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Preface

This book caters to the needs of first and second-year undergraduate students of EEE/ECE/EI/CSE
pursuing course on Circuits and Networks. It will prove to be a great aid in preparation for semesterial
examination of various universities. Readers who want to refresh, deepen and systemize their knowledge
on subject matter will find this book as an ultimate resort.

Students often find Circuits and Networks a back-breaking course because of the mathematical
complexity involved and importance that it enjoys in later semesters. The market is flooded with
exhaustive and heavy volumes on Circuits and Networks but there is no individual textbook that
provides holistic, simple yet concise and quality coverage on all the key topics. This further adds up to
the challenge specially during “the exam days”.

This book has a perfect blend of focused content coverage and key pedagogical aids following
question-and-answer format based on the real questions that students ask. The pedagogical aids have
been designed using 5SEs Approach: Engage, Explore, Explain, Elaborate and Evaluate. Hence, this
book fills the void in the market.

We may consider this book to be an attempt to supplement excellent comprehensive circuits and
networks textbooks like Circuits and Networks (A Sudhakar, Fifth Edition, 2015), Engineering Circuit
Analysis (William H. Hayt, Eighth Edition, 2013)

Highlights

e Focus on basic concepts

e Just enough theory with emphasis on theorems, transient response, network functions,
techniques of analysis, etc., which are frequently asked in exams

e Solutions to previous year questions from universities such as AKTU, GTU, RGPV, RTU,
GTU, PU, MU, AU, etc.

e Summary at the end of each chapter to quickly review the concepts
e C(Clearly labeled illustrations with proper notations
e Examination-oriented pedagogy:

& 229 step-wise Solved Examples

¢ 144 Practice Problems

+ 100 Multiple Choice Questions
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Organization of the Book

The book is divided into 13 chapters.

Chapter 1 deals with the basic network concepts. It discusses the circuit elements, series and parallel
combination of these elements, star-delta transformation and source shifting. Chapter 2 on Methods
of Analysing Circuits discusses the network topology, Kirchoff’s law, mesh and nodal analysis.
Then Chapter 3 on Network Theorem discusses the various theorems beneficial for the analysis and
determination of voltages and currents. Steady state AC analysis and transient response are discussed in
Chapter 4. The chapter also deals with various theorems involved in the analysis.

Chapter 5 on Resonance explores the frequency response of circuits and evaluates the resonance
frequency. It also talks about half power frequency, band width and quality factor. Then is Chapter 6
on Coupled Circuits. This chapter discusses different types of coupling and analysis of coupled circuits.
Chapter 7 on Polyphase Circuits explains the analysis of three-phase 3-wire and 4-wire circuits, phasor
diagrams and star-delta conversion. Transfer functions and driving-point functions are discussed in
Chapter 8 on Network Functions.

Chapter 9 on Two-Port Networks discusses about different parameters involved and also the
relationship between the parameters. Chapter 10 explains the Fourier method of waveform analysis. It
also discusses Fourier transform. Chapter 11 gives an introduction to Laplace Transform, and hence
the name of the chapter. It highlights the different properties of the transform, nodal and mesh analysis
and modelling of R, L, and C in s-domain and additional circuit analysis techniques in s-domain.
Chapter 12 on Network Synthesis defines Hurwitz polynomial and the methods to determine it. Finally,
Chapter 13 on Filters and Attenuator describes their design and analysis.

Web Supplements

The text is supported by additional content which can be accessed at http://www.mhhe.com/exam_prep/cn.
e Solutions Manual (for Instructors and Students)
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Basic Network Concept

CHAPTER OUTLINE

1> Circuit elements: Resistance, Inductance 5 Sources and source transformation
and Capacitance 1= Star-delta transformation
1= Series and parallel combination of resistors, r=  Source shifting

inductors and capacitors

1.1 || INTRODUCTION

An electric network is defined as the interconnection of various electric components in a prescribed
manner to form a closed path. Therefore, it is important to know the basic concepts of electric networks
and the properties of the electric components to carry out computational analysis of networks.

CIRCUIT ELEMENTS: RESISTANCE,

12 H INDUCTANCE AND CAPACITANCE

1. State the limitation of Ohm’s law.

1.2.1 Resistance [AU, 2013]
Resistance of a material is defined as its property to obstruct

the flow of electric current through the material. Based on the value of resistance, R
materials can be classified into good conductors and bad conductors of electric current. oA\ ‘o

It is denoted as R and the unit of resistance is Ohm (€2). The symbol of resistance is
as shown in Figure 1.1.

The resistance of a conductor depends on the resistivity of the material of the conductor (p), length of
the conductor (/) and the area of cross section of the conductor (A). The relationship is given by

.
A
Ohm’s law states that the potential difference V between the two ends of a conductor is directly
proportional to the current / flowing through the conductor at constant temperature and the constant of
proportionality is the resistance of the conductor R. The mathematical expression of Ohm’s law is given as
V=IR

Figure 1.1
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When a current flows through a resistive material or a resistor, the electrical energy absorbed by
the resistor is converted into heat energy. The amount of heat dissipated in the resistor or the power is
denoted by the letter P and measured in units of Watts (W). It is given by

P=VI=FR
Note: Remember that while solving problems the basic quantities must be used in the formula, i.e.
VOLTS, OHMS and AMPERES (not milli, kilo, etc).

( Example 1.1 )

A bulb is rated as 230 V, 230 W. Find the rated current and resistance of the filament. ocoe
[AU, 2011]

Solution Given data: Voltage V = 230 V; Power P = 230 W
Required data: Current / = ? Resistance R = ?
Power P = Voltage x Current =V x [

230=230%x1 or I=1A
Resistance of the filament R = V/I = 230/1 or R = 230 Q

1.2.2 Inductance

An inductor is a device made of wire wound according to various designs that can store energy in a
magnetic field. Inductance is the quantitative measure of the property of an inductor to oppose any
sudden change in the current flowing in it. Inductance is developed by the voltage induced across the
inductor from the electromagnetic field arising due to the current flowing in it. It is denoted as L and the
unit of inductance is Henry (H). The symbol of inductance is as shown in Figure 1.2.

The current voltage relationship is given as L
di 00000000000
v=L— .
dt Figure 1.2

where, v is the voltage across inductor in volts, and i is the current through inductor in amps.

Inductance is also defined as the ratio of magnetic flux linking with the coil to the current producing
the flux.

=22
1

where N is the number of turns in the coil, ¢ is the flux in weber and [ is the current in the coil in
amps.

Inductance of a solenoid, which is the most common configuration of coil of wire, is given as

UN*A
[

where u is the relative permeability of the core, A is the cross-sectional area of the solenoid and / is the
length of solenoid.

L=

Note: Difficulty Level —> O O @ — Easy; O ® ® — Medium; ® ® ® — Difficult
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The energy stored by inductor in the magnetic field is given as

2
wo L
2

( Example 1.2 )

An air cored solenoid 1 m in length and 10 cm in diameter has 5000 turns. Calculate the inductance

and energy stored in the magnetic field when a current of 2 A flows in the solenoid. cee
[VTU, 2011]

Solution Given data: length of solenoid / = 1 m, diameter ¢t = 10 cm = 0.1 m, air cored so U = 4,
=4nx 107

Number of turns N = 5000, Current / =2 A
Required data inductance L = ? Energy stored W = ?

9 ﬂdz 3 2
Area of cross section A = T =7.854%x 10" m

UN’A _ 47 x 1077 x 50002 x 7.854 x 10~
l 1

B 2
Energy stored W = % = % =0.4934]

Inductance L = =0.2467 H

1.2.3 Capacitance

A capacitor consists of two conducting surfaces or plates separated by an insulating material or dielectric.
The property of a capacitor to store charge on its conducting surfaces, in the form of an electrostatic
field when a steady voltage is applied across it, is called the capacitance. Capacitance is

also the quantitative measure of the property of a capacitor to oppose any sudden change c

in the voltage across it. It is denoted as C and the unit of capacitance is Farad (F). The A L
symbol of capacitance is as shown in Figure 1.3. Figure 1.3

Q

Capacitance is givenby C = v where Q is the amount of charge on capacitor plate and V'is the voltage

across the plates. The capacitance is proportional to the area of plates A and inversely proportional to the
distance between the plates d. It is also given as

A
C= Eog

where g is the absolute permittivity.
The current voltage relationship is given as
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The energy stored by the capacitor in the electrostatic field is given by
cv’
2

W=

( Example 1.3 )

When a dc voltage is applied to a capacitor, voltage across its terminals is found to build up in
accordance with v-=50 (1 - e’lOOt). After 0.01s, the current flow is equal to 2 mA. (a) Find the value
of capacitance in farad. (b) How much energy is stored in the electric field? (X X J

[AU, 2014]

Solution Given data: Applied voltage v =150 (1 — ¢ 9% time =0.01s, currenti=2mA=2x 107 A.
Required data capacitance C = ? Energy stored W = ?

d
(a) i:cd—: or i:Cdisoa—e-“)O’):c><50><100e‘1°°’
1

Atr=001s, i=2x107A.
Therefore 2 x 10~ = C x 50 x 100e 100> 001

C=1.089 uF
cv?
(b) W=
2

Atr=001s, v=50(1-¢'0*% =316V
Therefore, W= % x 1.089 x 107° x (31.6)> = 0.543 mJ

1.3 SERIES AND PARALLEL COMBINATION OF RESISTORS,
' INDUCTORS AND CAPACITORS

1.3.1 Resistors in Series

Consider the connection of resistors shown in Figure 1.4. The Ry Ry Rs Rm
resistors are said to be connected in series. In a series circuit
the current flowing through each element is same but the
voltage drops are proportional to the values of resistors. So,
the series circuit acts a voltage divider. The total voltage is
given by the addition of the individual voltage drops. The total L
equivalent resistance of the combination is equal to the sum of
the individual resistances. Figure 1.4

R,,=R +R,+R;+ - +R,
The total power in the series circuit is the total voltage applied to a circuit, multiplied by the total
current.
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1.3.2 Resistors in Parallel
Consider the connection of resistors shown in Figure 1.5. The resistors are said to be connected in parallel.
In a parallel connection, the total current entering the parallel branches is divided into the branches currents

according to the resistance values. The voltage across each Ir
element is the same and equal to the applied voltage. So, , —
the parallel connection acts as a current divider. The total \n |k V3 Vim
equivalent resistance of the combination is given as Ve R R, R;--——3 Ry,
1 1 1 1 1
R R R R TR, —— L
eq 1 2 3 m

Figure 1.5

( Example 1.4 )

Find the equivalent resistance between terminals A and B of the network shown in Figure 1.6. 0 @ @

[JNTU, 2006]
Solution
100 Q 14 Q
Step 1: The 50 Q and 30 Q are in series [Figure 1.7(a)(i)]. So A
the equivalent resistance is 50 + 30 = 80 Q. Similarly,
the 8 Q and the 24 Q are in series. The equivalent 50 o 24 Q
resistance will be 8 + 24 = 32 Q.
Step 2: The 32 Q and 32 Q are in parallel [Figure 1.7(a)(ii)].
el . L 32x32 oo 30Q £
So the equivalent resistance is e 6 Q. Fignre 106
Step 3: This 16 Q and 14 Q are in series [Figure 1.7(b)(1)]. So the equivalent resistance is
16 +14 =30 Q.
Step 4: This 30 Q and 60 Q are in parallel [Figure 1.7(b)(ii)]. So the equivalent resistance is
30 x 60 -200.
30+ 60
Step 5: This 20 Q and 80 Q are in series [Figure 1.7(c)(i)]. So the equivalent resistance is
20 + 80 = 100 Q.

Step 6: Finally both the 100 € are in parallel [Figure 1.7(c)(ii)]. So the equivalent resistance is
100 x 100 500

100 + 100
The equivalent resistance between terminals A and B of the network is 50 Q.
100 Q 14 Q 100 Q 140 Parallel
50 Q 24 Q 80 Q 60 Q 320
Series e . 8g Series "
(i) (ii)

Figure 1.7(a)
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100 Q 14 Q 100 Q 30 Q

A B \ A B
<—1— Parallel
80 Q 60 Q 232" 80Q 60Q
=16 Q series
(i) (ii)
Figure 1.7(b)
100 Q 100 Q
A B A B
AAAYA AVAVAYA
.. Rag=100 || 100
=50Q
80 Q 20 Q
'\_/ _AAA—
- Parallel — 1009
Series

(0] (if)
Figure 1.7(c)

1.3.3 Inductorsin Series

Consider n number of inductors connected in series shown in Figure 1.8. When a voltage is applied to
such a combination, the current passing through each inductor is the same. The total combined equivalent
inductance of any number of inductors is the sum of the individual inductances. It is given as

Ly=Li+Ly+Ly+--+L, 00 ——~000——~000 —o o000 o
L1 L2 L3 ----- Ln
1.3.4 Inductors in Parallel Figure 1.8

Consider n number of inductors connected in parallel shown in Figure 1.9. In a parallel connection, the
current flowing in each inductor is different. The voltage across each inductor is same and equal to the
applied voltage. The total equivalent inductance of the combination is given by

L SR IR ’ ’
L, L L, L, Leq —> L4 Lo Ly
PR S S o

1.3.5 Capacitorsin Series

Consider n number of capacitors connected in series shown in Figure 1.10. When a voltage is applied to
such a combination, the total applied voltage is equal to the sum of voltages across individual capacitors.
The total equivalent capacitance is given as

1 1 1 1 °_”_°_H_°_“_° _____ 4’_”_""

—— =it
Ceq Cl C2 Cn

Figure 1.10
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1.3.6 Capacitors in Parallel

Consider n number of capacitors connected in parallel. In o— T °

aparallel connection, the current flowing in each capacitor Bas—s. G4 C, J._ __|._ c,
is different. The voltage across each capacitor is same —l_ T

and equal to the applied voltage. The total equivalent o - °

capacitance of the combination is given as Figure 1.11

Coy=Ci+C+ C3+ -+ C,

C Example 1.5 )

Find the total equivalent capacitance and total energy stored if the applied voltage is 100 V for the
circuit shown in Figure 1.12. [JNTU, 2010] oo @

Solution:
+0

Step 1: 4 F and 3 F are in series. So the equivalent capacitance L 2F &L
iijg’:lzﬂF 1oV I1F T
+
ik

Step 2: This 12/7 F and 5 F are in parallel. So the equivalent

12 Figure 1.12
capacitance is = +5 =47/7TF

. . . . . 2x1
Step 3: The 2 F and 1 F are in series. So the equivalent capacitance is ] =2/3F

Step 4: The 2/3 F and the 47/7 F are in parallel.

So the total equivalent capacitance is %+ 47—7 =155/21 For 7.38 F

Step 5: Applied voltage V=100 V. Energy stored in the network is W = %CV2

W= %x 7.38 x 100 x 100 =36900J

SOURCES AND SOURCE

14 | TRANSFORMATION

1. Explain about voltage source and

1.4.1 Sources current source. Include ideal, practical,

. .. . independent and dependent sources in
The energy source in an e.lectrlc grqnt is the one whlch your explanation. [GTU, 2010]
drives the .electron's to ﬂqw in the circuit. They are class.lﬁ.ed 2. Explain source transformation techniques
on the basis of their terminal voltage—current characteristics with suitable circuits. [UNTU, 2012]

as shown in Figure 1.13.



1.8 & Circuits and Networks

| Electrical Energy Source [

v

v

| Independent sources |

Voltage source

Current source

| Dependent sources

Voltage Controlled <—
Current Source (VCCS)

Current Controlled «—
Current Source (CCCS)

Figure 1.13

— Voltage Coltrolled Voltage
Source (VCVS)

—> Current Controlled Voltage
Source (CCVS)

An independent source is the one in which the source voltage or current is independent and unaffected
by any other part of the circuit whereas, in a dependent source, the source voltage or current is variable
and depends on another element in the circuit.

The most common energy sources used in electric circuits, their features and symbols are given in

Table 1.1.

Table 1.1 Energy sources and their properties

Type of Source Important Feature Symbol
Independent ideal voltage source | Zero internal resistance
with constant magnitude v
Independent ideal voltage source | Zero internal resistance
with time varying magnitude v(t)
Independent practical voltage Has an internal resistance which R I3

. . . . . . +
source with constant magnitude is represented in series with the o

source V3 Vi

Independent ideal current source
with constant magnitude

Infinite internal resistance

3

Independent ideal current source
with time varying magnitude

Infinite internal resistance

i)

Independent practical current
source with constant magnitude

Internal resistance is represented
in parallel with the source

[
o~

~

=g

(Continued)
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Table 1.1 (Continued)

Type of Source Important Feature Symbol

Dependent voltage source

Dependent current source

1.4.2 Source Transformation

Sometimes while solving a problem, it may be more convenient to transform a voltage source to a
current source or vice versa to simplify the circuit. The thumb rule is that any practical voltage source
represented by a voltage V and its internal resistance R in series can be transformed into an equivalent
current source with the same resistance now connected in parallel, where the value of current source
is given by I = V/R. Similarly, any practical current source represented by a current / and its internal

resistance R in parallel can be transformed into an equivalent R
voltage source with the same resistance now connected in series, a a
where the value of voltage source is given by V =/R. Remember, > s R
that the terminal conditions, voltage and current of the original b b
and the transformed network must remain same before and after .

Figure 1.14

the transformation.
Note that the arrow of the current source is directed towards the positive terminal of the voltage source.

C Example 1.6 )

Find the voltage and current source equivalent representation of 20
the network (Figure 1.15) across AB. [JNTU, 2010] YWV )
ocoe
Solution 4V 2Q 2A
Step 1: Transforming the 4 V voltage source into equivalent current °
source of value = 4/2 = 2 A and connecting the 2 Q we get Figure 1.15
the network shown in Figure 1.16 (a) °
Step 2: Combining the current sources
we get 2 + 2 = 4 A and combining 2A R 2A 2R 4A £
the resistances in parallel we get a
2SN 1 Q. So the current source @ (®)
242 10

4 A into voltage source of 4 x 1 =4 V and connecting the 1 Q
resistance in series we get the voltage source equivalent Figure 1.16
representation as shown in Figure 1.16 (c).

equivalent representation is as shown in Figure 1.16 (b).
Step 3: We can find the voltage source equivalent representation from  4v *
the circuit obtained in step 2. Transforming the current source of
(c)
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C Example 1.7 )

Using source transformation, reduce the network, shown in
Figure 1.17, between A and B into an equivalent voltage source.
[JNTU, 2006] Ccee®

Solution

Step 1: Transforming all the voltage sources into respective current
sources and connecting the corresponding resistances in
parallel, the circuit becomes Figure 1.18 (a).

Step 2: Combining the current sources and the resistances in
parallel, the circuit becomes as shown in Figure 1.18 (b).

Step 3: Transforming the current sources to respective voltage
sources and connecting the corresponding resistances in
series, the circuit becomes as shown in Figure 1.18 (c).

Step 4: Combining the voltage sources and the resistances in series,
the reduced network is obtained as as shown in Figure 1.18 (d).

0 A A
1W A
g 3212
- 3V 375V
2o 3|1 0.75 W 1.75 W
=1A =0.75Q
0.75V B
B
(b) (d)
Figure 1.18

C Example 1.8 )

Reduce the network shown in Figure 1.19 to a single
loop network by successive source transformation, to

obtain the current in the 12 € resistor. cee
[JNTU, 2006]
Solution
Step 1: Transform the 15 A current source into Figure 1.19

equivalent voltage source of value 15 x 4 =60 V and connect the 4 Q resistor in series. Also
transform the 180 V voltage source into equivalent current source of value 180/24 =7.5 A and
connect the 24 C resistor in parallel. The circuit now becomes as shown in Figure 1.20 (a).
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Step 2: Combine the 7.5 A and 45 A current sources [Net value =45 — 7.5 = 37.5 A] and the resistors

12 Q and 24 Q in parallel. Also combine the 60 V

and 30 V voltage sources and the resistors

2 Q and 4 Q in series. The circuit becomes as shown in Figure 1.20 (b).

30V

2Q 90V
& &
60 V =
12Qs 24Q5 75A(1) 45A 10 1203 20 37.5A 6Q
(a) (b)
Figure 1.20
Step 3: Transform the 90 V voltage source into equivalent current source of value 90/6 = 15 A and
connect 6 Q in parallel as shown in Figure 1.20 (c).
Step 4: Keeping 12 Q separate, as we need to find the current flowing in it, combine the current
sources [37.5 — 15 = 22.5 A] and the resistors 24 Q and 6 Q in parallel as shown in Figure
1.20 (b).
120 240 (P3r5A (DI5A 36Q 120 482  (1225A
4 I
(c) (d)
Figure 1.20

Step 5: Transform the 22.5 A source into voltage source of value 22.5 x 4.8 = 108 V and connect the
4.8 Q in series. Apply Ohm’s law to find the current / = 108/(4.8 + 12) = 6.428 A

1.5 || STAR-DELTA TRANSFORMATION

University Question

Star connection and delta connection are two different
ways of connecting resistances. If three resistors are
connected such that one end of each resistor is connected
together to form a junction point then the resistors are said
to be connected in star. The connection is shown in
Figure 1.21.

If three resistors are connected such that they
form a closed loop or path then the resistors are said
to be connected in delta. The connection is shown in
Figure 1.22.

1. Given a delta circuit having resistors, write
the required expressions to transform the
circuit to a star circuit. [AU, 2012]

A
Ra A
R4 R,
B C 8 R3 @

Figure 1.21 Figure 1.22



1.12 & Circuits and Networks

Both the connections can be transformed into each other and the transformation technique is useful
in solving complex networks and reducing the number of equations.

1.5.1 Delta to Star Transformation

Consider three resistances R, R,; and R;; connected in delta between terminals A, B and C as shown in
Figure 1.23(a) and it is desired to convert it into star formation as shown by dotted lines. The equivalent
star formation between the same terminals is shown in Figure 1.23(b).

The formulae for converting delta to star are A
as follows.
R, R, Ri

=

Ry + Ry3 + Ry
- Ry, Ry %, 2

2 3 2

R,+R,;+R
12 23 T3y c B

— R23 R31
3

S | - (b)
R, + Ry; + Ry

Figure 1.23
1.5.2 Star to Delta Transformation

Consider three resistances R, R, and R; connected in star between terminals A, B and C as shown in
Figure 1.24 (a) and it is desired to convert it into delta formation as shown by dotted lines. The equivalent
star formation between the same terminals is shown in Figure 1.24(b).

The formulae for converting star to delta are as follows. 4 A
R, = R/ X Ry + Ry X Ry + Ry X R,
Ry R12
R — R/ XR, + R, XR; + Ry X R,
23 R,
AW
R31:R1><R2+R2><R3+R3><R1 i g
R, (b)
~
C Example 1.9 )
Find the equivalent resistance between A and B as shown .
in Figure 1.25. [AU, 2013] ©CO@ 450 45Q
Solution " %3 o 303 .
Step 1: Convert the two deltas formed by 4.5 Q, 3 Q 750 €50
and 7.5 Q into equivalent star formations. The ' i '

transformed circuit will look like Figure 1.26(a). 3Q
Figure 1.25
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4 Q
The values will be - Rz Ry .
1 6
Reg = 25XT5 _ o0 o4 5
45+7.5+3 R3 Rs
7.5%3 20
R2 =Rs= m =1.5Q Figure 1.26(3)

4Q

R, =R 45%3

=————=09Q
45+75+3

as shown in Figure 1.26 (b).

Step 2: The 0.9 Q, 4 Q and 0.9 Q are in series so
the equivalent resistance is 0.9 + 4 + 0.9 =
5.8Q Figure 1.26(b)
Similarly the 1.5 Q, 3 Q and 1.5 Q are in
series. So the equivalent resistance is 1.5 + 3 + 1.5 = 6 Q. The network becomes as shown in
Figure 1.26 (c). 5

Step 3: The 5.8 Q and 6 Q are in parallel. So the equivalent resistance is 86
network becomes as shown in Figure 1.26 (d). 58+6

=2.95 Q. The

Step 4: This 2.95 Q, 2.25 Q and 2.25 Q are in series. So the total equivalent resistance of the network
s 2.25 + 2.95 +2.25 = 7.45 Q as shown in Figure 1.26 (e).

5.8 Q
—AAV— 2.25.Q 2.95Q 2.25Q
Ao AN AN AN oB
o—A\W—20 B
225Q 2.251Q
AAN— 7.45Q
6 Q Ao AN oB
Figure 1.26(c) Figure 1.26 (d) and (e)
C Example 1.10 )
Calculate the total current supplied by the battery in the network AN
shown in Figure 1.27. (JNTU, 2013) ce ® 2Q
Solution L
Step 1: The 3 Q and 2 Q are in series. So the equivalent resistance ~ —— o4V
is 3 +2 =5 Q. as shown in Figure 1.28 (a) =
Step 2: Transform the delta of the three 5 € resistances into star. A0
5%5 AAAN
The value of each transformed resistance is ——— =
5+5+5 Figure 1.27

% Q. as shown in Figure 1.28 (b)
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Step 3: The 5/3 Q and 8 Q are in series. So the equivalent resistance is § + % =9.67 Q

Similarly, the 5/3 Q and 6 Q are in
series. So the equivalent resistance

18 6+§ = 7.67 € as shown in

Figure 1.28 (d)

Step 4: The 9.67 Q and 7.67 Q resistances
are in parallel. So the equivalent

2Q
e Gy DU R U _ g o) 53=167Q Al 167 Q
9.67+7.67 oy
as shown in Figure 1.28 (d) 767 e
Step 5: All the resistances are in series. So L
the total equivalent resistance 1is (d)

2+1.67+4.28 +3=10.95 Q.

Step 6: The total current supplied by the 24 V
battery as calculated using Ohm’s law is 7 = 24/10.95 = 2.2 A.

Figure 1.28

( Example 1.11 )

Determine the equivalent resistance of the circuit shown in
Figure 1.29, using the star-delta transformation. 000

Solution

Step 1: There are two star connections — one consisting of the
5 Q, 4 Q and 3 Q resistors and another of 6 2, 4 Q and
8 Q resistors. Transform both the connections into delta
form as shown in Figure 1.30 (a) and (b).

10 Q

Fi 1.29
The values are e

4 4
R1=5X3+ X3+5 X — 11750

4 50 30 R
R2=5X3+4X3+SX4=15.67Q

3 4Q = R Rs
R3=5X3+4:3+5X4=9.4Q

Figure 1.30(a)



Similarly,
The values are
R1=6><4+4><8+8><6=13g2
8
R2=6X4+4X8+8X6=26Q
4
4+4 +
R, =& 28 8%6 1730

The circuit becomes as shown in Figure 1.30 (c)

Step 2: The three resistors 9.4 Q, 17.3 Q and 10 Q are
in parallel. So the equivalent resistance is
1 1 1 1

_— =L
R, 94 173 10

Step 3: Theresistances 13 Q and 11.75 Q are in parallel.
13x11.75

13+11.75

or R, =378Q

So the equivalent resistance is

6.17 Q

Step 4: The resistances 26 Q2 and 15.67 Q are in parallel.
26 X15.67

26 +15.67
9.78 Q. The final transformed network is as

So the equivalent resistance is

shown in Figure 1.30 (d)

Basic Network Concept & 1.15

6Q 40 R
b : E{%

Figure 1.30(b)

13Q

A
11.75 Q
AMW—

o

15.67 Q

Req—> 26 Q % 9402 27303100

[

Figure 1.30(c)

6.17 Q

AAN
VW

Req— 39.78 Q 33780

Figure 1.30(d)

Step 5: The resistances 6.17 Q and 3.78 Q are in series. So the equivalent resistance is 6.17 + 3.78

=995Q

Step 6: The resistances 9.78 € and 9.95 Q are in parallel.

So, the total equivalent resistance is

9.78 x9.95
9.78 +9.95

=493 Q

1.6 || SOURCE SHIFTING

In a network, if there is no resistance in series with a voltage source or if there is no resistance in
parallel with a current source, then before applying source transformation it may be required to carry out
“shifting of source” first. The shifting of voltage source is known as ‘V shift method’ while the shifting
of current source is known as ‘I shift method’. Remember that the voltage and current configurations of
the given network should not change while doing the source shifting.
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1.6.1 Voltage Source Shifting

Consider the case where at a node in a network, a voltage source is connected to a couple of resistances
and voltage source transformation cannot be carried out as shown in Figure 1.31 (a). In that case “pushing”
of voltage source can be done through the node towards the individual branches of the network. The
voltage source as shown in Figure 1.31 (b) now appears at every branch of the network in series with
the resistances present in each of them. Remember the current distribution through the circuit remains
unaffected.

Consider another case where there are a couple of resistances joined at either ends of the voltage
source as shown in Figure 1.32 (b). In this case, the voltage source may be either pulled or pushed while
maintaining the same current distribution through the network as shown in Figure 1.32 (b).

Z Z

Figure 1.31 Figure 1.32

1.6.2 Current Source Shifting

Consider the case in which there is a current source connected between two nodes as shown in
Figure 1.33 (a). The source can be shifted to facilitate current source transformation while maintaining
the same current at all the nodes of the network as shown in Figure 1.33 (b).

Consider another case where the current source is connected between two nodes as shown in
Figure 1.34 (a). In this case, though there is a parallel resistance with the current source, the current
source can be shifted as shown without affecting the original current distribution at the nodes of the
network as shown in Figure 1.34 (b).

a a
I
[z
, z; z
B b
OME
c

c
(a) (b)
Figure 1.33 Figure 1.34
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C Example 1.12 )

Using source shifting and source transformation find out the volt-
age V. across the circuit shown in Figure 1.35. (X X )

Solution

Step 1: Shift the voltage source through node while keeping in mind 2V
the polarities as shown in Figure 1.36 (a).

Step 2: Convert both the voltage sources into current sources as shown

in Figure 1.36 (b). Figure 1.

2V 30

Step 3: Both the 2 Q resistances are in

35

parallel. So the equivalent resistance 2Qp 1Q 330

b1§2

2X2
2+2

18

=1 Q as shown in Figure

= V. 2
2V Il 310
20 50 1A® 320

2Q

C
(a) (b)
Figure 1.36

1.36 (c).

Step 4: Convert the 1 A current source to
voltage source as shown in Figure 1.36 (d).

30 10
2h® V% Zao
1AG 1Q ?SQ 1V 35Q

301019 |

© _ (d)
Figure 1.36

Step 5: Both the 1 Q resistances are in series. So the equivalent
resistance is 1 + 1 =2 Q as shown in Figure 1.36 (e). 20

Vx

5Q

AAAN
V

(V] N]

Step 6: Convert the 1 V into current source of value 1/2 Aandthe 5A® 330 o
same resistance in parallel as shown in Figure 1.36 (f). v

Step 7: Combine the two current sources (2/3 + 1/2 = 7/6

AN

>5Q

A). Also combine the 3 Q and 2 Q in parallel. So the Figure 1.36(e)

=1.2 Q as shown in

equivalent resistance is
Figure 1.36 (g). 3+2
Vy V,

I
T

A 320 350 %A 120350
I

N|—

3A 3Q

() (@)
Figure 1.36
Step 8: The current flowing through the 5 € resistance is given by
7 1.2

I=—X =0.2258 A
6 12+5

So the voltage V, = 0.2258 x 5 =1.129 V




1.18

ISy

=
Iy

ISy

@ Circuits and Networks

POINTS TO REMEMBER

Electrical energy is measured in terms of watt-hour or kilowatt-hour given by the product of power in watts and
time in hours.

Resistance, inductance and capacitance are known as passive elements.

The summary of three basic network elements is

Element Voltage Across Element Current Through Element
R v=1iR i=V/IR
di
L v=L= I ot
dt L
1 dv
C v=—I|idt i=C—
C I dt

Ohm’s Law is given by V = IR where V is the applied voltage in the circuit, / is the total current and R is the total
resistance of the circuit.

Ohm’s law is not applicable for nonlinear devices such as diodes and non-metallic conductors.

Since source transformation cannot be applied to ideal sources, it is essential to shift the source within the
network.

Currents through the elements of a network and the voltages across them must not be affected by the shifting
operation.

Shifting of current source is called /-shift and shifting of voltage source is called V-shift.

Summary of the equivalent of basic elements in series

Element Equivalent
- AAAA—0— AAAA—0—AAAA—0 -+ 0—AAAA—oO
R1 R2 R3 _____ Rn Req=Rl+R2+R3+“.+Rn

L1 L2 P " L—fq Ll L2 n
°—|c|_°_|c'—o—|cl_oo_|c'_° C,y=C+Cy+C3+ - +C,
1 2 3 =

In a series resistive circuit, the same current flows in all the resistances.

According to the voltage divider rule, voltage drop across any resistor in a series circuit is equal to the ratio of
that resistance to the total resistance multiplied by the source voltage.

Summary of the equivalent of basic elements in parallel is:

Element Equivalent
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Element Equivalent

Leg—» L1% LZ% %Ln Ly=Li+Ly+Ls+--+L,

o 1 T

In a parallel circuit the voltage is same across all the resistances.

According to the current divider rule, the current in any branch resistor of a parallel circuit is equal to the ratio
of the value of resistance in the opposite branch to the total resistance of the two branches multiplied by the total
current in the network.

An independent ideal voltage source with constant magnitude has zero internal resistance whereas an ideal
current source has infinite internal resistance.

If a voltage source has internal resistance it is represented as a resistor in series with the source whereas, if a
current source has internal resistance it is represented as a resistor in parallel with the source.

Source transformation is the method of replacing a voltage source in series with a resistor anywhere in the
network by an equivalent current source in parallel with the same resistance value or vice versa to simplify
networks and facilitate combination.

Source transformation is not applicable for ideal sources.

In source transformation the head of the current source arrow corresponds to the positive terminal of the voltage
source.

To convert a star network to a delta network, the new resistor values are calculated using

[ T S LY RS RS R BiXRy+ Ry X Ry + Ry X Ry
2= =
R, 2 R,
R XRy+ Ry xRy + Ry X R,
Ry =

R,

To convert a delta network to a star network, the new resistor values are calculated using
- RipRs, _ RiyRys _ Ry3Rs,

1= h = 3=
Ry + Ry3 + Ry Ry + Ry3 + Ry Ry + Ry3 + Ry

PRACTICE PROBLEM

1.

A heater is operated at 220 V and has an OO @ 15 Q resistor. If the current through 30 Q
efficient of 99%. The energy consumed is resistor is 1.2 A, find (i) currents in 20 Q

1.5 kWhr in one hour. If it is required to and 15 Q (ii) the voltage across the whole

boil a liquid that requires 100 kJ of energy, circuit (iii) voltage across 15 Q and 20 Q

find the time needed to boil it. What is the resistor (iv) total power consumed in the
resistance of the heater? circuit.

A circuit consists of two parallel resistors O @ @ 3. Find the equivalent resistance between A O @ @
having resistances of 20 Q and 30 Q and B.

respectively, connected in series with a
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6. Find the equivalent resistance between @ @ @
A and B using star delta transformation

technique.
10Q 20Q 5Q
A
215Q
10 Q " 25Q
Figure 1.37 2Q
4. Replace the given circuit between Aand B O O @ 50 30 G
to a single voltage source and a resistor.
oA Figure 1.40
50 36Q
3A® 305((2)%20 v 7. Calculate the voltage across the 6 QQ @@ @
°B resistance using source—shifting and source
Figure 1.38 transformation technique.
5. Find the equivalent resistance between O @ @ 30
A and B using star delta transformation @
. 40 3 1Q
technique. O——w wW—e@
+
60 5 40 18v-[- 20 60:la
e | se Figure 1.41
5Q 8 Q 4Q
B
Figure 1.39
MULTIPLE CHOICE QUESTIONS
1. An electric heater is rated to 2 kW, 200 V. The resistance of the heater coil is foX X ]
() 10Q (b) 0.1Q () 20Q (d) 200Q
2. The condition for the validity under Ohm’s Law is that the [eJoX )
(a) temperature should remain constant (b) current should be proportional to voltage
(c) resistance should be wire wound type (d) all of the above
3. Three resistors of 4 Q, 6 Q and 9 Q are connected in parallel in a network. Maximum power will be O @ @
consumed by
(a) 4Q (b) 6Q ©) 9Q (d) All resistors
4. Three resistances each of equal value R are connected in star formation. The equivalent delta will have O @ @
three resistances of equal value which is
(a) R/3 (b) 3R (c) 2/3R (d) R2
5. Three resistances each of equal value R are connected in delta formation. The equivalent star will have O @ @

three resistances of equal value which is
(a) R/3 (b) 3R (¢c) 2/3R (d) R2

ANSWERS TO MULTIPLE CHOICE QUESTIONS

1. (¢c) 2.(a) 3.(b) 4. (c) and (d) 5.(c)



CHAPTER OUTLINE

Methods of Analysing

Circuits

Network topology

Planar and non-planar graphs
Incidence matrix (A), and its properties
Link currents: Tie-set matrix

Cut set and tree branch voltage
Kirchoff's current law (KCL)

Kirchoff’s voltage law (KVL)

Mesh equations by inspection method
Supermesh analysis

Nodal analysis

Nodal equations by inspection method
Supernode analysis

Network equilibrium equations

Duality

= Mesh analysis

University Question

. . . 1. Explain the formulation of graph, tree, and
2.1.1 Application of Graph Theory in incidence matrix using suitable examples.

Electrical Circuit Analysis [GTU, 2012]

Topology or Graph Theory is a branch of Mathematics which can be utilised to study an electrical
network. Certain aspects of electrical network behaviour can be easily analysed by converting it into a
graph. For example, network equations based on Kirchhoff’s law can be formulated with relative ease
and therefore can be visualised better from a graph of an electrical network.

2.1 || INTRODUCTION

2.1.2 Some Definitions Relating to Graph Theory
a. Graph

A graph of an electrical network consists of nodes and branches in which each branch represents the
corresponding element in the electrical circuit such as resistor, capacitor or inductor, while nodes relate
to similar terminals of the electrical circuit.

A branch is represented by a line segment, which connects a pair of nodes in the graph. Nodes are
end points of a branch.
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b. Directed Graph

Every branch of a directed graph is indicated with direction corresponding to the assumed direction of
current in the electrical network.

c. Degree of Node

It is the number of branches which are incident or connected to a node.

d. Planar and Non-Planar Graphs

Planar graph can be drawn on a plane surface with no two branches intersecting each other. But there are
some pairs of branches in a Non-Planar graph which are not in a same plane.

2.1.3 Conversion of an Electrical Network to a Graph

Figure 2.1 presents an equivalent graph of the electrical

L €3
network. It can be noted from the figure that each circuit
element of electrical network is represented as a line 1 L8 2 %5 N,
segment in the associated graph. Additionally, there are eev €7
. . . =) (2]
5 nodes and the directions of branches corresponding to
voltage and current sources are similar to those indicated 5 % ,

in the electrical circuit. On the other hand, the directions

of branches corresponding to resistances are indicated Figure 2.1
arbitrarily.
2.2 ” NETWORK TOPOLOGY University Questions

1. Define tree and co-tree.  [PTU, 2011-12]
2. Define tree, co-tree, twig, and link.

A tree is a connected subgraph of a network, which consists [PTU, 2009-10]
of all the nodes of the original graph but no closed paths.

Following points can be noted in this respect:

2.2.1 Tree and Twigs

e A graph of an electrical network may have a number of trees.

e The number of nodes in a tree is equal to the number nodes in the corresponding graph.
e The number of branches in a tree is less than the number of branches in a graph.

e Branches of a tree are called Twig.

2.2.2 Co-Tree and Links

A co-tree is the remaining branches of a graph which are not utilised in a particular tree.
e Every tree has a corresponding co-tree.

e Branches of tree are called as Links.
It is clear from above that every pair of tree and co-tree when combined re-constructs the original
graph.
e Graph = Tree + Co-Tree
e Number of branches of a Graph = Twigs + Links
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For a graph of an electrical network, if b = number of branches and n = number of nodes, then for a
particular set of tree and co-Tree,

e Number of Twigs (also known as Rank of a Tree) =n — 1
e Number of links /=b—n+ 1

. . f f
e If a link is added to a tree, then that tree 205
. ’ . 2 1 3 K \
subsequently contains one closed path. This 13> (s ) 3 2% 1e 20933
closed path is called a loop. . € o\ e pr ¢
For example, the following graph (Figure 2.2) has 4 y , 4
one possible combination of a tree and co-tree. (a) (b) (c)
Graph = Tree + Co-tree Figure 2.2

C Example 2.1 )

Draw the graph, one tree and co-tree of the network shown in Figure 2.3. O®® a[ b ,VUA'_/\UU c
Solution We find that there are four nodes (N = 4) and seven branches 3 P T =
(B = 7). Figure 2.4(a) represents the graph of the given network. It may be d e
noted that node d, represented in the graph, represents Figurel 3

both the nodes d and e of the network. s 5 g o
The tree is made up of branches 2, 5 and 6. The co-tree C @
for this tree is obtained by considering the branches other

than the tree branches. The co-tree has L = B — N + 1
=7 -4 + 1 =4 links as shown in Figure 2.4(b).

Flgure 24
C Example 2.2 )
Draw a tree of the network shown in Figure 2.5 taking the branches 10V b
denoted by (b2), (b4), and (bS) as tree branches. [GTU, 2011]C ® ® @ - A
Solution The associated graph network can be obtained as shown (b2) (b4)
. . A\M’A m\
in Figure 2.6(a). 5Q /5
o b1g20 1972 Q%
5 Q (b3) 8 ov T - (b6)
(b2 (b4
! )l = @< b2 D b4 >0 =
20 (b1) (b6) N Figure 2.5
4 A
10V @
! o—29m o
Figure 2.6 (a) b5
The required tree is drawn from the above graph and is shown in ©
Figure 2.6(b). Figure 2.6 (b)

Note: Difficulty Level —> O O @ — Easy; O ® ® — Medium; ® ® ® — Difficult
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2.3 || INCIDENCE MATRIX (A)

Incidence Matrix (A) shows an incidence of elements to
nodes in a connected graph. It is a mathematical replica

University Questions

1. Define incidence matrix.  [PTU, 2009-10]
2. Discuss the procedure of forming reduced

of the graph, therefore, the associated graph can be easily
constructed and vice versa.

The dimension of the matrix A is n X b where n is the
number of nodes and b is number of branches.

2.3.1 Procedure of Obtaining Incidence
Matrix (A)

incidence matrix and its advantages.
[GTU, 2012]

. Explain about linear oriented graph,

incidence matrix and circuit matrix. Show

Kirchhoff's laws in incidence-matrix

formulation and circuit-matrix formulation.
[GTU, 2010]

. Discuss the procedure of forming tie-set

matrix and its advantages.
5. Define basic cut-sets and procedure for
formulation of cut-set matrix.
. Define basic cut-set. [PTU, 2011-12]
. Explain the fundamental cut-set matrix tak-
ing a suitable example.  [PTU, 2009-10]

Rows of Incidence Matrix refer to nodes while columns
refer to branches of the connected graph. Each entry in
Matrix A could be either 0, 1 or —1 depending upon the 6
relation between the node and branch under consideration. ;
It obeys the following rules:

e () =Ifabranch is not connected with the node under

consideration.

e | =If abranch is connected with the node under consideration but its direction is away from the
node.

e -1 =1If a branch is not connected with the node under consideration but its direction is towards
the node.

2.3.2 Reduced Incidence Matrix (A))

All rows of an Incidence Matrix are not linearly independent, i.e., any one row of an Incidence Matrix
can be expressed in a linear combination of all remaining rows. This gives rise to a concept of a Reduced
Incidence Matrix (A;) wherein all rows are linearly independent and number of rows are one-less than
from an Incidence Matrix.

For a graph having n nodes and b branches, the dimension of a complete Incidence Matrix A is
n x b, while the dimension of Reduced Incidence Matrix is (n — 1) x b.

e Incidence Matrix (A) to Reduced Incidence Matrix (4,): It is noted that numerical sum of all
entries of a column of Incidence Matrix is ZERO. A Reduced Incidence Matrix A, is obtained
by removing any one row of the incidence matrix.

¢ Reduced Incidence Matrix (4,) to Incidence Matrix (A): As we know that the number of
rows in A is one-more than A, therefore, this additional row in A, can be obtained by generating
additional entries such that a total sum of all entries in every column of A is ZERO. This is
explained in the following two matrices:
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al-1 1 0 0 0 0 O
-1 1.0 0 0 0O

b| 0 -1 1 0 0 O
0 -1 1 0 0O

cf0 0 0 -1 1 0 O

[A]=| 0 O O -1 1 0 0 [A]=

do 0 0 0 -1 1 0
0 0 0 0 -1 10

efl]0 0 -1 0 0 -1 1
0 0 -1 0 0 -11

fl1tr o 0 0 0 0 -1

It can be noted from above that the order of A;is 5 x 7 while the order of A is 6 x 7. The additional
6" row of A is obtained by ensuring that a total sum of all entries in every column is zero.

C Example 2.3 )

Refer the network shown in Figure 2.7, obtain the corresponding
incidence matrix. cee

Solution The given network has five nodes and eight branches. The
corresponding graph is drawn as in Figure 2.8.

Utilising the methodology given in relevant section of this chapter
for obtaining Incidence matrix:

Node Branches

a b c d e f h
1| -1 0 0 1 0 1 0
2 1 -1 0 0 0 0 1 0

[A] =

3 0 1 -1 0 1 0 0 0
4 0 1 -1 0 0 0 1
5 0 0 0 —| =1 — =1l

C Example 2.4 )

For the network shown in Figure 2.9, draw the oriented graph and all O @ ®
possible trees and also prepare incidence matrix. [GTU Dec. 2012]

Solution The oriented graph is (Figure 2.10a) 1Q
1V

Figure 2.9

Figure 2.10 (a)
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The possible trees are (Figure 2.10b)

@T@@w@/@)@@@
@) © ©
O 2@ ® ®© @ 0 @ ®

© ) ®
D2 0 00 0 ado e

@ © ©
Figure 2.10 (b)

The incidence matrix is

Elements
Nodes 1 2 3 4 5 6
o 1 -1 0 0 0 1
11-1 0 1 0 1 O
0O 0 -1 1 0 -1

2.4 || TIE-SET AND TIE-SET MATRIX (B)

A tree of a graph does not contain any closed path or loop, while if a link (i.e. a branch of associated co-
tree) is added to this tree then a loop will be formed. This loop is called Fundamental Loop or Tie-Set. It
can be easily deduced that the number of fundamental loops for a tree will be equal to number of links
(i.e. [ = b—n+ 1) of the associated co-tree.

The currents in every fundamental loop associated with every link are called link currents. These
link/loop currents can be utilised to write Kirchhoff’s voltage equations for the associated fundamental
loops, which in turn, can be solved to obtain branch currents of a graph.

2.4.1 Procedure of Obtaining Tie-Set Matrix (B)

The dimension of a tie-set matrix is [ x b. Following procedure is utilised to construct a tie-set matrix:
e Arbitrarily select a tree in the graph.
e Form fundamental loops with each link in the graph for the entire tree.
e Assume directions of loop currents oriented in the same direction as that of the link.
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e Rows of tie-set matrix refer to loop currents while columns refer to branch currents of the
connected graph. Each entry in Matrix B could be either 0, 1 or —1 depending upon the relation
between the loop currents and branch current under consideration. It obeys the following rules:

= (0 =If a branch current is not the part of fundamental loop under consideration
= | =If a branch current is in same direction to that of loop current under consideration
= —]=1If a branch current is in opposite direction to that of loop current under consideration

C Example 2.5 )

Formulate the tie-set matrix for the graph shown in Figure 2.11. cee
Solution Tree branches: d, e, f

Links: a, b, ¢

Link current directions will be similar to loop currents. Following is the
procedure for constructing the tie-set matrix as outlined in relevant section:

Link Branches Figure 2.11
a b ¢ d e f
a 1 00 1 -1 0
Bl= p[o[1]0] 0 O
c 0|0 1 -1 0 1

C Example 2.6 )

Draw a tree of the electrical circuit and tie-set matrix as shown in

Figure 2.12. ocoe
Solution The following tree [Figure 2.13(a)] is considered for the )
given problem: b1) 2 (b6)
@eb2 Db 5
b5
©)

Figure 2.13 (a)

Arbitrary directions are assumed for each branch of the graph, therefore direction graph is obtained
as given in Figure 2.13(b).

Let [}, L5, l¢ be the links with loop currents /,, I3, I respectively. b3
The tie-set matrix is b2 (labd >~
Link Branches + Links o b5 ,,’/@
by b, by by by b ’\1\\@ :@’ le
o[t T T oo 1] o R
[Bl= 1, | o | -1 1 | 1] o 0
I 0 0 0 1 R Figure 2.13 (b)




2.8 & Circuits and Networks

2.5 || CUT-SETS

A cut-set is a minimal set of branches of a connected graph such that the removal of these branches

causes the graph to be cut into exactly two parts. A cut-set is defined using the expression {x, y, z},

wherein x, y, and z represent the graph branches/links which cut the graph into two equal parts.
Following points can be noted in this respect:

e A cut-set consists of one and only one twig and links.

e The important property of a cut-set is that by restoring any one of the branches of the cut-set,
the graph should become connected.

e The direction for cut-set is selected arbitrarily. The directions of some graph branches may
coincide with the cut-set direction while other branches may have opposite direction.

2.5.1 Procedure of Obtaining Cut-Sets Matrix (Q)

Based on the direction of graph branches with respect to cut-set direction, Cut-Set Matrix (Q) is
formulated. Rows of Cut-Set Matrix Q refer to cut-sets, which are identified for a graph while columns
refer to branch currents of the connected graph. Each entry in Matrix Q could be either 0, 1 or -1
depending upon whether direction of a branch coincides with the cut-set direction or not. It obeys
following rule:

e (= If a branch does not form the part of cut-set under consideration

e | =1If a branch current is in same direction to that of cut-set direction under consideration

e —]=If a branch current is in opposite direction to that of cut-set direction under consideration

An augmented cut-set matrix is formed by utilising all possible number of cut-sets (g) associated

with the graph. Following expression is utilised to form augmented cut-set matrix.

Q X Ib = 0
where Q is augmented cut-set matrix of order (g x b),

I, is branch-current vector of order (b x 1)
0 is zero vector of order (b x 1)

2.5.2 Fundamental Cut-Sets

The concept of fundamental cut-set (f-cut-set) can be used to obtain a set of linearly independent
equations in branch current variables. The f-cut-sets are defined for a given tree of the graph.
Following procedure is utilised to obtain f-cut-sets
e From a connected graph, first select a tree and then select a twig.
e Identify the links which are required along with this twig to form the other part of the tree. Thus,
a fundamental cut-set of a graph, with respect to a tree, is a cut-set that is formed by one twig
and a unique set of links.
e For each branch of the tree, i.e. for each twig, there will be a f-cut-set. Therefore, for a connected
graph having n nodes, there will be (n — 1) twigs in a tree, and the number of f-cut-sets will also
be equal to (n — 1).
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The fundamental cut-set matrix (Qy) is one in which each row represents a cut-set associated with
a twig of the selected tree. The rows of Q; correspond to the fundamental cut-sets and the columns
correspond to the branches of the graph.

The only difference between augmented cut-set matrix and fundamental cut-set matrix is that the
latter represents a set of t (number of twigs in a tree under consideration) linearly independent equations
which can be solved to obtain actual branch current values.

C Example 2.7 )
Explain the fundamental cut-set matrix taking a suitable example. [PTU 2009-10] ce @

Solution The fundamental cut-set matrix (Qp is one in which each row represents a cut-set
associated with a twig of the selected tree. The rows of Q,correspond to the fundamental cut-sets and
the columns correspond to the branches of the graph.
Consider the electrical network shown in Figure 2.14(a).
Fundamental cut-set C;, C, and C; can be drawn for the network given
in Figure 2.14(b):
The fundamental cut-sets are identified as,
f-cut-set-1: [1, 4, 6]
f-cut-set-2: [3, 5, 6]
f-cut-set-3: [1, 2, 3]
The fundamental cut-set matrix is given as:

1 | 2] 345 e
o |-t ol o] 1o ]
=T To o a0 a|a
o | a1t o] o] o

Figure 2.14 (b)

( Example 2.8 )

For the network shown in Figure 2.15, obtain (a) Fundamental tie-set
matrix (b) Fundamental cut-set matrix. [GTU, 2012] Cee®

Solution The fundamental tie-set matrix is [Figure 2.16(a)]

Figure 2.15
12 3 456

L[-1 0 =1 0 0 +*™™
Basicloopcurrents 7, 1 1 1 1 0 O
L1 1 001 O

Figure 2.16 (a)
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The fundamental cut-set matrix is [Figure 2.16(b)]

1 23 4 5 6

Cl 1 00 -1 -1 1 elements
Cut-sets C,(0 1 0 -1 -1 O
C(0 01 -1 -1 1

w

Figure 2.16 (b)

2.6 || KIRCHOFF'S CURRENT LAW (KCL)

KCL (Kirchhoff’s current law) law states that the algebraic 1. Show Kirchhoff's current law in incidence-
sum of currents entering a node is zero. For applying KCL, matrix and tie-set matrix formulation.

we need to add each branch current entering the node and [GTU, 2010]
subtract each branch current leaving the node.

>, Current entering at the node — Y, Current leaving at the node = 0

KCL holds for every node in a network and it works at every point in time. KCL is essentially the
conservation of charge that charge can neither be created nor be destroyed.
For example, a node of an electrical network has current configuration as
shown in Figure 2.17.

Applying KCL leads to the following equation:

iy tig=ic—ip=0 Figure 2.17
KCL in Tie-Set Matrix (B)
Tie-set matrix results in linear independent equation in terms of branch and link currents.
1,1 = [B"] ]

where I, is branch current vector of order (b x 1)

[BT] is the transpose of the Tie-Set Matrix of order (b x /)

I, is loop current vector of order (/ x 1)
KCL in Cut-Set Matrix (Q)
Cut-set matrix results in linearly independent equations in terms of branch currents.

[Q1,1=0

where I, is branch current vector of order (b x 1)
[Q/] is the augmented Cut-Set Matrix of order (b X 1)
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C Example 2.9 )

Find the current in 20 € resistance by applying KCL ATI98 R
(Figure 2.18). [PTU, 2011-12] C® ®
Solution Applying KCL for Node A: 15A ® - LA
V,-0 V, -V,
= 2V, - V=150 2.1
Applying KCL for Node B:
Vs =V, +VB—O+VB—0:O
10 10 20
= V=5V, (2.2)
Solving Eqs (2.1) and (2.2) gives V;=83.33 V
Current in 20 Q resistance = V/20 = 83.33/20 = 4.165 A
C Example 2.10 )
Use KCL to find the current delivered by the 24V source (Figure 2.19). ocee
Solution Applying Kirchhoff’s current law at the node assuming [ 00
that voltage of this node is V,;, we have 2 X %
D2A $20Q
V1—24_|_&_1_V1—36_2=0 24\ I T36v
5 20 10
Figure 2.19

Solving above equation, we get, V, =29.7 V
Current delivered by the 24V source is:

_v-

1 =1.14A

2.7 || KIRCHOFF'S VOLTAGE LAW (KVL)

This law states that the algebraic sum of voltages around any closed path
(loop) is zero. For applying KVL, beginning with one node, add voltages .
across each branch in the loop (if you encounter a + sign first, ie. a Vs
voltage drop) and subtract voltages (if you encounter a — sign first,i.e.a  ~ +
voltage rise).
> voltage drops across the loop — Y, voltage rises across the loop = 0
Applying KVL in the electrical network shown in Figure 2.20.

B
Figure 2.20

Vi+ () +(=v3)=0
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KVL in Tie-Set Matrix (B)
Tie-set matrix results in linearly independent equations for branch voltages.
[B"1[V,]1=0
where V), is branch voltage vector of order (b x 1)
[B] is the transpose of the Tie-Set Matrix of order (/ x b),

KVL in Fundamental Cut-Sets Matrix (Qy)

Cut-set matrix results in linearly independent equations in terms of branch and twig voltages.
[V,] = 19,11V

where V, is branch-voltage vector of order (b x 1)

[QfT ] is the transpose of the Fundamental Cut-Set Matrix of order (b X 1)
V, is twig-voltage vector of order (¢ x 1)

C Example 2.11 )

Determine the current /; in the electrical circuit shown in Figure 2.21 4v
using KVL. [AU, 2012] Ce@e@

3Q

Solution Applying mesh analysis for Mesh 1,
3U,-L)-5U,-L)-1,+8=0
3, -L)+5(U,-1,)+1,=8
OI, - 51, -31;=8 (2.3)
Applying mesh analysis for Mesh 2,
3B, -1;)-1,-6-5(,-1,)=0
3L-L)+L,+6+5U,-1)=0
=51, +91, -3, =-6 (2.4)
Applying mesh analysis for Mesh 3,
4-30,-3(l,- 1) -3(;-1,) =0
31, +3,-9;,=-4 (2.5)
Solving Egs (2.3), (2.4), and (2.5), we get,
I,=1.67A

L=067A
L=122A
L=1-L=167-067=1A
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2.8 || MESH ANALYSIS

Mesh Analysis is a useful technique for solving electrical 1. Distinguish between mesh and loop of an
circuits, which involves a number of voltage sources. electric circuit. [AU, 2013]
The technique involves writing KVL equations for each
identified mesh or closed circuit paths. In general, if we
have B branches and N nodes, including the reference node, then the number of linearly independent
mesh equations M =B — (N - 1).

A mesh is a loop which does not contain any other loop within it. Following procedure is adopted for
performing Mesh Analysis:

e Identify all possible meshes or closed paths in the given circuit.
e Assume current /, I,, ....etc. for each identified mesh.

e Voltage drops for each impedance element should be indicated along the direction of current
(i.e. + sign for current entering position and — sign for current leaving position).

e Write KVL equations for each mesh.
e Solve these KVL equations for unknowns.

C Example 2.12 )

Using mesh analysis, determine the current through the 1 €2 resistor
in the circuit shown in Figure 2.22. [AU, 2013] Ce@®

Solution Applying KVL
For the loop 1: 181, — 51, — 315 =50 (2.6)
For the loop 2: 81, — 51} — ;,=-10 2.7)
For the loop 3: 41; - 31, - I, =5 (2.8)
By solving Eqs (2.6), (2.7), and (2.8), we can get

1,=330A,
I, =0.9972 A,
I;=1.474T7T A
Current through the 1 Q resistor is (I3 — I,) = (1.4747 — 0.9972) = 0.4775 A

2.9 || SUPERMESH ANALYSIS

Supermesh Analysis technique is suitable for electrical circuits involving current sources where it is
tedious to write mesh analysis equations because the voltage drop across a current source is unknown.

For Supermesh analysis, we consider a Supermesh for those two meshes, which contain a common
current source, and write KVL equations bypassing the current source instead of writing KVL equations
separately for both meshes. Additionally, we write a current equation (current source constraint equation)
involving both mesh current and current source.
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( Example 2.13 )

Find currents in various branches of the circuit shown in Figure 2.23. cee
3Q 9Q
Solution The given circuit can be re-drawn as shown in
Figure 2.24 by considering two meshes. 18 V ® 3A 15V
As we cannot write KVL for meshes a and b because there is 25 o

no way to express the voltage drop across the current source in
terms of the mesh currents.

Therefore, we define a “Supermesh” — a mesh which does not
involve a branch containing the current source. Apply KVL for

this Supermesh. 18V
18-31,-91,+15=0 (2.9)
Constraint due to current source:
I,-1,=3 (2.10)

Substituting Eq. (2.9) in Eq. (2.10)
1,=05A, [,=35A

2.10 || MESH EQUATIONS BY INSPECTION METHOD

The mesh equations for a general planar network can be written by inspection without going through the
detailed steps. Consider three mesh networks as shown in Figure 2.25.
The general equations for the three-mesh network are:

AMA AV
+ Ryl = R21, + R3L, =V, vi® ] Ra ] OVv2 I S Rs
where, —
R;; = Self-resistance in mesh i Figure 2.25
R;; = Mutual resistance between mesh i and j
V.= Sum of driving voltage in mesh i
)
( Example 2.14 )
Formulate the mesh equation matrix through inspection method 50
for the electrical circuit in Figure 2.26. cee @
20 4V 20
Solution Applying direct inspection method described in the 203 ]
relevant section of this chapter. The input voltage vector v in  10vO 4 R 1‘:;2% ) 23Q
volts:
4Q34 s ® D12V
v =4, v,=10-4=6, % s gey

v3=-12+6=-6, v,=0, vs=-6 Figure 2.26
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The mesh-current equations are:

10 -4 -1 -1|]i 6
9 0 0l|lil=|-6
-1 0 8 -3|i| | o0

|

S O NN O
|
I

2.11 || NODE ANALYSIS

Node Analysis is a useful technique for solving electrical circuits, which involves a number of current
sources. The technique involves writing KCL equations for each identified node except reference node
or ground node. In general, if we have B branches and N nodes, including the reference node, then the
number of linearly independent mesh equationis M =B — (N - 1).

The following procedure is adopted for performing Mesh Analysis:

e Identify all possible nodes in the given circuit.
e Assume voltages V,, V,, ....etc. for each identified node and zero voltage for reference node.

e Expression for current in each circuit element can be obtained using Ohm’s law, i.e. current will
be voltage difference (across the element) divided by the impedance.

e Write KCL equations for each node.
e Solve these KCL equations for unknowns.

C Example 2.15 )

Using nodal analysis techniques, determine the current ‘i’ in the 6Q
network shown in Figure 2.27. [JNTU, 2012] cee® A v B
1 i
Solution SA® % 1093' 40Q ? ®s50
C . Va=0 L Va=Ve
Applying KCL for node A: 0 +3+3i +1—O-—0 (2.11) Figure 2.27
. VB B VA . .
Applying KCL for node B: ~ 6 +i—-5-3i=0 (2.12)

Solving Eqs (2.11) and (2.12); V, =-226.74 V, V;=98.69 V
Current ‘i’ can be obtained using Ohm’s law:

Y =w=24.67A

= =
4 4
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2.12 || NODAL EQUATIONS BY INSPECTION METHOD

The nodal equations for a general planar network can also be written by inspection, without going
through the detailed steps. The general equations for the two-node network are:

GaaVa + Gabvb = Il

GpaVat+ GepV= 1
where, G;; = Self-conductance at node i

G;; = Mutual conductance between node i and j
I;= Sum of driving current node i

( Example 2.16 )

Write the node equations by the inspection method shown in
Figure 2.28. cee

Solution Self-inductances at various nodes can be determined as
follows.

e The self-conductance at the node a is the sum of the
conductances connected to the node a.

G,.=({1+1/2+ 1/3) mho

10 V-

3 39 29

5Q 34Q
= 32Q % %
1 2V =5V

I ]

Figure 2.28

e The self-conductance at the node b is the sum of the conductances connected to the node b.

G,,= (1/6 +1/5 + 1/3) mho

e The mutual conductance between nodes a and b is the sum of the conductances connected

between nodes a and b.
G, = (1/3) mho
The sum of the mutual conductances between nodes b and a.
G,.=—(1/3)
Source current at node a: 1, = 10/1 = 10A

Source current at node b: I, = (2/5 +5/6) = 1.23A
Therefore, nodal equations can be written as follows:

1.83V,-0.33V, = 10
~0.33V,+ 0.7V, = 1.23

2.13 || SUPERNODE ANALYSIS

Supernode Analysis technique is suitable for electrical circuits involving voltage sources connected

between adjacent nodes.

In this method, the two adjacent nodes that are connected by a voltage source are reduced to a single

node and then the equations are formed by applying KCL as usual.
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C Example 2.17 )

What is the current through a voltage source connected between
nodes shown in Figure 2.29? cee

Solution The given problem can be solved using nodal analysis as
there is no resistance in branch containing 22 V source. However, we
can eliminate the need for introducing a current variable in this branch
by applying KCL to the Supernode consisting of node 2 and node 3
(Figure 2.30).

Applying KCL at Node 1 and the Supernode (node 2 and node 3)
and writing constraint equation for Supernode.
Applying KCL at Node 1:
M=Vy Vi-Va_
3 4
Applying KCL for Supernode consisting of Node 2 and 3:

Reference node
Figure 2.29

-3-8 (2.13)

L o DS s VoS =—(-25)—(-3) (2.14)
1 3 5
Equation for Supernode: Resphesns
Vy— vy =22 (2.15) Figure 2.30
Solving Egs (2.13), (2.14) and (2.15);
v, =1.071V

2.14 || NETWORK EQUILIBRIUM EQUATIONS

The Network Equilibrium Equations are a set of equations that completely and uniquely determine the
state of a network at any instant of time. These equations are written in terms of suitably chosen current
variables or voltage variables.

These equations will be unique if the number of independent variables chosen for the given network
are equal to the number of independent equations.

C Example 2.18 )

For the network shown in Figure 2.31, draw the graph and write down
the tie-set matrix. Obtain network equilibrium equations for this

10
network. [RGTU, 2013] cee®
Solution The graph of given network can be drawn as shown in 10 \L i
Figure 2.32. Tie-set Matrix of above graph is m
a b cd e f Figure 2.31
. . il -1 0 0 1 0
Tie-set matrix =
L0 1 1 0 0 -1
/0O 0 0 1 -1 1
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Network Equilibrium Equations involving branch voltage can be obtained from the rows of above
tie-set matrix:

VI_V2+v5:0
V2+V3_V6=0
V4_V5+V6=0

V, V, V53V, Vsand V; are branch voltages.

2.15 || DUALITY

Two electrical networks are dual if electrical Table2.1 Duality Between Electrical Quantities

parameters in both the networks are dual to each .
. . . . Duality between
other. Table 2.1 lists the duality which exists

. . . 1 <>
between various electrical circuit parameters and | e () Curentd)
properties: Series <—> | Parallel
Resistance (R) <—> | Conductance (G)

Procedure of Obtaining a Dual Network Capacitance (C) Tnductance (L)

* Place a node at the center of each mesh of | Reactance (X) <—» | Susceptance (B)
the circuit.

Short circuit <—> | Open circuit
KCL <«—>» | KVL

e Place a reference node (ground) outside
the circuit.

e Draw lines between nodes such that each
line crosses an element.

e Replace the element by its dual pair.

e Determine the polarity of the voltage source and direction of the current source. The underlying
principle is: A voltage source that produces a positive mesh current has as its dual a current
source that forces current to flow from the reference ground to the node associated with that
mesh.

C Example 2.19 )
Find the dual of the electrical circuit shown in Figure 2.33? cee

1k ©20mA

Figure 2.33
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Solution The dual circuit for the given network can be found by following the steps listed above.

Step 1: Step 2:
R, C|a
I
1 kR 4k, 50 uF
4v b2 2
T ° 3 mH Lo R:21k ®20mA
Figure 2.34 (b)
Step 4:
Component in Its Dual
Original circuit
Voltage source (4 V) Current source (4 (A)
Resistor R, (1 KQ) Conductor R, (1/1 kQ = 1 mQ)
Resistor R;, (4 kQ) Conductor R, (1/4kQ=0.25 mQ)
Resistor R, (4 k) Conductor R; (1/1 kQ = 1 mQ)
Figure 2.34 (c) Inductor L, (3 mH) Capacitor C; (3 mF)
Capacitor C, (50 uF) Inductor L, (50 uH)
Current Source (20 mA) | Voltage source (20 mV)

Step 5:
® The voltage source forces current to flow towards 2 G R
R,. Its dual force current flows from the reference 025m 3 :m: 1m £20mV
ground to the node that is shared by the current 4A® f=1Rr1n 500 HT

source and R,, the dual of R,

® The current source causes current to flow from the
node where R is connected towards the other meshes. Its dual should cause current to flow
from the node between it and R; to distributed node (reference) of the rest of the circuit.

Figure 2.34 (d)

C Example 2.20 )

; C - R ¢
Find the dual of the electrical circuit shown in Figure 2.35? O@®@® VA I
1k
Solution The dual circuit for the given network can be found by the
. . \% L R>
steps listed above (Figure 2.36(a)).
R oy
i I kv:v L Iil ) \\‘ Figure 2.35
e e e o----Z Ry
‘\\ .: 1 2 : Y

Figure 2.36
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POINTS TO REMEMBER

A graph of an electrical network consists of nodes and branches wherein each branch represents corresponding
element in the electrical circuit.

A tree is a connected subgraph of a network, which consists of all the nodes of the original graph but no closed
paths.

Graph = Tree + Co-Tree

Number of branches of a Graph = Twigs + Links
Number of Twigs (also known as Rank of a Tree) =n — 1
Number of links [ =b—n + 1

Incidence Matrix (A) shows an incidence of elements to nodes in a connected graph. It is a mathematical replica
of the graph; therefore, the associated graph can be easily constructed and vice versa.

The dimension of the matrix A is n x b where n is the number of nodes and b is number of branches.
A Reduced Incidence Matrix A, is obtained by removing any one row of the incidence matrix.

The number of fundamental loops for a tree will be equal to number of links (i.e. [ = b —n + 1) of the associated
co-tree.

A cut-set is a minimal set of branches of a connected graph such that the removal of these branches causes the
graph to be cut into exactly two parts. A cut-set is defined using the expression {x, y, z}, wherein x, y, and z
represent the graph branches/links which cut the graph into two equal parts.

KCL states that the algebraic sum of currents entering a node is zero.

For applying KCL, add each branch current entering the node and subtract each branch current leaving the
node.

KCL is essentially the conservation of charge that charge can neither be created nor be destroyed.
KCL holds for every node in a network and it works at every point in time.

KVL states that the algebraic sum of voltages around any closed path (loop) is zero. For applying KVL, beginning
with one node, add voltages across each branch in the loop.

A mesh is a loop which doesn’t contain any other loops within it.
Mesh Analysis is a useful technique for solving electrical circuits, which involves a number of voltage sources.
Mesh Analysis technique involves writing KVL equations for each identified mesh or closed circuit paths.

Supermesh Analysis technique is suitable for electrical circuits involving current sources wherein two meshes
contain a common current source.

Supermesh Analysis technique involves writing combined KVL equation for both the meshes bypassing the
current source. Additionally, writing a current equation (current source constraint equation) involving both mesh
current and current source.

The general equations for the three-mesh network are:
+R 1+ R2L,+R3L=V,

+R1I, £ R2I,+ R3,=V,

+R11 + R2I, + R3L=V,

where, R;is resistance between mesh i and ;.

Node Analysis is a useful technique for solving electrical circuits, which involves a number of current sources.
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adjacent nodes.
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The technique involves writing KCL equations for each identified node except reference node or ground node.

Supernode Analysis technique is suitable for electrical circuits involving voltage sources connected between

=" These two nodes are reduced to a single node and under this technique a common KCL is written.

15" A dual of a relationship is formed by interchanging voltage and current in an expression. Duality means that the
current or voltage in one circuit behaves in a similar manner as the voltage or current, respectively, in another

circuit.

15" Two circuits are said to be duals of one another if they are described by the same characterising equations with

the dual pairs interchanged.

PRACTICE PROBLEMS

1. Determine the current /; in the following O @ @
electrical circuit using KCL.
30
I V.
10 Q' [, 220 V,

>N W ——e—— AWM

rov%’sg M5A 103 36Q

Figure 2.37

2. Write KVL equations for each of the O @ @®
indicated loops in the following circuit.

10 20

A
VWV VWV

3Q3 A 35Q
I ] ;‘5 Vv
N4

« 1602 E 340Q

10VO

20V
Figure 2.38

3. Write KCL equations for nodes a and b. foX X ]

10330 p2Q

5Q 24Q
10V 2Q oy
[ 127 75V
Figure 2.39

4. Find the value of K in the circuit shownin @ @ @
Figure 2.40 such that the power dissipated
in the 2€) resistor does not exceed 50 watts.
[PU 2012]

Figure 2.40

5. For the following circuit, find /,, I, I;and O @ @
1, using mesh analysis.

i

P 3 SV
A v BA T ' Mo
6Q ; 310@5 8 Qs 10 V
_______________ 3
2%
Figure 2.41

6. Find the current through the 10 V resistor O @ @
by using mesh analysis.

A A
V V

10Q 20V 50 40
W EO—w
Iy
15VE 2A|® I | 214 I 40V

Figure 2.42

7. Find the mesh equations through inspection O @ @
of the following network.



2.22 & Circuits and Networks

8. Find the power delivered by the current @ @ @

9.

10. Find current / using nodal analysis. foX X ]
12 mA
(@)

TR

2mA® 23 ® 6mA

<

31k

1Q 10V Figure 2.46

Figure 2.43 11. Formulate the nodal mesh equation O @ @

matrix through inspection method for the

. . A following electrical circuit.
source in the following circuit.

24
) N
10d%s v, 20 v, 1.9

1Yl N V4 5 Q vy 8Q V3 8 Q Vs

2 -

350 108 %60 3AM $10Q BT A Q29? D4 A

va ®5A J?_
Figure 2.44 Figure 2.47

12. Find the node voltages in the following O @ @

Write nodal equations for the following @ @ @ circuit nodal analysis.

network and obtain node voltages.

6V 10
Vs
v
! OSAQ Ve ¥
sa® 020 oVt zig
i T
Figure 2.48
Figure 2.45 &t
MULTIPLE CHOICE QUESTIONS
1. A branch of a tree and co-tree are respectively called oYX X ]
(a) Link and Twig  (b) Twig and Link (c) Cut-set and Tie-set (d) Tie-set and Cut-set
2. For a graph having n nodes and b branches, the order of Reduced Incidence Matrix is ooe
(a nx((b-1) (b)y nxb () m-1)xb d m-Dx@®B-1)
3. For a graph having n nodes and b branches, the order of Reduced Incidence Matrix is (e X )
(@ nx(b-1) (d nxb () m-1xb d n-Dx®B-1)
4. For a graph having n nodes and b branches including the reference node, the number of linearly independent O @ @
mesh equations which can be written are
(@) b—-n+1 (b) b-n-1 (¢) b+n-1 d b+n+1
5. Which of the following is not a dual pair (where symbols have usual meanings)? ooe
(a) R-Z (by L-C (c) V-1 (d X-B

ANSWERS TO MULTIPLE CHOICE QUESTIONS

1. (b) 2.(c) 3.(c) 4. (a) 5.(a)



Network Theorem

CHAPTER OUTLINE

1= Superposition theorem = Millman’s theorem

= Thevenin's theorem = Tellegen's theorem

1 Norton’s theorem = Substitution theorem
i Maximum power transfer theorem > Compensation theorem

= Reciprocity theorem

3.1 || INTRODUCTION

Network theorems are beneficial for the analysis and determination of various voltages and currents in
multi loop circuits. These theorems use the fundamental laws of electrical and electronics and the basic
equations of mathematics to analyse the parameters such as voltage, current, resistance, and so on in a
circuit.

The network theorems discussed in this chapter include the Superposition theorem, Thevenin’s
theorem, Norton’s theorem, Reciprocity theorem, Maximum Power Transfer theorem, Millman’s
theorem, Tellegan’s theorem, and Compensation theorem.

3.2 || SUPERPOSITION THEOREM

e Superposition theorem states that in any linear 1. State Superposition theorem. Explain with
circuit, the total current in the circuit is equal to an exgmple. 1F1, 2011'2012]
the algebraic sum of the currents produced by each % Explain the use of network theorem in
source acting alone, while the other sources are T ECIE
non-operative.

e While considering the individual sources to evaluate the current through the source, the other
current sources are replaced by an open circuit and the voltage sources are replaced by a short
circuit across their terminals.
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e The superposition theorem can be applied only for linear networks.

Steps to Solve Problems

e Consider a single source. The other voltage sources have to be shorted while opening the current
sources, if internal impedances are not known. If known, replace them with their internal
impedances.

e Determine the voltage across or current through the required element, depending on the source
under consideration.

e Repeat the above steps for all the sources.

e Sum the individual effects produced by the individual sources. This results in determining the
total current or voltage across the required element.

C Example 3.1 )

Using the superposition theorem, calculate the current in 3Q 20
the 4 Q resistor given in Figure 3.1.  [AU,2014] OO@®@ VWV VW
Solution Replace the 1 A current source with open e e 2Q 1A
circuit (Figure 3.2(a)).
By 10 V source, Figure 3.1
3Q 210
3Q
NV
l 2A
10V 4Q 2Q 4Q 4Q
T = 10V
f I
Figure 3.2 (a)
By 1 A source (Figure 3.2(b)),
JONNT 00 20 I
AAMA
I4 I
40 20 1A 1729 24 1A
Figure 3.2 (b)
; 2 1= 14 7
| =———Xl=—=—
24 26 40 20
3
il =—=0.15A
20

So, the total current through the 4 Ohm resistor=0.15+ 1=1.15 A

Note: Difficulty Level —> O O @ — Easy; O ® ® — Medium; ® ® ® — Difficult
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C Example 3.2 )

Find the current through the various branches of the circuits as shown 10Q 50
in Figure 3.3 by using superposition theorem. [AU, 2012] 0O e@ e e % -
Solution Replace the 5 A source with an open circuit. ]
By 50 V supply, we get (Figure 3.4(a)) Figure 3.3
Since the 5 Q is in series with an infinite
resistance, it can be neglected. The current i; is e o
found to be 2.5 A. ' ’Qi %0 o 5A
By 5 A source, we get (Figure 3.4(b)) 50V -
The current splits equally in both the 10 Q
. . (a) (b)
resistors to give 2.5 A each. Figure 3.4
The total current through the 10 Q branch is
25A +25A=5A.
C Example 3.3 )
Find the voltage across 1 kQ resistor in the circuit shown in 1kQ

Figure 3.5.

Solution Shortthe 15V supply. A short circuit is present across
the 4 kQ resistor and therefore, it can be ignored.

The current flowing in the 1 k€ is given as
3k

[,=10mx———
1k + 3k

=7.5mA

[GTU, 2010]

ocoe

10mA® 3 ks% 15 v(% %49

Figure 3.5

Open the 10 mA current source. The voltage applied is 15 V.

The current is given as

1
= —375ma
4k

The total current is 7.5 mA + 3.75 mA = 11.25 mA

3.3 || THEVENIN'S THEOREM

University Question

e Thevenin’s theorem states that any two terminal
network having number of voltage and current
sources and resistances can be replaced by a single

1. Why do you short circuit the voltage
source and open the current source when
you find Thevenin’s voltage of a network?

[AU, 2014]

equivalent voltage source with a single resistance

in series with it.

e The voltage at the voltage source is equal to the open circuit voltage across the two terminals of

the network.
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e The resistance is equal to the equivalent resistance measured between the terminals with all the
energy sources replaced by their internal resistances.
Consider the circuit given below in Figure 3.6. Ry Rs

After the Thevenin conversion, the Thevenin’s equivalent circuit is
. . Bi= Ry (Load) By=V
as shown in Figure 3.7. T T

e The load resistor is removed and is replaced with an open

circuit. Figure 3.6
e Then, the voltage across the open circuit is determined. This Rrhevenin
gives the Thevenin’s voltage. - R, % (Load)
Thevenin
e The Thevenin’s equivalent resistance is calculated by replacing I
the voltage sources with short circuit and current sources with .
open circuit and the load resistor remaining open. Figure 3.7
. . Vi
e Required current through the branch is given by / = ———
R +R,
C Example 3.4 )
Obtain the Thevenin’s equivalent circuit for the network shown in 2 kQ Sk
Figure 3.8. [PTU, 2009-10] ce® v, v
, 4V Q00
Solution To find R, B
Step 1: Making the output port open circuited and finding V,, Figure 3.8
V 2
V,=4-2x10°—2-=4-=V,
4000 4
y,=4- Y 8V
2 2
2V.=8-V,
8
VX_E_VO'C 2kQ  3kQ

Step 2: Finding the short circuit current, / ~ (Figure 3.8(a))

I 4
S.C — 3
5x10 Figure 3.8 (a)
8 3 _10
o X 10 3 RU‘I - ?kﬂ
\% 40 % 10 10
R, =-25= 3 = =— Kohm .|
I i 12 3 Vi = %/
5 —
Therefore, the Thevenin’s equivalent circuit is as shown in Figure 3.8 (b)

Figure 3.8(b).
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(' Example 3.5 )

Find the current through the 4 Q resistor using Thevenin’s theorem for

the circuit shown in Figure 3.9. [PU,2010] co® 15VC 0Q
Solution According to Thevenin’s theorem, we first need to open the S
4 Q resistor (Figure 3.10). . . ‘ Figure 3.9
The 15 Q and the 5 Q resistors are in series. The 30 Q and the 60 Q
resistors are also in series.
Therefore, the equivalent Thevenin resistance is
R, =(15+5)//30+60)=20//90=16.363 Q
By applying nodal analysis, we get 15V0©® e e
5 15 15 15 5Q 60 Q
Yn=15+5 30460 20 90 o0V
* + Figure 3.10
Therefore, the current across the 4Q resistor is
= 0.583 =35.63 mA
16.363
3.4 || NORTON'S THEOREM Probe

e Norton’s theorem states that any two terminal 1. How can yourelate Thevenin's and
networks having number of voltage and current S B
sources and resistances can be replaced by a single
equivalent current source with a single resistance in parallel with it.

e The current across the current source is equal to the short circuit current between the two
terminals.

e The resistance is equal to the equivalent resistance between the specified terminals of the
network with all the voltage sources replaced by short circuit and current sources replaced by
open circuit.

Consider the circuit given in Figure 3.11.
After the Norton’s conversion, the Norton’s equivalent circuit is
as shown in Figure 3.12.

e The load resistor is replaced by short circuit. The current

through the load resistor is then determined which in the Figure 3.11
given circuit is the sum of currents through the resistors R, R ,
and R;. ' :
e The obtained current is the Norton’s current. INorton : #)RNoﬂon e | Reg(Load)

e The Norton’s equivalent resistance is calculated by
replacing the voltage sources with short circuit and current
sources with open circuit and the load resistor being open.
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(' Example 3.6 )

Find the Norton’s equivalent circuit for the network shown in 30 5Q
Figure 3.13 and obtain the current in the 10 Q |
resistor. [GTU, 2010] coe® 10 60z 1AM 2108
b
Solution Bysourcetransformation (Figures3.14 (a),(b)and(c)), Figure 3.13
5Q 9 Q 5Q
ANN— a AN a AN
10 330 36Q D1A ne=@PA 320 300 Bo ;;25:1 Ise
b b .
Figure 3.14 (a) Figure 3.14 (b)
5Q
13 2
IS-C=?X2+5=1.238A 30 60 <R
The Norton’s resistance, R, is
X Figure 3.14 (c)
R= 63 +5=7 ohm st
6+3
The total equivalent circuit is as shown in Figure 3.14 (d). 1238A® 370 3100
Current through the 10 ohm resistor is
7
I, =1.238 % =0.5098 A Fi 3.14 (d
10 7410 igure ()]
( Example 3.7 )
2Q

Obtain the Norton’s equivalent circuit for the circuit shown in _)1 A
Figure 3.15. [PU, 2012] ce® @ 10V 240 % 57
Solution By Norton’s theorem, we need to find the short-circuit

current through terminals A and B.

B

Figure 3.15
The current / is given as

10

I=—=5A

2

Since both the currents flowing into terminal A are in the same direction, we have to add them
Iy=5A+5x5A=30A

We need to now find the equivalent Norton resistance.

RN:M:L:;:;Q 30A (3 1330
2+4

The equivalent Norton circuit is shown in Figure 3.16(a). Figure 3.16 (a)
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MAXIMUM POWER TRANSFER

3.5
THEOREM
e Maximum power transfer theorem states that 1. Whyshould maximum powerbe )
maximum power is transferred from a source to a transferred to the load in any circuit?
load when the load resistance is equal to the source
resistance.
e [f the resistance across the load is lower or higher than the source resistance of the network, the
power dissipated will be less than the maximum.
Consider the circuit given in Figure 3.17. Rs
. o Vs
e Current in the circuitis [ = ——=— +
Ry +R, Vs ZR
. . ) ViR, °
e Power delivered to the load is P=I"R; =————
(Ry +R;) Figure 3.17
. . dp
e Maximum power is transferred when ——=0
L

Solving this gives R¢=R;.
Therefore, maximum power is transferred from source to load when Rg = R, .

C Example 3.8 )

In the circuit shown in Figure 3.18, find the value of R for maximum Al
power transfer. Also, calculate the maximum power. v J (D2A
[AU, 2014] ©CO@

Solution To find the Thevenin’s voltage, the load is open Figure 3.18
circuited as shown in Figure 3.19(a).

150 V5 10Q

V,-12 )
15 12V R 2A
Therefore,

The Thevenin’s resistance is as shown in Figure 3.19 (b).

15 1
Therefore,
R,=R=15Q Rin
v,  42° = Rp=15Q

V,=V, =42V Figure 3.19 (a)
0

=—=29.4 watts .
4R, 4x15 Figure 3.19 (b)

Maximum power =
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(' Example 3.9 )

Obtain the Thevenin’s equivalent circuit for the network shown in

Figure 3.20, where R; =5 Q. Find R; for maximum power transfer. a
[GTU, 2010]) O®® L 200 .

Solution The Thevenin resistance is given by removing all the ov 3 B

sources. Therefore, the equivalent resistance is given as Figure 3.20

R, =10//20= 6.667Q

The Thevenin equivalent voltage for the circuit shown in Figure 3.21 is given by
Applying Nodal analysis,

V.
-1 :
ﬁ Vl 0 =-2 10 Q h
20 10 2A 2008 350
20 0V
V,=V,=—-——=-6.667V b
3 Figure 3.21
The maximum power transferred is given as
V.2
. =i o =1.667W

th

( Example 3.10 )

Find the value of R that will receive maximum power transfer
(Figure 3.22). (X X J

Solution Short the 100 V voltage source and find the equivalent re-
sistance. The equivalent resistance is given as Figure 3.22
R,R R R

A7 B L

= :109
R,+R, R +R,

where,
R =52Q;R,=109Q; R;=7.1Q; R,=19.6 Q

3.6 || RECIPROCITY THEOREM

Reciprocity theorem states that in any bilateral linear 1. Can a voltage source be interchanged with a

network, if a voltage source of one branch of the circuit current source producing the same current?
produces current in the other branch, then when the voltage A c A c
and current sources are interchanged, the current produced __’ '__
in the first branch will be. thelsame current the second branch i V |Network| 7(F) <> M1 [Network| V i
has produced as shown in Figure 3.23.

B D B D

Figure 3.23
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C Example 3.11 )

3Q 12Q
Verify the reciprocity theorem for the circuit shown in Figure 3.24. !
[AU,2012] O@® \\'L 1403 403 340
Solution Applying KCL at node 1 (Figure 3.25(a)): I
Fi 3.24
M-100 V V-V, -
3 +H+T=O (3.1 30 1290
1
Applying KCL at node 2: 100 V T 140z 4 Q 4 o)
Vo-Vi V, 'V, ‘
Y (3.2) Figure 3.25 (a)

Solving Eqgs (3.1) and (3.2), we get V, =69.87 V, V,=9.968 V

1= 2298 497
4 4

Using reciprocity (Figure 3.25(b)),
Applying KCL at node 1:

V=100 Vi, Vi=V, _

0 (3.3)
4 4 12 Figure 3.25 (b)
Applying KCL at node 2:
v, Vv, V,-V
24242 1=0 (3.4)
3 14 12
Solving Eqs (3.3) and (3.4), we get V, =41.86 Vand V,=7.22 V
I=&=E=2.407A
3 3

Therefore, the given circuit verifies reciprocity theorem.

3.7 || MILLMAN'S THEOREM

e Millman’s theorem states that in any network, if a 1. Gan Millman’s theorem be applicable for
number of voltage sources, V,, V,, ..., V,, in series both voltage and current sources?
with their respective internal resistances, R, R,, ...,
R, are connected in parallel then these voltage sources can be replaced by a single voltage source,
V, in series with resistance, R, where R = ! and V = WG + G, ++V,G, ,
G, +G, ++G, G +G, +++G,
G,, is the conductance of the n™ branch.

e Figure 3.26 shows a circuit with several voltage sources in parallel and its Millman’s circuit
with a single voltage source and equivalent resistance.
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e The Millman’s theorem is also applicable in circuits with a number of current sources in parallel
with their respective internal conductances and the combination in series.

e Consider the circuit given in Figure 3.27 and its Millman’s equivalence.

L I I, I
o o
R R R, R
1 2 - n - =
v, Vy v, V
o o G G Gy G
Figure 3.26 Figure 3.27
The total current [ is
1_11R1+12R2 +---+1I,R, G= 1
= and
R +R, +--+R, R +R, +-+R,

(" Example 3.12 )

Obtain the equivalent of a parallel connection of three branches each with a voltage source and a
series resistance 2V, 1 Q), 3V,2Q),(5V,2 Q). [GTU, 20111 C®®

Solution The Millman’s equivalent voltage can be found by

2X1+3%x2+5x%2
V_X X X

- =36V
4 1+2+2

The Millman’s equivalent resistance can be found by
1 1

R, 1+2+2
Therefore,

R, =5

3.8 || TELLEGEN'S THEOREM

e Tellegen’s theorem states that in any lumped 1. Whatlaws must the circuit obey for

network, the algebraic sum of powers in all the Tellegen’s theorem to be applied?
branches at any instant is zero.

e Tellegen’s theorem is applicable for any lumped network and is based on the Kirchhoff’s
laws.

e Suppose there are n number of branches in a network having instantaneous currents, i, i,,...
i,, and satisfying the Kirchhoff’s current law and the instantaneous voltages across them, v,

n
V,,...V,, satisfying the Kirchhoff’s voltage law, then ka.ik =0, where v, is the instantaneous
k=1
voltage across the k™ branch and i, is the instantaneous current flowing through that branch.
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( Example 3.13 )

N
Verify Tellegen’s theorem for the network shown in the 1Q 10
Figure 3.28. [PTU, 2009-10] ee®e® W b
Solutiqn 'Consider the given circuit with loop currents as 10 V+‘: 10 10
shown in Figure 3.29. i
Applying KVL in three loops, we get
2I,-1,-1;=10 3.5) Figure 3.28
e g e
. L (3.7) 10 D 10
Solving the Egs (3.5), (3.6), and (3.6), we get [; = 10 A, S
L=5A,and ;=5 A. Ra &
Power delivered by the source, 10V = 7 10 @ 10
P=V,xI,=10x10=100 W Ry Rs
Power dissipated by each resistor Figure 3.2
P +P,+P;+P,+Ps=100W
Therefore, the Tellegen’s theorem is verified.
3.9 || SUBSTITUTION THEOREM Probe

e Substitution theorem states that if an element in a 1. What will be the effect of replacing a 5 ©2
network is replaced by a voltage source, where the (Rl ML el 01 11 RS
. . with a 1 V voltage source?
voltage at any time is equal to the voltage across
the element before being replaced by source then
the initial condition in the rest of the network will be unaltered.
e This also applies for a current source whose current at any instant of time is equal to the current

through the element before being replaced by the source with the initial condition in the rest of
the network being unaltered.
o x 13 vy X

"
Consider the given circuit: A
e First determine the respective branch voltage and current flowing &, r, ; V=GOV o
through the branch given by V,, and /.. = K =
¥ ¥

e The branch may be substituted by an independent voltage source
as shown in Figure 3.30.

Figure 3.30
e The branch can also be substituted by an independent current

source as shown in Figure 3.31.

1y I3
. 1
e Therefore, it may be seen that the voltage drop and the current I+ +
V nR3y s = I I3
y y

x 13 Vv X

flowing through the circuit is the same even after being replaced
by an independent voltage or current source.

Figure 3.31
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3.10 || COMPENSATION THEOREM

1. How can the change in voltage or current
be determined if a new resistance is added
to the circuit?

e The compensation theorem states that any element
in a linear, bilateral network may be replaced by a
voltage source with zero internal resistance and a
voltage that is equal to the voltage drop across the

replaced element due to the current which was flowing V1 _
+ V=g
Network R <= |Network

in that element.

e This theorem is useful to determine the change in the
voltage or current when there is a change in the value Figure 3.32
of resistance.

C Example 3.14 )

In Figure 3.33, if the 1 € resistance is changed to 1.4 € 10 Vi 20 W,

then determine the source-voltage to compensate for the
change. [GTU, 2014] C@@®

20

&

NI

Solution Consider the circuit given with the 1 € resistance.
Let /, be the current through the 1 € resistance.

. . . -3
Applying nodal and current analysis, the value of /, is TA - = S

Figure 3.33
The voltage, V, =225V st
Now, replacing the 1  resistance with 1.4 Q resistance, the circuit is redrawn as shown in

Figure 3.34.

The current through the 1.4 Q resistance should be _T?’A . The voltage source will have a voltage

equal to the voltage drop across the 1.4 Q resistance.

i-v_3 10 V; 2Q Vo 2Q
1.4 4 Vv
225-V 3
a0 v 1a(® gzsz 4v
V=12V
The change in voltageis2 - 1.2=0.8 V Figure 3.34

The source must therefore be reduced by 0.8 V and
the value if the voltage source is 1.2 V.
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POINTS TO REMEMBER

== When two or more sources are present in the circuit, keep one source while shorting or opening the others.

15" Superposition can only be applied for linear circuits.

1= The superposition voltage sources are to be shorted and current sources are to be opened.

=" The Thevenin open-circuit voltage between its two terminals is equal to the voltage source.

15" The Thevenin equivalent resistance is the resistance seen across the two terminals with the sources replaced by

its internal resistances.

internal resistances.

The Norton equivalent short-circuit current between its two terminals is equal to the current source.

The Norton equivalent resistance is the resistance seen across the two terminals with the sources replaced by its

1=~ For the reciprocity theorem to be applicable, the ratio of response to the excitation must be the same.

15" Millman’s theorem can also be applicable to a number of current sources in parallel to their respective internal

conductances.

15" Kirchhoff’s laws have to be satisfied before applying Tellegen’s theorem.

1" If Substitution theorem is satisfied, initial conditions will remain the same.

=" Compensation theorem is used to determine the change in resistance of a circuit.

PRACTICE PROBLEMS

1. Using the Superposition theorem, deter- O @ @
mine the voltage drop and current across
the resistor 3.3 K as shown in Figure 3.35.

2.0kQ 4.7kQ

8V(O 33kasVg (O5V

Figure 3.35

2. Using the superposition theorem, find O @ @
the voltage, V,, for the circuit shown in
Figure 3.36.

4Q 6 Q 3V

3. Determine the current, /;, throughR; =6Q2 OO @
for the circuit shown in Figure 3.37, using
the Thevenin’s theorem.

8Q RL=6Q

+y =
X 240
40V 7Q Orls=3A

-[ T 30V
Figure 3.37

4. Determine the Thevenin’s voltage and OO @
equivalent resistance across the 40 ohm
load resistor for the circuit shown in the
figure below and draw the Thevenin’s
equivalent circuit.

10Q A 20Q

0V 40Q

[ I

B
Figure 3.38

20V
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5. What is the Thevenin’s equivalent O @ @ 50 , 10Q
across AB which has V,, = V and R,,
respectively? 20V 400 40V
10 40
6AMD Ay tV- 3B B
6Q
20 Figure 3.43
Figure 3.39 A
6. What is the Thevenin’s equivalent R,,to OO @ 4A 3.33 ohm
the left of AB? B
1Q &+ A Figure 3.44
I 10 31Q 10. Determine the voltages and currents of OO @
the resistances in the circuit shown in
B Figure 3.45 using source transformation
Figure 3.40 technique.
7. The Thevenin’s and Norton’s equivalent O O @ 22 k
circuit of a DC network are shown in .
Figure 3.41. Find the values of current / 8 mMA(® 6.8k @3mMA— 12V
and R in the Norton’s equivalent. T
20 A A Figure 3.45
5V 1 .
11. For the given network below, find the OO @
B B maximum power through R; by using
. maximum power transfer theorem.
Figure 3.41
R, =38Q
8. For the given circuit below, determine the O @ @ 6Q “
current through the R, = R, = 2Q resistor 50
(I,_, branch) using the Norton’s theorem 6V 80 120
and draw the Norton’s equivalent circuit.
R oL Figure 3.46
R2=RL=ZQb R3=4Q
a AN * AN c 12. For the circuit shown in Figure 3.47, OO @
+ 1o determine the value of load resistance
Va=3 V:"— Ri=2Q T2 A when the load resistance draws maximum
[ power. Also, determine the value of
g maximum power.
Figure 3.42

9. Determine the Norton’s current and OO @
equivalent resistance from the circuit
shown in Figure 3.43 and draw the
Norton’s equivalent circuit. Figure 3.47




Network Theorem & 3.15

13. What is the value of R; for maximum OO @
power transfer and maximum power in the
given circuit?

2Q 2Q

10 V( 10 31Q3RL

_ RS
U=1v R =10 ohms

Figure 3.48
Figure 3.49

14. Calculate the current for the various OO @ 15. For the circuit shown in Figure 3.50, OO @
branches of the network shown in determine the load current using Millman’s
Figure 3.49. Also, determine the current theorem.
flowing through the one volt battery (V)
when an extra e.n.1.f of 1 volt is add.et.i to %10 a %20 Q %30 Q I
branch BD opposing the flow of original
current for that branch. 1 V = 2 V—

Figure 3.50

MULTIPLE CHOICE QUESTIONS

1. Superposition theorem is applicable in [eYeoX )
(a) linear circuits (b) nonlinear circuits
(c) both linear and nonlinear circuits (d) circuits with more than one energy source

2. Thevenin’s equivalent circuit consists of ocoe
(a) avoltage source in parallel with the impedance
(b) a current source in parallel with the impedance
(c) avoltage source in series with the impedance
(d) a current source in series with the impedance

3. Maximum power is said to be transferred when the ooe
(a) load impedance is less than source impedance
(b) load impedance is equal to the source impedance
(c) load impedance is greater than source impedance
(d) load impedance is zero

4. Nortons’s equivalent circuit consists of ooe
(a) avoltage source in parallel with the impedance
(b) a current source in parallel with the impedance
(c) avoltage source in series with the impedance
(d) a current source in series with the impedance

5. theorem states that in any lumped network, the algebraic sum of powers in all the branches at any O O @
instant is zero.
(a) Thevenin’s (b) Millman’s (c) Tellegan’s (d) Norton’s

6. Thevenin’s and Norton’s equivalent circuits should ideally produce the across the load terminals O QO @
with no load attached.
(a) same voltage (b) same current (c) different current (d) different voltage
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7.

10.

Thevenin’s and Norton’s equivalent circuits should ideally produce the through a short circuit O O @
across the load terminals.
(a) same voltage (b) same current (c) different current (d) different voltage

. Identify the condition of the compensation theorem which states that any element in the circuit may be O @ @

replaced with a voltage source of equal magnitude and equal to the current passing through the element
that is multiplied by the value of the element.

(a) Current should remain unaltered in other parts of the circuit.

(b) Voltage should remain unaltered in other parts of the circuit.

(c) Current should vary in other parts of the circuit.

(d) Both current and voltage should remain unaltered in other parts of the circuit.

. The dual component of an inductor is [eYoX )
(a) capacitor (b) resistor (c) voltage source (d) current source
Tellegen’s theorem is valid for networks. foX X ]
(a) linear (b) nonlinear
(c) both linear and non linear (d) distributed

ANSWERS TO MULTIPLE CHOICE QUESTIONS

1. (a) 2.(c) 3. (b) 4. (b) 5.(c)
6. (a) 7. (b) 8. (d) 9. (a) 10. (¢)



Steady State AC
Analysis and
Transient Response

i Phasors and Sinusoids = Maximum power transfer theorem
i Steady state analysis of R, L, C in series, = Reciprocity theorem
parallel and series-parallel combinations == Millman’s theorem
1= Impedance, Reactance, Admittance == Tellegen’s theorem
= Mesh and node analysis == Substitution theorem
1= Superposition theorem = Compensation theorem
= Thevenin’s theorem > DC transient of RL, RC, RLC circuit
1= Norton’s theorem = Sinusoidal transient of RL, RC, RLC circuit

4.1 || INTRODUCTION

A network having constant energy sources is said to be in DC steady state if the input voltage and all
current variables are constant. Sinusoidal steady state refers to the networks with currents and voltages
having constant amplitude and frequency sinusoidal functions. The condition existing in an electric
circuit between two steady state conditions is known as the transient state. It may occur due to sudden
disconnection or connection or short circuit. A transient response is the electrical response of a system to
a change in equilibrium. The analysis of behaviour of network elements to sinusoidal varying alternating
excitations is called steady state AC analysis.

The methods of solving networks that have been discussed in earlier chapters with reference to
resistive load and DC sources are also valid for a network consisting of AC sources, resistors, inductors
and capacitors. All network theorems except Maximum Power Transfer are applicable to phasor
equivalent circuits used to solve for sinusoidal steady state variables in a linear dynamic circuit excited
by sinusoidal sources with a common frequency. The maximum power transfer theorem needs some
modification.
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4.2 || PHASORS AND SINUSOIDS

A sinusoid, or simply a sine wave, is a mathematical curve 1. Define the following.
that corresponds to the sine function. An alternating quantity (a) Time period (b) Frequency (c) RMS
is that which acts in alternate directions and whose value (d) Average value  [JNTU, 2012]

magnitude undergoes a definite cycle of change in definite
intervals of time. The wave’s magnitude and direction varies Vi |-
with time. The wave starts at a reference point # = 0 seconds with a value of

It further decreases in the negative direction until it reaches the negative

zero. It reaches the positive peak (V,,) and returns to its original value zero. 0 \/ \/
—_—

peak (-V,). ~Vim f(sec)

When the voltage applied is positive, the flow of current is in a certain

direction; when the voltage applied is negative, the flow of current is in Figure 4.1
the opposite direction (Figure 4.1). Both the positive and negative voltages
constitute to one cycle in the sine wave. The general expression of an alternating quantity is

x(t) = A sin (@t + @)

where, A = Peak value or amplitude, ¢ = Phase angle in radians, @ = Angular frequency in radians per

second.

Before proceeding, there are different terms we need to define when dealing with waves. They are
as follows.

Cycle: A cycle may be defined as one complete set of positive and negative values of an
alternating quantity repeating at equal intervals.

Period: The time taken by an alternating quantity in seconds to trace one complete cycle is
called periodic time or time-period. It is usually denoted by symbol 7.

Frequency: The number of cycles per second is called frequency and is denoted by symbol f
Frequency is generally measured in Hertz.

1
=7

If the angular velocity @ is expressed in radians per second, then w = 27f.

Instantaneous value: It is given by the value of the sine wave at any given point of time. It is
denoted by small letter.

Peak value: The maximum value during the positive cycle or the maximum value during the
negative cycle is known as the peak value of the sine wave. It is denoted by V,, or /,,.
Peak-to-peak value: For a sine wave, the peak-to-peak value is calculated from the positive
peak to the negative peak.

Average value: The average value of the wave corresponds to the total area covered divided by
the distance measured by the curve. It is given by

v, =0.637V,
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¢ Root mean square (RMS) value: It is that value of an alternating voltage or current which
produces the same amount of heat in a resistor connected to AC as the amount of heat produced
when the resistor is connected to DC. It is denoted by capital letter. It is given by

Vv

— _m

V =_m
rms \/5

e Peak factor: The peak factor is known as the ratio of peak value to the RMS value of the

wave.

v
Peak factor = —=

rms

e Form factor: The form factor is known as the ratio of the RMS value of the average value of

the wave.

rms

Form factor =

av

A sine wave can be expressed with its magnitude
and its associated angular position using a phasor
diagram as shown in Figure 4.2.

For example, consider a wave defined by
R sin 6. Here the amplitude of the wave is R and
the angle created is 6. In the phasor diagram, the
length of the line drawn is equal to the amplitude
of the wave, which is R, with the subtended angle
of the wave, which is 6. The ‘phase’ of an AC
wave may be defined as its position with respect
to a reference axis or reference wave. Phase angle
is the angle of lead or lag with respect to reference
axis or with respect to another wave. Signals
with the same frequency that begin with different

references can incur a phase difference (Figure 4.3).

7\ 2z /[ orad

Figure 4.2

—> Phase shift = o degrees

—> A is ahead of B because
A attains its maxima or
minima before B

—> Aleads B

o —> Blags A

Figure 4.3

An alternating voltage or current is a phasor quantity, but since the instantaneous values are changing
continuously, it must be represented by a rotating vector phasor j.

STEADY STATE ANALYSIS OF
4.3

R, L, C IN SERIES, PARALLEL AND
SERIES-PARALLEL COMBINATIONS

University Question

Firstly let us understand the behaviour of the elements —
resistance, inductance and capacitance when excited by

1. Draw the Phasor diagram for a series RL
circuit. [AU, 2012]

sinusoidal varying excitations. Then we shall study the
various series and parallel combinations of R, L and C.
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4.3.1 ACApplied to Pure Resistance

Consider a resistor R connected across an AC supply as shown in Figure 4.4(a). Let the supply voltage
be
v=V, -sin(wt)

V_ -sin(wt) V
From Ohm’s Law i = Yo Lﬂ() =—sin (wt)
R R R
or i= Im - sin(wt)

where I, =‘%” =] =K in rms values.

m

The rms value of current is given by [ = E @) (b) ©
. Figure 4.4
Hence the voltage and current across a pure resistor s
are in phase with each other as shown in Figure 4.4(b). The phasor diagram is shown in Figure 4.4(c).
Power is the product of voltage and current at every instant of time. The average value of power in a
purely resistive circuit is given by

pP=VI

The power factor is defined as the cosine of the angle between the voltage and current. Since the
voltage and current are in phase, the power factor angle ¢ is zero and power factor (cos ¢) is unity.

4.3.2 ACApplied to Pure Inductance

A pure inductive circuit possesses only inductance and no resistance or capacitance as shown in
Figure 4.5(a). Consider a pure inductor connected across an ac supply as shown in the figure. Let the
supply voltage be v=1V,, - sin(®1).
The alternating current / flowing through the inductor will produce an alternating magnetic field
which in turn will induce an emf given by
e= Lﬂ
dt
where L is the self-inductance of the coil. As there is no ohmic resistance drop, the applied voltage has
to oppose the self-induced emf only. So the applied voltage is equal and opposite to the back emf at all
instants.

di 1%
v=e=V_ -sin(wt)=L—-di=-—-sin(wt)
" dr L
The expression for current obtained after integration is

V. T . T 1% Vo
i=—-sin| ot —— |=1,sin| ot —— |, where I, =—"=[=—— inrms values
oL 2 oL oL
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p
V4
4 v
i i

The voltage, current and instantaneous

power wave shapes are shown in L
Figure 4.5(b) and the phasor diagram in W

v
. i e=L— p / 90°
Figure 4.5(c). The current lags the voltage th 02 \* \ wt

by 90° in a purely inductive circuit. The V=V, sin of

average power in a purely inductive (@ b) I ©

circuit is zero and the power factor is .
cos 90° = 0. Figure 4.5

4.3.3 ACApplied to Pure Capacitance

Consider a pure capacitor connected across an AC supply as shown in Figure 4.6(a). Let the supply
voltage be v=1V, -sin(wt).
When the current starts to flow, the capacitor starts getting charged. The charge in the capacitor is
given by ¢ = Cv where C is the capacitance of the capacitor.
Current is given by
_dq . dv

d
= C—=C=—(V, -sin(ot
! dt dt dt( w SIN(@1))

The expression for current obtained is

i=wCV, sin(a)t + %) =1, sin(wt + %J ,where I, =wCV, = [ = oCV inrms values

The voltage, current and instantaneous
power wave shapes are shown in C
Figure 4.6(b) and the phasor diagram in
Figure 4.6(c). The current leads the
voltage by 90°in a pure capacitive circuit.
The average power in a purely capacitive

circuit is zero and the power factor is )
c0s 90°= 0. Figure 4.6

4.3.4 Series R-L Circuit

Consider a resistor and an inductor connected
in series across an ac voltage V of frequency f
as shown in Figure 4.7(a). The current flowing
in the circuit is 1. Vy is the voltage drop across
resistor R given by Vi, = IR and V, is the voltage
drop across inductor L given by V, = @wL.I. The

voltage applied is given by V>=V.,>+V,%
The phasor diagram is drawn with current as
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the reference and is as shown in Figure 4.7(b). The phase angle for the given circuit can be given as

V
o= tan' —L .
R
The voltage current relationship is given by V =1IR*+(wL)*> . The power is the product of
instantaneous values of the voltage and the current. The average power is given by P =VIcos¢ .

4.3.5 Series R-C Circuit

VR=IR 1

Consider a resistor and a capacitor connected OA
in series across an ac voltage V of frequency f as LR ¢ N
shown in Figure 4.8(a). The current flowing in the Ve | \'/'c S\ Ve =1Xc
circuit is /. Vp is the voltage drop across resistor R <
given by Vj = I and V. is the voltage drop across  6«—— v =V, sin ot ——0

. . ! . (a) (b)
capacitor C given by V= oC The voltage applied Figure 4.8

is givenby V* = VR2 + VCZ. The phasor diagram is drawn with current as the reference and is as shown in

Figure 4.8(b). The phase angle for the given circuit can be given as ¢ = tan”! &
R

{ 2
The voltage current relationship is given by vV =1,/R* + [%) . The power is the product of
@

instantaneous values of the voltage and the current. The average power is given by P =VI cos¢ .

4.3.6 Series R-L-C Circuit

Consider a resistor, an inductor and a capacitor connected in series across an ac voltage V of frequency f
as shown in Figure 4.9(a). The current flowing in the circuit is /. Vj is the voltage drop across resistor R
given by V, = IR, V, is the voltage drop across inductor L given by V, = wL and V. is the voltage drop

I
across capacitor C given by =——. The voltage applied is given by = + - . The
itor C given by Ve =— . The vol lied is given by V> =V,> +(V, = V). Th

phasor diagram is drawn with current as the reference and is as shown in Figure 4.9 (b). The phase angle

. . . L, =V,
for the given circuit can be given as ¢ = tan IM .
R
! i VL—Vc Vg =Vcos ¢
v=Vpsin a)t
Figure 4.9

w
instantaneous values of the voltage and the current. The average power is given by P = VI cos ¢.

2
. S 1 .
The voltage current relationship is givenby V =1 \/ R* + (a)L - —C] . The power is the product of
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4.3.7 Parallel R-L Circuit

Consider a resistor and an inductor connected in parallel across an AC
voltage V of frequency f as shown in Figure 4.10. ) 92! .
Let the supply voltage be v=1V,, -sin(wr)
The total current is the phasor summation of all the branch currents. Figure 4.10
It is given by

O N 4
I=ip+i; =—+—— Ir

R oL 5 v
As the voltage across each element is the same for a parallel \J
I I

network, the voltage phasor is taken as the reference for drawing the
phasor diagram as shown in Figure 4.11. Figure 4.11

4.3.8 Parallel R-C Circuit ;

Consider a resistor and a capacitor connected in parallel across an AC 06 ic
voltage V of frequency f as shown in Figure 4.12. R=C

Let the supply voltage be v=V, -sin(wt)

) ] Figure 4.12
The total current is the phasor summation of all the branch currents. It
is given as lc
v I
i=i,+1i.=—+wvC / I
R T'C R 0 y v
R
The phasor diagram is as shown in Figure 4.13. Figure 4.13

4.3.9 Parallel R-L-C Circuit

Consider a resistor, an inductor and a capacitor connected in parallel i

across an ac voltage V of frequency f as shown in Figure 4.14. iR i iiT_
Let the supply voltage be v=1V, -sin(wt) Vi) ég %R % L T c
The total current is the phasor summation of all the branch

currents. It is given by Figure 4.14

R 4
l:lR+lL+lC:E+_L+wVC
[

C Example 4.1 )

A 230 V, 50 Hz ac supply is applied to a coil of 0.06 H inductance and 2.5 € resistance connected
in series with a 6.8 uF capacitor. Calculate (i) current (ii) phase angle between current and voltage
(iii) power factor (iv) power consumed. ooe

Solution It is a series RLC circuit where R = 2.5 Q, L = 0.06 H, C = 6.8 uF, V = 230 V,
w=2x3.14x50=314

Note: Difficulty Level —> O O @ — Easy; O @ ® — Medium; @ ® ® — Difficult
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2
The voltage current relationship is given by V = [ \/ R* + (a)L = %]
(0]

2 2
R* + (wL —L) =,[2.5% + | (314 x 0.06) - ! — | =449.2Q
oC (314 x 6.8 x107)

]:L:ﬂ:O_SIZA
4492 4492

_ _ —6
A VC):tan_l{GM x 0.06) (12/5314 x 6.8 x 10 J:_89'7°

¢ =tan

R

Power factor cos (—89.7°) = 0.0056
Power consumed = VI cos ¢ =230 x 0.512 x 0.0056 = 0.66 W

4.4 || IMPEDANCE, REACTANCE, ADMITTANCE
4.4.1 Reactance

Reactance is a form of opposition exhibited to the passage of alternating current because of capacitance
or inductance. When alternating current passes through a component that contains reactance, energy is
alternately stored in, and released from, a magnetic field or an electric field. In the case of a magnetic
field, the reactance is inductive. In the case of an electric field, the reactance is capacitive.

Inductive Reactance

The opposition offered by an inductor to the flow of current is X; given by X; = wL. This is called
inductive reactance and its unit is ohms. So for a pure inductor

V=IX,
Capacitive Reactance

1
The opposition offered by an capacitor to the flow of current is X, given by X, = o This is called
0]

capacitive reactance and its unit is Ohms. So for a pure capacitor
V=IX-

4.4.2 Impedance

The impedance of a circuit element is defined as the ratio of the phasor voltage across the element to the

phasor current through the element. It is represented by Z and measured in Ohms.
Vv

Z=—
I
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When resistors, capacitors, and inductors are combined in an AC circuit, the impedances of the
individual components can be combined in the same way that the resistances are combined in a
DC circuit. The resulting equivalent impedance is in general, a complex quantity. That is, the equivalent
impedance has a real part and an imaginary part. The real part is denoted with an R and the imaginary
part is denoted with an X.

Z=R+jX
R is termed the resistive part of the impedance while X is termed the reactive part of the impedance.

For an RL series circuit V =1,/R* + X,> = Z=R* + X,* or Z=R+ jX,.

So if ¢ is the phase angle, R = Z cos ¢ and X; = Z sin¢.

For an RC series circuit V =1|R> + X.* = Z=/R* + X, orZ=R—jX.
So if ¢ is the phase angle, R = Z cos ¢ and X = Z sin¢.

For an RLC series circuit V = [\/R2 +(X, - Xc)2 =7Z= \/RZ +(X, - XC)2 orZ=R+jX; - Xp).

Combining impedances in series, parallel, or in delta-wye configurations, is the same as for resistors.
The difference is that combining impedances involves manipulation of complex numbers.

Combining impedances in series is simple:

Zy=Z,+Z,=R + Ry + (X, + X)

Combining impedances in parallel is much more difficult than combining simple properties like
resistance or capacitance, due to a multiplication term.
Z 1 Z2

Z =7 |z, =122
e =21 Z,+7Z,

4.4.3 Admittance

G
. . . . . o
It is the reciprocal of impedance and is denoted by Y. Admittance Z X o
is measured in mhos or Siemens. It is given by I = VY. The 010 Y B
impedance Z has two components resistance R and reactance X. R

Admittance has also two components, the conductance ‘G’ and
susceptance ‘B’. Figure 4.15

Y=G+jX
The value of B is negative if the circuit is inductive and the value of B is positive if the circuit is
capacitive. The impedance and admittance triangles are similar as shown in Figure 4.15.

Impedance triangle  Admittance triangle

C Example 4.2 )

For the circuit shown in Figure 4.16, find the current and power drawn from the source. ocoe
3Q j4

Solution Let

Z, =3+ j4=5£53.13°Q

6Q 8
230 V4 50 Hz

Figure 4.16

Z, =6+ j8=10£53.13°Q
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Both impedances are in parallel. So the equivalent impedance is

Z\Z, 5/53.13x10£53.13 50£106.26

“” 7 +7,  3+j4+6+,8  15/53.13

Current drawn

V20 o, 53134
Z  333/53.13

eq
Power drawn from source
P = VI cos ¢ =230 x 69 x cos 53.13 = 9.522 kW

=3.33£53.13Q

4.5 || MESH AND NODE ANALYSIS

1. Define ‘mesh analysis’ of a circuit.
[AU, 2011]

4.5.1 Mesh Analysis

Mesh analysis is useful if a network has a large number

of voltage sources. In this method, currents are assigned in each mesh. When mesh equations, based
on Kirchhoff’s voltage law, are written in terms of unknown mesh currents and solved to obtain the
required quantity, the thumb rule is that the number of equations should be equal to the number of

unknown currents.

4.5.2 Nodal Analysis

Nodal analysis is based on Kirchhoff’s current law and is used to find currents and voltages in a network.
For AC networks Kirchhoff’s current law states that the phasor sum of currents meeting at a point is
equal to zero. In this method, pick a reference node and apply Kirchhoff’s current law at each node
except the reference. Replace all the unknown currents in terms of the potential difference divided by
the impedance through which the current is flowing. Solve the resulting equation for the nodal voltages

and then find the required current.

C Example 4.3 )

Find the mesh currents /,, I, and /5 in the network shown in Figure 4.17.

5Q —2Q j5Q

10430°v%£1) %39 350 %29
LY 1 BY=T=-2Q

1

Figure 4.17

Solution Applying KVL to mesh 1
10£30°=(5—-j2)I, = 3(I, = 1,)=0= (8 — j2)I, — 31, =10£30°

cee
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Applying KVL to mesh 2

31, —1,)— j5I, = 5(I, — ;) =0 => — 31, + (8 + j5)I, — 51, =0

Applying KVL to mesh 3

—5(I, —I,) — (2 = j2)I, =0=> — 5, + (71— j2)I, =0

Writing these equations in matrix form

8—j2 3 0 I, 10£30°
-3 8+j5 S5 || |= 0
0 =5 1-j2|| L4 0
Solving using Cramer’s rule
10£30° -3 0
0 8+j5 5
0 -5 T7-j2
I, = - =1.43/38.7°A
8—j2 3
-3 8+j5 -5
0 -5 T7-j2
8—j2 10£30° 0
-3 0 -5
0 0 7—j2
I, = - =0.693£-22°A
8—j2 3
-3 8+j5 -5
0 =5 T-—j2
8—j2 -3 10£30°
-3 845 0
0 =5
I;= =0.476£13.8°A

8—j2 -3 0

4.6 || SUPERPOSITION THEOREM

University Question

The superposition theorem can be used to analyse an ac
network containing more than one source. The theorem for
ac sources states that in a network containing more than

1. State and illustrate superposition theorem.
[VTU, 2016]
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one voltage source or current source, the total current or voltage in any branch of the network is the
phasor sum of currents or voltages produced in that branch by each source acting separately while all
other sources have been replaced by their internal impedances. This theorem is valid only for linear
networks.

( Example 4.4 )
Find the current through the 3 + j4 Q impedance (Figure 4.18). cee

Solution Step 1: When the 50£90°V source is acting alone

(Figure 4.19(a)). 50 £90° V+ (550 £0°V
i - % — 583+ j2.5=6.35.,23.2°
4 Figure 4.18
= 0N g e7/668°A ba L pL
6.35/23.2

js
3+ 9

I'="1.387 466.8{ j =4.15/853°Al

Figure 4.19(a)

Step 2: When the 50£0°V source is acting alone (Figure 4.19(b)).
50 j5Q

i4
Z,= J5+ CHIDS _ 5 54 j6.25=674.268.2° Sl
8+jd (550 £0°V
+
= =040 6820
6.74.£68.2
5 Figure 4.19 (b)
77 FAGL —68.2"( : ]: 4154-9477° AT =4.15,853° 1
8+ j4

Step 3: By Superposition theorem
I=1I"+1"=4.15£85.3° + 4.15£85.3° = 8.31 £85.3°A

( Example 4.5 )

Determine the voltage across the 2 + j5 € impedance for the network shown in Figure 4.20. O @® @®

Solution Step 1: When the 50£0°V source is acting alone
(Figure 4.21(a)).
_50£0° 50£0°  50£0°
24+ j4+j5 2479 9.22/77.47°
=542/£-71747°A

50 £90° V() A
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Voltage across 2 +j5 Q V'= 542/ -77.47°2 + j5)=29.16£-9.28°V jaQ 8o
Step 2: When the 20£30°V source is acting alone (Figure 4.21(b) D0y 280
. o ® 5O
1= 20430{ ]4_ ]= 20£30° 4420 =8.68£42.53°A
2+ 59 9.22/77.47 Figure 4.21 (a)
Voltage across (2 + j5) €2 impedance Ao 39
V7= (8.68£42.53°)(2 + j5)=46.69 £110.72°V 20
Step 3: By Superposition theorem 5Q 20 230" A
V=V'+V”=29.16£—-9.28 + 46.69 £110.72
Figure 4.21 (b)

V =28.78 — j4.7-16.52 + j43.67 =12.26 + j38.97 =40.85£72.53°V

4.7 || THEVENIN'S THEOREM

According to Thevenin’s theorem, any linear network 1. State and prove Thevenin’s theorem.
connected to a load impedance Z, may be replaced by a Showthat Thevenin's equivalentcircuitis the

simple two terminal network consisting of a single voltage
source V,, and single impedance Z,, in series with the

dual of Norton’s equivalent circuit.
[VTU, 2009]

voltage source, across the load terminals. V,;, is the open

circuit voltage measured at the two terminals after removing Z; and Z,, is the equivalent impedance of
the given network as viewed through the terminals where Z, is connected, with all the sources replaced
by their internal impedances. When the network is replaced by Thevenin’s equivalent across the load
terminals, then the load current can be obtained as

I = ‘/th
zZ,+2,
C Example 4.6 )
Obtain Thevenin’s equivalent network for the terminals A and B as shown in Figure 4.22. O@@®
Solution Step 1: Calculation of V,, 30 M 5 Q‘j“'&o .
Applying KVL to th h 40
pplying KVL to the mes o V+ :>
50£0° -3 — j4)I —(4+ j6)I =0 - 6 Q .
0
_ 50£0° _50£0° Figure 4.22
B-jH+@E+j6) T+j2

50£0°

=—————=6.87£-1595°A
7.28 £15.95°
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V, =@+ j6) =(4+ j6)6.87L—15.95°=(7.21£56.3)6.87£L—15.95° = 49.5£40.35°V
Step 2: Calculation of Z,, (Figure 4.23(a)).

B-jH@E+j6) _ o 5/£-53.13 x7.21/56.3
G-jh+@E+j6) 72821595

Z, =jl1+4.83—j1.095=4.83 — j0.095=4.83£—1.13°Q

The Thevenin equivalent network is shown in Figure 4.23(b).

30 JH4Q 5Q-j40 4.83/1.13°Q
°A A
A
49.5/-40.35° V
j6Q N
0B B

(a) (b)
Figure 4.23

Z,=05-jhH+ =jl1+4.952-12.78

4Q

C Example 4.7 )

Obtain Thevenin’s equivalent network for the network shown in Figure 4.24. cee
s5Q 422 j5Q

Solution Step 1: Calculation of V,, oA

+

I 00
Applying KVL to mesh 1 10 230V ( ,;) % 3Q ,2:> %5 L
10.£30° = (5— j2)I, = 3(I, - 1,)=0
(8 — j2)I, =31, =10£30 Lete 2

°B

Applying KVL to mesh 2

=3(l, —1,)— j5I, - 51, =0

=3I, +(8+ j5)I, =0
Solving equations by Cramer’s rule
8—j2 10430

-3 0 ‘ 30430

8—j2 3| 69.252203
’ -3 8+j5

=0.433£9.7°A

I, =

V, =V, =51, =5(0.433£9.7°) = 2.16£9.7°V 292 j50o
2o oA
Step 2: Calculation of Z,, (Figure 4.25(a)). ' % %
5Q 30 5Q
o B

Z, = M +j5 (115
O

=(1.94 - j0.265 + j5)I15=(1.94 + j4.735) 115

Figure 4.25 (a)
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) 3.4 /334 Q
z, =%=3.04433.4°Q o A
The Thevenin equivalent network is shown in Figure 4.25(b). - B
Figure 4.25 (b)

4.8 || NORTON'S THEOREM

According to Norton’s theorem, any linear network 1. Draw the general form of Norton

connected to a load impedance Z, may be replaced by a equivalent circuit. [AU, 2008]
simple two terminal network consisting of a single current

source I or /4 and single impedance Z,, in parallel with it, across the load terminals. y is the short
circuit current measured at the two terminals after removing Z; and Z,, is the equivalent impedance of
the given network as viewed through the terminals where Z, is connected, with all the sources replaced
by their internal impedances. When the network is replaced by Norton’s equivalent across the load
terminals, then the load current can be obtained as

I, =1 Zeq
L= Yz, +2,

C Example 4.8 )

Obtain the Norton’s equivalent network between the terminals A and B as shown in Figure 4.26. O @ @

3Q j4Q

Solution Step 1: Calculation of /g~ (Figure 4.27(a))

2520

€734 j4
2520
5/53.13°
=5/-53.13°A

Step 2: Calculation of Z,, 25 £0°V

_GB+jdHA-Jj5)

“ 3+ j4+4-j5 Figure 4.27 (a)
_5/53.13°% 6.4/ —51.34
- 7.07£-8.13
=4.53/9.92°Q

The Norton’s equivalent network is shown in Figure 4.27(b).

—55Q
T v}

A
5 /-53.13°A é) 4.53 £9.92° Q

B

Figure 4.27 (b)
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C Example 4.9 )

Find the current through the 2 + j5 Q impedance in the network shown in Figure 4.28 using

Norton theorem.

Solution Step 1: Calculation of I, (Figure 4.29(a))
Writing the KVL equations for the three meshes

40£0—4(1, - 1,) + j10, - I5)
=0= (4 - j10)I, — 41, + jl10L,
=40£0
A, - 1)) - j12I, =0=—-4I, + (4 + j12)I, =0
=8I, + j10(I; — 1) =0= j10I, + (8 — j10)I; =0
Writing in matrix form
4— 710 —4 J10 || 4040
—4 4+ j12 0 L|=| O
j10 0 8—j10 || 15 0
Using Cramer’s Rule
4—-j10 40«0 j10
—4 0 0
. Jj10 0 8-j10] 1280 1600
T la-j10 -4 710 1440 + j64
—4 4+ j12 0
j10 0 8 —j10
4—j10 —4 40£0
-4 44412 0
= j10 0 0 _ 4800 — j1600
S la-j10 -4 j10 1440 + j64
-4 4412 0
j10 0 8—j10
Iy=1,—-1,=244,-2.55°A
Step 2: Calculation of Z, (Figure 4.29(b))
Z,, =[41(= 101+ [(j12) 18]
=(3.4483 — j1.3793) + (5.5385 + j3.6923)
=8.9868 + j2.313 Q

+
40 £0° V(=

Figure 4.29(a)

=(0.8379 — j1.1483)A

=(3.2775 - j1.2568)A

Figure 4.29 (b)
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The Norton’s equivalent network is shown in Figure 4.29(c).
Current through 2 + j5 impedance

8.9868 + j2.313
8.9868 + j2.313+2 + j5
=1.72£-21.8°A

2 +5)Q

=2.44,£-2.55° x

2.44 £/-2.55° A

G
—~
™
=
™
X
+
[*2]
O
@
1o}
o

Figure 4.29 (c)

MAXIMUM POWER TRANSFER

9 | Theonew

The maximum power transfer theorem states that the 1. State and prove maximum power transfer
maximum power is delivered from a source to the load when theorem for AC circuits. [VTU, 2016]
the load resistance is equal to the source resistance in case Z=R+jX

of resistive loads. In case of complex impedance networks,

1o
maximum power transfer to the load takes place when the load ;
p p EC% D /Q’ZL = RL +/XL

impedance is the complex conjugate of an equivalent impedance
of the network as viewed from the terminals of the load. The
resistance of load and resistance of Z,, must be same while the Figure 4.30
reactances of load and Z,, must also be same in magnitude but

opposite in sign, So if Z,, reactance is inductive, Z; must be capacitive and vice versa (Figure 4.30).

C Example 4.10 )

Calculate the value of Z; to be connected across terminals AB for maximum power transfer and also

find power absorbed by Z, for the circuit shown in Figure 4.31. cee
A
Solution Step 1: Calculation of Z,, or Z 28 =an
olution p alculation of Z,, or Z,, n— o S
. . A /
Z =5x (5+j10) _5+/10 5
1 545410 2+ ;2 .
5+ /10)2-j2) 30+ j10 Hiure &34
_O+10@=72) 304710 545, 51950 oA
@+j2@-j2 8 50 %50
For maximum power transfer the load impedance is the complex . 00 S
conjugate of Z,, oB
Z, =3.75-j125Q Figure 4.32

Step 2: Calculate the equivalent voltage across the terminals AB
Assuming current / in the mesh and writing KVL
2520

250-51-51-j10[=0= 1= ———
10 + j10
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The equivalent voltage across the terminals is
2520 125+ j250 279./63.43°

Vg =6+ jl10) =5+ j10 x e —= =19.77£18.43°V
10+ ;10 10+ 10 14.14£45°
Step 3: Calculate the load current /; in the equivalent circuit.
Vv 19.77£18.43° 19.77£18.43°
, =t = ? 8.43 —— = 2 8437 _ 2.636£18.43
Z,+Z, 375+ j1.25+3.75-j125 7.5

Step 4: Calculate the power absorbed
P, =) R, =2.636> x3.75=26.06 W

4.10 || RECIPROCITY THEOREM

It states that if any source of voltage V, located at one point 1. Whatis reciprocity theorem?  [AU, 2014]

in a linear network produces a current / at a second point

in the network then the same source of voltage V acting at the second point of the same network will
produce the same current [ at the first point. In other words the ratio of the excitation to the response
remains same even if their positions are interchanged.

C Example 4.11 )
Verify Reciprocity theorem for the network given in Figure 4.33. cee

A4Q 30 I

100 £0° V 10 Q

Figure 4.33

Solution Step 1: Find the current / and the ratio V/I
Writing KVL equations for the three meshes
100£0-5(1, - 1,)=0=1, - 1, =20£0
—jal, =31, + j5(1, —1;) -5, —1,)=0= 51, — (8 — j1)I, — j5I; =0
=101 + j5(I; — 1,) = 0= —j5I, + (=10 + j5)I; =0
Writing in matrix form
1 -1 0 I, 20£0
5 -8+ —j5 L|=| 0
0 —j5 -10+j5( 14 0
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Using Cramer’s Rule

1 -1 20£0
5 8+ 0
0 -5 0
L=I= . =00 _go443,_63.440n
= 0 | 55.901/-2665

5 -8+ —Jj5
0 —-j5 -10+j5
v _ 100 £0
I 89443/ —63.44
Step 2: Interchange the positions of V and / and calculate V/I (Figure 4.34)
ZT=(3+]:4)><(—]:5)+10 I A4Q 3Q
B+ j4+(=j5)

=11.1803.£63.43°

5@ —J5Q

:5453.13 ><554—90+10 / ‘|' 100
3.1622 £ —18.434 7
=75-j25+10=17.5-j2.5Q Redundant
Figure 4.34
100£0 100£0

=5.6568 £8.13°A

T 175- 25 17.677Z-8.13

Using current division

I=1, x——8 _ _goa4/—6343°A
Jj4+3-j5
1 100 £0

—=————=11.1803£63.43°
I 8944/ -63.44

The ratio V/I are same in both cases. Hence reciprocity theorem is verified.

+
100 £0° V

4.1 || MILLMAN'S THEOREM

Using this theorem, number of parallel voltage sources can 1. State and explain Millman’s theorem.

be replaced by a single equivalent voltage source. [GTU, 2011]
Theorem Statement o o
- +
Arrangement of voltage sources (V,V, ...,V, ) with internal/ Z = Zn v z v
series impedances (Z,,Z, ..., Z, ) respectively, connected in cces ° °
parallel, can be replaced by an equivalent voltage source (V) Vi Ve o 5 LA

with an equivalent series impedance (Z) (Figure 4.35). Figure 4.35
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1
V=YWY)lY, Z ZZY—
k

Explanation: If all the voltage sources are converted into current sources then,

Vi V. V
]12_1;[22_2...[n: 1
Zl ZZ Zn
Since all current sources are in parallel, equivalent current source
i V. V,
I=L+1,+ 1 ==t +—2+... 2
Z] ZZ Zn
. . . . . 1 1 . .
And since all resistances are in parallel, equivalent resistance, = v = 2? . If this current source is
k

1
converted back into a voltage source then, V=] x R = i + ﬁ 4. L x zi and R = 2—
zZ, Z, Z Y, Y,

n

Equivalent impedance is equal to the net impedance taken all series impedances (Z,,Z, ...,Z,) in
parallel.

C Example 4.12 )

Obtain the equivalent of a parallel connection of three branches each with a voltage source and a
series resistance (2 V, 1Q); 3V, 2 Q); (5V, 2 Q) as shown in Figure 4.36. [GTU, 2011100 ®

Solution Given V;, =2V, V,=3V, V;=5V and 10 20 30

R=1Q= G,=1R,=1S,R,=2Q=G,=1/R, = =
0.55,R;=2Q = Gy =1/R;=0.5S S SN
Step 1: Find equivalent voltage- Figure 4.36
Ve ViG + VG, +V3Gy _ 2x1+3x0.5+5x%0.5 V=3 Volt.
G, +G, + G, 1+0.5+0.5
Step 2: Find equivalent resistance:
I 1
G,=G +G,+G;=1+05+05=2S, R, =—=-=05Q
G, 2

4.12 || TELLEGAN'S THEOREM

The theorem is the most general theorem for circuit analysis. 1. Explain Tellegan’s theorem.  [DU, 2011]
The theorem, in fact reflects the energy conservation in an 2. Draw the variation of circuit parameters
electrical circuit and hence applicable to all kind of electric with frequency in a series resonance
networks i.e. active or passive, linear or non-linear. circuit. [AU, 2011]
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Statement: For any instant of time, algebraic sum of power delivered to each branch is zero.

ZP = Z(Vklk) =0

C Example 4.13 )
For Verify Tellegen’s theorem for the network shown in Figure 4.37. [PTU, 2011-12] ocee

1QR1

I
1@ 4 g
o D 10
R R3
210 310
SV_-l—_ ZD R4 @ R5

Figure 4.37

Solution Step 1 to 3: Find currents though each resistor by finding their current by applying KVL in
each loop.

Step 1: By KVL to Loop 1:

5-(-L)—(,-1)=0 P, =625
5-I+L-1,+1=0 P,=6.25
5-2[+L+L5L=0 P;=0
2 -1 -1,=5 (4.1) P,=6.25
Step 2: By KVL to Loop 3: Ps=6.25
(—L) + 1, — (I, —1;) =0 P=25
L—-L+1L-1+1;=0 P=5x1,
L~ 1, +2I,=0 4.2) P=25

Step 3: By KVL to Loop 2:
L+L-L-L+1=0

L-5L+1=0 4.3)
By Egs (4.1), (4.2), (4.3), we get
2, -L,-1;=5 Ii=5
-1, +3,-1;=0 I,=25
-1, -1, +35=0 ;=25

Step 4: Find Power delivered by the source: P =V, x [, =5 x [, =25
Step 5: Total power dissipated by resistors:
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= 'R+ (V= Vo)’ Ry+ (I~ IR+ (11— 1)*R o+ (I3)°Rs
=6.25+625+0+6.25+6.25 =25
Tellegen’s theorem is verified.

4.13 || SUBSTITUTION THEOREM

With the help of this theorem, any element in a branch can be replaced with another one leaving the
circuit parameters un-affected.

Statement

The voltage across any branch or the current through
that branch of a network being known, the branch can be
replaced by the combination of various elements that will
make the same voltage and current through that branch.

Explanation

A branch with 2.5 Q resistance and 7.5 V voltage source can be replaced with 3 other branches. For each
of these 3 combinations, voltage drop between X and Y is 15 V and current from X to Y is 3 A. Hence
circuit does not get affected if any of these 4 is replaced by other one

( Example 4.14 )

In the circuit shown in Figure 4.39, if the 40 Q resistance is replaced 400Q 2000
by a voltage source V, find the value of V. o) X )

Solution 40 Qresistance can be replaced by a voltage source whose

voltage is equal to the voltage drop across the 40 Q resistance. 30.0© 30.0Q

A |

|+
20.0Q 120 V

Find voltage across 40 € resistance:

Circuit resistance, R = 20 + 50 + (40 + 20)II(30 + 30) = 70 + 30 =
Figure 4.39
100 Q
Circuit current, / = V/IR = 120/100=1.2 A i|4 V. 200Q

Since this current gets divided in 2 branches, current through 5000
40 Ohm resistance, e

By applying current division: I'= 1.2 (40 + 20)/((30 + 30) + (30 + 30))
=12/2=0.6 A -

Voltage drop across 40 Ohm = 0.6 x 40 =2.4 V 20.0 Q 120 V

Hence 40 Ohm resistance can be replaced by a voltage source of
value 2.4 volt. V = 2.4 Volt (Figure 4.40).

30.0Q 30.0Q

Figure 4.40
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4.14 || COMPENSATION THEOREM

Change in resistance in one branch will affect the currents of other branches too. The theorem relates the
change in current of one branch with the other one due to variation in resistance of that branch.

Statement

In a linear time invariant network when the resistance (R) of an uncoupled branch, carrying a current (/),
is changed by (AR). The currents in all the branches would change and can be obtained by assuming that
an ideal voltage source of (V) has been connected such that V- = I(AR) in series with (R + AR) when all
other sources in the network are replaced by their internal resistances.

Explanation

As shown in Figure 4.41, a small change in R, AR will 5.
change currents of other branches of the network. This R R
can be found by setting all active sources of the circuit to ‘ ' AR
zero and by connecting a voltage source of AV = JAR and LAR
a resistance AR in series with R, where [ is the current
through R before change.

AR

Figure 4.41

C Example 4.15 )

In Figure 4.42, if the 1 ohm resistance is changed to 1.2 ohms then determine the source voltage for

compensating for the change. [GTU, 2014] Cee®
Solution Since I, should not change, 1.2 ViR 2.0 VoR2 (g
I,=-3/4A 7
2VERTTAG) 20 »av
Vi-V 3
12 4 Figure 4.42
= V=185V

Change in voltage, AV =2 —1.85 = 0.15 V. Therefore, source voltage must be reduced by 0.15 V.

4.15 | DCTRANSIENT OF RL RC.

RLC CIRCUIT 1. Obtain the response V() and /,(f) for -
the source free RC and RL circuits

4.15.1 DC-transient of RL Circuit respectively. Assume initial voltage V; and
initial current I, respectively. [GTU, 2010]

t=0 Charging
R L
A voltage source of V|, volt is connected in series with an inductor of L henry and
Vo resistance R ohm as shown in Figure 4.43. At time, t = 0, switch § is closed. Now
i circuit current (i) and voltage across each resistor (V) and inductor (V) is to be

evaluated.
Figure 4.43
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Applying KVL in the circuit,
Vo=V, + Vi

Since, V, = L% and V, =iR, Eq. (4.4) becomes,

di . di dt
Vo=L—+iR = —=—

Integrating the equation both sides,

j di j-dt
Iy

Vo—iR 3L

1. (Vo=iR) ¢t .V,
——In—m|=— = =
R \V,-I,R) L R

Constant /;, can be evaluated by initial condition,

t
l—e LIR

t
J + e LR

4.4)

4.5)

(4.6)

Since i = 0 for ¢t < 0, and inductor current cannot be instantly changed, /, for an initially relaxed

inductor is zero. Substituting value of [, = 0 in Eq. (4.6).

¥/ _t ¥/ _t
i=2l-e R | = i=(-e7)
R R

Here, L/R is called time constant of an RL (Unit- second) circuit and denoted as 7. It is defined as
time taken by circuit current of reach 63% (1 — 1/e) of its final value.

. t
Now, VLzLﬂz a\% l—e 7
dt dt| R
t

t
= V,=Ve?

and v, =iR=V,(1—e 7)

= Vo/R oo V| Inductor Voltage
~
) 163% of Iy
5 ! 37% of Vg |---->
O ' i
i ! I 1 .
t=0 LR 2LUR3LR ! t=0 L/IR 2L/IR3LIR t
Time Time
Figure 4.44

Discharging

Now, if voltage source is replaced with a short circuit shunt, Eq. (4.4) becomes

di

0

i . t
R
LE+iR=0 = ji’:—j—dt = i=
dt b L

t

t

TLIR — 7 , 7
Iye =1,e
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di ot ot L
VLzLd—;:L(RIO/L)e t=Rlje* and V,=iR=Rle *

4.15.2 DC-transient of RC Circuit
Charging

A voltage source of V|, volt is connected in series with a capacitor of C farad and resistance R ohm as
shown in Figure 4.45. At time, t = 0, switch S is closed. Now circuit current (i) and voltage across each
resistor (V) and capacitor (V) is to be evaluated.

Applying KVL in the circuit, =0 g

Vo=Ve+ Vi 4.7) Ve

Since, i ¢ T

1 .
Ve=glidi and V, =iR Figure 4.45

Equation (4.7) becomes, V, = é idt + iR 4.8)

Differentiating the equation both sides,
0=—+ Rﬂ
C dt

j;di_ t dr

ii aRC

. t
t o
1{%] =g = izl € (4.9)
0

Constant /;, can be evaluated by initial condition,

1
Sincei=0forzr<0,at =0, E idt =0 or V- (t=0) = 0. (This can also be understood as: Since

capacitor is initially discharged, capacitor voltage (V) at t = 0 is zero)
Substituting initial conditions in Eq. (4.7)
Vo=Ve+Vy = V=04V, = Vy=0+[R

So, == (4.10)

Substituting value of [ in Eq. (4.9),

t t

i=2e RC = =L,

R
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Here, RC is called time constant of an RC (Unit- second) circuit and denoted as 7. It is defined as time
taken by capacitor voltage to reach its 63% (1 — 1/e) of final value.

t

1 1V, —
= Now, V. =— idt:—J—Oe RC gt
C C’R

t t
= chvo[l—e T] and V, =iR=Vye *

Vob--mmmmmmm oo Im = V0/R

Current / Circuit Current
37% Iy |---

63% Vo Capacitor Voltage

L L
t=0t=RC 2RC 3RC t 0 RC 2RC 3RC
Time Time

Figure 4.46

Discharging
Now, if voltage source is replaced with a short circuit shunt,

Lo cdi ¢t i t T
Current — |idt +iR=0 = J‘—,z— — = In|—|=——= = i=[e R =]
C 7 ¢ o RC 1, RC
_! _!
Resitor Voltage: Vi, =iR=Vje ©; Capacitor Voltage: V. =V, =Vje *

4.15.3 DC-transient of RLC Circuit

Now, if both inductor and capacitor are connected in series with a resistance and a voltage source of V,,
as shown in Figure 4.47 and the circuit is switched on by closing § at time, = 0. Let us see, how circuit
current (i), voltage across each resistor (Vy), capacitor (V) and inductor (V;) are going to vary.
Applying KVL in the circuit,
Vo=V, =Ve+ Vg @1y =0 g

. 1 di
Since, V. =—|idt, V, =iRand V, = L—
c C R L dt Vo ;
Equation (4.11) becomes, o Figure 4.47
V, =L+ = [ide +iR (4.12)
dt C

Differentiating the equation both sides,
2. . . 2. .
0=Ld—2’+Rﬂ+i = Lcd—zl+Rcﬂ+i=o
dt g C dt dt
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It is a second order homogeneous differential equation and when solved for i (t);mm
i(t)=Ae™' + Be™' 4.13)
R RY 1 R
where, m; =——+,/| =— | ——= and m, =———
2L 2L LC 2L
RY 1

Values of m; and m, may be real or imaginary depending upon value of (Z) T

RY 1
Case 1: When | — | ——— >0 i.e. m; and m, are real and distinct.

2L LC
Solution Eq. (4.13) becomes: 00 1. 150

RV 1 RV 1 2 /2‘ =0
i [ ot) e (5] Lc]
-7 0.5H
iHh=e 2L | Ae + Be S0V
Figure 4.48

The response is shown in Figure 4.48.
Response is overamped.

RY 1
Case 2: When | — | ——— =0i.e. m; and m, are real and distinct.

2L LC
Solution Eq. (4.13) becomes:

R R

t -1t
i(t)y=Ae 2L + Bte 2L
The response is critically damped.

2
R 1
Case 3: When [Z] “Ic < 0i.e. m; and m, are imaginary and conjugate.

Solution Eq. (4.13) becomes:
RY 1 RV 1
_R, [ (zj ‘Lc} ( (ﬁ] ‘Lc]’
iHh=e 2L | Ae + Be

Here, the solution posses two patterns in the response
e Exponential decreasing
e Periodic because of complex power of e
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Expansion of the solution further with using Euler identity results:

e RY 1 RY 1
() = 2L _ (A — Sah )
i(t)=e (A + B)cos (ZL) IC t |+ j(A—B)cos (2LJ IC t
i(t)y=e “t((A+ B)cos(wt) + j (A — B) cos(wt))
R

Response is periodic with frequency equal to @ rad/s enveloped by eizt .
Response is under damped response is shown in Figure 4.49

i

A \\._ Overdamped

— < Critically damped

.

0 =\ - \/\H“ ———
\/ t

Underdamped

Figure 4.49

C Example 4.16 )

For the circuit shown in Figure 4.50, the switch ‘S’ is at position ‘1’ and the steady-state condition is
reached. The switch is moved to a position ‘2’ at ¢ = 0. Find the current i(7) in both the cases, i.e., with
the switch at positions 1 and 2. [AU, 2011] ©Ce@@ 100 10 Q

Solution Case 1: When the switch is in the position 1 and

: di sor 10V t=0 Vv § 10mH
steady state is not reached, 50 = 0.55 +25 =Ce 7" +2 N l i l
Current i passes through the inductor and must be zero at Figure 4.50
t=0.
= C==2atr=0 . i==2"%2=21-¢""A

Case 2: When the switch is in the position 1, steady state is reached [inductor acts as short-circuit].
=50 + 25i = 0 (steady-state) = i = 2A
Case 3: When the switch is moved to the position 2,

0=05% 415 = i=Cc™
di
Atr=0,  i(0)=i(07)=2A (Case 1)
=i=C=2atr=0
i=2¢""A
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C Example 4.17 )

For the network shown in Figure 4.51, the switch £ is closed at ¢ = 0, with the capacitor uncharged.

2. .
Find the values of i, 0 4% at 1= 0+, [PU, 2012] C®®
dr?’ dt
Solution When the switch is closed; KVL in the loop 1 kQ
R

1
Vo =— |idt +i. 100 V.
C

Differentiating the equation both sides, Figure 4.51

. . i . 1 . t
0=L+Rﬂ:> ai__ i:lni =—L:>i=10e ke
C dt i yRC R

1y
Attr=0,i=V/R=100/1000=0.1 A

t i
s0, i=Iye RC = i=0.l¢ 00!

di _d| - Iy, —
Now,—l:—[IOeRC]:—R—OeRC;

dr dt C
j I I .
ﬂ) Lot j00 A
dt)_, RC RC 1000 x107°
2; I —= I el
Similarly, d—zl:i — 9 ¢ RC |= —02e RC.
dt© dt| RC (RC)
%i I 1
d—; =—0 s —— 0 —=10°A /s’
d* ), (RC) 10° x 10

( Example 4.18 )

Solve for i and V as functions of time in the circuit shown in Figure 4.52, when the switch is closed

at time ¢ = 0. [AU, 2012] ocee
Solution Step 1: Find /,: For # < 0; switch S is open and circuit was 100 100

in steady state. Since at steady state inductor acts as short-circuit with AI_—E'_l_C'i
DC current. So circuit current at £ < 0; i = 10/(10 + 10) = 0.5 A; 10V 14(0) i2(0) l
Step 2: Switch is closed at 1 =0,s0 [, =i(t<0)=0.5A

Applying KVL in loop-2 after S is closed; Inductor —Resistor
Pair (10 Ohm and 10 mH) is short circuited.

10 -
10 x10 — l- — O.SE_IOOOt

Figure 4.52

0=(10x 10‘3)%“01' =i=1Ie
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V is the voltage across inductor, V = L% =10x107° di(O.S 710007y = _ 5710007 )¢
t 1

C Example 4.19 )

The circuit shown in Figure 4.53 consists of resistance, inductance, and capacitance in series with
100 V dc, when the switch is closed at # = 0. Find the current transient. 000
[AU, 2013; BPUT, 2008]

Solution Step 1: Apply KVL and find the current S 20Q

expression: ?< W
R L3 005H

| G2

Att=0, Applying KVL,

di 1 C == 20pF
100=0.5 + ———[iar+20i T
dt  20x10" .
Figure 4.53
Differentiating both sides of equation-
B .
d—zl+ 4004 1105 =0
dt dt

(D> +400 D +10%i =0
D,, D, =-200£;979.8
Therefore, the current,
i=e™ +[C, cos Kyt + C,sin Kyt] = e 2*[C, cos 979.81 + C,sin 979.81] A
Step 2: Apply initial condition and find value of constants in solution.
At t = 0, the current flowing through the circuit is zero.
i=0=(1)[Cicos 0+ Cysin0]; C;=0 .. i=e"""Csin979.81A
Differentiating, we have
dildt = Cy [¢**” 979.8 cos 979.87 + ¢>*" (=200) sin 979.87] dr
At t = 0, the voltage across the inductor is 100 V; L% =100
t
di di
LT =100 = <~ =2000
dt dt
C, 979.8 cos 0 = 2000; C, = 2000/979.8 = 2.04
The current equation is: i = e 20 [2.04 sin 979.8¢7] A
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4.15.4 Sinusoidal Response of RC

A resistance (R) and a capacitor (C) are excited by a sinusoidal voltage source at t = 0 as shown in
Figure 4.54. To determine the circuit current,
We apply KVL in the circuit of single loop:

Ve=Ve+ Vp (4.14)

1
Since, Ve=7 fidt. v, =iR and V, =V, sin(o + o)

Equation (4.14) becomes, % idt +iR=V, sin(wt+ o).

It is a first order homogeneous equation whose response is given as sum of natural response and

forced response.
t

I. Natural/Transient response: %Jidt +iR=0 = i=Xe RC (4.15)
II. Forced/Steady state response:

% idt +iR=V, sin(wt + o) = RC% +i=wC YV, sin(wt + ) (4.16)

i=Ysin(wt + ) + Z cos(wt + o) 4.17)

di .
d—; =Ywcos(wt + ) — Z wsin(wt + )
Similar analysis to the RL circuit yields,

Vi 1
i= g sin(w? + o + ¢), where ¢ = tan™" (—)

= {ae]

Complete solution will be the sum of these two currents,

t VO

i=Xe RC 4
1 2
[R2 + (j ]
oC

To find X, we apply initial condition, at r =0, [ = 0.

sin(wt + o +¢)

v,
i(0)=Xe’ + 0 sin0+a+¢)=0; X =
2
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v, — v,
i= 0 sin(er — g)e k€' |+ 0 sin(@r + o + )
2 2
R2 + L R2 + L
oC oC
i Transient response - i

Steady-state response

4.15.5 Sinusoidal Response of RLC

For a series RLC circuit with sinusoidal voltage source, KVL equation will be
. di 1. .
Vysin(wt + ) = L— + — |idt + iR
d C

Differentiating the equation both sides,

R=10Q
2. . .
Vywcos (cot+oc)=Ld—21+ R£+i e L=0.1H
da C =10 sin 100t
d’i di Figure 4.54
= LC—5+ RC—+i=V,wcos(wt + )
dt dt
I. Its Transient response (Complementary Function) is found by equating source voltage to zero,
2. .
or LCd—zl + RCd—l +i=0, Solution as per Eq. (4.12) and (4.13) is: i(t) = Ae™" + Be™'
dt t
IL.

Now, find its steady state response, i.e. find its particular solution
d’i i

LC—+ RC—+i=Vywcos(wt+ o 4.18

dr? dt o cos( ) (413)

Assuming j = Esin(@t + &) + D cos(wt + o)

d—l = Ew cos(wt + o) — D wsin(wt + o) and
t

i

P - Eo’ sin(wt + o) — D o’ cos(wt + o)
t

Substituting these values in Eq. (4.18) and finding out values of E, D results: (As done previously
for RL circuit)

o

sin(of + o — @), where ¢ = tan™' Ll =tan”! (gj
2
[Rz or-ac) ] (o0 2e)
0]

1=
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. VO . _l R
i=—sin(wt + ¢ — @), where p =tan™ | —
o -1 g = )

Now, depending upon values of m, and m, in C.F. (Transient response); response can be classified in
three categories (This is similar to the RLC response with a DC source discussed earlier)

2
R 1
Case I: When (Z) “Ic > 01i.e. m; and m, are real and distinct. (Response is underdamped)

sf [
e

RY 1
-, )
i(H=e 2L + Be

. VO . -1 R
+i=—-sin(wf + ot — ¢), where¢p =tan™ | —
~ ( 9) o (Xj

2
R 1
Case II: When (Z) = Ic i.e.m; and m, equal. (Response is critically damped)

N R
i(ty=Ae 2L + Bte 2L + 70 sin(@t + o — ¢), where¢ = tan™" (}j

2
R 1 . . . .
CaseIIl: When (ZJ 7 <0i.e. m; and m, are imaginary conjugates. (Response is underdamped)

i(t)=e “t((A + B)cos(wt) + j(A — B) cos(wt)) + %sin((ot + o — ¢), where ¢ = tan™! (;)

C Example 4.20 )

Obtain the current at 7 > 0, if ac voltage V is applied when the 2 k 100 Q
switch k is moved to 2 from 1 at # = 0. Assume a steady-state
current of 1A in LR circuit when switch was at position 1
(Figure 4.55). [RTU, 2011] cee@

V=100 1 0.1H
sin 314 t

Figure 4.55
Solution At the position 1 of the switch k, the steady-state

current in the circuit is 1 A, i.e., I (07) = 1 A. If the switch is moved to the position 2 at ¢ = 0, the ac
voltage appears

i(0)=i(0N=1A,Z=R+X;=100 + j2r x 50 x 0.1 = 104.8 £ 17.47°
Step 1: Apply KVL in the loop:

0.1§+ 100i =100 sin 314 ¢ ;
t
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Step 2: Find transient and steady state solutions:
Solution of the equations will be: Transient response: ic = ce 1000 Steady state response:
100
ip=Z= sin(314t —17.47°)
Z 1048
i=ic+ip = ce '+ 0.954 sin (3141 — 0.304)
Step 3: Apply initial condition and find exact current:
Buti(0")=1A .. 1=c+0.945sin (-0.304)=c-028 =c=1+0.28=1.28

i=1.28¢71% 1 0.945 sin (3147 — 0.304)

C Example 4.21 )

An RC series circuit is excited by a sinusoidal source e(f) = 1000 sin 100¢ volts, by closing the
switch at = 0. Take R = 10 Q and C = 10 pF. Determine the current i(f) flowing through the RC
circuit. cee

Solution Given: R = 10 Ohm, C = 10 pF and @ = 100 rad/s.V,= 1000 V
Step 1: KVL Equation in the loop:

% idt +iR=V, sin(wf + )

¢ 1

. Lo . — - -6 —10*
I. Natural/Transient response: Ej.ldt—i-zR:O = i, = Xe RC = Xe 10X10X107 = =107

II. Forced/Steady state response: é idt +iR=V, sin(wt) = RC % +i=wC V, sin(ot)
t

Step 2: Find steady state and transient response:

1
= sin(@f + ¢), wherep =tan™' | ——
o1 shmgmi( 1)

1
10x100x10x107°

i = sin[lOOt +tan”! [
2

a1
100 x 10 x 10~

l:lss+ltr

JJ = 1sin(100z¢ +1.56)
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Step 3: Apply initial condition to find outvalue of X in X in i,
Since i(t=0)=0;i(0)=17_,(0)+i (0)=0

xe10' 1 sin(100(0) +1.56)=0 = X =1sin(1.56)=1A

.1 -10% ]
i=1le + 1 sin (1007 + 1.56) A

C Example 4.22 )

In the network shown in Figure 4.56, the switch K is closed at
t = 0 with zero capacitor voltage and zero inductor current. +
Solve for (a) v; and v, at £ = 0, (b) v, and v, at t = o, and V_C
@ A @B [JNTU, 2012] Ce®
dt dt
Solution Before the switch is closed, no current flows through the circuit so R
Vi,=0and V, =0 5
When the switch is closed, and ¢ = 07, the circuit will be as follows. L \41
— o . _ . . Vi C i
L = open circuit C = short circuit Ro3 V),
SO,V1=V2:OVatt=O+ Y-
(1) Att=0 (Figure 4.57 (a)) Figure 4.57 (a)
Att=0+V,=0; V,=0 o
av, av. 5
So—L=0, —2=0 att=0, o= !
dt dt VT Loz )
(i) Atz = oo, there is nothing but steady state. Circuit will be S
C = open circuit L = short circuit (Figure 4.57 (b))
So, V; =0 V; V, = (R,V)/(R, + R,) Figure 4.57 (b)

C Example 4.23 )

An RL series circuit is excited by a sinusoidal source e(f) = 10 sin 100¢ volts, by closing the
switch at r = 0. Take R = 10 Q and L = 0.1 H. Determine the current i(f) flowing through the RL
circuit. [AU, 2014] Ce@®

Solution
~10(100/S* +100%) (100)10 100°

1(s) =2 2 ) 2
0.15+10 (S°+1007)(0.15+10) (S° +100°)(S +100)
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By partial fractions.

I(5)="= 2 - 22 r Tt
($7+100°)(S +100) S°+100°~ S+100
P 50 1 1

A =
2 §2+100*  S?+100> 2 S+100

1 1 1
I(t) = — — cos 100z + —sin 1007 + —e """
2 2 )

POINTS TO REMEMBER

The resultant of two or more quantities varying sinusoidally at the same frequency is another sinusoidal quantity
of same frequency.

Jj is defined as an operator which turns a phasor by 90° counter-clockwise without changing the magnitude of
phasor and j2 =-1.

Peak factor of the sine wave is 1.414
For the sine wave, the form factoris 1.11

In parallel circuits the phase angles must be considered in calculations.

The voltage current relationship is given by V = I./R? + (wL)? in a series RL circuit.

, 2
The voltage current relationship is given by vV =71, |R* + (L) in a series RC circuit.
Q)
1V
The voltage current relationship is given by vV =1, |R* + (wL - —j in a series RLC circuit.
oC

The total current is the phasor summation of all the branch currents in a parallel circuit.

An inductor acts as a short circuit to DC voltage or current at steady state.

A capacitor acts as an open circuit to DC voltage or current at steady state.

A capacitive reactance refers to a negative reactance while an inductive reactance refers to a positive reactance.

While solving complex numbers multiplication and division are done in polar form while addition and subtraction
are done in rectangular form.

The power indicated by the product of the applied voltage and the total current is known as apparent power S and
measured in volt-ampere.

Power that is returned to the source by the reactive components in the circuit is called reactive power Q and is
measured in VAR.

Power that actually used in the circuit (dissipated in resistance) is true or active power P and is measured in watts
or kW.
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15" Active (Real) Power = Voltage magnitude x Current magnitude x cos 6

S=4P*+0?
15" The power factor of an alternating-current device or circuit or electric power system is defined as the ratio of real

or true power to the apparent power (VA) and is between O to 1.

i=" In a single-phase circuit the power factor is also a measure of the phase angle - between the phase voltage (V)
and phase current I,

1= Mesh analysis is based on KVL whereas nodal analysis is based on KCL.

1=~ These methods are not useful for complex networks with too many unknown variables.

15" Superposition theorem is not applicable to networks containing only dependent sources.

15" Superposition theorem is not applicable for calculation of power.

1=~ Superposition theorem is not applicable to networks containing unilateral and non-linear elements.
15" Thevenin theorem is not applicable for networks containing unilateral, non-linear elements.

15" Thevenin theorem is not applicable for networks containing magnetic coupling between the load and any other
circuit element.

1" [f internal impedances of sources are not given then voltage sources are replaced by short circuit and current
sources by open circuit for calculating Thevenin equivalent impedance.

=" Norton’s theorem is the dual of Thevenin’s theorem.

15" The Thevenin equivalent voltage source can be transformed into an equivalent current source and vice versa.

15" The Norton equivalent impedance is the same as Thevenin equivalent impedance.

15" Maximum power will be transferred from a network to load if the load impedance is the complex conjugate of
the Thevenin equivalent impedance of the network.

1= When any network delivers maximum power to the load, then corresponding efficiency of the network will be
50%.

1=~ The condition for maximum power to the load is not same as the condition for maximum power delivered by the
source.

=" Reciprocity theorem allows interchange of position of excitation and response in a network.
I~ Reciprocity theorem is not applicable for networks containing multiple energy sources.

=" Reciprocity theorem is not applicable for networks containing dependent sources.

PRACTICE PROBLEMS

1. A circuit having a resistance of 20 Q OO @ 2. Two coils of 5 Q and 10 Q and inductances @ @ @

and inductance of 0.07 H is connected
in parallel with a series combination of
50 Q resistance and 60 pF capacitance.
Calculate the total current, when the
parallel combination is connected across
230V, 50Hz supply.

0.04 H and 0.05 H respectively are
connecting in parallel across a200 V, 50 Hz
supply. Calculate: (i) Conductance,
susceptance and admittance of each coil.
(i1) Total current drawn by the circuit and
its power factor. (iii) Power absorbed by
the circuit.
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3. In the network shown determine V, and O @ @
V.

By 3Qy, BO

10 £0° V ¢

Figure 4.58

4. Find the current / in the network.

(X X}
4Q j3Q —H45Q 5
— +
20 ~#-30° V

+
13 £25°V (= 3 £50°A

Figure 4.59

5. Obtain Thevenin’s equivalent network for O @ @
the shown network.

20 £0° v@)

Figure 4.60

6. Determine the load current /; by using O @ @
Norton’s theorem.

BQ 4 H4Q

00 [
I
10 20°v(~)} 50 1 5.290°V
B
Figure 4.61

7. Find the impedance Z; so that maximum @ @ @
power can be transferred to it in the shown
network. Find maximum power.

3Q 3Q
\ VWW»
5£0°V BQ T—j3 Q Z

Figure 4.62

8. Verify Reciprocity theorem for the given O @ @
network.

4Q

W
5Q 814 Q J——j8$2

+ 1
10 £0°V 2Q T

Figure 4.63

9. Find the current in 12 € resistor using
Millman’s theorem.

1
1 2 3 12
+ o+ + Ohm

5V= =4V 9V=
B T

Figure 4.64

10. For the circuit shown below, if the current
source is to be substituted with a resistance
of 1 Q and a voltage source, find the value
of voltage source.

~—4\/—

2 Ohm
10V

Figure 4.65

11. If the resistance 6 Q is changed by 15%.
Find the change in current in 2 € resistance
using compensation theorem.

2Q 4Q
+
1V = 3Q 6 Q
Figure 4.66

12. For the circuit shown below, find output
voltage at = 5" second.

0.1 uF
v, o i} °
100V V,W 1kQ TVO

[ o
5 sec
Figure 4.67
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13. For a series RLC circuit with R = 2 Ohm, circuit current expression if current through
L =2.5H, C = 2F and V = 50V, find the the circuit for t <0 was 5 A.
frequency of oscillation if circuit is 15. For an RL (with R = 10 Ohm, L = 100 mH)
underdamped. circuit excited with a 50 Hz AC source, it
14. A series RL (with R = 10 Ohm, L = 100 is desired to have zero transient current.
mH) circuit is connected to a DC voltage What should be the time delay after zero
source of 100 V at time ¢t = 0. Find the crossing of the voltage waveform?
MULTIPLE CHOICE QUESTIONS

1. For a RC circuit, with R =10 Ohm and C = 0.1 F time constant will be: ooe
(a) 1 second (b) 10 second (¢) 0.1 second (d) 2 second

2. A series RC circuit with R =10 Ohm and C = 0.1 is connected to a DC voltage source of 20 V. Currentin O @ @
the circuit at the moment just after the circuit is completed is:
(a 2A (b) 200 A (c) OA (d 20A

3. For a critically damped series RLC circuit with R =2 Ohm and L = 1 H, value of C will be: 000
(a) 0.5F (b) 2F (¢) 1F9 (d) 4F

4. For an RL (R = 10 Ohm, L = V3 H) circuit excited with AC source of 10 rad/s; transient current will be @ @ @
zero for delay angle equal to:
(a) 45 degree (b) 30 degree (c) 60 degree (d) O degree

5. Read following statements regarding DC transient: o X ]

I. Time constant of R-L circuit is L/R.
II. Inductor acts as open circuit at # = 0 on closing the switch if its initial current is zero.

III. Capacitor acts as open circuit at # = 0 on closing the switch if its initial current is zero.
IV. With DC supply to an RLC circuit, circuit cannot have a sinusoidal current.
Which one of above is correct?
(a) Tonly (b) LI (¢) I,ITand I (d Al

6. In balanced bridge, if the positions of detector and source are interchanged, the bridge will still remain O O @

10.

balanced. This can be explained from which theorem
(a) Reciprocity theorem (b) Thevinin’s theorem
(¢) Norton’s theorem (d) Compensation theorem

. If all the elements in a particular network are linear, then the superposition theorem would hold, when the O O @

excitation is
(a) DC only (b) AC only (c) Either AC or DC (d) An Impulse

. Inaseries R, L circuit, voltage across resistor and inductor are 3 V and 4 V respectively, then what is the OO @

applied voltage?

(a) 7V (b) 5V (c) 4V (d) 3V
. Form factor is equal to Peak factor in case of (e X )
(a) Square wave (b) Triangle wave (c) Saw tooth wave (d) All of the above

In RLC series circuit, if the voltage across capacitor is greater than voltage across inductor, then power O O @
factor of the network is
(a) lagging (b) leading (c) unity (d) zero
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ANSWERS TO MULTIPLE CHOICE QUESTIONS

1. (a) 2. (a) 3. (c) 4. (b) 5. (b)
6. (a) 7.(c) 8. (b) 9. (a) 10. (b)



Resonance

CHAPTER OUTLINE

1 Exploration of frequency response of RLC i Determination of half power frequency,
series and parallel circuits/Variation of band width
magnitude and phase angle of resonant r=  Determination of quality factor for each type
circuit impedance with frequency of resonance

= Evaluation of resonant frequency for series
and parallel resonance

5.1 || INTRODUCTION

Resonance is an important phenomenon in electric circuits, which occurs when two energy storing
elements viz. capacitor and inductor are present in an AC circuit. At a certain frequency of power supply
i.e. resonant frequency, energy stored in capacitor is supplied by inductor and vice versa. Hence, the
circuit draws power, if any, from the source at unity power factor.

5.2 || SERIES RESONANCE

In series RLC circuit, resonance is a condition at which 1. Define resonance and write its properties
capacitive reactance and inductive reactance are equal in of series RLC circuit. [UNTU, 2015]
magnitude. Voltage across inductor and capacitor are equal 2. Discuss resonance in R-L-C series circuit.

in magnitude but 180° phase shifts and cancel out each [GTU, 2009]
other (Figure 5.1). ;
At resonance, |X,| = |X| i.e. 2zfL = 1/2xfC _VSC_‘LTV v,
c
This yields resonant frequency, f, =1/ 27 LC e <> . TVL I Ve
~ rR=Vs
Input impedance of circuit at resonance, Z=R +j (X; — X)) =R R TV
R YV,

Figure 5.1
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( Example 5.1 )

For a series RLC circuit, if voltage measured across induction and capacitor are equal in magnitude,
what will be the power factor of circuit? ocoe

Solution Here, |V,|=|V | = |IX,|=|1X/|.
Since it is a series RLC circuit, so |X;| = [X| = Z=R

Which means circuit is at resonance and power factor is unity.

( Example5.2 )

If phase plane scope is connected to observe Vg and V... Discuss the shape of the curve in scope
at resonance. cee

Solution Assuming, Vg, = V=V sin or.
RV
JR +(X, - X )

sin(a)t — tan

-1 (XL B Xc)
R

Voltage across resistance will be V, = IR =

And at resonance, X; — X-=0, so V= Vsin 0t = Vs
So, if V is presented on Y axis and V at X axis of the scope, than W = 3
is a straight line. x Vs

=1 or Vy = Vg which

( Example 5.3 )

A series RLC circuit has the following parameters: R = 15 Q, L = 2 H, C = 100 uf. Calculate the
resonant frequency. Under resonant condition, calculate the current, power and voltage drops across
various elements if the applied voltage is 100 V. [JNTU, 2012] Ce®

Solution

(a) Resonant frequency, f, =1/2n1JLC =1/2m42 x100 X 10 =11.25Hz

At resonance, circuit impedance, Z = R = 15Q
(b) Circuit current, / = V/Z = V/R = 100/15 = 6.67 Amp.
(c) Power dissipated, P = 'R = 6.67* x 15 = 666.67 W
(d) Voltage across resistance, Vp = IR = 6.67 x 15=100 V
(e) Voltage across inductor, V; =jIX, =jI2rfL) = j6.67 x 2w x 11.25 x 2) =j943 V

(f) Voltage across capacitor, V= —jIX-=—jl(1/27nfC) = —j6.67 x (1/(2w x 11.25 x 100 x 10’6))
=—j943 V

Note: Difficulty Level — O O ® — Easy; O @ ® — Medium; ® ® ® — Difficult
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5.3

OF A SERIES RESONANT CIRCUIT

1. Draw the variation of circuit parameters
5.3.1 Variations of Individual Element’s with theq“ency in a series reSO”aR%e 01
. circuit. L
Impedance with Frequency [ ]

H IMPEDANCE AND PHASE ANGLE

(a) Resistance: Ideally constant for all frequencies.
(b) Inductive Reactance: jX; = jI(2nfL) varies linearly with frequency.
(c) Capacitive Reactance: —jIX - = —jI(1/27f C) inversely proportional to frequency.

5.3.2 Impedance of Series RLC Circuit

Z=R +(X, - X.)’

Zis infinite for both f = 0 and f = < and finds its minimum value (Z = R) at f = f,, i.e. at resonance, where
X; = X (Figure 5.2(a)).

5.3.3 Phase Angle of Series RLC Circuit Impedance
tang = (X, — X-)/R
@ is zero at resonance, negative (/ leads V) for f < f; and positive (I lags V) for f'> f, (Figure 5.2(b)).

o
90 (I'lags Vi) Jusccaasmmanas s

0° # f

X, > Xe
Capacitive:! Inductive:
Ileads Vs ' Ilags Vs

Figure 5.2 Variation of magnitude and phase angle of input impedance for series RLC

( Example 5.4 )

For the circuit shown in Figure 5.3, determine the impedance at 10Q 01H 10uF
——AM——0———]
resonant frequency, 10 Hz above resonant frequency and 10 Hz i
below resonant frequency. ocoe r\\//§
\Y)
Solution Resonant frequency, Figure 5.3

f,=127JLC =127m(0.1x10x107°) =159.2 Hz
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At 10 Hz below f, = 159.2 — 10 = 149.2 Hz
At 10 Hz above f; = 159.2 + 10 = 169.2 Hz

2
For series RLC circuit, Z =, [R* +| 27 fL — L
21 fC

2
1
z =, [10> +| 27 x 149.2 x 0.1 — =16.28Q
=12 \/ { 27 x149.2 x10x 107 )
1 2
z =,[10° +| 27 x 169.2 X 0.1 — =15.81Q
=102 [ 27 x169.2 X 10 x 10‘6j

VOLTAGE AND CURRENT IN

54 | Semies nic oour

. . 1. Draw frequency response curve for series
5.4.1 \Variation of Current RLC circuit with equations.  [AU, 2013]

2. Explain the variation of current with

Imax = VI R; """"" ! frequency in a RLC series circuit and also
i the resonance condition. [AU, 2013]
Lleads Vo> Ilags V

! f=f0 f
Figure 5.4
X, - X
149=K= 4 £ —tan‘lM
VA R

2
\/ (2 27rf(2]
For:

(@) f=0andoe,Z=0.Sol=0.

(b) Atf=f,, Zis minimum and equaltoR. So /=1, = VIR.
(c) Forf<fy X; <X, so current leads supply voltage.

(d) Forf<f, X; > X, so current lags supply voltage.

5.4.2 Variation of Voltages
1. Voltage Across Resistance

Voltage across resistance is directly proportional to current (even when frequency varies). It follows
same pattern/characteristics of current as shown in Figure 5.4.
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2. Voltage Across Inductor

(a) Atf=0,V,=0.
(b) Atf=,V, =Vi.e. supply voltage.

(¢) Maximum value of V; occurs when di

dw

higher than resonant frequency.

3. Voltage Across Capacitor

(a) Atf=0, V.= Vi.e. supply voltage.
(b) Atf=oo, V.=0.

R

(¢) Maximum value of Voccurs when di =0 which yields, @ = . @¢1s lower than

resonant frequency.

(' Example 5.5 )

For RLC circuit with R = 10 Ohm, L = 0.1 H and C = 50 microfarad, find out the frequency at which
voltage is: (a) maximum across capacitor (b) Maximum across inductor. cee

Solution Step 1: Find out the frequency for maximum voltage:
(a) Voltage across capacitor is maximum at

R2 2
fo == - L=LJ 1 0 o76Hz

"2z VLC 2L T 27\ 0.1x50x10°  2x0.1
(b) Voltage across inductor is maximum at
1 1 [ 1

2% 01x50x10° [, 107 x50x10°
2x0.1

=71.08Hz

_RC "
2L
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( Example 5.6 )

For RLC circuit with R = 10 Ohm, L = 0.1 H and C = 10 micro-farad, find out the frequency at which
voltage is maximum across the capacitor. What is maximum value (rms) of voltage across capacitor?

Also, find out voltage across inductor at that frequency. Supply voltage is 100V. cee
[AU, 2013]

Solution Step 1: Find out the frequency for maximum voltage:
Voltage across capacitor is maximum at

. \/1 R 1 10° 1000 sad)
SN AT, S - = rad/sec.
““\NrLc 2L 0.1x10x10° 2x0.1

Step 2: Find out the impedance at that frequency:

2
1
Impedance at 1000 rad/sec = \/ R* + (a)L - —C)
Q]

2
1
= ,[10> +| 1000 x 0.1 - =| =100hm
1000 10 x 107"

Step 3: Calculate current and hence voltage:
1=V/Z=100/10 = 10 Amp.

Voltage across capacitor = x X, = 10 x ! ¢ = 1000V
1000 x 10 x 10~

Voltage across resistance = /R = 10 x 10 = 100 V
Since Vi = Vi, applying KVL in the loop results, V; = -V .= -1000V.

5.5 || BANDWIDTH OF AN RLC CIRCUIT

Bandwidth (BW) of a circuit is the frequency span for 1. Define bandwidth and quality factor and

which the response of the circuit is higher than 1/ \/E times eIMBIE LT, Eh A
(70.7 %) of the maximum value (Figure 5.5). Tor Vout

Frequency at which response is exactly 1 / \/5 times of the maximum
value is called cut-off frequency.

For a series RLC circuit, current is maximum at resonant frequency
with two cut-off frequencies. Since power at cut-off frequencies is half
of the maximum power (or power at resonance), they are also called half
power frequencies. Figure 5.5

Lower cut-off frequency f;: lower than resonance frequency, circuit impedance is capacitive in
nature i.e. / leads V.

Higher cut-off frequency f,: higher than resonance frequency, circuit impedance is inductive in
nature i.e. [ lags V.
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BW=f,-f Hz
Derivation of bandwidth in terms of circuit parameters:
. Vv I 1%
Magnitude of current at cut-off frequencies = L
Zcut—off \/5 \/ER
SO’ Zcut—off = \/ER
= 2R*=R*+QnfL-1/21fC)*

Solving this expression gives two different values of frequencies (corresponding to lower and higher
cut-off frequencies).

h=f - Land hL=Ff -|-i where f, is resonant frequency.
4L 4L

R
BW=f - f=—— Hz
hh 4L

( Example 5.7 )

Calculate the half-power frequencies of a series resonant circuit where the resonance frequency is
250 x 10° Hz and the bandwidth is 150 kHz. [BPUT, 2007]C @ ®

Solution Step 1: Find out first relation between cut-off frequencies from bandwidth:
Let f; and f, be the lower and higher cut-off frequencies respectively.

Now, Bandwidth = f, — f; = 150 kHz (5.1)
Step 2: Find out second relation between cut-off frequencies from resonance frequency:
Also, fifs =17 = (250)* = 62500 (kHz)?
(h+f)° = (h—f) +4if
= > +f1=522.0153 kHz (5.2)

Step 3: Solving relations: (5.1) and (5.2)
f> =336 kHz and f; = 186 kHz

5.6 || THE QUALITY FACTOR (&) AND ITS EFFECT ON BANDWIDTH

Because of coil resistance, a fraction of energy supplied to an inductor is dissipated in form of heat and
hence, stored energy is less than the energy supplied by the source. Same is true for a capacitor.

Quality factor is a parameter, which represents how efficiently an inductor or a capacitor, can store
the energy.

Quality factor (Q) = 27 maximum energy stored

(5.3)

energy dissipated per cycle

(a) For an inductor: Q = ﬁ — a)_L
R R
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X 1
b) For a capacitor: Q =—%=——
®) P Q R CR
= . (5.4)
Bandwidth

( Example 5.8 )

An RLC series circuit consists of R = 16 Q, L =5 mH and C = 2 pF. Calculate the quality factor at
resonance, bandwidth. If it is desired to increase the bandwidth by 20% keeping the central frequency
fixed, find out circuit current, quality factor. [AU,2014] C@O®

Solution Giventhat, R=16Q,L=5mHand C=2uF

Resonant frequency, fy =1/27LC = 1/(27,:\/5 X107 x2x107° ) =1591.5 Hz

Quality factor, Q = % =27(1591.5)(5 x 107 )/16 = 3.125

Bandwidth = g =1591.5/3.125 = 509.28 Hz

Now, it is desired to increase the band width by 20% with constant f:
BW’

_90 0= BW

BW QO BW’

0 =L>< 3.125=2.604
1.2

Since, selectivity or bandwidth is controlled by resistance only, the new value of resistance,
R’=12R
So new current, [”=1/1.2 = 83.33% of 1.

5.7 || PARALLEL RESONANCE

A circuit having a real inductor and capacitor connected in 1. Explain the phenomena of resonance in
% paralle] is at resonance if imaginary AC parallel circuit. Derive the mathematical

100z £ZR parts of their currents (in phase or expression of resonant frequency.
. , ; ) [GTU, 2011]
j10Q ;__l_—jz Q  representation) are equal in
magnitude (Figure 5.6). This results
Figure 5.6 in net current or source current in phase with source voltage and circuit which
does not draw any reactive power from source.

5.7.1 Determination of Resonant Frequency, f, Re  Xe

In the circuit shown in Figure 5.7, non-ideal inductor and capacitor are realised

by addition of series resistances with an ideal inductor or a capacitor. \ R X

Figure 5.7
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Since at resonance, circuit does not draw reactive power, imaginary part of input admittance
(susceptance) is equal to zero.

1 1
ie. I,N._, =1, : + =0 (5.5
|f—f0 R, + j2nf,L R+ 1
j2nf,C
Solving it for f, gives,
g Joe Figure 5.8 Phasor diagram:
R2 _ £ Parallel resonance
fo=— _C (56)
"onde [, L '
R: - E

Special Cases

(@ IfR. =0;R-=0. f = , it is equal to the resonant frequency of a series RLC circuit.

1
2rnLC

(b) IfR =Rc. f, =

1
2r\LC

1 [1 R
IfR-=0; fo=——\|—=—"—
© MRe=0:Jo=5 e~
( Example 5.9 )
Calculate the value of R in the circuit shown in Figure 5.9 S —
for resonance. [BPUT, 2007] 00 ® 1002 % Re
Solution Step 1: Calculation of admittance, as we know its imaginary part Hen ; =i

is O at resonance. .
Figure 5.9

1 1
Y= +
10+10; R-2j
_10-10j +R+2j
100+100 R?>+4

Admittance,

Step 2: Equating imaginary part of ¥ = 0.
—-10; 2j
+
100+100 R +4

=0, R =+6 Ohm
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( Example 5.10 )

Find the value of L for which the circuit shown in Figure 5.10 is

resonant at frequency of @, = 1000 rad/s. [PU, 2010] O®® v 5Q % 10 Q
L T —20 Q

Solution Step 1: Writing expression for resonant frequency in terms
of available known and unknown parameters Figure 5.10

, here C = 1/wX - = 1/(1000 x 20) = 50 uF

Frequency of resonance for a parallel RLC circuit, @, =

1000 = ! (Ri _ é)

Putting the value of R and C in the expression of resonant frequency,
Step 2: Equating frequency expression to given frequency:

52 _ _ L
1 50 x107°

J(50 x10°° L) 0L
50 x107°

= (1000)* x 50 x 107® x L? + [(1000)* (50 x 107%)* (10%) + 1] L - 5% x 50 x 10™°
=50L% +[50x 10°x 10° + 1] L -[25x 5% 107°] =0
= 50 L* + 1.005 L—0.00125 = 0
L =1.175 mH (or) — 0.0212 H. Taking positive value, L = 1.175 mH

= 1000 =

RESONANT FREQUENCY FOR

A TANK CIRCUIT

Parallel LC combination is also known as tank circuit. Inits 1. Aninductive coil of resistance R and

simplest form of realisation, it is represented as shown in inductance L is connected in parallel with
Figures 5.11 and 5.12 capacitor of C. Derive an expression for

the resonant frequency. [GTU, 2011]

5.8

Resonant frequency for a tank circuit is determined by
putting R-=0in Eq. (5.6),

1 [1 R

h NI D
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Ry

©

[
|

L
&

X

Figure 5.11 Figure 5.12  Phasor diagram: Tank circuit

(" Example 5.11 )

A coil of 10 Ohm resistance and 5 mH inductance is connected in parallel with a capacitor of
2 microfarad, find the supply frequency at which circuit draws only active power from voltage
source. ocoe

Solution At resonant frequency, power factor is unity and circuit does not draw reactive power
from the source.

2
Resonant frequency for a tank circuit, f; = S I
2r NLC 12
1 1 100
== = =1559.39 Hz
o 27:\/5 x107° x2x10°  25x107°

5.9 || VARIATION OF IMPEDANCE WITH FREQUENCY

For an ideal parallel RLC circuit as shown in Figure 5.13, expression of admittance (Y) is written as:

Y=G—jBL+jBC=%+ja+L+ijmho (5.8)

Source current, Ig= YV

From the above expressions, it can be concluded that:

1. Y is minimum (or Z is maximum) at resonance
frequency, where B, = B.

2. At higher frequencies, /- dominates and hence
overall Z is capacitive in nature.

3. At lower frequencies, I, dominates and hence
overall Zis inductive in nature. Figure 5.13  Source current: Parallel resonance
4. At resonance, both I~ and I; are equal but 180°
phase shifted and hence Z = R.
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C Example 5.12 )

A real capacitor is represented by 10 Ohm resistance in parallel with a 2 microfarad ideal capacitor.
It is connected in parallel with a coil of SmH and negligible resistance; find the supply frequencies at
which circuit impedances are maximum and minimum. cee

Solution Here, circuit impedance is maximum at resonant frequency and minimum i.e. O at f=0

and f= oo
1 1
fo=i,/L == 3 = =1591.55 Hz
2r VLC 27 \[5%x107° x2x10~

5.10 ‘ Q-FACTOR OF PARALLEL

RESONANCE

1. Derive expression for Q-factor of parallel

5.10.1 Cut-off Frequencies for a Parallel (LI [GTU, 2011]
RLC Circuit
For the circuit shown here (Figure 5.14), 1t t %
Z is maximum at resonance and Z,,, =R, so V. =Rl _
At cut-off frequencies, V, =Z_ . I = Vomax =R Is Figure 5.14
V22
R 2
So, Zcut—off = ﬁ or Ycut—off = ? (5.9

Using Eqs (5.8) and (5.9);

2
2 1 1
—=—F*|7—-27fC
R~ R 2r fL

Solving this expression gives two different values of frequencies (corresponding to lower and higher
cut-off frequencies).

PR (;)ZL and = | 1, (;)ZL <10
""" 2| 2RC 2RC LC 2 2x| 2RC 2RC LC (5.10)
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5.10.2 Bandwidth of a Parallel RLC Circuit

Using of Eq. (5.10),
R

BW = Hz
hh= 27RC

5.10.3 Q-Factor

Defined as Eq. (5.3), for a parallel RLC circuit also it can be found using Eq. (5.4).
1

__ L _amlic _plc R ) he
Bandwidth 1 L 2rfL
2nRC

(" Example 5.13 )

A parallel resonant circuit has a coil of 100 mH with a Q-factor of 50. The coil is resonant with a
frequency of 900 kHz. Find (a) value of the capacitor, (b) resistance in series with the coil, (c) circuit
impedance at resonance. [PU, 2012] ce® @

Solution

=900 x10° = C=4.86 x10"*F
@ fo= 2n\/LC 277:V

oL _ 27 x900x10° x 100 x 107
0 50

=11309.73 Q

(b) Q=R =R=

(c) Atresonance, Z=R=11309.73 Q

( Example 5.14 )

A parallel resonant circuit has a bandwidth of 200 Hz and a quality factor of 10. The inductor value
is 100 mH. Find the value of R of this circuit. cee

Solution Bandwidth BW =20 kHz; Q0 =40; R=10kQ; L="?

Q— f " =10x 200 = 2000 Hz

R, _20fQ _ 2w x2000x10

_ = = 1.25x10'Q
2rf.L R 0.1

Q:
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POINTS TO REMEMBER

=" At resonance:
Supply frequency, f = 1/271\/5 .
Input impedance of a RLC circuit is purely resistive which means power factor is unity.
Inductor-Capacitor pair can be replaced by short circuit.
I At resonance (Series RLC):
Impedance is minimum.
For f < fy, Z is capacitive in nature. For f > f, Z is inductive in nature.
IS At resonance:
Ve=Vatf=0,V, =V atf=cand V=V atf=f,
Vbecomes maximum before f; while V; becomes maximum after f;
I leads V before resonance, / lags V after resonance
1= At cut-off frequencies: Current becomes 1 / \/5 times of maximum value, power is halved.

BW = =
h-h=p g B

Increasing the bandwidth will reduce selectivity
15" For a coil: higher the frequency, higher will be the Q-factor.
At resonance, |V,| = |V | = Q |V

Coil made of high resistance will have poor selectivity or higher bandwidth.

e (C‘EJ

Input impedance is purely resistive which means power factor is unity.

=" Supply frequency, f, =

Imaginary components of /5; and /- become equal.
=" At resonant frequency,
7 is maximum.
Parallel LC branches can be replaced with an open circuit.
=" For a coil, if connected in parallel with resistance, higher the frequency, lower will be the Q-factor.
Atresonance, |I,| = |I| = O |14

A capacitor with higher dielectric loss will have a smaller resistance in parallel and hence poor Q-factor.
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1. For a series RLC circuit with R = 10 Ohm,

L =10 mH and supply voltage V =100 V,
if voltage across capacitor at resonance is
1000 V, find out resonant frequency.

. Two inductors of 1000 mH and 500 mH

are connected in series with a resistance
and capacitor of 10 micro farad. If mutual
inductance between inductors is 250 mH
and inductors are connected in series
additive pattern.

. A 1000 V, 50 Hz transmission line

represented as a T-network is having series
impedance of 1 + 3j. Impedance of shunt
branch is -2.5j. If line is open-circuited
at load end i.e. receiving end, find the
receiving end voltage. If receiving end
voltage is required to maintain at 1000 V
by series compensation i.e. by connecting
a series inductance in series with series
branch inductance, find out value of
additional inductance connected.

. For a series RLC circuit with R = 15 Q,

L =2H, C =100 uf, V =150V. Find out:
(a) Half-power frequencies. (b) Capacitive
reactive power (c) Inductive reactive
power.

. With a series RLC circuit having R = 10
kQ, L = ? H, it is intended to design a
band pass filter with bandwidth of 20 kHz
and central frequency 800 kHz. Find out:
(a) Quality factor. (b) Value of inductor.

. For a real tank circuit (A series RL branch
in parallel with C), if R = 20 Ohm and
Q-factor of RL branch = 40, find out
effective input impedance at resonant
frequency?

. An electric circuit has two parallel
branches. Branch X-Y consists of a 10 Q
resistance connected in series with a
capacitor of 50 uF and branch AB has a

ocoe

cee

ooe

10.

11.

5Q resistance connected in series with an
inductor of 1.175 mH. Find out equivalent
impedance of the circuit at resonance.

For the circuit shown below, what find
the value of capacitance such that overall
power factor is unity at 1000 rad/s ?

10Q
Vv 0.2 H

T
Figure 5.15

Twoimpedances Z,=5Qand Z,=5 —jX . Q
are connected in parallel and this
combination is connected in series with
Zy = 6.25 + j1.25 Q. Determine the value
of capacitance in X, to achieve resonance
if supply is 100 V, 50 Hz.

(Civil Services Exam, UPSC-2016)

For acircuithaving R, L and connected C in
parallel, resonant frequency and bandwidth
are 500 Hz and 50 Hz. Find out inductor
and capacitor current at resonance if circuit
is excited with a variable frequency current
source of 50 Amp.

For a magnetically coupled circuit shown
below, find the frequency of supply voltage
for which circuit operates at unity power
factor. Given that: R, =10 Q, L, =0.4 H,
L, =0.25 H, M = 0.25 H. Secondary side
resistance and inductance are 20 € and
5 uF.

M
Ry /7 |
V1 ( f) ZD L1’s .L2 @ k
Figure 5.16

cee

cee
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MULTIPLE CHOICE QUESTIONS

1.

If value of capacitance and inductance are increased to four times with keeping resistance constant fora OO @
series RLC circuit: current at resonance and resonant frequency will become respectively:

(a) Resonant current remains same, resonant frequency becomes one fourth.

(b) Resonant frequency remains same, resonant current becomes one fourth.

(c) Both resonant current and resonant frequency remain same.

(d) Resonant current remains same, resonant frequency is halved.

. For an audio receiver, it is desired to receive signals of frequency band 500 kHz — 600 kHz. What should O @ @

be the value of resistance, if inductance of tuning circuit is 20 mH.
(a) 25.13kQ (b) 12.57kQ (c) 4.00kQ (d) 2.00kQ

. A series RLC circuit is excited with a variable frequency voltage source of 20V. Find voltage across the O @ @

capacitor if resonant frequency is 300Hz and bandwidth is 20Hz.

(a) 10V (b) 20V (¢) 300V (d 133V

. Atresonance, a series and parallel LC circuit can be replaced by respectively: (e X )
(a) Open circuit and Short circuit (b) Short circuit and Open circuit
(c) Short circuit (Both) (d) Open circuit (Both)

. Read following statements regarding resonance in an electric circuit: foX X ]

i. Atresonance, power factor of the circuit is unity.
ii. Impedance for series RLC circuit is minimum.
iii. Impedance for parallel RLC circuit is maximum.
iv. Reactive power becomes equal to active power.

Which one of above is correct?
(a) ionly (b) i,ii (¢) 1i,iiand iii (d) All

ANSWERS TO MULTIPLE CHOICE QUESTIONS

1. (a) 2. (a) 3. (c) 4. (b) 5.(c)



Coupled Circuits

1> Conductively coupled circuit and mutual r=  Conductively coupled equivalent circuit
impedance (series and parallel magnetic circuits)

i Self-inductance and mutual inductance i Analysis of magnetic circuits

1 Dot convention = Magnetic leakage and fringing

1 Coefficient of coupling == Comparison of electric and magnetic

i Series connection of coupled inductors circuits

i Parallel connection of coupled coils s Time domain and frequency domain

= Tuned circuits analysis of network equations

s=  Analysis of coupled circuits = Application of an ideal transformer

6.1 || INTRODUCTION

Two circuits are said to be ‘coupled” when energy transfer takes place from one circuit to the other when
one of the circuits is energised.

The following types of coupling are possible between electrical circuits:

(a) Conductive coupling (e.g. in potential divider circuit)

(b) Inductive (Magnetic) coupling (e.g. in two winding transformer)

(c) Conductive and Inductive coupling (e.g. in auto-transformer)

Transistors and electronic pots are other examples of coupled circuits which are represented as two-
port network.
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CONDUCTIVELY COUPLED CIRCUIT

AND MUTUAL IMPEDANCE

A conductively coupled circuit is electrically connected and 1. What do you understand by conductively

does not involve inductive coupling. A two-port network and inductively coupling? Explain with

is an example of such circuit which consists of an input examples.

port corresponding to input loop circuit and an output port

corresponding to output loop circuit. Impedance, which is common to both the loops, is known as
mutual impedance. The mutual impedance could be resistive, inductive, capacitive or any combination
of these type of impedances.

6.2

6.3 || SELF-INDUCTANCE AND MUTUAL

INDUCTANCE

1. Define mutual inductance. [AU, 2012]

2. Write voltage expressions which relates to
self and mutual inductance.  [AU, 2014]

6.3.1 Self-Inductance

An inductor is a circuit element that stores magnetic field. If
the magnetic field is changing, i.e. if the current is changing,
it will have an induced EMF across it with a magnitude proportional to the rate of change of current:
di
e=AV=V, -V, =—LZ 6.1)
dt
The proportionality constant L is called the inductance of the device. It is a property of the device
(geometry, windings) and does not depend on the current. Inductance is measured in units of ‘henrys’,
where 1 henry = 1 volt-second/ampere.

6.3.2 Mutual Inductance

A mutual inductance is a property associated with two or more coils / inductors which are in close
proximity and the presence of the common magnetic flux which links these coils. A transformer is such
a device whose operation is based on mutual inductance.

When two or more inductors are in close proximity in a medium of constant permittivity, a change
in a common magnetic flux among them with respect to time also induces an additional voltage across
those inductors. The magnitude of this voltage depends upon the mutual inductance between those
inductors and the time rate of change of current in other inductors.

The mutually induced voltage across the coupled inductors can be determined using the following
formula.

di(t)
dt
where v|,(¢) is voltage induced in inductor 1 due to change in current of inductor 2, while v, ,(f) is the

voltage induced in inductor 2 due to change in current of inductor 1.
Mutual Inductance can be explained through the following example.

() =vy (=% M (6.2)
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Consider coil 1 and coil 2 are placed in close proximity. Coil 1 is carrying current /; and has N, turns
while Coil 2 is carrying current /, and has N, turns. Coil 1 and Coil 2 produces magnetic flux ¢, and ¢,
respectively due to associated currents such that:

Magnetic flux produced by Coil 1: O =0, + 0,

Magnetic flux produced by Coil 2: 0= 0y + )5
where ¢, is a portion of magnetic fluxes ¢, and ¢, which links both the coils. The mutual inductance
between two coils can be determined using following formula:

=Nl _ N
1 I,
Voltage expressions for coupled inductors:
Consider the following electrical circuit consists of two coupled inductors with self-inductance L,
and L, and are carrying currents i;(¢) and i,(¢) respectively, are placed
in close proximity in a medium of constant permittivity (Figure 6.1).
The mutual inductance between these inductors is M. The voltages
v,(#) and v,(?) across the inductors can be calculated using the following
formulae:

di (1) di, (1)
t)=L ——2+ M2 volt 6.3
v, (2) ' & volts (6.3)
v, (1) =1L, di, () + MM volts (6.4)

dt dt Figure 6.1

The mutual inductance could be positive or negative between the coils in above formulae depending upon
the physical constructions of the coils and reference directions. To determine the polarity of the mutually
inducted voltage (i.e. the sign to be used for the mutual inductance), the dot convention is used.

( Example 6.1 )

A large research solenoid has a self-inductance of 25H. What induced emf opposes shutting it off
when 100 A of current through it is switched off in 80 ms? cee

Solution Induced emf in solenoid due to self-inductance can be calculated using the following
formula.

E:L£=25><m =31.3kV
At 0.08

C Example 6.2 )

The current in a 2.0-H inductor is decreased linearly from 5.0 A to zero over 10 ms.

(a) What is the average rate at which energy is being extracted from the inductor during this
time?
(b) Is the instantaneous rate constant? ooe

Note: Difficulty Level —> O O @ — Easy; O ® ® — Medium; ® ® ® — Difficult
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Solution
(a) The energy falls from Ui=25J to U f=0in Dt = 10 ms,
So the rate of decrease is dU/dt = -25 J/10 ms = —2.5 kW.

. . dl . . .
(b) The instantaneous power, i.e. L[ — rate of changed of instantaneous energy in an inductor
dt
is not constant as even through rate of decrease of current is constant but current itself is not

constant.

( Example 6.3 )

Two identical coils X and Y of 1000 turns each lie in parallel planes such that 80% of flux produced
by one coil links with the other coil. If a current of 5 A flowing in X produces a flux of 0.5 mWb in
it, find the mutual inductance between X and Y. oY Y

Solution Mutual inductance can be found using the following formula:

M= N2¢12
1)
@,, = The portion of flux produced by Coil 1 which links coil 2 = 0.8 ¢, = 0.4 mWb
N, = Number of turns of Coil 2 = 1000 turns

I, =Current in Coil 1 =5 A
Substituting above values in formula, we get M = 80 mH

C Example 6.4 )

Two identical coils X and Y of 100 turns are perfectly coupled. If a current of 10A flowing in X
produces a flux of S mWb in it, find the mutual inductance between X and Y. ooe

Solution Mutual inductance can be found using the following formula:

oy = Voo _ 100 x5
I 10

=50 mH

6.4 || DOT CONVENTION

Dot convention is utilised to indicate sign for the mutually 1. Whatis dot convention in coupled circuits?
induced voltages across coupled circuits. Circular dot marks Explain. [BPUT, 2007]
and/or special symbols can be utilised for this purpose.

These symbols implicitly represent orientation of the windings around its core of an inductor which
in turn affect the polarity of inducted voltage.



Coupled Circuits & 6.5

Consider following electrical circuit consisting of coupled inductors with self-inductance L, and L,
and a mutual inductance M. It is to be noted that the dots are kept at same terminals of both the inductors
and current is entering the dots from both the inductors. The polarity of mutually induced voltages in
inductors is determined by considering these two aspects only while writing voltage drop equations

(Figure 6.2). M
Sign of M for mutually induced voltage will be determined by iy /\ 2
+ if currents are either entering or leaving in the dots of both the ¢

inductors under consideration
— if current is entering in one dot and is leaving in another dot of
inductors under consideration
Considering above principles, following induced voltage equations can

® — KX—>
&
==
N

[ ] <—N<—>

be written:
di, (1) di, (1) Figure 6.2
v(t)=L ——+ M2
(D=L, dr dr volts
di, (¢ di (¢t
v, (1)=L, 12:)+M LR

The physical interpretation of putting the dots in electrical circuit is to indicate that the dotted
terminals attains similar voltage polarity simultaneously.

( Example 6.5 )

Find the equivalent electrical network of the following magnetic circuit using dot convention
(Figure 6.3). [GTU, 2012] OO®

q7r | b
j’ k= R = 77 | M
—————
Figure 6.3 Figure 6.4

Solution Finding the direction of fluxes produced by both the winding in the core, it is evident that
first winding produces flux in upward direction while the second winding produces flux in downward
direction. This in turn leads to conclusion that at any point both these fluxes are adding to each other.
Therefore, the sign of mutually inducted emf will be positive. This gives following equivalent circuit
(Figure 6.4).



6.6 © Circuits and Networks

6.5 || COEFFICIENT OF COUPLING

The amount of coupling between the inductively coupled 1. What do you understand by coefficient of
coils is expressed in terms of the coefficient of coupling, coupling?
which is defined by the following formula:

M
LiL,

K=

where,
M = mutual inductance between the coils.
L, = self-inductance of the first coil.
L, = self-inductance of the second coil.

Coefficient of coupling is always less than unity and has a maximum value of 1 (or 100%). For the
case in which K = 1, is called perfect coupling, when the entire flux of one coil links the other. The
greater the coefficient of coupling between the two coils, the greater the mutual inductance between
them and vice versa.

It can also be expressed as the fraction of the magnetic flux produced by the current in one coil that
links the other coil. For example, current i(¢) produces total flux ¢, out of which only flux ¢, links with

&

other coil, then the coefficient of coupling between these coils can be calculated by evaluating -,

( Example 6.6 )

Two coupled coils have self-inductances of L, = 100 mH and L, = 400 mH. The coupling coefficient
is 0.8. Find M. If N, is 1000 turns, what is the value N,? cee

Solution Mutual inductance of coupled coil is given by:
M=K,/L L, =0.16 H
Inductance of coil is proportional to square of number of turns present in the coil.

L, Ny N L L
2="252="2=N,=N, |-> = N,=1000 x 2 =2000 turns.
LN N4 L,

( Example 6.7 )

Two inductively coupled coils have self-inductances L; = 50 mH and L, = 200 mH. If the coefficient
of coupling is 0.5, compute the value of mutual inductance between the coils?

[AU, 2011] Ce@ @

Solution Mutual inductance of coupled coil is given by:

M=K,/L L, =0.5,/50x200=0.05H
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SERIES CONNECTION OF COUPLED

INDUCTORS

Inductors can be connected in series with two 1. Find the equivalent inductance for the
configurations—one is series aiding and the other is series and parallel connections of L; and
series opposition. Two inductors with self-inductance are Lp and if their mutual |nductancZ$UM.2 »
connected in both configurations. et 2]

6.6

6.6.1 Series-Aiding Connection

In the following electrical circuit, inductors are connected in series-aiding
connection, wherein the currents in both inductors at any instant of time are in
the same direction relative to like terminals (Figure 6.5).

Because of this, the magnetic fluxes of self-induction and of mutual induction
linking with each element add together. The total inductance in series-aiding
connection is calculated using the following formula:

6.6.2 Series-Opposition Connection

In the case of series-opposition connection, the currents in the two inductors at
any instant of time are in opposite direction relative to like terminals as shown in
following electrical circuit (Figure 6.6).

Because of this, the magnetic fluxes of self-induction and of mutual induction
linking with each element oppose each other. The total inductance in series-
opposition connection is calculated using following formula:

L=L,+L,-2M

Figure 6.6

(" Example 6.8 )

What is the expression for total inductance of the three series-connected coupled coils shown in

Figure 6.7. [BPUT, 2007] coe®
M3
MZ Mas
. T K =
OO0 000 0000
1 Ly Ly L3
Figure 6.7
Solution

Log=(Ly+Mpp+M3)+ Ly + M+ My) + (L + My + My3)
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(' Example 6.9 )

For the three coupled inductors (Figure 6.8), calculate the total inductances. cee
Solution 2H
For Coil I, L;=L~Mp+M;=4H a G
For Coil 2, L,=L,,—M, —M,;=-1H A Mz o Mas o
For Coil 3,  L;=Ly;— M3, — M3 =7H 1 6H 8H 10H
Ik L [l

Total Inductance =Ly =L; + L, + L; = 10 H Figure 6.8

PARALLEL CONNECTION OF

COUPLED COILS

Consider two inductors with self-inductances L, and L, 1. Explain parallel connection of coupled
connected parallel which are mutually coupled with mutual inductors and write an expression for total
inductance M as shown in following electrical circuits. inductances for such configuration?

In Electrical Network-1 (Figure 6.9), the voltage induced

6.7 “

M
due to mutual inductance aids the self-induced voltage in each coil as PN .
per dot convention. The equivalent inductance in this network can be T h 2
calculated using the following formula: v L L
_LL,-M? l

“ L +L,-2M
While Electrical Network-2 (Figure 6.10), the voltage induced due
to mutual inductance opposes the self-induced voltage in each coil as
per dot convention. The equivalent inductance in this network can be
calculated using the following formula:
_ LL -M
“ L +L,+2M Figure 6.10 Electrical Network-2

Figure 6.9 FElectrical Network-1

(" Example 6.10 )

A coil having an inductance of 100 mH is magnetically coupled to another coil having an inductance
of 900 mH. The coefficient of couple between the coils is 0.45. Calculate the equivalent inductance if
the two coils are connected in (a) series opposing, and (b) parallel opposing. [AU, 2014] 0O @

Solution Given that L; = 100 mH L, = 900 mH and K = 0.45
M=K,/L L, =0.45,/100 X 900 =135 mH
Applying formulae for series opposing and parallel opposing connections:
(a) Series opposing Ly,=L+L,-2M=730 mH
;= Ll M*
“L+L,+2M

(b) Parallel opposing =56.51 mH
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C Example 6.11 )
Find equivalent 7" and 7 circuit of the network shown in Figure 6.11. 000
5H

Figure 6.11

Solution Given, L, =15H,L,=20H and M =5 H.
Equivalent T network (Figure 6.12 (a))

M
L L,
14 /\ Iz I4 & >
o
+

o o T —— B0 o

+ + +
[ ] L ]

V4 Ik fi Vo €< V; L Vs,

o
§
[
o
o
o |

Figure 6.12(a)

Inductances for Equivalent 7 network are calculated as below:
L,=L -M=10H L,=L,-M=15H L.=M=5H
Equivalent 7 network (Figure 6.12 (b))

M
: 2
o £ o
+ +
[ ] [ ]
V4 B I Vo € V, Iy i Vo

o |
[
¢
o
o
o

Figure 6.12(b)
Inductances for Equivalent 7 network are calculated as below:

LL,—M? - M?
=2 = -1833H; Ly =M

LA
L,-M L-M

=27.5H; LC=T_:55H
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6.8 || TUNED CIRCUITS

Electrical circuits can be made selective to respond to a 1. Derive the expressions for maximum output
particular frequency or a band of frequency of input signal. voltage and maximum amplification of a
These circuits are called tuned circuits. ST ETED) e, (A2 200
Tuned circuits are, in general, single-tuned and double- 2 Give the applications of tuned C'rZLﬂts'zow
tuned. Double-tuned circuits are used in radio receivers , . _[ ’ ]
. . 3. Derive the expressions for maximum output
to produce uniform response to modulated signals over a voltagel and| maxmumkampiicalion ok &
specified bandwidth; double-tuned circuits are very useful single-tuned and a double-tuned circuit.

in a communication system.

6.8.1 Single Tuned Circuit

A tank circuit (i.e. a parallel resonant circuit) consisting of inductor /\
and capacitor is an example of single tuned circuit. 1 2_ +
. . S . . —> i —> i
Following electrical circuit wherein a tank circuit on the secondary
side is inductively coupled to the coil 1 which is excited by a source s R Re K
Vo

at the primary side.

Following expressions pertinent to electrical network in v,-+ L Ly
Figure 6.13 can be derived by applying KVL on both primary and - _
secondary sides.

Output Voltage

v oM
y = JVi® (6.5)

o . 1 2042
WC{R |R, +| joL, ——— ||+ oM
J { s|: 2 (] 2 wCﬂ }

Voltage Amplification Factor

The voltage amplification factor at the value of the frequency such that the tank circuit in secondary side
is under resonances is given as:

M
A=—0 = — (6.6)
v, C(RR, +0> M%)

=

Current i, at Resonance
The current i, in secondary sides at resonance is given as:
jv.co, M
i =L (6.7)
R.R, +0*M

Thus, it can be observed that the output voltage, current, and amplification depend on the mutual
inductance M at resonance frequency. The value of mutual inductance at resonance frequency is given

as M=K,/LL,.
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Maximum Output Voltage and Maximum Amplification Factor

The maximum output voltage v,,, and amplification factor A,, at resonance frequency can be obtained
by varying the value of mutual inductance M.
Utilising Eqs (6.5) and (6.6) for getting the value of M at which v, and A, are obtained:

v o YRR, 6.8)

(0]

Substituting above value of M in Eq. (6.5) to get maximum output voltage:
V.

Vo = ———— (6.9)
2w,C.[R.R,

Substituting above value of M in Eq. (6.6) to

get maximum amplification factor: : k=ky
1 ! k= ks
" 2w,C (©10 S ’ ki > ke > ks
®,C\/R.R, Amplification i
factor |
The variation of the amplification factor or yr—
. . . . r
output voltage with the coefficient of coupling is Fi .
shown in Figure 6.14. 1gure 6.
6.8.2 Double Tuned Circuit
A double-tuned transformer circuit consists of two series y
resonant circuit. This circuit is a particular frequency at /\
which both circuits are under resonance condition. I
An example of a double tuned circuit is provided in R C4 @
Figure 6.15. s - Rg §R2 CoTrve
The frequency @, at which both tuned circuits are under " Ly Lo
resonance condition is: "
2 1 1 Figure 6.15

wr = =
Llcl L2C2

Following expressions pertinent to the electrical network in Figure 6.15 can be derived by applying
KVL on both primary and secondary sides.

v, =i [RS +R, + joL, - ﬁj —i,joM
1

Output Voltage

b= VM 6.11)

* GIR +R)R, +0 M ]
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Voltage Amplification Factor

The voltage amplification factor at the value of the frequency such that the tank circuit in secondary side
is under resonances is given as:

A= M (6.12)

C[(R +R)R, +0M?*]

Maximum Output Voltage and Maximum Amplification Factor

The maximum output voltage v,,, and amplification factor A,, at resonance frequency can be obtained
by varying the value of mutual inductance M.
Utilising Eqs (6.11) and (6.12) for getting the value of M at which v, and A,, are obtained:

V@R +ROR, (6.13)

,

r

c

Substituting above value of M in Eq. (6.11) to get maximum output voltage:

V.

Vo = —————— (6.14)
2w,C\/R.R,
Substituting above value of M in Eq. (6.12) to get maximum amplification factor:
A =1 6.15)
2w,C R R,

( Example 6.12 )

The resonant frequency of the following tuned circuit shown in Figure 6.16 is 1000 rad/sec. Calculate
the self-inductances of the two coils and the optimum value of the mutual inductance. ooe

Solution It is evident that the circuit in Figure 6.16 is an example of double tuned circuit. The
resonance frequency of a double tuned circuit is given as:

bl 1uF
r L1C1 L2C2 5Q 13 310)
Given that @, = 1000 rad/s, substituting values of C, . A - 5 8
and C, in separate equations of above expression, values L Ly C,=2uF
of L, and L, can be obtained. “V
1
L= C, X0, X0, ~ T Figure 6.16
1
L=— =05H
C, X0, X,

The optimum value of mutual inductance can be calculated

M =_—V(&+R5)R2 (6.16)

¢ [0}

r
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. rad
Substituting R, =0Q, R, =5Q, R,=3Q and O, = IOOOT in Eq. (6.16), we get

M,=3.87 mH

6.9 || ANALYSIS OF COUPLED CIRCUITS

A magnetically coupled electrical network can be analysed 1. Write network equations for coupled

in either time domain or frequency domain. Frequency inductors circuits in the time domain and
domain network equations for a particular network frequency domain.

can be obtained by substituting jo in the time domain

equations.
M
Time Domain Network Equations R /\ R
Time Domain (Figure 6.17) Wy W\
) di, di, . .
MR Lk Mt 6, (in) L1§ ng () 20F  ®w
di di
Vv, =i,R, + L,—>+ M—L
2= hfy Ty d
Figure 6.17 Time-domain circuit
Frequency Domain Network Equations JjoM
. . R R
Frequency Domain (Figure 6.18) WA VW
Vi=R, +joL)l, +joMl, o .
V, = joMI, + (R, + joL,)I, “® (1) o, § EMZ () g
Figure 6.18 Frequency-domain circuit
N
C Example 6.13 )
Write the mesh equations in terms of the phasor currents /, and /, for the circuit shown in oY X )

Figure 6.19.

Solution Applying KVL in mesh-1 and mesh-2 while considering the mutually induced voltage in
inductors.

For mesh-1, 4 Q ’@8
I
—12 + (—j4 +j5)I, - j31, =0 . .
120V () jseg g6 120
- i -j3L=12  (6.17) ? ¢

For mesh-2  —j3/, + (12 +j6)I, =0 (6.18)
Figure 6.19
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C Example 6.14 )

Find the voltage across 5 Q resistance in circuit shown in Figure 6.20. [AU, 2011] cee@
Solution Givendata: K=0.8, jwL,=j5Q, ‘ k=08
joL, =710 Q BQ N, J10Q

A— OG0 ——C

Mutual Inductance joM = K, /L,L, 30

= joM = 0.8 (j5) (j10) 500 1) 5)  Sse

— M = j0.8 50 = j5.65 THe

= j@M = j5.65 F = 2
Figure 6.20

Voltage across the ‘5 Q’ resistor V5Q =5 x I,
Applying KVL for Mesh 1,

—5.65 1, + (j5)I, + 3([; - ,) —j4(; - 1,) =50 £ 0° =0
B+l -1, (3+j1.65)=50£0° (6.19)
Applying KVL for Mesh 2,
J10 I, + 51, — jA(l, — 1)) + 3(, - 1,) —j5.65 1, =0
I, (-3 +j4-j5.65) + L,(8+j10-j4)=0
I, (-3-j1.65)+1,(8+6)=0 (6.20)
Solving Egs (6.19) and (6.20) simultaneously, we get;
I, =11.31 £-107.09° (A)
I,=5256.81°
V5Q=5x%52£56.81=25256.81 volts

CONDUCTIVELY COUPLED EQUIVALENT CIRCUITS
(SERIES AND PARALLEL MAGNETIC CIRCUIT)

An analogy between an electrical quantity and the corresponding magnetic quantity allow us to apply
Kirchhoff’s laws for magnetic circuits also.

Kirchhoff’s Voltage Law (KVL) can be applied to series magnetic circuit while Kirchhoff’s Current
Law (KCL) can be utilised for parallel magnetic circuit. The application of these laws permits to
determine equivalent reluctance of the magnetic circuit having series and parallel elements.

6.10‘

6.10.1 Series Connection

Consider a magnetic circuit consisting of a number of different magnetic connected in series material
with different length, area and permittivity. The equivalent reluctance of this magnetic circuit can be
determined using following formula:

ll 12 13
+ + +
WA A, A

The above formula can be derived by applying KVL for various mmfs in the magnetic circuit.

R =
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6.10.2 Parallel Connection

Consider a magnetic circuit consisting of a number of different magnetic materials connected in parallel
with different length, area and permittivity. The equivalent reluctance of this magnetic circuit can be
determined using the following formula:

1 1 1

LiwA, LA, L1 sAs

The above formula can be derived by applying KCL for various mmfs in the magmatic circuit.

( Example 6.15 )

For the parallel magnetic circuit of Figure 6.21, assume that the core material is infinitely permeable.

Let 0, =3 mm and 9, = 2 mm. The thickness of all (K
core members is / = 50 mm. The core has a uniform S . T e
depth into the page of 75 mm. N, = 2N, = 100 1 | (3 4| |# | %2}
turns. Neglect air gap fringing. o’ D o 5
(a) If,=0and ¢; = 15 mWhb, find the value -~ P . L 17
of I. L [ w [« w — | &
(b) If/, =10 A and I, = 20 A, determine ¢,
and ¢2‘ Figure 6.21 000

Solution Given that the core material is infinitely permeable and the equivalent electrical network

can be drawn as in Figure 6.22: Nols
+ o
) .
R,=—\= 70 003 =6.366x10° H™' i
UpA;  4m x1077(0.050)(0.075) Re
g
1) !
JREC e 0002 = 4244 x10° H™'
u,A,  4mx107'(0.050)(0.075)
Figure 6.22

(a) Summation of mmf’s around the decoupled left-hand branch gives
NI, = ¢,R,, =(0.015)(6.366 X 10) = 9549 A1

9549 9549
[, =——=—7-=9549A
N, 100
(b) Since the two branches are decoupled,
0, = NI, (100)10)
= =

R, 6366x10°

1.57 mWb

gl

_Nol, _ (50)(20)

= ~=2.36mWb
R,  4.244x10

)
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( Example 6.16 )

Obtain a conductively coupled equivalent circuit for the
following magnetically coupled circuit (Figure 6.23) and
then find the Z parameters of the electrical network. O ® @

Solution Applying KVL in loop-1

S+8) I -j2L, =V, 6.21)
Applying KVL in loop-2
2L, + (5 +j4) I,=-V, 6.22) Figure 6.23

Writing Eqs (6.21) and (6.22) in matrix form:

5478 —j2 (|1 V
‘] J . L_[" (6.23)
-j2  5+j4||1, v,
Comparing Eq. (6.23) with Z-parameters equation form (i.e. [V] = [/][Z]) gives, Z matrix as

follows:
54+j8 —j2
[Z]=| . .
—j2 5+ j4

( Example 6.17 )

Obtain a conductively coupled equivalent circuit for the
following magnetically coupled circuit (Figure 6.24).
[AU, 2012] ce@®

Solution M is negative as /; enters the j5 € coil through
the dot end, /, enters the j10 € coil through the indented 500°V
end. In the common branch, /; and I, are directed opposite
(Figure 6.25).

Conductively Coupled Equivalent Circuit:

Thus, from the theory of conductivity coupled circuits,

Zy=L,-M;Zy=L,-M;Z-=M 71 25

— — 30
Here, T I =
Z,=j5-j6Q=—1Q Ze
g i _ 9 50 £0° I4 I
Zp=j10 Q —j6 Q =j4 Q /—D (3_14)96

Figure 6.25
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6.11 || ANALYSIS OF MAGNETIC CIRCUITS

The presence of charges in space or in a medium creates an electric field; similarly, the flow of current
in a conductor sets up a magnetic field.

Electric field is represented by electric flux lines, and magnetic flux lines are used to describe the
magnetic field. The path of the magnetic flux lines is called the magnetic circuit. Just as a flow of current
in the electric circuit requires the presence of an electromotive force, in the same way, the production of
magnetic flux requires the presence of magneto-motive force (mmf).

This section discusses some properties related to magnetic flux.

6.11.1 Flux Density (B)

The magnetic flux lines start and end in such a way that they form closed loops. Weber (Wb) is the unit
of magnetic flux (¢). Flux density (B) is the flux per unit area. Tesla (7) or Wb/m? is the unit of flux
density.

B =% Whb/m? or Tesla

6.11.2 Magneto-motive Force (MMF)

A measure of the ability of a coil to produce a flux is called the magneto-motive force. A coil with N
turns, carrying a current of / amperes constitutes a magnetic circuit and produces an mmf of NI ampere
turns. The source of flux (¢) in the magnetic circuit is the mmf. The flux produced in the circuit depends
on mmf and the length of the circuit.

6.11.3 Magnetic Field Strength (H)

The magnetic field strength of a circuit is given by the mmf per unit length. Ampere turns per meter
is the unit of H. The magnetic flux density (B) and its intensity (field strength H) in a medium can be
related by the following equation:
H = B/u.

where,

U is the permeability of the medium in Henrys/metre (H/m),

U, is absolute permeability of free space and is equal to 4p 3 10" H/m, and

U, is relative permeability of the medium.

Relative permeability is a non-dimensional numeric which indicates the degree to which the medium
is a better conductor of magnetic flux as compared to free space.

The value of i, = 1 for air and nonmagnetic materials. It varies from 1,000 to 10,000 for some types
of ferromagnetic materials.

6.11.4 Reluctance (R)

Reluctance is the property of the medium which opposes the passage of magnetic flux. Its unit is AT/Wb.
The reciprocal of reluctance is known as permeance.
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R mmf (F)
flux(¢)

Air has a much higher reluctance than does iron or steel. For this reason, magnetic circuits used in
electrical machines are designed with very small air gaps.

(" Example 6.18 )

In the magnetic circuit shown in Figure 6.26, the relative permeability lion

of iron is 10°. The length of the airgap is g = 3 mm and the total length ¥ lg

of the iron is 0.4 m. For the magnet B, = 1.07 T, H.= 800 kA/m and Qn L f

the length of the magnet /,,is 5 cm. Assuming the cross section is o
5 5 S : M t

uniform, what is the flux density in the air gap? ocee S9Nl - er rgap

Solution Since the cross section is uniform, B is the same everywhere Figure 6.26

and there is no current. Applying KVL for magnetic circuit involving magnetic field intensity,
Hiron : liron + Hm 'lm + Hg 'lg =0

B,=B,=B,=B

B H_.l B
Ao, +B—"-HIl +—g=0

uu'O :uri o B r :LLO

4 10° 107
B 04 14 p[ 200X | 5102 - 800x10°) x 5% 1072 + B| -0 |
47 x107 X 10 1.07 4 x10-

Solving for B, B =1.005 Tesla

6.12 || MAGNETIC LEAKAGE AND FRINGING

A part of magnetic flux produced by a magnetised iron specimen that does not confine to the specimen
is regarded as leakage flux. This flux while crossing the air gap bulges outwards due to variation in
reluctance. This is known as fringing. This is because the lines of force repel each other when passing
through the air as a result the flux density in the air gap decreases.

The ratio of total flux to useful flux is called the leakage coefficient or leakage factor.

( Example 6.19 )

The following data refers to two coupled coils — 1 and 2, as shown in _ 2

the electrical network of Figure 6.27. ¢;;, = 0.5 x 107 Whb; ! M

¢, =0.3x 107 Wb; N, = 100 turns; N, = 500 turns; i; = 1 A. Find &, 012

the coefficient of coupling, the inductances L, and L, and M, the

mutual inductance. ocee M

Solution k = Leakage factor = ¢,,/¢,,= 0.6 Ny e °

Ll = Nl ¢1 1/i1= 0.05H Figllre 6.27
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M=N2 ¢12/i1= 015 H
M2
Lk

=125H

2:

6.13 || COMPARISON OF ELECTRIC AND MAGNETIC CIRCUITS

Table 6.1 presents analogy between an electrical circuit and a magnetic circuit. These analogies allow
us to apply Kirchhoff’s laws for magnetic circuits also.

Table 6.1 Analogy between magnetic and electric circuits

Analogues Quantity Electrical Circuit Magnetic Circuit
Exciting force emf in Volts mmf in Ampere-Turns
Response Current in Ampere Flux in Weber

. . pl l
Opposition to response Resistance, R = X Reluctance, R = ,u_A
Quantity drop Voltage drop (Current x Resistance) | mmf drop (Flux x Reluctance)

TIME DOMAIN AND FREQUENCY DOMAIN

614 || ANALYSIS NETWORK EQUATIONS

A magnetic coupled electrical network can be solved in 1. Write network equations for coupled
either time domain or frequency domain. This section inductors circuits in the time domain and
presents time domain and frequency domain network frequency domain.

equations for a particular coupled circuit.

M
Time Domain Network Equations R VAR R
Time Domain (Figure 6.28)
v,=i1R1+Llﬁ+M‘;i w@ (0 ng B (@) O
t
, di,  di
vy =hR, + L, ar +M ar Figure 6.28 Time-domain circuit
JjoM
Frequency Domain Network Equations Ri AR Ro

VWA
Frequency Domain (Figure 6.29)

V, = (R, +joL)I, +joMI, w® (1) ij:% é'ijz (r) ®v
Vo, =joMI, + (R, + joL,)I,

Figure 6.29 Frequency-domain circuit
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6.15 | APPLICATION OF AN IDEAL

TRANSFORMER

According to Maximum Power Transfer Theorem, the 1. Explain the application of coupled inductors
power supplied from a source to the associated load will be for transferring the maximum power?
maximum when the load impedance becomes equal to the
source impedance.

An ideal transformer with primary and secondary winding
turns NV, and N, respectively is utilised for delivering the maximum
power from an amplifier (source) to a loudspeaker (load). The
amplifier output is connected to primary winding of the ideal
transformer while the loudspeaker is connected to secondary Figure 6.30
winding.

N, and N, are selected such that the loudspeaker impedance, when referred to primary winding,
becomes equal to the output impedance of the amplifier. This is called load matching as the load
impedance, when transformed, becomes equal to the source impedance and thus maximum power
transfer occurs to the loudspeaker.

Amplifier

POINTS TO REMEMBER

15" A two-winding transformer is an example of inductive coupling, while an auto transformer demonstrates
conductive and inductive coupling.

15" The mutual inductance between two coils can be determined using following formula:
= N8 _ Nidp,
1 I
=" The voltages v,(f) and v,(7) across the coupled inductors can be calculated using following formulae

diy(t diy (t diy (t diy(t
vl(t)le—;,i)iM—f;),vz(t)sz—ZE)iM—zlli)

1=~ Dot convention is utilised to indicate sign for the mutually induced voltages across coupled circuits. Circular dot
marks and/or special symbols can be utilised for this purpose.

1=~ These symbols implicitly represent orientation of the windings around its core of an inductor which in turn affect
the polarity of inducted voltage.

1" Two coils are said to be mutually coupled if the magnetic flux emanating from one passes through the other. The
mutual inductance between the two coils is given as M = K,/L,L,

15" Coefficient of coupling (K) is always less than unity, and has a maximum value of 1 (or 100%). For the case in
which K = 1, is called perfect coupling, when the entire flux of one coil links the other.

=" K can also be determined using ﬁ, where @, is a portion of flux ¢ which links with other coil.

=" The equivalent inductance of an electrical circuit consisting of inductors connected in series-aiding connection
can be calculated using formula L = L; + L, + 2M
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The equivalent inductance of an electrical circuit consisting of inductors connected in series-opposition
connection can be calculated using formula L =L, + L, — 2M

The equivalent inductance of an electrical circuit consisting of inductors connected in parallel-aiding connection
can be calculated using formula:

 LL,-M*
“4 L,+L,—2M

The equivalent inductance of an electrical circuit consisting of inductors connected in parallel-opposition
connection can be calculated using formula:

— LILZ_M2
L+ Ly +2M

Double-tuned circuits are used in radio receivers to produce uniform response to modulated signals over a
specified bandwidth; double-tuned circuits are very useful in a communication system.

The value of M at which maximum output voltage and maximum amplification is obtained for a single and
double tuned electrical circuit are
_JRR,

e Single tuned circuit — M = ——
o,

'

J@R, +R)R,

(0]

'

e Double tuned circuit — M, =

The expressions for the maximum output voltage and maximum amplification for a single and double tuned
electrical circuit are:
i 1

e Single tuned circuit v, = ————= A =—
20,C\RR, " 20,C\RR
r 52

e Double tuned circuit v,,, = . S A = 1
20,C\[R;R, " 20,C\RR,
Equivalent Reluctance for Series Connection of a number of magnetic paths
L b b

R= + + +
WA A, p3Ag

Equivalent Reluctance for Parallel Connection of inductors
1 1 1
himA; LAy LiusAy

Flux Density B = ¢/A
Magneto-Motive Force F' = NI = H/l
Magnetic Field Strength H =B/ u

mmf (F)
flux (@)

Reluctance R =
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An analogy between an electrical quantity and the corresponding magnetic quantity allow us to apply Kirchhoff’s

laws for magnetic circuits also.

A transformer is a four-terminal device containing two or more magnetically coupled coils. It is used in changing
the current, voltage, or impedance level in a circuit. Important uses of transformers in electronics applications are
as electrical isolation devices and impedance-matching devices.

An ideal transformer with primary and secondary winding turns N, and N, respectively is utilised for delivering
the maximum power from an amplifier (source) to a loudspeaker (load). N, and N, are selected such that the
loudspeaker impedance, when referred to primary winding, becomes equal to the output impedance of the
amplifier. This is called load matching as the load impedance, when transformed, becomes equal to the source
impedance and thus maximum power transfer occurs to the loudspeaker.

PRACTICE PROBLEMS

1.

5.

A 25 Hinductor has 100A of current turned O @ @

off in 1ms.

(a) What voltage is induced to oppose
this?

(b) Whatis unreasonable about this result?

(c) Which assumption or premise is
responsible?

. What is the mutual inductance of a pair of O @ @

coils if a current change of 6 A in one coil
causes the flux in the second coil of 2000
turns to change by 12 x 107 Wb per turn?

. Explain how the dot convention is utilised O @ @

to determine the sign of mutually induced
voltage in coils.

. The following data refers to two coupled O @ @

coils 1 and 2, as shown in following
electrical network. ¢;; = 0.5 x 10~ Wh;
¢, = 03 x 10° Wb; N, = 100 turns;
N, = 500 turns; i; = 1A. Find k, the
coefficient of coupling, the inductances L,
and L, and M, the mutual inductance.

01

N, N2
Figure 6.31

Two inductively coupled coils have self-
inductances L, = 20 mH and L, = 80 mH.
If the coefficient of coupling is 0.6.

(a) find the value of mutual inductance
between the coils, and

(b) the maximum possible mutual induc-
tance.

. Two coils connected in series have an

equivalent inductance of 0.8 H when
connected in aiding, and an equivalent
inductance of 0.5 H when the connection is
opposing. Calculate the mutual inductance
of the coils.

. For the following circuit, determine the

voltage ratio V,/V,. Which will make the
current /; equal to zero?

5 22 59

Figure 6.32

8. Find the impedance matrix for the

following network.

50 3Q
WW——T00——
29

10vE (1) j6 Q%Vg@ —
[ ]

Figure 6.33

cee

cee

-4 Q
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9. Draw the equivalent electrical network of O @ @ . /\ .
the following circuit involving inductive a ! 2 c
coupling between the coils. Given that M ° °
=1, find values of /, and I,.

JoM V1 L4 Ly Vo
10Q /\ 10 Q
L) (] b d
1020°v &) (1) joa oa (1) ®1020° v .
Figure 6.35
] 11. Draw an analog electric schematic for the @ @ @
Figure 6.34 parallel magnetic circuit of the following
10. The following circuit has L, = 4 H, O@ @ figure for both cases of {1 = coand pu # .
L,=9H,K=0.5,i =5 cos (50 t—30°) °
Aand i, =2 cos (50 —30°) A. Obtain the 01— | I2 lT ~ | N2
conductively coupled equivalent and then I @1 li u | i)
find the values of (a) v, (b) v, (c) the total o U
energy in the system at 7 = 0. q g h[ Ih 2
.—
N, !
— w [«— w f—
Figure 6.36
MULTIPLE CHOICE QUESTIONS

1. Mutual inductance is a property associated with ooe
(a) only one coil (b) two or more coils
(c) two or more coils with magnetic coupling (d) only for conductively coupled inductors

2. The maximum value of the coefficient of coupling is ocoe
(a) 100% (b) more than 100%
(c) 90% (d 50%

3. The maximum possible mutual inductance of two inductively coupled coils with self-inductances O @ @
L,=64 mH and L,= 100 mH is given by
(a) 80 mH (b) 40 mH (c) 100 mH (d) 64 mH

4. The value of the coefficient of coupling is more for air-cored coupled circuits compared to the iron core O O @
coupled circuits.
(a) true (b) false
(c) depending upon the rate of change of current
(d) depending upon the rate of change of voltage

5. Dot convention in coupled circuits is used ocoe
(a) to measure the mutual inductance
(b) to determine the polarity of the mutually induced voltage in coils
(c) to determine the polarity of the self-induced voltage in coils
(d) to determine energy stored in a coil

6. The current is entering in the dot of a coil which is mutually coupled with another coil for which current O @ @

is leaving the its dot, the mutually induced voltage in first coil is
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(a) proportional to I, (b) proportional to I,
(c) proportional to rate of change of 1, (d) proportional to negative rate of change of 7,

7. The mutual inductance M at the maximum output voltage is obtained from a single tuned circuit is O @ @
proportional to
(a) resonance frequency
(b) square root of resonance frequency
(c) inverse of resonance frequency
(d) independent of resonance frequency

8. An ideal transformer has N; = 100 turns, and N, = 10 turns. This transformer is utilised for impedance O @ @
matching purpose for an amplifier required to be connected to a loudspeaker load to get maximum power
output. If the output impedance of the amplifier is 2500 €2, the find the resistance of the loudspeaker load

will be
(a) 100 Q (b) 25Q (0 10Q (d) 2500 Q
9. For maximum power transfer from an amplifier to a loudspeaker load, the turns ratio of an ideal transformer O @ @
shall be
(a) Ny>N, (b) N, <N,

(c) No consideration should be given to turns ratio an ideal transformer
(d) No ideal transformer is required for this purpose

10. Inductance of a coil which has N turns is proportional to [eYoX )
(@ N (b) N © N d N
ANSWERS TO MULTIPLE CHOICE QUESTIONS
1. (c) 2. (a) 3. (a) 4. (b) 5.(b)

6. (d) 7.(c) 8. (b) 9. (a) 10. (b)



Polyphase Circuits

CHAPTER OUTLINE

i Voltage, current and power relations for = Relation between power in delta and star
star and delta configurations system

1> Analysis of three-phase 3-wire and 4-wire = Measurement of three-phase power
circuits with star and delta connected loads 5 Advantages of 3-¢ system

v Phasor diagram 1= Interconnection of three phases

iz Star-Delta conversion

7.1 || INTRODUCTION

A three-phase system is a multi-phase system in which electric power is generated, transmitted and
consumed by using three phases simultaneously. Voltages of these three phases are equal in magnitude
but 120° phase shifted for a balanced 3-¢ system. It is the most common method of electric power
generation and transmission worldwide.

7.2 || THREE-PHASE STAR (Y). THREE-PHASE DELTA (A)

For a balanced system, instantaneous voltages across three phases are expressed as:
Ep=E, coswt; E, =E, cos(wt—2r/3); Eg=E, cos(wt+2r/3) for R-Y-B phase sequence.

Ep=E, cosot; E, = E, cos(wt +2m/3); Ez = E, cos(wt —27m/3) for R-B-Y phase sequence.

There are two patterns in which the three phases of a 3-phase equipment (load or source) are connected.
These are discussed as follows:

7.2.1 Three-phase Star

In this pattern, three phases are connected in such a way that they have one common terminal. The
common terminal is called star or neutral terminal. There are total 4 terminals: One star or neutral and
three terminals of each phase.
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There are two possible configurations of connection for a star connected device: (i) 3-Phase, 4 wire
(with star terminal connected), (ii) 3-Phase, 3 wire (with star terminal isolated) is shown in Figure 7.1.

1 Ia
Va PR Va — A
Vea Vea
V, Ic Ve I—c>
¢ < Neutral
v, Ven v
Vas \/‘4—1 20 AB / \ cn
Vic e Vec
B
Is v s, C
Vg — B

Figure 7.1  Star connected source and load

7.2.2 Three-phase Delta

In this pattern, three phases are connected together forming a closed loop with three junctions
as shown in Figure 7.2.

Va I A Va ho | A
VvV £120
Vea / Eac \( Ens \V <0 Vea 17‘ y:\
- I z z
Ve I3 Ve —»3
Vg m Vas
- 1
Ve c @ B Ve c L Z | B
Pa—
I 5 1o L2 e
7 2 V £-120 Ve —

Figure 7.2  Delta connected source and load

These three junctions form three terminals of a delta connected device. There is no star or neutral
terminal.

C Example 7.1 )

In a three-phase balanced delta system, the voltage across R and Y is 400 £ 0° V. What will be the
voltage across Y and B? Assume RYB phase sequence. ocoe

Solution Given: Delta-connected system Vyy, =400 £ 0° V.

Since it is a balanced 3-phase system, magnitude of voltage differences between any two of three
terminals will be equal. So, Vy; is either 400 £ 120° V or 400 £ —-120° V. With RYB phase sequence,
Vyg lags behind V. So, Vi, =400 £ -120° V.

Note: Difficulty Level — O O ® — Easy; O ® ® — Medium; ® ® ® — Difficult
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VOLTAGE, CURRENT AND POWER

7-3 || IN STAR AND DELTA CONNECTIONS

. 1. Describe volt-amp reactive in 3-phase ac
Line and Phase Voltages circuit and derive power relations in ac

Voltage across a single phase is called phase voltage and circut. [RTU, 2019]

voltage difference between the two phase terminals is called 2. Derive relationship between line and
line voltage phase current and voltage relation in

3-phase delta connection.  [GTU, 2016]

Line and Phase Current

Similarly, current of a single phase is called phase current and current passing through any terminal is
called line current.

7.3.1 Star Connection
A star connected balance load is shown in Figure 7.3.

_ I

Va RN A
Vea
3-¢
Power | V¢
Supply
(A-B-C)
Ve
Vs

Figure 7.3  Star connected balanced load

Voltage
Since each phase is connected between a line terminal and a
neutral, line voltage and phase voltage are not same.

For a balanced power supply, with V,, as reference and
A-B-C phase sequence (Figure 7.4),

Vea Vac

VAn = ‘Vphase £0
2r
VBn = ‘Vphase £ (_ Tj Vic
21 Figure 7.4  Phase and line voltage for star
Ve = ‘Vphase v ("' ?j connection
T T St
and VAB = |Vline Z g ; VBC =|Vline 4 _E > VCA =|Vline 4 +?

Vag=Van— Vaa
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Since, phase voltages are 120° phase shifted,

= Vas| = \/(|VAn 4 Val” 2|V | V| cos(180 — 120)
= |VAB| = \/(|VAn 2, |VAn 2, 2|VA,, V,,| cos(60) =|VAn
Vas| =3V,

SO9 |Vline

Current

= \/g ‘Vphase

Since there is no current division at terminals,

I

Power

line | -

\1

phase

Total power = sum of power of each phase,
For a balanced 3-¢ system,

Total power,

Using Egs (7.1) and (7.2),

Sis=13
P:SCOS¢:\/§|Vline||Iline|cos¢ W
0 =Ssing =3V,

Active power:

Reactive power:

Vline

7.3.2 Delta Connection

A delta connected balance load is shown in Figure 7.5.

0

Va

I line

S36=3814 = 834 = 3‘Vphase

VA

Iline

1 phase

sing VAR

3-¢

Ve

Vea

Power

supply
(A-B-C)

7]

Ve

Vas

N+ 142 cos60)

Figure 7.5 Delta connected balanced load

(7.1)

(7.2)
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Voltage
Since each phase is connected between a line terminal and neutral, line voltage and phase voltage are

not same.
For a balanced power supply, |VA B| = |VBC| = |VCA | = |V,me

Since voltage across a phase equals to the voltage difference between the two phase terminals,

|Vl' = |VP

ine |

(7.3)

hase |

Current

Line current gets divided (load)/added (source) at each
terminal, hence, phase and line current are not same here.

L =1,-1I¢

Since phase currents are 120° phase shifted,

= |n|= \/(|1A P+ |1]" + 2|1, ||1c| cos(180 —120)

= 1= 1] 21, coste0)
Figure 7.6 Phase and line voltage for delta
= |IA|«I(1 + 1+ 2 cos60) connection
|I 1| =3 |I A|
= \/g ‘Iphase

So, Fiine (7.4)

Power
Total power = sum of power of each phase,

For a balanced 3-¢ system,
Total power, S5 4= 35,_4= 534 = 3V hase Iphase
Using Egs (7.3) and (7.4),

\/_ lme lme

Active power: P =S cos¢ = NEYY cos¢p W

lme lme

Reactive power: O =S sing = NEYY VineLiine SIN® VAR

C Example 7.2 )

Three inductive coils having resistance of 16 £ and reactance of j12 Q are connected in star across a
400V, 3¢, 50 Hz supply. Calculate phase voltage. ooe

Solution Here, line voltage is given 400V.

\/_ ‘ phase

400

|VPhase | \/5

=230.94V

For a star connected load, |Vllne
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( Example7.3 )

A star-connected balanced load draws a current of 35 A per phase when connected to a 440 V supply.
Determine the apparent power. cee

Solution Apparent power, S = ﬁ Wiine 1 e |

For a star connection, |Iline| = |I =35 A Here, Vj;,. =440 V

phase

S = V3 Vie|[line| = /31440 x 35| =26.67 kVA

ANALYSIS OF THREE-PHASE 3-WIRE
7.4 || AND 4-WIRE CIRCUITS WITH STAR

AND DELTA CONNECTED LOADS

If V,,, V3, V- are phase voltages of each phase, than; 1. Derive an expression for the total power
for a balanced three-phase star connected
|VA| = |VB| = |VC| = |VPh| load in terms of line voltage, line current

o A and power factor. [GTU, 2013]
Vi =|Vin| £0:Vy = |V | £ (_?j; Ve =|Vi| £ (_T)
7.4.1 Star Connected Load
For a star connected load shown in Eq. (7.5),
\% Vv V.
4 — An , IB — Bn , IC — Cn (75)
ZAL(DA ZBLQ)B ZCA(DC

For a balanced 3-¢ circuit, Z, = Z, = Z and hence, ||A | = |IB| = |Ic| - M

ZZ¢

1. 3-wire Circuits

A. Balanced load For a balanced load: Voltage of neutral is zero (given that supply voltages equal in
magnitude and 120° shifted).

|VA = |VB

= |VCn

n n = |VPh |
line

V
Voase = s Ly = — 2
phase \/g Ph Zé(p

Vi

2 4
IA=|IPh| 4—¢;IB=|IPh|Z(—¢—T);IC=|1Ph|4(—¢—?)
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B. Unbalanced load (Z, # Zg # Z) If load is not a balanced one, VAn| % |VBn % |VCn| and also, voltage
of neutral point is not zero.
Using Eq. (7.5),
IA=VA_V”,IB=VB_V”,IC=VC_V" (7.6)
Zy Zy Zc
Since neutral is isolated, applying KCL at neutral:
Iy +13+1-=0
Using Eq. (7.6),
VA _Vn + VB _‘/n + VC _Vn =0
Zy Zg Zc
Here V)5, are phase voltages which yields,
Va Vs Ve
V= Z, Zy Z. _ VY, + VY, +Y Ve
! L_FL_'_L YA+YB+YC
Zy Zp Zc

14, I, I~ can be determined substituting V, in Eq. (7.6).

Power:
pP=V,1,cos¢, +Vy Iy cospy+VeI-cosd.

¢, is phase difference between V,,, and .

2. 4-wire Circuits
For a 4-wire circuit as shown in Figure 7.7, voltage of neutral is always equal to zero.

Hence, V,,=V,, V, =V, Ve, = Ve (7.7
A L
A
e ‘v £0
Neutral Neutral wire
V £120 V £-120
—_—
C B
| e
P ———

Figure 7.7 4-wire star connected load

A.Balanced load Same analysis as of 3-wire connection.

B. Unbalanced load (Z, # Z, # Z.) Since voltage of neutral is kept 0 with 4™ or neutral wire, even if
fload is not a balanced one.
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Using Eqs (7.5) and (7.7),

% V V,
1A=Z—A,IB=Z—B,1C:Z—C
A B C

Power:

P=V,I,cos¢p, + Vgl cospg +V.I. cosd.

¢, is phase difference between V,, and 1.

7.4.2 Delta Connected Load

Since load with delta connection has only three terminals, it can be supplied voltage with 3-wire only.
If 1, I, I are phase currents,
— VAB I _ VBC I _ VCA
= »Ip = e =
Zpg4 0, Zpc Ly Zeal9c
Line currents /,, I,, I; can be found as:
L=1,-1;1,=1,-1,;1y=1.—-1,

A

C Example 7.4 )

A balanced star-connected load having an impedance of (15 + 205) Q per phase is connected to 3¢,
440 V, 50 Hz as shown in Figure 7.8. Find the line cee
current and power absorbed by the load. Ro

Solution Given: Z= (15 +20j) Q=25 £53.13° Q,

Assuming RYB phase sequence and then taking
Vi as the reference voltage, we have:

Step 1: Find the phase voltages:
Ve =44020/43 =254.20;
Vyn = 2542 —120; Vg = 2542 +120

Step 2: Calculate phase and line currents:

VRy 220V

For star connection, phase and line currents are

Vev _ 25420 __ 1016, 5315 )
Z 25/53.13° Figure 7.8

Similarly, I, =10.16£—-173.13 and [, =10.16 £ — 66.85

Step 3: Power calculation:
It is a balanced 3-phase star connected system with ¢ =—-53.13°, V;;.. =440 V and [;;,. = 10.16 A

P =3 |Viine| [ Fine| €056 =/3 x 440 x10.16 cos(=53.13) = 4645.78W

same, SO [, =
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( Example7.5 )
A delta-connected load has (30 —j40) Q impedance per phase as shown in Figure 7.9. Determine the

phase current if it is connected to a 415 V 3-phase, 50 Hz supply. cee
Solution In a delta-connected system, RT

Phase voltage = line voltage =415 V. (30 — j40) (30-/40)

Z=504-53.13° e
Taking, Vy as reference, v l ]
V, :
o=Yer M50 gg 53130 Amp (30 - j40)
Z 50£-53.130 B

In a balanced load, the phase shift of the current is Figure 7.9

120° apart.

I, =8.3£-66.87° Amp. and I, = 8.3.£186.87° Amp

( Example7.6 )

Three impedances Z, = (17.32 +j10) Q, Z, = (20 +j34.64) Q, and Z; = (0 —j10) € are delta-connected
to a 400 V three-phase system as shown in Figure 7.10. Determine the phase currents, line current,

and total power consumed by the load. (X X J
Solution Step 1: Find out phase voltages: . Ro— Iy

Z,=(17.32 +j10) Q =20 £ 30° Q.

1
Z,=(20 +j34.64) Q =40 £ 60° Q. Ver = 4002240°\/ 7, V¥
B

Z;=(0-710) Q=10 £-90° Q. Viy = 400 £0°

The three-phase currents are I, Iy, and I, and the Bo-y28 [} Y
three line currents are I}, I, I5. ) Ty

Taking Vyy =400 £ 0° V as reference phasor, and Viyp =400 21205y
assuming RYB phase sequence, we have Vi, =400 £ 0°% v Yo
Vyg =400 £ -120° V; Vpp =400 £ -240° V 2

Figure 7.10

Step 2: Calculate phase current:
_ Viy 400£0°
R z,2¢, 20230
_ Vip 400£-120°
Z, 29, 40 £60°

=20 £-30°A =(17.32-j10) A

v =10 £-180°=(-10 +j10)A

Ve 400£120°
P z,4¢, 10£-90°

=40 £ -150° = (-34.64 — j20)A
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Step 3: Determine line currents (Figure 7.11): Ro —
I, =1, —1;,=5291 £10.89° A
I=1,— Iy =29.09 Z 159.89° A 23 ZN\ R
Li=1—-1,=31.75 £-140.94° A

To calculate the total power, first the powers in the — —

individual phasors are to be calculated and then they 28 ==l e

are added to get the total power in the unbalanced

load.

Power in R-phase = I,> X R = (20)* x 17.32 = 6928  yo <"
watts Figure 7.11

Power in Y-phase = I,* x Ry, = (10)* x 20 = 2000 watts
Power in B-phase = I,° X Ry = (40)* x 0 =0
.. Total power in the load = 6928 + 2000 = 8928 watts

7.5 || PHASOR DIAGRAM

A Phasor represents a sinusoidal varying quantity with a constant magnitude and phase angle. Quantity
with phase angle zero is considered as a reference phasor.
How to draw a reference phasor ?

e Assume one of the phase as reference phasor (generally a phase voltage for star connection and
a line voltage for a delta connection).

e Convert phase voltages in polar form and draw all phase voltages (displace by 120°).

¢ Find the phase current in polar form and draw them in phase plane according to their magnitude
and angle.

* Find the line currents (if load is delta) using method of parallelogram (as it is done for vector
additions).
Phasor representation for a star connected balanced 3-¢ system’s voltages (with V, as reference
Phasor) is shown in Figure 7.4.
Phasor representation for a delta connected balanced 3-¢ system’s voltages (with V, as reference
Phasor) is shown in Figure 7.6

STAR-DELTA AND DELTA-STAR

7.6 | Sonversion

C ion Strat 1. Derive the equation of Star to Delta and
onversion >trategy Delta to Star transformation. [GTU, 2017]

Impedance measured between two terminals (with third
terminal open circuited) should match with impedance measured between same two terminals of other
circuit, if the two 3-¢ circuits are equivalent.




Polyphase Circuits & 7.11

i.e.
(ZAB C open )Sta.r = (ZAB C open )Delta (78)
(ZAC B open )Star = (ZAC B open )Delta (79)
(ZBC A open )Star = (ZBC A open )Delta (710)
B B
Zg _ Zus Zgc
Zp Zc
A C
C
A Zac
Figure 7.12  Star-Delta transformation
For the circuit shown in Figure 7.12;
(ZAB|C open)Star = (ZAB C open )Delta
Zy+Zy= (Zac * Zyc)Zap (7.11)
(Zpc +Zgc + Zyp)
(ZAC IB open )Star = (ZAC IB open)Delta
Zin+ 2o
Zy+ 7= Gap * Znc)Zsc (7.12)
(Zac +Zgc + Zyp)
(ZBC IA open )Star = (ZBC IA open )Delta
2, + 7, =—Fan * Zac)Znc (7.13)
(Zpc +Zgc + Zyp)
7.6.1 Delta-Star Conversion
Eq. (7.12)~Eq. (113) + Eq. (7.11): 7z, = —ZanZac) (7.14)
(Zac +Zye + Zyp)
Z.nZ
Eq. (7.11) +Eq. (7.13) - Eq. (7.12):  Z, = (ZasZpc) (7.15)
(Zac +Zye + Zyp)
Z,-Z
Eq. (7.12) + Eq. (7.13) - Eq. (7.11):  Z.= (ZacZc) (7.16)

- (Zye +Zpc + Zyp)
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7.6.2 Star-Delta Conversion

Using Eqs (7.14), (7.15), (7.16),
(ZypZscZpc)
(Zye +Zpc + Zyp)

2,25+ ZyZ +ZoZ, =

= Ly Zy+ZgZe+ZcZy =2y Zye =ZyZlyc =ZcZyp

- 7 :(ZAZB+ZBZC+ZCZA)
AB Z,

- Z, _(ZAZB+ZBZC+ZCZA)
c=

Zg

. 7 =(ZAZB+ZBZC+ZCZA)

BC Z,

For a balanced 3-¢ system: (Z,5 =Zg- =Zyo =Zggp 4 Z, =Zp, =72 =Z,.)
Zdelta =3 'Zstar

( Example 7.7 )

If a star connected balanced load with impedance Z = (10 + j15) Q is to be represented by delta
configuration, what will be the value of impedance? ooe

Solution For a balanced load, if a delta connected system is equivalent to a star connected system,

then
Zpeita = 3 X Zgiar = Zpeja = 3 X (10 +j15) Q = (30 + j45)Q2

( Example7.8 )

A symmetrical three-phase, three-wire 440 V supply goes to a star-connected load. The impedances
in each branch are Z, = (2 + j3) Q, Z; = (1 —j2) Q, and Z, = (3 + j4) Q. Find its equivalent delta-

connected load. cee
Solution
(ZyZy + ZpZp + ZoZ,) =19.10 £47.3°
VAVARE A S A . 3¢
ZAB=( ATB mG e A)=19 104_473 =3.82/-5.83°=(3.8 — j0.38) Q
Zc G+j4
yAVA yAY4 Z.7Z . 3°
Z, = Gals t Lplet2cZy) 1N024T3° 50 ) g0 (500 jos2)0
Zy 2+j3)
yAVA A4 7.7 . 3°
7, < CZatZaZe+ 220 1910 L9310 o

Z, (1-72)
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C Example 7.9 )

Symmetrical three-phase, three-wire 400 V supply
is connected to a delta-connected load.
Impedances in each branch are Z, = 10 £ 30° Q,

Zyp =10 £ 45° Q, and Zg, = 2.5 £ 60° Q. Find Zep=25 460‘0 @ZRY= 10 £30°
its equivalent star-connected load. cee ; :

Solution
Zyo+Zpc+Zyp =10 £30°+ 10 £ 45°
+ 2.5 Z60° Zyg =10 £45°

(OIS ZEmEyer e e
=(16.98 +14.24) Q

Figure 7.13

(ZryZgr) _ 10 £30° x 2.5 £60° Zp=1.13 £50.03 Q

R Zpy + Zyp + Zgg) | 22.159 23997

(ZeyZys) 10 £30°x 10 £45°

7= = , Zxy=4.512£3503Q
(Zpy +Zyp + Zgp) 22.159 £39.97

(ZgrZyg) _2.5260°x10 £45°
Zpy +Zyy +Zgg) 22.159 £39.97

= , Zy=1.128 £ 65.03Q

7.7 || RELATION BETWEEN POWER IN DELTA AND STAR SYSTEMS
Three equal impedances Z = |Z] Z¢ are connected in star,

\% _ Vline -7 _ VPhase | | = l VPhase l
phase \/5 > *Ph ZL{D’ Ph |Z|

2 2
|IPh| cos¢ = 3 Vongse | cos¢ = Vipe | cos¢

Now, if the same impedances are connected in delta fashion,

Star =3l Vphase

i Vo |
Vphase = V]ine 5 IPh Pji; | I | |P;aie
| |2 2
o = e cosp =355 cong =g
P — PDelta

Star
3
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(" Example 7.10 )

A delta connected balanced load consumes 3 kW power. If the same device is reconnected in star,
find the power consumption? ooe

Solution With the same phase impedance, power consumed in star is 1/3™ of power consumed in
delta.

So, Pg,. =3000/3 = 1000 W = 1 kW

star

(" Example 7.11 )

A star connected three-phase purely capacitive load (C) is connected in parallel with a delta connected
resistive load (R). A connected purely inductive load (L) draws power at unity power factor when
supplied with 400 V, S0Hz, 3-phase supply source. Find the value of capacitance and power consumed
if R =100 Q, X; =200 Q. coe

Solution Given: R =100 Q, X; =200 €, line voltage =400 V, f=50 Hz

Step 1: Simplify the circuit by converting star-connected capacitors in delta:
Since it is a balanced star, equivalent delta will have impedance 3-times.
Now, capacitor of each phase is in parallel with inductor.

Step 2: Find impedance (X) of capacitor-inductor pair:

X= (jXL) I (—ch)

= X=X, )=jX) /(X = jXc)
Step 3: Evaluate condition for unity power factor:
Here, resistances are connected in parallel with X. So, unity power factor is only possible if current

through X i.e. capacitor inductor pair is zero.
‘Which is true for, X = oo.
X=X =0;
X, =1Xd = 1 _ c-_ ! !

2nfC 2mfX, 21 % 50 x 100

Step 4: Power consumed by resistors:
Each resistance is connected between the line conductors.

Vi =400V
P=2(VZ/R)=2x1600W =3200W
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MEASUREMENT OF THREE-PHASE

78 || POWER

Average power of a three-phase system can be measured by 1. Explain two wattmeter methods of three-

two methods: phase power measurement.  [AU, 2013]
2. Explain two wattmeter methods for 3-phase
1. Three-Wattmeter Method power measurement. [GTU, 2017]

Total three numbers of watt-meters are connected (one watt-meter across each phase). Reading of each
watt-meter indicates the power consumed by that phase.
Net power is the sum of readings of three watt-meters.

2. Two-Wattmeter Method

In this method, two watt-meters are connected as shown in Figure 7.14.

: LD, =
B —fe //A
v \/B
2 ==
-

Figure 7.14  Power measurement with Figure 7.15 Phasor diagram for 2-Wattmeter method
2-Wattmeter method

Reading of wattmeter-1, W, = |VAB||I A | cos 6, here 0, is the angle between V5 and 1.
Reading of wattmeter-2, W, =|V,||I. | cos@, here 6, is the angle between V¢ and /.
Net power, W =W, + W, =|VAB||IA | cosf, + |VCB| |IC | cos 0,

From the Figure 7.15, it can be observed that, 8, = 30 + ¢ and 6, = 30 — ¢.

= W =|V,5][14 | cos(30+ @) + Vg ||l || | cos(30 - )

line |

= Since |VAB|:|VCB| = |VAC| :|Vline|and|IA|:|IB| =|Ic| =|I



7.16 & Circuits and Networks

= W= |Vline|| line | COS(30 + ¢) + |V11ne|| 11ne| COS(30 ¢)

Solving above expression gives: W =+/3 |the| | ]line| cos ¢

It shows that sum of reading of two watt meters is the total active power consumed by a 3-phase
circuit.
W, - W,

Also, power factor angle for a 3-phase circuit: tan¢g = f
W +W,

C Example 7.12 )

The two-wattmeter method produces wattmeter readings P; = 1560 W and P, = 2100 W when
concerted to a delta-concerted load. If the line voltage is 220 V, calculate (a) the per-phase average
power, (b) the per-phase reactive power, (c) the power factor, (d) phase impedance. 000
Solution Given: P, = 1560 W, P, =2100 W

Total average power = P, + P, = 1560 + 2100 = 3660 W

W, —W.
Power factor angle = ¢ =tan™' | V3 ——2 | = 14.13°
ower factor angle = ¢ (\/— W W,
(a) Per-phase average power:
Since it is a balanced system, each phase will have equal share in total active power,

P phase = 3660/3 = 1220 W.

(b) Net reactive power, Q = S sin ¢ = P tan ¢ = 3660 tan (14.13°) = 935.57 VAR
Qper-phase = 935.57/3 =311.85 VAR

(c) Power factor = cos(¢) = cos (14.13°) = 0.968

(d) Step 1: Calculate phase current (here, in delta phase and line voltages are same)

7= 3‘ phase phase P/(3‘ phase COS¢)

cosp = ‘Iphase

= [Tppae| =3660 /(3% 220 X 0.968) =5.73 Amp

Step 2: Calculate phase voltage to phase current ratio.

| | 220
_ VPhase 220
= Zyy = T 573 =38.42 Q.

7.9 || ADVANTAGES OF 3-p SYSTEM

1. Small size and cost: For the same amount of power 1. Mention the advantages of three-phase
generation, a three-phase device is smaller in size TG [AU, 2014]
as compare to single phase device. Hence higher power to weight ratio.
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Power transmission: A three-phase system requires 3 wires of transmission for each phase,
while a system of three single phases require 6 wires, which reduces transmission cost. Also,
the same voltage level and current ratings, a three-phase system transmits |\/§ | times power.
Constant power and torque: Instantaneous power for a balanced 3-phase system is constant,
which ensures constant torque requirement/generation for a three-phase generator/motor.
Electric motors with three-phase power supply are self-starting in nature, while an alternate
winding arrangement is required for a single phase motors for self-starting.

A single phase power supply can be derived from three-phase supply while reverse is not
possible.

Rectifier with 3-phase power supply has very less ripple in comparison with 1-phase power
supply.

7.10 || SOME DEFINITIONS

1.

Line voltage: Voltage difference between two line conductors of a three-phase system is called
line voltage.

Phase voltage: Voltage across the impedance of one phase of a 3-phase equipment is called
phase voltage.

Phase current: Current passing through the impedance of one phase of a 3-phase equipment is
called phase current.

Phase sequence: Sequence in which, voltages of the three phases of a three-phase system attain
their peak value is called phase sequence. Phase sequence R-Y-B is called positive phase sequence.
Balanced load: If impedances of all phases of a 3-phase device are equal in magnitude and
phase angle, load is called balanced load.

7.11 || INTERCONNECTION OF THREE PHASES

Figures 7.16 and 7.17 are the various configurations of interconnection of three-phase connections.

I
A Va 1 A

v 412V V 20 Ven e Ip
Enc Epg
Ve L»

Vas

Vbc

V /120 Is

I

7] ——

Figure 7.16(a) Delta connected source and load
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A Va
Vea
Ex VvV £0

- Ve
V2120 Neutral Vas
/ NA—'] 20 VBC

e Ir
c B Vi E———

Figure 7.16(b) Star connected source and delta connected load

A VA L» A
Vea
CED V £0
~ 1
: TN
V n
Neutral AB é %
V 2120 V £-120 Ve
C B
Ig
C B VB —_—
[

Figure 7.17(a)

Star connected source and load

A Va
P4 2V v 20 Vea
Eac EnB
Ve
c EE’C B
Ve
- —
V /-120

Vs

Figure 7.17(b) Delta connected source and star connected load
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POINTS TO REMEMBER

For Delta connection: Voltage across each phase is the voltage across the two line terminals.

For Star connection: Phasor sum of voltages across two phases is the voltage across the two line terminals.

In a balanced 3-¢ system,

For Delta: Vline | = |Vphase and |Iline| = \/§|Iphase
For Star: |Vline = \/5 |VPhase and |Iline = ‘Iphase and Vj;,,, leads V. by 30°

Power: S3—¢ = E;'Vphaselpmlse and S3_¢ = \/g‘/linelline :

VY, + VY, +Y. V.
Y, +Y, + Y,

Voltage of neutral for an unbalanced 3-wire star load: V, =

Vi
For all types of configuration: [, = e

Phase
z Phase

Voltage of neutral is zero for a balanced star load and for a 4-wire star load.
Value of impedance for a delta configuration are higher than that of star.
If reading of both watt-meter is equal, load is purely resistive in nature.

If W, > W,, load is capacitive and W, < W,, load is inductive in nature.

PRACTICE PROBLEMS

1.

For a balanced three-phase star connected @ @ @ 0.8 lagging power factor. A star connected
load, if active and reactive power capacitor bank is connected in parallel
consumptions at 200V are found to be 4000 with the generator to raise its power factor
W and 3000 VAR respectively, find out to 0.9 at rated KVA. Find out the per phase

value of resistance and reactance per phase. reactance of the capacitor bank.

For a star connected balanced three-phase @ @ @ 6. For a star connected load with Z, =5 Q,
system, if line voltages are given as: Zy=j2 Qand Zy =—j4 Q , find out voltage
Vag = 200£20°% Vg = 200£ -100° of neutral terminal if line voltage is 440V
Vea =200£140° and neutral is not grounded.

Find out phase voltages and phase sequence. 7. If the line currents of an unbalanced delta

An induction machine connected in staris O @ @ connected system are I, = 520, I, = 5220
fed by a voltage source of 3.3 kV. If motor and I; = 5£-30 (wrt to V5 and with ABC
draws 2 Amp current while driving a load phase sequence) at 440V. Find out net active
of 8 kW. Find out the power factor is motor power consumed/delivered by the circuit.

efficiency is 92%. 8. A delta connected, balanced load with

A balanced delta-connected load with O @ @ Z =06+ j12 Q is connected in parallel with
Z =06+ j8 Qis connected across a400 V, 3¢ a balanced star load with Z =2 + j4 Q. Find
balanced supply, Find-out the phase currents per phase impedance seen as connected in
and line current (phase sequence is RYB). star.

A 400 V, 40 KVA star connected 3-phase O @ @ 9. Readings of two watt-meters (W,/W, and
generator is running at rated power with W/W,) are 300 W and 400 W respectively.

cee

ooe

cee
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10.

Does load consume or supply reactive derives power from a 440 V balanced

power? Also determine the reactive power source. If power is measured following the
supplied or consumed by the load. 2 watt-meter method, what would be the

Star comnected imbalanced load with readings of watt meters if neutral terminal YY)
Z4=5Q.7,=10£30°Qand Z,=20/-20°Q of load is grounded?

MULTIPLE CHOICE QUESTIONS

1.

10.

If two terminals of a balanced three-phase system are interchanged, phase sequence: [eYoX )
(a) Remains same (b) Gets changed (c) Depends uponload (d) Cannot be determined

. Magnitude of phase voltages for delta and star connected load connected to 300V, 50 Hz 3-phase source O O @

are respectively:
(a) 300V, 300V (b) 173.21V, 17321V (c) 300V, 173.21V (d) 173.21V, 300V

. A three-phase current source supplies 20A line current to balanced 3-phase load. Phase current for starand O O @

delta configuration of load will be respectively:
(a) 10A,10A (b) 577 A,5.77 A () 577A,10A (d 10A,5.77A

. Voltage of neutral for a star connected load is not zero in case: cee

(a) Neutral is not grounded and load is imbalanced
(b) Neutral is not grounded
(¢) Load is imbalanced (d) Load is balanced and neutral is not grounded

. A purely resistive 3 phase load is deriving power from a balanced supply source. What can be possible @ @ @

readings of 2 wattmeters:
(a) 200W, 200W (b) 100W, 200W (¢c) -100W, -100W (d) 200W, 100W

. A 3-phase load connected to 400V, 50Hz supply draws 2.5A line current, reactive power consumed by O @ @

load for 0.8 lag power factor:
(a) 1039.2 VAR (b) 1385.6 VAR (¢c) 1732 VAR (d) 600 VAR

. Read following statements regarding 3-phase electric circuit with R-Y-B phase sequence: (e X )

I. Vgyleads V, with 30° for a star connection.
II. Line current pertaining to R phase lags its phase current by 30° for a delta connection.
III.  Angle between Vy and Vygis — 90°.
IV. Line current pertaining to R phase leads its phase current by 30° for a delta connection.

Which one of above is correct:

() LII (b) I,II (o) LILII (d LIL,I1v

. A three-phase star load is rearranged as delta and connected to same power supply source, power consumed O @ @
will be:
(a) Doubled (b) Three times (c) Same (d) One third

. For an unbalanced star connected load (4-wire), three line currents are 10 A, 2 + 3j A and -8 — 2j, neutral O @ @

current will be:

(@) 0 (b) 4+1j © 3@+1) @ @+ 1)/3

A three-phase star connected motor is connected to a balanced delta connected generator. Ratio of phase O @ @
current of motor to generator is:

@ 3 M) 1 © 13 @ 2n

ANSWERS TO MULTIPLE CHOICE QUESTIONS

1. (b) 2.(c) 3.(d) 4. (a) 5.(a)
6. (a) 7.(c) 8. (b) 9. (b) 10. (¢)



Network Functions

CHAPTER OUTLINE

= Transfer functions and driving-point = Time domain response from pole-zero
functions behaviour

i Analysis of ladder and non-ladder networks = Graphical method for determination of

i Minimise power transfer residue

1 Poles and zeros of network functions

8.1 || INTRODUCTION

It is known that, a circuit with capacitance and inductance needs differential equations to be solved in
order to get the time response. With the help of Laplace transform, these equations can be solved in
s-domain (frequency domain). Network function relates voltages or currents of different segments of the
network. Network functions are defined in s-domain only. Sometimes, voltages of every node (or current
of every branch) are not matter of concern. In such cases, entire network can be replaced with desired
number of ports and their transfer functions.

This chapter explains the various types of network functions, their properties and time domain
solutions for a network function.

TRANSFER FUNCTIONS AND

DRIVING-POINT FUNCTIONS

1. Define open circuit driving point

8.2 |

8.2.1 Transfer Functions

impedance. [AU, 2014]
For a network with at least two ports, ratio of Laplace 2. Define transfer function. [PTU, 2014]
transform of voltage or current of one
port to Laplace transform of voltage
. *—— o—— ——e
or current of another port is known as P S
transfer function. W(s) or i(s) ;\rl]gt\?v-or(k) v4(s) or i4(s) Nvéct)\;voork va(s) or ix(s)
A network must be initially relaxed o o | &

while finding this ratio, i.e. initial
Figure 8.1
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condition(s) must be set at zero. Since Laplace transform of a unit impulse is 1, transfer function is also

defined as unit impulse response.
Hence, for a two port network, there exist four number of transfer functions:

Voltage transfer function: G, (s)= V2(5) and G, (s)= Vis)
Vi(s) V, (s)
I
Current transfer function: o, (s) = L) and a,,(s) = fi(s)
1,(s) L,(s)
V. V
Transfer impedance function: Z,,(s) = 2(9) and Z,,(s)= 1(5)
I, (s) 1, (s)
Transfer admittance function: Y,,(s) = 5(s) and Y,,(s)= £, (s)
Vi(s) V,(s)

8.2.2 Driving-point Function

For a network (for any number of ports), ratio of Laplace transform of voltage or current of a port to
Laplace transform of voltage or current of same is known as driving-point function.

It can be classified as driving point impedance, Z(s)= V(s) and driving point admittance,
1(s) I(s)
Y(s)=—+-.
V(s)

Hence, total number of driving point functions will be twice the number of ports.

( Example 8.1 )

Determine the transfer function V(s)/I(s) for the network shown in Figure 8.2. o0e
Solution Step 1: Transform the circuit in s domain. Cs
Step 2: Find out current through V(s). I} T
R
it "R W
R, +sL i l
I, =1(s) X 1 1
1 i .
R +sL, [—] +R, e
C.s

Also,
Step 3: Evaluate V(s) in terms of /(s) and the desired transfer function:

R, + 5L, R

1 8
Rl + SLI (C—j ar Rg
S

c

V(s)=1, x R, = I1(s)

Note: Difficulty Level —> O O @ — Easy; O ® ® — Medium; ® ® ® — Difficult
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V(s) R, +sL,

= = R
1) R, +sL ! +R i
L[| =
1 1 CCS g
C Example 8.2 )
For the circuit shown in Figure 8.3, find the driving point impedance. o) Y )
Solution . s
s X 2— s A-—fwm—-én = S
ZCD = ls = 2 “
s+ — 25 +1 V(S) 17
2s 2S
s
Z(s)=3s+—s+ 2 Figure 8.3
2(s) = (25” + DISs” + (25" +1) + 55> _ 305" +225° +1
55(25° +1) 10s” +5s
( Example 8.3 )
Solve the circuit shown in Figure 8.4 for driving point impedance. oY X )
Solution Applying KCL at nodes A and B,

g A 2 p 13

V.-V, =
Il(s)—31(s)=(’42—3) (8.1) T ;(s)
§ Vi =2y 4531(s) ::% 310
(VA — VB) VB
=) 62 |
N Figure 8.4
Replacing V, = 10I(s), and substituting Eq. (8.2) in Eq. (8.1):
Li(s)=B+5s+ 1) I(s) =(5s +4) I(s)
Now, applying KVL in outer loop:
Vi = 51,(s) + V,(s) (8.4)

Using Eq. (8.1) to Eq. (8.4),
_ V() _10s® +27s+30
I1,(s) S5s+4

d
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8.3 ANALYSIS OF LADDER AND
® || NON-LADDER NETWORKS
8.3.1 Analysis of Ladder Networks " \,ﬁ?\t;ofcon notes on analysis o l[aRdli ezroosl

A typical ladder network is shown in Figure 8.5 (a)

The circuit can be analysed in the following manner: Z4 22

Y " X
——1 L}

(a) Evaluate current of right most shunt branch:

Iy=VY,=V,Y, Vi Y3 Y Vs

(b) Find out current entering to successive node: (for
the right most node it is equal to /)

. . Figure 8.5 (a)
(c) Find out voltage of successive node:

Vy=Vy+ 2,1

(d) Find out current of successive shunt branch and repeat step b, ¢ and d up to left most terminals:
Iy=VyYsand V, =V, + Z |1,

(e) Equate this voltage to the applied voltage of left most port terminal to solve unknown/transfer

function: V,=V,.

= ;124
8.3.2 Analysis of Non-ladder Networks » 7
. 1 2 o
Figure 8.5 (b) shows a non-ladder type of network. = —
Non-ladder networks are solved with using conventional , 7. v,
KVL and KCL or any of circuit solving methods which
suits the network for minimum complexity. 5 o

Figure 8.5 (b)

C Example 8.4 )

For the network shown in Figure 8.6, determine voltage transfer function V,/V/. oco0e
Solution Here, Vy, =V, 05s 10 Q
+ 70 W~ .
= ;= & T J T
x5 Vi(s) 1003 i) 5/s = Vals)
s | e Io(s) I
V, Vy Fi 8.6
= VY=VX+Z21X=V2+10?$]Y:B igure 8.

N

v, V, V. v, V,
= Il=IY+IX=V2+10?2+%=>VI=VY+2111= V2+10?2 +0.5s V2+10?2+$

S S N
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1 1 1
= V=V, 1+?0+0.5s+0.5s?0+0.5s 1+?O

A S A
Vo(s) 1
Viis) \2s% +3s+1

C Example 8.5 )

Find V,/V,, V,/I, and /I, for the network shown in Figure 8.7.(123 5 =1V, =37) foYoY )
Solution Step 1: Assign mesh currents and apply KVL | A I
in each mesh +o s
. 10 5H00)
KVL in mesh-1: 3/, + 21, — 515 = 37 Vi %2 Vs, % 1Q
KVL in mesh-2: 21, + 61, + 31; =0 _o o
KVL in mesh-3: -5/, + 31, + 915 =0 Figure 8.7
Solving above three equations:
L =-15A,L=11AL=-12A
Now, L=1x11=11V
VoIV, =11/37, V,/I, = -11/15 Q, L,/I, = -11/15
8.4 || MINIMISE POWER TRANSFER
For a network (as a load or a receiver) connected to — o | )
. . Matching Load
another network (operating as a source or transmitter), 2y St z
maximum power is transferred when impedances of ©
both the network are matched. Figure 8.8

If impedances are not matched, a matching network
(as shown in Figure 8.8) is connected between source and load, so that the impedance between the source
and the load is matched. A matching network may be varying or fixed depending upon the application.
In order to match the impedance, Z, should be equal to the impedance of source.

( Example 8.6 )

A typical matching network is shown in Figure 8.9. cee
L =%H, Load impedance at 100 Hz = 50 Ohm and o— Jx | o |
/1
load impedance at 100 Hz = j10 Ohm. Find the value of B at % Is 2

100 Hz for impedance matching.

o
[}

Figure 8.9



8.6 © Circuits and Networks

Solution For the given value of L, X; = 27f L = 20 Ohm.
Step 1: Now,

1

= Z,=jX+7Z —
0= J L”(]BJ

. 1
= Z, =]20+50”(.—)
jB
50
= Zy = j20 +—
jB+1

Step 2: Equate the total impedance to the source impedance for maximum power transfer-
Zy=Z,here Z =10j

. 720+ 01:j10

Solving this, B = —0.07j (—shown B is a capacitor)

8.5

| POLES AND ZEROS OF NETWORK

FUNCTIONS

A network function can be expressed in terms of two 1. Explain poles and zeros of network
polynomials as: function. Provide features of them.

[GTU, 2016]

n

-1
+eoet+astag

T'(s)= Z(s) _ a,s" +a,_,s

P(s) b,s" +b, s"" +-+bs+b,

Roots of Z(s) are known as zeros of the network function and roots of P(s) are known as poles of the
network function. In the above expression, total number of poles will be m and total number of zeros
will be n.

Since, a polynomial can be written in terms of its roots, the network function can be expressed in
terms of their poles and zeros as:

_ZG) gy 5=z —2, ) (%)

T(s)= =
P(s) (s =pu)s=Pp_y)-(s=py)

Since, z and p denotes complex frequencies only, poles and zeros are the frequencies at which network
function is infinite and zero respectively.

8.5.1 Restriction of Pole, Zero for a Transfer Function

1. The coefficients of the numerator and denominator polynomials are real and positive.



3.
4.
5.
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The poles and zeros of Y(s) have only negative real part (or zero), i.e., Y(s) does not have poles
or zeros in the right half s-plane.

A driving point function does not have multiple poles or zeros on the imaginary axis and at
origin.

The degrees of the numerator and denominator polynomials in Y(s) differ at the most by 1.
Thus, the number of finite poles and finite zeros of Y(s) would differ at most by 1.

The terms of lowest degree in the numerator and denominator polynomials of Y(s) differ in
degree at most by 1. So Y(s) does not have multiple number of poles or zeros at the origin.

No missing terms in numerator and denominator polynomials unless all even or all odd terms
are missing.

Restriction of Pole, Zero for a Network Function

The coefficients of the numerator and denominator polynomials are real but coefficients of the
denominator polynomials are always positive.

The poles have only negative real part (or zero), i.e., a transfer function does not have poles in
the right half s-plane.

A transfer function does not have multiple poles on the imaginary axis and at origin.
Numerator polynomial may have missing terms between highest and lowest degree.
No missing terms in denominator polynomials unless all even or all odd terms are missing.

( Example 8.7 )

For the network shown in Figure 8.10, find the driving point c 2F A 2F
function and plot its pole-zero locations in s-plane. cee ? I o—f
Solution Step 1: Solve the series and parallel branches to Z(s) 210 %2 =
find total impedance in Laplace transformed form ‘—
B
1 1
Z(s)=11l (— + (2 Il —)]
2s 2s Figure 8.10
if Z, is the impedance of right most paralleled connected R-L, then,
2 X S
7 = 2s _ 2
1 4s+
22—
2s

1 1 2
Z(s)—l||(ZV—+Z1)—Z(S)—1||(E+4s+1j

8s+1
Z(s)=1||| —————
() ”(8s2+25)
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8s +1
1% Q2 1 e
8s” +2s 8s +1

Z(s): =
8s +1 8s? +10s+1
e B
8s° +2s

Step 2: Find out location of pole and zero:
8s+1  QO(s)
8s> +10s  P(s)

If Z(s)=

Then, roots of Q(s) are the zeros of Z(s), Q(s)=0=8s+1=0= 7 == % and;

Roots of P(s) are the poles of Z(s),

P(s)=0=8s" +10s +1=0= p, =—2+@=—0.11;p2 =—£—@=—1.14
16 16 16 16

Here zeros will be: 88+ 1 =0 ors =-1/8

( Example 8.8 )

For a parallel RLC circuit, find out the poles and zero for driving point impedance.

Solution For a parallel RLC circuit, admittances of each branch: = %, = + =
: sC
Net admittance, Y =Y, + Y-+ Y,
Y= E +sC + L
R sL
Y- s’RLC + sL+ R
SLR
Impedance,
1 sLR
Y S$’RLC+sL+R
1 1Y 1
Poles; root of s’RLC +sL+R=> p,, p, =———1 (—) e
2RC 2RC LC

Zeros: root of SLR =0 =, z; = 0.
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TIME DOMAIN RESPONSE FROM

86 || PoLEzer0 BEHAVIOUR

From the location of poles and zeros in the s-plane, time 1. Write a short note on time domain

response/behaviour of a system can be predicted. It is behaviour of poles and zeros. [PTU, 2009]

generally extracted by taking inverse Laplace of the transfer 2. Summarise significance of pole-zero

function. location in s-plane. [GTU, 2016]
Time response of a single pole (or 2 in case complex)

system is given as:

r(t)y=Ae™™
(Response of multi-pole system can be found by superposition)

Here, s is the pole of system.
Time response of a system is easily determined by the following two steps:

1. Decompose the response using partial fraction. i.e.

n—1

A as"+a,_s" +--+as+a A A A
R(s)= (5) _ Gn ol : 0 = Dm 4 Tl L 0

_P(S)_bmsm*'bmilsm_l+"'+bIS+b0 S_pm s_pm—l S_po
2. Take inverse Laplace of the decomposed function.

A A,_
r)=L"—"—+ I

s_pm s_pm—l s_pO

From the above expression, time response for different possible values of the pole is drawn in
Figure 8.11. Also, location of pole is drawn in s-plan accordingly. For s = 0, response is constant with
time. For a real value of s, response is exponential with time in nature.

If s real and negative If s real and positive
i jw t
jo t) J t) For s,
For s,
For s4
S 84 For s 2 %
s -
o Time Time
Figure 8.11
/ If s purely imaginary \
It can be noted that if s is imaginary (Figure 8.12), jo r(t)

transfer  function  (using  Euler identity),
r(t)=Ae™*" = A(cos st + jsinst) becomes sinusoi-

dal. The response is oscillatory in nature with con- c _
stant magnitude and frequency. Time

An increased value of s will result in increment in
frequency of oscillation.
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Now, if s is imaginary with a real part (Figure 8.13), response become

r(t)=Ae™ = Ae™' (coss;t + jsins;t)
Here, s, and s, are the real and imaginary parts of s respectively.

This suggests that a complex s with real part will result in oscillations with time varying amplitude.
If real part is negative, oscillations get damped with time and if real part is positive, oscillations grow

with time and the system is considered unstable.

If s imaginary with negative real part

Figure 8.13

(' Example 8.9 )

A transform voltage is given by: V(s) = 3s/(s + 1)(s + 4). Plot the pole-zero in the s-plane and obtain

the time-domain response.

Solution Given transfer function is:
V(s)=3s/(s+ 1) (s +4)
Step 1: Find the pole, zero locations;
Poles are the roots of denominator i.e. —1 and —4

Root of numerator (zero) of the T.F. is s =0
Step 2: Apply partial fraction to extract time domain response (Figure 8.14):

= AI(S+4)+BI(S+1)=3s/(s+ 1) (s+4)

PutS=-4,B(-3)=—4=B=4/3
PutS=-1,A3)=-1=A=-1/3

cee

o V() = 3AKS +4) + BI(S + 1)
e l
= V(s)=3]—3-+ -3 4 3 2 1
s+4 s+1
N V(s)= -1 4 4 Figure 8.14
s+4 s+1

Step 3: Take inverse Laplace:

= Viy=—e ™ +4¢'V
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( Example 8.10 )
Find the response of a network if,
2
H(s)= s +3s+5
s+D(s+2)

cee

And excitation is x(f)= e".

Solution
Step 1: Taking Laplace transform of excitation,
1
X(s)=
(<) s+3

Step 2: Find out Laplace of response C(s)
C(s) = X(s) H(s)

1 s*+3s+5

C(s)=
(s+3) (s+1)(s+2)
2
Cls) = s“+3s+35
(s+3)(s+D(s+2)
Step 3: Partial fraction:
CGs) A B C

= + +
(s+1) (s+2) (s+3)

Solving it for A, B and C results:
C(s)= L5 3 N 2.5
s+ (+2) (s+3)

Step 4: Taking inverse Laplace:
Ct)=1.5¢" - 3¢ +2.5¢7" as Laplace of unit impulse is 1., where X=A + Band Y = A-B

8.7 || GRAPHICAL METHOD FOR DETERMINATION OF RESIDUE

As discussed, transfer function of a system is given as:

n—1

_Z(s) _ a,s" +a, "+ +as+a,
P(S) bs"+b, 5"+ +bs+b,

T(s)

‘Which further had been re-written as:
L2y (575)6-5,) (- 5)
P(S) (s_pm)(s_pm—l)”'(s_p())

T(s)
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To determine the time response using superposition, this expression can be decoded as:

K K K
T(S) — L m—1 0 (85)
s_pm s_pm—l S_po
Coefficients K,,, K,,,_;..., K, are known as residues.
From the partial fraction,
K, = (- p )T, =H—Lo =2l Zo) " Pu=2) g

(P = PPy = Pruz) = (P = Do)

It can be observed here that numerator is the multiplication of all displacement phasors between p,,
and zeros (of s-plane). And, denominator is the multiplication of all displacement phasors between p,,
and rest of poles.

kn
oo (P = 7))

km .

I1.. (i —po) k=i

Drawing all the poles and zeros in s-plane and finding out these phasors will yield desired residue
with the help of Eq. 8.6.
Steps:

K. =

1

e Draw the location of all poles and zero in s-plane.

e Select a pole, corresponding to which residue is desired to find.

e Join the selected pole to all poles and zeros.

¢ Find out angles and distances for all joined segments and convert them in polar form.
e Put these phasors in Eq. 8.5 and calculate the residue.

(" Example 8.11 )
Transform current /(s) of a network is given by:
cee
I(s)=—25
(s+D(s+2)

Determine residues using graphical method and determine time-response.

Solution Step 1: Determine pole and zero locations:

Poles are at s =—1, -2
Only one zero at s = 0.
Step 2: Write T.E. in form of residues:

e A B

+
(s+1) (s+2)

Step 3: Evaluate residue corresponding to pole s = —1 i.e. A:
2% 1e/"*

le’° =2



Network Functions & 8.13

Step 4: Evaluate residue corresponding to pole s = -2 i.e. B:

7180
p=2X2¢" _,
le’°
% 4
I(s)= +

(s+1) (s+2)
Step 5: Taking inverse Laplace:
(=6 - (-4) x(-6-2)x(-6-0)
(=6-(=3)x(-6-(-D)

I(t)=—2¢" +4e A=

POINTS TO REMEMBER

Network functions are defined in s-domain only.

Transfer function is unit impulse response of the system.

Driving point functions are input impedances or input admittances seen into the port.
Power transfer is maximum, when load impedance = source impedance.*

Poles of a T.F. are the frequencies at which, its value is infinite.

Zeros of a T.F. are the frequencies at which, its value is zero.

Complex conjugate of a pole/zero is also pole/zero.

A system with one or more positive pole is unstable.

Pattern of response is governed by the pole(s).

RERERERRRRE

An imaginary pole reflects oscillatory response.

PRACTICE PROBLEMS

1. Differential equation of a system is OO @ Find the value of L and DC gain K (take
d*>y _dy both R =100 Ohm).
described as: (t) = 4—2 +5—+ 3¢, find
. dr dt 5 a4 28 g I
out its transfer function. oO——WW\ o0
I I(s
2. If voltage transfer function for the circuit O @ @ T 1(8) ® 2
shown in Figure 8.15 is expressed as: Vi >Zq (P3U) T 10
vo(s) 50 l
vi(s)  (s+2)(s+4) o
Figure 8.16
+ —o
L +
vi(t) 1003 Vx k-Vy 75 mF=— Vo(f) 3. Find the transfer function I;/V, for the O @ @
_ ladder network shown in Figure 8.17.
- )

Figure 8.15
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Ni N Nj Ny
RC R C R C
No T T
Figure 8.17

4. Find out voltage transfer function for the O @ @
network shown in Figure 8.18.

7.
1 K 2
Vi(s) Va(s)
1 2 8
Figure 8.18

5. For the network shown in Figure 8.19, if O @ @
R =10 ohm, L = 0.2 H, find the value of

C for which poles of the shown transfer 9.

function are real and coincident.

R
Z_(g) =C
L 10.
Figure 8.19

6. Pole zero location of a network functionis O O @
shown in Figure 8.20. If 7' (0) = 5. Find the
transfer function.

MULTIPLE CHOICE QUESTIONS

T
-4 3 -2 -1

Figure 8.20

Driving point impedance of a single port O @ @

s+1
network is given as Z(s) = st ,
(s+1D(s+4)

if the circuit is excited by a unit impulse
signal; find the expression for its current.

. Network function defined N Y X )

2s . . . .
T(s)= 5 1is excited with unit
s°+5s+6
step voltage, determine the time response
and comment on system’s stability.

A system with transfer function
T(s)=50/(s* +8s+25) is  excited
with unit impulse voltage. Is response
oscillatory? If yes, then find frequency of
oscillation in Hz.

Time domain response of a transfer O @ @
function is described as: Ae™® + Be > + Ce™,

if DC gain is 1, and location of poles and

zeros are p = =6, -3, -1 and z = — 4, 2,

0. Evaluate A, B and C using method of
residue. (A, B ,C are constants here)

1. Pole of the driving point impedance of a capacitor C is located at: [eJoX )
(a) zero (b) infinity (c) 1/C (dy C

2. Pole of the driving point impedance of a series R-L circuit is located at: o X ]
(a) s=-L/R (b) s=-R/L (¢) s=LI/R (d s=-RL

3. Unit impulse response of a system is given as y(r) = ¢ Its transfer function will be: cee
(@) 1/(s-5) (b) 1/(s+5) (c) 1/5s d 5s+1

4. A system with poles at s = -5 and s = =3 will show time response as: cee

(@) y()=Ae '+ Be(b) y()=Ae'+ B (c) y(1)=Ae et @ y) =Ae?
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5. Which one of following can be a transfer function: foX X ]
0 o W S
8s” +10s s” +8s” +10s+1
(amy HBES V) s
(s—-D(s+2) (s=1(s+2)
(a) Tonly (b) I IV (c) ILI (d) IV only
6. Two networks with poles at s = —4, -2 and s = -3, —1 are cascaded, poles of the cascaded network will O @ @
E:; s=-7,-3 (b) s=-3.5,-15
(c) s=-4,-2,-3,-1 (d) s=-3.5,-1.5,-0.5,-0.5
7. Time response of series RLC circuit initially excited with an impulse voltage will be: cee

(a) exponentially decaying with or without oscillations
(b) exponentially growing with or without oscillations
(c) oscillatory always

(d) exponential always

8. Transfer function of a RC circuit, V,(s)/V;,(s) is given by cee
(@) sC/(R + sC) (b) 1/(sCR+1) () U/(sC+R) (d) sC/(sC+R)
9. DC gain of transfer function 20 4 cee
(s+D(s+4)
(a) 20 (b) 10 () 20 @ 5
10. A pole is moved in parallel with imaginary axis, it will (e X )
(a) not affect the system (b) decrease frequency of oscillation
(c) increase frequency of oscillation (d) increase the amplitude of response
ANSWERS TO MULTIPLE CHOICE QUESTIONS
1. (a) 2. (a) 3. (b) 4. (a) 5.(d)

6. (c) 7. (a) 8.(b) 9.(d) 10. (¢)






Two-Port Networks

== Open-circuit impedance parameters (Z) = Relationship between parameters

1= Short-circuit admittance parameters (Y) = Interconnection of two port networks

i Transmission parameters (ABCD) = Terminated two port

1= Inverse transmission parameters (A’B'C’D’) = |mage parameters

= Hybrid parameters (h) > Attenuation and phase shift in symmetrical T
1= Inverse hybrid parameters (g) and 7 networks.

9.1 || INTRODUCTION

A port is defined as any pair of terminals into which energy a I
is supplied or from which energy is withdrawn or where the
network variables may be measured. A linear time invariant two-  port
port network is a linear network which has two pairs of terminals F<1 —°
and the current entering one terminal of a pair exits the other
terminal in the pair and which has no independent sources. A
two port network is as shown in Figure 9.1.

Input port and its variables are represented by 1 whereas output port and its variables are represented
by 2. There are four variables in a two-port network namely V,, I,, and V,, I,. Only two of these variables
are independent. The parameters of a two-port network represent the behaviour of network in terms of
voltage and current at each port. Hence it is essential to study these parameters to be able to apply two
port networks in applications such as transistors, op-amps, and transmission lines.

Circuit

Figure 9.1

OPEN-CIRCUIT IMPEDANCE (2)

PARAMETERS

These are also called Z parameters of a two port network and 1. Explain the short-circuit admittance and
are obtained when the voltages at two ports are expressed in the open-circuit impedance parameters for
terms of currents at two ports. So, V,, and V, are dependent atwo port network. [GTU, 2011]
variables whereas /, and, I, are independent variables.

9.2
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The equations are Vi=Z,1 +Z,1,; Vy =2yl + Zyl,
The individual parameters are given by
\% |%
Z, = 1_1 Zy= 1_1
L, =0 2l =0
V.
2y = 1_2 Zy = 1_2
L, =0 21l =0

Z,, is called the open-circuit input impedance, Z,, is called Zi5 5
22

open-circuit forward transfer impedance, Z;, is called open- oo
circuit reverse transfer impedance and Z,, is called the open
circuit output impedance. Vi Z12l2 21, Va2
The equivalent circuit of a two port network in terms of Z B B
o 0
1’ 2!

parameters is as shown in Figure 9.2.
The network is said to be reciprocal if Z,; = Z;, and

symmetrical if Z,;, = Z,,. Figure 9.2
D)

( Example 9.1 ) ST T
Find the Z parameters of the circuit shown in Figure 9.3. ooe ° VWA VWW—20
Solution Step 1: To find Z; ,and Z,,, the output terminals are open Vi 6Q Vo
circuited and a voltage source is connected to the input terminal as N
shown in Figure 9.4(a). o )

Writing KVL for the closed loop, 127, + 61, = V, or V, = 18I, Figure 9.3
V 1 I
Hence le=1—1=18§2 +_1’ }\%\% JQ\'/é/z\,‘io+
1
Applying KVL to the other loop, =V, + 3 x 0 + 6/, = 0 or v Qi &
V2 = 611 o O_
V. .
Hence Ty = 1_2 =6Q Figure 9.4 (a)
1

Step 2: To find Z,, and Z,,, the input terminals are open circuited and a voltage source is connected
to the output terminal as shown in Figure 9.4(b).

Writing KVL for the closed loop, 3/, + 61, = V,or V, =91, L=0 150 30 L

V. o= AT WA=
Hence Zy=-%=9Q it w

I, Vi 6 Q Vo
Applying KVL to the other loop, V|, =12 x 0 + 6/, or V, = 61, = —

v °
Hence A= I—l =6Q Figure 9.4 (b)

2

Note: Difficulty Level —> O O @ — Easy; O ® ® — Medium; ® ® ® — Difficult
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C Example 9.2 )

Find the Z parameters for the network as shown in Figure 9.5.
[RTU, 2011] Ce® @ T

V.
Solution To find Z,, and Z,,, as shown in Figure 9.6 (a) the output 11

terminals are open circuited. The equivalent circuit is

2X6
Z,.,=1+

=25Q
e 2+6 >

v,
Vi=lZy,=1,x25= Z;, = I—1=2.59

1

I

Applying current division, I, = I; X =1

pplying =0T 4
I V.
szlxx4:>v2:21x4:>221=1—2

1

Figure 9.5
I (1)1
LA Z N\
T 10 Iy 20
Vi 20 4Q

l

=5 —

Figure 9.6 (a)

=1Q

To find Z,, and Z,,, the input terminals are open circuited. The equivalent circuit is as shown in

Figure 9.6 (b).
o 4x4 0
0T 444
Vi
2
Applying current division, I, = I, X 4 —1—2
pplying hELX TS
I V
V1=Ix><2:>V1=?2><2:>le=1—1

2

9.3

=0 I42) I

Figure 9.6 (b)

=1Q

University Question

SHORT-CIRCUIT ADMITTANCE (Y)
PARAMETERS

These are also called Y parameters of a two port network
and are obtained when the currents at two ports are
expressed in terms of voltages at two ports. So, V|, and V,
are independent variables whereas /, and, I, are dependent
variables. The equations are

L =Y,V +1,V,;

1. Obtain the reciprocity and symmetry
conditions for Zand Y parameters.
[PU, 2012]

L=,V +1,V,
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The individual parameters are given by

I, I,
Y]l_v 12—V_
Ty, =0 2lv=0
y, =2y L
A7y, 27y
v, =0 2lvi=0 1 I I 2

+ +
Y, is called the short-circuit input admittance, Y, is called

short-circuit forward transfer admittance, Y|, is called short- Vi Y @y21\Ve y21Vi| |y22Ve
circuit reverse transfer admittance and Y,, is called the short-
circuit output admittance.
The equivalent circuit of a two port network in terms of Y
parameters is as shown in Figure 9.7. Figure 9.7
The network is said to be reciprocal if Y,, = Y}, and symmetrical if Y}, = Y,,

-0
°

C Example 9.3 )

: . . I I
Determine the admittance parameters of the T network shown in — \/@\% \/\2/\% < 9
Figure 9.8. coe
Solution Step 1: To find Y, and Y,,, the output terminals are 2 V2
short circuited and a current source is connected to the input _ =
. . . 0
terminal as shown in Figure 9.9 (a).
Figure 9.8
Vi i
h=—7%35"= 5 I 40 20 J%
4+ o 3
PEY
I1 () V1 20 V2 =0
I
Y, = — ==5 = P
‘/1 V2 =O - o
Figure 9.9 (a)
Using current division rule, —7, = b2 = 4 =-1, :l i
2+2 2 2|5
Hence, Y, = 2o = i S
Vi V=0 10
‘ _ o i 40 20 &2
Step 2: To find Y}, and Y,,, the input terminals are short circuited °
and a current source is connected to the output terminal. as _
shown in Figure 9.9 (b) =0 CORR
V. 3V. I 3 ° °o
4x2 22
24 10 V, 10

) V=0 Figure 9.9 (b)



Using current division rule

Two-Port Networks & 9.5

I,x2 I 1|3V, —
e R o R | - ©
+ v, =0 10
C Example 9.4 )
Find Y parameters for the network shown in Figure 9.10. 10 20
[RTU, 2011] Ce®®
vi izsz §4sz OV
Solution When V, = 0, the equivalent circuit for the
given network in Figure 9.11 (a) is
Zeq=1+2><2:29 Figure 9.10
2+2
I I i 1Q 2Q 7.
Vi=hZg=20 Y, =~ =--=058 LR
1 V,=0 1
V1 ; 2Q V2 =0

Using current division rule

= =-] =
27242 277 22

_hx2_ L ,_l[ﬁ}zﬁ
2] 4

=-0.25S

Hence, Y, ==
1

Figure 9.11 (a)

When V, = 0, the equivalent circuit for the given network in Figure 9.11 (b) is

Z=16Q

=0.625S
V=0

I
=Y, ==
2

Using current division rule

I, x2 5V, 2_5v, V,
-[[=2—"Butl,="2=-]==x—2%:=-%
8 5 8 4
I
Hence, y,, =L =—025S
2ly =0

Lo o1Q 2Q I
AWM——AW
;29 %4(2 Vo
Figure 9.11 (b)
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9.4 || TRANSMISSION PARAMETERS (ABCD) ST

These are also called ABCD parameters of a two-port 1. Define ABCD parameters for a two-port
network and are obtained when the voltage and current at network. [RGTU, 2014]
the input port or the sending end are expressed in terms of

voltage and current at the output port or receiving end. The equations are:

Vi =AV, - BI,; 1, =CV, - DI,
The negative sign is for I, and not for parameters, because the current is considered to be leaving the

network.
The individual parameters are given as

i i

B=—L
=0 -1

A=

V, 2

-1
V=0 1, =0 2l =0

A is called open circuit reverse voltage gain, B is called the short circuit transfer impedance, C is
called the open circuit transfer admittance and D is called the short circuit reverse current gain.
The two port network is said to be reciprocal if AD — BC = 1 and symmetrical if A = D.

( Example 9.5 )

Find the transmission parameters for the circuit shown in I
=i Al{e) 2.0 &

Figure 9.12. [PU, 2010]00 @ a fF—/WW\ WW—3 b

Solution When the output port b—b” is open i.e. I, = 0

=
AN

50 Vs

a b’

V
we get A=—L =9 and C=I_1

_Lg Figure 9.12
21 =0 . V2

L=0
When the output port b—b” is shorted, i.e., V, =0

10
In the circuit V; =(1+7)I] and 1, :%]l

So = =Ug
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C Example 9.6 )

Obtain ABCD parameters for the network shown in I 10 10 b
Figure 9.13. cee oWy VWY °
Solution Applying KVL to the three meshes shown in vy % o0 ; 50 v,
Figure 9.14.
we get the following equations - s
Vi=1,+2(1, - 1;) =31, - 2I; Figure 9.13
V, =20, +1;) =21, +2I, 1Q 10 .

2

WA °

2
2(13—Il)+I3+2(13+12)=O:>I3=-5—Il—gl2 y ,D § D§ Q/V
1 1 2Q I3 4Q\ I V2

Substituting and eliminating /5 we get

14 Zﬂll +i12 g °
5 5 Figure 9.14
5 3
Il ==\ ==
1542750
Substituting we get
11 5
Vi=—V,—=1
1= 2750
Comparing with the standard ABCD equations
11
wegetA=—,B= E,C= 2 and D = 3
4 2 4 2

9.5 || INVERSE TRANSMISSION PARAMETERS (A’B'C’D")

These are dual of transmission parameters. These are also called A’B’C’D’ parameters of a two-port
network and are obtained when the voltage and current at the output port or the receiving end are
expressed in terms of voltage and current at the input port or sending end. The equations are

V,=A'V,-B'l,; 1,=C'V,-D’l,
The negative sign is for I, and not for parameters, because the current is considered to be leaving the
network.
The individual parameters are given as
a=e _ %
i

cr=L

B =2
Vi

=0 1

V=0 ;=0
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A’ is called open circuit forward voltage gain, B’ is called the short circuit forward transfer impedance,
C’ is called the open circuit forward transfer admittance and D”is called the short circuit forward current
gain.

The two port network is said to be reciprocal if A’D’— B’C”= 1 and symmetrical if A" = D",

C Example 9.7 )

Find the inverse transmission parameters shown in Figure 9.15. \/%/8\/
cee
Solution To find the parameters A”and C’, open the input port g 1Q § 1Q
and connect a voltage source V, at the output port
(Figure 9.16 (a)).
Vo 1 %3 . _EI | 1 4 Figure 9.15
27| 143 )27 an Vi = ><12—§V2 50
’ V2 _ 3 ’_ 12 _
A‘V =—andC Vv =18 Vi §1Q 1Q§ Vs
=0 L =0
To find the parameters B”and D’, short the input port and
connect a voltage source V, at the output port (Figure 9.16 (b)). Figure 9.16 (a)
1x2 2 3
V,=|—|L==L=1,==Y,
1+2 3 2 20
1 I, 1 V. A
I, =1, ><—=—2=—[§V2}=—2
sz 9 el . g gm mg Vo
=1 Sz
D’=I—2 =3and B'=—2 =2Q
Ilvi=0 Ilvi=0 Figure 9.16 (b)

( Example 9.8 )

Obtain the AB'C'D’ for the sh k 20 8Q
ain t e C’D’ parameters for the shown network as i AR
shown in Figure 9.17. cee
Solution From the Figure 9.18 (a) Vi § 5Q ;2 Q
8
V,==1
2= 3%
Figure 9.17

2

Currentin 5 Q = I, x——
2+3+5
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v=2%2)-1, A D@ 2 b,
10 T 20 30
To find the parameters B”and D’, short the input port ~ a’ b
and connect a voltage source V, at the output port Figure 9.18 (a)
(Figure 9.18 (b)).
62
V=1
273572 1
. 2 L EGRPTRI VPIO BE JE
Currentin3 Q= [, X ——— 2Q 3Q
10
PESSER—
7 ; 5Q ; 2Q Vo
2 2
I, =1, X 103 > - 2 _ 3
5 +5 9 o b
Figure 9.18 (b)
D'—i =9amdB’—_—V2 —EQ
I, - 2 I, - 5

9.6 || HYBRID PARAMETERS (h)

This parameter representation is a mixture of some 1. Explain hybrid parameters for two-port
parameters obtained by open circuiting the input port and networks and state where one makes use
some parameters obtained by short circuiting the output port. of these parameters. [GTU, 2010]
Hence, they are called hybrid parameters or & parameters.
In this, the voltage of the input port and the current of the output port are expressed in terms of the
current of the input port and the voltage of the output port.

The equations are

= 1 I
Vl hllll +h12V2 +1 1 2 <2>+
Iy = hy I} + hy,V,y
The individual parameters are given as vy hiaVs horti(* [} hay Vs
i Vi
hyy = I_ 12 = 7
Ly, =0 2ln=0 -o o—
1 2
I, I, Figure 9.19
=71 =y
Ly, =0 21 =0
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hy, is called the short-circuit input impedance, £,, is called short-circuit forward current gain, £, is
called open-circuit reverse voltage gain and £,, is called the open-circuit output admittance.

The equivalent circuit of a two-port network in terms of /2 parameters is as shown in Figure 9.19.

The network is said to be reciprocal if /,, = hy, and symmetrical if 4}/, — hy by, = 1.

(' Example 9.9 )

Find the hybrid parameters for the two-port network shown in 1

L o) 40 2
Figure 9.20. ocoe o W WW\—o
+ +
Solution To find h;; and h,,, short-circuit the output port
and connect a current source /, to the input port as shown in V1 ;89 Vo
Figure 9.21 (a).
8x4 ° °
Vl :II |:2+8+_4:|:Il X 4.67 Figure 9.20
. N 2a 4 2
h=- =467Q o it
Ly, =0
Applying current division CT V; g 8Q V=0
8
-1, =1 X — =1
PT84 3! o
I, 2 Figure 9.21 (a)
a=gl =3
Ly, =0

To obtain £, and h,,, open-circuit the input port and connect a voltage source V, to the output port
as shown in Figure 9.21 (b).

. .. =0 20 40 I
Applying voltage division o A o
8 2 V 2
VisVyx——==V,=h,=—-H ==
8+4 3 V2l =0 3 Vi ;gg G172
I, 1 = =
V,=@8+4), =121, = h), =— =—3 ° °
2l =0 12 Figure 9.21 (b)
( Example 9.10 )
Find the / parameters of the network shown in Figure 9.22. L 1Q 10 I
coe ° VWV VW o

+

Solution Applying KVL in the three meshes
‘/1211+2(11—13) Vi /m ;29@;49 I Vo

0=214 +4(I, + L) + 2(I; — I,)
Vo=4L, + 1)

o o

Figure 9.22
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To find A, and h,,, short-circuit the output porti.e. V, =0

\%
m=d =20
Ly, =0
Also hy, :I_2 =__1
y V5 =0

To obtain &, and h,,, open-circuit the input porti.e. I, =0

Loov|o_sn-an e
BTV L, AU+ L) AU, +L) A2 +D) 2
=
I
hyy === =S
V2 1,=0
~
C Example 9.11 )
Find the A-parameters of the network shown in Figure 9.23. @ ® ® 21
Solution To find A, and h,,, short-circuit the output port i.e. I |
V, =0 as shown in Figure 9.24 (a) o = °
. Vv V.-0
By applying KCL, -1, + T" + 21, + # =0 V4 ; 10 Va
s
I +1+8)V. =0 =
Vv Figure 9.23
and 11=Tx—12=>11+12=V)C
Substituting this, we get 2l
I +2
L+ 48T +1,)=0=hy =2 =2 B S -
Il Vo =0 s+1 al I
: S
V.-V +2 V. 10 V2=0
L=2"Tr=y (I, +L)>V =20, +I, =21, - 2= : ’
1 s+1
ho= 2 _y_S5t2 Figure 9.24 (a)
s+1
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To obtain 4, and h,,, open-circuit the input port i.e. I; = 0 as shown in Figure 9.24 (b)

V. I
= 21=”’22=_2 =— =0 |—°°—‘
= Valy, <o =g LMW I 0
s + +
V. Vi Vv
Vl=1><12:_21=>h12=_1 ) L 1Q V2
142 V, 1 =0 1+ ) .
S O O
Figure 9.24 (b)
( Example 9.12 )
Find the input impedance of the network shown in Figure 9.25. foYo) )
Solution The equations are L
+ hiy = 3kQ i
Vi =h I, + h,V. H
| = hdy + Y, hyp = 10°5
I =hy Iy + hy,V,y Vi 2| p =200 4 =75k
But V,=1,2,=-17, . hp=10°8
where, Z; =75 kQ Figure 9.25
Substituting the value of V,
o1,
L=h,—h,l,Z, =1, =——"——
2 =hyly =y 1,7, 2 1+ Z,h,
— —Z 1,
> 1+ Zhy,
Substituting
Zihl,
Vi=hydy = hy ——=— .
1+Z, hy,
v 5 x10° x 107 x 200
Zin: h12 Lh21 =3x1 3_7 3 3
11 +Z hy, 1+75%x10° x10
Z. =2.86 kQ

9.7 || INVERSE HYBRID PARAMETERS (g)

This parameter representation is dual of hybrid parameters. These are called g parameters. In this the
current of the input port and the voltage of the output port are expressed in terms of the voltage of the

input port and the current of the output port.
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The equations are

Iy =gVi + 8ulys Vy=8uY1 t 8nl,
The individual parameters are given as
I 1
8 =7, 812 =7
Vi I,=0 I V=0
I 922 I
Y Y oy 25
821 = v 8n = T
L =0 2l =0
. . .. . F
gy, is called the open-circuit input admittance, g5, Vi }g“ )91V 921V Va
is called open circuit voltage gain, g,, is called short-
circuit reverse current gain and g,, is called the short- 5
circuit output impedance. 1 2

The equivalent circuit of a two port network in terms Figure 9.26
of g parameters is as shown in Figure 9.26.
The network is said to be reciprocal if g;, = —g,, and symmetrical if g;,8,, — 821812 = 1.

C Example 9.13 )

Determine the g parameters of the network shown in Figure 9.27. 40 40
ocoe —/VW VW
Solution To find g, and g,,, open-circuit the output port i.e.

,=0 Vi 1Q 2Q Vo
I1x6| 34 I 7
‘/1211[4"‘ :|=_ 1= 8= i
1+6 7 V112=0 34 Figure 9.27
. — . 1 I,
Applying current division the currentin 2 Q = [ X ————=—
1+4+2 7
I V. 2/7 1
Vy=2x Lt=g =% =——=—
7 il ., 34/7 17
=

To obtain g, and g,,, short-circuit the input porti.e. V; =0

[4+1jj}x2 24 v 24
K STt W ]
44— |+2 2lvi=o0
1+4

2 11 I -1
-1 =1, X X =—. %X — —
=) 417144 172787 T

V=0

P
5
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( Example 9.14 )

Determine the g parameters of the network shown in Figure 9.28. (X X )
. - 1 2Q 4h 20 2
Solution To find g;; and g,,, open-circuit the output +o W 4 W, o+
port i.e. I, = 0. Let the currents be shown as in h l2
Figure 9.29 (a). 2 20 20 Vs,
Applying KVL
20 =21, — 1)+ V,=0=4I, -2, =V, Rt >
/ Figure 9.28
41, =21, +2(I, -1,)=0=>1,=--1
2 1 2Q 4l 2Q 1,=02
+0 VAV + VvV, 0 +
Substituting, we get Iy . . I
; ] Vi | 320 7] 320 Vs
5SL=V, 28g,=—| =<5 (h=1a) I
4 1,=0 > -o o~
1) 2
Vo] =—1 ——£:>g _& _l Figure 9.29 (a)
2 =2l =740 = 21 = =
5 Vi 1 <0 5
To obtain g, and g,,, short-circuit the input port i
ie. V; = 0. Let the currents be as shown in 1 I ﬁ/\g}\l A 4 e oot
Figure 9.29 (b). T +(T1’_ o), |V + 2= 1)
Applying KVL 2 |S20 20 Vo
=201, -2(1,+1,-1,)+V, =0 ]~ I
= 21, + 41, =21, =V, e D c i
=21, =21, =0=1,=-1, Figure 9.29 (b)
Al -2, +1, - 1,)+2[, =0=—-6I, —=2I, +41, =0
Substituting 7, in equations and solving we get
1
I, =—=1
1 52
I, -1
812 =75 = =
2 Vi =0
Al 4 16
SO 411+412=V2:>—§12+412=V2:>?I2=V2
V., 16
82 = 1_2 = ? Q
2 V=0
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9.8 || RELATIONSHIP BETWEEN PARAMETERS

1. Explain ABCD parameters in terms of Y

To make analysis of a two port network easier, any set of
parameters can be expressed in any other set of parameters
by appropriate algebraic manipulations and comparison of
standard equations with the equations written. The summary
of relationships between various parameters is given in

parameters.

[PTU, 2011-12]

2. Derive transmission parameters in terms of
hybrid parameters.

3. Obtain hybrid parameters in terms of

[PTU, 2011-12]

Table 9.1. admittance parameters. [PU, 2010]
Table 9.1 Interrelationship between two port parameters.
VA Y h ABCD g A'B'C'D’
i Yy M) |[A mo] A ar] |[L zse] [[p 1
7 Zy le} AY AY hy3 hy c C 811 8n c
(20 Zn b hy TR 1 2 Bu Ag et A
AY AY hyy Iy lc C g an L
(2, -2, | 1 —hy, (D -ar] |[ A s2] [[ &4 1]
v AZ AZ Y, Ty by hy B B 82 8 B’ B’
Zu Zu || Yo hy AR LA 8 L || ZAT D
L AZ AZ _h11 hyy |l B B | 82  8» | B B’ |
Az Z, |1 (8 ar] |[82 =sel|[ B 1]
n Zy Zy Y, Y, hy; h12:| D D Ag  Ag A A
_Zy 1 |||t AY I L 8 gu ||| ZAT C
L Zn Zn]|lYn T LD D L A¢ Ag LA A
(Zy Az [ Y ] [[_an (1 &» 2 1
Z Z Y Y, h h A B 0 0
ABCD 21 21 21 21 21 21 821 821 A]: AT:
1 Zy _AY Y| ||l L ]|LC D s A OO O
| Zo1 2y | Y Y Iy, hy, L 821 & AT" AT’ ]
_L —Zin [ AY Y, hy  —hy _E —AT | _ O
5 Zy,  Zy Yy Yp Ah Ah A A 811 812} D D
Zy AZ 1y 1 “hy oy LB L8210 82 AT B
Zy Zy ||| Y Yo A AR ]| LA A LD D
[z, Az] |[-%y -1 RENCTE D B |[-28 -8
Z, Z Y, Y, hy, h AT AT g g A B
ABCD’ 12 12 12 12 12 12 AT AT 12 12 ) ,
1z —AY T hy  An C All|lzu L ||l D
| Ziy Zpp | Yo Y, _h12 hyy LAT AT | L 812 812
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where AZ =Z,,Z,, - Z,,Z,,AY =Y,,Y,, = 1;,1,,
Ah = hyyhyy = hiphyys Ag = 81185, = 812821: AT = AD — BC; AT = A'D" - B'C’

C Example 9.15 )
The Z-parameters of a two-port network are Z,; =10 Q, Z,, =20 Q, Z,, = Z,, = 5 Q. Find the ABCD-

parameters of this two-port network. ocoe
Solution
A:ﬂ B= 2,12y — 21,2y, C:L D:@
Zy Zy Zy Zy
A:%zz p=10X2025X5 450 c:%:o.zs D:25—0=4

C Example 9.16 )
Find the Y-parameters of the circuit shown in Figure 9.30. Then find the ABCD parameters. OO O

I 4 kQ I
+1c ! YAVAVAY Z g+
Vi 2Q 20 W
1k 24
Figure 9.30

Solution When V, =0, the equivalent circuit for the given network is as shown in Figure 9.31 (a).

Vi =4 x10° (1, +1,)

1 I 4 kQ I 2 1 1 _4kQ, [, 2
By current divider ° VWA © A
3 + *([1 +[2)
_ 4 <10 _ -1 Vi 4kQ 4kQ | = Vv 4kQ
12_ Il 3 3 | Il
4%x10° +4 %10 2 a
: = ;
V,=4x10° (11 —111)=2><103(11) @) (b)
2 Figure 9.31 (a)
Iy 3
Y, ==  =05x107S$
Whoco
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V, =4x10° (=21, + I,) =—4 x10°(1,)

=-0.25%x107S
V5 =0

Y, ==
1

When V, = 0, the circuit becomes as shown in Figure 9.31 (b).

V, =4x10°(1, +1,) (O T ni 4k pa2
By current divider +
el . 4 kQ 4kQ V, = (,1+,2)l 4kQ Vs
=ty 3 3075 2 }
4x10° +4 %10 2 7 - o e
(©) (d)
V, =4x10° (—%12 +11)=2 x10°(1,) Figure 9.31 (b)
12 =3
Y, =—2 =05x107S
2 =0

V, =2x10°(=21)) = -4 x10°(I,)

Il =3
Y,=- =-025x107S
V=0

0.5x107° —-0.25x107°

So the Y parameter matrix is
-025x107  0.5x107

The ABCD parameters are

-3
A:—i __05x10

Y,  025x107°
1 1
B=—— = =4000
Y,  -025x10°
c= AV __Ni¥n Yol 75,407
Y Y
po_Yu___05x107%

Y,, —025x107
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(" Example 9.17 )

Find the Z and % parameters for the network shown in Figure 9.32. 000
o209 ok 20 o,
o—/ W\ % VVV
+

Vi /Ih izsz/l:h §4Qﬁz\ Va

e}

ol

Figure 9.32
Solution

Applying KVL to mesh 1 Vi =21, +2(, - I;) =41, - 21,

Applying KVL to mesh 2 V, =21, +2(, + I,) =41, + 21,

Applying KVL to mesh 3 2, - 1) +4L+2(,+1,)=0=1, + I, =-2I,

Substituting and solving V,=5I,+1L,V, =—1, +3I,
Comparing with standard equations for Z parameters

T g || [5 1
Z, Zyn| |-1 3

h parameters

Iy, =£= 212y, — 212y, :E hyy :izl
Zy Zy, 3 Zy 3
hz1=_i=l hzzzL:l
Z,, 3 Z, 3

9.9 || INTERCONNECTION OF TWO PORT NETWORKS

Simple two-port networks can be interconnected to form an equivalent network. The parameters of this
network are related to the parameters of the component networks. The various types of interconnections
are given below:

9.9.1 Cascade Connection

The cascade connection is also called tandem connection. In this connection the output port of one
network is the input port of the other. When two ports are connected in cascade, we can multiply their
individual transmission parameters to get overall transmission parameters of the cascade connection.
The cascade connection of two networks N, and N, is as shown in Figure 9.33.
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Iy = 1; I I 1”2 =D
+o o <~—<o0+
¥
Vi=V] Ny Ve = VY Ny V5 =V,
-o o ———o0—
(a) (b)
Figure 9.33

The equation is
Vil_|A Bi||A B ||V,
1 - G DG Dyl

9.9.2 Series Connection

Two two-port networks are said to be connected in series if the corresponding input and output ports
are connected in series. The currents of the input ports are made equal as also those of the output ports.
The open circuit impedance matrix of the equivalent two-port

11—> I’Ix sz 4—12

network is the sum of the open circuit impedance matrices of —+-1— " | "+
the individual networks. The series connection of two networks Vix X |V
X and Y is as shown in Figure 9.34.
The describing equations are Vi l |: :|l V2
I I
|:Vli|:|:leX tZy  Zix +Z12Yi||:ll:| l y 4 y l
V. Zoix + 2oty Zopy +Z I v A
2 21x T 4oty Loax T4y || 12 h— 1, by — 1
Figure 9.34

9.9.3 Parallel Connection

Two two-port networks are said to be connected in series if the corresponding input and output ports are
connected in parallel. The currents of the input ports are made equal as also those of the output ports. The
short circuit admittance matrix of the equivalent two-port
network is the sum of the short-circuit admittance matrices
of the individual networks. The parallel connection of two
networks X and Y is as shown in Figure 9.35.

The describing equations are

{Il}z{ynx +Yy Yox +Y12Yi||:Vli|
I, Vix thy Yox+Yuy|[Va
9.9.4 Series-Parallel Connection Figure 9.35

If one port each of the two two-port networks is connected in series and the other in parallel it is
convenient to find the overall parameters of the two networks using the s-parameters. Suppose the two
networks, as shown in Figure 9.36, are connected in series-parallel.
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I Iy
" 1 + 1 + 2+ "
V4 V{| N1 123 Vé[ oV2

7 17
%4 Ny %4

Figure 9.36

The describing equations are

o[ ]
I, hy +hyy hy +h |V,

9.9.5 Parallel-Series Connection Iy I F?
. . - o %

If the input ports are connected in parallel and the output in Ny V2

series as shown in Figure 9.37, then it is convenient to obtain =
g parameters of the overall networks. Vi Z;

o . I

The describing equations are L %
’ ’7 ’ ’7 _ N2 Vé’ —
{11}:{&1"‘8’11 812"'812}{‘/1} ° —o¢———o

|2 81 +81 8ntenlllh Figure 9.37

(" Example 9.18 )

Two networks have been shown in Figure 9.38. Obtain the transmission parameters of the resulting

circuit when both are connected in cascade. cee
10Q 10 Q 10 Q 10 Q
o—/\\VV VAVAVAY o o—/\\/\ VWV )
5Q 10 Q 5Q 10 Q
O 0 O 0
Figure 9.38

Solution Let us find the ABCD parameters of one network as shown in Figure 9.39.
The output port is open circuited i.e. I, = 0.

| 205 0|1 =14,
20+5



Two-Port Networks & 9.21

I
Current in the 10 Q resistor = /, (ﬁ) = ?1 L e
+ + 1 10Q 10Q 2
I +0—AMW VWV o +
V, =10><?1=211
Vi 50 100 V2
I
c=-1 =05S " o
£ I, =0 1 o>
Fi 9.39
Az& =ﬂ=7 igure
V, hy=0 21,
The output port is short-circuited i.e. V, =0
v (lox5 ), 40,
10+5 3
Applying current division
1 I
_IZ:II(L]z_IﬁD:_l :3
5+10) 3 -1, v, =0
Vi
B=—L =40 Q
-1, Vs =0
7 40

So the ABCD parameters are { } As the two networks are identical, the transmission

05 3
parameters of the equivalent network in cascade is given as

7 40| [7 40]_[69 400
05 317105 3| |5 29

( Example 9.19 )

Determine Z parameters of the network shown in Figure 9.40. An identical network is connected
in series with this network. Obtain the Z parameters of the overall network. Also verify by direct

calculation ooe
6Q 6Q 6Q 6Q
o—/\VWN—TFTNMN—>0
3Q
g 3Q
3Q
(o] 0
6 Q 6Q
(a) (b)

Figure 9.40



9.22 & Circuits and Networks

Solution To find Z,, and Z,,, the output terminals are open circuited.

V, =(6+3)1, =9I,

=3Q

L=0

V.
V,=31,=Z, ==
1

To find Z,, and Z,,, the input terminals are open circuited.

V.
V,=(6+3), = Z,, ==
2

=9Q

L=0

=3Q

V.
V=3, =7, =I—1
=0

2

So the overall Z parameters of the combination circuit is
9 3 . 9 3| I8 6
39 |3 9] |6 18

V,=(6+3+3+6)I, =181,

By direct calculation

v,
Z,=- =18Q

1
Ll =0

V.
V,=(3+3)I, :>221=1—2 =6Q

1

12=O

To find Z,, and Z,,, the input terminals are open circuited.

=18Q

V.
V,=(6+3+3+6), = Z,, =I—2
L=0

2

=60

v,
Vl=(3+3)12:>212=1—‘
;=0

2
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( Example 9.20 )

Determine Y parameters of the network shown in Figure 9.41. An identical network is connected in
series with this network. Obtain the Y parameters of the overall network. (oY X )

60 30
6Q 60Q f1s

3Q

3Q 1 \Volt

Figure 9.41

Solution To find Y, and Y,,, the output terminals are short circuited.

3% 6 I 1
Vi=l6+222 |1 =81, =¥, =-L =-0
3+6 Vi 8
5L=0
Using current division rule —J, = fy X3 = I = -1, = LA
3+6 3 318
Hence, Y, = 1_2 = __1 S
|4 ¥y =0 24
To find Y, and Y,,, the input terminals are short circuited
1
L =S
3 X6 V, V=0 8
3 346
Using current division rule —J, = 1 %2 12 -1, = v
3+6 3 318
Hence, T = 1_1 = __1
V, "=0 24
So the overall Y parameters of the combination circuit is
LA I I O B I I
8 24 8 24 4 12
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9.10 || TERMINATED TWO-PORT NETWORKS

If the two-port network is terminated into a load impedance at either output port or input port, then
it is possible to express input impedance or output impedance in terms of the parameters of two-port
network.

Table 9.2 Driving point impedances in terms of two port networks.

In terms of Z In terms of Y pa- In terms Intermsof Intermsof Interms of
parameters rameters of ABCD A’B’C’D’ h param- g param-
param-  parameters eters eters
eters
pr1v1(rl1g pomtt Z - Z15Zy, Y +Y; AZ, +B | B -DZ, AZ, + hy, 1+g»Y,
impedance & Z+Zy | Y (Y +Yoy)—YoYy | CZ,+D | CZ —A | 1+hpZ, | DY, +a

input port V,/I;

Driving point , ,
EP A+ 257, Y, +Y, DZ,+B | A'Z +B hyy + Z, 8n +A,

impedance at 7 17 - -
. Ay +YY CZ +A C’Z +D A, +hyZ 1+g.Z
input port V,/I, s v Tt s s n Tl 811Zs

Note: The above relations are obtained when V, = 0 and /, = O at the input port.

C Example 9.21 )

The currents /; and /, at input and output ports respectively of a two port network are expressed as

I 1= 5V1 — V2
L=-V,+V,
Find the Y parameters. If a load impedance of (3 + j5) Q is connected across the output port, find
the input impedance. (oYo) )

Solution Comparing the equations with the standard Y parameter equations
Here the load impedance is Z; = (3 +j5) Q
1 1 3 5

Z, 3+j5 34 ‘34

Load admittance Y; =

1422

Y, +%, 24 Yag

The input impedance Z;,, = Y 2 L = 34 " 34
L B ) =Yl 5o iR esxo— j>
34 34

Z, =0.248.1.89°Q
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9.11 || IMAGE PARAMETERS

In a two-port network, if two impedances Z;; and Z, are 1. Whatare image and iterative impedances?

such that Z,, is the driving point impedance at port 1 when [BPUT, 2007]
the port 2 of the network terminates into Z, and Z;, is 2 Explainreciprocal and symmetrical net-
the driving point impedance at port 2 when port 1 of the works. [PTU, 2011-12]

network terminates into Z;;. Then the two impedances are

called image impedances of the network and can be expressed in terms of two port parameters as shown
in Figure 9.42.

1 L L 2
+ +
T rt
1 o>
Figure 9.42

Z,, is the input impedance measured from port 1 with port 2 kept open, Z, is the input impedance
measured from port 1 with port 2 kept shorted, Z,, is the input impedance measured from port-2 with
port-1 kept open and Z,, is the input impedance measured from port 2 with port 1 kept shorted.

v, = Av, — Bi,
iy =Cv, — Di,
When port 2 is open V—‘ :% and when port 2 is shorted ﬁ = B
i i
. v, D . v, B
When port 1 is open —= =— and when port 1 is shorted —==—
i, C Iy
A B D B
Therefore, Z,, = C Zy :BZzoz EZZSZ n

The image impedances are given in terms of ABCD parameters as follows
AB
Z,=Z, 2, =, |——
il lo~1s CD
BD
Zi2 = \jZZUZ2s = E

A third parameter required to completely describe a reciprocal two port network is determined from

N i . . . . .
the ratios —-and — when the second port is terminated in Z;, and V, is applied at the first port. The
2 —h
geometric mean of these two ratios is expressed as the exponential of a number y which is called the
image transfer constant. The image transfer constant yis given by
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1 1Z V4 _; |BC
y=tanh™ |=2% =tanh™ iztanhqu—
Z,, Z, AD

C Example 9.22 )

Find out the ABCD-parameters of the network as shown in Figure 9.43. Also find the image parameters
for the network. cee

20 3Q

Figure 9.43

Solution To find A and C, open the output port as shown in Figure 9.44 (a).

ali 22 ()p 3Q (2 L p
V= 5><5+2 I, =451, +T VWV W\ +
5+5
s i 5Q 20
Current in 2 Q Iy=| ——— |1, =051, _l =
5+3+2 a b

Figure 9.44 (a)
I
V,=2x05I =1xI, = C=-1

=18
2 1,=0
R R, LY
Valoo 1

To find B and D, short the output port as shown in Figure 9.44 (b).

T 2:0) 1 3Q 2 I i 2Q I I
T vV (1) A (2) 2 tf+ T AR, 3 2
T 50 20 ‘Ifo:”f e

b
Figure 9.44 (b)

v=[2X3 o =3
5+3 8
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1
By current division, -1, = i Il=§II=>D= ] :§
5+3 8 L, _, 5
5=
p=| 31
_12‘/2:0 5

Image parameters are T = ﬂz M=4.18§2
"=\cp 1x1.6
z, [BD _ 62X16 _| 100
AC 4.5x%1
y =tanh™' ,/E=1.643
AD

9.12 || ATTENUATION AND PHASE SHIFT IN SYMMETRICAL
T AND m NETWORKS

For a symmetrical reciprocal two-port network, the two image impedances Z;; and Z;, are equal and the
image impedance is then called characteristic impedance or iterative impedance Z;. It is given in terms

B
of ABCD parameters as Z, = \/g =\Z,Z, where Z,.and Z are open and short-circuit impedances

measured at any pair of terminals.

V 1
The two transfer ratios — and —-—, when the second port is terminated in Z;, and V| is applied
2 2
to port 1, will be equal for a symmetric network. So the image transfer constant e’ can be considered
as the ratio between input and output currents of the network when the network is terminated in its
characteristic impedance. In such case, the number Y is called propagation constant and is given by
Y =0+ jB where o is the attenuation coefficient and [ is the phase shift coefficient or phase constant.

I
In such case yis given by y = log, (I—lj .
2

1 2 1o i 02

Zy 27, 275

1’0 0 1’0 02

Figure 9.45
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T and 7 type networks are two methods of network representation using two-port parameters as
shown in Figure 9.45. All networks which satisfy the condition of reciprocity for Z parameters or Y
parameters can be replaced by an equivalent 7 network or & network.

A filter is a reactive network which freely allows the desired bands of frequencies while blocking all
other bands. Symmetrical T or 7 networks are used to design filters. For studying filters it is necessary
to know the propagation constant 7, attenuation ¢, phase shift  and characteristic impedance Z;, of
symmetric 7 and & networks.

9.12.1 Symmetrical T Network

. . . . . V4 4
Consider a symmetrical 7 network terminated at its output terminal 21 71
with its characteristic impedance as shown in Figure 9.46. 10— MW 2
2
The characteristic impedance is given as Z, = Tl RVAVA Zin—> 22 Z)
. L 1’0 o— o
The propagation constant of 7" section is given as
Figure 9.46
Z, Z
Y= In |:1 + i + Z—O:|
2 2 Z tanh% Zo tanh%
10— MW, WW——02
Zo
sinh y
The network can also be represented in terms of characteristic 1’0 0y’
impedance and propagation constant as shown in Figure 9.47 Figure 9.47

9.12.2 Symmetrical 7 Network

Consider a symmetrical 7 network terminated at its output terminal with its characteristic impedance as

shown in Figure 9.48. 7
1

The characteristic impedance is given by 10 M, 5
2,2,
Zy= o Zon—s 27, 27, Z
L +77z,
4 1/c o
The propagation constant of 7 section is given by 2
Figure 9.48
¥ Z 4 -
e =1+—+— _
Z, 27, Zoy Sin hyg
o A o
Zsc
tanhy = | —— Zox Zox
oc Tz Tz
tanh > tanh >
The network can also be represented in terms of characteristic o o

impedance and propagation constant as shown in Figure 9.49 Figure 9.49



Two-Port Networks & 9.29

(" Example 9.23 )

Find the characteristic impedance and propagation constant of a 7" section as shown in Figure 9.50.

Verify the value of impedance with the help of open and short circuit impedances. (oYoX )
. 100 Q 100 Q
Solution From the network 1 2

z
71=1009:>21=200922=4009 400 Q
The characteristic impedance is given by o o
Figure 9.50

72 2002
ZO:\/TI+ZIZ2:\/ (ZLO + 200 x 400 =300 Q

The propagation constant of 7 section is given by

Z, Z
y=In|1+——+=2|=In|1+ 200, 30010 42876
27, 7, 2% 400 400

Verification: Open circuit impedance Z,. =100+ 400) =500 Q

Short circuit impedance Z_ =| 100 + 1005400 =180 Q
* 100 + 400

By property of symmetrical network Z, = \/ Z,Z, = \/ 500 x 180 =300 Q

C Example 9.24 )

T ocoe
1
Solution The series arm impedance of symmetrical 7 network is given as

Design a symmetrical 7 section to have Z,= 600 Q and ¥ =0+ j

7 ¥ 0+j£
=2 tanh(;) = 600 tanh| — 4 1= j248.528Q

Zy Z
The shunt arm impedance of symmetrical 7 network is givenas 4 o_rmzﬂp__q;%p_o 2
7 600 j248.528 Q | j248.528 Q
y= = = —j848.528Q Z,== _848.528 Q
sinhy .. .7@ o Y

sinh j—
4

1’0 02

Hence the symmetrical 7 network is shown in Figure 9.51. Figure 9.51



9.30 & Circuits and Networks

C Example 9.25 )

1
For a symmetrical 7w network, Z, = joLZ, = el Calculate its characteristic impedance at 500 Hz
(0]

J cee
and 1000 Hz if L= 0.1 H and C =2 uF.

Z4
Solution The symmetrical 7 network is as shown in Figure 9.52. 2 LmH °
The characteristic impedance is given by 2Z,kc=yF c=uFt2z
1
joL| ——
2,2, ’ [j(oC] ° °
Zy = = == e . Figure 9.52
\/—1+ zz, YO L er[- L
4 4 joC
L
Zy=——C
L o'l
C 4
(i) Atf=500Hz, ®=2xf= 1000z, L=0.1 Hand C =2 uF
Z,=314.18Q

(i) Atf=1000 Hz, ®=27f= 20007, L=0.1 Hand C =2 uF
Z, =—j226.58Q

is called propagation constant and is given by where 1is the attenuation coefficient and is the
phase shift coefficient or phase constant.

POINTS TO REMEMBER

1= Z,, and Z,, are obtained when the output terminals are open circuited and a voltage source is connected to the
input terminal.

I Z),and Z,, are obtained when the input terminals are open circuited and a voltage source is connected to the
output terminal.

_
22 —

1= The Z parameters are given by Z,, = i
I,=0 I

1

2=
1,=0 2

=0 1 1, =0

1= Y, and Y, are obtained when the output terminals are short circuited and a current source is connected to the
input terminal.

1= Y, and Yyare obtained when the input terminals are short circuited and a current source is connected to the
output terminal.
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L
14

1
Yy =2

The Y parameters are given by ¥, = 4
v

1

V=0 V=0 V=0

To calculate A and C parameters open the output port and connect a voltage source at the input port.

To find the parameters B and D, short the output port and connect a voltage source at the input port.
14

_12

_h
V2

po i

=0 ~h

B=
L,=0

. Vi
The ABCD parameters are given by A = 71
2

V5 =0 V=0

To find the parameters A” and C’, open the input port and connect a voltage source at the output port.

To find the parameters B and D’, short the input port and connect a voltage source at the output port.

-V,
1

D'___IZ

C/_IZ —
Il

B = =2
Vi

=0

The A’B’C’D’ parameters are given by A’ = =
1

Vi =0 L=0 Vi=0
To find A, and h,;, short-circuit the output port and connect a current source to the input port.

To obtain h,, and h,,, open-circuit the input port and connect a voltage source to the output port.

Vi Vi I I
The h parameters are given by A, = —- hy, ==L hy, = 2 hy, = =
Ly, =0 k. L=0 i V=0 L. =0

To find g, and g,,, open-circuit the output port and connect a voltage source to the input port.

To obtain g, and g,,, short-circuit the input port and connect a current source to the output port.

I

= i
812 A

12
82 =I_
I,=0 2

821
V=0

I
The g parameters are given by &;; = 71
1

=2
1,=0 b V=0

We can express any parameter in terms of other parameters in a two-port network.

In order to obtain inter-relationships between the parameter steps to be followed as

o Write corresponding parameter equations for both

o By algebraic manipulation, rewrite that equation in terms in which we want to express the given parameters.

o Compare given parameter equations with manipulated equations, we get relationship between the parameters
as desired.

When two two-port networks are connected in cascade, we can multiply their individual transmission parameters
to get overall transmission parameters of the cascade connection.

In series connection of two port networks, the open circuit impedance matrix of the equivalent two port network
is the sum of the open circuit impedance matrices of the individual networks.

In parallel connection of two port networks, the short circuit admittance matrix of the equivalent two port network
is the sum of the short circuit admittance matrices of the individual networks.

The h parameters of the networks whose input ports are connected in series and output in parallel are the algebraic
sum of the respective i parameters of the individual networks.

In two port networks if the input ports are connected in parallel and output ports in series, the overall g parameters
of the interconnected network is the sum of the corresponding g parameters of the individual networks.

If the two port network is terminated into a load impedance at either output port or input port, then it is possible
to express input impedance or output impedance in terms of the parameters of two port network.

Analysis of transmission lines under transient conditions or with aperiodic inputs is done using an alternative
way called the image parameter description.
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Two impedances called image impedances designated by Z;; and Z;,, and a constant image transfer constant
designated by y are used to describe a reciprocal linear time-invariant two port network in image parameter
description.

The image impedances are given in terms of ABCD parameters as follows

fAB
Zy = \/Zlozls = E

/BD
Zy ='\/22022s = E

The image transfer constant yis given as

Z Z
y=tanh™' [=2% =tanh™ |=1% =tanh! /E
Z,, Z,, AD

If Z is the characteristic impedance of a T section and Z;,, is the characteristic impedance of a 7 section having

. . Z,Z
the same series and shunt arm impedances, then Z, = 172 |

0T

The propagation constant of symmetrical 7 and 7 networks are same.

Attenuation constant is measured in nepers and phase constant is measured in radians.

yis called propagation constant and is given by ¥ =& + JB where ais the attenuation coefficient and Bis the
phase shift coefficient or phase constant.

For a symmetrical network, characteristic impedance Z, is given as Z; = {% =./Z,.Z, where Z,and Z  are

open and short-circuit impedances measured at any pair of terminals.

PRACTICE PROBLEMS

1
40 10 I 5 Q I
1. If z = Q for the two-port 2, 2 1Q 2
20 30 4 WW\ °
network, calculate the average power 1
L . % 10 2V, 1o Vv
delivered to 50 Q resistor. ! ! 2%
200 I, L ° °
o e Figure 9.54
100.20° V v Two port v 50Q 3. Find the transmission parameters. 000
s ! network 2
3Q
. . I
Figure 9.53 I 30 30 2
o o
+ +
2. Find the Y parameters for the two-port @ @ @
network shown in Figure 9.54. Vi 3Q V2
©° o

Figure 9.55



6. Determine the g parameters of the circuit.

. The following direct-current measurements O O @
were done on a two port network:

Port 1open  Port 1 Short-circuited
Vi =1mV I,=-05uA
V, =10V I, =80 A
I,=200pA V,=5V

Calculate the inverse transmission

parameters for the two port network.

. Determine the /# parameters of the circuit.

I
Iy 12Q 2
° o
+ +
V; 120 120 V,

ol
ol

Figure 9.56

ocoe
I
It 12Q 2

+0
+0

<

1 12Q

ol
ol

Figure 9.57

7. DeterminetheZ, Yand Transmission param-

eters of the network shown in Figure 9.62.

14 514

1, 10Q

1002

Figure 9.58

. Two identical sections of the network O @ @

shown in Figure 9.59 are connected in
parallel. Obtain the Y parameters of the
combination.

14 Iy

AN <2
+ +
T 1Q 20 T
V4 2Q 4Q V,

! }

Figure 9.59
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. The Z parameters of two port network are O @ @

Z,1=2Z,p=10Q

2y =2;p=4Q

If the source voltage is 20 V, determine /|,
V,, I, and input impedance.

14 I
—_— -~ 2

Vs ©

Vo 20Q

O—— < —0

-

o>
Figure 9.60

10. The h parameters of a two-port network

shown are h;; =1 Q, hj, = —hy; =2 and
hy, = 1 S. The power absorbed by a load
resistance of 1 € connected across port 2 is
100 W. The network is excited by a voltage
source of generated voltage V, and internal
resistance 2 . Calculate the value of V

2Q I I
+ +
V4 | Network Vs 2Q
Figure 9.61

11. For the given two-port network in Figure O @ @

9.62, calculate the Z parameters and the
image parameters.

, 209 30Q g
1 VW AYAAY 2
+ +
Vi 10Q Vo
1/ - - 2/
Figure 9.62

12. If the measurements made on a box @ @ @

enclosing a two-port network are
Zioc=402£0°Qand Z,4- =20.3 £29.8°
Q. Find values of characteristic impedance
and propagation constant along with
attenuation constant and phase constant if
the network is symmetrical.
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MULTIPLE CHOICE QUESTIONS

1. Two two-port networks are connected in cascade. The combination is to be represented as a single two- OO @
port network, by multiplying the individual

a. Z parameter matrices b. Y parameter matrices
c. h parameter matrices d. ABCD parameter matrices
1
0 ——
2. The short-circuit admittance matrix of a two-port network is | 4 . The two port network is (e X )
- 0
2
a. Non-reciprocal and passive b. Reciprocal and passive
c. Non-reciprocal and active d. Reciprocal and active
3. An open circuit reverse voltage gain in h-parameters is a unitless quantity and generally equivalent to [eJoX )
a. V, /I, (keeping V, =0) b. I,/1, (keeping V, =0)
c. V, 1V, (keeping I, = 0) d. I,/V, (keeping I, =0)
4. For the two-port network shown in Figure 9.63, the short-circuit admittance parameter matrix is o X ]
05Q
10 VWA 02
05Q 05Q
1’0 0y
Figure 9.63
@ 4 =2 ) 1 =05 © 1 05 @ 4 2
a c
-2 4 -05 1 05 1 2 4
5. What does the connectivity of energy source at the port of network known as? [eYoX )
a. Driving Point b. Transfer Point c. Bothaandb d. None of the above
6. Which elements act as independent variables in Y-parameters? ooe
a. Current b. Voltage c. Bothaandb d. None of the above
7. A two-port network is represented by ABCD parameters given by [eX X ]

e o]

If port-2 is terminated by R;, the input impedance seen at port-1 is given by

A+ BR, b, AR, +C . DR +A 4 B+AR,
C+DR; BR;, +D BR, +C D +CR;
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8. The h parameters of the circuit shown in the Figure 9.64 are bind cee

I
I 10Q 2

-~

o VW o
+ +

Vi 20Q Vo

° o
Figure 9.64

0.1 0.1 10 -1 30 20 d 10 1
0.1 03 1005 “ 120 20 -1 005
9. For a two port bilateral network, the three transmission parameters are givenby A =6/5;B=17/5andC OO @
=1/5, what is the value of D?

a. 7/5 b. 12/5 c. 3/5 d. 9/5
10. Which parameters are widely used in transmission line theory? ooe
a. Z parameters b. Y parameters c. hparameters d. ABCD parameters
ANSWERS TO MULTIPLE CHOICE QUESTIONS
1. (d) 2.(c) 3.(c) 4. (a) 5.(a)

6. (b) 7.(d) 8. (d) 9. (a) 10. (d)






Fourier Method of
Waveform Analysis

CHAPTER OUTLINE

= Fourier method of waveform analysis = Fourier transform and inverse Fourier transform
= Frequency spectrum of periodic signal = Fourier transform of periodic signals

= Fourier series as trigonometric series > Fourier transform of some functions

t==  Complex Fourier series and properties = Properties of Fourier transform

10.1 || INTRODUCTION

This chapter introduces Fourier series and Fourier transforms which are the basic frequency techniques
for finding responses for periodic and non-periodic voltages and currents in networks. Fourier series
describe periodic signals while Fourier transforms describe non-periodic signals. The introductory
sections discuss the sinusoidal and exponential expansion of periodic waveforms in circuit analysis and
the second part explain the expansion of aperiodic waveforms in terms of sinusoids.

FOURIER METHOD OF WAVEFORM

ANALYSIS
[

A real-valued time function x() is said to be periodic if there 1. What do you understand by Fourier

exists a positive time constant 7 such that x(t + T) = x(1) analysis?

for all time 7. The Fourier theorem states that any arbitrary

periodic function can be represented by an infinite series of sinusoids of harmonically related frequencies.
This infinite series comprising of the sum of sinusoids at the fundamental and harmonic frequencies and
representing a periodic function is called the Fourier series and the process of representing a periodic
function by a Fourier series is called Fourier analysis. Fourier series can be represented either in the
form of infinite trigonometric series or infinite exponential series. Fourier analysis is applied mainly to
complex periodic signals and not those of sinusoidal shape. Fourier analysis consists of two operations —
(a) determination of the coefficients and (b) decision on the number of terms to be included in a truncated
series to represent a given function within permissible limits of error.

10.2




10.2 & Circuits and Networks

10.3 | FREQUENCY SPECTRUM OF

PERIODIC SIGNAL
L]

A pure sine wave is completely specified by its frequency 1. A periodic signal can be expanded into a

(or basic period), its amplitude, and its phase at time number of discrete frequency components.

t = 0. But in case of more complex periodic signals, the Discuss.

frequency alone does not completely specify the signal;

one has to specify the content of each cycle as well. Complex periodic signals have, in addition to
their main frequency, many other component frequencies. Specification of the contributions of all these
components determines the signal. This specification is called the signal’s spectrum. Any periodic signal
can be represented as the sum of a finite or infinite number of sinusoidal functions whose frequencies
are harmonics or integer multiples of fundamental frequency. These sinusoidal functions, as a group, are
called frequency spectrum of that periodic signal. Fourier series is a way to find spectrums for periodic
signals by representing the signals in frequency domain. Line spectrum is the representation of the
signal f(7) in frequency domain. It indicates the amplitude and phase of various frequency components
present in the given signal.

FOURIER SERIES AS

194 || TRIGONOMETRIC SERiES

The mathematical conditions under which a convergent 1. Explain Dirichlet conditions of Fourier

Fourier series can be written for a periodic function are analysis.
known as Dirichlet conditions and are given as 2. Discuss the effect of symmetry for
1. The function f(?) is a single-valued function within a periodic function to determine the
the period T, trigonometric Fourier series coefficients.
p ' [RGTU, 2013]
2. The ful}ctign f(t)' must be continupus in the period 3 \Whatis waveform symmetry?
T. If it is discontinuous, the function f{f) must have [RGTU, 2014]

finite number of discontinuities in the period 7.
3. The function f{¢) has a finite number of maxima and minima within the period 7.
to+T
4. The function f{t) is absolutely integrable, that is, J. | f (t)| dt < o for any t,.
0]
If a periodic non-sinusoidal function f{(#) of period T satisfies the above Dirichlet conditions, then the
function can be expanded into an infinite trigonometric Fourier series as
f(t) =ay + a,cos wyt + a, cos 2wyt + -+ + a, cos nwyt + -+ + by sin @yt + b, sin 2wyt
+ -+ b, sin nayt + -

f(O=a, + Y, (a, cosnwyt + b, sinnwyt)

n=1

2
where @, — the fundamental frequency = 7”
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na, — the n'™ harmonic of fundamental frequency
ay, a,, b, — the Fourier coefficients

n’ n

The Fourier coefficients ay, a, and b, can be evaluated using following expressions:

1 T +1g
ay=— | f@at
T
2T+zo
a,=— j f(t) cosnwytdt n>0
T,
2T+t0
b= | fsinnw,t dt n>0

fo

10.4.1 Use of Symmetry in Evaluating Fourier Series

Waveforms may not have cosine terms or sine terms because of certain types of symmetry associated
with them, which results in some Fourier coefficient being absent from the series. If such symmetries
are recognized, it simplifies the task of calculating Fourier coefficients in the Fourier series analysis.
The four types of waveform symmetry, which can be identified are:

e Even-function symmetry

e Odd-function symmetry

e Half-wave symmetry

e Quarter wave symmetry

1. Even Function Symmetry

For any function f(7) if f(t) = f (-¢) it is called even function. The Fourier series of an even function
consists of a constant term and cosine terms only.

2, Odd Function Symmetry

For any function f(¥) if f (—f) = — f (¢) it is called odd function. The Fourier series of an even function
consists of sine terms only.

3. Half-wave Symmetry

A periodic function f{¢) is said to have half-wave symmetry if f(¢) = —f(t - g)

If the waveform has half-wave symmetry, the second half of each period looks like the first half turned
upside down. In a half-wave symmetric function, both a, and b, are zero for even values of n.

4. Quarter-wave Symmetry

A waveform is said to have quarter wave symmetry if it has both half wave symmetry and symmetry
about the midpoint of the positive and negative half cycles.
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The effect of symmetry for a periodic function to determine the trigonometric Fourier series
coefficients is summarized as follows.

Symmetry Fourier Coefficients

1. Odd function
St =~f=1)

a, =0forall n
T2
b,=— [ f(t)sinnwyt dt
r 0

2. Even function

o) =fi=1)

b, =0forall n
T2
a,== [ f(t)cosnayt di
T 0

3. Half-wave symmetry

T
f(t)—f(f—g)

ay =0
a, =0for even n

b, =0forevenn
T2
a,=— || F(@) cosnaytdt for odd n
0

4 T2
bi=7 | Fsinnay d for odd n
0

4. Quarter-wave symmetry Half-wave
symmetric and symmetric about
the midpoints of the positive and
negative half-cycles

A.0Odd function: a,=0,a,=0foralln

b, =0forevenn
T/4
by=7 | f@)sinneyt dt for odd n
0

B. Even function: a,=0,b,=0forall n

a, =0 for even n
T/4
a, = 7 J Sf(t)cosnwyt dt for odd n
0

C Example 10.1 )

Find the Fourier series expansion of following periodic function.

fix) = %(ﬂ—x) in-T<x<T

Solution The coefficients of associated Fourier series can be determined as following:

2

2

1% 1 1 "
ao=—J‘f(x)dx=—J-—(7r—x)dx:_[ﬂx_x_} =1
T r:.2 207 r

Note: Difficulty Level —> O O @ — Easy; O ® ® — Medium; ® ® ® — Difficult

cee
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17 171
a,=— j f(x)cosnxdx =— J —(m — x)cos nxdx
et n_ﬂz

a, :L[(n L (—1)[_C°§ "xﬂ =L 01=0
V3 n n . 2

_l”l e _ 1y —cosnx [ —sinnx " :(—1)"
b = J2(7r x)smnxdx—zn_[(n X) . (l)( 5 H”

" n
— n

Using the values of a,, a, and b,, in the Fourier expansion

a = oo .
f(x)=?o+2an cosnx + an sinnx
n=1 n=1

we get,

f(x)=

Ny

+ 2 (_i) sin nx
n=1

This is the required Fourier expansion of the given function.

(" Example 10.2 )

Find the Fourier series of the following periodic function whose definitions on one period is

F)= 0 —m<t<0
e O<t<r LA A

Solution The coefficient of associated Fourier series can be determined as following.

The constant term of the Fourier series is given by

1% 17 b1

ay=— | tdt=—|tdt=—

0 n;'; n! 2
17 17

a, =—Jf(t)cosnt dtz—Jtcosnt dt
ﬂ—x n-O

1t . t T
=—| —sinnt + —-cosnt =—2(cosnn'—1)

Tl n n 0 n
1 0 if n is even
= (-D)*=1=
n® D ) _2 if n is odd
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_1)n+1

(—cosnrm) =

X
1| ¢ t . 1
——cosnt =—sinnf | =—
n n

1% 17
b, == [ f(t)sinnt dt =— 1 sinmdt:—[
T, Ty Tl n 0o N

Thus the function can be represented as
T 2 (cost cos3t cosSt
+ +

Hn="-= +
0=\ T e

(sint sin2¢ sin3t )
500 |5 + SRR
1 2 3

C Example 10.3 )

Find the Fourier series of the waveform shown in Figure 10.1.

3r —>wt

Figure 10.1 [RTU, 2011] 0@ ®

Solution
A
f@= - wyt forO<wyt<rw

=0 for r < wyt <21

_ 1 2r _ 1 ”A 27
ay = { fOdi=—— { —oyd(@y) + { 0.d(w,1)

T
17A A | (@) A
= — [Coyd@) =——|—2—| == 10.1
27:{7:0(0) >l 2 |, 4 (10-D

2 T
a, == [ f(t)cosnwytd(wyt) = 2 | écootcos(nmoz)d(coot) + 2—”0.cos(nw0zd(a>0t)
2z 2m|ym b4

/4

(cosnm —1) (10.2)

2.2
0 Tn

17A All Wt
= — [ = (@) cos(nat)d(w,) = — | cos(nwyt) + —sin(nawy!)
T 0 T T n

If n is even, cos(nm — 1) = 0; therefore, a,, a4, ag, ... terms are zero.
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2A
Ifnisodd, a,=-——(.cosnwr=-1)
nn
a——%' g _ 24 = 2A
! o o2’ 25m?

2

2 :
by=7- j f(0) sin(noyt)d(w,1)

n 2
[ [= (@ sin(nayd(w,t) + | O.sin(na)ot).d(a)ot)]
0

— Ié (w,t)sin(nw,t)d(wyt)
0 T

T

Al 1l . ! -A
= —251n(na)0t) ———cosnm,t | =——(cosnrm)
o lmw n o ONT

A
If nis odd, cos nris —1, hence b, = —
nw

. . —-A
If n is even, cos nm is —1, hence b, = —
nw

From Eqgs (10.1) to (10.2), the desired Fourier series becomes

_ 2A 2A 24 V.
f@ =7 ?coswot o2 CoS Wyt — ﬁcoswot oooqr ;smwot

V . V.
— ——sin2m,t + —sin3wyt ---
2w 3r

10.5 | COMPLEX FOURIER SERIES

series is the form in which the sine and cosine terms of the form.
trigonometric form are expressed as exponential functions
with complex multiplying constants. The advantages of this form are:

e [t gives the compact representation of the Fourier series.
e It generalises the concept of the Fourier transform.

(10.3)

(10.4)

(10.5)

AND PROPERTIES
I

The exponential form or the complex form of the Fourier 1. Write the Fourier Series in exponential

e Only one integral has to be calculated, instead of three in the trigonometric form, for calculation

of Fourier coefficients.
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The trigonometric form of the Fourier series is given by

f()=ay+ Y (a,cosnwyt + b, sinnwt)

n=1

The sine and cosine terms can be expressed in exponential form as
1 Jjnogt — jnayt
cosnwyt = 5 e +e

. 1 . .
sin na)ot — ._|:e]nwot —e jna)ot:l
j2

So substituting these in the trigonometric form and after solving, the exponential form of the Fourier
series is given by

f(t)= i Cnejnwoz

n=—oo

The complex coefficients C, of the exponential Fourier series can be calculated directly from f{7)
using
to+T

C,=— (e """ dt
r 17

The effect of waveform symmetry is also present in the exponential form of Fourier series. For an
even function, sine terms are absent and hence the complex coefficients are real. For an odd function,
the cosine terms are zero and the complex coefficients are imaginary.

If C, is plotted as a function of angular frequency @, a Fourier spectrum is obtained. The Fourier
spectrum is a graphical display of the amplitude and phase of the complex Fourier coefficients at the
fundamental and harmonic frequencies and is also called a discrete or line spectrum.

( Example 10.4 )

Find the complex exponential Fourier series of the following periodic function.

f=e' (-1<t<1)

cee

Solution The period of this function is 2

1 . . 1
C = l J- ol - nimt di= l exp(—(1+ Tllﬂ')t)
25 )4 2 —(1 +nim) |

_exp(=(1+nim))—exp(l+nim) _eexp(nim)—e " exp(-nin)
—2(1+ nim) 21+ ni)

As we know that: €™ =cosm +isinTt=—1
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einﬂ :e—inﬂ :(_1)7'[

Therefore, Fourier coefficient becomes
D" e—e' (-D)'(-nim) .
— = sinh 1
(1+nim) 2 1+ n*r?

n

The Fourier series of given function is therefore
» (1 —nim)sinh 1

f=73 D Wexp(m’m)

n— o

C Example 10.5 )

Find the Complex Fourier series of the following function.

f(n=¢ if 0<tr<2 cee

Solution The Fourier coefficients may be calculated using the following integral:

1% 17
C == [ f(r)e 22 gy — = [ 2o gt
y 2if() ; {

3 2 .
1 l2 —imnt 2l —imnt
= _{[ ¢ } + ZJ ¢ dt} (integration by parts)
o

2 —inn 5 inn

2 . 2
1| -4 2 A 2i 1 s
=——t—|te™dt p=—+—|te ™" dt
2 |irn inn Tnimn

2i 1 (=2 . . .

= +— - (integration by parts again)
mn  imn \ Twin

_2(1+imn)

2_2 ’
Tn

n#0

C, can be evaluated by finding average value of function over this period.

1% 17, 4
Co=—|fdt==|t"dr=—
0 22')‘f() 22‘; 3
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C Example 10.6 )

Let f{x) = x for —w < x < 7. Evaluate confident of associated Fourier series and complex Fourier series

of f(x) on [-m, 7]. cee
Solution The Fourier coefficients are
1 3
a,=— | xdx=0.
0=" J
175 1 x "
a,=— J xcosx(nx) dx = [Tcos(nx) + —sin(nx)} =0
e n°mw niw —
1% 1 " 2 2
and b,=— J X sin(nx) dx = [T sin(nx) — ——cos (nx)} =—Zcos(nm)==(-1)""!
nm nw r T n

-
Since cos (n7) = (=1)" if n is an integer.
The Fourier series of f(x) on [, 7] is

- 2 2 1 2
Z =(=D" *l sin(zx) = 2sin(x) — sin(2x) + gsin(3x) — Esin(4x) + gsin(Sx) —.
n=1
Coefficient of Complex Fourier Series is

C = l(_l)n+1
n

n

Complex Fourier Series is

f(x)= i C,[exp(inx) — exp(—inx)]

n=oo

10.6 || FOURIER TRANSFORM AND
INVERSE FOURIER TRANSFORM
L]
Fourier Transform 1. What do you understand by Fourier
transform and what are the necessary
conditions for its existence?

We can modify the Fourier series expansion for periodic
functions such that it could represent non-periodic transient
functions. The exponential Fourier series is given by
0o 1 fo+T
f(H=" C,e"™" where C, = j f(r)e "™ dy

n=-—oo to

Whenf{?) is anon-periodic signal, as 7 approaches infinity the discrete line spectrum starts becoming a
continuous spectrum, that is, the frequency components constituting a given signal f{¢) lie in a continuous



Fourier Method of Waveform Analysis & 10.11

range. As T approaches infinity, @ approaches zero and n becomes negligible. Fourier transform is an
integral transformation of any non-periodic function f(#) from time domain to frequency domain. The
Fourier transform of any signal f{(¢) is given by

Flo]= T f()e ' dt

Inverse Fourier Transform

Consider a signal f{(r) with Fourier transform F(®) such that F(w) = F[f(t)], and F(w) is evaluated using
following expression:

Flol= | f()e " dt

—oco

An Inverse Fourier transform of F(w) is defined as f(t) = F [F(w)], and Sf(t) is evaluated using
following expression:

_ L T jot
fi=— _{, F(w)e’ dw

This pair of equations, known as Fourier transform pair, allow us to carry out the Fourier transformation
to the frequency domain and the inverse process to the time domain.

A set of sufficient conditions, (also called Dirichlet conditions) for the existence of Fourier transform,
are stated below:

e f(7) is absolutely integrable i.e. j f()dt <o

e f(?) is single valued and has only finite number of maxima and minima within any finite
interval.

e f(¢) has a finite number of finite discontinuities within any finite interval.

C Example 10.7 )
Find the Fourier transform of the signal e3tu(t). o) X )

Solution Given x(t) = e3tu(t)
The given signal is not absolutely integrable as;

u(t) = oo

—oo

Therefore, Fourier transform of x(f) does not exist.
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(' Example 10.8 )

Obtain the Fourier transform of the function shown in shown in the Figure 10.2.

(eJoX )
Solution The Fourier transform of the waveform shown in
Figure 10.2. Vi)
0o ‘ 0o _ oo ‘ 100
V(@)= [ ve ™ dt =100 e dr = [100e™10* 7 dy
e 0 0 100 =10t
10+ jo 10+ jo Figure 10.2
C Example 10.9 )
Determine the Fourier transform of the signum function shown in Figure 10.3. oY X )
Solution The function is defined as x(t)
1
sign(f)=1  fort>0 "
=0  forr=0 » :
=—1 fort<0
) . Figure 10.3
The Fourier transform of the function
e 0 o
. . . +1 1 2
X(@)= [ x()e ®dt= [ (~De ¥dt + [ e dt =—+ —=—
o e 0 Jo jo jo
C Example 10.10 )
Find the inverse Fourier transform of X(w) = jw/(2 + ja))z. X X )

Solution We know that Flte “u(t)] =

(a+ jo)’
1
Flte™ _
[te™> u(t)] Gt iop
Let te” u(t) = x,(1)
1
R '
Then 2+ joy (@)

Using differentiation in time domain property [i.e. dix(t) PR NN joX(w)], we have
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d .
F[le (t)} = joX,(®)

iy _d _d
FljoX (0)]= dt[xl(t)]— dt[te u(1)]

10.7 || FOURIER TRANSFORM OF PERIODIC SIGNALS

The periodic functions can be analysed using Fourier series and non-periodic function can be analysed
using Fourier transform. But we can find the Fourier transform of a periodic function also. This means
that the Fourier transform can be used as a universal mathematical tool in the analysis of both non-
periodic and periodic waveforms over the entire interval. Fourier transform of periodic functions may
be found using the concept of impulse function.

We know that using Fourier series, any periodic signal can be represented as a sum of complex
exponentials. Fourier transform of periodic signals are not absolutely integrable and have infinite
discontinuities. Therefore, we obtain the Fourier transform of a periodic signal by Fourier transforming
its complex Fourier series term-by-term.

A Constant Function

f()=A L F(jw) = A,né(w)

A unit Step Function

u(t) £ n8(w) + L
jo

An Exponential Function

f(O)=e™" <X F(jw) =2r8(w — w,)
Sinusoidal Function

COS @yt > T(® — ) + TS (® + 1)

sin @yt < — jré(w — w,) + jId(w +,)

(" Example 10.11 )

Find the Fourier transform of unit step function if the Fourier transform of a signum function is given
as:

2
sgn(t) ¢«—— — 000
jo

Solution A unit step function and signum function are related by the equation;
1+ sgn(¢
4 = LHsen®)
2



10.14 & Circuits and Networks

Also, we know that Fourier transform of unity is 276®.
Therefore, Fourier transform of a unit step function can be calculated as follows:

Fu(t)) = F(la ¥ sgn(t»j =L ray+ L Pesgn() = L (ms(ay) + 1(.ij - (@) +
2 2 2 2 2\ jo jo

C Example 10.12 )
Find the Fourier transform of the following function.
e”, t<0
f@)= a>0
e, 120 ocoe

Solution The Fourier Transform is evaluated as below:

o

) 0
F(@)= | f)exp(-ion)dt = [ exp(-iondt + [ e exp(-ion)dt
—= 0 —oo
_ {exp(—(a + iw)I)T . |:exp((a - ia))t)}
0

—(a+iw) (a—iw)

=)

1 1 2a
+

@ a+io a-—io g+ o’

C Example 10.13 )

Find the Fourier transform of the rectangular pulse (gate) shown in Figure 10.4. Find the magnitude

and phase spectra. cee
t
Solution Fourier transform of the pulse can be calculated as XE )
following: L
T g g i
. T T . T '
X(@)= [ edr=2"020 = o7 B o7 smc(w—) S D t
T COT 7[ _T : T
- Fi 10.4
The magnitude spectrum is, | X (a))| =2| = o ‘, o
0 sin(wT') 50
’ 1)
the ph trum is, arg{X(w)} = .
e phase spectrum is, arg{X(w)} sl _

(0]
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(" Example 10.14 )
Find the Fourier transform of the signal shown in Figure 10.5.
fit)
et
t t
Figure 10.5 ooe
Solution
T ; T ; T ; 1
F(jo)= | f(ye " dt=[e e dr=[ e 1" dt = ———
2 5 0 o+ jo
10.8 || FOURIER TRANSFORM OF SOME FUNCTIONS
This section presents Fourier transform of some important functions.
Function, f(r) Function, f(®)
Definition of Inverse Fourier Transform Definition of Fourier Transform
()= L | F@)e’™ dw F(o)= [ f(he ™ at
2r - -,
fit—19) F(w)e™ /0
e’ Flo— )
1 w
— Fl=
Rt ot [ o )
F(1) 2nf(-w)
d"
<0 (o Fa
dt
0" ) 4H@)
do
t
| r@dr @ + TF(0)8(w)
e Jo
&) 1
ok 218w~ ax)
2
sgn(?) ®
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(' Example 10.15 )

Find the inverse Fourier transform of the following Fourier transform.

1
Flw)=——"— ocee
(@) (1+iw)2+im)
Solution Carrying out partial fraction of given function
1 _ 11
(I+iw)2+iw) 1+io 2+iw

F(w)=
The inverse Fourier transform of the above function is
Foy= FF@)=F | —— L || L] L
l+io 2+iw 1+iow 2tim

{0 <0

e —e? 0<t

(' Example 10.16 )
Find the Fourier transform of the signals e“(£) u(~t). ocee

Solution Given that f(r) = e“() u(-t)
u(—t) implies that signal will exist only for negative values of ¢.

=)

X(@)=F(e"u(-n]= [ e“u(-t) e dt

—oo.

0 = —(a— jo)t
_ J‘e(a—jw)tdtzj‘e(a—jw)tdt:[ e f‘." } _ 1.
e 0 -(a-jw)], a-jo

10.9 ” PROPERTIES OF FOURIER
? || RANSFORM
. . . 1. List the properties of the Fourier

1. Linearity Transform.

The Fourier transform satisfies linearity and principle of

superposition. Consider two signals x,(#) and x,(?).

If 1) «—> F(®)

And () «—> Fy(w)
Then [a*f,(?) + bFf1(1)] «— [a*F (@) + D*F(w)]
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2. Scaling
If f()+—> F(w)

Then for a real ‘a’

fla*t) «—> L F(g)

lal a
3. Symmetry
If f(t) «—> F(w)
Then F() «— 21 f-m)

4. Time and Frequency Differentiation/Integration

If f() < F(o)
d
Then, x [f(D] < (jo)F (o)
d jf(r)dr <—>LF(a))
An i JCO
o d"
(=j0)" f(t) & —F(0)
dt

5. Convolution
The convolution of two functions f,(f) and f,(¢) is defined as:

FO®FW= [ {0 f-1)dr = [ f0)* (- 1)dT

(a) Time Convolution

If L) & F(o)

And L) o F(o)

Then FIfi()® f, (1)} & F(w)* Fy(o)
(b) Frequency Convolution

If fi(®) <> F(w) and f, (1) <> F,(®)

Then JHiO* () iFl(w) ® F,(w)

6. Time Shifting
If f() & F(o)

Then ft=1,) < F(a,)* e/
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7. Frequency Shifting
If f() & F(o)
Then fO)* '™ < F(w - w,)

C Example 10.17 )

Demonstrate the frequency differentiation property of Fourier transform. ocoee

Solution Let f(t) and F(w) are Fourier Transform pair. This implies that
f() & F(o)

F(w)= ]O f@)* e dt

Taking n'™ differentiation of both sides.

= & Fw) = E £ S_jwtdt}
dn T dn —jot
- - F(w):_J; f(t)*ﬁ[e o | ar
dn T . —jot
= —F(@)= [ fO)* (- jo)'e " dt
t b
dn T AN ) —jot
= — F(a))z_J; [0 f@ e ar
= " () < —F(w)

dar"

C Example 10.18 )

Demonstrate the frequency shifting property of Fourier transform. What is the application of this
property? foYoX )

Solution Let f(t) and F(w) are Fourier Transform pair. This implies that

f(0) & F(w)

= F(w)= T f(r)* e dr

—oo
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Shifting Fourier transform by constant frequency @,

= F(o-a,)= T fyxe @ gy
= F(o—0,)= T [f()* e/ % e~/ dt
= F(o—a,)=3{f(0)* "'}

Frequency Modulation (FM) in communication utilises the shifting property of Fourier transform.
The carrier signal is frequency modulated using the base signal and results in efficient transmission
of signal.

(' Example 10.19 )

Find a particular solution of following differential equation using Fourier transform.

,, , 0, t<0
VI +3y' +2y= e

, t>0 cee

Solution Writing the Fourier transforms of both members of the equation, we have
[(i®)* + 3iw+ 2] F(w) = F(o)

Solving for Y(w), then using the partial fractions, we get

Y(a))=[

l+io 2+iw

F(a))=[ L1 }F(a))EG(a))F(a))

—0” +3i0 + 2}
Using convolution theorem of Fourier Transform

Y(0)= [ gt = Mf(A)dA=[g(t— e *dA

o 0

0 , t<0 0 , t<A
g()= e o<y and g(t — A) = JRE

Depending on how ¢ relates to the limits of integration, we have
0 , t<0

YO [ e hyap, 0
0
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Finally, performing the indicated integrations and simplifying, we obtain
0 t<0
YO=91 ., 5 1

—e —e " +—e 0t
2 2

POINTS TO REMEMBER

1=~ Even Function Symmetry — Fourier series contains only an average term and Cosine terms
1" Odd Function Symmetry — Fourier series contains only Sine terms

15" Half-wave Symmetry — Fourier series contains only both sine and cosine terms unless the function is also odd or
even

1= Complex Fourier Series provides an alternative representation of a Fourier Series by combining the sine and
cosine terms.

15" The exponential form of the Fourier series is given by

f(l)= i Cnejnmot

n=—oco

1= The complex coefficients C, of the exponential Fourier series can be calculated directly from f{(#) using
to+T

_ — jnwyt
Co=7 | fwe ™ ar
fo
15" The Fourier transform of any signal f{¢) is given by

F(w)= j F()e I at

—oo

15" The inverse Fourier transform of any signal F[@] is given by

_ L T jor
f=— i F(w)e’® dw

1=~ Step function, sinusoidal function, etc. which do not satisfy the convergence condition (one of the Dirichlet
conditions), however Fourier Transform can be evaluated for these functions using impulses.

1=~ The Fourier transform of a periodic signal consists of a train of impulses in the frequency domain. The area of
these impulses is directly proportional to the Fourier series coefficients.

1" The unit impulse train in the time domain has a transform of an impulse train is the frequency domain.

1" The properties of Fourier Transform are summarised in Table 10.1. These properties can be utilized to derive
Fourier transform pairs.
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Table 10.1
Name of Property Function of Time Fourier Transform
1. Definition §(0) F(w)
2. Multiplication by constant Af(1) AF(w)
3. Linearity af, + bf, aF (@) + bF,(w)
4. Time shift ft—1) eI F(w)
. . 1 (0]
5. Time scaline flat),a>0 —F|—
a a
6. Modulation () F(o— ay)
n
7. Differentiation % (j0)"F()
t
8. Convolution | A0 £t = xdx F(@)F ()
—-X
n
9. Time multiplication "f(r) (" 4 F@)
do"
10. Time reversal fi=1) F(-w)
1 F(o
11. Integration | fyde % + TF(0)5(w)
—X

PRACTICE PROBLEMS

1. Find the Fourier series expansion for the O @ @

standard square wave.

)= {—1 (-1<x<0)

+1 (0Lx<+1

2. Obtain trigonometric Fourier series of the O @ @

signal shown in Figure 10.6?

[RTU, 2011]

Find the Complex Fourier series for the O @ @
square wave shown below.

0 for —3<x<0
f(x)={x

for 0<x<3
Expand the square-wave voltage signal, O @ @
as shown in the Figure 10.7 into a Fourier

series. [RGTU, 2014]
1
-T/4 T/4 ;
-1
Figure 10.7

Find the Fourier transform of a rectangular O @ @
pulse. Obtain the associated frequency
spectrum and comment on it.
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x(t) utilising the properties associated with the
10 transform.
9. Find Fourier transform of triangular pulse @ @ @
¢ shown in Figure 10.9.
—12 2
_ PR
Figure 10.8

6. The output of a system in response to an O @ @
input x(f) = ¢ 2u(r) is y(r) = ¢ 'u(r). Find

: _r [0 r >

the frequency response and the impulse > >
response of the system. .

7. Consider a system with having impulse O @ @ Figure 10.9
response h(t) = 2 *'u(7) for an input x(7) = 10. Evaluate Fourier Transform of Single @ @ @
3¢ 'u(1). Find the output of the system y(r). sided real exponential function e “u(r)

8. Evaluate Fourier Transform of Double @ @ @ utilising the properties associated with the
sided real exponential function e transform.

MULTIPLE CHOICE QUESTIONS

1. Any periodic function can be expressed by a Fourier series when the function has [eYoX )
(a) infinite number of finite discontinuities in a period
(b) finite number of infinite discontinuities in a period
(c) finite number of finite discontinuities in a period
(d) infinite number of infinite discontinuities

2. Fourier transform for the signal e " u(t) does not exist if oYX X ]
(@) a>0 (b) a=0 (¢) a<0 d a=1

3. In a periodic signal, the period T}, is doubled, the fundamental frequency w in the spectrum becomes [eYeoX )
(a) Doubled (b) Increased 4 times (c) Halved (d) No change

4. A periodic function x(7), with a time period 7, is said to have half-wave symmetry if x(7) is: [eYeoX )
(@) —x(r+1T72) (b) x(t+T/2) (©) x(t-T/2) d) —x(-T/2)

5. Time convolution of two signals is equal to oYX X ]
@ [0 %[0 0 F@xFy@)  (© f[O50 (d) Fy(@)/ Fye)

6. Fourier transform of an impulse function of amplitude A? 000
(a) jwA (b) A () 2/jwA (d) None of these

7. A power signal ocoe
(a) has infinite power and finite energy (b) has infinite energy and finite power
(c) is not absolutely integrable (d) is absolutely integrable

8. An energy signal foX X ]
(a) has zero power and finite energy (b) has infinite energy and finite power
(c) is not absolutely integrable (d) is absolutely integrable

9. Frequency convolution property states that [eJoX )
@ fi(0) xf) b F@xFy@  (© fi(D)/fD (d) Fy()/Fyo)

10. Fourier transform of the sgn(7) function is ooe
(@ 2/jo (b) jo © 1/jo @ 2jo
1. (c) 2.(c) 3.(c) 4. (a,d) 5.(b)

6. (b) 7. (b, c) 8.(a, d) 9. (a) 10. (a)



Introduction to
Laplace Transform

CHAPTER OUTLINE

= Definition of Laplace transform = Modelling of R, L, and C, in s-domain

5 Laplace transform of some useful time functions 1 Nodal and mesh analysis in s-domain

= Inverse transform techniques 1 Additional circuit analysis techniques in

1= Properties of Laplace transform s-domain

= |nitial and final value theorems = RMS and average value of periodic waveform
> Waveform synthesis

11.1 || INTRODUCTION

A Transform T can be regarded as a mathematical operator which operates on a function f to result in
function 7f. Thus, Transform 7 maps function finto 7f. The Laplace transform is an integral transforms
which that maps differential or integro-differential equations in the “time” domain into polynomial
equations which is in the “complex frequency” domain.

DEFINITION OF LAPLACE

TRANSFORM

The Laplace transform is a powerful analytical technique 1. Why do we use Laplace transform in circuit
that is widely used to study the behaviour of linear, analysis? [RGTU, 2014]
lumped parameter circuits. Laplace transforms are useful 2. Whatis Laplace transform? Define its

in engineering, particularly when the driving function has application. [PTU, 2011-12]
discontinuities and appears for a short period only.

One significant advantage of the Laplace transform is that it includes both stead-state and initial
conditions. The initial energy in L or C is taken into account by adding independent source in series or
parallel with the element impedance in its s-domain equivalent. Therefore, allowing to obtain both the
steady-state response as well as the transient response.

11.2
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Laplace transform changes the time-domain function f{¢) to the frequency-domain function F(s).
Consider a function f () which is to be continuous and defined for values of # = 0. The Laplace transform
is then

LfO1=Fs)= [ e f@yutydi = [ frye™di
—oo 0

Laplace transform is a function of independent variable s corresponding to the complex variable in
the exponent of ¢™. The complex variable S is, in general, of the form s= ¢ + jw, where o and @ being

the real and imaginary parts respectively.
Similarly, the inverse Laplace transformation converts frequency-domain function F(s) to the time-

domain function f'(¢) as follows:
1 +J
L'F9)]= f(t)==— [ F(s) ¢"ds
2rj 5,
An important condition for existence of Laplace Transform for a function f (¢) is

[fmedr <.
0

11.3 LAPLACE TRANSFORM OF SOME
" || USEFUL TIME FUNCTIONS
1. Unit Step Function 1. What is the relation between unit step, unit
tchi . b h . ramp and unit impulse functions?
In switching operations, abrupt changes may occur in [PTU, 2011-12]

current and voltages. This abrupt change is presented using
a step function. A Unit Step Function f{(f) = u(¢) is defined
as shown in Figure 11.1.

fit)

k
where u(t) =1 for >0
=0 for t<0

t

Figure 11.1

If the amplitude is K, then function is written as Ku(z).
The Laplace transform of a step function can be evaluated as follows:

=3

CLF= [ fwedr=[1ear=4—| =1
0 0 ) 0 S
Clu(] =1
)

This expression forms a Laplace Transform pair of a unit step function.
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2. Unit Ramp Function

The function is defined as shown in Figure 11.2.
)

slope =1
Ht) = {t for t>0

Ofort<O0

Figure 11.2

Laplace transform of unit ramp function is %

s
1)
. - _ 10, n=0
3. Unit Impulse Function 5[n] = { 1 n=0
An impulse function is represented by a vertical arrow and unbounded and (/)

discontinuous function. It is defined as shown in Figure 11.3. .
Laplace transform of unit impulse function is 1. Figure 11.3

t

11.3.1 Relationship between Impulse, Step and Ramp Function

e Impulse function §(¢) is the derivative of step function u(r)
t

e Ramp function #(f) =t u(f) or _[”(f )=r(t)=t
0

C Example 11.1 )
Define ‘unit impulse function’ and derive its Laplace transform. [RGTU, 2013] 0C @

Solution An impulse is a signal of infinite amplitude and zero duration. In general, an impulse
signal doesn’t exist in nature, but some circuit signals come very close to approximating this definition.
Due to switching operations, impulsive voltages and currents occur in circuit analysis. The impulse
function enables us to define the derivative at a discontinuity, and thus to define the Laplace transform
of that derivative.

An impulse function of magnitude K is represented as f(r) = K&(7) is repressed using the expression
as shown in Figure 11.4.

fi
where ) =0,t#0 (]
Laplace Transform of Unit Impulse Function is: k(t) ko(t - a)
oS 2 t
L8] = [ (e "dr = [ 8(rydr =1 0 =
- - Figure 11.4

The magnitude of an impulse function represents area under the curve of the function. An important
property of the impulse function is the shifting property, which is expressed as

Note: Difficulty Level — O O @ — Easy; O ® ® — Medium; ® ® ® — Difficult
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[ f@®)8-aydr=f(a)

C Example 11.2 )

What are the Laplace transforms of the voltage waveform shown in Figure 11.5? [BPTU, 2008]0 O @

Solution
0; t<0
nH=Vv
FO=Y, K;t>0&tST
T
- V-0 1=v =Y,
T-0
V(S
N A - vi =F(S)
t(S§) TS
(" Example 11.3 )
Obtain the Laplace transforms for f,(z) = t and f5(¢) = ™. [GTU, 2010] ©OOO

Solution

(a) Integration of unit step function gives the ramp function.
i

j ut)=rt)=t

0
The Laplace transform of ramp function can be determined as following:

0 1 1
L|: | u(t)dt} =] =—

0 S
clu(y) =1
)

(b) The Laplace transform for function f(f) = ¢ “is evaluated as:

Le™)= ]fe_s; et = ]fe—(s+s)t _ __l[e—(s+a)]6° — 1

0 0 s+ a s+ a

1

s+a

Pot e 1=
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11.4 || INVERSE TRANSFORM TECHNIQUES

Inverse Laplace transform can be determined using partial 1. Explain use of Partial Fraction Method
fraction method. This method is discussed for both proper in determining the Inverse Laplace
and improper rational functions. Transform.

11.4.1 Partial Fraction Expansion: Proper Rational Function

Let F(s) is the Laplace transform of function f(f) and is a proper rational function, then the Partial
Fraction Method can be utilised to obtain Inverse Laplace transform F~ l(s).

A proper rational function can be expressed in the form of a ratio of two polynomials in s such that
no non-integral power of s appears in polynomials as given below.
N(s) a,s"+a, ;s" ' +-+as+a,

F(S)Z = m m—1
D(s) b,s"+b, s" +--+bs+b,

The coefficients a and b are real constants, and the exponents m and n are positive integers. The ratio
N(s)/D(s) is called a proper rational function if m >n, and an improper rational function if m > n.
Only a proper rational function can be expanded as a sum of partial fractions.

11.4.2 Partial Fraction Expansion: Improper Rational Function

An improper rational function can always be expanded into a polynomial plus a proper rational
function. The polynomial is then inverse-transformed into impulse functions and derivatives of impulse
functions.

(" Example 11.4 )

Solve the following differential equations using Laplace transform.

2 2 .
(a) d—+%—t +21,i(07) = 4—(0 )=—2 (b) d—+4z—s1nt—cos2t i(07) = 0%(0*):0
t t 1

[PU, 2012] Cce@

Solution

(a) Taking Laplace transform of given equation:

[S21(S) - Sz<0)—z<0>]+[s1<s>-l(0)]—i3 2z

S2
[S% 1(S) - 4S + 2]+ [SI(S) - 4] = = + =
s

2 2 as+2 2 2 442

1(8) =
& S3(52+S)+S2(S2+S)+S +S  SYS+1) S3(S+1)+S(S+1)

2 2 2 2 2 2 2 2 2 2 2
=ttt +— |+t |-+t [+ =
s s s st S+1 S s 0§ S+1 S S+1
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Taking inverse Laplace transform of above expression
3
t _ _ _
=  i=-2+42-17 +?+2e P42 -2t+12 —2e +2-2¢”" =(

(b) Taking Laplace transform of given equation

L 1 S
[S21(S) — Si(0) — i (0)] + 41(S) = s
S [SPI(S) -0 0]+ 4I(S) = —— ——>—
S2+1 §*+4
1 S 1 1

2+ e

S

= I1(S)=

Taking inverse Laplace transform of above expression

sint sin?2t¢

= t(t)=T— —tcos2t

(SZ+1)(S%+4) (52447 3(S2+1) 3(5°+2°) (2 +227

C Example 11.5 )

Determine the partial fraction expansion for
10

s +10s +16

Y(s)=

Solution Using partial fraction method

10 A B
Y(s)= = +
(s+8)(s+2) s+8 s+2
10 _A(s+2)+ B(s +8)

(5+8)(s+2)  (s+8)(s+2)
= A(s+2)+B(s+8)=10
A+B =0=A=-B
2A+8B=10=-2B+8B=10

= B=10/6 =5/3; A=-5/3
Taking inverse Laplace transform of Y(s)
Y(S) = _é . L + é 1

3 5+8 3 s+42

= y()= (—ge_s’ + ge‘z’ )u(t)

ocoe



Introduction to Laplace Transform & 11.7

(" Example 11.6 )
Determine the partial fraction expansion for

st =75 +135° + 45— 12
s (s =15 =2)(s =3) eoe

Y(s)=

Solution

st =783 #1357 + 4512
s2(s=1D(s=2)(s=3)

_&_FQJF A + Ay + As

_s2 s s—-1 s-2 s-3

Y(s)=

Determining coefficients of partial fractions
st =78 +13s7 44512 12
C, =lim =
520 (s=D(s=2)(s-3) -6
_d |:s4 ~75° +135 +4s—12:|
C, = lim—
(s =D(s=2)(s =3)
_4EDED(E) = CIDIE2)(E3) + (DE3) + (D(2)]
(D23

—24+12x11
6

4 _ 4.3 2 _ _
A1=lims Ts” +13s° +4s 12= 1

=1 2 (s—2)(s—3) 2
4 3 2
- 1 4s —12
A2=1ims 7i +13s° +4s :i:_z
52 s7(s—1)(s=3) —4
st =78 + 1357 +4s-12 9 1
A; =lim 5 =—=—
553 sS(s=D(s—2) 18 2

Taking inverse Laplace transform of Y(s), we get

1 1
N=2t+3——¢ =2 +=¢
y(®) 5 5

11.5 || PROPERTIES OF LAPLACE TRANSFORM

Table 11.1 lists important properties of Laplace transform which allows to obtain transform and inverse-
transform of complex functions.



11.8 & Circuits and Networks

Table 11.1 Properties of Laplace Transform

Description of Laplace Transform Property

Linearity (Multiplication by a constant)

Mathematical Formula

Consider a function f{(#) multiplied by a constant K.
L{Kf(t)} = KF(s)

Superposition (Addition / Subtraction)

The Laplace transform of the sum of the two or more functions
is equal to the sum of transforms of the individual function.

Consider two functions f|(¢) and f,(t)
f;(t) <~ F(s) and

fo(t) £ Fy(s), then

LIAM £ [(O]= F(s) £ Fy(s)

Differentiation

If a function f{7) is piecewise continuous then the Laplace
transform of its derivative df(r)/dt is given by

Similarly, Laplace transform of second derivative:

‘ YO _ sr(s)- £(0)

LLf")=L = $?F(s) - $£(0) - f'(0)

d 4
Z(f ()

where f10) is the initial value of the first derivative of

F@.

Laplace transform of the nth derivative r d"f (1) =S"F(s)— "L f(07)—5"2 dr(0)
dt" dt
B de(O—) dn 1
-5 —f(07)
dr*
Integration
If a function f(¥) is continuous then the Laplace transform of
F (S)
L[f 1=
its integral |If(t)dt| is given by

Differentiation of Transforms

If the Laplace transform of the function f{(z) exists then the
derivative of the corresponding transform with respect to s in
the frequency domain is equal to its multiplication by 7 in the
time domain.

£ ()] =;—fF<s)

Integration of Transforms

If the Laplace transform of the function f{(r) exists then the
integral of corresponding transform with respect to s in the
complex frequency domain is equal to its division by ¢ in the
time domain

jF(s)dszg‘M‘
0 t

Translation in the Time Domain

If the function f{(¥) has the transform F(s) then the Laplace
transform of f{t — a) u(t — a) is e"F(s) (with a > 0).

LIfE—a)u(t —a)l=e CF(s)

Translation in the time domain corresponds to multi-

plication by an exponential in the frequency domain.

(Continued)
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Mathematical Formula

Description of Laplace Transform Property

Translation in the Frequency Domain

If the function f{r) has the transform F(s) then the Laplace
transform of e “f(t) is F(s + a).

Similarly the Laplace transform of e“f(t) is F(s — a).

F(s+a)= L™ f(1)]
Lle” f(t)=F(s —a)

Translation in the frequency domain corresponds to
multiplication by an exponential in the time domain

Scale Changing

The scale-change property gives the relationship between f{r)
and F(s) when the time variable is multiplied by a positive
constant.

L{f(at)} =%F(§) a>0

dF(s)
S - Derivative 110 T ds
S - Integral d"F (s
50 (—D"d—,f‘)
A
M J.F(u)du
t N
C Example 11.7 )
Find the Laplace transforms of 7 cost. cee
Solution We know that L{cost}= 3
s”+1
n n dn
Therefore, we can work out from L{t" f(t)} = (=1) e {F(s)}
s
d? s
L{t* cost} = —
ds* (sz + lj
Find the first derivative
s
s*+1
z=£,a=s,b=s2 +1,@=1,@=2s
b ds ds
da_ db
dz _"ds “ds _ (5 + D)= ()2s)
ds b (s* +1)°

dz_(sS+D)-@2s%) _ 1-¢
ds (s +1)?° (s +1)?°
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Differentiate again.
1= s
T
z=%,a=1—s2,b=(s2 +1)%,

da db

=25, —=4s +4s=4s(s2 +1)
ds ds

b@ = a@ 2, 2 2 2
dz_"ds —ds _ (5" +1D7)(28) = (1= 57)(4s(s” + 1)

dz _ =25(s* +1)* —4s(1=s*)(s* +1) _ =2s(s> +1)' —4s(1-5°)
ds (s> +1* (s> +1)°

_ —25° =25 —4s +4s° _ 25 — 65
(s> +1)° (s> +1)°

C Example 11.8 )

cee

2
Given that L{sin2t}= T 4’ find the Laplace transform of #sin 27.
ST+

Solution Using Laplace transform property L{tf(z)}=— F’(s)

ds\ s> +4

Upon differentiating above expression

Therefore L{tsin2t}:_i( 2 J

Therefore L{tsinzt}:—i 22 = 24s R
ds\s”+4) (s~ +4)

11.6 || INITIAL AND FINAL VALUE THEOREMS

The initial- and final-value theorems are useful because 1. State and explain the initial and final
they enable us to determine from F(s) the behaviour of values theorems. [GTU, 2012]
f(t) at t = 0 and ¢ = . Hence, we can check the initial and

final values of f(¥) to see if they conform to known circuit behaviour, before actually finding the inverse
transform of F(s).
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1. The initial-value theorem states that
lim f(¢) = lim SF(s)
t—0 §—o0

The initial-value theorem is based on the assumption that f{f) contains no impulse functions.
2. The final-value theorem states that

lim f(z) = lim SF(s)
f— o0 s—0

The final-value theorem is useful only if f{e) exists.

11.7 || WAVEFORM SYNTHESIS

Basic functions such as impulse, step and ramp functions can be utilised to synthesise any waveform.
These signals may be combined by addition or subtraction to build a variety of general waveforms used
in practice.

(" Example 11.9 )

Use ramp function to express the waveform shown in Figure 11.6. ocoe
fit)

Solution The waveform shown in Figure 11.6 starts at ¢ = 0 and ends

at =15 seconds. 20
The waveform in Figure 11.6 is combination of a ramp function
r(t) =4 r(¢) at t = 0 and another ramp function r(¢#) = —4r(t—5) at t = 5. o| 5 #(sec)
Therefore, the waveform can be written as: f(f) =4 [r(t) — r(t —5)]
Figure 11.6
( Example 11.10 )
Use step function to express the waveform shown in Figure 11.7. ocoe
3 —
Solution The waveform shown in Figure 11.7 starts at ¢ = £, and
ends at ¢ = #, seconds. The waveform is combination of the following
step functions. fo b B|Time
1. 3u()att=t, 3l
2. —bu(ratt=t,
3. Bu(att=t, Figure 11.7
Above step functions can be added to get expression for the
waveform

ult —1,) - 2u(t — 1)+ u(t —1,)]
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11.8 MODELLING OF R, L, AND C, IN

Electrical circuit elements R, L and C can be modelled in
Laplace Transfer domain (i.e., s-domain). The initial energy
in L or C is taken into account by adding independent
source in series or parallel with the element impedance in
its s-domain equivalent.

>DOMAIN

1. Obtain the domain (Laplace transform)
equivalent circuit diagram of an inductor
and capacitor with initial condition?

[MU, 2014]

1. For a resistor, the voltage current relationship in the time domain is:

v(t) = Ri(?)
Taking the Laplace transform:
V(s) = RI(s)
2. Similarly, for an inductor, taking Laplace transform of voltage-current relationship
di(t ) 1 i(07)
w)=L—— I(s)=—V(s)+
" (9)=—-V(s)

Equivalent Circuit representation in s-domain is as shown in Figure 11.8.

i) £s)

l(o) i)
V(s) Okrs

Flgure 11.8

3. For a capacitor, taking Laplace transform of voltage-current relationship

dv(t) v(07)

i(t)=C V(s)= CI()+

dt

Equivalent Circuit representation in s-domain is shown in Figure 11.9.
Note here that the initial conditions in case of a capacitor or an inductor can be represented

either as a voltage or as a current source.

+ + + I f
+ 1l +
vg YOFC Ve Sv(co) v e Do
v 2
s s c

Figure 11.9
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4. Inmany applications, we will assume the initial conditions are zero. In this condition, equivalent
s-domain expression become simplified as below:

Resistor V(s) = RI(s)
Inductor V(s) = sLI(s)
1
Capacitor V(s)=—I(s)
sC

C Example 11.11 )

At =0, the switch is closed with a charged capacitor having voltage V,,. Find the equivalent s-domain

of the circuit shown in Figure 11.10. o L ocoe
—— ’ 1
C .. .- . I+ 11
Solution The initial condition of capacitor : i tio :R; |
can be represented using a voltage source. :VO TG R :% i R
Utilising the s-domain equivalents, the circuit =l i ;
can be re-drawn as shown in Figure 11.11. :
g Figure 11.10 Flgure 11.11

C Example 1].12)

Obtain frequency domain equivalent electrical circuit of the network shown in Figure 11.12.
ooe

R, (0 Ly R

N

Figure 11.12

Solution Equivalent s-domain circuit can be obtained as shown in Figure 11.13.

L212(0
" S I v2(0) -
O Vals) e Va(s) ()

SL1

L114(0)

Figure 11.13
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C Example 11.13)

At t = 0, the switch is opened as shown in Figure 11.14. Find the equivalent s-domain of the
000

circuit.

10 Q 3H

Figure 11.14

Solution The steady state current in inductor L; at = 0" is 10A, while for inductor L, at t = 0" is
OA. Utilising the s-domain equivalents, the circuit can be re-drawn as shown in Figure 11.15.

Figure 11.15

C Example 11.14)

Assume that for circuit shown in Figure 11.16, v.(0) = —4 V. Find the s-domain equivalent of the
cee

circuit at 7 = 0*.

t=0 100 @

&
2u(t) v 0.001F = yyf)

Figure 11.16

Solution Initial voltage across capacitor can be represented t=0 1000

using a voltage source. It is to be noted that after closing the el e

switch at t = 07, the circuit current will charge the capacitor in 2t

opposite direction. Therefore, the polarity of voltage source will s) 1

be reversed to charging direction. B
Utilising the s-domain equivalents, the circuit can be re-drawn

as shown in Figure 11.17.

Figure 11.17
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C Example 11.15)

Find the s-domain equivalent of the circuit shown in Figure 11.18.

1000 Q cee

VIV
250 Q

& =R

50t-u(t)vg 3

N
Y

50mH

Figure 11.18

Solution The circuit is excited by a ramp source. Utilising the s-domain equivalents, the circuit can
be re-drawn as shown in Figure 11.19.

1000 Q
VWV
250 Q o
50/svg @) == %
05s
Figure 11.19

11.9 || NODAL AND MESH ANALYSIS IN s-DOMAIN

An electrical circuit in time domain can be converted into s-domain circuit by utilising above
representation of circuit elements. The s-domain circuit, thus obtained, can be solved for any required
quantity by using standard circuit analysis technique.

Following steps shall be undertaken for solving an electrical circuit in s-domain:

1.

Al

Re-draw the given electrical circuit using representation in s-domain.

Implement initial conditions, if any, of circuit elements

Use Kirchoff’s current and voltage law to write nodal or mesh equations

Re-arrange the circuit equations to write in form of un-known variable

Take inverse Laplace transform of re-arranged equation and write un-known variable in time
domain

( Example 11.]6}

Find V,, (¢) of the circuit shown in Figure 11.20 using Laplace transform technique.

cee
1Q 50Q
— A

uo(t) (2

F= 1H S voll)

|

Figure 11.20
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Solution Equivalent s-domain representation of the circuit elements are shown in Figure 11.21:
1
u(t) > —

1Q DG
VW YAVAVAY
1H—>sL =s 1® @ 3
lp 1.3
3 sC s

+
L~ @ s Vo(S)

loops:

Following is the equivalent electrical circuit in s-domain.

Figure 11.21
Assuming currents in loop-1 and loop-2 are /,(s) and I,(s), writing mesh equations for both

(122

N N N

0=—§I1 +(s+5+§]12
N

S
L a2
11=§(S +5S+3)12

Solving equations (1) and (2) simultaneously:
1

143 l(s2+5s+3)12— 3 I
s 5)3

N

3=(s +8s” +18s)I,
3

I, =

2 P 4857 +18s

_3_
s°+85+18 2 (s+4)° +2)

Voltage across inductor can be determined as following through use of Inverse Laplace transform
3
Vo(s)=sl, =

( Example 11.17)

10 Q

Find V) (¢) of the network shown in Figure 11.22 if in the initial voltage is given as V,(07) =5 V.

10etu(t)V

cee
10Q

Y .

)T 01F  (D)28HA

Figure 11.22
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Solution Equivalent s-domain electrical circuit:
Applying nodal analysis in the circuit shown in Figure 11.23,
Vo - —101 7w 10Q
S Gl L/ WA T S l

10 10 10
— 10 10
s S 10Q T_S 05A0) ®2A

V 1 \% \%
0 _ +20 420 95
10 s+1 10 10 Figure 11.23

1 1
= —Vo(s+2)=——-+25
10 s+1

Solving for V, (s) using partial fraction expansion:

+25

V(s +2) = —2
s+

255435
O (s+1)(s+2)

_ 255435 K, K,

0T G+ +2) s+l 542
K, =10; K, =15
10 15

Vi(s)=——+
0(s) s+1 s+2

Taking inverse Laplace transform of above expression:

Vo (1) = (10e™" +15¢* yu(t)

11.10 || ADDITIONAL CIRCUIT ANALYSIS TECHNIQUES IN s-DOMAIN

The network analysis techniques and network theorems can also be applied to s-domain equivalent
circuit of time-domain electrical network. This is illustrated using following examples.

( Example 11.18)

Determine V| (¢) of the network shown in Figure 11.24, assuming zero initial conditions. cee
1H
000 °
+
%F = D2tV 493w
0

Figure 11.24
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Solution Using current division (Figure 11.25), s

o000 o

& b,

[, =—3 10 - 40 4s=  10/5() 4 Vo(s)
Aioia 5 s(+4s+4) -
s )
160 ;
Vo(s) =41, = - Figure 11.25
s(s+2)
160 A B C

ot Tt
s(s+2) s s+2 (s+2)
160 = A(s”> + 4s + 4) + B(s* +2s5)+ Cs

Equating coefficients:

50 80=4A —— A=40
st 0=4A+2B+C
52 0=A+B——>B=—A=-40

Hence, 0=4A+2B+C —— C=-80

40 40 80
Wwe)=—-—m——=
s s+2 (s+2)

Vo (1) =401 — e — 2te™* Yu(t)V

( Example 11.19)

Consider the system shown in Figure 11.26 and obtain the equation of motion of mass using Laplace

transform. Take m = 1 kg, ¢ =5 Ns/m, k =4 N/m, and F =2 N. cee
y
Solution Applying Newton’s second law of motion F = ma, we get T—>X
following equation
m () + ¢ - 5(t) + k- x(1) = F(1) - i
Taking the Laplace transform of both sides of the equation of motion .
Figure 11.26

gives
2

1-5% - X(s)+5-5-X(s)+4-X(s)==
S

By rearranging this equation, we get
2

X =
(#) s (s> +5-5+4)
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Writing above equation as a sum of partial fractions
2
X(s)=
s-(s+4)-(s+1)
Solving using Partial Fraction Method
2 _ A N A, N A,
s-(s+4)-(s+1) s s+4 s+1

X(s)=mg— 1 2
25 6-(s+4) 3-(s+1)

and then taking Inverse Laplace Transform

( Example 11.20 )

_{ 1 1 2 } 1 e 2

x()=L | —+ - =+ —_Z.e

2s 6-(s+4) 3-(s+D| 2 6 3

Consider the mixing system shown in Figure 11.27. Tank 7, 6 gal/min

initially contains 100 liters of pure water. Tank 7, initially _

contains 100 liters of water in which 150 kg of salt are ngﬂmn

dissolved. The inflow into 7', is 3 kg/min from 7, and 6 kg/min Ti | 8galimn| T2

containing 6 kg of salt from the outside. The inflow into 7, is —

8 kg/min from T,. The outflow from 7, is 8 kg/min. The

mixtures are kept uniform by stirring. Find the salt contents 6 gal/min
cee Figure 11.27

v,(®) and y,(?) in T, and 7, respectively.

Solution Differential equation governing the salt concentration in both tanks can be obtained using

the fact that

Time rate of change of salt concentration = Inflow rate — Outflow rate

.8 2
=100 +m)’2 +6.
, 8 8

Y2 —m)’l _m)’r

Taking Laplace transform for above equations

(<0.08 = 5)Y, +0.02Y, =2
S

0.08Y, +(~0.08 — 5)Y, =—150
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Utilising Partial Fraction Method to solve above equations

y__ 95048 100 625 _ 375
'S5 +0.12)(s+0.04) s s+0.12  s5+0.04
1505 +125+048 100 125 75

2T 101264004 s 5+012 51004
and then taking Inverse Laplace Transform, we get
y, =100 — 62.5¢7 "% — 37 567004
y, =100 + 125¢ %1% — 757004

C Example 11.21 )

Find i(¢) in the network shown in Figure 11.28 using f=0 100 Q
Laplace transform. cee . +
. . . o . 2u(t) vV 0.001F == v )

Solution Equivalent electrical circuit in s-domain i
can be obtained as shown in Figure 11.29, =

Writing KVL equation for above mesh: Figure 11.28

2
= ; 1001(s) Vc(s)—O =0 1000

2 6 7 1000 *

= == = Ky +
AT 20y 19 j_% Vls)
_ - s
= V (s)= T4s+20 _A + B S
c s(s+10) s s+10
Figure 11.29
= v ()=2-—2
¢ s s+10
= W(t) = [2 — e 10¢ }u(t)

11.11 || RMS AND AVERAGE VALUE OF PERIODIC WAVEFORM

The Root Mean Square (RMS) value of periodic waveform represented by continuous function £{7) is
defined over an interval (7| <t < T,) can evaluated using following formula:

17
Joms = () dt
J 57 )
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The average value of any time-varying function over a time interval Ar = T, — T is defined as the
integral of the function over this time interval, divided by At.
The average value can be represented using following formula:

J% f()dt

5]
il

g = _ 1 | Fr

At h—t;

C Example 11.22 )

Determine RMS values of the waveform shown in Figure 11.30. O ® @ V’__I
0

DT

Solution Utilising formula for RMS value

| Jo<oss

1 T 107 V2 'DT! i
Voo =— [V (dt =— [ V?dt =—e DT = DV* i I
i Ty T LT
v —viD Figure 11.30

rms

POINTS TO REMEMBER

15" Laplace transform F(s) of function f (¢) is evaluated using

oo

LfO1=F(s)= [ e f)yur) di = [ f()e™"dt
0

—co

15" Inverse Laplace transform f(7) of function of F(s) is evaluated using

+J
CUFO)= f()=—— | F(s)e"ds
2nj =,

15" Function discontinuities are mathematically represented using step and impulse functions. A step function
represents a function discontinuity while an impulse function enables us to define the derivative at a discontinuity.

1" The magnitude of an impulse function represents area under the curve of the function. An important property of
the impulse function is the shifting property, which is expressed as

[ f@& 8 -aydr=fla)

I A proper rational function is the one wherein the power of numerator in s is less than power of s in denominator.
Only a proper rational function can be expanded as a sum of partial fractions.

=" An improper rational function can always be expanded into a polynomial plus a proper rational function. The
polynomial is then inverse-transformed into impulse functions and derivatives of impulse functions.

15" Properties of Laplace transform allows to transform and inverse-transform the complex functions. These
properties are listed in above section for reference.
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PRACTICE PROBLEMS

1.

Find the Laplace transform of the following O @ @
functions. [PTU, 2011-12]
a. f(t) = coswt and f(t) = sin wr
b. f(t) = coshat and f(t) = sinhat
Determine the partial fraction expansion O @ @
for
s =35 +65s—4

(s2 - 25+ 2)2
Find the inverse Laplace transform for the O @ @
following function.

Y(s)=

35s+5
F(s)= >
sT+7
Find the Laplace transform of O @ @®

F(6) =127 cos(3t)
Find the Laplace transform of ¥ (> +4). 0@ @®

6. Find the Laplace transform of e3'sin2t. 00®@

7. Useramp function to express the waveform O O @

shown in Figure 11.31, given that ¢, — £, =
L=t

v(t) = 10u(r) V and assume that at r = 0,
—1A flows through the inductor and +5 is
across the capacitor.

10
TQ

vs() 5H T 0.1F
Figure 11.32

. The switch shown in Figure 11.33 has been O @ @

in position b for a long time. It is moved
to position a at t = 0. Determine v(¢) for
t>0.

a t=0
b +
Io R C = V(1)
Vo T -
Figure 11.33

10. Find iy(f) of the network shown in O @@

4 Figure 11.34 using Laplace transform.
1Q 2Q 2H
fo h ty IOTf)»
Time = ;1 Q e lu(t)
Figure 11.31
8. Consider the circuit shown in Figure O @ @
11.32. Find the value of the voltage across Figure 11.34
the capacitor assuming that the value of
MULTIPLE CHOICE QUESTIONS
1. Laplace transform analysis gives ocoe
(a) Time-domain response only (b) Frequency-domain response only
(c) Both time- and frequency-domain (d)
2. The final-value theorem is used to find the cee
(a) steady-state value of the system output (b) initial value of the system output
(c) transient behaviour of the system output  (d) none of these
3. The average of a sinusoidal voltage wave over one half-cycle (with having maximum voltage V) (e X )

(@) 0.637V, (b) 2V,

© 0577,

d 03V,
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4. The RMS value of a triangular voltage waveform with 50% duty cycle and maximum and minimum O @ @
amplitude V, and -V, respectively is
(@ V, (b) 2V, () 0577V, (d 0.3V,

5. The RMS value of a rectangular voltage waveform with 50% duty cycle and maximum and minimum O @ @
amplitude V), and -V, respectively is
(@ V, (b) 2V, () 0.5V, (d 0.3V,

ANSWERS TO MULTIPLE CHOICE QUESTIONS

1. () 2. (a) 3. (a) 4. (c) 5. (a)






Network Synthesis

CHAPTER OUTLINE

1 Definition of Hurwitz polynomial and the = Cauer forms (I & II) using LC functions
methods to determine it 1 Realisation of RL, RC using foster and
1 Exploration of positive real functions and the cauer methods
methods to evaluate them 1 Foster's reactance theorem

v Foster | & Il form using LC functions

12.1 || INTRODUCTION

Network synthesis is the study of synthesis of various networks consisting of active elements like
resistors and passive elements like capacitors and inductors.

12.2 || HURWITZ POLYNOMIAL

Hurwitz polynomial is a polynomial whose roots lie in the 1. Define Hurwitz polynomial.

left half plane or in the imaginary axis, that is, real part of 2. What are the properties of Hurwitz

every root is zero or negative. polynomial?

P(s)

0(s)

In which Q(s) is a Hurwitz polynomial when the degree of P(s) does not exceed the degree of Q(s) by
more than unity, and the polynomial should not contain multiple poles on jw axis.

Consider the polynomial F(s)=

1. In the polynomial all the quotients should be positive.

2. In the polynomial should not contain any missing terms or else all even or odd terms are
missing.

3. The roots of a Hurwitz polynomial either it is odd and even lie in jw axis.
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4. The polynomial is considered to be Hurwitz polynomial when all the quotients of continued
fraction expansion are positive.

( Example 12.1 )
Determine whether the polynomial P(x) = x* +10x* +8x* + 7 is a Hurwitz polynomial or not. OO @

Solution The polynomial is not Hurwitz polynomial because the first term is missing.

( Example 12.2 )
State whether the polynomial f(s) = x* +5x+6 is a Hurwitz polynomial. cee

Solution Yes, the given polynomial is a Hurwitz polynomial.

The roots of x* +5x+6
X +5x+6
X +2x+3x+6
(x+2)(x+3)

x=-2,-3.
As the roots of the polynomial lie in the left half plane, it is a Hurwitz polynomial.

( Example 12.3 )

Determine whether the polynomial is Hurwitz polynomial P(x) = x° + x° + x. (X X

JAGD) = ©+x+x
Px) = 5x* +3x% +1
Solution:
Even part = 5xY+3x7 +1

Odd part = x> +x° +x

Note: Difficulty Level — O O ® — Easy; O @ ® — Medium; ® ® ® — Difficult
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5x4 +3x2 + l)x5 X+ x(%

PR I
55 5
3x3+4—x)5x4+3x2+1(25—x
5 5 2
5x* +10x7
~Tx* + 1)3x3 +ﬂ(ﬁ
5 535
2 5 2x
LpR_x
5 35
30x
35

As the quotients of the polynomial are negative, it is not a Hurwitz polynomial.

12.3 || POSITIVE REAL FUNCTIONS

The Function F(s) is termed as Positive real function when 1. What are the properties of Positive real
it satisfies the properties of Positive real functions such as functions?

1. The real part of the polynomial should be greater 2 Define Positive real functions?
than unity. [PTU, 2009-2010]

2. The poles and zeros of the polynomial should lie in
left half of the plane.

C Example 12.4 )
Check the positive realness of the following function: [BPUT, 2007] OO @

Solution
_(x+2)

F® =

_ P
O(x)
The coefficients are real.
Poles of F(x) are (x + 1) x=-1
Zeros of F(x) is (x + 2) x=-2
As all the poles and zeros lie in left half of s plane, the given function is a positive real function.

F(x)
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( Example 12.5 )

I cee

x*+2x -2
F(x) is not real function because real par of numerator and denominator is less than zero.

F(x) =

Solution Poles of F(x)

X2 42x-2=0
-2+
_2%(@+8) _2¥346 _ 505 073
2 2
Zeros of F(x)
¥’ —x—8=0
+
T 151 g 55

As all the poles and zeros do not lie in left half of s plane, the given function is not a positive real
function.

(' Example 12.6 )

(2x+38) cee
Fx)= ————
(x+38)
Solution Poles of F(s) is (x + 8), x=-8
Zeros of F(s) is (2x + 8), x=-4

As all the poles and zeros lie in left half of s-plane, the given function is a positive real function.

FOSTER'S ONE AND TWO FORM

|| FOR LC NETWORK

Foster’s network is of two forms: 1. What are the two forms of Foster’s network?

2. Explain the Foster's first form or
impedance form with a network diagram.

12.4

1. Foster first form or impedance form

2. Foster second form or admittance form 3. Explain the Foster's second form or
In the Foster’s first form, or impedance form, there is admittance form with a network diagram.
a parallel LC circuit which is in series combination with 4. What s the formula for determining the
capacitance C, and inductance L_, as shown in Figure 12.1. value of capacitor and inductor for the

Foster’s first form?

5. What is the formula for determining the
value of capacitor and inductor for the
Foster's second form?

The general equations for the Foster’s first form is
given by
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L L
F, 2P,s 2P,s : 5
Zsy=r =2 T g g L
s s T+, st —
) 1
The value of capacitor C, = e C, Cn

0

The value of inductor L_ = H Figure 12.1 Foster’s first form or impedance form

1 2P,
C,= F and L, = PR

n
By comparing with the general equation to determine the middle terms of capacitor and inductor
In the Foster’s second form or admittance form there is a parallel combination of series LC circuits
with capacitance C,, and inductance L.
The general equations for the Foster’s second form is given by (Figure 12.2):
P, 2P,s 2P
Y(s)=2+—-—"2 + "4 4. ...+ Hs

s sT+o; ST+

1
The value of capacitor L, = I

0
The value of inductor C,, = H T

By comparing with the general equation to determine the Figure 12.2  Foster’s second form or
1 p admittance form
middle terms of capacitor and inductor L, = — and C,, = —-.
(O]

n n

C Example 12.7 )

Find the foster first and second forms for the function. (oYX )
(x* + D(x* +16)
x(x +4)
Solution Foster first form
(x* +17x* +16) (x* +17x* +16)
— 2 = S
(x” +4x) (x° +4x)

Since extra term is present in the numerator compared to denominator the two poles exist at @= 0 and
@ = oo therefore L and C, are present.

X +4x)xt +17x2 +16(x

xt + 452

F(x) =

F(x) =

13x2 +16

(x* +17x% +16) o 13x° +16
(X +4x) ( +4x)
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132 +16 _ A Bx+C

Flx)= ————=
(P +4x) x  x*+4

13x* +16 = A(x* + 4) + Bx* + Cx

To determine A, substitute x = 0

16 =4A,s0 A =4.
Equating x> A+B=13=B=13-4=9
C=0
4 9x
Z(x) =x+ — +
x  x*+4
P 2P
Z()C)=—0+2—2x2 + Hx

X X"+,
Cy=1/Py=1/4F,L_=1H
1 1 1

2P
fly= _2?:2
w, 4

Foster second form
(x> +D(x* +16)

F(x) =

x(x2 +4)
x(x2 +4)
Y =
) (X2 + )(x? +16)
Yor) = Ax+ B . Cx+D

2+1 xr+16

x(x? +4)= Ax + B(x* +16) + Cx + D(x* +1)

Equating the terms
A+ C=1,
x:16A+C=4
A=1/5and C=4/5

¥B+D=0

Figure 12.3 (a)



Network Synthesis & 12.7

Const: 16B+D=0=B=D=0

Y(x) = x/5 4x/5
= 2 +1 x*+16

F 2P x 2P x
o)==+t
x Xt Fto,

+ Hx

Py=H=0
2P, = 1/5; 0’ = 1; 2P, = 4/5; o} = 16
11
2=—=—=5H
2P, 2P, 5 54
—L—L—é 1/5 1/20
‘2P 2P, 4 T T
Fi 12.3
2P, 1 igure 12.5 (b)
Cy= —2==
®, S
2P, 1
c4:_24=_
o, 20

C Example 12.8 )
Find the foster second forms for the function. (X X ]
(x* +9)(x? +49)
x(x* +36)
Solution Foster second form

Fx) =

2

Y(x) = 2x(x +236)
(x~ +9)(x~ +49)
Ax+B Cx+D

Y(x) = +
x*+9  x*+49

x(x? +36)= Ax + B(x> +49) + Cx + D(x> +9)
Equating the terms
3

X A+C=1;

x:49A + 9C =36

A =27/40 and C =13/40
X B+D=0
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Const: 49B + 9D =0

B=D=0
Yy = 276140 13x/40 40/27% 4013
-2 2
x*+9 x"+49
27/360 - o 13/1960
P 2P, 2P .
Z(x) = E zxz = 4x2 + Hs Figure 12.4
X X~ + 0, X"+ 0,
2P, = 27/40; o} = 9; 2P, = 27/40; w,* = 49
IR
2P 2P, 27
R S
“Top 2P, 13
2
P 360
_2p 13
YT 1960

12.5 H CAUER ONE AND TWO FORM

| For Lc NETWORK

In the Cauer’s first form (Figure 12.5), series arms are 1. Explain the Cauer’s first form with a

inductors and shunt arms are capacitors which is a ladder network diagram?
network. 2. Explain the Cauer’s second form with a
In this method of continued fraction, when the driving network diagram?

point function consisting of poles are located at infinity, the ;Nhgt is th? c:mtigued fragt;on e;<pansion
first element is inductor and second element is capacitor. orauerfirst and second form
The fraction expansion of Cauer’s first form is given by:

Ly Ly L,

ao-bsrg | Nl

1 1 1 Cn

e I T

In the Cauer’s second form (Figure 12.6), series arms are Figure 12.5  Cauer's first form

capacitors and shunt arms are inductors which is a ladder
network.



Network Synthesis & 12.9

In this method of continued fraction, when the driving point function consisting of poles are located
at zero, the first element is inductor and second element is capacitor. The fraction expansion of Cauer’s
second form is given by:

Ci Cy Ch
1 1 — A
Z(s)=—+
Cs 1 1
e Z(s) Ly L, L1 Ly
Ls 1 1
S + R —
C,s - 11
Lys+-- Figure 12.6  Cauer’s second form
C Example 12.9 )
Find the Cauer’s first form for the function. ocoe
10x* +12x% +1
Fo) =~ ———
2x” +2x

Solution We can expand the function for Cauer’s first form
2x7 +2x)10x* +12x% +1(5x L

10x* +10x° 5 2

—
2x% +1)2x° +2x(x C, Il
2x° + x -‘V

x)2x% +1(2x L, ,
Figure 12.7
2x°
) x (x c,
X
0

( Example 12.10 )
Find the Cauer’s second form for the function. (o)oX )
2x* +20x% +16
) +4x

F(x) =
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Solution
3 2 44
4x 4+ x")16+20x" +2x" (— €;
X
16 + 4x*

1
16x% + 2xHdx + x> (—
4x

3

4x+
x3 2 4 32
—)16x" +2x" (—
2 X
16x2
3
1
25 2
) 2 (4x
x
2
0

Figure 12.8

12.6 || REALISATION OF RL, RC USING FOSTER AND CAUER METHODS

1. Draw the RL network by Foster method.

(a) Foster first form

Ri
Ro D ; : t'
Z(s) L L.
Figure 12.9
2. Draw the RC network by Foster method.
(a) Foster first form
R
Co D : : j
s “ R.

Figure 12.11

(b) Foster second form

Figure 12.10

(b) Foster second form

R4

Cy

I

Figure 12.12
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3. Draw RL network by Cauer method.

(a) Cauer first form (b) Cauer second form
o0 T - - - LT — Cq C, Cp
— l—--—
E E E %u % Ly Ly
o
Figure 12.13 Figure 12.'1;1_

4. Draw the RC network by Cauer method.
(a) Cauer first form (b) Cauer second form

R4 Cy C, Cn

R, R,
—\/\/\/\/—‘\M/\/-l""\wl —1 [} ---—
Z_(>s) —=Cy _‘, Co _‘,C,, §R1 ; R R

Figure 12.15 Figure 12.16

(' Example 12.11 )

Determine the foster forms for the function ocoe

Solution For Foster first form or impedance form

X +4x+3

Z(x) =
2 +2x

Step 1: Take partial fraction expansion.

X 4+20)x° +4x+3(1

x% +2x
2x+3
Fay=1+e 2213 1 A, B
x(x+2) x x+2

2x+3=A(x+2)+ Bx
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To determine A, substitute x = 0
3=2A, soA=23/2.

To determine B, substitute x = —2
—4+3=-2B,soB=1/2.

Fx)=1+ 3 + !
2x  2(x+2)
Compare it with the general equation we obtain the values by using Foster form of RC network.
H=1,Py=3/2, P,=1/2, 0=2
Substituting these values, we obtain the value of capacitor and resistance.
1 2

Figure 12.17 (a)

1
Rl = — —_— —
oC, 2x2 4
For Foster second form or admittance form
2
X~ +2x

Y(x) = -

x“+4x+3
Step 2: Take partial fraction expansion.

X +4x+3)xr +2x (1

x> +4x+3
—2x -3
2x+3
Fx)=1- —
x> +4x+3
Y
Since there negative quotient appears, we have to expand the equation as () :
X
Y(x) = (x+2)
X (x+D(x+3)
(x+2) A B

(x+1D(x+3) x+1 x+3
x+2=A(x+3)+Bx+1)
To determine A, substitute x = —1
-1+2=A(-1+3)s0oA=1/2.



To determine B, substitute x = —3
-3+2=-2BsoB=1/2.

Yoy =—2 + %
2x+1)  2(x+3)
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Compare it with the general equation we obtain the values by using Foster form of RC network.
Substituting these values we obtain the value of capacitor and resistance.

1 1 1 1
Cl Si—— =50 2 = —_
oR 2 o,R, 6 2Q 20
1
Rlzizz; B 12F 16 F
A P, .
Figure 12.17 (b)
C Example 12.12 )
Find the first and second Cauer form for the function. ( X X ]
2
x“+4x+3
Fx)= ——"=2
x2 +2x
Solution Cauer first form
2242037 +4x+3(1
X2 +2x
2x+3)x2 +2x (g
X+ ix
2
l)c)2x +3(4
2
2x
X x
(e
)2 (6
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1
Z(x) =— + 1
5725, 1
2x 1
5
1
Z(s)=—+
18 1
I 1
Rl L-i' 1
CZS L+..
R,

By comparing with the standard equations we decided as Z(x) has pole at s = 0, the first element is
C] .

2

“=3 | |
2/3 2/25
R _2 5/4 S
P4

2
C,=——

25 Figure 12.18 (b)

12.7 || FOSTER REACTANCE THEOREM

Foster Reactance Theorem states that the passive elements 1. Whatis Foster Reactance Theorem?
such as inductors and capacitors increase with frequency.
The passive elements are frequency dependent.

Consider the impedance equation in which X changes with frequency

Z=ix
Consider the admittance equation in which X changes with frequency
1
Y =
ix

POINTS TO REMEMBER

15" In Hurwitz polynomial
e All term should be in a polynomial.
e The quotients should be positive.
e All the roots lie in the left half plane of the axis, i.e the roots should be negative.
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== In positive real functions

e All the poles and zeros lie in left half of s plane.
e Real part should be greater than unity.

=" In Foster method

First form

e If pole is at @ = O the first element is C,
e If pole is at @ = oo the last element is L_,

1= In Cauer method

First form

e The first element is series inductor when pole

is at @ = oo,

e The first element is shunt capacitor when

Zero is at @ = oo.

e The last element is series inductor when zero

isat w=0.
e The last element is shunt capacitor when pole
isat @=0.
1= Foster method
RL method
e First form
P
Z(s)= Py + —=
s+ 0;

1

e Second form

P, P.
Y(s)=—2+——+. .+ H
S s+ O

1" Cauer method
RL method

e First form

+---+Hs

Z(s)=sL; + 1

e Second form

Second form

e If pole is at @ = 0 the first element is L
e If pole is at @ = oo the first element is C_

Second form

e The first element is series capacitor when

pole is at o= 0.

e The first element is shunt inductance when

zero is at @ = 0.

e The last element is series capacitor when

pole is at @ = oo.

e The last element is shunt inductance when

Zero is at @ = oo,

RC method
e First form

P P
Z(s)=-2+— 4.+ H
s Ss+0;
e Second form

Ps

Y(s)=F, + +---+ Hs

s+0;

RC method

e First form

Z(s)=R, +

Cis+

e Second form

Z(s)=L+

Cys 1 1
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PRACTICE PROBLEMS
1. Determine whether the following polyno- O O @ 7. Find the Cauer’s first form for the @ @ @
mial functions are Hurwitz polynomial. function:
(1) P@)= " +x" +x' Py = 2542022 416
2) P()= x* +6x° +8x% +10 ) +dx
2. State whether the polynomial f(s) = Y-x00® 8. Deter.mine the foster forms for the @ @ @
— 12 is a Hurwitz polynomial. function
3. Determine whether the polynomial @ @ @ Flx) = 25 +8x+6
P(x) = 108 + 2 + 127 + 2x + L is a R P
Hurwitz polynomial.
4. Checkthe positive realness of the following OO @ 9. Find . the second Caver form for the OO @
; function
function.
2
F(x)_ (X+3) F(x): 4x2+10x+6
- (x—1) x“+8x+1
5. Check the positive realness of the following @ @ @ 10. Find the first Cauer form for the function OO @
function. x> +6x> +8x
2 3040 F) = ————
Fry= & £3x+9) X2 +4x+3
(x+35)x+9) .
11. Determine the foster forms for the @ @ @
6. Find the foster first forms for the function. @ @ @ function:
2 2 2 +10x+17
E(x) _ (X +9)(x +45) F(X) — X 5 X
x(x? + 49) X" +7x+6
MULTIPLE CHOICE QUESTIONS
1. Hurwitz polynomial has ocoe
(a) poles only in the left half of s-plane (b) zeros only in the right half of s-plane
(c) zeros anywhere in s-plane (d) poles in jw axis only
2. The Cauer method is cee
(a) continued fraction (b) partial fraction
(c) Laplace transform (d) numerical method
3. The Foster’s method is [eX X ]
(a) continued fraction (b) partial fraction
(c) Laplace transform (d) numerical method
4. In the first Cauer LC network the first element is series inductor when 000
(a) polesat w=co (b) polesatw=0
(c) zerosatw=0 (d) zeros at @= oo
5. In the second Cauer LC network the first element is series inductor when 000

(a) poles at @=oco (b)
(c) zerosat w=0 (d

polesat =0
Zeros at @ = oo

ANSWERS TO MULTIPLE CHOICE QUESTIONS

1. (a) 2. (a)

3.(b)

4. (a)

5. (a)
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CHAPTER OUTLINE

1= Characteristics of T-network and 7-network = Explanation of terminating half-sections
1> Analysis and design of constant-k filters Composite filters design
1 Analysis and design of m-derived filters = Development of attenuators

13.1 || INTRODUCTION

Filter is an electric network used to block unwanted signals so that a signal with very less noise or no
nose can be received. Filters are preliminary classified as active and passive filters. A filter designed with
passive elements (i.e. R, L and/or C) is known as passive filter. Further classification is done on the basis
of the frequency a filter allows to pass through. The chapter explains various types of filters and their
characteristic parameters along with filter design methodology. Another important device, attenuator, is
discussed in the later stage of chapter. Four primary attenuators have been explained for their working
and design.

13.2 || CLASSIFICATION OF FILTERS

1. Explain how filters are classified.

Low Pass Filter High Pass Filter

§‘ § (Figure 13.1). [PTU, 2008]
S 5 /
e g
3 \fc = —!
Frequency Frequency
<.  Band Pass Filter < Band Stop Filter
= >
g é v
8 fc1 fc2 8 fc1 fcz
Frequency Frequency

Figure 13.1
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Filters are classified into five categories based on frequency bands passed through or rejected.
1. Band-pass: A band-pass filter allows passing through the signals of a particular frequency band
and rejects signals of all other frequencies.
2. Notch or Band-reject: rejects signals of a particular frequency band but allows all other signals.
3. Low-pass: passes signals of low frequency, and rejects signals of frequencies above the filter’s
cut-off frequency.
4. High-pass: A high-pass filter passes signals of frequency higher than filter’s cut off frequency
and rejects low frequency signals.
5. All-pass: This type of filter passes thorough signals of all frequencies.
The simplest form of a filter can be realised with using a Tor #-Network and this is why, it is called
prototype filter.

13.3 || FNETWORK

A T-network is shown in Figure 13.2. We will now discuss 1. Derive expression for characteristic
its basic terminology impedance for T-section in terms of open
and short circuit impedances.

[University of Pune, 2015]

Characteristic Impedance

Suppose, we connect a variable impedance (Z) to the output port of

a T-network and measure the input impedance (Z;,) of the network Zy Zy
corresponding to the Z. For a particular value of Z = Z, the measured 2 Z 2 Zo
input impedance (Z,,) is equal to Z,. This Zis called characteristic
impedance of the network. o
For a T-network, Figure 13.2  Symmetrical T-Network
V4
z, (1 + Zo)
V4 2
Zy=Z, ="+
V4

Solving this for Z; gives,

7\
Z, = (?1) +7,7, (13.1)
If open and short circuit impedances are evaluated as Z, and Zg respectively, then:
V4
Zocz?hrz2 (13.2)
Z,(Z,+4Z,)
=12 (13.3)
4Z, +2Z7,

Zy =\Zpe Zge (13.4)
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Propagation Constant

For a two-port network, the propagation constant is defined as:

I V 1 Vi
e?’z_lz_l:}'}/:log L or ¥ =log L
12 VZ 12 VZ

By applying KVL in the two loops and using the relations of Eqs (13.2) and (13.3) results:

Y 4o 7
@ re D) 114 Ccoshy (13.5)
2 27,
sinh%: \/(COShzy‘l) = \/4Zz] (13.6)
2

(e —e " +e)=Zg1Zpc

tanh(y) = Zy/Z ¢ (13.7)

C Example 13.1 )

Find the characteristic impedance of a 7-section as shown in Figure 13.3. Verify the value of

impedance with the help of open- and short-circuit impedances. ooe
2 o Hj 2 2k 8 o 100 Q 100 Q
Solution Step 1: Find open circuit impedance: o AAA o
Zpe =100 + 400 = 500 Q
Step 2: Find short circuit impedance: AR
Z,, = 200(200 + 4 x 400) ~1300 - 5
4% 400 + 2% 200 Figure 13.3

Step 3: Determine Characteristic impedance:

Zy =\Zoc Zsc =+/500 x 180 =300 Q

Step 4: Verity characteristic impedance:
2 2
z
Ty = \/(71) +7,Z, = \/(%) +200 x 400 =300 Q

C Example 13.2 )

A symmetrical T-network consisting of pure resistances has open and short-circuit impedances of
Zoc =800 £ 0° and Zg- = 600 £0°. Design a symmetrical 7-network. cee

Note: Difficulty Level — O O @ — Easy; O ® ® — Medium; ® ® ® — Difficult
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Solution
Step 1: Write the expression for open and short circuit impedances and equate them to the given

value:

z
Zoe =800="1+2,

Zz
Z, =800-—- (13.8)
2
Z(Z, +4Z
Zge =600:m (13.9)
47, +2Z,

Step 2: Solve the expressions for Z, and Z;:
Substitute the Z, in Eq. (13.9) using Eq. (13.8),

Z, (zl + 4(800 - %D

600 =
4(800 - 5) +27, 400 Q 400 Q
2
Z -3200Z, +24x8x10*=0 oo
Solving above equation for Z;
Z, = 800 Ohm ° o
and Z, = 800 — 400 = 400 Ohm Figure 13.4

13.4 || n-NETWORK

Characteristic Impedance

A m-Network is shown in Figure 13.5. Similar to the T-network, Z,

Characteristic impedance for a n-Network, can be found by o
equalising the input impedance of the network to the impedance
27, 275 Z

connected to the output port.
27,(Z, +27,7,1Q2Z, + Z,)))
"7, 4+22,7)/2Z, + Z,) + 22,

°
Figure 13.5 Symmetrical n-Network

Zy=7Z

Solving this for Z, gives,

(13.10)
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If open and short circuit impedances are evaluated as Z,- and Z- respectively, then:

_22,22,+2) (13.11)
T 4z,+7,

__ 227, (13.12)
€27, + 7,

Zo =~Zoc Zse (13.13)

Propagation Constant

Same as of T-network as described in Section 13.3 under the heading Propagation Constant.
1+7,

27,

ie. coshy=

13.5 || CHARACTERISTIC OF FILTERS

Following are the important parameters of a filter: 1. Define following terms: (a) Attenuation
1. Propagation constant: Ratio of input signal value constant (b) Phase shift (c) Characteristic
to the output is determined by propagation constant. Impedance. [PU, 2011]
It is denoted by ¥.

goh v
12 VZ
y=o+jp

2. Attenuation (&): A signal passing through a filter gets attenuated because of impedance of the
filter. It depends upon signal frequency. For an ideal filter, attenuation for pass band is equal to
zero.

3. Phase shift (f): Phase of the signal gets changed when it passes through the filter. This is
determined by phase shift constant. It also is function of frequency. For an ideal filter, attenuation
for pass stop band (attenuation band) is equal to 180°.

4. Characteristic Impedance (Z): It is the image impedance of filter.

We now will discuss different cases to evaluate the general terms of attenuation and phase shift for
different regions. It is already described that for a filter designed with a T or a & network,

sinh e i
2 4Z,

sinh a+jp = Z
2 Az,

sinh [ﬂ) cos(ﬁ) +j cosh(g)sin(ﬁj = 2 (13.14)
2 2 2 2 4z,
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There are two case now:
Case-I: If o= 0; i.e. signal is in pass band.
Equation (13.14) becomes

(B [z
JSIH(E)_ 47,

Z
Taking the magnitude only, sin E = || =
2 4Z,
p=2sin"", | —- (13.15)
2
Equation (13.15) gives phase shift of a signal for pass-band.
Case-II: If B =180°; i.e. signal is in attenuation band.
Equation (13.14) becomes
z
jcosh - L
2 4z,
Z
Taking the magnitude only, cosh ﬁ = |-
2 4z,
z
a=2cosh™ || (13.16)
Z

Equation (13.15) gives attenuation of a signal for attenuation-band.

Condition for Pass-band 5

Again, from Case-I, for pass band (i.e. &= 0), sin (Ej =

Z
4z,

. Z Z Z
Since, -1 < Sln(g) <1 andterm é is negative, = -1 < z< 0 or, -1 <—42'2 <0

This is the condition for pass-band.

( Example 13.3 )

For a pass band filter, with series branch impedance Z, = j®5, what should be the critical value of
shunt branch impedance such that cut-off frequency is 2000 Hz. cee

Solution Given, f, = 2000 Hz, @, = 27 f, = 12566.37 rad/s.
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Step 1: Write condition for pass-band:

For pass band, —1 < 4 <0
2

Zz
At cut-off frequency, ——=—1
47,

Or Z,=-42,
Step 2: Find value of Z, at cut-off frequency:
Z(w=w,)=jo, 5= j62831.85 Ohm

Step 3: Find Z,:

z 2831.
Z,=-4Z,or Z, = —71 = —j@ = - j15707.96 Ohm
(—sign shows that Z, should be opposite to Z,, i.e. capacitive)
zZ
Now, since Z, is capacitive, ﬂ = @
Z)(0,) (@)
[0 12566.37  197.4 x 10°
Z,(@) = Z,(@,) 2 = _j15707.96 x 1220637 _ 1974107 o
(w) ® [0}

C Example 13.4 )

For a filter, at certain frequency, if net series and shunt impedances (Z; and Z,) are j71000 Ohm and
—j200 Ohm respectively. Is the frequency in pass-band or reject band. Also, find attenuation if it falls
in reject band. cee
Solution Given: Z; = j1000 Ohm and Z, = —j200 Ohm

Step 1: Write condition for pass-band and test given impedances for pass band:

Z
For pass band, —1< —L <0
Z,

z
Since, —1> 71 It is in not in pass band.
2
Step 2: Calculate attenuation:

. _ Z
Attenuation, o =cosh™ [|-———

=cosh™ | -5 |
Z,
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13.6 || CONSTANT-k LOW PASS FILTER (LPF)

Constant k filters are the simplest form of filters. These 1. What are low-pass filter? Derive expression
filters consist of T or 7 ladder network of passive elements. for cut-off frequency in terms of L and C.

A typical constant k-LPF (Low pass filter) can have any . [PU, 20_15]
of two configurations shown in Figure 13.6. 2. Discuss how a constant-k low pass fitter
can be designed. [PTU-EE201]

Since the product of Z; and Y, of the T or 7 network
(shown in Figure 13.6) is constant (real), it is called Constant
k Low pass Filter. This is possible, if Z, is capacitive and Y, is inductive or vice versa.

L L
L 2 2
° T ° oYU —o
1L C 1 C 1
- ) __cC
o o o o
n-Section T-section

Figure 13.6 Constant k-LPF

For low constant k type pass filter, shunt arm of the network possess capacitor while series arm an
inductor.

13.6.1 Filter Characteristics

Nominal Impedance, k = /ZI Z, = \/%

(a) Cut-off Frequencies

z
Since the pass-band for a T or x filter is given by —1 < ﬁ < 0. So, for:
2

1. Lower Cut-off frequency (®,._,)

z
—-=0=2,=0,
47,

Z, is inductive reactance (jwL) here, which is zero only at @ =0 rad/s. @w._, =0; f_, =0

2. Upper Cut-off frequency (®._,)
z jwL
[ N L

4z, 1Y
joC
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Solving this gives,
2 1

2
= dis, o, ,=—/—==f-_, =
Jic P2 T re Je nJLC

(b) Characteristic Impedance
1. If filter is designed with T-network:

2 . 2 2
2 =J(gj +2,2, - J(%] o ) =x (L]
C

2. [If filter is designed with a m-network

7, Z,Z, _ k

(c) Attenuation ()

o =2cosh™ il I
4z,

|

2
Putting, Z, = jwL, Z, = 1/jwC and @, =—=— in the above expression,
NLC

o =2cosh™ (ﬂj =2cosh™ (ij
Wc fe
(d) Phase Shift (B)
] = 2sinh™’ [iJ
fe
(e) Design Parameters

Value of filter circuit parameters (L and C) can be found from the cut-off frequency and nominal
impedance.

2

Z
=2sinh7!| || =L
pzamc| | 4

k—\/zanda) —L
C © JLc
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Solving these for L and C gives,

L=£andC= 2
(08 -k

( Example 13.5 )

A constant-k low-pass filter is designed to cut off at a frequency of 1000 Hz and the resistance of the
load circuit is 50 € as shown in Figure 13.7. Find the attenuation constant per section at a frequency

of 1500 Hz. cee
L/2 L/2 (&
7.955 mH 7.955 mH 15.91 mH
C ——6.366 uF 12732 yF==2¢ 2 C=—12.732 uF
Figure 13.7

Solution Given, k=50 Q and f- = 1000 Hz, f= 1500 Hz
Step 1: Find values of L and C

L =kinf=50/(rrx 1500) = 15.91 mH

C = 1/zkf = 1/(xr x 50 x 1000) = 6.366 micro-F
Step 2: Find attenuation coefficient:

Attenuation constant, @ = 2coshi =2cosh (ﬂ)
. 1000

=2x0.962 =1.9245 Nep

C Example 13.6 )

Design constant-k low-pass 7- and 7-section filters to be terminated in 600 Q having cut-off frequency
of 3 kHz. cee

Solution Givendata, R, =600 Q, f. =3 kHz = 3000 Hz
Step 1: Find values of L and C:
L =R, /nf=600/(r x 3000) = 0.064 H

C=1/nrR,f=1/(x 600 x 3000) =17.69 micro-F
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Step 2: Realise T-network and m-network (Figure 13.8):

0.032 H 0.032 H 0.064 H
—00000 ———"00000 —— —— 00000 ——T—
A 15 L
2 2
C——=17.69 uF % ——8.845 uF %:: 8.845 uF
Figure 13.8

13.7 || CONSTANT-k HIGH PASS FILTER (HPF)

A constant k-HPF is shown in Figure 13.9. 1. Give general configuration of constant-k
high pass T and 7 network. Determine
attenuation constant, phase shift.

Here, series arm has a capacitor while shunt arm has an
inductor. So, Z, and Z, are interchanged. Z, =1/jowC and

. PTU, 2008
Z,=joL. [ ]
¥ At v
2 1 ° A N ——
2L 2L L
(o2 O (o2 O
n-Section T-section

Figure 13.9 Constant-k-HPF

Filter Characteristics
— {L
k= ZIZ2 = E

(a) Cut-off Frequencies

zZ
Since the pass-band for a T or x filter is given by —1 < ﬁ < 0. So, for:

2
1. Upper Cut-off frequency (@._, )

Y
—-=0=17%,=0,
47,

Z, is capacitive reactance (1/jwC) here, which is zero only at @ = oo rad/s.

W == foy =00
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2. Lower Cut-off frequency (@._,)

1
7 —
A J9C
4Z, 4(joL)

Solving this gives,
1

1 1
ow=——rad/s. W, ,=——= -
2WJLC 2 aJLc Jea 4rLC

(b) Characteristic Impedance
1. [If filter is designed with T-network

2 . 2 2
Z,= \/(%) +72,7Z, = \/(%) + (ja)L)(ijCj =k, J1- [fTCj

2. If filter is designed with a -network

z,<—__4Z _ K

[BEn
|

1
Putting, Z, =joL, Z, = 1/joC and o, = in the above expression,
2 1 <=5 7iC

o =2cosh™ (ﬂj =2cosh™ (f—cj
Oc f
(d) Phase Shift (B)
] =2sinh™ [f—cj
S
(e) Design Parameters

Value of filter circuit parameters (L and C) can be found from the cut-off frequency and nominal

impedance.

(c) Attenuation ()

o =2cosh™! [

1
4Z,

Z
=2sinh7!| [
gz | 2

2
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k—\/zandw —;
c ENITe

Solving these for L and C gives,

1
and C =

L=
20 2wk

( Example 13.7 )
Design a constant-k high-pass filter with f- = 4 kHz and design impedance R, = 600 €. oY X )
Solution Given data, R, =600 Q ,f-=4kHz =4000 Hz
Step 1: Find values of L and C:

L =R, /4nf=600/(47 x 4000) = 11.94 mH
C=1/4n R, f=1/(47 x 600 x 4000) = 0.003315 micro-F
Step 2: Realise T-network and m-network (Figure 13.10):

20 20 C=0.03315 uF
| | || |
11 I I
0.0663 puF 0.0663 uF
18 11.9366 mH 238732 H 2 L 2 L &4 23.8732 puH
Figure 13.10

C Example 13.8 )

Can you design an LPF and HPF for a cut-off frequency of 50 Hz? If you can, what are the values of
coe

the parameters?
Solution Yes, we can design a filter (HPF/LPF) for 50 Hz cut-off frequency provided the value of
the design impedance R, is being known.

Let us assume that value of design impedance = R, €2

LPF: L=R,/nf=R,/(7x 50)
C=1/rR,f=1/(rx R, x 50)
HPF: L=R,/Anf=R /47 x 50)

C=1/AnR, f=1/(47x R, % 50)
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C Example 13.9 )

A prototype high-pass filter has a cut-off frequency of 10 kHz and design impedance of 600 ohms
as shown in Figure 13.11. Find the values of L and C. Also, find attenuation in dB and phase shift in

degrees at a frequency of 8 kHz. cee
Solution fe=10kHz, K = 600 Q
C 2C 2C
|| || ||
I 1 11
2L 2L E
Figure 13.11

Step 1: Find out L and C:

Design Impedance, K = \/%

L
K? =E=600><6OO (13.17)
Cut-off frequency, f, = _
T anLe
10,000 = —
’ 4nJLC
—8
LC = 10 (13.18)
167°

Solving Eqgs (13.17) and (13.18) for L and C,
L=477mH and C = 13.27 uF
Step 2: Determine phase shift and attenuation:

. 1 10kHz

ﬂzZsin_l%=2s1n - 10

=2sin
kHz

V4
B=2cosh™ —
4z,
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13.8 || BAND-PASS FILTER (BPF) University Question
A band pass filter (BPF) designed with z-network and 1. Draw and explain constant-k ‘T-section
band pass filter. [RU, 2006]

T-network is shown in Figure 13.12. Here series and shunt
arms have both capacitor and inductor.

% ZC‘I 2C1 % Ly C1
o0 | ot et
Iy oLl 3., oL 3,

C

o - )
nm-Section

o - o
T-section

Figure 13.12 Constant-k BPF
If the circuit is expressed in terms of Z; (net series impedance) and Z, (net shunt impedance), then,
__ JoL,
1-w’L,C,

Z, = joL, +

1 1
and Z, = (joL,) |l
C 2 = (JoL,) ( ja)Czj

1
For this filter to be a k-type band-pass filter,
L _L _ e

Z,Z,=k* = 2=—"=
Cl CZ

This suggests that resonance frequency of series and shunt branch; (1/y/LC) must be equal.

(a) Cut-off Frequencies (w¢_;, 0¢_)

z
For the pass-band, —1 < —— <0:
47,

4
So at cut-off frequency, -1 = ﬁ =7, =-4Z,
2

Multiplying both sides by Z,,
722 =-42,2, =7 =4k’
= Z, =7Fj2k
1. Taking Z, =+ j2k,

Z, = joL, + = j2k,

1

= LC,o* - 2kC,o—1=0
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Solving the quadratic equation for @ and taking only positive value,

k+ (kz +L‘J
Cl

O=0Wc_ = 2
1

2. Taking Z, = —j2k,

1
Z, = joL, + =— j2k,

| = JOL, e J
= L,C,0* +2kC,o—1=0

Again, solving the quadratic equation for w and taking only negative value,

kv |2+ f
Cl

O=Ocp ==\ = |T7 %
1

(b) Resonant Frequency (f,)

It is known that, at cut of frequencies, Z, = F j2k

This means that, |Z1| _ = |Z1| _ =2k
D=0c-) D=0c—2
[Z, | =1Z | j L ! =|Jj L !
Ho=oc; =41 lo=pc_, = | JOcalby T m =|J0c-2 Ly +ij7
. . . 1
(Resonance frequency of both series and shunt branch is same and given as, @, = C )
1+1
Simplifying the above relation with substituting with @,
LG
Wy =~WOc_; Oc_
(c) Design Parameters
We know that, at higher cut of frequencies, Z, =+j2k
1
O L, + ————=+j2k 13.19
JOc oLy 0o C, J ( )
Now, in order to find C;, L, can be replaced with resonant frequency,
1 1
W, = =1L,

L,C, (w02C1 )
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Substituting L, now in Eq. (13.19),

_(@0c —0c)

' ki6(nw, )’
C] — (fC—l — sz—Z)
k4maw,
1
And L=
®,’C,
L,, C, are found now using the relations: L,/L, = C,/C, = k*
1
CG=——"—""—
kr(feoy = feon)
L = k(fcfl B fcfz)
2T 2
4r f,

C Example 13.10 )

In a series resonance type band pass filter, L = 60 mH, C = 150 nF, and R = 70 Q. Determine
(a) resonance frequency, (b) bandwidth, and (c) cut-off frequencies. Assume the resistance to be

600 Q. cee
Solution
(a) Resonance frequency f, = 1 = ! =1677.64 Hz
22VLC 2760 x 107 x 150 X 107
(b) Bandwidth, BW == 000+70 __ 179953y,
2L 2760 x 107)
R

(c) Lower frequency limit = f; = f, — e =1677.64 — 888.6 =789 Hz
/4

Higher frequency limit = f, = f, + % =2566.24 Hz
T

C Example 13.11 )

For a T-section constant-k BPF, find out: (a) Design Impedance (b) Higher and Lower cut-off
frequencies (c) Resonance frequency. Design parameters are: L; = 15.915 mH, L, = 7.716 mH,
C, =0.1929 uF, C, = 0.3979 uF. cee

Solution

-3
(a) Design Impedance L = L = 1591510~ =200 Ohm
C, C, 0.3979 x 107°




13.18 & Circuits and Networks

(b) Cut-off frequency,

k+ (k2+él] k+ (k2+lc’})
o= e 1) W T/ =l(—200+350)=5502 Hz
L 2 L 27\ 0.015915
Cut-off frequency,
—k + (kz +(Lj1j —k + (k2+é1]
w, = Vs p=L ! =L(M)=1500.8 Hz
L 2 L 2\ 0015915

(c) Resonance frequency, f, = \/(f,f,) = fy =+/(5502 x1500.8) =2873.57 Hz

13.9 || BAND-STOP FILTER (BSF)

A band stop filter (BSF) designed with m-network and T-network is shown in Figure 13.13.

Ly Ly
2 2
o |_‘
2C; 2C; Cy
Ly 2L,
C2 C2
C, —=£
2 2
o 1T s o i
T-section n-Section

Figure 13.13  Constant-k BSF'

If the circuit is expressed in terms of Z; (net series impedance) and Z, (net shunt impedance), then,

: 1 JOL, :
Z, = (JoL)II| — = and Z,= joL, +
: ! JjoC, 1—(02LIC, g ?

JoC,
For this filter to be a k-type band-stop filter,

L, L
2Z,=k=>2="L=¢

1 C2
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This suggests that L, C; and L,, C, are to be selected such that resonance frequency of series and
shunt branch; (1/+/LC) are equal.

(a) Cut-off Frequencies (w¢_;, ®c_,):

V4
For the pass-band, -1 < —— <0
4z,

Z,
So at cut-off frequency, —1= E =7 =-4Z,
Similar to Band pass filter, cut-off frequencies are found by:

1. Taking Z, = +j2k,

1
Z, =(wL) I = j2k,
L =(joL) [ e j J

L,
7= - jk,
1- L,C,

= 2kLC,0° +Lw—2k=0

Solving the quadratic equation for @ and taking only positive value,

~1+ (1+16k2 C’j
Ll

0=0c_y =

8rkC,
2. Taking Z, = —j2k,
oL
7, =22 _jk,
1-w’L,C,
= 2kL,C0* — Liw —2k=0

Again, solving the quadratic equation for @ and taking only negative value,

1+ (1+ 16k> CIJ
Ll

87kC,

O=0c_, =

(b) Resonant Frequency (f,)
It is known that, at cut of frequencies, Z, =7Fj2k

This means that, |Zl|w=wc = |Zl|w=wc_2 =2k
) doew, || ot |
|Zl|w=wc_1 - |Zl|w=wc_2 |1 _ wcc 112L C | 1— (D:l;lelcl |
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. . . 1
(Resonance frequency of both series and shunt branch is same and given as, @, = ——)

LG

1
Simplifying the above relation with substituting \/ﬁ with @y, @, =0, O-_,
1~1

(c) Design Parameters
We know that, at lower cut of frequencies, Z,=—j2k

JOc_, Ly

——2 =2k (13.20)
I-w._,"L,C

Now, in order to find C,, L, can be replaced with resonant frequency,
1 1

=L =
VLG (0,"C))

Substituting L, now in Eq. (13.20),
1 1

= Ly =—
2k (0c_ —0c_,) 0, C,

@y =

¢

L,, C, are found now using the relations:

L _C _(fc—z_fc—l) L. = k

_1__2=k2,c - ) - - .
L, G, ? kmfe_ifeon ? An(fe_n — feo1)

C Example 13.12 )

Design a passive constant k-type band stop filter having a design impedance of 100 Q and cut-off
frequency 2000 Hz and 5000 Hz. cee

Solution Given k= 100 Q; f; = 2000 Hz; f, = 5000 Hz, f,=+/(/»/;) = 3162.27 Hz
Design parameters for a BSF are given as:
1 1 1

C, = = = =0.265 uF

2k (w, —w,) 4rk(f, — f;) 4mx100(5000 —2000)

1 1

L=——=— > —=9.626 mH

@, C, 4rn” x3162.27° x0.265x 10

2=(f2—f1)= (5000 — 2000) —0.955 uF
krnfif, 100 xmx 5000 %2000
k 100 =2.653 mH

b= = )~ 47000 - 2000)



Filters and Attenuator & 13.21

13.10 || m-DERIVED FILTERS

. . . 1. Explain how T-section and m-section of
13.10.1 Limitations of Constant-k Type an m-derived network are derived from

Filters constant-k filters.

e Characteristic impedance, Z, is function of frequency and hence, even in pass band, load
impedance should match with the varying Z, for zero voltage or current attenuation.

e Attenuation is not sharp for stop band region.
m-Derived filters are derived from constant-k filters by following steps:

1. Multiplying series branch impedances with m
2. Dividing shunt branch impedances by m

3. Adding extra impedance of opposite sign in series or in parallel to equate the characteristic
impedance to that of constant-k type filter.

13.10.2 m-Derived Filter with T-Network

Characteristic impedance of a T-network is given by:

z Y
z,=\| 5| +22

mZ, mZ,

© o o o

Figure 13.14 m-derived T-section

Figure 13.14 shows T-sections of both constant-k and m-derived filters. Both networks have equal
characteristic impedances. i.e. (Z;)constant-k = (Z,)m-derived

2 2
Z mZ ,
\/(71) +Z,Z, = \/(Tl) +mZ,Z;

Solving it for Z,’,
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Hence, m-derived T-section can be realised by:
e Multiplying series impedance with m and

e Dividing shunt impedance by m and
2

2 ]Zl in series with shunt impedance.
m

e By adding extra impedance (

13.10.3 m-Derived Filter with T-Network

mZ,
l—ql 4m
o o Z
27, ( 1 _m2) 2 27,
27, 275 m m
m m
o o o o

Figure 13.15 m-Derived r-section

Characteristic impedance of a m-network is given by

Similarly, for constant-k 7-section and m-derived z-section to have same characteristic impedance:
(Zy) cons. — k= (Z,)m — derived

| 2z, _ [ Zizym
1+ i 1+ i
4z, 4(Z,Im)
Z, _ z/
Z 7 2
1+ 1 m+ Zlm
47z, 4z,
1
= 7=
! 1 1

+

" ( 4m2]ZZ
1-m
4dm

Hence, Z/ is parallel combination of mZ,; and 7 Z,.
-m
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1. Multiplying series impedance with m and
2. Dividing shunt impedance by m and

4m
3. By adding extra impedance (1 5 jzz in parallel with series impedance.
m

C Example 13.13 )

If an m-derived filter is to be designed with a T-type constant-k filter with m = 0.6. If value of series
impedance is 200 Ohm, Find the value of additional impedance to be added in series with the shunt

branch to match the characteristic impedance. cee

1 _ 2
Solution Value of additional impedance to be added with shunt branch = [ 1 & JZI

02
= 1206 200 =53.33 Ohm
4 x0.6

(" Example 13.14 )
An m-derived filter is to be designed with using 7-network and m = 0.6. If value Z; = 200 Ohm,

Z, =400 Ohm. Find the value of impedances of series and shunt branches. cee
Solution Step 1: Impedance of shunt branch = 2Z,/m =2 x 400/0.6 = 1333.33 Ohm
Step 2: Impedance to be added in parallel with series branch
4 4% 0.
[ 2|z, =[ 2229 1260 =750 Ohm
1-m 1-0.6
4m 120 x 750
Step 3: Imped f series branch = (m Z,) Il Z, |=(0.6x200)1(750) = ————
ep 3: Impedance of series branch = (m Z,) [(l—sz ZJ ( ) 11(750) 1204750
=103.45 Ohm

13.11 || m-DERIVED LOW-PASS FILTER

. . 1. Discuss how a constant-k low pass filter
(a) Frequency of Infinite Attenuation (f..) can be designed. [PTU-EE201]

Infinite attenuation for a low-pass occurs if shunt branch
gets short circuited or series branch gets open circuited. This happens at resonance:

1| 1

fo=5— 2
2ﬂ\j(mC)(1 —m JL
4dm
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mC L (4m)c—mC
=

1-m?
&)
o o o o
Figure 13.16 m-derived LPF with T-section and rt-section

(13.21)

1 1 1
SN ol

(b) Determination of Value of m
Cut-off frequency for a low-pass filter is given by:

1 1
Je = T \LC
Substituting this in Eq. (13.21)
= f—c

2
Je
=, 1= 13.22
m (f.x,j (13.22)

(c) Design Parameters
Value of L and C remains same as of a constant-k type LPF.

C Example 13.15 )

For an m-derived LPF, if cut off frequency and frequency of infinite attenuation are 500 Hz and
562 Hz. Find value of m. ocoe

Solution f-=500Hz and f,, =562 Hz

2 2
Value of m=,(1— f—c =,/1- Sﬂ =0.46
562

=)
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C Example 13.16 )

The T-section of an m-derived LP filter is shown in Figure 13.17. Find value of . o) X )
Solution 40 mH 40 mH
ML _ 40 mH (13.23) 000 000
2 0.25 uF
me =0.25 uF (13.24)
L 175.31 mH
Solving Eqs (13.23) and (13.24) = E =160x10°
Figure 13.17
% =320 x 10’

k= \E = ,/320 x10* =565.68

13.12 || m-DERIVED HIGH-PASS FILTER

1. Explain and draw m-derived high pass filter
with 7-section. (Figure 13.18)  [RU, 2006]

(4m)L
1 _m2
2c 2c =it
m m
o] e e
L C
m gg m %
m
4m
e
(o} 0 [+ 0

Figure 13.18 m-derived HPF with T-section and m-section

3[R

(a) Frequency of Infinite Attenuation (f.)

Infinite attenuation for a high-pass occurs if shunt branch gets short circuited or series branch gets open
circuited. This happens at resonance:

1 1
L
2r | L 4m
(B
mMNl—-m
ffi; 1-m? (13.25)

4z JLC
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(b) Determination of Value of m
Cut-off frequency for a high-pass filter is given by:
1 1
Je =7 Jic

Substituting this in Eq. (13.25),

Je =fc\/1_m2

2
.
= [1-|= 13.26
m (fc] ( )

(c) Design Parameters

Value of L and C remains same as of a constant-k type HPF.

(" Example 13.17 )

For an m-derived HPF, if cut-off frequency and frequency of infinite attenuation are 800 Hz and
700 Hz respectively. Find value of m. ocoe

Solution f-= 800 Hz and f,, =700 Hz

2 2
700
Value of m=,[1— {%j =,/1- [%] =0.484

C Example 13.18 )

For an m-derived HPF T-section, if design impedance, cut-off frequency and frequency of infinite
attenuation are 750 Ohm, 700 Hz and 800 Hz respectively, find design parameters (Value of all
impedances, L and C). ocoe

Solution Design impedance, k =500 Ohm, f,. =800 Hz and f,, = 700 Hz

Step 1: Find value of L and C for a constant-k HPF of T-section,
L = kinf = 500/(7w x 800) = 0.199 H

C = 1/nkf = 1/(r x 500 x 800) = 79.61 uF
Step 2: Find value of m:

2 2
e 1_(£J _ 1_@) _
fe 800
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Step 3:
(a) Value of each series inductance = mL/2 = 0.484 x 0.199/2 = 0.048H
(b) Value of each shunt capacitance = mC = 0.484 x 79.61 UF = 38.53 uF
(c) Value of additional impedance to be connected in series with shunt branch
)
= (1 z ]L =0.079 H

4dm

13.13 || TERMINATING HALF SECTIONS

Half section is used when a T-network and a z-network are to be interconnected. They can be used at both
source or load ends. Purpose of half sections is to match the impedance between the two networks.

Half Section with Constant-k Filters mL
2
A typical constant-k half section is shown in Figure 13.19 o—O0oM o
connecting a 7" and 7 network. For impedance matching,
(a) Image impedance as seen from 1-2 should be equal to mTC
characteristic impedance of T-network. and
2
(b) Image impedance as seen from 3-4 should be equal to (12,7’1" )L
characteristic impedance of m-network. T
o o
_ _ (2Z,)(Z,) Figure 13.19 m-derived terminating
Zi_y=\ZocZse = \/(222)( Z)+(Z) halfsection — T type

47,7,
Zy,= 7 147,
, t4Z,

This is equal to characteristic impedance of the 7-network.

Z, Z,
Zy 4 =\ZocZsc = 7"‘222 B
Z.,=12272,|1+ Z
3-4 14 4z,

This is equal to characteristic impedance of the m-network.
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Half Section with m-Derived Filters

Similar analysis can be done for an m-derived filter shown in
Figure 13.20.

If the shown half-section is to be connected between a T-network ,_(
and m-network such that terminals 1-2 are connected to the °
m-network and terminals 3-4 to the 7-Network than for impedance ;
matching: -

—

1-—m?
2m )C

2 - mC
(a) Image impedance as seen from 1-2 should be equal to 2

characteristic impedance of T-network. And

(b) Image impedance as seen from 3-4 should be equal to
characteristic impedance of m-network.

[ o

Figure 13.20 m-derived terminating
half-section — 1t type

C Example 13.19 )

For a constant-k half 7-section, find the value of design parameters if cut-off frequencies and design
impedance of the associated HPF are 5000 Hz and 1000 Ohm respectively. ocoe

Solution Here, Design impedance, k£ = 1000 Ohm, f. = 5000 Hz
L = kl4nf = 1000/(47 x 5000) =15.92 mH
C=1/4nkf=1/(4m x 1000 x 5000) = 0.0159 uF

13.14 || COMPOSITE FILTER

A composite filter is designed in order to achieve sharp 1. Draw the block diagram of composite filter.

attenuation even beyond the frequency of infinite attenuation. [University of Pune, 2012]
Block diagram for a typical composite filter is shown in 2. Write short notes on composite filters.
Figure 13.21. [PTU-EE201]
——{ Terminating }—| Constant-k | > derived 1 Terminating |——
Input signal Half-section filter m-f.ﬁrlve Half-section | output signal
| (Sourceside) || (prototype) || Lugely L | (Load side)

Figure 13.21 Composite Filter — Block diagram

Various sections of a composite filter are:
(a) A constant-k filter of particular cut-off frequencies.
(b) An m-derived filter of desired infinite attenuation frequency for sharp attenuation.

(c) Terminating half-sections at both load and source end for impedance matching (usually with
m=0.6).

Composite High-pass filter is shown in Figure 13.22.
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(25l (25" (72l

L

%u 2L§ %ﬂ, m 2L,§ &g
m m m

(9}

°T

o o o o o o o o
v vV A4 vV
Terminating Constant-k HPF m-derived HPF Terminating
Half-section — 7 type Half-section — 7 type

Figure 13.22  Composite HPF using m-sections

Composite Low-pass filter is shown in Figure 13.23.

’

mL L L m'L m'L mL
2 2 2 2 2 2
mC I , I mC
2 me 2
—_—C
1-m? 1-m? 1-m?
5 e (5 (5 e
o} O O 0 O L] o 0
' vV ' A4
Terminating Constant-k LPF m-derived LPF Terminating
Half-section — T type Half-section — T type
Figure 13.23  Composite LPF using T-Sections
N
C Example 13.20 )
Design a composite high pass filter with:

(a) Characteristic impedance = 1000 Ohm,
(b) Cut-off frequency = 2000 Hz
(c) One m-derived T-section of m = 0.4
(d) m-derived T-sections at both load and source ends (i = 0.6).
Use constant-k 7 section as prototype. 00@

Solution Step 1: Design prototype constant-k 7' section

Given, k = 1000 Ohm, f. = 2000 Hz
So, L =k/nf =1000/(x x 2000) = 159.2 mH

C=1/rkf =1/(x 1000 x 2000) = 0.16 uF
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Step 2: Design m-derived T-section- Given, m = 0.4
(a) Value of each series capacitance = 2C/m =2 x 0.04/0.4 = 0.05 uF

(b) Value of each shunt inductance = L/m = 39.8/0.4 = 99.5 mH Am

(c) Value of additional impedance to be connected in parallel with series branch = ( 5 JC =
0.076 uF -m

Step 3: Design terminating half section:

Same steps are followed for design of m-derived half sections. Given, m = 0.6

(a) Value of each series capacitance = 2C/m = 2 x 0.04/0.6 = 0.033 uF

(b) Value of each shunt inductance = 2L/m = 2 x 39.8/0.6 = 132.66 mH o

(c) Value of additional impedance to be connected in parallel with series branch = ( 5 JC =
0.075 uF —m

13.15 || ATTENUATOR

Attenuator is a two-port resistive network designed toreduce 1. Define the units of attenuation: (i) Neper
the power level of the signal. It reduces the power/voltage (il) Decibels. Derive the relationship

or current to the desired level when connected between the between them. [University of Pune, 2013]
source and load without distorting the signal waveform.

Vi 1 P,
Attenuation in dB is expressed as: dB=20log| — |=20log| -~ |=10log| — | here log base
is 10. V2 L B,

Vi 1 1 P,
Attenuation in Nepers is expressed as: In {V]) =In (—]) =— ln(#] , here log base is e.

2 12 2

Since, logX = InX

2.303

InX

20logX = 20
2.303
20 logX =8.686 InX

Gain in dB = 8.686 Gain in Nepers.

C Example 13.21 )
For a 40 dB gain, find out the gain in voltage ratio. Also, find the gain in Nepers. oo0e

Solution
D 40

Gain in dB, D =20 log| L | =11 = Antﬂog(ﬂj N 10(%) SN 10(%) =100
v,) v, 20) "V, v,
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! gain in dB = 40 =4.60
6 8.686

Gain in Nepers, =

13.16 || LATTICE ATTENUATOR

1. Write a short note on attenuators.

Figure 13.24 shows a lattice attenuator. Like 7~ and

T-network, two important parameters of the attenuator are [PU, 2011]
determined here. LA \/\,/;;\1/\’ 5
13.16.1 Characteristic Impedance A -
2 2
R +R 2R,R Ro
Z, o =Zpe Zge = || =2 =21 = JRR, (13.27 §
1-2 oc %sc \/( 2 j[R1+R2 iRy ( )
13.16.2 Parameter Determination ¢ “\,/?\1/” D °
I, Figure 13.24 Lattice attenuator

Attenuation coefficient, N = ¢% = I_
2
The circuit can be simplified as:
If the load resistance is equal to the characteristic of attenuator, values of R, and R, for a desired
attenuation (N) are found as described below:
Applying KVL in loops yields,
ILRy— IR, =LR,+ 1, R,
I, R,+R
1 — 0 1 :N

I, R,-R

Solving it for R,
N -1

=——R
N+
. N +1
Using Eq. (13.27), R, = N1 R,

( Example 13.22 )

For a lattice attenuator with R, = 163.6 Ohm and R, = 244.5 Ohm, Find out characteristic resistance
and attenuation in dB. (e)oX )

Solution
(a) Characteristic resistance, R, = \/Rl R, = \/163.6 x 244.5 =200 Ohm
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Ry +R; 200+163.6
R, —R, 200-163.6
Attenuation in dB = 20 log N =20 log 10 =20 dB

(b) Attenuation, N =

)

13.17 || FTYPE ATTENUATOR

If R is the characteristic impedance then,
Ry =R, + (R, (R, + Ry))

R, =R, +M (13.28) R R
R, +(R, +R,) o—MNN—— NN —0———
Applying mesh analysis (Figure 13.25), I|R, + I|R, = ,R, + L, R,
solving it for attenuation, i.e. I—‘ yields, g Ry § Ry
I, .
1 — m (13.29) .
IZ R2 (o] O
Solving Egs (13.28) and (13.29), Figure 13.25  T-type attenuator
N -1 2N

R =R,——and R, =R, ————
1 01\]_’_1 2 0N2—1

C Example 13.23 )

Design a symmetrical T-attenuator so that it works between a source and load impedance of 260 Q
and 490 Q respectively and provides an attenuation of 40 dB. cee

Solution Given, characteristic impedance, R, =490 Q, D =40 dB R4 R4
VWV VWV

Step 1: Find attenuation in terms of current or voltage ratio:

N = Antilog D = Antilog 40 =100
20 20

—Ro ;Rz Ro§
Step 2: Find values of R, and R,:
2N 2x100
R, =Ry, ———=490 ———————=9.80 Oh .
2TONTZT 100 X100 1 " Figure 13.26

=480.3 Ohm

R =R, N—1=490100—1
N+1 100 +1
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13.18 || 7~TYPE ATTENUATOR

Using bisection theorem, a lattice equivalent network of Ry
a 7 network can be found using its bisections as shown in @ VWA ©
Figure 13.27.
Bisections of the m-network will have series arm of
EY and shunt branch of 2R,.
Equivalent lattice network will have: & _
R = (ﬁ 2R )/(ﬁ+ 2R )and — R =2R Figure 13.27 m-type attenuator
1 2 2 > 2 2 2
Since for a lattice network,
_N-1 _N+1 R
N+ T N-1?

Substituting the values of R and R,;

, N2_1 R’:&N'l'l
A Y |

C Example 13.24 )

Design a n-type attenuator to give 20 dB attenuation and to have a characteristic impedance of

100 Q. cee
Solution Given, characteristic impedance, R, = 100 2, D = 100 dB
Step 1: Find values of R, jnd R, 2 \/\’/?\1/\1
N- -1 207 —1
R/ =R, =100 =495 Ohm
2N 2
R
B V4L _1002041_ ) 11 ohm
2 N-1 2 20-1
Ry =R/ =495 Ohm Figure 13.28
Since, R, =2R; =61.11x2=122.22 Ohm

13.19 || LADDER-TYPE ATTENUATOR

When attenuation with single step of a T or & network does not match the desired value, multiple units

of identical T or 7 networks are cascaded.
A single unit can be designed following the corresponding formulae of parameter determination and

attenuation required per step.
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(" Example 13.25 )

Find out resistances of a ladder-type network, if load resistance and attenuation per section are 500

Ohm and 20 dB respectively.

Solution Given, Characteristic Impedance, R, = 5002, D =20 dB
Step 1: Find attenuation in terms of current or voltage ratio:

N = Antilog 20 =10
20

Step 2: Find values of R, and R,

2
-1 10x10-1
R]=R0N :5()0&
2N 2x10

=2475 Ohm

o R N+1_50010+1

= = =305.55 Ohm
2 N-1 2 10-1

POINTS TO REMEMBER

=" Attenuation coefficient () for pass band is zero.

15" Phase shift for stop band (attenuation band) is 7.

15" Condition to get cut off frequency, N =—1
Z,

PRACTICE PROBLEMS

cee

1. Design a symmetrical resistive 7-section O O @ 4. Find characteristic impedance of a low O @ @

with open and short circuit impedances
equal to 2000 Ohm and 1000 Ohm
respectively.

. For a mnetwork having both shunt
impedances equal to 200 Ohm and series
inductance of 500 Ohm, find characteristic
impedance. Assume all impedances to be
resistive.

. A low pass filter is designed with shunt
branch having a capacitor of 0.20 uUF
and series branch having two inductors
each of 15 mH. Calculate (a) Cut-off
frequency, Attenuation and Phase shift for
(b) f=5000 Hz, and (c) f= 1000 Hz.

ooe

cee

pass filter at 2000 Hz if cut-off frequency is
5000 Hz. Design impedance = 200 Ohm.

. A high pass filter is designed with two

series branches each having capacitance
of 0.20 UWF and a shunt branch having
inductance 15 mH. Calculate: (a) Cut-off
frequency, Attenuation and Phase shift for
(b) =500 Hz and (c) f= 5,000 Hz.

. For an m-derived T-section high pass

filter, if infinite attenuation is desired at
frequency not lower than 10% of cut-off
frequency. Find the value of m.

. For an m-derived m-section high pass filter

with characteristic impedance of 600 Ohm,

cee

ooe

cee
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cut-off frequency of 2 kHz, frequency of (d) m-derived T-sections at both load and
infinite attenuation equal to 1.8 kHz, find source ends (m = 0.6).

the value of inductance to be connected
in parallel with shunt branch impedance
derived from constant-k filter.

Use constant-k 7 section as prototype.

9. With a lattice attenuator of 150 Ohm O @ @
characteristic resistance, it is desired to
reduce the power level to half. Determine

(a) Characteristic impedance = 500 Ohm, its design parameters.

(b) Cut-off frequency = 2000 Hz
(c) Frequency of infinite attenuation =
2500 Hz

MULTIPLE CHOICE QUESTIONS

1.

For an ideal low pass filter with cut-off frequency of 2 kHz, value phase shift for a signal of 5 kHz will OO @
be

(a) Zero (b) 90 degree (c) 180 degree (d) 45 degree
For a High pass filter designed with 7-network, characteristic impedance at cut-off frequency is: (e X )
(a) Zero (b) Infinite (¢) Imaginary (d) Negative

Value of m for an m-derived filter with cut-off frequency of 8 kHz and frequency of infinite attenuation of O @ @
7.2 kHz will be:

(a) 0.54 (b) 0.44 (¢) 0.60 (d) 0.23

Attenuation coefficient for a constant-low pass filter of 1 kHz cut-off frequency at 2 kHz is: oYX X ]
(a) Infinite (b) Zero (c) 1le (d) e

If output power is 1/10 of input power, attenuation in dB will be: (e X )
(a) 10 (b) 20 (¢) 10/2.308 (d 0

ANSWERS TO MULTIPLE CHOICE QUESTIONS

1. (c) 2.(b) 3.(b) 4. (a) 5.(a)
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