circuit given with the 1 W resistance.

Let I1 be the current through the 1 W resistance.

Applying nodal and current analysis, the value of I1 is 
3

4
A

-
.

The voltage, V1 = 2.25 V

Now, replacing the 1 W resistance with 1.4 W resistance, the circuit is redrawn as shown in 

Figure 3.34.

The current through the 1.4 W resistance should be 
-3
 A
4

. The voltage source will have a voltage 

equal to the voltage drop across the 1.4 W resistance.

      

1 3

1.4 4

V V-
=

2.25 3

1.4 4

V-
=

      V = 1.2 V

The change in voltage is 2 – 1.2 = 0.8 V

The source must therefore be reduced by 0.8 V and 

the value if the voltage source is 1.2 V. 

Probe

1.  How can the change in voltage or current 

be determined if a new resistance is added 

to the circuit?

Figure 3.32

Example 3.14

Figure 3.33

Figure 3.34
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P O I N T S  T O  R E M E M B E R

  When two or more sources are present in the circuit, keep one source while shorting or opening the others.

  Superposition can only be applied for linear circuits.

  The superposition voltage sources are to be shorted and current sources are to be opened.

  The Thevenin open-circuit voltage between its two terminals is equal to the voltage source.

  The Thevenin equivalent resistance is the resistance seen across the two terminals with the sources replaced by 

its internal resistances.

  The Norton equivalent short-circuit current between its two terminals is equal to the current source.

  The Norton equivalent resistance is the resistance seen across the two terminals with the sources replaced by its 

internal resistances.

  For the reciprocity theorem to be applicable, the ratio of response to the excitation must be the same.

  Millman’s theorem can also be applicable to a number of current sources in parallel to their respective internal 

conductances.

  Kirchhoff’s laws have to be satisfied before applying Tellegen’s theorem.

  If Substitution theorem is satisfied, initial conditions will remain the same.

  Compensation theorem is used to determine the change in resistance of a circuit.

PRACTICE PROBLEMS

 1. Using the Superposition theorem, deter-

mine the voltage drop and current across 

the resistor 3.3 K as shown in Figure 3.35.

Figure 3.35

 2. Using the superposition theorem, find 

the voltage, Vx, for the circuit shown in 

Figure 3.36.

Figure 3.36

 3. Determine the current, IL, through RL = 6W 

for the circuit shown in Figure 3.37, using 

the Thevenin’s theorem.

Figure 3.37

 4. Determine the Thevenin’s voltage and 

equivalent resistance across the 40 ohm 

load resistor for the circuit shown in the 

figure below and draw the Thevenin’s 

equivalent circuit.

Figure 3.38
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 5. What is the Thevenin’s equivalent 

across AB which has Voc = V and Req 

respectively?

Figure 3.39

 6. What is the Thevenin’s equivalent Req to 

the left of AB?

Figure 3.40

 7. The Thevenin’s and Norton’s equivalent 

circuit of a DC network are shown in 

Figure 3.41. Find the values of current I 

and R in the Norton’s equivalent.

Figure 3.41

 8. For the given circuit below, determine the 

current through the RL = R2 = 2W resistor 

(Ia–b branch) using the Norton’s theorem 

and draw the Norton’s equivalent circuit.

Figure 3.42

 9. Determine the Norton’s current and 

equivalent resistance from the circuit 

shown in Figure 3.43 and draw the 

Norton’s equivalent circuit. 

Figure 3.43

Figure 3.44

 10. Determine the voltages and currents of 

the resistances in the circuit shown in 

Figure 3.45 using source transformation 

technique.

Figure 3.45

 11. For the given network below, find the 

maximum power through RL by using 

maximum power transfer theorem.

Figure 3.46

 12. For the circuit shown in Figure 3.47, 

determine the value of load resistance 

when the load resistance draws maximum 

power. Also, determine the value of 

maximum power.

Figure 3.47
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 13. What is the value of RL for maximum 

power transfer and maximum power in the 

given circuit?

Figure 3.48

 14. Calculate the current for the various 

branches of the network shown in 

Figure 3.49. Also, determine the current 

flowing through the one volt battery (V) 

when an extra e.m.f of 1 volt is added to 

branch BD opposing the flow of original 

current for that branch.

Figure 3.49

 15. For the circuit shown in Figure 3.50, 

determine the load current using Millman’s 

theorem.

Figure 3.50

MULTIPLE CHOICE QUESTIONS

 1. Superposition theorem is applicable in

 (a) linear circuits (b) nonlinear circuits

 (c) both linear and nonlinear circuits (d) circuits with more than one energy source

 2. Thevenin’s equivalent circuit consists of

 (a) a voltage source in parallel with the impedance

 (b) a current source in parallel with the impedance

 (c) a voltage source in series with the impedance

 (d) a current source in series with the impedance

 3. Maximum power is said to be transferred when the

 (a) load impedance is less than source impedance

 (b) load impedance is equal to the source impedance

 (c) load impedance is greater than source impedance

 (d) load impedance is zero

 4. Nortons’s equivalent circuit consists of

 (a) a voltage source in parallel with the impedance

 (b) a current source in parallel with the impedance

 (c) a voltage source in series with the impedance

 (d) a current source in series with the impedance

 5. _____ theorem states that in any lumped network, the algebraic sum of powers in all the branches at any 

instant is zero.

 (a) Thevenin’s (b) Millman’s (c) Tellegan’s (d) Norton’s

 6. Thevenin’s and Norton’s equivalent circuits should ideally produce the _____ across the load terminals 

with no load attached.

 (a) same voltage (b) same current (c) different current (d) different voltage
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 7. Thevenin’s and Norton’s equivalent circuits should ideally produce the _____ through a short circuit 

across the load terminals.

 (a) same voltage (b) same current (c) different current (d) different voltage

 8. Identify the condition of the compensation theorem which states that any element in the circuit may be 

replaced with a voltage source of equal magnitude and equal to the current passing through the element 

that is multiplied by the value of the element.

 (a) Current should remain unaltered in other parts of the circuit.

 (b) Voltage should remain unaltered in other parts of the circuit.

 (c) Current should vary in other parts of the circuit.

 (d) Both current and voltage should remain unaltered in other parts of the circuit.

 9. The dual component of an inductor is

 (a) capacitor (b) resistor (c) voltage source (d) current source

 10. Tellegen’s theorem is valid for _____ networks.

 (a) linear (b) nonlinear

 (c) both linear and non linear (d) distributed

ANSwerS To MUlTiPle ChoiCe QUeSTioNS

 1. (a) 2. (c) 3. (b) 4. (b) 5. (c)

 6. (a) 7. (b) 8. (d) 9. (a) 10. (c)



  

4.1  INTRODUCTION

A network having constant energy sources is said to be in DC steady state if the input voltage and all 
current variables are constant. Sinusoidal steady state refers to the networks with currents and voltages 
having constant amplitude and frequency sinusoidal functions. The condition existing in an electric 
circuit between two steady state conditions is known as the transient state. It may occur due to sudden 
disconnection or connection or short circuit. A transient response is the electrical response of a system to 
a change in equilibrium. The analysis of behaviour of network elements to sinusoidal varying alternating 
excitations is called steady state AC analysis. 

The methods of solving networks that have been discussed in earlier chapters with reference to 
resistive load and DC sources are also valid for a network consisting of AC sources, resistors, inductors 
and capacitors. All network theorems except Maximum Power Transfer are applicable to phasor 
equivalent circuits used to solve for sinusoidal steady state variables in a linear dynamic circuit excited 
by sinusoidal sources with a common frequency. The maximum power transfer theorem needs some 
modification.

 

Steady State AC 
Analysis and 
Transient Response

4

 Phasors and Sinusoids 

  Steady state analysis of R, L, C in series, 

parallel and series-parallel combinations

 Impedance, Reactance, Admittance

 Mesh and node analysis 

 Superposition theorem

 Thevenin’s theorem

 Norton’s theorem

 Maximum power transfer theorem

 Reciprocity theorem

 Millman’s theorem

 Tellegen’s theorem

 Substitution theorem

 Compensation theorem

 DC transient of RL, RC, RLC circuit

 Sinusoidal transient of RL, RC, RLC circuit

Chapter Outline
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4.2  PHASORS AND SINUSOIDS

A sinusoid, or simply a sine wave, is a mathematical curve 
that corresponds to the sine function. An alternating quantity 
is that which acts in alternate directions and whose 
magnitude undergoes a definite cycle of change in definite 
intervals of time. The wave’s magnitude and direction varies 
with time. The wave starts at a reference point t = 0 seconds with a value of 
zero. It reaches the positive peak (Vm) and returns to its original value zero. 
It further decreases in the negative direction until it reaches the negative 
peak (–Vm). 

When the voltage applied is positive, the flow of current is in a certain 
direction; when the voltage applied is negative, the flow of current is in 
the opposite direction (Figure 4.1). Both the positive and negative voltages 
constitute to one cycle in the sine wave. The general expression of an alternating quantity is  x(t) = A sin (wt + f)

where, A = Peak value or amplitude, f = Phase angle in radians, w = Angular frequency in radians per 
second.

Before proceeding, there are different terms we need to define when dealing with waves. They are 
as follows.

 ∑ Cycle: A cycle may be defined as one complete set of positive and negative values of an 
alternating quantity repeating at equal intervals.

 ∑ Period: The time taken by an alternating quantity in seconds to trace one complete cycle is 
called periodic time or time-period. It is usually denoted by symbol T.

 ∑ Frequency: The number of cycles per second is called frequency and is denoted by symbol f 
Frequency is generally measured in Hertz. =

1
f

T

  If the angular velocity w is expressed in radians per second, then w = 2pf.

 ∑ Instantaneous value: It is given by the value of the sine wave at any given point of time. It is 
denoted by small letter.

 ∑ Peak value: The maximum value during the positive cycle or the maximum value during the 
negative cycle is known as the peak value of the sine wave. It is denoted by Vm or Im.

 ∑ Peak-to-peak value: For a sine wave, the peak-to-peak value is calculated from the positive 
peak to the negative peak.

 ∑ Average value: The average value of the wave corresponds to the total area covered divided by 
the distance measured by the curve. It is given by  Vav = 0.637Vm

University Question

1.  Define the following.

  (a) Time period (b) Frequency (c) RMS 

value (d) Average value  [JNTU, 2012]

Figure 4.1
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 ∑ Root mean square (RMS) value: It is that value of an alternating voltage or current which 
produces the same amount of heat in a resistor connected to AC as the amount of heat produced 
when the resistor is connected to DC. It is denoted by capital letter. It is given by  2

m
rms

V
V =

 ∑ Peak factor: The peak factor is known as the ratio of peak value to the RMS value of the 
wave.  Peak factor m

rms

V

V
=

 ∑ Form factor: The form factor is known as the ratio of the RMS value of the average value of 
the wave.  Form factor  rms

av

V

V
=

A sine wave can be expressed with its magnitude 
and its associated angular position using a phasor 
diagram as shown in Figure 4.2.

For example, consider a wave defined by 
R sin q. Here the amplitude of the wave is R and 
the angle created is q. In the phasor diagram, the 
length of the line drawn is equal to the amplitude 
of the wave, which is R, with the subtended angle 
of the wave, which is q. The ‘phase’ of an AC 
wave may be defined as its position with respect 
to a reference axis or reference wave. Phase angle 
is the angle of lead or lag with respect to reference 
axis or with respect to another wave. Signals 
with the same frequency that begin with different 
references can incur a phase difference (Figure 4.3).

An alternating voltage or current is a phasor quantity, but since the instantaneous values are changing 
continuously, it must be represented by a rotating vector phasor j.

4.3

   STEADY STATE ANALYSIS OF 

R, L, C IN SERIES, PARALLEL AND 

SERIES-PARALLEL COMBINATIONS

Firstly let us understand the behaviour of the elements – 
resistance, inductance and capacitance when excited by 
sinusoidal varying excitations. Then we shall study the 
various series and parallel combinations of R, L and C.

Figure 4.2

Figure 4.3

University Question

1.  Draw the Phasor diagram for a series RL 

circuit.  [AU, 2012]
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4.3.1 AC Applied to Pure Resistance

Consider a resistor R connected across an AC supply as shown in Figure 4.4(a). Let the supply voltage 
be   sin( t)mv V w= ◊

From Ohm’s Law 
sin( )

 sin ( )m mV t Vv
i t

R R R

w
w

◊
= = =

or        sin( )mi I tw= ◊

where = fi = m
m

V V
I I

R R
 in rms values.

The rms value of current is given by  
2
mI

I =

Hence the voltage and current across a pure resistor 
are in phase with each other as shown in Figure 4.4(b). The phasor diagram is shown in Figure 4.4(c). 
Power is the product of voltage and current at every instant of time. The average value of power in a 
purely resistive circuit is given by  P = VI

The power factor is defined as the cosine of the angle between the voltage and current. Since the 
voltage and current are in phase, the power factor angle f is zero and power factor (cos f) is unity.

4.3.2 AC Applied to Pure Inductance

A pure inductive circuit possesses only inductance and no resistance or capacitance as shown in 
Figure 4.5(a). Consider a pure inductor connected across an ac supply as shown in the figure. Let the 

supply voltage be w= ◊ sin( ).mv V t

The alternating current I flowing through the inductor will produce an alternating magnetic field 
which in turn will induce an emf given by  di

e L
dt

=

where L is the self-inductance of the coil. As there is no ohmic resistance drop, the applied voltage has 
to oppose the self-induced emf only. So the applied voltage is equal and opposite to the back emf at all 
instants.  w w= fi ◊ = ◊ = sin( )   sin( )m

m

Vdi
v e V t L di t

dt L

The expression for current obtained after integration is

 sin sin
2 2

m
m

V
i t I t

L

p p
w w

w

Ê ˆ Ê ˆ= - = -Á ˜ Á ˜Ë ¯ Ë ¯
, where 

w w
= fi =  m

m

V V
I I

L L
 in rms values

Figure 4.4
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The voltage, current and instantaneous 
power wave shapes are shown in 
Figure 4.5(b) and the phasor diagram in 
Figure 4.5(c). The current lags the voltage 
by 90° in a purely inductive circuit. The 
average power in a purely inductive 
circuit is zero and the power factor is 
cos 90° = 0.

4.3.3 AC Applied to Pure Capacitance

Consider a pure capacitor connected across an AC supply as shown in Figure 4.6(a). Let the supply 
voltage be w◊= sin( ).mv V t

When the current starts to flow, the capacitor starts getting charged. The charge in the capacitor is 
given by q = Cv where C is the capacitance of the capacitor.

Current is given by 

  
  ( sin( ))m

dq dv d
i C C V t

dt dt dt
w◊= = =

The expression for current obtained is

 sin sin
2 2m mi CV t I t
p p

w w w
Ê ˆ Ê ˆ= + = +Á ˜ Á ˜Ë ¯ Ë ¯

, where w wfi= =  m mI CV I CV  in rms values

The voltage, current and instantaneous 
power wave shapes are shown in 
Figure 4.6(b) and the phasor diagram in 
Figure 4.6(c). The current leads the 
voltage by 90°in a pure capacitive circuit. 
The average power in a purely capacitive 
circuit is zero and the power factor is 
cos 90°= 0.

4.3.4 Series R-L Circuit

Consider a resistor and an inductor connected 
in series across an ac voltage V of frequency f 
as shown in Figure 4.7(a). The current flowing 
in the circuit is I. VR is the voltage drop across 
resistor R given by VR = IR and VL is the voltage 
drop across inductor L given by VL = wL.I. The 

voltage applied is given by 2 2 2
R LV V V= + . 

The phasor diagram is drawn with current as 

Figure 4.5

Figure 4.6

Figure 4.7
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the reference and is as shown in Figure 4.7(b). The phase angle for the given circuit can be given as 

1tan L

R

V

V
f -= .

The voltage current relationship is given by 2 2
 ( ) V I R Lw= + . The power is the product of 

instantaneous values of the voltage and the current. The average power is given by cosP VI f= .

4.3.5 Series R-C Circuit

Consider a resistor and a capacitor connected 
in series across an ac voltage V of frequency f as 
shown in Figure 4.8(a). The current flowing in the 
circuit is I. VR is the voltage drop across resistor R 
given by VR = IR and VC is the voltage drop across 

capacitor C given by VC =
I

Cw
. The voltage applied 

is given by = +2 2 2.R CV V V  The phasor diagram is drawn with current as the reference and is as shown in 

Figure 4.8(b). The phase angle for the given circuit can be given as 1tan C

R

V

V
f -= .

The voltage current relationship is given by 
2

2 1
  V I R

Cw

Ê ˆ= + Á ˜Ë ¯
. The power is the product of 

instantaneous values of the voltage and the current. The average power is given by cosP VI f= .

4.3.6 Series R-L-C Circuit

Consider a resistor, an inductor and a capacitor connected in series across an ac voltage V of frequency f 
as shown in Figure 4.9(a). The current flowing in the circuit is I. VR is the voltage drop across resistor R 
given by VR = IR, VL is the voltage drop across inductor L given by VL = wL and VC is the voltage drop 

across capacitor C given by VC =
I

Cw
. The voltage applied is given by = + -2 2 2( ) .R L CV V V V  The 

phasor diagram is drawn with current as the reference and is as shown in Figure 4.9 (b). The phase angle 

for the given circuit can be given as 1 ( )
tan L C

R

V V

V
f - -
= .

Figure 4.9

The voltage current relationship is given by w
w

Ê ˆ= + -Á ˜Ë ¯

2
2 1

  .V I R L
C

 The power is the product of 

instantaneous values of the voltage and the current. The average power is given by P = VI cos f.

Figure 4.8
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4.3.7 Parallel R-L Circuit

Consider a resistor and an inductor connected in parallel across an AC 
voltage V of frequency f as shown in Figure 4.10.

Let the supply voltage be sin( )mv V tw= ◊
The total current is the phasor summation of all the branch currents. 

It is given by     R L

v v
i i i

R Lw
= + = +

As the voltage across each element is the same for a parallel 
network, the voltage phasor is taken as the reference for drawing the 
phasor diagram as shown in Figure 4.11.

4.3.8 Parallel R-C Circuit

Consider a resistor and a capacitor connected in parallel across an AC 
voltage V of frequency f as shown in Figure 4.12.

Let the supply voltage be w= ◊ sin( )mv V t

The total current is the phasor summation of all the branch currents. It 
is given as 

  
  R C

v
i i i vC

R
w= + = +

The phasor diagram is as shown in Figure 4.13.

4.3.9 Parallel R-L-C Circuit

Consider a resistor, an inductor and a capacitor connected in parallel 
across an ac voltage V of frequency f as shown in Figure 4.14.

Let the supply voltage be sin( )mv V tw= ◊
The total current is the phasor summation of all the branch 

currents. It is given by    R L C

v v
i i i i vC

R L
w

w
= + + = + +

A 230 V, 50 Hz ac supply is applied to a coil of 0.06 H inductance and 2.5 W resistance connected 
in series with a 6.8 μF capacitor. Calculate (i) current (ii) phase angle between current and voltage 
(iii) power factor (iv) power consumed.

Solution It is a series RLC circuit where R = 2.5 W, L = 0.06 H, C = 6.8 µF, V = 230 V, 
w = 2 × 3.14 × 50 = 314

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Example 4.1

Note: Difficulty Level    — Easy;  — Medium;  — Difficult
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The voltage current relationship is given by 
2

2 1
   V I R L

C
w

w

Ê ˆ= + -Á ˜Ë ¯

 22
2 2

6

1 1
  2.5  (314  0.06) 449.2 

(314  6.8 10 )
R L

C
w

w -

Ê ˆÊ ˆ+ - = + ¥ - = WÁ ˜ Á ˜Ë ¯ ¥ ¥Ë ¯ = = =
230

 0.512 A
449.2 449.2

V
I

 6
1 1( ) (314 0.06) (1 / 314 6.8 10

tan tan 89.7
2.5

L C

R

V V

V
f

-
- - Ê ˆ- ¥ - ¥ ¥

= = = - ∞Á ˜Ë ¯

Power factor cos (–89.7°) = 0.0056

Power consumed = VI cos f = 230 × 0.512 × 0.0056 = 0.66 W

4.4  IMPEDANCE, REACTANCE, ADMITTANCE

4.4.1 Reactance

Reactance is a form of opposition exhibited to the passage of alternating current because of capacitance 
or inductance. When alternating current passes through a component that contains reactance, energy is 
alternately stored in, and released from, a magnetic field or an electric field. In the case of a magnetic 
field, the reactance is inductive. In the case of an electric field, the reactance is capacitive.

Inductive Reactance

The opposition offered by an inductor to the flow of current is XL given by XL = wL. This is called 
inductive reactance and its unit is ohms. So for a pure inductor V = IXL

Capacitive Reactance

The opposition offered by an capacitor to the flow of current is Xc given by Xc = 
w

1

C
. This is called 

capacitive reactance and its unit is Ohms. So for a pure capacitor V = IXC

4.4.2 Impedance

The impedance of a circuit element is defined as the ratio of the phasor voltage across the element to the 
phasor current through the element. It is represented by Z and measured in Ohms.       

V
Z

I
=
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When resistors, capacitors, and inductors are combined in an AC circuit, the impedances of the 
individual components can be combined in the same way that the resistances are combined in a 
DC circuit. The resulting equivalent impedance is in general, a complex quantity. That is, the equivalent 
impedance has a real part and an imaginary part. The real part is denoted with an R and the imaginary 
part is denoted with an X.  Z = R + jX

R is termed the resistive part of the impedance while X is termed the reactive part of the impedance.

For an RL series circuit = + fi = +2 2 2 2    L LV I R X Z R X  or = + .LZ R jX

So if f is the phase angle, R = Z cos f and XL = Z sinf.  

For an RC series circuit = + fi = +2 2 2 2  C CV I R X Z R X  or Z = R – jXC. 

So if f is the phase angle, R = Z cos f and XC = Z sinf.

For an RLC series circuit = + - fi = + -2 2 2 2 ( )  ( )L C L CV I R X X Z R X X  or Z = R + j(XL – XC).

Combining impedances in series, parallel, or in delta-wye configurations, is the same as for resistors. 
The difference is that combining impedances involves manipulation of complex numbers.

Combining impedances in series is simple:

 Zeq = Z1 + Z2 = (R1 + R2) + j(X1 + X2)

Combining impedances in parallel is much more difficult than combining simple properties like 
resistance or capacitance, due to a multiplication term. 

      1 2
1 2

1 2
eq

Z Z
Z Z Z

Z Z
= =

+


4.4.3 Admittance

It is the reciprocal of impedance and is denoted by Y. Admittance 
is measured in mhos or Siemens. It is given by I = VY. The 
impedance Z has two components resistance R and reactance X. 
Admittance has also two components, the conductance ‘G’ and 
susceptance ‘B’. Y = G ± jX

The value of B is negative if the circuit is inductive and the value of B is positive if the circuit is 
capacitive. The impedance and admittance triangles are similar as shown in Figure 4.15.

For the circuit shown in Figure 4.16, find the current and power drawn from the source.

Solution Let

  1 3 4 5  53.13Z j= + = – ∞W

2 6 8 10 53.13Z j= + = – ∞W

Figure 4.15

Example 4.2

Figure 4.16
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Both impedances are in parallel. So the equivalent impedance is 

  
1 2

1 2

5  53.13 10  53.13 50 106.26
 3.33 53.13

3 4  6 8 15 53.13eq

Z Z
Z

Z Z j j

– ¥ – –
= = = = – W

+ + + + –

Current drawn 

  
= = = – -

–
230

69 53.13 A
3.33 53.13eq

V
I

Z

Power drawn from source  P = VI cos f = 230 × 69 × cos 53.13 = 9.522 kW

4.5  MESH AND NODE ANALYSIS

4.5.1 Mesh Analysis

Mesh analysis is useful if a network has a large number 
of voltage sources. In this method, currents are assigned in each mesh. When mesh equations, based 
on Kirchhoff’s voltage law, are written in terms of unknown mesh currents and solved to obtain the 
required quantity, the thumb rule is that the number of equations should be equal to the number of 
unknown currents.

4.5.2 Nodal Analysis

Nodal analysis is based on Kirchhoff’s current law and is used to find currents and voltages in a network. 
For AC networks Kirchhoff’s current law states that the phasor sum of currents meeting at a point is 
equal to zero. In this method, pick a reference node and apply Kirchhoff’s current law at each node 
except the reference. Replace all the unknown currents in terms of the potential difference divided by 
the impedance through which the current is flowing. Solve the resulting equation for the nodal voltages 
and then find the required current.

Find the mesh currents I1, I2 and I3 in the network shown in Figure 4.17.

Figure 4.17

Solution Applying KVL to mesh 1

 – ∞ - - - - = fi - - = – ∞1 1 2 1 210 30 (5 2) 3( ) 0 (8 2) 3 10 30j I I I j I I

University Question

1.  Define ‘mesh analysis’ of a circuit.

 [AU, 2011]

Example 4.3
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Applying KVL to mesh 2

 - - - - - = fi - + + - =2 1 2 2 3 1 2 33 ( ) 5 5( ) 0 3 (8 5) 5 0I I j I I I I j I I

Applying KVL to mesh 3

 - - - - = fi - + - =3 2 3 2 35( ) (2 2) 0 5 (7 2) 0I I j I I j I

Writing these equations in matrix form

- - – ∞È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- + - =Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Î ˚

1

2

3

8 2 3 0 10 30

3 8 5 5 0

0 5 7 2 0

j I

j I

j I

Solving using Cramer’s rule

– ∞ -È ˘
Í ˙+ -Í ˙
Í ˙- -Î ˚= = – ∞

- -È ˘
Í ˙- + -Í ˙
Í ˙- -Î ˚

1

10 30 3 0

0 8 5 5

0 5 7 2
 1.43 38.7  A

8 2 3 0

3 8 5 5

0 5 7 2

j

j
I

j

j

j

- – ∞È ˘
Í ˙- -Í ˙
Í ˙-Î ˚= = – - ∞

- -È ˘
Í ˙- + -Í ˙
Í ˙- -Î ˚

2

8 2 10 30 0

3 0 5

0 0 7 2
 0.693 2.2  A

8 2 3 0

3 8 5 5

0 5 7 2

j

j
I

j

j

j

- - – ∞È ˘
Í ˙- +Í ˙
Í ˙-Î ˚= = – ∞

- -È ˘
Í ˙- + -Í ˙
Í ˙- -Î ˚

3

8 2 3 10 30

3 8 5 0

0 5 0
 0.476 13.8  A

8 2 3 0

3 8 5 5

0 5 7 2

j

j

I
j

j

j

4.6  SUPERPOSITION THEOREM

The superposition theorem can be used to analyse an ac 
network containing more than one source. The theorem for 
ac sources states that in a network containing more than 

University Question

1.  State and illustrate superposition theorem.

 [VTU, 2016]
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one voltage source or current source, the total current or voltage in any branch of the network is the 
phasor sum of currents or voltages produced in that branch by each source acting separately while all 
other sources have been replaced by their internal impedances. This theorem is valid only for linear 
networks.

Find the current through the 3 + j4 W impedance (Figure 4.18).

Solution Step 1: When the 50–90°V source is acting alone 
(Figure 4.19(a)).

 ZT = 
(3 4) 5

5 5.83 2.5 6.35 23.2
3 9

j j
j

j

+
+ = + = – ∞

+

 IT = 
–

= – ∞
–

50 90
7.87 66.8  A

6.35 23.2

 I¢ = 
Ê ˆ

– ∞ = – ∞ ØÁ ˜+Ë ¯
5

7.87 66.8 4.15 85.3  A 
3 9

j

j

Step 2: When the 50–0°V source is acting alone (Figure 4.19(b)).

 ZT = 
(3 4)5

5 2.5 6.25 6.74 68.2
8 4

j
j j

j

+
+ = + = – ∞

+

IT = 
–

= – - ∞
–

50 0
7.42 68.2  A

6.74 68.2

I¢¢ = 
Ê ˆ

– - ∞ = – - ∞ ≠ = – ∞ ØÁ ˜+Ë ¯
5

7.42 68.2 4.15 94.77  A 4.15 85.3
8 4j

Step 3: By Superposition theorem
 I = I¢ + I¢¢ = 4.15–85.3° + 4.15–85.3° = 8.31–85.3°A

Determine the voltage across the 2 + j5 W impedance for the network shown in Figure 4.20. 

Solution Step 1: When the 50–0°V source is acting alone 
(Figure 4.21(a)).

50 0 50 0 50 0
 
2 4 5 2 9 9.22 77.47

5.42 77.47  

I
j j j

A

– ∞ – ∞ – ∞
= = =

+ + + – ∞
= – - ∞

Example 4.4

Figure 4.18

Figure 4.19(a)

Figure 4.19 (b)

Example 4.5

Figure 4.20
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Voltage across 2 + j5 W V¢ = – - ∞ + = – - ∞5.42 77.47 (2 5) 29.16 9.28  Vj

Step 2: When the 20–30°V source is acting alone (Figure 4.21(b)

Ê ˆ – ∞ ¥ – ∞
= – ∞ = = – ∞Á ˜+ – ∞Ë ¯

4 20 30   4 90
20 30  8.68 42.53  A

2 9 9.22 77.47

j
I

j

Voltage across (2 + j5) W impedance

V¢¢ = – ∞ + = – ∞(8.68 42.53 )(2 5) 46.69 110.72  Vj

Step 3: By Superposition theorem

V = V¢ + V¢¢ = 29.16 9.28  46.69 110.72– - + –

= - - + = + = – ∞28.78 4.7 16.52 43.67 12.26 38.97 40.85 72.53  VV j j j

4.7  THEVENIN’S THEOREM

According to Thevenin’s theorem, any linear network 
connected to a load impedance ZL may be replaced by a 
simple two terminal network consisting of a single voltage 
source Vth and single impedance Zeq in series with the 
voltage source, across the load terminals. Vth is the open 
circuit voltage measured at the two terminals after removing ZL and Zeq is the equivalent impedance of 
the given network as viewed through the terminals where ZL is connected, with all the sources replaced 
by their internal impedances. When the network is replaced by Thevenin’s equivalent across the load 
terminals, then the load current can be obtained as   =

+
 th

L eq

V
I

Z Z

Obtain Thevenin’s equivalent network for the terminals A and B as shown in Figure 4.22. 

Solution Step 1: Calculation of Vth

Applying KVL to the mesh

   50 0 (3 4) (4 6) 0j I j I– ∞ - - - + =

– ∞ – ∞
= =

- + + +
– ∞

= = – - ∞
– ∞

50 0 50 0
 
(3 4) (4 6) 7 2

50 0
6.87 15.95  A

7.28 15.95

I
j j j

Figure 4.21 (a)

Figure 4.21 (b)

University Question

1.  State and prove Thevenin’s theorem. 

Show that Thevenin’s equivalent circuit is the 

dual of Norton’s equivalent circuit.

 [VTU, 2009]

Example 4.6

Figure 4.22
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= + = + –- ∞ = – –- ∞ = – ∞(4 6) (4 6)6.87 15.95 (7.21 56.3)6.87 15.95 49.5 40.35  VthV j I j

Step 2: Calculation of Zth (Figure 4.23(a)). - + – - ¥ –
= - + = + = + – -

- + + –
(3 4)(4 6) 5 53.13 7.21 56.3

( 5 4) 1 1 4.95 12.78
(3 4) (4 6) 7.28 15.95th

j j
Z j j j j

j j

= + - = - = – - ∞W1 4.83 1.095 4.83 0.095 4.83 1.13thZ j j j

The Thevenin equivalent network is shown in Figure 4.23(b).

  
 (a) (b)

Figure 4.23

Obtain Thevenin’s equivalent network for the network shown in Figure 4.24.

Solution Step 1: Calculation of Vth

Applying KVL to mesh 1

 1 1 210 30 (5 2) 3( ) 0j I I I– ∞ - - - - =

1 2(8 2) 3 10 30j I I- - = –

Applying KVL to mesh 2

 2 1 2 23( ) 5 5 0I I j I I- - - - =

1 23 (8 5) 0I j I- + + =

Solving equations by Cramer’s rule

 

- –
- –

= = = – ∞
- - –
- +

2

8 2 10 30

3 0 30 30
0.433 9.7  A

8 2 3 69.25 20.3

3 8 5

j

I
j

j

= = = – ∞ = – ∞25 5(0.433 9.7 ) 2.16 9.7  Vth ABV V I

Step 2: Calculation of Zth (Figure 4.25(a)).

 È ˘Ê ˆ-
= +Í ˙Á ˜- +Ë ¯Î ˚
= - + = +

(5 2)3
5 || 5

5 2 3

(1.94 0.265 5) || 5 (1.94 4.735) || 5

th

j
Z j

j

j j j

Example 4.7

Figure 4.24

Figure 4.25 (a) 
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+
= = – ∞W

+
(1.94 4.735)5

3.04 33.4
6.94 4.735th

j
Z

j

The Thevenin equivalent network is shown in Figure 4.25(b).

4.8  NORTON’S THEOREM

According to Norton’s theorem, any linear network 
connected to a load impedance ZL may be replaced by a 
simple two terminal network consisting of a single current 
source IN or ISC and single impedance Zeq in parallel with it, across the load terminals. IN is the short 
circuit current measured at the two terminals after removing ZL and Zeq is the equivalent impedance of 
the given network as viewed through the terminals where ZL is connected, with all the sources replaced 
by their internal impedances. When the network is replaced by Norton’s equivalent across the load 
terminals, then the load current can be obtained as   eq

L N

L eq

Z
I I

Z Z
=

+

Obtain the Norton’s equivalent network between the terminals A and B as shown in Figure 4.26. 

Solution Step 1: Calculation of ISC (Figure 4.27(a))

 
25 0

3 4

25 0

5 53.13
5 53.13  

SCI
j

A

–
=

+
–

=
– ∞

= – - ∞

Step 2: Calculation of Zeq 

 
(3 4)(4 5)

3 4 4 5

5 53.13 6.4 51.34

7.07 8.13

4.53 9.92  

eq

j j
Z

j j

+ -
=

+ + -
– ∞ ¥ – -

=
– -

= – ∞W

The Norton’s equivalent network is shown in Figure 4.27(b).

Figure 4.25 (b) 

University Question

1.  Draw the general form of Norton 

equivalent circuit. [AU, 2008]

Example 4.8

Figure 4.26

Figure 4.27 (a)

Figure 4.27 (b)
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Find the current through the 2 + j5 W impedance in the network shown in Figure 4.28 using 
Norton theorem.

Solution Step 1: Calculation of IN (Figure 4.29(a))

Writing the KVL equations for the three meshes

 

– - - + -

= fi - - +

= –

1 2 1 3

1 2 3

40 0 4( ) 10( )

0 (4 10) 4 10

40 0

I I j I I

j I I j I

- - - = fi - + + =2 1 2 1 24( ) 12 0 4 (4 12) 0I I j I I j I

- + - = fi + - =3 3 1 1 38 10( ) 0 10 (8 10) 0I j I I j I j I

Writing in matrix form

 1

2

3

4 10 4 10 40 0

4 4 12 0 0

10 0 8 10 0

j j I

j I

j j I

- - –È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- + =Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

Using Cramer’s Rule

 
- –
-

- -
= = = -

- - +
- +

-

2

4 10 40 0 10

4 0 0

10 0 8 10 1280 1600
(0.8379 1.1483)A

4 10 4 10 1440 64

4 4 12 0

10 0 8 10

j j

j j j
I j

j j j

j

j j

- - –
- +

-
= = = -

- - +
- +

-

3

4 10 4 40 0

4 4 12 0

10 0 0 4800 1600
(3.2775 1.2568)A

4 10 4 10 1440 64

4 4 12 0

10 0 8 10

j

j

j j
I j

j j j

j

j j

= - = – - ∞3 2 2.44 2.55  ANI I I

Step 2: Calculation of Zeq (Figure 4.29(b))

 = - +

= - + +
= + W

[4 || ( 10)] [( 12) || 8]

(3.4483 1.3793) (5.5385 3.6923)

8.9868 2.313

eqZ j j

j j

j

Example 4.9

Figure 4.28

Figure 4.29(a)

Figure 4.29 (b)
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The Norton’s equivalent network is shown in Figure 4.29(c).
Current through 2 + j5 impedance

   
+

= –- ∞ ¥
+ + +

= –- ∞

8.9868 2.313
2.44 2.55  

8.9868 2.313 2 5

1.72 21.8  A

j

j j

4.9
   MAXIMUM POWER TRANSFER 

THEOREM

The maximum power transfer theorem states that the 
maximum power is delivered from a source to the load when 
the load resistance is equal to the source resistance in case 
of resistive loads. In case of complex impedance networks, 
maximum power transfer to the load takes place when the load 
impedance is the complex conjugate of an equivalent impedance 
of the network as viewed from the terminals of the load. The 
resistance of load and resistance of Zeq must be same while the 
reactances of load and Zeq must also be same in magnitude but 
opposite in sign, So if Zeq reactance is inductive, ZL must be capacitive and vice versa (Figure 4.30).

Calculate the value of ZL to be connected across terminals AB for maximum power transfer and also 
find power absorbed by ZL for the circuit shown in Figure 4.31.

Solution Step 1: Calculation of Zeq or Zth

 
+ +

= ¥ =
+ + +

+ - +
= = = + W

+ -

(5 10) 5 10
5 

5 5 10 2 2

(5 10)(2 2) 30 10
3.75 1.25

(2 2)(2 2) 8

eq

j j
Z

j j

j j j
j

j j

For maximum power transfer the load impedance is the complex 
conjugate of Zeq = - W3.75 12.5LZ j

Step 2: Calculate the equivalent voltage across the terminals AB

Assuming current I in the mesh and writing KVL –
– - - - = fi =

+
25 0

25 0 5 5 10 0  A
10 10

I I j I I
j

Figure 4.29 (c)

University Question

1.  State and prove maximum power transfer 

theorem for AC circuits. [VTU, 2016]

Figure 4.30

Example 4.10

Figure 4.31

Figure 4.32
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The equivalent voltage across the terminals is – + – ∞
= + = + ¥ = = = – ∞

+ + – ∞
25 0 125 250 279 63.43

(5 10) 5 10  19.77 18.43  V
10 10 10 10 14.14 45AB

j
V j I j

j j

Step 3: Calculate the load current IL in the equivalent circuit.

 

19.77 18.43  19.77 18.43
 2.636 18.43

3.75 1.25 3.75 12.5 7.5
AB

L

eq L

V
I

Z Z j j

– ∞ – ∞
= = = = –

+ + + -

Step 4: Calculate the power absorbed

 = = ¥ =2 2( ) 2.636 3.75 26.06 Wmax L LP I R

4.10  RECIPROCITY THEOREM

It states that if any source of voltage V, located at one point 
in a linear network produces a current I at a second point 
in the network then the same source of voltage V acting at the second point of the same network will 
produce the same current I at the first point. In other words the ratio of the excitation to the response 
remains same even if their positions are interchanged.

Verify Reciprocity theorem for the network given in Figure 4.33. 

Figure 4.33

Solution Step 1: Find the current I and the ratio V/I

Writing KVL equations for the three meshes

 – - - = fi - = –1 2 1 2100 0 5( ) 0 20 0I I I I

- - + - - - = fi - - - =2 2 2 3 2 1 1 2 34 3 5( ) 5( ) 0 5 (8 1) 5 0j I I j I I I I I j I j I

- + - = fi - + - + =3 3 2 2 310 5( ) 0 5 ( 10 5) 0I j I I j I j I

Writing in matrix form

 - –È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- + - =Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙- - +Î ˚ Î ˚Î ˚

1

2

3

1 1 0 20 0

5 8 5 0

0 5 10 5 0

I

j j I

j j I

University Question

1.  What is reciprocity theorem? [AU, 2014]

Example 4.11
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Using Cramer’s Rule

 
- –

- +
- –

= = = = – - ∞
- – -

- + -
- - +

3

1 1 20 0

5 8 0

0 5 0 500 90
8.9443 63.44 A

1 1 0 55.901 26.65

5 8 5

0 5 10 5

j

j
I I

j j

j j

100 0
11.1803 63.43  

8.9443 63.44

V

I

–
= = – ∞

– -

Step 2: Interchange the positions of V and I and calculate V/I (Figure 4.34)

 
(3 4) ( 5)

10
(3 4) ( 5)

5 53.13 55 90
10

3.1622 18.434

7.5 2.5 10 17.5 2.5  

T

j j
Z

j j

j j

+ ¥ -
= +

+ + -
– ¥ – -

= +
– -

= - + = - W

– –
= = = – ∞

- – -
100  0 100  0

 5.6568  8.13  A
17.5 2.5 17.677 8.13TI

j

Using current division

 

-
= =

-
¥ – - ∞

+
5

8.944 63.43  A
4 3 5T

j
I I

j j

100 0
11.1803 63.43  

8.944 63.44

V

I

–
= = – ∞

– -

The ratio V/I are same in both cases. Hence reciprocity theorem is verified.

4.11  MILLMAN’S THEOREM

Using this theorem, number of parallel voltage sources can 
be replaced by a single equivalent voltage source.

Theorem Statement

Arrangement of voltage sources ( 1 2 . ., . , nV V V ) with internal/
series impedances ( 1 2, ..., nZ Z Z ) respectively, connected in 
parallel, can be replaced by an equivalent voltage source (V) 
with an equivalent series impedance (Z) (Figure 4.35).

Figure 4.34

University Question

1.  State and explain Millman’s theorem.

 [GTU, 2011]

Figure 4.35
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1
( ) /   k k k

k

V V Y Y Z
Y

= =Â Â

Explanation: If all the voltage sources are converted into current sources then, 

  

1 2
1 2

1 2  

; n
n

n

VV V
I I I

Z Z Z
= = =

Since all current sources are in parallel, equivalent current source 

  

1 2
1 2

1 2  

n
n

n

VV V
I I I I

Z Z Z
= + + = + + 

And since all resistances are in parallel, equivalent resistance, 
1 1

kY Y
= = Â  . If this current source is 

converted back into a voltage source then,  1 2

1 2  

1
  n

n k

VV V
V I R x

Z Z Z Y

Ê ˆ Ê ˆ
= ¥ = + +Á ˜ Á ˜Ë ¯ Ë ¯

Â  and R = 
1

.
kY

Â

Equivalent impedance is equal to the net impedance taken all series impedances 1 2( , . , ).. nZ Z Z  in 
parallel.

Obtain the equivalent of a parallel connection of three branches each with a voltage source and a 
series resistance (2 V, 1Ω); (3 V, 2 Ω); (5 V, 2 Ω) as shown in Figure 4.36.  [GTU, 2011]

Solution Given V1 = 2 V, V2 = 3 V, V3 = 5 V and 
R1 = 1 W fi  G1 = 1/R1 = 1S, R2 = 2 W fi G2 = 1/ R2 = 
0.5S, R3 = 2 W fi  G3 = 1/R3 = 0.5S

Step 1: Find equivalent voltage-        + + ¥ + ¥ + ¥
= = fi =

+ + + +
1 1 2 2 3 3

1 2 3

2 1 3 0.5 5 0.5
3 Volt .

1 0.5 0.5

V G V G V G
V V

G G G

Step 2: Find equivalent resistance:      1 2 3 1 0.5 0.5 2S,eqG G G G= + + = + + = = = = W
1 1

0.5
2eq

eq

R
G

4.12  TELLEGAN’S THEOREM

The theorem is the most general theorem for circuit analysis. 
The theorem, in fact reflects the energy conservation in an 
electrical circuit and hence applicable to all kind of electric 
networks i.e. active or passive, linear or non-linear.

Example 4.12

Figure 4.36

University Questions

1.  Explain Tellegan’s theorem. [DU, 2011]

2.  Draw the variation of circuit parameters 

with frequency in a series resonance 

circuit. [AU, 2011] 
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Statement: For any instant of time, algebraic sum of power delivered to each branch is zero.  ( ) 0k k kP V I= =Â Â

For Verify Tellegen’s theorem for the network shown in Figure 4.37.  [PTU, 2011-12] 

Figure 4.37

Solution Step 1 to 3: Find currents though each resistor by finding their current by applying KVL in 
each loop.

Step 1: By KVL to Loop 1:

5 – (I1 – I2) – (I1 – I3) = 0 P1 = 6.25

5 – I1 + I2 – I1 + I3 = 0 P2 = 6.25

5 – 2I1 + I2 + I3 = 0 P3 = 0

2I1 – I2 – I3 = 5 (4.1) P4 = 6.25

Step 2: By KVL to Loop 3: P5 = 6.25

(I3 – I2) + I3 – (I1 – I3) = 0 P = 25

I2 – I3 + I3 – I1 + I3 = 0 P = 5 × I1

–I2 – I1 + 2I3 = 0 (4.2) P = 25

Step 3: By KVL to Loop 2:

I2 + (I2 – I3) + (I2 – I1) = 0

I2 + I3 – I2 – I2 + I1= 0

I3 – I2 + I1= 0 (4.3)
By Eqs (4.1), (4.2), (4.3), we get

2I1 – I2 – I3 = 5 I1 = 5

–I1 + 3I2 – I3 = 0 I2 = 2.5

–I1 – I2 + 3I3 = 0 I3 = 2.5

Step 4: Find Power delivered by the source: P = V1 × I1 = 5 × I1 = 25
Step 5: Total power dissipated by resistors:

 = P1 + P2 + P3 + P4 + P5

Example 4.13
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 = I2
2
R1+ (V1– V2)

2
R2+ (I2– I3)

2
R3+ (I1– I3)

2
R4+ (I3)

2
R5

 = 6.25 + 6.25 + 0 + 6.25 + 6.25 = 25 

Tellegen’s theorem is verified.

4.13  SUBSTITUTION THEOREM

With the help of this theorem, any element in a branch can be replaced with another one leaving the 
circuit parameters un-affected.

Statement

The voltage across any branch or the current through 
that branch of a network being known, the branch can be 
replaced by the combination of various elements that will 
make the same voltage and current through that branch. 

Explanation

A branch with 2.5 W resistance and 7.5 V voltage source can be replaced with 3 other branches. For each 
of these 3 combinations, voltage drop between X and Y is 15 V and current from X to Y is 3 A. Hence 
circuit does not get affected if any of these 4 is replaced by other one

In the circuit shown in Figure 4.39, if the 40 W resistance is replaced 
by a voltage source V, find the value of V.

Solution 40 W resistance can be replaced by a voltage source whose 
voltage is equal to the voltage drop across the 40 W resistance.

Find voltage across 40 W resistance:
Circuit resistance, R = 20 + 50 + (40 + 20)||(30 + 30) = 70 + 30 = 

100 W
Circuit current, I = V/R = 120/100 = 1.2 A
Since this current gets divided in 2 branches, current through 

40 Ohm resistance,
By applying current division: I¢ = 1.2 (40 + 20)/((30 + 30) + (30 + 30)) 

= 1.2/2 = 0.6 A
Voltage drop across 40 Ohm = 0.6 × 40 = 2.4 V
Hence 40 Ohm resistance can be replaced by a voltage source of 

value 2.4 volt. V = 2.4 Volt (Figure 4.40).

Figure 4.38

Example 4.14

Figure 4.39

Figure 4.40
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4.14  COMPENSATION THEOREM

Change in resistance in one branch will affect the currents of other branches too. The theorem relates the 
change in current of one branch with the other one due to variation in resistance of that branch.

Statement

In a linear time invariant network when the resistance (R) of an uncoupled branch, carrying a current (I), 
is changed by (ΔR). The currents in all the branches would change and can be obtained by assuming that 
an ideal voltage source of (VC) has been connected such that VC = I(ΔR) in series with (R + ΔR) when all 
other sources in the network are replaced by their internal resistances.

Explanation

As shown in Figure 4.41, a small change in R, DR will 
change currents of other branches of the network. This 
can be found by setting all active sources of the circuit to 
zero and by connecting a voltage source of DV = IDR and 
a resistance DR in series with R, where I is the current 
through R before change.

In Figure 4.42, if the 1 ohm resistance is changed to 1.2 ohms then determine the source voltage for 
compensating for the change.                     [GTU, 2014]

Solution Since I1 should not change, 

  I1 = –3/4 A  1 3

1.2 4

V V-
=

fi  V = 1.85 V

Change in voltage, ΔV = 2 – 1.85 = 0.15 V. Therefore, source voltage must be reduced by 0.15 V.

4.15
   DC-TRANSIENT OF RL, RC, 

RLC CIRCUIT

4.15.1 DC-transient of RL Circuit

Charging

A voltage source of V0 volt is connected in series with an inductor of L henry and 
resistance R ohm as shown in Figure 4.43. At time, t = 0, switch S is closed. Now 
circuit current (i) and voltage across each resistor (VR) and inductor (VL) is to be 
evaluated.

Figure 4.41

Example 4.15

Figure 4.42

University Question

1.  Obtain the response VC(t) and IL(t) for 

the source free RC and RL circuits 

respectively. Assume initial voltage V0 and 

initial current I0 respectively. [GTU, 2010]

Figure 4.43
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Applying KVL in the circuit, V0 = VL + VR (4.4) 

Since, = =  and ,L R

di
V L V iR

dt
 Eq. (4.4) becomes,  0

di
V L iR

dt
= +   

0

di dt

V iR L
fi =

-
 (4.5)

Integrating the equation both sides,  0 0 0

i t

I

di dt

V iR L
= -

-Ú Ú  0 0 / /
0

0 0

1
ln 1  

t t

L R L R
V iR Vt

i e I e
R V I R L R

- -Ê ˆÊ ˆ-
- = fi = - +Á ˜Á ˜-Ë ¯ Ë ¯

 (4.6) 

Constant I0 can be evaluated by initial condition,
Since i = 0 for t < 0, and inductor current cannot be instantly changed, I0 for an initially relaxed 

inductor is zero. Substituting value of I0 = 0 in Eq. (4.6).

  0 0/1  (1 )
t

L R

t
V V

i e i e
R R

t
- -Ê ˆ

= - fi = -Á ˜
Ë ¯

Here, L/R is called time constant of an RL (Unit- second) circuit and denoted as t. It is defined as 
time taken by circuit current of reach 63% (1 – 1/e) of its final value.

Now, t
-È ˘Ê ˆ

Í ˙= = -Á ˜
Í ˙Ë ¯Î ˚

0 1
t

L

Vdi d
V L L e

dt dt R

fi 
0   

t

LV V e t
-

=  and 
0 (1 )

t

RV iR V e t
-

= = -

Figure 4.44

Discharging

Now, if voltage source is replaced with a short circuit shunt, Eq. (4.4) becomes

  t
- -

+ = fi = - fi = =Ú Ú
0

/
0 0

0

0
t ti t

L R

I

di di R
L iR dt i I e I e

dt i L
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0 0( / )  
t t

L

di
V L L RI L e RI e

dt
t t

- -
= = =  and 

0

t

RV iR RI e t
-

= =

4.15.2 DC-transient of RC Circuit

Charging

A voltage source of V0 volt is connected in series with a capacitor of C farad and resistance R ohm as 
shown in Figure 4.45. At time, t = 0, switch S is closed. Now circuit current (i) and voltage across each 
resistor (VR) and capacitor (VC) is to be evaluated.

Applying KVL in the circuit, V0 = VC + VR (4.7)

Since, 

 = =Ú
1

 andC RV idt V iR
C

Equation (4.7) becomes, 
0

1
 V idt iR
C

= +Ú  (4.8)

Differentiating the equation both sides,  0  
i di

R
C dt

= +

  0 0

 
i t

I

di dt

i RC
= -Ú Ú

  0
0

ln
t

RC
i t

i I e
I RC

-Ê ˆ
= - fi =Á ˜Ë ¯  

(4.9)

Constant I0 can be evaluated by initial condition,

Since i = 0 for t < 0, at  t = 0, 
1

0idt
C

=Ú  or VC (t = 0) = 0. (This can also be understood as: Since 

capacitor is initially discharged, capacitor voltage (VC) at t = 0 is zero)
Substituting initial conditions in Eq. (4.7)  V0 = VC + VR  fi  V0 = 0 + VR  fi  V0 = 0 + I0R

So,  0
0

V
I

R
=  (4.10)

Substituting value of I0 in Eq. (4.9),

  0 0
t t

RC
V V

i e i e
R R

t
- -

= fi =

Figure 4.45
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Here, RC is called time constant of an RC (Unit- second) circuit and denoted as t. It is defined as time 
taken by capacitor voltage to reach its 63% (1 – 1/e) of final value.

fi  Now, 01 1
t

RC
C

V
V idt e dt

C C R

-
= =Ú Ú

fi 
0 1  

t

CV V e t
-Ê ˆ

= -Á ˜
Ë ¯

 and 
0

t

RV iR V e t
-

= =

Figure 4.46

Discharging

Now, if voltage source is replaced with a short circuit shunt, 

Current 
0

0 0
00

1
 0  ln

ti t

RC

I

di dt i t
idt iR i I e I e

C i RC I RC
t

- -Ê ˆ
+ = fi = - fi = - fi = =Á ˜Ë ¯Ú Ú Ú

t

t t
- -

= = = =0 0Resitor Voltage:  ;  Capacitor Voltage: R C RV iR V e V V V e

t t

4.15.3 DC-transient of RLC Circuit

Now, if both inductor and capacitor are connected in series with a resistance and a voltage source of V0 
as shown in Figure 4.47 and the circuit is switched on by closing S at time, t = 0. Let us see, how circuit 
current (i), voltage across each resistor (VR), capacitor (VC) and inductor (VL) are going to vary.

Applying KVL in the circuit, V0 = VL = VC + VR (4.11) 

Since, 1
 , and  C R L

di
V idt V iR V L

C dt
= = =Ú

Equation (4.11) becomes,  
0

1
 

di
V L idt iR

dt C
= + +Ú  (4.12)

Differentiating the equation both sides,  2 2

2 2
0  0

d i di i d i di
L R LC RC i

dt C dtdt dt
= + + fi + + =

Figure 4.47
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It is a second order homogeneous differential equation and when solved for i (t);mm  1 2  ( ) m t m t
i t Ae Be= +  (4.13)

where, 
2

1

1
 

2 2

R R
m

L L LC

Ê ˆ= - + -Á ˜Ë ¯
 and 

2

2

1
 

2 2

R R
m

L L LC

Ê ˆ= - - -Á ˜Ë ¯

Values of m1 and m2 may be real or imaginary depending upon value of 

2
1

 .
2

R

L LC

Ê ˆ -Á ˜Ë ¯

Case 1: When 

2
1

2

R

L LC

Ê ˆ -Á ˜Ë ¯
 > 0 i.e. m1 and m2 are real and distinct.

Solution Eq. (4.13) becomes: 

Ê ˆ Ê ˆ
Ê ˆ Ê ˆÁ ˜ Á ˜- -Á ˜ Á ˜Ë ¯ Ë ¯Á ˜ Á ˜- Ë ¯ Ë ¯= +

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

2 2
1 1

    
2 2  

2( )  

R R
t tR

L LC L LCt
Li t e Ae Be

The response is shown in Figure 4.48.
Response is overamped.

Case 2: When 
2

1

2

R

L LC

Ê ˆ -Á ˜Ë ¯
 = 0 i.e. m1 and m2 are real and distinct.

Solution Eq. (4.13) becomes: 

  
    

2 2( )    
R R

t t
L Li t Ae Bte

- -
= +  

The response is critically damped.

Case 3: When 

2
1

2

R

L LC

Ê ˆ -Á ˜Ë ¯
 < 0 i.e. m1 and m2 are imaginary and conjugate.

Solution Eq. (4.13) becomes:

  

2 2
1 1

    
2 2–   

2( )  

R R
t tR

L LC L LCt
Li t e Ae Be

Ê ˆ Ê ˆ
Ê ˆ Ê ˆÁ ˜ Á ˜- -Á ˜ Á ˜Ë ¯ Ë ¯Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ
Á ˜

= +Á ˜
Á ˜
Á ˜Ë ¯

Here, the solution posses two patterns in the response

 • Exponential decreasing

 • Periodic because of complex power of e

Figure 4.48
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Expansion of the solution further with using Euler identity results:

-
Ê ˆÊ ˆ Ê ˆÊ ˆ Ê ˆÊ ˆ Ê ˆÁ ˜Á ˜ Á ˜Á ˜ Á ˜= + - + - -Á ˜ Á ˜Ë ¯ Ë ¯Á ˜Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯Ë ¯ Ë ¯Ë ¯

2 2

2
1 1

( )  ( )cos    ( ) cos   
2 2

R
t

L
R R

i t e A B t j A B t
L LC L LC

a w w-= + + -( )  (( )cos( )  ( ) cos( )) i t e t A B t j A B t  

Response is periodic with frequency equal to w rad/s enveloped by 
-

2 
R

t
Le .

Response is under damped response is shown in Figure 4.49 

Figure 4.49

For the circuit shown in Figure 4.50, the switch ‘S’ is at position ‘1’ and the steady-state condition is 
reached. The switch is moved to a position ‘2’ at t = 0. Find the current i(t) in both the cases, i.e., with 
the switch at positions 1 and 2.    [AU, 2011]

Solution Case 1: When the switch is in the position 1 and 

steady state is not reached, 50  0.5 25  
di

i
dt

= +  = Ce
–50t + 2

Current i passes through the inductor and must be zero at 
t = 0.

fi C = –2 at t = 0 \ i = –2e
–50t+ 2 = 2(1 – e

–50t) A

Case 2: When the switch is in the position 1, steady state is reached [inductor acts as short-circuit]. 

 –50 + 25i = 0 (steady-state) fi i = 2A

Case 3: When the switch is moved to the position 2, 

        0 0.5 15
di

i
dt

= +  fi i = Ce
–30t

At t = 0, i(0) = i(0–) = 2A (Case 1)

 = i = C = 2 at t = 0

\ i = 2e
–30tA

Example 4.16

Figure 4.50
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For the network shown in Figure 4.51, the switch k is closed at t = 0, with the capacitor uncharged. 

Find the values of i, 
2

2
, 

d i di

dtdt
 at t = 0+.                 [PU, 2012]

Solution When the switch is closed; KVL in the loop 

0

1
 .V idt i
C

= +Ú
Differentiating the equation both sides,

0

0
00

0   ln
ti t

RC

I

i di di dt i t
R i I e

C dt i RC I RC

-Ê ˆ
= + fi = - fi = - fi =Á ˜Ë ¯Ú Ú

At t = 0, i = V/R = 100/1000 = 0.1 A

so, 0.001
0 0.1 

t t

RCi I e i e
- -

= fi =

Now, 0
0  

t t

RC RC
Idi d

I e e
dt dt RC

- -Ê ˆ
= = -Á ˜

Ë ¯
; 00 0

6
0

0.1
 

1000 10t

I Idi
e

dt RC RC -
=

Ê ˆ = - = - = - = -Á ˜Ë ¯ ¥
 100 A/s.

Similarly, 
2

0 0
2 2

 
( )

t t

RC RC
I Id i d

e e
dt RCdt RC

- -Ê ˆ
= - =Á ˜

Ë ¯
; 2

00
2 2

0
( )

t

Id i
e

dt RC
=

Ê ˆ
=Á ˜Ë ¯

 = -¥
= 5 2

6 12

0.1
 10 A /s
10 10

Solve for i and V as functions of time in the circuit shown in Figure 4.52, when the switch is closed 
at time t = 0.                          [AU, 2012]

Solution Step 1: Find I0: For t < 0; switch S is open and circuit was 
in steady state. Since at steady state inductor acts as short-circuit with 
DC current. So circuit current at t < 0; i = 10/(10 + 10) = 0.5 A; 

Step 2: Switch is closed at t = 0, so I0 = i(t < 0) = 0.5 A
Applying KVL in loop-2 after S is closed; Inductor –Resistor 
Pair (10 Ohm and 10 mH) is short circuited.

30 (10 10 ) 10
di

i
dt

-= ¥ +  fi i = 
3

10
–  

10 10
0

t

I e
-¥  = i = 0.5e

–1000t

Example 4.17

Figure 4.51

Example 4.18

Figure 4.52
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V is the voltage across inductor, V = -= ¥ = -3 –1000 –100010 10 (0.5 ) 5e Voltt tdi d
L e

dt dt

The circuit shown in Figure 4.53 consists of resistance, inductance, and capacitance in series with 
100 V dc, when the switch is closed at t = 0. Find the current transient.

[AU, 2013; BPUT, 2008]

Solution Step 1: Apply KVL and find the current 

expression:

At t = 0, Applying KVL,        -= + +
¥ Ú6

1
100 0.5  20

20 10

di
idt i

dt

Differentiating both sides of equation-  2
6

2
 400 10 0

d i di
i

dtdt
+ + =

\    (D2 + 400 D + 106)i = 0

  D1, D2 = –200 ± j979.8

Therefore, the current,

i = e
+K1 + [C1 cos K2t + C2sin K2t] = e

–200t[C1 cos 979.8t + C2sin 979.8t] A

Step 2: Apply initial condition and find value of constants in solution.
At t = 0, the current flowing through the circuit is zero.

i = 0 = (1) [C1cos 0 + C2sin 0]; C1 = 0 \  i = e
–200t

C2sin 979.8 t A

Differentiating, we have

di/dt = C2 [e
–200t 979.8 cos 979.8t + e–200t (–200) sin 979.8t] dt

At t = 0, the voltage across the inductor is 100 V;  100
di

L
dt

=

 100  2000
di di

L
dt dt

= fi =

C2 979.8 cos 0 = 2000; C2 = 2000/979.8 = 2.04 

The current equation is: i = e
–200t[2.04 sin 979.8t] A

Example 4.19

Figure 4.53
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4.15.4 Sinusoidal Response of RC

A resistance (R) and a capacitor (C) are excited by a sinusoidal voltage source at t = 0 as shown in 
Figure 4.54. To determine the circuit current,

We apply KVL in the circuit of single loop: VS = VC + VR (4.14) 

Since, w a= = = +Ú
1

 ,  and sin( ) C R s mV idt V iR V V t
C

Equation (4.14) becomes, 
1

  sin( t )midt iR V
C

w a+ = +Ú .

It is a first order homogeneous equation whose response is given as sum of natural response and 
forced response. 

 I. Natural/Transient response: 
1

0
t

RCidt iR i Xe
C

-
+ = fi =Ú  (4.15)

 II. Forced/Steady state response:

  
1

 sin( ) C sin( )m m

di
idt iR V t RC i V t

C dt
w a w w a+ = + fi + = +Ú  (4.16)  sin( ) cos( )i Y t Z tw a w a= + + +  (4.17)  cos( )  sin ( )

di
Y t Z t

dt
w w a w w a= + - +

Similar analysis to the RL circuit yields,

  w a f f
w

w

- Ê ˆ= + + = Á ˜Ë ¯È ˘Ê ˆ+Í ˙Á ˜Ë ¯Í ˙Î ˚

10

2
2

1
sin( ), where tan

1

V
i t

R C

R
C

Complete solution will be the sum of these two currents,

  w a f

w

-
= + + +

È ˘Ê ˆ+Í ˙Á ˜Ë ¯Í ˙Î ˚

0

2
2

sin( )
1

t

RC
V

i Xe t

R
C

To find X, we apply initial condition, at t = 0, I = 0.

  a f a f

w w

= + + + = = -
È ˘ È ˘Ê ˆ Ê ˆ+ +Í ˙ Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙ Í ˙Î ˚ Î ˚

0 0 0

2 2
2 2

(0) sin(0 ) 0; sin ( )  
1 1

V V
i Xe X

R R
C C
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a f w a f

w w

-

È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙= - + + +
Í ˙ Í ˙Ï ¸ Ï ¸Ô Ô Ô ÔÊ ˆ Ê ˆÍ ˙ Í ˙+ +Ì ˝ Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Í ˙ Í ˙Ô Ô Ô ÔÓ ˛ Ó ˛Î ˚ Î ˚

 
0 0

2 2
2 2

Transient response Steady-state response

sin( ) sin( )
1 1

t
t

RC
V V

i e t

R R
C C

4.15.5 Sinusoidal Response of RLC

For a series RLC circuit with sinusoidal voltage source, KVL equation will be

  
0

1
sin( )  

di
V t L idt iR

dt C
w a+ = + +Ú

Differentiating the equation both sides,  2

0 2
 cos ( )   

d i di i
V t L R

dt Cdt
w w a+ = + +

fi   
2

02
 cos( )

d i di
LC RC i V t

dtdt
w w a+ + = +

 I. Its Transient response (Complementary Function) is found by equating source voltage to zero, 

or + + =
2

2
0,

d i di
LC RC i

dtdt
 Solution as per Eq. (4.12) and (4.13) is: = +1 2( ) m t m t

i t Ae Be

 II. Now, find its steady state response, i.e. find its particular solution w w a+ + = +
2

02
  cos( )

d i di
LC RC i V t

dtdt
 (4.18)

Assuming sin( )  cos( )i E t D tw a w a= + + +

  cos( )  sin( ) 
di

E t D t
dt

w w a w w a= + - +  and

  2
2 2

2
sin( )  cos( )

d i
E t D t

dt
w w a w w a= - + - +

Substituting these values in Eq. (4.18) and finding out values of E, D results: (As done previously 
for RL circuit)

 
1 10

2
2

sin( ),  where  tan tan
1

1

V R R
i t

X
L

R L C
C

w a f f

w
w w

w

- -

Ê ˆ
Á ˜ Ê ˆ= + - = =Á ˜ Á ˜Ë ¯Ê ˆÁ ˜Ê ˆÊ ˆ -Á ˜Á ˜+ - Ë ¯Á ˜ Ë ¯Á ˜Ë ¯Ë ¯

Figure 4.54
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w a f f - Ê ˆ= + - = Á ˜Ë ¯
10 sin( ), where tan

V R
i t

Z X

Now, depending upon values of m1 and m2 in C.F. (Transient response); response can be classified in 
three categories (This is similar to the RLC response with a DC source discussed earlier)

Case I: When 
2

1 2

1
 > 0 i.e. and m are real and distinct.

2

R
m

L LC

Ê ˆ
ÁË

-˜̄  (Response is underdamped)

2 2
1 1

    
2 2  102( )  sin( ), where tan

R R
t tR

L LC L LCt
L

V R
i t e Ae Be i t

Z X
w a f f

Ê ˆ Ê ˆ
Ê ˆ Ê ˆÁ ˜ Á ˜- -Á ˜ Á ˜Ë ¯ Ë ¯Á ˜ Á ˜- Ë ¯ Ë ¯ -

Ê ˆ
Á ˜ Ê ˆ= + + = + - =Á ˜ Á ˜Ë ¯Á ˜
Á ˜Ë ¯  

Case II: When 
2

1 2

1
 i.e. and equal.

2

R
m m

L LC

Ê ˆ =Á ˜Ë ¯
 (Response is critically damped)

 w a f f
- - - Ê ˆ= + + + - = Á ˜Ë ¯

    102 2( )     sin( ),  where tan
R R

t t
L L

V R
i t Ae Bte t

Z X

Case III: When 

2

1 2

1
0 i.e. and are imaginary conjugates.

2

R
m m

L LC

Ê ˆ - <Á ˜Ë ¯  (Response is underdamped)

 a w w w a f f- - Ê ˆ= + + - + + - = Á ˜Ë ¯
10( )  (( )cos( ) ( ) cos( )) sin( ), where tan  

V R
i t e t A B t j A B t t

Z X

Obtain the current at t > 0, if ac voltage V is applied when the 
switch k is moved to 2 from 1 at t = 0. Assume a steady-state 
current of 1A in LR circuit when switch was at position 1 
(Figure 4.55).           [RTU, 2011]

Solution At the position 1 of the switch k, the steady-state 
current in the circuit is 1 A, i.e., I (0–) = 1 A. If the switch is moved to the position 2 at t = 0, the ac 
voltage appears

\ i(0–) = i(0+) = 1 A, Z = R + jXL= 100 + j2p × 50 × 0.1 = 104.8 – 17.47°

Step 1: Apply KVL in the loop:

  
0.1 100 100 sin 314  

di
i t

dt
+ = ;

Example 4.20

Figure 4.55
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Step 2: Find transient and steady state solutions:
Solution of the equations will be: Transient response: ic = ce

–1000t Steady state response: 

       
= = - ∞

100
 sin(314 17.47 ) 

104.8

V
ip t

Z

\       i = ic + ip = ce
–1000t + 0.954 sin (314t – 0.304) 

Step 3: Apply initial condition and find exact current:

But i(0+) = 1A \ 1 = c + 0.945 sin (–0.304) = c – 0.28 fi c = 1 + 0.28 = 1.28

\               i = 1.28e
–1000t

 + 0.945 sin (314t – 0.304)

An RC series circuit is excited by a sinusoidal source e(t) = 1000 sin 100t volts, by closing the 
switch at t = 0. Take R = 10 W and C = 10 μF. Determine the current i(t) flowing through the RC 
circuit.

Solution Given: R = 10 Ohm, C = 10 μF and w = 100 rad/s.V0 = 1000 V

Step 1: KVL Equation in the loop:
1

 sin( )midt iR V t
C

w a+ = +Ú

 I. Natural/Transient response: 
46 1010 10 101

0

tt

tRC
tridt iR i Xe Xe Xe

C

-
-- -¥ ¥+ = fi = = =Ú

 II. Forced/Steady state response: w w w+ = fi + =Ú
1

 sin( )  sin( ) m m

di
idt iR V t RC i C V t

C dt

Step 2: Find steady state and transient response:

10

2
2

1
sin( ),  where tan

1
ss

V
i t

R C

R
C

w f f
w

w

- Ê ˆ= + = Á ˜Ë ¯Ê ˆÊ ˆ+Á ˜Á ˜Ë ¯Ë ¯

1
62

2
6

1000 1
sin 100 tan 1sin(100 1.56)

10 100 10 10
1

10
100 10 10

ssi t t
-

-

-

Ê ˆÊ ˆ
= + = +Á ˜Á ˜¥ ¥ ¥Ë ¯Ë ¯Ê ˆÊ ˆ

+Á ˜Á ˜Á ˜¥ ¥Ë ¯Ë ¯ i = iss + itr

Example 4.21



Steady State AC Analysis and Transient Response  4.35

Step 3: Apply initial condition to find outvalue of X in X in itr:

Since ( 0) 0;  (0) (0) (0) 0
ss tr

i t i i i= = = + =

410 1 sin(100(0) 1.56) 0 1 sin(1.56) 1t
Xe X A

- + + = fi = =

  i = 1 
410 t

e
−  + 1 sin (100t + 1.56) A

In the network shown in Figure 4.56, the switch K is closed at 
t = 0 with zero capacitor voltage and zero inductor current. 
Solve for (a) v1 and v2 at t = 0, (b) v1 and v2 at t = ∞, and 

(c) 1 2and at 0.
dV dV

t
dt dt

=       [JNTU, 2012]

Solution Before the switch is closed, no current flows through the circuit so

 V1 = 0 and V2 = 0
When the switch is closed, and t = 0+, the circuit will be as follows.
 L = open circuit C = short circuit
 So, V1 = V2 = 0 V at t = 0+

 (i) At t = 0 (Figure 4.57 (a))

  V1= 0; V2= 0

  At t = 0+ V1 = 0; V2= 0

  So += = =1 20, 0 at 0
dV dV

t
dt dt

(ii) At t = ∞, there is nothing but steady state. Circuit will be 
 C = open circuit L = short circuit (Figure 4.57 (b))

  So, V1 = 0 V; V2 = (R2V)/(R1 + R2)

An RL series circuit is excited by a sinusoidal source e(t) = 10 sin 100 t volts, by closing the 
switch at t = 0. Take R = 10 W and L = 0.1 H. Determine the current i(t) flowing through the RL 
circuit.                              [AU, 2014]

Solution

   

+
= =

+ + +

2 2

2 2

10(100/ 100 ) (100)10
( )

0.15 10 ( 100 )(0.15 10)

S
I s

S

2

2 2

100

( 100 )( 100)S S
=

+ +

Example 4.22

Figure 4.56

Figure 4.57 (a)

Figure 4.57 (b)

Example 4.23
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By partial fractions.

   
2

2 2 2 2

1 1
50100 2 2( )

100( 100 )( 100) 100

S

I s
SS S S

- +
= = +

++ + +

   
2 2 2 2

1 5 50 1 1
( )

2 2 100100 100
I s

SS S

-
= + + +

++ +

   

-= - + + 1001 1 1
( ) cos100 sin100

2 2 2
t

I t t t e

P O I N T S  T O  R E M E M B E R

  The resultant of two or more quantities varying sinusoidally at the same frequency is another sinusoidal quantity 
of same frequency.

  j is defined as an operator which turns a phasor by 90° counter-clockwise without changing the magnitude of 
phasor and j2 = –1. 

  Peak factor of the sine wave is 1.414

  For the sine wave, the form factor is 1.11

  In parallel circuits the phase angles must be considered in calculations.

  The voltage current relationship is given by 2 2
 ( ) V I R Lw= +  in a series RL circuit.

  The voltage current relationship is given by 
2

2 1
  V I R

Cw

Ê ˆ
= + Á ˜Ë ¯

 in a series RC circuit.

  The voltage current relationship is given by 
2

2 1
  V I R L

C
w

w

Ê ˆ
= + -Á ˜Ë ¯

 in a series RLC circuit.

  The total current is the phasor summation of all the branch currents in a parallel circuit.

  An inductor acts as a short circuit to DC voltage or current at steady state.

  A capacitor acts as an open circuit to DC voltage or current at steady state.

  A capacitive reactance refers to a negative reactance while an inductive reactance refers to a positive reactance.

  While solving complex numbers multiplication and division are done in polar form while addition and subtraction 
are done in rectangular form.

  The power indicated by the product of the applied voltage and the total current is known as apparent power S and 
measured in volt-ampere.

  Power that is returned to the source by the reactive components in the circuit is called reactive power Q and is 
measured in VAR. 

  Power that actually used in the circuit (dissipated in resistance) is true or active power P and is measured in watts 
or kW.



Steady State AC Analysis and Transient Response  4.37

  Active (Real) Power = Voltage magnitude × Current magnitude × cos q  2 2
S P Q= +

  The power factor of an alternating-current device or circuit or electric power system is defined as the ratio of real 
or true power to the apparent power (VA) and is between 0 to 1.

  In a single-phase circuit the power factor is also a measure of the phase angle - between the phase voltage (Vph) 
and phase current (Iph)

  Mesh analysis is based on KVL whereas nodal analysis is based on KCL.

  These methods are not useful for complex networks with too many unknown variables.

  Superposition theorem is not applicable to networks containing only dependent sources.

  Superposition theorem is not applicable for calculation of power.

  Superposition theorem is not applicable to networks containing unilateral and non-linear elements.

  Thevenin theorem is not applicable for networks containing unilateral, non-linear elements.

  Thevenin theorem is not applicable for networks containing magnetic coupling between the load and any other 
circuit element.

  If internal impedances of sources are not given then voltage sources are replaced by short circuit and current 
sources by open circuit for calculating Thevenin equivalent impedance.

  Norton’s theorem is the dual of Thevenin’s theorem.

  The Thevenin equivalent voltage source can be transformed into an equivalent current source and vice versa. 

TH
N

TH

V
I

Z
= .

  The Norton equivalent impedance is the same as Thevenin equivalent impedance.

  Maximum power will be transferred from a network to load if the load impedance is the complex conjugate of 
the Thevenin equivalent impedance of the network.

  When any network delivers maximum power to the load, then corresponding efficiency of the network will be 
50%.

  The condition for maximum power to the load is not same as the condition for maximum power delivered by the 
source.

  Reciprocity theorem allows interchange of position of excitation and response in a network.

  Reciprocity theorem is not applicable for networks containing multiple energy sources.

  Reciprocity theorem is not applicable for networks containing dependent sources.

PRACTICE PROBLEMS

 1. A circuit having a resistance of 20 Ω 
and inductance of 0.07 H is connected 
in parallel with a series combination of 
50 Ω resistance and 60 μF capacitance. 
Calculate the total current, when the 
parallel combination is connected across 
230V, 50Hz supply.

 2. Two coils of 5 Ω and 10 Ω and inductances 
0.04 H and 0.05 H respectively are 
connecting in parallel across a 200 V, 50 Hz 
supply. Calculate: (i) Conductance, 
susceptance and admittance of each coil.
(ii) Total current drawn by the circuit and 
its power factor. (iii) Power absorbed by 
the circuit.
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 3. In the network shown determine Va and 
Vb.

Figure 4.58

 4. Find the current I in the network.

Figure 4.59

 5. Obtain Thevenin’s equivalent network for 
the shown network.

Figure 4.60

 6. Determine the load current IL by using 
Norton’s theorem. 

Figure 4.61

 7. Find the impedance ZL so that maximum 
power can be transferred to it in the shown 
network. Find maximum power.

Figure 4.62

 8. Verify Reciprocity theorem for the given 
network.

Figure 4.63

 9. Find the current in 12 W resistor using 
Millman’s theorem.

Figure 4.64

 10. For the circuit shown below, if the current 
source is to be substituted with a resistance 
of 1 W and a voltage source, find the value 
of voltage source. 

Figure 4.65

 11. If the resistance 6 W is changed by 15%. 
Find the change in current in 2 W resistance 
using compensation theorem.

Figure 4.66

 12. For the circuit shown below, find output 
voltage at t = 5- second.

Figure 4.67
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 13. For a series RLC circuit with R = 2 Ohm, 
L = 2.5H, C = 2F and V = 50V, find the 
frequency of oscillation if circuit is 
underdamped.

 14. A series RL (with R = 10 Ohm, L = 100 
mH) circuit is connected to a DC voltage 
source of 100 V at time t = 0. Find the 

circuit current expression if current through 
the circuit for t < 0 was 5 A.

 15. For an RL (with R = 10 Ohm, L = 100 mH) 
circuit excited with a 50 Hz AC source, it 
is desired to have zero transient current. 
What should be the time delay after zero 
crossing of the voltage waveform?

MULTIPLE CHOICE QUESTIONS

 1. For a RC circuit, with R =10 Ohm and C = 0.1 F time constant will be:
 (a) 1 second (b) 10 second (c) 0.1 second (d) 2 second

 2. A series RC circuit with R =10 Ohm and C = 0.1 is connected to a DC voltage source of 20 V. Current in 
the circuit at the moment just after the circuit is completed is:

 (a) 2 A (b) 200 A (c) 0 A (d) 20 A

 3. For a critically damped series RLC circuit with R = 2 Ohm and L = 1 H, value of C will be:
 (a) 0.5 F (b) 2 F (c) 1 F 9 (d) 4 F

 4. For an RL (R = 10 Ohm, L = √3 H) circuit excited with AC source of 10 rad/s; transient current will be 
zero for delay angle equal to:

 (a) 45 degree (b) 30 degree (c) 60 degree (d) 0 degree

 5. Read following statements regarding DC transient:
 I. Time constant of R-L circuit is L/R.
 II. Inductor acts as open circuit at t = 0 on closing the switch if its initial current is zero.
 III. Capacitor acts as open circuit at t = 0 on closing the switch if its initial current is zero.
 IV. With DC supply to an RLC circuit, circuit cannot have a sinusoidal current.

  Which one of above is correct?
 (a) I only (b) I, II (c) I, II and III (d) All

 6. In balanced bridge, if the positions of detector and source are interchanged, the bridge will still remain 
balanced. This can be explained from which theorem

 (a) Reciprocity theorem (b) Thevinin’s theorem
 (c) Norton’s theorem (d) Compensation theorem

 7. If all the elements in a particular network are linear, then the superposition theorem would hold, when the 
excitation is

 (a) DC only (b) AC only (c) Either AC or DC (d) An Impulse

 8. In a series R, L circuit, voltage across resistor and inductor are 3 V and 4 V respectively, then what is the 
applied voltage?

 (a) 7V (b) 5V (c) 4V (d) 3V

 9. Form factor is equal to Peak factor in case of
 (a) Square wave (b) Triangle wave (c) Saw tooth wave (d) All of the above

 10. In RLC series circuit, if the voltage across capacitor is greater than voltage across inductor, then power 
factor of the network is

 (a) lagging (b) leading (c) unity (d) zero
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ANSwERS To MUlTIPlE ChoICE QUESTIoNS

 1. (a) 2. (a) 3. (c) 4. (b) 5. (b)

 6. (a) 7. (c) 8. (b) 9. (a) 10. (b)



  

5.1  INTRODUCTION

Resonance is an important phenomenon in electric circuits, which occurs when two energy storing 

elements viz. capacitor and inductor are present in an AC circuit. At a certain frequency of power supply 

i.e. resonant frequency, energy stored in capacitor is supplied by inductor and vice versa. Hence, the 

circuit draws power, if any, from the source at unity power factor.

5.2  SERIES RESONANCE

In series RLC circuit, resonance is a condition at which 

capacitive reactance and inductive reactance are equal in 

magnitude. Voltage across inductor and capacitor are equal 

in magnitude but 180° phase shifts and cancel out each 

other (Figure 5.1).

At resonance, |XL| = |XC| i.e. 2p fL = 1/2p fC

This yields resonant frequency, p=0 1 / 2f LC

Input impedance of circuit at resonance, Z = R + j (XL – XC) = R

University Questions

1.  Define resonance and write its properties 

of series RLC circuit. [JNTU, 2015]

2.  Discuss resonance in R-L-C series circuit. 

 [GTU, 2009]

Figure 5.1
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  Exploration of frequency response of RLC 

series and parallel circuits/Variation of 

magnitude and phase angle of resonant 

circuit impedance with frequency

  Evaluation of resonant frequency for series 

and parallel resonance

  Determination of half power frequency, 

band width

  Determination of quality factor for each type 

of resonance

Chapter Outline
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 For a series RLC circuit, if voltage measured across induction and capacitor are equal in magnitude, 

what will be the power factor of circuit?

Solution Here, |VL| = |VC| fi |IXL| = |IXC|. 

Since it is a series RLC circuit, so |XL| = |XC| fi Z = R

Which means circuit is at resonance and power factor is unity.

 If phase plane scope is connected to observe VR and VSupply. Discuss the shape of the curve in scope 

at resonance. 

Solution Assuming, VSupply = VS = V sin wt.

Voltage across resistance will be VR = IR = 1

2 2

( ) 
sin tan

( )

L C

L C

X XRV
t

RR X X
w - -Ê ˆ

-Á ˜Ë ¯+ -

And at resonance, XL – XC = 0, so VR = V sin wt = VS

So, if VR is presented on Y axis and VS at X axis of the scope, than 1Y R

X S

V V

V V
= =  or VY = VX which 

is a straight line.

 A series RLC circuit has the following parameters: R = 15 W, L = 2 H, C = 100 mf. Calculate the 

resonant frequency. Under resonant condition, calculate the current, power and voltage drops across 

various elements if the applied voltage is 100 V.                [JNTU, 2012]

Solution

 (a) Resonant frequency, 0 1 / 2  f LCp=  61 / 2 2 100 10  p -= ¥ ¥ = 11.25 Hz

  At resonance, circuit impedance, Z = R = 15W

 (b) Circuit current, I = V/Z = V/R = 100/15 = 6.67 Amp.

 (c) Power dissipated, P = I2R = 6.672 × 15 = 666.67 W

 (d) Voltage across resistance, VR = IR = 6.67 × 15 = 100 V

 (e) Voltage across inductor, VL = jIXL = jI(2pfL) = j6.67 × (2p × 11.25 × 2) = j943 V

 (f) Voltage across capacitor, VC = –jIXC = –jI(1/2pfC)  = –j6.67 × (1/(2p × 11.25 × 100 × 10–6)) 

= –j943 V

Example 5.1

Example 5.2

Example 5.3

Note: Difficulty Level    — Easy;  — Medium;  — Difficult
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5.3
   IMPEDANCE AND PHASE ANGLE 

OF A SERIES RESONANT CIRCUIT

5.3.1  Variations of Individual Element’s 
Impedance with Frequency

 (a) Resistance: Ideally constant for all frequencies.

 (b) Inductive Reactance: jXL = jI(2pf L) varies linearly with frequency.

 (c) Capacitive Reactance: –jIXC = – jI(1/2pf C) inversely proportional to frequency.

5.3.2 Impedance of Series RLC Circuit

  
2 2( )L CZ R X X= + -

Z is infinite for both f = 0 and f = ∞ and finds its minimum value (Z = R) at f = f0, i.e. at resonance, where 

XL = XC (Figure 5.2(a)).

5.3.3 Phase Angle of Series RLC Circuit Impedance

  
f = -tan ( ) /L CX X R

f is zero at resonance, negative (I leads V) for f < f0  and positive (I lags V) for f > f0 (Figure 5.2(b)).

Figure 5.2 Variation of  magnitude and phase angle of  input impedance for series RLC

 For the circuit shown in Figure 5.3, determine the impedance at 

resonant frequency, 10 Hz above resonant frequency and 10 Hz 

below resonant frequency.

Solution Resonant frequency,

f0 = 1/2p LC  = 1/2p 6(0.1 10 10 )-¥ ¥  = 159.2 Hz

University Question

1.  Draw the variation of circuit parameters 

with frequency in a series resonance 

circuit. [AU, 2011]

Example 5.4

Figure 5.3
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At 10 Hz below f0 = 159.2 – 10 = 149.2 Hz 

At 10 Hz above f0 = 159.2 + 10 = 169.2 Hz

For series RLC circuit, 

2

2 1
2

2
Z R fL

fC
p

p

Ê ˆ
= + -Á ˜Ë ¯

 

p
p -=

Ê ˆ
= + ¥ ¥ - = WÁ ˜¥ ¥ ¥Ë ¯

2

2

6149.2

1
 10 2 149.2 0.1 16.28

2 149.2 10 10f
Z

 

p
p -=

Ê ˆ
= + ¥ ¥ - = WÁ ˜¥ ¥ ¥Ë ¯

2

2

6169.2

1
10 2 169.2 0.1 15.81

2 169.2 10 10f
Z

5.4
   VOLTAGE AND CURRENT IN 

SERIES RLC CIRCUIT

5.4.1 Variation of Current

Figure 5.4

1

2

2

( )
tan  

1
2

2

L CX XV V
I

Z R
R fL

fC

q

p
p

- -Ê ˆ
– = = – -Á ˜Ë ¯Ê ˆ

+ -Á ˜Ë ¯

For:

 (a) f = 0 and ∞, Z = ∞. So I = 0.

 (b) At f = f0, Z is minimum and equal to R. So I = Imax = V/R.

 (c) For f < f0, XL < XC, so current leads supply voltage.

 (d) For f < f0, XL > XC, so current lags supply voltage.

5.4.2 Variation of Voltages

1. Voltage Across Resistance

Voltage across resistance is directly proportional to current (even when frequency varies). It follows 

same pattern/characteristics of current as shown in Figure 5.4.

University Questions

1.  Draw frequency response curve for series 

RLC circuit with equations. [AU, 2013]

2.  Explain the variation of current with 

frequency in a RLC series circuit and also 

the resonance condition. [AU, 2013]
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2. Voltage Across Inductor

2

2 1
L L

V V
V X L

Z
R L

C

w

w
w

= =
Ê ˆ+ -Á ˜Ë ¯

 (a) At f = 0, VL = 0.

 (b) At f = ∞, VL = V i.e. supply voltage.

 (c) Maximum value of VL occurs when 
LdV

dw
 = 0 which yields, 2

1 1
 

1
2

L
R CLC

L

w =
-

. wL is 

higher than resonant frequency.

3. Voltage Across Capacitor

2

2

1
 

1
C C

V V
V X

Z C
R L

C

w
w

w

= =
Ê ˆ+ -Á ˜Ë ¯

 (a) At f = 0, VC = V i.e. supply voltage.

 (b) At f = ∞, VC = 0.

 (c) Maximum value of VC occurs when 
CdV

dw
 = 0 which yields, 

2
1

 
2

L
C

R

LC L
w = - . wC is lower than 

resonant frequency.

 For RLC circuit with R = 10 Ohm, L = 0.1 H and C = 50 microfarad, find out the frequency at which 

voltage is: (a) maximum across capacitor (b) Maximum across inductor.

Solution Step 1: Find out the frequency for maximum voltage:

(a)  Voltage across capacitor is maximum at

2
1 1

2 2

L
C

R
f

LC Lp
= -  = 

2

6

1 1 10

2 2 0.1 0.1 50 10p - -
¥¥ ¥

 = 72.076 Hz

(b)  Voltage across inductor is maximum at

2

1 1 1

2
1

2

Lf
R CLC

L

p
=

-
 =

2 66

1 1 1

2 10 50 100.1 50 10 1
2 0.1

p -- ¥¥ ¥ -
¥

¥
 = 71.08Hz

Example 5.5



5.6  Circuits and Networks

 For RLC circuit with R = 10 Ohm, L = 0.1 H and C = 10 micro-farad, find out the frequency at which 

voltage is maximum across the capacitor. What is maximum value (rms) of voltage across capacitor? 

Also, find out voltage across inductor at that frequency. Supply voltage is 100V.

[AU, 2013]

Solution Step 1: Find out the frequency for maximum voltage:

Voltage across capacitor is maximum at

2
1

2

L
C

R

LC L
w = -  = 

2

6

1 10

2 0.1 0.1 10 10- -
¥¥ ¥

 = 1000 rad/sec.

Step 2: Find out the impedance at that frequency:

Impedance at 1000 rad/sec = 

2

2 1
R L

C
w

w

Ê ˆ+ -Á ˜Ë ¯

            = 

2

2

6

1
10 1000 0.1

1000 10 10-

Ê ˆ
+ ¥ -Á ˜¥ ¥Ë ¯

 = 10 Ohm

Step 3: Calculate current and hence voltage:

 I = V/Z = 100/10 = 10 Amp.

Voltage across capacitor = I × Xc = 10 × 
6

1

1000 10 10-¥ ¥
 = 1000V

Voltage across resistance = IR = 10 × 10 = 100 V

Since VR = VS, applying KVL in the loop results, VL = –VC = –1000V.

5.5  BANDWIDTH OF AN RLC CIRCUIT

Bandwidth (BW) of a circuit is the frequency span for 

which the response of the circuit is higher than 1 2  times 
(70.7%) of the maximum value (Figure 5.5). 

Frequency at which response is exactly 1 2  times of the maximum 

value is called cut-off frequency.

For a series RLC circuit, current is maximum at resonant frequency 

with two cut-off frequencies. Since power at cut-off frequencies is half 

of the maximum power (or power at resonance), they are also called half 
power frequencies.

Lower cut-off frequency f1: lower than resonance frequency, circuit impedance is capacitive in 

nature i.e. I leads V.

Higher cut-off frequency f2: higher than resonance frequency, circuit impedance is inductive in 

nature i.e. I lags V.

Example 5.6

University Question

1.  Define bandwidth and quality factor and 

derive relation between them. [JNTU, 2015]

Figure 5.5
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  BW = f2 – f1 Hz

Derivation of bandwidth in terms of circuit parameters:

Magnitude of current at cut-off frequencies = = =
cut-off

  
2 2

V Im V

Z R

So,  =cut-off 2  Z R 
fi  2 2 2 2 (2 1 / 2 )R R f L f Cp p= + -
Solving this expression gives two different values of frequencies (corresponding to lower and higher 

cut-off frequencies).

  
1 2and  

4 4
r r

R R
f f f f

L Lp p
= - = +  where fr is resonant frequency.

  2 1BW
4

R
f f

Lp
= - =  Hz

 Calculate the half-power frequencies of a series resonant circuit where the resonance frequency is 

250 × 103 Hz and the bandwidth is 150 kHz.               [BPUT, 2007]

Solution Step 1: Find out first relation between cut-off frequencies from bandwidth:

Let f1 and f2 be the lower and higher cut-off frequencies respectively.

Now, Bandwidth = f2 –  f1 = 150 kHz  (5.1)

Step 2: Find out second relation between cut-off frequencies from resonance frequency:

Also, f1 f2 = fr
2 = (250)2 = 62500 (kHz)2

\ (f2 + f1)
2 = (f2 – f1)

2 + 4f1f2

fi f2 + f1 = 522.0153 kHz (5.2)

Step 3: Solving relations: (5.1) and (5.2)

 f2 = 336 kHz and f1 = 186 kHz

5.6  THE QUALITy FACTOR (Q) AND ITS EFFECT ON BANDWIDTH

Because of coil resistance, a fraction of energy supplied to an inductor is dissipated in form of heat and 

hence, stored energy is less than the energy supplied by the source. Same is true for a capacitor. 

Quality factor is a parameter, which represents how efficiently an inductor or a capacitor, can store 

the energy. 

 Quality factor (Q) = 2p 
maximum energy stored

 
energy dissipated per cycle

 (5.3)

 (a) For an inductor: LX L
Q

R R

w
= =  

Example 5.7
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 (b) For a capacitor: 
1CX

Q
R CRw

= =

   
Bandwidth

rfQ =  (5.4)

An RLC series circuit consists of R = 16 W, L = 5 mH and C = 2 mF. Calculate the quality factor at 

resonance, bandwidth. If it is desired to increase the bandwidth by 20% keeping the central frequency 

fixed, find out circuit current, quality factor.               [AU, 2014]

Solution Given that, R = 16 W, L = 5mH and   C = 2 mF

Resonant frequency, 0 1 / 2f LCp=  = 3 61 / (2 5 10 2 10   )p - -¥¥ ¥  =1591.5 Hz

Quality factor, 
L

Q
R

w
=   = 2p (1591.5)(5 × 10–3 )/16 = 3.125

Bandwidth = rf

Q
  = 1591.5/3.125 = 509.28 Hz

Now, it is desired to increase the band width by 20% with constant fr: 

1
3.125 2.604

 1.2

BW Q BW
Q Q

BW Q BW

¢
¢fi = ¥ =

¢¢
= =

Since, selectivity or bandwidth is controlled by resistance only, the new value of resistance, 

R¢ = 1.2 R

So new current, I¢ = I/1.2 = 83.33% of I.

5.7  PARALLEL RESONANCE

A circuit having a real inductor and capacitor connected in 

parallel is at resonance if imaginary 

parts of their currents (in phase or 

representation) are equal in 

magnitude (Figure 5.6). This results 

in net current or source current in phase with source voltage and circuit which 

does not draw any reactive power from source.

5.7.1 Determination of Resonant Frequency, f0

In the circuit shown in Figure 5.7, non-ideal inductor and capacitor are realised 

by addition of series resistances with an ideal inductor or a capacitor.

Example 5.8

University Question

1.  Explain the phenomena of resonance in 

AC parallel circuit. Derive the mathematical 

expression of resonant frequency. 

 [GTU, 2011]

Figure 5.6

Figure 5.7
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Since at resonance, circuit does not draw reactive power, imaginary part of input admittance 
(susceptance) is equal to zero.

i.e. 
p

p

=

È ˘
Í ˙
Í ˙= + =

+Í ˙+Í ˙Î ˚

0
0

0

1 1
( )   0

12  
 

2

m mf f
L

C

I Y I
R j f L

R
j f C

 (5.5)

Solving it for f0 gives, 

   

2

0

2

1
 

2

L

C

L
R

C
f

LC L
R

C

p

Ê ˆ-Á ˜Ë ¯
=

Ê ˆ-Á ˜Ë ¯

 (5.6)

Special Cases

(a) If RL = 0; RC = 0. 
0

1
   

2
f

LCp
= , it is equal to the resonant frequency of a series RLC circuit.

(b) If RL = RC . 0

1
 

2
f

LCp
=

(c) If RC = 0; 
2

0 2

1 1
 

2

LR
f

LC Lp
= -

Calculate the value of R in the circuit shown in Figure 5.9 

for resonance.         [BPUT, 2007]

Solution Step 1: Calculation of admittance, as we know its imaginary part 

is 0 at resonance.

Admittance,  
1 1

10 10 2
Y

j R j
= +

+ -

2

10 10 2

100 100 4

j R j
Y

R

- +
= +

+ +

Step 2: Equating imaginary part of Y = 0.

 
2

10 2
0,

100 100 4

j j

R

-
+ =

+ +
 R = +6 Ohm

Figure 5.8  Phasor diagram: 

Parallel resonance

Example 5.9

Figure 5.9
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Find the value of L for which the circuit shown in Figure 5.10 is 

resonant at frequency of w0 = 1000 rad/s.    [PU, 2010]

Solution Step 1: Writing expression for resonant frequency in terms 

of available known and unknown parameters

Frequency of resonance for a parallel RLC circuit, 

2

0

2

1
L

C

L
R

C

LC L
R

C

w

Ê ˆ-Á ˜Ë ¯
=

Ê ˆ-Á ˜Ë ¯

1000 = 

2

2

1
L

C

L
R

C

LC L
R

C

Ê ˆ-Á ˜Ë ¯

Ê ˆ-Á ˜Ë ¯

, here C = 1/wXC = 1/(1000 × 20) = 50 mF

Putting the value of R and C in the expression of resonant frequency, 

Step 2: Equating frequency expression to given frequency:

fi 1000 = 

2

6

6
2

6

5
50 101

 
(50 10 )

10
50 10

L

L L

-

-

-

Ê ˆ
-Á ˜¥Ë ¯

Ê ˆ¥
-Á ˜¥Ë ¯

fi  (1000)2 × 50 × 10–6 × L2 + [(1000)2 (50 × 10–6)2 (102) + 1] L – 52 × 50 × 10–6

= 50L2 + [50 × 10–6 × 102 + 1] L – [25 × 5 × 10–5] = 0

 fi                 50 L2 + 1.005 L – 0.00125 = 0

 L = 1.175 mH (or) – 0.0212 H.  Taking positive value, L = 1.175 mH

5.8   RESONANT FREQUENCy FOR 
A TANK CIRCUIT

Parallel LC combination is also known as tank circuit. In its 

simplest form of realisation, it is represented as shown in 

Figures 5.11 and 5.12.

Resonant frequency for a tank circuit is determined by 

putting RC = 0 in Eq.  (5.6),

 

2

0 2

1 1

2

LR
f

LC Lp
= -  (5.7)

Example 5.10

Figure 5.10

University Question

1.  An inductive coil of resistance R and 

inductance L is connected in parallel with 

capacitor of C. Derive an expression for 

the resonant frequency. [GTU, 2011]
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 Figure 5.11  Figure 5.12 Phasor diagram: Tank circuit

A coil of 10 Ohm resistance and 5 mH inductance is connected in parallel with a capacitor of 

2 microfarad, find the supply frequency at which circuit draws only active power from voltage 

source.

Solution At resonant frequency, power factor is unity and circuit does not draw reactive power 

from the source.

Resonant frequency for a tank circuit, 
2

0 2

1 1
   

2

LR
f

LC Lp
= -  

  0 3 6 6

1 1 100
   

2 5 10 2 10 25 10
f

p - - -= -
¥ ¥ ¥ ¥

 = 1559.39 Hz

5.9  VARIATION OF IMPEDANCE WITH FREQUENCy

For an ideal parallel RLC circuit as shown in Figure 5.13, expression of admittance (Y) is written as: 

        
1 1

 L CY G jB jB j C mho
R j L

w
w

= - + = + +  (5.8)

Source current, IS = YVS

From the above expressions, it can be concluded that:

 1. Y is minimum (or Z is maximum) at resonance 

frequency, where BL = BC.

 2. At higher frequencies, IC dominates and hence 

overall Z is capacitive in nature.

 3. At lower frequencies, IL dominates and hence 

overall Z is inductive in nature.

 4. At resonance, both IC and IL are equal but 180° 

phase shifted and hence Z = R.

Example 5.11

Figure 5.13  Source current: Parallel resonance
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A real capacitor is represented by 10 Ohm resistance in parallel with a 2 microfarad ideal capacitor. 

It is connected in parallel with a coil of 5mH and negligible resistance; find the supply frequencies at 

which circuit impedances are maximum and minimum.

Solution Here, circuit impedance is maximum at resonant frequency and minimum i.e. 0 at f = 0 

and f = ∞

 
0

1 1
 

2
f

LCp
= 3 6

1 1
 

2 5 10 2 10p - -=
¥ ¥¥

 = 1591.55 Hz

5.10   Q-FACTOR OF PARALLEL 
RESONANCE

5.10.1  Cut-off Frequencies for a Parallel 
RLC Circuit

For the circuit shown here (Figure 5.14),

 V0 = ZIS

Z is maximum at resonance and Zmax = R, so Vomax = R IS

At cut-off frequencies, = = =max
cut-off  0

2 2

o S
s

V I
V Z I R

So,   = =cut-off cut-off

2
  or

2

R
Z Y

R
 (5.9) 

Using Eqs (5.8) and (5.9);

  

p
p

Ê ˆ
= + -Á ˜Ë ¯

2

2 2

2 1 1
2

2
fC

fLR R

Solving this expression gives two different values of frequencies (corresponding to lower and higher 

cut-off frequencies).

   

2 2

1 2

1 1 1 1 1 1 1 1
and  

2 2 2 2 2 2
f f

RC RC LC RC RC LCp p

Ê ˆ Ê ˆÊ ˆ Ê ˆÁ ˜ Á ˜= - + + = + +Á ˜ Á ˜Ë ¯ Ë ¯Á ˜ Á ˜Ë ¯ Ë ¯
 (5.10)

Example 5.12

University Question

1.  Derive expression for Q-factor of parallel 

resonance. [GTU, 2011]

Figure 5.14
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5.10.2 Bandwidth of a Parallel RLC Circuit

Using of Eq. (5.10),

         2 1

1
BW  

2
f f

RCp
= - =  Hz

5.10.3 Q-Factor

Defined as Eq. (5.3), for a parallel RLC circuit also it can be found using Eq. (5.4). 

1

2
2

1Bandwidth 2

2

r
r

r

f C RLC
Q R RCf

L f L

RC

p
p

p

p

= = = = =

A parallel resonant circuit has a coil of 100 mH with a Q-factor of 50. The coil is resonant with a 

frequency of 900 kHz. Find (a) value of the capacitor, (b) resistance in series with the coil, (c) circuit 

impedance at resonance.                       [PU, 2012]

Solution

 (a) 0

1 1
  

2
f

LCp
=  

3 121 1
  900 10 4.86  10 F

2
C

xCp
fi = ¥ fi = ¥

 (b) 
w w p -¥ ¥ ¥ ¥

= fi = = = W
3 32  900 10  100 10

11309.73  
50

L L
Q R

R Q

 (c) At resonance, Z = R = 11309.73 W

A parallel resonant circuit has a bandwidth of 200 Hz and a quality factor of 10. The inductor value 

is 100 mH. Find the value of R of this circuit.

Solution Bandwidth BW = 20 kHz; Q = 40; R = 10 kW; L = ?

  10 200 2000 Hzr
r r

f
Q f Q BW f

BW
= fi = fi = ¥ =

2 2  2000   10
 

2 0.1

r

r

f QR
Q L R

f L R

p p

p

¥ ¥
= fi = fi = =  1.25 × 107W

Example 5.13

Example 5.14
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P O I N T S  T O  R E M E M B E R

  At resonance:

  Supply frequency, 1/2 .f LCp=

  Input impedance of a RLC circuit is purely resistive which means power factor is unity.

  Inductor-Capacitor pair can be replaced by short circuit.

  At resonance (Series RLC):

  Impedance is minimum.

  For f  < f0, Z is capacitive in nature. For f  > f0, Z is inductive in nature.

  At resonance:

  VC = Vs at f = 0, VL = Vs at f = ∞ and VR = Vs at f = f0

  VC becomes maximum before f0 while VL becomes maximum after f0

  I leads V before resonance, I lags V after resonance

  At cut-off frequencies: Current becomes 1 2  times of maximum value, power is halved.

    
2 1

BW
4

R
f f

Lp
= - =  Hz

  Increasing the bandwidth will reduce selectivity

  For a coil: higher the frequency, higher will be the Q-factor.

  At resonance, |VL| = |VC| = Q |VS|

  Coil made of high resistance will have poor selectivity or higher bandwidth.

  Supply frequency, 

2

0

2

1
 

2

L

C

L
R

C
f

LC L
R

C

p

Ê ˆ-Á ˜Ë ¯
=

Ê ˆ-Á ˜Ë ¯

.

  Input impedance is purely resistive which means power factor is unity.

  Imaginary components of IRL and IRC become equal.

  At resonant frequency,

  Z is maximum.

  Parallel LC branches can be replaced with an open circuit.

  For a coil, if connected in parallel with resistance, higher the frequency, lower will be the Q-factor.

  At resonance, |IL| = |IC| = Q |IS|

  A capacitor with higher dielectric loss will have a smaller resistance in parallel and hence poor Q-factor.
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PRACTICE PROBLEMS

 1. For a series RLC circuit with R = 10 Ohm, 

L = 10 mH and supply voltage V = 100 V, 

if voltage across capacitor at resonance is 

1000 V, find out resonant frequency.

 2. Two inductors of 1000 mH and 500 mH 

are connected in series with a resistance 

and capacitor of 10 micro farad. If mutual 

inductance between inductors is 250 mH 

and inductors are connected in series 

additive pattern.

 3. A 1000 V, 50 Hz transmission line 

represented as a T-network is having series 

impedance of 1 + 3j. Impedance of shunt 

branch is –2.5j. If line is open-circuited 

at load end i.e. receiving end, find the 

receiving end voltage. If receiving end 

voltage is required to maintain at 1000 V 

by series compensation i.e. by connecting 

a series inductance in series with series 

branch inductance, find out value of 

additional inductance connected.

 4. For a series RLC circuit with R = 15 W, 

L = 2H, C = 100 mf, V =150V. Find out: 

(a) Half-power frequencies. (b) Capacitive 

reactive power (c) Inductive reactive 

power.

 5. With a series RLC circuit having R = 10 

kW, L = ? H, it is intended to design a 

band pass filter with bandwidth of 20 kHz 

and central frequency 800 kHz. Find out: 

(a) Quality factor. (b) Value of inductor.

 6. For a real tank circuit (A series RL branch 

in parallel with C), if R = 20 Ohm and 

Q-factor of RL branch = 40, find out 

effective input impedance at resonant 

frequency?

 7. An electric circuit has two parallel 

branches. Branch X–Y consists of a 10 W 

resistance connected in series with a 

capacitor of 50 mF and branch AB has a 

5W resistance connected in series with an 

inductor of 1.175 mH. Find out equivalent 

impedance of the circuit at resonance.

 8. For the circuit shown below, what find 

the value of capacitance such that overall 

power factor is unity at 1000 rad/s ? 

Figure 5.15

 9. Two impedances Z1 = 5 W and Z2 = 5 – jXc W 

are connected in parallel and this 

combination is connected in series with 

Z3 = 6.25 + j1.25 W. Determine the value 

of capacitance in Xc to achieve resonance 

if supply is 100 V, 50 Hz.

(Civil Services Exam, UPSC-2016)

 10. For a circuit having R, L and connected C in 

parallel, resonant frequency and bandwidth 

are 500 Hz and 50 Hz.  Find out inductor 

and capacitor current at resonance if circuit 

is excited with a variable frequency current 

source of 50 Amp.

 11. For a magnetically coupled circuit shown 

below, find the frequency of supply voltage 

for which circuit operates at unity power 

factor. Given that: R1 = 10 W, L1 = 0.4 H, 

L2 = 0.25 H, M = 0.25 H. Secondary side 

resistance and inductance are 20 W and 

5 mF.

Figure 5.16
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MULTIPLE CHOICE QUESTIONS

 1. If value of capacitance and inductance are increased to four times with keeping resistance constant for a 

series RLC circuit: current at resonance and resonant frequency will become respectively:

 (a) Resonant current remains same, resonant frequency becomes one fourth.

 (b) Resonant frequency remains same, resonant current becomes one fourth.

 (c) Both resonant current and resonant frequency remain same.

 (d) Resonant current remains same, resonant frequency is halved.

 2. For an audio receiver, it is desired to receive signals of frequency band 500 kHz – 600 kHz. What should 

be the value of resistance, if inductance of tuning circuit is 20 mH.

 (a) 25.13 kW (b) 12.57 kW (c) 4.00 kW (d) 2.00 kW

 3. A series RLC circuit is excited with a variable frequency voltage source of 20V. Find voltage across the 

capacitor if resonant frequency is 300Hz and bandwidth is 20Hz.

 (a) 10 V (b) 20 V (c) 300 V (d) 1.33 V

 4. At resonance, a series and parallel LC circuit can be replaced by respectively:

 (a) Open circuit and Short circuit (b) Short circuit and Open circuit

 (c) Short circuit (Both) (d) Open circuit (Both)

 5. Read following statements regarding resonance in an electric circuit:

 i. At resonance, power factor of the circuit is unity.

 ii. Impedance for series RLC circuit is minimum.

 iii. Impedance for parallel RLC circuit is maximum.

 iv. Reactive power becomes equal to active power.

  Which one of above is correct?

 (a) i only (b) i, ii  (c) i, ii and iii (d) All

ANSWErS To MULTiPLE CHoiCE QUESTioNS

 1. (a) 2. (a) 3. (c) 4. (b) 5. (c)



  

6.1  INTRODUCTION

Two circuits are said to be ‘coupled’ when energy transfer takes place from one circuit to the other when 

one of the circuits is energised.

The following types of coupling are possible between electrical circuits:

 (a) Conductive coupling (e.g. in potential divider circuit)

 (b) Inductive (Magnetic) coupling (e.g. in two winding transformer)

 (c) Conductive and Inductive coupling (e.g. in auto-transformer)

Transistors and electronic pots are other examples of coupled circuits which are represented as two-

port network.
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  Conductively coupled circuit and mutual 

impedance

  Self-inductance and mutual inductance

  Dot convention

  Coefficient of coupling

  Series connection of coupled inductors

 Parallel connection of coupled coils

 Tuned circuits

  Analysis of coupled circuits

  Conductively coupled equivalent circuit 

(series and parallel magnetic circuits)

  Analysis of magnetic circuits

  Magnetic leakage and fringing

  Comparison of electric and magnetic 

circuits

  Time domain and frequency domain 

analysis of network equations

 Application of an ideal transformer

Chapter Outline
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6.2   CONDUCTIVELY COUPLED CIRCUIT 
AND MUTUAL IMPEDANCE

A conductively coupled circuit is electrically connected and 

does not involve inductive coupling. A two-port network 

is an example of such circuit which consists of an input 

port corresponding to input loop circuit and an output port 

corresponding to output loop circuit. Impedance, which is common to both the loops, is known as 

mutual impedance. The mutual impedance could be resistive, inductive, capacitive or any combination 

of these type of impedances.

6.3   SELF-INDUCTANCE AND MUTUAL 
INDUCTANCE

6.3.1 Self-Inductance

An inductor is a circuit element that stores magnetic field. If 

the magnetic field is changing, i.e. if the current is changing, 

it will have an induced EMF across it with a magnitude proportional to the rate of change of current:

  
b a

di
V V V L

dt
e = D = - = -  (6.1)

The proportionality constant L is called the inductance of the device. It is a property of the device 

(geometry, windings) and does not depend on the current. Inductance is measured in units of ‘henrys’, 

where 1 henry = 1 volt-second/ampere. 

6.3.2 Mutual Inductance

A mutual inductance is a property associated with two or more coils / inductors which are in close 

proximity and the presence of the common magnetic flux which links these coils. A transformer is such 

a device whose operation is based on mutual inductance.

When two or more inductors are in close proximity in a medium of constant permittivity, a change 

in a common magnetic flux among them with respect to time also induces an additional voltage across 

those inductors. The magnitude of this voltage depends upon the mutual inductance between those 

inductors and the time rate of change of current in other inductors.

The mutually induced voltage across the coupled inductors can be determined using the following 

formula.

  
12 21( )

( )
( )t t

di t
v v M

dt
= = ±  (6.2)

where v12(t) is voltage induced in inductor 1 due to change in current of inductor 2, while v21(t) is the 

voltage induced in inductor 2 due to change in current of inductor 1.

Mutual Inductance can be explained through the following example.

Probe

1.  What do you understand by conductively 

and inductively coupling? Explain with 

examples.

University Questions

1.  Define mutual inductance. [AU, 2012]

2.  Write voltage expressions which relates to 

self and mutual inductance. [AU, 2014]
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Consider coil 1 and coil 2 are placed in close proximity. Coil 1 is carrying current I1 and has N1 turns 

while Coil 2 is carrying current I2 and has N2 turns. Coil 1 and Coil 2 produces magnetic flux f1 and f2 

respectively due to associated currents such that:

Magnetic flux produced by Coil 1:  f1 = f11 + f12

Magnetic flux produced by Coil 2:  f2 = f22 + f12

where f12 is a portion of magnetic fluxes f1 and f2 which links both the coils. The mutual inductance 

between two coils can be determined using following formula:

  

f f
= =2 12 1 12

1 2

N N
M

I I

Voltage expressions for coupled inductors:

Consider the following electrical circuit consists of two coupled inductors with self-inductance L1 

and L2 and are carrying currents i1(t) and i2(t) respectively, are placed 

in close proximity in a medium of constant permittivity (Figure 6.1).

The mutual inductance between these inductors is M. The voltages 

v1(t) and v2(t) across the inductors can be calculated using the following 

formulae:

  1 2
1 1

( ) ( )
( )

di di
v L M

dt t

t t
t

d
= ±  volts (6.3)

  2 1
2 2

( ) ( )
( )

di di
v L M

dt t

t t
t

d
= ±  volts (6.4)

The mutual inductance could be positive or negative between the coils in above formulae depending upon 

the physical constructions of the coils and reference directions. To determine the polarity of the mutually 

inducted voltage (i.e. the sign to be used for the mutual inductance), the dot convention is used.

 A large research solenoid has a self-inductance of 25H. What induced emf opposes shutting it off 

when 100 A of current through it is switched off in 80 ms?

Solution Induced emf in solenoid due to self-inductance can be calculated using the following 

formula. 

 E = L 
100

25  
0.08

I

t

D
= ¥

D
 = 31.3 kV

 The current in a 2.0-H inductor is decreased linearly from 5.0 A to zero over 10 ms. 

 (a) What is the average rate at which energy is being extracted from the inductor during this 

time? 

 (b) Is the instantaneous rate constant?

Figure 6.1

Example 6.1

Example 6.2

Note: Difficulty Level    — Easy;  — Medium;  — Difficult
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Solution

 (a) The energy falls from Ui = 25 J to U f = 0 in Dt = 10 ms, 

  So the rate of decrease is dU/dt = –25 J/10 ms = –2.5 kW. 

 (b) The instantaneous power, i.e.   
dI

LI
dt

 rate of changed of instantaneous energy in an inductor 

is not constant as even through rate of decrease of current is constant but current itself is not 

constant.

 Two identical coils X and Y of 1000 turns each lie in parallel planes such that 80% of flux produced 

by one coil links with the other coil. If a current of 5 A flowing in X produces a flux of 0.5 mWb in 

it, find the mutual inductance between X and Y.

Solution Mutual inductance can be found using the following formula:

  

2 12

1

N
M

I

f
=

f12 = The portion of flux produced by Coil 1 which links coil 2 = 0.8 f1 = 0.4 mWb

N2 = Number of turns of Coil 2 = 1000 turns

I1 = Current in Coil 1 = 5 A

Substituting above values in formula, we get M = 80 mH

 Two identical coils X and Y of 100 turns are perfectly coupled. If a current of 10A flowing in X 

produces a flux of 5 mWb in it, find the mutual inductance between X and Y.

Solution Mutual inductance can be found using the following formula:

  2 12

1

100 5
 

10

N
M

I

f ¥
= =  = 50 mH

6.4  DOT CONVENTION

Dot convention is utilised to indicate sign for the mutually 

induced voltages across coupled circuits. Circular dot marks 

and/or special symbols can be utilised for this purpose.

These symbols implicitly represent orientation of the windings around its core of an inductor which 

in turn affect the polarity of inducted voltage.

Example 6.3

Example 6.4

University Question

1.  What is dot convention in coupled circuits? 

Explain. [BPUT, 2007]
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Consider following electrical circuit consisting of coupled inductors with self-inductance L1 and L2 

and a mutual inductance M. It is to be noted that the dots are kept at same terminals of both the inductors 

and current is entering the dots from both the inductors. The polarity of mutually induced voltages in 

inductors is determined by considering these two aspects only while writing voltage drop equations 

(Figure 6.2).

Sign of M for mutually induced voltage will be determined by

 + if currents are either entering or leaving in the dots of both the 

inductors under consideration

 –  if current is entering in one dot and is leaving in another dot of 

inductors under consideration

Considering above principles, following induced voltage equations can 

be written:

  
1 2

1 1

( ) ( )
( )

di di
v L M

dt t

t t
t

d
= +  volts

  2 1
2 2

( ) ( )
( )

di t di
v L M

dt t

t
t

d
= +  volts

The physical interpretation of putting the dots in electrical circuit is to indicate that the dotted 

terminals attains similar voltage polarity simultaneously.

 Find the equivalent electrical network of the following magnetic circuit using dot convention 

(Figure 6.3).                           [GTU, 2012]

  

 Figure 6.3 Figure 6.4

Solution Finding the direction of fluxes produced by both the winding in the core, it is evident that 

first winding produces flux in upward direction while the second winding produces flux in downward 

direction. This in turn leads to conclusion that at any point both these fluxes are adding to each other. 

Therefore, the sign of mutually inducted emf will be positive. This gives following equivalent circuit 

(Figure 6.4).

Figure 6.2

Example 6.5
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6.5  COEFFICIENT OF COUPLING

The amount of coupling between the inductively coupled 

coils is expressed in terms of the coefficient of coupling, 

which is defined by the following formula:

  1 2

M
K

L L
=

where,

 M = mutual inductance between the coils.

 L1 = self-inductance of the first coil.

 L2 = self-inductance of the second coil.

Coefficient of coupling is always less than unity and has a maximum value of 1 (or 100%). For the 

case in which K = 1, is called perfect coupling, when the entire flux of one coil links the other. The 

greater the coefficient of coupling between the two coils, the greater the mutual inductance between 

them and vice versa. 

It can also be expressed as the fraction of the magnetic flux produced by the current in one coil that 

links the other coil. For example, current i(t) produces total flux f, out of which only flux f1 links with 

other coil, then the coefficient of coupling between these coils can be calculated by evaluating 1 .
f

f

 Two coupled coils have self-inductances of L1 = 100 mH and L2 = 400 mH. The coupling coefficient 

is 0.8. Find M. If N1 is 1000 turns, what is the value N2?

Solution Mutual inductance of coupled coil is given by:

  1 2 0.16 HM K L L= =

Inductance of coil is proportional to square of number of turns present in the coil. 

   
2 2

2 2 2 2 2
2 12 2

1 1 11 1

L N N L L
N N

L L LN N
= fi = fi =  fi N2 = 1000 × 2 = 2000 turns.

 Two inductively coupled coils have self-inductances L1 = 50 mH and L2 = 200 mH. If the coefficient 

of coupling is 0.5, compute the value of mutual inductance between the coils?

[AU, 2011]

Solution Mutual inductance of coupled coil is given by:

 M = K
1 2 0.5 50 200 0.05 HL L = ¥ =

Probe

1.  What do you understand by coefficient of 

coupling?

Example 6.6

Example 6.7
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6.6   SERIES CONNECTION OF COUPLED 
INDUCTORS

Inductors can be connected in series with two 

configurations—one is series aiding and the other is 

series opposition. Two inductors with self-inductance are 

connected in both configurations. 

6.6.1 Series-Aiding Connection

In the following electrical circuit, inductors are connected in series-aiding 

connection, wherein the currents in both inductors at any instant of time are in 

the same direction relative to like terminals (Figure 6.5).

Because of this, the magnetic fluxes of self-induction and of mutual induction 

linking with each element add together. The total inductance in series-aiding 

connection is calculated using the following formula:

 L = L1 + L2 + 2M

6.6.2 Series-Opposition Connection

In the case of series-opposition connection, the currents in the two inductors at 

any instant of time are in opposite direction relative to like terminals as shown in 

following electrical circuit (Figure 6.6). 

Because of this, the magnetic fluxes of self-induction and of mutual induction 

linking with each element oppose each other. The total inductance in series-

opposition connection is calculated using following formula:

 L = L1 + L2 – 2M

 What is the expression for total inductance of the three series-connected coupled coils shown in 

Figure 6.7.                             [BPUT, 2007]

Figure 6.7

Solution

 Leq = (L1 + M12 + M13) + (L2 + M12 + M23) + (L3 + M23 + M13)

\ Leq = (L1 + L2 + L3) + 2(M12 + M23 + M13)

University Question

1.  Find the equivalent inductance for the 

series and parallel connections of L1 and 

L2 and if their mutual inductance is M.

 [GTU, 2011]

Figure 6.5

Figure 6.6

Example 6.8
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 For the three coupled inductors (Figure 6.8), calculate the total inductances.

Solution

For Coil 1,  L1 = L11 – M12 + M13 = 4 H

For Coil 2,  L2 = L22 – M21 – M23 = –1 H

For Coil 3,  L3 = L33 – M32 – M31 = 7 H

Total Inductance = Leq = L1 + L2 + L3 = 10 H

6.7   PARALLEL CONNECTION OF 
COUPLED COILS

Consider two inductors with self-inductances L1 and L2 

connected parallel which are mutually coupled with mutual 

inductance M as shown in following electrical circuits.

In Electrical Network-1 (Figure 6.9), the voltage induced 

due to mutual inductance aids the self-induced voltage in each coil as 

per dot convention. The equivalent inductance in this network can be 

calculated using the following formula:

  

-
=

+ -

2
1 2

1 2 2
eq

L L M
L

L L M

While Electrical Network-2 (Figure 6.10), the voltage induced due 

to mutual inductance opposes the self-induced voltage in each coil as 

per dot convention. The equivalent inductance in this network can be 

calculated using the following formula:

  

-
=

+ +

2
1 2

1 2 2
eq

L L M
L

L L M

A coil having an inductance of 100 mH is magnetically coupled to another coil having an inductance 

of 900 mH. The coefficient of couple between the coils is 0.45. Calculate the equivalent inductance if 

the two coils are connected in (a) series opposing, and (b) parallel opposing.  [AU, 2014]

Solution Given that L1 = 100 mH L2 = 900 mH and K = 0.45

  1 2 0.45 100 900 135 mHM K L L= = ¥ =
Applying formulae for series opposing and parallel opposing connections: 

(a) Series opposing  Leq = L1 + L2 – 2 M = 730 mH

(b) Parallel opposing 
-

=
+ +

2
1 2

1 2 2
eq

L L M
L

L L M
 = 56.51 mH

Example 6.9

Figure 6.8

Probe

1.  Explain parallel connection of coupled 

inductors and write an expression for total 

inductances for such configuration?

Figure 6.9 Electrical Network-1

Figure 6.10 Electrical Network-2

Example 6.10
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Find equivalent T and p circuit of the network shown in Figure 6.11.

Figure 6.11

Solution Given, L1 = 15 H, L2 = 20 H and M = 5 H. 

Equivalent T network (Figure 6.12 (a))

Figure 6.12(a)

Inductances for Equivalent T network are calculated as below:

 La = L1 – M = 10 H  Lb = L2 – M = 15 H  Lc = M = 5 H

Equivalent p network (Figure 6.12 (b))

M

–

+

–

+

–

+

–

+

I1

V1 L1 L2 V2 LA LB

I1I2 I2

V1 V2

LC

Figure 6.12(b)

Inductances for Equivalent p network are calculated as below:

2
1 2

2

A

L L M
L

L M

-
=

-
 = 18.33 H;  

2
1 2

1

B

L L M
L

L M

-
=

-
 = 27.5 H;  

2
1 2

C

L L M
L

M

-
=  = 55 H

Example 6.11
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6.8  TUNED CIRCUITS

Electrical circuits can be made selective to respond to a 

particular frequency or a band of frequency of input signal. 

These circuits are called tuned circuits.

Tuned circuits are, in general, single-tuned and double-

tuned. Double-tuned circuits are used in radio receivers 

to produce uniform response to modulated signals over a 

specified bandwidth; double-tuned circuits are very useful 

in a communication system.

6.8.1 Single Tuned Circuit

A tank circuit (i.e. a parallel resonant circuit) consisting of inductor 

and capacitor is an example of single tuned circuit. 

Following electrical circuit wherein a tank circuit on the secondary 

side is inductively coupled to the coil 1 which is excited by a source 

at the primary side. 

Following expressions pertinent to electrical network in 

Figure 6.13 can be derived by applying KVL on both primary and 

secondary sides.

 vi = i1Rs – jwMi2

Output Voltage 

  
w

w w w
w

=
Ï ¸È ˘Ê ˆ+ - +Ì ˝Á ˜Í ˙Ë ¯Î ˚Ó ˛

2 2
2 2

1

i
o

s

jv M
v

j C R R j L M
C

 (6.5)

Voltage Amplification Factor

The voltage amplification factor at the value of the frequency such that the tank circuit in secondary side 

is under resonances is given as:

  
w

= =
+ 2 2

2( )

o

i s r

v M
A

v C R R M
 (6.6) 

Current i2 at Resonance

The current i2 in secondary sides at resonance is given as:

  2 2 2
2

i r

s r

jv M
i

R R M

w

w
=

+
 (6.7)

Thus, it can be observed that the output voltage, current, and amplification depend on the mutual 

inductance M at resonance frequency. The value of mutual inductance at resonance frequency is given 

as = 1 2 .M K L L

University Questions

1.  Derive the expressions for maximum output 

voltage and maximum amplification of a 

single-tuned circuit. [AU, 2011]

2.  Give the applications of tuned circuits.  

 [AU, 2013]

3.  Derive the expressions for maximum output 

voltage and maximum amplification of a 

single-tuned and a double-tuned circuit.

Figure 6.13
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Maximum Output Voltage and Maximum Amplification Factor

The maximum output voltage v0M and amplification factor Am at resonance frequency can be obtained 

by varying the value of mutual inductance M. 

Utilising Eqs (6.5) and (6.6) for getting the value of M at which v0M and Am are obtained:

   
2s

r

R R
M

w
=  (6.8)

Substituting above value of M in Eq. (6.5) to get maximum output voltage:

   
w

=
22  

i
oM

r s

v
v

C R R
 (6.9)

Substituting above value of M in Eq. (6.6) to 

get maximum amplification factor:

   
w

=
2

1

2  
m

r s

A
C R R

 (6.10)

The variation of the amplification factor or 

output voltage with the coefficient of coupling is 

shown in Figure 6.14.

6.8.2 Double Tuned Circuit

A double-tuned transformer circuit consists of two series 

resonant circuit. This circuit is a particular frequency at 

which both circuits are under resonance condition. 

An example of a double tuned circuit is provided in 

Figure 6.15.

The frequency wr at which both tuned circuits are under 

resonance condition is:

  

2

1 1 2 2

1 1
r

L C L C
w = =

Following expressions pertinent to the electrical network in Figure 6.15 can be derived by applying 

KVL on both primary and secondary sides.

  

w w
Ê ˆ

= + + - -Á ˜Ë ¯1 1 1 2

1

in s

j
v i R R j L i j M

wC

Output Voltage

  
w

=
È ˘+ +Î ˚

2 2
2 1 2( )

in
o

s r

v M
v

C R R R M
 (6.11)

Figure 6.14

Figure 6.15
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Voltage Amplification Factor

The voltage amplification factor at the value of the frequency such that the tank circuit in secondary side 

is under resonances is given as:

  
2 2

2 1 2( )s r

M
A

C R R R Mw
=

È ˘+ +Î ˚
 (6.12)

Maximum Output Voltage and Maximum Amplification Factor

The maximum output voltage v0M and amplification factor Am at resonance frequency can be obtained 

by varying the value of mutual inductance M. 

Utilising Eqs (6.11) and (6.12) for getting the value of M at which v0M and Am are obtained:

  1 2( )s

c

r

R R R
M

w

+
=  (6.13) 

Substituting above value of M in Eq. (6.11) to get maximum output voltage:

  
w

=
22  

i
om

r s

v
v

C R R
 (6.14)

Substituting above value of M in Eq. (6.12) to get maximum amplification factor:

  
w

=
2

1

2  
m

r s

A
C R R

 (6.15)

The resonant frequency of the following tuned circuit shown in Figure 6.16 is 1000 rad/sec. Calculate 

the self-inductances of the two coils and the optimum value of the mutual inductance.

Solution It is evident that the circuit in Figure 6.16 is an example of double tuned circuit. The 

resonance frequency of a double tuned circuit is given as:

2

1 1 2 2

1 1
r

L C L C
w = =

Given that wr = 1000 rad/s, substituting values of C1 

and C2 in separate equations of above expression, values 

of L1 and L2 can be obtained.

 L1= 
1

1

r rC w w¥¥  = 1 H

 L2= 
2

1

r rC w w¥¥
 = 0.5 H

The optimum value of mutual inductance can be calculated 

  1 2( )s

c

r

R R R
M

w

+
=  (6.16)

Example 6.12

Figure 6.16
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Substituting Rs = 0 W, R1 = 5 W, R2 = 3 W  and 
rad

1000 r
s

w =  in Eq. (6.16), we get

 Mc = 3.87 mH

6.9  ANALYSIS OF COUPLED CIRCUITS

A magnetically coupled electrical network can be analysed 

in either time domain or frequency domain. Frequency 

domain network equations for a particular network 

can be obtained by substituting jw in the time domain 

equations. 

Time Domain Network Equations

Time Domain (Figure 6.17)

1 2
1 1 1 1

2 1
2 2 2 2

di di
v i R L M

dt dt

di di
v i R L M

dt dt

= + +

= + +

Frequency Domain Network Equations

Frequency Domain (Figure 6.18)

V1 = (R1 + jwL1)I1 + jwMI2

V2 = jwMI2 + (R2 + jwL2)I2

Write the mesh equations in terms of the phasor currents I1 and I2 for the circuit shown in 

Figure 6.19.

Solution Applying KVL in mesh-1 and mesh-2 while considering the mutually induced voltage in 

inductors.

For mesh-1, 

      –12 + (–j4 + j5)I1 – j3I2 = 0

fi           jI1 – j3I2 = 12 (6.17)

For mesh-2   –j3I1 + (12 + j6)I2 = 0 (6.18)

Probe

1.  Write network equations for coupled 

inductors circuits in the time domain and 

frequency domain.

 
Figure 6.17 Time-domain circuit

Figure 6.18 Frequency-domain circuit

Example 6.13

Figure 6.19
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Find the voltage across 5 W resistance in circuit shown in Figure 6.20.    [AU, 2011]

Solution Given data: K = 0.8, jwL1 = j5W, 

jwL2 = j10 W

Mutual Inductance jwM 
1 2K L L=

fi jwM = 0.8 (j5) (j10)

fi jwM = j0.8 50 = j5.65

fi jwM = j5.65

Voltage across the ‘5 W’ resistor V5W = 5 × I2

Applying KVL for Mesh 1,

–j5.65 I2 + (j5)I1 + 3(I1 – I2) – j4(I1 – I2) – 50 – 0º = 0

           (3 + j) I1 – I2 (3 + j1.65) = 50 – 0º  (6.19)

Applying KVL for Mesh 2,

 j10 I2 + 5I2 – j4(I2 – I1) + 3(I2 – I1) – j5.65 I1 = 0

 I1 (–3 + j4 – j5.65) + I2(8 + j10 – j4) = 0

 I1 (–3 – j1.65) + I2 (8 + j6) = 0 (6.20)

Solving Eqs (6.19) and (6.20) simultaneously, we get;

 I1 = 11.31 – –107.09º (A)

 I2 = 5 – 56.81º

 V5 W = 5 × 5 – 56.81 = 25 – 56.81 volts

6.10 
  CONDUCTIVELY COUPLED EQUIVALENT CIRCUITS 
(SERIES AND PARALLEL MAGNETIC CIRCUIT)

An analogy between an electrical quantity and the corresponding magnetic quantity allow us to apply 

Kirchhoff’s laws for magnetic circuits also.

Kirchhoff’s Voltage Law (KVL) can be applied to series magnetic circuit while Kirchhoff’s Current 

Law (KCL) can be utilised for parallel magnetic circuit. The application of these laws permits to 

determine equivalent reluctance of the magnetic circuit having series and parallel elements.

6.10.1 Series Connection

Consider a magnetic circuit consisting of a number of different magnetic connected in series material 

with different length, area and permittivity. The equivalent reluctance of this magnetic circuit can be 

determined using following formula:

  R 31 2

1 1 2 2 3 3

ll l

A A Am m m
= + + +

The above formula can be derived by applying KVL for various mmfs in the magnetic circuit.

Example 6.14

~

A
B C

DEF

j5 W j10 W

3 W

– 4j W

5 W

k = 0.8

50 0°– I1 I2  
Figure 6.20
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6.10.2 Parallel Connection

Consider a magnetic circuit consisting of a number of different magnetic materials connected in parallel 

with different length, area and permittivity. The equivalent reluctance of this magnetic circuit can be 

determined using the following formula:

  R 
1 1 1 2 2 2 3 3 3

1 1 1

/ / /l A l A l Am m m
= + + +

The above formula can be derived by applying KCL for various mmfs in the magmatic circuit. 

For the parallel magnetic circuit of Figure 6.21, assume that the core material is infinitely permeable. 

Let d1 = 3 mm and d2 = 2 mm. The thickness of all 

core members is l = 50 mm. The core has a uniform 

depth into the page of 75 mm. N1 = 2N2 = 100 

turns. Neglect air gap fringing.

 (a) If I2 = 0 and f1 = 15 mWb, find the value 

of I1.

 (b) If I1 = 10 A and I2 = 20 A, determine f1 

and f2.

Solution Given that the core material is infinitely permeable and the equivalent electrical network 

can be drawn as in Figure 6.22:

 

5 11
1 7

0 1

0.003
6.366 10 H

4 10 (0.050)(0.075)
gR

A

d

m p

-
-= = = ¥

¥

5 12
2 7

2

0.002
4.244 10 H

4 10 (0.050)(0.075)
g

o

R
A

d

m p

-
-= = = ¥

¥

 (a) Summation of mmf’s around the decoupled left-hand branch gives

  
5

1 1 1 1 (0.015)(6.366 10 ) 9549 AgN I R tf= = ¥ = -

1

1

9549 9549
95.49 A

100
I

N
= = =

 (b) Since the two branches are decoupled,

  

1 1
1 5

1

(100)(10)
1.57 mWb

6.366 10g

N I

R
f = = =

¥

2 2

5
2

(50)(20)
2.36 mWb

4.244 10g

N I

R
f2 = = =

¥

Example 6.15

 
Figure 6.21

Figure 6.22
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Obtain a conductively coupled equivalent circuit for the 

following magnetically coupled circuit (Figure 6.23) and 

then find the Z parameters of the electrical network.

Solution Applying KVL in loop-1

  (5 + j8) I1 – j2I2 = V1 (6.21)

Applying KVL in loop-2

  –j2I1 + (5 + j4) I2 = –V2 (6.22)

Writing Eqs (6.21) and (6.22) in matrix form:

  
1 1

2 2

5 8 2

2 5 4

I Vj j

I Vj j

+ - È ˘ È ˘È ˘
=Í ˙ Í ˙Í ˙- +Î ˚ Î ˚ Î ˚

 (6.23)

Comparing Eq. (6.23) with Z-parameters equation form (i.e. [V] = [I][Z]) gives, Z matrix as 

follows:

  

5 8 2
[ ]

2 5 4

j j
Z

j j

+ -È ˘
= Í ˙- +Î ˚

Obtain a conductively coupled equivalent circuit for the 

following magnetically coupled circuit (Figure 6.24).

                  [AU, 2012]

Solution M is negative as I1 enters the j5 W coil through 

the dot end, I2 enters the j10 W coil through the indented 

end. In the common branch, I1 and I2 are directed opposite 

(Figure 6.25).

Conductively Coupled Equivalent Circuit:

Thus, from the theory of conductivity coupled circuits,

 ZA = L1 – M; ZB = L2 – M; ZC = M

Here,

 ZA = j5 – j6 W = –j1 W
 ZB = j10 W – j6 W = j4 W
 ZC = j6

Example 6.16

Figure 6.23

Example 6.17

+

–

3 W

~ I1 I250 0° V–

j6 W

j5 W j10 W

5 W

– 4j W

Figure 6.24

Figure 6.25
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6.11  ANALYSIS OF MAGNETIC CIRCUITS

The presence of charges in space or in a medium creates an electric field; similarly, the flow of current 

in a conductor sets up a magnetic field.

Electric field is represented by electric flux lines, and magnetic flux lines are used to describe the 

magnetic field. The path of the magnetic flux lines is called the magnetic circuit. Just as a flow of current 

in the electric circuit requires the presence of an electromotive force, in the same way, the production of 

magnetic flux requires the presence of magneto-motive force (mmf).

This section discusses some properties related to magnetic flux.

6.11.1 Flux Density (B)

The magnetic flux lines start and end in such a way that they form closed loops. Weber (Wb) is the unit 

of magnetic flux (f). Flux density (B) is the flux per unit area. Tesla (T) or Wb/m2 is the unit of flux 

density. 

  B
A

f
=  Wb/m2 or Tesla

6.11.2 Magneto-motive Force (MMF)

A measure of the ability of a coil to produce a flux is called the magneto-motive force. A coil with N 

turns, carrying a current of I amperes constitutes a magnetic circuit and pro duces an mmf of NI ampere 

turns. The source of flux (f) in the magnetic circuit is the mmf. The flux produced in the circuit depends 

on mmf and the length of the circuit. 

6.11.3 Magnetic Field Strength (H) 

The magnetic field strength of a circuit is given by the mmf per unit length. Ampere turns per meter 

is the unit of H. The magnetic flux density (B) and its intensity (field strength H) in a medium can be 

related by the following equation:

 H = B/m.

where,

m is the permeability of the medium in Henrys/metre (H/m), 

m0 is absolute permeability of free space and is equal to 4p 3 10–7 H/m, and 

mr is relative permeability of the medium. 

Relative permeability is a non-dimensional numeric which indicates the degree to which the medium 

is a better conductor of magnetic flux as compared to free space. 

The value of mr = 1 for air and nonmagnetic materials. It varies from 1,000 to 10,000 for some types 

of ferromagnetic materials. 

6.11.4 Reluctance (R)

Reluctance is the property of the medium which opposes the passage of magnetic flux. Its unit is AT/Wb. 

The reciprocal of reluctance is known as permeance.
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( )
 

flux( )

mmf F
R

f
=

Air has a much higher reluctance than does iron or steel. For this reason, magnetic circuits used in 

electrical machines are designed with very small air gaps. 

In the magnetic circuit shown in Figure 6.26, the relative permeability 

of iron is 105. The length of the airgap is g = 3 mm and the total length 

of the iron is 0.4 m. For the magnet Br = 1.07 T, Hc = 800 kA/m and 

the length of the magnet lm is 5 cm. Assuming the cross section is 

uniform, what is the flux density in the air gap?

Solution Since the cross section is uniform, B is the same everywhere 

and there is no current. Applying KVL for magnetic circuit involving magnetic field intensity,

 iron iron 0m m g gH l H l H l◊ + ◊ + ◊ =

i m gB B B B= = =

m m m
◊ + - + =iron

0 0

0c m
c m

ri r

H lB B
l B H l g

B

3 3
2 3 2

7 5 7

0.4 800 10 3 10
5 10 (800 10 ) 5 10 0

1.074 10 10 4 10
B B B

p p

-
- -

- -

Ê ˆ Ê ˆÊ ˆ ¥ ¥
+ ¥ ¥ - ¥ ¥ ¥ + =Á ˜ Á ˜Á ˜¥ ¥ ¥Ë ¯ Ë ¯ Ë ¯

Solving for B,  B = 1.005 Tesla

6.12  MAGNETIC LEAKAGE AND FRINGING

A part of magnetic flux produced by a magnetised iron specimen that does not confine to the specimen 

is regarded as leakage flux. This flux while crossing the air gap bulges outwards due to variation in 

reluctance. This is known as fringing. This is because the lines of force repel each other when passing 

through the air as a result the flux density in the air gap decreases. 

The ratio of total flux to useful flux is called the leakage coefficient or leakage factor.

The following data refers to two coupled coils – 1 and 2, as shown in 

the electrical network of Figure 6.27. f11 = 0.5 × 10–3 Wb; 

f12 = 0.3 × 10–3 Wb; N1 = 100 turns; N2 = 500 turns; i1 = 1 A. Find k, 

the coefficient of coupling, the inductances L1 and L2 and M, the 

mutual inductance.

Solution k = Leakage factor = f12/f11 = 0.6

 L1 = N1 f11/i1= 0.05 H

Example 6.18

Figure 6.26

Example 6.19

M

i1

f1

N1
N2

f12

i2

Figure 6.27
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 M = N2 f12/i1= 0.15 H

 
2

2 2
1

 
M

L
L k

=  = 1.25 H

6.13  COMPARISON OF ELECTRIC AND MAGNETIC CIRCUITS

Table 6.1 presents analogy between an electrical circuit and a magnetic circuit. These analogies allow 

us to apply Kirchhoff’s laws for magnetic circuits also.

Table 6.1 Analogy between magnetic and electric circuits

Analogues Quantity Electrical Circuit Magnetic Circuit

Exciting force emf in Volts mmf in Ampere-Turns

Response Current in Ampere Flux in Weber

Opposition to response
r

=Resistance,
l

R
A m

=Reluctance,
l

R
A

Quantity drop Voltage drop (Current × Resistance) mmf drop (Flux × Reluctance)

6.14 
  TIME DOMAIN AND FREQUENCY DOMAIN 
ANALYSIS NETwORK EQUATIONS

A magnetic coupled electrical network can be solved in 

either time domain or frequency domain. This section 

presents time domain and frequency domain network 

equations for a particular coupled circuit.

Time Domain Network Equations

Time Domain (Figure 6.28)

1 2
1 1 1 1

2 1
2 2 2 2

di di
v i R L M

dt dt

di di
v i R L M

dt dt

= + +

= + +

Frequency Domain Network Equations

Frequency Domain (Figure 6.29)

V1 = (R1 + jwL1)I1 + jwMI2

V2 = jwMI2 + (R2 + jwL2)I2

Probe

1.  Write network equations for coupled 

inductors circuits in the time domain and 

frequency domain.

Figure 6.28 Time-domain circuit

Figure 6.29 Frequency-domain circuit
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6.15 
  APPLICATION OF AN IDEAL 
TRANSFORMER

According to Maximum Power Transfer Theorem, the 

power supplied from a source to the associated load will be 

maximum when the load impedance becomes equal to the 

source impedance.

An ideal transformer with primary and secondary winding 

turns N1 and N2 respectively is utilised for delivering the maximum 

power from an amplifier (source) to a loudspeaker (load). The 

amplifier output is connected to primary winding of the ideal 

transformer while the loudspeaker is connected to secondary 

winding.

N1 and N2 are selected such that the loudspeaker impedance, when referred to primary winding, 

becomes equal to the output impedance of the amplifier. This is called load matching as the load 

impedance, when transformed, becomes equal to the source impedance and thus maximum power 

transfer occurs to the loudspeaker.

P O I N T S  T O  R E M E M b E R

  A two-winding transformer is an example of inductive coupling, while an auto transformer demonstrates 

conductive and inductive coupling.

  The mutual inductance between two coils can be determined using following formula:

  

ff
= =2 12 1 12

1 2

N N
M

I I

  The voltages v1(t) and v2(t) across the coupled inductors can be calculated using following formulae

  
= ± = ±2 1

2 2
1 2

1 1 ,
( ) ( ) ( ) ( )

( ) ( )
di di di di

v L M v L M
dt d

t

t

t t t
t

dt
t

dt

  Dot convention is utilised to indicate sign for the mutually induced voltages across coupled circuits. Circular dot 

marks and/or special symbols can be utilised for this purpose.

  These symbols implicitly represent orientation of the windings around its core of an inductor which in turn affect 

the polarity of inducted voltage.

  Two coils are said to be mutually coupled if the magnetic flux emanating from one passes through the other. The 

mutual inductance between the two coils is given as 1 2M K L L=

  Coefficient of coupling (K) is always less than unity, and has a maximum value of 1 (or 100%). For the case in 

which K = 1, is called perfect coupling, when the entire flux of one coil links the other. 

  K can also be determined using 
f

f
1 ,  where f1 is a portion of flux f which links with other coil.

  The equivalent inductance of an electrical circuit consisting of inductors connected in series-aiding connection 

can be calculated using formula L = L1 + L2 + 2M

Probe

1.  Explain the application of coupled inductors 

for transferring the maximum power?

Figure 6.30
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  The equivalent inductance of an electrical circuit consisting of inductors connected in series-opposition 

connection can be calculated using formula L = L1 + L2 – 2M

  The equivalent inductance of an electrical circuit consisting of inductors connected in parallel-aiding connection 

can be calculated using formula: 

    

2
1 2

2 2 2
eq

L L M
L

L L M

-
=

+ -

  The equivalent inductance of an electrical circuit consisting of inductors connected in parallel-opposition 

connection can be calculated using formula:

    

2
1 2

2 2 2
eq

L L M
L

L L M

-
=

+ +

  Double-tuned circuits are used in radio receivers to produce uniform response to modulated signals over a 

specified bandwidth; double-tuned circuits are very useful in a communication system.

  The value of M at which maximum output voltage and maximum amplification is obtained for a single and 

double tuned electrical circuit are 

  ∑ Single tuned circuit – 
2s

r

R R
M

w
=

  ∑ Double tuned circuit – 
1 2( )s

c
r

R R R
M

w

+
=

  The expressions for the maximum output voltage and maximum amplification for a single and double tuned 

electrical circuit are:

  ∑ Single tuned circuit 
w

=
22  

i
om

r s

v
v

C R R
 

w
=

2

1

2  
m

r s

A
C R R

  ∑ Double tuned circuit 
w

=
22  

i
om

r s

v
v

C R R
 

w
=

2

1

2  
m

r s

A
C R R  Equivalent Reluctance for Series Connection of a number of magnetic paths 

     

31 2

1 1 2 2 3 3

ll l
R

µ A µ A µ A
= + + +

  Equivalent Reluctance for Parallel Connection of inductors 

   

= + + +
1 1 1 2 2 2 3 3 3

1 1 1

/ / /
R

l µ A l µ A l µ A

  Flux Density B = f/A

  Magneto-Motive Force F = NI = H/l

  Magnetic Field Strength /H B m=

  Reluctance R 
mmf ( )

flux ( )

F

j
=
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  An analogy between an electrical quantity and the corresponding magnetic quantity allow us to apply Kirchhoff’s 

laws for magnetic circuits also.

  A transformer is a four-terminal device containing two or more magnetically coupled coils. It is used in changing 

the current, voltage, or impedance level in a circuit. Important uses of transformers in electronics applications are 

as electrical isolation devices and impedance-matching devices.

  An ideal transformer with primary and secondary winding turns N1 and N2 respectively is utilised for delivering 

the maximum power from an amplifier (source) to a loudspeaker (load). N1 and N2 are selected such that the 

loudspeaker impedance, when referred to primary winding, becomes equal to the output impedance of the 

amplifier. This is called load matching as the load impedance, when transformed, becomes equal to the source 

impedance and thus maximum power transfer occurs to the loudspeaker. 

PRACTICE PRObLEMS

 1. A 25 H inductor has 100A of current turned 

off in 1ms. 

 (a) What voltage is induced to oppose 

this?

 (b) What is unreasonable about this result?

 (c) Which assumption or premise is 

responsible?

 2. What is the mutual inductance of a pair of 

coils if a current change of 6 A in one coil 

causes the flux in the second coil of 2000 

turns to change by 12 × 10–4 Wb per turn? 

 3. Explain how the dot convention is utilised 

to determine the sign of mutually induced 

voltage in coils. 

 4. The following data refers to two coupled 

coils 1 and 2, as shown in following 

electrical network. f11 = 0.5 × 10–3 Wb; 

f12 = 0.3 × 10–3 Wb; N1 = 100 turns; 

N2 = 500 turns; i1 = 1A. Find k, the 

coefficient of coupling, the inductances L1 

and L2 and M, the mutual inductance. 

M

i1

f1

N1
N2

f12

i2

Figure 6.31

 5. Two inductively coupled coils have self-

inductances L1 = 20 mH and L2 = 80 mH. 

If the coefficient of coupling is 0.6.

 (a) find the value of mutual inductance 

between the coils, and 

 (b) the maximum possible mutual induc-

tance.

 6. Two coils connected in series have an 

equivalent inductance of 0.8 H when 

connected in aiding, and an equivalent 

inductance of 0.5 H when the connection is 

opposing. Calculate the mutual inductance 

of the coils.

 7. For the following circuit, determine the 

voltage ratio V1/V2. Which will make the 

current I1 equal to zero?

Figure 6.32

 8. Find the impedance matrix for the 

following network.

+
–

I1

j3 W5 W

j6 W10 V I2

j2 W
+

–

V0 – 4j W

Figure 6.33
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 9. Draw the equivalent electrical network of 

the following circuit involving inductive 

coupling between the coils. Given that M 

= 1, find values of I1 and I2.

Figure 6.34

 10. The following circuit has L1 = 4 H, 

L2 = 9 H, K = 0.5, i1 = 5 cos (50 t – 30°) 

A and i2  = 2 cos (50t – 30°) A. Obtain the 

conductively coupled equivalent and then 

find the values of (a) v1 (b) v2 (c) the total 

energy in the system at t = 0.

Figure 6.35

 11. Draw an analog electric schematic for the 

parallel magnetic circuit of the following 

figure for both cases of m = • and m ≠ •.

Figure 6.36

MULTIPLE CHOICE QUESTIONS

 1. Mutual inductance is a property associated with

 (a) only one coil  (b) two or more coils 

 (c) two or more coils with magnetic coupling (d) only for conductively coupled inductors

 2. The maximum value of the coefficient of coupling is

 (a) 100% (b) more than 100%

 (c) 90% (d) 50%

 3. The maximum possible mutual inductance of two inductively coupled coils with self-inductances 

L1 = 64 mH and L2 = 100 mH is given by

 (a) 80 mH  (b) 40 mH  (c) 100 mH (d) 64 mH

 4. The value of the coefficient of coupling is more for air-cored coupled circuits compared to the iron core 

coupled circuits.

 (a) true  (b) false

 (c) depending upon the rate of change of current

 (d) depending upon the rate of change of voltage

 5. Dot convention in coupled circuits is used

 (a) to measure the mutual inductance 

 (b) to determine the polarity of the mutually induced voltage in coils 

 (c) to determine the polarity of the self-induced voltage in coils

 (d) to determine energy stored in a coil

 6. The current is entering in the dot of a coil which is mutually coupled with another coil for which current 

is leaving the its dot, the mutually induced voltage in first coil is 
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 (a) proportional to I1  (b) proportional to I2 

 (c) proportional to rate of change of I2 (d)  proportional to negative rate of change of I2

 7. The mutual inductance M at the maximum output voltage is obtained from a single tuned circuit is 

proportional to

 (a) resonance frequency 

 (b) square root of resonance frequency

 (c) inverse of resonance frequency

 (d) independent of resonance frequency

 8. An ideal transformer has N1 = 100 turns, and N2 = 10 turns. This transformer is utilised for impedance 

matching purpose for an amplifier required to be connected to a loudspeaker load to get maximum power 

output. If the output impedance of the amplifier is 2500 W, the find the resistance of the loudspeaker load 

will be

 (a) 100 W (b) 25 W (c) 10 W (d) 2500 W

 9. For maximum power transfer from an amplifier to a loudspeaker load, the turns ratio of an ideal transformer 

shall be

 (a) N1 > N2 (b) N1 < N2

 (c) No consideration should be given to turns ratio an ideal transformer

 (d) No ideal transformer is required for this purpose

  10. Inductance of a coil which has N turns is proportional to

 (a) N (b) N
2 (c) N

3 (d) N
1/2

ANswers To MUlTiPle ChoiCe QUesTioNs

 1. (c) 2. (a) 3. (a) 4. (b) 5. (b)

 6. (d) 7. (c) 8. (b) 9. (a) 10. (b)



  

7.1  INTRODUCTION

A three-phase system is a multi-phase system in which electric power is generated, transmitted and 

consumed by using three phases simultaneously. Voltages of these three phases are equal in magnitude 

but 120° phase shifted for a balanced 3-f system. It is the most common method of electric power 

generation and transmission worldwide.

7.2  ThRee-phase sTaR (Y), ThRee-phase DeLTa (∆)

For a balanced system, instantaneous voltages across three phases are expressed as:

 cos ; cos( 2 /3) ; cos( 2 /3)R m Y m B mE E t E E t E E tw w p w p= = - = +  for R-Y-B phase sequence.

 cos ; cos( 2 /3); cos( 2 /3)R m Y m B mE E t E E t E E tw w p w p= = + = -  for R-B-Y phase sequence.

There are two patterns in which the three phases of a 3-phase equipment (load or source) are connected. 

These are discussed as follows:

7.2.1 Three-phase Star

In this pattern, three phases are connected in such a way that they have one common terminal. The 

common terminal is called star or neutral terminal. There are total 4 terminals: One star or neutral and 

three terminals of each phase.
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  Voltage, current and power relations for 

star and delta configurations

  Analysis of three-phase 3-wire and 4-wire 

circuits with star and delta connected loads

  Phasor diagram

  Star-Delta conversion

  Relation between power in delta and star 

system

  Measurement of three-phase power

  Advantages of 3-f system

  Interconnection of three phases

Chapter Outline
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There are two possible configurations of connection for a star connected device: (i) 3-Phase, 4 wire 

(with star terminal connected), (ii) 3-Phase, 3 wire (with star terminal isolated) is shown in Figure 7.1. 

Figure 7.1 Star connected source and load

7.2.2 Three-phase Delta

In this pattern, three phases are connected together forming a closed loop with three junctions 

as shown in Figure 7.2.

Figure 7.2 Delta connected source and load

These three junctions form three terminals of a delta connected device. There is no star or neutral 

terminal.

In a three-phase balanced delta system, the voltage across R and Y is 400 – 0° V. What will be the 

voltage across Y and B? Assume RYB phase sequence.

Solution Given: Delta-connected system VRY = 400 – 0° V. 

Since it is a balanced 3-phase system, magnitude of voltage differences between any two of three 

terminals will be equal. So, VYB is either 400 – 120° V or 400 – –120º V. With RYB phase sequence, 

VYB lags behind VR. So, VRY = 400 – –120° V.

Example 7.1

Note: Difficulty Level    — Easy;  — Medium;  — Difficult
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7.3   VOLTaGe, CURReNT aND pOWeR 
IN sTaR aND DeLTa CONNeCTIONs

Line and Phase Voltages

Voltage across a single phase is called phase voltage and 

voltage difference between the two phase terminals is called 

line voltage.

Line and Phase Current

Similarly, current of a single phase is called phase current and current passing through any terminal is 

called line current.

7.3.1 Star Connection

A star connected balance load is shown in Figure 7.3.

Figure 7.3 Star connected balanced load

Voltage

Since each phase is connected between a line terminal and a 

neutral, line voltage and phase voltage are not same.

For a balanced power supply, with VAn as reference and 

A-B-C phase sequence (Figure 7.4), 

     

phase

phase

phase

0

2
  

3

2
    

3

An

Bn

Cn

V V

V V

V V

p

p

= –

Ê ˆ= – -Á ˜Ë ¯

Ê ˆ= – +Á ˜Ë ¯

and  line line line

5
;  ;  

6 2 6
AB BC CAV V V V V V

p p pÊ ˆ Ê ˆ Ê ˆ= – = – - = – +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

           VAB = VAn – VBn

University Questions

1.  Describe volt-amp reactive in 3-phase ac 

circuit and derive power relations in ac 

circuit. [RTU, 2015]

2.  Derive relationship between line and 

phase current and voltage relation in 

3-phase delta connection. [GTU, 2016]

Figure 7.4  Phase and line voltage for star 

connection
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Since, phase voltages are 120° phase shifted,

 fi                           
2 2

( 2 cos(180 120)AB An Bn An BnV V V V V= + + -

  fi                          
2 2

 ( 2 cos(60) (1 1 2 cos60)  AB An An An An AnV V V V V V= + + = + +

                                3AB AnV V=

  So,                         line phase3V V=  (7.1)

Current

Since there is no current division at terminals,

                                line phaseI I=  (7.2)

Power

Total power = sum of power of each phase,

For a balanced 3-f system,

Total power,           
3 1 3 S Sf f- -=  fi 

3 phase phase3  S V If- =

Using Eqs (7.1) and (7.2),

                                 3 line line3    S V If- = VA

Active power:              line line cos 3  cos  WP S V If f= =

Reactive power:          line linesin 3  sin Q S V If f= =  VAR

7.3.2 Delta Connection

A delta connected balance load is shown in Figure 7.5.

Figure 7.5 Delta connected balanced load



Polyphase Circuits  7.5

Voltage

Since each phase is connected between a line terminal and neutral, line voltage and phase voltage are 

not same.

For a balanced power supply, lineAB BC CAV V V V= = =  

Since voltage across a phase equals to the voltage difference between the two phase terminals,

                       line PhaseV V=  (7.3)

Current

Line current gets divided (load)/added (source) at each 

terminal, hence, phase and line current are not same here.

                                     1 A CI I I= -

Since phase currents are 120° phase shifted,

fi        
22

1  ( 2 cos(180 120)A C A CI I I I I= + + -

fi     2 2 2

1  ( 2 cos(60)

(1 1 2 cos60)  

A A A

A

I I I I

I

= + +

= + +

             1 3 AI I=

So,        line phase3I I=  (7.4)

Power

Total power = sum of power of each phase,

For a balanced 3-f system,

Total power, S3–f = 3S1–f fi S3–f = 3Vphase Iphase

Using Eqs (7.3) and (7.4),

                                 
3 line line3  S V If- = | VA

Active power: 
line linecos 3  cos  WP S V If f= =

Reactive power: line linesin 3  sin Q S V If f= =  VAR

Three inductive coils having resistance of 16 W and reactance of j12 W are connected in star across a 

400V, 3f, 50 Hz supply. Calculate phase voltage. 

Solution Here, line voltage is given 400V.

For a star connected load, line phase3V V=  fi 
Phase

400
230.94 V

3
V = =  

Figure 7.6  Phase and line voltage for delta 

connection

Example 7.2
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A star-connected balanced load draws a current of 35 A per phase when connected to a 440 V supply. 

Determine the apparent power.

Solution Apparent power, 
line line3  | | | |S V I=

For a star connection, line phase 35 A I I= = Here, Vline = 440 V

                                      line line3  S V I=  = ¥3 440 35  = 26.67 kVA

7.4
   aNaLYsIs OF ThRee-phase 3-WIRe 

aND 4-WIRe CIRCUITs WITh sTaR 
aND DeLTa CONNeCTeD LOaDs

If VA, VB, VC are phase voltages of each phase, than;

                             CA B PhV VV V= = =

2 4
0; ;

3 3
A Ph B Ph C PhV V V V V V

p pÊ ˆ Ê ˆ= – = – - = – -Á ˜ Á ˜Ë ¯ Ë ¯

7.4.1 Star Connected Load

For a star connected load shown in Eq. (7.5),

                                    , ,An Bn Cn
A B C

A A B B C C

V V V
I I I

Z Z Zf f f
= = =

– – –
 (7.5)

For a balanced 3-f circuit, ZA = ZA = ZC and hence, |
Ph

A B C

V
I I

Z f
= = =

–
1. 3-wire Circuits

A. Balanced load For a balanced load: Voltage of neutral is zero (given that supply voltages equal in 

magnitude and 120° shifted).

                                  An Bn Cn PhV V V V= = =

                                

line
phase

 
;  

3

Ph
Ph

V V
V I

Z f
= =

–

                                    

2 4
| ; | ; | |

3 3
A Ph B Ph C PhI I I I I I

p p
f f f

Ê ˆ Ê ˆ= – - = – - - = – - -Á ˜ Á ˜Ë ¯ Ë ¯

Example 7.3

University Question

1.  Derive an expression for the total power 

for a balanced three-phase star connected 

load in terms of line voltage, line current 

and power factor. [GTU, 2013]
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B. Unbalanced load (ZA ≠ ZB ≠ ZC) If load is not a balanced one, 
An Bn CnV V Vπ π  and also, voltage 

of neutral point is not zero.

Using Eq. (7.5),

                                    , ,A n B n C n
A B C

A B C

V V V V V V
I I I

Z Z Z

- - -
= = =  (7.6)

Since neutral is isolated, applying KCL at neutral:

                       IA + IB + IC = 0

Using Eq. (7.6),

                    
0A n B n C n

A B C

V V V V V V

Z Z Z

- - -
+ + =

Here VA/B/C are phase voltages which yields,

                                    

 

 
1 1 1

 

CA B

A B C A A B B C C
n

A B C

A B C

VV V

Z Z Z V Y V Y Y V
V

Y Y Y

Z Z Z

+ +
+ +

= =
+ ++ +

IA, IB, IC can be determined substituting Vn in Eq. (7.6).

Power:

                                     
cos cos cosAn A A Bn B B Cn C CP V I V I V If f f= + +

fA is phase difference between VAn and IA.

2. 4-wire Circuits

For a 4-wire circuit as shown in Figure 7.7, voltage of neutral is always equal to zero.

Hence, VAn = VA, VBn = VB, VCn = VC (7.7)

Figure 7.7 4-wire star connected load

A. Balanced load Same analysis as of 3-wire connection.

B. Unbalanced load (ZA ≠ ZA ≠ ZC) Since voltage of neutral is kept 0 with 4th
 or neutral wire, even if 

f load is not a balanced one.
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Using Eqs (7.5) and (7.7),

                                    

, , CA B
A B C

A B C

VV V
I I I

Z Z Z
= = =

Power:

                                     
cos cos cosA A A B B B C C CP V I V I V If f f= + +

fA is phase difference between VA and IA.

7.4.2 Delta Connected Load

Since load with delta connection has only three terminals, it can be supplied voltage with 3-wire only. 

If IA, IB, IC are phase currents,

                                    

, ,BC CAAB
A B C

AB A BC B CA C

V VV
I I I

Z Z Zf f f
= = =

– – –

Line currents I1, I2, I3 can be found as:

                            1 2 3; ;A C B A C BI I I I I I I I I= - = - = -

A balanced star-connected load having an impedance of (15 + 20j) W per phase is connected to 3f, 

440 V, 50 Hz as shown in Figure 7.8. Find the line 

current and power absorbed by the load.

Solution Given: Z = (15 + 20j) W = 25 – 53.13° W, 

Assuming RYB phase sequence and then taking 

VRN as the reference voltage, we have:

Step 1:  Find the phase voltages:

VRN 440 0/ 3= –  = 254–0;

VYN = 254– –120; VBN = 254– +120

Step 2: Calculate phase and line currents: 

For star connection, phase and line currents are 

same, so 
254 0

10.16 53.15  
25  53.13°

RN
R

V
I

Z

–
= = = – -

–

Similarly, 10.16 173.13 and 10.16 66.85Y BI I= – - = – -

Step 3: Power calculation: 

It is a balanced 3-phase star connected system with f = –53.13°, Vline = 440 V and Iline = 10.16 A 

                          line line3   cos 3  440 10.16 cos( 53.13)P V I f= = ¥ ¥ -  = 4645.78W

Example 7.4

 
Figure 7.8
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A delta-connected load has (30 – j40) W impedance per phase as shown in Figure 7.9. Determine the 

phase current if it is connected to a 415 V 3-phase, 50 Hz supply.

Solution In a delta-connected system,

 Phase voltage = line voltage = 415 V.

 Z = 50– –53.13°

Taking, VRY as reference,

   
415  0

 
50 53.130

RY
RY

V
I

Z

–
= =

– -
 = 8.3–53.13° Amp

In a balanced load, the phase shift of the current is 

120° apart.

IYB = 8.3– –66.87° Amp. and IBR = 8.3–186.87° Amp

Three impedances Z1 = (17.32 + j10) W, Z2 = (20 + j34.64) W, and Z3 = (0 – j10) W are delta-connected 

to a 400 V three-phase system as shown in Figure 7.10. Determine the phase currents, line current, 

and total power consumed by the load.

Solution Step 1: Find out phase voltages:

Z1 = (17.32 + j10) W = 20 – 30° W.

Z2 = (20 + j34.64) W = 40 – 60° W.

Z3 = (0 – j10) W = 10 – –90º W.

The three-phase currents are IR, IY, and IB, and the 

three line currents are I1, I2, I3. 

Taking VRY = 400 – 0° V as reference phasor, and 

assuming RYB phase sequence, we have VRY = 400 – 0º; 

VYB = 400 – –120º V; VBR = 400 – –240° V

Step 2: Calculate phase current:

                         
1 1

400  0°

20  30°

RY
R

V
I

Z f

–
= =

– –
 = 20 – –30° A = (17.32 – j10) A

                         

2 2

400 120°
   

40  60°

YB
Y

V
I

Z f

– -
= =

– –
= 10 – –180º = (–10 + j10)A

                         

3 3

400 120°
   

10 90°

BR
B

V
I

Z f

–
= =

– – -
= 40 – –150º = (–34.64 – j20)A

Example 7.5

Figure 7.9

Example 7.6

Figure 7.10
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Step 3: Determine line currents (Figure 7.11):

 I1 = IR – IB = 52.91 – 10.89° A

 I2 = IY – IR = 29.09 – 159.89° A

 I3 = IB – IY = 31.75 – –140.94° A

To calculate the total power, first the powers in the 

individual phasors are to be calculated and then they 

are added to get the total power in the unbalanced 

load.

Power in R-phase = IR
2 × RR = (20)2 × 17.32 = 6928 

watts

Power in Y-phase = IY
2 × RY = (10)2 × 20 = 2000 watts

Power in B-phase = IB
2 × RB = (40)2 × 0 = 0

\ Total power in the load = 6928 + 2000 = 8928 watts

7.5  phasOR DIaGRaM

A Phasor represents a sinusoidal varying quantity with a constant magnitude and phase angle. Quantity 

with phase angle zero is considered as a reference phasor.

How to draw a reference phasor ?

 • Assume one of the phase as reference phasor (generally a phase voltage for star connection and 

a line voltage for a delta connection).

 • Convert phase voltages in polar form and draw all phase voltages (displace by 120°).

 • Find the phase current in polar form and draw them in phase plane according to their magnitude 

and angle.

 • Find the line currents (if load is delta) using method of parallelogram (as it is done for vector 

additions).

Phasor representation for a star connected balanced 3-f system’s voltages (with Va as reference 

Phasor) is shown in Figure 7.4.

Phasor representation for a delta connected balanced 3-f system’s voltages (with Va as reference 

Phasor) is shown in Figure 7.6 

7.6
   sTaR-DeLTa aND DeLTa-sTaR 

CONVeRsION

Conversion Strategy

Impedance measured between two terminals (with third 

terminal open circuited) should match with impedance measured between same two terminals of other 

circuit, if the two 3-f circuits are equivalent.

 
Figure 7.11

University Question

1.  Derive the equation of Star to Delta and 

Delta to Star transformation. [GTU, 2017]
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i.e.

           open Star open Delta( ) ( )AB C AB CZ Z=  (7.8)

           open Star open Delta( ) ( )AC B AC BZ Z=  (7.9)

          open Star open Delta( ) ( )BC A BC AZ Z=  (7.10)

Figure 7.12 Star-Delta transformation

For the circuit shown in Figure 7.12;

       
=open Star Deltaopen  

( ) ( )  CAB AB C
Z Z

                 
( )

(  )

AC BC AB
A B

AC BC AB

Z Z Z
Z Z

Z Z Z

+
+ =

+ +
 (7.11)

       open Star open Delta( | ) ( | )AC B AC BZ Z=

          
( )

(  )

AB BC AC
A C

AC BC AB

Z Z Z
Z Z

Z Z Z

+
+ =

+ +
 (7.12)

        open Star open Delta( | ) ( | )BC A BC AZ Z=

          
( )

(  )

AB AC BC
B C

AC BC AB

Z Z Z
Z Z

Z Z Z

+
+ =

+ +
 (7.13)

7.6.1 Delta-Star Conversion

Eq. (7.12) – Eq. (7.13) + Eq. (7.11): 
( )

  
(  )

AB AC
A

AC BC AB

Z Z
Z

Z Z Z
=

+ +
 (7.14)

Eq. (7.11) + Eq. (7.13) – Eq. (7.12): 
( )

 
(  )

AB BC
B

AC BC AB

Z Z
Z

Z Z Z
=

+ +
 (7.15)

Eq. (7.12) + Eq. (7.13) – Eq. (7.11): 
( )

  
(  )

AC BC
C

AC BC AB

Z Z
Z

Z Z Z
=

+ +
 (7.16)
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7.6.2 Star-Delta Conversion

Using Eqs (7.14), (7.15), (7.16),

                    

( )

(  )

AB AC BC
A B B C C A

AC BC AB

Z Z Z
Z Z Z Z Z Z

Z Z Z
+ + =

+ +

 fi                A B B C C A A BC B AC C ABZ Z Z Z Z Z Z Z Z Z Z Z+ + = = =

 fi                                              ( )A B B C C A
AB

C

Z Z Z Z Z Z
Z

Z

+ +
=

 fi                                             ( )A B B C C A
AC

B

Z Z Z Z Z Z
Z

Z

+ +
=

 fi                                             
( )A B B C C A

BC

A

Z Z Z Z Z Z
Z

Z

+ +
=

For a balanced 3-f system: delta star( a d )n  AB BC AC A B CZ Z Z Z Z Z Z Z= = = = = =

                                                 Zdelta = 3.Zstar

If a star connected balanced load with impedance Z = (10 + j15) W is to be represented by delta 

configuration, what will be the value of impedance?

Solution For a balanced load, if a delta connected system is equivalent to a star connected system, 

then

                    ZDelta = 3 × ZStar fi ZDelta = 3 × (10 + j15) W = (30 + j45)W

A symmetrical three-phase, three-wire 440 V supply goes to a star-connected load. The impedances 

in each branch are ZA = (2 + j3) W, ZB = (1 – j2) W, and ZC = (3 + j4) W. Find its equivalent delta-

connected load.

Solution

                  ( ) 19.10 47.3º A B B C C AZ Z Z Z Z Z+ + = –

     

( ) 19.10 47.3º
3.82 – 5.83° (3.8 – 0.38)

( 3  4)

A B B C C A
AB

C

Z Z Z Z Z Z
Z j

Z j

+ + –
= = = – = W

+

      

( ) 19.10 47.3º
5.29 – 9º (5.22 –  0.82)

 2  3( )

A B B C C A
AC

B

Z Z Z Z Z Z
Z j

Z j

+ + –
= = = – = W

+

      

( ) 19.10 47.3º
( 3.02 – 8)

( )1  2

A B B C C A
BC

A

Z Z Z Z Z Z
Z j

Z j

+ + –
= = = - W

-

Example 7.7

Example 7.8
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Symmetrical three-phase, three-wire 400 V supply 

is connected to a delta-connected load. 

Impedances in each branch are ZRY = 10 – 30º W, 

ZYB = 10 – 45º W, and ZBR = 2.5 – 60º W. Find 

its equivalent star-connected load. 

Solution

 ZAC + ZBC + ZAB = 10 – 30º  + 10 – 45º 

+ 2.5 – 60º

                     = (22.159 – 39.97) W
                     = (16.98 + j 14.24) W

                        
– ¥ –

= =
+ + –

( ) 10 30º  2.5 60º
  

(  ) 22.159  39.97

RY BR
R

RY YB BR

Z Z
Z

Z Z Z
, ZR = 1.13 – 50.03 W

                        
– ¥ –

= =
+ + –

( ) 10 30º 10 45º
 
(  ) 22.159  39.97

RY YB
X

RY YB BR

Z Z
Z

Z Z Z
 , ZX = 4.51 – 35.03 W

                        
– ¥ –

= =
+ + –

( ) 2.5 60º 10 45º
 
( ) 22.159 39.97

BR YB
B

RY YB BR

Z Z
Z

Z Z Z
, ZB = 1.128 – 65.03 W

7.7  ReLaTION BeTWeeN pOWeR IN DeLTa aND sTaR sYsTeMs

Three equal impedances Z = |Z| –f are connected in star,

                    

line Phase Phase
phase

 | |
; ; | |

3
Ph Ph

V V V
V I I

Z Zf
= = =

–

2 2
Phase line

Star phase

| | | |
3 | cos 3 cos cosPh

V V
P V I

Z Z
f f f= = =

Now, if the same impedances are connected in delta fashion,

                    

Phase Phase
phase line

| |
; ; | |Ph Ph

V V
V V I I

Z Zf
= = =

–

f f f= = =
2 2

Phase line
Delta phase

| |
3 cos 3 cos 3 cosPh

V V
P V I

Z Z

Delta
Star

3

P
P =

Example 7.9

 

Figure 7.13
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A delta connected balanced load consumes 3 kW power. If the same device is reconnected in star, 

find the power consumption?

Solution With the same phase impedance, power consumed in star is 1/3rd of power consumed in 

delta.

So, Pstar = 3000/3 = 1000 W = 1 kW

A star connected three-phase purely capacitive load (C) is connected in parallel with a delta connected 

resistive load (R). A connected purely inductive load (L) draws power at unity power factor when 

supplied with 400 V, 50Hz, 3-phase supply source. Find the value of capacitance and power consumed 

if R = 100 W, XL = 200 W.

Solution Given: R = 100 W, XL = 200 W, line voltage = 400 V, f = 50 Hz

Step 1: Simplify the circuit by converting star-connected capacitors in delta:

Since it is a balanced star, equivalent delta will have impedance 3-times.

Now, capacitor of each phase is in parallel with inductor.

Step 2: Find impedance (X) of capacitor-inductor pair:

                         
( ) || ( )L CX jX jX= -

 fi                    )( )( / ( ) L C L CX jX jX jX jX= - -
Step 3: Evaluate condition for unity power factor:

Here, resistances are connected in parallel with X. So, unity power factor is only possible if current 

through X i.e. capacitor inductor pair is zero.

Which is true for, X = •.

 jXL – jXC = 0;

 |XL| = |XC| fi 1 1 1
 

2 2 2   50 100
L

L

X C
fC fXp p p

= fi = = =
¥ ¥

 31.83 mF

Step 4: Power consumed by resistors:

Each resistance is connected between the line conductors. 

 VR = 400 V

                          22( / ) 2 1600 W  RP V R= = ¥ = 3200W

Example 7.10

Example 7.11
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7.8
   MeasUReMeNT OF ThRee-phase 

pOWeR

Average power of a three-phase system can be measured by 

two methods:

1. Three-Wattmeter Method

Total three numbers of watt-meters are connected (one watt-meter across each phase). Reading of each 

watt-meter indicates the power consumed by that phase.

Net power is the sum of readings of three watt-meters.

2. Two-Wattmeter Method

In this method, two watt-meters are connected as shown in Figure 7.14.

VBN

f

IB

f

120°

30°

IR

–VBN VRB

VYB

VRNIY

VYN

120°

30°

A

C

B

W2

IA

IB

VC

VA

VB

IC

Figure 7.14  Power measurement with 

2-Wattmeter method

Figure 7.15 Phasor diagram for 2-Wattmeter method

Reading of wattmeter-1, 1  1cosAB AW V I q=  here q1 is the angle between VAB and IA.

Reading of wattmeter-2, 
2  2cosCB CW V I q=  here q2  is the angle between VCB and IC.

Net power, 
1 2  1  2cos cosAB A CB CW W W V I V Iq q= + = +

From the Figure 7.15, it can be observed that, q1 = 30 + f and q2 = 30 – f.

 fi                    
  cos(30 ) cos(30 )AB A CB CW V I V If f= + + -

 fi   Since    
line lineandAB CB AC A B CV V V V I I I I= === = =

University Questions

1.  Explain two wattmeter methods of three-

phase power measurement.  [AU, 2013]

2.  Explain two wattmeter methods for 3-phase 

power measurement.  [GTU, 2017]
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 fi                    
line line line line cos(30 ) cos(30 )W V I V If f= + + -

Solving above expression gives: 
line line 3 cosW V I f=

It shows that sum of reading of two watt meters is the total active power consumed by a 3-phase 

circuit.

Also, power factor angle for a 3-phase circuit: 1 2

1 2

tan 3
 

W W

W W
f

-
=

+

The two-wattmeter method produces wattmeter readings P1 = 1560 W and P2 = 2100 W when 

concerted to a delta-concerted load. If the line voltage is 220 V, calculate (a) the per-phase average 

power, (b) the per-phase reactive power, (c) the power factor, (d) phase impedance.

Solution Given: P1 = 1560 W, P2 = 2100 W

Total average power = P1 + P2 = 1560 + 2100 = 3660 W

Power factor angle = 
1 1 2

1 2

tan 3
 

W W

W W
f - Ê ˆ-

= Á ˜+Ë ¯
 = 14.13°

 (a) Per-phase average power:

  Since it is a balanced system, each phase will have equal share in total active power,

 Pper-phase = 3660/3 = 1220 W.

 (b) Net reactive power, Q = S sin f = P tan f = 3660 tan (14.13°) = 935.57 VAR

 Qper-phase = 935.57/3 = 311.85 VAR

 (c) Power factor = cos(f) = cos (14.13°) = 0.968

 (d) Step 1: Calculate phase current (here, in delta phase and line voltages are same)

                          f f= fi =phase phase phase phase 3 cos / (3  cos )P V I I P V

          fi     Phase 3660 / (3  220 0.968)I = ¥ ¥  = 5.73 Amp

  Step 2: Calculate phase voltage to phase current ratio.

          fi           = =Phase

Phase

220

220

5.73
Ph

V
Z

I
 = 38.42 W.

7.9  aDVaNTaGes OF 3-f sYsTeM

 1. Small size and cost: For the same amount of power 

generation, a three-phase device is smaller in size 

as compare to single phase device. Hence higher power to weight ratio.

Example 7.12

University Question

1.  Mention the advantages of three-phase 

system. [AU, 2014]
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 2. Power transmission: A three-phase system requires 3 wires of transmission for each phase, 

while a system of three single phases require 6 wires, which reduces transmission cost. Also, 

the same voltage level and current ratings, a three-phase system transmits 3  times power. 

 3. Constant power and torque: Instantaneous power for a balanced 3-phase system is constant, 

which ensures constant torque requirement/generation for a three-phase generator/motor.

 4. Electric motors with three-phase power supply are self-starting in nature, while an alternate 

winding arrangement is required for a single phase motors for self-starting.

 5. A single phase power supply can be derived from three-phase supply while reverse is not 

possible.

 6. Rectifier with 3-phase power supply has very less ripple in comparison with 1-phase power 

supply.

7.10  sOMe DeFINITIONs

 1. Line voltage: Voltage difference between two line conductors of a three-phase system is called 

line voltage.

 2. Phase voltage: Voltage across the impedance of one phase of a 3-phase equipment is called 

phase voltage.

 3. Phase current: Current passing through the impedance of one phase of a 3-phase equipment is 

called phase current.

 4. Phase sequence: Sequence in which, voltages of the three phases of a three-phase system attain 

their peak value is called phase sequence. Phase sequence R-Y-B is called positive phase sequence.

 5. Balanced load: If impedances of all phases of a 3-phase device are equal in magnitude and 

phase angle, load is called balanced load.

7.11  INTeRCONNeCTION OF ThRee phases

Figures 7.16 and 7.17 are the various configurations of interconnection of three-phase connections.

Figure 7.16(a) Delta connected source and load
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Figure 7.16(b) Star connected source and delta connected load

Figure 7.17(a) Star connected source and load

Figure 7.17(b) Delta connected source and star connected load
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p O I N T s  T O  R e M e M B e R

  For Delta connection: Voltage across each phase is the voltage across the two line terminals.

  For Star connection: Phasor sum of voltages across two phases is the voltage across the two line terminals.

  In a balanced 3-f system,

  For Delta: 
line phaseV V=  and 

line phase3I I=  

  For Star: 
line phase3V V=  and line phaseI I=  and Vline leads Vphase by 30°

  Power: 
3 phase phase3 S V If- =  and 

3 line line3  S V If- = .

  Voltage of neutral for an unbalanced 3-wire star load: 
A A B B C C

n

A B C

V Y V Y Y V
V

Y Y Y

+ +
=

+ +
  For all types of configuration: Phase

Phase

Phase

V
I

Z
=

  Voltage of neutral is zero for a balanced star load and for a 4-wire star load.

  Value of impedance for a delta configuration are higher than that of star.

  If reading of both watt-meter is equal, load is purely resistive in nature.

  If W1 > W2, load is capacitive and W1 < W2, load is inductive in nature.

pRaCTICe pROBLeMs

 1. For a balanced three-phase star connected 

load, if active and reactive power 

consumptions at 200V are found to be 4000 

W and 3000 VAR respectively, find out 

value of resistance and reactance per phase.

 2. For a star connected balanced three-phase 

system, if line voltages are given as:

  VAB = 200–20°; VBC = 200– –100°; 

VCA = 200–140°

  Find out phase voltages and phase sequence.

 3. An induction machine connected in star is 

fed by a voltage source of 3.3 kV. If motor 

draws 2 Amp current while driving a load 

of 8 kW. Find out the power factor is motor 

efficiency is 92%.

 4. A balanced delta-connected load with 

Z = 6 + j8 W is connected across a 400 V, 3f 

balanced supply, Find-out the phase currents 

and line current (phase sequence is RYB). 

 5. A 400 V, 40 KVA star connected 3-phase 

generator is running at rated power with 

0.8 lagging power factor. A star connected 

capacitor bank is connected in parallel 

with the generator to raise its power factor 

to 0.9 at rated KVA. Find out the per phase 

reactance of the capacitor bank.

 6. For a star connected load with ZR = 5 W, 

ZY = j2 W and ZB = –j4 W , find out voltage 

of neutral terminal if line voltage is 440V 

and neutral is not grounded. 

 7. If the line currents of an unbalanced delta 

connected system are I1 = 5–0, I2 = 5–20 

and I3 = 5––30 (wrt to VAB and with ABC 

phase sequence) at 440V. Find out net active 

power consumed/delivered by the circuit.

 8. A delta connected, balanced load with 

Z = 6 + j12 W is connected in parallel with 

a balanced star load with Z = 2 + j4 W. Find 

per phase impedance seen as connected in 

star. 

 9. Readings of two watt-meters (Wr/W1 and 

Wy/W2) are 300 W and 400 W respectively. 
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Does load consume or supply reactive 

power? Also determine the reactive power 

supplied or consumed by the load. 

 10. Star connected imbalanced load with 

ZR = 5 W, ZY = 10– 30° W and ZB = 20– –20° W 

derives power from a 440 V balanced 

source. If power is measured following the 

2 watt-meter method, what would be the 

readings of watt meters if neutral terminal 

of load is grounded?

MULTIpLe ChOICe QUesTIONs

 1.  If two terminals of a balanced three-phase system are interchanged, phase sequence: 

 (a) Remains same (b) Gets changed (c) Depends upon load (d) Cannot be determined

 2.   Magnitude of phase voltages for delta and star connected load connected to 300V, 50 Hz 3-phase source 

are respectively:

 (a) 300 V, 300V (b) 173.21V, 173.21V (c) 300V, 173.21V (d) 173.21V, 300V

 3.  A three-phase current source supplies 20A line current to balanced 3-phase load. Phase current for star and 

delta configuration of load will be respectively:

 (a) 10 A, 10 A (b) 5.77 A, 5.77 A (c) 5.77 A, 10 A (d) 10 A, 5.77 A

 4. Voltage of neutral for a star connected load is not zero in case: 

 (a) Neutral is not grounded and load is imbalanced 

 (b) Neutral is not grounded

 (c) Load is imbalanced   (d) Load is balanced and neutral is not grounded

 5.  A purely resistive 3 phase load is deriving power from a balanced supply source. What can be possible 

readings of 2 wattmeters: 

 (a) 200W, 200W (b) 100W, 200W (c) –100W, –100W (d) 200W, 100W

 6.  A 3-phase load connected to 400V, 50Hz supply draws 2.5A line current, reactive power consumed by 

load for 0.8 lag power factor:

 (a) 1039.2 VAR (b) 1385.6 VAR (c) 1732 VAR (d) 600 VAR

 7. Read following statements regarding 3-phase electric circuit with R-Y-B phase sequence:

 I. VRY leads VR with 30° for a star connection.

 II. Line current pertaining to R phase lags its phase current by 30° for a delta connection.

 III. Angle between VR and VYB is – 90°.

 IV. Line current pertaining to R phase leads its phase current by 30° for a delta connection.

  Which one of above is correct: 

 (a) I, II (b) I, III (c) I, II, III (d) I, III, IV

 8. A three-phase star load is rearranged as delta and connected to same power supply source, power consumed 

will be:

 (a) Doubled (b) Three times (c) Same (d) One third

 9. For an unbalanced star connected load (4-wire), three line currents are 10 A, 2 + 3j A and –8 – 2j, neutral 

current will be:

 (a) 0 (b) 4 + 1j (c) 3 (4 + 1j) (d) (4 + 1j)/ 3

 10. A three-phase star connected motor is connected to a balanced delta connected generator. Ratio of phase 

current of motor to generator is:

 (a) 3  (b) 1 (c) 1/ 3  (d) 2/p

ANSwerS to MuLtiPLe ChoiCe QueStioNS

 1. (b) 2. (c) 3. (d) 4. (a) 5. (a)

 6. (a) 7. (c) 8. (b) 9. (b) 10. (c)



  

8.1  INTRODUCTION

It is known that, a circuit with capacitance and inductance needs differential equations to be solved in 

order to get the time response. With the help of Laplace transform, these equations can be solved in 

s-domain (frequency domain). Network function relates voltages or currents of different segments of the 

network. Network functions are defined in s-domain only. Sometimes, voltages of every node (or current 

of every branch) are not matter of concern. In such cases, entire network can be replaced with desired 

number of ports and their transfer functions.

This chapter explains the various types of network functions, their properties and time domain 

solutions for a network function.

8.2 
  TRANSFER FUNCTIONS AND 

DRIVING-POINT FUNCTIONS

8.2.1 Transfer Functions

For a network with at least two ports, ratio of Laplace 

transform of voltage or current of one 

port to Laplace transform of voltage 

or current of another port is known as 

transfer function. 

A network must be initially relaxed 

while finding this ratio, i.e. initial 

University Questions

1.  Define open circuit driving point 

impedance. [AU, 2014]

2. Define transfer function. [PTU, 2014]

Figure 8.1
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  Transfer functions and driving-point 

functions

  Analysis of ladder and non-ladder networks

  Minimise power transfer

  Poles and zeros of network functions

  Time domain response from pole-zero 

behaviour

  Graphical method for determination of 

residue

Chapter Outline
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condition(s) must be set at zero. Since Laplace transform of a unit impulse is 1, transfer function is also 

defined as unit impulse response.

Hence, for a two port network, there exist four number of transfer functions:

Voltage transfer function: 2
12

1

( )
( )

( )

V
G

V

s
s

s
=  and = 1

2

2

1

( )
( )

( )

V
G

V

s
s

s

Current transfer function: 2
12

1

( )
( )

( )

I

I

s
s

s
a =  and 1

21

2

( )
( )

( )

I

I

s
s

s
a =

Transfer impedance function: 2
12

1

( )
( )

( )

V
Z

I

s
s

s
=  and 1

21

2

( )
( )

( )

V
Z

I

s
s

s
=

Transfer admittance function: 2
12

1

( )
( )

( )

I
Y

V

s
s

s
=  and 1

21

2

( )
( )

( )

I
Y

V

s
s

s
=

8.2.2 Driving-point Function

For a network (for any number of ports), ratio of Laplace transform of voltage or current of a port to 

Laplace transform of voltage or current of same is known as driving-point function.

It can be classified as driving point impedance, 
( )

( )
( )

V s
Z s

I s
=  and driving point admittance, 

=
( )

 ( )
( )

I s
Y s

V s
.

Hence, total number of driving point functions will be twice the number of ports.

 Determine the transfer function V(s)/ I(s) for the network shown in Figure 8.2.

Solution Step 1: Transform the circuit in s domain.

Step 2: Find out current through V(s).

  

1 1

1 1

( )   
1

b

g

c

R sL
I I s

R sL R
C s

È ˘
Í ˙

+Í ˙= ¥ Í ˙Ê ˆ
Í ˙+ +Á ˜Ë ¯Í ˙Î ˚

Also,

Step 3: Evaluate V(s) in terms of I(s) and the desired transfer function:

  

1 1

1 1

( )  ( )  
1

b g g

g

c

R sL
V s I R I s R

R sL R
C s

È ˘
Í ˙

+Í ˙= = Í ˙Ê ˆ
Í ˙+ +Á ˜ËÍ ˙Î ˚

¥

¯

Example 8.1

Figure 8.2

Note: Difficulty Level    — Easy;  — Medium;  — Difficult
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fi  1 1

1 1

( )

( ) 1
g

g

c

R sLV s
R

I s
R sL R

C s

+
=

Ê ˆ
+ +Á ˜Ë ¯

 For the circuit shown in Figure 8.3, find the driving point impedance.

Solution

  

2

1

2
1 2 1

2

CD

s
ssZ

ss
s

¥
= =

++

= + +
+2

1
( ) 3

5 2 1

s
Z s s

s s

+ + + + + +
= =

+ +

2 2 2 2 4 2

2 3

(2 1)15 (2 1)  5 30 22 1
( )  

5 (2 1) 10 5

s s s s s s
Z s

s s s s

 Solve the circuit shown in Figure 8.4 for driving point impedance.

Solution Applying KCL at nodes A and B,

  
1

( )
3 ( )(  )

2

A BV V
I s

s
sI

-
- =  (8.1)

  
( )

( )
22

A B BV V V
I s

s

s

-
= +  (8.2)

Replacing VB = 10I(s), and substituting Eq. (8.2) in Eq. (8.1):

  I1(s) = (3 + 5s + 1) I(s) = (5s + 4) I(s)

Now, applying KVL in outer loop:

  Vin = 5I1(s) + VA (8.3)

  Vin = 5I1(s) + VA(s) (8.4)

Using Eq. (8.1) to Eq. (8.4),

          

2
in

1

( ) 1

(

0 30

5 4)

27
d

V s s s
Z

I ss

+ +
= =

+

Example 8.2

Figure 8.3

Example 8.3

Figure 8.4
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8.3 
  ANALYSIS OF LADDER AND 

NON-LADDER NETWORKS

8.3.1 Analysis of Ladder Networks

A typical ladder network is shown in Figure 8.5 (a)

The circuit can be analysed in the following manner:

 (a) Evaluate current of right most shunt branch:

    IX = VXY4 = V2Y4

 (b) Find out current entering to successive node: (for 

the right most node it is equal to IX)

 (c) Find out voltage of successive node:

    VY = VX + Z2IX

 (d) Find out current of successive shunt branch and repeat step b, c and d up to left most terminals:

  IY = VYY3 and VZ = VY + Z1IY

 (e) Equate this voltage to the applied voltage of left most port terminal to solve unknown/transfer 

function: VZ = V1.

8.3.2 Analysis of Non-ladder Networks

Figure 8.5 (b) shows a non-ladder type of network.

Non-ladder networks are solved with using conventional 

KVL and KCL or any of circuit solving methods which 

suits the network for minimum complexity.

 For the network shown in Figure 8.6, determine voltage transfer function V2/V1.

Solution Here, VX = V2

fi 2

5X

V
I

s

=

fi 2
2 2 10 

5 10

Y
Y X X Y

V V
V V Z I V I

s

= + = + fi =

fi 

Ê ˆ Ê ˆ
Á ˜ Á ˜

= + = + + fi = + = + + + +Á ˜ Á ˜
Á ˜ Á ˜Ë ¯ Ë ¯

2 2 2
1 2 1 1 1 2 210  10 0.5 10 

5 5 510 10

Y Y
Y X Y

V V V V V
I I I V V V Z I V s V

s s s

University Question

1.  Write short notes on analysis of ladder 

network [RU, 2006]

Figure 8.5 (a)

Figure 8.5 (b)

Example 8.4

Figure 8.6
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fi 

Ê ˆÊ ˆ
Á ˜Á ˜

= + + + + +Á ˜Á ˜
Á ˜Á ˜Ë ¯Ë ¯

1 2

10 10 10
1  0.5 0.5 0.5 1

5 5 5
V V s s s

s s s

fi 2

2
1

1

( )

)

1

(

2 3

V

V s s s

s Ê ˆ= Á ˜+ +Ë ¯

 Find V2/V1, V2/I1 and I2/I1 for the network shown in Figure 8.7.(1 2 3 5 rl = 1 V1 = 37)

Solution Step 1: Assign mesh currents and apply KVL 

in each mesh

KVL in mesh-1: 3I1 + 2I2 – 5I3 = 37

KVL in mesh-2: 2I1 + 6I2 + 3I3 = 0

KVL in mesh-3: –5I1 + 3I2 + 9I3 = 0

Solving above three equations:

 I1 = –15 A, I2 = 11 A, I3 = –12 A 

Now, I2 = 1 × 11 = 11 V

 V2/V1 = 11/37, V2/I1 = –11/15 W, I2/I1 = –11/15

8.4  MINIMISE POWER TRANSFER

For a network (as a load or a receiver) connected to 

another network (operating as a source or transmitter), 

maximum power is transferred when impedances of 

both the network are matched.

If impedances are not matched, a matching network 

(as shown in Figure 8.8) is connected between source and load, so that the impedance between the source 

and the load is matched. A matching network may be varying or fixed depending upon the application.

In order to match the impedance, Z0 should be equal to the impedance of source.

 A typical matching network is shown in Figure 8.9.

1
 ,

10
L H

p

=  Load impedance at 100 Hz = 50 Ohm and 

load impedance at 100 Hz = j10 Ohm. Find the value of B at 

100 Hz for impedance matching.

Example 8.5

Figure 8.7

Figure 8.8

Example 8.6

Figure 8.9
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Solution For the given value of L, XL = 2pf L = 20 Ohm.

Step 1: Now,

fi  
0  

1
LZ jX Z

jB

Ê ˆ
= + Á ˜Ë ¯



fi  0

1
20 50 ||Z j

jB

Ê ˆ
= + Á ˜Ë ¯

fi  0

50
20

1
Z j

jB
= +

+

Step 2: Equate the total impedance to the source impedance for maximum power transfer-

  0 , here  10s sZ Z Z j= =

fi  
50

20 10
1

j j
jB

+ =
+

Solving this, B = –0.07j (–shown B is a capacitor)

8.5 
  POLES AND ZEROS OF NETWORK 

FUNCTIONS

A network function can be expressed in terms of two 

polynomials as:

1
1 1 0

1
1 1 0

( )
( )

( )

n n
n n

m m
m m

a s a s a s aZ s
T s

P s b s b s b s b

-
-

-
-

+ + + +
= =

+ + + +





Roots of Z(s) are known as zeros of the network function and roots of P(s) are known as poles of the 

network function. In the above expression, total number of poles will be m and total number of zeros 

will be n.

Since, a polynomial can be written in terms of its roots, the network function can be expressed in 

terms of their poles and zeros as:

  

1 0

1 0

( )( ) ( )( )
( )

( ) ( )( ) ( )

n n

m m

s z s z s zZ s
T s H

P s s p s p s p

-

-

- - -
= =

- - -




Since, z and p denotes complex frequencies only, poles and zeros are the frequencies at which network 

function is infinite and zero respectively.

8.5.1 Restriction of Pole, Zero for a Transfer Function

 1. The coefficients of the numerator and denominator polynomials are real and positive. 

University Question

1.  Explain poles and zeros of network 

function. Provide features of them.

 [GTU, 2016]
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 2. The poles and zeros of Y(s) have only negative real part (or zero), i.e., Y(s) does not have poles 

or zeros in the right half s-plane. 

 3. A driving point function does not have multiple poles or zeros on the imaginary axis and at 

origin. 

 4. The degrees of the numerator and denominator polynomials in Y(s) differ at the most by 1. 

Thus, the number of finite poles and finite zeros of Y(s) would differ at most by 1. 

 5. The terms of lowest degree in the numerator and denominator polynomials of Y(s) differ in 

degree at most by 1. So Y(s) does not have multiple number of poles or zeros at the origin. 

 6. No missing terms in numerator and denominator polynomials unless all even or all odd terms 

are missing.

8.5.2 Restriction of Pole, Zero for a Network Function

 1. The coefficients of the numerator and denominator polynomials are real but coefficients of the 

denominator polynomials are always positive.

 2. The poles have only negative real part (or zero), i.e., a transfer function does not have poles in 

the right half s-plane.

 3. A transfer function does not have multiple poles on the imaginary axis and at origin. 

 4. Numerator polynomial may have missing terms between highest and lowest degree.

 5. No missing terms in denominator polynomials unless all even or all odd terms are missing.

 For the network shown in Figure 8.10, find the driving point 

function and plot its pole-zero locations in s-plane.

Solution Step 1: Solve the series and parallel branches to 

find total impedance in Laplace transformed form

1 1
( ) 1 || 2 ||

2 2
Z s

s s

Ê ˆÊ ˆ= + Á ˜Á ˜Ë ¯Ë ¯

if Z1 is the impedance of right most paralleled connected R-L, then,

       

1

1
2

22
1 4 1

2
2

sZ
s

s

¥
= =

++

1

1 1 2
( ) 1 ( ) 1

2 2 4 1
Z s Z Z s

s s s

Ê ˆÊ ˆ= + = = +Á ˜ Á ˜Ë ¯ +Ë ¯
 

2

8 1
( ) 1

8 2

s
Z s

s s

+Ê ˆ= Á ˜+Ë ¯


Example 8.7

Figure 8.10
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2

2

2

8 1
1

8 2 8 1
( )

8 10 18 1
1  

8 2

s

s s s
Z s

s ss

s s

Ê ˆÊ ˆ+
¥Á ˜Á ˜+Ë ¯Ë ¯ +

= =
Ê ˆ + +Ê ˆ+

+Á ˜Á ˜+Ë ¯Ë ¯

Step 2: Find out location of pole and zero:

If 
+

= =
+2

8 1 ( )
( )

( )8 10

s Q s
Z s

P ss s

Then, roots of Q(s) are the zeros of Z(s), 
1

1
( ) 0 8 1 0

8
Q s s z= fi + = fi = -  and;

Roots of P(s) are the poles of Z(s),

 

2
1 2

10 68 10 68
( ) 0 8 10 1 0 0.11; 1.14

16 16 16 16
P s s s p p= fi + + = fi = - + = - = - - = -

Here zeros will be: 8s + 1 = 0 or s = –1/8

 For a parallel RLC circuit, find out the poles and zero for driving point impedance.

Solution For a parallel RLC circuit, admittances of each branch: 
1 1 1

, ,
1R C LY Y sC Y

R sL

sC

= = = =

Net admittance, Y = YR + YC + YL

  
1 1

Y sC
R sL

= + +

  
+ +

=
2

s LC sL
Y

R R

sLR

Impedance, 

  

= =
+ +2

1 sLR
Z

Y s LC sLR R

Poles; root of 
Ê ˆÊ ˆ+ + fi = - ± -ÁÁ ˜ ˜Ë ¯Ë ¯

2

2
1 2

1 1 1
,

2 2
s LCR sL R p p

RC RC LC

Zeros: root of sLR = 0 fi, z1 = 0.

Example 8.8
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8.6 
  TIME DOMAIN RESPONSE FROM 

POLE-ZERO BEHAVIOUR

From the location of poles and zeros in the s-plane, time 

response/behaviour of a system can be predicted. It is 

generally extracted by taking inverse Laplace of the transfer 

function.

Time response of a single pole (or 2 in case complex) 

system is given as:

 ( ) st
r t Ae

-=
(Response of multi-pole system can be found by superposition)

Here, s is the pole of system. 

Time response of a system is easily determined by the following two steps:

 1. Decompose the response using partial fraction. i.e.

1
1 1 0 1 0

1
1 01 1 0

( )
( )

( )

n n
n n mm

m m
m mm m

a s a s a s a AA AZ s
R s

P s s p s p s pb s b s b s b

-
- -

-
--

+ + + +
= = = + +

- - -+ + + +






 2. Take inverse Laplace of the decomposed function.

  

11 0

1 0

( )
mm

m m

AA A
r t L

s p s p s p

--

-

È ˘
= + +Í ˙

- - -Í ˙Î ˚


From the above expression, time response for different possible values of the pole is drawn in 

Figure 8.11. Also, location of pole is drawn in s-plan accordingly. For s = 0, response is constant with 

time. For a real value of s, response is exponential with time in nature.

Figure 8.11

It can be noted that if s is imaginary (Figure 8.12), 

transfer function (using Euler identity), 
 ( ) (cos sin )s t

r t Ae A st j st
-= = +  becomes sinusoi-

dal. The response is oscillatory in nature with con-

stant magnitude and frequency.

An increased value of s will result in increment in 

frequency of oscillation.

University Questions

1.  Write a short note on time domain 

behaviour of poles and zeros.  [PTU, 2009]

2.  Summarise significance of pole-zero 

location in s-plane. [GTU, 2016]

Figure 8.12
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Now, if s is imaginary with a real part (Figure 8.13), response become

 ( ) (cos sin )rs tst
i ir t Ae Ae s t j s t

--= = +
Here, sr and si are the real and imaginary parts of s respectively. 

This suggests that a complex s with real part will result in oscillations with time varying amplitude.

If real part is negative, oscillations get damped with time and if real part is positive, oscillations grow 

with time and the system is considered unstable. 

Figure 8.13

 A transform voltage is given by: V(s) = 3s/(s + 1)(s + 4). Plot the pole-zero in the s-plane and obtain 

the time-domain response.

Solution Given transfer function is:

 V(s) = 3s/(s + 1) (s + 4) 

Step 1: Find the pole, zero locations;

Poles are the roots of denominator i.e. –1 and –4 

Root of numerator (zero) of the T.F. is s = 0

Step 2: Apply partial fraction to extract time domain response (Figure 8.14):

fi  A/(S + 4) + B/(S + 1) = 3s/(s + 1) (s + 4)

Put S = –4, B(–3) = –4 fi B = 4/3 

Put S = –1, A(3) = –1 fi A = –1/3 

 \ V(s) = 3A/(S + 4) + B/(S + 1)

fi  

1 4

3 3( ) 3
4 1

V s
s s

È ˘-Í ˙
= +Í ˙

+ +Í ˙
Í ˙Î ˚

fi  1 4
( )

4 1
V s

s s

-
= +

+ +
Step 3: Take inverse Laplace:

fi      4( ) 4t t
V t e e

- -= - + V

Example 8.9

Figure 8.14
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 Find the response of a network if,

  

2 3 5
( )

( 1)( 2)

s s
H s

s s

+ +
=

+ +

And excitation is 3( )  t
x t e

-= .

Solution 

Step 1: Taking Laplace transform of excitation, 

  

1
( )

3
X s

s
=

+

Step 2: Find out Laplace of response C(s)

   C(s) = X(s) H(s)

  

+ +
=

+ + +

21 3 5
( )

( 3) ( 1)( 2)

s s
C s

s s s

  

2 3 5
( )

( 3)( 1)( 2)

s s
C s

s s s

+ +
=

+ + +

Step 3: Partial fraction:

  

( )
( 1) ( 2) ( 3)

A B C
C s

s s s
= + +

+ + +

Solving it for A, B and C results:

  

1.5 3 2.5
( )  

( 1) ( 2) ( 3)
C s

s s s
= - +

+ + +

Step 4: Taking inverse Laplace:
- - -= - +2 3( ) 1.5 3 2.5t t t

C t e e e  as Laplace of unit impulse is 1., where X = A + B and Y = A–B

8.7  GRAPHICAL METHOD FOR DETERMINATION OF RESIDUE

As discussed, transfer function of a system is given as:

  

1
1 1 0

1
1 1 0

( )
( )

( )

n n
n n

n n
n n

a s a s a s aZ s
T s

P S b s b s b s b

-
-

-
-

+ + + +
= =

+ + + +





Which further had been re-written as:

  

1 0

1 0

( )( ) ( )( )
( )

( ) ( )( ) ( )

n n

m m

s z s z s zZ s
T s H

P S s p s p s p

-

-

- - -
= =

- - -




Example 8.10
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To determine the time response using superposition, this expression can be decoded as:

  1 0

1 0

( ) m m

m m

K K K
T s

s p s p s p

-

-

= + + +
- - -

  (8.5)

Coefficients Km, Km–1..., K0 are known as residues.

From the partial fraction,

  1 0

1 2 0

( )( ) ( )
( ) ( )|

( )( ) ( )m

m n m n m
m m s p

m m m m m

p z p z p z
K s p T s H

p p p p p p

-
=

- -

- - -
= - =

- - -



 (8.6)

It can be observed here that numerator is the multiplication of all displacement phasors between pm 

and zeros (of s-plane). And, denominator is the multiplication of all displacement phasors between pm 

and rest of poles.

  

1 

1 

(  )

( ),

kn

i kk
i km

i kk

p z
K

p p k i

=

=

-
=

- π

’
’

Drawing all the poles and zeros in s-plane and finding out these phasors will yield desired residue 

with the help of Eq. 8.6.

Steps:

 ∑ Draw the location of all poles and zero in s-plane.

 ∑ Select a pole, corresponding to which residue is desired to find.

 ∑ Join the selected pole to all poles and zeros.

 ∑ Find out angles and distances for all joined segments and convert them in polar form.

 ∑ Put these phasors in Eq. 8.5 and calculate the residue.

 Transform current I(s) of a network is given by:

  

2
( )

( 1)( 2)

s
I s

s s
=

+ +

Determine residues using graphical method and determine time-response.

Solution Step 1: Determine pole and zero locations:

Poles are at s = –1, –2

Only one zero at s = 0.

Step 2: Write T.F. in form of residues:

  

( )  
( 1) ( 2)

A B
I s

s s
= +

+ +

Step 3: Evaluate residue corresponding to pole s = –1 i.e. A:

  

180

0

2 1
2

1

j

j

e
A

e

¥
= = -

Example 8.11
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Step 4: Evaluate residue corresponding to pole s = –2 i.e. B:

  

180

0

2 2
4

1

j

j

e
B

e

¥
= =

  

2 4
( )  

( 1) ( 2)
I s

s s

-
= +

+ +

Step 5: Taking inverse Laplace:

 2( ) 2 4 t t
I t e e

- -= - +  
- - - ¥ - - ¥ - -

=
- - - ¥ - - -

( 6 ( 4)) ( 6 2) ( 6 0)

( 6 ( 3) ( 6 ( 1))
A

P O I N T S  T O  R E M E M B E R

  Network functions are defined in s-domain only.

  Transfer function is unit impulse response of the system.

  Driving point functions are input impedances or input admittances seen into the port.

  Power transfer is maximum, when load impedance = source impedance.*

  Poles of a T.F. are the frequencies at which, its value is infinite.

  Zeros of a T.F. are the frequencies at which, its value is zero.

  Complex conjugate of a pole/zero is also pole/zero. 

  A system with one or more positive pole is unstable.

  Pattern of response is governed by the pole(s).

  An imaginary pole reflects oscillatory response.

PRACTICE PROBLEMS

 1. Differential equation of a system is 

described as: = + +
2

2
( ) 4 5 3 ,

d y dy
t t

dtdt
 find 

out its transfer function.

 2. If voltage transfer function for the circuit 

shown in Figure 8.15 is expressed as:

   

0 50(
 
( 2) )) 4

)

( (i

v

v s

s

s s
=

+ +

Figure 8.15

  Find the value of L and DC gain K (take 

both R =100 Ohm).

Figure 8.16

 3. Find the transfer function I3/V1 for the 

ladder network shown in Figure 8.17. 
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Figure 8.17

 4. Find out voltage transfer function for the 

network shown in Figure 8.18.

Figure 8.18

 5. For the network shown in Figure 8.19, if 

R = 10 ohm, L = 0.2 H, find the value of 

C for which poles of the shown transfer 

function are real and coincident.

Figure 8.19

 6. Pole zero location of a network function is 

shown in Figure 8.20. If T (0) = 5. Find the 

transfer function.

Figure 8.20

 7. Driving point impedance of a single port 

network is given as 
1

( )
( 1)( 4)

s
Z s

s s

+
=

+ +
, 

if the circuit is excited by a unit impulse 

signal; find the expression for its current.

 8. Network function defined as 

2

2
( )

5 6

s
T s

s s
=

+ +
 is excited with unit 

step voltage, determine the time response 

and comment on system’s stability.

 9. A system with transfer function 

= + +2
( ) 50/( 8 25)T s s s  is excited 

with unit impulse voltage. Is response 

oscillatory? If yes, then find frequency of 

oscillation in Hz.

 10. Time domain response of a transfer 

function is described as: Ae
–6t + Be

–3t + Ce
–t, 

if DC gain is 1, and location of poles and 

zeros are p = –6, –3, –1 and z = – 4, 2, 

0. Evaluate A, B and C using method of 

residue. (A, B ,C are constants here) 

MULTIPLE CHOICE QUESTIONS

 1. Pole of the driving point impedance of a capacitor C is located at:

 (a) zero (b) infinity (c) 1/C (d) C

 2. Pole of the driving point impedance of a series R-L circuit is located at:

 (a) s = –L/R (b) s = –R/L (c) s = L/R (d) s = –RL

 3. Unit impulse response of a system is given as y(t) = e–5t. Its transfer function will be:

 (a) 1/(s – 5) (b) 1/(s + 5) (c) 1/5s (d) 5s + 1

 4. A system with poles at s = –5 and s = –3 will show time response as:

 (a) y(t) = Ae
–5t + Be

–3t (b) y(t) = Ae
5t + Be

3t (c) y(t) = Ae
–5t

e
–3t (d) y(t) = Ae

–2t
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 5. Which one of following can be a transfer function:

 (I) 
2

8 1

8 10

s

s s

+

+
 (II) 

3 2

1

8 10 1s s s+ + +

 (III) 
2

3 5

( 1)( 2)

s s

s s

+ +
- +

 (IV) 
1

( 1)( 2)s s- +

 (a) I only (b) II, IV (c) II, I (d) IV only

 6. Two networks with poles at s = –4, –2 and s = –3, –1 are cascaded, poles of the cascaded network will 

be:

 (a) s = –7, –3 (b) s = –3.5, –1.5

 (c) s = –4, –2, –3, –1  (d) s = –3.5, –1.5, –0.5, –0.5

 7. Time response of series RLC circuit initially excited with an impulse voltage will be:

 (a) exponentially decaying with or without oscillations

 (b) exponentially growing with or without oscillations

 (c) oscillatory always

 (d) exponential always

 8. Transfer function of a RC circuit, Vc(s)/Vin(s) is given by

 (a) sC/(R + sC) (b) 1/(sCR + 1) (c) 1/(sC + R) (d) sC/(sC + R)

 9. DC gain of transfer function 
20

( 1)( 4)s s+ +
 is

 (a) 20 (b) 10 (c) –20 (d) 5

 10. A pole is moved in parallel with imaginary axis, it will

 (a) not affect the system (b) decrease frequency of oscillation

 (c) increase frequency of oscillation (d) increase the amplitude of response

ANSwerS to Multiple ChoiCe QueStioNS

 1. (a) 2. (a) 3. (b) 4. (a) 5. (d)

 6. (c) 7. (a) 8. (b) 9. (d) 10. (c)





  

9.1  INTRODUCTION

A port is defined as any pair of terminals into which energy 

is supplied or from which energy is withdrawn or where the 

network variables may be measured. A linear time invariant two-

port network is a linear network which has two pairs of terminals 

and the current entering one terminal of a pair exits the other 

terminal in the pair and which has no independent sources. A 

two port network is as shown in Figure 9.1.

Input port and its variables are represented by 1 whereas output port and its variables are represented 

by 2. There are four variables in a two-port network namely V1, I1, and V2, I2. Only two of these variables 

are independent. The parameters of a two-port network represent the behaviour of network in terms of 

voltage and current at each port. Hence it is essential to study these parameters to be able to apply two 

port networks in applications such as transistors, op-amps, and transmission lines.

9.2
   OPEN-CIRCUIT IMPEDANCE (Z) 

PARAMETERS

These are also called Z parameters of a two port network and 

are obtained when the voltages at two ports are expressed in 

terms of currents at two ports. So, V1, and V2 are dependent 

variables whereas I, and, I2 are independent variables. 

Figure 9.1

University Question

1.  Explain the short-circuit admittance and 

the open-circuit impedance parameters for 

a two port network. [GTU, 2011]
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  Open-circuit impedance parameters (Z)

  Short-circuit admittance parameters (Y)

  Transmission parameters (ABCD)

  Inverse transmission parameters (A¢B¢C¢D¢)
  Hybrid parameters (h)

  Inverse hybrid parameters (g)

  Relationship between parameters

  Interconnection of two port networks

  Terminated two port

  Image parameters

  Attenuation and phase shift in symmetrical T 

and p networks.

Chapter Outline
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The equations are  1 11 1 12 2V Z I Z I= + ;  2 21 1 22 2V Z I Z I= +

The individual parameters are given by

  

2 1

1 1
11 12

1 20 0

 

I I

V V
Z Z

I I
= =

= =

2 1

2 2
21 22

1 20 0

 

I I

V V
Z Z

I I
= =

= =

Z11 is called the open-circuit input impedance, Z21 is called 

open-circuit forward transfer impedance, Z12 is called open-

circuit reverse transfer impedance and Z22 is called the open 

circuit output impedance.

The equivalent circuit of a two port network in terms of Z 

parameters is as shown in Figure 9.2.

The network is said to be reciprocal if Z21 = Z12 and 

symmetrical if Z11 = Z22.

 Find the Z parameters of the circuit shown in Figure 9.3.

Solution Step 1: To find Z11and Z21, the output terminals are open 

circuited and a voltage source is connected to the input terminal as 

shown in Figure 9.4(a).

Writing KVL for the closed loop, 12I1 + 6I1 = V1 or V1 = 18I1

Hence Z11 = 1

1

V

I
 = 18 W

Applying KVL to the other loop, –V2 + 3 × 0 + 6I1 = 0 or 

V2 = 6I1

Hence Z21 = 2

1

V

I
 = 6 W

Step 2: To find Z12 and Z22, the input terminals are open circuited and a voltage source is connected 

to the output terminal as shown in Figure 9.4(b).

Writing KVL for the closed loop, 3I2 + 6I2 = V2 or V2 = 9I2

Hence Z22 = 2

2

V

I
 = 9 W

Applying KVL to the other loop, V1 = 12 × 0 + 6I2 or V2 = 6I2

Hence  Z12 = 1

2

V

I
 = 6 W

Figure 9.2

Example 9.1

+

–

+

–

V1 V2

I1 I212 W

6 W

3 W

Figure 9.3

Figure 9.4 (a)

+

–

V1 V26 W

+

–

12 W 3 W I2I1 = 0

+
–

Figure 9.4 (b)

Note: Difficulty Level    — Easy;  — Medium;  — Difficult
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 Find the Z parameters for the network as shown in Figure 9.5.

[RTU, 2011]

Solution To find Z11 and Z21, as shown in Figure 9.6 (a) the output 

terminals are open circuited. The equivalent circuit is

 Zeq = 1 + 
¥
+

2  6

2 6
 = 2.5 W 

 V1 = I1Zeq = I1 × 2.5 fi  Z11 = 1

1

2.5 
V

I
= W

Applying current division, Ix = I1 × 
2 

2 6+
 = 1

4

I

 V2 = Ix × 4 fi V2 = 1

4

I
 × 4 fi Z21 = 2

1

V

I
 = 1 W

To find Z12 and Z22, the input terminals are open circuited. The equivalent circuit is as shown in 

Figure 9.6 (b).

 Zeq = 
¥
+

4 4

4 4
 = 2 W 

 V2 = I2Zeq = I2 × 2 fi  Z22 = = W2

2

2
V

I

Applying current division, Ix = I2 × 
4 

4 4+
 = 2

2

I

 V1 = Ix × 2 fi V1 = 2

2

I
 × 2 fi Z12 = 1

2

V

I
 = 1 W

9.3
   SHORT-CIRCUIT ADMITTANCE (y) 

PARAMETERS

These are also called Y parameters of a two port network 

and are obtained when the currents at two ports are 

expressed in terms of voltages at two ports. So, V1, and V2 

are independent variables whereas I, and, I2 are dependent 

variables. The equations are 

  
1 11 1 12 2I Y V Y V= + ;   

2 21 1 22 2I Y V Y V= +

Example 9.2

V1 V2

I2I1

1 W 2 W

4 W2 W

Figure 9.5

Figure 9.6 (a)

V1 V2 eqz‹

I2I1

1 W 2 W

4 W2 W

Is

I1 = 0 (2)

Figure 9.6 (b)

University Question

1.  Obtain the reciprocity and symmetry 

conditions for Z and Y parameters. 

 [PU, 2012]
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The individual parameters are given by

  2 1

1 1
11 12

1 20 0

 

V V

I I
Y Y

V V
= =

= =

2 1

2 2
21 22

1 20 0V V

I I
Y Y

V V
= =

= =

Y11 is called the short-circuit input admittance, Y21 is called 

short-circuit forward transfer admittance, Y12 is called short-

circuit reverse transfer admittance and Y22 is called the short-

circuit output admittance.

The equivalent circuit of a two port network in terms of Y 

parameters is as shown in Figure 9.7.

The network is said to be reciprocal if Y21 = Y12 and symmetrical if Y11 = Y22

 Determine the admittance parameters of the T network shown in 

Figure 9.8.

Solution Step 1: To find Y11 and Y21, the output terminals are 

short circuited and a current source is connected to the input 

terminal as shown in Figure 9.9 (a).

  

1 1
1 2  2 5

4
2 2

V V
I = =

¥
+

+

2

1
11

1 0

1
S

5
V

I
Y

V
=

= =

Using current division rule, 1 1 1
2 2

 2 1
 

2 2 2 2 5

I I V
I I

È ˘- = = fi - = Í+ Î

¥
˙̊

Hence,  

2

2
21

1 0

1 
S

10
V

I
Y

V
=

-
= =

Step 2: To find Y12 and Y22, the input terminals are short circuited 

and a current source is connected to the output terminal. as 

shown in Figure 9.9 (b)

 
1

2 2 2
2 22

2 0

3 3
S

4 2 10 10
2

4 2
V

V V I
I Y

V
=

= = fi = =
¥

+
+

Figure 9.7

Example 9.3

+

–

+

–

V1 V2

I1 I24 W

2 W

2 W

Figure 9.8

Figure 9.9 (a)

V1 = 0 V2 I2

4 W 2 W

4 W

2 W

I1 I2

+

–

Figure 9.9 (b)
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Using current division rule

 
2 2 2

1 1

 2 31

2 4 3 3 10

I I V
I I

È ˘
- = = fi - = Í+ Î

¥
fi˙

˚
=

-
= =

1

1
12

2 0

1 
S

10
V

I
Y

V

 Find Y parameters for the network shown in Figure 9.10. 

             [RTU, 2011]

Solution When V2 = 0, the equivalent circuit for the 

given network in Figure 9.11 (a) is

 Zeq = 1 + 
2 2

2 2

¥
+

 = 2 W

V1 = I1Zeq = 2I1; 

2

1 1
11

1 10

0.5 S
2

V

I I
Y

V I
=

= = =

Using current division rule

    
1 1 1 1

2 2

2 1

2 2 2 2 2 4

I I V V
I I

È ˘
- = = fi - = =Í ˙+ ˚

¥

Î

Hence,      

2

2
21

1 0

0.25 S

V

I
Y

V
=

= = -

When V1 = 0, the equivalent circuit for the given network in Figure 9.11 (b) is

 Zeq = 1.6 W 

 V2 = I2 Zeq = I2 × 1.6 

1

2
22

2 0

0.625 S 

V

I
Y

V
=

fi = =

Using current division rule

2 2 2 2
1 2 1

 2 5 52
But

5 8 5 8 4

I V V V
I I I- = = fi - = ¥ =

¥

Hence, 

1

1
12

2 0

 0.25 S

V

I
Y

V
=

= = -

Example 9.4

Figure 9.10

1 W 2 W

2 W

I1 I2

V1 V2 = 0

(1)

Figure 9.11 (a)

1 W 2 W

4 W2 W V2 eqz‹

I1 I2

Figure 9.11 (b)



9.6  Circuits and Networks

9.4  TRANSMISSION PARAMETERS (ABCD)

These are also called ABCD parameters of a two-port 

network and are obtained when the voltage and current at 

the input port or the sending end are expressed in terms of 

voltage and current at the output port or receiving end. The equations are:

1 2 2V AV BI= - ;  
1 2 2I CV DI= -

The negative sign is for I2 and not for parameters, because the current is considered to be leaving the 

network.

The individual parameters are given as

 

2 2

1 1

2 20 0
 

I V

V V
A B

V I
= =

= =
-

2 2

1 1

2 20 0I V

I I
C D

V I
= =

= =
-

A is called open circuit reverse voltage gain, B is called the short circuit transfer impedance, C is 

called the open circuit transfer admittance and D is called the short circuit reverse current gain.

The two port network is said to be reciprocal if AD – BC = 1 and symmetrical if A = D.

 Find the transmission parameters for the circuit shown in 

Figure 9.12.           [PU, 2010]

Solution When the output port b–b¢ is open i.e. I2 = 0

 V1 = 6 I1 and V2 = 5 I1 = 1

5

6
V

we get 

2

1

2 0

6

5
I

V
A

V
=

= =  and 

2

1

2 0

1
S

5
I

I
C

V
=

= =

When the output port b–b¢  is shorted, i.e., V2 = 0

In the circuit 1 1

10
1

7
V I

Ê ˆ= +Á ˜Ë ¯ and 2 1

5

7
I I=

So  –B = 

2

1

2 0

17

 5
V

V

I
=

= W
-

  –

2

1

2 0V

I
D

I
=

=
-

 = 1

1

 7

5 5

7

I

I

- -
=

Ê ˆ
Á ˜Ë ¯

           D = 
7

5

University Question

1.  Define ABCD parameters for a two-port 

network.  [RGTU, 2014]

Example 9.5

1 W 2 W

5 W

I1 I2

V1 V2

+

–

+

–

a

a¢

b

b¢

Figure 9.12
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 Obtain ABCD parameters for the network shown in 

Figure 9.13.

Solution Applying KVL to the three meshes shown in 

Figure 9.14.

we get the following equations

  
1 1 1 3 1 32( ) 3 2V I I I I I= + - = -

2 2 3 2 32( ) 2 2V I I I I= + = +

1 3 2 3 1 23 3

2 2
2( )  2( ) 0  

5 5
I I I I I I I I- + + + = fi = -

Substituting and eliminating I3 we get

  
1 1 2

11 4

5 5
V I I= +

1 2 2

5 3

4 2
I V I= -

Substituting we get 

  
1 2 2

11 5

4 2
V V I= -

Comparing with the standard ABCD equations

 V1 = AV2 – BI2

 I1 = CV2 – DI2 

we get A = 
11

4
, B = 

5

2
, C = 

5

4
 and D = 

3

2

9.5  INVERSE TRANSMISSION PARAMETERS (A¢B¢C¢D¢)

These are dual of transmission parameters. These are also called A¢B¢C¢D¢ parameters of a two-port 

network and are obtained when the voltage and current at the output port or the receiving end are 

expressed in terms of voltage and current at the input port or sending end. The equations are 

2 1 1  V A V B I= -¢ ¢ ; 2 1 1I C V D I= -¢ ¢

The negative sign is for I2 and not for parameters, because the current is considered to be leaving the 

network.

The individual parameters are given as

 

1 1

2 2

1 10 0I V

V V
A B

V I
= =

-
= =¢ ¢

1 1

2 2

1 10 0I V

I I
C D

V I
= =

-
= =¢ ¢

Example 9.6

1 W 1 W

2 W2 W

I1 I2

V1 V2

+

–

+

–

Figure 9.13

Figure 9.14
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A¢ is called open circuit forward voltage gain, B¢ is called the short circuit forward transfer impedance, 

C¢ is called the open circuit forward transfer admittance and D¢ is called the short circuit forward current 

gain.

The two port network is said to be reciprocal if A¢D¢ – B¢C¢ = 1 and symmetrical if A¢ = D¢.

 Find the inverse transmission parameters shown in Figure 9.15.

Solution To find the parameters A¢ and C¢, open the input port 

and connect a voltage source V2 at the output port 

(Figure 9.16 (a)).

2 2 2

1 3 3
 

1 3 4
V I I

Ê ˆ¥
= =Á ˜+Ë ¯

  and 
1 2 2

4
1

3
V I V= ¥ =

1 1

2 2

1 10 0

3
and 1 S

4
I I

V I
A C

V V
= =

= = = =¢ ¢

To find the parameters B¢ and D¢, short the input port and 

connect a voltage source V2 at the output port (Figure 9.16 (b)).

2 2 2 2 2

1 2 2 3

1 2 3 2
V I I I V

Ê ˆ¥
= = fi =Á ˜+Ë ¯

2 2
1 2 2

1 1 3

1 2 3 3 2 2

I V
I I V

È ˘= = = =Í ˙+ Î ˚
¥

1 1

2 2

1 10 0

3 and 2 

V V

I V
D B

I I
= =

- -
= = = = W¢ ¢

 Obtain the A¢B¢C¢D¢ parameters for the shown network as 

shown in Figure 9.17.

Solution From the Figure 9.18 (a)

   2 2

8
 
5

V I=

Current in 5 W = 
2

2

2 3 5
I ¥

+ +

Example 9.7
2 W

1 W1 W

Figure 9.15

2 W

1 W1 WV1 V2

Figure 9.16 (a)

2 W

1 W1 WV1 V2

Figure 9.16 (b)

Example 9.8
2 W 3 W

5 WV1 2 W

Figure 9.17
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1 2 2

5 2

10
V I I

¥
= =

1 1

2 2

1 10 0

8
and 1 S

5
I I

V I
A C

V V
= =

= = = =¢ ¢

To find the parameters B¢ and D¢, short the input port 

and connect a voltage source V2 at the output port 

(Figure 9.18 (b)).

 
2 2

62

45
V I=

Current in 3 W = 2

2

10
2 3

7

I

+ +
¥

1 2 2

2 5 2

10 2 5 9
2 3

7

I I I= ¥ =
++

¥
+

1 1

2 2

1 10 0

9 31
and  

2 5
V V

I V
D B

I I
= =

- -
= = = = W¢ ¢

9.6  HyBRID PARAMETERS (h)

This parameter representation is a mixture of some 

parameters obtained by open circuiting the input port and 

some parameters obtained by short circuiting the output port. 

Hence, they are called hybrid parameters or h parameters. 

In this, the voltage of the input port and the current of the output port are expressed in terms of the 

current of the input port and the voltage of the output port.

The equations are 

 V1 = h11I1 + h12V2

 I2 = h21I1 + h22V2

The individual parameters are given as

 2 1

1 1
11 12

1 20 0V I

V V
h h

I V
= =

= =

2 1

2 2
21 22

1 20 0V I

I I
h h

I V
= =

= =

2 W 3 W

2 W5 W

I1 = 0 I2
+

–

+

–

a

a¢

b

b¢

(1) I3 (2)

V1 V2

Figure 9.18 (a)

2 W 3 W

2 W5 W

I1 I2
+

–

+

–

a

a¢

b

b¢

(1) I3 (2)

V2

Figure 9.18 (b)

University Question

1.  Explain hybrid parameters for two-port 

networks and state where one makes use 

of these parameters. [GTU, 2010]

Figure 9.19
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h11 is called the short-circuit input impedance, h21 is called short-circuit forward current gain, h12 is 

called open-circuit reverse voltage gain and h22 is called the open-circuit output admittance.

The equivalent circuit of a two-port network in terms of h parameters is as shown in Figure 9.19.

The network is said to be reciprocal if h21 = h12 and symmetrical if h11h12 – h21h12 = 1.

 Find the hybrid parameters for the two-port network shown in 

Figure 9.20.

Solution To find h11 and h21, short-circuit the output port 

and connect a current source I1 to the input port as shown in 

Figure 9.21 (a).

  
1 1 1

8 4
2 4.67

8 4
V I I

È ˘¥
= + = ¥Í ˙+Î ˚

=

= = W
2

1
11

1 0

4.67

V

V
h

I

Applying current division

  2 1 1

8 2
 

8 4 3
I I I- = ¥ =

+

2

2
21

1 0

 2

3
V

I
h

I
=

-
= =

To obtain h12 and h22, open-circuit the input port and connect a voltage source V2 to the output port 

as shown in Figure 9.21 (b).

Applying voltage division

1

1
1 2 2 12

2 0

8 2 2

8 4 3 3
I

V
V V V h

V
=

= ¥ = fi = =
+

1

2
2 2 2 22

2 0

1
(8 4) 12 S

12
I

I
V I I h

V
=

= =fi= + =

 Find the h parameters of the network shown in Figure 9.22.

Solution Applying KVL in the three meshes

       
1 1 1 32( )V I I I= + -

3 3 2 3 10 2 4( ) 2( )I I I I I= + + + -

 V2 = 4(I2 + I3)

Example 9.9

V2

2 W 4 W

8 WV1

++

––

I1 I2

Figure 9.20

2 W 4 W

8 WV1

I1 I2

V2 = 0

Figure 9.21 (a)

Figure 9.21 (b)

Example 9.10

Figure 9.22
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To find h11 and h21, short-circuit the output port i.e. V2 = 0

So –I2 = I3 and 2I2 = – I1

 V1 = 3I1 – 2I3 = 2I1

  

2

1
11

1 0

2

V

V
h

I
=

= = W

Also  

2

2
21

1 0

1 

2
V

I
h

I
=

-
= =

To obtain h12 and h22, open-circuit the input port i.e. I1 = 0

  

1

1 3 3 31
12

2 2 3 2 3 3 30

3 2 2 2 1

4(  ) 4( ) 4( 2 ) 2
I

I I I IV
h

V I I I I I I
=

- - -
= = = = =

+ + - +

        4I2 + 8I3 = 0

            I2 = –2I3

          

1

2
22

2 0

1
S

2
I

I
h

V
=

= =

 Find the h-parameters of the network shown in Figure 9.23.

Solution To find h11 and h21, short-circuit the output port i.e. 

V2 = 0 as shown in Figure 9.24 (a)

By applying KCL, 
1 1

0
2 0

1 1 /

x xV V
I I

s

-
- + + + =

1 (1 ) 0xI S V+ + =

and      1 2 1 2 
1

x
x

V
I I I I V= - fi + =

Substituting this, we get 

2

2
1 1 2 21

1 0

2
(1 )( ) 0

1
V

I s
I S I I h

I s
=

+
+ + + = fi = =

+

1
1 1 1 2 1 1 2 1 1

2
( ) 2 2

1 1

xV V s
I V I I V I I I I

s

- +
= = - + fi = + = -

+

2

1
11

1  0

2
 2

1
V

V s
h

I s
=

+
= = -

+

Example 9.11

Figure 9.23

Figure 9.24 (a)



9.12  Circuits and Networks

To obtain h12 and h22, open-circuit the input port i.e. I1 = 0 as shown in Figure 9.24 (b)

  
1

2 2
2 22

2 0

  
1 1

1 I

V I s
I h

V s

s
=

= fi = =
++

1

2 1
1 2 12

2 0

1 
1 1

1 I

V V s
V I h

V s

s
=

= ¥ = fi = =
++

 Find the input impedance of the network shown in Figure 9.25.

Solution The equations are 

  
1 11 1 12 2 V h I h V= +

2 21 1 22 2I h I h V= +

But  2 2L L LV I Z I Z= = -

where, ZL = 75 kW
Substituting the value of V2

  

21 1
2 21 1 22 2 2

221
L

L

h I
I h I h I Z I

Z h
fi= - =

+

21 1
2

221  

L

L

Z h I
V

Z h

-
=

+

Substituting 

  21 1
1 11 1 12

221

L

L

Z h I
V h I h

Z h
= -

+

3 5
31 21

in 11 12 3 6
1 22

75 10 10  200
3 10

1 1 75  10 10

L

L

V Z h
Z h h

I Z h

-

-

¥ ¥ ¥
= = - = ¥ -

+ + ¥ ¥

in 2.86 kZ = W

9.7  INVERSE HyBRID PARAMETERS (g)

This parameter representation is dual of hybrid parameters. These are called g parameters. In this the 

current of the input port and the voltage of the output port are expressed in terms of the voltage of the 

input port and the current of the output port.

1 W
V1 V2

I1 = 0

1

S

+

–

+

–

Figure 9.24 (b)

Example 9.12

Figure 9.25
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The equations are 

  
1 11 1 12 2I g V g I= + ;  2 21 1 22 2V g V g I= +

The individual parameters are given as

  

2 1

1 1
11 12

1 20 0I V

I I
g g

V I
= =

= =

2 1

2 2
21 22

1 20 0I V

V V
g g

V I
= =

= =

g11 is called the open-circuit input admittance, g21 

is called open circuit voltage gain, g12 is called short-

circuit reverse current gain and g22 is called the short-

circuit output impedance.

The equivalent circuit of a two port network in terms 

of g parameters is as shown in Figure 9.26.

The network is said to be reciprocal if g12 = –g21 and symmetrical if g11g22 – g21g12 = 1.

 Determine the g parameters of the network shown in Figure 9.27.

Solution To find g11 and g21, open-circuit the output port i.e. 

I2 = 0

   =

È ˘¥
= + = = =Í ˙

˚
fi

+Î
2

1
1 1 1 11

1 0

1   6 34 7
4 S

1 6 7 34
I

I
V I I g

V

Applying current division the current in 2 W = 1
1

1

1 4 2 7

I
I ¥ =

+ +

 V2 = 2 × 

2

1 2
21

1 0

2 / 7 1

7 34 / 7 17
I

I V
g

V
=

fi = = =

To obtain g12 and g22, short-circuit the input port i.e. V1 = 0

      
1

2
2 2 2 22

2 0

1 4
4 2

1 4 24 24

17 171 4
4  2

1 4
V

V
V I I g

I
=

È ˘¥
+ ¥Í ˙+Î ˚= = = = W

È ˘¥
+ +Í ˙+Î

fi

˚

1

1
1 2 2 12

2 0

2 1 1 1

4 1 4 17 17
2 4

5
V

I
I I I g

I
=

Ê ˆ
-Á ˜

- = ¥ ¥ = = =Á ˜ +Á ˜+ +
¥

Ë ¯

Figure 9.26

Example 9.13

Figure 9.27
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 Determine the g parameters of the network shown in Figure 9.28.

Solution To find g11 and g21, open-circuit the output 

port i.e. I2 = 0. Let the currents be shown as in 

Figure 9.29 (a).

Applying KVL

  1 1 1 1 12 2( ) 0 4 2a aI I I V I I V- - - + = fi - =

1
1 14 2 2( ) 0

2
a a a

I
I I I I I- - + - = fi = -

Substituting, we get

 5I1 = V1 

2

1
11

1 0

1
S

5
I

I
g

V
=

fi = =

2

1 2
2 1 21

1 0

1
2

5 5
a

I

V V
V I I g

V
=

= = - = - fi = = -

To obtain g12 and g22, short-circuit the input port 

i.e. V1 = 0. Let the currents be as shown in 

Figure 9.29 (b).

Applying KVL

 

- - + - + =

fi + - =
2 1 2 2

1 2 2

2 2( ) 0

2 4 2

b

b

I I I I V

I I I V

1 12 2 0b bI I I I- - = fi = -

1 1 2 1 24 2( ) 2 0 6 2 4 0b b bI I I I I I I I- - + - + = fi - - + =

Substituting Ib in equations and solving we get

  1 2 

1

5
I I= -

1

1
12

2 0

1

5
V

I
g

I
=

-
= =

Also  
1 2 2 2 2 2 2 2

4 16
4 4   4

5 5
I I V I I V I Vfi fi+ = - + = =

1

2
22

2 0

16

5
V

V
g

I
=

= = W

Example 9.14
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Figure 9.28
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Figure 9.29 (a)

Figure 9.29 (b)
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9.8  RELATIONSHIP BETWEEN PARAMETERS

To make analysis of a two port network easier, any set of 

parameters can be expressed in any other set of parameters 

by appropriate algebraic manipulations and comparison of 

standard equations with the equations written. The summary 

of relationships between various parameters is given in 

Table 9.1.

Table 9.1 Interrelationship between two port parameters.

Z Y h ABCD g A¢B¢C¢D¢

Z
11 12

21 22

Z Z

Z Z

È ˘
Í ˙
Î ˚

22 12

21 11

Y Y

Y Y

Y Y

Y Y

-È ˘
Í ˙D DÍ ˙

- -Í ˙
Í ˙D DÎ ˚

12

33 33

21

33 33

1

hh

h h

h

h h

DÈ ˘
Í ˙
Í ˙
Í ˙
-Í ˙

Í ˙Î ˚

1

A T

C C

D

C C

DÈ ˘
Í ˙
Í ˙
Í ˙
Í ˙Î ˚
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11 11
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11 11

1 g

g g

g g

g g

-È ˘
Í ˙
Í ˙
Í ˙D
Í ˙
Î ˚

1D

C C

T A

C C

¢È ˘
Í ˙¢ ¢Í ˙

D ¢ ¢Í ˙
Í ˙¢ ¢Î ˚

Y

22 12

21 11

Z Z

Z Z

Z Z

Z Z

-È ˘
Í ˙D DÍ ˙
Í ˙
Í ˙D DÎ ˚

11 12

21 22

Y Y

Y Y

È ˘
Í ˙
Î ˚
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11 11
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11 11

1 h

h h

h h

h h
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Í ˙
Í ˙
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Í ˙
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B B
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University Questions

1.  Explain ABCD parameters in terms of Y 

parameters. [PTU, 2011-12]

2.  Derive transmission parameters in terms of 

hybrid parameters. [PTU, 2011-12]

3.  Obtain hybrid parameters in terms of 

admittance parameters. [PU, 2010]
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where D = - D = -11 22 12 21 11 22 12 21Z Z Z Z Z Y Y Y Y Y

D = - D = - D = - D = -¢ ¢ ¢ ¢ ¢11 22 12 21 11 22 12 21; ; ;h h h h h g g g g g T AD BC T A D B C

The Z-parameters of a two-port network are Z11 = 10 W, Z22 = 20 W, Z12 = Z21 = 5 W. Find the ABCD-

parameters of this two-port network. 

Solution

 A = 11

21

Z

Z
 B = 11 22 12 21

21

Z Z Z Z

Z

-
 C = 

21

1

Z
 D = 22

21

Z

Z

 A = 
10

2 
5

=  B = 
10 20 5 5

35 
5

¥ - ¥
= W  C = 

1
0.2 S

5
=  D = 

20
4

5
=

Find the Y-parameters of the circuit shown in Figure 9.30. Then find the ABCD parameters.

2 WV1 V22 W

4 kW

+

–

+

–

I1 I21

1¢

2

2¢

Figure 9.30

Solution When V2 = 0, the equivalent circuit for the given network is as shown in Figure 9.31 (a).

  
3

1 1 2(4 10 )V I I= ¥ +

By current divider

3

2 1 13 3

4 10 1

24 10 4 10
I I I

È ˘¥ -
= - =Í ˙

¥ + ¥Î ˚

3 3
1 1 1 1

1
4 10 2 10

2
( )V I I I

Ê ˆ= ¥ - = ¥Á ˜Ë ¯

2

31
11

1 0

0.5 10 S

V

I
Y

V

-

=

= = ¥

Example 9.15

Example 9.16

V1

4 kW
+I1 I21

1¢

2

2¢

4 kW 4 kW ∫ V1

4 kWI1 I21

1¢

2

2¢

4 kW

–

+

–

( + )1 2I I

(a) (b)

Figure 9.31 (a)
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3 3
1 2 2 24 10 2( ) ( ) 4 10V I I I= ¥ - + = - ¥

2

32
21

1 0

0.25 10 S 

V

I
Y

V

-

=

= = - ¥

When V1 = 0, the circuit becomes as shown in Figure 9.31 (b).

     
3

2 1 2(4 10 )V I I= ¥ +

By current divider

 

È ˘¥ -
= - =Í ˙

¥ + ¥Î ˚

3

1 2 23 3

4 10 1

24 10 4 10
I I I

3 3
2 2 1 2

1
4 10 2 10

2
( )V I I I

Ê ˆ= ¥ - + = ¥Á ˜Ë ¯

1

32
22

2 0

0.5 10 S

V

I
Y

V

-

=

= = ¥

3 3
2 1 1( )2 10 2  4 10 ( )V I I= ¥ - = - ¥

1

31
12

2 0

0.25 10 S 

V

I
Y

V

-

=

= = - ¥

So the Y parameter matrix is 

3 3

3 3

0.5 10 0.25 10

0.25 10 0.5 10

- -

- -

È ˘¥ - ¥
Í ˙
- ¥ ¥Í ˙Î ˚

The ABCD parameters are

 A = 22

21

Y

Y
-

3

3

0.5 10
2

0.25 10

-

-

¥
= - =

¥

 B = 
3

21

1 1
4000 

0.25 10Y -- = - =
- ¥

 C = 311 22 12 21

21 21

 0.75 10
Y Y Y YY

Y Y

--D
- = - = ¥

 D = 
3

11

3
21

0.5 10
2

0.25 10

Y

Y

-

-

¥
- = - =

- ¥

V2

4 kWI1 I21

1¢

2

2¢

4 kW 4 kW ∫

(c) (d)

V2

4 kWI1 I21

1¢

2

2¢

4 kW

+

–

( + )1 2I I

+

–

Figure 9.31 (b)
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Find the Z and h parameters for the network shown in Figure 9.32.

Figure 9.32

Solution

Applying KVL to mesh 1 1 1 1 3 1 32 2( ) 4 2V I I I I I= + - = -

Applying KVL to mesh 2 
2 2 2 3 2 32 2( ) 4 2V I I I I I= + + = +

Applying KVL to mesh 3 
3 1 1 3 2 1 2 32( ) 4 2( ) 0 2I I I I I I I I- + + + = fi + = -

Substituting and solving  
1 1 2 2 1 25 3V I I V I I= + = - +

Comparing with standard equations for Z parameters

  

11 12

21 22

5 1

1 3

Z Z

Z Z

È ˘ È ˘
=Í ˙ Í ˙-Î ˚Î ˚

h parameters

  

-D
= = = = =

= - = = =

11 22 12 21 12
11 12

22 22 22

21
21 22

22 22

16 1

3 3

1 1 1

3 3

Z Z Z Z ZZ
h h

Z Z Z

Z
h h

Z Z

9.9  INTERCONNECTION OF TWO PORT NETWORKS

Simple two-port networks can be interconnected to form an equivalent network. The parameters of this 

network are related to the parameters of the component networks. The various types of interconnections 

are given below:

9.9.1 Cascade Connection

The cascade connection is also called tandem connection. In this connection the output port of one 

network is the input port of the other. When two ports are connected in cascade, we can multiply their 

individual transmission parameters to get overall transmission parameters of the cascade connection. 

The cascade connection of two networks N1 and N2 is as shown in Figure 9.33.

Example 9.17
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Figure 9.33

The equation is

  
1 1 1 2 2 2

1 1 1 2 2 2

V A B A B V

I C D C D I

È ˘ È ˘ È ˘ È ˘
=Í ˙ Í ˙ Í ˙ Í ˙

Î ˚ Î ˚ Î ˚ Î ˚

9.9.2 Series Connection

Two two-port networks are said to be connected in series if the corresponding input and output ports 

are connected in series. The currents of the input ports are made equal as also those of the output ports. 

The open circuit impedance matrix of the equivalent two-port 

network is the sum of the open circuit impedance matrices of 

the individual networks. The series connection of two networks 

X and Y is as shown in Figure 9.34.

The describing equations are 

1 11 11 12 12 1

2 21 21 22 22 2

X Y X Y

X Y X Y

V Z Z Z Z I

V Z Z Z Z I

+ +È ˘ È ˘ È ˘
=Í ˙ Í ˙ Í ˙+ +Î ˚ Î ˚ Î ˚

9.9.3 Parallel Connection

Two two-port networks are said to be connected in series if the corresponding input and output ports are 

connected in parallel. The currents of the input ports are made equal as also those of the output ports. The 

short circuit admittance matrix of the equivalent two-port 

network is the sum of the short-circuit admittance matrices 

of the individual networks. The parallel connection of two 

networks X and Y is as shown in Figure 9.35.

The describing equations are 

1 11 11 12 12 1

2 21 21 22 22 2

X Y X Y

X Y X Y

I Y Y Y Y V

I Y Y Y Y V

+ +È ˘ È ˘ È ˘
=Í ˙ Í ˙ Í ˙+ +Î ˚ Î ˚ Î ˚

9.9.4 Series–Parallel Connection 

If one port each of the two two-port networks is connected in series and the other in parallel it is 

convenient to find the overall parameters of the two networks using the h-parameters. Suppose the two 

networks, as shown in Figure 9.36, are connected in series-parallel.

+

–

+

–

X

Y

I1
I1x

I1y I2y

V1x

V1y

I2I1

V2x

V2y

I2

I1 I2

I2x

V1 V2

Figure 9.34

+

–

+

X

Y

I1

I1x

I1y I2y

V1y

V1x V2x

V2y

I2

I2x

V1 V2

+

–

+

–

+

–

Figure 9.35
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I1
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N2
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+

–
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–
V1 V ¢1

I¢¢
1

V¢¢
1

I¢
1 I¢

2
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V2V2 V ¢2

I¢¢
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V¢¢
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Figure 9.36

The describing equations are 

  
1 11 11 12 12 1

2 21 21 22 22 2

V h h h h I

I h h h h V

+ +¢ ¢¢ ¢ ¢¢È ˘ È ˘ È ˘
=Í ˙ Í ˙ Í ˙+ +¢ ¢¢ ¢¢ ¢¢Î ˚ Î ˚ Î ˚

9.9.5 Parallel-Series Connection 

If the input ports are connected in parallel and the output in 

series as shown in Figure 9.37, then it is convenient to obtain 

g parameters of the overall networks.

The describing equations are

      

1 11 11 12 12 1

2 21 21 22 22 2

I g g g g V

V g g g g I

+ +¢ ¢¢ ¢ ¢¢È ˘ È ˘ È ˘
=Í ˙ Í ˙ Í ˙+ +¢ ¢¢ ¢ ¢¢Î ˚ Î ˚ Î ˚

Two networks have been shown in Figure 9.38. Obtain the transmission parameters of the resulting 

circuit when both are connected in cascade.

5 W

10 W10 W 10 W 10 W

5 W 10 W10 W

Figure 9.38

Solution Let us find the ABCD parameters of one network as shown in Figure 9.39.

The output port is open circuited i.e. I2 = 0.

  
1 1 1

20 5
10 14

20 5
V I I

Ê ˆ¥
= + =Á ˜+Ë ¯

I1 I¢
1

I1+

–

+

–

+

–

V1 V2

+

–

V ¢2

V¢¢
2

I¢¢
1

N1

N2

Figure 9.37

Example 9.18
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Current in the 10 W resistor = 1
1

5

5 10 10 5

I
I

Ê ˆ
=Á ˜+ +Ë ¯

1
2 110 2

5

I
V I= ¥ =

2

1

2 0

 0.5 S

I

I
C

V
=

= =

2

1 1

2 10

14
7 

2
I

V I
A

V I
=

= = =

The output port is short-circuited i.e. V2 = 0

  
1 1 1

10 5 40
10

10 5 3
V I I

Ê ˆ¥
= + =Á ˜+Ë ¯

Applying current division

  2

1 1
2 1

2 0

5
3

5 10 3
V

I I
I I D

I
=

Ê ˆ
- = = fi = =Á ˜+ -Ë ¯

=

= = W
-

2

1

2 0

40
 

V

V
B

I

So the ABCD parameters are 
7 40

0.5 3

È ˘
Í ˙
Î ˚

. As the two networks are identical, the transmission 

parameters of the equivalent network in cascade is given as

  

7 40 7 40 69 400

0.5 3 0.5 3 5 29

È ˘ È ˘ È ˘
¥ =Í ˙ Í ˙ Í ˙

Î ˚ Î ˚ Î ˚

Determine Z parameters of the network shown in Figure 9.40. An identical network is connected 

in series with this network. Obtain the Z parameters of the overall network. Also verify by direct 

calculation

Figure 9.40

Figure 9.39

Example 9.19
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Solution To find Z11 and Z21, the output terminals are open circuited.

  1 1 1(6 3) 9V I I= + =

  2

1
11

1 0

9

I

V
Z

I
=

= = W

  2

2
2 1 21

1 0

3 3 

I

V
V I Z

I
=

fi= = = W

To find Z12 and Z22, the input terminals are open circuited. 

  

1

2
2 2 22

2 0

(6 3) 9 

I

V
V I Z

I
=

= + = =fi W

  

1

1
1 2 12

2 0

3 3 

I

V
V I Z

I
=

fi= = = W

So the overall Z parameters of the combination circuit is 

  

9 3 9 3 18 6

3 9 3 9 6 18

È ˘ È ˘ È ˘
+ =Í ˙ Í ˙ Í ˙

Î ˚ Î ˚ Î ˚

By direct calculation

  1 1 1(6 3 3 6) 18V I I= + + + =

  2

1
11

1 0

18

I

V
Z

I
=

= = W

  2

2
2 1 21

1 0

(3 3) 6 

I

V
V I Z

I
=

= + = =fi W

To find Z12 and Z22, the input terminals are open circuited. 

  1

2
2 2 22

2 0

(6 3 3 6)  18 

I

V
V I Z

I
=

= + + = =fi+ W

  1

1
1 2 12

2 0

(3 3) 6 

I

V
V I Z

I
=

= + fi = = W
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Determine Y parameters of the network shown in Figure 9.41. An identical network is connected in 

series with this network. Obtain the Y parameters of the overall network.

Figure 9.41

Solution To find Y11 and Y21, the output terminals are short circuited.

 2

1
1 1 1 11

1 0

3  6 1
6 8

3 6 8
I

I
V I I Y

V
=

Ê ˆ¥
= + = = = WÁ ˜+Ë ¯

fi

Using current division rule 1 1 1
2 2

 3 1
 

3 6 3 3 8

I I V
I I

È ˘
- = = fi - = Í+ Î

¥
˙
˚

Hence,        

2

2
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1 0

1 
S

24
V

I
Y

V
=

-
= =

To find Y12 and Y22, the input terminals are short circuited

            

1

2 2 2
2 22

2 0

1
 S

8 83 6
6

3 6
V

V V I
I Y

V
=

= = ¥ = =
Ê ˆ¥
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Using current division rule 2 2 2
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3 6 3 3 8

I I V
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È ˘
- = = ¥ - = Í+ Î

¥
˙
˚

Hence,        

1

1
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1 
S

24
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I
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V
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-
= =

So the overall Y parameters of the combination circuit is 

1 1 1 1 1 1

8 24 8 24 4 12

1 1 1 1 1 1

24 8 24 8 12 4

È ˘ È ˘ È ˘- - -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙+ = Í ˙
Í ˙ Í ˙ Í ˙- - -Í ˙ Í ˙ Í ˙Î ˚Î ˚ Î ˚

Example 9.20
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9.10  TERMINATED TWO-PORT NETWORKS

If the two-port network is terminated into a load impedance at either output port or input port, then 

it is possible to express input impedance or output impedance in terms of the parameters of two-port 

network. 

Table 9.2 Driving point impedances in terms of two port networks.

In terms of Z 

parameters

In terms of Y pa-

rameters

In terms 

of ABCD 

param-

eters

In terms of 

A’B’C’D’ 

parameters

In terms of 

h param-

eters

In terms of 

g param-

eters

Driving point 

impedance at 

input port V1/I1

12 21
11

22L

Z Z
Z

Z Z
-

+
22

11 22 12 21( )

L

L

Y Y

Y Y Y Y Y

+
+ -

L

L

AZ B

CZ D

+
+

L

L

B D Z

C Z A

-¢ ¢
-¢ ¢

11

221

h L

L

Z h

h Z

D +
+

22

11

1 L

g L

g Y

Y g

+
D +

Driving point 

impedance at 

input port V2/I2

22

11

z s

s

Z Z

Z Z

D +
+

11

22

s

Y s

Y Y

Y Y

+
D +

s

s

DZ B

CZ A

+
+

s

s

A Z B

C Z D

+¢ ¢
+¢ ¢

11

22

s

h s

h Z

h Z

+
D +

22

111

g

s

g

g Z

+ D

+

Note: The above relations are obtained when Vs = 0 and Is = 0 at the input port.

The currents I1 and I2 at input and output ports respectively of a two port network are expressed as 

 I1 = 5V1 – V2

 I2 = –V1 + V2

Find the Y parameters. If a load impedance of (3 + j5) W is connected across the output port, find 

the input impedance.

Solution Comparing the equations with the standard Y parameter equations

 Y11 = 5 W  Y12 = Y21 = –1W  Y22 = 1 W
Here the load impedance is ZL = (3 + j5) W

Load admittance YL = 
 

1 1 3 5

3 5 34 34L

j
Z j

= = -
+

The input impedance Zin = 1 22

21 11 22 12 21

3 5
1

34 34 
3 5( )

5 1 ( 1) 5
34 34

L

L

j
V Y Y

I Y Y Y Y Y
j

+ -+
= =

+ - ¥ - - + ¥ -

  Zin 0.248 1.89= – ∞W

Example 9.21
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9.11  IMAGE PARAMETERS

In a two-port network, if two impedances Zi1 and Zi2 are 

such that Zi2 is the driving point impedance at port 1 when 

the port 2 of the network terminates into Zi2 and Zi2 is 

the driving point impedance at port 2 when port 1 of the 

network terminates into Zi1. Then the two impedances are 

called image impedances of the network and can be expressed in terms of two port parameters as shown 

in Figure 9.42. 

1

1¢

I1

Z11 V1 V2

I2 2

2¢

Z12

+

–

+

–

Two port
network

Figure 9.42

Z1o is the input impedance measured from port 1 with port 2 kept open, Z1s is the input impedance 

measured from port 1 with port 2 kept shorted, Z2o is the input impedance measured from port-2 with 

port-1 kept open and Z2s is the input impedance measured from port 2 with port 1 kept shorted. 

  1 2 2v Av Bi= -

  1 2 2i Cv Di= -

When port 2 is open 1

1

v A

i C
=   and when port 2 is shorted 1

1

v B

i D
=

When port 1 is open 2

2

v D

i C
=   and when port 1 is shorted 2

2

v B

i A
=

Therefore, Z1o = 
A

C
 Z1s 

B

D
= Z2o = 

D

C
Z2s = 

B

A

The image impedances are given in terms of ABCD parameters as follows

  
1 1 1  i o s

AB
Z Z Z

CD
= =

  
2 2 2i o s

BD
Z Z Z

AC
= =

A third parameter required to completely describe a reciprocal two port network is determined from 

the ratios 1

2

V

V
and 1

2

i

i-
 when the second port is terminated in Zi2 and V1 is applied at the first port. The 

geometric mean of these two ratios is expressed as the exponential of a number g which is called the 

image transfer constant. The image transfer constant g is given by

University Questions

1.  What are image and iterative impedances? 

 [BPUT, 2007]

2.  Explain reciprocal and symmetrical net-

works.  [PTU, 2011-12]
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1 1 12 1

2 1

tanh tanh tanhs s

o o

Z Z BC

Z Z AD
g - - -= = =

Find out the ABCD-parameters of the network as shown in Figure 9.43. Also find the image parameters 

for the network.

5 W

3 W2 W

2 WV1

Figure 9.43

Solution To find A and C, open the output port as shown in Figure 9.44 (a).

  
1 1 1

5  5
2 4.5

5 5
V I I

Ê ˆ¥
= + =Á ˜+Ë ¯

Current in 2 W 3 1 1

5
 0.5

5 3 2
I I I

Ê ˆ
= =Á ˜+ +Ë ¯

2

1
2 1 1

2 0

2 0.5 1  1S

I

I
V I I C

V
=

fi= ¥ = ¥ = =

2

1 1

2 10

4.5
4.5

1
I

V I
A

V I
=

= = =

To find B and D, short the output port as shown in Figure 9.44 (b).

5 W

3 W2 W

2 W
V1 V2 = 0 fi

I1 I2(1) (2)
b

b¢

+

–

5 W

2 W

V1

I3I1 I2

Figure 9.44 (b)

  
1 1 1

5 3 31
2

5 3 8
V I I

Ê ˆ¥
= + =Á ˜+Ë ¯

Example 9.22

5 W

3 W2 W

2 W
V1

I1 I2(1) (2)I3a

a¢

b

b¢

+

–

+

–

Figure 9.44 (a)
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By current division, 

2

1
2 1 1

2 0

5 5 8
 

5 3 8 5
V

I
I I I D

I
=

Ê ˆ
- = = = =Á ˜+ -Ë ¯

fi

  2

1

2 0

31

 5
V

V
B

I
=

= =
-

Image parameters are 
1

4.5 6.2
4.18 

1 1.6
i

AB
Z

CD

¥
= = = W

¥

  
2

6.2 1.6
 1.48 

4.5 1
i

BD
Z

AC

¥
= = = W

¥

  

1 BC
tanh 1.643

AD
g -= =

9.12   ATTENUATION AND PHASE SHIFT IN SyMMETRICAL 
T AND π NETWORKS

For a symmetrical reciprocal two-port network, the two image impedances Zi1 and Zi2 are equal and the 

image impedance is then called characteristic impedance or iterative impedance Z0. It is given in terms 

of ABCD parameters as 0 oc sc

B
Z Z Z

C
= = where Zoc and Zsc are open and short-circuit impedances 

measured at any pair of terminals. 

The two transfer ratios 
1

2

V

V
 and 1

2

I

I-
, when the second port is terminated in Zi2 and V1 is applied 

to port 1, will be equal for a symmetric network. So the image transfer constant eg can be considered 

as the ratio between input and output currents of the network when the network is terminated in its 

characteristic impedance. In such case, the number g is called propagation constant and is given by 

   jg a b= + where a is the attenuation coefficient and b is the phase shift coefficient or phase constant.  

In such case g is given by 1

2

 loge

I

I
g

Ê ˆ
= Á ˜Ë ¯

.

Figure 9.45
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T and p type networks are two methods of network representation using two-port parameters as 

shown in Figure 9.45. All networks which satisfy the condition of reciprocity for Z parameters or Y 

parameters can be replaced by an equivalent T network or p network. 

A filter is a reactive network which freely allows the desired bands of frequencies while blocking all 

other bands. Symmetrical T or p networks are used to design filters. For studying filters it is necessary 

to know the propagation constant g, attenuation a, phase shift b and characteristic impedance Z0 of 

symmetric T and p networks.

9.12.1 Symmetrical T Network

Consider a symmetrical T network terminated at its output terminal 

with its characteristic impedance as shown in Figure 9.46.

The characteristic impedance is given as 
2
1

0 1 2 
4

Z
Z Z Z= +

The propagation constant of T section is given as 

  01

2 2

ln 1
2

ZZ

Z Z
g

È ˘
= + +Í ˙

Î ˚

  

2
1 1 1

2
2 22

1  tanh  
2 4

SC

OC

ZZ Z Z
e

Z Z ZZ

g g= + + + fi =

The network can also be represented in terms of characteristic 

impedance and propagation constant as shown in Figure 9.47

9.12.2 Symmetrical π Network

Consider a symmetrical p network terminated at its output terminal with its characteristic impedance as 

shown in Figure 9.48.

The characteristic impedance is given by 

  
1 2

0
2
1

1 2
4

Z Z
Z

Z
Z Z

=

+

The propagation constant of p section is given by 

  1 1

0 2

1
2

Z Z
e

Z Z

g = + +

  

tanh  SC

OC

Z

Z
g =

The network can also be represented in terms of characteristic 

impedance and propagation constant as shown in Figure 9.49

Zin Z2 Z0

Z1 Z1

2 2

1

1¢

2

2¢

Figure 9.46

Z0 tanh
g

2
1

1¢

2

2¢

Z0 tanh
g

2

sinh g

Z0

Figure 9.47

Z0

1

1¢

2

2¢

Z1

2Z2 2Z2
Zin

Figure 9.48

Z sin h0x gp

z0x

tanh
gp

2

z0x

tanh
gp

2

Figure 9.49
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Find  the characteristic impedance and propagation constant of a T section as shown in Figure 9.50. 

Verify the value of impedance with the help of open and short circuit impedances. 

Solution From the network

    = W fi = W = W1
1 2100  200  400

2

Z
Z Z

The characteristic impedance is given by

    
= + = + ¥ = W

2 2
1

0 1 2

200
  200 400 300

4 4

Z
Z Z Z

The propagation constant of T section is given by

  01

2 2

200 300
ln 1 ln 1 0.2876 

2 2 400 400

ZZ

Z Z
g

È ˘ È ˘
= + + = + + = -Í ˙ Í ˙¥Î ˚Î ˚

Verification: Open circuit impedance = + = W(100 400) 500ocZ

Short circuit impedance 
Ê ˆÈ ˘¥

= + = WÍ ˙Á ˜+Ë ¯Î ˚

100 400
100 180

100 400
scZ

By property of symmetrical network = = ¥ = W0 500 180 300oc scZ Z Z

Design a symmetrical T section to have Z0 = 600 W and 0
4

j
p

g = + .

Solution The series arm impedance of symmetrical T network is given as 

  

1
0

0
4tanh 600 tanh  248.528 

2 2 2

j
Z

Z j

p
g

Ê ˆ+Á ˜Ê ˆ= = = WÁ ˜ Á ˜Ë ¯ Á ˜Ë ¯

The shunt arm impedance of symmetrical T network is given as

  

0
2

600
  848.528  

sinh
sinh

4

Z
Z j

j
pg

= = = - W

Hence the symmetrical T network is shown in Figure 9.51.

Example 9.23

Figure 9.50

Example 9.24

Figure 9.51
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For a symmetrical p network, 1 2

1
Z j LZ

j C
w

w
= = . Calculate its characteristic impedance at 500 Hz 

and 1000 Hz if L = 0.1 H and C = 2 mF.

Solution The symmetrical p network is as shown in Figure 9.52.

The characteristic impedance is given by

  1 2
0

2 2
1

1 2

1
 

( ) 1

44

j L
j CZ Z

Z
Z j L

j LZ Z
j C

w
w

w
w

w

Ê ˆ
Á ˜Ë ¯

= =
Ê ˆ

++ Á ˜Ë ¯

0
2 2

4

L

CZ
L L

C

w
=

-

 (i) At f = 500 Hz, w = 2p f = 1000p, L = 0.1 H and C = 2 mF

   
= W0 314.18Z

 (ii) At f = 1000 Hz, w = 2pf = 2000p, L = 0.1 H and C = 2 mF

   0  226.58  Z j= - W

  is called propagation constant and is given by where  is the attenuation coefficient and is the 

phase shift coefficient or phase constant.

P O I N T S  T O  R E M E M B E R

  Z11 and Z21 are obtained when the output terminals are open circuited and a voltage source is connected to the 

input terminal.

  Z12 and Z22 are obtained when the input terminals are open circuited and a voltage source is connected to the 

output terminal.

  The Z parameters are given by 

2 1 2 1

1 1 2 2
11 12 21 22

1 2 1 20 0 0 0I I I I

V V V V
Z Z Z Z

I I I I
= = = =

= = = =

  Y11 and Y21 are obtained when the output terminals are short circuited and a current source is connected to the 

input terminal.

  Y12 and Y22are obtained when the input terminals are short circuited and a current source is connected to the 

output terminal.

Example 9.25

Z1

L = 0.1 H

2Z2C = Fm2Z2 C = Fm

Figure 9.52
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  The Y parameters are given by 

2 1 2 1

1 1 2 2
11 12 21 22

1 2 1 20 0 0 0V V V V

I I I I
Y Y Y Y

V V V V
= = = =

= = = =

  To calculate A and C parameters open the output port and connect a voltage source at the input port.

  To find the parameters B and D, short the output port and connect a voltage source at the input port.

  The ABCD parameters are given by 

2 2 2 2

1 1 1 1

2 2 2 20 0 0 0
 

I V I V

V V I I
A B C D

V I V I
= = = =

= = = =
- -

  To find the parameters A¢ and C¢, open the input port and connect a voltage source at the output port.

  To find the parameters B¢ and D¢, short the input port and connect a voltage source at the output port.

  The A¢B¢C¢D¢ parameters are given by 

1 1 1 1

2 2 2 2

1 1 1 10 0 0 0I V I V

V V I I
A B C D

V I V I
= = = =

- -
= = = =¢ ¢ ¢ ¢

  To find h11 and h21, short-circuit the output port and connect a current source to the input port.

  To obtain h12 and h22, open-circuit the input port and connect a voltage source to the output port.

  The h parameters are given by 

2 1 2 1

1 1 2 2
11 12 21 22

1 2 1 20 0 0 0V I V I

V V I I
h h h h

I V I V
= = = =

= = = =

  To find g11 and g21, open-circuit the output port and connect a voltage source to the input port.

  To obtain g12 and g22, short-circuit the input port and connect a current source to the output port.

  The g parameters are given by 

2 1 2 1

1 1 2 2
11 12 21 22

1 2 1 20 0 0 0I V I V

I I V V
g g g g

V I V I
= = = =

= = = =

  We can express any parameter in terms of other parameters in a two-port network. 

  In order to obtain inter-relationships between the parameter steps to be followed as

  o Write corresponding parameter equations for both

  o By algebraic manipulation, rewrite that equation in terms in which we want to express the given parameters.

  o Compare given parameter equations with manipulated equations, we get relationship between the parameters 

as desired.

  When two two-port networks are connected in cascade, we can multiply their individual transmission parameters 

to get overall transmission parameters of the cascade connection.

  In series connection of two port networks, the open circuit impedance matrix of the equivalent two port network 

is the sum of the open circuit impedance matrices of the individual networks.

  In parallel connection of two port networks, the short circuit admittance matrix of the equivalent two port network 

is the sum of the short circuit admittance matrices of the individual networks.

  The h parameters of the networks whose input ports are connected in series and output in parallel are the algebraic 

sum of the respective h parameters of the individual networks. 

  In two port networks if the input ports are connected in parallel and output ports in series, the overall g parameters 

of the interconnected network is the sum of the corresponding g parameters of the individual networks.

  If the two port network is terminated into a load impedance at either output port or input port, then it is possible 

to express input impedance or output impedance in terms of the parameters of two port network. 

  Analysis of transmission lines under transient conditions or with aperiodic inputs is done using an alternative 

way called the image parameter description.
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  Two impedances called image impedances designated by Zi1 and Zi2 and a constant image transfer constant 

designated by g are used to describe a reciprocal linear time-invariant two port network in image parameter 

description.

  The image impedances are given in terms of ABCD parameters as follows

    
1 1 1  i o s

AB
Z Z Z

CD
= =

    
2 2 2 i o s

BD
Z Z Z

AC
= =

  The image transfer constant g is given as

   . 

1 1 12 1

2 1

tanh tanh tanhs s

o o

Z Z BC

Z Z AD
g - - -= = =

  If Z0T is the characteristic impedance of a T section and Z0p is the characteristic impedance of a p section having 

the same series and shunt arm impedances, then 1 2
0

0T

Z Z
Z

Z
p = .

  The propagation constant of symmetrical T and p networks are same.

  Attenuation constant is measured in nepers and phase constant is measured in radians.

  g is called propagation constant and is given by   jg a b= + where a is the attenuation coefficient and b is the 

phase shift coefficient or phase constant.  

  For a symmetrical network, characteristic impedance Z0 is given as 
0 oc sc

B
Z Z Z

C
= = where Zocand Zsc are 

open and short-circuit impedances measured at any pair of terminals. 

PRACTICE PROBLEMS

 1. If z = 
40 10

20 30

È ˘
Í ˙
Î ˚

 W for the two-port 

network, calculate the average power 

delivered to 50 W resistor.

Two port
network

–

+

–

+

V1 V2

I1
I2

50 W

20 W

100 0° V–

rms

+
–

Figure 9.53

 2. Find the Y parameters for the two-port 

network shown in Figure 9.54.

1 W
1

2
WV1 V2

1 W

1

2
W

+

–

+

–

2V1

I1
I2

Figure 9.54

 3. Find the transmission parameters.

3 W 3 W

3 W

–

+

V1 V2

I1
I2

–

+

3 W

Figure 9.55
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 4. The following direct-current measurements 

were done on a two port network:

1 1

2 2

2 2

Port 1 open Port 1 Short-circuited

1 mV 0.5 A

10 V 80

200 A 5 V

V I

V I A

I V

= = - m
= = m
= m =

  Calculate the inverse transmission 

parameters for the two port network.

 5. Determine the h parameters of the circuit. 

12 W

12 W 12 W

I1
I2

+

V1 V2

––

+

Figure 9.56

 6. Determine the g parameters of the circuit.

12 W

12 W 12 W

I1
I2

+

V1 V2

––

+

Figure 9.57

 7. Determine the Z, Y and Transmission param-

eters of the network shown in Figure 9.62.

5 W

10 W10 W
I1

I2

+

V1 V2

––

+
+ –

5I1

Figure 9.58

 8. Two identical sections of the network 

shown in Figure 9.59 are connected in 

parallel. Obtain the Y parameters of the 

combination.

Figure 9.59

 9. The Z parameters of two port network are

  Z11 = Z22 = 10 W
  Z21 = Z12 = 4 W
  If the source voltage is 20 V, determine I1, 

V2, I2 and input impedance.

Figure 9.60

 10. The h parameters of a two-port network 

shown are h11 = 1 W, h12 = –h21 = 2 and 

h22 = 1 S. The power absorbed by a load 

resistance of 1 W connected across port 2 is 

100 W. The network is excited by a voltage 

source of generated voltage Vs and internal 

resistance 2 W. Calculate the value of Vs

Network

–

+

–

+

V1 V2

I1 I2

2 W

2 W

+
–

Vs

Figure 9.61

 11. For the given two-port network in Figure 

9.62, calculate the Z parameters and the 

image parameters. 

20 W 30 W

10 W

–

+

V1 V2

I1
I2

–

+

1

1¢

2

2¢

Figure 9.62

 12. If the measurements made on a box 

enclosing a two-port network are  

Z1OC = 40 – 0° W and Z1SC = 20.3 – 29.8° 

W. Find values of characteristic impedance 

and propagation constant along with 

attenuation constant and phase constant if 

the network is symmetrical.
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MULTIPLE CHOICE QUESTIONS

 1. Two two-port networks are connected in cascade. The combination is to be represented as a single two-

port network, by multiplying the individual

 a. Z parameter matrices b. Y parameter matrices 

 c. h parameter matrices d. ABCD parameter matrices

 2. The short-circuit admittance matrix of a two-port network is 

1
0

2

1
0

2

È ˘
-Í ˙

Í ˙
Í ˙
Í ˙Î ˚

. The two port network is

 a. Non-reciprocal and passive b. Reciprocal and passive

 c. Non-reciprocal and active  d. Reciprocal and active

 3. An open circuit reverse voltage gain in h-parameters is a unitless quantity and generally equivalent to

 a. V1 / I1 (keeping V2 = 0) b. I2 / I1 (keeping V2 = 0)

 c. V1 / V2 (keeping I1 = 0) d. I2 / V2 (keeping I1 = 0)

 4. For the two-port network shown in Figure 9.63, the short-circuit admittance parameter matrix is

1

1¢

2

2¢

0.5 W

0.5 W 0.5 W

Figure 9.63

 (a) 
4 2

2 4

-È ˘
Í ˙-Î ˚

 (b) 
1 0.5

0.5 1

-È ˘
Í ˙-Î ˚

 (c) 
1 0.5

0.5 1

È ˘
Í ˙
Î ˚

 (d) 
4 2

2 4

È ˘
Í ˙
Î ˚

 5. What does the connectivity of energy source at the port of network known as?

 a. Driving Point b. Transfer Point c. Both a and b d. None of the above

 6. Which elements act as independent variables in Y-parameters?

 a. Current b.  Voltage c. Both a and b d. None of the above

 7. A two-port network is represented by ABCD parameters given by

   

1 2

1 2

V VA B

I IC D

È ˘ È ˘È ˘
=Í ˙ Í ˙Í ˙ -Î ˚Î ˚ Î ˚

  If port-2 is terminated by RL, the input impedance seen at port-1 is given by

 a. L

L

A BR

C DR

+
+

 b. L

L

AR C

BR D

+
+

 c. L

L

DR A

BR C

+
+

 d. L

L

B AR

D CR

+
+
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 8. The h parameters of the circuit shown in the Figure 9.64 are bind

10 W

20 W

–

+

V1 V2

I1
I2

–

+

Figure 9.64

 a. 
0.1 0.1

0.1 0.3

È ˘
Í ˙-Î ˚

 b. 
10 1

1 0.05

-È ˘
Í ˙
Î ˚

 c. 
30 20

20 20

È ˘
Í ˙
Î ˚

 d. 
10 1

1 0.05

È ˘
Í ˙-Î ˚

 9. For a two port bilateral network, the three transmission parameters are given by A = 6/5 ; B = 17/5 and C 

=1/5, what is the value of D?

 a. 7/5 b. 12/5 c. 3/5 d. 9/5

 10. Which parameters are widely used in transmission line theory?

 a. Z parameters b. Y parameters c. h parameters d. ABCD parameters

ANSweRS To MUlTIPle ChoICe QUeSTIoNS

 1. (d) 2. (c) 3. (c) 4. (a) 5. (a)

 6. (b) 7. (d) 8. (d) 9. (a) 10. (d)





  

10.1  INTRODUCTION

This chapter introduces Fourier series and Fourier transforms which are the basic frequency techniques 

for finding responses for periodic and non-periodic voltages and currents in networks. Fourier series 

describe periodic signals while Fourier transforms describe non-periodic signals. The introductory 

sections discuss the sinusoidal and exponential expansion of periodic waveforms in circuit analysis and 

the second part explain the expansion of aperiodic waveforms in terms of sinusoids.

10.2
   FOURIER METHOD OF WAVEFORM 

ANALYSIS

A real-valued time function x(t) is said to be periodic if there 

exists a positive time constant T such that x(t + T) = x(t) 

for all time t. The Fourier theorem states that any arbitrary 

periodic function can be represented by an infinite series of sinusoids of harmonically related frequencies. 

This infinite series comprising of the sum of sinusoids at the fundamental and harmonic frequencies and 

representing a periodic function is called the Fourier series and the process of representing a periodic 

function by a Fourier series is called Fourier analysis. Fourier series can be represented either in the 

form of infinite trigonometric series or infinite exponential series. Fourier analysis is applied mainly to 

complex periodic signals and not those of sinusoidal shape. Fourier analysis consists of two operations – 

(a) determination of the coefficients and (b) decision on the number of terms to be included in a truncated 

series to represent a given function within permissible limits of error.

Probe

1.  What do you understand by Fourier 

analysis?

 

Fourier Method of 
Waveform Analysis

10

  Fourier method of waveform analysis

  Frequency spectrum of periodic signal

  Fourier series as trigonometric series

  Complex Fourier series and properties

  Fourier transform and inverse Fourier transform

  Fourier transform of periodic signals

  Fourier transform of some functions

  Properties of Fourier transform

Chapter Outline
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10.3
   FREQUENCY SPECTRUM OF 

PERIODIC SIGNAL 

A pure sine wave is completely specified by its frequency 

(or basic period), its amplitude, and its phase at time 

t = 0. But in case of more complex periodic signals, the 

frequency alone does not completely specify the signal; 

one has to specify the content of each cycle as well. Complex periodic signals have, in addition to 

their main frequency, many other component frequencies. Specification of the contributions of all these 

components determines the signal. This specification is called the signal’s spectrum. Any periodic signal 

can be represented as the sum of a finite or infinite number of sinusoidal functions whose frequencies 

are harmonics or integer multiples of fundamental frequency. These sinusoidal functions, as a group, are 

called frequency spectrum of that periodic signal. Fourier series is a way to find spectrums for periodic 

signals by representing the signals in frequency domain. Line spectrum is the representation of the 

signal f(t) in frequency domain. It indicates the amplitude and phase of various frequency components 

present in the given signal.

10.4
   FOURIER SERIES AS 

TRIGONOMETRIC SERIES

The mathematical conditions under which a convergent 

Fourier series can be written for a periodic function are 

known as Dirichlet conditions and are given as

 1. The function f(t) is a single-valued function within 

the period T.

 2. The function f(t) must be continuous in the period 

T. If it is discontinuous, the function f(t) must have 

finite number of discontinuities in the period T.

 3. The function f(t) has a finite number of maxima and minima within the period T.

 4. The function f(t) is absolutely integrable, that is, 

+

< •Ú
0

0

( )

t T

t

f t dt  for any t0.

If a periodic non-sinusoidal function f(t) of period T satisfies the above Dirichlet conditions, then the 

function can be expanded into an infinite trigonometric Fourier series as 

 f(t) = a0 + a1cos w0t + a2 cos 2w0t + … + an cos nw0t + … + b1 sin w0t + b2 sin 2w0t 

                                      + … + bn sin nw0t + …

                      

0 0 0
1

( ) ( cos sin )n n

n

f t a a n t b n tw w

•

=
= + +Â

where w0 – the fundamental frequency = 
2

T

p

Probe

1.  A periodic signal can be expanded into a 

number of discrete frequency components. 

Discuss.

University Questions

1.  Explain Dirichlet conditions of Fourier 

analysis.

2.  Discuss the effect of symmetry for 

a periodic function to determine the 

trigonometric Fourier series coefficients.  

 [RGTU, 2013]

3.  What is waveform symmetry? 

 [RGTU, 2014]
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nw0 – the nth harmonic of fundamental frequency

a0, an, bn – the Fourier coefficients 

The Fourier coefficients a0, an and bn can be evaluated using following expressions:

                         

0

0

0

1
( )

T t

t

a f t dt
T

+

= Ú

                         

0

0

0

2
( ) cos 0

T t

n

t

a f t n tdt n
T

w

+

= >Ú

                         

0

0

0

2
( )sin 0

T t

n

t

b f t n t dt n
T

w

+

= >Ú

10.4.1 Use of Symmetry in Evaluating Fourier Series

Waveforms may not have cosine terms or sine terms because of certain types of symmetry associated 

with them, which results in some Fourier coefficient being absent from the series. If such symmetries 

are recognized, it simplifies the task of calculating Fourier coefficients in the Fourier series analysis. 

The four types of waveform symmetry, which can be identified are:

 • Even-function symmetry

 • Odd-function symmetry

 • Half-wave symmetry

 • Quarter wave symmetry

1. Even Function Symmetry

For any function f(t) if f(t) = f (–t) it is called even function. The Fourier series of an even function 

consists of a constant term and cosine terms only.

2. Odd Function Symmetry

For any function f(t) if f (–t) = – f (t) it is called odd function. The Fourier series of an even function 

consists of sine terms only.

3. Half-wave Symmetry

A periodic function f(t) is said to have half-wave symmetry if f(t) = –f
Ê ˆ-Á ˜Ë ¯2

T
t

If the waveform has half-wave symmetry, the second half of each period looks like the first half turned 

upside down. In a half-wave symmetric function, both an and bn are zero for even values of n.

4. Quarter-wave Symmetry

A waveform is said to have quarter wave symmetry if it has both half wave symmetry and symmetry 

about the midpoint of the positive and negative half cycles.
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The effect of symmetry for a periodic function to determine the trigonometric Fourier series 

coefficients is summarized as follows.

Symmetry Fourier Coefficients

1. Odd function

f(t) = –f(–t) /2

0

0

0 for all

4
( )sin

n

T

n

a n

b f t n t dt
T

w

=

= Ú

2. Even function

f(t) = f(–t) /2

0

0

0 for all

4
( )cos

n

T

n

b n

a f t n t dt
T

w

=

= Ú

3. Half-wave symmetry

( )
2

T
f t f t

Ê ˆ
= -Á ˜Ë ¯

0

/2

0

0

/2

0

0

0

= 0 for even

 = 0 for even

4
( ) cos for odd

4
( )sin for odd

n

n

T

n

T

n

a

a n

b n

a f t n t dt n
T

b f t n t dt n
T

w

w

=

=

=

Ú

Ú

4.  Quarter-wave symmetry Half-wave 

symmetric and symmetric about 

the midpoints of the positive and 

negative half-cycles

0

/4

0

0

0

/4

0

0

A. Odd function: 0, 0 for all

0 for even

8
( )sin for odd

B. Even function: 0, 0 for all

0 for even

8
( )cos for odd

n

n

T

n

n

n

T

n

a a n

b n

b f t n t dt n
T

a b n

a n

a f t n t dt n
T

w

w

= =

=

=

= =

=

=

Ú

Ú

 Find the Fourier series expansion of following periodic function.

f(x) = 
1

( )
2

xp -  in –p < x < p

Solution The coefficients of associated Fourier series can be determined as following:

                         
0

1 1 1
( ) ( )

2
a f x dx x dx

p p

p p

p
p p- -

= = -Ú Ú
21

2 2

x
x

p

p

p p
p -

È ˘
= - =Í ˙

Î ˚

Example 10.1

Note: Difficulty Level    — Easy;  — Medium;  — Difficult
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1 1 1
( )cos ( )cos

2
na f x nxdx x nxdx

p p

p p

p
p p- -

= = -Ú Ú

                         

p

p

p
p p-

È ˘-Ê ˆ= - - - = =Í Á ˜ ˙Ë ¯Î ˚2

1 sin cos 1
( ) ( 1) [0] 0

2 2
n

nx nx
a x

n n

                         

pp

pp

p p
p p --

È ˘- - -Ê ˆ= - = - - - =Í Á ˜ ˙Ë ¯Î ˚
Ú 2

1 1 1 cos sin ( 1)
( )sin ( ) ( 1)

2 2

n

n

nx nx
b x nxdx x

n nn

Using the values of a0, an and bn in the Fourier expansion

                      

0

1 1

( ) cos sin
2

n n

n n

a
f x a nx b nx

• •

= =
= + +Â Â

we get,

                     

p •

=

-
= + Â

1

( 1)
( ) sin

2

n

n

f x nx
n

This is the required Fourier expansion of the given function.

 Find the Fourier series of the following periodic function whose definitions on one period is

           

p

p

- < <Ï
= Ì < <Ó

0 0
( )

0

t
f t

t t

Solution The coefficient of associated Fourier series can be determined as following.

The constant term of the Fourier series is given by

                         

p

p p-

= = =Ú Ú0

0

1 1

2

x x

x

a t dt t dt

                          p p-

= =Ú Ú
0

1 1
( )cos cos

x x

n

x

a f t nt dt t nt dt

                              
p

p p

È ˘= + = -Í ˙Î ˚2 2
0

1 1
sin cos (cos 1)

x
t t

nt nt n
n n n

                              

2

2

0 if is even
1

(( 1) 1) 2
if is odd

n

n

nn
n

p
p

Ï
Ô= - - = Ì-ÔÓ

Example 10.2
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p

p

p
p p p

+

-

-È ˘= = = - = = - =Í ˙Î ˚Ú Ú
1

2
00

1 1 1 1 ( 1)
( )sin sin cos sin ( cos )

xx n

n

t t
b f t nt dt t nt dt nt nt n

n n nn

Thus the function can be represented as

2 2 2

2 cos cos3 cos5 sin sin 2 sin3
( )

4 1 2 31 3 5

t t t t t t
f t

p

p

Ê ˆ Ê ˆ= - + + + + - + +Á ˜Á ˜ Ë ¯Ë ¯
 

 Find the Fourier series of the waveform shown in Figure 10.1. 

L t( )

0 p 2p 3p wt

                Figure 10.1             [RTU, 2011]

Solution

  

w w p
p

p w p

Ê ˆ= £ £Á ˜Ë ¯

= £ £

0 0

0

( ) for 0

0 for 2

A
f t t t

t

    

p p p

p

w w w
p p p

È ˘
= = +Í ˙

Í ˙Î ˚
Ú Ú Ú

2 2

0 0 0 0

0 0

1 1
( ) ( ) 0. ( )

2 2

A
a f t dt td t d t

        

2
0

0 0 2
00

( )1
( )

2 2 42

tA A A
td t

p
p

w
w w

p p p
= = ◊ =Ú  (10.1)

 

2

0 0 0 0 0 0 0

0 0

2 2 2
( )cos ( ) cos( ) ( ) 0.cos( ( )

2 2
n

A
a f t n td t t n t d t n td t

p p
p

w w w w w w w
p p p p

È ˘
= = +Í ˙

Í ˙Î ˚
Ú Ú

  

pp
w

w w w w w p
p p p p

= = + = -Ú 0
0 0 0 0 02 2 2 2

00

1 1
( )cos( ) ( ) cos( ) sin( ) (cos 1)

tA A A
t n t d n t n t n

nn n
 (10.2)

If n is even, cos(np – 1) = 0; therefore, a2, a4, a6, ... terms are zero.

Example 10.3
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If n is odd, an = 
2 2

2
( cos 1)

A
n

n
p

p
- \ = -

\                      1 3 52 2 2

2 2 2
; ;

9 25

A A A
a a a

p p p
= - = - = -  (10.3)

                         

2

0 0

0

2

0 0 0 0 0

0

0 0 0

0

0
0 02 2

0

2
( ) sin( ) ( )

2

1
( )sin( ) ( ) 0.sin( ). ( )

1
( )sin( ) ( )

1
sin( ) cos (cos )

nb f t n t d t

A
t n t d t n t d t

A
t n t d t

tA A
n t n t n

n n

p

p p

p

p

p

w w
p

w w w w w
p p

w w w
p p

w
w w p

pp p

=

È ˘
= +Í ˙

Í ˙Î ˚

=

-È ˘
= - =Í ˙Î ˚

Ú

Ú Ú

Ú

If n is odd, cos np is –1, hence bn = 
A

np
 (10.4)

If n is even, cos np is –1, hence bn = 
A

np

-
 (10.5)

From Eqs (10.1) to (10.2), the desired Fourier series becomes

                      

w w w w
pp p p

w w
p p

= - - - +

- +





0 0 0 02 2 2

0 0

2 2 2
( ) cos cos cos sin

4 9 25

sin 2 sin3
2 3

A A A A V
f t t t t t

V V
t t

10.5
   COMPLEX FOURIER SERIES 

AND PROPERTIES

The exponential form or the complex form of the Fourier 

series is the form in which the sine and cosine terms of the 

trigonometric form are expressed as exponential functions 

with complex multiplying constants. The advantages of this form are:

 • It gives the compact representation of the Fourier series.

 • It generalises the concept of the Fourier transform.

 • Only one integral has to be calculated, instead of three in the trigonometric form, for calculation 

of Fourier coefficients.

Probe

1.  Write the Fourier Series in exponential 

form.
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The trigonometric form of the Fourier series is given by 

                      

0 0 0
1

( ) ( cos sin )n n

n

f t a a n t b n tw w

•

=
= + +Â

The sine and cosine terms can be expressed in exponential form as

               

w w

w w

w

w

-

-

È ˘= +Î ˚

È ˘= -Î ˚

0 0

0 0

0

0

1
cos

2

1
sin

2

jn t jn t

jn t jn t

n t e e

n t e e
j

So substituting these in the trigonometric form and after solving, the exponential form of the Fourier 

series is given by

                      

0( )
jn t

n

n

f t C e
w

•

= -•
= Â

The complex coefficients Cn of the exponential Fourier series can be calculated directly from f(t) 

using 

                        

0

0

0

1
( )

t T

jn t

n

t

C f t e dt
T

w

+
-= Ú

The effect of waveform symmetry is also present in the exponential form of Fourier series. For an 

even function, sine terms are absent and hence the complex coefficients are real. For an odd function, 

the cosine terms are zero and the complex coefficients are imaginary.

If Cn is plotted as a function of angular frequency w, a Fourier spectrum is obtained. The Fourier 

spectrum is a graphical display of the amplitude and phase of the complex Fourier coefficients at the 

fundamental and harmonic frequencies and is also called a discrete or line spectrum.

 Find the complex exponential Fourier series of the following periodic function.

      ( ) ( 1 1)t
f t e t

-= - < <

Solution The period of this function is 2

                        

p p

p

-

- -

- +Ê ˆ È ˘= - = Í ˙Á ˜ - +Ë ¯ Î ˚
Ú

11
1

1 1

1 1 exp( (1 ) )
exp

2 2 (1 )
n

ni t ni t
C e dt

p ni

                              

1exp( (1 )) exp(1 ) exp( ) exp( )

2(1 ) 2(1 )

ni ni e ni e ni

ni ni

p p p p

p p

-- + - + - -
= =

- + +

As we know that: cos sin 1i
e i

p
p p= + = -

Example 10.4
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( 1)in in

e e
p

p p-= = -

Therefore, Fourier coefficient becomes 

                         

1

2 2

( 1) ( 1) (1 )
sinh 1

(1 ) 2 1

n n

n

e e ni
C

ni n

p

p p

-- - - -
= =

+ +

The Fourier series of given function is therefore

                       

p
p

p

•

Æ •

-
= -

+
Â 2 2

(1 ) sinh 1
( ) ( 1) exp( )

1

n

n

ni
f t ni t

n

 Find the Complex Fourier series of the following function.

      
2( ) if 0 2f t t t= £ <

Solution The Fourier coefficients may be calculated using the following integral:

                         

p p- -= =Ú Ú
2 2

2 /2 2

0 0

1 1
( )

2 2

int i nt
nC f t e dt t e dt

                              

p p

p p

- -Ï ¸È ˘Ô Ô
= +Ì ˝Í ˙-Î ˚Ô ÔÓ ˛

Ú
2 22

0 0

1
2 (integration by parts)

2

i nt i nt
t e t e

dt
i n i n

                              

p p

p p p p

p p p

p

p

- -
Ï ¸-Ô Ô= + = +Ì ˝
Ô ÔÓ ˛

= -Ê ˆ= + Á ˜Ë ¯

+
= π

Ú Ú
2 2

0 0

2 2

1 4 2 2 1

2

2 1 2
(integration by parts again)

2(1 )
, 0

i nt i nti
t e dt t e dt

i n i n n i n

i

n i n in

i n
n

n

C0 can be evaluated by finding average value of function over this period.

                        

= = =Ú Ú
2 2

2
0

0 0

1 1 4
( )

2 2 3
C f t dt t dt

Example 10.5
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 Let f(x) = x for –p ≤ x ≤ p. Evaluate confident of associated Fourier series and complex Fourier series 

of f(x) on [–p, p].

Solution The Fourier coefficients are

                         
0

1
0.a xdx

p

p
p -

= =Ú

  and                 

pp

pp

pp

pp

p pp

p
p p pp

--

+

--

È ˘= = + =Í ˙Î ˚

È ˘= = - = - = -Í ˙Î ˚

Ú

Ú

2

1

2

1 1
cos ( ) cos( ) sin( ) 0

1 1 2 2
sin( ) sin( ) cos ( ) cos( ) ( 1)

n

n
n

x
a x x nx dx nx nx

nn

x
b x nx dx nx nx n

n nn

Since cos (np) = (–1)n if n is an integer.

The Fourier series of f(x) on [–p, p] is

            

1

1

2 2 1 2
( 1) sin( ) 2sin( ) sin(2 ) sin(3 ) sin(4 ) sin(5 )

3 2 5

n

n

nx x x x x x
n

•
+

=
- = - + - + -Â 

Coefficient of Complex Fourier Series is 

                      Cn = 11
( 1)n

n

+-

Complex Fourier Series is

                     

•

= •
= - -Â( ) [exp( ) exp( )]n

n

f x C inx inx

10.6
   FOURIER TRANSFORM AND 

INVERSE FOURIER TRANSFORM

Fourier Transform

We can modify the Fourier series expansion for periodic 

functions such that it could represent non-periodic transient 

functions. The exponential Fourier series is given by

                      

w w

+•
-

= -•
= =Â Ú

0

0 0

0

1
( ) where ( )

t T

nj t jn t

n n

n t

f t C e C f t e dt
T

When f(t) is a non-periodic signal, as T approaches infinity the discrete line spectrum starts becoming a 

continuous spectrum, that is, the frequency components constituting a given signal f(t) lie in a continuous 

Example 10.6

Probe

1.  What do you understand by Fourier 

transform and what are the necessary 

conditions for its existence?
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range. As T approaches infinity, w approaches zero and n becomes negligible. Fourier transform is an 

integral transformation of any non-periodic function f(t) from time domain to frequency domain. The 

Fourier transform of any signal f(t) is given by 

                     

w
w

•
-

-•

= Ú[ ] ( ) j t
F f t e dt

Inverse Fourier Transform

Consider a signal f(t) with Fourier transform F(w) such that F(w) = F[f(t)], and F(w) is evaluated using 

following expression:

                     

[ ] ( ) j t
F f t e dt

w
w

•
-

-•

= Ú

An Inverse Fourier transform of F(w) is defined as f(t) = F 
–1[F(w)], and f(t) is evaluated using 

following expression:

                      

w
w w

p

•

-•

= Ú
1

( ) ( )
2

j t
f t F e d

This pair of equations, known as Fourier transform pair, allow us to carry out the Fourier transformation 

to the frequency domain and the inverse process to the time domain. 

A set of sufficient conditions, (also called Dirichlet conditions) for the existence of Fourier transform, 

are stated below: 

 ∑ f(t) is absolutely integrable i.e. 

•

-•

< •Ú ( )f t dt

 ∑ f(t) is single valued and has only finite number of maxima and minima within any finite 

interval.

 ∑ f(t) has a finite number of finite discontinuities within any finite interval.

 Find the Fourier transform of the signal e3t
u(t).

Solution Given x(t) = e3t
u(t)

The given signal is not absolutely integrable as;

                     

3 ( )t
e u t

•

-•

= •Ú

Therefore, Fourier transform of x(t) does not exist.

Example 10.7
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 Obtain the Fourier transform of the function shown in shown in the Figure 10.2.

Solution The Fourier transform of the waveform shown in 

Figure 10.2.

  

w w w

w

w

w
w w

• • •
- - - - +

-•

- + •

= = =

-
= =

+ +

Ú Ú Ú10 (10 )

0 0

(10 )
0

( ) ( ) 100 100

100 100
( ) [ ]

10 10

j t t j t j

j t

V v t e dt e e dt e dt

V e
j j

 Determine the Fourier transform of the signum function shown in Figure 10.3.

Solution The function is defined as

              

sig ( ) 1 for 0

0 for 0

1 for 0

n t t

t

t

= >
= =
= - <

The Fourier transform of the function

                    

w w w
w

w w w

• •
- - -

-• -•

+
= = - + = + =Ú Ú Ú

0

0

1 1 2
( ) ( ) ( 1)j t j t j t

X x t e dt e dt e dt
J j j

 Find the inverse Fourier transform of X(w) = jw/(2 + jw)2.

Solution We know that   2

1
[ ( )]

( )

at
F te u t

a jw

- =
+

\                           2

2

1
[ ( )]

(2 )

t
F te u t

jw

- =
+

Let                         2
1( ) ( )t

te u t x t
- =

Then                   12

1
( )

(2 )
X

j
w

w
=

+

Using differentiation in time domain property [i.e. ( ) ( )],
FTd

x t j X
dt

w w¨ææÆ  we have

Example 10.8

Figure 10.2

Example 10.9

x t( )

t

–1

+1

Figure 10.3

Example 10.10
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1 1

1 2
1 1

( ) ( )

[ ( )] [ ( )] [ ( )]t

d
F x t j X

dt

d d
F j X x t te u t

dt dt

w w

w w
- -

È ˘ =Í ˙Î ˚

= =

10.7  FOURIER TRANSFORM OF PERIODIC SIGNALS

The periodic functions can be analysed using Fourier series and non-periodic function can be analysed 

using Fourier transform. But we can find the Fourier transform of a periodic function also. This means 

that the Fourier transform can be used as a universal mathematical tool in the analysis of both non-

periodic and periodic waveforms over the entire interval. Fourier transform of periodic functions may 

be found using the concept of impulse function.

We know that using Fourier series, any periodic signal can be represented as a sum of complex 

exponentials. Fourier transform of periodic signals are not absolutely integrable and have infinite 

discontinuities. Therefore, we obtain the Fourier transform of a periodic signal by Fourier transforming 

its complex Fourier series term-by-term. 

A Constant Function

                       2( ) ( ) ( )
F

f t A F j Aw pd w= ¨æÆ =

A unit Step Function

                      

1
( ) ( )

F
u t

j
pd w

w
¨æÆ +

An Exponential Function

                      
0

0( ) ( ) 2 ( )
Fj t

f t e F j
w

w pd w w= ¨æÆ = -

Sinusoidal Function

                      

w pd w w pd w w

w pd w w pd w w

¨æÆ - + +

¨æÆ - - + +
0 0 0

0 0 0

cos ( ) ( )

sin ( ) ( )

F

F

t

t j j

 Find the Fourier transform of unit step function if the Fourier transform of a signum function is given 

as:

2
sgn( )t

jw
¨æÆ

Solution A unit step function and signum function are related by the equation;

                         

1 sgn( )

2

t
ut

+
=

Example 10.11
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Also, we know that Fourier transform of unity is 2pdw.

Therefore, Fourier transform of a unit step function can be calculated as follows:

        

pd w pd w
w w

Ê ˆ Ê ˆ= + = + = + = +Á ˜ Á ˜Ë ¯ Ë ¯
1 1 1 1 1 2 1

( ( )) (1 sgn( )) (1) (sgn( )) ( ( )) ( )
2 2 2 2 2

F u t F t F F t
j j

 Find the Fourier transform of the following function.

-

Ï £
Ô

= >Ì
Ô ≥Ó

, 0

( ) 0

, 0

at

at

e t

f t a

e t

Solution The Fourier Transform is evaluated as below:

            

w w w w

w w

w w w w w

• •
-

-• -•

• •

= - = - + -

- + -È ˘ È ˘= + = + =Í ˙ Í ˙- + - + - +Î ˚ Î ˚

Ú Ú Ú
0

0

2 2

0 0

( ) ( )exp( ) exp( ) exp( )

exp( ( ) ) exp(( ) ) 1 1 2

( ) ( )

at at
F f t i t dt e i t dt e i t dt

a i t a i t a

a i a i a i a i a

 Find the Fourier transform of the rectangular pulse (gate) shown in Figure 10.4. Find the magnitude 

and phase spectra.

Solution Fourier transform of the pulse can be calculated as 

following:

       

w w w w
w

w w p

-

-

Ê ˆ= = = = Á ˜Ë ¯Ú
sin sin

( ) 2 2 2 sin

T
j t

T

T T T
X e dt T T c

T

The magnitude spectrum is, 
w

w
w

=
sin

( ) 2 ,
T

X

the phase spectrum is, 

sin( )
0, 0

arg{ ( )}
sin( )

, 0

T

X
T

w

w
w

w
p

w

Ï >ÔÔ= Ì
Ô <
ÔÓ

Example 10.12

Example 10.13

x t( )

–T T

t

l

Figure 10.4
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 Find the Fourier transform of the signal shown in Figure 10.5.
f t( )

e–at

t

Figure 10.5

Solution

( )

0 0

1
( ) ( ) j t t j t j t

F j f t e dt e e dt e dt
j

w a w a w
w

a w

• • •
- - - - +

-•

= = = =
+Ú Ú Ú

10.8  FOURIER TRANSFORM OF SOME FUNCTIONS

This section presents Fourier transform of some important functions.

Function, f(t) Function, f(w)

Definition of Inverse Fourier Transform

1
( ) ( )

2

j t
f t F e d

w
w w

p

•

-•

= Ú

Definition of Fourier Transform

( ) ( )
j t

F f t e dt
w

w

•
-

-•

= Ú

f(t – t0) 0( )
j

F e
w

w
-

w( ) j t
f t e F(w – w0)

f(a t)
1

| |
F

w

a a

Ê ˆ
Á ˜Ë ¯

F(t) 2pf(–w)

( )
n

n

d f t

dt
(jw)n F(w)

(–jt)n f(t)
( )

n

n

d F

d

w

w

( )

t

f dt t

-•
Ú

( )
(0) ( )

F
F

j

w
p d w

w
+

d(t) 1

0j L
e

w 2pd(w – w0)

sgn(t)
2

jw

Example 10.14
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 Find the inverse Fourier transform of the following Fourier transform.       1
( )

(1 )(2 )
F

i i
w

w w
=

+ +

Solution Carrying out partial fraction of given function

                    

1 1 1
( )

(1 )(2 ) 1 2
F

i i i i
w

w w w w
= = -

+ + + +

The inverse Fourier transform of the above function is

                    

w
w w w w

- - - -

- -

È ˘ È ˘ È ˘= = - = -Í ˙ Í ˙ Í ˙+ + + +Î ˚ Î ˚ Î ˚
£ÏÔ= Ì

- £ÔÓ

1 1 1 1

2

1 1 1 1
( ) [ ( )]

1 2 1 2

0 0

0t t

f t F F F F F
i i i i

t

e e t

 Find the Fourier transform of the signals eat(t) u(–t).

Solution Given that f(t) = eat(t) u(–t)

u(–t) implies that signal will exist only for negative values of t.

\                

0 ( )
( ) ( )

0 0

( ) ( ( )] ( )

1

( )

at at j t

a j t
a j t a j t

X F e u t e u t e dt

e
e dt e dt

a j a j

w

w
w w

w

w w

•
-

-•
•• - -

- -

-•

= - = -

È ˘
= = = =Í ˙- - -Î ˚

Ú

Ú Ú

10.9
   PROPERTIES OF FOURIER 

TRANSFORM

1. Linearity

The Fourier transform satisfies linearity and principle of 

superposition. Consider two signals x1(t) and x2(t).

If  f1(t)  F1(w)

And   f2(t)  F2(w)

Then  [a*f1(t) + b*f1(t)]  [a*F1(w) + b*F2(w)]

Example 10.15

Example 10.16

Probe

1.  List the properties of the Fourier 

Transform.
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2. Scaling

If  f(t)  F(w)

Then for a real ‘a’

  f(a*t)  
1

| |
F

a a

wÊ ˆ
Á ˜Ë ¯

3. Symmetry

If  f(t)  F(w)

Then  F(t)  2p f(–w)

4. Time and Frequency Differentiation/Integration

If                    ( ) ( )f t F w´

Then, [ ( )] ( ) ( )
d

f t j F
dt

w w´

And    t t w
w

w

-•

´

- ´

Ú
1

( ) ( )

( ) ( ) ( )

t

n
n

n

f d F
j

d
jt f t F

dt

 

5. Convolution

The convolution of two functions f1(t) and f2(t) is defined as:

1 2 1 2 2 1( ) ( ) ( )* ( ) ( )* ( )f t F t f f t d f f t dt t t t t t

• •

-• -•

ƒ ∫ - = -Ú Ú

(a) Time Convolution

If  1 1( ) ( )f t F w´

And  
2 2( ) ( )f t F w´

Then  
21 1 2{ ( ) ( )} ( )* ( )F f t f t F Fw wƒ ´  

(b) Frequency Convolution

If  1 1 2 2( ) ( ) and ( ) ( )f t F f t Fw w´ ´

Then  f1(t)* f2(t) 1 2

1
( ) ( )

2
F Fw w

p
´ ƒ

6. Time Shifting

If  ( ) ( )f t F w´

Then  0
0 0( ) ( )*

j t
f t t F

w
w e

-- ´  
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7. Frequency Shifting

If  ( ) ( )f t F w´

Then  0
0( )* ( )

j t
f t F

w
e w w´ -

 Demonstrate the frequency differentiation property of Fourier transform.

Solution Let f(t) and F(w) are Fourier Transform pair. This implies that 

  

( ) ( )

( ) ( )* j t

f t F

F f t dt
w

w

w e

•
-

-•

´

= Ú

Taking nth differentiation of both sides.

fi  w
w e

•
-

-•

È ˘
= Í ˙

Í ˙Î ˚
Ú( ) ( )*

n n
j t

n n

d d
F f t dt

dt dt

fi  
w

w e

•
-

-•

È ˘= Î ˚Ú( ) ( )*
n n

j t

n n

d d
F f t dt

dt dt

fi  w
w e

•
-

-•

= -Ú( ) ( )* ( )
n

n j t

n

d
F f t jt dt

dt

fi  w
w e

•
-

-•

È ˘= -Î ˚Ú( ) ( ) * ( ) *
n

n j t

n

d
F jt f t dt

dt

fi  ( ) ( ) ( )
n

n

n

d
jt f t F

dt
w- ´

 Demonstrate the frequency shifting property of Fourier transform. What is the application of this 

property?

Solution Let f(t) and F(w) are Fourier Transform pair. This implies that 

  
( ) ( )f t F w´

fi  ( ) ( )* j t
F f t dt

w
w e

•
-

-•

= Ú

Example 10.17

Example 10.18
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Shifting Fourier transform by constant frequency w0

fi  0( )
0( ) ( )*

j t
F f t dt

w w
w w e

•
- -

-•

- = Ú

fi  w w
w w e e

•
-

-•

- = Ú 0
0( ) [ ( )* ]*

j t j t
F f t dt

fi  w
w w e- = ¡ 0

0( ) { ( )* }
j t

F f t

Frequency Modulation (FM) in communication utilises the shifting property of Fourier transform. 

The carrier signal is frequency modulated using the base signal and results in efficient transmission 

of signal.

 Find a particular solution of following differential equation using Fourier transform.

         
-

£ÏÔ+ + =¢¢ ¢ Ì
>ÔÓ

3

0 , 0
3 2

, 0t

t
y y y

e t

Solution Writing the Fourier transforms of both members of the equation, we have

  [(iw)2 + 3iw + 2] F(w) = F(w)

Solving for Y(w), then using the partial fractions, we get

  
2

1 1 1
( ) ( ) ( ) ( ) ( )

1 23 2
Y F F G F

i ii
w w w w w

w ww w

È ˘ È ˘= = - ∫Í ˙ Í ˙+ +- + + Î ˚Î ˚

Using convolution theorem of Fourier Transform 

  

l

l l

l l l l l

l
l

l

• •
-

-•

- - - - - -

= - = -

£ £Ï ÏÔ Ô= - =Ì Ì
- £ - £Ô ÔÓ Ó

Ú Ú 3

0

2 ( ) 2( )

( ) ( ) ( ) ( )

0 , 0 0 ,
( ) and g( )

, 0 ,t t t t

Y t g t f d g t e d

t t
g t t

e e t e e t

Depending on how t relates to the limits of integration, we have

  

l l
l

- - - -

£Ï
Ô

= Ì - £Ô
Ó
Ú 2 2

0

0 , 0

( )
( ) , 0

t
t t

t

y t
e e d t

Example 10.19
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Finally, performing the indicated integrations and simplifying, we obtain

  

2 3

0 0

( ) 1 1
0

2 2

t t t

t

y t
e e e t

- - -

£Ï
Ô= Ì

- + £ÔÓ

P O I N T S  T O  R E M E M b E R

  Even Function Symmetry – Fourier series contains only an average term and Cosine terms  Odd Function Symmetry – Fourier series contains only Sine terms  Half-wave Symmetry – Fourier series contains only both sine and cosine terms unless the function is also odd or 

even  Complex Fourier Series provides an alternative representation of a Fourier Series by combining the sine and 

cosine terms.  The exponential form of the Fourier series is given by

  0( )
jn t

n

n

f t C e
w

•

= -•
= Â  The complex coefficients Cn of the exponential Fourier series can be calculated directly from f(t) using   

0

0

0

1
( )

t T

jn t
n

t

C f t e dt
T

w

+
-= Ú  The Fourier transform of any signal f(t) is given by   

( ) ( )
j t

F f t e dt
w

w

•
-

-•

= Ú  The inverse Fourier transform of any signal F[w] is given by 

  

1
( ) ( )

2

j t
f t F e d

w
w w

p

•

-•

= Ú  Step function, sinusoidal function, etc. which do not satisfy the convergence condition (one of the Dirichlet 

conditions), however Fourier Transform can be evaluated for these functions using impulses.  The Fourier transform of a periodic signal consists of a train of impulses in the frequency domain. The area of 

these impulses is directly proportional to the Fourier series coefficients.  The unit impulse train in the time domain has a transform of an impulse train is the frequency domain.  The properties of Fourier Transform are summarised in Table 10.1. These properties can be utilized to derive 

Fourier transform pairs.
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Table 10.1

Name of Property Function of Time Fourier Transform

1. Definition f(t) F(w)

2. Multiplication by constant Af(t) AF(w)

3. Linearity af1 + bf2 aF1(w) + bF2(w)

4. Time shift f(t – t0) e
–jwt

F(w)

5. Time scaline f(at), a > 0
1
F

a a

wÊ ˆ
Á ˜Ë ¯

6. Modulation e
jw0t f(t) F(w – w0)

7. Differentiation
( )

n

n

d f t

dt
(jw)n

F(w)

8. Convolution 1( )

x

x

f x

-
Ú f2(t – x)dx F1(w)F2(w)

9. Time multiplication t
n
f(t)

( )
( )

n
n

n

d F
j

d

w

w

10. Time reversal f(–1) F(–w)

11. Integration ( )

x

x

f t dt

-
Ú

( )
(0) ( )

F
F

j

w
p d w

w
+

PRACTICE PRObLEMS

 1. Find the Fourier series expansion for the 

standard square wave.

   

1 ( 1 0)
( )

1 (0 1)

x
f x

x

- - < <Ï
= Ì+ £ < +Ó

 2. Obtain trigonometric Fourier series of the 

signal shown in Figure 10.6?

 [RTU, 2011]

F t( )

–3p

2

–p

–
/2
p

0 p/2 3p

2

r

–1

p

1

Figure 10.6

 3. Find the Complex Fourier series for the 

square wave shown below.

   f(x) = 
0 for 3 0

for 0 3

x

x x

- £ £Ï
Ì £ £Ó

 4. Expand the square-wave voltage signal, 

as shown in the Figure 10.7 into a Fourier 

series.  [RGTU, 2014] 
– /4T T/4

–1

1

t

Figure 10.7

 5. Find the Fourier transform of a rectangular 

pulse. Obtain the associated frequency 

spectrum and comment on it. 
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x t( )

1.0

– /2t t/2
t

Figure 10.8

 6. The output of a system in response to an 

input x(t) = e
–2t

u(t) is y(t) = e
–t

u(t). Find 

the frequency response and the impulse 

response of the system.

 7. Consider a system with having impulse 

response h(t) = 2e
–2t

u(t) for an input x(t) = 

3e–t
u(t). Find the output of the system y(t).

 8. Evaluate Fourier Transform of Double 

sided real exponential function e
–a| t | 

utilising the properties associated with the 

transform.

 9. Find Fourier transform of triangular pulse 

shown in Figure 10.9.

Figure 10.9

 10. Evaluate Fourier Transform of Single 

sided real exponential function e
–at

u(t) 

utilising the properties associated with the 

transform.

MULTIPLE CHOICE QUESTIONS

 1. Any periodic function can be expressed by a Fourier series when the function has 

 (a) infinite number of finite discontinuities in a period

 (b) finite number of infinite discontinuities in a period

 (c) finite number of finite discontinuities in a period

 (d) infinite number of infinite discontinuities

 2. Fourier transform for the signal e–at u(t) does not exist if

 (a) a > 0  (b) a = 0 (c) a < 0  (d) a = 1

 3. In a periodic signal, the period T0 is doubled, the fundamental frequency w in the spectrum becomes

 (a) Doubled  (b) Increased 4 times (c) Halved (d) No change

 4. A periodic function x(t), with a time period T, is said to have half-wave symmetry if x(t) is:

 (a) –x(t + T/2) (b) x(t + T/2) (c) x(t – T/2) (d) – x(t – T/2)

 5. Time convolution of two signals is equal to  

 (a) f1(t) × f2(t) (b) F1(w) × F2(w)  (c) f1(t)/f2(t) (d) F1(w) / F2(w) 

 6. Fourier transform of an impulse function of amplitude A?

 (a) jwA (b) A (c) 2/jwA (d) None of these

 7. A power signal 

 (a) has infinite power and finite energy  (b) has infinite energy and finite power

 (c) is not absolutely integrable (d) is absolutely integrable

 8. An energy signal

 (a) has zero power and finite energy  (b) has infinite energy and finite power

 (c) is not absolutely integrable (d) is absolutely integrable

 9. Frequency convolution property states that  

 (a) f1(t) × f2(t) (b) F1(w) × F2(w)  (c) f1(t) / f2(t) (d) F1(w) / F2(w)

 10. Fourier transform of the sgn(t) function is

 (a) 2 / jw (b) jw (c) 1 / jw (d) 2jw

ANSwERS To MUlTiplE ChoiCE QUESTioNS

 1. (c) 2. (c) 3. (c) 4. (a, d) 5. (b)

 6. (b) 7. (b, c) 8. (a, d) 9. (a) 10. (a)



  

11.1  INTRODUCTION

A Transform T can be regarded as a mathematical operator which operates on a function f to result in 

function Tf. Thus, Transform T maps function f into Tf. The Laplace transform is an integral transforms 

which that maps differential or integro-differential equations in the “time” domain into polynomial 

equations which is in the “complex frequency” domain.

11.2
   DEFINITION OF LAPLACE 

TRANSFORM

The Laplace transform is a powerful analytical technique 

that is widely used to study the behaviour of linear, 

lumped parameter circuits. Laplace transforms are useful 

in engineering, particularly when the driving function has 

discontinuities and appears for a short period only.

One significant advantage of the Laplace transform is that it includes both stead-state and initial 

conditions. The initial energy in L or C is taken into account by adding independent source in series or 

parallel with the element impedance in its s-domain equivalent. Therefore, allowing to obtain both the 

steady-state response as well as the transient response.

University Questions

1.  Why do we use Laplace transform in circuit 

analysis? [RGTU, 2014]

2.  What is Laplace transform? Define its 

application. [PTU, 2011-12]
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  Definition of Laplace transform

  Laplace transform of some useful time functions

 Inverse transform techniques

 Properties of Laplace transform

 Initial and final value theorems

 Waveform synthesis

 Modelling of R, L, and C, in s-domain

 Nodal and mesh analysis in s-domain

  Additional circuit analysis techniques in 

s-domain

  RMS and average value of periodic waveform

Chapter Outline
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Laplace transform changes the time-domain function f(t) to the frequency-domain function F(s). 

Consider a function f (t) which is to be continuous and defined for values of t = 0. The Laplace transform 

is then

                 0

[ ( )] ( ) ( ) ( ) ( )st st
f t F s e f t u t dt f t e dt

• •
- -

-•

= = =Ú ÚL

Laplace transform is a function of independent variable s corresponding to the complex variable in 

the exponent of e–st. The complex variable S is, in general, of the form s= s + jw, where s and w being 

the real and imaginary parts respectively.

Similarly, the inverse Laplace transformation converts frequency-domain function F(s) to the time-

domain function f (t) as follows:

              

1 1
[ ( )] ( ) ( )

2

J
st

J

F s f t F s e ds
jp

+
-

-

= = ÚL

An important condition for existence of Laplace Transform for a function f (t) is

                                 
0

( ) .st
f t e dt

•
- < •Ú

11.3
   LAPLACE TRANSFORM OF SOME 

USEFUL TIME FUNCTIONS

1. Unit Step Function

In switching operations, abrupt changes may occur in 

current and voltages. This abrupt change is presented using 

a step function. A Unit Step Function f(t) = u(t) is defined 

as shown in Figure 11.1.

0

f t( )

k

t

where ( ) = 1 for > 0u t t

= 0 for < 0t

Figure 11.1

If the amplitude is K, then function is written as Ku(t).

The Laplace transform of a step function can be evaluated as follows:

                 

•• • -
- -= = = =

-Ú Ú
0 0 0

1
[ ( )] ( ) 1

st
st st e

f t f t e dt e dt
s s

L

                  

1
[ ( )]u t

s
=L

This expression forms a Laplace Transform pair of a unit step function.

University Question

1.  What is the relation between unit step, unit 

ramp and unit impulse functions?

 [PTU, 2011-12]
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2. Unit Ramp Function

The function is defined as shown in Figure 11.2.

r t( )

0

slope = 1

t

t t

t

for 0

0 for < 0

≥
r t( ) =  

Figure 11.2

Laplace transform of unit ramp function is 
2

1

s
.

3. Unit Impulse Function

An impulse function is represented by a vertical arrow and unbounded and 

discontinuous function. It is defined as shown in Figure 11.3.

Laplace transform of unit impulse function is 1.

11.3.1 Relationship between Impulse, Step and Ramp Function

 • Impulse function d(t) is the derivative of step function u(t)

 • Ramp function r(t) = t u(t) or      
0

( ) ( )

t

u t r t t= =Ú

 Define ‘unit impulse function’ and derive its Laplace transform. [RGTU, 2013]

Solution An impulse is a signal of infinite amplitude and zero duration. In general, an impulse 

signal doesn’t exist in nature, but some circuit signals come very close to approximating this definition. 

Due to switching operations, impulsive voltages and currents occur in circuit analysis. The impulse 

function enables us to define the derivative at a discontinuity, and thus to define the Laplace transform 

of that derivative.

An impulse function of magnitude K is represented as f(t) = Kd(t) is repressed using the expression 

as shown in Figure 11.4.

where             d(t) = 0, t π 0

Laplace Transform of Unit Impulse Function is:

                  0 0

[ ( )] ( ) ( ) 1st
t t e dt t dtd d d

- -

• •
-= = =Ú ÚL

The magnitude of an impulse function represents area under the curve of the function. An important 

property of the impulse function is the shifting property, which is expressed as

Figure 11.3

Example 11.1

f t( )

k td( ) k t ad( – )

0 a
t

Figure 11.4

Note: Difficulty Level    — Easy;  — Medium;  — Difficult
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( ) ( ) ( )f t t a dt f ad

•

-•

- =Ú

 What are the Laplace transforms of the voltage waveform shown in Figure 11.5?  [BPTU, 2008]

Solution

                      

£Ï ¸
Ô Ô= Ì ˝

> £Ô ÔÓ ˛
-Ê ˆ= = =Á ˜-Ë ¯

0; 0

( )
; 0 &

0

0

o

o o

t

f t V V
t t T

T

V V
V t V t

T T

 fi              
( ) 1

(S)
( )

oV S V
F

t S T S
= =

 Obtain the Laplace transforms for f1(t) = t and f2(t) = e
–at

.         [GTU, 2010]

Solution

 (a) Integration of unit step function gives the ramp function.

                    0

( ) ( )

t

u t r t t= =Ú

  The Laplace transform of ramp function can be determined as following:

           

2
0

1 1
( ) [ ( )]

1
[ ( )]

t

u t dt u t
s s

u t
s

È ˘
= =Í ˙

Í ˙Î ˚

=

ÚL L

L

 (b) The Laplace transform for function f(t) = e
–at is evaluated as:

                  

• •
- - - - + - + •-

= ◊ = = =
+ +Ú Ú ( ) ( )

0

0 0

1 1
( ) [ ]st st st s s t s a
e e e dt e e

s a s a
L

                  

1
[ ]st
e

s a

- =
+

L

Example 11.2

V0

v

n T
t

Figure 11.5

Example 11.3
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11.4  INVERSE TRANSFORM TECHNIQUES

Inverse Laplace transform can be determined using partial 

fraction method. This method is discussed for both proper 

and improper rational functions.

11.4.1 Partial Fraction Expansion: Proper Rational Function

Let F(s) is the Laplace transform of function f(t) and is a proper rational function, then the Partial 

Fraction Method can be utilised to obtain Inverse Laplace transform F–1(s).

A proper rational function can be expressed in the form of a ratio of two polynomials in s such that 

no non-integral power of s appears in polynomials as given below.

                      

1
1 1 0

1
1 1 0

( )
( )

( )

n n
n n

m m
m m

a s a s a s aN s
F s

D s b s b s b s b

-
-

-
-

+ + + +
= =

+ + + +





The coefficients a and b are real constants, and the exponents m and n are positive integers. The ratio 

N(s)/D(s) is called a proper rational function if m >n, and an improper rational function if m > n. 

Only a proper rational function can be expanded as a sum of partial fractions.

11.4.2 Partial Fraction Expansion: Improper Rational Function

An improper rational function can always be expanded into a polynomial plus a proper rational 

function. The polynomial is then inverse-transformed into impulse functions and derivatives of impulse 

functions.

 Solve the following differential equations using Laplace transform.

(a) 
2

2

2
2 , (0 ) 4, (0 ) 2

d i di di
t t i

dt dtdt

- -+ = + = = -  (b) 
2

2
4 sin cos2 , (0 ) 0, (0 ) 0

d i di
i t t i

dtdt

- -+ = - = =

                                [PU, 2012]

Solution

 (a) Taking Laplace transform of given equation:

                       
- - + - = +2

3 2

2 2
[ ( ) (0) (0)] [ ( ) (0)]S I S Si i SI S i

S S

                      

- + + - = +

+ +
= + + = + +

++ + + + +

2

3 2

3 2 2 2 2 4 3

2 2
[ ( ) 4 2] [ ( ) 4]

2 2 4 2 2 2 4 2
( )

( 1)( ) ( ) ( 1) ( 1)

S I S S SI S
S S

S S
I S

S SS S S S S S S S S S S S

                              
2 3 4 2 3

2 2 2 2 2 2 2 2 2 2 2

1 1 1S S S S S SS S S S S

-È ˘ È ˘ È ˘= + - + + + - + - + -Í ˙ Í ˙ Í ˙+ + +Î ˚ Î ˚ Î ˚

Probe

1.  Explain use of Partial Fraction Method 

in determining the Inverse Laplace 

Transform.

Example 11.4
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  Taking inverse Laplace transform of above expression

   fi      
3

2 22 2 2 2 2 2 2 2
3

t t tt
i t t e t t e e

- - -= - + - + + + - + - + -
3

2 2
3

tt
e

-Ê ˆ
= + -Á ˜Ë ¯

 (b) Taking Laplace transform of given equation

     

2 1

2 2

1
[ ( ) (0) (0)] 4 ( )

1 4

S
S I S Si i I S

S S
- - + = -

+ +

   fi       2

2 2

1
[ ( ) 0 0] 4 ( )

1 4

S
S I S I S

S S
- - + = -

+ +

   fi       
2 2 2 2

1
( )

( 1)( 4) ( 4)

S
I S

S S S
= -

+ + + 2 2 2 2 2 2

1 1

3( 1) 3( 2 ) ( 2 )

S

S S S
= - -

+ + +

  Taking inverse Laplace transform of above expression

   fi 
sin sin 2

( ) cos2
3 6

t t
t t t t= - -

 Determine the partial fraction expansion for 

        
2

10
( )

10 16
Y s

s s
=

+ +

Solution Using partial fraction method 

                      
10

( )
( 8)( 2) 8 2

A B
Y s

s s s s
= = +

+ + + +

       
10 ( 2) ( 8)

( 8)( 2) ( 8)( 2)

A s B s

s s s s

+ + +
=

+ + + +
fi         A(s + 2) + B(s + 8) = 10

fi         
0

2 8 10 2 8 10

A B A B

A B B B

+ = fi = -Ï
Ì + = fi - + =Ó

fi        B = 10/6 = 5/3;  A = –5/3

Taking inverse Laplace transform of Y(s)

                      

5 1 5 1
( )

3 8 3 2
Y s

s s
= - ◊ + ◊

+ +

 fi                  8 25 5
( ) ( )

3 3

t t
y t e e u t

- -Ê ˆ= - +Á ˜Ë ¯

Example 11.5
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 Determine the partial fraction expansion for 

        
- + + -

=
- - -

4 3 2

2

7 13 4 12
( )

( 1)( 2)( 3)

s s s s
Y s

s s s s

Solution

                     

- + + -
=

- - -

= + + + +
- - -

4 3 2

2

32 1 1 2

2

7 13 4 12
( )

( 1)( 2)( 3)

1 2 3

s s s s
Y s

s s s s

AC C A A

s s s ss

Determining coefficients of partial fractions

                        

Æ

Æ

- + + - -
= = =

- - - -

È ˘- + + -
= Í ˙- - -Î ˚

- - - - - - - + - - + - -
=

- - -
- + ¥

= =

4 3 2

2
0

4 3 2

1
0

2

2

7 13 4 12 12
lim 2

( 1)( 2)( 3) 6

7 13 4 12
lim

( 1)( 2)( 3)

4( 1)( 2)( 3) ( 12)[( 2)( 3) ( 1)( 3) ( 1)( 2)]

[( 1)( 2)( 3)]

24 12 11
3

6

s

s

s s s s
C

s s s

d s s s s
C

ds s s s

                        

4 3 2

1 21

4 3 2

2 22

4 3 2

3 23

7 13 4 12 1
lim

2( 2)( 3)

7 13 4 12 8
lim 2

4( 1)( 3)

7 13 4 12 9 1
lim

18 2( 1)( 2)

s

s

s

s s s s
A

s s s

s s s s
A

s s s

s s s s
A

s s s

Æ

Æ

Æ

- + + - -
= =

- -

- + + -
= = = -

-- -

- + + -
= = =

- -

Taking inverse Laplace transform of Y(s), we get

 y(t) = 2 31 1
2 3 2

2 2

t t t
t e e e+ - - +

11.5  PROPERTIES OF LAPLACE TRANSFORM

Table 11.1 lists important properties of Laplace transform which allows to obtain transform and inverse-

transform of complex functions. 

Example 11.6
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Table 11.1 Properties of Laplace Transform

Description of Laplace Transform Property Mathematical Formula

Linearity (Multiplication by a constant) Consider a function f(t) multiplied by a constant K. 

L{Kf(t)} = KF(s)

Superposition (Addition / Subtraction)

The Laplace transform of the sum of the two or more functions 

is equal to the sum of transforms of the individual function.

Consider two functions f1(t) and f2(t)

1 1

2 2

1 2 1 2

( ) ( ) and

( ) ( ), then

[ ( ) ( )] ( ) ( )

f t F s

f t F s

f t f t F s F s

¨æÆ

¨æÆ

± = ±

L

L

L

Differentiation

If a function f(t) is piecewise continuous then the Laplace 

transform of its derivative df(t)/dt

 

is given by

Similarly, Laplace transform of second derivative:

Laplace transform of the nth derivative

2

( )
( ) (0)

[ ( )] ( ( )) ( ) (0) (0)

df t
SF s f

dt

d
f t f t S F s Sf f

dt

= -

= = - -¢¢ ¢ ¢

L

L L

where f¢(0) is the initial value of the first derivative of 

f (t).

1 2

2 1
3

2 1

( ) (0)
( ) (0 )

(0 )
(0 )

n
n n n

n

n
n

n

d f t dt
S F s S f S

dtdt

d f d
S K f

dt dt

- - -

- -
- -

-

= - -

- - -

L

Integration

If a function f(t) is continuous then the Laplace transform of 

its integral ( )  f t dtÚ  
is given by 0

1 ( )
( ) [ ( )]

t
F s

f t dt f t
s s

= =ÚL L

Differentiation of Transforms

If the Laplace transform of the function f(t) exists then the 

derivative of the corresponding transform with respect to s in 

the frequency domain is equal to its multiplication by t in the 

time domain.

[ ( )] ( )
d

tf t F s
ds

-
=L

Integration of Transforms

If the Laplace transform of the function f(t) exists then the 

integral of corresponding transform with respect to s in the 

complex frequency domain is equal to its division by t in the 

time domain

0

( )
( )

f t
F s ds

t

•

=Ú L

Translation in the Time Domain

If the function f(t) has the transform F(s) then the Laplace 

transform of f(t – a) u(t – a) is eat
F(s) (with a > 0).

[ ( ) ( )] ( )as
f t a u t a e F s

-- - =L

Translation in the time domain corresponds to multi-

plication by an exponential in the frequency domain.

(Continued)
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Description of Laplace Transform Property Mathematical Formula

Translation in the Frequency Domain

If the function f(t) has the transform F(s) then the Laplace 

transform of e–at
f(t) is F(s + a).

Similarly the Laplace transform of eat
f(t) is F(s – a).

( ) ( ( )]

[ ( ) ( )

at

at

F s a e f t

e f t F s a

-+ =

= -

L

L

Translation in the frequency domain corresponds to 

multiplication by an exponential in the time domain

Scale Changing 

The scale-change property gives the relationship between f(t) 

and F(s) when the time variable is multiplied by a positive 

constant.

1
{ ( )} , 0

s
f at F a

a a

Ê ˆ= >Á ˜Ë ¯L

S - Derivative

S - Integral

( )
( )

( )
( ) ( 1)

( )
( )

n
n n

n

s

dF s
t f t

ds

d F s
t f t

ds

f t
F u du

t

•

-

-

Ú

 Find the Laplace transforms of t2 cost.

Solution We know that 
2

{cos }
1

s
L t

s
=

+

Therefore, we can work out from { ( )} ( 1) { ( )}
n

n n

n

d
L t f t F s

ds
= -

             

2
2

2 2
{ cos }

1

d s
L t t

ds s

Ê ˆ
= Á ˜+Ë ¯

Find the first derivative

                        

2

2

2

2 2 2

1

, , 1, 1, 2

( 1)(1) ( )(2 )

( 1)

s
z

s

a da db
z a s b s s

b ds ds

da db
b a

dz s s sds ds

ds b s

=
+

= = = + = =

- + -
= =

+

 fi                   
2 2 2

2 2 2 2

( 1) (2 ) 1

( 1) ( 1)

dz s s s

ds s s

+ - -
= =

+ +

Example 11.7

Table 11.1 Continued
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Differentiate again.

                        

2

2 2

2 2 2

3 2

2 2 2 2

2 2 2 2

1

( 1)

, 1 , ( 1) ,

2 , 4 4 4 ( 1)

(( 1) )( 2 ) (1 )(4 ( 1))

(( 1) )

s
z

s

a
z a s b s

b

da db
s s s s s

ds ds

da db
b a

dz s s s s sds ds

ds b s

-
=

+

= = - = +

= - = + = +

- + - - - +
= =

+

 fi                    
2 2 2 2 2 1 2

2 4 2 3

2 ( 1) 4 (1 )( 1) 2 ( 1) 4 (1 )

( 1) ( 1)

dz s s s s s s s s s

ds s s

- + - - + - + - -
= =

+ +

                              

3 3 3

2 3 2 3

2 2 4 4 2 6

( 1) ( 1)

s s s s s s

s s

- - - + -
= =

+ +

 Given that 
2

2
{sin 2 }

4
L t

s
=

+
, find the Laplace transform of t sin 2t.

Solution Using Laplace transform property { ( )} ( )L tf t F s= - ¢

Therefore 
2

2
{ sin 2 }

4

d
L t t

ds s

Ê ˆ
= - Á ˜+Ë ¯

Upon differentiating above expression

Therefore 
2 2 2

2 4
{ sin 2 }

4 ( 4)

d s
L t t

ds s s

Ê ˆ
= - =Á ˜+ +Ë ¯

11.6  INITIAL AND FINAL VALUE THEOREMS

The initial- and final-value theorems are useful because 

they enable us to determine from F(s) the behaviour of 

f(t) at t = 0 and t = •. Hence, we can check the initial and 

final values of f(t) to see if they conform to known circuit behaviour, before actually finding the inverse 

transform of F(s). 

Example 11.8

University Question

1.  State and explain the initial and final 

values theorems. [GTU, 2012]
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 1. The initial-value theorem states that

  0
lim ( ) lim ( )
t s

f t SF s
Æ Æ•

=

  The initial-value theorem is based on the assumption that f(t) contains no impulse functions.

 2. The final-value theorem states that

  0
lim ( ) lim ( )
t s

f t SF s
Æ • Æ

=

  The final-value theorem is useful only if f(•) exists.

11.7  WAVEFORM SYNTHESIS

Basic functions such as impulse, step and ramp functions can be utilised to synthesise any waveform. 

These signals may be combined by addition or subtraction to build a variety of general waveforms used 

in practice.

 Use ramp function to express the waveform shown in Figure 11.6.

Solution The waveform shown in Figure 11.6 starts at t = 0 and ends 

at t = 5 seconds. 

The waveform in Figure 11.6 is combination of a ramp function 

r(t) = 4 r(t) at t = 0 and another ramp function r(t) = – 4r(t – 5) at t = 5.

Therefore, the waveform can be written as: f (t) = 4 [r(t) – r(t – 5)]

 Use step function to express the waveform shown in Figure 11.7.

Solution The waveform shown in Figure 11.7 starts at t = t0 and 

ends at t = t2 seconds. The waveform is combination of the following 

step functions.

 1. 3u(t) at t = t0

 2. –6u(t) at t = t1

 3. 3u(t) at t = t2
Above step functions can be added to get expression for the 

waveform

                 1 23[ ( ) 2 ( ) ( )]ou t t u t t u t t- - - + -

Example 11.9

f t( )

20

0 5 t(sec)

Figure 11.6

Example 11.10

3

–3

t0 t1 t2 Time

Figure 11.7
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11.8
   MODELLING OF R, L, AND C, IN 

s-DOMAIN

Electrical circuit elements R, L and C can be modelled in 

Laplace Transfer domain (i.e., s-domain). The initial energy 

in L or C is taken into account by adding independent 

source in series or parallel with the element impedance in 

its s-domain equivalent.

 1. For a resistor, the voltage current relationship in the time domain is:

 v(t) = Ri(t)

  Taking the Laplace transform:

 V(s) = RI(s)

 2. Similarly, for an inductor, taking Laplace transform of voltage-current relationship

                       

( )
( )

di t
v t L

dt
=

;    

-

= +
1 (0 )

( ) ( )
i

I s V s
sL s

  Equivalent Circuit representation in s-domain is as shown in Figure 11.8.

+
–

–

+

–

+

i( )t

i(0)

v t( ) L

(a) (b)

I( )s

V s( )

Li(0 )–

sL

sLv s( )

–

+

I( )s

i(0 )–

s

Figure 11.8

 3. For a capacitor, taking Laplace transform of voltage-current relationship

                       
( )

( )
dv t

i t C
dt

= ;    
1 (0 )

( ) ( )
v

V s I s
sC s

-

= +

  Equivalent Circuit representation in s-domain is shown in Figure 11.9.

  Note here that the initial conditions in case of a capacitor or an inductor can be represented 

either as a voltage or as a current source.

+
–

+

–

+

–

+

–

+

–

+

–

+

–

v t( )

v(0) C V s( )

l

sC

v(0)
s

Cv(0)V t( ) V s( )
l

sC

I( )s I( )s

Figure 11.9

University Question

1.  Obtain the domain (Laplace transform) 

equivalent circuit diagram of an inductor 

and capacitor with initial condition?

 [MU, 2014]
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 4. In many applications, we will assume the initial conditions are zero. In this condition, equivalent 

s-domain expression become simplified as below:

  Resistor  V(s) = RI(s)

  Inductor  V(s) = sLI(s)

  Capacitor     
1

( ) ( )V s I s
sC

=

 At t = 0, the switch is closed with a charged capacitor having voltage V0. Find the equivalent s-domain 

of the circuit shown in Figure 11.10.

Solution The initial condition of capacitor 

can be represented using a voltage source. 

Utilising the s-domain equivalents, the circuit 

can be re-drawn as shown in Figure 11.11.

 Obtain frequency domain equivalent electrical circuit of the network shown in Figure 11.12.

Figure 11.12

Solution Equivalent s-domain circuit can be obtained as shown in Figure 11.13.

v1(0)

+

–

+

–

+ – + –sR1 R2sL2

1
sC1

1
sC2

V sA( )
+

–

sL1

L1 1I (0)

L2 2I (0)

v2(0)
s

V sB( )

Figure 11.13

Example 11.11

t = 0
+

–

RiV0 C

Figure 11.10 Figure 11.11

Example 11.12
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 At t = 0,  the switch is opened as shown in Figure 11.14. Find the equivalent s-domain of the 

circuit.

Figure 11.14

Solution The steady state current in inductor L1 at t = 0– is 10A, while for inductor L2 at t = 0– is 

0A. Utilising the s-domain equivalents, the circuit can be re-drawn as shown in Figure 11.15.

Figure 11.15

 Assume that for circuit shown in Figure 11.16, vc(0) = – 4 V. Find the s-domain equivalent of the 

circuit at t = 0+.

2 ( )u t V

+

–

+

–

t = 0 100 W

0.001 F v tc( )

Figure 11.16

Solution Initial voltage across capacitor can be represented 

using a voltage source. It is to be noted that after closing the 

switch at t = 0+, the circuit current will charge the capacitor in 

opposite direction. Therefore, the polarity of voltage source will 

be reversed to charging direction. 

Utilising the s-domain equivalents, the circuit can be re-drawn 

as shown in Figure 11.17.

Example 11.13

Example 11.14

+

–

+

–

2
s 4

s

1000
s

Vc(s)I(s)

t = 0 100 W

–

+

Figure 11.17



Introduction to Laplace Transform  11.15

 Find the s-domain equivalent of the circuit shown in Figure 11.18. 

Figure 11.18

Solution The circuit is excited by a ramp source. Utilising the s-domain equivalents, the circuit can 

be re-drawn as shown in Figure 11.19.

Figure 11.19

11.9  NODAL AND MESH ANALYSIS IN s-DOMAIN

An electrical circuit in time domain can be converted into s-domain circuit by utilising above 

representation of circuit elements. The s-domain circuit, thus obtained, can be solved for any required 

quantity by using standard circuit analysis technique. 

Following steps shall be undertaken for solving an electrical circuit in s-domain:

 1. Re-draw the given electrical circuit using representation in s-domain.

 2. Implement initial conditions, if any, of circuit elements

 3. Use Kirchoff’s current and voltage law to write nodal or mesh equations

 4. Re-arrange the circuit equations to write in form of un-known variable

 5. Take inverse Laplace transform of re-arranged equation and write un-known variable in time 

domain

 Find V0 (t) of the circuit shown in Figure 11.20 using Laplace transform technique.

Figure 11.20

Example 11.15

Example 11.16
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Solution Equivalent s-domain representation of the circuit elements are shown in Figure 11.21:

            

1
( )

1

1 1 3

3

u t
s

H sL s

F
sC s

Æ

Æ =

Æ =

Following is the equivalent electrical circuit in s-domain.

Assuming currents in loop-1 and loop-2 are I1(s) and I2(s), writing mesh equations for both 

loops:

                           1 2

1 3 3
1 I I

s s s

Ê ˆ= + -Á ˜Ë ¯

1 2

3 3
0 5I s I

s s

Ê ˆ= - + + +Á ˜Ë ¯

\                      = + +2
1 2

1
( 5 3)

3
I s s I

Solving equations (1) and (2) simultaneously:

                          

2
2 2

3 2
2

1 3 1 3
1 ( 5 3)

5 3

3 ( 8 18 )

s s I I
s s

s s s I

Ê ˆ Ê ˆ= + + + -Á ˜ Á ˜Ë ¯ Ë ¯

= + +

\                      
2 3 2

3

8 18
I

s s s
=

+ +
Voltage across inductor can be determined as following through use of Inverse Laplace transform:

                     

= = =
+ + + +0 2 2 2 2

3 3 2
( )

8 18 2 ( 4) ( 2)
V s sI

s s s

 Find V0 (t) of the network shown in Figure 11.22 if in the initial voltage is given as V0(0
–) = 5 V.

10 W

+

–

~ 10 W10 ( )e u t V–t v t0( ) 0.1 F 2 ( )d t A

Figure 11.22

Figure 11.21

Example 11.17
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Solution Equivalent s-domain electrical circuit:

Applying nodal analysis in the circuit shown in Figure 11.23,

                  

0
0 0

10

( 1)
2 0.5

1010 10

V
V Vs

s

-
+

+ + = +

fi              0 0 01
2.5

10 1 10 10

V V sV

s
- + + =

+

fi              
0

1 1
( 2) 2.5

10 1
V s

s
+ = +

+
Solving for V0 (s) using partial fraction expansion:

              0

10
( 2) 25

1
V s

s
+ = +

+

\                     
0

25 35

( 1)( 2)

s
V

s s

+
=

+ +

1 2
0

25 35

( 1)( 2) 1 2

K Ks
V

s s s s

+
= = +

+ + + +
 K1 = 10;  K2 = 15

                     
0

10 15
( )

1 2
V s

s s
= +

+ +

Taking inverse Laplace transform of above expression:

                     
2

0 ( ) (10 15 ) ( )t t
v t e e u t

- -= +

11.10  ADDITIONAL CIRCUIT ANALYSIS TECHNIQUES IN s-DOMAIN

The network analysis techniques and network theorems can also be applied to s-domain equivalent 

circuit of time-domain electrical network. This is illustrated using following examples.

 Determine V0(t) of the network shown in Figure 11.24, assuming zero initial conditions.

1 H

1
4

4 W

+

–

v t0( )F 2 ( ) Vu t

Figure 11.24

10 W

~ 10 W
10

+ 1s
2A

10

s
0.5 A

Figure 11.23

Example 11.18
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Solution Using current division (Figure 11.25),

       

= ◊ =
+ ++ +

= =
+

= + +
++ +

= + + + + +

0 2

0 0 2

2 2

2 2

4

10 40

4 ( 4 4)4

160
( ) 4

( 2)

160

2( 2) ( 2)

160 ( 4 4) ( 2 )

sI
s s s ss

s

V s I
s s

A B C

s ss s s

A s s B s s Cs

Equating coefficients:

           

= ææÆ =

= + +

= + ææÆ = - = -

0

1

2

: 80 4 40

: 0 4 2

: 0 40

s A A

s A B C

s A B B A

Hence, = + + ææÆ = -0 4 2 80A B C C

0 2

2 2
0

40 40 80
( )

2 ( 2)

( ) 40( 2 ) ( )t t

V s
s s s

v t I e te u t V
- -

= - -
+ +

= - -

 Consider the system shown in Figure 11.26 and obtain the equation of motion of mass using Laplace 

transform. Take m = 1 kg, c = 5 Ns/m, k = 4 N/m, and F = 2 N.

Solution Applying Newton’s second law of motion F = ma, we get 

following equation

            
( ) ( ) ( ) ( )m x t c x t k x t F t◊ + ◊ + ◊ = 

Taking the Laplace transform of both sides of the equation of motion 

gives

            
2 2

1 ( ) 5 ( ) 4 ( )s X s s X s X s
s

◊ ◊ + ◊ ◊ + ◊ =

By rearranging this equation, we get

                     
2

2
( )

( 5 4)
X s

s s s
=

◊ + ◊ +

Figure 11.25

Example 11.19

k

c

y

x

F t( )m

Figure 11.26
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Writing above equation as a sum of partial fractions

                     

2
( )

( 4) ( 1)
X s

s s s
=

◊ + ◊ +

Solving using Partial Fraction Method 

      

31 22

( 4) ( 1) 4 1

AA A

s s s s s s
= + +

◊ + ◊ + + +

                     

1 1 2
( )

2 6 ( 4) 3 ( 1)
X s

s s s
= + -

◊ + ◊ +

and then taking Inverse Laplace Transform

                       

4
1 1 1 2 1 2

( )
2 6 ( 4) 3 ( 1) 2 6 3

t
te

x t e
s s s

- ◊
- -È ˘= + - = + - ◊Í ˙◊ + ◊ +Î ˚
L

 Consider the mixing system shown in Figure 11.27. Tank T1 

initially contains 100 liters of pure water. Tank T2 initially 

contains 100 liters of water in which 150 kg of salt are 

dissolved. The inflow into T1 is 3 kg/min from T2 and 6 kg/min 

containing 6 kg of salt from the outside. The inflow into T2 is 

8 kg/min from T1. The outflow from T2 is 8 kg/min. The 

mixtures are kept uniform by stirring. Find the salt contents 

y1(t) and y2(t) in T1 and T2 respectively. 

Solution Differential equation governing the salt concentration in both tanks can be obtained using 

the fact that 

Time rate of change of salt concentration = Inflow rate – Outflow rate

                         1 1 2

8 2
6.

100 100
y y y= - + +¢

                         
2 1 2

8 8
.

100 100
y y y= -¢

Taking Laplace transform for above equations

                        

- - + = -

+ - - = -

1 2

1 2

6
( 0.08 ) 0.02

0.08 ( 0.08 ) 150

s Y Y
s

Y s Y

Example 11.20

2 gal/min

8 gal/min

6 gal/min

T2T1

6 gal/min

Figure 11.27
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Utilising Partial Fraction Method to solve above equations 

                         

1

2

2

9 0.48 100 62.5 37.5

( 0.12)( 0.04) 0.12 0.04

150 12 0.48 100 125 75
.

( 0.12)(s 0.04) 0.12 0.04

s
Y

s s s s s s

s s
Y

s s s s s

+
= = - -

+ + + +

+ +
= = + -

+ + + +

and then taking Inverse Laplace Transform, we get

                         

0.12 0.04
1

0.12 0.04
2

100 62.5 37.5

100 125 75

t t

t t

y e e

y e e

- -

- -

= - -

= + -

Find i0(t) in the network shown in Figure 11.28 using 

Laplace transform.

Solution Equivalent electrical circuit in s-domain 

can be obtained as shown in Figure 11.29,

Writing KVL equation for above mesh:

fi               
2

100 ( ) ( ) 0I s V s
s c

- - =

fi               
2 6

( )
10

V s
s s c

- =
+

fi               4 20
( )

( 10) 10

s A B
V s

s s s sc

- +
= = +

+ +

fi               2 6
( )

10
V s

s sc
= -

+

fi                  ( ) 2 6 ( )10
v t e u t

tÈ ˘= -Í ˙Î ˚
-

11.11  RMS AND AVERAGE VALUE OF PERIODIC WAVEFORM

The Root Mean Square (RMS) value of periodic waveform represented by continuous function f(t) is 

defined over an interval (T1 £ t £ T2) can evaluated using following formula:

                      

1
=

- Ú
2

1

2
rms

2 1

[ ( )]

T

T

f f t dt
T T

Example 11.21

2 ( )u t V

+

–

+

–

t = 0 100 W

0.001 F v tc( )

Figure 11.28

+

–

+

–

2
s 4

s

1000
s

Vc(s)I(s)

t = 0 100 W

–

+

Figure 11.29
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The average value of any time-varying function over a time interval Dt = T2 – T1 is defined as the 

integral of the function over this time interval, divided by Dt. 

The average value can be represented using following formula:

                      

2

2

1

1
2 1

( )
1

( )

t

t
t

avg

t

f t dt

f f t dt
t t t

∫ =
D -

Ú
Ú

Determine RMS values of the waveform shown in Figure 11.30. 

Solution Utilising formula for RMS value

             

2
2 2 2 2

rms

0 0

1 1
( )

T DT
V

V v t dt V dt DT DV
T T T

= = = ∑ =Ú Ú

                      rmsV V D=

P O I N T S  T O  R E M E M b E R

  Laplace transform F(s) of function f (t) is evaluated using

                 
0

[ ( )] ( ) ( ) ( ) ( )
st st

f t F s e f t u t dt f t e dt

• •
- -

-•

= = =Ú ÚL

  Inverse Laplace transform f (t) of function of F(s) is evaluated using

                 
1 1
[ ( )] ( ) ( )

2

J
st

J

F s f t F s e ds
jp

+
-

-

= = ÚL

  Function discontinuities are mathematically represented using step and impulse functions. A step function 

represents a function discontinuity while an impulse function enables us to define the derivative at a discontinuity.

  The magnitude of an impulse function represents area under the curve of the function. An important property of 

the impulse function is the shifting property, which is expressed as

                
( ) ( ) ( )f t t a dt f ad

•

-•

- =Ú
  A proper rational function is the one wherein the power of numerator in s is less than power of s in denominator. 

Only a proper rational function can be expanded as a sum of partial fractions.

  An improper rational function can always be expanded into a polynomial plus a proper rational function. The 

polynomial is then inverse-transformed into impulse functions and derivatives of impulse functions.

  Properties of Laplace transform allows to transform and inverse-transform the complex functions. These 

properties are listed in above section for reference.

Example 11.22

v

0
DT

T

0 < < 1D

Figure 11.30 
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PRACTICE PRObLEMS

 1. Find the Laplace transform of the following 

functions. [PTU, 2011-12]

 a. f(t) = cos wt and f(t) = sin wt

 b. f(t) = cosh at and f(t) = sinh at  

 2. Determine the partial fraction expansion 

for 

           
3 2

2 2

3 6 4
( )

( 2 2)

s s s
Y s

s s

- + -
=

- +

 3. Find the inverse Laplace transform for the 

following function. 

                      
2

3 5
( )

7

s
F s

s

+
=

+
 4. Find the Laplace transform of 

2 2
( ) cos(3 )

x
f t t e t

-=

 5. Find the Laplace transform of 3 2
( 4)

t
e t + .

 6. Find the Laplace transform of 3
sin2

t
e t

-
.

 7. Use ramp function to express the waveform 

shown in Figure 11.31, given that t1 – t0 = 

t2 – t1

Figure 11.31

 8. Consider the circuit shown in Figure 

11.32. Find the value of the voltage across 

the capacitor assuming that the value of 

vs(t) = 10u(t) V and assume that at t = 0, 

–1A flows through the inductor and +5 is 

across the capacitor.

W

v ts( ) 5 H+
–

10
3

0.1 F

Figure 11.32

 9. The switch shown in Figure 11.33 has been 

in position b for a long time. It is moved 

to position a at t = 0. Determine v(t) for 

t > 0.

+
–

–

+
v t( )I0

a

b

V0

R C

t = 0

Figure 11.33

 10. Find i0(t) of the network shown in 

Figure 11.34 using Laplace transform.

Figure 11.34

MULTIPLE CHOICE QUESTIONS

 1. Laplace transform analysis gives

 (a) Time-domain response only (b) Frequency-domain response only

 (c) Both time- and frequency-domain (d) None

 2. The final-value theorem is used to find the

 (a) steady-state value of the system output (b) initial value of the system output

 (c) transient behaviour of the system output (d) none of these

 3. The average of a sinusoidal voltage wave over one half-cycle (with having maximum voltage Vp)

 (a) 0.637Vp (b) 2Vp (c) 0.577Vp (d) 0.3Vp
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 4. The RMS value of a triangular voltage waveform with 50% duty cycle and maximum and minimum 

amplitude Vp and –Vp respectively is

 (a) Vp (b) 2Vp (c) 0.577Vp (d) 0.3Vp

 5. The RMS value of a rectangular voltage waveform with 50% duty cycle and maximum and minimum 

amplitude Vp and –Vp respectively is  

 (a) Vp (b) 2Vp (c) 0.5Vp (d) 0.3Vp

ANsweRs To MUlTiPle ChoiCe QUesTioNs

 1. (c) 2. (a) 3. (a) 4. (c) 5. (a)





  

12.1  INTRODUCTION

Network synthesis is the study of synthesis of various networks consisting of active elements like 

resistors and passive elements like capacitors and inductors. 

12.2  HURWITZ POLYNOMIAL

Hurwitz polynomial is a polynomial whose roots lie in the 

left half plane or in the imaginary axis, that is, real part of 

every root is zero or negative.

Consider the polynomial 
( )

( )
( )

P s
F s

Q s
=

In which Q(s) is a Hurwitz polynomial when the degree of P(s) does not exceed the degree of Q(s) by 

more than unity, and the polynomial should not contain multiple poles on jw axis.

 1. In the polynomial all the quotients should be positive.

 2. In the polynomial should not contain any missing terms or else all even or odd terms are 

missing.

 3. The roots of a Hurwitz polynomial either it is odd and even lie in jw axis.

Probe

1.  Define Hurwitz polynomial.

2.  What are the properties of Hurwitz 

polynomial?
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  Definition of Hurwitz polynomial and the 

methods to determine it

  Exploration of positive real functions and the 

methods to evaluate them

  Foster I & II form using LC functions

  Cauer forms (I & II) using LC functions

  Realisation of RL, RC using foster and 

cauer methods

  Foster’s reactance theorem

Chapter Outline
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 4. The polynomial is considered to be Hurwitz polynomial when all the quotients of continued 

fraction expansion are positive.

 Determine whether the polynomial P(x) = 4 3 210 8 7x x x+ + +  is a Hurwitz polynomial or not. 

Solution The polynomial is not Hurwitz polynomial because the first term is missing.

 State whether the polynomial f(s) = 2 5 6x x+ +  is a Hurwitz polynomial.

Solution Yes, the given polynomial is a Hurwitz polynomial. 

The roots of 2 5 6x x+ +  

                                 
2 5 6x x+ +

                                 
2 2 3 6x x x+ + +

                                 
( 2)( 3)x x+ +

 x = −2, −3.

As the roots of the polynomial lie in the left half plane, it is a Hurwitz polynomial.

 Determine whether the polynomial is Hurwitz polynomial P(x) = 5 3
x x x+ + . 

 P(x) = 5 3
x x x+ +  

 P¢(x) = 4 25 3 1x x+ +  

Solution: 

Even part = 4 25 3 1x x+ +

Odd part = 
5 3

x x x+ +

Example 12.1

Example 12.2

Example 12.3

Note: Difficulty Level    — Easy;  — Medium;  — Difficult
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+ + + +

+ +

+ + +

+

-
- + +

-

4 2 5 3

5 3

3 4 2

4 2

2 3

3

5 3 1) (
5

3

5 5

2 4 25
)5 3 1(

5 5 2

5 10

2 4 2
7 1) (

5 5 35

2 2

5 35

30

35

x
x x x x x

x
x x

x x
x x x

x x

x x
x x

x
x

x

As the quotients of the polynomial are negative, it is not a Hurwitz polynomial.

12.3  POsITIve ReAL FUNCTIONs

The Function F(s) is termed as Positive real function when 

it satisfies the properties of Positive real functions such as

 1. The real part of the polynomial should be greater 

than unity.

 2. The poles and zeros of the polynomial should lie in 

left half of the plane.

 Check the positive realness of the following function:               [BPUT, 2007]

Solution

 F(x) = 
( 2)

( 1)

x

x

+

+

 F(x) = 
( )

( )

P x

Q x

The coefficients are real.

Poles of F(x) are (x + 1)  x = –1

Zeros of F(x) is (x + 2)  x = –2

As all the poles and zeros lie in left half of s plane, the given function is a positive real function. 

University Questions

1.  What are the properties of Positive real 

functions?

2.  Define Positive real functions?

 [PTU, 2009-2010]

Example 12.4
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F(x) = 
2

2

8

2 2

x x

x x

- -

+ -

F(x) is not real function because real par of numerator and denominator is less than zero.

Solution Poles of F(x)

 2 2 2x x+ -  = 0

                             - ± +
=

2 (4 8)

2

2 3.46

2

- ±
=  = –2.732, 0.73

Zeros of F(x)

          2 8x x- -  = 0

                             
± + ¥

=
1 (1 (4 8)

2

1 5.74

2

±
=  = –2.37, 3.37

As all the poles and zeros do not lie in left half of s plane, the given function is not a positive real 

function. 

 

F(x) = 
(2 8)

8( )

x

x

+

+

Solution Poles of F(s) is (x + 8),  x = –8

Zeros of F(s) is (2x + 8),    x = –4

As all the poles and zeros lie in left half of s-plane, the given function is a positive real function. 

12.4
   FOsTeR’s ONe AND TWO FORM 

FOR LC NeTWORK

Foster’s network is of two forms: 

 1. Foster first form or impedance form

 2. Foster second form or admittance form

In the Foster’s first form, or impedance form, there is 

a parallel LC circuit which is in series combination with 

capacitance C0 and inductance L
•
 as shown in Figure 12.1.

The general equations for the Foster’s first form is 

given by

Example 12.5

Example 12.6

Probes

1.  What are the two forms of Foster’s network?

2.  Explain the Foster’s first form or 

impedance form with a network diagram.

3.  Explain the Foster’s second form or 

admittance form with a network diagram.

4.  What is the formula for determining the 

value of capacitor and inductor for the 

Foster’s first form?

5.  What is the formula for determining the 

value of capacitor and inductor for the 

Foster’s second form?
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      w w
= + + + +

+ +



0 2 4

2 2 2 2
2 4

2 2
( )

P P s P s
Z s Hs

s s s

The value of capacitor C0 = 
0

1

P

The value of inductor L
• 

 = H

 Cn = 
1

2 nP
 and Ln = 

2

2 n

n

P

w
.

By comparing with the general equation to determine the middle terms of capacitor and inductor

In the Foster’s second form or admittance form there is a parallel combination of series LC circuits 

with capacitance C
•
 and inductance L0.

The general equations for the Foster’s second form is given by (Figure 12.2):

                     
w w

= + + + +

+ +



0 2 4

2 2 2 2
2 4

2 2
( )

P P s P s
Y s Hs

s s s

The value of capacitor L0 = 
0

1

P

The value of inductor C
• 

 = H

By comparing with the general equation to determine the

middle terms of capacitor and inductor Ln = 
1

2 nP
 and Cn = 

2

2 n

n

P

w
.

 Find the foster first and second forms for the function.

 F(x) = 
2 2

2

( 1)( 16)

( 4)

x x

x x

+ +

+

Solution Foster first form

 F(x) = 

4 2

3

( 17 16)

( 4 )

x x

x x

+ +

+
;    Z(x) = 

4 2

3

( 17 16)

( 4 )

x x

x x

+ +

+

Since extra term is present in the numerator compared to denominator the two poles exist at w = 0 and 

w  = • therefore L
• 

and C0 are present.

                                  

+ + +

+

+

3 4

2

2

4 2

4 ) 17 16

13 16

(

4

x x x x x

x

x x

  

4 2 2

3 3

( 17 16) 13 16

( 4 ) ( 4 )

x x x
x

x x x x

+ + +
= +

+ +

Figure 12.1 Foster’s first form or impedance form

Figure 12.2  Foster’s second form or 

admittance form

Example 12.7
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 F(x) = 
2

3 2

13 16
  

( 4 ) 4

x A Bx C

xx x x

+ +
= +

+ +

2 2 213 16 ( 4)x A x Bx Cx+ = + + +

To determine A, substitute x = 0

 16 = 4A, so A = 4.

Equating x2: A + B = 13 fi B = 13 – 4 = 9

 C = 0

 Z(x) =x + 
2

4 9
   

 4

x

x x
+

+

 Z(x) = 0 2

2 2
2

 2
 

 

P P x

x x w
+

+

 + Hx

 C0 = 1/P0 = 1/4 F; L
•
 = 1 H

                        

= = =2

2

1 1 1

2 2 9n

C
P P

 L2 = 2

2
2

2 9
 

4

P

w
=

Foster second form

 F(x) = 
2 2

2

( 1)( 16)

( 4)

x x

x x

+ +

+

 Y(x) = 
2

2 2

( 4)

( 1)( 16)

x x

x x

+

+ +

 Y(x) = 
2 2

  
1 16

Ax B Cx D

x x

+ +
+

+ +

2 2 2( 4) ( 16) ( 1)x x Ax B x Cx D x+ = + + + + +

Equating the terms

 x
3: A + C = 1; 

 x: 16A + C = 4 

 A = 1/5 and C = 4/5

 x
2: B + D = 0

1

9/4

1/9

1/4

Figure 12.3 (a)
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Const: 16B + D = 0 fi B = D = 0 

 Y(x) = 2 2

/ 5 4 / 5
  

1 16

x x

x x
+

+ +

 Z(x) =
w w

+ + +

+ +

0 2 4

2 2 2 2
2 4

 2 2
   Hx

  

P P x P x

x x x

 P0 = H = 0

 2P2 = 1/5; w2
2 = 1; 2P4 = 4/5; w4

2 = 16

                        
2

2

1 1
5H

2 2n

L
P P

= = =

= = =4

4

1 1 5
H

2 2 4n

L
P P

 C2 = 2

2
2

2 1
 

5

P

w
=

 C4 = 4

2
4

2 1
 

20

P

w
=

 Find the foster second forms for the function.

  F(x) = 
+ +

+

2 2

2

( 9)( 49)

( 36)

x x

x x

Solution Foster second form

 Y(x) = 
+

+ +

2

2 2

( 36)

( 9)( 49)

x x

x x

 Y(x) = 
+ +

+

+ +
2 29 49

Ax B Cx D

x x

+ = + + + + +
2 2 2( 36) ( 49) ( 9)x x Ax B x Cx D x

Equating the terms

x
3:       A + C = 1; 

 x: 49A + 9C = 36

 A = 27/40  and  C = 13/40

 x
2:       B + D = 0

5

1/5 1/20

5/4

Figure 12.3 (b)

Example 12.8
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Const: 49B + 9D = 0 

 B = D = 0 

 Y(x) = +

+ +
2 2

27 /40 13 /40
  

9 49

x x

x x

 Z(x) = 
w w

+ + +

+ +

0 2 4

2 2 2 2
2 4

 2 2
   Hs

  

P P x P x

x x x

 P0 = H = 0

 2P2 = 27/40; w2
2 = 9; 2P4 = 27/40; w4

2 = 49

                        

= = =2

2

1 1 40
H

2 2 27n

L
P P

= = =4

4

1 1 40
H

2 2 13n

L
P P

w
= =

2
2 2

2

2 27
 

360

P
C

w
= =

4
4 2

4

2 13
 

1960

P
C

12.5
   CAUeR ONe AND TWO FORM 

FOR LC NeTWORK

In the Cauer’s first form (Figure 12.5), series arms are 

inductors and shunt arms are capacitors which is a ladder 

network.

In this method of continued fraction, when the driving 

point function consisting of poles are located at infinity, the 

first element is inductor and second element is capacitor. 

The fraction expansion of Cauer’s first form is given by:

1

1

2
2

1
( )

1
1

Z s L s
C s

L s
C s

= +
+

+
+

In the Cauer’s second form (Figure 12.6), series arms are 

capacitors and shunt arms are inductors which is a ladder 

network.

Figure 12.4

Probes

1.  Explain the Cauer’s first form with a 

network diagram?

2.  Explain the Cauer’s second form with a 

network diagram?

3.  What is the continued fraction expansion 

for Cauer first and second form?

Figure 12.5 Cauer’s first form
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In this method of continued fraction, when the driving point function consisting of poles are located 

at zero, the first element is inductor and second element is capacitor. The fraction expansion of Cauer’s 

second form is given by:

1

1

2

2

1 1
( )

1 1

1 1

1

Z s
C s

L s

C s

L s

= +

+

+

+

 Find the Cauer’s first form for the function.

 F(x) = 

4 2

3

10 12 1

2 2

x x

x x

+ +

+

 Solution We can expand the function for Cauer’s first form 

+ + +

+

+

+

+

+

2 3
1

3

2
2

2

2

3 4 2
1

4 2

2 1)2

2 2 )10

2 (

2

)2 1(2

2

1

1

) (

2 1 (5

10 10

0

x x x x C

x x

x x

x x x x x

x L

x

x x

x

C

L

x

x

 Find the Cauer’s second form for the function.

 F(x) = 
4 2

3

2 20 16

4

x x

x x

+ +

+

C1 C2

Z(s)

Cn

L1 L2 LnLn–1

Figure 12.6 Cauer’s second form

Example 12.9

Figure 12.7

Example 12.10
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Solution 

+ + +

+

+ +

+

+

1

2

2 4 3
1

3

3
2 4

2

2

3
4

2

2 4

3

3 4
(

16 4

1
16 2 )4 (

4

4
2

32
)16 2 (

2

4 )16

16

1
2 ) (

2 4

2

20 2

0

C
x

x

x x x x L
x

x
x

x
x x C

x

x

x
x L

x

x

x

x x x

12.6  ReALIsATION OF RL, RC UsING FOsTeR AND CAUeR MeTHODs

 1. Draw the RL network by Foster method.

(a) Foster first form

R0

R1

L
•

Z(s)
L1

Figure 12.9

(b) Foster second form

L1 Ln

R1 Rn

R
•

Y(s) L0

Figure 12.10

 2. Draw the RC network by Foster method.

(a) Foster first form

C0

R1

R
•

Z(s)
C1

Figure 12.11

(b) Foster second form

Figure 12.12

Figure 12.8
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 3. Draw RL network by Cauer method.

(a) Cauer first form

Figure 12.13

(b) Cauer second form

Figure 12.14

 4. Draw the RC network by Cauer method.

(a) Cauer first form

Figure 12.15

(b) Cauer second form

R2R1 Rn

C2C1 Cn

Figure 12.16

 Determine the foster forms for the function

 F(x) = 

2

2

4 3

2

x x

x x

+ +

+

Solution For Foster first form or impedance form

 Z(x) = 
2

2

4 3
 

2

x x

x x

+ +

+

Step 1: Take partial fraction expansion.

                                 

+ + +

+

+

2 2

2

2 ) 4 3 (1

2

2 3

x x x x

x x

x  

 F(x) = 1+ 
2 3

1
( 2) 2

x A B

x x x x

+
= + +

+ +

 2x + 3 = A(x + 2) + Bx

Example 12.11
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To determine A, substitute x = 0

 3 = 2A, so A = 3/2.

To determine B, substitute x = –2

 –4 + 3 = –2B, so B = 1/2.

 F(x) = 1 + 
3 1

 
2 2( 2)x x

+
+

Compare it with the general equation we obtain the values by using Foster form of RC network.

 H = 1, P0 = 3/2,  P1 = 1/2,  s = 2

Substituting these values, we obtain the value of capacitor and resistance.

                        

= =0

0

1 2

3
C

P

1H R
•

= =

1

1

1
2C

P
= =

1

1

1 1 1

2 2 4
R

Cs
= = =

¥

For Foster second form or admittance form

 Y(x) = 
2

2

2
 

4 3

x x

x x

+

+ +

Step 2: Take partial fraction expansion.

                                 

+ + +

+ +

- -

2 2

2

4 3) 2 (1

4 3

2 3

x x x x

x x

x

 F(x) = 1– 
2

2 3

4 3

x

x x

+

+ +

 

Since there negative quotient appears, we have to expand the equation as 
( )Y x

x
.

 
( )Y x

x
 = 

( 2)
 
( 1)( 3)

x

x x

+

+ +

( 2)

( 1)( 3)

x

x x

+

+ +
 =  

1 3

A B

x x
+

+ +

2 ( 3) ( 1)x A x B x+ = + + +

To determine A, substitute x = –1

 –1 + 2 = A(–1 + 3) so A = 1/2.

1/4

2 F

2/3 F

1 H

Figure 12.17 (a)
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To determine B, substitute x = –3

 –3 + 2 = –2B so B = 1/2.

 Y(x) =  
2( 1) 2( 3)

x x

x x
+

+ +

Compare it with the general equation we obtain the values by using Foster form of RC network.

 H = 0, P1 = 1/2, P2 = 1/2, s1 = 1, s1 = 3

Substituting these values we obtain the value of capacitor and resistance.

                        1

1 1

1 1

2
C

Rs
= = ;   2

2 2

1 1

6
C

Rs
= =

1

1

1
2R

P
= = ;     2

2

1
2R

P
= =

 Find the first and second Cauer form for the function.

 F(x) = 
2

2

4 3

2

x x

x x

+ +

+

Solution Cauer first form

                     

+ + +

+

+ +

+

+

2 2

2

2

2

2 ) 4 3 (1

2

2 3) 2 (
2

3

2

1
)2 3(4

2

2

3) (
2 6

2

0

x x x x

x x

x
x x x

x x

x x

x

x x

x

2 W

1/6 F1/2 F

2 W

Figure 12.17 (b)

Example 12.12
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 Z(x) = 1 + 

+

+

1

1

12
4

6

x

x

= +

+

+
+

1

1

2
2

1

1

1

R

C s

R
C s

By comparing with the standard equations, we decided as Z(x) is constant at x = •, the first element 

is R1.

 R1 = 1

                        
=1

1

2
C

 R2 = 4

                        
=2

1

6
C

Cauer second form

                                 

+

+ +

+

+

+

+ +

2 2

2

2 2

2 2

2

2 2 3
(
2

3
3

2

5 4
)2 (

2 5

4
2

5

1 5 25
) (

5 2 2

5

2

1 1
) (

5 5

2 )

0

3

1

5

4
x

x

x x x x

x x x

x x

x x x
x

x

x

x x

x

1 4

1/2 1/6

Figure 12.18 (a)
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 Z(x) = 
3

2x
 + 

1

4 1

25 15

12

5

x

+

+

= +

+

+

+

1

1

2

2

1 1
( )

1

1 1

1 1

1

Z s
C s

R

C s

R

By comparing with the standard equations we decided as Z(x) has pole at s = 0, the first element is 

C1.

                         
1

2

3
C =

2

5

4
R =

3

2

25
C =

 R4 = 5

12.7  FOsTeR ReACTANCe THeOReM

Foster Reactance Theorem states that the passive elements 

such as inductors and capacitors increase with frequency. 

The passive elements are frequency dependent.

Consider the impedance equation in which X changes with frequency

 Z = ix

Consider the admittance equation in which X changes with frequency

 Y = 
1

ix

P O I N T s  T O  R e M e M b e R

  In Hurwitz polynomial 

  • All term should be in a polynomial.

  • The quotients should be positive.

  • All the roots lie in the left half plane of the axis, i.e the roots should be negative.

2/3 2/25

5/4 5

Figure 12.18 (b)

Probe

1.  What is Foster Reactance Theorem?
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  In positive real functions

  • All the poles and zeros lie in left half of s plane.

  • Real part should be greater than unity. 

  In Foster method 

First form

 • If pole is at w = 0 the first element is C0

 • If pole is at w = • the last element is L
•

Second form

 • If pole is at w = 0 the first element is L0

 • If pole is at w = • the first element is C
•

  In Cauer method

First form

 • The first element is series inductor when pole 

is at w = •.

 • The first element is shunt capacitor when 

zero is at w = •.

 • The last element is series inductor when zero 

is at w = 0.

 • The last element is shunt capacitor when pole 

is at w = 0.

Second form

 • The first element is series capacitor when 

pole is at w = 0.

 • The first element is shunt inductance when 

zero is at w = 0.

 • The last element is series capacitor when 

pole is at w = •.

 • The last element is shunt inductance when 

zero is at w = •.

  Foster method

RL method

 • First form

             
s

= + + +
+

0( ) i

i

Ps
Z s P Hs

s

 • Second form

                     

0( ) i

i

P P
Y s H

s s s
= + + +

+


RC method

  • First form

                     

0( ) i

i

P P
Z s H

s s s
= + + +

+


  • Second form

                     0( ) i

i

Ps
Y s P Hs

s s
= + + +

+


  Cauer method 

RL method

 • First form

                     

= +

+

+

+

1

1
2

2

1
( )

1 1

1

1

Z s sL

R
sL

R

 • Second form

                 

1

1
2

2 3

1
( )

1 1

1

1 1

Z s R

sL
R

sL R

= +

+

+

+
+

RC method

  • First form

                      

1

1

2
2

1
( )

1

1

Z s R

C s

R
C s

= +

+

+
+

  • Second form

                      

1

1

2

2

1 1
( )

1 1

1 1

1

Z s
C s

R

C s

R

= +

+

+

+
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PRACTICe PRObLeMs

 1. Determine whether the following polyno-

mial functions are Hurwitz polynomial. 

 (1) P(x) = 5 3 1
x x x+ +  

 (2) P(x) = 4 3 2
6 8 10x x x+ + +

 2. State whether the polynomial f(s) = x2 – x 

– 12 is a Hurwitz polynomial.

 3. Determine whether the polynomial 

P(x) = 10x
4 + 2x

3 + 12x
2 + 2x + 1 is a 

Hurwitz polynomial.

 4. Check the positive realness of the following 

function. 

   F(x) = 
( 3)

( 1)

x

x

+

-

 5. Check the positive realness of the following 

function.

   F(x) = 
2

( 3 9)

( 5)( 9)

x x

x x

+ +

+ +

 6. Find the foster first forms for the function.

    F(x) = 
2 2

2

( 9)( 45)

( 49)

x x

x x

+ +

+

 7. Find the Cauer’s first form for the 

function:

   F(x) = 
4 2

3

2 20 16

4

x x

x x

+ +

+

 8. Determine the foster forms for the 

function

   F(x) = 
2

2

2 8 6

8 1

x x

x x

+ +

+ +

 9. Find the second Cauer form for the 

function

   F(x) = 
2

2

4 10 6

8 1

x x

x x

+ +

+ +

 10. Find the first Cauer form for the function

   F(x) = 
3 2

2

6 8

4 3

x x x

x x

+ +

+ +

 11. Determine the foster forms for the 

function:

   F(x) = 
2

2

10 17

7 6

x x

x x

+ +

+ +

MULTIPLe CHOICe QUesTIONs

 1. Hurwitz polynomial has

 (a) poles only in the left half of s-plane  (b) zeros only in the right half of s-plane 

 (c) zeros anywhere in s-plane  (d) poles in jw axis only

 2. The Cauer method is

 (a) continued fraction  (b) partial fraction

 (c) Laplace transform (d) numerical method

 3. The Foster’s method is

 (a) continued fraction (b) partial fraction

 (c) Laplace transform (d) numerical method

 4. In the first Cauer LC network the first element is series inductor when

 (a) poles at w = • (b) poles at w = 0 

 (c) zeros at w = 0 (d) zeros at w = • 

 5. In the second Cauer LC network the first element is series inductor when

 (a) poles at w = • (b) poles at w = 0 

 (c) zeros at w = 0 (d) zeros at w = • 

ANSwerS To MUlTIPle CHoICe QUeSTIoNS

 1. (a) 2. (a) 3. (b) 4. (a) 5. (a)





  

13.1  INTRODUCTION

Filter is an electric network used to block unwanted signals so that a signal with very less noise or no 
nose can be received. Filters are preliminary classified as active and passive filters. A filter designed with 
passive elements (i.e. R, L and/or C) is known as passive filter. Further classification is done on the basis 
of the frequency a filter allows to pass through. The chapter explains various types of filters and their 
characteristic parameters along with filter design methodology. Another important device, attenuator, is 
discussed in the later stage of chapter. Four primary attenuators have been explained for their working 
and design.

13.2  CLASSIFICATION OF FILTERS

Figure 13.1

University Question

1.  Explain how filters are classified. 

(Figure 13.1). [PTU, 2008]
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 Characteristics of T-network and p-network

 Analysis and design of constant-k filters

 Analysis and design of m-derived filters

 Explanation of terminating half-sections

 Composite filters design

 Development of attenuators

Chapter Outline
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Filters are classified into five categories based on frequency bands passed through or rejected.

 1. Band-pass: A band-pass filter allows passing through the signals of a particular frequency band 
and rejects signals of all other frequencies.

 2. Notch or Band-reject: rejects signals of a particular frequency band but allows all other signals.

 3. Low-pass: passes signals of low frequency, and rejects signals of frequencies above the filter’s 
cut-off frequency.

 4. High-pass: A high-pass filter passes signals of frequency higher than filter’s cut off frequency 
and rejects low frequency signals.

 5. All-pass: This type of filter passes thorough signals of all frequencies.
The simplest form of a filter can be realised with using a Tor p-Network and this is why, it is called 

prototype filter.

13.3  T-NETWORK

A T-network is shown in Figure 13.2. We will now discuss 
its basic terminology 

Characteristic Impedance

Suppose, we connect a variable impedance (Z) to the output port of 
a T-network and measure the input impedance (Zin) of the network 
corresponding to the Z. For a particular value of Z = Z0, the measured 
input impedance (Zin) is equal to Z0. This Z0 is called characteristic 
impedance of the network.

For a T-network,

                        

Ê ˆ
Á ˜Ë

+
=

¯
= +

Ê ˆ
+ +Á ˜Ë ¯

1
2 0

1
0 in

1
2 0

2

2

2

Z
Z Z

Z
Z Z

Z
Z Z

Solving this for Z0 gives,

                        
2

1
0 1 22

Z
Z Z Z

Ê ˆ
= +Á ˜Ë ¯

 (13.1)

If open and short circuit impedances are evaluated as ZOC and ZSC respectively, then:

                      1
22OC

Z
Z Z= +  (13.2)

                       1 1 2

2 1

4( )

4 2SC

Z Z Z
Z

Z Z

+
=

+
 (13.3)

                         
0  OC SCZ Z Z=  (13.4)

University Question

1.  Derive expression for characteristic 

impedance for T-section in terms of open 

and short circuit impedances.

 [University of Pune, 2015]

Figure 13.2 Symmetrical T-Network
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Propagation Constant

For a two-port network, the propagation constant is defined as:

                         

1 1 1 1

2 2 2 2

 log   or  log  
I V I V

e
I V I V

g g g
Ê ˆ Ê ˆ

= = fi = =Á ˜ Á ˜Ë ¯ Ë ¯

By applying KVL in the two loops and using the relations of Eqs (13.2) and (13.3) results:

            1

2

( )
1 cosh

2 2

Ze e

Z

g g

g
-+

= + =  (13.5)

                  1

2

(cosh 1)
sinh

2 2 4

Z

Z

g g -
= =  (13.6)

             
g g g g- -- + =( )/( ) /    SC OCe e e e Z Z

g =tanh( )  /SC OCZ Z  (13.7)

 Find the characteristic impedance of a T-section as shown in Figure 13.3. Verify the value of 
impedance with the help of open- and short-circuit impedances. 

Solution Step 1: Find open circuit impedance:

 ZOC = 100 + 400 = 500 W
Step 2: Find short circuit impedance:

           

+ ¥
= = W

¥ + ¥
200(200 4 400)

180
4 400 2 200SCZ

Step 3: Determine Characteristic impedance:

                        
= = ¥ = W0   500 180 300OC SCZ Z Z

Step 4: Verify characteristic impedance:

                        

Ê ˆ Ê ˆ= + = + ¥ = WÁ ˜Á ˜ Ë ¯Ë ¯

2 2
1

0 1 2

200
200 400 300

2 2

Z
Z Z Z

 A symmetrical T-network consisting of pure resistances has open and short-circuit impedances of 
ZOC = 800 – 0º and ZSC = 600 –0º. Design a symmetrical T-network. 

Example 13.1

100 W 100 W

400 W

Figure 13.3

Example 13.2

Note: Difficulty Level    — Easy;  — Medium;  — Difficult



13.4  Circuits and Networks

Solution

Step 1: Write the expression for open and short circuit impedances and equate them to the given 
value:

                      
1

2800
2OC

Z
Z Z= = +

1
2 800

2

Z
Z = -  (13.8)

                      1 1 2

2 1

( )4
600

4 2SC

Z Z Z
Z

Z Z

+
= =

+
 (13.9)

Step 2: Solve the expressions for Z2 and Z1:
Substitute the Z2 in Eq. (13.9) using Eq. (13.8),

                       

1
1 1

1
1

4 800
2

600

4 800 2
2

Z
Z Z

Z
Z

Ê ˆÊ ˆ
+ -Á ˜Á ˜Ë ¯Ë ¯

=
Ê ˆ

- +Á ˜Ë ¯

2
1 13200Z Z-  + 24 × 8 × 104 = 0

Solving above equation for Z1

 Z1 = 800 Ohm

and Z2 = 800 – 400 = 400 Ohm

13.4  π-NETWORK

Characteristic Impedance

A p-Network is shown in Figure 13.5. Similar to the T-network, 
Characteristic impedance for a p-Network, can be found by 
equalising the input impedance of the network to the impedance 
connected to the output port.

                        

+ +
= =

+ + +
2 1 2 0 2 0

0 in
1 2 0 2 0 2

2 2 /(2 )   
 

2 /(2

)

2  

(

)

Z Z Z Z Z Z
Z Z

Z Z Z Z Z Z

Solving this for Z0 gives,

                        1 2
0

1

2

 
1

4

Z Z
Z

Z

Z

=
+

 (13.10)

400 W

400 W 400 W

Figure 13.4

Figure 13.5 Symmetrical p-Network
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If open and short circuit impedances are evaluated as ZOC and ZSC respectively, then:

                      2 2 1

2 1

2 2(

4

)
OC

Z Z Z
Z

Z Z

+
=

+
 (13.11)

                      1 2

2 1

2

2SC

Z Z
Z

Z Z
=

+
 (13.12)

                        
0  OC SCZ Z Z=  (13.13)

Propagation Constant

Same as of T-network as described in Section 13.3 under the heading Propagation Constant.

i.e.             
+

= 1

2

1
cosh

2

Z
y

Z

13.5  CHARACTERISTIC OF FILTERS

Following are the important parameters of a filter:

 1. Propagation constant: Ratio of input signal value 
to the output is determined by propagation constant. 
It is denoted by g.

                         
1 1

2 2

I V
e

I V

g = =

 g = a + jb

 2. Attenuation (a): A signal passing through a filter gets attenuated because of impedance of the 
filter. It depends upon signal frequency. For an ideal filter, attenuation for pass band is equal to 
zero.

 3. Phase shift (b): Phase of the signal gets changed when it passes through the filter. This is 
determined by phase shift constant. It also is function of frequency. For an ideal filter, attenuation 
for pass stop band (attenuation band) is equal to 180°.

 4. Characteristic Impedance (Z0): It is the image impedance of filter.
We now will discuss different cases to evaluate the general terms of attenuation and phase shift for 

different regions. It is already described that for a filter designed with a T or a p network,

               
1

2

sinh
2 4

Z

Z

gÊ ˆ =Á ˜Ë ¯

      
1

2

sinh
2 4

Zj

Z

a b+Ê ˆ =Á ˜Ë ¯

      1

2

sinh cos  cosh sin
2 2 2 2 4

Z
j

Z

a b a bÊ ˆ Ê ˆ Ê ˆ Ê ˆ+ =Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯
 (13.14)

University Question

1.  Define following terms: (a) Attenuation 

constant (b) Phase shift (c) Characteristic 

Impedance. [PU, 2011]
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There are two case now:
Case-I: If a = 0; i.e. signal is in pass band.
Equation (13.14) becomes

              

1

2

sin
2 4

Z
j

Z

bÊ ˆ =Á ˜Ë ¯

Taking the magnitude only, 1

2

sin
2 4

Z

Z

bÊ ˆ =Á ˜Ë ¯

                          1 1

2

2 sin
4

Z

Z
b -=  (13.15)

Equation (13.15) gives phase shift of a signal for pass-band.
Case-II: If b = 180°; i.e. signal is in attenuation band.
Equation (13.14) becomes

              

1

2

cosh
2 4

Z
j

Z

aÊ ˆ =Á ˜Ë ¯

Taking the magnitude only, 1

2

cosh
2 4

Z

Z

bÊ ˆ = -Á ˜Ë ¯

                          1 1

2

2 cosh
4

Z

Z
a -=  (13.16)

Equation (13.15) gives attenuation of a signal for attenuation-band.

Condition for Pass-band

Again, from Case-I, for pass band (i.e. a = 0), 1

2

sin
2 4

Z

Z

bÊ ˆ =Á ˜Ë ¯

Since, –1 <  sin 1
2

bÊ ˆ <Á ˜Ë ¯   and term 1

24

Z

Z
 is negative, fi –1 < 1

2

 0
4

Z

Z
<  or, 1

2

1 0
4

Z

Z
- < <

This is the condition for pass-band.

 For a pass band filter, with series branch impedance Z1 = jw5, what should be the critical value of 
shunt branch impedance such that cut-off frequency is 2000 Hz.

Solution Given, fc = 2000 Hz, wc = 2p fc = 12566.37 rad/s.

Example 13.3
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Step 1: Write condition for pass-band:

For pass band, 1

2

1 0
4

Z

Z
- < <

At cut-off frequency, 1

2

1
4

Z

Z
= -

Or Z1 = –4Z2 

Step 2: Find value of Z1 at cut-off frequency:

                    1  5( 62831.85 Ohm)c cZ j jw w w= = =

Step 3: Find Z2:

          = - = - = - = -1
1 2 2

62831.85
4 or  15707.96 Ohm 

4 4

Z
Z Z Z j j

(–sign shows that Z2 should be opposite to Z1, i.e. capacitive)

Now, since Z2 is capacitive, 2

2

( )

(

)

)

(

( )
c

c

Z

Z

ww

w w
=  or 

 
6

2 2

( ) 12566.37 197.4 10
 15707.( ) ( 96 Ohm 

(
)

)
c

cZ Z jw
w

w
w w w

¥
= = - ¥ =

 For a filter, at certain frequency, if net series and shunt impedances (Z1 and Z2) are j1000 Ohm and 
–j200 Ohm respectively. Is the frequency in pass-band or reject band. Also, find attenuation if it falls 
in reject band. 

Solution Given: Z1 = j1000 Ohm and Z2 = –j200 Ohm

Step 1: Write condition for pass-band and test given impedances for pass band:

For pass band, 1

2

1 0
4

Z

Z
- < <

Here, 1

2

1000
5

4 200

Z j

Z j
= = -

-
 

Since, 1

2

 1
4

Z

Z
- > . It is in not in pass band.

Step 2: Calculate attenuation:

Attenuation, a 1 11

2

cosh cosh 5  
4

Z

Z

- -= = -

Example 13.4
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13.6  CONSTANT-k LOW PASS FILTER (LPF)

Constant k filters are the simplest form of filters. These 
filters consist of T or p ladder network of passive elements. 

A typical constant k-LPF (Low pass filter) can have any 
of two configurations shown in Figure 13.6.

Since the product of Z1 and Y2 of the T or p network 
(shown in Figure 13.6) is constant (real), it is called Constant 

k Low pass Filter. This is possible, if Z1 is capacitive and Y2 is inductive or vice versa.

C

2

L

2

L

2

C

2

L

C

p-Section T-section

Figure 13.6 Constant k-LPF

For low constant k type pass filter, shunt arm of the network possess capacitor while series arm an 
inductor.

13.6.1 Filter Characteristics

Nominal Impedance, 
1 2   

L
k Z Z

C
= =

(a) Cut-off Frequencies

Since the pass-band for a T or p filter is given by –1 < 1

24

Z

Z
 < 0. So, for:

 1. Lower Cut-off frequency (wC–1)

                      1
1

2

0 0,
4

Z
Z

Z
= fi =

  Z1 is inductive reactance (jwL) here, which is zero only at w = 0 rad/s. 1 10; 0C Cfw - -= =  

 2. Upper Cut-off frequency (wC–2)

                     

1

2

1 1,
4 1

4

Z j L

Z

j C

w

w

= - fi = -
Ê ˆ
Á ˜Ë ¯

University Questions

1.  What are low-pass filter? Derive expression 

for cut-off frequency in terms of L and C.

 [PU, 2015]

2.  Discuss how a constant-k low pass filter 

can be designed. [PTU-EE201]
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  Solving this gives, 

                          
w w

p
- -= = fi =2 2

2 2 1
rad/s,  C Cf

LC LC LC

(b) Characteristic Impedance

 1. If filter is designed with T-network:

                        

w
w

w

Ê ˆÊ ˆÊ ˆ Ê ˆ= + = + = -Á ˜Á ˜ Á ˜Á ˜Ë ¯Ë ¯ Ë ¯ Ë ¯

22 2
1

0 1 2
 

1
 ( ) 1    

2 2 C

Z j L f
Z Z Z j L k

j C f

 2. If filter is designed with a p-network

                        

1 2
0 2 2

1
1 2

 

   

1
2

C

Z Z k
Z

Z f
Z Z

f

= =
Ê ˆ Ê ˆ

+ -Á ˜ Á ˜Ë ¯ Ë ¯

(c) Attenuation (a)

                          

1 1

2

2cosh
4

Z

Z
a -

Ê ˆ
= Á ˜

Á ˜Ë ¯

Putting, Z1 = jwL, Z2 = 1/jwC and 
2

C
LC

w =  in the above expression,

                          

1 12cosh 2cosh  
C C

f

f

w
a

w
- -Ê ˆ Ê ˆ

= =Á ˜ Á ˜Ë ¯ Ë ¯

(d) Phase Shift (b)

                          

1 11

2

2sinh  2sinh
4 C

Z f

Z f
b - -

Ê ˆ Ê ˆ
= =Á ˜ Á ˜Á ˜ Ë ¯Ë ¯

(e) Design Parameters

Value of filter circuit parameters (L and C) can be found from the cut-off frequency and nominal 
impedance. 

  
2

and C

L
k

C LC
w= =  
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Solving these for L and C gives,

                          

2 2
and

  C C

k
L C

kw w
= =

 A constant-k low-pass filter is designed to cut off at a frequency of 1000 Hz and the resistance of the 
load circuit is 50 W as shown in Figure 13.7. Find the attenuation constant per section at a frequency 
of 1500 Hz. 

L/2L/2 L

7.955 mH7.955 mH

12.732 Fm6.366 Fm 2 C

15.91 mH

12.732 Fm2 CC

Figure 13.7

Solution Given, k = 50 W and fC = 1000 Hz, f = 1500 Hz 

Step 1: Find values of L and C

 L = k/pf = 50/(p × 1500) = 15.91 mH

 C = 1/pkf = 1/(p × 50 × 1000) = 6.366 micro-F

Step 2: Find attenuation coefficient:

Attenuation constant, a 
1500

2cosh 2cosh
1000 

2 0.962 1.9245 Nep 
c

f

f

Ê ˆ= = Á ˜Ë ¯

= ¥ =

 Design constant-k low-pass T- and p-section filters to be terminated in 600 W having cut-off frequency 
of 3 kHz.

Solution Given data,   RO = 600 W, fC = 3 kHz = 3000 Hz

Step 1: Find values of L and C:

 L = RO /pf = 600/(p × 3000) = 0.064 H

 C = 1/p RO f = 1/(p × 600 × 3000) = 17.69  micro-F

Example 13.5

Example 13.6
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Step 2: Realise T-network and p-network (Figure 13.8):

L

2

L

0.032 H 0.032 H

17.69 Fm
C

2

0.064 H

8.845 FmC

L

2

8.845 Fm C

2

Figure 13.8

13.7  CONSTANT-k HIGH PASS FILTER (HPF)

A constant k-HPF is shown in Figure 13.9. 
Here, series arm has a capacitor while shunt arm has an 

inductor. So, Z1 and Z2 are interchanged. w=1 1/Z j C  and 

2Z j Lw= .

L

C

2 L2 L

2 C 2 C

p-Section T-section

Figure 13.9 Constant-k-HPF

Filter Characteristics

                           
1 2   

L
k Z Z

C
= =

(a) Cut-off Frequencies

Since the pass-band for a T or p filter is given by –1 < 1

24

Z

Z
 < 0. So, for:

 1. Upper Cut-off frequency ( 1Cw - )

                      

1
1

2

0 0,
4

Z
Z

Z
= fi =

  Z1 is capacitive reactance (1/jwC) here, which is zero only at w = • rad/s. 

    1 2C Cfw - -= • fi = •

University Question

1.  Give general configuration of constant-k 

high pass T and p network. Determine 

attenuation constant, phase shift.

 [PTU, 2008]
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 2. Lower Cut-off frequency ( 2Cw - )

                      

1

2

1

1 1,
4 4( )

Z j C

Z j L

w

w
= - fi = -

 Solving this gives,

                          
2 2

1 1 1
rad/ s.  

2 2 4
C Cf

LC LC LC
w w

p
- -= = fi =

(b) Characteristic Impedance

 1. If filter is designed with T-network

                        

w
w

w

Ê ˆÊ ˆÊ ˆ Ê ˆ= + = + = -Á ˜Á ˜ Á ˜Á ˜Ë ¯Ë ¯ Ë ¯ Ë ¯

22 2
 1

0 1 2
 

1
( ) 1

2 2
CfZ j L

Z Z Z j L k
j C f

 2. If filter is designed with a p-network

                        

1 2
0 2 2

1  
1 2

 

   

1
2

C

Z Z k
Z

Z f
Z Z

f

= =
Ê ˆ Ê ˆ

+ -Á ˜ Á ˜Ë ¯ Ë ¯

(c) Attenuation (a)

                          

1 1

2

2cosh
4

Z

Z
a -

Ê ˆ
= Á ˜

Á ˜Ë ¯

Putting, Z2 = jwL, Z1 = 1/jwC and 
1

2
C

LC
w =  in the above expression,

                          

1 12cosh 2cosh  C

C

f

f

w
a

w
- -Ê ˆ Ê ˆ

= =Á ˜ Á ˜Ë ¯Ë ¯

(d) Phase Shift (b)

                          

1 11

2

2sinh 2sinh
4

CfZ

Z f
b - -

Ê ˆ Ê ˆ
= =Á ˜ Á ˜Á ˜ Ë ¯Ë ¯

(e) Design Parameters

Value of filter circuit parameters (L and C) can be found from the cut-off frequency and nominal 
impedance. 
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1
and

2
C

L
k

C LC
w= =  

Solving these for L and C gives,

  

1
and

2  2  C C

k
L C

kw w
= =

 Design a constant-k high-pass filter with fC = 4 kHz and design impedance R0 = 600 W.

Solution Given data,   RO = 600 W , fC = 4 kHz = 4000 Hz

Step 1: Find values of L and C:

 L = RO /4pf = 600/(4p × 4000) = 11.94 mH

 C = 1/4p RO f = 1/(4p × 600 × 4000) = 0.003315  micro-F

Step 2: Realise T-network and p-network (Figure 13.10):
C = 0.03315 Fm

23.8732 Hm

0.0663 Fm 0.0663 Fm

2 L2 L

2 C 2 C

11.9366 mHL 23.8732 Hm

Figure 13.10 

 Can you design an LPF and HPF for a cut-off frequency of 50 Hz? If you can, what are the values of 
the parameters?

Solution Yes, we can design a filter (HPF/LPF) for 50 Hz cut-off frequency provided the value of 
the design impedance Ro is being known.

Let us assume that value of design impedance = Ro W
LPF: L = Ro/pf = Ro/(p × 50)

  C = 1/p Ro f = 1/(p × Ro × 50) 

HPF: L = Ro/4pf = Ro/4(p × 50)

 C = 1/4p Ro f = 1/(4p × Ro × 50)

Example 13.7

Example 13.8
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 A prototype high-pass filter has a cut-off frequency of 10 kHz and design impedance of 600 ohms 
as shown in Figure 13.11. Find the values of L and C. Also, find attenuation in dB and phase shift in 
degrees at a frequency of 8 kHz. 

Solution  fC = 10 kHz, K = 600 W

L

C

2 L2 L

2 C 2 C

Figure 13.11

Step 1: Find out L and C:

Design Impedance,  
L

K
C

=

2 600 600
L

K
C

= = ¥  (13.17)

Cut-off frequency, 
1

4  
cf

LCp
=

1
10,000

4  LCp
=

8

2

10

16
LC

p

-

=  (13.18)

Solving Eqs (13.17) and (13.18) for L and C,

 L = 4.77 mH and C = 13.27 mF

Step 2: Determine phase shift and attenuation:

                          
1 1 110 kHz 10

2sin 2sin 2sin  
8 kHz 8

cf

f
b - - -= = =

1 1

2

2cosh  
4

Z

Z
b -=

Example 13.9
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13.8  BAND-PASS FILTER (BPF)

A band pass filter (BPF) designed with p-network and 
T-network is shown in Figure 13.12. Here series and shunt 
arms have both capacitor and inductor.

Figure 13.12 Constant-k BPF

If the circuit is expressed in terms of Z1 (net series impedance) and Z2 (net shunt impedance), then,

                       Z1 = 2 2
2

1
1 2

2
2

2

1 1
( ) |and

1
|

j L
j Z

L C
L j L

j C j C

w
w w

ww w

Ê ˆ
+

-
= =Á ˜Ë ¯

For this filter to be a k-type band-pass filter,

                    

2 22 1
1 2

1 2

L L
Z Z k k

C C
= fi = =

 

This suggests that resonance frequency of series and shunt branch; (1/√LC) must be equal.

(a) Cut-off Frequencies (wC–1, wC–2)

For the pass-band,   –1 < 1

24

Z

Z
 < 0:

So at cut-off frequency,   –1 = 1

24

Z

Z
 fi Z1 = –4Z2

Multiplying both sides by Z1,

                       = - fi = -2 2 2
1 1 2 14  4Z Z Z Z k  

fi                    
1  2Z j k= ∓

 1. Taking 1 2 ,Z j k= +  

                         
1 1

1

1
 2 ,Z j L j k

j C
w

w
= + =

. 

fi                2
1 1 12 1 0L C kCw w- - =  

University Question

1.  Draw and explain constant-k ‘T’-section 

band pass filter.  [RU, 2006]
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Solving the quadratic equation for w and taking only positive value,

                 

2 1

1
1

1
C

L
k k

C

L
w w -

Ê ˆ
+ +Á ˜Ë ¯

= =

 2. Taking Z1 = –j2k, 

                         
1 1

1

1
2 ,Z j L j k

j C
w

w
= + = -

  fi        2
1 1 12 1 0L C kCw w+ - =  

  Again, solving the quadratic equation for w and taking only negative value,

                          

2 1

1
2 1

1
C C

L
k k

C

L
w w w- -

Ê ˆÊ ˆ
+ +Á ˜Á ˜Ë ¯Á ˜= = - = -Á ˜

Á ˜
Á ˜Ë ¯

(b) Resonant Frequency (f0)

It is known that, at cut of frequencies, 
1 2Z j k= ∓

This means that, 
w w w w- -= =

= =
1 2

1 1 2
C C

Z Z k

           
1 21 1 1 1 2 1

1 1 2 1

1 1
| | | |  

C C C C

C C

Z Z j L j L
j C j C

w w w w w w
w w- -= = - -

- -

Ê ˆ
= fi + = +Á ˜Ë ¯

(Resonance frequency of both series and shunt branch is same and given as, 0
1 1

1

L C
w = )

Simplifying the above relation with substituting 
1 1

1

L C
 with w0,

                        0 1 2  C Cw w w- -=

(c) Design Parameters

We know that, at higher cut of frequencies, = +1 2Z j k

              w
w

-
-

+ = +2 1
2 1

1
2C

C

j L j k
j C

 (13.19)

Now, in order to find C1, L1 can be replaced with resonant frequency, 

  w
w

= fi =0 1 2
0 11 1

1 1
 

( )
L

CL C
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Substituting L1 now in Eq. (13.19),

                         
1 2

1 2
0

( )
 

16( )
C CC

k

w w

pw

- --
=

                         

1 2
1 2

0

( )

 4
C Cf f

C
k pw

- --
=

And                
1 2

0 1

1
 L

Cw
=

L2, C2 are found now using the relations: L1/L2 = C2/C2 = k2

                         
2

1 2

1

 ( )C C

C
k f fp - -

=
-

                         

1 2
2 2

0

( )

 4
C Ck f f

L
fp

- --
=

 In a series resonance type band pass filter, L = 60 mH, C = 150 nF, and R = 70 W. Determine 
(a) resonance frequency, (b) bandwidth, and (c) cut-off frequencies. Assume the resistance to be 
600 W. 

Solution

 (a) Resonance frequency fr 
3 9

1 1
1677.64 Hz

2 2 60 10 150 10LCp p - -
= = =

¥ ¥ ¥

 (b) Bandwidth, BW 
3

600 70
1777.23 Hz

2 2 (60 10 )

R

Lp p -

+
= = =

¥

 (c) Lower frequency limit 
1 1677.64 888.6 789 Hz

4r

R
f f

Lp
= = - = - =

  Higher frequency limit 
2 2566.24 Hz

4r

R
f f

Lp
= = + =

 For a T-section constant-k BPF, find out: (a) Design Impedance (b) Higher and Lower cut-off 
frequencies (c) Resonance frequency. Design parameters are: L1 = 15.915 mH, L2 = 7.716 mH, 
C1 = 0.1929 mF, C2 =  0.3979 mF.

Solution

 (a) Design Impedance 
-

-

Ê ˆÊ ˆ Ê ˆ ¥
= = =Á ˜Á ˜ Á ˜Ë ¯ Ë ¯ ¥Ë ¯

3
1 2

6
2 1

15.915 10
200 Ohm

0.3979 10

L L

C C

Example 13.10

Example 13.11
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 (b) Cut-off frequency, 

   

2 21 1

1 1
1 1

1 1

1 1 200 350
  5502 Hz 

2 2 0.015915

L L
k k k k

C C
f

L L
w

p p

Ê ˆ Ê ˆÊ ˆ Ê ˆ
+ + + +Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯ +Ê ˆÁ ˜ Á ˜= fi = = =Á ˜Á ˜ Á ˜ Ë ¯

Á ˜ Á ˜
Á ˜ Á ˜Ë ¯ Ë ¯

 Cut-off frequency,

2 21 1

1 1
2 2

1 1

1 1 200 350
 1500.8 Hz 

2 2 0.015915

L L
k k k k

C C
f

L L
w

p p

Ê ˆ Ê ˆÊ ˆ Ê ˆ
- + + - + +Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯ - +Ê ˆÁ ˜ Á ˜= fi = = =Á ˜Á ˜ Á ˜ Ë ¯

Á ˜ Á ˜
Á ˜ Á ˜Ë ¯ Ë ¯

 (c) Resonance frequency, 0 2 1 0 ( ) (5502 1500.8) 2873.57 Hzf f f f= = = ¥ =

13.9  BAND-STOP FILTER (BSF)

A band stop filter (BSF) designed with p-network and T-network is shown in Figure 13.13. 

Figure 13.13 Constant-k BSF

If the circuit is expressed in terms of Z1 (net series impedance) and Z2 (net shunt impedance), then,

 Z1 = 1
1 2

1 1 1

1
( ) ||  

1

j L
j L

j C L C

w
w

w w

Ê ˆ
=Á ˜Ë ¯ -

 and Z2 = w
w

+2
2

1
j L

j C

For this filter to be a k-type band-stop filter,

                    

2 22 1
1 2

1 2

L L
Z Z k k

C C
= fi = =
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This suggests that L1, C1 and L2, C2 are to be selected such that resonance frequency of series and 

shunt branch; (1 / )LC  are equal.

(a) Cut-off Frequencies (wC–1, wC–2):

For the pass-band,   –1 <  1

24

Z

Z
 < 0

So at cut-off frequency,   –1 = 1
1 2

2

4
4

Z
Z Z

Z
fi = -

Similar to Band pass filter, cut-off frequencies are found by:

 1. Taking = +1 2 ,Z j k  

                         1 1
1

1
( ) || 2 ,Z j L j k

j C
w

w

Ê ˆ
= =Á ˜Ë ¯

                         
1

1 2
1 1

2 ,
1

j L
Z j k

L C

w

w
= =

-

fi     2
1 1 12 2 0kL C L kw w+ - =  

  Solving the quadratic equation for w and taking only positive value,

                          

2 1

1
1

1

1 1 16

8C

C
k

L

kC
w w

p
-

Ê ˆ
- + +Á ˜Ë ¯

= =

 2. Taking Z1 = –j2k, 

                         

w

w
= = -

-
1

1 2
1 1

2 ,
1

j L
Z j k

L C

fi            2
1 1 12 2 0kL C L kw w- - =

  Again, solving the quadratic equation for w and taking only negative value,

                          

2 1

1
2

1

1 1 16

8C

C
k

L

kC
w w

p
-

Ê ˆ
+ +Á ˜Ë ¯

= =

(b) Resonant Frequency (f0)

It is known that, at cut of frequencies, = ∓1 2Z j k

This means that, 
w w w w- -= =

= =
1 2

1 1 2
C C

Z Z k

           
w w w w

w w

w w- -

- -
= =

- -

= fi =
- -1 2

1 1 2 1
1 1 2 2

1 1 1 2 1 1

 
1 1C C

C C

C C

j L j L
Z Z

L C L C
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(Resonance frequency of both series and shunt branch is same and given as, 0
1 1

1

L C
w = )

Simplifying the above relation with substituting 
1 1

1

L C
 with w0, 0 1 2  C Cw w w- -=

(c) Design Parameters

We know that, at lower cut of frequencies, 
1  2Z j k= -

      2 1
2

2 1 1

2
1

C

C

j L
j k

L C

w

w

-

-

= -
-

 (13.20)

Now, in order to find C1, L1 can be replaced with resonant frequency,

  w
w

= fi =0 1 2
0 11 1

1 1
  

( )
L

CL C

Substituting L1 now in Eq. (13.20),

                             
1 1 2

1 2 0 1

1 1
,

2  ( )C C

C L
k Cw w w- -

= =
-

L2, C2 are found now using the relations:

  = = 21 2

2 2

,
L C

k
L C

2 1
2 2

1 2 2 1

( )
,

  4 ( )
C C

C C C C

f f k
C L

k f f f fp p
- -

- - - -

-
= =

-

 Design a passive constant k-type band stop filter having a design impedance of 100 W and cut-off 
frequency 2000 Hz and 5000 Hz.

Solution Given k= 100 W; f1 = 2000 Hz; f2 = 5000 Hz,  f0 = =2 1 ( )  f f 3162.27 Hz

Design parameters for a BSF are given as:

                         
1

2 1 2 1

1 1 1
0.265 F 

2 ( ) 4 ( ) 4 100(5000 2000)
C

k k f f
m

w w p p
= = = =

- - ¥ -

                         
1 2 2 2 6

0 1

1 1
 9.626 mH

4 3162.27 0.265 10  
L

Cw p -= = =
¥ ¥ ¥

                         

2 1
2

1 2

( ) (5000 2000)
0.955 F 

 100 5000 2000

f f
C

k f f
m

p p

- -
= = =

¥ ¥ ¥

                       p p
= = =

- -2
2 1

100
 2.653 mH 

 4 ( )  4 (5000 2000)

k
L

f f

Example 13.12
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13.10  m-DERIVED FILTERS

13.10.1  Limitations of Constant-k Type 
Filters ∑ Characteristic impedance, Z0 is function of frequency and hence, even in pass band, load 

impedance should match with the varying Z0 for zero voltage or current attenuation. ∑ Attenuation is not sharp for stop band region.
m-Derived filters are derived from constant-k filters by following steps:

 1. Multiplying series branch impedances with m

 2. Dividing shunt branch impedances by m

 3. Adding extra impedance of opposite sign in series or in parallel to equate the characteristic 
impedance to that of constant-k type filter.

13.10.2 m-Derived Filter with T-Network

Characteristic impedance of a T-network is given by:

                        

2
1

0 1 22

Z
Z Z Z

Ê ˆ
= +Á ˜Ë ¯

Figure 13.14 m-derived T-section

Figure 13.14 shows T-sections of both constant-k and m-derived filters. Both networks have equal 
characteristic impedances. i.e. =0 0( ) constant- ( ) -derivedZ k Z m

  

2 2
1 1

1 2 1 2 
2 2

Z mZ
Z Z mZ Z

Ê ˆ Ê ˆ
+ = + ¢Á ˜ Á ˜Ë ¯ Ë ¯

Solving it for Z2¢,

  

2
2

2 1

1

4

Z m
Z Z

m m

Ê ˆ-
= +¢ Á ˜Ë ¯

Probe

1.  Explain how T-section and p-section of 

an m-derived network are derived from 

constant-k filters.
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Hence, m-derived T-section can be realised by:

 • Multiplying series impedance with m and 

 • Dividing shunt impedance by m and

 • By adding extra impedance 
2

1

1
 

4

m
Z

m

Ê ˆ-
Á ˜Ë ¯

 in series with shunt impedance.

13.10.3 m-Derived Filter with π-Network

Figure 13.15 m-Derived p-section

Characteristic impedance of a p-network is given by

                        

1 2
0

1

2

 
1

4

Z Z
Z

Z

Z

=
+

 Similarly, for constant-k p-section and m-derived p-section to have same characteristic impedance:

      0 0( ) cons.  ( ) derivedZ k Z m- = -

           

¢
=

¢
+ +

1 2 1 2

1 1

2 2

( / )
   

1 1
4 4( / )

Z Z Z Z m

Z Z

Z Z m

               

1 1
2

1 1

2 2

 
1

4 4

Z Z

Z Z m
m

Z Z

¢
+

¢
=

+

fi                    
1

1 
22

1
 

1 1

 4

1

Z

mZ m
Z

m

=
+

Ê ˆ
Á ˜-Ë ¯

¢

Hence, 1Z ¢  is parallel combination of mZ1 and 22

 4

1

m
Z

m

Ê ˆ
Á ˜-Ë ¯

.
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 1. Multiplying series impedance with m and 

 2. Dividing shunt impedance by m and

 3. By adding extra impedance 22

 4
 

1

m
Z

m

Ê ˆ
Á ˜-Ë ¯

 in parallel with series impedance.

 If an m-derived filter is to be designed with a T-type constant-k filter with m = 0.6. If value of series 
impedance is 200 Ohm, Find the value of additional impedance to be added in series with the shunt 
branch to match the characteristic impedance. 

Solution Value of additional impedance to be added with shunt branch = 
2

1

1
 

4

m
Z

m

Ê ˆ-
Á ˜Ë ¯

                              
21 0.6

 200
4 0.6

Ê ˆ-
=Á ˜¥Ë ¯

 = 53.33 Ohm

 An m-derived filter is to be designed with using p-network and m = 0.6. If value Z1 = 200 Ohm, 
Z2 = 400 Ohm. Find the value of impedances of series and shunt branches.

Solution Step 1: Impedance of shunt branch = 2Z2/m = 2 × 400/0.6 = 1333.33 Ohm

Step 2: Impedance to be added in parallel with series branch

  
Ê ˆ Ê ˆ¥

= = =Á ˜ Á ˜- -Ë ¯ Ë ¯22 2

 4  4 0.6
200 750 Ohm

1 1 0.6

m
Z

m

Step 3: Impedance of series branch = (m Z1) || 
Ê ˆ ¥

= ¥
Ê ˆ
Á ˜-

=ÁË ¯ ˜ +Ë ¯
22

120 750
(0.6 200

 
) || (

4

1
750)

120 750

m
Z

m

= 103.45 Ohm

13.11  m-DERIVED LOW-PASS FILTER 

(a) Frequency of Infinite Attenuation (f•)

Infinite attenuation for a low-pass occurs if shunt branch 
gets short circuited or series branch gets open circuited. This happens at resonance:

                        

2

1 1
 

2 1
( )

4

f
m

mC L
m

p
• =

Ê ˆ-
Á ˜Ë ¯

Example 13.13

Example 13.14

University Question

1.  Discuss how a constant-k low pass filter 

can be designed. [PTU-EE201]
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1 –
4
m

m

2

( (L
mC

2

mC

2

mC

mL

2

mL

2

mL

1 –
4
m

m

2

( (C

Figure 13.16 m-derived LPF with T-section and p-section

                        
2

1 1 1

 1  
f

LC m
•

p
=

-
 (13.21)

(b) Determination of Value of m

Cut-off frequency for a low-pass filter is given by:

                         

1 1

 
Cf

LCp
=

Substituting this in Eq. (13.21)

                        

C

21  

f
f

m
• =

-

                          

2

C1
f

m
f•

Ê ˆ
= - Á ˜Ë ¯

 (13.22)

(c) Design Parameters

Value of L and C remains same as of a constant-k type LPF.

 For an m-derived LPF, if cut off frequency and frequency of infinite attenuation are 500 Hz and 
562 Hz. Find value of m.

Solution fC = 500 Hz and f• = 562 Hz

    Value of 

2 2
500

 1 1
562

Cfm
f•

Ê ˆ Ê ˆ= - = - Á ˜Á ˜ Ë ¯Ë ¯
 = 0.46

Example 13.15
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 The T-section of an m-derived LP filter is shown in Figure 13.17. Find value of k.

Solution

                      40 mH
2

mL
=  (13.23)

 mc = 0.25 mF (13.24)

Solving Eqs (13.23) and (13.24) fi 3160 10
2

L

C
= ¥

3320 10
L

C
= ¥

3320 10 565.68
L

k
C

= = ¥ =

13.12  m-DERIVED HIGH-PASS FILTER

Figure 13.18 m-derived HPF with T-section and p-section

(a) Frequency of Infinite Attenuation (f•)

Infinite attenuation for a high-pass occurs if shunt branch gets short circuited or series branch gets open 
circuited. This happens at resonance:

                         

p
• =

Ê ˆÊ ˆ
Á ˜ Á ˜Ë ¯ -Ë ¯2

1 1
 

2  4

1

f
L m

C
m m

21 1
1  

4  
f m

LCp
• = -  (13.25)

Example 13.16

40 mH 40 mH

0.25 Fm

175.31 mH

Figure 13.17

University Question

1.  Explain and draw m-derived high pass filter 

with p-section. (Figure 13.18) [RU, 2006]
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(b) Determination of Value of m

Cut-off frequency for a high-pass filter is given by:

                         

1 1

 
Cf

LCp
=

Substituting this in Eq. (13.25),

                         
21  Cf f m• = -

                         

2

1     
C

f
m

f

•Ê ˆ
= - Á ˜Ë ¯

 (13.26)

(c) Design Parameters 

Value of L and C remains same as of a constant-k type HPF.

 For an m-derived HPF, if cut-off frequency and frequency of infinite attenuation are 800 Hz and 
700 Hz respectively. Find value of m. 

Solution fC = 800 Hz and f• = 700 Hz

    Value of 

2 2
700

 1 1 0.484
800C

f
m

f

•Ê ˆ Ê ˆ= - = - =Á ˜Á ˜ Ë ¯Ë ¯

 For an m-derived HPF T-section, if design impedance, cut-off frequency and frequency of infinite 
attenuation are 750 Ohm, 700 Hz and 800 Hz respectively, find design parameters (Value of all 
impedances, L and C).

Solution Design impedance, k = 500 Ohm, 800 Hz and 700 HzCf f•= =

Step 1: Find value of L and C for a constant-k HPF of T-section,

 L = k/pfC = 500/(p × 800) = 0.199 H

 C = 1/pkfC = 1/(p × 500 × 800) = 79.61 mF

Step 2: Find value of m:

                          

2 2
700

1 1 0.484
800C

f
m

f

•Ê ˆ Ê ˆ= - = - =Á ˜Á ˜ Ë ¯Ë ¯

Example 13.17

Example 13.18



Filters and Attenuator  13.27

Step 3:

 (a) Value of each series inductance = mL/2 = 0.484 × 0.199/2 = 0.048H

 (b) Value of each shunt capacitance = mC = 0.484 × 79.61 mF = 38.53 mF

 (c) Value of additional impedance to be connected in series with shunt branch

    
Ê ˆ-

= =Á ˜Ë ¯

21
 0.079 H

4

m
L

m

13.13  TERMINATING HALF SECTIONS

Half section is used when a T-network and a p-network are to be interconnected. They can be used at both 
source or load ends. Purpose of half sections is to match the impedance between the two networks.

Half Section with Constant-k Filters

A typical constant-k half section is shown in Figure 13.19  
connecting a T and p network. For impedance matching,

 (a) Image impedance as seen from 1-2 should be equal to 
characteristic impedance of T-network. and

 (b) Image impedance as seen from 3-4 should be equal to 
characteristic impedance of p-network.

                      

2
2 2
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 (2 )
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Z Z Z Z
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-

Ê ˆ
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1 2

1 2
1 2

4

4

Z Z
Z

Z Z
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+

  This is equal to characteristic impedance of the p-network.
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Figure 13.19  m-derived terminating 

half-section – T type
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Half Section with m-Derived Filters

Similar analysis can be done for an m-derived filter shown in 
Figure 13.20.

If the shown half-section is to be connected between a T-network 
and p-network such that terminals 1-2 are connected to the 
p-network and terminals 3-4 to the T-Network than for impedance 
matching:

 (a) Image impedance as seen from 1-2 should be equal to 
characteristic impedance of T-network. And

 (b) Image impedance as seen from 3-4 should be equal to 
characteristic impedance of p-network.

 For a constant-k half T-section, find the value of design parameters if cut-off frequencies and design 
impedance of the associated HPF are 5000 Hz and 1000 Ohm respectively.

Solution Here, Design impedance, k = 1000 Ohm, fc = 5000 Hz

 L = k/4pf = 1000/(4p × 5000) =15.92 mH

 C = 1/4pk f = 1/(4p × 1000 × 5000) = 0.0159 mF

13.14  COMPOSITE FILTER

A composite filter is designed in order to achieve sharp 
attenuation even beyond the frequency of infinite attenuation. 
Block diagram for a typical composite filter is shown in 
Figure 13.21.

Figure 13.21 Composite Filter – Block diagram

Various sections of a composite filter are:

 (a) A constant-k filter of particular cut-off frequencies.

 (b) An m-derived filter of desired infinite attenuation frequency for sharp attenuation.

 (c) Terminating half-sections at both load and source end for impedance matching (usually with 
m = 0.6).

  Composite High-pass filter is shown in Figure 13.22.

Figure 13.20  m-derived terminating 

half-section – p type

Example 13.19

University Questions

1.  Draw the block diagram of composite filter. 

 [University of Pune, 2012]

2. Write short notes on composite filters.

 [PTU-EE201]
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Figure 13.22 Composite HPF using p-sections

Composite Low-pass filter is shown in Figure 13.23.

Figure 13.23 Composite LPF using T-Sections

 Design a composite high pass filter with:

 (a) Characteristic impedance = 1000 Ohm, 

 (b) Cut-off frequency = 2000 Hz

 (c) One m-derived T-section of m = 0.4

 (d) m-derived T-sections at both load and source ends (m = 0.6).
Use constant-k T section as prototype.

Solution Step 1: Design prototype constant-k T section

Given, k = 1000 Ohm, fc = 2000 Hz
So, L = k/pf  = 1000/(p × 2000) = 159.2 mH

 C = 1/p k f  = 1/(p × 1000 × 2000) = 0.16 mF

Example 13.20
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Step 2: Design m-derived T-section- Given, m = 0.4

 (a) Value of each series capacitance = 2C/m = 2 × 0.04/0.4 = 0.05 mF

 (b) Value of each shunt inductance = L/m = 39.8/0.4 = 99.5 mH

 (c) Value of additional impedance to be connected in parallel with series branch = 2

4
 

1

m
C

m

Ê ˆ
=Á ˜-Ë ¯0.076 mF

Step 3: Design terminating half section:
Same steps are followed for design of m-derived half sections. Given, m = 0.6

 (a) Value of each series capacitance = 2C/m = 2 × 0.04/0.6 = 0.033 mF

 (b) Value of each shunt inductance = 2L/m = 2 × 39.8/0.6 = 132.66 mH

 (c) Value of additional impedance to be connected in parallel with series branch = 2

2
 

1

m
C

m

Ê ˆ
=Á ˜-Ë ¯0.075 mF

13.15  ATTENUATOR

Attenuator is a two-port resistive network designed to reduce 
the power level of the signal. It reduces the power/voltage 
or current to the desired level when connected between the 
source and load without distorting the signal waveform.

Attenuation in dB is expressed as: 1 1 1

2 2 2

20 log 20 log 10 log
V I P

dB
V I P

Ê ˆ Ê ˆ Ê ˆ
= = =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

 here log base  
is 10.

Attenuation in Nepers is expressed as: 1 1 1

2 2 2

1
ln ln ln

2

V I P

V I P

Ê ˆ Ê ˆ Ê ˆ
= =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

,  here log base is e.

Since,          1
log ln  

2.303
X X=

               
20

20 log ln 
2.303

X X=

               20 log 8.686 ln X X=

Gain in dB = 8.686 Gain in Nepers.

 For a 40 dB gain, find out the gain in voltage ratio. Also, find the gain in Nepers.

Solution

Gain in dB, D 

40

20 201 1 1 1

2 2 2 2

 20 log Antilog  10 10 100 
20

D
V V V VD

V V V V

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Ê ˆ Ê ˆ= fi = fi = fi = =Á ˜Á ˜ Ë ¯Ë ¯

 

University Question

1.  Define the units of attenuation: (i) Neper 

(ii) Decibels. Derive the relationship 

between them. [University of Pune, 2013]

Example 13.21
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Gain in Nepers, = = =
1 40

gain in dB 4.60
8.686 8.686

13.16  LATTICE ATTENUATOR

Figure 13.24 shows a lattice attenuator. Like p- and 
T-network, two important parameters of the attenuator are 
determined here.

13.16.1 Characteristic Impedance

     -
Ê ˆ+Ê ˆ

= = =Á ˜ Á ˜Ë ¯ +Ë ¯
1 2 1 2

1 2 1 2
1 2

2
   

2OC SC

R R R R
Z Z Z R R

R R
 (13.27)

13.16.2 Parameter Determination

Attenuation coefficient, 1

2

I
N e

I

a= =

The circuit can be simplified as:
If the load resistance is equal to the characteristic of attenuator, values of R1 and R2 for a desired 

attenuation (N) are found as described below:
Applying KVL in loops yields,

           1 0 1 1 2 0 2 1 I R I R I R I R- = +

                        

0 11

2 0 1

R RI
N

I R R

+
= =

-

Solving it for R1,

                        
1 0

1
  

1

N
R R

N

-
=

+

Using Eq. (13.27), 2 0

1
  

1

N
R R

N

+
=

-

 For a lattice attenuator with R1 = 163.6 Ohm and R2 = 244.5 Ohm, Find out characteristic resistance 
and attenuation in dB. 

Solution

(a) Characteristic resistance, 0 1 2 163.6   244.5 R R R= = ¥  = 200 Ohm

University Question

1.  Write a short note on attenuators.  

 [PU, 2011]

Figure 13.24 Lattice attenuator

Example 13.22
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(b) Attenuation, N = 0 1

0 1

  200 163.6
 

  200 163.6

R R

R R

+ +
=

- -
 = 10;

 Attenuation in dB = 20 log N = 20 log 10 = 20 dB

13.17  T-TYPE ATTENUATOR

If R0 is the characteristic impedance then,

  0 1 2 1 0( | )| ( )R R R R R= + +

2 1 0
0 1

2 1 0

( )( )

( )

R R R
R R

R R R

+
= +

+ +
 (13.28)

Applying mesh analysis (Figure 13.25), 
1 2 1 2 2 0 2 1I R I R I R I R+ = +  

solving it for attenuation, i.e. 1

2

I

I
 yields,

                        1 2 01

2 2

R R RI

I R

+ +
=  (13.29)

Solving Eqs (13.28) and (13.29),

                         
1 0 2 0 2

1 2
and

1 1

N N
R R R R

N N

-
= =

+ -

 Design a symmetrical T-attenuator so that it works between a source and load impedance of 260 W 
and 490 W respectively and provides an attenuation of 40 dB.

Solution Given, characteristic impedance, R0 = 490 W, D = 40 dB

Step 1: Find attenuation in terms of current or voltage ratio:

                         

40
N = Antilog Antilog 100

20 20

DÊ ˆ Ê ˆ= =Á ˜ Á ˜Ë ¯ Ë ¯

Step 2: Find values of R1 and R2:

                        
2 0 2

2 2 100
490 9.80 Ohm

100 100 11

N
R R

N

¥
= = =

¥ --

1 0

1 100 1
490 480.3 Ohm

1 100 1

N
R R

N

- -
= = =

+ +

Figure 13.25 T-type attenuator

Example 13.23

R1 R1

R0R2R0

Figure 13.26
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13.18  π-TYPE ATTENUATOR

Using bisection theorem, a lattice equivalent network of 
a p network can be found using its bisections as shown in 
Figure 13.27.

Bisections of the p-network will have series arm of 

1 

2

R
 and shunt branch of 2R2.

Equivalent lattice network will have:

1 1
1 2 2 2 2 2 / 2 and 2

2 2

RR
R R R R R

Ê ˆÊ ˆ
= ¥ + = =¢ ¢Á ˜ Á ˜Ë ¯ Ë ¯

 

Since for a lattice network,

                         1 0

1
 

1

N
R R

N

-
=

+ ; 2 0

1
  

1

N
R R

N

+
=

-

Substituting the values of R1 and R2;

                        
2

1 0

1

2

N
R R

N

-
=¢ ;  

0
2

1

2 1

R N
R

N

+
=¢

-

 Design a p-type attenuator to give 20 dB attenuation and to have a characteristic impedance of 
100 W.

Solution Given, characteristic impedance, R0 = 100 W, D = 100 dB

Step 1: Find values of R1 and R2

                         

2 2

1 0

1 20 1
100 495 Ohm

2 2 20

N
R R

N

- -
= = =¢

¥

0 
2

1 100 20 1
61.11 Ohm

2 1 2 20 1

R N
R

N

+ +
= = =¢

- -

1 1 495 OhmR R= =¢

Since,             
2 22 61.11 2 122.22 OhmR R= = ¥ =¢

13.19  LADDER-TYPE ATTENUATOR

When attenuation with single step of a T or p network does not match the desired value, multiple units 
of identical T or p networks are cascaded. 

A single unit can be designed following the corresponding formulae of parameter determination and 
attenuation required per step.

Figure 13.27 p-type attenuator

Example 13.24

R1

R2 R2

Figure 13.28
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 Find out resistances of a ladder-type network, if load resistance and attenuation per section are 500 
Ohm and 20 dB respectively.

Solution Given, Characteristic Impedance, R0 = 500W, D = 20 dB

Step 1: Find attenuation in terms of current or voltage ratio:

 N = Antilog 
20

10 
20

Ê ˆ =Á ˜Ë ¯

Step 2: Find values of R1 and R2

                         

2

1 0

1 10 10 1
500 2475 Ohm

2 2 10

N
R R

N

- ¥ -
= = =

¥  

                         

0
2

1 500 10 1
305.55 Ohm

2 1 2 10 1

R N
R

N

+ +
= = =

- -

P O I N T S  T O  R E M E M B E R

  Attenuation coefficient (a) for pass band is zero.

  Phase shift for stop band (attenuation band) is p.

  Condition to get cut off frequency, 1

2

1
4

Z

Z
= -

PRACTICE PROBLEMS

Example 13.25

 1. Design a symmetrical resistive T-section 
with open and short circuit impedances 
equal to 2000 Ohm and 1000 Ohm 
respectively.

 2. For a p-network having both shunt 
impedances equal to 200 Ohm and series 
inductance of 500 Ohm, find characteristic 
impedance. Assume all impedances to be 
resistive.

 3. A low pass filter is designed with shunt 
branch having a capacitor of 0.20 mF 
and series branch having two inductors 
each of 15 mH. Calculate (a) Cut-off 
frequency, Attenuation and Phase shift for 
(b) f = 5000 Hz, and (c) f = 1000 Hz.

 4. Find characteristic impedance of a low 
pass filter at 2000 Hz if cut-off frequency is 
5000 Hz. Design impedance = 200 Ohm.

 5. A high pass filter is designed with two 
series branches each having capacitance 
of 0.20 mF and a shunt branch having 
inductance 15 mH. Calculate: (a) Cut-off 
frequency, Attenuation and Phase shift for 
(b) f = 500 Hz and (c) f = 5,000 Hz.

 6. For an m-derived T-section high pass 
filter, if infinite attenuation is desired at 
frequency not lower than 10% of cut-off 
frequency. Find the value of m.

 7. For an m-derived p-section high pass filter 
with characteristic impedance of 600 Ohm, 
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cut-off frequency of 2 kHz, frequency of 
infinite attenuation equal to 1.8 kHz, find 
the value of inductance to be connected 
in parallel with shunt branch impedance 
derived from constant-k filter.

 8. Design a composite low pass filter with:
 (a) Characteristic impedance = 500 Ohm, 
 (b) Cut-off frequency = 2000 Hz
 (c) Frequency of infinite attenuation = 

2500 Hz

 (d) m-derived T-sections at both load and 
source ends (m = 0.6).

  Use constant-k T section as prototype.

 9. With a lattice attenuator of 150 Ohm 
characteristic resistance, it is desired to 
reduce the power level to half. Determine 
its design parameters.

MULTIPLE CHOICE QUESTIONS

 1. For an ideal low pass filter with cut-off frequency of 2 kHz, value phase shift for a signal of 5 kHz will 
be

 (a) Zero (b) 90 degree (c) 180 degree (d) 45 degree

 2. For a High pass filter designed with p-network, characteristic impedance at cut-off frequency is: 
 (a) Zero (b) Infinite (c) Imaginary (d) Negative

 3. Value of m for an m-derived filter with cut-off frequency of 8 kHz and frequency of infinite attenuation of 
7.2 kHz will be:

 (a) 0.54 (b) 0.44 (c) 0.60 (d) 0.23

 4. Attenuation coefficient for a constant-low pass filter of 1 kHz cut-off frequency at 2 kHz is:
 (a) Infinite (b) Zero (c) 1/e (d) e

 5. If output power is 1/10 of input power, attenuation in dB will be:
 (a) 10 (b) 20  (c) 10/2.308 (d) 0

ANSwerS To MuLTIPLe CHoICe QueSTIoNS

 1. (c) 2. (b) 3. (b) 4. (a) 5. (a)
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