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Enhancing a Tradition of Success

The ninth edition of College Algebra represents a substantial step forward in student

accessibility. Every aspect of the revision of this classic text focuses on making the text

more accessible to students while retaining the precise presentation of the mathematics for

which the Barnett name is renowned. Extensive work has been done to enhance the clarity

of the exposition, improving the overall presentation of the content. This in turn has

decreased the length of the text.

Specifically, we concentrated on the areas of writing, exercises, worked examples, design,

and technology. Based on numerous reviews, advice from expert consultants, and direct cor-

respondence with the many users of previous editions, this edition is more relevant and acces-

sible than ever before.

Writing Without sacrificing breadth or depth or coverage, we have rewritten explanations

to make them clearer and more direct. As in previous editions, the text emphasizes compu-

tational skills, essential ideas, and problem solving rather than theory.

Exercises Over twenty percent of the exercises in the ninth edition are new. These  exer-

cises encompass both a variety of skill levels as well as increased content coverage, ensur-

ing a gradual increase in difficulty level throughout. In addition, brand new writing exer-

cises have been included at the beginning of each exercise set in order to encourage a more

thorough understanding of key concepts for students.

Examples Color annotations accompany many examples, encouraging the learning process

for students by explaining the solution steps in words. Each example is then followed by a

similar matched problem for the student to solve. Answers to the matched problems are located

at the end of each section for easy reference. This active involvement in learning while reading

helps students develop a more thorough understanding of concepts and processes.

Technology Instructors who use technology to teach college algebra, whether it be explor-

ing mathematics with a graphing calculator or assigning homework and quizzes online, will

find the ninth edition to be much improved.

Refined “Technology Connections” boxes included at appropriate points in the text illus-

trate how problems previously introduced in an algebraic context may be solved using a

graphing calculator. Exercise sets include calculator-based exercises marked with a calculator

icon. Note, however, that the use of graphing technology is completely optional with this

text. We understand that at many colleges a single text must serve the purposes of teachers

with widely divergent views on the proper use of graphing and scientific calculators in

college algebra, and this text remains flexible regarding the degree of calculator integration.

Additionally, McGraw-Hill’s MathZone offers a complete online homework system for

mathematics and statistics. Instructors can assign textbook-specific content as well as cus-

tomize the level of feedback students receive, including the ability to have students show

their work for any given exercise. Assignable content for the ninth edition of College Algebra

includes an array of videos and other multimedia along with algorithmic exercises, provid-

ing study tools for students with many different learning styles.

A Central Theme

In the Barnett series, the function concept serves as a unifying theme. A brief look at the

table of contents reveals this emphasis. A major objective of this book is the development

of a library of elementary functions, including their important properties and uses. Employ-

ing this library as a basic working tool, students will be able to proceed through this book

with greater confidence and understanding.

Preface



Reflecting trends in the way college algebra is taught, the ninth edition emphasizes

functions modeled in the real world more strongly than previous editions. In some cases,

data are provided and the student is asked to produce an approximate corresponding func-

tion using regression on a graphing calculator. However, as with previous editions, the use

of a graphing calculator remains completely optional and any such examples or exercises

can be easily omitted without loss of continuity.

Key Features

The revised full-color design gives the book a more contemporary feel and will appeal to

students who are accustomed to high production values in books, magazines, and nonprint

media. The rich color palette, streamlined calculator explorations, and use of color to sig-

nify important steps in problem material work in conjunction to create a more visually

appealing experience for students.

An emphasis on mathematical modeling is evident in section titles such as “Linear

Equations and Models” and “Exponential Models.” These titles reflect a focus on the rela-

tionship between functions and real-world phenomena, especially in examples and exercises.

Modeling problems vary from those where only the function model is given (e.g., when the

model is a physical law such as F ⫽ ma), through problems where a table of data and the

function are provided, to cases where the student is asked to approximate a function from

data using the regression function of a calculator or computer.

Matched problems following worked examples encourage students to practice prob-

lem solving immediately after reading through a solution. Answers to the matched problems

are located at the end of each section for easy reference.

Interspersed throughout each section, Explore-Discuss boxes foster conceptual under-

standing by asking students to think about a relationship or process before a result is stated.

Verbalization of mathematical concepts, results, and processes is strongly encouraged in these

explanations and activities. Many Explore-Discuss boxes are appropriate for group work.

Refined Technology Connections boxes employ graphing calculators to show graph-

ical and numerical alternatives to pencil-and-paper symbolic methods for problem solv-

ing—but the algebraic methods are not omitted. Screen shots are from the TI-84 Plus

calculator, but the Technology Connections will interest users of any automated graphing

utility.

Think boxes (color dashed boxes) are used to enclose steps that, with some experi-

ence, many students will be able to perform mentally.

Balanced exercise sets give instructors maximum flexibility in assigning homework. A

wide variety of easy, moderate, and difficult level exercises presented in a range of prob-

lem types help to ensure a gradual increase in difficulty level throughout each exercise set.

The division of exercise sets into A (routine, easy mechanics), B (more difficult mechan-

ics), and C (difficult mechanics and some theory) is explicitly presented only in the Anno-

tated Instructor’s Edition. This is due to our attempt to avoid fueling students’ anxiety about

challenging exercises.

This book gives the student substantial experience in modeling and solving applied

problems. Over 500 application exercises help convince even the most skeptical student that

mathematics is relevant to life outside the classroom.

An Applications Index is included following the Guided Tour to help locate particu-

lar applications.

Most exercise sets include calculator-based exercises that are clearly marked with a

calculator icon. These exercises may use real or realistic data, making them computation-

ally heavy, or they may employ the calculator to explore mathematics in a way that would

be impractical with paper and pencil.

As many students will use this book to prepare for a calculus course, examples and

exercises that are especially pertinent to calculus are marked with an icon.

A Group Activity is located at the end of each chapter and involves many of the con-

cepts discussed in that chapter. These activities require students to discuss and write about

mathematical concepts in a complex, real-world context.
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Changes to this Edition

A more modernized, casual, and student-friendly writing style has been infused through-

out the chapters without radically changing the tone of the text overall.  This directly works

toward a goal of increasing motivation for students to actively engage with their textbooks,

resulting in higher degrees of retention.

A significant revision to the exercise sets in the new edition has produced a variety of

important changes for both students and instructors. As a result, over twenty percent of the

exercises are new. These exercises encompass both a variety of skill levels as well as

increased content coverage, ensuring a gradual increase in difficulty level throughout. In

addition, brand new writing exercises have been included at the beginning of each exercise

set in order to encourage a more thorough understanding of key concepts for students. Spe-

cific changes include:

• The addition of hundreds of new writing exercises to the beginning of each exercise set.

These exercises encourage students to think about the key concepts of the sections before

attempting the computational and application exercises, ensuring a more thorough under-

standing of the material.

• An update to the data in many application exercises to reflect more current statistics in

topics that are both familiar and highly relevant to today’s students.

• A significant increase the amount of moderate skill level problems throughout the text in

response to the growing need expressed by instructors.

The number of colored annotations that guide students through worked examples has

been increased throughout the text to add clarity and guidance for students who are learn-

ing critical concepts.

New instructional videos on graphing calculator operations posted on MathZone

help students master the most essential calculator skills used in the college algebra

course. The videos are closed-captioned for the hearing impaired, subtitled in Spanish,

and meet the Americans with Disabilities Act Standards for Accessible Design. Though

these are an entirely optional ancillary, instructors may use them as resources in a learn-

ing center, for online courses, and to provide extra help to students who require extra

practice.

Chapter R, “Basic Algebraic Operations,” has been extensively rewritten based upon feed-

back from reviewers to provide a streamlined review of basic algebra in four sections rather

than six. Exponents and radicals are now covered in a single section (R-2), and the section

covering operations on polynomials (R-3) now includes factoring.

Chapter 7, “Systems of Equations and Matrices,” has been reorganized to focus on sys-

tems of linear equations, rather than on systems of inequalities or nonlinear systems. A sec-

tion on determinants and Cramer’s rule (10-5) has been added. Three additional sections on

systems of nonlinear equations, systems of linear inequalities, and linear programming are

also available online.

Design: A Refined Look with Your Students in Mind

The McGraw-Hill Mathematics Team has gathered a great deal of information about how

to create a student-friendly textbook in recent years by going directly to the source—your

students. As a result, two significant changes have been made to the design of the ninth edi-

tion based upon this feedback. First, example headings have been pulled directly out into

the margins, making them easy for students to find. Additionally, we have modified the

design of one of our existing features—the caution box—to create a more powerful tool for

your students. Described by students as one of the most useful features in a math text, these

boxes now demand attention with bold red headings pulled out into the margin, alerting stu-

dents to avoid making a common mistake. These fundamental changes have been made

entirely with the success of your students in mind and we are confident that they will

improve your students’ overall reaction to and enjoyment of the course.
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Exploration and Discussion

Would you like to incorporate more discovery learning in

your course? Interspersed at appropriate places in every

section, Explore-Discuss boxes encourage students to

think critically about mathematics and to explore key

concepts in more detail. Verbalization of mathe-

matical concepts, results, and processes is

encouraged in these Explore-Discuss boxes, as

well as in some matched problems, and in prob-

lems marked with color numerals in almost

every exercise set. Explore-Discuss material can

be used in class or in an out-of-class activity.

Examples and Matched Problems

Integrated throughout the text, completely worked exam-

ples and practice problems are used to introduce concepts

and demonstrate problem-solving techniques—algebraic,

graphical, and numerical. Each example is followed by a

similar Matched Problem for the student to work

through while reading the material. Answers to

the matched problems are located at the end of

each section for easy reference. This active

involvement in the learning process helps

students develop a more thorough understanding

of algebraic concepts and processes.

Z Midpoint of a Line Segment

The midpoint of a line segment is the point that is equidistant from each of the endp

A formula for finding the midpoint is given in Theorem 2. The proof is discussed i

exercises.

EXAMPLE 2 Using the Distance Formula

Find the distance between the points ( 3, 5) and ( 2,  8).*

Let (x1, y1)  (ⴚ3, 5) and (x2, y2)   (ⴚ2, ⴚ8). Then,

Notice that if we choose (x1, y1)  ( 2,  8) and (x2, y2)  ( 3, 5), then

so it doesn’t matter which point we designate as P1 or P2.

d  2 [( 3)  ( 2)]2
 [5  ( 8)]2

 21  169  2170

 2( 2  3)2
 ( 8  5)2

 212
 ( 13)2

 21  169  2170

d  2 [(ⴚ2)  (ⴚ3)]2
 [(ⴚ8)  5 ]2

SOLUTION

MATCHED PROBLEM 2 Find the distance between the points (6,  3) and ( 7,  5).

To graph the equation y ⫽⫺x
3
⫹ 2x, we use point-by-point plotting to obtain the

graph in Figure 5.

(A) Do you think this is the correct graph of

the equation? If so, why? If not, why?

(B) Add points on the graph for x ⫽⫺2,

⫺0.5, 0.5, and 2.

(C) Now, what do you think the graph looks

like? Sketch your version of the graph,

adding more points as necessary.

(D)Write a short statement explaining any

conclusions you might draw from parts A,

B, and C.

ZZZ EXPLORE-DISCUSS 1

Z Figure 5

x

y

⫺5

5⫺5

5

⫺1  ⫺1

0 0

1 1

x y
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Applications

One of the primary objectives of this book is to give the

student substantial experience in modeling and solving

real-world problems. Over 500 application exercises help

convince even the most skeptical student that mathemat-

ics is relevant to everyday life. An Applications

Index is included following the features to help

locate particular applications.

54. L 8.8  5.1 log D for D (astronomy)

55. for t (circuitry)

56. for n (annuity)

The following combinations of exponential functions define four 

of six hyperbolic functions, a useful class of functions in calculus

and higher mathematics. Solve Problems 57–60 for x in terms of y.

The results are used to define inverse hyperbolic functions,

another useful class of functions in calculus and higher

mathematics.

57. 58. 

59. 60. 

In Problems 61–68, use a graphing calculator to approximate to

two decimal places any solutions of the equation in the interval

0  x  1. None of these equations can be solved exactly using

any step-by-step algebraic process.

61. 62. 

63. 64. 

65. 66. 

67. 68. 

APPLICATIONS

69. COMPOUND INTEREST How many years, to the nearest year,

will it take a sum of money to double if it is invested at 7% com-

pounded annually?

70. COMPOUND INTEREST How many years, to the nearest year,

will it take money to quadruple if it is invested at 6% compounded

annually?

ln x  x  0ln x  ex
 0

ln x  x2
 0ln x  2x  0

xe2x
 1  0e x

 x  0

3 x
 3x  02 x

 2x  0

y  
ex
 e x

ex
 e xy  

ex
 e x

ex
 e x

y  
ex
 e x

2
y  

ex
 e x

2

S  R
(1  i)n

 1

i

I  
E

R
 (1  e Rt L)

15. 16.

In Problems 17–26, solve exactly.

17. log5 x 2 18. log3 y 4

19. log (t 4)    1 20. ln (2x 3)   0

21. 22.

23. 

24.

25. 

26. 

In Problems 27–34, solve to three significant digits.

27. 28. 

29. 30. 

31. 32.

33. 34. 

In Problems 35–48, solve exactly.

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 1  ln (x  1)  ln (x  1)

ln (x  1)  ln (3x  3)

1  log (x  2)  log (3x  1)

log (2x  1)  1  log (x  1)

ln (x  1)  ln (3x  1)  ln x

ln x  ln (2x  1)  ln (x  2)

log (6x  5)  log 3  log 2  log x

log x  log 5  log 2  log (x  3)

log (x  3)  log (6  4x)

log (5  2x)  log (3x  1)

ex2

 125e x2

 0.23

438  200e0.25x123  500e 0.12x

e0.32x
 0.47  0e 1.4x

 5  0

3  1.06x2  1.05x

log (2x  1)  1  log (x  2)

log (x  1)  log (x  1)  1

log (x  9)  log 100x  3

log x  log (x  3)  1

log x  log 8  1log 5  log x  2

343 x
 0.089232 x

 0.426

10 years

24 years

x 0.25

x  0.43

x  0.65

x 0.57

0.38

0.57

0.43

0.27

x  ln(y  2y 2
 1) x  ln[y  2y 2

 1]

x  
1

2
ln

y  1

y  1
x  1

2 ln
1  y

1  y

t   
L

R
ln al  RI

E
b

D  10(L 8.8) 5.1

n  
ln(Si

R  1)

ln(1  i )

No solution

No solution

6.204.23

x  25 y  81

t  
41
10 x   1

80

10

21
8

20

5

11
9

18.9

No solution

3.14

 2.20

 1

2
3

1  12

3

14.2

No solution

11.7

 1.21

4
5

5

2  13

1  189

4

B

Technology Connections

Technology Connections boxes integrated at

appropriate points in the text illustrate how con-

cepts previously introduced in an algebraic con-

text may be approached using a graphing

calculator. Students always learn the algebraic

methods first so that they develop a solid grasp

of these methods and do not become calculator-

dependent. The exercise sets contain calculator-

based exercises that are clearly marked with a

calculator icon. The use of technology is

completely optional with this text. All technology

features and exercises may be omitted without sacrificing

content coverage.

Technology Connections

Figure 1 shows the details of constructing the logarithmic model of Example 5 on a graphing calculator.

0

0

100

120

Z Figure 1

(a) Entering the data (b) Finding the model (c) Graphing the data and the model

�

62. g(x)  4ex 1
 7; f (x)  ex

63. g(x)  3  4e2 x; f (x)  ex

64. g(x)   2  5e4 x; f (x)  ex

In Problems 65–68, simplify.

65. 66.

67. (ex
 e x)2  (ex

 e x)2

68. ex(e x
 1)  e x(ex

 1)

In Problems 69–76, use a graphing calculator to find local

extrema, y intercepts, and x intercepts. Investigate the behavior as

x S  and as x   and identify any horizontal asymptotes.

Round any approximate values to two decimal places.

69. f (x)  2  ex 2
70. g(x)   3  e1 x

71. s(x)  72. r(x)  ex2e x2

5x4e5x
 4x3e5x

x8
 2x3e 2x

 3x2e 2x

x6

e
x
 e

 x

2e
2x
 2e

 2x
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Foundation for Calculus

As many students will use this book to prepare for a

calculus course, examples and exercises that are

especially pertinent to calculus are marked

with an icon.

Group Activities

A Group Activity is located at the end of each chapter

and involves many of the concepts discussed in that chap-

ter. These activities strongly encourage the

verbalization of mathematical concepts, results,

and processes. All of these special activities are

highlighted to emphasize their importance. CHAPTER 5 

ZZZ GROUP ACTIVITY Comparing Regression Models

We have used polynomial, exponential, and logarithmic regres-

sion models to fit curves to data sets. How can we determine

which equation provides the best fit for a given set of data? There

are two principal ways to select models. The first is to use infor-

mation about the type of data to help make a choice. For example,

we expect the weight of a fish to be related to the cube of its

length. And we expect most populations to grow exponentially, at

least over the short term. The second method for choosing among

equations involves developing a measure of how closely an equa-

tion fits a given data set. This is best introduced through an exam-

ple. Consider the data set in Figure 1, where L1 represents the x

coordinates and L2 represents the y coordinates. The graph of this

data set is shown in Figure 2. Suppose we arbitrarily choose the

equation y1⫽ 0.6x⫹ 1 to model these data (Fig. 3).

Each of these differences is called a residual. Note that three of

the residuals are positive and one is negative (three of the points

lie above the line, one lies below). The most commonly accepted

measure of the fit provided by a given model is the sum of the

squares of the residuals (SSR). When squared, each residual

(whether positive or negative or zero) makes a nonnegative con-

tribution to the SSR.

(A) A linear regression model for the data in Figure 1 is given by

Compute the SSR for the data and y2, and compare it to the

one we computed for y1.

It turns out that among all possible linear polynomials, the

linear regression model minimizes the sum of the squares of the

residuals. For this reason, the linear regression model is often

called the least-squares line. A similar statement can be made for

polynomials of any fixed degree. That is, the quadratic regression

model minimizes the SSR over all quadratic polynomials, the cu-

bic regression model minimizes the SSR over all cubic polynomi-

als, and so on. The same statement cannot be made for exponen-

tial or logarithmic regression models. Nevertheless, the SSR can

still be used to compare exponential, logarithmic, and polynomial

models.

(B) Find the exponential and logarithmic regression models for

the data in Figure 1, compute their SSRs, and compare with

the linear model.

(C) National annual advertising expenditures for selected years

since 1950 are shown in Table 1 where x is years since 1950

and y is total expenditures in billions of dollars. Which re-

gression model would fit this data best: a quadratic model, a

cubic model, or an exponential model? Use the SSRs to sup-

y2 ⫽ 0.35x ⫹ 3

⫹ (7 ⫺ 5.8)2
⫽ 9.8

SSR ⫽ (4 ⫺ 2.2)2
⫹ (5 ⫺ 3.4)2

⫹ (3 ⫺ 4.6)2

Z Figure 1
Z Figure 2

Z Figure 3 y1⫽ 0.6x⫹ 1.

0

0

10

10

0

0

10

10

EXAMPLE 6 Evaluating and Simplifying a Difference Quotient

For f (x) ⫽ x2
⫹ 4x ⫹ 5, find and simplify:

(A) f (x ⫹ h) (B) f (x ⫹ h) ⫺ f (x) (C) 
f (x ⫹ h) ⫺ f (x)

h
, h � 0

SOLUTIONS (A) To find f (x ⫹ h), we replace x with x ⫹ h everywhere it appears in the equation that

defines f and simplify:

(B) Using the result of part A, we get

(C)

�⫽ 2x ⫹ h ⫹ 4

f (x ⫹ h) ⫺ f (x)

h
⫽

2xh ⫹ h2
⫹ 4h

h
⫽

h(2x ⫹ h ⫹ 4)

h

⫽ 2xh ⫹ h2
⫹ 4h

⫽ x2
⫹ 2xh ⫹ h2

⫹ 4x ⫹ 4h ⫹ 5 ⫺ x2
⫺ 4x ⫺ 5

f (x ⴙ h) ⫺ f (x) ⫽ x2 ⴙ 2xh ⴙ h2 ⴙ 4x ⴙ 4h ⴙ 5 ⫺ (x2 ⴙ 4x ⴙ 5)

⫽ x2
⫹ 2xh ⫹ h2

⫹ 4x ⫹ 4h ⫹ 5

f (x ⴙ h) ⫽ (x ⴙ h)2
⫹ 4(x ⴙ h) ⫹ 5

Divide numerator and

denominator by h 0.�
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Student Aids

Annotation of examples and explanations, in

small colored type, is found throughout the text

to help students through critical stages. Think

Boxes are dashed boxes used to enclose steps

that students may be encouraged to perform

mentally.

Screen Boxes are used to highlight important

definitions, theorems, results, and step-by-step

processes.

Z COMPOUND INTEREST

If a principal P is invested at an annual rate r compounded m times a year, then

the amount A in the account at the end of n compounding periods is given by

Note that the annual rate r must be expressed in decimal form, and that 

where t is years.

n  mt,

A  Pa1  
r

m
bn

Z DEFINITION 1 Increasing, Decreasing, and Constant Functions

Let I be an interval in the domain of function f. Then,

1. f is increasing on I and the graph of f is rising on I if 

whenever in I.

2. f is decreasing on I and the graph of f is falling on I if 

whenever in I.

3. f is constant on I and the graph of f is horizontal on I if 

whenever in I.x1 6 x2

f (x1)  f (x2)

x1 6 x2

f (x1) 7 f (x2)

x1 6 x2

f (x1) 6 f (x2)

Z THEOREM 1 Tests for Symmetry

Symmetry with An equivalent 

respect to the: equation results if:

y axis x is replaced with ⫺x

x axis y is replaced with ⫺y

Origin x and y are replaced with ⫺x and ⫺y

The domain of f is all x values except or 

The value of a fraction is 0 if and only if the numerator is zero:

Subtract 4 from both sides.

Divide both sides by ⴚ3.

The x intercept of f is 

The y intercept is 

�

f (0) ⫽
4 ⫺ 3(0)

2(0) ⫹ 5
⫽

4

5
.

4
3.

x ⫽ 4
3

⫺3x ⫽ ⫺4

 4 ⫺ 3x ⫽ 0

(⫺⬁, ⫺5
2)傼 (⫺5

2, ⬁).⫺
5
2,

Caution Boxes appear throughout the text to

indicate where student errors often occur. ZZZ CAUTION ZZZ A very common error occurs about now—students tend to confuse algebraic expres-

sions involving fractions with algebraic equations involving fractions.

Consider these two problems:

(A) Solve: (B) Add: 

The problems look very much alike but are actually very different. To solve the equa-

tion in (A) we multiply both sides by 6 (the LCD) to clear the fractions. This works

so well for equations that students want to do the same thing for problems like (B).

The only catch is that (B) is not an equation, and the multiplication property of equal-

ity does not apply. If we multiply (B) by 6, we simply obtain an expression 6 times

as large as the original! Compare these correct solutions:

(A)

x ⫽ 12

 5x ⫽ 60

 3x ⫹ 2x ⫽ 60

 6 ⴢ

x

2
⫹  6 ⴢ

x

3
⫽  6 ⴢ 10

x

2
⫹

x

3
⫽ 10

x

2
⫹

x

3
⫹ 10

x

2
⫹

x

3
⫽ 10

(B)

⫽
5x ⫹ 60

6

⫽
3x

6
⫹

2x

6
⫹

60

6

⫽
3 ⴢ x

3 ⴢ 2
⫹

2 ⴢ x

2 ⴢ 3
⫹

6 ⴢ 10

6 ⴢ 1

x

2
⫹

x

3
⫹ 10
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Cumulative Review Exercise sets are

provided in Appendix A for additional

reinforcement of key concepts.

Chapter Review sections are provided at the

end of each chapter and include a thorough

review of all the important terms and symbols.

This recap is followed by a comprehensive set

of review exercises.

Work through all the problems in this cumulative review and

check answers in the back of the book. Answers to all review

problems are there, and following each answer is a number in

italics indicating the section in which that type of problem is

discussed. Where weaknesses show up, review appropriate

sections in the text.

1. Solve for x: 

In Problems 2–4, solve and graph the inequality.

2. 2(3  y)  4  5  y 3. 冟x  2冟  7

4. x2
 3x  10

5. Perform the indicated operations and write the answer in stan-

dard form:

(A) (2 3i)  ( 5  7i)

(B) (1 4i)(3 5i)

(C) 

In Problems 6–9, solve the equation.

6. 3x2
  12x 7. 4x2

 20  0

8. x2
 6x  2  0 9.

10. Given the points A   (3, 2) and B   (5, 6), find:

(A) Distance between A and B.

(B) Slope of the line through A and B.

(C) Slope of a line perpendicular to the line through A and B.

11. Find the equation of the circle with radius and center:

(A) (0, 0) (B) ( 3, 1)

12. Graph 2x 3y  6 and indicate its slope and intercepts.

13. Indicate whether each set defines a function. Find the domain

and range of each function.

(A) {(1, 1), (2, 1), (3, 1)}

12

x  112  x  0

5  i

2  3i

7x

5
 

3  2x

2
 

x  10

3
 2

Problems 16–18 refer to the function f given by the graph:

16. Find the domain and range of f. Express answers in interval

notation.

17. Is f an even function, an odd function, or neither? Explain.

18. Use the graph of f to sketch a graph of the following:

(A) y  f (x  1) (B) y  2f (x) 2

In Problems 19–21, solve the equation.

19. 20.

21.

In Problems 22–24, solve and graph the inequality.

22. 23.

24.

25. For what real values of x does the following expression

represent a real number?

26 P f th i di t d ti d it th fi l

1x  2

x  4

x  1

2
7 x  2

2(3m  4)2
 2冟4x  9冟 7 3

2x  1  312x  1

3

x
 

6

x  1
 

1

x  1

x  3

2x  2
 

5x  2

3x  3
 

5

6

x

 5

5 5

5

f(x)

CHAPTERS 1–3 Cumulative Review Exercises

(A) 7 10i (B) 23 7i (C) 1 i (1-4)

(1-1)x  
5
2

*Additional answers can be found in the Instructor Answer Appendix.

(A) (B) 2 (C) (2-2, 2-3) 
1
2215

(A) x2
 y2

 2 (B) (x  3)2 (y  1)2  2 (2-2)

(1-5)x   15, 15
x   4, 0 (1-5)

(1-5)x  3  17 x  3 (1-6)

No solution (1-1)

(1-6)x  1, 5
2

(1-1)x  
1
2, 3

Domain: [ 2, 3]; range: [ 1, 2] (3-2)

Neither (3-3)

5-1 Exponential Functions

The equation f (x)  bx, b  0, b  1, defines an exponential func-

tion with base b. The domain of f is (  ,  ) and the range is 

(0,  ). The graph of f is a continuous curve that has no sharp cor-

ners; passes through (0, 1); lies above the x axis, which is a horizon-

tal asymptote; increases as x increases if b  1; decreases as x

increases if b  1; and intersects any horizontal line at most once.

The function f is one-to-one and has an inverse. We often use the

following exponential function properties:

1. axay
 ax y (ax)y

 axy (ab)x
 axbx

2. ax
 ay if and only if x  y.

3. For x  0, ax
 bx if and only if a  b.

As x approaches  , the expression [1  (1兾x)]x approaches the ir-

rational number e ⬇ 2.718 281 828 459. The function f (x)  ex is

called the exponential function with base e. The growth of money

in an account paying compound interest is described by

A  P(1  r兾m)n, where P is the principal, r is the annual rate, m

is the number of compounding periods in 1 year, and A is the

amount in the account after n compounding periods.

If the account pays continuous compound interest, the

amount A in the account after t years is given by A  Pert.

5-2 Exponential Models

Exponential functions are used to model various types of growth:

1. Population growth can be modeled by using the doubling time

growth model where A is the population at time t,

is the population at time and d is the doubling time—t  0,A0

A  A02t d,

ax

ay  ax yaa

b
bx

 
ax

bx

the time it takes for the population to double. Another model of

population growth, where is the population at

time zero and k is a positive constant called the relative growth

rate, uses the exponential function with base e. This model is

used for many other types of quantities that exhibit exponential

growth as well.

2. Radioactive decay can be modeled by using the half-life decay

model where A is the amount at time t,

is the amount at time and h is the half-life—the time it

takes for half the material to decay. Another model of

radioactive decay, , where is the amount at time

zero and k is a positive constant, uses the exponential function

with base e. This model can be used for other types of quantities

that exhibit negative exponential growth as well.

3. Limited growth—the growth of a company or proficiency at

learning a skill, for example—can often be modeled by the

equation where A and k are positive constants.

Logistic growth is another limited growth model that is useful

for modeling phenomena like the spread of an epidemic, or sales of a

new product. The logistic model is where c, k,

and M are positive constants. A good comparison of these different

exponential models can be found in Table 3 at the end of Section 5-2.

Exponential regression can be used to fit a function of the

form to a set of data points. Logistic regression can be

used to find a function of the form 

5-3 Logarithmic Functions

The logarithmic function with base b is defined to be the inverse

of the exponential function with base b and is denoted by y   logbx.

So y  logbx if and only if x  by, b  0, b  1. The domain of a

logarithmic function is (0,  ) and the range is (  ,  ). The graph

of a logarithmic function is a continuous curve that always passes

y  c (1  ae bx).

y  ab x

A  M/(1  ce kt ),

y  A(1  e kt ),

A0A  A0e kt

t  0,A0

A  A0(1
2)

t h  A02 t h,

A0A  A0ekt,

CHAPTER 5 Review

j
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Experience Student Success!

ALEKS is a unique online math tool that uses adaptive questioning and artificial intelligence to

correctly place, prepare, and remediate students . . . all in one product! Institutional case studies have shown that ALEKS has

improved pass rates by over 20% versus traditional online homework and by over 30% compared to using a text alone.

By offering each student an individualized learning path, ALEKS directs students to work on the math topics that they

are ready to learn. Also, to help students keep pace in their course, instructors can correlate ALEKS to their textbook or

syllabus in seconds.

To learn more about how ALEKS can be used to boost student performance, please visit www.aleks.com/highered/math

or contact your McGraw-Hill representative.

ALEKS Pie
Each student is given their own

individualized learning path.

Easy Graphing Utility!
Students can answer graphing

problems with ease!

Course Calendar
Instructors can schedule

assignments and reminders

for students.
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New ALEKS Instructor Module

Enhanced Functionality and Streamlined Interface Help to Save Instructor Time

The new ALEKS Instructor Module features enhanced functionality and streamlined interface based

on research with ALEKS instructors and homework management instructors. Paired with powerful assignment driven

features, textbook integration, and extensive content flexibility, the new ALEKS Instructor Module simplifies administrative

tasks and makes ALEKS more powerful than ever.

Gradebook view for all students Gradebook view for an individual student

Select topics for each assignment

Automatically Graded Assignments
Instructors can easily assign homework, quizzes,

tests, and assessments to all or select students.

Deadline extensions can also be created for

select students.

Learn more about ALEKS by visiting 

www.aleks.com/highered/math or contact

your McGraw-Hill representative.

Track Student Progress Through

Detailed Reporting
Instructors can track student progress through

automated reports and robust reporting features.

New Gradebook! 
Instructors can seamlessly track student

scores on automatically graded assignments.

They can also easily adjust the weighting

and grading scale of each assignment.
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Supplements

ALEKS (Assessment and Learning in Knowledge Spaces) is a dynamic online learning

system for mathematics education, available over the Web 24/7. ALEKS assesses stu-

dents, accurately determines their knowledge, and then guides them to the material that

they are most ready to learn. With a variety of reports, Textbook Integration Plus,

quizzes, and homework assignment capabilities, ALEKS offers flexibility and ease of use

for instructors. 

• ALEKS uses artificial intelligence to determine exactly what each student knows and is

ready to learn. ALEKS remediates student gaps and provides highly efficient learning and

improved learning outcomes

• ALEKS is a comprehensive curriculum that aligns with syllabi or specified textbooks.

Used in conjunction with McGraw-Hill texts, students also receive links to text-specific

videos, multimedia tutorials, and textbook pages.

• ALEKS offers a dynamic classroom management system that enables instructors to mon-

itor and direct student progress towards mastery of course objectives. 

ALEKS Prep/Remediation:

• Helps instructors meet the challenge of remediating under prepared or improperly placed

students.

• Assesses students on their pre-requisite knowledge needed for the course they are enter-

ing (i.e. Calculus students are tested on Precalculus knowledge) and prescribes unique

and efficient learning paths specific to their strengths and weaknesses.

• Students can address pre-requisite knowledge gaps outside of class freeing the instructor

to use class time pursuing course outcomes.

McGraw-Hill’s MathZone is a complete online homework system for mathematics and sta-

tistics. Instructors can assign textbook-specific content from over 40 McGraw-Hill titles as

well as customize the level of feedback students receive, including the ability to have stu-

dents show their work for any given exercise. Assignable content includes an array of videos

and other multimedia along with algorithmic exercises, providing study tools for students

with many different learning styles.

MathZone also helps ensure consistent assignment delivery across several sections

through a course administration function and makes sharing courses with other instruc-

tors easy. In addition, instructors can also take advantage of a virtual whiteboard by set-

ting up a Live Classroom for online office hours or a review session with students.

For more information, visit the book’s website (www.mhhe.com/barnett) or contact your

local McGraw-Hill sales representative (www.mhhe.com/rep).

Tegrity Campus is a service that makes class time available all the time by automatically

capturing every lecture in a searchable format for students to review when they study and

complete assignments. With a simple one-click start and stop process, you capture all com-

puter screens and corresponding audio. Students replay any part of any class with easy-to-

use browser-based viewing on a PC or Mac.
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Educators know that the more students can see, hear, and experience class resources,

the better they learn. With Tegrity Campus, students quickly recall key moments by using

Tegrity Campus’s unique search feature. This search helps students efficiently find what they

need, when they need it across an entire semester of class recordings. Help turn all your

students’ study time into learning moments immediately supported by your lecture.

To learn more about Tegrity watch a 2 minute Flash demo at http://tegritycampus.mhhe.com.

Instructor Solutions Manual Prepared by Fred Safier of City College of San Francisco,

this supplement provides detailed solutions to exercises in the text. The methods used to

solve the problems in the manual are the same as those used to solve the examples in the

textbook.

Student Solutions Manual Prepared by Fred Safier of City College of San Francisco,

the Student’s Solutions Manual provides complete worked-out solutions to odd-numbered

exercises from the text. The procedures followed in the solutions in the manual match

exactly those shown in worked examples in the text.

Lecture and Exercise Videos The video series is based on exercises from the textbook.

J. D. Herdlick of St. Louis Community College-Meramec introduces essential definitions,

theorems, formulas, and problem-solving procedures. Professor Herdlick then works through

selected problems from the textbook, following the solution methodologies employed by the

authors. The video series is available on DVD or online as part of MathZone. The DVDs

are closed-captioned for the hearing impaired, subtitled in Spanish, and meet the Americans

with Disabilities Act Standards for Accessible Design.

NetTutor Available through MathZone, NetTutor is a revolutionary system that enables

students to interact with a live tutor over the web. NetTutor’s web-based, graphical chat capa-

bilities enable students and tutors to use mathematical notation and even to draw graphs as

they work through a problem together. Students can also submit questions and receive

answers, browse previously answered questions, and view previous sessions. Tutors are

familiar with the textbook’s objectives and problem-solving styles.

Computerized Test Bank (CTB) Online Available through the book’s website, this com-

puterized test bank, utilizing Brownstone Diploma® algorithm-based testing software,

enables users to create customized exams quickly. This user-friendly program enables

instructors to search for questions by topic, format, or difficulty level; to edit existing ques-

tions or to add new ones; and to scramble questions and answer keys for multiple versions

of the same test. Hundreds of text-specific open-ended and multiple-choice questions are

included in the question bank. Sample chapter tests and a sample final exam in Microsoft

Word® and PDF formats are also provided.
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Basic Algebraic

Operations

ALGEBRA is “generalized arithmetic.” In arithmetic we add, subtract,

multiply, and divide specific numbers. In algebra we use all that we

know about arithmetic, but, in addition, we work with symbols that

represent one or more numbers. In this chapter we review some im-

portant basic algebraic operations usually studied in earlier courses.
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2 C H A P T E R  R BASIC ALGEBRAIC OPERATIONS

R-1 Algebra and Real Numbers

Z The Set of Real Numbers

Z The Real Number Line

Z Addition and Multiplication of Real Numbers

Z Further Operations and Properties

The numbers are examples of real numbers. Because the symbols

we use in algebra often stand for real numbers, we will discuss important properties of the

real number system.

Z The Set of Real Numbers

Informally, a real number is any number that has a decimal representation. So the real

numbers are the numbers you have used for most of your life. The set of real numbers,

denoted by R, is the collection of all real numbers. The notation (read “ is an

element of R”) expresses the fact that is a real number. The set Z  {. . . ,  2,  1,

0, 1, 2, . . .} of the natural numbers, along with their negatives and zero, is called the set

of integers. We write (read “Z is a subset of R”) to express the fact that every ele-

ment of Z is an element of R; that is, that every integer is a real number. Table 1 describes

the set of real numbers and some of its important subsets. Study Table 1 and note in par-

ticular that N Z Q R.

No real number is both rational and irrational, so the intersection (overlap) of the sets

Q and I is the empty set (or null set), denoted by The empty set contains no elements, .

(((

Z ( R

12

1212 僆 R

14,  3, 0, 73, 12, and 1
3

6

Table 1 The Set of Real Numbers

Symbol Name Description Examples

N Natural numbers Counting numbers (also called positive 1, 2, 3, . . .

integers)

Z Integers Natural numbers, their negatives, and 0 . . . ,  2,  1, 0, 1, 2, . . .

(also called whole numbers)

Q Rational numbers Numbers that can be represented as a兾b, 

where a and b are integers and 

decimal representations are repeating or 

terminating

I Irrational numbers Numbers that can be represented as † 

nonrepeating and nonterminating decimal 2.71828182 . . .†

numbers

R Real numbers Rational numbers and irrational numbers

*The overbar indicates that the number (or block of numbers) repeats indefinitely.

†Note that the ellipsis does not indicate that a number (or block of numbers) repeats indefinitely.

12,  , 1
3

7, 1.414213 . . . ,

5.272727b  0;

 4, 0, 1, 25,  3
5, 

2
3, 3.67,  0.333,*



so it is true that every element of the empty set is an element of any given set. In other

words, the empty set is a subset of every set.

Two sets are equal if they have exactly the same elements. The order in which the ele-

ments of a set are listed does not matter. For example,

{1, 2, 3, 4}  {3, 1, 4, 2}

Z The Real Number Line

A one-to-one correspondence exists between the set of real numbers and the set of points

on a line. That is, each real number corresponds to exactly one point, and each point to

exactly one real number. A line with a real number associated with each point, and vice

versa, as in Figure 1, is called a real number line, or simply a real line. Each number asso-

ciated with a point is called the coordinate of the point. The point with coordinate 0 is

called the origin. The arrow on the right end of the line indicates a positive direction. The

coordinates of all points to the right of the origin are called positive real numbers, and

those to the left of the origin are called negative real numbers. The real number 0 is nei-

ther positive nor negative.
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Z Figure 1 A real number line.

 10  5 0 105

7.64
Origin

 兹27
4

 
3

Z Addition and Multiplication of Real Numbers

How do you add or multiply two real numbers that have nonrepeating and nonterminating

decimal expansions? The answer to this difficult question relies on a solid understanding

of the arithmetic of rational numbers. The rational numbers are numbers that can be writ-

ten in the form a兾b, where a and b are integers and b  0 (see Table 1 on page 2). The

numbers 7兾5 and  2兾3 are rational, and any integer a is rational because it can be writ-

ten in the form a兾1. Two rational numbers a兾b and c兾d are equal if ad  bc; for example,

35兾10  7兾2. Recall how the sum and product of rational numbers are defined:

Z DEFINITION 1 Addition and Multiplication of Rationals

For rational numbers a兾b and c兾d, where a, b, c, and d are integers and 

Addition:

Multiplication:
a

b
ⴢ

c

d
 

ac

bd

a

b
 

c

d
 

ad  bc

bd

d  0:

b  0,



Addition and multiplication of rational numbers are commutative; changing the order in

which two numbers are added or multiplied does not change the result.

Addition is commutative.

Multiplication is commutative.

Addition and multiplication of rational numbers is also associative; changing the grouping

of three numbers that are added or multiplied does not change the result:

Addition is associative.

Multiplication is associative.

Furthermore, the operations of addition and multiplication are related in that multiplication

distributes over addition:

Left distributive law

Right distributive law

The rational number 0 is an additive identity; adding 0 to a number does not change

it. The rational number 1 is a multiplicative identity; multiplying a number by 1 does not

change it. Every rational number r has an additive inverse, denoted  r; the additive inverse

of 4兾5 is  4兾5, and the additive inverse of  3兾2 is 3兾2. The sum of a number and its addi-

tive inverse is 0. Every nonzero rational number r has a multiplicative inverse, denoted

r
 1; the multiplicative inverse of 4兾5 is 5兾4, and the multiplicative inverse of  3兾2 is  2兾3.

The product of a number and its multiplicative inverse is 1. The rational number 0 has no

multiplicative inverse.

 a5

7
 

9

4
b ⴢ 3

2
 

5

7
ⴢ

3

2
 

9

4
ⴢ

3

2

 
3

2
ⴢ a5

7
 

9

4
b  

3

2
ⴢ

5

7
 

3

2
ⴢ

9

4

 
3

2
ⴢ a5

7
ⴢ

9

4
b  a3

2
ⴢ

5

7
b ⴢ 9

4

 
3

2
 a5

7
 

9

4
b  a3

2
 

5

7
b  

9

4

 
3

2
ⴢ

5

7
 

5

7
ⴢ

3

2

 
3

2
 

5

7
 

5

7
 

3

2
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EXAMPLE 1 Arithmetic of Rational Numbers

Perform the indicated operations.

(A) (B) 

(C) (D) ( 6  9 2) 1( 17 9) 1

8

3
ⴢ

5

4

1

3
 

6

5

SOLUTIONS (A) 

(B) 

(C) 

(D) �( 6  9 2) 1
 a 6

1
 

9

2
b 1

 a 12  9

2
b 1

 a 3

2
b 1

  
2

3

( 17 9) 1
  9 17

8

3
ⴢ

5

4
 

40

12
 

10

3

1

3
 

6

5
 

5  18

15
 

23

15

because 40 ⴢ 3 ⴝ 12 ⴢ 10
40

12
ⴝ

10

3
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MATCHED PROBLEM 1
* Perform the indicated operations.

(A) (B) 

(C) (D) 

�

5 ⴢ (1 2  1 3)
21

20
ⴢ

15

14

 (8 17) 1
 (5 2  7 3)

Rational numbers have decimal expansions that are repeating or terminating. For exam-

ple, using long division,

The number 6 repeats indefinitely.

The block 142857 repeats indefinitely.

Terminating expansion

Conversely, any decimal expansion that is repeating or terminating represents a rational

number (see Problems 49 and 50 in Exercise R-1).

The number is irrational because it cannot be written in the form a兾b, where a and

b are integers, (for an explanation, see Problem 89 in Section R-3). Similarly, is

irrational. But which is equal to 2, is a rational number. In fact, if n is a positive integer,

then is irrational unless n belongs to the sequence of perfect squares 1, 4, 9, 16, 25, . . .

(see Problem 90 in Section R-3).

We now return to our original question: how do you add or multiply two real num-

bers that have nonrepeating and nonterminating decimal expansions? Although we will

not give a detailed answer to this question, the key idea is that every real number can

be approximated to any desired precision by rational numbers. For example, the irra-

tional number

is approximated by the rational numbers

.

.

.

Using the idea of approximation by rational numbers, we can extend the definitions of

rational number operations to include real number operations. The following box summa-

rizes the basic properties of real number operations.

 
141,421

100,000
 1.41421

 
14,142

10,000
 1.4142

 
1,414

1,000
 1.414

 
141

100
 1.41

 
14

10
 1.4

12 ⬇ 1.414 213 562 . . .

1n

14,

13b  0

12

 
13

8
 1.625

 
22

7
 3.142857

 
2

3
 0.666

*Answers to matched problems in a given section are found near the end of the section, before the exercise set.
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Z BASIC PROPERTIES OF THE SET OF REAL NUMBERS

Let R be the set of real numbers, and let x, y, and z be arbitrary elements of R.

Addition Properties

Closure: is a unique element in R.

Associative:

Commutative:

Identity: 0 is the additive identity; that is, 0  x  x  0  x for all

x in R, and 0 is the only element in R with this property.

Inverse: For each x in R, is its unique additive inverse; that is,

and  x is the only element in R

relative to x with this property.

Multiplication Properties

Closure: xy is a unique element in R.

Associative:

Commutative:

Identity: 1 is the multiplicative identity; that is, for all x in R, 

(1)x  x(1)  x, and 1 is the only element in R with this

property.

Inverse: For each x in R, is its unique multiplicative

inverse; that is, and is the only element

in R relative to x with this property.

Combined Property

Distributive: (x  y)z  xz  yzx(y  z)  xy  xz

x 1xx 1
 x 1x  1,

x 1x  0,

xy  yx

(xy)z  x( yz)

x  ( x)  ( x)  x  0,

 x

x  y  y  x

(x  y)  z  x  (y  z)

x  y

EXAMPLE 2 Using Real Number Properties

Which real number property justifies the indicated statement?

(A)

(B)

(C)

(D)

(E) If then b   a.a  b  0,

(x  y)(a  b)  (x  y)a  (x  y)b

(2x  3y)  5y  2x  (3y  5y)

a(b  c)  (b  c)a

(7x)y  7(xy)

SOLUTIONS (A) Associative (ⴢ)

(B) Commutative (ⴢ)

(C) Associative ( )

(D) Distributive

(E) Inverse ( ) �



It is important to remember that

Division by 0 is never allowed.
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MATCHED PROBLEM 2 Which real number property justifies the indicated statement?

(A) (B)

(C) (D)

(E) If then 

�

Z Further Operations and Properties

Subtraction of real numbers can be defined in terms of addition and the additive inverse. If

a and b are real numbers, then is defined to be Similarly, division can be

defined in terms of multiplication and the multiplicative inverse. If a and b are real num-

bers and then (also denoted a兾b) is defined to be a ⴢ b 1.a  bb  0,

a  ( b).a  b

b  1 a.ab  1,

(2x  3y)  0  2x  3y3x  7x  (3  7)x

(a  b)  c  c  (a  b)4  (2  x)  (4  2)  x

Z DEFINITION 2 Subtraction and Division of Real Numbers

For all real numbers a and b:

Subtraction:

Division: b  0a  b  a ⴢ b 1

a  b  a  ( b)

3 ⴜ 2 ⴝ 3 ⴢ 2
ⴚ1
ⴝ 3 ⴢ

1

2
ⴝ 1.5

5 ⴚ 3 ⴝ 5 ⴙ (ⴚ3) ⴝ 2

(A) Give an example that shows that subtraction of real numbers is not commutative.

(B) Give an example that shows that division of real numbers is not commutative.

ZZZ EXPLORE-DISCUSS 1

The basic properties of the set of real numbers, together with the definitions of sub-

traction and division, lead to the following properties of negatives and zero.

Z THEOREM 1 Properties of Negatives

For all real numbers a and b:

1. 

2. 

3. 

4. 

5. 

6. b  0
 a

 b
  

 a

b
  

a

 b
 

a

b

b  0
 a

b
  

a

b
 

a

 b

( 1)a   a

( a)( b)  ab

( a)b   (ab)  a( b)   ab

 ( a)  a



Note that if then by Theorem 2. In particular, but the expres-

sions and are undefined.0
0

3
0

0
3  0;0

b  0 ⴢ b 1
 0b  0,

8 C H A P T E R  R BASIC ALGEBRAIC OPERATIONS

Z THEOREM 2 Zero Properties

For all real numbers a and b:

1. 

2. if and only if* or or bothb  0a  0ab  0

a ⴢ 0  0 ⴢ a  0

*Given statements P and Q, “P if and only if Q” stands for both “if P, then Q” and “if Q, then P.”

EXAMPLE 3 Using Negative and Zero Properties

Which real number property or definition justifies each statement?

(A) 3  ( 2)  3  [ ( 2)]  5

(B)  ( 2)  2

(C)

(D)

(E) If (x  3)(x  5)  0, then either x  3  0 or x  5  0.

5

 2
  

5

2

 
 3

2
 

3

2

MATCHED PROBLEM 3

SOLUTIONS (A) Subtraction (Definition 1 and Theorem 1, part 1)

(B) Negatives (Theorem 1, part 1)

(C) Negatives (Theorem 1, part 6)

(D) Negatives (Theorem 1, part 5)

(E) Zero (Theorem 2, part 2) �

Which real number property or definition justifies each statement?

(A) (B) (C) 

(D) (E) If  then  

�

(x  3)(x  5)  0.x  5  0,
 7

9
  

7

9

( 1)3   3( 5)(2)   (5 ⴢ 2)
3

5
 3a1

5
b

A set of numbers is closed under an operation if performing the operation on num-

bers of the set always produces another number in the set. For example, the set of

odd integers is closed under multiplication, but is not closed under addition.

(A) Give an example that shows that the set of irrational numbers is not closed

under addition.

(B) Explain why the set of irrational numbers is closed under taking multiplica-

tive inverses.

ZZZ EXPLORE-DISCUSS 2



If a and b are real numbers, the quotient when written in the form a兾b,

is called a fraction. The number a is the numerator, and b is the denominator. It can be

shown that fractions satisfy the following properties. (Note that some of these properties,

under the restriction that numerators and denominators are integers, were used earlier to

define arithmetic operations on the rationals.)

a  b,b  0,
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Z THEOREM 3 Fraction Properties

For all real numbers a, b, c, d, and k (division by 0 excluded):

1. if and only if

since

2. 3. 4. 

5. 6. 7. 

2

3
ⴙ

1

5
ⴝ

2 ⴢ 5 ⴙ 3 ⴢ 1

3 ⴢ 5
ⴝ

13

15

7

8
ⴚ

2

8
ⴝ

7 ⴚ 2

8
ⴝ

5

8

3

6
ⴙ

4

6
ⴝ

3 ⴙ 4

6
ⴝ

7

6

a

b
 

c

d
 

ad  bc

bd

a

b
 

c

b
 

a  c

b

a

b
 

c

b
 

a  c

b

2

3
ⴜ

5

7
ⴝ

2

3
ⴢ

7

5
ⴝ

14

15

3

5
ⴢ

7

8
ⴝ

3 ⴢ 7

5 ⴢ 8
ⴝ

21

40

7 ⴢ 3

7 ⴢ 5
ⴝ

3

5

a

b
 

c

d
 

a

b
ⴢ

d

c

a

b
ⴢ

c

d
 

ac

bd

ka

kb
 

a

b

4 ⴢ 9 ⴝ 6 ⴢ 6
4

6
ⴝ

6

9

ad  bc
a

b
 

c

d

ANSWERS TO MATCHED PROBLEMS

1. (A) (B) (C) (D) 

2. (A) Associative (B) Commutative (C) Distributive

(D) Identity (E) Inverse (ⴢ)

3. (A) Division (Definition 1) (B) Negatives (Theorem 1, part 2)

(C) Negatives (Theorem 1, part 4) (D) Negatives (Theorem 1, part 5)

(E) Zero (Theorem 2, part 1)

( )

( )( )

25 69 8 17 8 29 6

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.  (4 1
 3)a3

8
b 1

 2 1

a 
2

3
b a 

5

6
b17

8
ⴢ

2

7

4

7
 a3  

6

2
ba 

3

5
b a 

5

3
b

0  0100  0

2

9
 

7

5

11

5
 

1

3

R-1 Exercises

In Problems 1–16, perform the indicated operations, if defined. If

the result is not an integer, express it in the form a/b, where a and

b are integers.

1. 2.

3. 4. 

5. 6. a 
1

10
b ⴢ 3

8

2

3
ⴢ

4

7

8

9
 

4

5

3

4
 

4

3

1

2
 

1

7

1

3
 

1

5
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In Problems 17–28, each statement illustrates the use of one of the

following properties or definitions. Indicate which one.

Commutative ( ) Inverse ( )

Commutative (ⴢ) Inverse (ⴢ)

Associative ( ) Subtraction

Associative (ⴢ) Division

Distributive Negatives (Theorem 1)

Identity ( ) Zero (Theorem 2)

Identity (ⴢ)

17. 18.

19. 20.

21. 22.

23. 24.

25.

26.

27. 28.

29. If does either a or b have to be 0?

30. If does either a or b have to be 1?

31. Indicate which of the following are true:

(A) All natural numbers are integers.

(B) All real numbers are irrational.

(C) All rational numbers are real numbers.

32. Indicate which of the following are true:

(A) All integers are natural numbers.

(B) All rational numbers are real numbers.

(C) All natural numbers are rational numbers.

33. Give an example of a rational number that is not an integer.

34. Give an example of a real number that is not a rational number.

In Problems 35 and 36, list the subset of S consisting of

(A) natural numbers, (B) integers, (C) rational numbers, and 

(D) irrational numbers.

35.

36.

In Problems 37 and 38, use a calculator* to express each number in

decimal form. Classify each decimal number as terminating,

repeating, or nonrepeating and nonterminating. Identify the pattern

of repeated digits in any repeating decimal numbers.

37. (A) (B) (C) (D) 

38. (A) (B) (C) (D) 29
111

7
1612113

6

11
8153

11
8
9

S  5 15,  1,  1
2, 2, 17, 6, 1625 9,  6

S  5 3,  2
3, 0, 1, 13, 95, 11446

ab  1,

ab  0,

(x  y) ⴢ 0  0
 x

 y
 

x

y

ab(c  d )  abc  abd

3(xy  z)  0  3(xy  z)

5  ( 6)  5( 1
 6)w  ( w)  0

8  12  8  ( 12)( 2)( 1
 2)  1

 
u

 v
 

u

v
7u  9u  (7  9)u

7(3m)  (7 ⴢ 3)mx  ym  x  my

39. Indicate true (T) or false (F), and for each false statement find

real number replacements for a and b that will provide a

counterexample. For all real numbers a and b:

(A) 

(B) 

(C) 

(D) 

40. Indicate true (T) or false (F), and for each false statement find

real number replacements for a, b, and c that will provide a

counterexample. For all real numbers a, b, and c:

(A) 

(B) 

(C) 

(D) 

In Problems 41–48, indicate true (T) or false (F), and for each

false statement give a specific counterexample.

41. The difference of any two natural numbers is a natural number.

42. The quotient of any two nonzero integers is an integer.

43. The sum of any two rational numbers is a rational number.

44. The sum of any two irrational numbers is an irrational number.

45. The product of any two irrational numbers is an irrational

number.

46. The product of any two rational numbers is a rational number.

47. The multiplicative inverse of any irrational number is an

irrational number.

48. The multiplicative inverse of any nonzero rational number is a

rational number.

49. If then and

Proceeding similarly, convert the repeating decimal 0.090909

. . . into a fraction. (All repeating decimals are rational num-

bers, and all rational numbers have repeating decimal repre-

sentations.)

50. Repeat Problem 49 for 0.181818. . . .

 c  15
99  

5
33

 99c  15

 100c  c  15.1515 . . .  0.151515 . . .

100c  15.1515 . . .c  0.151515 . . . ,

(a  b)  c  a  (b  c)

a(bc)  (ab)c

(a  b)  c  a  (b  c)

(a  b)  c  a  (b  c)

a  b  b  a

ab  ba

a  b  b  a

a  b  b  a

*Later in the book you will encounter optional exercises that require a graphing calculator. If you have such a calculator, you can certainly use it here.

Otherwise, any scientific calculator will be sufficient for the problems in this chapter.



The French philosopher/mathematician René Descartes (1596–1650) is generally credited

with the introduction of the very useful exponent notation “xn.” This notation as well as

other improvements in algebra may be found in his Geometry, published in 1637.

If n is a natural number, xn denotes the product of n factors, each equal to x. In this sec-

tion, the meaning of xn will be expanded to allow the exponent n to be any rational number.

Each of the following expressions will then represent a unique real number:

Z Integer Exponents

If a is a real number, then

6 factors of a

In the expression a6, 6 is called an exponent and a is called the base.

Recall that a 1, for , denotes the multiplicative inverse of a (that is, ). To gen-

eralize exponent notation to include negative integer exponents and 0, we define a 6 to be

the multiplicative inverse of a6, and we define a0 to be 1.

1 aa  0

a6
 a ⴢ a ⴢ a ⴢ a ⴢ a ⴢ a

14 5 361 23.1405 475
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R-2 Exponents and Radicals

Z Integer Exponents

Z Scientific Notation

Z Roots of Real Numbers

Z Rational Exponents and Radicals

Z Simplifying Radicals

EXAMPLE 1 Using the Definition of Integer Exponents

Write parts (A) and (B) in decimal form and parts (C) and (D) using positive exponents.

Assume all variables represent nonzero real numbers.

(A) (B)

(C) (D)
x 3

y 5x 8

10 3(u3v2)0

Z DEFINITION 1 a
n

, n an Integer and a a Real Number

For n a positive integer and a a real number:

n factors of a

(a  0) a0
 1

(a  0) a n
 

1

an

 an  a ⴢ a ⴢ . . . ⴢ a



(A) (B)

(C) (D)

*

� 
y5

x3 
x 3

1
ⴢ

1

y 5  
1

x3 ⴢ
y5

1
  

x 3

y 5x 8
 

1

x8

10 3
 

1

103  
1

1,000
 0.001(u3v2)0

 1
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SOLUTIONS

MATCHED PROBLEM 1 Write parts (A) and (B) in decimal form and parts (C) and (D) using positive exponents.

Assume all variables represent nonzero real numbers.

(A) (B) (C) (D)

�

u 7

v 3

1

x 410 5(x2)0

*Throughout the book, dashed boxes—called think boxes—are used to represent steps that may be performed

mentally.

†By “simplify” we mean eliminate common factors from numerators and denominators and reduce to

a minimum the number of times a given constant or variable appears in an expression. We ask that answers be

expressed using positive exponents only in order to have a definite form for an answer. Later (in this section

and elsewhere) we will encounter situations where we will want negative exponents in a final answer.

To calculate with exponents, it is helpful to remember Definition 1. For example:

These are instances of Properties 1 and 2 of Theorem 1. 

 (23)4
 (2 ⴢ 2 ⴢ 2)4

 (2 ⴢ 2 ⴢ 2)(2 ⴢ 2 ⴢ 2)(2 ⴢ 2 ⴢ 2)(2 ⴢ 2 ⴢ 2)  23ⴢ4
 212

 23
ⴢ 24

 (2 ⴢ 2 ⴢ 2)(2 ⴢ 2 ⴢ 2 ⴢ 2)  23 4
 27

Z THEOREM 1 Properties of Integer Exponents

For n and m integers and a and b real numbers:

1. 

2. 

3. 

4. 

5. a  0
am

an
 再a

m n

1

an m

b  0aa
b
bm  am

bm

(ab)m  ambm
(an)m  amn

aman  am n

a
3

a
ⴚ2
ⴝ

1

a
ⴚ2ⴚ3

ⴝ
1

a
ⴚ5

a
3

a
ⴚ2
ⴝ a

3ⴚ(ⴚ2)
ⴝ a

5

aa
b
b4

ⴝ
a

4

b
4

(ab)
3
ⴝ a

3
b

3

ⴝ a
ⴚ6

ⴝ a
(ⴚ2)3

(a
3
)
ⴚ2

ⴝ a
ⴚ2

ⴝ a
5ⴙ(ⴚ7)

a
5
a
ⴚ7

EXAMPLE 2 Using Exponent Properties

Simplify using exponent properties, and express answers using positive exponents only.†

(A) (B)

(C) (D) (2a 3b2) 2
 4y3

 ( 4y)3

6x 2

8x 5(3a5)(2a 3)

SOLUTIONS (A)

(B)   
3x3

4
  

3x 2 ( 5)

4

6x 2

8x 5

  6a2
  (3 ⴢ 2)(a5a 3)(3a5)(2a 3)



(C)

(D) �(2a 3b2) 2
 2 2a6b 4

 
a6

4b4

   4y3
 64y3

 60y3

   4y3
 ( 64)y3

 4y3
 ( 4y)3

  4y3
 ( 4)3y3
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MATCHED PROBLEM 2 Simplify using exponent properties, and express answers using positive exponents only.

(A) (B) (C) (D)

�

(3x4y 3) 22x4
 ( 2x)4

9y 7

6y 4(5x 3)(3x4)

Z Scientific Notation

Scientific work often involves the use of very large numbers or very small numbers. For

example, the average cell contains about 200,000,000,000,000 molecules, and the diameter

of an electron is about 0.000 000 000 0004 centimeter. It is generally troublesome to write

and work with numbers of this type in standard decimal form. The two numbers written

here cannot even be entered into most calculators as they are written. However, each can

be expressed as the product of a number between 1 and 10 and an integer power of 10:

In fact, any positive number written in decimal form can be expressed in scientific nota-

tion, that is, in the form

n an integer, a in decimal form1  a 6 10,a  10n

 0.000 000 000 0004  4  10 13

 200,000,000,000,000  2  1014

EXAMPLE 3 Scientific Notation

(A) Write each number in scientific notation: 6,430; 5,350,000; 0.08; 0.000 32

(B) Write in standard decimal form:     10 58.410 3;5104;9.15102;2.7

SOLUTIONS (A)

(B) �270; 91,500; 0.005; 0.000 084

0.000 32  3.2  10 4

0.08  8  10 2;6,430  6.43  103; 5,350,000  5.35  106;

(A) Write each number in scientific notation: 23,000; 345,000,000; 0.0031; 0.000 000 683

(B) Write in standard decimal form: 4   103; 5.3   105; 2.53   10 2; 7.42   10 6

�

MATCHED PROBLEM 3

Most calculators express very large and very small numbers in scientific notation. Con-

sult the manual for your calculator to see how numbers in scientific notation are entered in

your calculator. Some common methods for displaying scientific notation on a calculator

are shown here.

Typical Scientific Typical Graphing

Number Represented Calculator Display Calculator Display

2.359779E122.359779 122.359 779  1012

5.427493E – 175.427493 – 175.427 493  10 17



 Calculator display

To three significant digits

Figure 1 shows two solutions to this problem on a graphing calculator. In the first solution we

entered the numbers in scientific notation, and in the second we used standard decimal nota-

tion. Although the multiple-line screen display on a graphing calculator enables us to enter

very long standard decimals, scientific notation is usually more efficient and less prone to

errors in data entry. Furthermore, as Figure 1 shows, the calculator uses scientific notation to

display the answer, regardless of the manner in which the numbers are entered. �

  3.73  1024

3.732491389E24

 
325,100,000,000

0.000 000 000 000 0871
 

3.251  1011

8.71  10 14
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EXAMPLE 4 Using Scientific Notation on a Calculator

Calculate by writing each number in scientific notation and then

using your calculator. (Refer to the user’s manual accompanying your calculator for the pro-

cedure.) Express the answer to three significant digits* in scientific notation.

325,100,000,000

0.000 000 000 000 0871

SOLUTION

Z Figure 1

Repeat Example 4 for:

�

0.000 000 006 932

62,600,000,000

MATCHED PROBLEM 4

*For those not familiar with the meaning of significant digits, see Appendix A for a brief discussion of this

concept.

Z Roots of Real Numbers

The solutions of the equation are called square roots of 64 and the solutions of

are the cube roots of 64. So there are two real square roots of 64 ( 8 and 8) and

one real cube root of 64 (4 is a cube root, but  4 is not). Note that  64 has no real square

root ( has no real solution because the square of a real number can’t be negative),

but  4 is a cube root of  64 because In general:( 4)3
  64.

x2
  64

x3
 64

x2
 64

Z DEFINITION 2 Definition of an nth Root

For a natural number n and a and b real numbers:

a is an nth root of b if 3 is a fourth root of 81, since 3
4
ⴝ 81.an

 b

The number of real nth roots of a real number b is either 0, 1, or 2, depending on

whether b is positive or negative, and whether n is even or odd. Theorem 2 gives the details,

which are summarized in Table 1.



Z Rational Exponents and Radicals

To denote nth roots, we can use rational exponents or we can use radicals. For example, the

square root of a number b can be denoted by or To avoid ambiguity, both expres-

sions denote the positive square root when there are two real square roots. Furthermore,

both expressions are undefined when there is no real square root. In general:

1b.b1 2

S E C T I O N  R – 2 Exponents and Radicals 15

Z THEOREM 2 Number of Real nth Roots of a Real Number b

Let n be a natural number and let b be a real number:

1. If n is even, then b has two real nth roots, each the negative of the

other; if n is odd, then b has one real nth root.

2. 0 is the only nth root of 

3. If n is even, then b has no real nth root; if n is odd, then b has one

real nth root.

b 6 0:

b  0.b  0:

b 7 0:

Table 1 Number of Real

nth Roots of b

n even n odd

2 1

1 1

0 1b 6 0

b  0

b 7 0

Z DEFINITION 3 Principal nth Root

For n a natural number and b a real number, the principal nth root of b,

denoted by or is:

1. The real nth root of b if there is only one.

2. The positive nth root of b if there are two real nth roots.

3. Undefined if b has no real nth root.

1
n
b,b1 n

In the notation the symbol is called a radical, n is called the index, and b is the

radicand. If we write in place of 1
2
b.1bn  2,

1 1
n
b,

EXAMPLE 5 Principal nth Roots

Evaluate each expression:

(A) (B) (C) (D) (E) (F) 1
5

32271 3( 16)1 41
3
 125112191 2

SOLUTIONS (A) (B)

(C) (D) is undefined (not a real number).

(E) (F) �1
5

32  2271 3  3

( 16)1 41
3
 125   5

1121  1191 2  3

Evaluate each expression:

(A) (B) (C) (D) (E) (F)   

�

01 81
3
 27( 1)1 51

4
10,0001 481 3

MATCHED PROBLEM 5



How should a symbol such as be defined? If the properties of exponents are to

hold for rational exponents, then that is, must represent the square of

the cube root of 7. This leads to the following general definition:

72 372 3  (71 3)2;

72 3
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Z DEFINITION 4 b
m兾n

and b
ⴚm兾n

, Rational Number Exponent

For m and n natural numbers and b any real number (except b cannot be negative

when n is even):

and

is not real

(ⴚ32)
3 5
ⴝ [ (ⴚ32)

1 5]3
ⴝ (ⴚ2)

3
ⴝ ⴚ8

(ⴚ4)
3 24

ⴚ3 2
ⴝ

1

4
3 2
ⴝ

1

8
4

3 2
ⴝ (4

1 2)
3
ⴝ 2

3
ⴝ 8

b
 m n  

1

b
m n

b
m n  (b1 n)m

We have now discussed for all rational numbers and real numbers b. It can

be shown, though we will not do so, that all five properties of exponents listed in Theorem 1

continue to hold for rational exponents as long as we avoid even roots of negative numbers.

With the latter restriction in effect, the following useful relationship is an immediate con-

sequence of the exponent properties:

m nb
m n

Z THEOREM 3 Rational Exponent/Radical Property

For m and n natural numbers and b any real number (except b cannot be negative

when n is even):

(b1 n)m  (bm)1 n and (1
n

b)m  2
n

b
m

Find the contradiction in the following chain of equations:

(1)

Where did we try to use Theorem 3? Why was this not correct?

 1  ( 1)2 2  3 ( 1)2 41 2  11 2  1

ZZZ EXPLORE-DISCUSS 1

EXAMPLE 6 Using Rational Exponents and Radicals

Simplify and express answers using positive exponents only. All letters represent positive

real numbers.

(A) (B) (C) (D) a4x1 3

x
1 2

b1 2

(313 x)(21x)24 31282 3

SOLUTIONS (A) or

(B) 

(C) 

(D) 
�

a4x1 3

x
1 2

b1 2

 
41 2x

1 6

x
1 4

 
2

x
1 4 1 6

 
2

x
1 12

(3x1 3)(2x1 2)  6x1 3 1 2  6x5 6(313 x)(21x)  

24 312
 (312)1/4

 33
 27

82 3  (82)1 3  641 3  482 3  (81 3)2
 22

 4



Z Simplifying Radicals

The exponent properties considered earlier lead to the following properties of radicals.
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Simplify and express answers using positive exponents only. All letters represent positive

real numbers.

(A) (B) (C) (D)

�

a8x1Ⲑ2

x
2Ⲑ3

b1Ⲑ3

(524 y3)(213 y)25 324(⫺8)5Ⲑ3

MATCHED PROBLEM 6

An algebraic expression that contains radicals is said to be in simplified form if all four

of the conditions listed in the following definition are satisfied.

EXAMPLE 7 Finding Simplified Form

Write in simplified radical form.

(A) (B) (C) (D) B3
8x4

y

6

12x
26 16x4

y
2212x5

y
2

Z THEOREM 4 Properties of Radicals

For n a natural number greater than 1, and x and y positive real numbers:

1. 

2. 

3. A
4 x

y
⫽
14 x

14 yB
n x

y
⫽
2n x
2n y

25 xy ⫽ 25 x25 y2n xy ⫽ 2n x2n y
23 x

3
⫽ x2n xn ⫽ x

Z DEFINITION 5 Simplified (Radical) Form

1. No radicand (the expression within the radical sign) contains a factor to a power

greater than or equal to the index of the radical.

For example, violates this condition.

2. No power of the radicand and the index of the radical have a common factor

other than 1.

For example, violates this condition.

3. No radical appears in a denominator.

For example, violates this condition.

4. No fraction appears within a radical.

For example, violates this condition.23
5

y/1x

26 x
4

2x
5
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Write in simplified radical form.

(A) (B) (C) (D)

�

B
5x3

y

30

14 16x
29 8x6y3218x4y3

MATCHED PROBLEM 7

Eliminating a radical from a denominator [as in Example 7(C)] is called rationalizing

the denominator. To rationalize the denominator, we multiply the numerator and denomi-

nator by a suitable factor that will leave the denominator free of radicals. This factor is

called a rationalizing factor. If the denominator is of the form then 

is a rationalizing factor because 

Similarly, if the denominator is of the form , then is a rationalizing

factor.

1a  1b1a  1b

(1a  1b)(1a  1b)  a  b

1a  1b1a  1b,

EXAMPLE 8 Rationalizing Denominators

Rationalize the denominator and write the answer in simplified radical form.

(A) (B)
1x  1y

1x  1y

8

16  15

SOLUTIONS (A) Condition 1 is violated. First we convert to rational exponent form.

Use (ab)
m

ⴝ a
m
b
m

and (a
n
)
m

ⴝ a
mn

.

Write in radical form.

Use commutative property and radical property 2.

(B) Condition 2 is violated. First we convert to rational exponent form.

Use (ab)
m

ⴝ a
m
b
m

and (a
n
)
m

ⴝ a
mn

.

Write in radical form.

(C) Condition 3 is violated. We multiply numerator and denominator by the effect is

to multiply the expression by 1, so its value is unchanged, but the denominator is left

free of radicals.

(D) Condition 4 is violated. First we convert to rational exponent form.

Multiply by 

Write in radical form.

�
  

2x23 xy2

y

  
2xx1 3y2 3

y

x
4 3

ⴝ xx
1 3  

2x4 3y2 3

y

y
2 3

y
2 3

ⴝ 1. B3
8x4

y
 

81 3x4 3

y1 3

6

12x
 

6

12x
ⴢ

12x

12x
 

612x

2x
 

312x

x

12x;

  23 4x2y

  22 3x2 3y1 3

16 ⴝ 2
4  161 6x2 3y1 3

  26 16x4y2
 (16x4y2)1 6

  2x2y13x

  213 x21x y

  (4 ⴢ 3)1 2x2x1 2y

12 ⴝ 4 ⴢ 3, x
5 2  x

2
x

1 2  121 2x5 2y

 212x5y2
 (12x5y2)1 2



ANSWERS TO MATCHED PROBLEMS

1. (A) 1 (B) 0.000 01 (C) (D) 

2. (A) 15x (B) (C) (D) 

3. (A) 

(B) 4,000; 530,000; 0.0253; 0.000 007 42

4.

5. (A) 2 (B) Not real (C) 10 (D) ⫺1 (E) ⫺3 (F) 0

6. (A) ⫺32 (B) 16 (C) (D)

7. (A) (B) (C) (D) 

8. (A) (B) 
2x ⫺ 51xy ⫹ 3y

x ⫺ y
⫺3 ⫺ 313

x15xy

y

1524 x3

x
23 2x2y3x2y12y

2Ⲑx
1Ⲑ1810y13Ⲑ12

1.11 ⫻ 10⫺19

6.83 ⫻ 10⫺73.1 ⫻ 10⫺3;3.45 ⫻ 108;2.3 ⫻ 104;

y6
Ⲑ(9x8)⫺14x43Ⲑ(2y3)

v3
Ⲑu

7x4
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SOLUTIONS (A) Multiply numerator and denominator by the rationalizing factor .

Simplify.

(B) Multiply numerator and denominator by the rationalizing factor .

Expand numerator and denominator.

Combine like terms.

�
 ⫽

x ⫹ 21xy ⫹ y

x ⫺ y

 ⫽
x ⫹ 1x1y ⫹ 1y1x ⫹ y

x ⫺ y

 
1x ⫹ 1y

1x ⫺ 1y
⫽
1x ⫹ 1y

1x ⫺ 1y
ⴢ
1x ⫹ 1y

1x ⫹ 1y

1x ⫹ 1y

 ⫽ 8(16 ⫺ 15)

 ⫽
8(16 ⫺ 15)

6 ⫺ 5

(1a ⴙ 1b) (1a ⴚ 1b) ⴝ a ⴚ b 
8

16 ⫹ 15
⫽

8

16 ⫹ 15
ⴢ
16 ⫺ 15

16 ⫺ 15

16 ⫺ 15

Rationalize the denominator and write the answer in simplified radical form.

(A) (B) 

�

21x ⫺ 31y

1x ⫹ 1y

6

1 ⫺ 13

MATCHED PROBLEM 8

7. (⫺5)4
8. (⫺4)5

9. (⫺3)⫺1

10. (⫺7)⫺2
11. ⫺7⫺2

12. ⫺100

13. 14. a 1

10
b⫺1a1

3
b0

R-2 Exercises

All variables represent positive real numbers and are restricted to

prevent division by 0.

In Problems 1–14, evaluate each expression. If the answer is not

an integer, write it in fraction form.

1. 37
2. 56

3. 

4. 5. 6. 2⫺66⫺3a3

5
b3

a1

2
b8



In Problems 15–20, write the numbers in scientific notation.

15. 58,620,000 16. 4,390

17. 0.027 18. 0.11

19. 0.000 000 064 20. 0.000 0325

In Problems 21–26, write each number in standard decimal form.

21. 4  10 3
22. 5  10 6

23. 2.99  105
24. 7.75  1011

25. 3.1  10 7
26. 8.167  10 4

In Problems 27–32, change to radical form. Do not simplify.

27. 28. 29. 

30. 31. 32.

In Problems 33–38, change to rational exponent form. Do not

simplify.

33. 34. 35.

36. 37. 38.

In Problems 39–50, evaluate each expression that represents a

real number.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

In Problems 51–64, simplify and express answers using positive

exponents only.

51. 52. 53.

54. 55. 56.

57. 58. 59.

60. 61. 62.

63. 64.

In Problems 65–86, write in simplified radical form.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74. 24 16m4n8216m4y8

1611423 2523 10

220  23 40  23 523 5  23 25  23 625

218  118127  513

 1125 1128

a 8a 4b3

27a2b 3
b1 3a w4

9x 2
b 1 2

a 6mn 2

3m 1n2
b 3am 2n3

m4n 1
b2

(49a4b 2)1 2

(x 3)1 6v 1 5v6 5u1 3u5 3

(2c4d 2) 3(a2b3)5(6x3)(4x7)(x 5)

(2y)(3y2)(5y4)y6y 8x5x 2

64 4 39 3 2

16 114 16

13 6413 27

272 31251 3

13611121

1691 21001 2

23 x2
 23 y223 x2

 y224 7x3y2

4x25 y323 1721361

(x  y)1 3x1 3  y1 332y 2 5

4x 1 26253 4321 5

75. 76. 77.

78. 79. 80.

81. 82. 83.

84. 85. 86.

87. What is the result of entering on a calculator?

88. Refer to Problem 87. What is the difference between and

Which agrees with the value of obtained with a calcu-

lator?

APPLICATIONS

89. ECONOMICS If in the United States in 2007 the national debt

was about $8,868,000,000,000 and the population was about

301,000,000, estimate to three significant digits each individual’s

share of the national debt. Write your answer in scientific notation

and in standard decimal form.

90. ECONOMICS If in the United States in 2007 the gross domestic

product (GDP) was about $14,074,000,000,000 and the population

was about 301,000,000, estimate to three significant digits the GDP

per person. Write your answer in scientific notation and in standard

decimal form.

91. ECONOMICS The number of units N of a finished product pro-

duced from the use of x units of labor and y units of capital for a

particular Third World country is approximated by

Estimate how many units of a finished product will be produced us-

ing 256 units of labor and 81 units of capital.

92. ECONOMICS The number of units N of a finished product pro-

duced by a particular automobile company where x units of labor

and y units of capital are used is approximated by

Estimate how many units will be produced using 256 units of labor

and 144 units of capital.

93. BRAKING DISTANCE R. A. Moyer of Iowa State College found,

in comprehensive tests carried out on 41 wet pavements, that the

braking distance d (in feet) for a particular automobile traveling at

v miles per hour was given approximately by

Approximate the braking distance to the nearest foot for the car

traveling on wet pavement at 70 miles per hour.

94. BRAKING DISTANCE Approximately how many feet would it

take the car in Problem 93 to stop on wet pavement if it were trav-

eling at 50 miles per hour? (Compute answer to the nearest foot.)

d  0.0212v7 3

N  50x1 2y1 2

N  10x3 4y1 4

232

(23)2?

2(32)

232

312  213

313  212

215  312

515  212

31y

21y  3

12m15

120m
2a23 8a8b13x25 36x7y11

12

16  2

4

16  2

12y2

16y

3

23 54

1

13 7

1

215
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95. PHYSICS—RELATIVISTIC MASS The mass M of an object

moving at a velocity v is given by

where at rest and of light. The mass of an

object increases with velocity and tends to infinity as the velocity

approaches the speed of light. Show that M can be written in the

form

96. PHYSICS—PENDULUM A simple pendulum is formed by hang-

ing a bob of mass M on a string of length L from a fixed support

(see the figure). The time it takes the bob to swing from right to left

M  
M0c2c2

 v2

c2
 v2

c  velocityM0  mass

M  
M0

A1  
v2

c2

and back again is called the period T and is given by

where g is the gravitational constant. Show that T can be written in

the form

T  
2 1gL

g

T  2 A
L

g
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In this section, we review the basic operations on polynomials. Polynomials are expres-

sions such as or that are built from constants and vari-

ables using only addition, subtraction, and multiplication (the power is the product

Polynomials are used throughout mathematics to describe and approximate

mathematical relationships.

Z Polynomials

Algebraic expressions are formed by using constants and variables and the algebraic oper-

ations of addition, subtraction, multiplication, division, raising to powers, and taking roots.

Some examples are

An algebraic expression involving only the operations of addition, subtraction, multi-

plication, and raising to natural number powers is called a polynomial. (Note that raising

to a natural number power is repeated multiplication.) Some examples are

x  2y   x3
 3x2y  xy2

 2y7

2x  3   4x2
 3x  7

x  5

x2
 2x  5

   1  
1

1  
1

x

23 x3
 5   5x4

 2x2
 7

x ⴢ x ⴢ x ⴢ x).

x4

3xy  2x  5y  6x4
 5x2

 1

R-3 Polynomials: Basic Operations and Factoring

Z Polynomials

Z Addition and Subtraction

Z Multiplication

Z Factoring
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In a polynomial, a variable cannot appear in a denominator, as an exponent, or within a rad-

ical. Accordingly, a polynomial in one variable x is constructed by adding or subtracting

constants and terms of the form where a is a real number and n is a natural number.

A polynomial in two variables x and y is constructed by adding and subtracting constants

and terms of the form where a is a real number and m and n are natural numbers.

Polynomials in three or more variables are defined in a similar manner.

Polynomials can be classified according to their degree. If a term in a polynomial has

only one variable as a factor, then the degree of that term is the power of the variable.

If two or more variables are present in a term as factors, then the degree of the term is

the sum of the powers of the variables. The degree of a polynomial is the degree of the

nonzero term with the highest degree in the polynomial. Any nonzero constant is defined

to be a polynomial of degree 0. The number 0 is also a polynomial but is not assigned

a degree.

axmyn,

axn,

EXAMPLE 1 Polynomials and Nonpolynomials

(A) Which of the following are polynomials?

(B) Given the polynomial what is the degree of the first term? The third

term? The whole polynomial?

(C) Given the polynomial what is the degree of the first term? The sec-

ond term? The whole polynomial?

x3y2
 2x2y  1,

2x3
 x6

 7,

2x  5  
1

x
  x2

 3x  2  2x3
 4x  1  x4

 12

MATCHED PROBLEM 1

SOLUTIONS (A) and are polynomials. (The others are not polynomials since a

variable appears in a denominator or within a radical.)

(B) The first term has degree 3, the third term has degree 0, and the whole polynomial has

degree 6.

(C) The first term has degree 5, the second term has degree 3, and the whole polynomial

has degree 5. �

x4
 12x2

 3x  2

(A) Which of the following are polynomials?

(B) Given the polynomial what is the degree of the first term?

The second term? The whole polynomial?

(C) Given the polynomial what is the degree of the first term? The second

term? The whole polynomial?

�

6x4y2
 3xy3,

3x5
 6x3

 5,

3x2
 2x  1  1x  3  x2

 2xy  y2  x  1

x2
 2

In addition to classifying polynomials by degree, we also call a single-term polynomial

a monomial, a two-term polynomial a binomial, and a three-term polynomial a trinomial.

Monomial

Binomial

Trinomial

A constant in a term of a polynomial, including the sign that precedes it, is called the

numerical coefficient, or simply, the coefficient, of the term. If a constant doesn’t appear, or

x4
 12x2

 9   x3
 4.7    5

2x
2y3    



only a   sign appears, the coefficient is understood to be 1. If only a   sign appears, the coef-

ficient is understood to be  1. So given the polynomial

the coefficient of the first term is 2, the coefficient of the second term is  4, the coeffi-

cient of the third term is 1, the coefficient of the fourth term is  1, and the coefficient of

the last term is 5.

Two terms in a polynomial are called like terms if they have exactly the same variable

factors to the same powers. The numerical coefficients may or may not be the same. Since

constant terms involve no variables, all constant terms are like terms. If a polynomial con-

tains two or more like terms, these terms can be combined into a single term by making

use of distributive properties. Consider the following example:

Group like terms.

Use the distributive property

Simplify.

It should be clear that free use has been made of the real number properties discussed

earlier. The steps done in the dashed box are usually done mentally, and the process is

quickly done as follows:

Like terms in a polynomial are combined by adding their numerical coefficients.

Z Addition and Subtraction

Addition and subtraction of polynomials can be thought of in terms of removing paren-

theses and combining like terms. Horizontal and vertical arrangements are illustrated

in the next two examples. You should be able to work either way, letting the situation dic-

tate the choice.

  2x3
y  2xy

  (5  1  2) x
3
y  2xy

  (5x3
y  x

3
y  2 x

3
y)  2xy

 5x3
y  2xy  x

3
y  2x3

y  5x3
y  x

3
y  2x3

y  2xy

2x
4
ⴙ (ⴚ4)x

3
ⴙ 1x

2
ⴙ (ⴚ1)x ⴙ 52x4

 4x3
 x

2
 x  5

EXAMPLE 2 Adding Polynomials

Add: and 3x2
 4x  5 x

3
 2x2

 3x,x
4
 3x3

 x
2,

MATCHED PROBLEM 2

SOLUTION Add horizontally:

Remove parentheses.

Combine like terms.

Or vertically, by lining up like terms and adding their coefficients:

� x4
 4x3

 2x2
 x  5

3x2
 4x  5

  x
3
 2x2

 3x

 x4
 3x3

 x
2

  x
4
 4x3

 2x2
 x  5

  x
4
 3x3

 x
2
 x

3
 2x2

 3x  3x2
 4x  5

(x4
 3x3

 x
2)  ( x

3
 2x2

 3x)  (3x2
 4x  5)

Add horizontally and vertically:

and

�

x
2
 7x  2x

3
 2x2

 5x,3x4
 2x3

 4x2,
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EXAMPLE 3 Subtracting Polynomials

Subtract: from x
2
⫺ 84x2

⫺ 3x ⫹ 5

MATCHED PROBLEM 3

SOLUTION

Change signs and add.

�⫽ ⫺3x2
⫹ 3x ⫺ 13   ⫺3x2

⫹ 3x ⫺ 13

d⫽ x
2
⫺ 8 ⫺ 4x2

⫹ 3x ⫺ 5   ⫺4x2
⫹ 3x ⫺ 5

(x2
⫺ 8) ⫺ (4x2

⫺ 3x ⫹ 5)   or    x
2

⫺ 8

Subtract: from

�

5x2
⫺ 62x2

⫺ 5x ⫹ 4

ZZZ CAUTION ZZZ When you use a horizontal arrangement to subtract a polynomial with more than one

term, you must enclose the polynomial in parentheses. For example, to subtract 

from you must write

and not 4x ⫺ 11 ⫺ 2x ⫹ 54x ⫺ 11 ⫺ (2x ⫹ 5)

4x ⫺ 11,

2x ⫹ 5

Z Multiplication

Multiplication of algebraic expressions involves extensive use of distributive properties for

real numbers, as well as other real number properties.

EXAMPLE 4 Multiplying Polynomials

Multiply: (2x ⫺ 3)(3x2
⫺ 2x ⫹ 3)

MATCHED PROBLEM 4

SOLUTION

Distribute, multiply out parentheses.

Combine like terms.

Or, using a vertical arrangement,

�6x3 
⫺ 13x2

⫹ 12x ⫺ 9

 ⫺ 9x2
⫹ 6x ⫺ 9

6x3 
⫺ 4x2

⫹ 6x

2x  ⫺ 3

3x2 
⫺ 2x ⫹ 3

 ⫽ 6x3
⫺ 13x2

⫹ 12x ⫺ 9

 ⫽ 6x3
⫺ 4x2

⫹ 6x ⫺ 9x2
⫹ 6x ⫺ 9

 ⫽ 2x(3x2
⫺ 2x ⫹ 3) ⫺ 3(3x2

⫺ 2x ⫹ 3)

(2x ⫺ 3)(3x2
⫺ 2x ⫹ 3)

Multiply:

�

(2x ⫺ 3)(2x2
⫹ 3x ⫺ 2)

To multiply two polynomials, multiply each term of one by each term of the other, and

combine like terms.



We can also write polynomials in completely factored form. A polynomial such as

can be written in factored form in many ways. The products

all yield A particularly useful way of factoring polynomials is in terms of

prime polynomials.

2x
2
 x  6.

2(x  3
2)(x  2)2(x2

 
1
2x  3)(2x  3)(x  2)

2x
2
 x  6

Z Factoring

A factor of a number is one of two or more numbers whose product is the given number.

Similarly, a factor of an algebraic expression is one of two or more algebraic expressions

whose product is the given algebraic expression. For example,

2, 3, and 5 are each factors of 30.

and are each factors of 

The process of writing a number or algebraic expression as the product of other numbers

or algebraic expressions is called factoring. We start our discussion of factoring with the

positive integers.

An integer such as 30 can be represented in a factored form in many ways. The products

all yield 30. A particularly useful way of factoring positive integers greater than 1 is in

terms of prime numbers.

An integer greater than 1 is prime if its only positive integer factors are itself and 1.

So 2, 3, 5, and 7 are prime, but 4, 6, 8, and 9 are not prime. An integer greater than 1 that

is not prime is called a composite number. The integer 1 is neither prime nor composite.

A composite number is said to be factored completely if it is represented as a prod-

uct of prime factors. The only factoring of 30 that meets this condition, except for the order

of the factors, is This illustrates an important property of integers.30  2 ⴢ 3 ⴢ 5.

2 ⴢ 3 ⴢ 515 ⴢ 2(1
2)(10)(6)6 ⴢ 5

x
2
ⴚ 4.(x ⴙ 2)(x ⴚ 2)x

2
 4  (x  2)(x  2)

30  2 ⴢ 3 ⴢ 5

Z THEOREM 1 The Fundamental Theorem of Arithmetic

Each integer greater than 1 is either prime or can be expressed uniquely, except

for the order of factors, as a product of prime factors.

Z DEFINITION 1 Prime Polynomials

A polynomial of degree greater than 0 is said to be prime relative to a given set

of numbers if: (1) all of its coefficients are from that set of numbers; and (2) it

cannot be written as a product of two polynomials (excluding constant polynomials

that are factors of 1) having coefficients from that set of numbers.

Relative to the set of integers:

is prime

is not prime, since 

[Note: The set of numbers most frequently used in factoring polynomials is the

set of integers.]

x
2
ⴚ 9 ⴝ (x ⴚ 3)(x ⴙ 3)x

2
ⴚ 9

x
2
ⴚ 2
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A nonprime polynomial is said to be factored completely relative to a given set of

numbers if it is written as a product of prime polynomials relative to that set of numbers.

In Examples 5 and 6 we review some of the standard factoring techniques for polyno-

mials with integer coefficients. 

EXAMPLE 5 Factoring Out Common Factors

Factor out, relative to the integers, all factors common to all terms:

(A) (B) 2x(3x ⫺ 2) ⫺ 7(3x ⫺ 2)2x3y ⫺ 8x2y2
⫺ 6xy3

MATCHED PROBLEM 5

SOLUTIONS (A) Factor out 2xy.

(B) Factor out 3x ⴚ 2.

� ⫽ (2x ⫺ 7)(3x ⫺ 2)

 2x(3x ⫺ 2) ⫺ 7(3x ⫺ 2) ⫽ 2x(3x ⫺ 2) ⫺ 7(3x ⫺ 2)

 ⫽ 2xy(x2
⫺ 4xy ⫺ 3y2)

⫽ (2xy)x2
⫺ (2xy)4xy ⫺ (2xy)3y22x3y ⫺ 8x2y2

⫺ 6xy3

Factor out, relative to the integers, all factors common to all terms:

(A) (B)

�

3y(2y ⫹ 5) ⫹ 2(2y ⫹ 5)3x3y ⫺ 6x2y2
⫺ 3xy3

The polynomials in Example 6 can be factored by first grouping terms to find a com-

mon factor.

EXAMPLE 6 Factoring by Grouping

Factor completely, relative to the integers, by grouping:

(A) (B) 

(C) 3ac ⫹ bd ⫺ 3ad ⫺ bc

wy ⫹ wz ⫺ 2xy ⫺ 2xz3x2
⫺ 6x ⫹ 4x ⫺ 8

SOLUTIONS (A)

(B)

(C)

In parts (A) and (B) the polynomials are arranged in such a way that grouping the

first two terms and the last two terms leads to common factors. In this problem nei-

ther the first two terms nor the last two terms have a common factor. Sometimes

rearranging terms will lead to a factoring by grouping. In this case, we interchange

3ac ⫹ bd ⫺ 3ad ⫺ bc

 ⫽ (w ⫺ 2x)(y ⫹ z)

 ⫽ w(y ⫹ z) ⫺ 2x(y ⫹ z)

 ⫽ (wy ⫹ wz) ⫺ (2xy ⫹ 2xz)

wy ⫹ wz ⫺ 2xy ⫺ 2xz

 ⫽ (3x ⫹ 4)(x ⫺ 2)

 ⫽ 3x(x ⫺ 2) ⫹ 4(x ⫺ 2)

 ⫽ (3x2
⫺ 6x) ⫹ (4x ⫺ 8)

3x2
⫺ 6x ⫹ 4x ⫺ 8

Group the first two and last two terms—be careful of signs.

Remove common factors from each group.

Factor out the common factor ( y ⴙ z).

Group the first two and last two terms.

Remove common factors from each group.

Factor out the common factor (x ⴚ 2).



Example 7 illustrates an approach to factoring a second-degree polynomial of the form

or

into the product of two first-degree polynomials with integer coefficients. 

2x2
⫹ 3xy ⫺ 2y22x2

⫺ 5x ⫺ 3

EXAMPLE 7 Factoring Second-Degree Polynomials

Factor each polynomial, if possible, using integer coefficients:

(A) (B) (C) 6x2
⫹ 5xy ⫺ 4y2x2

⫺ 3x ⫹ 42x2
⫹ 3xy ⫺ 2y2

SOLUTIONS (A)

c c

? ?

Now, what are the factors of 2 (the coefficient of y2)?

The first choice gives us ⫺3xy for the middle term—close, but not there—so we

reverse our choice of signs to obtain

(B)

No choice produces the middle term; so is not factorable using integer

coefficients.

(C)

c c c c

? ? ? ?

6x2
⫹ 5xy ⫺ 4y2

⫽ ( x ⫹  y)( x ⫺  y)

x2
⫺ 3x ⫹ 4

4 ⴢ 1

1 ⴢ 4

4

2 ⴢ 2

x2
⫺ 3x ⫹ 4 ⫽ (x ⫺  )(x ⫺  )

2x2
⫹ 3xy ⫺ 2y2

⫽ (2x ⫺ y)(x ⫹ 2y)

2 ⴢ 1

2

1 ⴢ 2

2x2
⫹ 3xy ⫺ 2y2

⫽ (2x ⫹  y)(x ⫺  y)

Signs must be the same because the third term is positive

and must be negative because the middle term is negative.

(2x ⴙ 2y)(x ⴚ y) ⴝ 2x
2
ⴚ 2y

2

(2x ⴙ y)(x ⴚ 2y) ⴝ 2x
2
ⴚ 3xy ⴚ 2y

2

(x ⴚ 4)(x ⴚ 1) ⴝ x
2
ⴚ 5x ⴙ 4

(x ⴚ 1)(x ⴚ 4) ⴝ x
2
ⴚ 5x ⴙ 4

(x ⴚ 2)(x ⴚ 2) ⴝ x
2
ⴚ 4x ⴙ 4

Put in what we know. Signs must be

opposite. (We can reverse this choice 

if we get ⴚ3xy instead of ⴙ3xy for 

the middle term.)

MATCHED PROBLEM 6

the second and fourth terms to obtain a problem comparable to part (B), which can

be factored as follows:

Factor out c, d.

Factor out 

� ⫽ (c ⫺ d )(3a ⫺ b)

3a ⴚ b. ⫽ c(3a ⫺ b) ⫺ d(3a ⫺ b)

 3ac ⫺ bc ⫺ 3ad ⫹ bd ⫽ (3ac ⫺ bc) ⫺ (3ad ⫺ bd )

Factor completely, relative to the integers, by grouping:

(A) (B) 

(C)

�

6wy ⫺ xz ⫺ 2xy ⫹ 3wz

2pr ⫹ ps ⫺ 6qr ⫺ 3qs2x2
⫹ 6x ⫹ 5x ⫹ 15
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MATCHED PROBLEM 7 Factor each polynomial, if possible, using integer coefficients:

(A) (B) 

(C) (D) 

�

4x2
 15xy  4y22x2

 7xy  4y2

x
2
 2x  5x

2
 8x  12

The signs must be opposite in the factors, because the third term is negative. We can

reverse our choice of signs later if necessary. We now write all factors of 6 and of 4:

and try each choice on the left with each on the right—a total of 12 combinations

that give us the first and last terms in the polynomial The question

is: Does any combination also give us the middle term, 5xy? After trial and error

and, perhaps, some educated guessing among the choices, we find that matched

with gives us the correct middle term. 

If none of the 24 combinations (including reversing our sign choice) had produced

the middle term, then we would conclude that the polynomial is not factorable using

integer coefficients. �

6x2
 5xy  4y2

 (3x  4y)(2x  y)

4 ⴢ 1

3 ⴢ 2

6x2
 5xy  4y2.

6 ⴢ 1

4 ⴢ 11 ⴢ 6

1 ⴢ 43 ⴢ 2

4

2 ⴢ 2

6

2 ⴢ 3

The special factoring formulas listed here will enable us to factor certain polynomial

forms that occur frequently.

Z SPECIAL FACTORING FORMULAS

1. Perfect Square

2. Perfect Square

3. Difference of Squares

4. Difference of Cubes

5. Sum of Cubesu
3
 v

3
 (u  v)(u2

 uv  v
2)

u
3
 v

3
 (u  v)(u2

 uv  v
2)

u
2
 v

2
 (u  v)(u  v)

u
2
 2uv  v

2
 (u  v)2

u
2
 2uv  v

2
 (u  v)2

The formulas in the box can be established by multiplying the factors on the right.

Explain why there is no formula for factoring a sum of squares u2
 v

2 into the

product of two first-degree polynomials with real coefficients.

ZZZ EXPLORE-DISCUSS 1
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EXAMPLE 8 Using Special Factoring Formulas

Factor completely relative to the integers:

(A) (B) (C) (D) x3
 y3z38m3

 19x2
 4y2x2

 6xy  9y2

MATCHED PROBLEM 8

SOLUTIONS (A)

(B)

(C)

(D)

� (x  yz)(x2
 xyz  y2z2)

x3
 y3z3  

 x3
 (yz)3

 (2m  1)(4m2
 2m  1)

 (2m  1) 冤(2m)2
 (2m)(1)  12冥

8m3
 1   (2m)3

 13

9x2
 4y2  

 (3x)2
 (2y)2  

 (3x  2y)(3x  2y)

  x2
 2(x)(3y)  (3y)2  

 (x  3y)2x2
 6xy  9y2

Factor completely relative to the integers:

(A) (B) (C) (D) 

�

m3
 n3z3

 1x2
 16y24m2

 12mn  9n2

Perfect square

Difference of squares

Difference of cubes

Simplify.

Sum of cubes

ANSWERS TO MATCHED PROBLEMS

1. (A) (B) 5, 3, 5 (C) 6, 4, 6

2. 3. 4.

5. (A) (B) 

6. (A) (B) (C) 

7. (A) (B) Not factorable using integers (C) 

(D) 

8. (A) (B) (C) 

(D) (m  n)(m2
 mn  n2)

(z  1)(z2
 z  1)(x  4y)(x  4y)(2m  3n)2

(4x  y)(x  4y)

(2x  y)(x  4y)(x  2)(x  6)

(3w  x)(2y  z)(p  3q)(2r  s)(2x  5)(x  3)

(3y  2)(2y  5)3xy(x2
 2xy  y2)

4x3
 13x  63x2

 5x  103x4
 x3

 5x2
 2x  2

3x2
 2x  1, x2

 2xy  y2

In Problems 9–14, is the algebraic expression a polynomial? If so,

give its degree.

9. 4  x2
10. x3

 5x6
 1

11. x3
 7x   12. x4

 3x  

13. x5
 4x2

 6 2
14. 3x4

 2x 1
 10

In Problems 15–22, perform the indicated operations and simplify.

15.

16. 17. (m  n)(m  n)2y  3y [4  2( y  1)]

2(x  1)  3(2x  3)  (4x  5)

1581x

R-3 Exercises

Problems 1–8 refer to the polynomials (a) and 

(b)

1. What is the degree of (a)?

2. What is the degree of (b)?

3. What is the degree of the sum of (a) and (b)?

4. What is the degree of the product of (a) and (b)?

5. Multiply (a) and (b).   

6.Add (a) and (b).

7. Subtract (b) from (a).

8. Subtract (a) from (b).

x4
 2x  1.

x2
 1
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65.

66.

67.

68.

Problems 69–74 are calculus-related. Factor completely, relative

to the integers.

69.

70.

71.

72.

73.

74.

In Problems 75–86, factor completely, relative to the integers. 

In polynomials involving more than three terms, try grouping the

terms in various combinations as a first step. If a polynomial is

prime relative to the integers, say so.

75.

76.

77.

78.

79.

80.

81. 82.

83.

84. 85.

86.

87. Show by example that, in general, Dis-

cuss possible conditions on a and b that would make this a

valid equation.

88. Show by example that, in general, Dis-

cuss possible conditions on a and b that would make this a

valid equation.

89.To show that is an irrational number, explain how the

assumption that is rational leads to a contradiction of Theo-

rem 1, the fundamental theorem of arithmetic, by the following

steps:

(A) Suppose that where a and b are positive inte-

gers, Explain why 

(B) Explain why the prime number 2 appears an even number

of times (possibly 0 times) as a factor in the prime factor-

ization of 

(C) Explain why the prime number 2 appears an odd number of

times as a factor in the prime factorization of

(D) Explain why parts (B) and (C) contradict the fundamental

theorem of arithmetic.

2b2.

a2.

a2
⫽ 2b2.b � 0.

12 ⫽ aⲐb,

12

12

(a ⫺ b)2
� a2

⫺ b2.

(a ⫹ b)2
� a2

⫹ b2.

y4
⫺ 3y2

⫺ 4

m4
⫺ n4x4

⫹ 6x2
⫹ 8

4(A ⫹ B)2
⫺ 5(A ⫹ B) ⫺ 5

t3 ⫺ 2t2
⫹ t ⫺ 2x3

⫺ 3x2
⫺ 9x ⫹ 27

5u2
⫹ 4uv ⫺ v2

3x2
⫺ 2xy ⫺ 4y2

15ac ⫺ 20ad ⫹ 3bc ⫺ 4bd

2am ⫺ 3an ⫹ 2bm ⫺ 3bn

(x ⫹ 2)2
⫹ 9

(a ⫺ b)2
⫺ 4(c ⫺ d )2

3x4(x ⫺ 7)2
⫹ 4x3(x ⫺ 7)3

5x4(9 ⫺ x)4
⫺ 4x5(9 ⫺ x)3

2(x ⫺ 3)(4x ⫹ 7)2
⫹ 8(x ⫺ 3)2(4x ⫹ 7)

6(3x ⫺ 5)(2x ⫺ 3)2
⫹ 4(3x ⫺ 5)2(2x ⫺ 3)

(x ⫺ 1)3
⫹ 3x(x ⫺ 1)2

2x(x ⫹ 1)4
⫹ 4x2(x ⫹ 1)3

(x ⫹ h)3
⫹ 3(x ⫹ h) ⫺ (x3

⫹ 3x)

(x ⫹ h)3
⫺ 2(x ⫹ h)2

⫺ (x3
⫺ 2x2)

⫺4(x ⫹ h)2
⫹ 6(x ⫹ h) ⫺ (⫺4x2

⫹ 6x)

2(x ⫹ h)2
⫺ 3(x ⫹ h) ⫺ (2x2

⫺ 3x)18. 19.

20. 21.

22.

In Problems 23–28, factor out, relative to the integers, all factors

common to all terms.

23. 6x4
⫺ 8x3

⫺ 2x2
24. 3x5

⫹ 6x3
⫹ 9x

25. x2y ⫹ 2xy2
⫹ x2y2

26.

27.

28. 2x(u ⫺ 3v) ⫹ 5y(u ⫺ 3v)

In Problems 29–34, factor completely, relative to the integers.

29. x2
⫹ 4x ⫹ x ⫹ 4 30.

31. x2
⫺ xy ⫹ 3xy ⫺ 3y2

32.

33.

34. 3ux ⫺ 4vy ⫹ 3vx ⫺ 4uy

In Problems 35–42, perform the indicated operations and simplify.

35.

36.

37.

38.

39.

40.

41. 42.

In Problems 43–62, factor completely, relative to the integers. If a

polynomial is prime relative to the integers, say so.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

Problems 63–68 are calculus-related. Perform the indicated

operations and simplify.

63.

64. (x ⫹ h)2
⫺ x2

3(x ⫹ h) ⫺ 7 ⫺ (3x ⫺ 7)

8x3
⫺ 125m3

⫹ n3

2x3
⫺ 2x2

⫹ 8x3m3
⫺ 6m2

⫹ 15m

4u3v ⫺ uv36m2
⫺ mn ⫺ 12n2

16x2y ⫺ 8xy ⫹ y2x4
⫺ 24x3

⫹ 40x2

3z2
⫺ 28z ⫹ 486x2

⫹ 48x ⫹ 72

16x2
⫺ 254x2

⫹ 9

9x2
⫺ 4a2b2

⫹ c2

a2b2
⫺ c24x2

⫺ 20x ⫹ 25

x2
⫹ 4y2x2

⫹ 5xy ⫺ 14y2

3y2
⫺ 8y ⫺ 32x2

⫹ x ⫺ 3

(3a ⫹ 2b)3(2m ⫺ n)3

(2a ⫺ b)2
⫺ (a ⫹ 2b)2

(3u ⫺ 2v)2
⫺ (2u ⫺ 3v)(2u ⫹ 3v)

(x2
⫺ 3xy ⫹ y2)(x2

⫹ 3xy ⫹ y2)

(2x2
⫺ 3x ⫹ 1)(x2

⫹ x ⫺ 2)

m ⫺ 5m ⫺ 3m ⫺ (m ⫺ 1) 4 6

2x ⫺ 35x ⫹ 2 3x ⫺ (x ⫹ 5) 4 ⫹ 16

8ac ⫹ 3bd ⫺ 6bc ⫺ 4ad

3a2
⫺ 12ab ⫺ 2ab ⫹ 8b2

2y2
⫺ 6y ⫹ 5y ⫺ 15

2w(y ⫺ 2z) ⫺ x(y ⫺ 2z)

8u3v ⫺ 6u2v2
⫹ 4uv3

(a ⫺ b)(a2
⫹ ab ⫹ b2)

(a ⫹ b)(a2
⫺ ab ⫹ b2)(4x ⫺ y)2

(3x ⫹ 2y)(x ⫺ 3y)(5y ⫺ 1)(3 ⫺ 2y)
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0.3 centimeters thick, write an algebraic expression in terms of x

that represents the volume of the plastic used to construct the con-

tainer. Simplify the expression. [Recall: The volume V of a sphere

of radius r is given by ]

96. PACKAGING A cubical container for shipping computer com-

ponents is formed by coating a metal mold with polystyrene. If

the metal mold is a cube with sides x centimeters long and the

polystyrene coating is 2 centimeters thick, write an algebraic

expression in terms of x that represents the volume of the poly-

styrene used to construct the container. Simplify the expression.

[Recall: The volume V of a cube with sides of length t is given by

]

97. CONSTRUCTION A rectangular open-topped box is to be con-

structed out of 20-inch-square sheets of thin cardboard by cutting

x-inch squares out of each corner and bending the sides up as indi-

cated in the figure. Express each of the following quantities as a

polynomial in both factored and expanded form.

(A) The area of cardboard after the corners have been removed.

(B) The volume of the box.

V  t3.

V  
4
3 r3.

90. To show that is an irrational number unless n is a perfect

square, explain how the assumption that is rational leads to

a contradiction of the fundamental theorem of arithmetic by the

following steps:

(A) Assume that n is not a perfect square, that is, does not be-

long to the sequence 1, 4, 9, 16, 25, . . . . Explain why some

prime number p appears an odd number of times as a fac-

tor in the prime factorization of n.

(B) Suppose that where a and b are positive inte-

gers, Explain why 

(C) Explain why the prime number p appears an even number

of times (possibly 0 times) as a factor in the prime factor-

ization of 

(D) Explain why the prime number p appears an odd number of

times as a factor in the prime factorization of

(E) Explain why parts (C) and (D) contradict the fundamental

theorem of arithmetic.

APPLICATIONS

91. GEOMETRY The width of a rectangle is 5 centimeters less than

its length. If x represents the length, write an algebraic expression

in terms of x that represents the perimeter of the rectangle. Simplify

the expression.

92. GEOMETRY The length of a rectangle is 8 meters more than its

width. If x represents the width of the rectangle, write an algebraic

expression in terms of x that represents its area. Change the expres-

sion to a form without parentheses.

93. COIN PROBLEM A parking meter contains nickels, dimes, and

quarters. There are 5 fewer dimes than nickels, and 2 more quarters

than dimes. If x represents the number of nickels, write an algebraic

expression in terms of x that represents the value of all the coins in

the meter in cents. Simplify the expression.

94. COIN PROBLEM A vending machine

contains dimes and quarters only. There

are 4 more dimes than quarters. If x repre-

sents the number of quarters, write an

algebraic expression in terms of x that

represents the value of all the coins in the

vending machine in cents. Simplify the

expression.

95. PACKAGING A spherical plastic con-

tainer for designer wristwatches has an

inner radius of x centimeters (see the figure). If the plastic shell is

nb2.

a2.

a2
 nb2.b  0.

1n  a b,

1n

1n

x cm

0.3 cm

Figure for 95

98. CONSTRUCTION A rectangular open-topped box is to be con-

structed out of 9- by 16-inch sheets of thin cardboard by cutting

x-inch squares out of each corner and bending the sides up. Express

each of the following quantities as a polynomial in both factored

and expanded form.

(A) The area of cardboard after the corners have been removed.

(B) The volume of the box.

20 inches

20 inches

xx

xx

xx

xx
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R-4 Rational Expressions: Basic Operations

Z Reducing to Lowest Terms

Z Multiplication and Division

Z Addition and Subtraction

Z Compound Fractions

A quotient of two algebraic expressions, division by 0 excluded, is called a fractional

expression. If both the numerator and denominator of a fractional expression are polyno-

mials, the fractional expression is called a rational expression. Some examples of rational

expressions are the following (recall that a nonzero constant is a polynomial of degree 0):

In this section, we discuss basic operations on rational expressions, including multiplica-

tion, division, addition, and subtraction.

Since variables represent real numbers in the rational expressions we are going to con-

sider, the properties of real number fractions summarized in Section R-1 play a central role

in much of the work that we will do.

Even though not always explicitly stated, we always assume that variables are

restricted so that division by 0 is excluded.

Z Reducing to Lowest Terms

We start this discussion by restating the fundamental property of fractions (from Theorem 3 in

Section R-1):

x
2
⫹ 3x ⫺ 5

1

3

x

1

x
4
⫺ 1

x ⫺ 2

2x2
⫺ 3x ⫹ 5

Z FUNDAMENTAL PROPERTY OF FRACTIONS

If a, b, and k are real numbers with b, then

x � 0, x � 3

(x ⴚ 3)2

(x ⴚ 3)x
ⴝ

2

x

2 ⴢ 3

2 ⴢ 4
ⴝ

3

4

ka

kb
⫽

a

b

k � 0,

Using this property from left to right to eliminate all common factors from the numer-

ator and the denominator of a given fraction is referred to as reducing a fraction to lowest

terms. We are actually dividing the numerator and denominator by the same nonzero com-

mon factor.

Using the property from right to left—that is, multiplying the numerator and the denom-

inator by the same nonzero factor—is referred to as raising a fraction to higher terms.

We will use the property in both directions in the material that follows.

We say that a rational expression is reduced to lowest terms if the numerator and

denominator do not have any factors in common. Unless stated to the contrary, factors will

be relative to the integers.



Z Multiplication and Division

Since we are restricting variable replacements to real numbers, multiplication and division

of rational expressions follow the rules for multiplying and dividing real number fractions

(Theorem 3 in Section R-1).
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EXAMPLE 1 Reducing Rational Expressions

Reduce each rational expression to lowest terms.

(A) (B) 
x3
⫺ 1

x2
⫺ 1

x2
⫺ 6x ⫹ 9

x2
⫺ 9

SOLUTIONS
(A) 

(B) 

� ⫽
x2
⫹ x ⫹ 1

x ⫹ 1

x3
⫺ 1

x2
⫺ 1

⫽
(x ⫺ 1

1

)(x2
⫹ x ⫹ 1)

(x ⫺ 1
1

)(x ⫹ 1)

 ⫽
x ⫺ 3

x ⫹ 3

x2
⫺ 6x ⫹ 9

x2
⫺ 9

⫽
(x ⫺ 3)2

(x ⫺ 3)(x ⫹ 3)

Factor numerator and denominator completely. Divide numerator

and denominator by (x ⫺ 3); this is a valid operation as long as

.x � 3

MATCHED PROBLEM 1 Reduce each rational expression to lowest terms.

(A) (B) 

�

x4
⫺ 8x

3x3
⫺ 2x2

⫺ 8x

6x2
⫹ x ⫺ 2

2x2
⫹ x ⫺ 1

Dividing numerator and denominator by (x ⴚ 1) can be

indicated by drawing lines through both (x ⴚ 1)’s and

writing the resulting quotients, 1’s.

and x � 1x � ⴚ1

ZZZ CAUTION ZZZ Remember to always factor the numerator and denominator first, then divide out any

common factors. Do not indiscriminately eliminate terms that appear in both the

numerator and the denominator. For example,

Since the term is not a factor of the numerator, it cannot be eliminated. In fact,

is already reduced to lowest terms.(2x3
⫹ y2)Ⲑy

2

y2

 
2x3
⫹ y2

y2 � 2x3
⫹ 1

 
2x3
⫹ y2

y2 �
2x3
⫹ y2

1

y2

1

Z MULTIPLICATION AND DIVISION

If a, b, c, and d are real numbers with b, then:

1.

2.
2

3
ⴜ

x

x ⴚ 1
ⴝ

2

3
ⴢ

x ⴚ 1

x

c � 0
a

b
⫼

c

d
⫽

a

b
ⴢ

d

c

2

3
ⴢ

x

x ⴚ 1
ⴝ

2x

3(x ⴚ 1)

a

b
ⴢ

c

d
⫽

ac

bd

d � 0,
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Z Addition and Subtraction

Again, because we are restricting variable replacements to real numbers, addition and sub-

traction of rational expressions follow the rules for adding and subtracting real number frac-

tions (Theorem 3 in Section R-1).

EXAMPLE 2 Multiplying and Dividing Rational Expressions

Perform the indicated operations and reduce to lowest terms.

(A) (B)

(C)
2x3
⫺ 2x2

y ⫹ 2xy2

x
3
y ⫺ xy

3 ⫼

x
3
⫹ y

3

x
2
⫹ 2xy ⫹ y

2

4 ⫺ 2x

4
⫼ (x ⫺ 2)

10x3
y

3xy ⫹ 9y
ⴢ

x
2
⫺ 9

4x2
⫺ 12x

SOLUTIONS (A)

(B)

(C)

Divide out common factors.

�⫽
2

y(x ⫺ y)

⫽

2x
2

(x2
⫺ xy ⫹ y

2
1

)

xy
y

(x ⫹ y
1

)(x ⫺ y)
ⴢ

(x ⫹ y)2
1

(x ⫹ y
1

)(x2
⫺ xy ⫹ y

2

1
)

a

b
ⴜ

c

d
ⴝ

a

b
ⴢ

d

c

2x3
⫺ 2x2

y ⫹ 2xy2

x
3
y ⫺ xy

3 ⫼

x
3
⫹ y

3

x
2
⫹ 2xy ⫹ y

2

⫽ ⫺
1

2

⫽
2 ⫺ x

2(x ⫺ 2)
⫽

⫺(x ⫺ 2
⫺1

)

2(x ⫺ 2
1

)

4 ⫺ 2x

4
⫼ (x ⫺ 2) ⫽

2
1

(2 ⫺ x)

4
2

ⴢ

1

x ⫺ 2

⫽
5x2

6

10x3
y

3xy ⫹ 9y
ⴢ

x
2
⫺ 9

4x2
⫺ 12x

⫽

10x3
5x

2

y

3y(x ⫹ 3
3ⴢ1

)
ⴢ

(x ⫺ 3)(x ⫹ 3
1ⴢ1

)

4x(x ⫺ 3
2ⴢ1

)

Factor numerators and denominators;

then divide any numerator and any

denominator with a like common

factor.

is the same as 
x ⴚ 2

1
.x ⴚ 2

a useful change

in some problems.

b ⴚ a ⴝ ⴚ(a ⴚ b),

MATCHED PROBLEM 2 Perform the indicated operations and reduce to lowest terms.

(A) (B)

(C)

�

m
3
⫹ n

3

2m2
⫹ mn ⫺ n

2 ⫼
m

3
n ⫺ m

2
n

2
⫹ mn

3

2m3
n

2
⫺ m

2
n

3

(4 ⫺ x) ⫼
x

2
⫺ 16

5

12x2
y

3

2xy2
⫹ 6xy

ⴢ

y
2
⫹ 6y ⫹ 9

3y3
⫹ 9y2



So we add rational expressions with the same denominators by adding or subtracting

their numerators and placing the result over the common denominator. If the denominators

are not the same, we raise the fractions to higher terms, using the fundamental property of

fractions to obtain common denominators, and then proceed as described.

Even though any common denominator will do, our work will be simplified if the least

common denominator (LCD) is used. Often, the LCD is obvious, but if it is not, the steps

in the box describe how to find it.
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Z ADDITION AND SUBTRACTION

For a, b, and c real numbers with 

1.

2.
x

2xy
2

ⴚ
x ⴚ 4

2xy
2

ⴝ

x ⴚ (x ⴚ 4)

2xy
2

a

b
⫺

c

b
⫽

a ⫺ c

b

x

x ⴚ 3
ⴙ

2

x ⴚ 3
ⴝ

x ⴙ 2

x ⴚ 3

a

b
⫹

c

b
⫽

a ⫹ c

b

b � 0:

Z THE LEAST COMMON DENOMINATOR (LCD)

The LCD of two or more rational expressions is found as follows:

1. Factor each denominator completely.

2. Identify each different prime factor from all the denominators.

3. Form a product using each different factor to the highest power that occurs in

any one denominator. This product is the LCD.

EXAMPLE 3 Adding and Subtracting Rational Expressions

Combine into a single fraction and reduce to lowest terms.

(A) (B) (C)
x ⫹ 3

x2
⫺ 6x ⫹ 9

⫺
x ⫹ 2

x2
⫺ 9

⫺
5

3 ⫺ x

4

9x
⫺

5x

6y2 ⫹ 1
3

10
⫹

5

6
⫺

11

45

SOLUTIONS (A) To find the LCD, factor each denominator completely:

Now use the fundamental property of fractions to make each denominator 90:

 ⫽
27 ⫹ 75 ⫺ 22

90
⫽

80

90
⫽

8

9

 ⫽
27

90
⫹

75

90
⫺

22

90

 
3

10
⫹

5

6
⫺

11

45
⫽

9 ⴢ 3

9 ⴢ 10
⫹

15 ⴢ 5

15 ⴢ 6
⫺

2 ⴢ 11

2 ⴢ 45

10 ⫽ 2 ⴢ 5

6 ⫽ 2 ⴢ 3

45 ⫽ 32
ⴢ 5
冎 LCD ⫽ 2 ⴢ 32

ⴢ 5 ⫽ 90

Combine into a

single fraction.

Multiply.
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(B)

Multiply, combine.

(C)

The 

Expand numerators.

 ⫽
5x2
⫹ 7x ⫺ 30

(x ⫺ 3)2(x ⫹ 3)

 ⫽
x

2
⫹ 6x ⫹ 9 ⫺ x

2
⫹ x ⫹ 6 ⫹ 5x2

⫺ 45

(x ⫺ 3)2(x ⫹ 3)

 ⫽
(x2
⫹ 6x ⫹ 9) ⫺ (x2

⫺ x ⫺ 6) ⫹ 5(x2
⫺ 9)

(x ⫺ 3)2(x ⫹ 3)

(x ⫹ 3)2

(x ⫺ 3)2(x ⫹ 3)
⫺

(x ⫺ 3)(x ⫹ 2)

(x ⫺ 3)2(x ⫹ 3)
⫹

5(x ⫺ 3)(x ⫹ 3)

(x ⫺ 3)2(x ⫹ 3)

LCD ⫽ (x ⫺ 3)2(x ⫹ 3).

Note: ⫺
5

3 ⫺ x
⫽ ⫺

5

⫺(x ⫺ 3)
⫽

5

x ⫺ 3

x ⫹ 3

x
2
⫺ 6x ⫹ 9

⫺
x ⫹ 2

x
2
⫺ 9

⫺
5

3 ⫺ x
⫽

x ⫹ 3

(x ⫺ 3)2 ⫺
x ⫹ 2

(x ⫺ 3)(x ⫹ 3)
⫹

5

x ⫺ 3

 ⫽
8y2
⫺ 15x2

⫹ 18xy2

18xy2

 
4

9x
⫺

5x

6y2 ⫹ 1 ⫽
2y2
ⴢ 4

2y2
ⴢ 9x

⫺
3x ⴢ 5x

3x ⴢ 6y2 ⫹
18xy2

18xy2

9x ⫽ 32
x

6y2
⫽ 2 ⴢ 3y2冎 LCD ⫽ 2 ⴢ 32

xy
2
⫽ 18xy2

We have again used the fact

that a ⴚ b ⴝ ⴚ(b ⴚ a).

Be careful of sign

errors here.

Combine like terms.

�

MATCHED PROBLEM 3 Combine into a single fraction and reduce to lowest terms.

(A) (B)

(C)

�

y ⫺ 3

y
2
⫺ 4

⫺

y ⫹ 2

y
2
⫺ 4y ⫹ 4

⫺
2

2 ⫺ y

1

4x2 ⫺
2x ⫹ 1

3x3 ⫹
3

12x

5

28
⫺

1

10
⫹

6

35

What is the result of entering on a calculator?

What is the difference between and 

How could you use fraction bars to distinguish between these two cases when 

writing ?

16

4

2

(16 ⫼ 4) ⫼ 2?16 ⫼ (4 ⫼ 2)

16 ⫼ 4 ⫼ 2ZZZ EXPLORE-DISCUSS 1

Z Compound Fractions

A fractional expression with fractions in its numerator, denominator, or both is called a

compound fraction. It is often necessary to represent a compound fraction as a simple

fraction—that is (in all cases we will consider), as the quotient of two polynomials. The

process does not involve any new concepts. It is a matter of applying old concepts and

processes in the right sequence. We will illustrate two approaches to the problem, each with

its own merits, depending on the particular problem under consideration.



Method 1. Multiply the numerator and denominator by the LCD of all fractions in the

numerator and denominator—in this case, (We are multiplying by 

Method 2. Write the numerator and denominator as single fractions. Then treat as a quotient.

�
 ⫽

x

2 ⫹ x

 

2

x
⫺ 1

4

x2 ⫺ 1

⫽

2 ⫺ x

x

4 ⫺ x2

x2

⫽
2 ⫺ x

x
⫼

4 ⫺ x2

x2 ⫽
2 ⫺ x

1

x
1

ⴢ

x2
x

(2 ⫺ x
1

)(2 ⫹ x)

 ⫽
x

2 ⫹ x

 

x
2a2

x
⫺ 1b

x
2a 4

x2 ⫺ 1b
  ⫽

x
2
2

x
⫺ x

2

x
2

4

x2 ⫺ x
2

 ⫽
2x ⫺ x2

4 ⫺ x2 ⫽
x(2 ⫺ x

1

)

(2 ⫹ x)(2 ⫺ x
1

)

1 ⫽ x2
Ⲑx

2.)x2.
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EXAMPLE 4 Simplifying Compound Fractions

Express as a simple fraction reduced to lowest terms:

2

x
⫺ 1

4

x2 ⫺ 1

SOLUTION

MATCHED PROBLEM 4 Express as a simple fraction reduced to lowest terms. Use the two methods described in

Example 4.

�

1 ⫹
1

x

x ⫺
1

x

ANSWERS TO MATCHED PROBLEMS

1. (A) (B) 2. (A) 2x (B) (C) mn

3. (A) (B) (C) 4.
1

x ⫺ 1

2y2
⫺ 9y ⫺ 6

( y ⫺ 2)2( y ⫹ 2)

3x2
⫺ 5x ⫺ 4

12x3

1

4

⫺5

x ⫹ 4

x2
⫹ 2x ⫹ 4

3x ⫹ 4

3x ⫹ 2

x ⫹ 1

5. 6. 7.
x2

⫺ 9

x2
⫹ 3x ⫺ 18

x2
⫺ 2x ⫺ 24

x ⫺ 6

x ⫹ 1

x2
⫹ 3x ⫹ 2

R-4 Exercises

In Problems 1–10, reduce each rational expression to lowest terms.

1. 2. 3. 4.
63

105

360

288

91

26

17

85
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8. 9. 10.

In Problems 11–36, perform the indicated operations and reduce

answers to lowest terms. Represent any compound fractions as

simple fractions reduced to lowest terms.

11. 12.

13. 14.

15. 16.

17. 18. 

19. 20. 

21. 22.

23. 24.

25. 26.

27.

28.

29. 30.

31. 32.

33.

34.

35. 36.

Problems 37–42 are calculus-related. Reduce each fraction to

lowest terms.

37.

38.

39.

40.
2x(2x ⫹ 3)4 ⫺ 8x2(2x ⫹ 3)3

(2x ⫹ 3)8

2x(1 ⫺ 3x)3 ⫹ 9x2(1 ⫺ 3x)2

(1 ⫺ 3x)6

4x4(x2 ⫹ 3) ⫺ 3x2(x2 ⫹ 3)2

x6

6x3(x2 ⫹ 2)2 ⫺ 2x(x2 ⫹ 2)3

x4

4

x
⫺ x

2

x
⫺ 1

x2

y2
⫺ 1

x

y
⫹ 1

4x

x2 ⫺ y2
⫹

3

x ⫹ y
⫺

2

x ⫺ y

3

y ⫹ 2
⫹

2

y ⫺ 2
⫺

4y

y2 ⫺ 4

1

a ⫺ 3
⫺

2

3 ⫺ a

3

x ⫺ 2
⫺

2

2 ⫺ x

x ⫹ 1

x ⫺ 1
⫹ xm ⫹ 2 ⫺

m ⫺ 2

m ⫺ 1

x ⫹ 2

x2 ⫺ 1
⫺

x ⫺ 2

(x ⫺ 1)2

2a ⫺ b

a2 ⫺ b2
⫺

2a ⫹ 3b

a2 ⫹ 2ab ⫹ b2

1

bc
⫹

1

ac
⫹

1

ab

1

c
⫹

1

b
⫹

1

a

x2 ⫺ 9

x2 ⫺ 1
⫼

x ⫺ 3

x ⫺ 1

x2 ⫺ 1

x ⫹ 2
⫼

x ⫹ 1

x2 ⫺ 4

b2

2a
⫼ a b

a2
ⴢ

a

3b
ba b2

2a
⫼

b

a2
b ⴢ

a

3b

25

8
⫼ a 5

16
ⴢ

4

15
ba25

8
⫼

5

16
b ⴢ

4

15

10

3
⫼

5

2

5

12
⫼

3

4

m

n
⫺

n

m

1

n
⫺

1

m

9

8
⫺

8

9

1

8
⫺

1

9

7

10
⫹

19

25

5

6
⫹

11

15

2a2b4c6

6a5b3c

3x2y3

x4y

x2 ⫹ 9x ⫹ 20

x2 ⫺ 16
41.

42.

In Problems 43–54, perform the indicated operations and reduce

answers to lowest terms. Represent any compound fractions as

simple fractions reduced to lowest terms.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53. 54. 

Problems 55–58 are calculus-related. Perform the indicated

operations and reduce answers to lowest terms. Represent any

compound fractions as simple fractions reduced to lowest terms.

55. 56. 

57. 58.

In Problems 59–62, perform the indicated operations and reduce

answers to lowest terms. Represent any compound fractions as

simple fractions reduced to lowest terms.

59. 60.

s2

s ⫺ t
⫺ s

t2

s ⫺ t
⫹ t

y ⫺
y2

y ⫺ x

1 ⫹
x2

y2 ⫺ x2

2x ⫹ 2h ⫹ 3

x ⫹ h
⫺

2x ⫹ 3

x

h

(x ⫹ h)2

x ⫹ h ⫹ 2
⫺

x2

x ⫹ 2

h

1

(x ⫹ h)2
⫺

1

x2

h

1

x ⫹ h
⫺

1

x

h

x

y
⫺ 2 ⫹

y

x

x

y
⫺

y

x

1 ⫹
2

x
⫺

15

x2

1 ⫹
4

x
⫺

5

x2

a 3

x ⫺ 2
⫺

1

x ⫹ 1
b ⫼ x ⫹ 4

x ⫺ 2

a x

x2 ⫺ 16
⫺

1

x ⫹ 4
b ⫼ 4

x ⫹ 4

ax3 ⫺ y3

y3
ⴢ

y

x ⫺ y
b ⫼ x2 ⫹ xy ⫹ y2

y2

x2 ⫺ 16

2x2 ⫹ 10x ⫹ 8
⫼

x2 ⫺ 13x ⫹ 36

x3 ⫹ 1

c ⫹ 2

5c ⫺ 5
⫺

c ⫺ 2

3c ⫺ 3
⫹

c

1 ⫺ c

x ⫹ 7

ax ⫺ bx
⫹

y ⫹ 9

by ⫺ ay

x ⫹ 1

x(1 ⫺ x)
ⴢ

x2 ⫺ 2x ⫹ 1

x2 ⫺ 1

16 ⫺ m2

m2
⫹ 3m ⫺ 4

ⴢ

m ⫺ 1

m ⫺ 4

x

x2 ⫺ 9x ⫹ 18
⫹

x ⫺ 8

x ⫺ 6
⫹

x ⫹ 4

x ⫺ 3

y

y2 ⫺ 2y ⫺ 8
⫺

2

y2 ⫺ 5y ⫹ 4
⫹

1

y2 ⫹ y ⫺ 2

3x2(x ⫹ 1)3 ⫺ 3(x3 ⫹ 4)(x ⫹ 1)2

(x ⫹ 1)6

⫺2x(x ⫹ 4)3 ⫺ 3(3 ⫺ x2)(x ⫹ 4)2

(x ⫹ 4)6



61. 62.

63. Show by example that, in general, 

(assume )b � 0
a ⫹ b

b
� a ⫹ 1

1 ⫺
1

1 ⫺
1

1 ⫺
1

x

2 ⫺
1

1 ⫺
2

a ⫹ 2

Review 39

Discuss possible conditions of a and b that would make this a

valid equation.

64. Show by example that, in general, 

(assume )

Discuss possible conditions of a and b that would make this a

valid equation.

a � ⫺b
a2
⫹ b2

a ⫹ b
� a ⫹ b

R-1 Algebra and Real Numbers

A real number is any number that has a decimal representation.

There is a one-to-one correspondence between the set of real num-

bers and the set of points on a line.  Important subsets of the real

numbers include the natural numbers, integers, and rational

numbers. A rational number can be written in the form where

a and b are integers and A real number can be approximated

to any desired precision by rational numbers. Consequently, arith-

metic operations on rational numbers can be extended to operations

on real numbers. These operations satisfy basic real number prop-

erties, including associative properties:

and commutative properties:

and identities: and

inverses: is the additive inverse of x and, if

is the multiplicative inverse of x; and distributive

property: Subtraction is defined by

and division by Division by 0 is

never allowed. Additional properties include properties of negatives:

1.

2.

3.

4.

5.

6.

zero properties:

1.

2. if and only if or or both.

and fraction properties (division by 0 excluded):

1. if and only if 

2. 3.

4. 5.
a

b
⫹
c

b
⫽
a ⫹ c

b

a

b
⫼
c

d
⫽
a

b
ⴢ

d

c

a

b
ⴢ

c

d
⫽
ac

bd

ka

kb
⫽
a

b

ad ⫽ bc
a

b
⫽
c

d

b ⫽ 0a ⫽ 0ab ⫽ 0

a ⴢ 0 ⫽ 0

b � 0
⫺a

⫺b
⫽ ⫺

⫺a

b
⫽ ⫺

a

⫺b
⫽
a

b

b � 0
⫺a

b
⫽ ⫺

a

b
⫽

a

⫺b

(⫺1)a ⫽ ⫺a

(⫺a)(⫺b) ⫽ ab

(⫺a)b ⫽ ⫺(ab) ⫽ a(⫺b) ⫽ ⫺ab

⫺(⫺a) ⫽ a

aⲐb ⫽ ab⫺1.a ⫺ b ⫽ a ⫹ (⫺b)

x(y ⫹ z) ⫽ xy ⫹ xz.

x⫺1x � 0,

⫺x(1)x ⫽ x(1) ⫽ x;

0 ⫹ x ⫽ x ⫹ 0 ⫽ xxy ⫽ yx;x ⫹ y ⫽ y ⫹ x

x( yz) ⫽ (xy)z;(x ⫹ y) ⫹ z

x ⫹ (y ⫹ z) ⫽

b � 0.

aⲐb,

6. 7.

R-2 Exponents and Radicals

The notation an, in which the exponent n is an integer, is defined as

follows.  For n a positive integer and a a real number:

(n factors of a)

(a 0)

(a 0)

Properties of integer exponents (division by 0 excluded):

1. 2.

3. 4.

5.

Any positive number written in decimal form can be ex-

pressed in scientific notation, that is, in the form a ⫻ 10n

n an integer, a in decimal form.

For n a natural number, a and b real numbers: a is an nth root

of b if . The number of real nth roots of a real number b is

either 0, 1, or 2, depending on whether b is positive or negative, and

whether n is even or odd.  The principal nth root of b, denoted by

or , is the real nth root of b if there is only one, and the pos-

itive nth root of b if there are two real nth roots. In the notation 

the symbol is called a radical, n is called the index, and b is the

radicand. If we write in place of .

We extend exponent notation so that exponents can be

rational numbers, not just integers, as follows. For m and n natu-

ral numbers and b any real number (except b can't be negative

when n is even),

Rational exponent/radical property:

(b1Ⲑn)m ⫽ (bm)1Ⲑn and (1
n
b)m ⫽ 2

n
bm

bmⲐn ⫽ (b1Ⲑn)m and b⫺mⲐn ⫽ 1

bmⲐn

12 b1bn ⫽ 2

1
1
n
b,

1
n
bb1/n

an ⫽ b

1 ⱕ a 6 10,

am

an
⫽ am⫺n ⫽

1

an⫺m

aa
b
bm ⫽ am

bm
(ab)m ⫽ ambm

(an)m ⫽ amnaman ⫽ am⫹n

�a0
⫽ 1

�a⫺n ⫽
1

an

an ⫽ a ⴢ a ⴢ . . . ⴢ a

a

b
⫹
c

d
⫽
ad ⫹ bc

bd

a

b
⫺
c

b
⫽
a ⫺ c

b
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Properties of radicals 

1. 2. 3.

A radical is in simplified form if:

1. No radicand contains a factor to a power greater than or equal to

the index of the radical.

2. No power of the radicand and the index of the radical have a

common factor other than 1.

3. No radical appears in a denominator.

4. No fraction appears within a radical.

Eliminating a radical from a denominator is called rationaliz-

ing the denominator. To rationalize the denominator, we multiply

the numerator and denominator by a suitable factor that will leave

the denominator free of radicals. This factor is called a rationaliz-

ing factor. For example, if the denominator is of the form

then is a rationalizing factor.

R-3 Polynomials: Basic Operations and Factoring

An algebraic expression is formed by using constants and vari-

ables and the operations of addition, subtraction, multiplication,

division, raising to powers, and taking roots. A polynomial is an

algebraic expression formed by adding and subtracting constants

and terms of the form (one variable), (two variables), and

so on. The degree of a term is the sum of the powers of all variables

in the term, and the degree of a polynomial is the degree of the

nonzero term with highest degree in the polynomial. Polynomials

with one, two, or three terms are called monomials, binomials, and

trinomials, respectively. Like terms have exactly the same vari-

able factors to the same powers and can be combined by adding

their coefficients. Polynomials can be added, subtracted, and mul-

tiplied by repeatedly applying the distributive property and com-

bining like terms.

A number or algebraic expression is factored if it is expressed

as a product of other numbers or algebraic expressions, which are

called factors. An integer greater than 1 is a prime number if its

only positive integer factors are itself and 1, and a composite

axnymaxn

1a ⫺ 1b1a ⫹ 1b,

A
n x

y
⫽
1n x

1n y
2n xy ⫽ 2n x2n y2n xn

⫽ x

(x 7 0, y 7 0): number otherwise. Each composite number can be factored

uniquely into a product of prime numbers. A polynomial is

prime relative to a given set of numbers (usually the set of integers)

if (1) all its coefficients are from that set of numbers, and (2) it can-

not be written as a product of two polynomials of positive degree

having coefficients from that set of numbers. A nonprime polyno-

mial is factored completely relative to a given set of numbers if

it is written as a product of prime polynomials relative to that set of

numbers. Common factors can be factored out by applying the

distributive properties. Grouping can be used to identify common

factors. Second-degree polynomials can be factored by trial and

error. The following special factoring formulas are useful:

1. Perfect Square

2. Perfect Square

3. Difference of Squares

4. Difference of Cubes

5. Sum of Cubes

There is no factoring formula relative to the real numbers for

R-4 Rational Expressions: Basic Operations

A fractional expression is the ratio of two algebraic expressions,

and a rational expression is the ratio of two polynomials. The rules

for adding, subtracting, multiplying, and dividing real number frac-

tions (see Section R-1 in this review) all extend to fractional expres-

sions with the understanding that variables are always restricted

to exclude division by zero. Fractions can be reduced to lowest

terms or raised to higher terms by using the fundamental prop-

erty of fractions:

with 

A rational expression is reduced to lowest terms if the numerator

and denominator do not have any factors in common relative to the

integers. The least common denominator (LCD) is useful for

adding and subtracting fractions with different denominators and for

reducing compound fractions to simple fractions.

b, k � 0
ka

kb
⫽

a

b

u2
⫹ v2.

u3
⫹ v3

⫽ (u ⫹ v)(u2
⫺ uv ⫹ v2)

u3
⫺ v3

⫽ (u ⫺ v)(u2
⫹ uv ⫹ v2)

u2
⫺ v2

⫽ (u ⫺ v)(u ⫹ v)

u2
⫺ 2uv ⫹ v2

⫽ (u ⫺ v)2

u2
⫹ 2uv ⫹ v2

⫽ (u ⫹ v)2

In Problems 1–6, perform the indicated operations, if defined. If

the result is not an integer, express it in the form a/b, where a and

b are integers.

1. 2.

3. 4.

5. 6.
11

12
⫼ a⫺3

4
b5

7
⫼ a1

3
⫺ 3⫺1b

a⫺10

3
b a⫺6

5
b7⫺19⫺1

2

3
⫺

4

9

5

6
⫹

3

4

Problems 7–12 refer to the polynomials (a) x4
⫹ 3x2

⫹ 1 and 

(b) 4 ⫺ x4.

7. What is the degree of (a)?

8. What is the degree of (b)?

9. What is the degree of the sum of (a) and (b)?

10. What is the degree of the product of (a) and (b)?

11. Multiply (a) and (b).

12. Add (a) and (b).

CHAPTER R Review Exercises
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43.

44.

45.

46.

47. 48.

49. Indicate true (T) or false (F):

(A) An integer is a rational number and a real number.

(B) An irrational number has a repeating decimal repre-

sentation.

50. Give an example of an integer that is not a natural number.

51. Given the algebraic expressions:

(a) (b) 

(c) (d) 

(A) Identify all second-degree polynomials.

(B) Identify all third-degree polynomials.

In Problems 52–55, perform the indicated operations and simplify.

52.

53.

54. 

55.

In Problems 56–61, write in a completely factored form relative to

the integers.

56. 57.

58. 59.

60. 61.

In Problems 62–65, perform the indicated operations and reduce

to lowest terms. Represent all compound fractions as simple

fractions reduced to lowest terms.

62.

63.

64.

65.

66. Convert to scientific notation and simplify:

0.000 000 000 52

(1,300)(0.000 002)

1 ⫺
1

1 ⫹
x

y

1 ⫺
1

1 ⫺
x

y

y

x2
⫼ a x2

⫹ 3x

2x2
⫹ 5x ⫺ 3

⫼
x3y ⫺ x2y

2x2
⫺ 3x ⫹ 1

b

m ⫺ 1

m2
⫺ 4m ⫹ 4

⫹
m ⫹ 3

m2
⫺ 4

⫹
2

2 ⫺ m

3x2(x ⫹ 2)2
⫺ 2x(x ⫹ 2)3

x4

2x(x ⫺ 4)3
⫹ 3x2(x ⫺ 4)2y3

⫹ 2y2
⫺ 4y ⫺ 8

(y ⫺ b)2
⫺ y ⫹ b6x3y ⫹ 12x2y2

⫺ 15xy3

2x2
⫹ 4xy ⫺ 5y2(4x ⫺ y)2

⫺ 9x2

⫺2x5(x2
⫹ 2)(x ⫺ 3) ⫺ x [x ⫺ x(3 ⫺ x)] 6

5(x ⫹ h)2
⫺ 7(x ⫹ h) ⫺ (5x2

⫺ 7x)

(m2
⫹ 2mn ⫺ n2)(m2

⫺ 2mn ⫺ n2)

(2x ⫺ y)(2x ⫹ y) ⫺ (2x ⫺ y)2

x2
⫺ 3xy ⫺ y2x⫺3

⫹ x⫺2
⫺ 3x⫺1

x2
⫺ 1x ⫺ 32x2

⫺ 3x ⫹ 5

3xy ⫹ 0 ⫽ 3xy
a

⫺(b ⫺ c)
⫽ ⫺

a

b ⫺ c

3 ⴢ (5x) ⫽ (3 ⴢ 5)x

(2x ⫹ 3)(3x ⫹ 5) ⫽ (2x ⫹ 3)3x ⫹ (2x ⫹ 3)5

3y ⫹ (2x ⫹ 5) ⫽ (2x ⫹ 5) ⫹ 3y

(⫺3) ⫺ (⫺2) ⫽ (⫺3) ⫹ [⫺(⫺2)]In Problems 13–18, evaluate each expression that results in a

rational number.

13. 14.

15. 16.

17. 18.

In Problems 19–22, perform the indicated operations and simplify.

19. 20.

21. 22.

In Problems 23–25, write each polynomial in a completely

factored form relative to the integers. If the polynomial is prime

relative to the integers, say so.

23. 24.

25.

In Problems 26–29, perform the indicated operations and reduce

to lowest terms. Represent all compound fractions as simple

fractions reduced to lowest terms.

26. 27.

28. 29.

Simplify Problems 30–35, and write answers using positive

exponents only. All variables represent positive real numbers.

30. 31.

32. 33.

34. 35. 

36. Change to radical form: 

37. Change to rational exponent form: 

Simplify Problems 38–42, and express answers in simplified form.

All variables represent positive real numbers.

38. 39.

40. 41. 42.

In Problems 43–48, each statement illustrates the use of

one of the following real number properties or definitions.

Indicate which one.

Commutative (⫹) Identity (⫹)

Commutative (ⴢ) Identity (ⴢ)

Division Associative (⫹)

Inverse (⫹) Associative (ⴢ)

Inverse (ⴢ) Zero

Distributive Subtraction

Negatives

28 y615

3 ⫺ 15

6ab

13a

22x2y5218x3y23x23 x5y4

⫺323 (xy)2

3x2Ⲑ5

(9a4b⫺2)1Ⲑ2u5Ⲑ3u2Ⲑ3

(x⫺3y2)⫺2(2 ⫻ 105)(3 ⫻ 10⫺3)

9u8v6

3u4v8
6(xy3)5

u ⫺
1

u

1 ⫺
1

u2

y ⫺ 2

y2
⫺ 4y ⫹ 4

⫼
y2
⫹ 2y

y2
⫹ 4y ⫹ 4

3x

3x2
⫺ 12x

⫹
1

6x

2

5b
⫺

4

3a3
⫺

1

6a2b2

6n3
⫺ 9n2

⫺ 15n

t2
⫺ 4t ⫺ 69x2

⫺ 12x ⫹ 4

(2a ⫺ 3b)2(2x ⫹ y)(3x ⫺ 4y)

(3m ⫺ 5n)(3m ⫹ 5n)5x2
⫺ 3x [4 ⫺ 3(x ⫺ 2)]

(1211Ⲑ2 ⫹ 251Ⲑ2)⫺3Ⲑ4a 9

16
b⫺1Ⲑ2

(⫺64)5Ⲑ38⫺2Ⲑ3

2161Ⲑ32891Ⲑ2



In Problems 67–75, perform the indicated operations and express

answers in simplified form. All radicands represent positive real

numbers.

67. 68. 69.

70. 71.

72.

73. 74.

75.

APPLICATIONS

76. CONSTRUCTION A circular fountain in a park includes a con-

crete wall that is 3 ft high and 2 ft thick (see the figure). If the inner

radius of the wall is x feet, write an algebraic expression in terms of

x that represents the volume of the concrete used to construct the

wall. Simplify the expression.

77. ECONOMICS If in the United States in 2007 the total personal in-

come was about $11,580,000,000,000 and the population was about

301,000,000, estimate to three significant digits the average personal

income. Write your answer in scientific notation and in standard dec-

imal form.

78. ECONOMICS The number of units N produced by a petroleum

company from the use of x units of capital and y units of labor is ap-

proximated by

(A) Estimate the number of units produced by using 1,600 units of

capital and 900 units of labor.

(B) What is the effect on production if the number of units of capi-

tal and labor are doubled to 3,200 units and 1,800 units, respec-

tively?

N ⫽ 20x1Ⲑ2y1Ⲑ2

x feet

 2 feet

3 feet

y2

2y2
⫹ 4 ⫺ 2

21u ⫺ 31v

21u ⫹ 31v

31x

21x ⫺ 1y

(21x ⫺ 51y)(1x ⫹ 1y)

213 4x429 8x6y12

B5
3y2

8x2

2x2

23 4x
⫺2x25 36x7y11
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(C) What is the effect on production of doubling the units of labor

and capital at any production level?

79. ELECTRIC CIRCUIT If three electric resistors with resistances

and are connected in parallel, then the total resistance R

for the circuit shown in the figure is given by

Represent this compound fraction as a simple fraction.

80. CONSTRUCTION A box with a hinged lid is to be made out of a

piece of cardboard that measures 16 by 30 inches. Six squares, x

inches on a side, will be cut from each corner and the middle, and

then the ends and sides will be folded up to form the box and its lid

(see the figure). Express each of the following quantities as a polyno-

mial in both factored and expanded form.

(A) The area of cardboard after the corners have been removed.

(B) The volume of the box.

30 in.

1
6

 i
n

.

x

x

R1

R2

R3

R ⫽
1

1

R1

⫹
1

R2

⫹
1

R3

R3R1, R2,



Equations and

Inequalities

SOLVING equations and inequalities is one of the most important

skills in algebra because it can be applied to solving a boundless

supply of real-world problems. In this chapter, we will begin with a

look at techniques for solving linear equations and inequalities.

After a study of complex numbers, we’ll return to equations, learning

how to solve a variety of nonlinear equations. For each type of equa-

tion and inequality we solve, we will look at some real-world prob-

lems that can be solved using those solution techniques. This doesn’t

close the book on solving equations, though—we will learn how to

solve new types of equations in many of the remaining chapters.

C

CHAPTER

1
OUTLINE

1-1 Linear Equations and
Applications

1-2 Linear Inequalities

1-3 Absolute Value in Equations
and Inequalities

1-4 Complex Numbers

1-5 Quadratic Equations and
Applications

1-6 Additional Equation-Solving
Techniques

Chapter 1 Review

Chapter 1 Group Activity:
Solving a Cubic Equation



We begin this section with a quick look at what an equation is and what it means to solve

one. After solving some linear equations, we move on to the main topic: using linear equa-

tions to solve word problems.

Z Understanding Basic Terms

An algebraic equation is a mathematical statement that two algebraic expressions are equal.

Some examples of equations with variable x are

The replacement set, or domain, for a variable is defined to be the set of numbers that are

permitted to replace the variable.

 2x2
 3x  5  0   1x  4  x  1

 3x  2  7   
1

1  x
 

x

x  2
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1-1 Linear Equations and Applications

Z Understanding Basic Terms

Z Solving Linear Equations

Z Solving Number and Geometric Problems

Z Solving Rate–Time Problems

Z Solving Mixture Problems

Z ASSUMPTION On Domains of Variables

Unless stated to the contrary, we assume that the domain for a variable in an

algebraic expression or equation is the set of those real numbers for which the

algebraic expressions involving the variable are real numbers.

For example, the domain for the variable x in the expression

is R, the set of all real numbers, since represents a real number for all replacements

of x by real numbers. The domain of x in the equation

is the set of all real numbers except 0 and 3. These values are excluded because the expres-

sion on the left is not defined for and the expression on the right is not defined for

Both expressions represent real numbers for all other replacements of x by real

numbers.

The solution set for an equation is defined to be the set of all elements in the domain

of the variable that make the equation true. Each element of the solution set is called a

solution, or root, of the equation. To solve an equation is to find the solution set for the

equation.

x  3.

x  0

1

x
 

2

x  3

2x  4

2x  4



An equation is called an identity if the equation is true for all elements from the domain

of the variable. An equation is called a conditional equation if it is true for certain domain

values and false for others. For example,

and

are identities, since both equations are true for all elements from the respective domains of

their variables. On the other hand, the equations

and

are conditional equations, since, for example, neither equation is true for the domain

value 2.

Knowing what we mean by the solution set of an equation is one thing; finding it is

another. We introduce the idea of equivalent equations to help us find solutions. We will

call two equations equivalent if they both have the same solution set. To solve an equation,

we perform operations on the equation to produce simpler equivalent equations. We stop

when we find an equation whose solution is obvious. Then we check this obvious solution

in the original equation. Any of the properties of equality given in Theorem 1 can be used

to produce equivalent equations.

2

x  1
 

1

x
3x  2  5

5

x2
 3x

 
5

x(x  3)
2x  4  2(x  2)
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Z THEOREM 1 Properties of Equality

For a, b, and c any real numbers:

1. If then Addition Property

2. If then Subtraction Property

3. If and then Multiplication Property

4. If and then Division Property

5. If then either may replace the Substitution Property

other in any statement without changing 

the truth or falsity of the statement.

a  b,

a

c
 

b

c
.c  0,a  b

ca  cb.c  0,a  b

a  c  b  c.a  b,

a  c  b  c.a  b,

Z Solving Linear Equations

We now turn our attention to methods of solving first-degree, or linear, equations in one

variable.

Z DEFINITION 1 Linear Equation in One Variable

Any equation that can be written in the form

Standard Form

where a and b are real constants and x is a variable, is called a linear, or first-

degree, equation in one variable.

is a linear equation because after simplifying, it can be written in the standard 

form 3x ⴚ 7 ⴝ 0.

5x ⴚ 1 ⴝ 2(x ⴙ 3)

a � 0ax ⴙ b ⴝ 0



We often encounter equations involving more than one variable. For example, if l and

w are the length and width of a rectangle, respectively, the area of the rectangle is given by

(see Fig. 1).

Depending on the situation, we may want to solve this equation for l or w. To solve

for w, we simply consider A and l to be constants and w to be a variable. Then the equa-

tion becomes a linear equation in w that can be solved easily by dividing both

sides by l:

l � 0w ⫽
A

l

A ⫽ lw

A ⫽ lw
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EXAMPLE 1 Solving a Linear Equation

Solve and check.5x ⫺ 9 ⫽ 3x ⫹ 7

SOLUTION We will use the properties of equality to transform the given equation into an equivalent

equation whose solution is obvious.

Add 9 to both sides.

Combine like terms.

Subtract 3x from both sides.

Combine like terms.

Divide both sides by 2.

Simplify.

The solution set for this last equation is obvious:

Solution set: {8}

And since the equation is equivalent to all the preceding equations in our solution,

{8} is also the solution set for all these equations, including the original equation. [Note:

If an equation has only one element in its solution set, we generally use the last equation

(in this case, rather than set notation to represent the solution.]x ⫽ 8)

x ⫽ 8

 x ⫽ 8

 
2x

2
⫽

16

2

 2x ⫽ 16

 5x ⫺ 3x ⫽ 3x ⫹ 16 ⫺ 3x

 5x ⫽ 3x ⫹ 16

 5x ⫺ 9 ⫹ 9 ⫽ 3x ⫹ 7 ⫹ 9

 5x ⫺ 9 ⫽ 3x ⫹ 7

EXAMPLE 2 Solving an Equation with More Than One Variable

Solve for P in terms of the other variables: A ⫽ P ⫹ Prt

SOLUTION

CHECK Substitute

Simplify each side.

A true statement � 31 ⫽
✓

31

 40 ⫺ 9 ⫽
?

24 ⫹ 7

 5(8) ⫺ 9 ⫽
?

3(8) ⫹ 7

x ⴝ 8. 5x ⫺ 9 ⫽ 3x ⫹ 7

MATCHED PROBLEM 1 Solve and check: 

�

7x ⫺ 10 ⫽ 4x ⫹ 5

A ⫽ lw w

l

Z Figure 1 Area of a

rectangle.

Factor to isolate P.

Divide both sides by 1 ⴙ rt.

Restriction: �1 ⴙ rt � 0 P ⫽
A

1 ⫹ rt

 
A

1 ⫹ rt
⫽ P

 A ⫽ P(1 ⫹ rt)

 A ⫽ P ⫹ Prt



A great many practical problems can be solved using algebraic techniques—so many,

in fact, that there is no one method of attack that will work for all. However, we can put

together a strategy that will help you organize your approach.
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MATCHED PROBLEM 2 Solve for F in terms of 

�

C: C  5
9(F  32)

Z STRATEGY FOR SOLVING WORD PROBLEMS

1. Read the problem slowly and carefully, more than once if necessary. Write down

information as you read the problem the first time to help you get started. Iden-

tify what it is that you are asked to find.

2. Use a variable to represent an unknown quantity in the problem, usually what

you are asked to find. Then try to represent any other unknown quantities in

terms of that variable. It’s pretty much impossible to solve a word problem with-

out this step.

3. If it helps to visualize a situation, draw a diagram and label known and unknown

parts.

4. Write an equation relating the quantities in the problem. Often, you can accom-

plish this by finding a formula that connects those quantities. Try to write the

equation in words first, then translate to symbols.

5. Solve the equation, then answer the question in a sentence by rephrasing the

question. Make sure that you’re answering all of the questions asked.

6. Check to see if your answers make sense in the original problem, not just the

equation you wrote.

Translate each of the following sentences involving two numbers into an equation.

(A) The first number is 10 more than the second number.

(B) The first number is 15 less than the second number.

(C) The first number is half the second number.

(D) The first number is three times the second number.

(E) Ten times the first number is 15 more than the second number.

ZZZ EXPLORE-DISCUSS 1

The remaining examples in this section contain solutions to a variety of word problems

illustrating both the process of setting up word problems and the techniques used to solve

the resulting equations. As you read an example, try covering up the solution and working

the problem yourself. If you need a hint, uncover just part of the solution and try to work

out the rest. After you successfully solve an example problem, try the matched problem. If

you work through the remainder of the section in this way, you will already have experi-

ence with a wide variety of word problems.

Z Solving Number and Geometric Problems

Example 3 introduces the process of setting up and solving word problems in a simple math-

ematical context. Examples 4–8 are more realistic.
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EXAMPLE 3 Setting Up and Solving a Word Problem

Find four consecutive even integers so that the sum of the first three is 8 more than the fourth.

SOLUTION

EXAMPLE 4 Using a Diagram in the Solution of a Word Problem

A landscape designer plans a series of small triangular gardens outside a new office build-

ing. Her plans call for one side to be one-third of the perimeter, and another side to be one-

fifth of the perimeter. The space allotted for each will allow the third side to be 7 meters.

Find the perimeter of the triangle.

SOLUTION Draw a triangle, and label one side 7 meters. Let p ⫽ the perimeter: then the remaining sides

are one-third p, or p 3, and one-fifth p, or p 5 (see Fig. 2). 

Perimeter ⫽ Sum of the side lengths

Multiply both sides by 15, the LCD. Make sure to 

multiply every term by 15!
 p ⫽

p

3
⫹

p

5
⫹ 7

ⲐⲐ

MATCHED PROBLEM 3 Find three consecutive odd integers so that 3 times their sum is 5 more than 8 times the

middle one.

�

According to Part 3 of Theorem 1, multiplying both sides of an equation by a nonzero

number always produces an equivalent equation. By what number would you choose

to multiply both sides of the following equation to eliminate all the fractions?

If you did not choose 12, the LCD of all the fractions in this equation, you could

still solve the resulting equation, but with more effort. (For a discussion of LCDs

and how to find them, see Section R-4.)

x ⫹ 1

3
⫺

x

4
⫽

1

2

ZZZ EXPLORE-DISCUSS 2

Z Figure 2

7 meters

p

3

p

5

Let then

x and

represent four consecutive even integers starting with the even integer x. (Remember, even

integers are separated by 2.) The phrase “the sum of the first three is 8 more than the fourth”

translates into an equation:

Combine like terms.

Subtract 6 and x from both sides.

Divide both sides by 2.

 x ⫽ 4

 2x ⫽ 8

 3x ⫹ 6 ⫽ x ⫹ 14

 x ⫹ (x ⫹ 2) ⫹ (x ⫹ 4) ⫽ (x ⫹ 6) ⫹ 8

 Sum of the first three ⫽ Fourth ⫹ 8

x ⫹ 6x ⫹ 4x ⫹ 2

x ⫽ the first even integer;

The first even integer is 4, so the four consecutive integers are 4, 6, 8, and 10.

CHECK Sum of first three is 8 more than the fourth. �4 ⫹ 6 ⫹ 8 ⫽ 18 ⫽ 10 ⫹ 8
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CHECK Side 1

Side 2

 7 Side 3

15 meters Perimeter �

  
p

5
 

15

5
 3

 
p

3
 

15

3
 5

MATCHED PROBLEM 4 If one side of a triangle is one-fourth the perimeter, the second side is 7 centimeters, and

the third side is two-fifths the perimeter, what is the perimeter?

�

*Throughout the book, dashed boxes—called think boxes—are used to represent steps that may be performed

mentally.

*

Combine like terms.

Subtract 8p from both sides.

Divide both sides by 7.

The perimeter is 15 meters.

 p  15

 7p  105

 15p  8p  105

 15p  5p  3p  105

 15p  15 ⴢ

p

3
 15 ⴢ

p

5
 15 ⴢ 7

 15 ⴢ p  15 ⴢ ap

3
 

p

5
 7b

ZZZ CAUTION ZZZ A very common error occurs about now—students tend to confuse algebraic expres-

sions involving fractions with algebraic equations involving fractions.

Consider these two problems:

(A) Solve: (B) Add: 

The problems look very much alike but are actually very different. To solve the equa-

tion in (A) we multiply both sides by 6 (the LCD) to clear the fractions. This works

so well for equations that students want to do the same thing for problems like (B).

The only catch is that (B) is not an equation, and the multiplication property of equal-

ity does not apply. If we multiply (B) by 6, we simply obtain an expression 6 times

as large as the original! Compare these correct solutions:

(A)

 x  12

 5x  60

 3x  2x  60

 6 ⴢ

x

2
  6 ⴢ

x

3
  6 ⴢ 10

 
x

2
 

x

3
 10

x

2
 

x

3
 10

x

2
 

x

3
 10

(B)

  
5x  60

6

  
3x

6
 

2x

6
 

60

6

  
3 ⴢ x

3 ⴢ 2
 

2 ⴢ x

2 ⴢ 3
 

6 ⴢ 10

6 ⴢ 1

x

2
 

x

3
 10



There are many problems in which a rate plays a key role. For example, if you’re losing

weight at the rate of 2 lb per week, you can use that rate to find a total weight loss for some

period of time. Rate problems can often be solved using the following basic formula:
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Z QUANTITY-RATE-TIME FORMULA

The change in a quantity is the rate at which it changes times the time passed:

Quantity  Rate  Time, or Q  RT. If the quantity is distance, then D  RT.

The formulas can be solved for R or T to get a related formula to find the rate or

the time. [Note: R is an average or uniform rate.]

(A) If you drive at an average rate of 65 miles per hour, how far do you go in 3 hours?

(B) If you make $750 for 2 weeks of part-time work, what is your weekly rate of pay?

(C) If you eat at the rate of 1,900 calories per day, how long will it take you to eat

7,600 calories?

ZZZ EXPLORE-DISCUSS 3

EXAMPLE 5 A Distance–Rate–Time Problem

The distance along a shipping route between San Francisco and Honolulu is 2,100 nautical

miles. If one ship leaves San Francisco at the same time another leaves Honolulu, and if

the former travels at 15 knots* and the latter at 20 knots, how long will it take the two

ships to rendezvous? How far will they be from Honolulu and San Francisco at that time?

SOLUTION Let T  number of hours until both ships meet. Draw a diagram and label known and

unknown parts. Both ships will have traveled the same amount of time when they meet.

D   RT

D1   20 knots Time

D2   15 knots Time

D1  D2  2,100

20T  15T  2,100

35T  2,100

T  60

Therefore, it takes 60 hours, or 2.5 days, for the ships to meet.

 Distance from San Francisco  15 ⴢ 60  900 nautical miles

 Distance from Honolulu  20 ⴢ 60  1,200 nautical miles

±Distance ship 1

from Honolulu

travels to

meeting point

≤  ±Distance ship 2

from San Francisco

travels to

meeting point

≤  °Total distance

from Honolulu

to San Francisco

¢
ⴢ

ⴢ

H SFMeeting

20 knots 15 knots

D1   20T D2   15T

CHECK �1,200  900  2,100 nautical miles

San Francisco

Honolulu

2,100 miles

*15 knots means 15 nautical miles per hour. There are 6,076.1 feet in 1 nautical mile, and 5,280 feet in 1 statute

mile.
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MATCHED PROBLEM 5 An old piece of equipment can print, stuff, and label 38 mailing pieces per minute. A newer

model can handle 82 per minute. How long will it take for both pieces of equipment to pre-

pare a mailing of 6,000 pieces? [Hint: Use Quantity  Rate  Time for each machine.]

�

Some equations involving variables in a denominator can be transformed into linear equa-

tions. We can proceed in essentially the same way as in Example 5; however, we need to

exclude any value of the variable that will make a denominator 0. With these values excluded,

we can multiply through by the LCD even though it contains a variable, and, according to

Theorem 1, the new equation will be equivalent to the old.

EXAMPLE 6 A Distance–Rate–Time Problem

An excursion boat takes 1.5 times as long to go 360 miles up a river as to return. If the

boat cruises at 15 miles per hour in still water, what is the rate of the current?

SOLUTION Let

The rate of the current is 3 miles per hour. The check is left to the reader. �

 x  3

 900x  2,700

 5,400  900x  8,100

 5,400  360x  8,100  540x

 360(15  x)  540(15  x)

 
360

15  x
 

540

15  x

 
360

15  x
 (1.5) 

360

15  x

 
Distance upstream

Rate upstream
 (1.5) 

Distance downstream

Rate downstream

 Time upstream  (1.5)(Time downstream)

 15  x  Rate of boat downstream

 15  x  Rate of boat upstream

 x  Rate of current (in miles per hour)

360 miles

Multiply out parentheses.

Add 540x to both sides.

Subtract 5,400 from both sides.

Divide both sides by 900.

What we were asked to find.

Faster downstream.

Multiply both sides by the LCD,

(15 ⴚ x)(15 ⴙ x).

Because D  RT,

x cannot be 15 or  15

T ⴝ
D

R

MATCHED PROBLEM 6 A jetliner takes 1.2 times as long to fly from Paris to New York (3,600 miles) as to return.

If the jet cruises at 550 miles per hour in still air, what is the average rate of the wind blow-

ing in the direction of Paris from New York?

�

EXAMPLE 7 A Quantity–Rate–Time Problem

An advertising firm has an old computer that can prepare a whole mailing in 6 hours. With

the help of a newer model the job is complete in 2 hours. How long would it take the newer

model to do the job alone?
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SOLUTION Let x   time (in hours) for the newer model to do the whole job alone.

Therefore, the new computer could do the job alone in 3 hours.

 x3

 2x6

 3x6 x

 3x3x a2

x

b 3x a1

3
b

 1
2

x

  
1

3

 1
1

x

 (2) 
1

6
 (2)

 a Rate of

old model
b a Time of

old model
b   a Rate of

new model
b a Time of

new model
b  1

 °Part of job completed

by old model

in 2 hours

¢    °Part of job completed

by new model

in 2 hours

¢   1 whole job

 Rate of new model  
1

x

 job per hour

 Rate of old model  
1

6
 job per hour

 aPart of job completed

in a given length of time
b  (Rate)(Time)

CHECK

� Part of job completed by both models in 2 hours  1

  Part of job completed by new model in 2 hours  2(1
3)  

2
3

 Part of job completed by old model in 2 hours  2(1
6)  

1
3

Recall: Q ⴝ RT

EXAMPLE 8 A Mixture Problem

How many liters of a mixture containing 80% alcohol should be added to 5 liters of a 20%

solution to yield a 30% solution?

x cannot be zero.

Multiply both sides 

by 3x, the LCD.

Subtract x from 

both sides.

Divide both 

sides by 2.

MATCHED PROBLEM 7 Two pumps are used to fill a water storage tank at a resort. One pump can fill the tank by

itself in 9 hours, and the other can fill it in 6 hours. How long will it take both pumps oper-

ating together to fill the tank?

�

Z Solving Mixture Problems

A variety of applications can be classified as mixture problems. Even though the problems

come from different areas, their mathematical treatment is essentially the same.
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SOLUTION Let x   amount of 80% solution used.

80% solution

x liters

BEFORE MIXING AFTER MIXING

20% solution

  

5 liters

30% solution

(x   5) liters

Add 1 liter of the 80% solution.

 x  1

 0.5x  0.5

 0.8x  1  0.3x  1.5

 0.3(x  5)0.2(5) 0.8x

 °Amount of

alcohol in

first solution

¢  °Amount of

alcohol in

second solution

¢  °Amount of

alcohol in

mixture

¢

MATCHED PROBLEM 8 A chemical storeroom has a 90% acid solution and a 40% acid solution. How many cen-

tiliters of the 90% solution should be added to 50 centiliters of the 40% solution to yield

a 50% solution?

�

ANSWERS TO MATCHED PROBLEMS

1. x   5 2. 3. 3, 5, 7 4. 20 centimeters

5. 50 minutes 6. 50 miles per hour 7. 3.6 hours 8. 12.5 centiliters

F  
9
5C  32

CHECK Liters of Liters of

solution alcohol Percent alcohol

First solution 1 0.8(1)   0.8 80 or 0.8兾1

Second solution   5  0.2(5)   1 20 or 1兾5

Mixture 6 1.8 1.8兾6   0.3, or 30%

�

4. In one or two sentences, describe what parts 1– 4 in Theorem 1

say about working with equations.

5. How can you check your solution to an equation?

6. How do you check your solution to a word problem?

1-1 Exercises

1. What does it mean to solve an equation?

2. Describe the difference between an equation and an

expression.

3. How can you tell if an equation is linear?
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7. Explain why the following does not make sense: Solve the

equation P  2l  2w.

8. Explain why the following does not make sense: Solve 

.

In Problems 9–34, solve each equation.

9. 10 x  7  4x  25 10. 11  3y  5y  5

11. 3(x  2)  5(x  6) 12. 3(y  4)  2y  18

13. 5  4(t  2)  2(t  7)  1

14. 4   3(t   2)   t   5(t   1)   7t

15. 16. 

17. 18.

19.

20.

21.

22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33.

34.

In Problems 35–38, use a calculator to solve each equation to

three significant digits.*

35.

36.

37. 38.

In Problems 39–46, solve for the indicated variable in terms of the

other variables.

39. for d (arithmetic progressions)

40. for C (temperature scale)F  
9
5C  32

an  a1  (n  1)d

2.34

x
 5.67  

5.67x

x  4

2.32x

x  2
 

3.76

x
 2.32

1.73y  0.279(y  3)  2.66y

3.142x  0.4835(x  4)  6.795

1

b  5
 

10

b2
 5b  25

 
1

b  5

3a  1

a2
 4a  4

 
3

a2
 2a

 
3

a

4y

y  3
 5  

12

y  3

6

y  4
 1  

5

2y  8

2x  3

x  1
 2  

3x  1

x  1
1  

x  3

x  2
 

2x  3

x  2

z  4

7
 

z

6
 

z  8

3
 5

y

3
 

y  10

5
 

2y  2

4
 3

t

t  1
 

2

t  1
 2

z

z  1
 

1

z  1
 2

3  w

6w
 

1

2w
 

4

3

2

y
 

5

2
 4  

2

3y

0.35(u  0.34)  0.15u  0.2u  1.66

0.35(s  0.34)  0.15s  0.2s  1.66

0.1(w  0.5)  0.2w  0.2(w  0.4)

0.1(t  0.5)  0.2t  0.3(t  0.4)

x

5
 

3x  1

2
 

6x  5

4

x  3

4
 

x  4

2
 

3

8

5  
2x  1

4
 

x  2

3
5  

3a  4

5
 

7  2a

2

y

4
 

y

5
 1

41. for f (simple lens formula)

42. for (electric circuit)

43. for a (surface area of a rectangular solid)

44. for c

45. for x 46. for y

In Problems 47 and 48, imagine that the indicated “solutions”

were given to you by a student whom you were tutoring in this

class. Is the solution right or wrong? If the solution is wrong,

explain what is wrong and show a correct solution.

47. 48.

In Problems 49–51, solve the equation.

49. 50.

51.

52. Solve for y in terms of x: 

53. Solve for x in terms of y: 

54. Let m and n be real numbers with m larger than n. Then there

exists a positive real number p such that Find the

fallacy in the following argument:

APPLICATIONS

These problems are grouped according to subject area.

Numbers

55. Find a number so that 10 less than two-thirds the number is

one-fourth the number.

56. Find a number so that 6 more than one-half the number is two-

thirds the number.

 m  n

 m(m  n  p)  n(m  n  p)

 m2
 mn  mp  mn  n2

 np

 m2
 mn  mn  mp  n2

 np

 (m  n)m  (m  n)(n  p)

 m  n  p

m  n  p.

y  
a

1  
b

x  c

y

1  y
 a x

1  x
b3

x  1  
2

x

1  
1

x

 x  2

x  
1

x

x  1  
2

x

 1

x  
1

x

1  
1

x

 3

 x  1 x  3

 x2
 1  x2

 4x  3 x  4x  12  2x  3

 
x2

 1

x  1
 

x2
 4x  3

x  1
 

x

x  3
 4  

2x  3

x  3

x  

3y  2

y  3
y  

2x  3

3x  5

A  2ab  2ac  2bc

A  2ab  2ac  2bc

R1

1

R
 

1

R1

 
1

R2

1

f
 

1

d1

 
1

d2

*Appendix A contains a brief discussion of significant digits.
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57. Find four consecutive even integers so that the sum of the first

three is 2 more than twice the fourth.

58. Find three consecutive even integers so that the first plus twice

the second is twice the third.

Geometry

59. Find the perimeter of a triangle if one side is 16 feet, another

side is two-sevenths the perimeter, and the third side is one-third

the perimeter.

60. Find the perimeter of a triangle if one side is 11 centimeters,

another side is two-fifths the perimeter, and the third side is one-

half the perimeter.

61.A new game show requires a playing field with a perimeter of

54 yards and length 3 yards less than twice the width. What are

the dimensions?

62. A celebrity couple wants to have a rectangular pool put in the

backyard of their vacation home. They want it to be 24 meters long,

and they insist that it have at least as much area as the neighbor’s

pool, which is a square 12 meters on a side. Find the dimensions of

the smallest pool that meets these criteria.

Business and Economics

63.The sale price of an MP3 player after a 30% discount was $140.

What was the original price?

64. A sporting goods store marks up each item it sells 60% above

wholesale price. What is the wholesale price on a snowboard that

sells for $144?

65. One employee of a computer store is paid a base salary of

$2,150 a month plus an 8% commission on all sales over $7,000

during the month. How much must the employee sell in 1 month to

earn a total of $3,170 for the month?

66.A second employee of the computer store in Problem 65 is paid

a base salary of $1,175 a month plus a 5% commission on all sales

during the month.

(A) How much must this employee sell in 1 month to earn a total of

$3,170 for the month?

(B) Determine the sales level where both employees receive the

same monthly income. If employees can select either of these pay-

ment methods, how would you advise an employee to make this

selection?

Earth Science

67. In 1970, Russian geologists began drilling a very deep bore-

hole in the Kola Peninsula. Their goal was to reach a depth of

15 kilometers, but high temperatures in the borehole forced them to

stop in 1994 after reaching a depth of 12 kilometers. They found

that below 3 kilometers the temperature T increased 2.5°C for each

additional 100 meters of depth.

(A) If the temperature at 3 kilometers is 30°C and x is the depth of

the hole in kilometers, write an equation using x that will give the

temperature T in the hole at any depth beyond 3 kilometers.

(B) What would the temperature be at 12 kilometers?

(C) At what depth (in kilometers) would they reach a temperature

of 200°C?

68. An earthquake emits a primary wave and a secondary wave.

Near the surface of the Earth the primary wave travels at about

5 miles per second, and the secondary wave travels at about 3 miles

per second. From the time lag between the two waves arriving at a

given seismic station, it is possible to estimate the distance to the

quake. Suppose a station measures a time difference of 12 seconds

between the arrival of the two waves. How far is the earthquake

from the station? (The epicenter can be located by obtaining dis-

tance bearings at three or more stations.)

Life Science

69.The kangaroo rat is an endangered species native to California.

In order to keep track of their population size in a state nature pre-

serve, a conservation biologist trapped, tagged, and released 80

individuals from the population. After waiting 2 weeks for the ani-

mals to mix back in with the general population, she again caught

80 individuals and found that 22 of them were tagged. Assuming

that the ratio of tagged animals to total animals in the second sam-

ple is the same as the ratio of all tagged animals to the total popula-

tion in the preserve, estimate the total number of kangaroo rats in

the preserve.

70. Repeat Problem 69 with a first (marked) sample of 70 and a

second sample of 30 with only 11 marked animals.

Chemistry

71. How many gallons of distilled water must be mixed with

50 gallons of 30% alcohol solution to obtain a 25% solution?

72. How many gallons of hydrochloric acid must be added to

12 gallons of a 30% solution to obtain a 40% solution?

73. A chemist mixes distilled water with a 90% solution of sulfuric

acid to produce a 50% solution. If 5 liters of distilled water are

used, how much 50% solution is produced?

74. A fuel oil distributor has 120,000 gallons of fuel with 0.9%

sulfur content, which exceeds pollution control standards of 0.8%

sulfur content. How many gallons of fuel oil with a 0.3% sulfur

content must be added to the 120,000 gallons to obtain fuel oil that

will comply with the pollution control standards?

Rate–Time

75.An old computer can do the weekly payroll in 5 hours. A newer

computer can do the same payroll in 3 hours. The old computer

starts on the payroll, and after 1 hour the newer computer is brought

on-line to work with the older computer until the job is finished.

How long will it take both computers working together to finish the

job? (Assume the computers operate independently.)

76. One pump can fill a gasoline storage tank in 8 hours. With

a second pump working simultaneously, the tank can be filled in

3 hours. How long would it take the second pump to fill the tank

operating alone?

77. The cruising speed of an airplane is 150 miles per hour

(relative to the ground). You plan to hire the plane for a 3-hour

sightseeing trip. You instruct the pilot to fly north as far as she can

and still return to the airport at the end of the allotted time.

(A) How far north should the pilot fly if the wind is blowing from

the north at 30 miles per hour?

(B) How far north should the pilot fly if there is no wind?
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78. Suppose you are at a river resort and rent a motor boat for

5 hours starting at 7 A.M. You are told that the boat will travel at

8 miles per hour upstream and 12 miles per hour returning. You de-

cide that you would like to go as far up the river as you can and still

be back at noon. At what time should you turn back, and how far

from the resort will you be at that time?

79.A two-woman rowing team can row 1,200 meters with the cur-

rent in a river in the same amount of time it takes them to row 1,000

meters against that same current. In each case, their average rowing

speed without the effect of the current is 3 meters per second. Find

the speed of the current. 

80. The winners of the men’s 1,000-meter double sculls event in

the 2008 Olympics rowed at an average of 11.3 miles per hour. If

this team were to row this speed for a half mile with a current in

80% of the time they were able to row that same distance against

the current, what would be the speed of the current?

Music

81. A major chord in music is composed of notes whose frequen-

cies are in the ratio 4:5:6. If the first note of a chord has a frequency

of 264 hertz (middle C on the piano), find the frequencies of the

other two notes. [Hint: Set up two proportions using 4:5 and 4:6.]

82. A minor chord is composed of notes whose frequencies are in

the ratio 10:12:15. If the first note of a minor chord is A, with a fre-

quency of 220 hertz, what are the frequencies of the other two

notes?

Psychology

83. In an experiment on motivation, Professor Brown trained a

group of rats to run down a narrow passage in a cage to receive food

in a goal box. He then put a harness on each rat and connected it to

an overhead wire attached to a scale. In this way, he could place the

rat different distances from the food and measure the pull (in

grams) of the rat toward the food. He found that the relationship be-

tween motivation (pull) and position was given approximately by

the equation

where pull p is measured in grams and distance d in centimeters.

When the pull registered was 40 grams, how far was the rat from

the goal box?

84. Professor Brown performed the same kind of experiment as de-

scribed in Problem 83, except that he replaced the food in the goal

box with a mild electric shock. With the same kind of apparatus, he

was able to measure the avoidance strength relative to the distance

from the object to be avoided. He found that the avoidance strength

a (measured in grams) was related to the distance d that the rat was

from the shock (measured in centimeters) approximately by the

equation

If the same rat were trained as described in this problem and in

Problem 83, at what distance (to one decimal place) from the goal

box would the approach and avoidance strengths be the same?

(What do you think the rat would do at this point?)

30  d  170a   4
3d  230

30  d  170p   1
5d  70

1-2 Linear Inequalities

Z Understanding Inequality and Interval Notation

Z Solving Linear Inequalities

Z Applying Linear Inequalities

An equation is a statement that two expressions are equal. Sometimes it is useful to find

when one expression is more or less than another, so in this section we turn our attention

to linear inequalities in one variable, like

and  4 6 3  2x 6 73x  5 7 x  10
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Z Understanding Inequality and Interval Notation

The preceding mathematical statements use the inequality, or order, relations, more com-

monly known as “greater than” and “less than.” Just as we use the symbol “ ” to replace

the words “is equal to,” we use the inequality symbols   and  to replace “is less than”

and “is greater than,” respectively.

You probably have a natural understanding of how to compare numbers using these

symbols, but to be precise about using inequality symbols, we should have a clear defini-

tion of what they mean.

Z DEFINITION 1 a < b and  b > a

For two real numbers a and b, we say that a is less than b, and write a  b, if

there is a positive real number p so that a  p  b. The statement b  a, read

b is greater than a, means exactly the same as a  b.

This definition basically says that if you add a positive number to any number, the sum is

larger than the original number.

When we write we mean or and say a is less than or equal 

to b. When we write we mean or and say a is greater than or equal

to b.

The inequality symbols and have a very clear geometric interpretation on the real

number line. If then a is to the left of b; if then c is to the right of d (Fig. 1).

This is called a line graph.

c 7 d,a 6 b,

76

a  ba 7 ba  b

a  ba 6 ba  b

*In general, represents the set of all x such that statement P(x) is true. To express this set verbally, just

read the vertical bar as “such that.”

5x ƒ P(x)6

a cd b

Z Figure 1 a  b, c  d. 

If we want to state that some number x is between a and b, we could use two inequal-

ities: x  a and x  b.  Instead, we will write one double inequality, a  x  b.  For exam-

ple, the inequality  2  x  5 indicates that x is between  2 and 5, and could be equal

to 5, but not  2. The set of all real numbers that satisfy this inequality is called an inter-

val, and is commonly represented by ( 2, 5]. In general,

The number a is called the left endpoint of the interval, and the symbol “(” indicates that

a is not included in the interval. The number b is called the right endpoint of the interval,

and the symbol “]” indicates that b is included in the interval. An interval is closed if it

contains its endpoint(s) and open if it does not contain any endpoint. Other types of inter-

vals of real numbers are shown in Table 1.

Note that the symbol “ ,” read “infinity,” used in Table 1 is not a numeral. When we

write we are simply referring to the interval starting at b and continuing indefinitely

to the right. We would never write or because cannot be used as an

endpoint of an interval. The interval represents the set of real numbers R, since its

graph is the entire real number line.

(  ,  )

 b  x   ,[b,  ]

[b,  ),

 

(a, b ]  5x ƒ a 6 x  b6*
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ZZZ CAUTION ZZZ It is important to note that

is equivalent to and not to 

In interval notation, the smaller number is always written to the left. It may be use-

ful to rewrite the inequality as before rewriting it in interval notation.

The symbol is meaningless.(5, ⫺3]

⫺3 ⱕ x 6 5

(5, ⫺3][⫺3, 5)5 7 x ⱖ ⫺3

EXAMPLE 1 Graphing Intervals and Inequalities

Write each of the following in inequality notation and graph on a real number line:

(A) (B) (C) (D) (⫺⬁, 3)[⫺2, ⬁)(⫺4, 2)[⫺2, 3)

SOLUTIONS (A)

(B)

(C) 

(D) �x 6 3

x ⱖ ⫺2

⫺4 6 x 6 2

⫺2 ⱕ x 6 3

MATCHED PROBLEM 1 Write each of the following in interval notation and graph on a real number line:

(A) (B) (C) (D) 

�

x ⱕ 2x 7 12 ⱖ x ⱖ ⫺1⫺3 6 x ⱕ 3

Example 1C shows the graph of the inequality What is the graph of

What is the corresponding interval? Describe the relationship between

these sets.

x 6 ⫺2?

x ⱖ ⫺2.ZZZ EXPLORE-DISCUSS 1

x

0⫺2⫺5 3 5

[ )

x

20⫺4⫺5 5

( )

x

0⫺2⫺5 5

[

x

0⫺5 3 5

)

Table 1 Interval Notation

Interval Inequality

notation notation Line graph Type

[a, b] a ⱕ x ⱕ b Closed

[a, b) a ⱕ x ⬍ b Half-open

(a, b] a ⬍ x ⱕ b Half-open

(a, b) a ⬍ x ⬍ b Open

[b, ⬁) x ⱖ b Closed*

(b, ⬁) x ⬎ b Open

(⫺⬁, a] x ⱕ a Closed*

(⫺⬁, a) x ⬍ a Open 

*These intervals are closed because they contain all of their endpoints; they have only one endpoint.

x

ba

[ ]

x

ba

[ )

x

ba

( ]

x

ba

( )

[
b

x

(
b

x

]
a

x

x)
a
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Since intervals are sets of real numbers, the set operations of union and intersection

are often useful when working with intervals. The union of sets A and B, denoted by 

is the set formed by combining all the elements of A and all the elements of B. The inter-

section of sets A and B, denoted by is the set of elements of A that are also in B.

Symbolically:

A 傽 B,

A 傼 B,

EXAMPLE 2 Graphing the Union and Intersection of Intervals

If , graph the sets and and write them in interval

notation.

A 傽 BA 傼 BA  ( 2, 5]  and  B  (1,  )

SOLUTION

�A 傽 B  (1, 5]

A 傼 B  ( 2,  )

B  (1,  )

A  ( 2, 5]

Z DEFINITION 2 Union and Intersection

Union:
{1, 2, 3} {2, 3, 4, 5} ⴝ {1, 2, 3, 4, 5}

Intersection: 
{1, 2, 3} {2, 3, 4, 5} ⴝ {2, 3}傽

A 傽 B  5x ƒ x is in A and x is in B6

´

A 傼 B  5x ƒ x is in A or x is in B6

x

1 2 5

) [

x

1 2 5

)

x

1 2 5

)

x

1 2 5

) [

MATCHED PROBLEM 2 If , graph the sets and and write them in

interval notation.

�

C 傽 DC 傼 DC  [ 4, 3) and  D  (   ,  1]

Replace ? with or in each of the following.

(A) and

(B) and

(C) and

(D) and

Based on your results, describe verbally the effect of multiplying or dividing both

sides of an inequality by a number.

12

 4
 ? 
 8

 4
12 ?  8

12

4
 ? 
 8

4
12 ?  8

 2( 1) ?  2(3) 1 ? 3

2( 1) ? 2(3) 1 ? 3

76ZZZ EXPLORE-DISCUSS 2

Z Solving Linear Inequalities

We now turn to the problem of solving linear inequalities in one variable, such as

and

The solution set for an inequality is the set of all values of the variable that make the

inequality a true statement. Each element of the solution set is called a solution of the

inequality. To solve an inequality is to find its solution set. Two inequalities are equivalent

 3 6 2x  3  92(2x  3) 6 6(x  2)  10
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if they have the same solution set. Just as with equations, we perform operations on inequal-

ities that produce simpler equivalent inequalities, and continue the process until an inequal-

ity is reached whose solution is obvious. The properties of inequalities given in Theorem 1

can be used to produce equivalent inequalities.

Z THEOREM 1 Inequality Properties

An equivalent inequality will result and the sense (or direction) will remain the

same if each side of the original inequality

• Has the same real number added to or subtracted from it

• Is multiplied or divided by the same positive number

An equivalent inequality will result and the sense (or direction) will reverse if

each side of the original inequality

• Is multiplied or divided by the same negative number

Note: Multiplication by 0 and division by 0 are not permitted.

Theorem 1 tells us that we can perform essentially the same operations on inequalities

that we perform on equations, with the exception that the sense (or direction) of the inequal-

ity reverses if we multiply or divide both sides by a negative number: Otherwise the sense

of the inequality does not change.

Now let’s see how the inequality properties are used to solve linear inequalities. Exam-

ples 3, 4, and 5 will illustrate the process.

EXAMPLE 3 Solving a Linear Inequality

Solve and graph: 2(2x  3)  10 6 6(x  2)

SOLUTION Multiply out parentheses.

Combine like terms.

Add 4 to both sides.

Subtract 6x from both sides.

or Solution set

Graph of solution set

�

62 3 4 5 7 8 9

( x

(4,  )x 7 4

 
 2x

 2
7
 8

 2

  2x 6  8

 4x  6x 6 6x  8  6x

 4x 6 6x  8

 4x  4  4 6 6x  12  4

 4x  4 6 6x  12

 4x  6  10 6 6x  12

 2(2x  3)  10 6 6(x  2)

MATCHED PROBLEM 3 Solve and graph: 

�

3(x  1)  5(x  2)  5

Divide both sides by ⴚ2. 

Note that direction reverses 

because ⴚ2 is negative.



S E C T I O N  1 – 2 Linear Inequalities 61

EXAMPLE 4 Solving a Linear Inequality Involving Fractions

Solve and graph: 
2x  3

4
 6  2  

4x

3

SOLUTION

�

x

3.9

]

 x  3.9  or  (  , 3.9]

  10x   39

 6x   39  16x

 6x  63  24  16x

 6x  9  72  24  16x

 3(2x  3)  72  24  4(4x)

 12 ⴢ
2x  3

4
 12 ⴢ 6  12 ⴢ 2  12 ⴢ

4x

3

2x  3

4
 6  2  

4x

3

MATCHED PROBLEM 4
Solve and graph: 

�

4x  3

3
 8 6 6  

3x

2

Multiply out parentheses.

Combine like terms.

Subtract 63 from both sides.

Subtract 16x from both sides.

Order reverses when both sides

are divided by ⴚ10, a negative

number.

Multiply both sides by 12,

the LCD.

Direction doesn’t change: we

multiplied by a positive number.

Graph of solution set

EXAMPLE 5 Solving a Double Inequality

Solve and graph:  3  4  7x 6 18

SOLUTION We proceed as before, except we try to isolate x in the middle with a coefficient of 1,

being sure to perform operations on all three parts of the inequality.

or or

�

( 2, 1] 2 6 x  1 1  x 7  2

 
 7

 7
 
 7x

 7
7

14

 7

  7   7x 6 14

  3  4  4  7x  4 6 18  4

  3  4  7x 6 18

MATCHED PROBLEM 5 Solve and graph: 

�

 3 6 7  2x  7

Subtract 4 from each member.

Divide each member by ⴚ7 and

reverse each inequality.

x( ]
 2 1

Graph of solution set

Z Applying Linear Inequalities to Chemistry

EXAMPLE 6 Chemistry

In a chemistry experiment, a solution of hydrochloric acid is to be kept between and

—that is, What is the range in temperature in degrees Fahrenheit if the

Celsius/Fahrenheit conversion formula is C  5
9 
(F  32)?

30  C  35.35°C

30°C
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SOLUTION

The range of the temperature is from to inclusive. �95°F,86°F

 86  F  95

 54  32  F  32  32  63  32

 54  F  32  63

 
9

5
ⴢ 30  

9

5
ⴢ

5

9
 (F  32)  

9

5
ⴢ 35

 30  
5

9
 (F  32)  35

 30  C  35

MATCHED PROBLEM 6 A film developer is to be kept between and —that is, What is the

range in temperature in degrees Celsius if the Celsius/Fahrenheit conversion formula is

�

F  
9
5C  32?

68  F  77.77°F68°F

Replace C with 

Multiply each member by 

to clear fractions.

Add 32 to each member.

9

5

5

9
 (F ⴚ 32).

ANSWERS TO MATCHED PROBLEMS

1. (A) 

(B) 

(C) 

(D) 

2.

3. or 

4. or 

5. or or [0, 5)

6. the range in temperature is from to 25°C20°C20  C  25:

0  x 6 55 7 x  0

(6,  )x 7 6

(  ,  4]x   4

C 傽 D  [ 4,  1]

C 傼 D  (  , 3)

(  , 2]

(1,  )

[ 1, 2]

( 3, 3] x

0 3 5 3 5

[)

x

0 1 5 2 5

[ ]

x

0 5 1 5

(

x

0 5 2 5

]

x

 1 4 3

)

x

 7  4 0

]

125 6

x(

x

 1 650

)[

x

 1 4 3

[

[

3.What is the main difference between the procedures for solv-

ing linear equations and linear inequalities?

4. Describe how to graph the solution set of an inequality.

1-2 Exercises

1. Explain in your own words what it means to solve an in-

equality.

2. Explain why the “interval” [5,  3) is meaningless.
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In Problems 5–10, rewrite in inequality notation and graph on a

real number line.

5. 6. 7.

8. 9. 10.

In Problems 11–16, rewrite in interval notation and graph on a

real number line.

11. 12. 13.

14. 15. 16.

In Problems 17–20, write in interval and inequality notation.

17. 

18. 

19. 

20. 

In Problems 21–28, replace each ? with ⬎ or ⬍ to make the

resulting statement true.

21. 12 ? 6 and

22. and

23. and

24. 4 ? 9 and

25. and

26. and

27. 2 ? 6 and

28. and

In Problems 29–42, solve and graph.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

In Problems 43–54, graph the indicated set and write as a single

interval, if possible.

43. 44. (⫺5, 5) 傽 [4, 7](⫺5, 5) 傼 [4, 7]

⫺2 ⱕ 4r ⫺ 14 6 2⫺4 6 5t ⫹ 6 ⱕ 21

t ⫺ 2

5
⫹ 2 7

t

3
⫺2 ⫺

B

4
ⱕ

1 ⫹ B

3

6(5 ⫺ 2k) ⱖ 6 ⫺ 8k3 ⫺ m 6 4(m ⫺ 3)

⫺20m ⱖ 100⫺5t 6 ⫺10

Z

⫺10
ⱕ 3

N

⫺2
7 4

4(y ⫹ 1) ⫺ 7 6 ⫺9 ⫺ 2y12 ⫺ y ⱖ 2(9 ⫺ 2y)

5x ⫺ 21 ⱖ 3x ⫹ 57x ⫺ 8 6 4x ⫹ 7

⫺10

5
 ? 
⫺15

5
⫺10 ? ⫺15

2

2
 ? 

6

2

4(⫺3) ? 4(2)⫺3 ? 2

⫺2(2) ? ⫺2(⫺1)2 ? ⫺1

4 ⫹ 2 ? 9 ⫹ 2

⫺6 ⫺ 3 ? ⫺8 ⫺ 3⫺6 ? ⫺8

⫺4 ⫺ 7 ? ⫺2 ⫺ 7⫺4 ? ⫺2

12 ⫹ 5 ? 6 ⫹ 5

x 7 3x ⱕ ⫺2⫺4 ⱕ x 6 5

⫺7 6 x 6 8⫺5 ⱕ x ⱕ 5⫺2 6 x ⱕ 6

(⫺⬁, 7)[⫺6, ⬁)(⫺3, 3]

[⫺6, 6)(⫺4, 8)[⫺8, 7]

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

In Problems 55–70, solve and graph.

55. 56.

57.

58.

59. 60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Problems 71–76 are calculus-related. For what real number(s) x

does each expression represent a real number?

71. 72.

73. 74.

75. 76.

77. What can be said about the signs of the numbers a and b in each

case?

(A) (B) 

(C) (D) 

78. What can be said about the signs of the numbers a, b, and c in

each case?

(A) (B) 

(C) (D) 
a2

bc
6 0

a

bc
7 0

ab

c
6 0abc 7 0

a

b
6 0

a

b
7 0

ab 6 0ab 7 0

1

24 5 ⫺ 6x

1

24 2x ⫹ 3

17 ⫺ 2x13x ⫹ 5

1x ⫹ 511 ⫺ x

0.02x ⫺ 5.32 ⱕ 0.5(x ⫺ 2)

0.3x ⫺ 2.04 ⱖ 0.04(x ⫹ 1)

0.4(x ⫹ 5) 7 0.3x ⫹ 17

0.1(x ⫺ 7) 6 0.8 ⫺ 0.05x

0 6
1

3
(4 ⫺ x) ⫺ 10 ⱕ 16

⫺8 ⱕ ⫺
1

4
(2 ⫺ x) ⫹ 3 6 10

19 ⱕ 7 ⫺ 6x 6 49

16 6 7 ⫺ 3x ⱕ 31

24 ⱕ
2

3
 
(x ⫺ 5) 6 36

⫺20 6
5

2
 
(4 ⫺ x) 6 ⫺5

2 ⱕ
4

5
z ⫹ 6 6 18⫺4 ⱕ

9

5
 x ⫹ 32 ⱕ 68

2

3
 (x ⫹ 7) ⫺

x

4
7

1

2
 (3 ⫺ x) ⫹

x

6

2x

5
⫺

1

2
 (x ⫺ 3) ⱕ

2x

3
⫺

3

10
 (x ⫹ 2)

p

3
⫺

p ⫺ 2

2
ⱕ

p

4
⫺ 4

q

7
⫺ 3 7

q ⫺ 4

3
⫹ 1

(⫺3, 2) 傼 [0, ⬁)(⫺⬁, 4) 傼 (⫺1, 6]

[2, 3] 傽 (1, 5)[2, 3] 傼 (1, 5)

(1, 6] ´ [9, ⬁)(⫺⬁, ⫺1) 傼 [3, 7)

(⫺⬁, 1) 傽 (2, ⬁)(⫺⬁, 1) 傼 (⫺2, ⬁)

[⫺1, 4) 傼 (2, 6][⫺1, 4) 傽 (2, 6]

x

⫺10 1050⫺5

)[

x

⫺10 1050⫺5

[ ]

x

⫺10 1050⫺5

]

⫺10 1050⫺5

( x



64 C H A P T E R  1 EQUATIONS AND INEQUALITIES

For what range in altitude will the temperature be between and

inclusive?

91. BUSINESS AND ECONOMICS An electronics firm is planning

to market a new graphing calculator. The fixed costs are $650,000

and the variable costs are $47 per calculator. The wholesale price of

the calculator will be $63. For the company to make a profit, it is

clear that revenues must be greater than costs.

(A) How many calculators must be sold for the company to make a

profit?

(B) How many calculators must be sold for the company to break

even?

(C) Discuss the relationship between the results in parts A and B.

92. BUSINESS AND ECONOMICS A video game manufacturer is

planning to market a handheld version of its game machine. The

fixed costs are $550,000 and the variable costs are $120 per

machine. The wholesale price of the machine will be $140.

(A) How many game machines must be sold for the company to

make a profit?

(B) How many game machines must be sold for the company to

break even?

(C) Discuss the relationship between the results in parts A and B.

93. BUSINESS AND ECONOMICS The electronics firm in Problem

91 finds that rising prices for parts increases the variable costs to

$50.50 per calculator.

(A) Discuss possible strategies the company might use to deal with

this increase in costs.

(B) If the company continues to sell the calculators for $63, how

many must they sell now to make a profit?

(C) If the company wants to start making a profit at the same produc-

tion level as before the cost increase, how much should they increase

the wholesale price?

94. BUSINESS AND ECONOMICS The video game manufacturer in

Problem 92 finds that unexpected programming problems increases

the fixed costs to $660,000.

(A) Discuss possible strategies the company might use to deal with

this increase in costs.

(B) If the company continues to sell the game machines for $140,

how many must they sell now to make a profit?

(C) If the company wants to start making a profit at the same produc-

tion level as before the cost increase, how much should they increase

the wholesale price?

95. ENERGY If the power demands in a 110-volt electric circuit in

a home vary between 220 and 2,750 watts, what is the range of cur-

rent flowing through the circuit? where W  Power in

watts, E  Pressure in volts, and I  Current in amperes.)

96. PSYCHOLOGY A person’s IQ is given by the formula

where MA is mental age and CA is chronological age. If

for a group of 12-year-old children, find the range of their mental

ages.

80  IQ  140

IQ  
MA

CA
 100

(W  EI,

 40°F,

26°F79. Replace each question mark with or as appropriate:

(A) If then a ? b.

(B) If then u ? v.

80. For what p and q is 

81. If both a and b are negative numbers and is greater than 1,

then is positive or negative?

82. If both a and b are positive numbers and is greater than 1,

then is positive or negative?

83. Indicate true (T) or false (F):

(A) If and then 

(B) If and then 

(C) If and then 

84.Assume that then

But it was assumed that Find the error.

Prove each inequality property in Problems 85–88, given a, b, and

c are arbitrary real numbers.

85. If then 

86. If then 

87. (A) If and c is positive, then 

(B) If and c is negative, then 

88. (A) If and c is positive, then 

(B) If and c is negative, then 

APPLICATIONS

Write all your answers using inequality notation.

89. EARTH SCIENCE In 1970, Russian geologists began drilling a

very deep borehole in the Kola Peninsula. Their goal was to reach a

depth of 15 kilometers, but high temperatures in the borehole

forced them to stop in 1994 after reaching a depth of 12 kilometers.

They found that the approximate temperature x kilometers below

the surface of the Earth is given by

where T is temperature in degrees Celsius. At what depth is the tem-

perature between and inclusive?

90. EARTH SCIENCE As dry air moves upward it expands, and in so

doing it cools at a rate of about for each 1,000-foot rise up to

about 40,000 feet. If the ground temperature is then the tem-

perature T at height h is given approximately by T  70  0.0055h.

70°F,

5.5°F

250°C,150°C

3  x  12T  30  25(x  3)

a

c
7

b

c
.a 6 b

a

c
6

b

c
.a 6 b

ca 7 cb.a 6 b

ca 6 cb.a 6 b

a  c 6 b  c.a 6 b,

a  c 6 b  c.a 6 b,

n 7 0.

 0 7 n

 m 7 n  m

 m(n  m) 7 (n  m)(n  m)

 mn  m2
7 n2

 m2

 mn 7 n2

m 7 n 7 0;

p  q 7 q.q 6 0,p 7 0

mp 7 mq.m 6 0,p 6 q

mp 6 mq.m 7 0,p 7 q

a  b

b a

a  b

b a

p  q 6 p  q?

u  v   2,

a  b  1,

7,6
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We can use symbols to write a formal definition of absolute value:

We can express the distance between two points on a number line using the concept of
absolute value. As a result, absolute values often appear in equations and inequalities that
are associated with distance. In this section, we define absolute value and we show how to
solve equations and inequalities that involve absolute value.

Z Relating Absolute Value and Distance

We start with a geometric definition of absolute value. If a is the coordinate of a point on
a real number line, then the distance from the origin to a is represented by |a| and is referred
to as the absolute value of a. So |5|  5, since the point with coordinate 5 is five units
from the origin, and since the point with coordinate  6 is six units from the 
origin (Fig. 1).

冟 6冟  6,

1-3 Absolute Value in Equations and Inequalities

Z Relating Absolute Value and Distance

Z Solving Absolute Value Equations and Inequalities

Z Using Absolute Value to Solve Radical Inequalities

x

 6 50

兩 6兩   6 兩5兩   5

Z Figure 1 Absolute value.

Both the geometric and algebraic definitions of absolute value are useful, as will be
seen in the material that follows. Remember:

The absolute value of a number is never negative.

Z DEFINITION 1 Absolute Value

[Note:  x is positive if x is negative.]

冟x冟  再 x  if x 6 0

x  if x  0

For example, 

For example, 冟4冟  4

冟 3冟     ( 3)     3

EXAMPLE 1 Finding Absolute Value

Write without the absolute value sign:

(A) (B) 冟3   冟冟  3冟
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SOLUTIONS (A) Because  ⬇ 3.14,   3 is positive.

(B) Because 3   is negative. �冟3   冟   (3   )    3

冟  3冟    3

MATCHED PROBLEM 1 Write without the absolute value sign:

(A) (B) (C) (D) 

�

冟2  23 9冟冟 12冟冟23 9  2冟冟8冟

Notice that the solution in both parts of Example 1 was the same. This suggests Theorem 1,

which will be proved in Problem 81.

To find the distance between two numbers, we subtract, larger minus smaller. But if we

don’t know which is larger, we can use absolute value; Theorem 1 tells us that the order is

immaterial.

It will come in very handy to observe that an expression like can always be inter-

preted as the distance between two numbers a and b, and that the order of the subtraction

doesn’t matter.

Z Solving Absolute Value Equations and Inequalities

The connection between algebra and geometry is an important tool when working with

equations and inequalities involving absolute value. For example, the algebraic statement

can be interpreted geometrically as stating that the distance from x to 1 is 2.

冟x  1冟  2

冟b  a冟

Write geometric interpretations of the following algebraic statements:

(A) (B) (C) 冟x  1冟 7 20 6 冟x  1冟 6 2冟x  1冟 6 2

ZZZ EXPLORE-DISCUSS 1

Z THEOREM 1 For All Real Numbers a and b,

冟b  a冟  冟a  b冟

Z DEFINITION 2 Distance Between Points A and B

Let A and B be two points on a real number line with coordinates a and b,

respectively. The distance between A and B is given by

This distance is also called the length of the line segment joining A and B.

d(A, B)  冟b  a冟
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EXAMPLE 2 Solving Absolute Value Problems Geometrically

Interpret geometrically, solve, and graph. For inequalities, write solutions in both inequality
and interval notation.

(A) (B) 

(C) (D) 冟x  3冟 7 50 6 冟x  3冟 6 5

冟x  3冟 6 5冟x  3冟  5

SOLUTIONS (A) The expression |x 3| represents the distance between x and 3, so the solutions to
|x  3|  5 are all numbers that are exactly 5 units away from 3 on a number line.

or 8

The solution set is { 2, 8}. This is not interval notation.

(B) Solutions to |x 3| 5 are all numbers whose distance from 3 is less than 5. These
are the numbers between  2 and 8:

The solution set is ( 2, 8). This is interval notation.

(C) Expressions like 0  |x  3|  5 are important in calculus. The solutions are all
numbers whose distance from 3 is less than 5, and is not zero. This excludes 3 itself
from the solution set:

or

(D) The solutions to are all numbers whose distance from 3 is greater than
5; that is,

or

� 2 3 8

()

(  ,  2)  (8,  )x 7 8x 6  2

冟x  3冟 7 5

x

 2 3

Hole

8

( )

( 2, 3)  (3, 8)x  3 2 6 x 6 8

x

 2 3 8

( )

 2 6 x 6 8

5 5

3 8 2

x

x  3  5   2

ZZZ CAUTION ZZZ The pair of inequalities  2   x and x  8 can be written as a double inequality:

or in interval notation ( 2, 8)

But the pair x   2 or x  8 from Example 2(D) cannot be written as a dou-
ble inequality, or as a single interval: no number is both less than  2 and greater
than 8.

 2 6 x 6 8
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MATCHED PROBLEM 2 Interpret geometrically, solve, and graph. For inequalities, write solutions in both inequality
and interval notation. [Hint: |x ⫹ 2| ⫽ |x ⫺ (⫺2)|.]

(A) (B) 

(C) (D) 
�

冟x ⫹ 2冟 7 60 6 冟x ⫹ 2冟 6 6

冟x ⫹ 2冟 6 6冟x ⫹ 2冟 ⫽ 6

Table 1 Geometric Interpretation of Absolute Value Equations and Inequalities

Form (d ⬎ 0) Geometric interpretation Solution Graph

Distance between x and c is 
equal to d.

Distance between x and c is 
less than d.

Distance between x and c is 
less than d, but x � c.

Distance between x and c is 
greater than d.

(⫺⬁, c ⫺ d ) 傼 (c ⫹ d, ⬁) 冟x ⫺ c冟 7 d

(c ⫺ d, c) 傼 (c, c ⫹ d ) 0 6 冟x ⫺ c冟 6 d

(c ⫺ d, c ⫹ d ) 冟x ⫺ c冟 6 d

5c ⫺ d, c ⫹ d6 冟x ⫺ c冟 ⫽ d

d d

c ⫺ d c c ⫹ d x

x

c ⫺ d c c ⫹ d)(

x

c ⫺ d c c ⫹ d)(

c ⫺ d c c ⫹ d x) (

EXAMPLE 3 Interpreting Verbal Statements Algebraically

Express each verbal statement as an absolute value equation or inequality.

(A) x is 4 units from 2.

(B) y is less than 3 units from 

(C) t is no more than 5 units from 7.

(D) w is no less than 2 units from ⫺1.

⫺5.

SOLUTIONS (A) The distance from x to 2 is 4. 

(B) The distance from y to  5 is   3.

(C) The distance from t to 7 is   5.

(D) The distance from w to  1 is   2. �|w ⫹ 1| ⱖ 2d(w, ⫺1) ⫽

|t  ⫺ 7| ⱕ 5d(t, 7)  ⫽

| y  ⫹ 5| 6 3d( y, ⫺5)  ⫽

|x  ⫺ 2| ⫽ 4d(x, 2)  ⫽

MATCHED PROBLEM 3 Express each verbal statement as an absolute value equation or inequality.

(A) x is 6 units from 5.

(B) y is less than 7 units from 

(C) w is no less than 3 units from 

(D) t is no more than 4 units from 3.
�

⫺2.

⫺6.

The preceding results are summarized in Table 1.
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Describe the set of numbers that satisfies each of the following:

(A) (B)

(C) (D)

Explain why we never write double inequalities with inequality symbols pointing
in different directions.

2 6 x 6 12 6 x 7 1

2 7 x 6 12 7 x 7 1

ZZZ EXPLORE-DISCUSS 2

The results of Example 2 can be generalized as Theorem 2. [Note: |x|  |x  0|.]

If we replace x in Theorem 2 with ax  b, we obtain the more general Theorem 3.

*This can be more concisely written as ax  b  ;p.

EXAMPLE 4 Solving Absolute Value Problems

Solve each equation or inequality. For inequalities, write solutions in both inequality and
interval notation.

(A) (B) 

(C) (D) 冟7  3x冟  2冟2x  1冟 6 3

冟x冟 6 5冟3x  5冟  4

Z THEOREM 2 Properties of Equations and Inequalities Involving 冟x冟

For p  0:

1. is equivalent to or

2. is equivalent to

3. is equivalent to or x 7 p.x 6  p 冟x冟 7 p

 p 6 x 6 p. 冟x冟 6 p

x   p.x  p 冟x冟  p x

 p 0 p

x

 p 0 p

)(

 p 0 p

x) (

p has to be positive!

The distance from x to zero is p.

The distance from x to zero is less than p.

The distance from x to zero is greater than p.

Z THEOREM 3 Properties of Equations and Inequalities Involving |ax  b|

For p  0:

1. is equivalent to or *

2. is equivalent to

3. is equivalent to or ax  b 7 p.ax  b 6  p 冟ax  b冟 7 p

 p 6 ax  b 6 p. 冟ax  b冟 6 p

ax  b   p.ax  b  p 冟ax  b冟  p

p has to be positive!
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SOLUTIONS (A) Use Theorem 3, part 1 (B) Use Theorem 2, part 2

or 

or 

(C) Use Theorem 3, part 2 (D) Use Theorem 3, part 2

�or [ 5
3, 3]

 53  x  3or ( 1, 2)

 3  x  
5
3  1 6 x 6 2

  9   3x   5  2 6 2x 6 4

  2  7  3x  2  3 6 2x  1 6 3

 冟7  3x冟  2 冟2x  1冟 6 3

5 3,  1
36

 x   3,  1
3

 x  
 5  4

3

( 5, 5) 3x   5  4

  5 6 x 6 5 3x  5   4

 冟x冟 6 5 冟3x  5冟  4

MATCHED PROBLEM 4 Solve each equation or inequality. For inequalities, write solutions in both inequality and

interval notation.

(A) (B) (C) (D) 

�

冟5  2x冟 6 9冟3x  3冟  9冟x冟  7冟2x  1冟  8

EXAMPLE 5 Solving Absolute Value Inequalities

Solve, and write solutions in both inequality and interval notation.

(A) (B) (C) 冟7  3x冟 7 2冟2x  1冟  3冟x冟 7 3

SOLUTIONS (A) Use Theorem 2, part 3.

Solution in inequality notation

Solution in interval notation

(B) Use Theorem 3, part 3.

Add 1 to both sides.

Divide both sides by 2.

Solution in inequality notation

Solution in interval notation

(C)

�(  , 53)  (3,  )

 x 7 3   or   x 6 5
3

  3x 6  9   or    3x 7  5

 7  3x 6  2   or   7  3x 7 2

冟7  3x冟 7 2

(  ,  1]  [2,  )

 x   1  or   x  2

 2x   2  or   2x  4

 2x  1   3  or   2x  1  3

冟2x  1冟  3

(  ,  3)  (3,  )

x 6  3  or  x 7 3

冟x冟 7 3

Use Theorem 3, part 3.

Subtract 7 from both sides.

Divide both sides by  3 and reverse the direction of

the inequality.

Solution in inequality notation

Solution in interval notation

MATCHED PROBLEM 5 Solve, and write solutions in both inequality and interval notation.

(A) (B) (C) 

�

冟6  5x冟 7 16冟4x  3冟 7 5冟x冟  5
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EXAMPLE 6 An Absolute Value Problem with Two Cases

Solve: 冟x  4冟  3x  8

SOLUTION We can’t use Theorem 3 directly, because we don’t know that 3x 8 is positive. However, we
can use the definition of absolute value and two cases: x 4 0 and x 4 0.

Case 1. (in which case, 
For this case, the only acceptable values of x are greater than or equal to  4.

If x  4 is positive, |x  4|  x  4. 

Subtract 3x and 4 from both sides.

Divide both sides by  2.

A solution, because 6 is among the acceptable values of x (6   4).

Case 2. x  4  0 (in which case, x   4)
In this case, the only acceptable values of x are less than  4.

If x  4 is negative, |x  4|    (x  4).

Distribute  1.

Subtract 3x and add 4 to both sides.

Divide both sides by  4.

Not a solution, since 1 is not among the acceptable values of x (1   4).

Combining both cases, we see that the only solution is x  6.

 x  1

  4x   4

  x  4  3x  8

  (x  4)  3x  8

 冟x  4冟  3x  8

 x  6

  2x   12

 x  4  3x  8

 冟x  4冟  3x  8

x   4)x  4  0

As a final check, we substitute x  6 and x  1 in the original equation.

� 5   5 10  
✓

10

 冟1  4冟  ? 3(1)  8 冟6  4冟  ? 3(6)  8

 冟x  4冟  3x  8 冟x  4冟  3x  8

MATCHED PROBLEM 6 Solve: 
�

冟3x  4冟  x  5

Z Using Absolute Value to Solve Radical Inequalities

In Section R-2, we found that if x is positive or zero, . But what if x is negative?
Let’s look at an example:

We see that for negative x, . So for any real number,

But this is exactly how we defined at the beginning of this section (see Definition 1). So
for any real number x,

(1)2x
2

 冟  x 冟

冟 x 冟

2x
2
 冦 x   if x 6 0

x   if x  0

2x
2
  x

2( 2)2
 14  2

2x
2
 x
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EXAMPLE 7 Solving a Radical Inequality

Solve the inequality. Write your answer in both inequality and interval notation.

2(x  2)2
 5

SOLUTION Use equation (1): 

Use Theorem 3, part 2.

Add 2 to each member.

Solution in inequality notation

or Solution in interval notation �[ 3, 7]

  3  x  7

  5  x  2  5

 冟x  2冟  5

 2(x  2)
2
 冟x  2冟 2(x  2)2

 5

MATCHED PROBLEM 7 Solve the inequality. Write your answers in both inequality and interval notation.

�

ANSWERS TO MATCHED PROBLEMS

1. (A) 8 (B) (C) (D)
2. (A) x is a number whose distance from  2 is 6.

or 

(B) x is a number whose distance from  2 is less than 6.
or 

(C) x is a number whose distance from  2 is less than 6, but x cannot equal  2.
or 

(D) x is a number whose distance from  2 is greater than 6.
or or 

3. (A) (B) (C) (D) 
4. (A) or (B) or (C) or 

(D) or 
5. (A) or or (B) or or 

(C) or or 

6. or 7. or ( 5, 1) 5 6 x 6 15 1
4, 

9
26x   

1
4, 

9
2

(  ,  2)  (22
5 ,  )x 7

22
5 ,x 6  2

(  ,  1
2)  (2,  )x 7 2,x 6  

1
2(  ,  5]  [5,  )x  5,x   5

( 2, 7) 2 6 x 6 7
[ 4, 2] 4  x  2[ 7, 7] 7  x  75 7

2, 
9
26x   

7
2, 

9
2

冟t  3冟  4冟w  2冟  3冟y  6冟 6 7冟x  5冟  6

(  ,  8)  (4,  )x 7 4,x 6  8

( 8,  2)  ( 2, 4)x   2, 8 6 x 6 4,

( 8, 4) 8 6 x 6 4

5 8, 46x   8, 4

23 9  21223 9  2

2(x  2)2
6 3

x

 8  2 4

x

 8  2 4

)(

x

 8  2 4

)(

 8  2 4

x) (

4. Repeat Problem 3 for the inequalities |x  5|  10 and 
|x  5|  10.

5. Explain why it is incorrect to say that .

6.Why can’t the following be a legitimate solution to an
inequality? x  1 and x  5.

2x
2
 x

1-3 Exercises

1. Describe how to find the absolute value of a number, then ex-
plain how your description matches Definition 1.

2. Explain what the expression |x  5| represents geometrically,
and why.

3. Describe the equation |x  5|  10 in terms of your answer to
Problem 2, then explain how that helps you to solve it.



In Problems 7–14, simplify, and write without absolute value

signs. Do not replace radicals with decimal approximations.

7. 8.

9. 10.

11. 12.

13. 14.

In Problems 15–20, use the number line shown to find the

indicated distances.

15. d(B, O) 16. d(A, B) 17. d(O, B)

18. d(B, A) 19. d(B, C) 20. d(D, C)

Write each of the statements in Problems 21–30 as an absolute

value equation or inequality.

21. x is 4 units from 3.

22. y is 3 units from 1.

23. m is 5 units from ⫺2.

24. n is 7 units from ⫺5.

25. x is less than 5 units from 3.

26. z is less than 8 units from ⫺2.

27. p is more than 6 units from ⫺2.

28. c is no greater than 7 units from ⫺3.

29. q is no less than 2 units from 1.

30. d is no more than 4 units from 5.

In Problems 31–42, solve, interpret geometrically, and graph.

When applicable, write answers using both inequality notation

and interval notation.

31. 32. 33.

34. 35. 36.

37. 38. 39.

40. 41. 42.

In Problems 43–60, solve the equation or inequality. Write solutions

to inequalities using both inequality and interval notation.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54. 冟59 
(F ⫺ 32)冟 6 40冟95 

C ⫹ 32冟 6 31

冟0.5v ⫺ 2.5冟 7 1.6冟0.2u ⫹ 1.7冟 ⱖ 0.5

冟13z ⫹
5
6 冟 ⫽ 1冟12w ⫺

3
4 冟 6 2

冟⫺8x ⫹ 3冟 ⱕ 91冟4x ⫺ 7冟 ⫽ 13

冟150 ⫺ 20y冟 6 10冟100 ⫺ 40t冟 7 60

冟5x ⫹ 20冟 ⱖ 5冟2x ⫺ 11冟 ⱕ 13

冟x ⫹ 1冟 ⱖ 5冟u ⫹ 8冟 ⱖ 3冟x ⫹ 1冟 ⱕ 5

冟u ⫹ 8冟 ⱕ 3冟x ⫹ 1冟 ⫽ 5冟u ⫹ 8冟 ⫽ 3

冟t ⫺ 3冟 7 4冟y ⫺ 5冟 7 3冟t ⫺ 3冟 6 4

冟y ⫺ 5冟 6 3冟t ⫺ 3冟 ⫽ 4冟y ⫺ 5冟 ⫽ 3

冟2 ⫺ 17冟冟15 ⫺ 5冟

冟17 ⫺ 2冟冟5 ⫺ 15冟

冟(⫺2) ⫺ (⫺6)冟冟(⫺6) ⫺ (⫺2)冟

冟⫺3
4 冟冟15冟
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55. 56.

57. 58.

59. 60.

In Problems 61–64, solve and write answers in inequality notation.

Round decimals to three significant digits.

61.

62.

63.

64.

Problems 65⫺68 involve expressions that are important in the

study of limits in calculus. First, provide a verbal translation of

the inequality. Then solve and graph, writing your solution in

interval notation.

65. 66.

67. 68.

In Problems 69–76, for what values of x does each hold?

69. 70.

71. 72.

73. 74.

75.

76.

77.What are the possible values of 

78.What are the possible values of

79. Explain why has no solution for any values of

a and b.

80. Explain why has solution all real numbers for

any values of a and b.

81. Prove that for all real numbers a and b.

[Hint: Apply Definition 1 and use cases.]

82. Prove that for all real numbers x.

83. Prove that the average of two numbers is between the two num-

bers; that is, if then

84. Prove that for 

85. Prove that 

86. Prove that if and only if or m ⫽ ⫺n.m ⫽ n冟m冟 ⫽ 冟n冟

冟⫺m冟 ⫽ 冟m冟.

d am, 
m ⫹ n

2
b ⫽ d am ⫹ n

2
, nb

m 6 n,

m 6
m ⫹ n

2
6 n

m 6 n,

冟x冟2 ⫽ x2

冟b ⫺ a冟 ⫽ 冟a ⫺ b冟

冟ax ⫹ b冟 7 ⫺3

冟ax ⫹ b冟 6 ⫺3

冟x ⫺ 1冟

x ⫺ 1
?

x

冟x冟
?

冟5 ⫺ 2x冟 ⫽ 4(x ⫺ 5)

冟3 ⫺ x冟 ⫽ 2(4 ⫹ x)

冟x冟 ⫺ 冟x ⫺ 5冟 ⫽ 5冟x冟 ⫹ 冟x ⫹ 3冟 ⫽ 3

冟7 ⫺ 2x冟 ⫽ 5 ⫺ x冟3x ⫹ 5冟 ⫽ 2x ⫹ 6

冟x ⫹ 4冟 ⫽ 3x ⫹ 8冟x ⫺ 2冟 ⫽ 2x ⫺ 7

0 6 冟x ⫺ 8冟 6 d0 6 冟x ⫺ a冟 6
1

10

0 6 冟x ⫹ 5冟 6 0.50 6 冟x ⫺ 3冟 6 0.1

冟195 ⫺ 55.5x冟 ⫽ 315

冟21.7 ⫺ 11.3x冟 ⫽ 15.2

冟0.962 ⫺ 0.292x冟 ⱕ 2.52

冟2.25 ⫺ 1.02x冟 ⱕ 1.64

2(3m ⫹ 5)2
ⱖ 42(2t ⫺ 3)2

7 3

2(3 ⫺ 2x)2
6 52(1 ⫺ 3t)2

ⱕ 2

2m2
7 32x2

6 2

⫺10 ⫺5 10

DCOBA

50

x



87. Prove that for 

88. Prove that 

89. Prove that 

90. Prove the triangle inequality:

Hint: Use Problem 89 to show that

APPLICATIONS

91. STATISTICS Inequalities of the form

occur frequently in statistics. If and 

solve for x.

92. STATISTICS Repeat Problem 91 for and

n  2.

s  6.5,m  28.6,

n  1,s  3.2,m  45.4,

` x  m

s
` 6 n

 冟m冟  冟n冟  m  n  冟m冟  冟n冟

冟m  n冟  冟m冟  冟n冟

 冟m冟  m  冟m冟.

冟mn冟  冟m冟冟n冟.

` m
n

`  冟m冟

冟n冟

n  0,
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93. BUSINESS The daily production P in an automobile assembly

plant is always within 20 units of 500 units. Write the daily produc-

tion as an absolute value inequality, then solve to find the range of

daily productions possible.

94. CHEMISTRY In order to manufacture a polymer for soft drink

containers, a chemical reaction must take place within of

Write this temperature restriction as an absolute value in-

equality, then solve to find the acceptable temperatures.

95. APPROXIMATION The area A of a region is approximately

equal to 12.436. The error in this approximation is less than 0.001.

Describe the possible values of this area both with an absolute

value inequality and with interval notation.

96. APPROXIMATION The volume V of a solid is approximately

equal to 6.94. The error in this approximation is less than 0.02.

Describe the possible values of this volume both with an absolute

value inequality and with interval notation.

97. SIGNIFICANT DIGITS If represents a measurement,

then we assume an accuracy of Express the accuracy

assumption using an absolute value inequality.

98. SIGNIFICANT DIGITS If is a number from a

measurement, then we assume an accuracy of 

Express the accuracy assumption using an absolute

value inequality.

  5  10 6.

3.65  10 3

N  3.65  10 3

2.37  0.005.

N  2.37

200°C.

10°C

1-4 Complex Numbers

Z Understanding Complex Number Terminology

Z Performing Operations with Complex Numbers

Z Relating Complex Numbers and Radicals

Z Solving Equations Involving Complex Numbers

The idea of inventing new numbers might seem odd to you, but think about this example:

A group of mathematicians known as the Pythagoreans proved over 2,000 years ago that the

equation has no solutions that are rational numbers. You may be thinking that the solu-

tions are and , but at the time, those numbers had not been defined, so the

Pythagoreans invented a new kind of number—irrational numbers, like and .

Now consider the similar equation . To be a solution, a number has to result

in  1 when squared. But we know that the square of any real number cannot be negative,

so again a new type of number is invented—a number whose square is  1. The concept of

square roots of negative numbers had been kicked around for a few centuries, but in 1748,

the Swiss mathematician Leonhard Euler (pronounced “Oiler”) used the letter i to represent

a square root of  1. From this simple beginning, it is possible to build a new system of

numbers called the complex number system.

Z Understanding Complex Number Terminology

The number i, whose square is  1, is called the imaginary unit. Complex numbers are

defined in terms of the imaginary unit.

x
2
  1

 1212

 1212

x
2
 2

;



Z DEFINITION 1 Complex Number

A complex number is a number of the form , where a and b are real

numbers, and i is the imaginary unit (a square root of  1). A complex number

written this way is said to be in standard form. The real number a is called the

real part, and bi is called the imaginary part.

a  bi

Some examples of complex numbers are

The notation is shorthand for 

Particular kinds of complex numbers are given special names as follows:

3  ( 2)i.3  2i

0  3i  5  0i  0  0i

3  2i  1
2  5i  2  1

3i

S E C T I O N  1 – 4 Complex Numbers 75

EXAMPLE 1 Complex Numbers

Identify the real part, the imaginary part, and the conjugate of each of the following numbers:

(A) (B) (C) (D) 67i2  5i3  2i

SOLUTIONS (A) Real part: 3; imaginary part:  2i; conjugate: 3   2i

(B) Real part: 2; imaginary part: 5i; conjugate: 2   5i

(C) Real part: 0; imaginary part: 7i; conjugate:  7i

(D) Real part: 6; imaginary part: 0; conjugate: 6 �

MATCHED PROBLEM 1 Identify the real part, the imaginary part, and the conjugate of each of the following

numbers:

(A) 6   7i (B)  3   8i (C)  4i (D)  9

�

We will identify a complex number of the form a   0i with the real number a, a com-

plex number of the form 0 bi, with the pure imaginary number bi, and the 

complex number 0 0i with the real number 0. So a real number is also a complex number,

just as a rational number is also a real number. Any complex number that is not a real num-

ber is called an imaginary number. If we combine the set of all real numbers with the set of

all imaginary numbers, we obtain C, the set of complex numbers. The relationship of the com-

plex number system to the other number systems we have studied is shown in Figure 1.

 

b  0, 

Z DEFINITION 2 Special Terms

Imaginary Number

Pure Imaginary Number

Real Number

Zero

Conjugate of a  bia  bi

0  0  0i

a  0i  a

b  00  bi  bi

b  0a  bi



Z Performing Operations with Complex Numbers

To work with complex numbers, we will need to know how to add, subtract, multiply, and

divide them. We start by defining equality, addition, and multiplication.
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Z Figure 1

Natural
numbers

(N)

Zero

Negative
integers

Integers
(Z)

Noninteger
rational
numbers

Rational
numbers

(Q)

Irrational
numbers

(I)

Real
numbers

(R) Complex
numbers

(C)Imaginary
numbers

N   Z   Q   R   C

Z DEFINITION 3 Equality and Basic Operations

1. Equality: if and only if and 

2. Addition:

3. Multiplication: (a  bi)(c  di)  (ac  bd )  (ad  bc)i

(a  bi)  (c  di)  (a  c)  (b  d )i

b  da  ca  bi  c  di

In Section R-1 we listed the basic properties of the real number system. Using Defin-

ition 3, it can be shown that the complex number system possesses the same properties.

That is,

1. Addition and multiplication of complex numbers are commutative and associative oper-

ations.

2. There is an additive identity and a multiplicative identity for complex numbers.

3. Every complex number has an additive inverse or negative.

4. Every nonzero complex number has a multiplicative inverse or reciprocal.

5. Multiplication distributes over addition.

This is actually really good news: it tells us that we don’t have to memorize the formulas

for adding and multiplying complex numbers in Definition 3. Instead:

We can treat complex numbers of the form a  bi exactly as we treat alge-

braic expressions of the form a  bx. We just need to remember that in this

case, i stands for the imaginary unit; it is not a variable that represents a real

number.

The first two arithmetic operations we consider are addition and subtraction.

EXAMPLE 2 Addition and Subtraction of Complex Numbers

Carry out each operation and express the answer in standard form:

(A) (B)

(C) (D) ( 2  7i)  (2  7i)(7  3i)  (6  2i)

( 5  4i)  (0  0i)(2  3i)  (6  2i)



(A) We could apply the definition of addition directly, but it is easier to use complex num-

ber properties.

(B)

(C)

(D) �( 2  7i)  (2  7i)   2  7i  2  7i  0

  1  5i

 (7  3i)  (6  2i)  7  3i  6  2i

   5  4i

 ( 5  4i)  (0  0i)   5  4i  0  0i

  8  i

  (2  6)  ( 3  2)i

 (2  3i)  (6  2i)  2  3i  6  2i
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SOLUTIONS

MATCHED PROBLEM 2 Carry out each operation and express the answer in standard form:

(A) (B) 

(C) (D) 

�

Example 2, part B, illustrates the following general property: For any complex number 

a  bi,

and

That is, 0  0i is the additive identity or zero for the complex numbers. This is why we

identify 0  0i with the real number zero in Definition 2.

Example 2, part D, illustrates a different result: In general, the additive inverse or neg-

ative of a   bi is  a   bi because

and

Now we turn our attention to multiplication. Just like addition and subtraction, multi-

plication of complex numbers can be carried out by treating a   bi in the same way we

treat the algebraic expression a   bx. The key difference is that we replace i2 with  1 each

time it occurs.

( a  bi)  (a  bi)  0(a  bi)  ( a  bi)  0

(0  0i)  (a  bi)  a  bi(a  bi)  (0  0i)  a  bi

( 4  9i)  (4  9i)(3  5i)  (1  3i)

(0  0i)  (7  5i)(3  2i)  (6  4i)

Use the commutative property.

Combine like terms.

Make sure you distribute the negative sign!

EXAMPLE 3 Multiplying Complex Numbers

Carry out each operation and express the answer in standard form:

(A) (B) 

(C) (D) (3  4i)(3  4i)i(1  i)

1(3  5i)(2  3i)(6  2i)

SOLUTIONS (A) Replace i
2

with  1.

 6( 1)   6; combine like terms.

(B)

(C) Answer in standard form.

(D)  16i
2

   16( 1)   16

�  9  16  25

 (3  4i)(3  4i)  9  12i  12i  16i
2

i(1  i)  i  i
2

 i  1   1  i

1(3  5i)   1  3  1  5i   3  5i

  18  14i

  12  14i  6( 1)

 12  4i  18i  6i
2 (2  3i)(6  2i)



To divide complex numbers, multiply the numerator and denominator by the conjugate of

the denominator.
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MATCHED PROBLEM 3 Carry out each operation and express the answer in standard form:

(A) (B) 

(C) (D) 

�

(2  3i)(2  3i)i(2  3i)

3( 2  6i)(5  2i)(4  3i)

For any complex number 

and

(see Example 3, part B). This indicates that 1 is the multiplicative identity for complex

numbers, just as it is for real numbers.

Earlier we stated that every nonzero complex number has a multiplicative inverse or

reciprocal. We will denote this as a fraction, just as we do with real numbers:

is the reciprocal of

The following important property of the conjugate of a complex number is used to

express reciprocals and quotients in standard form. (See Example 3, part D)

a  bi  0a  bi
1

a  bi

(a  bi)1  a  bi1(a  bi)  a  bi

a  bi,

Z THEOREM 1 Product of a Complex Number and Its Conjugate

A real number(a  bi)(a  bi)  a
2
 b

2

EXAMPLE 4 Reciprocals and Quotients

Write each expression in standard form:

(A) (B) 
7  3i

1  i

1

2  3i

SOLUTIONS (A) Multiply numerator and denominator by the conjugate of the denominator:

This answer can be checked by multiplication:

  
2  3i

13
 

2

13
 

3

13
 i

 
1

2  3i
 

1

2  3i
 

2  3i

2  3i
   

2  3i

4  9i2
 

2  3i

4  9

CHECK

✓  
4

13
 

9

13
 1

 (2  3i) a 2

13
 

3

13
 ib  4

13
 

6

13
i  

6

13
i  

9

13
 i2

Answer in standard form.



(B)

 ⫽
4 ⫺ 10i

2
⫽ 2 ⫺ 5i

 
7 ⫺ 3i

1 ⫹ i
⫽

7 ⫺ 3i

1 ⫹ i
 

1  i

1  i
  ⫽

7 ⫺ 7i ⫺ 3i ⫹ 3i2

1 ⫺ i
2
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3i
2

   3

Answer in standard form.

CHECK �(1 ⫹ i)(2 ⫺ 5i) ⫽ 2 ⫺ 5i ⫹ 2i ⫺ 5i2 ⫽ 7 ⫺ 3i

MATCHED PROBLEM 4 Carry out each operation and express the answer in standard form:

(A) (B) 

�

6 ⫹ 7i

2 ⫺ i

1

4 ⫹ 2i

EXAMPLE 5 Combined Operations

Carry out the indicated operations and write each answer in standard form:

(A) (B) 
2 ⫺ 3i

2i
(3 ⫺ 2i)2

⫺ 6(3 ⫺ 2i) ⫹ 13

SOLUTIONS (A) 

(B) If a complex number is divided by a pure imaginary number, we can make the

denominator real by multiplying numerator and denominator by i. (We could also

multiply by the conjugate of 2i, which is ⫺2i.)

�

2 ⫺ 3i

2i
 

i

i
⫽

2i ⫺ 3i2

2i2
⫽

2i ⫹ 3

⫺2
⫽ ⫺

3

2
⫺ i

 ⫽ 0

 ⫽ 9 ⫺ 12i ⫺ 4 ⫺ 18 ⫹ 12i ⫹ 13

 (3 ⫺ 2i)2
⫺ 6(3 ⫺ 2i) ⫹ 13 ⫽ 9 ⫺ 12i ⫹ 4i2 ⫺ 18 ⫹ 12i ⫹ 13

MATCHED PROBLEM 5 Carry out the indicated operations and write each answer in standard form:

(A) (B) 

�

4 ⫺ i

3i
(3 ⫹ 2i)2

⫺ 6(3 ⫹ 2i) ⫹ 13

Natural number powers of i take on particularly simple forms:

i

In general, what are the possible values for n a natural number? Explain how

you could easily evaluate for any natural number n. Then evaluate each of the

following:

(A) (B) (C) (D) i
47

i
38

i
24

i
17

i
n

i
n,

i
8
⫽ i

4
 i

4
⫽ 1  1 ⫽ 1i

4
⫽ i

2
 i

2
⫽ (⫺1)(⫺1) ⫽ 1

i
7
⫽ i

4
 i

3
⫽ 1(⫺i) ⫽ ⫺ii

3
⫽ i

2
 i ⫽ (⫺1)i ⫽ ⫺i

i
6
⫽ i

4
 i

2
⫽ 1(⫺1) ⫽ ⫺1i

2
⫽ ⫺1

i
5
⫽ i

4
 i ⫽ (1)i ⫽ i

ZZZ EXPLORE-DISCUSS 1



Z Relating Complex Numbers and Radicals

Recall that we say that a is a square root of b if If x is a positive real number, then

x has two square roots, the principal square root, denoted by and its negative, 

(Section R-2). If x is a negative real number, then x still has two square roots, but now these

square roots are imaginary numbers.

 1x1x,

a
2
 b.
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Z DEFINITION 4 Principal Square Root of a Negative Real Number

The principal square root of a negative real number, denoted by where

a is positive, is defined by

For example ; 

The other square root of  a, a 7 0, is  1 a   i1a.

1 9  i19  3i1 3  i131 a  i1a

1 a,

Note in Definition 4 that we wrote and in place of the standard forms 

and We follow this convention to avoid confusion over whether the i should or should

not be under the radical. (Notice that and look a lot alike, but are not the same

number.)

13i 13i

13i.

1aii13i1a

EXAMPLE 6 Complex Numbers and Radicals

Write in standard form:

(A) (B) 

(C) (D) 
1

1  1 9

 3  1 5

2

4  1 51 4

SOLUTIONS (A)

(B) 

(C) Answer in standard form.

(D) 

Standard form

�

 
1  3i

1  9i
2
 

1  3i

10
 

1

10
 

3

10
 i

 
1

1  1 9
 

1

1  3i
 

1  (1  3i )

(1  3i)  (1  3i )

 3  1 5

2
 
 3  i15

2
  

3

2
 
15

2
 i

4  1 5  4  i15

1 4  i14  2i

MATCHED PROBLEM 6 Write in standard form:

(A) (B) 

(C) (D) 

�

1

3  1 4

 5  1 2

2

5  1 71 16



Z Solving Equations Involving Complex Numbers
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From Theorem 4 in Section R-2, we know that if a and b are positive real num-

bers, then

(1)

So we can evaluate expressions like two ways:

and

Evaluate each of the following two ways. Is equation (1) a valid property to use

in all cases?

(A) (B) (C) 1 9 1 41 9 1419 1 4

19 14  (3)(2)  619 14  1(9)(4)  136  6

19 14

1a 1b  1ab

ZZZ EXPLORE-DISCUSS 2

ZZZ CAUTION ZZZ Note that in Example 6, part D, we wrote before proceeding

with the simplification. This is a necessary step because some of the properties of

radicals that are true for real numbers turn out not to be true for complex numbers.

In particular, for positive real numbers a and b,

but

(See Explore-Discuss 2.)

To avoid having to worry about this, always convert expressions of the form to

the equivalent form in terms of i before performing any operations.

1 a

1 a 1 b  1( a)( b)1a 1b  1ab

1  1 9  1  3i

EXAMPLE 7 Equations Involving Complex Numbers

(A) Solve for real numbers x and y:

(B) Solve for complex number z:

(3  2i)z  3  6i  8  4i

(3x  2)  (2y  4)i   4  6i

SOLUTIONS (A) This equation is really a statement that two complex numbers are equal:

and . In order for these numbers to be equal, the real

parts must be the same, and the imaginary parts must be the same as well.

and

(B) Solve for z, then write the answer in standard form.

A check is left to the reader. �

  1  4i

  
13  52i

13

  
(11  10i)(3  2i)

(3  2i)(3  2i)

 z  
11  10i

3  2i

 (3  2i)z  11  10i

 (3  2i)z  3  6i  8  4i

y  5 x   2

2y  10 3x   6

2y  4  6 3x  2   4

 4  6i(3x  2)  (2y  4)i,

Add 3 and subtract 6i from both sides.

Divide both sides by 3 2i.

Multiply numerator and denominator by the

conjugate of the denominator.

Simplify.

Write in standard form.



(A) Solve for real numbers x and y:

(B) Solve for complex number z:

�

The truth is that the numbers we studied in this section weren’t received very well when

they were invented, as you can guess from the names they were given: complex and imag-

inary. These names are not exactly ringing endorsements.

Still, complex numbers eventually came into widespread use in areas like electrical

engineering, physics, chemistry, statistics, and aeronautical engineering. Our first applica-

tion of complex numbers will be in solving second-degree equations in Section 1-5.

(1  3i)z  4  5i  3  2i

(2y  7)  (3x  4)i  1  i
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MATCHED PROBLEM 7

ANSWERS TO MATCHED PROBLEMS

1. (A) Real part: 6; imaginary part: 7i; conjugate: (B) Real part: 

imaginary part: conjugate: (C) Real part: 0; imaginary part: 

conjugate: 4i (D) Real part: imaginary part: 0; conjugate: 

2. (A) (B) (C) (D) 0

3. (A) (B) (C) (D) 13

4. (A) (B) 5. (A) 0 (B) 

6. (A) (B) (C) (D) 

7. (A) (B) z  2  ix   1, y  4

3
13  

2
13i 

5
2  (12 2)i5  i174i

 
1
3  

4
3i1  4i1

5  
1
10i

3  2i 6  18i26  7i

2  2i7  5i9  2i

 9 9;

 4i; 3  8i 8i;

 3;6  7i

10. 4.2   9.7i 11. 6.5   2.1i 12.

13. 14. 15.

16. 17. 18.

In Problems 19–44, perform the indicated operations and

write each answer in standard form.

19. (3   5i)   (2   4i) 20. (4   i)   (5   3i)

21. (8   3i)   ( 5   6i) 22. ( 1   2i)   (4   7i)

23. (9   5i)   (6   2i) 24. (3   7i)   (2   5i)

25. (3   4i)   ( 5   6i) 26. ( 4   2i)   (1   i)

27. 2   (3i   5) 28. (2i   7)   4i

29. (2i)(4i) 30. (3i)(5i) 31.  2i(4   6i)

32. ( 4i)(2   3i) 33. (1   2i)(3   4i)

34. (2   i)( 5   6i) 35. (3   i)(4   i)

4  i17 5  i12 2 i

4 6 i 

3

5
 

4

5
  i

1-4 Exercises

1. Do negative real numbers have square roots? Explain.

2.Arrange the following sets of numbers so that each one con-

tains the one that comes before it in the list: rational numbers,

complex numbers, integers, real numbers, natural numbers.

3. Is it possible to square an imaginary number and get a real

number? Explain.

4.What is the conjugate of a complex number? How do we use

conjugates?

5.Which statement is false, and which is true? Justify your

response.

(A) Every real number is a complex number.

(B) Every complex number is a real number.

6. Is it possible to add a real number and an imaginary number? If

so, what kind of number is the result?

For each number in Problems 7–18, find the (A) real part,

(B) imaginary part, and (C) conjugate.

7. 2   9i 8.  6i   4 9.  
3

2
 

5

6
 i



36. (5   2i)(4   3i) 37. (2   9i)(2   9i)

38. (3   8i)(3   8i) 39.

40. 41. 42.

43. 44.

In Problems 45–52, evaluate and express results in standard form.

45. 46.

47. 48.

49. 50.

51. 52.

In Problems 53–62, convert imaginary numbers to standard form,

perform the indicated operations, and express answers in standard

form.

53.

54.

55.

56.

57.

58.

59. 60.

61. 62.

In Problems 63–68, write the complex number in standard form.

63. 64.

65. (2i)2
  5(2i)   6 66.

67. (5   2i)2
  4(5   2i)   1

68. (7   3i)2
  8(7   3i)   30

69. Evaluate x2
  2x   2 for x   1   i.

70. Evaluate x2
  2x   2 for x   1   i.

In Problems 71–74, for what real values of x does each expression

represent an imaginary number?

71. 72.

73. 74.

In Problems 75–78, solve for x and y.

75. (2x   1)   (3y   2)i   5   4i

76. 3x   ( y   2)i   (5   2x)   (3y   8)i

13  2x12  3x

15  x13  x

(i13)4
 2(i13)2

 15

1

10i
 

5

i

1

3  1 16

1

2  1 9

6  1 64

2

5  1 4

7

(2  1 1)(5  1 9)

(3  1 4)( 2  1 49)

( 2  1 36)  (4  1 49)

(9  1 9)  (12  1 25)

(3  1 4)  ( 8  1 25)

(2  1 4)  (5  1 9)

1 3 1 121 2 1 8

13 1 121 2 18

1 3 11212 1 8

13 11212 18

 5  10i

3  4i

7  i

2  i

3  5i

2  i

4  3i

1  2i

i

3  i

1

2  4i
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77.

78.

In Problems 79–82, solve for z and write your answer in standard

form.

79. (10   2i)z   (5   i)   2i

80. (3   2i)z   (4i   6)   8i

81. (4   2i)z   (7   2i)   (4   i)z   (3   5i)

82. ( 2   3i)   (4   5i)z   (1   i)   ( 4   2i)z

83. Show that 2   i and  2   i are square roots of 3   4i.

84. Show that  3   2i and 3   2i are square roots of 5   12i.

85. Explain what is wrong with the following “proof ” that 

 1   1:

86. Explain what is wrong with the following “proof ” that 

What is the correct value of 

87. Show that k a natural number

88. Show that k a natural number

Supply the reasons in the proofs for the theorems stated in

Problems 89 and 90.

89. Theorem: The complex numbers are commutative under

addition.

Proof: Let a   bi and c   di be two arbitrary complex

numbers; then:

Statement

1.

2.

3.

Reason

1.

2.

3.

90. Theorem: The complex numbers are commutative under

multiplication.

Proof: Let a   bi and c   di be two arbitrary complex

numbers; then:

Statement

1.

2.

3.

Reason

1.

2.

3.

  (c  di)(a  bi)

  (ca  db)  (da  cb)i

 (a  bi)  (c  di)  (ac  bd )  (ad  bc)i

  (c  di)  (a  bi)

  (c  a)  (d  b)i

 (a  bi)  (c  di)  (a  c)  (b  d )i

i 4k 1
 i,

i 4k
 1,

1

i
 

1

1 1
 
11

1 1
 A

1

 1
 1 1  i

1 i?

1 i  i.

 1  i2  1 1 1 1  1( 1)( 1)  11  1

(2  x)  ( y  3)i

1  i
  3  i

(1  x)  ( y  2)i

1  i
 2  i



Letters z and w are often used as complex variables, where 

z   x   yi, w   u   vi, and x, y, u, v are real numbers. The

conjugates of z and w, denoted by and , respectively, are given

by and In Problems 91–98, express each

property of conjugates verbally and then prove the property.

91. is a real number. 92. is a real number.z  zzz

w  u  vi.z  x  yi

wz
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93. if and only if z is real. 94.

95. 96.

97. 98. z w  z  wzw  z  w

z  w  z  wz  w  z  w

z  zz  z

1-5 Quadratic Equations and Applications

Z Using Factoring to Solve Quadratic Equations

Z Using the Square Root Property to Solve Quadratic Equations

Z Using Completing the Square to Solve Quadratic Equations

Z Using the Quadratic Formula to Solve Quadratic Equations

Z Solving Applications Involving Quadratic Equations

The next class of equations we consider are the second-degree polynomial equations in one

variable, called quadratic equations.

Z DEFINITION 1 Quadratic Equation

A quadratic equation in one variable is any equation that can be written in the

form

Standard Form

where x is a variable and a, b, and c are constants.

ax
2
 bx  c  0  a  0

Now that we have discussed the complex number system, we can use complex num-

bers when solving equations. Recall that a solution of an equation is also called a root of

the equation. A real number solution of an equation is called a real root, and an imaginary

number solution is called an imaginary root. In this section, we develop methods for find-

ing all real and imaginary roots of a quadratic equation.

Z Using Factoring to Solve Quadratic Equations

There is one single reason why factoring is so important in solving equations. It’s called

the zero product property.

(A) Write down a pair of numbers whose product is zero. Is one of them zero?

Can you think of two nonzero numbers whose product is zero?

(B) Choose any number other than zero and call it a. Write down a pair of numbers

whose product is a. Is one of them a? Can you think of a pair, neither of which is

a, whose product is a?

ZZZ EXPLORE-DISCUSS 1
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Z ZERO PRODUCT PROPERTY

If m and n are complex numbers, then

if and only if or (or both)n  0m  0m  n  0

It is very helpful to think about what this says in words: If the product of two factors is zero,

then at least one of those factors has to be zero. It’s also helpful to observe that zero is the

only number for which this is true.

EXAMPLE 1 Solving Quadratic Equations by Factoring

Solve by factoring:

(A) (B)

(C) (D) 2x2
 3xx2

 6x  5   4

6x2
 19x  7  0(x  5)(x  3)  0

SOLUTIONS (A) The product of two factors is zero, so by the zero product property, one of the two

must be zero. This enables us to write two easier equations to solve.

or

Solution set: { 3, 5}.

(B) Factor the left side.

Use the zero product property.

or

Solution set: 

(C) Add 4 to both sides.

Factor left side.

Use the zero product property.

Solution set: {3}.

The equation has one root, 3. But because it came from two factors, we call 3 a

double root or a root of multiplicity 2.

(D) Subtract 3x from both sides.

Factor the left side.

Use the zero product property.

or

Solution set: �50, 
3
26x  3

2

2x  3  0x  0

x(2x  3)  0

2x2
 3x  0

2x2
 3x

 x  3

 x  3  0

 (x  3)(x  3)  0

 x2
 6x  9  0

 x2
 6x  5   4

5 1
3, 

7
26.x   1

3x  7
2

3x  1  02x  7  0

(2x  7)(3x  1)  0

6x2
 19x  7  0

x   3x  5

x  3  0x  5  0

(x  5)(x  3)  0

MATCHED PROBLEM 1 Solve by factoring:

(A) (B)

(C) (D)

�

4x2
 5x4x2

 12x  9  0

3x2
 7x  20  0(2x  4)(x  7)  0
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ZZZ CAUTION ZZZ 1. One side of an equation must be 0 before the zero product property can be

applied. So

does not mean that or See Example 1, part C, for

the correct solution of this equation.

2. The equations

and

are not equivalent. The first has solution set but the second has solution

set The root is lost when each member of the first equation is divided

by the variable x. See Example 1, part D, for the correct solution of this equation.

x  053
26.

50, 326,
2x  32x2

 3x

x  5   4.x  1   4

 (x  1)(x  5)   4

 x2
 6x  5   4

Never divide both sides of an equation by an expression containing the vari-

able for which you are solving. You may be dividing by 0, which of course is

not allowed.

Z Using the Square Root Property to Solve 

Quadratic Equations

We now turn our attention to quadratic equations that do not have the first-degree term—

that is, equations of the special form

The method of solution of this special form makes direct use of the square root property:

ax
2
 c  0  a  0

Z SQUARE ROOT PROPERTY

If then A   1C.A2
 C,

The use of the square root property is illustrated in Example 2.

EXAMPLE 2 Using the Square Root Property

Solve using the square root property:

(A) 9x2
  7   0 (B) 3x2

  27   0 (C) (x  
1
2)

2
 

5
4

SOLUTIONS (A) Add 7 to both sides.

Divide both sides by 9.

Apply the square root property; don’t forget the

Solution set: e 17

3
, 

 17

3
f x   B

7

9
  

17

3

 ! x2
 

7

9

 9x2
 7

 9x2
 7  0
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MATCHED PROBLEM 2 Solve using the square root property:

(A) 9x2
  5   0 (B) 2x2

  8   0 (C) 

�

(x  1
3)

2
 

2
9

Note: It is common practice to represent solutions of quadratic equations informally by the

last equation (Example 2, part C) rather than by writing a solution set using set notation

(Example 2, parts A and B). From now on, we will follow this practice unless we need to

make a special point.

Z Using Completing the Square to Solve

Quadratic Equations

The methods of square root property and factoring are generally fast when they apply; how-

ever, there are equations, such as x2
  6x   2   0, that cannot be solved directly by these

methods. A more general procedure must be developed to take care of this type of equa-

tion. One is called the method of completing the square.* This method is based on the

process of transforming the standard quadratic equation into the form

where A and B are constants. Equations of this form can easily be solved by using the square

root property. But how do we transform the first equation into the second? We will need to

find a way to make the left side factor as a perfect square.

(x  A)2
 B

ax
2
 bx  c  0

(B) Solve for x
2
.

Apply the square root property.

Solution set: 

(C) Apply the square root property.

Subtract from both sides, and simplify .

Combine fractions with common denominators.

�  
 1  15

2

 x   
1

2
 
15

2

25
4

1
2 x  1

2   2
5
4

 (x  1
2)

2
 

5
4

5 3i, 3i6 x   1 9   3i

 x2
  9

 3x2
 27  0

*We will find many other uses for this important method.

Replace ? in each of the following with a number that makes the equation valid.

(A) (B)

(C) (D)

Replace ? in each of the following with a number that makes the expression a per-

fect square of the form 

(E) (F)

(G) x
2
 bx  ?

x
2
 12x  ?x

2
 10x  ?

(x  h)2.

(x  4)2
 x

2
 8x  ?(x  3)2

 x
2
 6x  ?

(x  2)2
 x

2
 4x  ?(x  1)2

 x
2
 2x  ?

ZZZ EXPLORE-DISCUSS 2

Given the quadratic expression

x
2
 bx



You should note that the rule for completing the square applies only if the coefficient

of the second-degree term is 1. This causes little trouble, however, as you will see. To solve

equations by completing the square, we will add b2兾4 to both sides after moving the con-

stant term to the right side.
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what number should be added to this expression to make it a perfect square? To find out,

consider the square of the following expression:

is the square of one-half the coefficient of x.

We see that the third term on the right side of the equation is the square of one-half the

coefficient of x in the second term on the right; that is, is the square of This

observation leads to the following rule:

1
2(2m).m

2

m
2(x  m)2

 x
2
 2mx  m

2

{ {

Z COMPLETING THE SQUARE

To complete the square of a quadratic expression of the form x2
  bx, add the

square of one-half the coefficient of x; that is, add (b兾2)2, or b2兾4. The resulting

expression factors as a perfect square,

For example, x
2
 5x

x
2
 5x  a5

2
b2

 ax  5

2
b2

 x2
 bx  ab

2
b2  ax  b

2
b2

 x2
 bx

EXAMPLE 3 Completing the Square

Complete the square for each of the following:

(A) x2
  3x (B) x2

  bx

SOLUTIONS (A) Add that is, and factor.

(B) Add that is, and factor.

�

x
2
 bx  

b
2

4
 ax  b

2
b2

b
2

4
a b

2
b2

;x
2
 bx

x
2
 3x  9

4  (x  3
2)

2

9

4
a 3

2
b2

;x
2
 3x

MATCHED PROBLEM 3 Complete the square for each of the following:

(A) x2
  5x (B) x2

  mx

�

EXAMPLE 4 Solution by Completing the Square

Solve by completing the square:

(A) x2
  6x   2   0 (B) 2x2

  4x   3   0
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SOLUTIONS (A) 

(B) 

�  1  
12

2
i

 x  1  i21
2

 x  1   2 1
2

 (x  1)2
  

1
2

 x2
 2x  1   3

2  1

 x2
 2x   3

2

 x2
 2x  3

2  0

 2x2
 4x  3  0

 x   3  111

 x  3   111

 (x  3)2
 11

 x2
 6x  9  2  9

 x2
 6x  2

 x2
 6x  2  0

MATCHED PROBLEM 4 Solve by completing the square:

(A) x2
  8x   3   0 (B) 3x2

  12x   13   0

�

Add 2 to both sides to obtain the form x
2
 bx on the left side.

Complete the square on the left side and add to

both sides.

Factor the left side; add on the right.

Use the square root property. Don’t forget the ⫾!

Add  3 to both sides.

(
b

2)
2
 (

6
2)

2
 9

Make the leading coefficient 1 by dividing both sides by 2.

Subtract from both sides.

Complete the square on the left side and add 

to both sides.

Factor the left side; add on the right.

Use the square root property.

Add 1 to both sides and simplify 

Answer in a  bi form.

2 1
2.

(
b

2)
2
 (

 2
2 )

2
 1

 
3
2

Z Using the Quadratic Formula to Solve 

Quadratic Equations

If we solve a generic quadratic equation using the method of completing the square, the

result will be a formula for solving any quadratic equation.

 x  
 b  2b2

 4ac

2a

 x   
b

2a
 
2b2

 4ac

2a

 x  
b

2a
  B

b2
 4ac

4a2

 ax  b

2a
b2

 
b2
 4ac

4a2

 x2
 

b

a
  x  

b2

4a2  
b2

4a2  
c

a

 x2
 

b

a
 x   

c

a

 x2
 

b

a
 x  

c

a
 0

 ax2
 bx  c  0  a  0

Use the square root property.

Add to both sides and simplify 

(see Problem 75 in Exercises 1-5).

Combine terms on the right side.

B
b

2
 4ac

4a
2

 
b

2a

Make the leading coefficient 1 by dividing by a.

Subtract from both sides.

Complete the square on the left side and add

to both sides.

Factor the left side and combine terms on the right side,

getting a common denominator.

a b

2a
b2

 
b

2

4a2

c

a



The expression under the square root in the quadratic formula, b2
  4ac, is called the dis-

criminant. It gives us useful information about the corresponding roots, as shown in Table 1.
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Z THEOREM 1 Quadratic Formula

If ax2
  bx   c   0, a   0, then

x  
 b  2b

2
 4ac

2a

The quadratic formula should be memorized and used to solve quadratic equations when

other methods fail, or are more difficult to apply.

EXAMPLE 5 Using the Quadratic Formula

Solve using the quadratic formula. Leave the answer in simplest radical form.2x  3
2  x

2

SOLUTION Multiply both sides by 2.

Write in standard form.

�

  
4  140

4
 

4  2110

4
 

2  110

2

  
 ( 4)  2( 4)2

 4(2)( 3)

2(2)

 x  
 b  2b

2
 4ac

2a

 2x2
 4x  3  0

 4x  3  2x2

 2x  3
2  x

2

Identify a, b, and c and use the quadratic 

formula: a  2, b   4, c   3

MATCHED PROBLEM 5 Solve by use of the quadratic formula. Leave the answer in simplest radical

form.

�

x
2
 

5
2   3x

ZZZ CAUTION ZZZ 1.  4
2
  16 and ( 4)

2
 16

2.

3.
4  2110

4
 

2(2  110)

4
 

2  110

2

4  2110

4
  2110

2  
110

2
 

4  110

2
2  

110

2
 

2  110

2

 42
 ( 4)2

Table 1 Discriminant and Roots

Discriminant Roots of ax2
  bx   c   0 

b
2
  4ac a, b, and c real numbers, a   0

Positive Two distinct real roots

0 One real root (a double root)

Negative Two imaginary roots, one the conjugate of the other

The result is known as the quadratic formula:
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EXAMPLE 6 Using the Discriminant

Find the number of real roots of each quadratic equation.

(A) 2x
2
  4x   1   0 (B) 2x

2
  4x   2   0 (C) 2x

2
  4x   3   0

SOLUTIONS (A) two real roots

(B) one real (double) root

(C) no real roots (two imaginary roots) �b
2
 4ac  ( 4)2

 4(2)(3)   8 6 0;

b
2
 4ac  ( 4)2

 4(2)(2)  0;

b
2
 4ac  ( 4)2

 4(2)(1)  8 7 0;

MATCHED PROBLEM 6 Find the number of real roots of each quadratic equation.

(A) 3x
2
  6x   5   0 (B) 3x

2
  6x   1   0 (C) 3x

2
  6x   3   0

�

Z Solving Applications Involving Quadratic Equations

Now that we’re good at solving quadratic equations, we can use them to solve many applied

problems. It would be a good idea to review the problem-solving strategy on page 47 before

beginning.

EXAMPLE 7 Setting Up and Solving a Word Problem

The sum of a number and its reciprocal is Find all such numbers.13
6 .

SOLUTION Let we’re asked to find; then its reciprocal is .

or Solve each equation for x.

These are two such numbers: and 2
3.

3
2

 x  2
3 x  3

2

 3x  2  0 2x  3  0

 (2x  3)(3x  2)  0

 6x
2
 13x  6  0

 6x
2
 6  13x

 (6x)x  (6x) 

1

x
 (6x) 

13

6

 x  
1

x
 

13

6

1
xx  the number

Subtract 13x from both sides.

Factor the left side.

Use the zero product property.

Multiply both sides by the LCD, 6x. [Note: x cannot be zero.]

Make sure to multiply every term by 6x.

CHECK
�

3
2  

2
3  

13
6   2

3  
3
2  

13
6

MATCHED PROBLEM 7 The sum of two numbers is 23 and their product is 132. Find the two numbers. [Hint: If

one number is x, then the other number is 

�

23  x. ]



The speed in still water is 14 miles per hour. (The negative answer is thrown out, because

it doesn’t make sense in the problem to have a negative speed.)

 x   1196   14

 x2
 196

 1.6x
2
 313.6

 36x  144  36x  144  1.6x
2
 25.6

 36(x  4)    36(x  4)  1.6(x  4)(x  4)

 
36

x  4
     36

x  4
   1.6

 aTime

upstream
b  aTime

downstream
b  1.6
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EXAMPLE 8 A Distance–Rate–Time Problem

A casino boat takes 1.6 hours longer to go 36 miles up a river than to return. If the rate of

the current is 4 miles per hour, what is the speed of the boat in still water?

SOLUTION Let

 x  4  Speed upstream

 x  4  Speed downstream

 x  Speed of boat in still water

Use Time  
Distance

Rate
.

Multiply both sides by

the LCD.(x  4)(x  4),

Multiply out parentheses.

Combine like terms and isolate

on one side of the equation.1.6x
2

Divide both sides by 1.6.

Use the square root property.

CHECK

�1.6

   Time downstream  
D

R
 

36

14  4
 2

 Time upstream  
D

R
 

36

14  4
 3.6

MATCHED PROBLEM 8 Two boats travel at right angles to each other after leaving a dock at the same time. One

hour later they are 25 miles apart. If one boat travels 5 miles per hour faster than the other,

what is the rate of each? [Hint: Use the Pythagorean theorem,* remembering that distance

equals rate times time.]

�

*Pythagorean theorem: In a right triangle, the square of the length of the longest side is equal to the sum of the

squares of the lengths of the two shorter sides.

In Example 9, we introduce some concepts from economics that will be used through-

out this book. The quantity of a product that people are willing to buy during some period

Difference of times



S E C T I O N  1 – 5 Quadratic Equations and Applications 93

of time is called the demand for that product. The price p of a product and the demand q

for that product are often related by a price–demand equation of the following form:

q is the number of items that can be sold at $p per item.

The constants a and b in a price–demand equation are usually determined by using histor-

ical data and statistical analysis.

The amount of money received from the sale of q items at $p per item is called the

revenue and is given by

  qp  (a  bp)p

 R  (Number of items sold)  (Price per item)

q  a  bp

Using the price-demand

equation

EXAMPLE 9 Price and Demand

The daily price–demand equation for whole milk in a chain of supermarkets is

where p is the price per gallon and q is the number of gallons sold per day. Find the price(s)

that will produce a revenue of $9,500. Round answer(s) to two decimal places.

q  5,600  800p

SOLUTION The revenue equation is

To get a revenue of $9,500, we substitute 9,500 for R:

Selling whole milk for either $2.89 per gallon or $4.11 per gallon will produce a revenue

of $9,500. �

  2.89, 4.11

 p  
7  11.5

2

 p2
 7p  11.875  0

  9,500   5,600p  800p2
 0

 5,600p  800p2
 9,500

  5,600p  800p2

 R  qp  (5,600  800p)p

Subtract 9,500 from both sides.

Divide both sides by  800.

Use the quadratic formula with 

and c  11.875.b   7,

a  1,

MATCHED PROBLEM 9 If the price–demand equation for milk is , find the price that will pro-

duce revenues of

(A) $9,300 (B) $10,500
�

ANSWERS TO MATCHED PROBLEMS

1. (A) (B) (C) (a double root) (D) 

2. (A) (B) (C) 

3. (A) (B) 

4. (A) (B) or 

5. 6. (A) No real roots (two imaginary roots) (B) Two real roots

(C) One real (double) root 7. 11 and 12 8. 15 and 20 miles per hour

9. (A) $3.29 or $4.71 (B) Not possible

x  ( 3 119) 2

2 (13 3)ix  (6  i13) 3x   4 119

x2
 mx  (m2

 4)  [x  (m 2)]2x2
 5x  25

4  (x  
5
2)

2

x  ( 1  12) 3x   2ix   15 2

x  0, 54x   
3
2x   4, 53x   2, 7

q  4,800  600p
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In Problems 41–56, solve by any method.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51.

52. 53.

54.

55.

56.

In Problems 57–60, solve for the indicated variable in terms of the

other variables. Use positive square roots only.

57. for t 58. for a

59. for I 60. for r

61. Consider the quadratic equation

where c is a real number. Discuss the relationship between the

values of c and the three types of roots listed in Table 1.

62. Consider the quadratic equation

where c is a real number. Discuss the relationship between the

values of c and the three types of roots listed in Table 1.

Solve the equation in Problems 63–66 and leave answers in

simplified radical form (i is the imaginary unit).

63. 64.

65. 66.

In Problems 67 and 68, find all solutions.

67. 68. x4
⫺ 1 ⫽ 0x3

⫺ 1 ⫽ 0

x2
⫽ 2ix ⫺ 3x2

⫹ 2ix ⫽ 3

x2
⫺ 7ix ⫺ 10 ⫽ 0x2

⫹ 3ix ⫺ 2 ⫽ 0

x2
⫺ 2x ⫹ c ⫽ 0

x2
⫹ 4x ⫹ c ⫽ 0

A ⫽ P(1 ⫹ r)2P ⫽ EI ⫺ RI2

a2
⫹ b2

⫽ c2s ⫽ 1
2gt2

11

x2
⫺ 4

⫹
x ⫹ 3

2 ⫺ x
⫽

2x ⫺ 3

x ⫹ 2

x ⫹ 2

x ⫹ 3
⫺

x2

x2
⫺ 9

⫽ 1 ⫺
x ⫺ 1

3 ⫺ x

3

x ⫺ 1
⫺

2

x ⫹ 3
⫽

4

x ⫺ 2

2

x ⫺ 2
⫽

4

x ⫺ 3
⫺

1

x ⫹ 1

1.2

y ⫺ 1
⫹

1.2

y
⫽ 1

24

10 ⫹ m
⫹ 1 ⫽

24

10 ⫺ m

2

u
⫽

3

u2
⫹ 11 ⫹

8

x2
⫽

4

x

8u2
⫹ 3u ⫽ 07n2

⫽ ⫺4n

x2
⫹ 2x ⫽ 2x2

⫽ 3x ⫹ 1

(3m ⫹ 2)2
⫽ ⫺4(2y ⫺ 3)2

⫽ 5

9x2
⫹ 9x ⫽ 412x2

⫹ 7x ⫽ 10

Leave all answers involving radicals in simplified radical form

unless otherwise stated.

1. How can you tell when an equation is quadratic?

2. What do a, b, and c in the quadratic formula stand for?

3. Explain what the zero product property says in your own words.

4. Explain what the square root property says in your own words.

5. If you could only use one of factoring, completing the square,

and quadratic formula on an important test featuring a variety

of quadratic equations, which would you choose, and why?

6. Does every quadratic equation have two solutions? Explain.

In Problems 7–12, solve by factoring.

7. 8.

9. 10.

11. 12.

In Problems 13–24, solve by using the square root property.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Problems 25–32, use the discriminant to determine the number

of real roots of each equation and then solve each equation using

the quadratic formula.

25. 26.

27. 28.

29. 30.

31. 32.

In Problems 33–40, solve by completing the square.

33. 34.

35. 36.

37. 38.

39. 40. 3z2
⫺ 8z ⫹ 1 ⫽ 03w2

⫹ 4w ⫹ 3 ⫽ 0

4v2
⫹ 16v ⫹ 23 ⫽ 04u2

⫹ 8u ⫹ 15 ⫽ 0

2s2
⫺ 6s ⫹ 7 ⫽ 02r2

⫹ 10r ⫹ 11 ⫽ 0

y2
⫹ 4y ⫺ 3 ⫽ 0x2

⫺ 4x ⫺ 1 ⫽ 0

9s2
⫹ 7 ⫽ 12s2t2

⫹ 1 ⫽ 6t

9s2
⫹ 2 ⫽ 12s2t2

⫹ 8 ⫽ 6t

y2
⫺ 4y ⫹ 1 ⫽ 0x2

⫺ 2x ⫹ 3 ⫽ 0

y2
⫺ 4y ⫹ 7 ⫽ 0x2

⫺ 2x ⫺ 1 ⫽ 0

(5m ⫺ 6)2
⫽ 7(n ⫺ 3)2

⫽ ⫺4

(t ⫺ 2)2
⫽ ⫺3(2k ⫺ 5)2

⫽ 16

16w2
⫹ 27 ⫽ 025z2

⫺ 32 ⫽ 0

9x2
⫺ 25 ⫽ 04y2

⫹ 9 ⫽ 0

d 
2
⫺ 36 ⫽ 0c2

⫹ 9 ⫽ 0

n2
⫹ 16 ⫽ 0m2

⫺ 25 ⫽ 0

36x2
⫽ ⫺12x ⫺ 13w2

⫹ 13w ⫽ 10

25z2
⫽ ⫺10z⫺8 ⫽ 22t ⫺ 6t2

3y2
⫽ y ⫹ 102x2

⫽ 8x

1-5 Exercises



69. Prove that when the discriminant of a quadratic equation with

real coefficients is negative, the equation has two imaginary

solutions.

70. Prove that when the discriminant of a quadratic equation with

real coefficients is zero, the equation has one real solution.

71. Can a quadratic equation with rational coefficients have one ra-

tional root and one irrational root? Explain.

72. Can a quadratic equation with real coefficients have one real

root and one imaginary root? Explain.

73. Show that if and are the two roots of 

then 

74. For and in Problem 73, show that 

75. In one stage of the derivation of the quadratic formula, we

replaced the expression

with

What justifies using 2a in place of 

76. Find the error in the following “proof ” that two arbitrary num-

bers are equal to each other: Let a and b be arbitrary numbers

such that Then

77. Find two numbers such that their sum is 21 and their product

is 104.

78. Find all numbers with the property that when the number is

added to itself the sum is the same as when the number is mul-

tiplied by itself.

79. Find two consecutive positive even integers whose product

is 168.

80. The sum of a number and its reciprocal is . Find the number.

APPLICATIONS

81. ALCOHOL CONSUMPTION The beer consumption by Ameri-

cans for the years 1960–2005 can be modeled by the equation 

y   0.0665x2
 3.58x  122, where x is the number of years 

after 1960, and y is the number of ounces of beer consumed per

person in that year. Find the per person consumption in 1960, then

find in what year the model predicts that consumption will return

to that level.

82. ALCOHOL CONSUMPTION The wine consumption by Ameri-

cans for the years 1985–2005 can be modeled by the equation

y  0.0951x2
 2.06x  49.0, where x is the number of years after

1985, and y is the number of ounces of wine consumed per person

in that year. In what year does the model predict that consumption

will reach the 1960 level of beer consumption (see Problem 81)?

10
3

 a  b

 2a  2b

 a  b  b  a

 (a  b)2
 (b  a)2

 (a  b)2
 a2

 2ab  b2
 b2

 2ab  a2

a  b.

冟2a冟?

 2b2
 4ac 2a

 2(b2
 4ac) 4a

2

r1  r2   b a.r2r1

r1r2  c a.

ax2
 bx  c  0,r2r1
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83. CONSTRUCTION A gardener has a 30 foot by 20 foot rectangu-

lar plot of ground. She wants to build a brick walkway of uniform

width on the border of the plot (see the figure). If the gardener

wants to have 400 square feet of ground left for planting, how wide

(to two decimal places) should she build the walkway?

84. CONSTRUCTION Refer to Problem 83. The gardener buys

enough bricks to build 160 square feet of walkway. Is this sufficient

to build the walkway determined in Problem 83? If not, how wide

(to two decimal places) can she build the walkway with these

bricks?

85. CONSTRUCTION A 1,200 square foot rectangular garden is en-

closed with 150 feet of fencing. Find the dimensions of the garden

to the nearest tenth of a foot.

86. CONSTRUCTION The intramural fields at a small college will

cover a total area of 140,000 square feet, and the administration has

budgeted for 1,600 feet of fence to enclose the rectangular field.

Find the dimensions of the field.

87. PRICE AND DEMAND The daily price–demand equation for

hamburgers at a fast-food restaurant is

where q is the number of hamburgers sold daily and p is the price of

one hamburger (in dollars). Find the demand and the revenue when

the price of a hamburger is $3.

88. PRICE AND DEMAND The weekly price–demand equation for

medium pepperoni pizzas at a fast-food restaurant is

where q is the number of pizzas sold weekly and p is the price of

one medium pepperoni pizza (in dollars). Find the demand and the

revenue when the price is $8.

89. PRICE AND DEMAND Refer to Problem 87. Find the price p

that will produce each of the following revenues. Round answers to

two decimal places.

(A) $2,800 (B) $3,200 (C) $3,400

90. PRICE AND DEMAND Refer to Problem 88. Find the price p

that will produce each of the following revenues. Round answers to

two decimal places.

(A) $38,000 (B) $40,000 (C) $42,000

91. NAVIGATION Two planes travel at right angles to each other af-

ter leaving the same airport at the same time. One hour later they

are 260 miles apart. If one travels 140 miles per hour faster than the

other, what is the rate of each?

92. NAVIGATION A speedboat takes 1 hour longer to go 24 miles up

a river than to return. If the boat cruises at 10 miles per hour in still

water, what is the rate of the current?

93. AIR SEARCH A search plane takes off from an airport at

6:00 A.M. and travels due north at 200 miles per hour. A second plane

leaves that airport at the same time and travels due east at 170 miles

q  8,000  400p

q  1,600  200p

20 feet

30 feet

x



per hour. The planes carry radios with a maximum range of

500 miles. When (to the nearest minute) will these planes no longer

be able to communicate with each other?

94. AIR SEARCH If the second plane in Problem 93 leaves at

6:30 A.M. instead of 6 A.M., when (to the nearest minute) will the

planes lose communication with each other?

95. ENGINEERING One pipe can fill a tank in 5 hours less than an-

other. Together they can fill the tank in 5 hours. How long would it

take each alone to fill the tank? Compute the answer to two decimal

places.

96. ENGINEERING Two gears rotate so that one completes 1 more

revolution per minute than the other. If it takes the smaller gear

1 second less than the larger gear to complete revolution, how

many revolutions does each gear make in 1 minute?

97. PHYSICS—ENGINEERING For a car traveling at a speed of

v miles per hour, under the best possible conditions the shortest

distance d necessary to stop it (including reaction time) is given by

the formula where d is measured in feet.

Estimate the speed of a car that requires 165 feet to stop in an

emergency.

98. PHYSICS—ENGINEERING If a projectile is shot vertically into

the air (from the ground) with an initial velocity of 176 feet per sec-

ond, its distance y (in feet) above the ground t seconds after it is shot

is given by (neglecting air resistance).

(A) Find the times when y is 0, and interpret the results physically.

(B) Find the times when the projectile is 16 feet off the ground.

Compute answers to two decimal places.

99. ARCHITECTURE A developer wants to erect a rectangular build-

ing on a triangular-shaped piece of property that is 200 feet wide

and 400 feet long (see the figure).

(A) Building codes require that industrial buildings on lots that size

have a floor area of at least 15,000 square feet. Find the dimensions

that will yield the smallest building that meets code. [Hint: Use

Euclid’s theorem* to find a relationship between the length and

width of the building.]

Property Line

FIRST STREET

Property
A

R
E
B

E
K

A
H

 D
R

IV
E

400 feet

2
0

0
 f

e
e
t

Proposed
Building

l

w

y  176t  16t 2

d  0.044v2
 1.1v,

1
5
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(B) A potential buyer for the building needs to have a floor area of

25,000 square feet. Can the builder accommodate them?

100. ARCHITECTURE An architect is designing a small A-frame

cottage for a resort area. A cross section of the cottage is an isosce-

les triangle with an area of 98 square feet. The front wall of the cot-

tage must accommodate a sliding door that is 6 feet wide and 8 feet

high (see the figure). Find the width and height of the cross section

of the cottage. [Recall: The area of a triangle with base b and alti-

tude h is bh兾2.]

*Euclid’s theorem: If two triangles are similar, their corresponding

sides are proportional:

a

a¿

 
b

b¿

 
c

c¿

a

b

c
a 

b 

c 

6 feet

8 feet

101. TRANSPORTATION A delivery truck leaves a warehouse and

travels north to factory A. From factory A the truck travels east to

factory B and then returns directly to the warehouse (see the figure).

The driver recorded the truck’s odometer reading at the warehouse

at both the beginning and the end of the trip and also at factory B,

but forgot to record it at factory A (see the table). The driver does

recall that it was farther from the warehouse to factory A than it was

from factory A to factory B. Since delivery charges are based on

distance from the warehouse, the driver needs to know how far fac-

tory A is from the warehouse. Find this distance.

Factory A Factory B

Warehouse

Odometer readings

Warehouse

Factory A

Factory B

Warehouse 20035

73925

???25

64825



102. CONSTRUCTION A -mile track for racing stock cars consists

of two semicircles connected by parallel straightaways (see the fig-

ure). In order to provide sufficient room for pit crews, emergency

vehicles, and spectator parking, the track must enclose an area of

100,000 square feet. Find the length of the straightaways and the di-

ameter of the semicircles to the nearest foot. [Recall: The area A

and circumference C of a circle of diameter d are given by

and c   d. ]A   d
2
 4

1
4
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100,000 square feet

1-6 Additional Equation-Solving Techniques

Z Solving Equations Involving Radicals

Z Revisiting Equations Involving Absolute Value

Z Solving Equations of Quadratic Type

In this section, we’ll study equations that are not quadratic but can be transformed into

quadratic equations. We can then solve the quadratic equation, and with a little bit of inter-

pretation, use the solutions to solve the original equation.

Z Solving Equations Involving Radicals

In solving an equation involving a radical, like

it seems reasonable that we can remove the radical by squaring each side and then proceed

to solve the resulting quadratic equation. Let’s give it a try:

or

or

Now we check these results in the original equation.

Check: x   2 Check: x    1

That’s interesting: 2 is a solution, but  1 is not. These results are a special case of

Theorem 1.

  1  12  
✓

2

  1  
?
112  

?
14

  1  
?
1 1  22  

?
12  2

 x  1x  2x  1x  2

 x   1 x  2

 x  1  0 x  2  0

 (x  2)(x  1)  0

 x2
 x  2  0

 x2
 x  2

 x2
 (1x  2)2

 x  1x  2

x  1x  2

Square both sides.

Recall that if 

Subtract from both sides.

Factor the left side.

Use the zero product property.

x  2

a  0.(1a)
2
 a



This theorem provides us with a method of solving some equations involving radicals.

It is important to remember that any new equation obtained by raising both sides of an

equation to the same power may have solutions, called extraneous solutions, that are not

solutions of the original equation. Fortunately though, any solution of the original equation

must be among those of the new equation.

When raising both sides of an equation to a power, checking solutions is not

just a good idea—it is essential to identify any extraneous solutions.
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Z THEOREM 1 Squaring Operation on Equations

If both sides of an equation are squared, then the solution set of the original

equation is a subset of the solution set of the new equation.

Equation Solution Set

x  3 {3}

x
2
 9 { 3, 3}

EXAMPLE 1 Solving Equations Involving Radicals

Solve:

(A) (B) 12x  3  1x  2  2x  1x  4  4

SOLUTIONS (A) Isolate radical on one side.

Square both sides.

See the upcoming caution on squaring the right side.

Write in standard form.

Factor left side.

Use the zero product property.

 x  5  or   x  4

 x  5  0  or   x  4  0

 (x  5)(x  4)  0

 x2
 9x  20  0

 x  4  16  8x  x
2

 (1x  4)2
 (4  x)2

 1x  4  4  x

 x  1x  4  4

Squaring both sides of the equations and produces the new

equation Find the solutions to the new equation and then check for extra-

neous solutions in each of the original equations.

x
2
 x.

x   1xx  1xZZZ EXPLORE-DISCUSS 1

CHECK

This shows that 4 is a solution to the original equation and 5 is extraneous. The only solu-

tion is x  4.

 4  
✓

4 6  4

 4  14  4  
?

4 5  15  4  
?

4

 x  1x  4  4 x  1x  4  4

x  4x  5



(B) To solve an equation that contains more than one radical, isolate one radical at a time
and square both sides to eliminate the isolated radical. Repeat this process until all
the radicals are eliminated.

Isolate one of the radicals.

Square both sides.

Isolate the remaining radical.

Square both sides.

Write in standard form.

Factor left side.

Use the zero property.

x  11x  3  or

x  11  0x  3  0  or

 (x  3)(x  11)  0

 x2
 14x  33  0

 x2
 2x  1  16(x  2)

 (x  1)2
 (41x  2)2

 x  1  41x  2

 2x  3  x  2  41x  2  4

See the upcoming caution on

squaring the right side. (12x  3)2
 (1x  2  2)2

 12x  3  1x  2  2

 12x  3  1x  2  2
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CHECK

Both solutions check, so there are two solutions: x  3, 11. �

 2  
✓

2 2  
✓

2

 12(11)  3  111  2  
?

2 12(3)  3  13  2  
?

2

 12x  3  1x  2  2 12x  3  1x  2  2

x  11x  3

MATCHED PROBLEM 1 Solve:

(A) (B) 

�

12x  5  1x  2  5x  5  1x  3

1. When squaring both sides, it is very important to isolate the radical first.

2. Be sure to square binomials like (4  x) by first writing as (4  x)(4  x) and
then multiplying. Remember: (4  x)2

 42
 x

2.

ZZZ CAUTION ZZZ

Z Revisiting Equations Involving Absolute Value

Squaring both sides of an equation can be a useful operation even if the equation does not
involve any radicals. Because for any x, squaring can be helpful in some absolute
value equations. 

|x|2  x
2

EXAMPLE 2 Absolute Value Equations Revisited

Solve the following equation by squaring both sides:

|x  4|  3x  8
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SOLUTION Square both sides.

Use and expand each side.

Write in standard form.

Divide both sides by 8.

Factor the left side.

Use the zero product property.

 x  1  or   x  6

 x  1  0  or   x  6  0

 (x  1)(x  6)  0

 x2
 7x  6  0

 8x2
 56x  48  0

 x2
 8x  16  9x2

 48x  64

|x  4|2  (x  4)
2 |x  4|2  (3x  8)2

 |x  4|  3x  8

CHECK

The only solution is x   6.

Compare this solution with the solution of Example 6, Section 1-3. Squaring both sides
eliminates the need to consider two separate cases. �

 10  
✓

10 5   5

 冟10冟  
?

10 |5|  
?

 5

 |6  4|  
?

3(6)  8 |1  4|  
?

3(1)  8

 冟x  4冟  3x  8 |x  4|  3x  8

x  6x  1

MATCHED PROBLEM 2 Solve the following equation by squaring both sides:

�

冟3x  4冟  x  4

Z Solving Equations of Quadratic Type

Quadratic equations in standard form have two terms with the variable; one has power 2,
the other power 1. When equations have two variable terms where the larger power is twice
the smaller, we can use quadratic solving techniques.

EXAMPLE 3 Solving an Equation of Quadratic Type

Solve x2 3  x
1 3  6  0.

SOLUTIONS Method I. Direct solution:

Note that the larger power is twice the smaller. Using the properties of exponents from
basic algebra, we can write as and solve by factoring.

Factor left side.

Use the zero product property.

or Cube both sides.

The solution is x  27,  8

x   8x  27

(x1 3)3
 ( 2)3(x1 3)3

 33

x
1 3   2x

1 3  3

(x1 3  3)(x1 3  2)  0

(x1 3)2
 x

1 3  6  0

(x1 3)2
x

2 3
(2 3)



In general, if an equation that is not quadratic can be transformed to the form

where u is an expression in some other variable, then the equation is called an equation of

quadratic type. Equations of quadratic type often can be solved using quadratic methods.

au
2
 bu  c  0
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Method II. Using substitution:

Replace (the smaller power) with a new variable u. Then the larger power is 

This gives us a quadratic equation with variable u.

Factor.

Use the zero product property.

This is not the solution! We still need to find the values of x that correspond to and

Replacing u with we obtain

or Cube both sides.

The solution is �x  27,  8.

x   8x  27

x
1 3   2x

1 3  3

x
1 3,

u   2.

u  3

 u  3,  2

 (u  3)(u  2)  0

 u2
 u  6  0

u
2.x

2 3x
1 3

MATCHED PROBLEM 3 Solve algebraically using both Method I and Method II: 

�

x
1 2  5x1 4  6  0.

Which of the following can be transformed into a quadratic equation by making a

substitution of the form What is the resulting quadratic equation?

(A) (B)

(C) (D)

In general, if a, b, c, m, and n are nonzero real numbers, when can an equation of

the form be transformed into an equation of quadratic type?ax
m
 bx

n
 c  0

8x 21x  5x 11x  2  02x5
 4x21x  6  0

7x5
 3x2

 3  03x 4
 2x 2

 7  0

u  x
n?

ZZZ EXPLORE-DISCUSS 2

EXAMPLE 4 Solving an Equation of Quadratic Type

Solve: 3x4
  5x2

  1   0

SOLUTION If we let u  x
2, then u2

 x
4, and the equation becomes

Use the quadratic formula with a ⴝ 3, b ⴝ ⴚ5, c ⴝ 1.

Substitute x
2

back in for u.

Use the square root property to solve for x.

There are four solutions.

�

 x   B
5  113

6

 x2
 

5  113

6

 u  
5  113

6

 3u2
 5u  1  0

MATCHED PROBLEM 4 Solve:

�

2x4
 3x2

 4  0



Many applied problems result in equations that can be solved using the techniques in

this section.
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30 fe
et

x

y

Z Figure 1

EXAMPLE 5 An Application: Court Design

A hardcourt version of the game broomball becomes popular on college campuses because

it enables people to hit each other with a stick. The court is a rectangle with diagonal 30 feet

and area 400 square feet. Find the dimensions to one decimal place.

SOLUTION Draw a rectangle and label the dimensions as shown in Figure 1. The area is given by

A  xy. Also, (Pythagorean theorem), and we can solve for y to get

y  . Now substitute in for y in our area equation, then set area equal to 400

and solve.

If then 

If then 

In either case, the dimensions are 25.6 feet by 15.6 feet.

y  2900  15.62
⬇ 25.6.x  15.6,

y  2900  25.62
⬇ 15.6.x  25.6,

 x  1656.2 ⬇ 25.6 or 1243 ⬇ 15.6

 x2
⬇ 656.2, 243.8

  
900  1170,000

2

 x2
 

900  2( 900)2
 4(1)(160,000)

2

 (x2)2
 900x2

 160,000  0

 900x2
 x4

 160,000

 x2(900  x2)  160,000

 x2900  x2
 400

2900  x2

x2
 y2

 302

MATCHED PROBLEM 5 If the area of a right triangle is 24 square inches and the hypotenuse is 12 inches, find the

lengths of the legs of the triangle correct to one decimal place.

�

CHECK  

�Diagonal: 225.62
 15.62

⬇ 30

15.6  399.36 ⬇ 400Area: 25.6

Square both sides.

Multiply out parentheses.

Write in standard quadratic form.

Use quadratic formula with a  1, b   900, and c  160,000.

Simplify inside the

square root.

Use a calculator.

Use square root property;

discard negative solutions.

ANSWERS TO MATCHED PROBLEMS

1. (A) x   7 (B) x   2 2. x   0, 4 3.

4. 5. 11.2 inches by 4.3 inchesx  
 2 3  141

2

x  16, 81

4. How can you recognize when an equation is of quadratic type?

In Problems 5–12, determine the validity of each statement. If a

statement is false, explain why.

5. If then 6. 125   5x   15.x2
 5,

1-6 Exercises

1. What is meant by the term “extraneous solution”?

2. When is it necessary to check for extraneous solutions?

3. How can squaring both sides help in solving absolute value

equations?
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7. 8.

9. 10.

11. If x3
  2, then x   8. 12. If x1兾3

  8, then x   2.

In Problems 13–26, solve the equation.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

In Problems 27–32, transform each equation of quadratic type

into a quadratic equation in u and state the substitution used in

the transformation. If the equation is not an equation of quadratic

type, say so.

27. 28.

29. 30.

31. 32.

In Problems 33–56, solve the equation.

33. 34.

35. 36.

37. 38.

39. 40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51. y 2
  2y 1

  3   0 52. y 2
  3y 1

  4   0

53. 54.

55. 56.

Solve Problems 57–60 two ways: by squaring and by substitution.

57. 58. y  6  1y  0m  71m  12  0

2z 1
 3z 1/2

 2  03z 1
 3z 1/2

 1  0

15t 4
 23t 2

 4  02t 4
 5t 2

 2  0

6x  24x2
 20x  17  15

24x2
 12x  1  6x  9

13z  1  2  1z  1

18  z  1  1z  5

1w  7  2  13  w

1w  3  12  w  3

12x  1  1x  5  3

12t  3  2  1t  2

(m2
 2m)2

 6(m2
 2m)  16

(m2
 2m)2

 2(m2
 2m)  15

3y2 3  2y1 3  8  02y2 3  5y1 3  12  0

x  25x2
 93x  2x2

 2

m4
 4m2

 12  0m4
 2m2

 15  0

15t  4  21t  113t  2  1  21t

3x3/2
 5x1/2

 12  0
10

9
 

4

x2
 

7

x4
 0

7x 1
 3x 1/2

 2  03x3
 4x  9  0

4

7
 

3

x
 

6

x2
 02x 6

 4x 3
 0

冟3x  1冟  x  1冟3x  4冟  2x  5

冟x  7冟  1  2x冟x  5冟  7  2x

冟2x  2冟  5  x冟2x  1冟  x  2

12w  3  w  115w  6  w  2

14y  1  5  y13y  2  y  2

14  x  5  013y  5  10  0

1x  4  21x  2  4

(1x  1)2
 1  x(1x  1  1)2

 x

(2x  1)2
 4x2

 1(x  5)2
 x2

 25 59. 60.

In Problems 61–68, solve the equation.

61.

62.

63. 64.

65.

66.

67.

68.

69. Explain why the following “solution” is incorrect:

70. Explain why the following “solution” is incorrect.

APPLICATIONS

71. PHYSICS—WELL DEPTH When a stone is dropped into a deep

well, the number of seconds until the sound of a splash is heard is 

given by the formula where x is the depth of the 

well in feet. For one particular well, the splash is heard 14 seconds

after the stone is released. How deep (to the nearest foot) is the well?

72. PHYSICS—WELL DEPTH Refer to Problem 71. For a different

well, the sound of the splash is heard 2 seconds after the stone is re-

leased. How deep (to the nearest foot) is the well?

73. GEOMETRY The diagonal of a rectangle is 10 inches and the

area is 45 square inches. Find the dimensions of the rectangle, cor-

rect to one decimal place.

74. GEOMETRY The hypotenuse of a right triangle is 12 inches and

the area is 24 square inches. Find the dimensions of the triangle,

correct to one decimal place.

75. MANUFACTURING A lumber mill cuts rectangular beams from

circular logs (see the figure). If the diameter of the log is 16 inches

and the cross-sectional area of the beam is 120 square inches, find

the dimensions of the cross section of the beam correct to one dec-

imal place.

t  
1x

4
 

x

1,100
,

  7  x

 x  4  2x  3

 2x2
 16  2x  3

 x  116

 x  3  25  144

 1x  3  5  12

x 2 5  3x 1 5  1  0

2x 2 5  5x 1 5  1  0

31x  1  0.05x  2.9

21x  5  0.01x  2.04

2  4x 4
 7x 23  x 4

 5x 2

11  3x  12x  1  1x  2

17  2x  1x  2  1x  5

x  15  21xt  111t  18  0
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76. DESIGN A food-processing company packages an assortment

of their products in circular metal tins 12 inches in diameter. Four

identically sized rectangular boxes are used to divide the tin into

eight compartments (see the figure). If the cross-sectional area of

each box is 15 square inches, find the dimensions of the boxes cor-

rect to one decimal place.

77. CONSTRUCTION A water trough is constructed by bending a 

4- by 6-foot rectangular sheet of metal down the middle and attach-

ing triangular ends (see the figure). If the volume of the trough is

9 cubic feet, find the width correct to two decimal places.

2 feet

6 feet

78. DESIGN A paper drinking cup in the shape of a right circular

cone is constructed from 125 square centimeters of paper (see the

figure). If the height of the cone is 10 centimeters, find the radius

correct to two decimal places.

S ⫽ r兹r2 ⫹ h2

h

r

Lateral surface area:

1-1 Linear Equations and Applications

Solving an equation is the process of finding all values of the vari-

able that make the equation a true statement. An equation that is true

for some values of the variable is called a conditional equation. An

equation that is true for all permissible values of the variable is

called an identity. An equation that is false for all permissible

values of the variable is called a contradiction, and has no solution.

An equation that can be written in the standard form

ax ⫹ b ⫽ 0, is a linear or first-degree equation. Lineara � 0,

CHAPTER 1 Review

Z STRATEGY FOR SOLVING WORD PROBLEMS

1. Read the problem slowly and carefully, more than once if

necessary. Write down information as you read the problem

the first time to help you get started. Identify what it is that

you are asked to find.

2. Use a variable to represent an unknown quantity in the

problem, usually what you are asked to find. Then try to

represent any other unknown quantities in terms of that

variable. It’s pretty much impossible to solve a word

problem without this step.

3. If it helps to visualize a situation, draw a diagram and label

known and unknown parts.

4. Write an equation relating the quantities in the problem.

Often, you can accomplish this by finding a formula that

connects those quantities. Try to write the equation in

words first, then translate to symbols.

5. Solve the equation, then answer the question in a sentence

by rephrasing the question. Make sure that you’re

answering all of the questions asked.

6. Check to see if your answers make sense in the original

problem, not just the equation you wrote.

equations are solved by performing algebraic steps that result in

equivalent equations until the result is an equation whose solution

is obvious. When an equation has fractions, begin by multiplying

both sides by the least common denominator of all the fractions.

The formula 

is useful in modeling problems that involve a rate of change, like

speed.

Quantity ⫽ Rate ⫻ Time
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1-2 Linear Inequalities

The inequality symbols  ,  ,  ,  are used to express in-

equality relations. Line graphs, interval notation, and the set

operations of union and intersection are used to describe in-

equality relations. A solution of a linear inequality in one vari-

able is a value of the variable that makes the inequality a true

statement. Two inequalities are equivalent if they have the same

solution set.

Linear inequalities can be solved using the same basic proce-

dure as linear equations, with one important difference: the direc-

tion of an inequality reverses if we multiply or divide both sides by

a negative number.

1-3 Absolute Value in Equations and Inequalities

The absolute value of a number x is the distance on a real number line

from the origin to the point with coordinate x and is given by

The distance between points A and B with coordinates a and b, re-
spectively, is which has the following geometric
interpretations:

Distance between x and c is equal to d.

Distance between x and c is less than d.

Distance between x and c is less than d,

but

Distance between x and c is greater 

than d.

Equations and inequalities involving absolute values are solved us-

ing the following relationships for p   0:

1. is equivalent to or 

2. is equivalent to 

3. is equivalent to or 

These relationships also hold if x is replaced with ax  b. For x any

real number,

1-4 Complex Numbers

A complex number in standard form is a number in the form

where a and b are real numbers and i denotes a square root of

The number i is known as the imaginary unit. For a complex

number a is the real part and bi is the imaginary part.

If then is also called an imaginary number. If

then is also called a pure imaginary number.

If then is a real number. The complex zero is

The conjugate of is Equality, addi-

tion, and multiplication are defined as follows:

1. if and only if and 

2.

3. (a  bi)(c  di)  (ac  bd)  (ad  bc)i

(a  bi)  (c  di)  (a  c)  (b  d)i

b  da  ca  bi  c  di

a  bi.a  bi0  0i  0.

a  0i  ab  0

0  bi  bia  0

a  bib  0

a  bi,

 1.

a  bi

2x2
 冟x冟.

x 7 p.x 6  p冟x冟 7 p

 p 6 x 6 p.冟x冟 6 p

x   p.x  p冟x冟  p

 冟x  c冟 7 d

x  c.

 0 6 冟x  c冟 6 d

 冟x  c冟 6 d

 冟x  c冟  d

d(A, B)  冟b  a冟,

冟x冟  冦 x if x 6 0

x if x  0

Because complex numbers obey the same commutative, asso-

ciative, and distributive properties as real numbers, most operations

with complex numbers are performed by using these properties in

the same way that algebraic operations are performed on the

expression Keep in mind that 

The property of conjugates,

can be used to find reciprocals and quotients. To divide by a com-

plex number, we multiply the numerator and denominator by the

conjugate of the denominator. This enables us to write the result in

form. If then the principal square root of the neg-

ative real number is 

To solve equations involving complex numbers, set the real

and imaginary parts equal to each other and solve.

1-5 Quadratic Equations and Applications

A quadratic equation is an equation that can be written in the

standard form

where x is a variable and a, b, and c are constants. Methods of solu-

tion include:

1. Factoring and using the zero product property:

if and only if or (or both)

2. Using the square root property:

If then 

3. Completing the square:

4. Using the quadratic formula:

If the discriminant is positive, the equation has two

distinct real roots; if the discriminant is 0, the equation has one

real double root; and if the discriminant is negative, the equation

has two imaginary roots, each the conjugate of the other.

1-6 Additional Equation-Solving Techniques

A square root radical can be eliminated from an equation by isolat-

ing the radical on one side of the equation and squaring both sides of

the equation. The new equation formed by squaring both sides may

have extraneous solutions. Consequently, every solution of the new

equation must be checked in the original equation to eliminate ex-

traneous solutions. If an equation contains more than one radical,

then the process of isolating a radical and squaring both sides can be

repeated until all radicals are eliminated. If a substitution transforms

an equation into the form where u is an expres-

sion in some other variable, then the equation is an equation of

quadratic type that can be solved by quadratic methods.

au2
 bu  c  0,

b
2

 4ac

x  
 b  2b2

 4ac

2a

x2
 bx  ab

2
b2

 ax  
b

2
b2

A   1CA2
 C,

n  0m  0m  n  0

ax2
 bx  c  0  a  0

1 a  i1a. a

a 7 0,a  bi

(a  bi)(a  bi)  a2
 b2

i2   1.a  bx.
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CHAPTER 1 Review Exercises

22. If points A, B, and C have coordinates on a number line of 5, 20,

and  8 respectively, find

(A) d(A, B) (B) d(A, C) (C) d(B, C)

23. Perform the indicated operations and write the final answers in

standard form:

(A) (3   i)2
  2(3   i)   3 (B) i27

24. Convert to a  bi forms, perform the indicated operations, and

write the final answers in standard form:

(A) 

(B) (C) 

Solve the equation in Problems 25–30.

25.

26.

27. 28.

29. 30.

Solve the equation or inequality in Problems 31–35, and round

answers to three significant digits if necessary.

31.

32.

33.

34.

35.

Solve the equation in Problems 36–38 for the indicated variable in

terms of the other variables.

36. for M (mathematics of finance)

37. for I (electrical engineering)

38. for y

39. Find the error in the following “solution” and then find the cor-

rect solution.

x   1  or  x  1

 x2
 1

 4x2
 12x  8  3x2

 12x  9

 
4

x2
 4x  3

 
3

x2
 3x  2

x  
4y  5

2y  1

P  EI  RI 
2

P  M  Mdt

6.09x2
 4.57x  8.86  0

2 8
3

 
4

5
 t 2  1

2

冟9.71  3.62x冟 7 5.48

 1.52  0.770  2.04x  5.33

2.15x  3.73(x  0.930)  6.11x

1y  2  15y  1   3m4
 5m2

 36  0

2x2 3  5x1 3  12  0
x

x2
 x  6

 
2

x  3
 3

1  
3

u2
 

2

u

ay  
11

3
b2

 20

4  1 25

1 4

2  1 1

3  1 4

(2  1 4)  (3  1 9)

Work through all the problems in this chapter review and check

answers in the back of the book. Answers to all review problems

are there, and following each answer is a number in italics

indicating the section in which that type of problem is discussed.

Where weaknesses show up, review appropriate sections in the

text.

In Problems 1–3, solve the equation.

1.

2.

3.

Solve and graph  the inequality in Problems 4–6.

4. 5.

6.

7. Find the real part, the imaginary part, and the conjugate:

(A) 9   4i (B) 5i (C)  10

8. Perform the indicated operations and write the answer in stan-

dard form.

(A) 

(B) 

(C) 

(D) 

Solve the equation in Problems 9–15.

9. 10.

11. 12.

13. 14.

15.

16. For what values of x does the expression represent

a real number?

Solve the equation in Problems 17 and 18.

17. 18.

Solve and graph the inequality in Problems 19–21.

19. 20.

21. 2(1  2m)2
 3

冟3x  8冟 7 2
x  3

8
 5  

2  x

3

u  3

2u  2
 

1

6
 

1  u

3u  3

7

2  x
 

10  4x

x2
 3x  10

115  6x

15x  6  x  0

y2
 

3
2 
( y  1)m2

 m  1  0

2x2
 7x  32x2

 4x

5x2
 20  02x2

 7  0

21  9i

5  2i

(1  2i)(3  4i)

( 3  5i)  (4  8i)

(4  7i)  ( 2  3i)

冟3  2x冟  5

冟y  9冟 6 53(2  x)  2  2x  1

y  10

15
 

1

5
 

y  1

6
 

1

10

4  3(x  2)  5x  7(4  x)

8x  10  4x  30

m

 1 2

[ [



40. Consider the quadratic equation , where c is a

real number. Describe the number and type of solutions for

, 16, and 32. Use your result to make a general state-

ment about the number and type of solutions for certain values

of c, then use an inequality to prove your statement.

41. For what values of a and b is the inequality 

true?

42. If a and b are negative numbers and then is greater

than 1 or less than 1?

43. Solve for x in terms of y: 

44. Solve and graph: 

Solve the equation in Problems 45–47.

45.

46.

47.

48. Evaluate: 

APPLICATIONS

49. NUMBERS Find a number such that subtracting its reciprocal

from the number gives 

50. SPORTS MEDICINE The following quotation was found in a

sports medicine handout: “The idea is to raise and sustain your heart

rate to 70% of its maximum safe rate for your age. One way to deter-

mine this is to subtract your age from 220 and multiply by 0.7.”

(A) If H is the maximum safe sustained heart rate (in beats per

minute) for a person of age A (in years), write a formula relating H

and A.

(B) What is the maximum safe sustained heart rate for a 20-year-

old?

(C) If the maximum safe sustained heart rate for a person is 126

beats per minute, how old is the person?

51. CHEMISTRY A chemical storeroom has an 80% alcohol solution

and a 30% alcohol solution. How many milliliters of each should be

used to obtain 50 milliliters of a 60% solution?

52. RATE–TIME A student group flies to Cancun for spring break, a

distance of 1,200 miles. The plane used for both trips has an average

cruising speed of 300 miles per hour in still air. The trip down is with

the prevailing winds and takes hours less than the trip back,

against the same strength wind. What is the wind speed?

53. RATE–TIME A crew of four practices by rowing up a river for a

fixed distance and then returning to their starting point. The river has

a current of 3 km/h.

(A) Currently the crew can row 15 km/h in still water. If it takes

them 25 minutes to make the round-trip, how far upstream did they

row?

(B) After some additional practice the crew cuts the round-trip time

to 23 minutes. What is their still-water speed now? Round answers

to one decimal place.

11
2

16
15.

(a ⫹ bi) a a

a2
⫹ b2

⫺
b

a2
⫹ b2

 ib, a, b � 0

2ix2
⫹ 3ix ⫺ 5i ⫽ 0

4 ⫽ 8x⫺2
⫺ x⫺4

2x2
⫽ 13x ⫺

1
2

0 6 冟x ⫺ 6冟 6 d

y ⫽
1

1 ⫺
1

1 ⫺ x

aⲐba 7 b,

a ⫹ b 6 b ⫺ a

c ⫽ ⫺16

x2
⫺ 8x ⫹ c ⫽ 0 (C) If the crew wants to increase their still-water speed to 18 km/h,

how fast must they make the round-trip? Express answer in minutes

rounded to one decimal place.

54. COST ANALYSIS Cost equations for manufacturing companies

are often quadratic in nature. If the cost equation for manufacturing

inexpensive calculators is where C is the cost

of manufacturing x units per week (both in thousands), find:

(A) The output for a $15 thousand weekly cost

(B) The output for a $6 thousand weekly cost

55. BREAK-EVEN ANALYSIS The manufacturing company in Prob-

lem 54 sells its calculators to wholesalers for $3 each. So its rev-

enue equation is where R is revenue and x is the number of

units sold per week (both in thousands). Find the break-even

point(s) for the company—that is, the output at which revenue

equals cost.

56. POLITICS Before the 2008 presidential election, one news outlet

estimated that the percentage of voters casting a vote for Barack

Obama would be within 1.2% of 54%. Express this range as an ab-

solute value inequality, then solve the inequality.

57. DESIGN The pages of a textbook have uniform margins of 

2 centimeters on all four sides (see the figure). If the area of the en-

tire page is 480 square centimeters and the area of the printed portion

is 320 square centimeters, find the dimensions of the page.

R ⫽ 3x,

C ⫽ x2
⫺ 10x ⫹ 31,

Review Exercises 107

2 2

2 2

2 2

2 2

Figure for 57.

58. DESIGN A landscape designer uses 8-foot timbers to form a pat-

tern of isosceles triangles along the wall of a building (see the figure).

If the area of each triangle is 24 square feet, find the base correct to

two decimal places.

8 feet
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CHAPTER 1

ZZZ GROUP ACTIVITY Solving a Cubic Equation

If a, b, and c are real numbers with then the quadratic

equation can be solved by a variety of meth-

ods, including the quadratic formula. How can we solve the cubic

equation

(1)

and is there a formula for the roots of this equation?

The first published solution of equation (1) is generally

attributed to the Italian mathematician Girolamo Cardano

(1501–1576) in 1545. His work led to a complicated formula for

the roots of equation (1) that involves topics that are discussed

later in this text. For now, we will use Cardano’s method to find

a real solution in special cases of equation (1). Note that because

a is nonzero, we can always multiply both sides of (1) by to

make the coefficient of x3 equal to 1.

CARDANO’S METHOD FOR SOLVING

A CUBIC EQUATION

Let x3
  bx2

  cx  d  0

Example problem: . Steps will be in red.

Step 1. Substitute x   y   b兾3 to obtain the reduced cubic

y3
 my  n.

. The equation becomes 

(y  2)
3

 6(y  2)  6(y  2)  5  0, 

which simplifies to y
3

  6y  9: m   6, n  9.

Step 2. Define u and v by m  3uv and n  u3
  v3. Use v  to

write

n  u3
 a m

3u
b3

m
3u

x  y  
 6

3
 or x  y  2

x
3

 6x
2

 6x  5  0

1 a

ax3
 bx2

 cx  d  0,  a  0

ax2
 bx  c  0

a  0, Multiply both sides by u3 to obtain an equation quadratic in u3.

Solve for u3 by factoring or by using the quadratic formula.

Then solve for u, and find the associated value of v.

or ; Multiply both sides by

u
3 

to obtain u
6

 9u
3

 8  0; solve by factoring to get u  2

(in which case v   1) or u  1 (in which case v   2).

Step 3. Using either of the solutions found in step 2,

is a solution to x3
  bx2

  cx  d  0

For u  2, v   1, x  2  ( 1)   5   (Solution)

(A)The key to Cardano’s method is to recognize that if u and v are

defined as in step 2, then y   u   v is a solution of the re-

duced cubic. Verify this by substituting y  u  v, m  3uv,

and n  u3
  y3 in y3

  my n and show that the result is an

identity.

(B) Use Cardano’s method to solve

x3
  6x2

  3x   8   0 (2)

Use a calculator to find a decimal approximation of your so-

lution and check your answer by substituting this approximate

value in equation (2).

(C) Use Cardano’s method to solve

x3
  6x2

  9x   6   0 (3)

Use a calculator to find a decimal approximation of your so-

lution and check your answer by substituting this approximate

value in equation (3).

(D) In step 2 of Cardano’s method, show that u3 is real if

an

2
b2

 a m

3
b3

.

 6

3

x  y  
b

3
 u  v  

b

3

9  u
3

 a 
2

u
b3

 u
3

 
8

u
3

v   
2

u
v  

 6

3u



Graphs

EQUATIONS and inequalities are algebraic objects. A graph, on the
other hand, is a geometric object such as a line, circle, or parabola.
The idea of visualizing an equation or inequality by means of a
graph was crucial to the development of analytic geometry, a sub-
ject that combines algebra and geometry. In this chapter, we study
the fundamentals of analytic geometry: The Cartesian coordinate
system, named after the French mathematician and philosopher
René Descartes (1596–1650); the calculation of distances in the
plane; and equations of lines and circles. We conclude the chapter
by applying linear models to solve real-world problems.

C

CHAPTER

2
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2-1 Cartesian Coordinate Systems

2-2 Distance in the Plane

2-3 Equations of a Line

2-4 Linear Equations and Models

Chapter 2 Review

Chapter 2 Group Activity: 
Average Speed



In Chapter 1, we discussed algebraic methods for solving equations. In this section we show

how to find a geometric representation ( graph) of an equation. Examining the graph of an

equation often results in additional insight into the nature of the equation’s solutions.

Z Reviewing Cartesian Coordinate Systems

Just as a real number line is formed by establishing a one-to-one correspondence between

the points on a line and the elements in the set of real numbers, we can form a real plane

by establishing a one-to-one correspondence between the points in a plane and elements in

the set of all ordered pairs of real numbers. This can be done by means of a Cartesian coor-

dinate system.

To form a Cartesian or rectangular coordinate system, we select two real number

lines, one horizontal and one vertical, and let them cross through their origins, as indicated

in Figure 1. Up and to the right are the usual choices for the positive directions. These two

number lines are called the horizontal axis and the vertical axis, or, together, the coordi-

nate axes. The horizontal axis is usually referred to as the x axis and the vertical axis as

the y axis, and each is labeled accordingly. Other labels may be used in certain situations.

The coordinate axes divide the plane into four parts called quadrants, which are numbered

counterclockwise from I to IV (see Fig. 1).

Given an arbitrary point P in the plane, pass horizontal and vertical lines through the

point (Fig. 2). The vertical line will intersect the horizontal axis at a point with coordinate a,

and the horizontal line will intersect the vertical axis at a point with coordinate b. These two

numbers written as the ordered pair* (a, b) form the coordinates of the point P. The first

coordinate a is called the abscissa of P; the second coordinate b is called the ordinate of P.

The abscissa of Q in Figure 2 is  10, and the ordinate of Q is 5. The coordinates of a point

can also be referenced in terms of the axis labels. The x coordinate of R in Figure 2 is 5,

and the y coordinate of R is 10. The point with coordinates (0, 0) is called the origin.

The procedure we have just described assigns to each point P in the plane a unique

pair of real numbers (a, b). Conversely, if we are given an ordered pair of real numbers (a, b),

then, reversing this procedure, we can determine a unique point P in the plane.

There is a one-to-one correspondence between the points in a plane

and the elements in the set of all ordered pairs of real numbers.

This correspondence is often referred to as the fundamental theorem of analytic geometry.

Because of this correspondence, we regularly speak of the point (a, b) when we are refer-

ring to the point with coordinates (a, b). We also write P  (a, b) to identify the coordi-

nates of the point P. In Figure 2, referring to Q as the point ( 10, 5) and writing R  (5, 10)

are both acceptable statements.

110 C H A P T E R  2 GRAPHS

2-1 Cartesian Coordinate Systems

Z Reviewing Cartesian Coordinate Systems

Z Graphing: Point by Point

Z Using Symmetry as an Aid in Graphing

x

y

 10

10 10

10

II I

III IV

Z Figure 1 Cartesian coordinate

system.

Z Figure 2 Coordinates in a

plane.

x

y

 10

10 10

10

Q   ( 10, 5)

R   (5, 10)

P   (a, b)

Origin
(0, 0)

b

a

*An ordered pair of real numbers is a pair of numbers in which the order is specified. We now use (a, b) as

the coordinates of a point in a plane. In Chapter 1, we used (a, b) to represent an interval on a real number

line. These concepts are not the same. You must always interpret the symbol (a, b) in terms of the context in

which it is used.



Z Graphing: Point by Point

Given any set of ordered pairs of real numbers S, the graph of S is the set of points in the

plane corresponding to the ordered pairs in S. The fundamental theorem of analytic geom-

etry enables us to look at an algebraic object (a set of ordered pairs) geometrically and to

look at a geometric object (a graph) algebraically. We begin by considering an equation in

two variables:

(1)

A solution to equation (1) is an ordered pair of real numbers (a, b) such that .

The solution set of equation (1) is the set of all its solutions. 

To find a solution to equation (1) we simply replace one of the variables with a number

and solve for the other variable. For example, if x  2, then y  22
 4  0, and the ordered

pair (2, 0) is a solution. Similarly, if y  5, then 5  x2
 4, x2

 9, x   3, and the ordered

pairs (3, 5) and ( 3, 5) are solutions.

Sometimes replacing one variable with a number and solving for the other variable will

introduce imaginary numbers. For example, if y   5 in equation (1), then

So ( i,  5) and (i,  5) are solutions to y  x2
 4. However, the coordinates of a point

in a rectangular coordinate system must be real numbers.

For that reason, when graphing an equation, we consider only those values

of the variables that produce real solutions to the equation.

The graph of an equation in two variables is the graph of its solution set. In equa-

tion (1), we find that its solution set will have infinitely many elements and its graph will

extend off any paper we might choose, no matter how large. To sketch the graph of an equa-

tion, we include enough points from its solution set so that the total graph is apparent. This

process is called point-by-point plotting.

 x   1 1   i

 x2
  1

  5  x2
 4

b  a2
 4

y  x2
 4
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Graphing an Equation Using Point-by-Point Plotting

Sketch a graph of y  x2
 4.

EXAMPLE 1

SOLUTION We make a table of solutions—ordered pairs of real numbers that satisfy the given

equation.

x  4  3  2  1 0 1 2 3 4

y 12 5 0  3  4  3 0 5 12

After plotting these solutions, if there are any portions of the graph that are unclear, we plot

additional points until the shape of the graph is apparent. Then we join all these plotted

points with a smooth curve, as shown in Figure 3. Arrowheads are used to indicate that the

graph continues beyond the portion shown here with no significant changes in shape.

The resulting figure is called a parabola. Notice that if we fold the paper along the y

axis, the right side will match the left side. We say that the graph is symmetric with respect

to the y axis and call the y axis the axis of the parabola. More will be said about parabolas

later in the text. �

x

y

 5

5 5

15

10

5

( 4, 12)

( 3, 5)

(1,  3)( 1,  3)

( 2, 0)

(0,  4)

(2, 0)

(3, 5)

(4, 12)

y   x2 
 

 4

Z Figure 3
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MATCHED PROBLEM 1 Sketch a graph of 

�

y
2
 x.

This book contains a number of activities that use a graphing calculator or computer with

appropriate software. All of these activities are clearly marked and easily omitted if no such

device is available.

Technology Connections

To graph the equation in Example 1 on a graphing calcula-

tor, we first enter the equation in the calculator’s equation

editor* [Fig. 4(a)]. Using Figure 3 as a guide, we next enter

values for the window variables [Fig. 4(b)], and then we

graph the equation [Fig. 4(c)]. The values of the window vari-

ables, shown in red in Figure 4(c), are not displayed on the

calculator screen. We add them to give you additional in-

sight into the graph.

Compare the graphs in Figure 3 and Figure 4(c). They are

similar in shape, but they are not identical. The discrepancy

is due to the difference in the axes scales. In Figure 3, one

unit on the x axis is equal to one unit on the y axes. In Fig-

ure 4(c), one unit on the x axis is equal to about three units

on the y axis. We will have more to say about axes scales

later in this section.

*See the Technology Index for a list of graphing calculator terms used in this book.

Z Figure 4

 5

 5

15

5

Enter the equation.

(a)

Enter the window variables.

(b)

Graph the equation.

(c)

To graph the equation y   x
3
 2x, we use point-by-point plotting to obtain the

graph in Figure 5.

(A) Do you think this is the correct graph of

the equation? If so, why? If not, why?

(B) Add points on the graph for x   2,

 0.5, 0.5, and 2.

(C) Now, what do you think the graph looks

like? Sketch your version of the graph,

adding more points as necessary.

(D)Write a short statement explaining any

conclusions you might draw from parts A,

B, and C.

ZZZ EXPLORE-DISCUSS 1

Z Figure 5

x

y

 5

5 5

5

 1   1

0 0

1 1

x y



Graphs illustrate the relationship between two quantities, one represented by x coordi-

nates and the other by y coordinates. If no equation for the graph is available, we can find

specific examples of this relationship by estimating coordinates of points on the graph.

Example 2 illustrates this process.
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Ozone Levels

The ozone level during a 12-hour period in a suburb of Milwaukee, Wisconsin, on a par-

ticular summer day is given in Figure 6, where L is ozone in parts per billion and t is time

in hours. Use this graph to estimate the following ozone levels to the nearest integer and

times to the nearest quarter hour.

(A) The ozone level at 6 P.M.

(B) The highest ozone level and the time when it occurs.

(C) The time(s) when the ozone level is 90 ppb.

EXAMPLE 2

Z Figure 6 Ozone level.

1 2 3 4 5 6 7 8 9 10 11 12Noon
0

20

40

60

80

100

120

P
a
rt

s 
p

e
r 

b
ill

io
n

 (
p

p
b

)

L

t

SOLUTIONS (A) The L coordinate of the point on the graph with t coordinate 6 is approximately 97 ppb.

(B) The highest ozone level is approximately 109 ppb at 3 P.M.

(C) The ozone level is 90 ppb at about 12:30 P.M. and again at 10 P.M. �

MATCHED PROBLEM 2 Use Figure 6 to estimate the following ozone levels to the nearest integer and times to the

nearest quarter hour.

(A) The ozone level at 7 P.M.

(B) The time(s) when the ozone level is 100 ppb.

�

Z Using Symmetry as an Aid in Graphing

We noticed that the graph of y  x2
 4 in Example 1 is symmetric with respect to the y

axis; that is, the two parts of the graph coincide if the paper is folded along the y axis. Sim-

ilarly, we say that a graph is symmetric with respect to the x axis if the parts above and
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Z DEFINITION 1 Reflection

1. The reflection through the y axis of the point (a, b) is the point ( a, b).

2. The reflection through the x axis of the point (a, b) is the point (a,  b).

3. The reflection through the origin of the point (a, b) is the point ( a,  b).

4. To reflect a graph just reflect each point on the graph.

Reflections

In a Cartesian coordinate system, plot the point P   (4,  2) along with its reflection through

(A) the y axis, (B) the x axis, (C) and the origin.

EXAMPLE 3

SOLUTION

x

y

 5

5 5

5

A   ( 4,  2) P   (4,  2)

B   (4, 2)C   ( 4, 2)

�

MATCHED PROBLEM 3 In a Cartesian coordinate system, plot the point P   ( 3, 5) along with its reflection through

(A) the x axis, (B) the y axis, and (C) the origin.

�

Z DEFINITION 2 Symmetry

A graph is symmetric with respect to

1. The x axis if (a,  b) is on the graph whenever (a, b) is on the graph—

reflecting the graph through the x axis does not change the graph.

2. The y axis if ( a, b) is on the graph whenever (a, b) is on the graph—

reflecting the graph through the y axis does not change the graph.

3. The origin if ( a,  b) is on the graph whenever (a, b) is on the graph—reflecting

the graph through the origin does not change the graph.

below the x axis coincide when the paper is folded along the x axis. To make the intuitive

idea of folding a graph along a line more concrete, we introduce two related concepts—

reflection and symmetry.
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x

y

(a,  b)

(a, b)

x

y

( a,  b)

(a, b)

x

y

( a, b)

(a,  b)( a,  b)

(a, b)

Symmetry with 

respect to y axis

(a)

Symmetry with 

respect to x axis

(b)

Symmetry with 

respect to origin

(c)

Symmetry with respect 

to y axis, x axis, and origin

(d)

x

y

( a, b) (a, b)

Z Figure 7 Symmetry.

If a graph possesses two of the three types of symmetry in Definition 1, must it

also possess the third? Explain.

ZZZ EXPLORE-DISCUSS 2

Given an equation, if we can determine the symmetry properties of its graph ahead of

time, we can save a lot of time and energy in sketching the graph. For example, we know

that the graph of y x
2
 4 in Example 1 is symmetric with respect to the y axis, so we

can carefully sketch only the right side of the graph; then reflect the result through the

y axis to obtain the whole sketch—the point-by-point plotting is cut in half!

The tests for symmetry are given in Theorem 1. These tests are easily applied and are

very helpful aids to graphing. Recall, two equations are equivalent if they have the same

solution set.

Figure 7 illustrates these three types of symmetry.

Z THEOREM 1 Tests for Symmetry

Symmetry with An equivalent 

respect to the: equation results if:

y axis x is replaced with  x

x axis y is replaced with  y

Origin x and y are replaced with  x and  y

Using Symmetry as an Aid to Graphing

Test the equation y  x
3 for symmetry and sketch its graph.

EXAMPLE 4

SOLUTION Test y Axis Test x Axis Test Origin

Replace x with  x: Replace y with  y: Replace x with  x

and y with  y:

 y  x
3

  y   x
3 y   x

3 y   x
3

  y  ( x)3  y  x
3 y  ( x)3
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Note that positive values of x produce positive values for y and negative values of x pro-

duce negative values for y. So the graph is in the first and third quadrants. First we make

a careful sketch in the first quadrant [Fig. 8(a)]. It is easier to perform a reflection through

the origin if you first reflect through one axis [Fig. 8(b)] and then through the other axis

[Fig. 8(c)].

MATCHED PROBLEM 4 Test the equation y  x for symmetry and sketch its graph.

�

x

y

 10

5 5

10

(2, 8)

(1, 1)

y   x3

x

y

 10

5 5

10

(2, 8)

(1, 1)

(1,  1)

(2,  8)

x

y

 10

5 5

10

(2, 8)

( 2,  8)

(1, 1)

( 1,  1)

y   x3

x 0 1 2

y 0 1 8

(a) (b) (c)

Z Figure 8

Using Symmetry as an Aid to Graphing

Test the equation y  冟x冟 for symmetry and sketch its graph.

EXAMPLE 5

SOLUTION Test y Axis Test x Axis Test Origin

Replace x with  x: Replace y with  y: Replace x with  x

and y with  y:

The only symmetry property for the graph of y  冟x冟 is symmetry with respect to the

y axis.

 y   冟x冟

  y  冟x冟 y   冟x冟 y  冟x冟

  y  冟 x冟  y  冟x冟 y  冟 x冟

Since 冟x冟 is never negative, this graph is in the first and second quadrants. We make a care-

ful sketch in the first quadrant; then reflect this graph through the y axis to obtain the com-

plete sketch shown in Figure 9.

The only test that produces an equivalent equation is replacing x with  x and y with

 y. So the only symmetry property for the graph of y  x
3 is symmetry with respect to

the origin.

�
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MATCHED PROBLEM 5 Test the equation for symmetry and sketch its graph.

�

y   冟x冟

Z Figure 9

x 0 2 4

y 0 2 4

x

y

 5

5 5

5

y   兩x兩

�

�

Using Symmetry as an Aid to Graphing

Test the equation y2
 x

2
 4 for symmetry and sketch its graph.

EXAMPLE 6

SOLUTION Since ( x)2
 x

2 and ( y)2
 y

2, the equation y
2

 x
2

 4 will be unchanged if x is

replaced with  x or if y is replaced with  y. So the graph is symmetric with respect to

the y axis, the x axis, and the origin. We need to make a careful sketch in only the first

quadrant, reflect this graph through the y axis, and then reflect everything through the x axis.

To find quadrant I solutions, we solve the equation for either y in terms of x or x in terms

of y. We choose to solve for y.

To obtain the quadrant I portion of the graph, we sketch for x  0, 1, 2, . . . .

The final graph is shown in Figure 10.

y  2x
2

 4

 y   2x
2

 4

 y2
 x

2
 4

 y2
 x

2
 4

x 0 1 2 3 4

y 2 120 ⬇ 4.5113 ⬇ 3.618 ⬇ 2.815 ⬇ 2.2

Z Figure 10

x

y

 5

5 5

5

(0, 2) (1, √5)

y2   x2   4

(2, √8)

(3, √13) (4, √20)

MATCHED PROBLEM 6 Test the equation 2y
2

 x
2

 2 for symmetry and sketch its graph.

�
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Technology Connections

To graph y
2

 x
2

 4 on a graphing calculator, we enter

both and in the equation editor

[Fig. 11(a)] and graph.

 2x
2

 42x
2

 4

Z Figure 11

(a) (b)

 5

 5

5

5

ANSWERS TO MATCHED PROBLEMS

1. 2. (A) 96 ppb (B) 1:45 P.M. and 5 P.M.

3.

x

y

 5

105

(9,  3)
(4,  2)

(9, 3)
(4, 2)

(1,  1)

(1, 1)

(0, 0)

 5

5

x

y

 5

5 5

5
P   ( 3, 5) B   (3, 5)

A   ( 3,  5) C   (3,  5)

x

y

 5

5 5

5

x

y

 5

5 5

5

4. Symmetric with respect to

the origin

5. Symmetric with respect to

the y axis

6. Symmetric with respect to the x axis, the y axis, and the origin

x

y

 5

5 5

5
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20. Reflect A, B, C, and D through the x axis.

2-1 Exercises

1. Describe the one-to-one correspondence between points in the

plane and ordered pairs of real numbers.

2. Explain how to graph an equation in two variables using point-

by-point plotting.

3. Explain how to sketch the reflection of a graph through the

y axis.

4. How can you tell whether the graph of an equation is symmetric

with respect to the origin? 

In Problems 5–14, give a verbal description of the indicated

subset of the plane in terms of quadrants and axes.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

[Hint: In Problems 13 and 14, consider two cases.]

In Problems 15–18, plot the given points in a rectangular

coordinate system.

15.

16.

17.

18.

In Problems 19–22, find the coordinates of points A, B, C, and D

and the coordinates of the indicated reflections.

19. Reflect A, B, C, and D through the y axis.

( 2, 0), (3, 2), (1,  4), ( 3, 5) 

(0,  2), ( 1,  3), (4,  5), ( 2, 1)

(0, 4), ( 3, 2), (5,  1), ( 2,  4)

(5, 0), (3,  2), ( 4, 2), (4, 4)

5(x, y) ƒ xy 7 065(x, y) ƒ xy 6 06

5(x, y) ƒ x 6 0, y 7 065(x, y) ƒ x 7 0, y  06

5(x, y) ƒ y 6 0, x  065(x, y) ƒ x 7 0, y 6 06

5(x, y) ƒ y  065(x, y) ƒ x 6 0, y 6 06

5(x, y) ƒ x 7 0, y 7 065(x, y) ƒ x  06

 5
x

y

 5

5 5

5

D
A

BC

 5
x

y

 5

5 5

5

B

A
C

D

21. Reflect A, B, C, and D through the origin.

22. Reflect A, B, C, and D through the x axis and then through the

y axis.

Test each equation in Problems 23–30 for symmetry with respect

to the x axis, y axis, and the origin. Sketch the graph of the

equation.

23. y   2x   4 24.

25. 26. y   2x

27. 28.

29. 30. y   x冟x冟  冟  y冟

冟  y冟   x冟y冟  x

y  1
2x

y  1
2x  1

 5
x

y

 5

5 5

5

B

C

A

D

 5
x

y

 5

5 5

5

C A

B

D



In Problems 31–34, use the graph to estimate to the nearest

integer the missing coordinates of the indicated points. (Be sure

you find all possible answers.)

31. (A) (8, ?) (B) ( 5, ?) (C) (0, ?)

(D) (?, 6) (E) (?,  5) (F) (?, 0)
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Test each equation in Problems 37–46 for symmetry with respect

to the x axis, the y axis, and the origin. Do not sketch the graph.

37. 2x  7y  0  

38. x2
 6y  y2

 25

39. x2
 4xy2

 3

40. 3x  5y  2

41. x4
 5x2y  y4

 1

42. x4
 y4

 16

43. x3
 y3

 8

44. x2
 2xy  3y2

 12

45. x4
 4x2y2

 y4
 81

46. x3
 4y2

 1

Test each equation in Problems 47–58 for symmetry with respect to

the x axis, the y axis, and the origin. Sketch the graph of the equation.

47. y2
  x   2 48. y2

  x   2

49. y   x2
  1 50. y   2   x2

51. 4y2
  x2

  1 52. 4x2
  y2

  1

53. y3
  x 54. y   x4

55. y   0.6x2
  4.5 56. x   0.8y2

  3.5

57. y   x2兾3
58. y2兾3

  x

59. (A) Graph the triangle with vertices A   (1, 1), B   (7, 2), and

C   (4, 6).

(B) Now graph the triangle with vertices A    (1,  1),

B  (7,  2), and C    (4,  6) in the same coordinate

system.

(C) How are these two triangles related? How would you de-

scribe the effect of changing the sign of the y coordinate of

all the points on a graph?

32. (A) (3, ?) (B) ( 5, ?) (C) (0, ?)

(D) (?, 3) (E) (?,  4) (F) (?, 0)

The figures in Problems 35 and 36 show a portion of a graph. Extend

the given graph to one that exhibits the indicated type of symmetry.

35. (A) x axis only

(B) y axis only

(C) origin only

(D) x axis, y axis, and origin

x

y

 5

5 5

5

x

y

 5

5 5

5

33. (A) (1, ?) (B) ( 8, ?) (C) (0, ?)

(D) (?,  6) (E) (?, 4) (F) (?, 0)

34. (A) (6, ?) (B) ( 6, ?) (C) (0, ?)

(D) (?,  2) (E) (?, 1) (F) (?, 0)

36. (A) x axis only

(B) y axis only

(C) origin only

(D) x axis, y axis, and origin

xx

y

10 10 10 10

 10

10

 10

10

xx

y

10 10 10 10

 10

10

 10

10

xx

y

10 10 10 10

 10

10

 10

10

xx

y

10 10 10 10

 10

10

 10

10



60. (A) Graph the triangle with vertices A  (1, 1), B  (7, 2), and

C   (4, 6).

(B) Now graph the triangle with vertices A    ( 1, 1),

B  ( 7, 2), and C    ( 4, 6) in the same coordinate

system.

(C) How are these two triangles related? How would you de-

scribe the effect of changing the sign of the x coordinate of

all the points on a graph?

61. (A) Graph the triangle with vertices A  (1, 1), B  (7, 2), and

C   (4, 6).

(B) Now graph the triangle with vertices A    ( 1,  1), 

B    ( 7,  2), and C    ( 4,  6) in the same coordinate

system.

(C) How are these two triangles related? How would you de-

scribe the effect of changing the signs of the x and y coor-

dinates of all the points on a graph?

62. (A) Graph the triangle with vertices A  (1, 2), B  (1, 4), and

C   (3, 4).

(B) Now graph y  x and the triangle obtained by reversing the

coordinates for each vertex of the original triangle:

A  (2, 1), B    (4, 1), B    (4, 3).

(C) How are these two triangles related? How would you de-

scribe the effect of reversing the coordinates of each point

on a graph?

In Problems 63–66, solve for y, producing two equations, and then

graph both of these equations in the same viewing window.

63. 2x   y2
  3 64. x3

  y2
  8

65. x2
  ( y   1)2

  4 66. ( y   2)2
  x2

  9

Test each equation in Problems 67–76 for symmetry with respect

to the x axis, the y axis, and the origin. Sketch the graph of the

equation.

67. 68. 69. xy   1

70. xy    1 71. y   6x   x2
72. y   x2

  6x

73. 74.

75. 76.

77. If a graph is symmetric with respect to the x axis and to the ori-

gin, must it be symmetric with respect to the y axis? Explain.

78. If a graph is symmetric with respect to the y axis and to the ori-

gin, must it be symmetric with respect to the x axis? Explain.

79. If a graph is symmetric with respect to the origin, must it be

symmetric with respect to the x axis? Explain.

80. If a graph is symmetric with respect to the origin, must it be

symmetric with respect to the y axis? Explain.

APPLICATIONS

81. BUSINESS After extensive surveys, the marketing research

department of a producer of popular compact discs developed the

demand equation

n  10  p  5  p  10

冟xy 冟  冟  y冟  4冟xy 冟  2冟  y冟  6

y2
 4冟x冟  1y2

 冟  x冟  1

冟  y冟  x3y3
 冟x冟

S E C T I O N  2 – 1 Cartesian Coordinate Systems 121

where n is the number of units (in thousands) retailers are willing to

buy per day at $p per disc. The company’s daily revenue R (in thou-

sands of dollars) is given by

Graph the revenue equation for the indicated values of p.

82. BUSINESS Repeat Problem 81 for the demand equation

83. PRICE AND DEMAND The quantity of a product that consumers

are willing to buy during some period of time depends on its price.

The price p and corresponding weekly demand q for a particular

brand of diet soda in a city are shown in the figure. Use this graph

to estimate the following demands to the nearest 100 cases.

(A) What is the demand when the price is $6.00 per case?

(B) Does the demand increase or decrease if the price is increased

from $6.00 to $6.30 per case? By how much?

(C) Does the demand increase or decrease if the price is decreased

from $6.00 to $5.70? By how much?

(D) Write a brief description of the relationship between price and

demand illustrated by this graph.

n  8  p  4  p  8

R  np  (10  p)p  5  p  10

84. PRICE AND SUPPLY The quantity of a product that suppliers

are willing to sell during some period of time depends on its price.

The price p and corresponding weekly supply q for a particular

brand of diet soda in a city are shown in the figure. Use this graph

to estimate the following supplies to the nearest 100 cases.

(A) What is the supply when the price is $5.60 per case?

(B) Does the supply increase or decrease if the price is increased

from $5.60 to $5.80 per case? By how much?

(C) Does the supply increase or decrease if the price is decreased

from $5.60 to $5.40 per case? By how much?

(D) Write a brief description of the relationship between price and

supply illustrated by this graph.

q

p

4,0003,0002,000

$7

$5

$6

P
ri

ce
 p

e
r 

ca
se

Number of cases

q

p

4,0003,0002,000

$7

$5

$6

P
ri

ce
 p

e
r 

ca
se

Number of cases



85. TEMPERATURE The temperature during a spring day in

the Midwest is given in the figure. Use this graph to estimate the

following temperatures to the nearest degree and times to the near-

est hour.

(A) The temperature at 9:00 A.M.

(B) The highest temperature and the time when it occurs.

(C) The time(s) when the temperature is 49°F.
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(A) Graph v for 

(B) Describe the relationship between this graph and the physical

behavior of the ball as it swings back and forth.

88. PHYSICS The speed (in meters per second) of a ball oscillating

at the end of a spring is given by

where x is the vertical displacement (in centimeters) of the ball

from its position at rest (positive displacement measured

downward—see the figure).

v  4225  x
2

0  x  2.

86. TEMPERATURE Use the graph in Problem 85 to estimate the

following temperatures to the nearest degree and times to the near-

est half hour.

(A) The temperature at 7:00 P.M.

(B) The lowest temperature and the time when it occurs.

(C) The time(s) when the temperature is 52°F.

87. PHYSICS The speed (in meters per second) of a ball swinging

at the end of a pendulum is given by

where x is the vertical displacement (in centimeters) of the ball

from its position at rest (see the figure).

v  0.512  x

40 

50 

60 

70 

Midnight Midnight6 AM Noon 6 PM

x

(A) Graph v for 

(B) Describe the relationship between this graph and the physical

behavior of the ball as it oscillates up and down.

 5  x  5.

x   0

x   0

2-2 Distance in the Plane

Z Distance Between Two Points

Z Midpoint of a Line Segment

Z Circles

Two basic problems studied in analytic geometry are

1. Given an equation, find its graph.

2. Given a figure (line, circle, parabola, ellipse, etc.) in a coordinate system, find its

equation.

The first problem was discussed in Section 2-1. In this section, we introduce some tools

that are useful when studying the second problem.



Z Distance Between Two Points

Given two points P1 and P2 in a rectangular coordinate system, we denote the distance

between P1 and P2 by d(P1, P2). We begin with an example.
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Distance Between Two Points

Find the distance between the points and P2 ⫽ (4, 6).P1 ⫽ (1, 2)

EXAMPLE 1

Z Figure 1

105

5

x

y

P2 ⫽ (4, 6)

P3 ⫽ (4, 2)P1 ⫽ (1, 2)

兩4 ⫺ 1兩 ⫽ 3

d(
P 1

, P
2
)

兩6 ⫺ 2兩 ⫽ 4

SOLUTION Connecting the points P1, P2, and P3 ⫽ (4, 2) with straight line segments forms a right tri-

angle (Fig. 1).

MATCHED PROBLEM 1 Find the distance between the points P1 ⫽ (1, 2) and P2 ⫽ (13, 7).

�

From the figure, we see that the lengths of the legs of the triangle are

and

The length of the hypotenuse is d(P1, P2), the distance we are seeking. Applying the

Pythagorean theorem (see Appendix B), we get

Therefore, �d(P1, P2) ⫽ 125 ⫽ 5

 ⫽ 25

 ⫽ 9 ⫹ 16

 ⫽ 32
⫹ 42

 [d(P1, P2)]2
⫽ [d(P1, P3)]2

⫹ [d(P3, P2)]2

d(P3, P2) ⫽ 冟6 ⫺ 2冟 ⫽ 4

d(P1, P3) ⫽ 冟4 ⫺ 1冟 ⫽ 3

The ideas used in Example 1 can be applied to any two distinct points in the plane. If

P1 ⫽ (x1, y1) and P2 ⫽ (x2, y2) are two points in a rectangular coordinate system (Fig. 2),

then

Because 

Taking square roots gives the distance formula.

冟N冟2 ⴝ N
2 ⫽ (x2 ⫺ x1)2

⫹ ( y2 ⫺ y1)2

 [d(P1, P2)]2
⫽ 冟x2 ⫺ x1冟2 ⫹ 冟y2 ⫺ y1冟2
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Z Figure 2 Distance between two

points.

x

y

d(P
1
, P 2

)

P2   (x2, y2)

P1   (x1, y1)
(x2, y1)

x1

y2

x2

兩y
2
  

 y
1
兩

兩x2   x1兩

y1

Z Midpoint of a Line Segment

The midpoint of a line segment is the point that is equidistant from each of the endpoints.

A formula for finding the midpoint is given in Theorem 2. The proof is discussed in the

exercises.

Z THEOREM 1 Distance Formula

The distance between and is

d(P1, P2)  2(x2  x1)2
 ( y2  y1)2

P2  (x2, y2)P1  (x1, y1)

EXAMPLE 2 Using the Distance Formula

Find the distance between the points ( 3, 5) and ( 2,  8).*

Let (x1, y1)  (ⴚ3, 5) and (x2, y2)   (ⴚ2, ⴚ8). Then,

Notice that if we choose (x1, y1)  ( 2,  8) and (x2, y2)  ( 3, 5), then

so it doesn’t matter which point we designate as P1 or P2. �

d  2 [( 3)  ( 2)]2
 [5  ( 8)]2

 21  169  2170

  2( 2  3)2
 ( 8  5)2

 212
 ( 13)2

 21  169  2170

 d  2 [(ⴚ2)  (ⴚ3)]2
 [(ⴚ8)  5 ]2

SOLUTION

MATCHED PROBLEM 2 Find the distance between the points (6,  3) and ( 7,  5).

�

*We often speak of the point (a, b) when we are referring to the point with coordinates (a, b). This shorthand,

though not technically accurate, causes little trouble, and we will continue the practice.

Z THEOREM 2 Midpoint Formula

The midpoint of the line segment joining P1  (x1, y1) and P2  (x2, y2) is

The point M is the unique point satisfying

d(P1, M )  d(M, P2)  
1

2
 d(P1, P2)

M  ax1  x2

2
, 
y1  y2

2
b
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Note that the coordinates of the midpoint are simply the averages of the respective coor-

dinates of the two given points.

EXAMPLE 3 Using the Midpoint Formula

Find the midpoint M of the line segment joining A  ( 3, 2) and B  (4,  5). Plot A, B,

and M and verify that d(A, M )  d(M, B)  1
2d(A, B).

We use the midpoint formula with (x1, y1)   ( 3, 2) and (x2, y2)   (4,  5) to obtain the

coordinates of the midpoint M.

Simplify.

We plot the three points (Fig. 3) and compute the distances d(A, M ), d(M, B), and 

d(A, B):

This verifies that M is the midpoint of the line segment joining A and B. �

 
1

2
 d(A, B)  

1

2
198  B

98

4
 124.5  d(A, M )  d(M, B)

 d(A, B)  2( 3  4)2
 [2  ( 5)]2

 249  49  298

 d(M, B)  2(0.5  4)2
 [ 1.5  ( 5)]2

 212.25  12.25  224.5

 d(A, M )  2( 3  0.5)2
 [2  ( 1.5)]2

 212.25  12.25  224.5

  (0.5,  1.5)

  a1

2
, 
 3

2
b

  a 3  4

2
, 

2  ( 5)

2
b

 M  ax1  x2

2
, 

y1  y2

2
b

SOLUTION

MATCHED PROBLEM 3 Find the midpoint M of the line segment joining A  (4, 1) and B  ( 3,  5). Plot A, B,

and M and verify that

�

d(A, M )  d(M, B)  1
2 
d(A, B).

Z Figure 3

Substitute 

and .y2 ⴝ ⴚ5

x1 ⴝ ⴚ3, y1 ⴝ 2, x2 ⴝ 4,

x

y

 5

5 5

5

A   ( 3, 2)

B   (4,  5)

M  
1

2冢 冣3

2
,  

EXAMPLE 4 Using the Midpoint Formula

If M  (1, 1) is the midpoint of the line segment joining A  ( 3,  1) and B  (x, y), find

the coordinates of B.

From the midpoint formula, we have

M  (1, 1)  a 3  x

2
, 
 1  y

2
b

SOLUTION
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MATCHED PROBLEM 4 If M  (1,  1) is the midpoint of the line segment joining A  ( 1,  5) and B  (x, y),

find the coordinates of B.

�

*Throughout the book, dashed boxes—called think boxes—are used to represent steps that may be performed

mentally.

Z Circles

The distance formula would be helpful if its only use were to find actual distances between

points, such as in Example 2. However, its more important use is in finding equations of

figures in a rectangular coordinate system. We start with an example.

EXAMPLE 5 Equations and Graphs of Circles

Write an equation for the set of all points that are 5 units from the origin. Graph your equation.

The distance between a point (x, y) and the origin is

So, an equation for the set of points that are 5 units from the origin is

We square both sides of this equation to obtain an equation that does not contain any radicals.

Because ( x)2
 x2 and ( y)2

 y2, the graph will be symmetric with respect to the x axis,

y axis, and origin. We make up a table of solutions, sketch the curve in the first quadrant,

and use symmetry properties to produce a familiar geometric object—a circle (Fig. 4).

x2
 y2

 25

2x2
 y2

 5

d  2(x  0)2
 ( y  0)2

 2x2
 y2

SOLUTION

MATCHED PROBLEM 5 Write an equation for the set of all points that are three units from the origin. Graph your

equation.

�

x y

0 5

3 4

4 3

5 0

Z Figure 4

(5, 0)( 5, 0)

( 4, 3)

( 4,  3)

( 3, 4)

(4, 3)

(3, 4)

( 3,  4)

(4,  3)

(3,  4)

(0, 5)

(0,  5)

x

y

We equate the corresponding coordinates and solve the resulting equations for x and y:

. � Therefore, B  (5, 3)

 5  x  3  y

 2  3   3  x  3     2  1   1  y  1

 2   3  x  2   1  y

 1  
 3  x

2
  1  

 1  y

2

*

�



In Example 5, we began with a verbal description of a set of points, produced an alge-

braic equation that these points must satisfy, constructed a numerical table listing some of

these points, and then drew a graphical representation of this set of points. The interplay

between verbal, algebraic, numerical, and graphical concepts is one of the central themes

of this book.

Now we generalize the ideas introduced in Example 5.
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Technology Connections

Refer to Example 5. To graph this circle on a graphing calcu-

lator, first we solve x
2
⫹ y

2
⫽ 25 for y:

Next we enter and in the

equation editor of a graphing calculator [Fig. 5(a)], enter ap-

propriate window variables [Fig. 5(b)], and graph [Fig. 5(c)].

y ⴝ ⴚ225 ⴚ x
2

y ⴝ 225 ⴚ x
2

 y ⴝ ⴞ225 ⴚ x
2

 y
2
ⴝ 25 ⴚ x

2

 x
2
ⴙ y

2
ⴝ 25

The graph in Figure 5(c) doesn’t look like a circle. (A circle

is as wide as it is tall.) This distortion is caused by the dif-

ference between axes scales. One unit on the x axis

appears to be longer than one unit on the y axis. Most

graphing calculators have an option called ZSquare under

the zoom menu [Fig. 6(a)] that automatically adjusts the x

axis scale [Fig. 6(b)] to produce a squared viewing window.

The graph of a circle in a squared viewing window is not dis-

torted [Fig. 6(c)].

Z Figure 6

(a) (b) (c)

 5

 7.6

5

7.6

Z Figure 5

(a) (b) (c)

 5

 5

5

5

Z DEFINITION 1 Circle

A circle is the set of all points in a plane equidistant from a fixed point. The fixed

distance is called the radius, and the fixed point is called the center.

Let’s find the equation of a circle with radius r (r  0) and center C at (h, k) in a rec-

tangular coordinate system (Fig. 7). The circle consists of all points P  (x, y) satisfying

d(P, C )  r; that is, all points satisfying

r 7 02(x  h)2
 ( y  k)2

 rZ Figure 7 Circle.

x

y

P   (x, y)

C   (h, k)

r



or, equivalently,

r 7 0(x ⫺ h)2
⫹ ( y ⫺ k)2

⫽ r 
2
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Z THEOREM 3 Standard Form of the Equation of a Circle

The standard form of a circle with radius r and center at (h, k) is:

r 7 0(x ⫺ h)2
⫹ (  y ⫺ k)2

⫽ r2

EXAMPLE 6 Equations and Graphs of Circles

Find the equation of a circle with radius 4 and center at C ⫽ (⫺3, 6). Graph the 

equation.

SOLUTION and 

Substitute h ⴝ ⴚ3, k ⴝ 6

Simplify

To graph the equation, plot the center and a few points on the circle (the easiest points to

plot are those located 4 units from the center in either the horizontal or vertical direction),

then draw a circle of radius 4 (Fig. 8).

 (x ⫹ 3)2
⫹ ( y ⫺ 6)2

⫽ 16

 [x ⫺ (⫺3)]2
⫹ ( y ⫺ 6)2

⫽ 42

 (x ⫺ h)2
⫹ ( y ⫺ k)2

⫽ r2

r ⫽ 4 C ⫽ (h, k) ⫽ (⫺3, 6)

MATCHED PROBLEM 6 Find the equation of a circle with radius 3 and center at C ⫽ (3, ⫺2). Graph the equation.

�

Z Figure 8

x

y

10

5

⫺5

C ⫽ (⫺3, 6)
(⫺7, 6)

(⫺3, 10)

(⫺3, 2)

(1, 6)

r ⫽ 4

(x ⫹ 3)2 ⫹ (y ⫺ 6)2 ⫽ 16

Explain how to find the equation of the circle with diameter AB, if A ⫽ (3, 8) and

B ⫽ (11, 12).

ZZZ EXPLORE-DISCUSS 1

�
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EXAMPLE 7 Finding the Center and Radius of a Circle

Find the center and radius of the circle with equation x2
  y2

  6x   4y   23.

SOLUTION We transform the equation into the form (x   h)2
  (y   k)2

  r2 by completing the square

relative to x and relative to y (see Section 1-5). From this standard form we can determine

the center and radius.

Complete the squares.

Factor each trinomial.

Write ⴙ3 as ⴚ(ⴚ3) to identify h.

Center:

Radius: � r  136  6

 (h, k)  ( 3, 2)

 [x  ( 3)]2
 ( y  2)2

 62

 (x  3)2
 ( y  2)2

 36

 (x2
 6x  9)  ( y2

 4y  4)  23  9  4

 (x2
 6x )  ( y2

 4y )  23

Group together the terms involving x

and those involving y.
 x2
 y2

 6x  4y  23

MATCHED PROBLEM 7 Find the center and radius of the circle with equation x2
  y2

  8x   10y    25.

�

ANSWERS TO MATCHED PROBLEMS

1. 13

2.

3.

4. B  (3, 3)

5. x2 + y2
 9 6. (x   3)2

  ( y   2)2
  9

7. (x   4)2
  ( y   5)2

  16; radius: 4, center: (4,  5)

x

y

 5

5

(3,  2)

(3, 1)

(6,  2)

(3,  5)

(0,  2)
C

 5

5 5

5

x

y

(0,  3)

(3, 0)

(0, 3)

( 3, 0)

x

y

 5

5 5

5

A   (4, 1)

B   ( 3,  5)

d(A, B)  185; d(A, M )  121.25  d(M, B)  1
2 d(A, B)M  (1

2,  2)  (0.5,  2);

1173
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29. Find x such that (x, 7) is 10 units from ( 4, 1).

30. Find x such that (x, 2) is 4 units from (3,  3).

31. Find y such that (2, y) is 3 units from ( 1, 4).

32. Find y such that (3, y) is 13 units from ( 9, 2).

In Problems 33–36, write a verbal description of the graph

and then write an equation that would produce the graph.

33.

34.

35.

36.

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

2-2 Exercises

1. State the Pythagorean theorem.

2. Explain how to calculate the distance between two points in the

plane if you know their coordinates.

3. Explain how to calculate the midpoint of a line segment if you

know the coordinates of the endpoints.

4. Explain how to find the standard form of the equation of the

circle with center (1, 5) and radius .

In Problems 5–12, find the distance between each pair of points

and the midpoint of the line segment joining the points. Leave

distance in radical form, if applicable.

5. (1, 0), (4, 4) 6. (0, 1), (3, 5)

7. (0,  2), (5, 10) 8. (3, 0), ( 2,  3)

9. ( 6,  4), (3, 4) 10. ( 5, 4), (6,  1)

11. ( 6,  3), ( 2,  1) 12. ( 5,  2), ( 1, 2)

In Problems 13–20, write the equation of a circle with the

indicated center and radius.

13. C  (0, 0), r  7 14. C  (0, 0), r  5

15. C  (2, 3), r  6 16. C  (5, 6), r  2

17. C  ( 4, 1), 18. C  ( 5, 6), 

19. C  ( 3,  4), 20. C  (4,  1), 

In Problems 21–26, write an equation for the given set of points.

Graph your equation.

21. The set of all points that are two units from the origin.

22. The set of all points that are four units from the origin.

23. The set of all points that are one unit from (1, 0).

24. The set of all points that are one unit from (0,  1).

25. The set of all points that are three units from ( 2, 1).

26. The set of all points that are two units from (3,  2).

27. Let M be the midpoint of A and B, where

A  (a1, a2), B  (1, 3), and M   ( 2, 6).

(A) Use the fact that  2 is the average of a1 and 1 to find a1.

(B) Use the fact that 6 is the average of a2 and 3 to find a2.

(C) Find d(A, M ) and d(M, B).

28. Let M be the midpoint of A and B, where

A  ( 3, 5), B  (b1, b2), and M  (4,  2).

(A) Use the fact that 4 is the average of  3 and b1 to find b1.

(B) Use the fact that  2 is the average of 5 and b2 to find b2.

(C) Find d(A, M ) and d(M, B).

r  15r  12

r  111r  17

12
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62.A parallelogram ABCD is shown in the figure.

(A) Find the midpoint of the line segment joining A and C.

(B) Find the midpoint of the line segment joining B and D.

(C) What can you conclude about the diagonals of the

parallelogram?

In Problems 63–68, find the standard form of the equation of the

circle that has a diameter with the given endpoints.

63. ( 4, 3), (6, 3)

64. (5,  1), (5, 7)

65. (4, 0), (0, 10)

66. ( 6, 0), (0,  8)

67. (11,  2), (3,  4)

68. ( 8, 9), (12, 15)

In Problems 69–72, find the standard form of the equation of the

circle with the given center that passes through the given point.

69. Center: (0, 5); point on circle: (2,  4)

70. Center: ( 3, 0); point on circle: (6, 1)

71. Center: ( 2, 9); point on circle: (8,  7)

72. Center: (7,  12); point on circle: (13, 8)

APPLICATIONS

73. SPORTS A singles court for lawn tennis is a rectangle 27 feet

wide and 78 feet long (see the figure). Points B and F are the mid-

points of the end lines of the court.

(A) Sketch a graph of the court with A at the origin of your

coordinate system, C on the positive y axis, and G on the positive x

axis. Find the coordinates of points A through G.

(B) Find d(B, D) and d(F, C ) to the nearest foot.

G

F

E

D

A

B
C

78 feet

18 feet

18 feet

27 feet

A   (0, 0)

B   (a, b) C   (a   c, b)

D   (c, 0)
x

y

In Problems 37–42, M is the midpoint of A and B. Find the

indicated point. Verify that d(A, M)  d(M, B)  d(A, B).

37. A  ( 4.3, 5.2), B   (9.6,  1.7), M  ?

38. A  (2.8,  3.5), B  ( 4.1, 7.6), M  ?

39. A  (25, 10), M  ( 5,  2), B  ?

40. M  (2.5, 3.5), B  (12, 10), A  ?

41. M  ( 8,  6), B  (2, 4), A  ?

42. A  ( 4,  2), M  ( 1.5,  4.5), B  ?

In Problems 43–52, find the center and radius of the circle with

the given equation. Graph the equation.

43. x2
 ( y  2)2

 9

44. (x  5)2
 y2

 16

45. (x  4)2
 (y  2)2

 7

46. (x  5)2
 (y  7)2

 15

47. x2
 6x  y2

 16

48. x2
 y2

 8y  9

49. x2
 y2

 6x  4y  36

50. x2
 y2

 2x  10y  55

51. 3x2
 3y2

 24x  18y  24  0

52. 2x2
 2y2

 8x  20y  30  0

In Problems 53–56, solve for y, producing two equations, and then

graph both of these equations in the same viewing window.

53. x2
 y2

 3

54. x2
 y2

 5

55. (x  3)2
 (y  1)2

 2

56. (x  2)2
 (y  1)2

 3

In Problems 57 and 58, show that the given points are the vertices

of a right triangle (see the Pythagorean theorem in Appendix B).

Find the length of the line segment from the midpoint of the

hypotenuse to the opposite vertex.

57. ( 3, 2), (1,  2), (8, 5)

58. ( 1, 3), (3, 5), (5, 1)

Find the perimeter (to two decimal places) of the triangle with the

vertices indicated in Problems 59 and 60.

59. ( 3, 1), (1,  2), (4, 3)

60. ( 2, 4), (3, 1), ( 3,  2)

61. If P1  (x1, y1), P2  (x2, y2) and 

show that (This is one step

in the proof of Theorem 2.)

d(P1, M )  d(M, P2)  
1
2d(P1, P2).

M  ax1  x2

2
, 

y1  y2

2
b,

1
2
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77. CONSTRUCTION Town B is located 36 miles east and 15 miles

north of town A (see the figure). A local telephone company wants to

position a relay tower so that the distance from the tower to town B

is twice the distance from the tower to town A.

(A) Show that the tower must lie on a circle, find the center and ra-

dius of this circle, and graph.

(B) If the company decides to position the tower on this circle at a

point directly east of town A, how far from town A should they

place the tower? Compute answer to one decimal place.

78. CONSTRUCTION Repeat Problem 77 if the distance from the

tower to town A is twice the distance from the tower to town B.

y

x
25

25

Tower
Town B

Town A

(x, y)
(36, 15)

74. SPORTS Refer to Problem 73. Find d(A, D) and d(C, G) to the

nearest foot.

75. ARCHITECTURE An arched doorway is formed by placing a cir-

cular arc on top of a rectangle (see the figure). If the doorway is

4 feet wide and the height of the arc above its ends is 1 foot, what is

the radius of the circle containing the arc? [Hint: Note that

(2, r  1) must satisfy x2
 y2

 r2.]

76. ENGINEERING The cross section of a rivet has a top that is an

arc of a circle (see the figure). If the ends of the arc are 12 millime-

ters apart and the top is 4 millimeters above the ends, what is the

radius of the circle containing the arc?

Rivet

x

Arched doorway

(2, r   1)

r

4 feet

y

2-3 Equations of a Line

Z Graphing Lines

Z Finding the Slope of a Line

Z Determining Special Forms of the Equation of a Line

Z Finding Slopes of Parallel or Perpendicular Lines

In this section, we consider one of the most basic geometric figures—a line. When we use

the term line in this book, we mean straight line. We will learn how to recognize and graph

a line and how to use information concerning a line to find its equation.

Z Graphing Lines

With your past experience in graphing equations in two variables, you probably remember

that first-degree equations in two variables, such as

have graphs that are lines. This fact is stated in Theorem 1.

y   3x  5  3x  4y  9  y   2
3x
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Z THEOREM 1 The Equation of a Line

If A, B, and C are constants, with A and B not both 0, and x and y are variables,

then the graph of the equation

Standard Form (1)

is a line. Any line in a rectangular coordinate system has an equation of this form.

Ax ⴙ By ⴝ C

Also, the graph of any equation of the form

(2)

where m and b are constants, is a line. Equation (2), which we will discuss in detail later, is

simply a special case of equation (1) for This can be seen by solving equation (1)

for y in terms of x:

To graph either equation (1) or (2), we plot any two points from the solution set and use a

straightedge to draw a line through these two points. The points where the line crosses the

axes are convenient to use and easy to find. The y intercept* is the y coordinate of the point

where the graph crosses the y axis, and the x intercept is the x coordinate of the point where

the graph crosses the x axis. To find the y intercept, let x = 0 and solve for y; to find the x

intercept, let y = 0 and solve for x. It is often advisable to find a third point as a check-

point. All three points must lie on the same line or a mistake has been made.

B  0y   
A

B
 x  

C

B

B  0.

y ⴝ mx ⴙ b

*If the x intercept is a and the y intercept is b, then the graph of the line passes through the points (a, 0) and (0, b).

It is common practice to refer to both the numbers a and b and the points (a, 0) and (0, b) as the x and y intercepts

of the line.

EXAMPLE 1 Using Intercepts to Graph a Line

Graph the equation 3x  4y  12.

SOLUTION Find intercepts, a third checkpoint (optional), and draw a line through the two (three) points

(Fig. 1).

x

y

 5

105 5

5

(8, 3)

(4, 0)

(0,  3)

Check-
point

x intercept is 4
y intercept is  3

Z Figure 1

x 0 4 8

y  3 0 3
�

MATCHED PROBLEM 1 Graph the equation 

�

4x  3y  12.



Z Finding the Slope of a Line

If we take two different points P1   (x1, y1) and P2   (x2, y2) on a line, then the ratio of

the change in y to the change in x as we move from point P1 to point P2 is called the slope

of the line. Roughly speaking, slope is a measure of the “steepness” of a line. Sometimes

the change in x is called the run and the change in y is called the rise.
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Technology Connections

To solve Example 1 on a graphing calculator, we first solve

the equation for y:

To find the y intercept of this line, we graph the preceding

equation, press TRACE, and then enter 0 for x [Fig. 2(a)].

The displayed y value is the y intercept.

 y ⴝ 0.75x ⴚ 3

 ⴚ4y ⴝ ⴚ3x ⴙ 12

 3x ⴚ 4y ⴝ 12

The x intercept can be found by using the zero option on the

CALC menu. After selecting the zero option, you will be asked

to provide three x values: a left bound (a number less than

the zero), a right bound (a number greater than the zero), and

a guess (a number between the left and right bounds). You

can enter the three values from the keypad, but most find it

easier to use the cursor. The zero or x intercept is displayed at

the bottom of the screen [Fig. 2(b)].

(a) y intercept (b) x intercept

Z Figure 2

 5

 5

5

10

 5

 5

5

10

For a horizontal line, y doesn’t change as x changes, so its slope is 0. On the other hand,

for a vertical line, x doesn’t change as y changes, so its slope is not defined:

For a vertical line, slope is not defined.

y2  y1

x2  x1

 
y2  y1

0

Z DEFINITION 1 Slope of a Line

If a line passes through two distinct points P1   (x1, y1) and P2   (x2, y2), then

its slope m is given by the formula

  
Vertical change (rise)

Horizontal change (run)

 m  
y2  y1

x2  x1

  x1  x2

x

y

P2   (x2, y2)

P1   (x1, y1)

(x2, y1)
x2   x1

Run

y2   y1

Rise
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In general, the slope of a line may be positive, negative, 0, or not defined. Each of these

cases is interpreted geometrically as shown in Table 1.

Table 1 Geometric Interpretation of Slope

Line Slope Example

Rising as x moves from left to right Positive

y values are increasing

Falling as x moves from left to right Negative

y values are decreasing

Horizontal 0

y values are constant

Vertical Not defined

x values are constant

x

y

x

y

x

y

x

y

In using the formula to find the slope of the line through two points, it doesn’t matter

which point is labeled P1 or P2, because changing the labeling will change the sign in both

the numerator and denominator of the slope formula:

For example, the slope of the line through the points (3, 2) and (7, 5) is

In addition, it is important to note that the definition of slope doesn’t depend on the

two points chosen on the line as long as they are distinct. This follows from the fact that

the ratios of corresponding sides of similar triangles are equal (Fig. 3).

5  2

7  3
 

3

4
 

 3

 4
 

2  5

3  7

y2  y1

x2  x1

 

y1  y2

x1  x2

a

b

a 

b 

b

a
m  

b 

a 
 

Z Figure 3

x

y

 5

5 5

5

x

y

 5

5 5

5

(a) (b)

Z Figure 4

EXAMPLE 2 Finding Slopes

For each line in Figure 4, find the run, the rise, and the slope. (All the horizontal and ver-

tical line segments have integer lengths.)



(C) (D) 
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x

y

 5

5 5

5

x

y

 5

5 5

5

(a) (b)

Z Figure 5

�

In Figure 4(a), the run is 3, the rise is 6 and the slope is In Figure 4(b), the run is 6,

the rise is and the slope is �
 4
6   

2
3. 4

6
3  2.SOLUTION

MATCHED PROBLEM 2 For each line in Figure 5, find the run, the rise, and the slope. (All the horizontal and ver-

tical line segments have integer lengths.)

EXAMPLE 3 Finding Slopes

Sketch a line through each pair of points and find the slope of each line.

(A) ( 3,  4), (3, 2) (B) 

(C) (D) (2, 4), (2,  3)( 4, 2), (3, 2)

( 2, 3), (1,  3)

SOLUTIONS (A) (B) 

x

y

 5

5 5

5

(3, 2)

( 3,  4)

y

x

 5

5 5

5

(1,  3)

( 2, 3)

m  

 3  3

1  ( 2)
 

 6

3
  2m  

2  ( 4)

3  ( 3)
 

6

6
 1

slope is not defined �

m  

 3  4

2  2
 

 7

0
;m  

2  2

3  ( 4)
 

0

7
 0

x

y

 5

5 5

5

(3, 2)( 4, 2)

x

y

 5

5 5

5

(2, 4)

(2,  3)
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MATCHED PROBLEM 3 Find the slope of the line through each pair of points. Do not graph.

(A) (B) 

(C) (D)

�

( 3, 2), ( 3,  1)(0, 4), (2,  4)

( 2,  1), (1, 2)( 3,  3), (2,  3)

Z Determining Special Forms of the Equation of a Line

We start by investigating why is called the slope–intercept form for a line.y  mx  b

(A) Graph for and 5 simultaneously in the same coor-

dinate system. Verbally describe the geometric significance of b.

(B) Graph for and 2 simultaneously in the same

coordinate system. Verbally describe the geometric significance of m.

m   2,  1, 0, 1,y  mx  1

b   5,  3, 0, 3,y  x  bZZZ EXPLORE-DISCUSS 1

As you see from the preceding exploration, constants m and b in y = mx  b have spe-

cial geometric significance.

If we let x = 0, then y = b and the graph of y = mx  b crosses the y axis at (0, b).

So the constant b is the y intercept. For example, the y intercept of the graph of y = 2x – 7

is  7.

We have already seen that the point (0, b) is on the graph of y = mx  b. If we let x = 1,

then it follows that the point (1, m  b) is also on the graph (Fig. 6). Because the graph of

y = mx  b is a line, we can use these two points to compute the slope:

So m is the slope of the line with equation y = mx  b.

Slope  
y2  y1

x2  x1

 

(m  b)  b

1  0
 m

Z Figure 6

f(x)

x

(1, m   b)
(0, b)

(x2, y2) ⴝ (1, m ⴙ b)

(x1, y1) ⴝ (0, b)

Z THEOREM 2 Slope–Intercept Form

An equation of the line with slope m and y intercept b is

which is called the slope–intercept form.

 y  mx  b

x

y

y intercept
b

Run

Run
Rise

Rise
m

y   mx   b

 

EXAMPLE 4 Using the Slope–Intercept Form

(A) Write the slope–intercept form of a line with slope and y intercept 

(B) Find the slope and y intercept, and graph y  3
4 
x  1.

 5.2
3



In Example 4 we found the equation of a line with a given slope and y intercept. It is

also possible to find the equation of a line passing through a given point with a given slope

or to find the equation of a line containing two given points.

Suppose a line has slope m and passes through the point (x1, y1). If (x, y) is any other

point on the line (Fig. 8), then

that is,

(3)

Because the point (x1, y1) also satisfies equation (3), we can conclude that equation (3) is an

equation of a line with slope m that passes through (x1, y1).

y  y1  m(x  x1)

y  y1

x  x1

 m
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SOLUTIONS (A) Substitute and in y = mx  b to obtain 

(B) The y intercept of is and the slope is If we start at the point (0,  1)

and move four units to the right (run), then the y coordinate of a point on the line

must move up three units (rise) to the point (4, 2). Drawing a line through these 

two points produces the graph shown in Figure 7.

3
4. 1y  3

4 
x  1

y  2
3x  5.b   5m  2

3

MATCHED PROBLEM 4 Write the slope–intercept form of the line with slope and y intercept  2. Graph the

equation.

�

5
4

x

y

 5

5 5

5

3

4

Z Figure 7

y

x

(x, y)

(x, y1)
(x1, y1)

Z Figure 8

Z THEOREM 3 Point–Slope Form

An equation of the line with slope m that passes through (x1, y1) is

which is called the point–slope form.

y  y1  m(x  x1)

If we are given the coordinates of two points on a line, we can use the given coordi-

nates to find the slope and then use the point–slope form with either of the given points to

find the equation of the line.

�
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EXAMPLE 5 Point–Slope Form

(A) Find an equation for the line that has slope and passes through the point 

Write the final answer in the form 

(B) Find an equation for the line that passes through the two points and 

Write the final answer in the form y  mx  b.

( 8, 5).(4,  1)

Ax  By  C.

( 2, 1).2
3

(A) If and then

Substitute and 

Multiply both sides by 3.

Distribute.

Write in standard form.

or

(B) First use the slope formula to find the slope of the line:

m  
y2  y1

x2  x1

 

5  ( 1)

 8  4
 

6

 12
  

1

2

2x  3y   7  2x  3y  7

 3y  3  2x  4

 3( y  1)  2(x  2)

 y  1  
2

3
 [x  ( 2)]

m ⴝ
2
3.x1 ⴝ ⴚ2,y1 ⴝ 1, y  y1  m(x  x1)

(x1, y1)  ( 2, 1),m  2
3SOLUTIONS

Substitute 

and in the slope formula.y2 ⴝ 5

x2 ⴝ ⴚ8,y1 ⴝ ⴚ1,x1 ⴝ 4,

Now we choose and proceed as in part A:

Substitute and 

Distribute on right side.

Subtract 1 from both sides.

You may want to verify that choosing (x1, y1) = ( 8, 5), the other given point, produces the

same equation. �

 y   
1

2
 x  1

 y  1   
1

2
 x  2

y ⴚ (ⴚ1) ⴝ y ⴙ 1; y  ( 1)   
1

2
 (x  4)

m ⴝ ⴚ
1

2
.y1 ⴝ ⴚ1,x1 ⴝ 4, y  y1  m(x  x1)

(x1, y1)  (4,  1)

MATCHED PROBLEM 5 (A) Find an equation for the line that has slope and passes through the point 

Write the final answer in the form 

(B) Find an equation for the line that passes through the two points and 

Write the final answer in the form 

�

y  mx  b.

(7,  3).( 3, 1)

Ax  By  C.

(3,  2). 
2
5

The simplest equations of lines are those for horizontal and vertical lines. Consider the

following two equations:

or (4)

or (5)

In equation (4), y can be any number as long as So the graph of is a verti-

cal line crossing the x axis at (a, 0). In equation (5), x can be any number as long as y  b.

x  ax  a.

y  b 0x  y  b

x  a x  0y  a



Graph the line and the line 

�

The various forms of the equation of a line that we have discussed are summarized in Table 2

for convenient reference.

y   2.x  4
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Z THEOREM 4 Vertical and Horizontal Lines

Equation Graph

x   a (short for x  0y  a) Vertical line through (a, 0)

(Slope is undefined.)

y  b (short for 0x  y  b) Horizontal line through (0, b)

(Slope is 0.)

x

y x   a

y   bb

a

EXAMPLE 6 Graphing Horizontal and Vertical Lines

Graph the line and the line y  3.x   2

SOLUTION

x

 5

5 5

5

y

y   3

x    2

�

MATCHED PROBLEM 6

Table 2 Equations of a Line

Standard form Ax  By  C A and B not both 0

Slope–intercept form y  mx  b Slope: m; y intercept: b

Point–slope form y  y1  m(x  x1) Slope: m; Point: (x1, y1)

Horizontal line y  b Slope: 0

Vertical line x  a Slope: Undefined

So the graph of is a horizontal line crossing the y axis at (0, b). We summarize these

results as follows:

y  b
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Z Finding Slopes of Parallel or Perpendicular Lines

From geometry, we know that two vertical lines are parallel to each other and that a hori-

zontal line and a vertical line are perpendicular to each other. How can we tell when two

nonvertical lines are parallel or perpendicular to each other? Theorem 5, which we state

without proof, provides a convenient test.

Z THEOREM 5 Parallel and Perpendicular Lines

Given two nonvertical lines L1 and L2 with slopes m1 and m2, respectively, then

if and only if

if and only if  m1m2 
  1 L1 ⬜ L2

 m1  m2 L1 储 L2

The symbols and mean, respectively, “is parallel to” and “is perpendicular to.” In

the case of perpendicularity, the condition m1m2 =  1 also can be written as

or

Therefore,

Two nonvertical lines are perpendicular if and only if their slopes are the

negative reciprocals of each other.

m1   
1

m2

m2   
1

m1

⬜储

EXAMPLE 7 Parallel and Perpendicular Lines

Given the line L: 3x   2y = 5 and the point P  ( 3, 5), find an equation of a line through

P that is

(A) Parallel to L (B) Perpendicular to L

Write the final answers in the slope–intercept form y = mx  b.

SOLUTIONS First, find the slope of L by writing 3x  2y = 5 in the equivalent slope–intercept form 

y = mx  b:

So the slope of L is The slope of a line parallel to L is the same, and the slope of a3
2,

3
2.

 y  3
2 
x  5

2

  2y   3x  5

 3x  2y  5

line perpendicular to L is We now can find the equations of the two lines in parts 

A and B using the point–slope form.

(A) Parallel (B) Perpendicular 

Substitute for x1, y1, and m.

Distribute.

Add 5 to both sides.

� y   2
3x  3 y  3

2 
x  19

2

 y  5   2
3x  2 y  5  3

2 
x  9

2

 y  5   2
3 
(x  3) y  5  3

2 
(x  3)

 y  y1  m(x  x1) y  y1  m(x  x1)

(m   2
3):(m  3

2):

 
2
3.



Given the line L: 4x  2y = 3 and the point P = (2,  3), find an equation of a line through

P that is

(A) Parallel to L (B) Perpendicular to L

Write the final answers in the slope–intercept form y = mx  b.

�
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MATCHED PROBLEM 7

EXAMPLE 8 Cost Analysis

A hot dog vendor pays $25 per day to rent

a pushcart and $1.25 for the ingredients in

one hot dog.

(A) Find the cost of selling x hot dogs in 

1 day.

(B) What is the cost of selling 200 hot

dogs in 1 day?

(C) If the daily cost is $355, how many hot

dogs were sold that day?

SOLUTIONS (A) The rental charge of $25 is the vendor’s fixed cost—a cost that is accrued every day

and does not depend on the number of hot dogs sold. The cost of the ingredients for

x hot dogs is $1.25x. This is the vendor’s variable cost—a cost that depends on the

number of hot dogs sold. The total cost for selling x hot dogs is

Total Costⴝ Variable Cost ⴙ Fixed Cost

(B) The cost of selling 200 hot dogs in 1 day is

(C) The number of hot dogs that can be sold for $355 is the solution of the equation

Subtract 25 from each side.

Divide both sides by 1.25.

Simplify.

�  264 hot dogs

 x  
330

1.25

 1.25x  330

 1.25x  25  355

C(200)  1.25(200)  25  $275

C(x)  1.25x  25

MATCHED PROBLEM 8 It costs a pretzel vendor $20 per day to rent a cart and $0.75 for each pretzel.

(A) Find the cost of selling x pretzels in 1 day.

(B) What is the cost of selling 150 pretzels in 1 day?

(C) If the daily cost is $275, how many pretzels were sold that day?

�
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Technology Connections

A graphing calculator can be used to solve equations like

1.25x ⴙ 25 ⴝ 355 (see Example 8). First enter both sides

of the equation in the equation editor [Fig. 9(a)] and choose

window variables [Fig. 9(b)] so that the graphs of both equa-

tions appear on the screen. There is no “right” choice for the

window variables. Any choice that displays the intersection

point will do. (Here is how we chose our window variables:

We chose Ymax ⴝ 600 to place the graph of the horizontal

line below the top of the window. We chose Ymin ⴝ ⴚ200 to

place the graph of the x axis above the text displayed at the

bottom of the screen. Since x cannot be negative, we chose

Xminⴝ 0. We used trial and error to determine a reasonable

choice for Xmax.) Now choose intersect on the CALC menu,

and respond to the prompts from the calculator. The coordi-

nates of the intersection point of the two graphs are shown

at the bottom of the screen [Fig. 9(c)].

Z Figure 9

(a) (b)

(c)

 200

0

600

400

ANSWERS TO MATCHED PROBLEMS

1. 2. (A) Run 5, rise 4, 

(B) Run 3, rise  6, 

3. (A) m  0 (B) m  1

(C) m   4 (D) m is not defined

4. 5. (A) 2x 5y   4 (B) 

6.

7. (A) y   2x  1 (B) 

8. (A) C(x) 0.75x  20 (B) $132.50 (C) 340 pretzels

y  
1
2 
x  4

x

 5

5 5

5

y

y    2

x   4

 5

5

5

5

4

 5
x

y

y   
2
5 x  

1
5y  

5
4 
x  2

slope   6
3   2

slope  4
5

 5

5 5
x

y
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10. 

11. 

12. 

In Problems 13–18, use the graph of each line to find the x intercept,

y intercept, and slope, if they exist. Write the equation of each line,

using the slope–intercept form whenever possible.

13. 

x

y

⫺5

5⫺5

5

x

y

⫺5

5⫺5

5

x

y

⫺5

5⫺5

5

x

y

⫺6

6⫺6

6

2-3 Exercises

1. Explain how to find the x and y intercepts of a line if its equa-

tion is written in standard form.

2. Given the graph of a line, explain how to determine whether

the slope is negative.

3. Explain why y ⫽ mx ⫹ b is called the slope–intercept form.

4. Explain why y ⫺ y1 ⫽ m(x ⫺ x1) is called the point–slope

form.

5. Given the equations of two lines in standard form, explain how

to determine whether the lines are parallel.

6. Given the equations of two lines in standard form, explain how

to determine whether the lines are perpendicular.

In Problems 7–12, use the graph of each line to find the rise, run,

and slope. Write the equation of each line in the standard form

(All the horizontal and vertical line

segments have integer lengths.)

7. 

8. 

9. 

x

y

⫺5

5⫺5

5

x

y

⫺5

5⫺5

5

x

y

⫺5

5⫺5

5

Ax ⫹ By ⫽ C, A ⱖ 0.



14. 

15. 

16. 

17. 

18. 

Graph each equation in Problems 19–32, and indicate the slope, if

it exists.

19. 20.

21. 22.

23. 4x  2y  0 24. 6x  2y  0

y  2
3 
x  3y   3

4 
x

y   3
2 
x  6y   3

5 
x  4

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5
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25. 4x  5y   24 26. 6x  7y   49

27. 28.

29. x   3 30. y   2

31. y  3.5 32. x  2.5

In Problems 33–38, find an equation of the line with the indicated

slope and y intercept, and write it in the form ,

where A, B, and C are integers.

33. Slope   3; y intercept  7

34. Slope  4; y intercept   10

35.

36.

37. Slope  0; 

38. Slope  0; y intercept  0

In Problems 39–44, find the equation of the line passing through

the given point with the given slope. Write the final answer in the

slope–intercept form y  mx  b.

39. (0, 3); m  2 40. (4, 0); m 3

41. 42.

43. 44.

In Problem 45–58, write the equation of the line that contains the

indicated point(s), and/or has the given slope or intercepts; use

either the slope–intercept form y  mx  b, or the form x  c.

45. (0, 4); m  3 46. (2, 0); m 2

47. 48.

49. (1, 6); (5,  2) 50. ( 3, 4); (6, 1)

51. ( 4, 8); (2, 0) 52. (2,  1); (10, 5)

53. ( 3, 4); (5, 4) 54. (0,  2); (4,  2)

55. (4, 6); (4,  3) 56. ( 3, 1); ( 3,  4)

57. x intercept  4; 58. x intercept  4;

y intercept 3 y intercept  5

In Problems 59–66, write an equation of the line that contains the

indicated point and meets the indicated condition(s). Write the

final answer in the standard form 

59. ( 3, 4); parallel to y  3x  5

60. ( 4, 0); parallel to y   2x  1

61. (2,  3); perpendicular to 

62. ( 2,  4); perpendicular to 

63. (5, 0); parallel to 3x  2y  4

64. (3, 5); parallel to 3x  4y  8

65. (0,  4); perpendicular to x 3y  9

66. ( 2, 4); perpendicular to 4x 5y  0

y  2
3 
x  5

y   1
3 
x

Ax  By  C, A  0.

( 4,  2); m  1
2( 5, 4); m   2

5

(2, 1); m  4
3( 2,  3); m   1

2

(2,  3); m   4
5( 5, 4); m  3

2

y intercept  2
3

y intercept  11
5Slope   5

4;

y intercept   1
3Slope  7

2;

Ax  By  C, A  0

y

6
 

x

5
 1

y

8
 

x

4
 1



Problems 67–72 refer to the quadrilateral with vertices A (0, 2),

B (4,  1), C (1,  5), and D ( 3,  2).

67. Show that 68. Show that 

69. Show that 70. Show that 

71. Find an equation of the perpendicular bisector* of AD.

72. Find an equation of the perpendicular bisector of AB.

73. Prove that if a line L has x intercept (a, 0) and y intercept (0, b),

then the equation of L can be written in the intercept form

74. Prove that if a line L passes through P1  (x1, y1) and

P2  (x2, y2), then the equation of L can be written in the two-

point form

( y  y1)(x2  x1)  ( y2  y1)(x  x1)

Problems 75–80 are calculus related. Recall

that a line tangent to a circle at a point is

perpendicular to the radius drawn to that

point (see the figure). Find the equation of the

line tangent to the circle at the indicated point.

Write the final answer in the standard form

Ax By C, A 0. Graph the circle and the

tangent line on the same coordinate system.

75. x2
 y2

 25, (3, 4) 76. x2
 y2

 100, ( 8, 6)

77. x2
 y2

 50, (5,  5) 78. x2
 y2

 80, ( 4,  8)

79. (x  3)2
 ( y  4)2

 169, (8,  16)

80. (x  5)2
 ( y  9)2

 289, ( 13,  6)

APPLICATIONS

81. BOILING POINT OF WATER At sea level, water boils when it

reaches a temperature of 212°F. At higher altitudes, the atmo-

spheric pressure is lower and so is the temperature at which water

boils. The boiling point B in degrees Fahrenheit at an altitude of x

feet is given approximately by

B  212  0.0018x

(A) Complete Table 3.

x

a
 

y

b
 1  a, b  0

AD ⬜ DC.AB ⬜ BC.

DA 储 CB.AB 储 DC.
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(A) Complete Table 4.

*The perpendicular bisector of a line segment is a line perpendicular to

the segment and passing through its midpoint.

x 0 5,000 10,000 15,000 20,000 25,000 30,000

B

Table 3

(B) Based on the information in the table, write a brief verbal descrip-

tion of the relationship between altitude and the boiling point of water.

82. AIR TEMPERATURE As dry air moves upward, it expands and

cools. The air temperature A in degrees Celsius at an altitude of x

kilometers is given approximately by

A  25  9x

(B) Based on the information in the table, write a brief verbal

description of the relationship between altitude and air temperature.

83. COST ANALYSIS A doughnut shop has a fixed cost of $124 per

day and a variable cost of $0.12 per doughnut. Find the total daily

cost of producing x doughnuts. How many doughnuts can be pro-

duced for a total daily cost of $250?

84. COST ANALYSIS A small company manufactures picnic tables.

The weekly fixed cost is $1,200 and the variable cost is $45 per table.

Find the total weekly cost of producing x picnic tables. How many

picnic tables can be produced for a total weekly cost of $4,800?

85. PHYSICS Hooke’s law states that the relationship between the

stretch s of a spring and the weight w causing the stretch is linear 

(a principle upon which all spring scales are constructed). For a par-

ticular spring, a 5-pound weight causes a stretch of 2 inches, while

with no weight the stretch of the spring is 0.

(A) Find a linear equation that expresses s in terms of w.

(B) What is the stretch for a weight of 20 pounds?

(C) What weight will cause a stretch of 3.6 inches?

86. PHYSICS The distance d between a fixed spring and the floor is

a linear function of the weight w attached to the bottom of the

spring. The bottom of the spring is 18 inches from the floor when

the weight is 3 pounds and 10 inches from the floor when the

weight is 5 pounds.

(A) Find a linear equation that expresses d in terms of w.

(B) Find the distance from the bottom of the spring to the floor if no

weight is attached.

(C) Find the smallest weight that will make the bottom of the spring

touch the floor. (Ignore the height of the weight.)

87. PHYSICS The two most widespread temperature scales are

Fahrenheit* (F) and Celsius† (C). It is known that water freezes at

32°F or 0°C and boils at 212°F or 100°C.

(A) Find a linear equation that expresses F in terms of C.

(B) If a European family sets its house thermostat at 20°C, what is

the setting in degrees Fahrenheit? If the outside temperature in Mil-

waukee is 86°F, what is the temperature in degrees Celsius?

88. PHYSICS Two other temperature scales, used primarily by sci-

entists, are Kelvin‡ (K) and Rankine** (R). Water freezes at 273 K

or 492°R and boils at 373 K or 672°R. Find a linear equation that

expresses R in terms of K.

89. OCEANOGRAPHY After about 9 hours of a steady wind, the

height of waves in the ocean is approximately linearly related to

x 0 1 2 3 4 5

A

Table 4

*Invented in 1724 by Daniel Gabriel Fahrenheit (1686–1736), a German

physicist.
†Invented in 1742 by Anders Celsius (1701–1744), a Swedish astronomer.
‡Invented in 1848 by Lord William Thompson Kelvin (1824–1907), a

Scottish mathematician and physicist. Note that the degree symbol “ ”

is not used with degrees Kelvin.

**Invented in 1859 by John Maquorn Rankine (1820–1872), a Scottish

engineer and physicist.

°



the duration of time the wind has been blowing. During a storm

with 50-knot winds, the wave height after 9 hours was found to

be 23 feet, and after 24 hours it was 40 feet.

(A) If t is time after the 50-knot wind started to blow and h is the

wave height in feet, write a linear equation that expresses height h

in terms of time t.

(B) How long will the wind have been blowing for the waves to be

50 feet high?

Express all calculated quantities to three significant digits.

90. OCEANOGRAPHY Refer to Problem 89. A steady 25-knot wind

produces a wave 7 feet high after 9 hours and 11 feet high after 25

hours.

(A) Write a linear equation that expresses height h in terms of time t.

(B) How long will the wind have been blowing for the waves to be

20 feet high?

91. DEMOGRAPHICS Life expectancy in the United States has in-

creased from about 49.2 years in 1900 to about 77.3 years in 2000. The

growth in life expectancy is approximately linear with respect to time.

(A) If L represents life expectancy and t represents the number of

years since 1900, write a linear equation that expresses L in terms of t.

(B) What is the predicted life expectancy in the year 2020?

Express all calculated quantities to three significant digits.
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92. DEMOGRAPHICS The average number of persons per house-

hold in the United States has been shrinking steadily for as long as

statistics have been kept and is approximately linear with respect to

time. In 1900, there were about 4.76 persons per household and in

2000, about 2.59.

(A) If N represents the average number of persons per household

and t represents the number of years since 1900, write a linear

equation that expresses N in terms of t.

(B) What is the predicted household size in the year 2025?

Express all calculated quantities to three significant digits.

93. CITY PLANNING The design of a new subdivision calls for three

parallel streets connecting First Street with Main Street (see the fig-

ure). Find the distance d1 (to the nearest foot) from Avenue A to

Avenue B.

94. CITY PLANNING Refer to Problem 93. Find the distance d2

(to the nearest foot) from Avenue B to Avenue C.

5,000

d2
d1

5,000

0

Avenue A

Avenue B

Avenue C

D
is

ta
n

c
e
 i
n

 f
e
e
t

Distance in feet

Main Street

First Street

2-4 Linear Equations and Models

Z Slope as a Rate of Change

Z Linear Models

Z Linear Regression

Mathematical modeling is the process of using mathematics to solve real-world problems.

This process can be broken down into three steps (Fig. 1):

Step 1. Construct the mathematical model, a mathematics problem that, when solved, will

provide information about the real-world problem.



Step 2. Solve the mathematical model.

Step 3. Interpret the solution to the mathematical model in terms of the original real-world

problem.
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2. Solve

1. C
onstruct

3.
 In

te
rp

re
t

Mathematical
solution

Mathematical
model

Real-world
problem

Z Figure 1

In more complex problems, this cycle may have to be repeated several times to obtain the

required information about the real-world problem. In this section, we discuss one of the

simplest mathematical models, a linear equation. With the aid of a graphing calculator,

we also learn how to analyze a linear model based on real-world data.

Z Slope as a Rate of Change

If x and y are related by the equation y  mx  b, where m and b are constants with m 0,

then x and y are linearly related. If (x1, y1) and (x2, y2) are two distinct points on this line,

then the slope of the line is

(1)

In applications, ratio (1) is called the rate of change of y with respect to x. Since the slope of

a line is unique, the rate of change of two linearly related variables is constant. Here are some

examples of familiar rates of change: miles per hour, revolutions per minute, price per pound,

passengers per plane, etc. If y is distance and x is time, then the rate of change is also referred

to as speed or velocity. If the relationship between x and y is not linear, ratio (1) is called the

average rate of change of y with respect to x.

m  
y2  y1

x2  x1

 
Change in y

Change in x

EXAMPLE 1 Estimating Body Surface Area

Appropriate doses of medicine for both animals and humans are often based on body sur-

face area (BSA). Since weight is much easier to determine than BSA, veterinarians use the

weight of an animal to estimate BSA. The following linear equation expresses BSA for

canines in terms of weight*:

a  16.21w  375.6

where a is BSA in square inches and w is weight in pounds.

(A) Interpret the slope of the BSA equation.

(B) What is the effect of a 1-pound increase in weight?

SOLUTIONS (A) The rate of change BSA with respect to weight is 16.21 square inches per pound.

(B) Since slope is the ratio of rise to run, increasing w by 1 pound (run) increases a by

16.21 square inches (rise). �

*Based on data from Veterinary Oncology Consultants, PTY LTD.



Z Linear Models

We can use our experience with lines in Section 2-3 to construct linear models for applica-

tions involving linearly related quantities. This process is best illustrated through examples.
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MATCHED PROBLEM 1 The following linear equation expresses BSA for felines in terms of weight:

a ⫽ 28.55w ⫹ 118.7

where a is BSA in square inches and w is weight in pounds.

(A) Interpret the slope of the BSA equation.

(B) What is the effect of a 1-pound increase in weight?

�

Business Markup Policy

A sporting goods store sells a fishing rod that cost $60 for $82 and a pair of cross-country

ski boots that cost $80 for $106.

(A) If the markup policy of the store for items that cost more than $30 is assumed to be

linear, find a linear model that express the retail price P in terms of the wholesale

cost C.

(B) What is the effect on the price of a $1 increase in cost for any item costing over $30?

(C) Use the model to find the retail price for a pair of running shoes that cost $40.

EXAMPLE 2

SOLUTIONS (A) If price P is linearly related to cost C, then we are looking for the equation of a line

whose graph passes through (C1, P1) ⫽ (60, 82) and (C2, P2) ⫽ (80, 106). We find

the slope, and then use the point–slope form to find the equation.

(B) If the cost is increased by $1, then the price will increase by 1.2(1) ⫽ $1.20.

(C) P ⫽ 1.2(40) ⫹ 10 ⫽ $58. �

 P ⫽ 1.2C ⫹ 10  C 7 30

 P ⫺ 82 ⫽ 1.2C ⫺ 72

 P ⫺ 82 ⫽ 1.2(C ⫺ 60)

 P ⫺ P1 ⫽ m(C ⫺ C1)

 m ⫽
P2 ⫺ P1

C2 ⫺ C1

⫽
106 ⫺ 82

80 ⫺ 60
⫽

24

20
⫽ 1.2

Substitute C1ⴝ 60, P1ⴝ 82, C2ⴝ 80, 

and P2ⴝ 106 into the slope formula.

Substitute P1 ⴝ 82, C1 ⴝ 60, and 

m ⴝ 1.2 into the point–slope formula.

Distribute

Add 82 to both sides.

Linear model

MATCHED PROBLEM 2 The sporting goods store in Example 2 is celebrating its twentieth anniversary with a 20%

off sale. The sale price of a mountain bike is $380. What was the presale price of the bike?

How much did the bike cost the store?

�

The wholesale supplier for the sporting goods store in Example 2 offers the store a

15% discount on all items. The store decides to pass on the savings from this discount

to the consumer. Which of the following markup policies is better for the consumer?

1. Apply the store’s markup policy to the discounted cost.

2. Apply the store’s markup policy to the original cost and then reduce this price

by 15%.

Support your choice with examples.

ZZZ EXPLORE-DISCUSS 1



Table 1

Concentration Ethylene Glycol Propylene Glycol

20% 15°F 17°F

50%  36°F  28°F

(A) Assume that the concentration and the freezing point for ethylene glycol are linearly

related. Construct a linear model for the freezing point.

(B) Interpret the slope in part (A).

(C) What percentage (to one decimal place) of ethylene glycol will result in a freezing

point of  10°F?
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Mixing Antifreeze

Ethylene glycol and propylene glycol are liquids used in antifreeze and deicing solutions.

Ethylene glycol is listed as a hazardous chemical by the Environmental Protection Agency,

while propylene glycol is generally regarded as safe. Table 1 lists solution concentration

percentages and the corresponding freezing points for each chemical.

EXAMPLE 3

SOLUTIONS (A) We begin by defining appropriate variables:

Let

p  percentage of ethylene glycol in the antifreeze solution

f  freezing point of the antifreeze solution

From Table 1, we see that (20, 15) and (50, ⴚ36) are two points on the line relating

p and f. The slope of this line is

and its equation is

Linear model

(B) The rate of change of the freezing point with respect to the percentage of ethylene

glycol in the antifreeze solution is  1.7 degrees per percentage of ethylene glycol.

Increasing the amount of ethylene glycol by 1% will lower the freezing point by 1.7°F.

(C) We must find p when f is  10°.

Add 10 ⴙ 1.7p to both sides.

Divide both sides by 1.7.

� p  
59

1.7
 34.7%

 1.7p  59

  10   1.7p  49

 f   1.7p  49

 f   1.7p  49

 f  15   1.7(  p  20)

m  
f2  f1

p2  p1

 

15  (ⴚ36)

20  50
 

51

 30
  1.7

MATCHED PROBLEM  3 Refer to Table 1.

(A) Assume that the concentration and the freezing point for propylene glycol are linearly

related. Construct a linear model for the freezing point.

(B) Interpret the slope in part (A).

(C) What percentage (to one decimal place) of propylene glycol will result in a freezing

point of  15°F?

�
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Z Linear Regression

In real-world applications we often encounter numerical data in the form of a table. The

very powerful mathematical tool, regression analysis, can be used to analyze numerical data.

In general, regression analysis is a process for finding an equation that provides a useful

model for a set of data points. Graphs of equations are often called curves and regression

analysis is also referred to as curve fitting. In Example 5, we use a linear model obtained

by using linear regression on a graphing calculator.

Underwater Pressure

The pressure at sea level is 14.7 pounds per

square inch. As you descend into the ocean,

the pressure increases linearly at a rate of

about 0.445 pounds per square foot.

(A) Find the pressure p at a depth of d feet.

(B) If a diver’s equipment is rated to be

safe up to a pressure of 40 pounds per

square foot, how deep (to the nearest

foot) is it safe to use this equipment?

EXAMPLE 4

SOLUTIONS (A) Let p ⫽ md ⫹ b. At the surface, d ⫽ 0 and p ⫽ 14.7, so b ⫽ 14.7. The slope m is

the given rate of change, m ⫽ 0.445. So the pressure at a depth of d feet is

p ⫽ 0.445d ⫹ 14.7

(B) The safe depth is the solution of the equation

Subtract 14.7 from each side.

Divide both sides by 0.445.

Simplify.

� ⬇ 57 feet

 d ⫽
25.3

0.445

 0.445d ⫽ 25.3

 0.445d ⫹ 14.7 ⫽ 40

MATCHED PROBLEM 4 The rate of change of pressure in fresh water is 0.432 pounds per square foot. Repeat Exam-

ple 4 for a body of fresh water.

�

Technology Connections

Figure 2 shows the solution of Example 4(B) on a graphing

calculator.

Z Figure 2

y1 ⫽ 0.445x ⫹ 14.7, y2⫽ 40

⫺20

0

80

100
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Diamond Prices

Prices for round-shaped diamonds taken from an online trader are given in Table 2.

(A) A linear model for the data in Table 2 is given by

p ⫽ 7,380c ⫺ 2,530 (2)

where p is the price of a diamond weighing c carats. (We will discuss the source of

models like this later in this section.) Plot the points in Table 2 on a Cartesian coor-

dinate system, producing a scatter plot, and graph the model on the same axes.

(B) Interpret the slope of the model in equation (2).

(C) Use the model to estimate the cost of a 0.85-carat diamond and the cost of a

1.2-carat diamond. Round answers to the nearest dollar.

(D) Use the model to estimate the weight of a diamond that sells for $3,000. Round the

answer to two significant digits.

EXAMPLE 5

SOLUTIONS (A) A scatter plot is simply a plot of the points in Table 2 [Fig. 3(a)]. To add the graph

of the model to the scatter plot, we find any two points that satisfy equation (2) [we

choose (0.4, 422) and (1.4, 7,802)]. Plotting these points and drawing a line through

them gives us Figure 3(b).

1.510.5

$8,000

$4,000

P
ri
c
e

Carats

c

p

1.510.5

$8,000

$4,000

P
ri
c
e

Carats

c

p

(a) Scatter plot (b) Linear model

Z Figure 3

(B) The rate of change of the price of a diamond with respect to its weight is 7,380.

Increasing the weight by 1 carat will increase the price by about $7,380.

(C) The graph of the model [Fig. 3(b)] does not pass through any of the points in the scatter

plot, but it comes close to all of them. [Verify this by evaluating equation (2) at c ⫽ 0.5,

0.6, . . . , 1.] So we can use equation (2) to approximate points not in Table 2.

A 0.85-carat diamond will cost about $3,743 and a 1.2-carat diamond will cost about

$6,326.

(D) To find the weight of a $3,000 diamond, we solve the following equation for c:

To two significant digits

A $3,000 diamond will weigh about 0.75 carats. �

 c ⫽
5,530

7,380
⫽ 0.75

 ⫽ 5,530

 7,380c ⫽ 3,000 ⫹ 2,530

 7,380c ⫺ 2,530 ⫽ 3,000

 ⫽ $3,743   ⫽ $6,326

 p ⫽ 7,380(0.85) ⫺ 2,530   p ⫽ 7,380(1.2) ⫺ 2,530

 c ⫽ 0.85   c ⫽ 1.2

Table 2 Round-Shaped

Diamond Prices

Weight (Carats) Price

0.5 $1,340

0.6 $1,760

0.7 $2,540

0.8 $3,350

0.9 $4,130

1.0 $4,920

Source: www.tradeshop.com
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MATCHED PROBLEM 5 Prices for emerald-shaped diamonds taken from an online trader are given in Table 3. Repeat

Example 5 for this data with the linear model

p ⫽ 7,270c ⫺ 2,450

where p is the price of an emerald-shaped diamond weighing c carats.

�

The model we used in Example 5 was obtained by using a technique called linear

regression and the model is called the regression line. This technique produces a line that

is the best fit for a given data set. We will not discuss the theory behind this technique, nor

the meaning of “best fit.” Although you can find a linear regression line by hand, we prefer

to leave the calculations to a graphing calculator or a computer. Don’t be concerned if you

don’t have either of these electronic devices. We will supply the regression model in the

applications we discuss, as we did in Example 5.

Table 3 Emerald-Shaped

Diamond Prices

Weight (Carats) Price

0.5 $1,350

0.6 $1,740

0.7 $2,610

0.8 $3,320

0.9 $4,150

1.0 $4,850

Source: www.tradeshop.com

In Example 5, we used the regression line to approximate points that were not given in

Table 2, but would fit between points in the table. This process is called interpolation. In the

next example we use a regression model to approximate points outside the given data set. This

process is called extrapolation and the approximations are often referred to as predictions.

Technology Connections

If you want to use a graphing calculator to construct regres-

sion lines, you should consult your user’s manual.* The

process varies from one calculator to another. Figure 4

shows three of the screens related to the construction of the

model in Example 5 on a Texas Instruments TI-84 Plus.

*User’s manuals for the most popular graphing calculators are readily available on the Internet.

Z Figure 4

(a) Entering the data. (b) Finding the model. (c) Graphing the data and the model.

⫺1,000

0

8,000

1.5

EXAMPLE 6 Telephone Expenditures

Table 4 gives information about expenditures for residential and cellular phone service. The

linear regression model for residential service is

r ⫽ 722 ⫺ 33.1t

where r is the average annual expenditure (in dollars per consumer unit) on residential ser-

vice and t is time in years with t ⫽ 0 corresponding to 2000.

(A) Interpret the slope of the regression line as a rate of change.

(B) Use the regression line to predict expenditures for residential service in 2018.
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SOLUTIONS (A) The slope m   33.1 is the rate of change of expenditures with respect to time.

Because the slope is negative, the expenditures for residential service are decreasing

at a rate of $33.10 per year.

(B) If t  18, then

r  722   33.1(18)  $126

So the model predicts that expenditures for residential phone service will be

approximately $126 in 2018. �

Table 4 Average Annual Telephone Expenditures 

(dollars per consumer unit)

2001 2003 2005 2007

Residential 686 620 570 482

Cellular 210 316 455 608

Source: Bureau of Labor Statistics

MATCHED PROBLEM 6 Repeat Example 6 using the following linear regression model for cellular service:

c  66.7t  131

where c is the average annual expenditure (in dollars per consumer unit) on cellular service

and t is time in years with t = 0 corresponding to 2000.

�

ANSWERS TO MATCHED PROBLEMS

1. (A) The rate of change of BSA with respect to weight is 28.55 square inches per pound.

(B) Increasing w by 1 pound increases a by 28.55 square inches.

2. Presale price is $475. Cost is $387.50

3. (A) f   1.5p  47

(B) The rate of change of the freezing point with respect to the percentage of propylene glycol

in the antifreeze solution is  1.5. Increasing the percentage of propylene glycol by 1% will

lower the freezing point by 1.5°F.

(C) 41.3%

4. (A) p 0.432d 14.7

(B) 59 ft

5. (A) 

(B) The rate of change of the price of a diamond with respect to the size is 7,270. Increasing the

size by 1 carat will increase the price by about $7,270.

(C) $3,730; $6,274

(D) 0.75 carats

6. (A) The expenditures for cellular service are increasing at a rate of $66.70 per year.

(B) $1,332.

1.510.5

$8,000

$4,000
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c
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c
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9. Dr. J. D. Robinson and Dr. D. R. Miller published the following

models for estimating the weight of a woman:

Robinson: w  108  3.7h

Miller: w  117  3.0h

where w is weight (in pounds) and h is height over 5 feet (in inches).

(A) Interpret the slope of each model.

(B) If a woman is 5 6 tall, what does each model predict her weight

to be?

(C) If a woman weighs 140 pounds, what does each model predict

her height to be?

10. Dr. J. D. Robinson and Dr. D. R. Miller also published the fol-

lowing models for estimating the weight of a man:

Robinson: w  115  4.2h

Miller: w  124  3.1h

where w is weight (in pounds) and h is height over 5 feet (in inches).

(A) Interpret the slope of each model.

(B) If a man is 5 10 tall, what does each model predict his weight

to be?

(C) If a man weighs 160 pounds, what does each model predict his

height to be?

11. SPEED OF SOUND The speed of sound through the air near sea

level is linearly related to the temperature of the air. If sound trav-

els at 741 mph at 32°F and at 771 mph at 72°F, construct a linear

model relating the speed of sound (s) and the air temperature (t). In-

terpret the slope of this model.

12. SPEED OF SOUND The speed of sound through the air near sea

level is linearly related to the temperature of the air. If sound

travels at 337 mps (meters per second) at 10°C and at 343 mps at

20°C, construct a linear model relating the speed of sound (s)

and the air temperature (t). Interpret the slope of this model.

13. SMOKING STATISTICS The percentage of male cigarette

smokers in the United States declined from 25.7% in 2000 to

23.9% in 2006. Find a linear model relating the percentage m of

male smokers to years t since 2000. Use the model to predict the

first year for which the percentage of male smokers will be less

than or equal to 18%.

14. SMOKING STATISTICS The percentage of female cigarette

smokers in the United States declined from 21.0% in 2000 to

18.0% in 2006. Find a linear model relating the percentage f of

female smokers to years t since 2000. Use the model to predict the

first year for which the percentage of female smokers will be less

than or equal to 10%.

15. BUSINESS—DEPRECIATION A farmer buys a new tractor for

$142,000 and assumes that it will have a trade-in value of $67,000

after 10 years. The farmer uses a constant rate of depreciation (com-

monly called straight-line depreciation—one of several methods

permitted by the IRS) to determine the annual value of the tractor.

(A) Find a linear model for the depreciated value V of the tractor t

years after it was purchased.

2-4 Exercises

1. Explain the steps that are involved in the process of mathemat-

ical modeling.

2. If two variables x and y are linearly related, explain how to cal-

culate the rate of change.

3. If two variables x and y are not linearly related, explain how to

calculate the average rate of change from x  x1 to x  x2.

4. Explain the difference between interpolation and extrapolation

in the context of regression analysis.

APPLICATIONS

5. COST ANALYSIS A plant can manufacture 80 golf clubs per day

for a total daily cost of $8,147 and 100 golf clubs per day for a 

total daily cost of $9,647.

(A) Assuming that daily cost and production are linearly related,

find the total daily cost of producing x golf clubs.

(B) Interpret the slope of this cost equation.

(C) What is the effect of a 1 unit increase in production?

6. COST ANALYSIS A plant can manufacture 50 tennis rackets per

day for a total daily cost of $4,174 and 60 tennis rackets per day for

a total daily cost of $4,634.

(A) Assuming that daily cost and production are linearly related,

find the total daily cost of producing x tennis rackets.

(B) Interpret the slope of this cost equation.

(C) What is the effect of a 1 unit increase in production?

7. FORESTRY Forest rangers estimate the height of a tree by meas-

uring the tree’s diameter at breast height (DBH) and then using a

model constructed for a particular species.* A model for white

spruce trees is

h  4.06d  24.1

where d is the DBH in inches and h is the tree height in feet.

(A) Interpret the slope of this model.

(B) What is the effect of a 1-inch increase in DBH?

(C) How tall is a white spruce with a DBH of 12 inches? Round

answer to the nearest foot.

(D) What is the DBH of a white spruce that is 100 feet tall? Round

answer to the nearest inch.

8. FORESTRY A model for black spruce trees is

h   2.27d  33.1

where d is the DBH in inches and h is the tree height in feet.

(A) Interpret the slope of this model.

(B) What is the effect of a 1-inch increase in DBH?

(C) How tall is a black spruce with a DBH of 12 inches? Round an-

swer to the nearest foot.

(D) What is the DBH of a black spruce that is 100 feet tall? Round

answer to the nearest inch.

*Models in Problems 7 and 8 are based on data found at

http://flash.lakeheadu.ca/~fluckai/htdbh04.xls
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23. LICENSED DRIVERS Table 5 contains the state population and

the number of licensed drivers in the state (both in millions) for the

states with population under 1 million. The regression model for

this data is

y  0.72x  0.03

where x is the state population and y is the number of licensed dri-

vers in the state.

Table 5 Licensed Drivers in 2006

State Population Licensed Drivers

Alaska 0.67 0.49

Delaware 0.85 0.62

Montana 0.94 0.72

North Dakota 0.64 0.47

South Dakota 0.78 0.58

Vermont 0.62 0.53

Wyoming 0.52 0.39

Source: Bureau of Transportation Statistics

(A) Plot the data in Table 5 and the model on the same axes.

(B) If the population of New Hampshire in 2006 was about 

1.3 million, use the model to estimate the number of licensed driv-

ers in New Hampshire.

(C) If the population of Nebraska in 2006 was about 1.8 million, use

the model to estimate the number of licensed drivers in Nebraska.

24. LICENSED DRIVERS Table 6 contains the state population and

the number of licensed drivers in the state (both in millions) for sev-

eral states with population over 10 million. The regression model

for this data is

y  0.60x  1.15

where x is the state population and y is the number of licensed driv-

ers in the state.

Table 6 Licensed Drivers in 2006

State Population Licensed Drivers

California 36 23

Florida 18 14

Illinois 13 8

Michigan 10 7

New York 19 11

Ohio 11 8

Pennsylvania 12 9

Texas 24 15

Source: Bureau of Transportation Statistics

(A) Plot the data in Table 6 and the model on the same axes.

(B) If the population of Georgia in 2006 was about 9.4 million, use

the model to estimate the number of licensed drivers in Georgia.

(C) If the population of New Jersey in 2006 was about 8.7 million, use

the model to estimate the number of licensed drivers in New Jersey.

(B) Interpret the slope of this model.

(C) What is the depreciated value of the tractor after 6 years?

16. BUSINESS—DEPRECIATION A charter fishing company buys a

new boat for $154,900 and assumes that it will have a trade-in value

of $46,100 after 16 years.

(A) Use straight-line depreciation (See Problem 15) to find a linear

model for the depreciated value V of the boat t years after it was

purchased.

(B) Interpret the slope of this model.

(C) In which year will the depreciated value of the boat fall below

$100,000?

17. BUSINESS—MARKUP POLICY A drugstore sells a drug costing

$85 for $112 and a drug costing $175 for $238.

(A) If the markup policy of the drugstore is assumed to be linear,

write an equation that expresses retail price R in terms of cost C

(wholesale price).

(B) What is the slope of the graph of the equation found in part A?

Interpret verbally.

(C) What does a store pay (to the nearest dollar) for a drug that

retails for $185?

18. BUSINESS—MARKUP POLICY A clothing store sells a shirt

costing $20 for $33 and a jacket costing $60 for $93.

(A) If the markup policy of the store for items costing over $10 is

assumed to be linear, write an equation that expresses retail price R

in terms of cost C (wholesale price).

(B) What is the slope of the equation found in part A? Interpret

verbally.

(C) What does a store pay for a suit that retails for $240?

19. FLIGHT CONDITIONS In stable air, the air temperature drops

about 5 F for each 1,000-foot rise in altitude.

(A) If the temperature at sea level is 70°F and a commercial pilot

reports a temperature of  20 F at 18,000 feet, write a linear equa-

tion that expresses temperature T in terms of altitude A (in thou-

sands of feet).

(B) How high is the aircraft if the temperature is 0 F?

20. FLIGHT NAVIGATION An airspeed indicator on some aircraft is

affected by the changes in atmospheric pressure at different altitudes.

A pilot can estimate the true airspeed by observing the indicated air-

speed and adding to it about 2% for every 1,000 feet of altitude.

(A) If a pilot maintains a constant reading of 200 miles per hour on

the airspeed indicator as the aircraft climbs from sea level to an al-

titude of 10,000 feet, write a linear equation that expresses true air-

speed T (miles per hour) in terms of altitude A (thousands of feet).

(B) What would be the true airspeed of the aircraft at 6,500 feet?

21. RATE OF DESCENT—PARACHUTES At low altitudes, the altitude

of a parachutist and time in the air are linearly related. A jump at 2,880 ft

using the U.S. Army’s T-10 parachute system lasts 120 seconds.

(A) Find a linear model relating altitude a (in feet) and time in the

air t (in seconds).

(B) The rate of descent is the speed at which the jumper falls. What

is the rate of descent for a T-10 system?

22. RATE OF DESCENT—PARACHUTES The U.S. Army is consid-

ering a new parachute, the ATPS system. A jump at 2,880 ft using

the ATPS system lasts 180 seconds.

(A) Find a linear model relating altitude a (in feet) and time in the

air t (in seconds).

(B) What is the rate of descent for an ATPS system parachute?
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Table 8 Supply and Demand for U.S. Corn

Price Supply Price Demand

($/bu.) (Billion bu.) ($/bu.) (Billion bu.)

2.15 6.29 2.07 9.78

2.29 7.27 2.15 9.35

2.36 7.53 2.22 8.47

2.48 7.93 2.34 8.12

2.47 8.12 2.39 7.76

2.55 8.24 2.47 6.98

Source: www.usda.gov/nass/pubs/histdata.htm

28. SUPPLY AND DEMAND Table 9 contains price–supply data and

price–demand data for soybeans. Find a linear regression model for

the price–supply data where x is supply (in billions of bushels) and

y is price (in dollars). Do the same for the price–demand data.

(Round regression coefficients to three significant digits.) Find the

equilibrium price for soybeans.

Table 9 Supply and Demand for U.S. Soybeans

Price Supply Price Demand

($/bu.) (Billion bu.) ($/bu.) (Billion bu.)

5.15 1.55 4.93 2.60

5.79 1.86 5.48 2.40

5.88 1.94 5.71 2.18

6.07 2.08 6.07 2.05

6.15 2.15 6.40 1.95

6.25 2.27 6.66 1.85

Source: www.usda.gov/nass/pubs/histdata.htm

Problems 25–28 require a graphing calculator or a computer that

can calculate the linear regression line for a given data set.

25. OLYMPIC GAMES Find a linear regression model for the men’s

100-meter freestyle data given in Table 7, where x is years since

1968 and y is winning time (in seconds). Do the same for the

women’s 100-meter freestyle data. (Round regression coefficients

to four significant digits.) Do these models indicate that the women

will eventually catch up with the men? 

Table 7 Winning Times in Olympic Swimming Events

100-Meter Freestyle 200-Meter Backstroke

Men Women Men Women

1968 52.20 60.0 2:09.60 2:24.80

1976 49.99 55.65 1:59.19 2:13.43

1984 49.80 55.92 2:00.23 2:12.38

1992 49.02 54.65 1:58.47 2:07.06

2000 48.30 53.83 1:56.76 2:08.16

2008 47.21 53.12 1:53.94 2:05.24

Source: www.infoplease.com

26. OLYMPIC GAMES Find a linear regression model for the men’s

200-meter backstroke data given in Table 7 where x is years since

1968 and y is winning time (in seconds). Do the same for the

women’s 200-meter backstroke data. (Round regression coeffi-

cients to five significant digits.) Do these models indicate that the

women will eventually catch up with the men?

27. SUPPLY AND DEMAND Table 8 contains price–supply data and

price–demand data for corn. Find a linear regression model for the

price–supply data where x is supply (in billions of bushels) and y is

price (in dollars). Do the same for the price–demand data. (Round

regression coefficients to three significant digits.) Find the price at

which supply and demand are equal. (In economics, this price is re-

ferred to as the equilibrium price.)

2-1 Cartesian Coordinate System

A Cartesian or rectangular coordinate system is formed by the

intersection of a horizontal real number line and a vertical real

number line at their origins. These lines are called the coordinate

axes. The horizontal axis is often referred to as the x axis and the

vertical axis as the y axis. These axes divide the plane into four

quadrants. Each point in the plane corresponds to its coordinates—

an ordered pair (a, b) determined by passing horizontal and vertical

lines through the point. The abscissa or x coordinate a is the coordi-

nate of the intersection of the vertical line with the horizontal axis,

and the ordinate or y coordinate b is the coordinate of the intersec-

tion of the horizontal line with the vertical axis. The point (0, 0) is

called the origin. A solution of an equation in two variables is an or-

dered pair of real numbers that makes the equation a true statement.

The solution set of an equation is the set of all its solutions. The

graph of an equation in two variables is the graph of its solution set

formed using point-by-point plotting or with the aid of a graphing

calculator. The reflection of the point (a, b) through the y axis is the

point ( a, b), through the x axis is the point (a,  b), and through the

origin is the point ( a,  b). The reflection of a graph is the reflection

of each point on the graph. If reflecting a graph through the y axis, x

axis, or origin does not change its shape, the graph is said to be sym-

metric with respect to the y axis, x axis, or origin, respectively. To

test an equation for symmetry, determine if the equation is un-

changed when y is replaced with  y (x axis symmetry), x is replaced

CHAPTER 2 Review
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Work through all the problems in this chapter review and check

answers in the back of the book. Answers to all review problems

are there, and following each answer is a number in italics

indicating the section in which that type of problem is discussed.

Where weaknesses show up, review appropriate sections in the

text.

1. Plot A  ( 4, 1), B  (2,  3), and C  ( 1,  2) in a rect-
angular coordinate system.

2. Refer to Problem 1. Plot the reflection of A through the x axis,
the reflection of B through the y axis, and the reflection of C
through the origin.

3. Test each equation for symmetry with respect to the x axis,
y axis, and origin and sketch its graph.
(A) y 2x (B) y 2x  1
(C) (D) 

4. Use the following graph to estimate to the nearest integer the
missing coordinates of the indicated points. (Be sure you find all
possible answers.)
(A) (0, ?) (B) (?, 0) (C) (?, 4)

|y|  2xy  2|x|

5. Given the points A   ( 2, 3) and B   (4, 0), find:
(A) Distance between A and B
(B) Slope of the line through A and B
(C) Slope of a line perpendicular to the line through A and B

6. Write the equation of a circle with radius and center:
(A) (0, 0) (B) (3,  2)

7. Find the center and radius of the circle given by

(x  3)2
 ( y  2)2

 5

17

x

y

 5

5 5

5

CHAPTER 2 Review Exercises

with  x ( y axis symmetry), or both x and y are replaced with  x and
 y (origin symmetry).

2-2 Distance in the Plane

The distance between the two points P1  (x1, y1) and P2  (x2, y2) is

and the midpoint of the line segment joining P1   (x1, y1) and
P2 (x2, y2) is

The standard form for the equation of a circle with radius r and
center at (h, k) is

2-3 Equations of a Line

The standard form for the equation of a line is Ax By C, where
A, B, and C are constants, A and B not both 0. The y intercept is
the y coordinate of the point where the graph crosses the y axis,
and the x intercept is the x coordinate of the point where the graph
crosses the x axis. The slope of the line through the points (x1, y1)
and (x2, y2) is

if x1  x2m  
y2  y1

x2  x1

r 7 0(x  h)2
 ( y  k)2

 r2,

M  ax1  x2

2
, 

y1  y2

2
b

d(P1, P2)  2(x2  x1)2
 ( y2  y1)2

The slope is not defined for a vertical line where x1 x2. Two lines
with slopes m1 and m2 are parallel if and only if m1  m2 and per-
pendicular if and only if m1m2   1.

Equations of a Line

Standard form Ax  By  C A and B not both 0

Slope–intercept form y  mx  b Slope: m;
y intercept: b

Point–slope form y  y1  m(x x1) Slope: m;
Point: (x1, y1)

Horizontal line y  b Slope: 0

Vertical line x  a Slope: Undefined

2-4 Linear Equations and Models

A mathematical model is a mathematics problem that, when
solved, will provide information about a real-world problem. If
y mx b, then the variables x and y are linearly related and the
rate of change of y with respect to x is the constant m. If x and y
are not linearly related, the ratio ( y2  y1)兾(x2  x1) is called the
average rate of change of y with respect to x. Regression analy-

sis produces an equation whose graph is a curve that fits (approx-
imates) a set of data points. A scatter plot is the graph of the
points in a data set. Linear regression produces a regression line

that is the best fit for a given data set. Graphing calculators or
other electronic devices are frequently used to find regression
lines.



Review Exercises 159

8. Let M be the midpoint of A and B, where A  (a1, a2), 

B  (2,  5), and M  ( 4, 3).

(A) Use the fact that  4 is the average of a1 and 2 to find a1.

(B) Use the fact that 3 is the average of a2 and  5 to find a2.

(C) Find d(A, M ) and d(M, B).

9. (A) Graph the triangle with vertices A  ( 1,  2), B  (4, 3),

and C  (1, 4).

(B) Find the perimeter to two decimal places.

(C) Use the Pythagorean theorem to determine if the triangle is

a right triangle.

(D) Find the midpoint of each side of the triangle.

10. Use the graph of the linear function in the figure to find the rise,

run, and slope. Write the equation of the line in the form

Ax  By  C, where A, B, and C are integers with A  0. (The

horizontal and vertical line segments have integer lengths.)

11. Graph 3x  2y  9 and indicate its slope.

12. Write an equation of a line with x intercept 6 and y intercept 4.

Write the final answer in the standard form Ax  By  C, where

A, B, and C are integers.

13. Write the slope–intercept form of the equation of the line with

slope and y intercept 2.

14. Write the equations of the vertical and horizontal lines passing

through the point ( 3, 4). What is the slope of each?

Test each equation in Problems 15–18 for symmetry with respect to

the x axis, y axis, and the origin. Sketch the graph of the equation.

15. 16.

17. 18.

19. Write a verbal description of the graph shown in the figure

and then write an equation that would produce the graph.

20. (A) Find an equation of the line through P   ( 4, 3) and 

Q   (0,  3). Write the final answer in the standard form

Ax  By  C, where A, B, and C are integers with A  0.

(B) Find d(P, Q).

x

y

 5

5 5

5

9y2
 4x2

 369y2
 4x2

 36

y2
 x  2y  x2

 2

 
2
3

x

y

 5

5 5

5

21. Write the slope–intercept form of the equation of the line that

passes through the point ( 2, 1) and is

(A) parallel to the line 6x  3y  5

(B) perpendicular to the line 6x  3y  5

22. Find the equation of a circle that passes through the point ( 1, 4)

with center at (3, 0).

23. Find the center and radius of the circle given by

24. Find the equation of the set of points equidistant from (3, 3) and

(6, 0).What is the name of the geometric figure formed by this set?

25. Are the graphs of mx  y  b and x  my  b parallel, perpen-

dicular, or neither? Justify your answer.

26. Use completing the square to find the center and radius of the

circle with equation:

27. Refer to Problem 26. Find the equation of the line tangent to the

circle at the point (4, 3). Graph the circle and the line on the same

coordinate system.

28. Find the equation of a circle with center (4,  3) whose graph

passes through the point (1, 2).

29. Extend the following graph to one that exhibits the indicated

symmetry:

(A) x axis only (B) y axis only

(C) origin only (D) x axis, y axis, and origin

Problems 30 and 31 refer to a triangle with base b and height h

(see the figure). Write a mathematical expression in terms of b and

h for each of the verbal statements in Problems 30 and 31.

30. The base is five times the height.

31. The height is one-fourth of the base.

APPLICATIONS

32. LINEAR DEPRECIATION A computer system was purchased by a

small company for $12,000 and is assumed to have a depreciated

value of $2,000 after 8 years. If the value is depreciated linearly from

$12,000 to $2,000:

(A) Find the linear equation that relates value V (in dollars) to time

t (in years).

(B) What would be the depreciated value of the system after 5 years?

h

b

x

y

 5

5 5

5

x2
 4x  y2

 2y  3  0

x2
 y2

 4x  6y  3



33. COST ANALYSIS A video production company is planning to

produce an instructional CD. The producer estimates that it will

cost $24,900 to produce the CD and $5 per unit to copy and distrib-

ute the CD. The budget for this project is $62,000. How many CDs

can be produced without exceeding the budget?

34. FORESTRY Forest rangers estimate the height of a tree by measur-

ing the tree’s diameter at breast height (DBH) and then using a model

constructed for a particular species. A model for sugar maples is

where d is the DBH in inches and h is the tree height in feet.

(A) Interpret the slope of this model.

(B) What is the effect of a 1-inch increase in DBH?

(C) How tall is a sugar maple with a DBH of 3 inches? Round

answer to the nearest foot.

(D) What is the DBH of a sugar maple that is 45 feet tall? Round

answer to the nearest inch.

35. ESTIMATING BODY SURFACE AREA An important criterion for

determining drug dosage for children is the patient’s body surface

area (BSA). John D. Current published the following useful model

for estimating BSA*:

where BSA is given in square centimeters and Wt in grams.

(A) Interpret the slope of this model.

(B) What is the effect of a 100-gram increase in weight?

(C) What is the BSA for a child that weighs 15 kilograms?

BSA  1,321  0.3433  Wt

h  2.9d  30.2
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36. ARCHITECTURE A circular arc forms the top of an entryway with

6-foot vertical sides 8 feet apart. If the top of the arc is 2 feet above

the ends, what is the radius of the arc?

37. SPORTS MEDICINE The following quotation was found in a

sports medicine handout: “The idea is to raise and sustain your heart

rate to 70% of its maximum safe rate for your age. One way to deter-

mine this is to subtract your age from 220 and multiply by 0.7.”

(A) If H is the maximum safe sustained heart rate (in beats per minute)

for a person of age A (in years), write a formula relating H and A.

(B) What is the maximum safe sustained heart rate for a 20-year-old?

(C) If the maximum safe sustained heart rate for a person is

126 beats per minute, how old is the person?

38. DATA ANALYSIS Winning times in the men’s Olympic 400-meter

freestyle event in minutes for selected years are given in Table 1. A

mathematical model for these data is

where x is years since 1900.

(A) Compare the model and the data graphically and numerically.

(B) Estimate (to three decimal places) the winning time in 2024.

Table 1

Year Time

1912 5.41

1932 4.81

1952 4.51

1972 4.00

1992 3.75

y   0.021x  5.57

CHAPTER 2 

ZZZ GROUP ACTIVITY Average Speed

If you score 40 on the first exam and 80 on the second, then your

average score for the two exams is (40  80) 2  60. The num-

ber 60 is the arithmetic average of 40 and 80.

On the other hand, if you drive 100 miles at a speed of

40 mph, and then drive an additional 100 miles at 80 mph, your

average speed for the entire trip is not 60 mph. Average speed is

defined to be the constant speed at which you could drive the

same distance in the same length of time. So to calculate average

speed, total distance (200 miles) must be divided by total time:

The time t1 it takes to drive 100 miles at 40 mph is

t1  (100 miles) (40 mph)  2.5 hours. Similarly, the time t2
it takes to drive 100 miles at 80 mph is t2  (100 miles)

(80 mph)  1.25 hours. Therefore, your average speed is

200 miles

t1  t2
 

200

2.5  1.25
 

200

3.75
 53.3 mph

 

 

 

(A) You bicycle 15 miles at 21 mph, then 20 miles at 18 mph,

and finally 30 miles at 12 mph. Find the average speed.

(B) You bicycle for 2 hours at 18 mph, then 2 more hours at

12 mph. Find the average speed.

(C) You run a 10-mile race by running at a pace of 8 minutes

per mile for 1 hour, and after that at a pace of 9 minutes

per mile. Define average pace, find it (to the nearest sec-

ond) for the 10-mile race, and discuss the connection

between average pace (in minutes per mile) and average

speed (in miles per hour).

*“Body Surface Area in Infants and Children,” The Internet Journal of

Anesthesiology, 1998, Volume 2, Number 2.
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THE function concept is one of the most important ideas in mathe-

matics. To study math beyond the elementary level, you absolutely

need to have a solid understanding of functions and their graphs. In

this chapter, you’ll learn the fundamentals of what functions are all

about, and how to apply them. As you work through this and subse-

quent chapters, this will pay off as you study specific types of func-

tions in depth. Everything you learn in this chapter will increase your

chance of success in this course, and in almost any other course you

may take that involves mathematics.

C

CHAPTER

3
OUTLINE

3-1 Functions

3-2 Graphing Functions

3-3 Transformations of Functions

3-4 Quadratic Functions

3-5 Operations on Functions;
Composition

3-6 Inverse Functions

Chapter 3 Review

Chapter 3 Group Activity:
Mathematical Modeling:
Choosing a Cell Phone Plan



The idea of correspondence plays a really important role in understanding the concept of

functions, which is easily one of the most important ideas in this book. The good news is

that you have already had years of experience with correspondences in everyday life. 

For example,

For every person, there is a corresponding age.

For every item in a store, there is a corresponding price.

For every football season, there is a corresponding Super Bowl champion.

For every circle, there is a corresponding area.

For every number, there is a corresponding cube.

One of the most basic and important ways that math can be applied to other areas of

study is the establishment of correspondence among various types of phenomena. In many

cases, once a correspondence is known, it can be used to make important decisions and pre-

dictions. An engineer can use a formula to predict the weight capacity of a stadium grand-

stand. A political operative decides how many resources to allocate to a race given current

polling results. A computer scientist can use formulas to compare the efficiency of algorithms

for sorting data stored on a computer. An economist would like to be able to predict interest

rates, given the rate of change of the money supply. And the list goes on and on.

Z Definition of a Function

What do all of the preceding examples have in common? Each describes the matching of

elements from one set with elements from a second set. Consider the correspondences in

Tables 1 and 2.
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3-1 Functions

Z Definition of Function

Z Defining Functions by Equations

Z Using Function Notation

Z Application

Table 1 Top Four Weekly Average

Primetime Network Viewers for the

2007–2008 Season

Network Viewers (Millions)

Fox 10.9

CBS 10.1

ABC 8.9

NBC 7.8

Source: tvbythenumbers.com

Table 2 Top Four Best Selling

Automobiles in the United States

for 2008

Manufacturer Model

Toyota Camry

Honda Accord

Toyota Corolla

Honda Civic

Source: www.2-speed.com

Table 1 specifies a function, but Table 2 does not. Why not? The definition of function will

explain.



Table 1 specifies a function with domain {Fox, CBS, ABC, NBC} and range {10.9,

10.1, 8.9, 7.8} because every network in the first set corresponds with exactly one number

in the second set. Table 2 does not specify a function, because each manufacturer in the

first set corresponds to two different models in the second set.

Functions can also be specified by using ordered pairs of elements, where the first com-

ponent represents an element from the domain, and the second component represents the

corresponding element from the range. The function in Table 1 can be written as 

F  {(Fox, 10.9), (CBS, 10.1), (ABC, 8.9), (NBC, 7.8)}

Notice that no two ordered pairs have the same first component and different second compo-

nent. On the other hand, if we list the set H of ordered pairs determined by Table 2, we get

H  {(Toyota, Camry), (Honda, Accord), (Toyota, Corolla), (Honda, Civic)}

In this case, there are ordered pairs with the same first component but different second com-

ponents. This means that H does not specify a function.

This ordered pair approach leads to a second (but equivalent) way to define a function.
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Z DEFINITION 1 Definition of Function

A function is a correspondence between two sets of elements such that to each

element in the first set there corresponds one and only one element in the second set.

The first set is called the domain and the set of all corresponding elements in the

second set is called the range.

Z DEFINITION 2 Set Form of the Definition of Function

A function is a set of ordered pairs with the property that no two ordered pairs

have the same first component and different second components.

The set of all first components in a function is called the domain of the function,

and the set of all second components is called the range.

EXAMPLE 1 Functions Specified as Sets of Ordered Pairs

Determine whether each set specifies a function. If it does, then state the domain and range.

(A)

(B) T  5(1, 4), (2, 3), (3, 2), (2, 4), (1, 5)6

S  5(1, 4), (2, 3), (3, 2), (4, 3), (5, 4)6

SOLUTIONS (A) Because all the ordered pairs in S have distinct first components, this set specifies a

function. The domain and range are

Set of first components

Set of second components written with no repeats

(B) Because there are ordered pairs in T with the same first component [for example,

(1, 4) and (1, 5)], this set does not specify a function. �

 Range  52, 3, 46

 Domain  51, 2, 3, 4, 56



Z Defining Functions by Equations

So far, we have described a particular function in various ways: (1) by a verbal description,

(2) by a table, and (3) by a set of ordered pairs. We will see that if the domain and range are

sets of numbers, we can also define a function by an equation, or by a graph.

If the domain of a function is a large or infinite set, it may be impractical or impos-

sible to actually list all of the ordered pairs that belong to the function, or to display the

function in a table. Such a function can often be defined by a verbal description of the

“rule of correspondence” that clearly specifies the element of the range that corresponds

to each element of the domain. One example is “to each real number corresponds its

square.” When the domain and range are sets of numbers, the algebraic and graphical

analogs of the verbal description are the equation and graph, respectively. We will find it

valuable to be able to view a particular function from multiple perspectives—algebraic (in

terms of an equation), graphical (in terms of a graph), and numeric (in terms of a table or

ordered pairs).

Both versions of our definition of function are very general. The objects in the

domain and range can be pretty much anything, and there is no restriction on the number

of elements in each.

In this text, we are primarily interested, however, in functions with real number domains

and ranges. Unless otherwise indicated, the domain and range of a function will be sets

of real numbers. For such a function we often use an equation with two variables to spec-

ify both the rule of correspondence and the set of ordered pairs.

Consider the equation

x any real number (1)

This equation assigns to each domain value x exactly one range value y. For example,

If then

If then

We can view equation (1) as a function with rule of correspondence

any x corresponds to

The variable x is called an independent variable, indicating that values can be assigned

“independently” to x from the domain. The variable y is called a dependent variable, indi-

cating that the value of y “depends” on the value assigned to x and on the given equation.

In general, any variable used as a placeholder for domain values is called an independent

variable; any variable used as a placeholder for range values is called a dependent

variable.

We often refer to a value of the independent variable as the input of the function, and

the corresponding value of the dependent variable as the associated output. In this regard,

a function can be thought of as a process that accepts an input from the domain and out-

puts an appropriate range element. We next address the question of which equations can be

used to define functions. 

x
2
ⴙ 2xy  x2

 2x

y  ( 1
3)

2
 2( 1

3)   
5
9x   1

3,

y  (4)2
 2(4)  24x  4,

y  x2
 2x
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MATCHED PROBLEM 1 Determine whether each set defines a function. If it does, then state the domain and

range.

(A) 

(B) 

�

T  5( 2, 1), ( 1, 2), (0, 0), (1, 2), (2, 1)6

S  5( 2, 1), ( 1, 2), (0, 0), ( 1, 1), ( 2, 2)6



Since an equation is just one way to represent a function, we will say “an equation defines

a function” rather than “an equation is a function.”
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Z FUNCTIONS DEFINED BY EQUATIONS

In an equation with two variables, if to each value of the independent variable there

corresponds exactly one value of the dependent variable, then the equation defines

a function.

If there is any value of the independent variable to which there corresponds more than

one value of the dependent variable, then the equation does not define a function.

EXAMPLE 2 Determining if an Equation Defines a Function

Determine if each equation defines a function with independent variable x.

(A) (B) x2
⫹ y

2
⫽ 16y ⫽ x

2
⫺ 4

SOLUTIONS (A) For any real number x, the square of x is a unique real number. When you subtract 4,

the result is again unique. So for any input x, there is exactly one output y, and the

equation defines a function.

(B) In this case, it will be helpful to solve the equation for the dependent variable.

Subtract x
2

from both sides.

Take the square root of both sides.

For any x that provides an output (when 16 ⫺ x
2
ⱖ 0), there are two choices for y, one

positive and one negative. The equation has more than one output for some inputs, so does

not define a function. �

 y ⫽ ⫾216 ⫺ x
2

 y2
⫽ 16 ⫺ x

2

 x2
⫹ y

2
⫽ 16

MATCHED PROBLEM 2 Determine if each equation defines a function with independent variable x.

(A) (B) 

�

y
3
⫺ x

3
⫽ 3y

2
⫹ x

4
⫽ 4

It is very easy to determine whether an equation defines a function if you have the

graph of the equation. The two equations we considered in Example 2 are graphed next in

Figure 1.

x

y

5⫺5

⫺5

5
y ⫽ x2 ⫺ 4

(1, ⫺3)

x

y

5⫺5

⫺5

5

x2 ⫹ y2 ⫽ 16

(2, ⫺2兹3)

(2, 2兹3)

Z Figure 1 Graphs of equations

and the vertical line test.

(a) (b)



In Figure 1(a), any vertical line will intersect the graph of exactly once. This

shows that every value of the independent variable x corresponds to exactly one value of the

dependent variable y, and confirms our conclusion that defines a function. But

in Figure 1(b), there are many vertical lines that intersect the graph of in two

points. This shows that there are values of the independent variable x that correspond to two

different values of the dependent variable y, which confirms our conclusion that 

does not define a function. These observations lead to Theorem 1.

x2
 y2

 16

x2
 y2

 16

y  x2
 4

y  x2
 4
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Sometimes when a function is defined by an equation, a domain is specified, as in

The “x 7 0” tells us that the domain is all positive real numbers. More often, a function is

defined by an equation with no domain specified. Unless a domain is specified, we will use

the following convention regarding domains and ranges for functions defined by equations.

f (x)  2x2
 5, x 7 0

Z THEOREM 1 Vertical Line Test for a Function

An equation defines a function if each vertical line in a rectangular coordinate

system passes through at most one point on the graph of the equation.

If any vertical line passes through two or more points on the graph of an equation,

then the equation does not define a function.

The definition of a function specifies that to each element in the domain there cor-

responds one and only one element in the range.

(A) Give an example of a function such that to each element of the range there

correspond exactly two elements of the domain.

(B) Give an example of a function such that to each element of the range there

corresponds exactly one element of the domain.

ZZZ EXPLORE-DISCUSS 1

Z AGREEMENT ON DOMAINS AND RANGES

If a function is defined by an equation and the domain is not stated explicitly, then

we assume that the implied domain is the set of all real number replacements of the

independent variable that produce real values for the dependent variable. The range

is the set of all values of the dependent variable corresponding to the domain values.

EXAMPLE 3 Finding the Domain of a Function

Find the domain of the function defined by the equation assuming x is the

independent variable.

y  1x  3,

SOLUTION For y to be real, x  3 must be greater than or equal to 0. That is,

or

The domain is or . �[3,  )5x ƒ x  36,

x  3x  3  0



Z Using Function Notation

We will use letters to name functions and to provide a very important and convenient nota-
tion for defining functions. For example, if f is the name of the function defined by the
equation we could use the formal representations

Rule of correspondence

or

Set of ordered pairs

But instead, we will simply write

Function notation

The symbol f (x) is read “f of x,” “f at x,” or “the value of f at x” and represents the number
in the range of the function f (the output) that is paired with the domain value x (the input). 

f (x)  2x  1

f :5(x, y) | y  2x  16

f : y  2x  1

y  2x  1,
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MATCHED PROBLEM 3 Find the domain of the function defined by the equation assuming x is the
independent variable.

�

y  1x  5,

ZZZ CAUTION ZZZ The symbol “f (x)” should never be read as “f times x.” The notation does not rep-
resent a product. It tells us that the function named f has independent variable x.

f (x) is the value of the function f at x.

is algebraic multiplication.2(x)  2x

Using function notation, f (3) is the output for the function f associated with the input 3.
We find this range value by replacing x with 3 wherever x occurs in the function definition

and evaluating the right side,

The statement indicates in a concise way that the function f assigns the range
value 7 to the domain value 3 or, equivalently, that the ordered pair (3, 7) belongs to f.

The symbol read “f maps x into f (x),” is also used to denote the relation-
ship between the domain value x and the range value f (x) (Fig. 2).

Letters other than f and x can be used to represent functions and independent variables.
For example,

defines g as a function of the independent variable t. To find g( 2), we replace t by  2
wherever t occurs in the equation and evaluate the right side:

The function g assigns the range value 17 (output) to the domain value  2 (input); the
ordered pair ( 2, 17) belongs to g.

  17

  4  6  7

 g(ⴚ2)  (ⴚ2)2
 3(ⴚ2)  7

g(t)  t2
 3t  7

g(t)  t2
 3t  7

f :xS f (x),

f (3)  7

f (3)  2 ⴢ 3  1  6  1  7

f (x)  2x  1

Z Figure 2 Function notation.

DOMAIN

The function f “maps” the domain
value x into the range value f(x).

RANGE

x f(x)

f



It is important to understand and remember the definition of the symbol f (x):
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EXAMPLE 4 Evaluating Functions

(A) Find f (6), f (a), and f(6  a) for 

(B) Find g(7), g(h), and g(7  h) for g(x) 16  3x  x2.

(C) Find k(9), 4k(a), and k(4a) for k(x)  
2

1x  2
.

f (x)  
15

x  3
.

Z DEFINITION 3 The Symbol f (x)

The symbol f(x), read “f of x,” represents the real number in the range of the

function f corresponding to the domain value x. The symbol f (x) is also called the

value of the function f at x. The ordered pair (x, f (x)) belongs to the function f. If

x is a real number that is not in the domain of f, then f is undefined at x and f (x)

does not exist.

SOLUTIONS (A) 

(B) 

(C) 

�

  
1

1a  1

  
2

21a  2

 k(4a)  
2

14a  2

 4k(a)  4 
2

1a  2
 

8

1a  2

 k (9)   
2

19  2
   

2

3  2
 2

   12  11h  h2

  37  3h  49  14h  h2

  16  21  3h  (49  14h  h2)

 g(7 ⴙ h)  16  3(7 ⴙ h)  (7 ⴙ h)2

 g(h)  16  3h  h2

 g(7)   16  3(7)  (7)2   

 16  21  49   12

 f (6 ⴙ a)  
15

(6 ⴙ a)  3
 

15

3  a

 f (a)  
15

a  3

 f (6)   
15

6  3
   

15

3
 5

*

*Throughout the book, dashed boxes—called think boxes—are used to represent steps that may be performed

mentally.

Multiply out the first set of parentheses and

square (7 ⫹ h).

Combine like terms and distribute the negative

through the parentheses.

Combine like terms.

not ⴞ3.19 ⴝ 3,

14a ⴝ 141a ⴝ 21a.

Divide numerator and denominator by 2.

Substitute 6 for x.

Substitute a for x.

Substitute (6 ⫹ a) for x and simplify.
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MATCHED PROBLEM 4 (A) Find F(4), F(4  h), and F(4)  F(h) for 

(B) Find G(3), G(h), and G(3  h) for G(x) x2
 5x  2.

(C) Find K(4), K(9x), and 9K(x) for 

�

K(x)  
6

3  1x
.

F(x)  
4

2  x
.

EXAMPLE 5 Finding Domains of Functions

Find the domain of each of the following functions. Express the answer in both set nota-

tion and inequality notation.*

(A) (B) (C) k(x)  
2

1x  2
g(x)  16  3x  x2f (x)  

15

x  3

SOLUTIONS (A) The rational expression 15兾(x  3) represents a real number for all replacements of x

by real numbers except x  3, since division by 0 is not defined. So f(3) does not

exist, and the domain of f is

or

(B) Since 16 3x  x2 represents a real number for all replacements of x by real

numbers, the domain of g is

R or

(C) Since is not a real number for negative real numbers x, x must be a nonnegative

real number. Because division by 0 is not defined, we must exclude any values of x

that make the denominator 0. Set the denominator equal to zero and solve:

Add to both sides.

Square both sides.

The domain of f is all nonnegative real numbers except 4. This can be written as

or �[0, 4) 傼 (4,  )5x ƒ x  0, x  46

 4  x

 2  1x

1x 2  1x  0

1x

(  ,  )

(  , 3) 傼 (3,  )5x ƒ x  36

*A review of Table 1 in Section 1-2 might prove to be helpful at this point.

MATCHED PROBLEM 5 Find the domain of each of the following functions. Express the answer in both set nota-

tion and inequality notation.

(A) (B) G(x) x2
 5x  2 (C) 

�

K(x)  
6

3  1x
F(x)  

4

2  x

Let x and h be real numbers.

(A) If f (x) 4x  3, which of the following is true:

(1) f (x  h)  4x  3  h

(2) f (x  h)  4x  4h  3

(3) f (x  h)  4x  4h  6

(B) If g(x) x2, which of the following is true:

(1) g(x  h)  x2
 h

(2) g(x  h)  x2
 h2

(3) g(x  h)  x2
 2hx  h2

(C) If M(x) x2
 4x  3, describe the operations that must be performed to eval-

uate M(x h).

ZZZ EXPLORE-DISCUSS 2



In addition to evaluating functions at specific numbers, it is useful to be able to evalu-

ate functions at expressions that involve one or more variables. For example, the difference

quotient

x and x  h in the domain of f, h  0

is very important in calculus courses.

f (x  h)  f (x)

h
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EXAMPLE 6 Evaluating and Simplifying a Difference Quotient

For f (x)  x2
 4x  5, find and simplify:

(A) f (x  h) (B) f (x  h)  f (x) (C) 
f (x  h)  f (x)

h
, h  0

SOLUTIONS (A) To find f (x  h), we replace x with x  h everywhere it appears in the equation that

defines f and simplify:

(B) Using the result of part A, we get

(C)

� 2x  h  4

f (x  h)  f (x)

h
 

2xh  h2
 4h

h
   

h(2x  h  4)

h

  2xh  h2
 4h

  x2
 2xh  h2

 4x  4h  5  x2
 4x  5

 f (x ⴙ h)  f (x)  x2
ⴙ 2xh ⴙ h2

ⴙ 4x ⴙ 4h ⴙ 5  (x2
ⴙ 4x ⴙ 5)

  x2
 2xh  h2

 4x  4h  5

 f (x ⴙ h)  (x ⴙ h)2
 4(x ⴙ h)  5

MATCHED PROBLEM 6 Repeat Example 6 for f (x)  x2
 3x  7.

�

Divide numerator and

denominator by h 0.�

ZZZ CAUTION ZZZ 1. Remember, f(x  h) is not a multiplication!

2. In general, f(x  h) is not equal to f(x)  f(h), nor is it equal to f(x)  h.

Z Application

EXAMPLE 7 Construction

A rectangular feeding pen for cattle is to be made with 100 meters of fencing.

(A) If x represents the width of the pen, express its area A in terms of x.

(B) What is the domain of the function A (determined by the physical restrictions)?
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MATCHED PROBLEM 7 Rework Example 7 with the added assumption that a large barn is to be used as one of the

sides that run the length of the pen.

�

ANSWERS TO MATCHED PROBLEMS

1. (A) S does not define a function.

(B) T defines a function with domain { 2,  1, 0, 1, 2} and range {0, 1, 2}.

2. (A) Does not define a function 

(B) Defines a function

3. or 

4. (A) 

(B) G(3) 22, G(h)  h2
 5h  2, G(3  h)  22  11h  h2

(C) 

5. (A) or (B) R or (  ,  )

(C) or 6. (A) x2
 2xh  h2

 3x  3h  7

(B) 2xh h2
 3h (C) 2x h  3 7. (A) A  x(100  2x)

(B) Domain: or (0, 50)5x ƒ 0 6 x 6 506

[0, 9) 傼 (9,  )5x ƒ x  0, x  96
(  , 2) ´ (2,  )5x ƒ x  26

K(4)  6, K(9x)  
2

1  1x
, 9K(x)  

54

3  1x

F(4)   2, F(4  h)   
4

2  h
, F(4)  F(h)  

2h

2  h

[ 5,  )5x ƒ x   56

SOLUTIONS (A) Draw a figure and label the sides.

A  (Width)(Length) x(50  x)

(B) To have a pen, x must be positive, but x must also be less than 50 (or the length will

not exist). So the domain is

Inequality notation

(0, 50) Interval notation �

5x ƒ 0 6 x 6 506

50   x (Length)

x (Width)
Perimeter ⴝ 100 meters of fencing.

Half the perimeter ⴝ 50.

If x ⴝ Width, then 50 ⴚ x ⴝ Length.

6. Describe how to determine if an equation defines a function

by looking at the graph of the equation.

Indicate whether each table in Problems 7–12 defines a function.

7. Domain Range 8. Domain Range

 1 1 2 1

0 2 4 3

1 3 6 5

3-1 Exercises

1. Is every correspondence between two sets a function? Why or

why not?

2. Describe four different ways that we represented functions in

this section.

3. Explain what the domain and range of a function are. Don’t

just think about functions defined by equations.

4. What do the terms “input” and “output” refer to when work-

ing with functions?

5. If 2(x  h)  2x  2h, why doesn’t f (x  h)  f (x)  f (h),

where f is a function?
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9. Domain Range 10. Domain Range

1 3  1 0

3 5  2 5

7

5 9

 3 8

11. Domain Range 12. Domain Range

English A Auburn Tigers

Math B Memphis Tigers

Sociology A Georgia Bulldogs

Chemistry B Fresno State Bulldogs

Indicate whether each set in Problems 13–18 defines a function.

Find the domain and range of each function.

13. {(2, 4), (3, 6), (4, 8), (5, 10)}

14. {( 1, 4), (0, 3), (1, 2), (2, 1)}

15. {(10,  10), (5,  5), (0, 0), (5, 5), (10, 10)}

16. {(0, 1), (1, 1), (2, 1), (3, 2), (4, 2), (5, 2)}

17. {(Ohio, Obama), (Alabama, McCain), (West Virginia, Mc-

Cain), (California, Obama)}

18. {(Democrat, Obama), (Republican, Bush), (Democrat, Clin-

ton), (Republican, Reagan)}

Indicate whether each graph in Problems 19–24 is the graph of a

function.

19.

20.

x

y

 10

10 10

10

x

y

 10

10 10

10

21. 

22. 

23. 

24. 

In Problems 25 and 26, which of the indicated correspondences

define functions? Explain.

25. Let F be the set of all faculty teaching Math 125 at Enormous

State University, and let S be the set of all students taking that

course.

(A) Students from set S correspond to their Math 125 

instructors.

(B) Faculty from set F correspond to the students in their

Math 125 class.

26. Let A be the set of floor advisors in Hoffmann Hall, a dorm at

Enormous State. Assume that each floor has one floor advi-

sor. Let R be the set of residents of that dorm.

(A) Floor advisors from set A correspond to the residents on

their floor.

(B) Students from set R correspond to their floor advisor.

x

y

 10

10 10

10

x

y

 10

10 10

10

x

y

 10

10 10

10

x

y

 10

10 10

10



S E C T I O N  3 – 1 Functions 173

27. Let f (x)  3x   5. Find
(A) f (3) (B) f (h)
(C) f (3)  f (h) (D) f (3  h)

28. Let g(y)  7   2y. Find
(A) g(4) (B) g(h)
(C) g(4)  g(h) (D) g(4  h)

29. Let F(w)   w2
 2w. Find

(A) F(4) (B) F( 4)
(C) F(4  a) (D) F(2  a)

30. Let G(t)  5t   t2. Find
(A) G(8) (B) G( 8)
(C) G( 1  h) (D) G(6  t)

31. Let f(t)  2  3t2. Find
(A) f( 2) (B) f( t)
(C)  f(t) (D)  f( t)

32. Let k(z)  40  20z2. Find
(A) k( 2) (B) k( z)
(C)  k(z) (D)  k( z)

33. Let F(u)  u2
 u  1. Find

(A) F(10) (B) F(u2)
(C) F(5u) (D) 5F(u)

34. Let G(u)  4  3u  u2. Find
(A) G( 8) (B) G(u2)
(C) G( 2u) (D)  2G(u)

Problems 35–36 refer to the following graph of a function f.

35. (A) Find f ( 2) to the nearest integer.
(B) Find all values of x, to the nearest integer, so that f (x)   4.

36. (A) Find f(4) to the nearest integer.
(B) Find all values of x, to the nearest integer, so that f (x)  0.

Determine which of the equations in Problems 37–46 define a

function with independent variable x. For those that do, find the

domain. For those that do not, find a value of x to which there

corresponds more than one value of y.

37. y  x2
 1 38. y2

 x  1

39. 2x3
 y2

 4 40. 3x2
 y3

 8

41. x3
 y  2 42.

43. 44.

45. 46. x| y|  x  13y  2|x|  12

y  2冟x冟  32x  冟y冟  7

x3
 冟y冟  6

 10

10 10

10

y   f(x)

x

f(x)

In Problems 47–62, find the domain of the indicated function.

Express answers in both interval notation and inequality notation.

47. f (x) 4  9x  3x2
48. g(t) 1  7t  2t2

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

The verbal statement “function f multiplies the square of the

domain element by 3 and then subtracts 7 from the result” and the

algebraic statement “f(x)  3x2
 7” define the same function. In

Problems 63–66, translate each verbal definition of a function into

an algebraic definition.

63. Function g subtracts 5 from twice the cube of the domain
element.

64. Function f multiplies the square of the domain element by 10
then adds 1,000 to the result. 

65. Function F multiplies the square root of the domain element
by 8, then subtracts the product of 4 and the sum of the do-
main element and two.

66. Function G divides the sum of the domain element and 7 by
the cube root of the domain element.

In Problems 67–70, translate each algebraic definition of the

function into a verbal definition.

67. f (x) 2x2
 5 68. g(x)  2x  7

69. 70.

71. If F(s)  3s  15, find: 

72. If K(r)  7  4r, find: 

73. If g(x)  2  x2, find: 

74. If P(m)  2m2
 3, find: 

P(2  h)  P(2)

h

g(3  h)  g(3)

h

K(1  h)  K(1)

h

F(2  h)  F(2)

h

M(t)  5t  21tz(x)  
4x  5

1x

r(t)  
1

1t  4
s(t)  

1

3  1t

N(x)  
1x  3

x  2
M(x)  

1x  4

x  1

G(u)  
u

u2
 4

H(u)  
u

u2
 4

j(w)  19  4wk(w)  17  3w

h(t)  16  tg(t)  1t  4

k(z)  
z

z  3
h(z)  

2

4  z

M(w)  
w  5

23  2w2
L(u)  23u2

 4
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In Problems 75–84, find and simplify:

(A) (B)

75. f (x)  4x  7 76. f (x)   5x  2

77. f (x)  2x2
 4 78. f (x)  5  3x2

79. f (x)   4x2
 3x  2 80. f (x)  3x2

 5x  9

81. 82.

83. 84.

85. The area of a rectangle is 64 square inches. Express the

perimeter P as a function of the width w and state the domain.

86. The perimeter of a rectangle is 50 inches. Express the area A

as a function of the width w and state the domain.

87. The altitude of a right triangle is 5 meters. Express the hy-

potenuse h as a function of the base b and state the domain.

88. The altitude of a right triangle is 4 meters. Express the base b

as a function of the hypotenuse h and state the domain.

APPLICATIONS

Most of the applications in this section are calculus-related. That

is, similar problems will appear in a calculus course, but

additional analysis of the functions will be performed.

89. COST FUNCTION The fixed costs per day for a doughnut shop

are $300, and the variable costs are $1.75 per dozen doughnuts pro-

duced. If x dozen doughnuts are produced daily, express the daily

cost C(x) as a function of x.

90. COST FUNCTION A manufacturer of MP3 players has fixed

daily costs of 15,700 Chinese yuan, and it costs 178 yuan to pro-

duce one MP3 player. If the manufacturer produces x players daily,

express the daily cost C in yuan as a function of x.

91. CELL PHONE COST Since Don usually borrows his room-

mate’s cell phone for long-distance calls, he chooses an inexpensive

plan for his own phone with a monthly access charge, and a variable

charge for each hour of calls used. The function

C(h)  17  2.40h

is used to calculate Don’s monthly bill, where C is the cost in dollars

and h is hours of airtime used. Translate this equation into a verbal

statement that you could use to explain Don’s monthly charge.

92. COST OF HIGH SPEED INTERNET A college offers high-

speed Internet in dorm rooms. The monthly access fee in dollars is

calculated using the function

A(m)  15  0.02m

where m is the number of minutes spent online. Translate this equa-

tion into a verbal statement that can be used to explain the monthly

charges to an incoming freshman.

93. PHYSICS—RATE The distance in feet that an object falls

(ignoring air resistance) is given by s(t)  16t2, where t is time in

seconds.

(A) Find: s(0), s(1), s(2), and s(3).

f (x)  
3

x  2
f (x)  

4

x

f (x)  1x  1f (x)  1x  2

f (x)  f (a)

x  a

f (x  h)  f (x)

h

(B) Find and simplify 

(C) Evaluate the expression in part (B) for

h    1,  0.1,  0.01,  0.001.

(D) What happens in part (C) as h gets closer and closer to 0?

Interpret physically.

94. PHYSICS—RATE An automobile starts from rest and

travels along a straight and level road. The distance in feet traveled by

the automobile is given by s(t)  10t2, where t is time in seconds.

(A) Find: s(8), s(9), s(10), and s(11).

(B) Find and simplify 

(C) Evaluate the expression in part (B) for 

h    1,  0.1,  0.01,  0.001.

(D) What happens in part (C) as h gets closer and closer to 0?

Interpret physically.

95.MANUFACTURING A candy box is to be made out of a piece of

cardboard that measures 8 by 12 inches. Squares, x inches on a side,

will be cut from each corner, and then the ends and sides will be

folded down (see the figure). Find a formula for the volume of the

box V in terms of x. What is the domain of the function V that

makes sense in this problem?

96. CONSTRUCTION A rancher has 20 miles of fencing to fence a

rectangular piece of grazing land along a straight river. If no fence

is required along the river and the sides perpendicular to the river

are x miles long, find a formula for the area A of the rectangle in

terms of x. What is the domain of the function A that makes sense

in this problem?

97. CONSTRUCTION The manager of an animal clinic wants to

construct a kennel with four identical pens, as indicated in the fig-

ure. State law requires that each pen have a gate 3 feet wide and an

area of 50 square feet. If x is the width of one pen, express the total

amount of fencing F (excluding the gates) required for the con-

struction of the kennel as a function of x. Complete the following

table (round values of F to one decimal place):

x 4 5 6 7

F

98. ARCHITECTURE An architect wants to design a window with

an area of 24 square feet in the shape of a rectangle with a

x

3

feet

x

xx

xx

xx

x CITRUS DELIGHTS

CITRUS DELIGHTS

CITRUS DELIGHTS

s(11  h)  s(11)

h
.

s(2  h)  s(2)

h
.
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semicircle on top, as indicated in the figure. If x is the width of the

window, express the perimeter P of the window as a function of x.

Complete the following table (round each value of P to one decimal

place):

x 4 5 6 7

P

99. CONSTRUCTION A freshwater pipeline is to be run from a

source on the edge of a lake to a small resort community on an is-

land 8 miles offshore, as indicated in the figure. It costs $10,000 per

mile to lay the pipe on land and $15,000 per mile to lay the pipe in

the lake. Express the total cost C of constructing the pipeline as a

function of x. From practical considerations, what is the domain of

the function C?

x

10 miles

d
h

Figure for 100

Lake

Land

Island

Freshwater
source

Pipe

20 miles

8
 m

ile
s

x 20   x

Figure for 99

100. WEATHER An observation balloon is released at a point

10 miles from the station that receives its signal and rises vertically,

as indicated in the figure. Express the distance d between the bal-

loon and the receiving station as a function of the altitude h of the

balloon.

3-2 Graphing Functions

Z Basic Concepts

Z Linear Functions

Z Piecewise-Defined Functions

One of the ways we represented functions in Section 3-1 was with sets of ordered pairs. If

these ordered pairs reminded you of points on a graph, you already understand the most

important idea in this section—that graphs are a natural fit for functions because a graph

matches up a pair of numbers in exactly the same way a function matches up a pair of objects.

Z Basic Concepts

When we graph a function whose domain and range are both sets of numbers, we are draw-

ing a visual representation of the pairs of numbers matched up by that function. We will

associate domain values with the horizontal axis, and range values with the vertical axis.

The graph of a function f (x) is the set of all points whose first coordinate is an element

of the domain of f, and whose second coordinate is the associated element of the range. We

can use the symbol y or f (x) to represent the dependent variable. See Figure 1. Since it isZ Figure 1 Graph of a function.

x

y or f(x)

(x, y) or
(x, f(x))

x intercept

y intercept

y or f(x)

f



176 C H A P T E R  3 FUNCTIONS

EXAMPLE 1 Finding the Domain and Intercepts of a Function

Find the domain, x intercept, and y intercept of f (x)  
4  3x

2x  5
.

SOLUTION The rational expression (4  3x)兾(2x  5) is defined for every x except those that make

the denominator zero:

Subtract 5 from both sides.

Divide both sides by 2.

The domain of f is all x values except or 

The value of a fraction is 0 if and only if the numerator is zero:

Subtract 4 from both sides.

Divide both sides by ⴚ3.

The x intercept of f is 

The y intercept is 

�

f (0)    4  3(0)

2(0)  5
   

4

5
.

4
3.

 x  4
3

  3x   4

 4  3x  0

(  ,  5
2)傼 ( 5

2,  ). 
5
2,

 x   
5
2

 2x   5

 2x  5  0

typical to use the variables x and y for the independent and dependent variables, respec-

tively, we usually refer to the first coordinate of a point as the x coordinate, and the sec-

ond coordinate as the y coordinate.

The x coordinate of a point where the graph of a function intersects the x axis is called

an x intercept or zero of the function. An x intercept is also a real solution or root of the

equation f (x)  0. The y coordinate of a point where the graph of a function crosses the

y axis is called the y intercept of the function. The y intercept is given by f (0), provided

0 is in the domain of f. Note that a function can have more than one x intercept but can

never have more than one y intercept—a consequence of the vertical line test from 

Section 3-1.

MATCHED PROBLEM 1 Find the domain, x intercept, and y intercept of 

�

The domain of a function is the set of all the x coordinates of points on the graph of

the function and the range is the set of all the y coordinates. It is very useful to view the

domain and range as subsets of the coordinate axes as in Figure 2 on the next page. Note

the effective use of interval notation in describing the domain and range of the functions

in this figure. In Figure 2(a) a solid dot is used to indicate that a point is on the graph of

the function and in Figure 2(b) an open dot is used to indicate that a point is not on the

graph of the function. An open or solid dot at the end of a graph indicates that the graph

terminates there, whereas an arrowhead indicates that the graph continues indefinitely

beyond the portion shown with no significant changes of direction [see Fig. 2(b) and note

that the arrowhead indicates that the domain extends infinitely far to the right, and the

range extends infinitely far downward].

f (x)  
4x  5

3x  2
.
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Z Figure 2 Domain and range.

x

f(x)

[
]

[ ]

d

b

c

a

Domain f   [a, b]
   Range f   [c, d ]

x

f(x)

(

(

d

a

Domain f   (a,  )
   Range f   (  , d)

(a) (b)

EXAMPLE 2 Finding the Domain and Range from a Graph

(A) Find the domain and range of the function f whose graph is shown in Figure 3.

(B) Find f (1), f (3), and f (5).

x

y or f(x)

 5

 4

 3

3 5

4

1

y   f(x)

Z Figure 3

(A) The dot at the left end of the graph indicates that the graph terminates at that point,

while the arrowhead on the right end indicates that the graph continues infinitely far

to the right. So the x coordinates on the graph go from to The open dot at

indicates that is not in the domain of f.

The least y coordinate on the graph is and there is no greatest y coordinate.

(The arrowhead tells us that the graph continues infinitely far upward.) The closed

dot at indicates that is in the range of f.

or [ )

(B) The point on the graph with x coordinate 1 is so Likewise,

and are on the graph, so and . �f (5)   4f (3)   5(5,  4)(3,  5)

f (1)   4.(1,  4),

 5,  Range:  5  y 6  

 5(3,  5)

 5,

Domain:  3 6 x 6    or  ( 3,  )

 3( 3, 4)

 . 3

SOLUTIONS

MATCHED PROBLEM 2 (A) Find the domain and range of the function f given by the graph in Figure 4.

(B) Find f (–4), f (0), and f(2).

�

x

 4

3

5

y or f(x)

 4

1

y   f(x)

Z Figure 4

ZZZ CAUTION ZZZ When using interval notation to describe domain and range, make sure that you always

write the least number first! You should find the domain by working left to right along

the x axis, and find the range by working bottom to top along the y axis.
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Z Identifying Increasing and Decreasing Functions

We will now take a look at increasing and decreasing properties of functions. Informally,

a function is increasing over an interval if its graph rises as the x coordinate increases

(moves from left to right) over that interval. A function is decreasing over an interval if its

graph falls as the x coordinate increases over that interval. A function is constant on an

interval if its graph is horizontal (i.e., the height doesn’t change) over that interval (Fig. 5).

Z Figure 5 Increasing, decreasing, and constant functions.

g(x)   2x   2

x

g(x)

 5

5 5

5

x

f(x)

 5

5 5

5

f(x)    x3

x

h(x)

 5

5 5

5

h(x)   2

x

p(x)

 5

5 5

5

p(x)   x2   1

(a) Increasing on (ⴚⴥ, ⴥ) (b) Decreasing on (ⴚⴥ, ⴥ)

(c) Constant on (ⴚⴥ, ⴥ) (d) Decreasing on 

Increasing on [0, ⴥ)

(ⴚⴥ, 0 ]

More formally, we define increasing, decreasing, and constant functions as follows:

Z DEFINITION 1 Increasing, Decreasing, and Constant Functions

Let I be an interval in the domain of function f. Then,

1. f is increasing on I and the graph of f is rising on I if 

whenever in I.

2. f is decreasing on I and the graph of f is falling on I if 

whenever in I.

3. f is constant on I and the graph of f is horizontal on I if 

whenever in I.x1 6 x2

f (x1)  f (x2)

x1 6 x2

f (x1) 7 f (x2)

x1 6 x2

f (x1) 6 f (x2)

Z Linear Functions

In Section 2-3, we studied the slope–intercept form of the equation of a line: y   mx   b,

where m is the slope, and b is the y intercept. We can carry over what we learned to the

study of linear functions.
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Z DEFINITION 2 Linear Function

A function of the form f (x)   mx   b is called a linear function. If m   0, the

result is f(x)   b, which is called a constant function. If m   1 and b   0, then

the result is f(x)   x, which is called the identity function.

The domain of any linear function is all real numbers. If m 0, then the

range is also all real numbers. If m   0, the function is constant and the range

is {b}.

 

Z GRAPH PROPERTIES OF f(x) ⴝ mx ⴙ b

The graph of a linear function is a line with slope m and y intercept b.

b

x

f(x)

m ⬍ 0 m ⴝ 0 m ⬎ 0

Decreasing on (ⴚ ,  ) Constant on (ⴚ ,  ) Increasing on (ⴚ ,  )

Domain: (ⴚ ,  ) Domain: (ⴚ ,  ) Domain: (ⴚ ,  )

Range: (ⴚ ,  ) Range: {b} Range: (ⴚ ,  )

The y intercept is f(0)  4, and the slope is To find the x intercept, we solve the equa-

tion f (x)  0 for x:

Substitute x ⴙ 4 for f(x).

Subtract 4 from both sides

Divide both sides by

x intercept

The graph of f is shown in Figure 6. �

 x  
 4

 
2
3

 ( 3
2)( 4)  6

ⴚ
2
3.  2

3 
x   4

  2
3 
x  4  0

ⴚ
2
3 f (x)  0

 
2
3.

EXAMPLE 3 Graphing a Linear Function

Find the slope and intercepts, and then sketch the graph of the linear function defined by

f (x)   2
3 x  4

SOLUTION

5

5

f(x)

x

Z Figure 6

(A) Is it possible for a linear function to have two x intercepts? No x intercepts? If

either of your answers is yes, give an example.

(B) Is it possible for a linear function to have two y intercepts? No y intercept? If

either of your answers is yes, give an example.

ZZZ EXPLORE-DISCUSS 1

b

x

f(x)

b

x

f(x)
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MATCHED PROBLEM 3 Find the slope and intercepts, and then sketch the graph of the linear function defined by

�

f (x)  
3
2 
x  6

Z Piecewise-Defined Functions

The absolute value function can be defined using the definition of absolute value from

Section 1-3:

Notice that this function is defined by different expressions for different parts of its domain.

Functions whose definitions involve more than one expression are called piecewise-defined

functions. Example 4 will show you how to work with a piecewise-defined function.

f (x)  冟x冟  再 x  if x 6 0

x  if x  0

EXAMPLE 4 Analyzing a Piecewise-Defined Function

The function f is defined by

(A) Find f ( 3), f ( 2), f (1), and f(3).

(B) Graph f.

(C) Find the domain, range, and intervals where f is increasing, decreasing, or constant.

f (x)  再4x  11  if x 6  2

3  if  2  x  1

 
1
2 x  

7
2  if x 7 1

(A) Since  3 is an x value less than  2, we use the formula 4x  11 to calculate f( 3).

f (ⴚ3)  4(ⴚ3)  11   12  11   1

Since both  2 and 1 are in the interval  2  x  1, the output is 3 for both.

f (ⴚ2)  3 and f (1)  3

Since 3 is an x value greater than 1, we use the formula to calculate f (3).

(B) To graph f, we graph each expression in the definition of f over the appropriate

interval. That is, we graph

for 

for 

for x 7 1 y   
1
2 x  

7
2

 2  x  1 y  3

x 6  2 y  4x  11

f (3)   
1
2 (3)  

7
2   

3
2  

7
2  

4
2  2

 
1
2 x  

7
2

SOLUTIONS

 5

5 5

5

( 2, 3) (1, 3)

x

y

y   4x   11

y   3

y      x  
1
2

7
2
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We used a solid dot at the point ( 2, 3) to indicate that y  4x  11 and y  3

agree at x   2. The solid dot at the point (1, 3) indicates that y  3 and

agree at x  1.

(C) The domain of a piecewise-defined function is the union of the intervals used in its

definition:

Domain of f: (  ,  2) ´ [ 2, 1] ´ (1,  )  (  ,  )

The graph of f shows that the range of f is (  , 3]. The function f is increasing on

(  ,  2), constant on [ 2, 1], and decreasing on (1,  ). �

y   1
2 
x  7

2

MATCHED PROBLEM 4 The function f is defined by

(A) Find f ( 4), f ( 1), f (3), and f(4).

(B) Graph f.

(C) Find the domain, range, and intervals where f is increasing, decreasing, or constant.

�

Notice that the graph of f in Example 4 contains no breaks. Informally, a graph (or por-

tion of a graph) is said to be continuous if it contains no breaks or gaps. (A formal pres-

entation of continuity can be found in calculus texts.)

Piecewise-defined functions occur naturally in many applications, especially ones

involving money. A very useful example is income tax.

f (x)  再 
1
3 x  7

3  if x   1

 2  if  1 6 x 6 3

5x  17  if x  3

EXAMPLE 5 Income Tax

Table 1 contains a recent tax rate chart for a single filer in the state of Oregon. If T(x) is

the tax on an income of $x, write a piecewise definition for T. Find the tax on each of the

following incomes: $2,000, $5,000, and $9,000.

Table 1 2009 Tax Rate Chart for Persons Filing Single, or Married Filing Separately

If the taxable income is: The tax is:

Not over $3,050 5% of taxable income

Over $3,050 but not over $7,600 $153 plus 7% of the excess over $3,050

Over $7,600 $471 plus 9% of the excess over $7,600

Source: Oregon Department of Revenue

SOLUTION Since taxes are computed differently on [0, 3,050], (3,050, 7,600] and (7,600,  ), we must find

an expression for the tax on incomes in each of these intervals.

[0, 3,050]: Tax is 0.05x.

(3,050, 7,600]: Tax is $153  0.07(x  3,050)  0.07x – 61*

(7,600,  ): Tax is $471  0.09(x  7,600)  0.09x  213

*In the Oregon tax rate chart, dollar amounts ending with 0.50 were rounded up to the next dollar. We will do

the same.



Combining the three intervals with the preceding linear expressions, we can write

Using the piecewise definition of T, we have

� T(9,000)  0.09(9,000)  213  $597

 T(5,000)  0.07(5,000)  61  $289

 T(2,000)  0.05(2,000)  $100

T(x)  再0.05x  if 0  x  3,050

0.07x  61  if 3,050 6 x  7,600

0.09x  213  if x 7 7,600
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MATCHED PROBLEM 5 Table 2 contains a recent tax rate chart for persons filing a joint return in the state of Ore-

gon. If T(x) is the tax on an income of $x, write a piecewise definition for T. Find the tax

on each of the following incomes: $4,000, $10,000, and $18,000.

Table 2 2009 Tax Rate Chart for Persons Filing Jointly

If the taxable income is: The tax is:

Not over $6,100 5% of taxable income

Over $6,100 but not over $15,200 $305 plus 7% of the excess over $6,100

Over $15,200 $942 plus 9% of the excess over $15,200

�

We will conclude the section with a look at a particular piecewise function that is espe-

cially useful in computer science. It is called the greatest integer function.

The greatest integer for a real number x, denoted by 冀x冁, is the integer n such that

n  x  n  1; that is, 冀x冁 is the largest integer less than or equal to x. For example,

Not ⴚ2

The greatest integer function f is defined by the equation f(x) 冀x冁. A piecewise def-

inition of f for  2 x 3 is shown below, and a sketch of the graph of f for  5 x 5

is shown in Figure 7. Since the domain of f is all real numbers, the piecewise definition con-

tinues indefinitely in both directions, as does the stairstep pattern in the figure. So the range

of f is the set of all integers.

 冀0 冁  0

 冀5.99 冁  5   冀 3.79 冁   4

 冀7 冁  7   冀 8 冁   8

 冀3.45 冁  3   冀 2.13 冁   3

o

 2  if  2  x 6  1

 1 if  1  x 6 0

0 if 0  x 6 1

1 if 1  x 6 2

2 if 2  x 6 3

o

f (x)  冀x 冁  

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

Notice in Figure 7 that at each integer value of x there is a break in the graph, and

between integer values of x there is no break. In other words, the greatest integer func-

tion is discontinuous at each integer n and continuous on each interval of the form

[n, n  1).

 5

5 5

5

f(x)   冚x 军

x

f(x)

Z Figure 7 Greatest integer

function.
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Technology Connections

Most graphing calculators denote the greatest integer

function as int (x), although not all define it the same way

we have here. Graph y ⴝ int (x) for ⴚ5 ⱕ x ⱕ 5 and

ⴚ5 ⱕ y ⱕ 5 and discuss any differences between your

graph and Figure 7. If your graphing calculator supports

both a connected mode and a dot mode for graphing func-

tions (consult your manual), which mode is preferable for

this graph?

EXAMPLE 6 Computer Science

Let

Find:

(A) f (6) (B) f (1.8) (C) f (3.24) (D) f (4.582) (E) f ( 2.68)

What operation does this function perform?

f (x)  
冀10x  0.5 冁

10

SOLUTIONS (A) (B) 

(C) (D) 

(E) 

Comparing the values of x and f (x) in Table 3 in the margin, we conclude that this func-

tion rounds decimal fractions to the nearest tenth. The greatest integer function is used in

programming (spreadsheets, for example) to round numbers to a specified accuracy. �

f ( 2.68)  
冀 26.3 冁

10
 
 27

10
  2.7

f (4.582)  
冀46.32 冁

10
 

46

10
 4.6f (3.24)  

冀32.9 冁

10
 

32

10
 3.2

f (1.8)  
冀18.5 冁

10
 

18

10
 1.8f (6)  

冀60.5 冁

10
 

60

10
 6

Table 3

x f (x)

6 6

1.8 1.8

3.24 3.2

4.582 4.6

 2.68  2.7

Let f (x)  冀x  0.5冁. Find:

(A) f (6) (B) f (1.8) (C) f (3.24) (D) f ( 4.3) (E) f ( 2.69)

What operation does this function perform?

�

MATCHED PROBLEM 6

ANSWERS TO MATCHED PROBLEMS

1. Domain: ; x intercept: y intercept: 

2. (A) Domain: ( 4, 5); range: ( 4, 3] (B) 

3. y intercept: f (0)   6

x intercept: 4

Slope: 3
2

 5

5
x

y

f ( 4)  1, f (0)  3, f (2)  2

f (0)   
5
2 

5
4;(  , 23) 傼 (2

3,  )



4. (A) 

(B) (C) Domain: 

range: 

increasing: 

decreasing: 

constant: 

5.

T(4,000)  $200; T(10,000)  $578; T(18,000)  $1,194

T(4,000)  $200; T(10,000)  $594; T(18,000)  $1,248

6. (A) 6 (B) 2 (C) 3 (D) (E) 

f rounds decimal fractions to the nearest integer.

 3; 4

T(x)  再0.05x      x  6,100

0.07x  122  6,100 6 x  15,200

0.09x  426     x 7 15,200

( 1, 3)

(  ,  1];

[3,  );

[ 2,  );

(  ,  );

 5

5 5

5

( 1,  2) (3,  2)

y

y   5x   17

y    2

y      x  
1
3

7
3 x

f (3)   2; f (4)  3f ( 4)   1; f ( 1)   2;
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13. Repeat Problem 9 for the function p.

14. Repeat Problem 9 for the function q.

3-2 Exercises

1. Describe in your own words what the graph of a function is.

2. Explain how to find the domain and range of a function from its

graph.

3. How many y intercepts can a function have? What about x inter-

cepts? Explain.

4. True or false: On any interval in its domain, every function is

either increasing or decreasing. Explain.

5. Explain in your own words what it means to say that a function

is increasing on an interval.

6. Explain in your own words what it means to say that a function

is decreasing on an interval.

7. What does it mean for a function to be defined piecewise?

8. Explain how the output of the greatest integer function is calcu-

lated for any real number input.

Problems 9–20 refer to functions f, g, h, k, p, and q given by the

following graphs.

9. For the function f, find:

(A) Domain (B) Range

(C) x intercepts (D) y intercept

(E) Intervals over which f is increasing

(F) Intervals over which f is decreasing

(G) Intervals over which f is constant

(H) Any points of discontinuity

10. Repeat Problem 9 for the function g.

11. Repeat Problem 9 for the function h.

12. Repeat Problem 9 for the function k.

x

 5

5 5

5

f(x)

x

 5

5 5

5

g(x)

x

 5

5 5

5

h(x)

x
5 5

5

k(x)

 5

x

 5

5 5

5

p(x)

x

 5

5 5

5

q(x)



15. Find f ( 4), f (0), and f (4).

16. Find g ( 5), g(0), and g(5).

17. Find h( 3), h(0), and h(2).

18. Find k (0), k(2), and k(4).

19. Find p( 2), p(2), and p (5).

20. Find q( 4), q( 3), and q (1).

Problems 21–26 describe the graph of a continuous function f

over the interval [ 5, 5]. Sketch the graph of a function that is

consistent with the given information.

21. The function f is increasing on [ 5,  2], constant on [ 2, 2],

and decreasing on [2, 5].

22. The function f is decreasing on [ 5,  2], constant on [ 2, 2],

and increasing on [2, 5].

23. The function f is decreasing on [ 5,  2], constant on [ 2, 2],

and decreasing on [2, 5].

24. The function f is increasing on [ 5,  2], constant on [ 2, 2],

and increasing on [2, 5].

25. The function f is decreasing on [ 5,  2], increasing on

[ 2, 2], and decreasing on [2, 5].

26. The function f is increasing on [ 5,  2], decreasing on 

[ 2, 2], and increasing on [2, 5].

In Problems 27–32, find the slope and intercepts, and then sketch

the graph.

27. f (x)  2x  4 28. f (x)  3x  3

29. 30.

31. f (x)   2.3x  7.1 32. f (x)  5.2x  3.4

In Problems 33–36, find a linear function f satisfying the given

conditions.

33. f ( 2)  2 and f (0)  10

34. f (4)   7 and f (0)  5

35. f ( 2)  7 and f (4)   2

36. f ( 3)   2 and f (5)  4

In Problems 37–46, find the domain, x intercept, and y intercept.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46. f (x)  
x2
 11

x2
 5

f (x)  
x2
 7

x2
 25

f (x)  
x2
 4

x2
 10

f (x)  
x2
 16

x2
 9

f (x)  
2x

(x  1)2
f (x)  

4x

(x  2)2

f (x)  
2x  7

5x  8
f (x)  

3x  2

4x  5

f (x)  
2x  9

x  3
f (x)  

3x  12

2x  4

f (x)   3
4 
x  6

5f (x)   1
2  
x  5

3
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In Problems 47–58, (A) find the indicated values of f; (B) graph f

and label the points from part A, if they exist; and (C) find the

domain, range, and the values of x in the domain of f at which f is

discontinuous.

47. f ( 1), f(0), f(1)

48. f ( 2), f(1), f(2)

49. f ( 3), f( 1), f(2)

50. f ( 2), f(2), f(5)

51. f ( 2), f( 1), f(0)

52. f (0), f(2), f(4)

53. f ( 3), f( 2), f(0), f(3), f(4)

54. f ( 2), f( 1), f(0), f(2), f(3)

55. f ( 3), f( 2), f(0), f(3), f (4)

56. f ( 3), f( 2), f(0), f(1), f(2)

57. f ( 1), f(0), f(1), f(2), f(3)

58. f ( 3), f( 2), f(0), f(2), f(3)

f (x)  再 
3
2 
x  2  if x 6  2

3
4 
x  1

2 if  2 6 x 6 2
3
4 
x  5

2 if x 7 2

f (x)  再
2
3 
x  4 if x 6 0

 
1
2 
x  3  if 0 6 x 6 2

 
1
2 
x if x 7 2

f (x)  再3 if x   2

 
1
3 
x  7

3 if  2 6 x 6 1

 3x  5  if x  1

f (x)  再
5
2 
x  6  if x 6  2

1 if  2  x  3
3
2 
x  7

2 if x 7 3

f (x)  再
2
3 
x  11

3 if x   1

3 if  1 6 x  2

 
3
2 
x  6  if x 7 2

f (x)  再 2x  6  if x 6  2

 2 if  2  x 6 3

6x  20 if x  3

f (x)  e 1  x  if x 6 2

5  x if x 7 2

f (x)  e x  2 if x 6  1

x  2  if x 7  1

f (x)  e 1 if  2  x 6 2

 3  if  2 6 x  5

f (x)  e 2 if  3  x 6  1

4  if  1 6 x  2

f (x)  e x if  2  x 6 1

 x  2  if 1  x  2

f (x)  e x  1  if  1  x 6 0

 x  1 if 0  x  1



In Problems 59–64, use the graph of f to find a piecewise

definition for f.

59. 

60. 

61. 

62. 

63. 

 5

5 5

5

(1,  4)

(4,  1)(1,  1)

( 2, 2)

( 4, 3) ( 2, 3)

x

f(x)

 5

5 5

5

( 4,  2)
( 2,  2)

(4, 1)

x

f(x)

 5

5 5

5

(1,  3)

( 4, 3) ( 1, 3)

x

f(x)

 5

5 5

5

f(x)

(0,  2)( 2,  2)

(2, 2)
(0, 2)

x

x

 5

5 5

5

f(x)

(2,  3)

(0, 1)

(0,  1)

( 2, 3)

64. 

In Problems 65–68, find a piecewise definition of f that does not

involve the absolute value function. (Hint: Use the definition of

absolute value on page 180 to consider cases.) Sketch the graph of

f, and find the domain, range, and the values of x at which f is

discontinuous.

65. 66.

67. 68.

69. The function f is continuous and increasing on the interval 

[1, 9] with f (1)   5 and f (9)  4.

(A) Sketch a graph of f that is consistent with the given

information.

(B) How many times does your graph cross the x axis? Could the

graph cross more times? Fewer times? Support your conclu-

sions with additional sketches and/or verbal arguments.

70. Repeat Problem 69 if the function is not continuous.

71. The function f is continuous on the interval [ 5, 5] with 

f ( 5)   4, f (1)  3, and f (5)   2.

(A) Sketch a graph of f that is consistent with the given

information.

(B) How many times does your graph cross the x axis? Could the

graph cross more times? Fewer times? Support your conclu-

sions with additional sketches and/or verbal arguments.

72. Repeat Problem 71 if f is continuous on [ 8, 8] with

f ( 8)   6, f ( 4)  3, f (3)   2, and f (8)  5.

Problems 73–80 require the use of a graphing calculator.

In Problems 73–78, first graph functions f and g in the same

viewing window, then graph m(x) and n(x) in their own viewing

windows:

73. f (x)   2x, g(x)  0.5x

74. f (x)  3x  1, g(x)   0.5x  4

75. f (x)  5  0.2x2, g(x)  0.3x2
 4

76. f (x)  0.15x2
 5, 

77. f (x)  0.2x2
 0.4x  5, g(x)  0.3x  3

78. f (x)  8  1.5x  0.4x2, g(x)   0.2x  5

79. How would you characterize the relationship between f, g, and

m in Problems 73–78? [Hint: Use the trace feature on the cal-

culator and the up/down arrows to examine all 3 graphs at sev-

eral points.]

g(x)  5  1.5冟x冟

 n(x)  0.5[  f (x)  g(x)  冟  f (x)  g(x)冟 ]

 m(x)  0.5[  f (x)  g(x)  冟  f (x)  g(x)冟 ]

f (x)  冟x  1冟f (x)  冟x  2冟

f (x)  2  冟x冟f (x)  1  冟x冟

 5

5 5

5

(2, 4)

(2, 0)

(4, 4)

( 3,  1)

( 3,  3)

( 4,  3)

x

f(x)
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80. How would you characterize the relationship between f, g, and

n in Problems 73–78? [Hint: Use the trace feature on the calcu-

lator and the up/down arrows to examine all 3 graphs at several

points.]

APPLICATIONS

Table 4 contains daily automobile rental rates from a New Jersey firm.

Table 4

Vehicle Type Daily Charge Included Miles Mileage Charge*

Compact $32.00 100/Day $0.16/mile

Midsize $41.00 200/Day $0.18/mile

*Mileage charge does not apply to included miles.

81. AUTOMOBILE RENTAL Use the data in Table 4 to construct a

piecewise-defined model for the daily rental charge for a compact

automobile that is driven x miles.

82. AUTOMOBILE RENTAL Use the data in Table 4 to construct a

piecewise-defined model for the daily rental charge for a midsize

automobile that is driven x miles.

83. SALES COMMISSIONS A high-volume website pays salespeople

to solicit advertisements for placement on their site. The sales staff

each gets $200 per week in salary, and a commission of 4% on all

sales over $3,000 for the week. In addition, if the weekly sales are

$8,000 or more, the salesperson gets a $100 bonus. Find a piece-

wise definition for the weekly earnings E (in dollars) in terms of the

weekly sales x (in dollars). Graph this function and find the values

of x at which the function is discontinuous. Find the weekly earn-

ings for sales of $5,750 and of $9,200.

84. SERVICE CHARGES On weekends and holidays, an emergency

plumbing repair service charges $2.00 per minute for the first 30

minutes of a service call and $1.00 per minute for each additional

minute. Express the total service charge S (in dollars) as a piece-

wise-defined function of the duration of a service call x (in min-

utes). Graph this function and find the values of x at which the func-

tion is discontinuous. Find the charge for a 25-minute service call

and for a 45-minute service call.

85. COMPUTER SCIENCE Let Evaluate f

at 4,  4, 6,  6, 24, 25, 247,  243,  245, and  246. What opera-

tion does this function perform?

86. COMPUTER SCIENCE Let Evaluate

f at 40,  40, 60,  60, 740, 750, 7,551,  601,  649, and  651.

What operation does this function perform?

87. COMPUTER SCIENCE Use the greatest integer function to define a

function f that rounds real numbers to the nearest hundredth.

88. COMPUTER SCIENCE Use the greatest integer function to define

a function f that rounds real numbers to the nearest thousandth.

89. DELIVERY CHARGES A nationwide package delivery service

charges $15 for overnight delivery of packages weighing 1 pound

or less. Each additional pound (or fraction thereof ) costs an addi-

tional $3. Let C be the charge for overnight delivery of a package

weighing x pounds.

(A) Write a piecewise definition of C for 0  x  6, and sketch the

graph of C.

f (x)  100 冀0.5  x 100 冁 .

f (x)  10 冀0.5  x 10 冁 .

(B) Can the function f defined by f (x)  15  3冀x冁 be used to com-

pute the delivery charges for all x, 0  x  6? Justify your answer.

90. TELEPHONE CHARGES Calls to 900 numbers are charged to

the caller. A 900 number hot line for gambling advice on college

football games charges $4 for the first minute of the call and $2 for

each additional minute (or fraction thereof). Let C be the charge for

a call lasting x minutes.

(A) Write a piecewise definition of C for 0  x  6, and sketch the

graph of C.

(B) Can the function f defined by f(x)  4  2冀x冁 be used to com-

pute the charges for all x, 0  x  6? Justify your answer.

91. STATE INCOME TAX The Connecticut state income taxes for an in-

dividual filing a single return are 3% for the first $10,000 of taxable

income and 5% on the taxable income in excess of $10,000. Find a

piecewise-defined function for the taxes owed by a single filer with

an income of x dollars and graph this function.

92. STATE INCOME TAX The Connecticut state income taxes for an

individual filing a head of household return are 3% for the first

$16,000 of taxable income and 5% on the taxable income in excess

of $16,000. Find a piecewise-defined function for the taxes owed by

a head of household filer with an income of x dollars and graph this

function.

Table 5 contains income tax rates for Minnesota in a recent year.

Table 5

Taxable But Of the 

Income Not Amount

Status Over Over Tax Is Over

Single $0 $19,890 5.35% $0

19,890 65,330 19,890

65,330 . . . 65,330

Married 0 29,070 5.35% 0

29,070 115,510 29,070

115,510 . . . 115,510

93. STATE INCOME TAX Use the schedule in Table 5 to construct a

piecewise-defined model for the taxes due for a single taxpayer

with a taxable income of x dollars. Find the tax on the following in-

comes: $10,000, $30,000, $100,000.

94. STATE INCOME TAX Use the schedule in Table 5 to construct a

piecewise-defined model for the taxes due for a married taxpayer

with a taxable income of x dollars. Find the tax on the following in-

comes: $20,000, $60,000, $200,000.

7,649  7.85%

1,555  7.05%

4,268  7.85%

$1,064  7.05%
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3-3 Transformations of Functions

Z A Library of Elementary Graphs

Z Shifting Graphs Horizontally and Vertically

Z Reflecting Graphs

Z Stretching and Shrinking Graphs

Z Even and Odd Functions

We have seen that the graph of a function can provide valuable insight into the information
provided by that function. But there is a seemingly endless variety of functions out there,
and it seems like an insurmountable task to learn about so many different graphs. In this
section, we will see that relationships between the formulas for certain functions lead to
relationships between their graphs as well. For example, the functions

can be expressed in terms of the function as follows:

We will see that the graphs of functions g, h, and k are closely related to the graph of
function f.

Once we understand these relationships, knowing the graph of a very simple function
like will enable us to learn about the graphs of many related functions.

Z A Library of Elementary Graphs

As you progress through this book, you will encounter a number of basic functions that you
will want to add to your library of elementary functions. Figure 1 shows six basic functions
that you will encounter frequently. You should know the definition, domain, and range of
each of these functions, and be able to draw their graphs.

f (x)  x2

k(x)  2f (x)h(x)  f (x  2)g(x)  f (x)  2

f (x)  x2

k(x)  2x2h(x)  (x  2)2g(x)  x2
 2

f(x)

5

 5

 5 5
x

g(x)

5

 5 5
x

h(x)

5

 5 5
x

(a) Identity function 

f(x)  x

Domain: R

Range: R

(b) Absolute value function 

g(x)  

Domain: R

Range: [0, ) 

|x |

(c) Square function 

h(x)  x
2

Domain: R

Range: [0, ) 



S E C T I O N  3 – 3 Transformations of Functions 189

Z Shifting Graphs Vertically and Horizontally

If a new function is formed by performing an operation on a given function, then the graph

of the new function is called a transformation of the graph of the original function. For

example, if we add a constant k to f (x), then the graph of is transformed into the

graph of y  f (x)  k.

y  f (x)

x

 5

5 5

5

m(x)

x

n(x)

 5

5

5

x

p(x)

 5

5 5

5

Z Figure 1 Some basic functions and their graphs.

[Note: Letters used to designate these functions may vary from context to context; R represents the

set of all real numbers.]

(d) Cube function 

m(x)  x
3

Domain: R

Range: R

(e) Square root function 

n(x)  

Domain: [0, ) 

Range: [0, ) 

 

1x

(f) Cube root function 

p(x)  

Domain: R

Range: R

3
1x

The following activities refer to the graph of f shown in Figure 2 and the corre-

sponding points on the graph shown in Table 1.

(A) Use the points in Table 1 to construct a similar table and then sketch a graph

for each of the following functions: Describe the rela-

tionship between the graph of and the graph of for k any

real number.

(B) Use the points in Table 1 to construct a similar table and then sketch a graph

for each of the following functions: [Hint: Choose val-

ues of x so that or is in Table 1.] Describe the relationship between

the graph of and the graph of for h any real number.y  f (x  h)y  f (x)

x  3x  2

y  f (x  2), y  f (x  3).

y  f (x)  ky  f (x)

y  f (x)  2, y  f (x)  3.

ZZZ EXPLORE-DISCUSS 1

x

y

 5

5 5

5

A

B

C

D

E

y   f(x)

Z Figure 2

Table 1

x f(x)

A 0

B 3

C 0 0

D 2

E 4 0

 3

 2

 4



(A) How are the graphs of and related to the graph of

Confirm your answer by graphing all three functions in the same coordinate

system.

(B) How are the graphs of and related to the graph of

Confirm your answer by graphing all three functions in the same coordinate

system.

�

y  1x?

y  1x  1y  1x  3

y  1x?

y  1x  1y  1x  3
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EXAMPLE 1 Vertical and Horizontal Shifts

(A) How are the graphs of and related to the graph of 

Confirm your answer by graphing all three functions in the same coordinate system.

(B) How are the graphs of and related to the graph of 

Confirm your answer by graphing all three functions in the same coordinate system.

y  x2?y  (x  3)2y  (x  2)2

y  x2?y  x2
 3y  x2

 2

SOLUTIONS (A) Note that the output of is always exactly two more than the output of

Consequently, the graph of is the same as the graph of 

shifted upward two units, and the graph of is the same as the graph of

shifted downward three units. Figure 3 confirms these conclusions. (It

appears that the graph of is the graph of shifted up if k is

positive and down if k is negative.)

y  f (x)y  f (x)  k

y  x2

y  x2
 3

y  x2y  x2
 2y  x2.

y  x2
 2

x

y

 5

5 5

5

y   x2   2

y   x2

y   x2   3

Z Figure 3 Vertical shifts.

Z Figure 4 Horizontal shifts.

x
5 5

5

y   (x   2)2

y   (x   3)2y   x2 y

MATCHED PROBLEM 1

To summarize our experiences in Explore-Discuss 1 and Example 1: We can graph

by vertically shifting the graph of upward k units if k is positivey  f (x)y  f (x)  k

(B) Note that the output of is zero for while the output of 

is zero for This suggests that the graph of is the same as the

graph of shifted to the left two units, and the graph of is the

same as the graph of shifted to the right three units. Figure 4 confirms these

conclusions. It appears that the graph of is the graph of shifted

right if h is negative and left if h is positive.

y  f (x)y  f (x  h)

y  x2

y  (x  3)2y  x2

y  (x  2)2x  0.

y  x2x   2,y  (x  2)2

�
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EXAMPLE 2 Vertical and Horizontal Shifts

The graphs in Figure 5 are either horizontal or vertical shifts of the graph of 
Write appropriate equations for functions H, G, M, and N in terms of f.

f (x)  |x|.

Z Reflecting Graphs

In Section 2-1, we discussed reflections of graphs and developed symmetry properties that
we used as an aid in graphing equations. Now we will consider reflection as an operation
that transforms the graph of a function.

The graphs in Figure 6 are either horizontal or vertical shifts of the graph of 
Write appropriate equations for functions H, G, M, and N in terms of f.

�

f (x)  x3.MATCHED PROBLEM 2

 5

5 5

5

x

y
G f

H

x

y

5 5

5

M

f

N

Z Figure 5 Vertical and horizontal shifts.

The graphs of functions H and G are 3 units lower and 1 unit higher, respectively, than the
graph of f, so H and G are vertical shifts given by

The graphs of functions M and N are 2 units to the left and 3 units to the right, respec-
tively, of the graph of f, so M and N are horizontal shifts given by

�N(x)  冟x  3冟M(x)  冟x  2冟

G(x)  冟x冟  1H(x)  冟x冟  3

SOLUTION

and downward units if k is negative. We can graph by horizontally shift-

ing the graph of left h units if h is positive and right units if h is negative.冟h冟y  f (x)
y  f (x  h)冟k冟

Z Figure 6 Vertical and horizontal shifts.

x

y

5 5

5

G f H

x

y

5 5

5

M Nf



Refer to Definition 1 in Section 2-1.

(A) The graph of can be obtained from the graph of by changing the

sign of each y coordinate. This has the effect of moving every point to the opposite

side of the x axis. So the graph of is the reflection through the x axis of

the graph of [Fig. 8(a)].

(B) The graph of can be obtained from the graph of by changing the

sign of each x coordinate. This has the effect of moving every point to the opposite

side of the y axis. So the graph of is the reflection through the y axis of

the graph of [Fig. 8(b)].

(C) The graph of can be obtained from the graph of by changing

the sign of each x and y coordinate. So the graph of is the reflection

through the origin of the graph of [Fig. 8(c)].y  f (x)

y   f ( x)

y  f (x)y   f ( x)

y  f (x)

y  f ( x)

y  f (x)y  f ( x)

y  f (x)

y   f (x)

y  f (x)y   f (x)
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The following activities refer to the graph of f shown in Figure 7 and the corre-

sponding points on the graph shown in Table 2.

(A) Construct a similar table for y   f (x) and then sketch the graph of y   f (x).

Describe the relationship between the graph of y  f (x) and the graph of y   f (x)

in terms of reflections.

(B) Construct a similar table for y  f ( x) and then sketch the graph of y  f ( x).

[Hint: Choose x values so that  x is in Table 2.] Describe the relationship between

the graph of y  f (x) and the graph of y  f ( x) in terms of reflections.

(C) Construct a similar table for y  f( x) and then sketch the graph of y  f( x).

[Hint: Choose x values so that  x is in Table 2.] Describe the relationship between the

graph of y  f(x) and the graph of y   f( x) in terms of reflections.

ZZZ EXPLORE-DISCUSS 2

EXAMPLE 3 Reflecting the Graph of a Function

Let f (x)  (x  1)2.

(A) How are the graphs of y  f (x) and y   f (x) related? Confirm your answer by

graphing both functions in the same coordinate system.

(B) How are the graphs of y  f (x) and y  f ( x) related? Confirm your answer by

graphing both functions in the same coordinate system.

(C) How are the graphs of y  f (x) and y   f ( x) related? Confirm your answer by

graphing both functions in the same coordinate system.

x

y

 5

5 5

5

B

A E

C

D

y   f(x)

Table 2

x f(x)

A  2 5

B  1 0

C 1  4

D 3 0

E 4 5
Z Figure 7

SOLUTIONS
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Repeat Example 3 for f (x)  |x  2|.
�

 5

5 5

5

x

y

(3, 4)

(3,  4)
y    f(x)

y   f(x)

 5

5 5

5

x

y

(3, 4)( 3, 4)

y   f(x)y   f( x)

 5

5 5

5

x

y

(3, 4)

( 3,  4)

y    f( x)

y   f(x)

(a) 

y  f(x) and y   f(x);

reflection through the x axis

(b)

y  f(x) and y  f( x); reflection

through the y axis

(c)

y  f(x) and y   f( x); reflection

through the origin

Z Figure 8 �

MATCHED PROBLEM 3

Z Stretching and Shrinking Graphs

Horizontal shifts, vertical shifts, and reflections are called rigid transformations because
they do not change the shape of a graph, only its location. Now we consider some non-

rigid transformations that change the shape by stretching or shrinking a graph.

x
7 3

 2

8

E

D

C

B

A

y

Table 3

x f (x)

A  2 5

B 0 3

C 2 1

D 4 3

E 6 5

x 2x f (2x)

 1

0

1

2

3

x

 4

0

4

8

12

f (
1
2x)

1
2  
x

The following activities refer to the graph of f shown in Figure 9 and the corre-
sponding points on the graph shown in Table 3.

(A) Use the points in Table 3 to construct a similar table and sketch a graph for
each of the following functions: y  2f (x) and If A 1, does multiply-
ing f by A stretch or shrink the graph of y  f (x) in the vertical direction? What
happens if 0  A  1?

(B) Use the points in Table 3 to complete the following tables and then sketch a
graph of y  f (2x) and of y  f (1

2x):

y  1
2  
f (x).

ZZZ EXPLORE-DISCUSS 3

Z Figure 9

If A  1, is the graph of y  f (Ax) a horizontal stretch or a horizontal shrink of
the graph of y  f (x)? What if 0 A  1?



In general, the graph of y  Af(x) can be obtained from the graph of y  f(x) by mul-

tiplying the y coordinate of each point on the graph f by A. This vertically stretches the

graph of y  f(x) if A  1 and vertically shrinks the graph if 0  A  1.

The graph of y  f(Ax) can be obtained from the graph of y  f(x) by multiplying the

x coordinate of each point on the graph f by 1兾A. This horizontally stretches the graph of

y  f(x) if 0  A  1 and horizontally shrinks the graph if A  1.

Another common name for a stretch is an expansion and another common name for a

shrink is a contraction.
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EXAMPLE 4 Stretching or Shrinking a Graph

Let f (x)  1  x2.

(A) How are the graphs of y  2f(x) and related to the graph of y  f(x)?

Confirm your answer by graphing all three functions in the same coordinate system.

(B) How are the graphs of y  f(2x) and related to the graph of y  f(x)?

Confirm your answer by graphing all three functions in the same coordinate system.

y  f (1
2 
x)

y  
1
2  
f (x)

SOLUTIONS (A) The graph of y  2f(x)  2  2x2 can be obtained from the graph of f by multiplying

each y value by 2. This stretches the graph of f vertically (away from the x axis) by a

factor of 2. The graph of can be obtained from the graph of f

by multiplying each y value by This shrinks the graph of f vertically (toward the x

axis) by a factor of [Fig. 10(a)].

(B) The graph of y  f (2x)  1  4x2 can be obtained from the graph of f by multiply-

ing each x value by This shrinks the graph of f horizontally (toward the y axis) by

a factor of The graph of can be obtained from the graph of f

by multiplying each x value by 2. This stretches the graph of f horizontally (away

from the y axis) by a factor of 2 [Fig. 10(b)].

y  f (1
2 
x)  1  

1
4 
x21

2.

1
2.

1
2

1
2.

y  
1
2 f (x)  

1
2  

1
2 
x2

y          x21
2

1
2

y   2   2x2

y   1   x2

x

y

 3

5 5

7

(1, 4)

(1, 2)

(1, 1)

y   1     x21
4

x

y

 3

5 5

7

y   1   4x2

y   1   x2

(2, 5)

(4, 5)

(1, 5)

(a) Vertical stretching and shrinking (b) Horizontal stretching and shrinking

Z Figure 10 �

Let f (x)  4   x2.

(A) How are the graphs of y  2f(x) and related to the graph of y  f(x)?

Confirm your answer by graphing all three functions in the same coordinate system.

(B) How are the graphs of y  f(2x) and related to the graph of y  f(x)?

Confirm your answer by graphing all three functions in the same coordinate system.

�

y  f (1
2 
x)

y  
1
2 f (x)

MATCHED PROBLEM 4

Plotting points with the same x coordinate will help you recognize vertical stretches

and shrinks [Fig. 10(a)]. And plotting points with the same y coordinate will help you rec-

ognize horizontal stretches and shrinks [Fig. 10(b)].
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Note that for some functions, a horizontal stretch or shrink can also be interpreted as

a vertical stretch or shrink. For example, if y  f (x)  x2, then

y  4f (x) 4x2
 (2x)2

 f (2x)

So the graph of y  4x2 is both a vertical stretch and a horizontal shrink of the graph of

y  x2.

The transformations we’ve studied are summarized next for easy reference.

Z GRAPH TRANSFORMATIONS (SUMMARY)

Vertical Shift [Fig. 11(a)]:

Horizontal Shift [Fig. 11(b)]:

Vertical Stretch and Shrink [Fig. 11(c)]:

Horizontal Stretch and Shrink [Fig. 11(d)]:

Reflection [Fig. 11(e)]:

y   f (x) Reflect the graph of y  f (x) through the x axis

y   f ( x) Reflect the graph of y  f (x) through the y axis

y   f ( x) Reflect the graph of y  f (x) through the origin

y  f (Ax)  再A 7 1 Horizontally shrink the graph of y  f (x)

by multiplying each x value by 1
A

0 6 A 6 1 Horizontally stretch the graph of y  f (x)

by multiplying each x value by 1
A

y  Af (x)  再A 7 1 Vertically stretch the graph of y  f (x)

by multiplying each y value by A

0 6 A 6 1 Vertically shrink the graph of y  f (x)

by multiplying each y value by A

y  f (x  h)  再h 7 0 Shift graph of y  f (x) left h units

h 6 0 Shift graph of y  f (x) right 冟h冟 units

y  f (x)  k  再k 7 0 Shift graph of y  f (x) up k units

k 6 0 Shift graph of y  f (x) down 冟k冟 units

Z Figure 11 Graph transformations.

x

y

 5

5 5

5

g

f

h

x

 5

5 5

5

g f hy

5 5

5

y

x

g

f

h

hfg

x

 5

5 5

5

y

x
5 5

g f

hk

y

 5

5

(a)

Vertical translation

g(x) f(x)  2

h(x) f(x)  3

(b)

Horizontal translation

g(x) f(x  3)

h(x) f(x  2)

(c)

Vertical expansion and 

contraction

g(x) 2f(x)

h(x)  
1
2f (x)

(d)

Horizontal expansion and

contraction

g(x) f(2x)

h(x)  f(
1
2x)

(e)

Reflection

g(x) f( x)

h(x)  f(x)

k(x)   f( x)
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Z EVEN AND ODD FUNCTIONS

If f (x)  f ( x) for all x in the domain of f, then f is an even function.

If f ( x)   f (x) for all x in the domain of f, then f is an odd function.

EXAMPLE 5 Combining Graph Transformations

The graph of y  g(x) in Figure 12 is a transformation of the graph of y  x2. Find an

equation for the function g.

SOLUTION To transform the graph of y  x2 [Fig. 13(a)] into the graph of y  g(x), we first reflect

the graph of y  x2 through the x axis [Fig. 13(b)], then shift it to the right two units

[Fig. 13(c)]. An equation for the function g is

g(x)  (x  2)2

MATCHED PROBLEM 5 The graph of y  h(x) in Figure 14 is a transformation of the graph of y  x3. Find an

equation for the function h.

y

5 5

5

y   g(x)
x

Z Figure 12

Z Figure 14

Z Figure 13 �

 5

5 5

5

y   x2

x

y

 5

5 5

5

y    x2

x

y y

5 5

5

y    (x    2)2

x

(a) y  x
2

(b) y   x
2

(c) y   (x  2)
2

x

y

5 5

5

y   h(x)

 5

Z Even and Odd Functions

Certain transformations leave the graphs of some functions unchanged. For example, reflect-

ing the graph of y  x2 through the y axis does not change the graph. Functions with this

property are called even functions. Similarly, reflecting the graph of y  x3 through the ori-

gin does not change the graph. Functions with this property are called odd functions. More

formally, we have the following definitions.

�
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The graph of an even function is symmetric with respect to the y axis and the graph of

an odd function is symmetric with respect to the origin (Fig. 15).

Z Figure 15 Even and odd functions.

f(x)

x

f(⫺x) ⫽ f(x)

Even function
(symmetric with
respect to y axis)

f(x)

⫺x x

f

f(x)

x
f(⫺x) ⫽ ⫺f(x)

Odd function
(symmetric with
respect to origin)

f(x)
⫺x

x

f

EXAMPLE 6 Testing for Even and Odd Functions

Determine whether the functions f, g, and h are even, odd, or neither.

(A) f (x) ⫽ x4
⫹ 1 (B) g(x) ⫽ x3

⫹ 1 (C) h(x) ⫽ x5
⫹ x

SOLUTIONS It will be useful to note the following: if n is an even integer, then 

because if n is even. But if n is an odd integer, because

when n is odd.

(A)

(⫺x)
4 
⫽ x

4
because 4 is even.

This shows that f is even.

(B)

(⫺x)
3 
⫽ ⫺x

3
because 3 is odd.

Distribute the negative.

The function g(⫺x) is neither g(x) nor ⫺g(x), so g is neither even nor odd.

(C)

(⫺x)
5 
⫽ ⫺x

5
because 5 is odd.

Distribute the negative.

Since h(⫺x) ⫽ ⫺h(x), h is odd. �

 ⫽ ⫺x5
⫺ x

 ⫺h(x) ⫽ ⫺(x5
⫹ x)

 ⫽ ⫺x5
⫺ x

 h(⫺x) ⫽ (⫺x)5
⫹ (⫺x)

 h(x) ⫽ x5
⫹ x

 ⫽ ⫺x3
⫺ 1

 ⫺g(x) ⫽ ⫺(x3
⫹ 1)

 ⫽ ⫺x3
⫹ 1

 g(⫺x) ⫽ (⫺x)3
⫹ 1

 g(x) ⫽ x3
⫹ 1

 ⫽ f(x)

 ⫽ x4
⫹ 1

 f (⫺x) ⫽ (⫺x)4
⫹ 1

 f (x) ⫽ x4
⫹ 1

(⫺1)n ⫽ ⫺1

(⫺x)n ⫽ (⫺1)n xn ⫽ ⫺xn(⫺1)n ⫽ 1

(⫺x)n ⫽ (⫺1)n xn ⫽ xn

MATCHED PROBLEM 6 Determine whether the functions F, G, and H are even, odd, or neither:

(A) F(x)⫽ x3
⫺ 2x (B) G(x)⫽ x2

⫹ 1 (C) H(x)⫽ 2x ⫹ 4

�
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ANSWERS TO MATCHED PROBLEMS

1. (A) The graph of is the same as the graph of shifted upward 3 units, and

the graph of is the same as the graph of shifted downward 1 unit. The

figure confirms these conclusions.

(B) The graph of is the same as the graph of shifted to the left 3 units,

and the graph of is the same as the graph of shifted to the right 1

unit. The figure confirms these conclusions.

y  1xy  1x  1

y  1xy  1x  3

y  1xy  1x  1

y  1xy  1x  3

 5

5 5

5

x

y

y   兹x   3

y   兹x   1

y   兹x

 5

5 5

5

x

y

y   兹x

y   兹x   3

y   兹x   1

2. G(x) (x  3)3, H(x) (x  1)3, M(x) x3
 3, N(x) x3

 4

 5

5 5

5

(2, 4)

(2,  4)
y    f(x)

y   f(x)
x

y

 5

5 5

5

( 2, 4) (2, 4)

y   f( x)

x

y

y   f(x)

 5

5 5

5

(2, 4)

( 2,  4)
y    f( x)

y   f(x)

x

y

3. (A) The graph of y   f (x) is the

reflection through the x axis of

the graph of y  f (x).

(B) The graph of y  f( x) is the

reflection through the y axis of the

graph of y  f(x).

(C) The graph of y   f ( x) is the

reflection through the origin of

the graph of y  f (x).

4. (A) The graph of y  2f (x) is a

vertical stretch of the graph of

y  f (x) by a factor of 2. The

graph of is a vertical

shrink of the graph of y  f (x)

by a factor of 1
2.

y  1
2 f (x)

(B) The graph of y  f(2x) is a

horizontal shrink of the graph of

y f(x) by a factor of 

The graph of is a

horizontal stretch of the graph

of y  f(x) by a factor of 2.

y  f (1
2 
x)

1
2.
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5. The graph of function h is a reflection through the x axis and a horizontal translation of three
units to the left of the graph of y  x3. An equation for h is h(x)   (x  3)3.

6. (A) Odd (B) Even (C) Neither

x

y

 10

5 5

10

y   8   2x2

3
2

(1, 6)

(1, 3)

(1,   )

y   4   x2

y   2      x21
2

y   4   4x2

x

 10

5 5

10

(4, 0)
(2, 0)

(1, 0)

y   4   x2

y   4     x21
4

y

18. h(x) f (x  1)

19. h(x)  f (x)

20. h(x)  g(x)

21. h(x) 2g(x)

22.

23. h(x) g(2x)

24.

25. h(x) f ( x)

26. h(x)  g( x)

Indicate whether each function in Problems 27–36 is even, odd, or

neither.

27. g(x) x3
 x 28. f (x) x5

 x

29. m(x) x4
 3x2

30. h(x) x4
 x2

31. F(x) x5
 1 32. f (x) x5

 3

33. G(x) x4
 2 34. P(x) x4

 4

35. q(x) x2
 x  3 36. n(x) 2x  3

In Problems 37–44, the graph of the function g is formed by

applying the indicated sequence of transformations to the given

function f. Find an equation for the function g. Check your work

by graphing f and g in a standard viewing window.

37. The graph of is shifted four units to the left and
five units down.

38. The graph of is shifted five units to the right and
four units up.

f (x)  x3

f (x)  3
1x

h(x)  f   a1

2
xb

h(x)  
1

2
 f (x)

3-3 Exercises

1. Explain why the graph of y  f (x)  k is the same as the
graph of y  f (x) moved upward k units when k is positive.

2. Explain why the graph of y  Af (x) is a vertical stretch of the
graph of y f (x) when A 1, and a vertical shrink when A 1.

3. Explain why the graph of y   f (x) is a reflection of the
graph of y  f (x) about the x axis, and why the graph of
y  f ( x) is a reflection about the y axis.

4. Is every function either even or odd? Explain your answer.

In Problems 5–10, without looking back in the text, indicate the

domain and range of each of the following functions. (Making

rough sketches on scratch paper may help.)

5. 6.

7. g(x)   2x2
8. f (x)  0.5|x|

9. 10. G(x) 4x3

Problems 11–26 refer to the functions f and g given by the graphs

below. The domain of each function is [ 2, 2], the range of f is

[ 2, 2], and the range of g is [ 1, 1]. Use the graph of f or g,

as required, to graph the function h and state the domain and

range of h.

11. h(x) f (x) 2

12. h(x) g(x) 1

13. h(x) g(x) 2

14. h(x) f (x) 1

15. h(x) f (x  2)

16. h(x) g(x  1)

17. h(x) g(x  2)

F(x)   0.5x3

m(x)   13 xh(x)   1x

x

g(x)

 5

5 5

5

 5

5 5

5

x

f(x)
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39. The graph of is shifted six units up, reflected in
the x axis, and vertically shrunk by a factor of 0.5.

40. The graph of is shifted two units down, reflected
in the x axis, and vertically stretched by a factor of 4.

41. The graph of is reflected in the x axis, vertically
stretched by a factor of 2, shifted four units to the left, and
shifted two units down.

42. The graph of is reflected in the x axis, vertically
shrunk by a factor of 0.5, shifted three units to the right, and
shifted four units up.

43. The graph of is horizontally stretched by a
factor of 0.5, reflected in the y axis, and shifted two units
to the left.

44. The graph of is horizontally shrunk by a factor
of 2, shifted three units up, and reflected in the y axis.

Use graph transformations to sketch the graph of each function in

Problems 45–62.

45. f (x) 4x2
46.

47. h(x) |x  2| 48. k(x) |x  4|

49. m(x)  |4x  8| 50. n(x)  |9  3x|

51. 52.

53. 54.

55. h(x) x2
 3 56. h(x) 4  x2

57. k(x) 2x3
 1 58. h(x) 3x3

 1

59. n(x) (x  2)2
60. m(x) (x  4)2

61. 62.

Each graph in Problems 63–78 is a transformation of one of the six

basic functions in Figure 1. Find an equation for the given graph.

63. 

64. 

 5 5 5

 5

5

x

y

x

y

 5 5 5

 5

5

p(x)  5  
2

3
 (x  3)2q(x)  4  

1

2
 (x  2)2

s(x)  1x  1  2r(x)  31x  1  2

q(x)   2  1x  3p(x)  3  1x

g(x)  
1

3
1x

f (x)  
3
1x

f (x)  1x

f (x)  冟x冟

f (x)  x2

f (x)  1x

f (x)  1x 65. 

66. 

67. 

68. 

69. 

70. 

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

y

 5 5 5

 5

5

x

x

y

 5 5 5

 5

5
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71. 

72. 

73. 

74. 

75. 

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

76. 

77. 

78. 

79. Consider the graphs of and .

(A) Describe each as a stretch or shrink of .

(B) Graph both functions in the same viewing window on a

graphing calculator. What do you notice?

(C) Rewrite the formula for f algebraically to show that f and

g are in fact the same function. (This shows that for some

functions, a horizontal stretch or shrink can also be inter-

preted as a vertical stretch or shrink.)

80. Consider the graphs of and 

(A) Describe each as a stretch or shrink of 

(B) Graph both functions in the same viewing window on a

graphing calculator. What do you notice?

(C) Rewrite the formula for f algebraically to show that f and

g are in fact the same function. (This shows that for some

functions, a horizontal stretch or shrink can also be inter-

preted as a vertical stretch or shrink.)

81. (A) Starting with the graph of apply the following

transformations.

(i) Shift downward 5 units, then reflect in the x axis.

(ii) Reflect in the x axis, then shift downward 5 units. 

What do your results indicate about the significance of

order when combining transformations?

(B) Write a formula for the function corresponding to each of

the above transformations. Discuss the results of part A in

terms of order of operations.

y  x2,

y  x3.

g(x)  27x3.f (x)  (3x)3

y  
3
1x

g (x)  2
3
1xf (x)  

3
18x

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5



82. (A) Starting with the graph of apply the following

transformations.

(i) Stretch vertically by a factor of 2, then shift upward 4

units.

(ii) Shift upward 4 units, then stretch vertically by a factor

of 2.

What do your results indicate about the significance of

order when combining transformations?

(B) Write a formula for the function corresponding to each of

the above transformations. Discuss the results of part A in

terms of order of operations.

83. Based on the graphs of the six elementary functions in Figure 1,

which are odd, which are even, and which are neither? Use the

definitions of odd and even functions to prove your answers.

84. Based on the results of Example 6, why do you think the

terms “even” and “odd” are used to describe functions with

particular symmetry properties?

Changing the order in a sequence of transformations may change

the final result. Investigate each pair of transformations in

Problems 85–90 to determine if reversing their order can produce

a different result. Support your conclusions with specific examples

and/or mathematical arguments.

85. Vertical shift, horizontal shift

86. Vertical shift, reflection in y axis

87. Vertical shift, reflection in x axis

88. Vertical shift, expansion

89. Horizontal shift, reflection in x axis

90. Horizontal shift, contraction

Problems 91–94 refer to two functions f and g with domain [ 5, 5]

and partial graphs as shown here.

91. Complete the graph of f over the interval [ 5, 0], given that f

is an even function.

92. Complete the graph of f over the interval [ 5, 0], given that f

is an odd function.

93. Complete the graph of g over the interval [ 5, 0], given that

g is an odd function.

94. Complete the graph of g over the interval [ 5, 0], given that

g is an even function.

x

g(x)

 5 5 5

 5

5

x

f(x)

 5 5 5

 5

5

y  冟x冟,
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95. Let f be any function with the property that  x is in the

domain of f whenever x is in the domain of f, and let E and O

be the functions defined by

and

(A) Show that E is always even.

(B) Show that O is always odd.

(C) Show that f (x) E(x) O(x). What is your conclusion?

96. Let f be any function with the property that –x is in the domain

of f whenever x is in the domain of f, and let g(x) xf(x).

(A) If f is even, is g even, odd, or neither?

(B) If f is odd, is g even, odd, or neither?

APPLICATIONS

97. PRODUCTION COSTS Total production costs for a product

can be broken down into fixed costs, which do not depend on the

number of units produced, and variable costs, which do depend on

the number of units produced. So, the total cost of producing

x units of the product can be expressed in the form

C(x)  K  f (x)

where K is a constant that represents the fixed costs and f (x) is a

function that represents the variable costs. Use the graph of the

variable-cost function f(x) shown in the figure to graph the total

cost function if the fixed costs are $30,000.

98. COST FUNCTIONS Refer to the variable-cost function f (x) in

Problem 97. Suppose construction of a new production facility re-

sults in a 25% decrease in the variable cost at all levels of output. If

F is the new variable-cost function, use the graph of f to graph

then graph the total cost function for fixed costs of

$30,000.

99. TIMBER HARVESTING To determine when a forest should be

harvested, forest managers often use formulas to estimate the num-

ber of board feet a tree will produce. A board foot equals 1 square

foot of wood, 1 inch thick. Suppose that the number of board feet y

yielded by a tree can be estimated by

y  f (x) C  0.004(x  10)3

y  F(x),

500 1,000

50,000

100,000

150,000

x

f(x)

V
a
ri

a
b

le
 p

ro
d

u
ct

io
n

 c
o
st

s

Units produced

O(x)  1
2 [

 
f (x)  f ( x)]

E(x)  1
2 [

 
f (x)  f ( x)]
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where x is the diameter of the tree in inches measured at a height of
4 feet above the ground and C is a constant that depends on the
species being harvested. Graph y  f (x) for C  10, 15, and 20
simultaneously in the viewing window with Xmin  10,
Xmax  25, Ymin  10, and Ymax  35. Write a brief verbal
description of this collection of functions.

100. SAFETY RESEARCH If a person driving a vehicle slams on the
brakes and skids to a stop, the speed v in miles per hour at the time
the brakes are applied is given approximately by

where x is the length of the skid marks and C is a constant that
depends on the road conditions and the weight of the vehicle. The
table lists values of C for a midsize automobile and various road
conditions. Graph v  f (x) for the values of C in the table simulta-
neously in the viewing window with Xmin  0, Xmax  100,
Ymin  0, and Ymax 60. Write a brief verbal description of this
collection of functions.

Road Condition C

Wet (concrete) 3.5

Wet (asphalt) 4

Dry (concrete) 5

Dry (asphalt) 5.5

101. FLUID FLOW A cubic tank is 4 feet on a side and is initially
full of water. Water flows out an opening in the bottom of the tank
at a rate proportional to the square root of the depth (see the figure).
Using advanced concepts from mathematics and physics, it can be
shown that the volume of the water in the tank t minutes after the
water begins to flow is given by

where C is a constant that depends on the size of the opening.
Sketch by hand the graphs of for and 8. WriteC  1, 2, 4,y  V(t)

0  t  CV(t)  
64

C2
 (C  t)2

v  f (x)  C1x

a brief verbal description of this collection of functions. Based on
the graphs, do larger values of C correspond to a larger or smaller
opening?

Figure for 101

102. EVAPORATION A water trough with triangular ends is 9 feet
long, 4 feet wide, and 2 feet deep (see the figure). Initially, the
trough is full of water, but due to evaporation, the volume of the
water in the trough decreases at a rate proportional to the square
root of the volume. Using advanced concepts from mathematics
and physics, it can be shown that the volume after t hours is
given by

where C is a constant. Sketch by hand the graphs of for
and  6. Write a brief verbal description of this col-

lection of functions. Based on the graphs, do values of C with a
larger absolute value correspond to faster or slower evaporation?

9 feet

4 feet

2 feet

C   4,  5,
y  V(t)

0  t  6 |C|V(t)  
1

C2
 (t  6C)2

4 feet

4 feet
4 feet

The graph of the squaring function is shown in Figure 1 on page 204. Notice that
h is an even function; that is, the graph of h is symmetric with respect to the y axis. Also,
the lowest point on the graph is (0, 0). Let’s explore the effect of applying a sequence of
basic transformations to the graph of h.

h(x)  x2

3-4 Quadratic Functions

Z Graphing Quadratic Functions

Z Modeling with Quadratic Functions

Z Solving Quadratic Inequalities

Z Modeling with Quadratic Regression



204 C H A P T E R  3 FUNCTIONS

Z Figure 1 Squaring function

h(x)  x
2.

h(x)

5

 5 5
x

Indicate how the graph of each function is related to the graph of Dis-

cuss the symmetry of the graphs and find the highest or lowest point, whichever

exists, on each graph.

(A)

(B)

(C)

(D) n(x)   3(x  1)2
 1   3x2

 6x  4

m(x)   (x  4)2
 8   x2

 8x  8

g(x)  0.5(x  2)2
 3  0.5x2

 2x  5

f (x)  (x  3)2
 7  x2

 6x  2

h(x)  x2.ZZZ EXPLORE-DISCUSS 1

Z Graphing Quadratic Functions

Graphing the functions in Explore-Discuss 1 produces figures similar in shape to the graph

of the squaring function in Figure 1. These figures are called parabolas. The functions that

produced these parabolas are examples of the important class of quadratic functions, which

we will now define.

Z DEFINITION 1 Quadratic Functions

If a, b, and c are real numbers with then the function

is called a quadratic function and its graph is called a parabola. This is known as

the general form of a quadratic function.

f (x)  ax2
 bx  c

a  0,

Because the expression represents a real number no matter what number

we substitute for x,

the domain of a quadratic function is the set of all real numbers.

We will discuss methods for determining the range of a quadratic function later in this sec-

tion. Typical graphs of quadratic functions are illustrated in Figure 2.

ax2
 bx  c

Z Figure 2 Graphs of quadratic

functions.

x

y

 10

5 5

10

x

y

 10

5 5

10

x

y

 10

5 5

10

f(x) x
2
 4 g(x) 3x

2
 12x  14 h(x) 3  2x  x

2

(a) (b) (c)

We will begin our detailed study of quadratic functions by examining some in a spe-

cial form, which we will call the vertex form:*

f (x)  a(x  h)2
 k

*In Problem 75 of Exercises 3-4, you will be asked to show that any function of this form fits the definition of

quadratic function in Definition 1.
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The Graph of a Quadratic Function

Use transformations of to graph the function Use your

graph to determine the graphical significance of the constants 2, 3, and 4 in this 

function.

f (x) ⫽ 2(x ⫺ 3)2
⫹ 4.g(x) ⫽ x2

EXAMPLE 1

SOLUTION Multiplying by 2 vertically stretches the graph by a factor of 2. Subtracting 3 inside the square

moves the graph 3 units to the right. Adding 4 outside the square moves the graph 4 units up.

The graph of f is shown in Figure 3, along with the graph of g(x) ⫽ x2.

MATCHED PROBLEM 1 Use transformations of to graph the function Use your

graph to determine the significance of the constants and 5 in this function.

�

⫺
1
2, 2,

f (x) ⫽ ⫺1
2(x ⫺ 2)2

⫹ 5.g(x) ⫽ x2

Z Figure 3

x

y

5⫺5

10

5

y ⫽ x2
y ⫽ 2(x ⫺ 3)2 ⫹ 4

(3, 4)

The lowest point on the graph of f is (3, 4), so and determine the key point

where the graph changes direction. The constant affects the width of the parabola. �a ⫽ 2

k ⫽ 4h ⫽ 3

We’ll see where the name comes from in a bit. For now, refer to Explore-Discuss 1. Any

function of this form is a transformation of the basic squaring function so we

can use transformations to analyze the graph.

g(x) ⫽ x2,

Every parabola has a point where the graph reaches a maximum or minimum and changes

direction. We will call that point the vertex of the parabola. Finding the vertex is key to

many of the things we’ll do with parabolas. Example 1 and Explore-Discuss 1 demon-

strate that

if a quadratic function is in the form , then the vertex is

the point (h, k).

Next, notice that the graph of is symmetric about the y axis. As a result, the

transformation is symmetric about the vertical line (which runs

through the vertex). We will call this vertical line of symmetry the axis, or axis of sym-

metry of a parabola. If the page containing the graph of f is folded along the line 

the two halves of the graph will match exactly.

Finally, Explore-Discuss 1 illustrates the significance of the constant a in

If a is positive, the graph has a minimum and opens upward. But if

a is negative, the graph will be a vertical reflection of and will have a maximum

and open downward. The size of a determines the width of the parabola: if the

graph is narrower than and if it is wider.

These properties of a quadratic function in vertex form are summarized next.

冟a冟 6 1,h(x) ⫽ x2,

冟a冟 7 1,

h(x) ⫽ x2

f (x) ⫽ a(x ⫺ h)2
⫹ k.

x ⫽ 3,

x ⫽ 3f (x) ⫽ 2(x ⫺ 3)2
⫹ 4

h(x) ⫽ x2

f (x) ⴝ a(x ⴚ h)2
ⴙ k
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Z PROPERTIES OF A QUADRATIC FUNCTION AND ITS GRAPH

Given a quadratic function in vertex form

we summarize general properties as follows:

1. The graph of f is a parabola:

a  0f (x)  a(x  h)2
 k

2. Vertex: (h, k) (parabola rises on one side of the vertex and falls on the other).

3. Axis (of symmetry): (parallel to y axis).

4. is the minimum if and the maximum if 

5. Domain: all real numbers; range: if or if 

6. The graph of f is the graph of translated horizontally h units and ver-

tically k units.

g(x)  ax2

a 7 0.[k,  )a 6 0(  , k]

a 6 0.a 7 0f (h)  k

x  h

x

f(x)

k

h

Axis
x   h

Vertex (h, k)

Min f(x)

a   0
Opens upward

x

f(x)

k

h

Axis
x   h

Vertex (h, k)

Max f(x)

a   0
Opens downward

Now that we can recognize the key properties of quadratic functions in vertex form, the

obvious question is “What if a quadratic function is not in vertex form?” More often than

not, the quadratic functions we will encounter will be in the form f(x)  ax2
 bx  c.

The method of completing the square, which we studied in Section 1-5, can be used to find

the vertex form in this case.

Finding the Vertex Form of a Parabola

Find the vertex form of by completing the square, then write the

vertex and the axis.

f(x)  2x2
 8x  4

EXAMPLE 2

SOLUTION We will begin by separating the first two terms with parentheses; then we will complete the

square to factor part of f as a perfect square.

Group first two terms.

Factor out 2.

Add 4 inside parentheses; because of the 2 in front, we really

added 8, so subtract 8 as well.

Factor inside parentheses; simplify 4   8.

The vertex form is the vertex is (2,  4) and the axis is x  2. �f (x)  2(x  2)2
 4;

  2(x  2)2
 4

  2(x2
 4x  4)  4  8

  2(x2
 4x  ?)  4

(b a)
2
 ( 2)

2
 4  2(x2

 4x)  4

  (2x2
 8x)  4

 f (x)  2x2
 8x  4



S E C T I O N  3 – 4 Quadratic Functions 207

Find the vertex form of by completing the square, then write the

vertex and axis.

�

g(x)  3x2
 18x  2MATCHED PROBLEM 2

EXAMPLE 3 Graphing a Quadratic Function

Let f (x)   0.5x2
 x  2.

(A) Use completing the square to find the vertex form of f. State the vertex and the axis

of symmetry.

(B) Graph f and find the maximum or minimum of f (x), the domain, the range, and the

intervals where f is increasing or decreasing.

SOLUTIONS (A) Complete the square:

Group first two terms

Factor out  0.5

Add 1 inside the parentheses to complete the square 

and 0.5 outside the parentheses.

Factor the trinomial and combine like terms.

From this last form we see that h   1 and k  2.5, so the vertex is ( 1, 2.5) and

the axis of symmetry is x   1. 

(B) To graph f, locate the axis and vertex; then plot several points on either side of the

axis

   0.5(x  1)2
 2.5

   0.5(x2
 2x  1)  2  0.5

   0.5(x2
 2x  ?)  2

  ( 0.5x2
 x)  2

 f (x)   0.5x2
 x  2

 5

5 5

5

x

y

Vertex

( 1, 2.5)

Axis

x    1
x f(x)

 4  2

 2 2

 1 2.5

0 2

2  2 

The domain of f is (  ,  ). From the graph we see that the maximum value is

f( 1)  2.5 and that f is increasing on (  ,  1] and decreasing on [ 1,  ). Also,

y  f(x) can be any number less than or equal to 2.5; the range of f is y 2.5 or

(  , 2.5]. �

Let f (x)   x2
 4x  2.

(A) Use completing the square to find the vertex form of f. State the vertex and the axis

of symmetry.

(B) Graph f and find the maximum or minimum of f (x), the domain, the range, and the

intervals where f is increasing or decreasing.

�

MATCHED PROBLEM 3
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Add inside the parentheses and 

subtract outside the parentheses.ⴝ

b
2

4a
a a b

2a
b2

a b

2a
b2

Z FINDING THE VERTEX OF A PARABOLA

When a quadratic function is written in the form , the first

coordinate of the vertex can be found using the formula

The second coordinate can then be found by evaluating f at the first coordinate.

x ⫽ ⫺
b

2a

f (x) ⫽ ax2
⫹ bx ⫹ c

EXAMPLE 4 Graphing a Quadratic Function

Let f (x) ⫽ x2
⫺ 6x ⫹ 4.

(A) Use the vertex formula to find the vertex and the axis of symmetry of f.

(B) Graph f and find the maximum or minimum of f (x), the domain, the range, and the

intervals where f is increasing or decreasing.

SOLUTIONS (A) Using a ⫽ 1 and b ⫽ ⫺6 in the vertex formula,

; 

The vertex is (3, ⫺5) and the axis of symmetry is x ⫽ 3.

(B) Locate the axis of symmetry, the vertex, and several points on either side of the axis

of symmetry, and graph f.

f (3) ⫽ 32
⫺ 6(3) ⫹ 4 ⫽ ⫺5x ⫽ ⫺

b

2a
⫽ ⫺

⫺6

2
⫽ 3

We can develop a simple formula for finding the vertex of a parabola if we apply com-

pleting the square to f (x) ⫽ ax2
⫹ bx ⫹ c.

Factor a out of the first two terms.

Factor the trinomial.

This is in vertex form, and the x coordinate of the vertex is ⫺bⲐ2a.

 ⫽ a ax ⫹
b

2a
b2

⫹ c ⫺
b2

4a

 ⫽ a ax2
⫹

b

a
⫹

b2

4a2b ⫹ c ⫺
b2

4a

 ⫽ a ax2
⫹

b

a
⫹ ?b ⫹ c

 f (x) ⫽ ax2
⫹ bx ⫹ c

x

y

⫺5

8⫺2

9

x ⫽ 3

Vertex

(3, ⫺5)

x f (x)

0 4

2 ⫺4

3 ⫺5

4 ⫺4

6 4
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The minimum of f(x) is  5, the domain is (  ,  ), the range is [ 5,  ), f is

decreasing on (  , 3] and increasing on [3,  ). �

MATCHED PROBLEM 4 Let 

(A) Use the vertex formula to find the vertex and the axis of symmetry of f.

(B) Graph f and find the maximum or minimum of f (x), the domain, the range, and the

intervals where f is increasing or decreasing.

�

f (x)  1
4 x2
 

1
2x  5.

MATCHED PROBLEM 5 Find the equation of the parabola with vertex (4,  2) and y intercept 2.

�

EXAMPLE 5 Finding the Equation of a Parabola

Find the equation of the parabola with vertex (3,  2) and x intercept 4.

SOLUTION Since the vertex is (3,  2), the vertex form for the equation is

h  3, k   2 in a(x   h)
2
 k

Since 4 is an x intercept, f (4)  0. Substituting into the vertex formula,

we have

Add 2 to both sides.

The equation of this parabola is

�f (x)  2(x  3)2
 2  2x2

 12x  16

 a  2

 f (4)  a(4  3)2
 2  0

x  4 and f (x)  0

f (x)  a(x  3)2
 2

We have presented two methods for locating the vertex of a parabola: completing the square

and evaluating the vertex formula. You may prefer to use the completing the square process or

to remember the formula. Unless directed otherwise, we will leave this choice to you. If you

have a graphing calculator, there is a third approach.

Technology Connections

The maximum and minimum options on the CALC menu of

a graphing calculator can be used to find the vertex of a

parabola. After selecting the appropriate option (maximum

or minimum), you will be asked to provide three x values: a

left bound, a right bound, and a guess. The maximum or min-

imum is displayed at the bottom of the screen. Figure 4(a)

locates the vertex of the parabola in Example 1 and Fig-

ure 4(b) locates the vertex of the parabola in Example 4.

(a) f(x)  0.5x
2
 x  2 (b) f(x) x

2
 6x  4

Z Figure 4

 5

 5

5

5

 10

 2

10

8
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Z Modeling with Quadratic Functions

We will now look at some applications that can be modeled using quadratic functions.

EXAMPLE 6 Maximum Area

A dairy farm has a barn that is 150 feet long and 75 feet wide. The owner has 240 feet of

fencing and plans to use all of it in the construction of two identical adjacent outdoor pens,

with part of the long side of the barn as one side of the pens, and a common fence between

the two (Fig. 5). The owner wants the pens to be as large as possible.

x

x

y

x

150 feet

75 feet

Z Figure 5

(A) Construct a mathematical model for the combined area of both pens in the form of a

function A(x) (see Fig. 5) and state the domain of A.

(B) Find the value of x that produces the maximum combined area.

(C) Find the dimensions and the area of each pen.

(A) The combined area of the two pens is

Adding up the lengths of all four segments of fence, we find that building the pens

will require feet of fencing. We have 240 feet of fence to use, so

Because the distances x and y must be nonnegative, x and y must satisfy and

It follows that Substituting for y in the combined

area equation, we have the following model for this problem:

(B) The function is a parabola that opens downward, so the maximum

value of area will occur at the vertex.

A value of gives a maximum area of 4,800 square feet.x  40

 A(40)  240(40)  3(40)2
 4,800

 x   
b

2a
  

240

2( 3)
 40;

A(x)  240x  3x2

0  x  80A(x)  x(240  3x)  240x  3x2

0  x  80.y  240  3x  0.

x  0

 y  240  3x

 3x  y  240

3x  y

A  xy

SOLUTIONS
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MATCHED PROBLEM 6 Repeat Example 6 with the owner constructing three identical adjacent pens instead of two.

�

SOLUTION Because the initial height is 200 feet, the quadratic model for the height of the pumpkin is

Because when the pumpkin hits the ground, we must solve this equation for t.

Add 16t
2

to both sides.

Divide both sides by 16.

Take the square root of both sides.

Only the positive solution is relevant.

� ⬇ 3.54 seconds

 t  112.5

 t2  
200

16
 12.5

 16t2  200

 h(t)  200  16t2  0

h(t)  0

h(t)  200  16t2

The great sixteenth-century astronomer and physicist Galileo was the first to discover that

the distance an object falls is proportional to the square of the time it has been falling. This

makes quadratic functions a natural fit for modeling falling objects. Neglecting air resis-

tance, the quadratic function

represents the height of an object t seconds after it is dropped from an initial height of 

feet. The constant is related to the force of gravity and is dependent on the units used.

That is, only works for distances measured in feet and time measured in seconds. If the

object is thrown either upward or downward, the quadratic model will also have a term involv-

ing t. (See Problems 93 and 94 in Exercises 3-4.)

 16

 16

h0

h(t)  h0  16t2

EXAMPLE 7 Projectile Motion

As a publicity stunt, a late-night talk show host drops a pumpkin from a rooftop that is 200

feet high. When will the pumpkin hit the ground? Round your answer to two decimal places.

Z Solving Quadratic Inequalities

Given a quadratic function f (x)  ax2
 bx  c, a  0, the zeros of f are the solutions of

the quadratic equation

(1)

(see Section 1-5). If the equal sign in equation (1) is replaced with  ,  ,  , or  , the result

is a quadratic inequality in standard form. Just as was the case with linear inequalities

(see Section 1-2), the solution set for a quadratic inequality is the subset of the real num-

ber line that makes the inequality a true statement. We can identify this subset by examining

the graph of a quadratic function. We begin with a specific example and then generalize the

results.

The graph of

f (x)  x2
 2x  3  (x  3)(x  1)

ax2
 bx  c  0

A watermelon is dropped from a rooftop that is 300 feet high. When will the melon hit the

ground? Round your answer to two decimal places.

�

MATCHED PROBLEM 7

(C) When Each pen is x by , or 40 feet by 60 feet.

The area of each pen is �40 feet  60 feet  2,400 square feet.

y 2x  40, y  240  3(40)  120.



212 C H A P T E R  3 FUNCTIONS

 5

5 5

5

y

f(x) > 0 f(x) > 0

f(x) < 0

x( ())
(  ,  1) ( 1, 3) (3,  )

Table 1

x f (x)

   x   1 Positive

x   1 Zero

 1  x  3 Negative

x  3 Zero

3  x   Positive
Z Figure 6 

y  f(x) x
2
 2x  3   (x 3)(x 1)

Because we now know where the output of f is positive, negative, and zero, we can use the

graph or the table to solve a number of related inequalities involving f. For example,

on and on 

The key steps in the preceding process are summarized in the box.

[ 1, 3]f (x)  0(  ,  1)  (3,  )f (x) 7 0

Z SOLVING A QUADRATIC INEQUALITY

1. Write the inequality in standard form (a form where one side of the inequality

defines a quadratic function f and the other side is 0).

2. Find the zeros of f.

3. Graph f and plot its zeros.

4. Use the graph to identify the intervals on the x axis that satisfy the original

inequality.

EXAMPLE 8 Solving a Quadratic Inequality

Solve: x2
 4x  14

SOLUTION Step 1. Write in standard form.

Subtract 14 from both sides.

Write using function notation.

Standard form

Step 2. Solve: f (x) x2
 4x  14  0 Use the quadratic formula with a  1, b   4, and c   14.

Divide both terms in numerator by 2.

The zeros of f are and 

Step 3. Plot these zeros, along with a few other points, and graph f (Figure 7).

2  312 ⬇ 6.24.2  312 ⬇  2.24

  2  312

  
4  172

2
 

4  612

2

  
 ( 4)  2( 4)2

 4(1)( 14)

2(1)

 x  
 b  2b2

 4ac

2a

 f (x)  x2
 4x  14  0

 x2
 4x  14  0

 x2
 4x  14

y

 20

10 10

10

(2,  18)

(4,  14)(0,  14)

x
2   3√2 2   3√2

f(x)   x2   4x   14

Z Figure 7

is shown in Figure 6. Information obtained from the graph is listed in Table 1.



S E C T I O N  3 – 4 Quadratic Functions 213

Step 4. We need to identify intervals where f (x) 0. From the graph we see that

f (x) 0 for and for Returning to the original

inequality, the solution to

is �(  , 2  312]  [2  312,  )x2
 4x  14

x  2  312.x  2  312

MATCHED PROBLEM 8 Solve: x2
 6x  6

�

EXAMPLE 9 Break-Even, Profit, and Loss

Table 2 contains price–demand data for a paint manufacturer. A linear regression model for

this data is

p  50  0.005x Price–demand equation

where x is the weekly sales (in gallons) and $p is the price per gallon. The manufacturer

has weekly fixed costs of $58,500 and variable costs of $3.50 per gallon produced.

(A) Find the weekly revenue function R and weekly cost function C as functions of the

sales x. What is the domain of each function?

(B) Graph R and C on the same coordinate axes and find the level of sales for which the

company will break even.

(C) Describe verbally and graphically the sales levels that result in a profit and those that

result in a loss.

SOLUTIONS (A) If x gallons of paint are sold weekly at a price of $p per gallon, then the weekly

revenue is

Since the sales x and the price p cannot be negative, x must satisfy

Subtract 50 from both sides.

Simplify.

The revenue function and its domain are

The cost of producing x gallons of paint weekly is

C(x)  58,500  3.5x x  0

(B) The graph of C is a line and the graph of R is a parabola opening downward. Using

the vertex formula,

The vertex is (5,000, 125,000).

 R(5,000)  50(5,000)  0.005(5,000)2
 125,000

 x   
b

2a
  

50

2( 0.005)
 5,000

Fixed costs   $3.50 times

number of gallons

0  x  10,000R(x)  50x  0.005x2

 x  
 50

 0.005
 10,000

   0.005x   50

 x  0  and  p  50  0.005x  0

R  xp  x(50  0.005x)  50x  0.005x2

Table 2 Price–Demand Data

Weekly Sales Price 

(in gallons) per Gallon

1,400 $43.00

2,550 $37.25

3,475 $32.60

4,856 $25.72

5,625 $21.88

6,900 $15.50

Divide both sides by  0.005

and reverse the inequality.
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x

y

7,800 10,0001,500

Break-even points

y ⫽ R(x) ⫽ 50x ⫺ 0.005x2

y ⫽ C(x) ⫽ 58,500 ⫹ 3.5x

Loss LossProfit

150,000

50,000

100,000

() ()( )

Z Figure 8 Profit when R ⬎ C; loss when R ⬍ C

Table 3

x R(x) C(x)

0 0 58,500

5,000 125,000 76,000

10,000 0 93,500

The company breaks even if cost equals revenue:

Now we find the corresponding points on the graph:

The graphs of C and R intersect at the points (1,500, 63,750) and (7,800, 85,800)

(see Figure 8). These intersection points are called the break-even points.

(C) If the company produces and sells between 1,500 and 7,800 gallons of paint weekly,

then R ⬎ C and the company will make a profit. These sales levels are shown in blue

in Figure 8. If it produces and sells between 0 and 1,500 gallons or between 7,800

and 10,000 gallons of paint, then R ⬍ C and the company will lose money. These

sales levels are shown in red in Figure 8. �

C(7,800) ⫽ R(7,800) ⫽ $85,800

C(1,500) ⫽ R(1,500) ⫽ $63,750

 ⫽ 1,500 or 7,800

 x ⫽
46.5 ⫾ 246.52

⫺ 4(0.005)(58,500)

2(0.005)
 ⫽

46.5 ⫾ 1992.25

0.01
⫽

46.5 ⫾ 31.5

0.01

 0.005x2
⫺ 46.5x ⫹ 58,000 ⫽ 0

 58,500 ⫹ 3.5x ⫽ 50x ⫺ 0.005x2

 C(x) ⫽ R(x)

MATCHED PROBLEM 9 Refer to Example 9.

(A) Find the profit function P and state its domain.

(B) Find the sales levels for which P(x)⬎ 0 and those for which P(x)⬍ 0.

(C) Find the maximum profit and the sales level at which it occurs.

�

Z Modeling with Quadratic Regression

We obtained the linear model for the price–demand data in Example 9 by applying linear

regression to the data in Table 2. Regression is not limited to just linear functions. In Exam-

ple 10 we will use a quadratic model obtained by applying quadratic regression to a data set.

Use the quadratic formula with a ⴝ 0.005,

b ⴝⴚ46.5, and c ⴝ 58,000.

EXAMPLE 10 Stopping Distance

Automobile accident investigators often use the length of skid marks to approximate the

speed of vehicles involved in an accident. The skid mark length depends on a number of

factors, including the make and weight of the vehicle, the road surface, and the road

After plotting a few points (Table 3), we sketch the graphs of R and C (Fig. 8).
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conditions at the time of the accident. Investigators conduct tests to determine skid mark

length for various vehicles under varying conditions. Some of the test results for a partic-

ular vehicle are listed in Table 4.

Using the quadratic regression feature on a graphing calculator, (see the Technology

Connections following this example) we find a model for the skid mark length on wet

asphalt: 

where x is speed in miles per hour.

(A) Graph y  L(x) and the data for skid mark length on wet asphalt on the same

axes.

(B) How fast (to the nearest mile) was the vehicle traveling if it left skid marks 100 feet

long?

L(x)  0.06x2
 0.42x  6.6

Table 4

Length of Skid 

Marks (in feet)

Speed Wet Dry

(mph) Asphalt Concrete

20 22 16

30 49 33

40 84 61

50 137 94

60 197 133

SOLUTIONS (A) 

(B) To approximate the speed from the skid mark length, we solve

Subtract 100 from both sides.

Use the quadratic formula.

The negative root was discarded. � x ⬇ 43 mph

  
0.42  122.5924

0.12

 x  

 ( 0.42)  2( 0.42)2
 4(0.06)( 93.4)

2(0.06)

 0.06x2
 0.42x  93.4  0

 0.06x2
 0.42x  6.6  100

 L(x)  100

x

y L(x)   0.06x2   0.42x   6.6

10 80

300

50

S
ki

d
 m

a
rk

 l
e
n

g
th

 (
fe

e
t)

Speed (mph)

(20, 22)
(30, 49)

(40, 84)

(50, 137)

(60, 197)

MATCHED PROBLEM 10 A model for the skid mark length on dry concrete in Table 4 is

where x is speed in miles per hour.

(A) Graph y  L(x) and the data for skid mark length on dry concrete on the same

axes.

(B) How fast (to the nearest mile) was the vehicle traveling if it left skid marks 100 feet

long?

�

M(x)  0.035x2
 0.15x  1.6
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Technology Connections

Figure 9 shows three of the screens related to the construc-

tion of the quadratic model in Example 10 on a Texas In-

struments TI-84 Plus.

The use of regression to construct mathematical mod-

els is not limited to just linear and quadratic models. As

we expand our library of functions, we will see that re-

gression can be used to construct models involving these

new functions.

Z Figure 9

(a) Enter the data. (b) Use the QuadReg option

on a calculator. (c) Graph the data and the model.

0

0

240

80

ANSWERS TO MATCHED PROBLEMS

1.

The makes the graph open downward and vertically shrinks it by a factor of the 2 moves

it 2 units right, and the 5 moves it 5 units up.

2.

3. (A) Vertex form: f (x)   (x  2)2
 6; vertex: (2, 6); axis of symmetry: x 2.

(B) 

Max f (x)  f (2)  6; domain: (  ,  ); range: (  , 6]; increasing on (  , 2]; decreasing on

[2,  )

 3

x
7 3

7
x   2

Vertex

(2, 6)

y

g(x)  3(x  3)2
 25; vertex: (3,  25); axis: x  3

1
2, 

1
2

x

 10

10 10

10

(2, 5)

y

y   x2

y    
1

2
(x   2)2   5
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4. (A) Vertex: axis of symmetry: x   1

(B) 

Min domain: (  ,  ); range: decreasing on (  ,  1]; increasing

on [ 1,  )

5.  0.25x2
 2x  2

6. (A) A(x)  (240  4x)x, 0  x  60

(B) The maximum combined area of 3,600 ft.2 occurs at x  30 feet.

(C) Each pen is 30 feet by 40 feet with area 1,200 ft.2

7. 4.33 seconds

8.

9. (A) P(x)  46.5x  0.005x2
 58,500, 0  x  10,000

(B) Profit is positive for sales between 1,500 and 7,800 gallons per week and negative for sales

less than 1,500 or for sales between 7,800 and 10,000.

(C) The maximum profit is $49,612.50 at a sales level of 4,650 gallons.

10. (A) 

(B) 52 mph

x

y M(x)   0.035x2   0.15x   1.6

10 80

200

50

S
ki

d
 m

a
rk

 l
e
n

g
th

 (
fe

e
t)

Speed (mph)

(60, 133)

(50, 94)

(40, 61)

(30, 33)

(20, 16)

[ 3  115,  3  115]

y  
1
4(x  4)2

 2

[ 
21
4 ,  );f (x)  f ( 1)   

21
4 ;

x
10 10

10

x    1
 10

y

Vertex
( 1,  21/4)

( 1,  21
4 );

In Problems 7–12, find the vertex and axis of the parabola, then

draw the graph.

7. 8.

9. 10.

11. 12.

In Problems 13–18, write a brief verbal description of the

relationship between the graph of the indicated function and the

graph of 

13. 14. g(x)   (x  1)2
 2f (x)  (x  2)2

 1

y  x2.

f (x)   
1

2
(x  8)2

 12f (x)  2(x  10)2
 20

f (x)   ax  
11

2
b2

 3f (x)   ax  
3

2
b2

 5

f (x)  (x  2)2
 2f (x)  (x  3)2

 4

3-4 Exercises

1. Describe the graph of any quadratic function.

2. How can you tell from a quadratic function whether its graph

opens up or down?

3. True or False: Every quadratic function has a maximum. Ex-

plain.

4. Using transformations, explain why the vertex of 

is (h, k).

5.What information does the constant a provide about the graph

of a function of the form 

6. Explain how to find the maximum or minimum value of a

quadratic function.

f (x)  ax2
 bx  c?

f (x)  a(x  h)2
 k



15. 16.

17. 18.

In Problems 19–24, match each graph with one of the functions in

Problems 13–18.

19. 

20. 

21. 

22. 

23. 

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

x

 5

5 5

5

y

x

y

 5

5 5

5

n(x)   (x  1)2
 4m(x)  (x  2)2

 3

k(x)  (x  2)2h(x)   (x  1)2 24. 

In Problems 25–34, complete the square and find the vertex form of

each quadratic function, then write the vertex and the axis and draw

the graph.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

In Problems 35–46, use the formula to find the vertex.

Then write a description of the graph using all of the following

words: axis, increases, decreases, range, and maximum or

minimum. Finally, draw the graph.

35.

36.

37.

38.

39.

40.

41.

42.

43. f (x)  x2
 3x

44. f (x)  4x  x2

45. f (x)  0.5x2
 2x  7

46. f (x)  0.4x2
 4x  4

In Problems 47–60, solve and write the answer using interval

notation.

47. x2
 10  3x 48. x2

 x  12

49. x2
 21  10x 50. x2

 7x  10  0

51. x2
 8x 52. x2

 6x  0

53. x2
 5x  0 54. x2

 4

55. x2
 1  2x 56. x2

 25  10x

57. x2
 3x  3 58. x2

 3  2x

59. x2
 1  4x 60. 2x  2  x2

f (x)   8x2
 24x  16

f (x)   10x2
 50x  12

f (x)  5x2
 30x  17

f (x)  4x2
 18x  25

f (x)   x2
 11x  1

f (x)   x2
 7x  4

f (x)  x2
 10x  10

f (x)  x2
 8x  8

x   b 2a

g(x)  3x2
 24x  30f (x)  2x2

 24x  90

g(x)   
3

2
x2

 9x  
11

2
f (x)  

1

2
x2

 3x  
7

2

n(x)  3x2
 6x  2m(x)  2x2

 12x  22

k(x)   x2
 10x  3h(x)   x2

 2x  3

g(x)  x2
 6x  1f (x)  x2

 4x  5

 5

5 5

5

x

y
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In Problems 61–68, find the standard form of the equation for the

quadratic function whose graph is shown.

61. 

62. 

63. 

64. 

65. 

 5

5 5

5

(0,  3)

(3, 0)( 1, 0)
x

y

 5

8 2

5

(0, 0) (6, 0)

(3, 3)

x

y

 5

5 5

5

( 3, 2) (1, 2)

( 1, 4)

x

y

 5

5 5

5

( 2,  4)

( 1,  1)( 3,  1)

x

y

 5

5 5

5
(3, 4)

(1,  4)

( 1, 4)

x

y

66. 

67. 

68. 

In Problems 69–74, find the equation of a quadratic function

whose graph satisfies the given conditions.

69. Vertex: (4, 8); x intercept: 6

70. Vertex: ( 2,  12); x intercept:  4

71. Vertex: ( 4, 12); y intercept: 4

72. Vertex: (5, 8); y intercept:  2

73. Vertex: ( 5,  25); additional point on graph: ( 2, 20)

74. Vertex: (6,  40); additional point on graph: (3, 50)

75. For expand the parentheses and sim-

plify to write in the form This proves

that any function in vertex form is a quadratic function as de-

fined in Definition 1.

76. Find a general formula for the constant term c when expanding

into the form 

77. Let g(x) x2
 kx  1. Graph g for several different values

of k and discuss the relationship between these graphs.

78. Confirm your conclusions in Problem 77 by finding the ver-

tex form for g.

f (x)  ax2
 bx  c.f (x)  a(x  h)2

 k

f (x)  ax2
 bx  c.

f (x)  a(x  h)2
 k,

 5

2 8

5

( 1, 0)( 5, 0)

(0, 2.5)

x

y

 5

7 3

5

( 1, 0) (5, 0)

(0, 2.5)

x

y

 5

9

(0, 5)

(5, 0)( 1, 0)
x

y

5
 1
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79. Let f(x)  (x 1)2
 k. Discuss the relationship between the

values of k and the number of x intercepts for the graph of f.

Generalize your comments to any function of the form

80. Let f (x)   (x  2)2
 k. Discuss the relationship be-

tween the values of k and the number of x intercepts for the

graph of f. Generalize your comments to any function of

the form

81. Find the minimum product of two numbers whose difference

is 30. Is there a maximum product? Explain.

82. Find the maximum product of two numbers whose sum is 60.

Is there a minimum product? Explain.

APPLICATIONS

83. PROFIT ANALYSIS A consultant hired by a small manufactur-

ing company informs the company owner that their annual profit

can be modeled by the function 

where x represents the number of employees and P is profit in thou-

sands of dollars. How many employees should the company have to

maximize annual profit? What is the maximum annual profit they

can expect in that case?

84. PROFIT ANALYSIS The annual profits (in thousands of dol-

lars) from 2000 to 2009 for the company in Problem 83 can be

modeled by the function 

where t is years after 2000. How much profit did the company make

in their worst year?

85. MOVIE INDUSTRY REVENUE The annual U.S. box office rev-

enue in billions of dollars for a span of years beginning in 2002

can be modeled by the function 

where x is years after 2002.

(A) In what year was box office revenue at its highest in that time

span?

(B) Explain why you should not use the exact vertex in answering

part A in this problem.

86. GAS MILEAGE The speed at which a car is driven can 

have a big effect on gas mileage. Based on EPA statistics for compact

cars, the function , 

models the average miles per gallon for compact cars in terms of

the speed driven x (in miles per hour).

(A) At what speed should the owner of a compact car drive to max-

imize miles per gallon?

(B) If one compact car has a 14-gallon gas tank, how much farther

could you drive it on one tank of gas driving at the speed you found

in part A than if you drove at 65 miles per hour?

87. CONSTRUCTION A horse breeder plans to construct a corral

next to a horse barn that is 50 feet long, using all of the barn as one

side of the corral (see the figure). He has 250 feet of fencing avail-

able and wants to use all of it.

(A) Express the area A(x) of the corral as a function of x and

indicate its domain.

(B) Find the value of x that produces the maximum area.

(C) What are the dimensions of the corral with the maximum

area?

30  x  65,m(x)   0.025x2
 2.45x  30

0  x  7,

B(x)   0.19x2
 1.2x  7.6,

0  t  9,P(t)  6.8t2  80.5t  427.3,

P(x)   1.2x2
 62.5x  491,

a 6 0f (x)  a(x  h)2
 k,

a 7 0f (x)  a(x  h)2
 k,

88. CONSTRUCTION Repeat Problem 87 if the horse breeder has

only 140 feet of fencing available for the corral. Does the maximum

value of the area function still occur at the vertex? Explain.

Problems 89–92 use the falling object function described on

page 211.

89. FALLING OBJECT A sandbag is dropped off a high-altitude

balloon at an altitude of 10,000 ft. When will the sandbag hit the

ground?

90. FALLING OBJECT A prankster drops a water balloon off

the top of a 144-ft.-high building. When will the balloon hit the

ground?

91. FALLING OBJECT A cliff diver hits the water 2.5 seconds after

diving off the cliff. How high is the cliff?

92. FALLING OBJECT A forest ranger drops a coffee cup off a fire

watchtower. If the cup hits the ground 1.5 seconds later, how high is

the tower?

93. PROJECTILE FLIGHT An arrow shot vertically into the air

reaches a maximum height of 484 feet after 5.5 seconds of flight.

Let the quadratic function d(t) represent the distance above ground

(in feet) t seconds after the arrow is released. (If air resistance is

neglected, a quadratic model provides a good approximation for the

flight of a projectile.)

(A) Find d(t) and state its domain.

(B) At what times (to two decimal places) will the arrow be 250 feet

above the ground?

94. PROJECTILE FLIGHT Repeat Problem 93 if the arrow reaches

a maximum height of 324 feet after 4.5 seconds of flight.

95. ENGINEERING The arch of a bridge is in the shape of a

parabola 14 feet high at the center and 20 feet wide at the base (see

the figure).

x

y

Corral

Horse barn

50 feet
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(A) Express the height of the arch h(x) in terms of x and state its

domain.

(B) Can a truck that is 8 feet wide and 12 feet high pass through the

arch?

(C) What is the tallest 8-ft.-wide truck that can pass through the

arch?

(D) What (to two decimal places) is the widest 12-ft.-high truck that

can pass through the arch?

96. ENGINEERING The roadbed of one section of a suspension

bridge is hanging from a large cable suspended between two towers

that are 200 feet apart (see the figure). The cable forms a parabola

that is 60 feet above the roadbed at the towers and 10 feet above the

roadbed at the lowest point.

(A) Express the vertical distance d(x) (in feet) from the roadbed to

the suspension cable in terms of x and state the domain of d.

(B) The roadbed is supported by seven equally spaced vertical ca-

bles (see the figure). Find the combined total length of these sup-

porting cables.

97. STOPPING DISTANCE Table 5 contains data related to the

length of the skid marks left by two different cars when making

emergency stops.

Table 5

Speed
Length of Skid Marks (in feet)

(mph) Car A Car B

20 26 38

30 45 62

40 73 102

50 118 158

60 171 230

(A) Use the quadratic regression feature on a graphing calculator

to find a quadratic model L(x) for the skid mark length for Car A,

where x is speed in miles per hour. (Round to two significant

digits.)

200 feet

60 feet

x feet

d(x)

x

20 ft

14 ft
h(x)

(B) Graph y ⫽ L(x) and the data for skid mark length on the same

axes.

(C) How fast (to the nearest mile per hour) was the car traveling if

it left skid marks 150 feet long?

98. STOPPING DISTANCE (A) Use the quadratic regression fea-

ture on a graphing calculator to find a quadratic model M(x) for the

skid mark length for Car B, where x is speed in miles per hour.

(Round to two significant digits.)

(B) Graph y ⫽ M(x) and the data for skid mark length on the same

axes.

(C) How fast (to the nearest mile) was the car traveling if it left skid

marks 100 feet long?

99. ALCOHOL CONSUMPTION Table 6 contains data related to the

per capita ethanol consumption in the United States from 1960 to

2000 (Source: NIAAA). A quadratic regression model for the per

capita beer consumption is

(A) If beer consumption continues to follow the trend exhibited in

Table 6, when (to the nearest year) would the consumption return to

the 1960 level?

(B) What does this model predict for beer consumption in the year

2005? Use the Internet or a library to compare the predicted results

with the actual results.

Table 6 Per Capita Alcohol Consumption (in gallons)

Year Beer Wine

1960 0.99 0.22

1970 1.14 0.27

1980 1.38 0.34

1990 1.34 0.33

2000 1.22 0.31

100. ALCOHOL CONSUMPTION Refer to Table 6. A quadratic

regression model for the per capita wine consumption is

(A) If wine consumption continues to follow the trend exhibited in

Table 6, when (to the nearest year) would the consumption return to

the 1960 level?

(B) What does this model predict for wine consumption in the year

2005? Use the Internet or a library to compare the predicted results

with the actual results.

101. PROFIT ANALYSIS A screen printer produces custom silk-

screen apparel. The cost C(x) of printing x custom T-shirts and

the revenue R(x) from the sale of x T-shirts (both in dollars) are

given by

Find the break-even points and determine the sales levels x (to the

nearest integer) that will result in the printer showing a profit.

 R(x) ⫽ 10x ⫺ 0.04x2

 C(x) ⫽ 245 ⫹ 1.6x

W(x) ⫽ ⫺0.00016x2
⫹ 0.009x ⫹ 0.2

B(x) ⫽ ⫺0.0006x2
⫹ 0.03x ⫹ 1



222 C H A P T E R  3 FUNCTIONS

102. PROFIT ANALYSIS Refer to Problem 101. Determine the sales

levels x (to the nearest integer) that will result in the printer show-

ing a profit of at least $60.

103. MAXIMIZING REVENUE A company that manufactures beer

mugs has collected the price–demand data in Table 7. A linear

regression model for this data is

where x is the number of mugs (in thousands) that the company can

sell at a price of $p. Find the price that maximizes the company’s

revenue from the sale of beer mugs.

Table 7

Demand Price

45,800 $2.43

40,500 $3.23

37,900 $3.67

34,700 $4.10

30,400 $4.74

28,900 $4.97

25,400 $5.49

104. MAXIMIZING REVENUE A company that manufactures inex-

pensive flash drives has collected the price–demand data in Table 8.

A linear regression model for this data is

where x is the number of drives (in thousands) that the company

can sell at a price of $p. Find the price that maximizes the com-

pany’s revenue from the sale of flash drives.

Table 8

Demand Price

47,800 $5.13

45,600 $5.46

42,700 $5.90

39,600 $6.36

34,700 $7.10

31,600 $7.56

27,800 $8.13

105. BREAK-EVEN ANALYSIS Table 9 contains weekly price–

demand data for orange juice for a fruit-juice producer. The pro-

ducer has weekly fixed cost of $24,500 and variable cost of

$0.35 per gallon of orange juice produced. A linear regression

model for the data in Table 9 is

p  d(x)  3.5  0.00007x

p  d(x)  12.3  0.15x

p  d(x)  9.3  0.15x

where x is the number of gallons of orange juice that can be sold at

a price of $p.

(A) Find the revenue and cost functions as functions of the sales x.

What is the domain of each function?

(B) Graph R and C on the same coordinate axes and find the sales

levels for which the company will break even.

(C) Describe verbally and graphically the sales levels that result in

a profit and those that result in a loss.

(D) Find the sales and the price that will produce the maximum

profit. Find the maximum profit.

Table 9

Orange Juice

Demand Price

21,800 $1.97

24,300 $1.80

26,700 $1.63

28,900 $1.48

29,700 $1.42

33,700 $1.14

34,800 $1.06

106. BREAK-EVEN ANALYSIS Table 10 contains weekly price–

demand data for grapefruit juice for a fruit-juice producer. The pro-

ducer has weekly fixed cost of $4,500 and variable cost of $0.15 per

gallon of grapefruit juice produced. A linear regression model for

the data in Table 10 is

where x is the number of gallons of grapefruit juice that can be sold

at a price of $p.

(A) Find the revenue and cost functions as functions of the sales x.

What is the domain of each function?

(B) Graph R and C on the same coordinate axes and find the sales

levels for which the company will break even.

(C) Describe verbally and graphically the sales levels that result in

a profit and those that result in a loss.

(D) Find the sales and the price that will produce the maximum

profit. Find the maximum profit.

Table 10

Grapefruit Juice

Demand Price

2,130 $2.36

2,480 $2.26

2,610 $2.22

2,890 $2.13

3,170 $2.05

3,640 $1.91

4,350 $1.70

p  d(x)  3  0.0003x



Perhaps the most basic thing you’ve done in math classes is operations on numbers: things

like addition, subtraction, multiplication, and division. In this section, we will explore the

concept of operations on functions. In many cases, combining functions will enable us to

model more complex and useful situations.

If two functions f and g are both defined at some real number x, then f (x) and g(x) are

both real numbers, so it makes sense to perform the four basic arithmetic operations with

f (x) and g(x). Furthermore, if g(x) is a number in the domain of f, then it is also possible

to evaluate f at g(x). We will see that operations on the outputs of the functions can be used

to define operations on the functions themselves.

Z Performing Operations on Functions

The functions f and g given by 

and 

are both defined for all real numbers. Note that and so it would seem

reasonable to assign the value or 14, to a new function Based on this

idea, for any real x we can perform the operation

Similarly, we can define other operations on functions:

For (to avoid zero in the denominator) we can also form the quotient

Notice that the result of each operation is a new function. So, we have

Sum

Difference

Product

Quotient

The sum, difference, and product functions are defined for all values of x, as were the orig-

inal functions f and g, but the domain of the quotient function must be restricted to exclude

those values where g(x)  0.

a f

g
b(x)  

f (x)

g(x)
 

2x  3

x2
 4

   x   2

 ( fg)(x)  f (x)g(x)  2x3
 3x2

 8x  12

 ( f  g)(x)  f (x)  g(x)   x2
 2x  7

 ( f  g)(x)  f (x)  g(x)  x2
 2x  1

x   2
f (x)

g(x)
 

2x  3

x2
 4

x   2

f (x)g(x)  (2x  3)(x2
 4)  2x3

 3x2
 8x  12

f (x)  g(x)  (2x  3)  (x2
 4)   x2

 2x  7

f (x)  g(x)  (2x  3)  (x2
 4)  x2

 2x  1

( f  g)(x).9  5,

g(3)  5,f (3)  9

g(x)  x2
 4f (x)  2x  3
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3-5 Operations on Functions; Composition

Z Performing Operations on Functions

Z Composition

Z Mathematical Modeling
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Z DEFINITION 1 Operations on Functions

The sum, difference, product, and quotient of the functions f and g are the

functions defined by

Sum function

Difference function

Product function

Quotient function

The domain of each function consists of all elements in the domains of both f and

g, with the exception that the values of x where must be excluded from

the domain of the quotient function.

g(x) ⫽ 0

a f

g
b(x) ⫽

f(x)

g(x)
   g(x) � 0

 ( fg)(x) ⫽ f(x)g(x)

 ( f ⫺ g)(x) ⫽ f (x) ⫺ g(x)

 ( f ⫹ g)(x) ⫽ f (x) ⫹ g(x)

The following activities refer to the graphs of f and g shown in Figure 1 and the

corresponding points on the graph shown in Table 1.

ZZZ EXPLORE-DISCUSS 1

For each of the following functions, construct a table of values, sketch a graph,

and state the domain and range.

(A) (B) (C) ( fg)(x) (D) a f

g
b(x)( f ⫺ g)(x)( f ⫹ g)(x)

Table 1

x f(x) g(x)

0 8 0

2 7 2

4 6 3

6 5 3

8 4 2

10 3 0 

10

10

x

y

y ⫽ g(x)

y ⫽ f(x)

Z Figure 1

Finding the Sum, Difference, Product, and Quotient Functions

Let and Find the functions f ⫹ g, f ⫺ g, fg, and , and

find their domains.

fⲐgg(x) ⫽ 13 ⫹ x.f (x) ⫽ 14 ⫺ x

EXAMPLE 1

SOLUTION

 a f

g
b(x) ⫽

f (x)

g(x)
⫽
14 ⫺ x

13 ⫹ x
⫽ A

4 ⫺ x

3 ⫹ x

 ⫽ 212 ⫹ x ⫺ x2

 ⫽ 1(4 ⫺ x)(3 ⫹ x)

 (  fg)(x) ⫽ f (x)g(x) ⫽ 14 ⫺ x 13 ⫹ x

 (  f ⫺ g)(x) ⫽ f (x) ⫺ g(x) ⫽ 14 ⫺ x ⫺ 13 ⫹ x

 (  f ⫹ g)(x) ⫽ f (x) ⫹ g(x) ⫽ 14 ⫺ x ⫹ 13 ⫹ x



The domains of f and g are

Domain of f: or [Fig. 2(a)]

Domain of g: or [Fig. 2(b)]

The intersection of these domains is shown in Figure 2(c):

This is the domain of the functions f  g, f  g, and fg. Since g( 3)  0, x   3 must

be excluded from the domain of the quotient function, and

Domain of �( 3, 4]
f

g
:

(  , 4] 傽 [ 3,  )  [ 3, 4]

[ 3,  )x   3

(  , 4]x  4

x[

Domain of f   g, f   g, and fg

 3 4

[
0

x
 3 4

[

Domain of f

0

x[
 3 4

Domain of g

0

S E C T I O N  3 – 5 Operations on Functions; Composition 225

MATCHED PROBLEM 1 Let and Find the functions f  g, f  g, fg, and f兾g, and find

their domains.

�

g(x)  110  x.f (x)  1x

Technology Connections

A graphing calculator can be used to check the domains in

the solution of Example 1. To check the domain of f ⴙ g, we

enter and in the

equation editor of a graphing calculator and graph 

(Fig. 3). 

y3

y3 ⴝ y1 ⴙ y2y2 ⴝ 13 ⴙ x,y1 ⴝ 14 ⴚ x,

Figures 6 and 7 indicate that is not defined for x  4. This

confirms that the domain of is [ⴚ3, 4].y3 ⴝ f ⴙ g

y3

 5

 5

5

5

Z Figure 3

Z Figure 2

 5

 5

5

5

Z Figure 4

 5

 5

5

5

Z Figure 5

 5

 5

5

5

Z Figure 6

 5

 5

5

5

Z Figure 7

Next we press TRACE and enter ⴚ3 (Fig. 4). Pressing 

the left cursor indicates that is not defined for x  ⴚ3

(Fig. 5).

y3

(a)

(b)

(c)



Let and Find the function and find its domain.

�

Z Composition

Consider the functions f and g given by

and

Note that and So if we apply these two functions

consecutively, we get

In a diagram, this would look like

f (g(0))  f (4)  2

f (4)  14  2.g(0)  4  2(0)  4

g(x)  4  2xf (x)  1x

f

g
g (x)  

x  5

x
.f (x)  

1

x  2
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EXAMPLE 2 Finding the Quotient of Two Functions

Let and Find the function and find its domain.
f

g
g(x)  

x  4

x  3
.f (x)  

x

x  1

Because division by 0 must be excluded, the domain of f is all x except x 1 and the domain

of g is all x except x   3. Now we find f兾g.

(1)

The fraction in equation (1) indicates that 1 and 4 must be excluded from the domain of

f兾g to avoid division by 0. But equation (1) does not indicate that  3 must be excluded

also. Although the fraction in equation (1) is defined at x   3,  3 was excluded from

the domain of g, so it must be excluded from the domain of f兾g also. The domain of f兾g

is all real numbers x except  3, 1, and 4. �

  
x(x  3)

(x  1)(x  4)

  
x

x  1
ⴢ

x  3

x  4

 a f

g
b(x)  

f (x)

g (x)
 

x

x  1

x  4

x  3

 SOLUTION

MATCHED PROBLEM 2

x   0
g(x)

4
f (x)

2

When two functions are applied consecutively, we call the result the composition of func-

tions. We will use the symbol to represent the composition of f and g, which we

formally define now.

f  g



We will use the formula provided by Definition 2.

� ( f  g)( 3)  f (g( 3))  f (2)  5

 ( f  g)(5)  f (g(5))  f (0)   1

 ( f  g)(2)  f (g(2))  f ( 3)   6
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Z DEFINITION 2 Composition of Functions

The composition of a function f with another function g is denoted by (read

“f composed with g”) and is defined by

( f  g)(x)  f (g(x))

f  g

EXAMPLE 3 Computing Composition From a Table 

Functions f and g are defined by Table 2. Find ( f   g)(2), ( f   g)(5), and ( f   g)( 3).

SOLUTION

MATCHED PROBLEM 3 Functions h and k are defined by Table 3. Find and (h  k)(0).(h  k)( 8),(h  k)(10),

Table 2

x f(x) g(x)

11

2

0

2 5

5 12 0

 3

 6 1

 6 3

 8 5

Table 3

x h(x) k(x)

12 0

18 22

0 40

10 52

20 70  30

 8

 4

 4

 8

�

ZZZ CAUTION ZZZ When computing it’s important to keep in mind that the first function that

appears in the notation ( f, in this case) is actually the second function that is applied.

For this reason, some people read as “f following g.”f  g

f  g,



So far, we have looked at composition on a point-by-point basis. Using algebra, we can find

a formula for the composition of two functions.

228 C H A P T E R  3 FUNCTIONS

Refer to the functions f and g on page 226, and let . Complete

Table 4 and graph h.

Table 4

x g(x) h(x) ⴝ f (g(x))

0

1

2

3

4

The domain of f is {x x ⱖ 0} and the domain of g is the set of all real numbers.

What is the domain of h?

ƒ

h(0) ⫽ f (g(0)) ⫽ f (4) ⫽ 2g(0) ⫽ 4

h(x) ⫽ (f ⴰ g)(x)ZZZ EXPLORE-DISCUSS 2

EXAMPLE 4 Finding the Composition of Two Functions

Find for and g(x) ⫽ 3 ⫹ 2x.f (x) ⫽ x2
⫺ x( f ⴰ g)(x)

SOLUTION We again use the formula in Definition 2.

� ⫽ 4x2
⫹ 10x ⫹ 6

 ⫽ 9 ⫹ 12x ⫹ 4x2
⫺ 3 ⫺ 2x

 ⫽ (3 ⫹ 2x)2
⫺ (3 ⫹ 2x)

 ⫽ f (3 ⫹ 2x)

 ( f ⴰ g)(x) ⫽ f (g(x))

MATCHED PROBLEM 4 Find for and 

�

k(x) ⫽ 4x ⫺ 1.h(x) ⫽ 11 ⫹ x2(h ⴰ k)(x)

(A) For and find and Based on

this result, what do you think is the relationship between and in general?

(B) Repeat for and Does this change your thoughts

on the relationship between and g ⴰ f ?f ⴰ g

g(x) ⫽
x ⫺ 1

2
.f (x) ⫽ 2x ⫹ 1

g ⴰ ff ⴰ g

(g ⴰ f )(x).( f ⴰ g)(x)g(x) ⫽ 3 ⫹ 7x,f (x) ⫽ x ⫺ 10ZZZ EXPLORE-DISCUSS 3

Explore-Discuss 3 tells us that order is important in composition. Sometimes and 

are equal, but more often they are not.

Finding the domain of a composition of functions can sometimes be a bit tricky. Based

on the definition we can see that for an x value to be in the domain

of two things must occur. First, x must be in the domain of g so that g(x) is defined.

Second, g(x) must be in the domain of f, so that f (g(x)) is defined.

f ⴰ g,

( f ⴰ g)(x) ⫽ f (g(x)),

g ⴰ ff ⴰ g



Note that the functions f and g are both defined for all real numbers. If x is any real num-

ber, then x is in the domain of g, so g(x) is a real number. This then tells us that g(x) is in

the domain of f, which means that f (g(x)) is a real number. In other words, every real num-

ber is in the domain of Using similar reasoning, we can conclude that the domain of

is also the set of all real numbers. �g ⴰ f

f ⴰ g.

 (g ⴰ f )(x) ⫽ g( f (x)) ⫽ g(x10) ⫽ 3(x10)4
⫺ 1 ⫽ 3x40

⫺ 1

 ( f ⴰ g)(x) ⫽ f (g(x)) ⫽ f (3x4
⫺ 1) ⫽ (3x4

⫺ 1)10
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EXAMPLE 5 Finding the Composition of Two Functions

Find and and their domains for and g(x) ⫽ 3x4
⫺ 1.f (x) ⫽ x10(g ⴰ f )(x)( f ⴰ g)(x)

SOLUTION

MATCHED PROBLEM 5 Find and and their domains for and 

�

The line of reasoning used in Example 5 can be used to deduce the following fact:

If two functions are both defined for all real numbers, then so is their

composition.

If either function in a composition is not defined for some real numbers, then, as

Example 6 illustrates, the domain of the composition may not be what you first think it

should be.

g(x) ⫽ 7x ⫹ 5.f (x) ⫽ 13 x(g ⴰ f )(x)( f ⴰ g)(x)

EXAMPLE 6 Finding the Composition of Two Functions

Find for and , then find the domain of f ⴰ g.g(x) ⫽ 13 ⫺ xf (x) ⫽ 24 ⫺ x2( f ⴰ g)(x)

We begin by stating the domains of f and g, which is a good idea in any composition

problem:

Domain f : or

Domain g: or

Next we find the composition:

Substitute for g(x).

Square: as long as 

Subtract.

Although is defined for all we must restrict the domain of to those

values that also are in the domain of g. 

Domain and or �[⫺1, 3]x ⱕ 3f ⴰ g: x ⱖ ⫺1

f ⴰ gx ⱖ ⫺1,11 ⫹ x

 ⫽ 11 ⫹ x

 ⫽ 24 ⫺ (3 ⫺ x)

t   0.(1t)
2
ⴝ t ⫽ 24 ⫺ (13 ⫺ x)2

13 ⴚ x ⫽ f (13 ⫺ x)

 ( f ⴰ g)(x) ⫽ f (g(x))

(⫺⬁, 3]x ⱕ 3

[⫺2, 2]⫺2 ⱕ x ⱕ 2

SOLUTION

MATCHED PROBLEM 6 Find for and then find the domain of .

�

f ⴰ gg(x) ⫽ 1x ⫺ 1,f (x) ⫽ 29 ⫺ x2f ⴰ g



In calculus, it is not only important to be able to find the composition of two functions,

but also to recognize when a given function is the composition of simpler functions.
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ZZZ CAUTION ZZZ The domain of cannot always be determined simply by examining the final form

of Any numbers that are excluded from the domain of g must also be

excluded from the domain of f  g.

( f  g)(x).

f  g

EXAMPLE 7 Recognizing Composition Forms

Express h as a composition of two simpler functions for

h(x)  21  3x4

SOLUTION If we were to evaluate this function for some x value, say, we would do so in two

stages. First, we would find the value of which is 4. Then we would apply the

square root to get 2. This shows that h can be thought of as two consecutive functions: First,

then So and we have written h as �f  g.h(x)  f (g(x)),f (x)  1x.g(x)  1  3x4,

1  3(1)4,

x  1,

MATCHED PROBLEM 7 Express h as the composition of two simpler functions for 

�

h(x)  (4x3
 7)4.

The answers to Example 7 and Matched Problem 7 are not unique. For example, if

and then

Z Mathematical Modeling

The operations discussed in this section can be applied in many different situations. Exam-

ple 8 shows how they are used to construct a model in economics.

f (g(x))  21  3g(x)  21  3x4
 h(x)

g(x)  x4,f (x)  11  3x

EXAMPLE 8 Modeling Profit

The research department for an electronics firm estimates that the weekly demand for a cer-

tain brand of headphones is given by

Demand function

This function describes the number x of pairs of headphones retailers are likely to buy per

week at p dollars per pair. The research department also has determined that the total cost

(in dollars) of producing x pairs per week is given by

Cost function

and the total weekly revenue (in dollars) obtained from the sale of these headphones is

given by

Revenue function

Express the firm’s weekly profit as a function of the price p and find the price that produces

the largest profit. What is the largest possible profit?

R(x)  20x  0.001x2

C(x)  25,000  3x

0  p  20x  f ( p)  20,000  1,000p



ANSWERS TO MATCHED PROBLEMS

1.

the functions and fg have , the domain

of is [0, 10)

2. real numbers x except and 5

3.

4.

5.

6. domain: and or [1, 10]

7. where and 

8. . The largest profit is $6,000 and occurs when the price 

is $6.

P(p) ⫽ ⫺30,000 ⫹ 12,000p ⫺ 1,000p2

g(x) ⫽ 4x3
⫺ 7f (x) ⫽ x4h(x) ⫽ ( f ⴰ g)(x)

x ⱕ 10x ⱖ 1( f ⴰ g)(x) ⫽ 110 ⫺ x;

domain: (⫺⬁, ⬁)(g ⴰ f )(x) ⫽ 71
3

x ⫹ 5,

domain: (⫺⬁, ⬁)( f ⴰ g)(x) ⫽ 1
3

7x ⫹ 5,

(h ⴰ k)(x) ⫽ 16x2
⫺ 8x ⫹ 12

(h ⴰ k)(10) ⫽ 12; (h ⴰ k)(⫺8) ⫽ 40; (h ⴰ k)(0) ⫽ 18

⫺2, 0,domain: alla f

g
b(x) ⫽

x

(x ⫹ 2)(x ⫺ 5)
;

fⲐg

domain:[0, 10]f ⫹ g,  f ⫺ g,( fⲐg)(x) ⫽ 1xⲐ(10 ⫺ x);

( fg)(x) ⫽ 210x ⫺ x2,( f ⫺ g)(x) ⫽ 1x ⫺ 110 ⫺ x,( f ⫹ g)(x) ⫽ 1x ⫹ 110 ⫺ x,

The basic economic principle we are using is that profit is revenue minus cost. So the profit

function P is the difference of the revenue function R and the cost function C.

This is a function of the demand x. We were asked to find the profit P as a function of the

price p; we can accomplish this using composition, because 

Technically, and P are different functions, because the first has independent vari-

able p and the second has independent variable x. However, because both functions rep-

resent the same quantity (the profit), it is customary to use the same symbol to name

each function. So

expresses the weekly profit P as a function of price p. Now we can use the vertex formula

to find the maximum.

Since a ⬍ 0, the parabola opens downward, and the maximum value of P occurs at the

vertex. So the largest profit is $47,250 and it will occur when the price of the headphones

is $11.50. �

P(11.5) ⫽ ⫺85,000 ⫹ 23,000(11.5) ⫺ 1,000(11.5)2
⫽ 47,250

p ⫽ ⫺
b

2a
⫽ ⫺

23,000

⫺2,000
⫽ 11.5

P( p) ⫽ ⫺85,000 ⫹ 23,000p ⫺ 1,000p2

P ⴰ f

 ⫽ ⫺85,000 ⫹ 23,000p ⫺ 1,000p2

 ⫽ 340,000 ⫺ 17,000p ⫺ 400,000 ⫹ 40,000p ⫺ 1,000p2
⫺ 25,000

 ⫽ 17(20,000 ⫺ 1,000p) ⫺ 0.001(20,000 ⫺ 1,000p)2
⫺ 25,000

 ⫽ P(20,000 ⫺ 1,000p)

 (P ⴰ f )( p) ⫽ P( f ( p))

x ⫽ f ( p).

 ⫽ 17x ⫺ 0.001x2
⫺ 25,000

 ⫽ (20x ⫺ 0.001x2) ⫺ (25,000 ⫹ 3x)

 ⫽ R(x) ⫺ C(x)

 P(x) ⫽ (R ⫺ C)(x)
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SOLUTION

MATCHED PROBLEM 8 Repeat Example 8 for the functions

�

R(x) ⫽ 10x ⫺ 0.001x2C(x) ⫽ 10,000 ⫹ 2x

0 ⱕ p ⱕ 10x ⫽ f ( p) ⫽ 10,000 ⫺ 1,000p
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27. Functions f and g are defined by Table 5. Find ,
, and .

28. Functions h and k are defined by Table 6. Find ,
, and .( h ° k)(15)( h ° k)( 10)

( h ° k)( 15)

( f ° g)(4)( f ° g)(0)
( f ° g)( 7)

3-5 Exercises

1. Explain how to find the sum of two functions.

2. Explain how to find the product of two functions.

3. Describe in your own words what the composition of two func-
tions means. Don’t focus on how to find composition, but
rather on what it really means.

4. Is the domain of always the same as the intersection of the
domains of f and g? Explain.

5. When composing two functions, why can’t you always find the do-
main by simply looking at the simplified form of the composition?

6. Describe a real-world situation where the composition of two
functions would have significance.

Problems 7–18 refer to functions f and g whose graphs are shown

below.

In Problems 7–10 use the graphs of f and g to construct a table

of values and sketch the graph of the indicated function.

7. ( f  g)(x) 8. (g  f )(x)

9. ( fg)(x) 10. ( f  g)(x)

In Problems 11–18, use the graphs of f and g to find each of the

following:

11. 12.

13. 14.

15. f (g(1)) 16. f (g(0))

17. g( f (2)) 18. g( f ( 3))

In Problems 19–26, find the indicated function value, if it exists,

given f(x)  2  x and g(x)   

19. ( f  g)( 3) 20. (g  f )( 5)

21. ( fg)( 1) 22.

23. 24.

25. 26. (g ° g)( 7)(g ° f  )(1)

(  f ° g)(1)(  f ° g)( 2)

a f

g
b(3)

13  x.

( g ° f )(3)( g ° f )( 2)

( f ° g)(2)( f ° g)( 1)

x

g(x)

 5 5 5

 5

5

x

f(x)

 5 5 5

 5

5

f g

Table 5

x

5 4

9 10

0 0

4 3 6

6  3 10

 2

 2

 7

g(x)f (x)

Table 6

x

30

5

15

5 8

15  10 90

 150

 300 10

 200 15

 100 20

k(x)h (x)

In Problems 29–42, for the indicated functions f and g, find the

functions f  g, f  g, fg, and f兾g, and find their domains.

29. f (x)  4x; g(x)  x  1

30. f (x)  3x; g(x)  x  2

31. f (x)  2x2; g(x)  x2
 1

32. f (x)  3x; g(x)  x2
 4

33. f (x)  3x  5; g(x)  x2
 1

34. f (x)  2x  7; g(x)  9  x2

35.

36.

37.

38.

39.

40.

41.

42.

In Problems 43–60, for the indicated functions f and g, find the

functions , and , and find their domains.

43. f (x)  x3; g(x)  x2
 x  1

44. f (x)  x2; g(x)  x3
 2x  4

45. f (x)  |x  1|; g(x)  2x  3

g ° ff ° g

f (x)  x  1; g(x)  x  
6

x  1

f (x)  x  
1

x
; g(x)  x  

1

x

f (x)  28  2x  x2; g(x)  2x2
 7x  10

f (x)  2x2
 x  6; g(x)  27  6x  x2

f (x)  1  1x; g(x)  2  1x

f (x)  1x  2; g(x)  1x  4

f (x)  1x  4; g(x)  13  x

f (x)  12  x; g(x)  1x  3
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46. f (x)  |x  4|; g(x)  3x  2

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Use the graphs of functions f and g shown below to match each

function in Problems 61–64 with one of graphs (a)–( d).

61. 62.

63. 64. ( fg)(x)

x

y

 5 5 5

5

 5

x

y

 5 5 5

5

 5

(g  f )(x)

( f  g)(x)( f  g)(x)

x

y

 5 5 5

 5

5 y   g(x)

y   f(x)

f (x)  2x2
 9; g(x)  2x2

 25

f (x)  225  x2; g(x)  29  x2

f (x)  
2

x  3
; g(x)  

2  3x

x

f (x)  
2x  1

x
; g(x)  

1

x  2

f (x)  
x

x  1
; g(x)  

2x  4

x

f (x)  
x  5

x
; g(x)  

x

x  2

f (x)  1x  1; g(x)  x2

f (x)  14  x; g(x)  x2

f (x)  x  3; g(x)  
1

x2

f (x)  x  2; g(x)  
1

x

f (x)  1x; g(x)  2x  5

f (x)  1x; g(x)  x  4

f (x)  x2 3; g(x)  8  x3

f (x)  x1 3; g(x)  2x3
 4

In Problems 65–72, find and Graph f, g, , and 

in the same coordinate system and describe any apparent

symmetry between these graphs.

65.

66.

67.

68.

69.

70.

71.

72.

In Problems 73–80, express h as a composition of two simpler

functions f and g.

73. h(x)  (2x  7)4

74. h(x)  (3  5x)7

75.

76.

77. h(x)  3x7
 5

78. h(x)  5x6
 3

79.

80.

81.Are the functions fg and gf identical? Justify your answer.

82.Are the functions and identical? Justify your
answer.

83. Is there a function g that satisfies for all
functions f ? If so, what is it?

84. Is there a function g that satisfies fg  gf  f for all functions
f ? If so, what is it?

f ° g  g ° f  f

g ° ff ° g

h(x)   
2

1x
 1

h(x)  
4

1x
 3

h(x)  13x  11

h(x)  14  2x

f (x)  x3
 3; g(x)  23 x  3

f (x)  23 x  2; g(x)  x3
 2

g(x)  
x3

27
f (x)  323 x;

g(x)  223 xf (x)  
x3

8
;

g(x)   
1
2 x  

3
2f (x)   2x  3;

f (x)   
2
3 x  

5
3; g(x)   

3
2 x  

5
2

f (x)  3x  2; g(x)  
1
3 x  

2
3

f (x)  
1
2 
x  1; g(x)  2x  2

g ° ff ° gg ° f.f ° g

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

(a) (b)

(c) (d)
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In Problems 85–88, for the indicated functions f and g, find the

functions fg, and , and find their domains.

85.

86.

87.

88.

APPLICATIONS

89. MARKET RESEARCH The demand x and the price p (in dollars)

for new release CDs for a large online retailer are related by

x  f ( p)  4,000  200p 0  p  20

The revenue (in dollars) from the sale of x units is given by

and the cost (in dollars) of producing x units is given by

C(x)  2x  8,000

Express the profit as a function of the price p and find the price that

produces the largest profit.

90.MARKET RESEARCH The demand x and the price p (in dollars)

for portable iPod speakers at a national electronics store are

related by

x  f (p)  5,000  100p 0  p  50

The revenue (in dollars) from the sale of x units and the cost (in

dollars) of producing x units are given, respectively, by

and

Express the profit as a function of the price p and find the price that

produces the largest profit.

91. POLLUTION An oil tanker aground on a reef is leaking oil that

forms a circular oil slick about 0.1 foot thick (see the figure). The

radius of the slick (in feet) t minutes after the leak first occurred is

given by

Express the volume of the oil slick as a function of t.

r

A   r
2

V   0.1A

r(t)  0.4t1 3

C(x)  20x  40,000R(x)  50x  
1

100
 x2

R(x)  20x  
1

200
x2

f (x)  x  冟x冟; g(x)  x  冟x冟

f (x)  1  
x

冟x冟
; g(x)  1  

x

冟x冟

f (x)  x  1; g(x)  x  
6

x  1

f (x)  x  
1

x
; g(x)  x  

1

x

f gf  g, f  g,

92. WEATHER BALLOON A weather balloon is rising vertically. An

observer is standing on the ground 100 meters from the point where

the weather balloon was released.

(A) Express the distance d between the balloon and the observer as

a function of the balloon’s distance h above the ground.

(B) If the balloon’s distance above ground after t seconds is given

by h  5t, express the distance d between the balloon and the ob-

server as a function of t.

93. FLUID FLOW A conical paper cup with diameter 4 inches and

height 4 inches is initially full of water. A small hole is made in the

bottom of the cup and the water begins to flow out of the cup. Let h

and r be the height and radius, respectively, of the water in the cup

t minutes after the water begins to flow.

(A) Express r as a function of h.

(B) Express the volume V as a function of h.

(C) If the height of the water after t minutes is given by

express V as a function of t.

94. EVAPORATION A water trough with triangular ends is 6 feet

long, 4 feet wide, and 2 feet deep. Initially, the trough is full of water,

but due to evaporation, the volume of the water is decreasing. Let h

and w be the height and width, respectively, of the water in the tank

t hours after it began to evaporate.

(A) Express w as a function of h.

(B) Express V as a function of h.

(C) If the height of the water after t hours is given by

express V as a function of t.

h(t)  2  0.21t

6 feet

h

w

V   3wh 

4 feet

2 feet

h(t)  4  0.51t

h

r

4 inches

4 inches

1

3
V   r

2
h
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3-6 Inverse Functions

Z One-to-One Functions

Z Finding the Inverse of a Function

Z Mathematical Modeling

Z Graphing Inverse Functions

We have seen that many important mathematical relationships can be expressed in terms of

functions. For example,

The circumference of a circle is a function of the diameter d.

The volume of a cube is a function of length s of the edges.

The demand for a product is a function of the price p.

Temperature measured in is a function of temperature in 

In many cases, we are interested in reversing the correspondence determined by a function.

For our examples,

The diameter of a circle is a function of the circumference C.

The length of the edge of a cube is a function of the volume V.

The price of a product is a function of the demand d.

Temperature measured in is a function of temperature in .

As these examples illustrate, reversing the correspondence between two quantities often pro-

duces a new function. This new function is called the inverse of the original function. Later

in this text we will see that many important functions are actually defined as the inverses

of other functions.

In this section, we develop techniques for determining whether the inverse of a function

exists, some general properties of inverse functions, and methods for finding the rule of cor-

respondence that defines the inverse function. A review of function basics in Section 3-1

would be very helpful at this point.

Z One-to-One Functions

Recall the set form of the definition of function:

A function is a set of ordered pairs with the property that no two ordered

pairs have the same first component and different second components.

However, it is possible that two ordered pairs in a function could have the same second

component and different first components. If this does not happen, then we call the func-

tion a one-to-one function.

In other words, a function is one-to-one if there are no duplicates among the second

components.

°F°CC  
5

9
(F  32)

p  10  
1

100
d

s  1
3

V

d  
C

 

°C.°FF  
9

5
C  32

d  1,000  100p

V  s3

C   d
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Z DEFINITION 1 One-to-One Function

A function is one-to-one if no two ordered pairs in the function have the same

second component and different first components.

Given the following sets of ordered pairs:

(A) Which of these sets represent functions?

(B) Which of the functions are one-to-one functions?

(C) For each set that is a function, form a new set by reversing each ordered pair

in the set. Which of these new sets represent functions?

(D) What do these results tell you about the result of reversing the ordered pairs

for functions that are one-to-one, and for functions that are not one-to-one?

 h  5(0, 1), (1, 2), (2, 3), (3, 0)6

 g  5(0, 1), (1, 1), (2, 2), (3, 2)6

 f  5(0, 1), (0, 2), (1, 1), (1, 2)6

ZZZ EXPLORE-DISCUSS 1

EXAMPLE 1 Determining Whether a Function Is One-to-One

Determine whether f is a one-to-one function for

(A) (B) f (x)  2x  1f (x)  x2

(A) To show that a function is not one-to-one, all we have to do is find two different

ordered pairs in the function with the same second component and different first

components. Because

and

the ordered pairs (2, 4) and both belong to f, and f is not one-to-one. (Note

that there’s nothing special about 2 and here: Any real number and its negative

can be used in the same way.)

(B) To show that a function is one-to-one, we have to show that no two ordered pairs

have the same second component and different first components. To do this, we’ll

show that if any two ordered pairs (a, f (a)) and (b, f (b)) in f have the same second

components, then the first components must also be the same. That is, we show that

implies We proceed as follows:

Assume second components are equal. Evaluate f(a) and f(b).

Simplify.

Conclusion: f is one-to-one.

By Definition 1, f is a one-to-one function. �

 a  b

 2a  2b

 2a  1  2b  1

 f (a)  f (b)

a  b.f (a)  f (b)

 2

( 2, 4)

f ( 2)  ( 2)2
 4f (2)  22

 4

SOLUTIONS

Explore-Discuss 1 illustrates an important idea that we will examine later: Only one-

to-one functions have inverses.



Determine whether f is a one-to-one function for

(A) (B) 

�

f (x)  4  2xf (x)  4  x2
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MATCHED PROBLEM 1

The methods used in the solution of Example 1 can be stated as a theorem.

Z THEOREM 1 One-to-One Functions

1. If for at least one pair of domain values a and b, then f is

not one-to-one.

2. If the assumption always implies that the domain values a and b

are equal, then f is one-to-one.

f (a)  f (b)

a  b,f (a)  f (b)

Applying Theorem 1 is not always easy—try testing for example.

(Good luck!) However, the graph of a function can help us develop a simple procedure for

determining if a function is one-to-one. If any horizontal line intersects the graph in more

than one point [as shown in Fig. 1(a)], then there is a second component (height) that cor-

responds to two different first components (x values). This shows that the function is not

one-to-one.

On the other hand, if every horizontal line intersects the graph in just one point or not

at all [as shown in Fig. 1(b)], the function is one-to-one. These observations form the basis

of the horizontal line test.

f (x)  x3
 2x  3,

x

y

a b

y   f(x)

(a, f(a)) (b, f(b))

x

y

a

y   f(x)

(a, f(a))

Z Figure 1 Intersections of graphs and horizontal lines.

f(a) ⴝ f(b) for a  b

f is not one-to-one

(a)

Only one point has second

component f (a); f is one-to-one

(b)

Z THEOREM 2 Horizontal Line Test

A function is one-to-one if and only if every horizontal line intersects the graph

of the function in at most one point.

The graphs of the functions considered in Example 1 are shown in Figure 2 on page 238.

Applying the horizontal line test to each graph confirms the results we obtained in Example 1.

A function that is increasing throughout its domain or decreasing throughout its domain

will always pass the horizontal line test [Figs. 3(a) and 3(b)]. This gives us the following

theorem.



Figure 3(c) shows that a function can still be one-to-one even if it is neither increasing

nor decreasing. The function illustrated is increasing on and decreasing on

Z Finding the Inverse of a Function

Now we will demonstrate how we can form a new function by reversing the correspondence

determined by a given function. Let g be the function defined as follows:

g is not one-to-one.

Notice that g is not one-to-one because the domain elements and 3 both correspond to

the range element 9. We can reverse the correspondence determined by function g simply

by reversing the components in each ordered pair in g, producing the following set:

G is not a function.G  5(9,  3), (0, 0), (9, 3)6

 3

g  5( 3, 9), (0, 0), (3, 9)6

(0,  ).

[  , 0]
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Z Figure 3 Increasing, decreasing, and one-to-one functions.

x

y

x

y

x

y

An increasing function 

is always one-to-one

(a)

A decreasing function 

is always one-to-one

(b)

A one-to-one function is not

always increasing or decreasing 

(c)

x

y

5 5

5

( 2, 4) (2, 4) x

y

 5

5 5

5

Z Figure 2 Applying the horizontal line test.

f(x) ⴝ x
2

does not pass

the horizontal line test;

f is not one-to-one

(a)

f(x) ⴝ 2x  1 passes

the horizontal line test;

f is one-to-one

(b)

Z THEOREM 3 Increasing and Decreasing Functions

If a function f is increasing throughout its domain or decreasing throughout its

domain, then f is a one-to-one function.



But the result is not a function because the domain element 9 corresponds to two different
range elements, and 3. On the other hand, if we reverse the ordered pairs in the function

f is one-to-one; all second components are distinct.

we obtain

F is a function.

This time f is a one-to-one function, and the set F turns out to be a function also. This new
function F, formed by reversing all the ordered pairs in f, is called the inverse of f and is
usually denoted by (this is read as “inverse f ” or “the inverse of f ”):

The inverse of f

Notice that is also a one-to-one function and that the following relationships hold:

We conclude that reversing all the ordered pairs in a one-to-one function forms a new
one-to-one function and reverses the domain and range in the process. We are now ready
to present a formal definition of the inverse of a function.

 Range of f ⫺1
⫽ 51, 2, 36 ⫽ Domain of f

 Domain of f ⫺1
⫽ 52, 4, 96 ⫽ Range of f

f ⫺1

f ⫺1
⫽ 5(2, 1), (4, 2), (9, 3)6

f ⫺1

F ⫽ 5(2, 1), (4, 2), (9, 3)6

f ⫽ 5(1, 2), (2, 4), (3, 9)6

⫺3
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Z DEFINITION 2 Inverse of a Function

If f is a one-to-one function, then the inverse of f, denoted is the function
formed by reversing all the ordered pairs in f. That is,

is in f }

If f is not one-to-one, then f does not have an inverse and does not exist.f ⫺1

f ⫺1
⫽ 5( y, x) | (x, y)

f ⫺1,

ZZZ CAUTION ZZZ Be careful not to confuse inverse notation and reciprocal notation. For numbers, a

superscript of ⫺1 means reciprocal: For functions, a superscript of ⫺1 

means inverse: is the inverse of which is not the same as 
1

f (x)
.f (x),f ⫺1(x)

2⫺1
⫽

1

2
.

The following properties of inverse functions follow directly from the definition.

Z THEOREM 4 Properties of Inverse Functions

For a given function f, if exists, then

1. is a one-to-one function.

2. The domain of is the range of f.

3. The range of is the domain of f.f ⫺1

f ⫺1

f ⫺1

f ⫺1



Explore-Discuss 2 brings up an important point: If you apply a function to any number in

its domain, then apply the inverse of that function to the result, you’ll get right back where

you started. This leads to the following theorem.

240 C H A P T E R  3 FUNCTIONS

(A) For the function find 

(B) What do you think would be the result of composing f with Justify your

answer using Definition 2.

(C) Check your conjecture from part B by finding both and Were

you correct?

f  1
 f.f  f  1

f  1?

f  1.f  5(3, 5), (7, 11), (11, 17)6,ZZZ EXPLORE-DISCUSS 2

Z THEOREM 5 Inverse Functions and Composition

If f  1 exists, then

1. for all x in the domain of 

2. for all x in the domain of f.

If f and g are one-to-one functions satisfying

for all x in the domain of g and

for all x in the domain of f

then f and g are inverses of one another.

g( f (x))  x

f (g(x))  x

f  1( f (x))  x

f  1.f ( f  1(x))  x

We can use Theorem 5 to see if two functions defined by equations are inverses.

EXAMPLE 2 Deciding If Two Functions Are Inverses

Use Theorem 5 to decide if these two functions are inverses.

g(x)  
x  7

3
f (x)  3x  7

The domain of both functions is all real numbers. For any x,

Substitute into f(x).

Multiply.

Add.

Substitute into g(x).

Add.

Simplify.

By Theorem 5, f and g are inverses. �

  x

  
3x

3

  
3x  7  7

3

 g( f (x))  g(3x  7)

  x

  x  7  7

  3ax  7

3
b  7

 f (g(x))  f ax  7

3
b

SOLUTION



Use Theorem 5 to decide if these two functions are inverses.

�

g(x)   
5

2
x  11f (x)  

2

5
(11  x)
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MATCHED PROBLEM 2

There is one obvious question that remains: when a function is defined by an equation, how

can we find the inverse? Given a function , the first coordinates of points on the graph

are represented by x, and the second coordinates are represented by y. Finding the inverse by

reversing the order of the coordinates would then correspond to switching the variables x and

y. This leads us to the following procedure, which can be applied whenever it is possible to

solve for x in terms of y.y  f (x)

y  f (x)

Z FINDING THE INVERSE OF A FUNCTION f

Step 1. Find the domain of f and verify that f is one-to-one. If f is not one-to-one,

then stop, because does not exist.

Step 2. If the function is written with function notation, like f (x), replace the func-

tion symbol with the letter y. Then interchange x and y.

Step 3. Solve the resulting equation for y. The result is 

Step 4. Find the domain of Remember, the domain of must be the same

as the range of f.

You can check your work using Theorem 5.

f  1f  1.

f  1(x).

f  1

EXAMPLE 3 Finding the Inverse of a Function

Find for f (x)  1x  1.f 1

Step 1. Find the domain of f and verify that f is one-to-one. Since is defined

only for the domain of f is The graph of f in Figure 4 shows

that f is one-to-one, so exists.

Step 2. Replace f (x) with y, then interchange x and y.

Interchange x and y.

Step 3. Solve the equation for y.

Square both sides.

Add 1 to each side.

The inverse is .

Step 4. Find the domain of 

The equation we found for is defined for all x, but the domain should be the range of f.

From Figure 4, we see that the range of f is so that is the domain of 

Therefore,

x  0f  1(x)  x2
 1

f  1.[0,  )

f 1

f  1.

f  1(x)  x2
 1

 x2
 1  y

 x2
 y  1

 x  1y  1

 x  1y  1

 y  1x  1

f  1

[1,  ).x  1  0,

1x  1SOLUTION

x

y

 5

5

5

y   f(x)

f(x)   兹x   1, x   1

Z Figure 4



CHECK Find the composition of f with the alleged inverse (in both orders!).

For x in the domain of f, we have

Substitute into 

Square .

Add.

For x in the domain of we have

Substitute into f.

Add.

for any real number x.

for 

�  x
✓

x  0.円x 円 ⴝ x  冟x冟

2x
2
ⴝ 円x円  2x2

  2(x2
 1)  1

x
2
ⴙ 1 f ( f  1(x))  f (x2

 1)

f  1,[0,  ),

  x
✓

  x  1  1

1x  1  (1x  1)2
 1

f
ⴚ1

.1x  1 f  1( f (x))  f  1(1x  1)

[1,  ),
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MATCHED PROBLEM 3 Find for 

�

f (x)  1x  2.f  1

Z THEOREM 6 A Property of Inverses

If exists, then if and only if y  f (x).x  f  1( y)f  1

The technique of finding an inverse by interchanging x and y leads to the following prop-

erty of inverses that comes in very handy later in the course.

Z Mathematical Modeling

Example 4 shows how an inverse function is used in constructing a revenue model. It is

based on Example 8 in Section 3-5.

EXAMPLE 4 Modeling Revenue

The research department for an electronics firm estimates that the weekly demand for a cer-

tain brand of headphones is given by

Demand function

where x is the number of pairs retailers are likely to buy per week at p dollars per pair.

Express the revenue as a function of the demand x and state its domain.

x  f ( p)  20,000  1,000p

If x pairs of headphones are sold at p dollars each, the total revenue is

To express the revenue as a function of the demand x, we need to express the price in terms

of x. That is, we must find the inverse of the demand function.

 R  xp

 Revenue  (Number of pairs)(price of each pair)

SOLUTION



Step 1. Find the domain of f and verify that f is one-to-one. Price and demand are never

negative, so p  0 and

Factor.

Divide both sides by 1,000.

Add p to both sides.

or p  20

Since p must satisfy both p  0 and p  20, the domain of f is [0, 20]. The

graph of f (Fig. 5) shows that f is one-to-one.

 20  p

 20  p  0

  1,000(20  p)  0

x  20,000  1,000p
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200

20,000

p

x

x   20,000   1,000p

Z Figure 5

MATCHED PROBLEM 4 Repeat Example 3 for the demand function

�

The demand function in Example 4 was defined with independent variable p and

dependent variable x. When we found the inverse function, we did not rewrite it with inde-

pendent variable p. Because p represents price and x represents number of players, to

interchange these variables would be confusing. In most applications, the variables have

specific meaning and should not be interchanged as part of the inverse process.

0  p  10x  f ( p)  10,000  1,000p

Step 2. Since x and p have specific meaning in the context of this problem, interchanging

them does not apply here.

Step 3. Solve the equation x  20,000   1,000p for p.

Subtract 20,000 from both sides.

Divide both sides by ⴚ1,000.

The inverse of the demand function is

Step 4. From Figure 5, we see that the range of f is [0, 20,000], so this must also be the

domain of f  1.

0  x  20,000

We should check that f ( f  1(x)) x and f  1( f (p)) p, but we will leave that to

the reader.

The revenue R is given by

and the domain of R is [0, 20,000]. �

  20x  0.001x2

 R(x)  x(20  0.001x)

 R  xp

p  f  1(x)  20  0.001x

p  f  1(x)  20  0.001x

  0.001x  20  p

 x  20,000   1,000p

 x  20,000  1,000p



Explore-Discuss 3 is based on an important relationship between the graph of any func-

tion and its inverse. In a rectangular coordinate system, the points (a, b) and (b, a) are sym-

metric with respect to the line y  x [Fig. 7(a)]. Theorem 6 is an immediate consequence

of this observation.
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The following activities refer to the graph of f in Figure 6 and Tables 1 and 2.ZZZ EXPLORE-DISCUSS 3

(A) Complete the second column in Table 1.

(B) Reverse the ordered pairs in Table 1 and list the results in Table 2.

(C) Add the points in Table 2 to Figure 6 (or a copy of the figure) and sketch the

graph of f  1.

(D) Discuss any symmetry you observe between the graphs of f and f  1.

Z Figure 6

Table 1

x f(x)

 4

 2

0

2

Table 2

x f ⴚ1(x)

x

 5

5 5

5

y   f(x)

Z Graphing Inverse Functions

x

y

 5

5 5

5

( 5,  2)

( 2,  5)

( 3, 2)

(2,  3)

(4, 1)

(1, 4)

y   x

 5

5 5

5

x

y y   f(x)

y   f 1(x)

y   x

10

10

x

y

y   f(x)

y   f 1(x) y   xZ Figure 7 Symmetry with

respect to the line y  x.

(a, b) and (b, a) 

are symmetric with 

respect to the line y ⴝ x

(a)

f(x) ⴝ 2x ⴚ 1

(b)

f 
ⴚ1

(x) ⴝ
1
2x ⴙ

1
2

f
ⴚ1

(x) ⴝ x
2
ⴙ 1, x  0

(c)

f (x) ⴝ 1x ⴚ 1

Z THEOREM 7 Symmetry Property for the Graphs of f and f
 1

The graphs of y  f (x) and y  f  1(x) are symmetric with respect to the 

line y  x.



Knowledge of this symmetry property allows us to graph f  1 if the graph of f is known,

and vice versa. Figures 7(b) and 7(c) illustrate this property for the two inverse functions

we found earlier.

If a function is not one-to-one, we can usually restrict the domain of the function to

produce a new function that is one-to-one. Then we can find an inverse for the restricted

function. Suppose we start with f (x)  x2
 4. Because f is not one-to-one, f  1 does not

exist [Fig. 8(a)]. But there are many ways the domain of f can be restricted to obtain a one-

to-one function. Figures 8(b) and 8(c) illustrate two such restrictions. In essence, we are

“forcing” the function to be one-to-one by throwing out a portion of the graph that would

make it fail the horizontal line test.
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Recall from Theorem 3 that increasing and decreasing functions are always one-to-one.

This provides the basis for a convenient method of restricting the domain of a function:

If the domain of a function f is restricted to an interval on the x axis over

which f is increasing (or decreasing), then the new function determined by this

restriction is one-to-one and has an inverse.

We used this method to form the functions g and h in Figure 8.

x

y

 5

5 5

5

y   f(x)

 5

5 5

5

y   g 1(x)

y   g(x)

x

y
y   x

 5

5 5

5

y   h 1(x)

y   h(x) y   x
y

x

Z Figure 8 Restricting the domain

of a function.

f(x) ⴝ x
2
ⴚ 4

f
ⴚ1

does not exist

(a)

g(x) ⴝ x
2
ⴚ 4, x  0

g
ⴚ1

(x) ⴝ x  ⴚ4

(b)

1x ⴙ 4,

h(x) ⴝ x
2
ⴚ 4, x  0

h
ⴚ1

(x) ⴝ x  ⴚ4

(c)

ⴚ1x ⴙ 4,

EXAMPLE 5 Finding the Inverse of a Function

Find the inverse of f (x)  4x  x2, x  2. Graph f, f  1, and the line y  x in the same

coordinate system.

SOLUTION Step 1. Find the domain of f and verify that f is one-to-one. We are given that the domain

of f is (  , 2]. The graph of y  4x  x2 is a parabola opening downward with

vertex (2, 4) (Fig. 9). The graph of f is the left side of this parabola (Fig. 10).

From the graph of f, we see that f is increasing and one-to-one on (  , 2].

Z Figure 9 Z Figure 10

5 5

5

x

y

 5

y   f(x)

5 5

5

x

y

 5

y   4x   x2



Step 2. Replace f (x) with y, then interchange x and y.

Step 3. Solve the equation for y.

Rewrite so that the coefficient of y
2

is ⴙ1.

Add 4 to both sides to complete the square.

Factor the left side.

Take the square root of both sides.

Add 2 to both sides.

Now we have two possible solutions. The domain of f was (– , 2], and this should

be the range of f  1. In other words, the output of the inverse is never greater

than 2. But would always be greater than or equal to 2, so we

must instead choose .

Step 4. The domain of is the range of f. We can see from Figure 10 that this is 

(  , 4]. Notice that the equation we found for is defined for these values.

Our final answer is

The check is again left for the reader.

The graphs of f, f  1, and y  x are shown in Figure 11. To aid in graphing f  1,

we plotted several points on the graph of f and then reflected these points in the line

y  x. �

x  4f 
 1(x)  2  14  x

f 
 1(x)

f 
 1

f 
 1(x)  2  14  x

y  2  14  x

y  2  14  x

 

 y  2  14  x

 y  2   14  x

 (y  2)2
 4  x

 y2
 4x  4   x  4

 y2
 4y   x

 x  4y  y2

x  4y  y2

y  4x  x2
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5

5

y   f 1(x)

y   f(x)

y   x

x

y

Z Figure 11

MATCHED PROBLEM 5 Find the inverse of f (x)  4x  x2, x  2. Graph f, f  1, and y  x in the same coordinate

system.

�

Technology Connections

To reproduce Figure 11 on a graphing calculator, first enter

in the equation editor (Fig. 12) and graph (Fig. 13). (For

graphs involving both f and f
 1

it is best to use a squared

viewing window.) The Boolean expression (x  2) is

y1 ⴝ (4x ⴚ x
2
) (x   2)

assigned the value 1 if the inequality is true and 0 if it is

false. The calculator recognizes that division by 0 is an unde-

fined operation and no graph is drawn for x  2. Now enter

and

in the equation editor and graph (Fig. 14).

y3 ⴝ xy2 ⴝ 2 ⴚ 14 ⴚ x

 5

 7.6

5

7.6

 5

 7.6

5

7.6

Z Figure 12 Z Figure 13 Z Figure 14
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ANSWERS TO MATCHED PROBLEMS

1. (A) Not one-to-one 5.

(B) One-to-one

2. They are inverses.

3. f ⫺1(x) ⫽ x2
⫺ 2, 

4. R(x) ⫽ 10x ⫺ 0.001x2

x ⱖ 0

f 
⫺1(x) ⫽ 2 ⫹ 14 ⫺ x, x ⱕ 4

⫺5

5⫺5

5

y ⫽ f⫺1(x)

y ⫽ f(x)

y ⫽ x

x

y

In Problems 13–30, determine if the function is one-to-one.

13. Domain Range 14. Domain Range 

⫺2 ⫺4 ⫺2

⫺1 ⫺2 ⫺1
⫺3

0 0 0 7

1 1 1

2 5 2
9

15.Domain Range 16. Domain Range

1 1 5

2 2 3

3 7 3 1

4 4 2

5 5 4

17.

x

f(x)

3-6 Exercises

1.When a function is defined by ordered pairs, how can you tell

if it is one-to-one?

2.When you have the graph of a function, how can you tell if it

is one-to-one?

3.Why does a function fail to have an inverse if it is not one-to-

one? Give an example using ordered pairs to illustrate your

answer.

4. True or False: Any function whose graph changes direction is

not one-to-one. Explain.

5.What is the result of composing a function with its inverse?

Why does this make sense?

6.What is the relationship between the graphs of two functions

that are inverses?

For each set of ordered pairs in Problems 7–12, determine if the

set is a function, a one-to-one function, or neither. Reverse all the

ordered pairs in each set and determine if this new set is a

function, a one-to-one function, or neither.

7. {(1, 2), (2, 1), (3, 4), (4, 3)}

8. {

9. {(5, 4), (4, 3), (3, 3), (2, 4)}

10. {(5, 4), (4, 3), (3, 2), (2, 1)}

11.

12. 5(0, 5), (⫺4, 5), (⫺4, 2), (0, 2)6

5(1, 2), (1, 4),  (⫺3,  2), (⫺3, 4)6

(⫺1, 0), (0, 1), (1, ⫺1), (2, 1)6
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18.

19.

20.

21.

22.

x

n(x)

x

m(x)

x

k(x)

x

h(x)

x

g(x) 23.

24.

25. 26.

27. 28.

29. 30.

In Problems 31–40, determine if g is the inverse of f.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

In Problems 41–44, find the domain and range of f, sketch the

graph of f 1, and find the domain and range of f 1.

41.

x

y

 5

5 5

5

y   f(x)

y   x

x  0g(x)  x2  2,f (x)   1x  2;

g(x)   11  xx  0;f (x)  1  x2,

x  0g(x)  x2  2,f (x)  1x  2;

g(x)  1x  4x  0;f (x)  4  x2,

g(x)  
3x  1

2x  1
f (x)  

x  1

2x  3
;

g(x)  
3  4x

2  x
f (x)  

2x  3

x  4
;

g(x)  23 x  4  3f (x)  (x  3)3  4;

g(x)  23 3  x  1f (x)  2  (x  1)3;

g(x)  1
2x  2f (x)  2x  4;

g(x)  1
3x  

5
3f (x)  3x  5;

N(x)  x2  1M(x)  1x  1

K(x)  14  xH(x)  4  x2

G(x)   1
3x  1F(x)  1

2x  2

x

s(x)

x

r(x)
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42.

43.

44.

In Problems 45–74, graph f and verify that f is a one-to-one function.

Find f⫺1and add the graph of f⫺1 and the line y ⫽ x to the graph of f.

State the domain and range of f and the domain and range of f⫺1.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61.

62.

63.

64.

65.

66. f (x) ⫽ 3 ⫺ (x ⫺ 2)2, x ⱕ 2

f (x) ⫽ (x ⫺ 1)2
⫹ 2, x ⱖ 1

f (x) ⫽ (2 ⫺ x)2, x ⱖ 2

f (x) ⫽ (2 ⫺ x)2, x ⱕ 2

f (x) ⫽ x2
⫹ 8x, x ⱕ ⫺4

f (x) ⫽ x2
⫹ 8x, x ⱖ ⫺4

f (x) ⫽ 4 ⫺ x2, x ⱖ 0f (x) ⫽ 4 ⫺ x2, x ⱕ 0

f (x) ⫽ x2
⫹ 5, x ⱕ 0f (x) ⫽ x2

⫹ 5, x ⱖ 0

f (x) ⫽ 2 ⫹ 15 ⫺ xf (x) ⫽ 3 ⫺ 1x ⫺ 1

f (x) ⫽
1

3
136 ⫺ xf (x) ⫽

1

2
116 ⫺ x

f (x) ⫽ 2 ⫺ 1xf (x) ⫽ 1x ⫹ 3

f (x) ⫽ 0.25x ⫹ 2.25f (x) ⫽ 0.2x ⫹ 0.4

f (x) ⫽ ⫺
1

3
x ⫹

5

3
f (x) ⫽ 4x ⫺ 3

f (x) ⫽
1

2
xf (x) ⫽ 3x

x

y

⫺5

5⫺5

5

y ⫽ x

y ⫽ f(x)

y ⫽ f(x)

x

y

⫺5

5⫺5

5

y ⫽ x

y ⫽ f(x)

x

y

⫺5

5⫺5

5

y ⫽ x 67.

68.

69.

70.

71.

72.

73.

74.

The functions in Problems 75–84 are one-to-one. Find f⫺1.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84.

85. How are the x and y intercepts of a function and its inverse

related?

86. Does a constant function have an inverse? Explain.

87.Are the functions and inverses? Why or

why not?

88.Are the functions and inverses? Why or

why not?

In Problems 89–92, the given function is not one-to-one. Find a

way to restrict the domain so that the function is one-to-one, then

find the inverse of the function with that domain.

89. 90.

91. 92.

APPLICATIONS

93. BODY WEIGHT Two formulas for estimating body weight as a

function of height that are commonly used are

Women: 

Men: 

where p is weight in pounds and h is height over 5 feet (in inches).

Find h ⫽ W⫺1(p) and state its domain.

94. BODY WEIGHT Refer to Problem 93. Find h ⫽ M⫺1( p) and

state its domain.

95. PRICE AND DEMAND The number q of CD players con-

sumers are willing to buy per week from a retail chain at a price of

$p is given approximately by (see the figure)

10 ⱕ p ⱕ 70q ⫽ d(p) ⫽
3,000

0.2p ⫹ 1

p ⫽ M(h) ⫽ 110 ⫹ 5h

p ⫽ W(h) ⫽ 100 ⫹ 5h

f (x) ⫽ 26x ⫺ x2f (x) ⫽ 24x ⫺ x2

f (x) ⫽ (1 ⫹ x)2f (x) ⫽ (2 ⫺ x)2

g(x) ⫽ 13 xf (x) ⫽ x3

g(x) ⫽ 1xf (x) ⫽ x2

f (x) ⫽ 23 x ⫹ 3 ⫺ 2f (x) ⫽ 4 ⫺ 25 x ⫹ 2

f (x) ⫽
5 ⫺ 3x

7 ⫺ 4x
f (x) ⫽

2x ⫹ 5

3x ⫺ 4

f (x) ⫽
4x

2 ⫺ x
f (x) ⫽

2x

x ⫹ 1

f (x) ⫽
3

x ⫹ 4
f (x) ⫽

2

x ⫺ 1

f (x) ⫽ 5 ⫹
4

x
f (x) ⫽ 3 ⫺

2

x

f (x) ⫽ 1 ⫹ 21 ⫺ x2, ⫺1 ⱕ x ⱕ 0

f (x) ⫽ 1 ⫺ 21 ⫺ x2, ⫺1 ⱕ x ⱕ 0

f (x) ⫽ ⫺29 ⫺ x2, ⫺3 ⱕ x ⱕ 0

f (x) ⫽ 29 ⫺ x2, ⫺3 ⱕ x ⱕ 0

f (x) ⫽ 29 ⫺ x2, 0 ⱕ x ⱕ 3

f (x) ⫽ ⫺29 ⫺ x2, 0 ⱕ x ⱕ 3

f (x) ⫽ x2
⫹ 8x ⫹ 7, x ⱖ ⫺4

f (x) ⫽ x2
⫹ 2x ⫺ 2, x ⱕ ⫺1



(A) Find the range of d.

(B) Find p ⫽ d⫺1(q), and find its domain and range.

Figure for 95–96

96. PRICE AND SUPPLY The number q of CD players a retail

chain is willing to supply at a price of $p is given approximately by

(see the figure)

(A) Find the range of s.

(B) Find p ⫽ s⫺1(q), and find its domain and range.

10 ⱕ p ⱕ 70q ⫽ s(p) ⫽
900p

p ⫹ 20

70

q ⫽ d(p)

p

q

1,000

q ⫽ s(p)
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97. BUSINESS—MARKUP POLICY A bookstore sells a book with

a wholesale price of $6 for $10.50 and one with a wholesale price

of $10 for $15.50.

(A) If the markup policy for the store is assumed to be linear, find a

function r⫽ m(w) that expresses the retail price r as a function

of the wholesale price w and find its domain and range.

(B) Find w ⫽ m⫺1(r) and find its domain and range.

98. BUSINESS—MARKUP POLICY Repeat Problem 97 if the sec-

ond book has a wholesale price of $11 and sells for $18.50.

Problems 99 and 100 are related to Problems 97 and 98 in

Exercises 3-4.

99. STOPPING DISTANCE A model for the length L (in feet) of the

skid marks left by a particular automobile when making an emer-

gency stop is

where s is speed in miles per hour. Find s⫽ f ⫺1(L) and find its do-

main and range.

100. STOPPING DISTANCE A model for the length L (in feet) of the

skid marks left by a second automobile when making an emergency

stop is

where s is speed in miles per hour. Find s⫽ f ⫺1(L) and find its do-

main and range.

s ⱖ 10L ⫽ f (s) ⫽ 0.08s2
⫺ 1.6s ⫹ 38,

s ⱖ 10L ⫽ f (s) ⫽ 0.06s2
⫺ 1.2s ⫹ 26,

3-1 Functions

A function is a correspondence between two sets of elements such

that to each element in the first set there corresponds one and only

one element in the second set. The first set is called the domain and

the set of all corresponding elements in the second set is called the

range. Equivalently, a function is a set of ordered pairs with the

property that no two ordered pairs have the same first component

and different second components. The domain is the set of all first

components, and the range is the set of all second components. An

equation in two variables defines a function if to each value of the

independent variable, the placeholder for domain values, there

corresponds exactly one value of the dependent variable, the

placeholder for range values. The vertical line test states that a ver-

tical line will intersect the graph of a function in at most one point.

Unless otherwise specified, the implied domain of a function de-

fined by an equation is assumed to be the set of all real number re-

placements for the independent variable that produce real values for

the dependent variable. The symbol f (x) represents the real number

in the range of the function f corresponding to the domain value x.

Equivalently, the ordered pair (x, f (x)) belongs to the function f.

3-2 Graphing Functions

The graph of a function f is the set of all points (x, f (x)), where x

is in the domain of f and f (x) is the associated output. This is also

the same as the graph of the equation The first coordinate

of a point where the graph of a function intersects the x axis is

called an x intercept or real zero of the function. The x intercept is

also a real solution or root of the equation The second co-

ordinate of a point where the graph of a function crosses the y axis

is called the y intercept of the function. The y intercept is given by

f (0), provided 0 is in the domain of f. A solid dot on a graph of a

function indicates a point that belongs to the graph and an open dot

indicates a point that does not belong to the graph. Dots are also

used to indicate that a graph terminates at a point, and arrows are

used to indicate that the graph continues indefinitely with no signif-

icant changes in direction.

Let I be an interval in the domain of a function f. Then,

1. f is increasing on I and the graph of f is rising on I if

whenever in I.

2. f is decreasing on I and the graph of f is falling on I if

whenever in I.x1 6 x2f (x1) 7 f (x2)

x1 6 x2f (x1) 6 f (x2)

f (x) ⫽ 0.

y ⫽ f (x).
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3. f is constant on I and the graph of f is horizontal on I if

whenever in I.

A function of the form f(x) ⫽ mx ⫹ b, where m and b are con-

stants, is a linear function. If m⫽ 0, then f(x) ⫽ b is a constant func-

tion, and if m⫽ 1 and b⫽ 0, then f(x) ⫽ x is the identity function.

A piecewise-defined function is a function whose definition in-

volves more than one formula. The absolute value function is a

piecewise-defined function. The graph of a function is continuous if

it has no holes or breaks and discontinuous at any point where it has

a hole or break. Intuitively, the graph of a continuous function can be

sketched without lifting a pen from the paper. The greatest integer

for a real number x, denoted by is the largest integer less than or

equal to x; that is, where n is an integer, 

The greatest integer function f is defined by the equation

3-3 Transformations of Functions

The first six basic functions in a library of elementary functions are

defined by (identity function), (absolute value

function), (square function), (cube function),

(square root function), and (cube root func-

tion) (see Figure 1, Section 3-3). Performing an operation on a func-

tion produces a transformation of the graph of the function. The ba-

sic transformations are the following:

Vertical Translation:

Horizontal Translation:

Reflection:

Reflect the graph of through the x axis

Reflect the graph of through the y axis

Reflect the graph of through the origin

Vertical Stretch and Shrink:

Horizontal Stretch and Shrink:

y ⫽ f (Ax) hA 7 1 Horizontally shrink the graph of y ⫽ f (x) by multiplying each x value by 
1

A

0 6 A 6 1 Horizontally stretch the graph of y ⫽ f (x) by multiplying each x value by 
1

A

y ⫽ Af (x) fA 7 1 Vertically stretch the graph of y ⫽ f (x) by multiplying each y value by A

0 6 A 6 1 Vertically shrink the graph of y ⫽ f (x) by multiplying each y value by A

y ⫽ f (x)y ⫽ ⫺f (⫺x)

y ⫽ f (x)y ⫽ f (⫺x)

y ⫽ f (x)y ⫽ ⫺f (x)

eh 7 0 Shift graph of y⫽ f (x) left  h units

h 6 0 Shift graph of y⫽ f (x) right  冟h冟  units
y⫽ f (x⫹ h)

ek 7 0 Shift graph of y⫽ f (x) up k units

k 6 0 Shift graph of y⫽ f (x) down 冟k冟  units
y⫽ f (x) ⫹ k

p(x) ⫽ 23 xn(x) ⫽ 1x

m(x) ⫽ x3h(x) ⫽ x2

g(x) ⫽ 冟x冟f (x) ⫽ x

f (x) ⫽ 冀x 冁 .

n ⱕ x 6 n ⫹ 1.冀x 冁 ⫽ n,

冀x 冁 ,

x1 6 x2f (x1) ⫽ f (x2)

A function f is called an even function if for all x in

the domain of f and an odd function if for all x in

the domain of f. The graph of an even function is said to be sym-

metric with respect to the y axis and the graph of an odd function

is said to be symmetric with respect to the origin.

3-4 Quadratic Functions

If a, b, and c are real numbers with then the function

is a quadratic function and its graph is a

parabola. Completing the square of the quadratic expression

produces a perfect square:

Completing the square for produces the ver-

tex form and gives the following properties:

1. The graph of f is a parabola:

2. Vertex: (h, k) (Parabola increases on one side of the vertex and

decreases on the other.)

3. Axis (of symmetry): (parallel to y axis)

4. is the minimum if and the maximum if 

5. Domain: All real numbers

Range: if or if 

6. The graph of f is the graph of translated horizontally

h units and vertically k units.

The first coordinate of the vertex of a parabola in standard form can

be located using the formula This can then be substi-

tuted into the function to find the second coordinate. The vertex

x ⫽ ⫺b/2a.

g(x) ⫽ ax2

a 7 0[k, ⬁)a 6 0(⫺⬁, k]

a 6 0.a 7 0f (h) ⫽ k

x ⫽ h

x

f(x)

k

h

Vertex (h, k)

Max f(x)

a ⬍ 0
Opens downward

Axis of symmetry
x ⫽ h

x

f(x)

k

h

Axis of symmetry
x ⫽ h

Vertex (h, k)

Min f(x)

a ⬎ 0
Opens upward

f (x) ⫽ a(x ⫺ h)2
⫹ k

f (x) ⫽ ax2
⫹ bx ⫹ c

x2
⫹ bx ⫹ ab

2
b2

⫽ ax ⫹ b

2
b2

x2
⫹ bx

f (x) ⫽ ax2
⫹ bx ⫹ c

a � 0,

f (⫺x) ⫽ ⫺f (x)

f (x) ⫽ f (⫺x)
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form of a parabola can be used to find the equation when the vertex

and one other point on the graph are known.

Replacing the equal sign in a quadratic equation with

produces a quadratic inequality. The set of all values

of the variable that make the inequality a true statement is the

solution set.

3-5 Combining Functions; Composition

The sum, difference, product, and quotient of the functions f and

g are defined by

The domain of each function is the intersection of the domains of f

and g, with the exception that values of x where g(x) 0 must be

excluded from the domain of f兾g.

The composition of functions f and g is defined by

The domain of is the set of all real num-

bers x in the domain of g such that g(x) is in the domain of f. The do-

main of is always a subset of the domain of g.f ° g

f ° g( f ° g)(x)  f ( g (x)).

g(x)  0a f

g
b (x)  

f (x)

g (x)
( fg)(x)  f (x)g (x)

( f  g)(x)  f (x)  g (x)(  f  g)(x)  f (x)  g (x)

 , or  

6, 7 ,

3-6 Inverse Functions

A function is one-to-one if no two ordered pairs in the function

have the same second component and different first components.

According to the horizontal line test, a horizontal line will inter-

sect the graph of a one-to-one function in at most one point. A

function that is increasing (or decreasing) throughout its domain

is one-to-one. The inverse of the one-to-one function f is the func-

tion formed by reversing all the ordered pairs in f.

If f is a one-to-one function, then:

1. is one-to-one.

2. Domain of  Range of f.

3. Range of  Domain of f.

4. ( y) if and only if y f (x).

5. ( f (x))  x for all x in the domain of f.

6. (x))  x for all x in the domain of .

7. To find , solve the equation y  f (x) for x. Interchanging x

and y at this point is an option.

8. The graphs of y  f (x) and y (x) are symmetric with

respect to the line y  x.

f  1

f  1

f  1f ( f  1

f  1

x  f  1

f  1

f  1

f  1

f  1

Work through all the problems in this review and check answers in

the back of the book. Answers to most review problems are there,

and following each answer is a number in italics indicating the

section in which that type of problem is discussed. Where

weaknesses show up, review appropriate sections in the text.

1. Indicate whether each table defines a function.

(A) (B) (C)

Domain Range Domain Range Domain Range

1 4 7 5 1

3 6 8 0 10 2

5 8 9 20

2. Indicate whether each set defines a function. Indicate whether

any of the functions are one-to-one. Find the domain and range

of each function. Find the inverse of any one-to-one functions.

Find the domain and range of any inverse functions.

(A) {(1, 1), (2, 4), (3, 9)}

(B) {(1, 1), (1,  1), (2, 2), (2,  2)}

(C) {(Albany, New York), (Utica, New York), (Akron, Ohio),

(Dayton, Ohio)}

(D) {(Albany, New York),(Akron, Ohio), (Tucson, Arizona),

(Atlanta, Georgia), (Muncie, Indiana)}

3. Let T be the set of teams in the National Football League that

have won at least one Super Bowl, and let Y be the set of

years during which a Super Bowl was played. If each team

corresponds to the year or years in which they won the Super

Bowl, does this correspondence define a function?  Explain

your answer.

4. Indicate whether each graph specifies a function:

(A) 

(B) 

x

y

x

y
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(C) 

(D) 

5. Which of the following equations define functions?

(A) (B) 

(C) (D) 

Problems 6–15 refer to the functions f, g, k, and m given by:

Find the indicated quantities or expressions.

6. 7. 

8. 9. 

10. 11. 

12. 13.

14. 15. 

16. For find

(A) f(1) (B) f ( 4) (C) (D) 

Problems 17–21 refer to the function f given by the following graph.

x

f(x)

 5 5 5

 5

5

f (0)

f (3)
f (2) ⴢ f ( 1)

f (x)  x 2  2x,

(g ° f )(x)( f ° g)(x)

a f

g
b (x)(  fg)(x)

( f  g)(x)( f  g)(x)

g (a  h)  g (a)

h

f (2  h)  f (2)

h

m( 2)  1

g (2)  4
f (2)  g ( 2)  k (0)

m(x)  2冟x冟  1

k(x)  5

g(x)  4  x2f (x)  3x  5

冟  y冟  xy3
 x

y2
 xy  x

x

y

x

y
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17. Find f( 4), f(0), f(3), and f(5).

18. Find all values of x for which 

19. Find the domain and range of f.

20. Find the intervals over which f is increasing and decreasing.

21. Find any points of discontinuity.

Problems 22–29 refer to the graphs of f and g shown here.

22. Construct a table of values of ( f g)(x) for x  3,  2,  1, 0,

1, 2, and 3, and sketch the graph of f g.

23. Construct a table of values of ( fg)(x) for x  3,  2,  1, 0, 1,

2, and 3, and sketch the graph of fg.

In Problems 24–27, use the graphs of f and g to find:

24. 25. 

26. f [g(1)] 27. g[ f( 3)]

28. Is f a one-to-one function?

29. Is g a one-to-one function?

30. Indicate whether each function is even, odd, or neither:

(A) 

(B) 

(C) 

Problems 31–36 refer to the graph of the function f used in

Problems 17–21.

Sketch the graph of each of the following.

31. 32. 33. 

34. 35. 36. 

37. Match each equation with a graph of one of the functions f, g, m,

or n in the figure. Each graph is a graph of one of the equations.

(A) y (x  2)2
 4 (B) y   (x  2)2

 4

(C) y  (x  2)2
 4 (D) y  (x  2)2

 4

5 5

5

x

yf g

m n

 f ( x)f (2x)0.5f (x)

 f (x)f (x  1)f (x)  1

h(z)  z5
 4z2

g(t)  t 4  3t 2
f (x)  x5

 6x

(g ° f )( 2)( f ° g)( 1)

x

g(x)

 5 5 5

 5

5

x

f(x)

 5 5 5

 5

5

f (x)   2.



38. Referring to the graph of function f in the figure for Problem 37

and using known properties of quadratic functions, find each of

the following to the nearest integer:

(A) Intercepts (B) Vertex

(C) Maximum or minimum (D) Range

(E) Interval of increase (F) Interval of decrease

39. Let and Find each of the follow-

ing functions and find their domains.

(A) f兾g (B) g兾f (C) (D) 

40. For each function, find the maximum or minimum value without

graphing. Then write the coordinates of the vertex.

(A) 

(B) 

41. Complete the square to write the quadratic function in vertex

form: 

42. How are the graphs of the following related to the graph of

y⫽ x2?

(A) y⫽⫺x2

(B) y⫽ x2
⫺ 3

(C) y⫽ (x ⫹ 3)2

Problems 43–49 refer to the function q given by the following

graph. 

43. Find y to the nearest integer:

(A) y⫽ q(0) (B) y ⫽ q(1)

(C) y⫽ q(2) (D) y⫽ q(⫺2)

44. Find x to the nearest integer:

(A) q(x) ⫽ 0 (B) q(x) ⫽ 1

(C) q(x) ⫽⫺3 (D) q(x) ⫽ 3

45. Find the domain and range of q.

46. Find the intervals over which q is increasing, decreasing, and

constant.

47. Identify any points of discontinuity.

48. The function f multiplies the cube of the domain element by 4

and then subtracts the square root of the domain element. Write

an algebraic definition of f.

49. Write a verbal description of the function f(x) ⫽ 3x2
⫹ 4x ⫺ 6.

In Problems 50 and 51, determine if the indicated equation defines

a function. Justify your answer.

50. 51. x ⫹ 2y2
⫽ 10x ⫹ 2y ⫽ 10

⫺5

5⫺5

5

x

q(x)

q (x) ⫽ 2x 2 ⫺ 14x ⫹ 3

f (x) ⫽ x2
⫺ 6x ⫹ 11

f (x) ⫽ ⫺2(x ⫹ 4) 2 ⫺ 10

g ° ff ° g

g(x) ⫽ x ⫹ 3.f (x) ⫽ x 2 ⫺ 4
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In Problems 52–57, find the domain, y intercept (if it exists), and

any x intercepts.

52. 53.

54. 55.

56. 57.

58. Let 

(A) Sketch the graph of f and label the axis and the vertex.

(B) Where is f increasing? Decreasing? What is the range?

(Express answers in interval notation.)

59. Find the equations of the linear function g and the quadratic

function f whose graphs are shown in the figure. This line is

called the tangent line to the graph of f at the point (⫺1, 0).

60. Let

(A) Find f (⫺4), f(⫺2), f(0), f(2), and f(5).

(B) Sketch the graph of 

(C) Find the domain and range.

(D) Find any points of discontinuity.

(E) Find the intervals over which f is increasing, decreasing,

and constant.

61. Given and 

(A) Find and 

(B) Find the domains of and 

62. Which of the following functions are one-to-one?

(A) f(x) ⫽ x3

(B) g(x) ⫽ (x ⫺ 2)2

(C) h(x) ⫽ 2x ⫺ 3

(D) 

63. Is the inverse of 

64. The function is not one-to-one.

(A) Graph f using transformations of .

(B) Restrict the domain of f to make it a one-to-one function.

(C) Find the inverse of the one-to-one function.

65. Given 

(A) Find 

(B) Find 

(C) Find 

(D) Is f increasing, decreasing, or constant on (⫺⬁, ⬁)?

f ⫺1[ f (x)] .

f ⫺1(5).

f ⫺1(x).

f (x) ⫽ 3x ⫺ 7:

y ⫽ x2

f(x) ⫽ 2(x ⫺ 3)2

v(x) ⫽ 0.25x ⫹ 2?u(x) ⫽ 4x ⫺ 8

F(x) ⫽ (x ⫹ 3)2, x ⱖ ⫺3

g ° f.f ° g

g ° f.f ° g

g(x) ⫽ 冟x冟:f (x) ⫽ 1x ⫺ 8

y ⫽ f (x).

f (x) ⫽ e⫺x ⫺ 5 for ⫺4 ⱕ x 6 0

0.2x2 for 0 ⱕ x ⱕ 5

x

y

⫺5 5⫺5

⫺5

5

y ⫽ g(x)

y ⫽ f(x)

f (x) ⫽ 0.5x2
⫺ 4x ⫹ 5.

h(x) ⫽
1

4 ⫺ 1x
g(x) ⫽

2x ⫹ 3

x2
⫺ 4

f (x) ⫽
x

13 ⫺ x
p(x) ⫽

1 ⫺ x2

x3

r(x) ⫽ 2 ⫹ 31xm(x) ⫽ x2
⫺ 4x ⫹ 5



66. The following graph is the result of applying a sequence of trans-

formations to the graph of y x2. Describe the transformations

verbally and write an equation for the given graph.

Check by graphing your equation on a graphing calculator.

67. The graph of is vertically stretched by a factor of 3,

reflected through the x axis, and shifted 2 units to the right and

5 units up to form the graph of the function g. Find an equation

for the function g and graph g.

68. Write an equation for the following graph in the form 

y  a(x  h)2
 k, where a is either  1 or  1 and h and k are

integers.

Check by graphing your equation on a graphing calculator.

69. The following graph is the result of applying a sequence of

transformations to the graph of Describe the trans-

formations verbally, and write an equation for the given

graph.

Check by graphing your equation on a graphing calculator.

70. How is the graph of f(x)   (x 2)2
 1 related to the graph of

g(x)  x2?

71. Each of the following graphs is the result of applying one

or more transformations to the graph of one of the six basic func-

tions in Figure 1, Section 3-3. Find an equation for the graph.

Check by graphing the equation on a graphing calculator.

x

y

 5

5 5

5

y  13 x.

x

y

 5

5 5

5

f (x)  冟x冟

x

y

 5

5 5

5
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(A) 

(B) 

72. The graph of is stretched vertically by a factor of 3,

reflected through the x axis, shifted four units to the right and

eight units up to form the graph of the function g. Find an equa-

tion for the function g and graph g.

73. The graph of is stretched horizontally by a factor of 2,

shifted two units to the left and four units down to form the graph

of the function t. Find an equation for the function t and graph t.

Use graph transformations to sketch the graph of each equation in

Problems 74–81:

74. 75. 

76. 77. 

78. 79. 

80. 81. 

Solve Problems 82 and 83. Express answers in interval notation.

82. 83.

84. Find the domain of 

85. Given and find each function and its

domain.

(A) fg (B) f兾g (C) (D) 

86. For the one-to-one function f given by

(A) Find 

(B) Find 

(C) Find 

87. Given 

(A) Find 

(B) Find the domain and range of f and 

(C) Graph f, and on the same coordinate system.y  xf  1,

f  1.

f  1(x).

f (x)  1x  1:

f  1[  f (x)] .

f  1(3).

f  1(x).

f (x)  
x  2

x  3

g ° ff ° g

g(x)  11  x,f (x)  x 2
f (x)  225  x2.

x2
7 4x  12x2

 x 6 20

y   冟x  1冟  1y  2  3(x  1)3

y  13 4  0.5xy  1
2 冟x冟

y  9  31xy  冟x冟  2

y  1  13 1  xy  冟x  1冟

m(x)  x2

f (x)  冟x冟

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5



Check by graphing f, f  1, and y x in a squared window on a

graphing calculator.

88. Given f(x)  x2
 1, 

(A) Find the domain and range of f and f  1.

(B) Find f  1(x).

(C) Find f  1(3).

(D) Find f  1[ f (4)].

(E) Find f  1[ f (x)].

Check by graphing f, f  1, and y  x in a squared window on a

graphing calculator.

89.A partial graph of the function f is shown in the figure. Complete

the graph of f over the interval [0, 5] given that:

(A) f is symmetric with respect to the y axis.

(B) f is symmetric with respect to the origin.

90. The function f is decreasing on [ 5, 5] with f( 5)  4 and 

f(5)   3.

(A) If f is continuous on [ 5, 5], how many times can the

graph of f cross the x axis? Support your conclusion with

examples and/or verbal arguments.

(B) Repeat part A if the function does not have to be continuous.

APPLICATIONS

91. INCOME Megan works 20 hours per week at an electronics store

to help pay for tuition and rent. She gets a base salary of $6 per

hour, a commission of 10% on all sales over $2,000 for the week,

and a bonus of $250 if her weekly sales are over $5,000.  

(A) Write a function that describes Megan’s weekly earnings,

where x represents her weekly sales.

(B) Find Megan’s weekly earnings if her sales are $2,000, $4,000,

and $6,000.

(C) If Megan needs to average at least $400 per week to cover her tu-

ition and rent, how much does she need to sell on average each week?

92. On the set of a movie, a stuntman will be jumping from a heli-

copter that is hovering at a height of 120 feet, and landing in a mov-

ing truck full of chicken feathers.  How many seconds after he

jumps does the truck need to be in position?

93. BUSINESS—MARKUP POLICY A sporting goods store sells ten-

nis shorts that cost $30 for $48 and sunglasses that cost $20 for $32.

(A) If the markup policy of the store for items that cost over $10 is

assumed to be linear and is reflected in the pricing of these two

items, find a function r f (c) that expresses retail price r as a func-

tion of cost c.

(B) What should be the retail price of a pair of skis that cost $105?

(C) Find c f  1(r) and find its domain and range.

(D) What is the cost of a box of golf balls that retail for $39.99?

x

y

 5

5 5

5

x  0:
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94. STOPPING DISTANCE Table 1 contains data related to the length

of the skid marks left by an automobile when making an emergency

stop. A model for the skid mark length L (in feet) of the auto is

where s is speed in miles per hour.

Table 1

Speed Length of

(mph) Skid Marks (feet)

20 26

30 32

40 49

50 80

60 122

70 176

80 242

(A) Graph L  f (s) and the data for skid mark length on the same

axes.

(B) Find s f  1(L) and find its domain and range.

(C) How fast (to the nearest mile) was the auto traveling if it left

skid marks 200 feet long?

95. PRICE AND DEMAND The price $p per hot dog at which q hot

dogs can be sold during a baseball game is given approximately by

(A) Find the range of g.

(B) Find and find its domain and range.

(C) Express the revenue as a function of p.

(D) Express the revenue as a function of q.

96. MARKET RESEARCH A market research firm is hired to study

demand for a new blanket that looks an awful lot like a bathrobe worn

backwards. They determine that if x units are produced each week

and sold at a price of $p per unit, then the weekly demand, revenue,

and cost equations are, respectively

Express the weekly profit as a function of the price p and find the

price that produces the largest profit.

97. CONSTRUCTION A farmer has 120 feet of fencing to be used in

the construction of two identical rectangular pens sharing a common

side (see the figure).

x

y

y

 C(x)  10x  1,500

 R(x)  50x  0.1x2

 x  500  10p

q  g 1( p)

1,000  q  4,000p  g(q)  
9

1  0.002q

s  20L  f (s)  0.06s2
 2.4s  50,



(A) Express the total area A(x) enclosed by both pens as a function

of the width x.

(B) From physical considerations, what is the domain of the func-

tion A?

(C) Find the dimensions of the pens that will make the total

enclosed area maximum.

98. COMPUTER SCIENCE In computer programming, it is often nec-

essary to check numbers for certain properties (even, odd, perfect

square, etc.). The greatest integer function provides a convenient

method for determining some of these properties. Consider the

function

(A) Evaluate f for x⫽ 1, 2, . . . , 16.

(B) Find where n is a positive integer.

(C) What property of x does this function determine?

f (n2),

f (x) ⫽ x ⫺ ( 冀1x冁 )2
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99. Use the schedule in Table 2 to construct a piecewise-defined

model for the taxes due for a single taxpayer in Virginia with a tax-

able income of x dollars. Find the tax on the following incomes:

$2,000, $4,000, $10,000, $30,000.

Table 2 Virginia Tax Rate Schedule

Taxable But Of the

Income Not Amount

Status Over Over Tax Is Over

Single $ 0 $ 3,000 2% $ 0

$ 3,000 $ 5,000 $ 60 ⫹ 3% $ 3,000

$ 5,000 $17,000 $120 ⫹ 5% $ 5,000

$17,000 — $720 ⫹ 5.75% $17,000

CHAPTER 3 

ZZZ GROUP ACTIVITY Mathematical Modeling: Choosing a Cell Phone Plan

The number of companies offering cellular telephone service has

grown rapidly in recent years. The plans they offer vary greatly

and it can be difficult to select the plan that is best for you. Here

are five typical plans:

Plan 1: A flat fee of $50 per month for unlimited calls.

Plan 2: A $30 per month fee for a total of 30 hours of calls and

an additional charge of $0.01 per minute for all minutes

over 30 hours.

Plan 3: A $5 per month fee and a charge of $0.04 per minute for

all calls.

Plan 4: A $2 per month fee and a charge of $0.045 per minute

for all calls; the fee is waived if the charge for calls is

$20 or more.

Plan 5: A charge of $0.05 per minute for all calls; there are no

additional fees.

(A) Construct a mathematical model for each plan that gives

the total monthly cost in terms of the total number of min-

utes of calls placed in a month.

(B) Compare plans 1 and 2. Determine how many minutes per

month would make plan 1 cheaper and how many would

make plan 2 cheaper.

(C) Repeat part (B) for plans 1 and 3; plans 1 and 4; plans 1

and 5.

(D) Repeat part (B) for plans 2 and 3; plans 2 and 4; plans 2

and 5.

(E) Repeat part (B) for plans 3 and 4; plans 3 and 5.

(F) Repeat part (B) for plans 4 and 5.

(G) Is there one plan that is always better than all the others?

Based on your personal calling history, which plan would

you choose and why?





Polynomial and 

Rational Functions

IN Chapters 2 and 3, we used lines and parabolas to model a variety

of situations. But the graph of a line doesn't change direction, and

the graph of a parabola has just one turning point. So to model

more complicated phenomena, we will study the more general class

of polynomial functions in Chapter 4. A polynomial function can

have many turning points. We will investigate the graphs and zeros

of polynomials and apply that knowledge to study functions that can

be written as quotients of polynomials, that is, the rational functions.

Finally, we will use the language of variation to describe a wide

range of mathematical models used in engineering and the physi-

cal, social, and health sciences. 

C

CHAPTER

4
4-1 Polynomial Functions, Division,

and Models

4-2 Real Zeros and Polynomial
Inequalities

4-3 Complex Zeros and Rational
Zeros of Polynomials

4-4 Rational Functions and
Inequalities

4-5 Variation and Modeling

Chapter 4 Review

Chapter 4 Group Activity:
Interpolating Polynomials

OUTLINE
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4-1 Polynomial Functions, Division, and Models

Z Graphs of Polynomial Functions

Z Polynomial Division

Z Remainder and Factor Theorems

Z Mathematical Modeling and Data Analysis

In this section, we will study polynomial functions, a class that includes the linear and quad-

ratic functions of Chapter 3. Graphs of polynomials exhibit much greater variety than just

lines and parabolas. We will examine the properties of the graphs of polynomial functions,

and we will use tools from algebra (division and factorization) to understand those proper-

ties. We also will show how polynomials are used to model data for which linear and quad-

ratic functions are unsuitable.

Z Graphs of Polynomial Functions

In Chapter 3 we introduced linear and quadratic functions and their graphs (Fig. 1):

Linear function

Quadratic function f (x)  ax2
 bx  c,  a  0

 f (x)  ax  b,  a  0

Z Figure 1 Graphs of linear and quadratic functions.
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Z DEFINITION 1 Polynomial Function

If n is a nonnegative integer, a function that can be written in the form

P(x)  anxn
 an 1xn 1

 . . .  a1x  a0, an   0

is called a polynomial function of degree n. The numbers an, an 1, . . ., a1, a0

are called the coefficients of P(x).

A function such as

g(x)  7x4
 5x3

 (2  9i)x2
 3x  1.95

which is the sum of a finite number of terms, each of the form axk, where a is a number

and k is a nonnegative integer, is called a polynomial function. The polynomial function

g(x) is said to have degree 4 because x4 is the highest power of x that appears among the

terms of g(x). Therefore, linear and quadratic functions are polynomial functions of

degrees 1 and 2, respectively. The two functions h(x)  x 1 and k(x)  x1 2, however,

are not polynomial functions (the exponents  1 and are not nonnegative integers).1
2
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We will assume that the coefficients of a polynomial function are complex numbers, or

real numbers, or rational numbers, or integers, depending on our interest. Similarly, the

domain of a polynomial function can be the set of complex numbers, the set of real num-

bers, or an appropriate subset of either, depending on the situation. According to Definition 1,

a nonzero constant function like f (x)   5 has degree 0 (it can be written as f (x)   5x0).

The constant function with value 0 is considered to be a polynomial but is not assigned a

degree.

The zeros of P(x) are the solutions of the equation P(x)  0. So if the coefficients of

a polynomial P(x) are real numbers, then the real zeros of P(x) are just the x intercepts of

the graph of P(x). For example, the real zeros of the polynomial P(x) x2
 4 are 2 and

 2, the x intercepts of the graph of P(x) [Fig. 2(a)]. However, a polynomial may have zeros

that are not x intercepts. Q(x) x2
 4, for example, has zeros 2i and  2i, but its graph

has no x intercepts [Fig. 2(b)].

Z Figure 2 Real zeros are x intercepts.
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(a) (b)

EXAMPLE 1 Zeros and x Intercepts

(A) Figure 3 shows the graph of a polynomial function of degree 5. List its real zeros.

Z Figure 3

 200

 5

200

5

Z DEFINITION 2 Zeros or Roots

A number r is said to be a zero or root of a function P(x) if P(r)   0.

(B) List all zeros of the polynomial function

P(x) (x  4)(x 7)3(x2
 9)(x2

 2x  2)

Which zeros of P(x) are x intercepts?



(B) List all zeros of the polynomial function

P(x) (x  5)(x2
 4)(x2

 4)(x2
 2x  5)

Which zeros of P(x) are x intercepts?

�
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ZZZ EXPLORE-DISCUSS 1 Examine Figures 2(a), 2(b), 3, and 4, which show the graphs of polynomial func-

tions of degree 2, 2, 5, and 4, respectively. In each figure, all real zeros and all

turning points of the function appear in the given viewing window.

(A) Is the number of real zeros ever less than the degree? Equal to the degree?

Greater than the degree? How is the number of real zeros of a polynomial related

to its degree?

(B) Is the number of turning points ever less than the degree? Equal to the degree?

Greater than the degree? How is the number of turning points of a polynomial

related to its degree?

 5

 5

5

5

Z Figure 4

MATCHED PROBLEM 1 (A) Figure 4 shows the graph of a polynomial function of degree 4. List its real zeros.

A point on a continuous graph that separates an increasing portion from a decreasing

portion, or vice versa, is called a turning point. The vertex of a parabola, for example, is

a turning point. Linear functions with real coefficients have exactly one real zero and no

turning points; quadratic functions with real coefficients have at most two real zeros and

exactly one turning point.

SOLUTIONS (A) The real zeros are the x intercepts:  4,  2, 0, and 3.

(B) Note first that P(x) is a polynomial because it can be written in the form of Definition 1

(it is not necessary to actually multiply out P(x) to find that form). The zeros of P(x) are

the solutions to the equation P(x)   0. Because a product equals 0 if and only if one 

of the factors equals 0, we can find the zeros by solving each of the following equations

(the last was solved using the quadratic formula):

Therefore, the zeros of P(x), are 4,  7, 3i,  3i, 1  i, and 1  i. Only two of the

six zeros are real numbers and therefore x intercepts: 4 and  7. �

 x  4   x   7   x   3i   x  1  i

 x  4  0   (x  7)3
 0    x2

 9  0    x2
 2x  2  0



S E C T I O N  4 – 1 Polynomial Functions, Division, and Models 263

Explore-Discuss 1 suggests that graphs of polynomial functions with real coefficients

have the properties listed in Theorem 1, which we accept now without proof. Property 3 is

proved later in this section. The other properties are established in calculus.

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

(a) f(x) ⴝ x ⴚ 2

(d) F(x) ⴝ x
2
ⴚ x ⴙ 1 (e) G(x) ⴝ 2x

4
ⴚ 7x

2
ⴙ x ⴙ 3 (f) H(x) ⴝ x

6
ⴚ 7x

4
ⴙ 12x

2
ⴚ x ⴚ 2

(b) g(x) ⴝ x
3
ⴙ 5x (c) h(x) ⴝ x

5
ⴚ 6x

3
ⴙ 8x ⴙ 1

Z Figure 5 Graphs of polynomial functions.

*Remember that   and   are not real numbers. The statement the graph of P(x) increases without bound as

x →   means that for any horizontal line y  b there is some interval (  , a]  {x  x  a} on which the

graph of P(x) is above the horizontal line.

Z THEOREM 1 Properties of Graphs of Polynomial Functions

Let P(x) be a polynomial of degree n  0 with real coefficients. Then the graph

of P(x):

1. Is continuous for all real numbers

2. Has no sharp corners

3. Has at most n real zeros

4. Has at most n  1 turning points

5. Increases or decreases without bound as x →  and as x →   *

Figure 5 shows graphs of representative polynomial functions of degrees 1 through 6, illus-

trating the five properties of Theorem 1.



Explain why each graph is not the graph of a polynomial function by listing the properties

of Theorem 1 that it fails to satisfy.
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MATCHED PROBLEM 2

(A) (B) (C)

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

The shape of the graph of a polynomial function with real coefficients is similar to the

shape of the graph of the leading term, that is, the term of highest degree. Figure 6 com-

pares the graph of the polynomial h(x)  x5 
 6x3

 8x  1 from Figure 5 with the graph

of its leading term p(x)  x5. The graphs are dissimilar near the origin, but as we zoom

out, the shapes of the two graphs become quite similar. The leading term in the polynomial

dominates all other terms combined. Because the graph of p(x) increases without bound as

x →  , the same is true of the graph of h(x). And because the graph of p(x) decreases with-

out bound as x →   , the same is true of the graph of h(x).

x

y

 500

5 5

500

x

y

 5

5 5

5

p p

ZOOM OUT

h h
Z Figure 6 p(x)  x

5
,

h(x)  x
5
  6x

3
 8x  1.

�

SOLUTIONS (A) The graph has a sharp corner when x  0. Property 2 fails.

(B) There are no points on the graph with x coordinate less then or equal to 0, so

properties 1 and 5 fail.

(C) There are an infinite number of zeros and an infinite number of turning points, so

properties 3 and 4 fail. Furthermore, the graph is bounded by the horizontal lines

y   1, so property 5 fails. �
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y
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5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

(A) (B) (C)

Properties of Graphs of Polynomials

Explain why each graph is not the graph of a polynomial function by listing the properties

of Theorem 1 that it fails to satisfy.

EXAMPLE 2 



It is convenient to write P(x) →  as an abbreviation for the phrase the graph of P(x)

increases without bound. Using this notation, the left and right behavior in Case 4 of The-

orem 2, for example, is P(x) →   as x →  and P(x) →  as x →   .
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The left and right behavior of a polynomial function with real coefficients is determined by

the left and right behavior of its leading term (see Fig. 6). Property 5 of Theorem 1 can there-

fore be refined. The various possibilities are summarized in Theorem 2.

EXAMPLE 3 Left and Right Behavior of Polynomials

Determine the left and right behavior of each polynomial.

(A) The degree of P(x)  3  x2
 4x3

 x4
 2x6

(B) The degree of Q(x)  4x5
 8x3

 5x  1

SOLUTIONS (A) The degree P(x) is 6 (even) and the coefficient a6 is  2 (negative), so the left and

right behavior is the same as that of  x6 (Case 3 of Theorem 2): P(x) →   as

x →  and P(x) →   as x →   .

(B) The degree Q(x) is 5 (odd) and the coefficient a5 is 4 (positive), so the left and right

behavior is the same as that of x5 (Case 2 of Theorem 2): P(x) →  as x →  and

P(x) →   as x →   . �

MATCHED PROBLEM 3 Determine the left and right behavior of each polynomial.

(A) P(x)  4x9
 3x11

 5

(B) Q(x)  1  2x50
 x100

�

Z THEOREM 2 Left and Right Behavior of Polynomial Functions

Let P(x) anxn
 an 1xn 1

 . . .  a1x  a0 be a polynomial function with real

coefficients, an   0, n  0.

1. an > 0, n even: The graph of P(x) increases without bound as and

increases without bound as (like the graphs of x2, x4, x6, etc.).

2. an > 0, n odd: The graph of P(x) increases without bound as and

decreases without bound as (like the graphs of x, x3, x5, etc.).

3. an < 0, n even: The graph of P(x) decreases without bound as and

decreases without bound as (like the graphs of  x2,  x4,  x6, etc.).

4. an < 0, n odd: The graph of P(x) decreases without bound as and

increases without bound as (like the graphs of etc.). x5, x,  x3,xS  

xS 

xS  

xS 

xS  

xS 

xS  

xS 

x

y

x

y

x

y

x

y

Case 1 Case 2 Case 3 Case 4



Then we plot the points in the table and join them with a smooth curve (Fig. 7). The zeros

are  2 and 4. The turning points are ( 2, 0) and (2,  32). Note that P(x) has the maxi-

mum number of turning points for a polynomial of degree 3, but one fewer than the max-

imum number of real zeros. �
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x P(x)

 5  81

 4  32

 3  7

 2 0

 1  5

0  16

x P(x)

1  27

2  32

3  25

4 0

5 49

x

y

 100

5 5

100

Z Figure 7 P(x) x
3
 12x 16.

MATCHED PROBLEM 4 Graph P(x)  x
4
 6x2

 8x  3,  4  x  4. List the real zeros and turning points.

�

ZZZ CAUTION ZZZ Finding the real zeros and turning points of a polynomial is usually more diffi-

cult than suggested by Example 4. In Example 4, how did we know that the real

zeros were between  5 and 5 rather than between, say, 95 and 105? Could there

be another real zero just to the left or right of  2? How do we know that ( 2, 0)

and (2,  32), rather than nearby points having noninteger coordinates, are the

turning points? To answer such questions we must view polynomials from an

algebraic perspective. Polynomials can be factored. So next we will study the

division and factorization of polynomials.

EXAMPLE 4 Graphing a Polynomial

Graph the polynomial P(x) x
3
 12x  16,  5  x  5. List the real zeros and turning

points.

SOLUTION First we construct a table of values by calculating P(x) for each integer x,  5 x 5. For

example,

P( 5) ( 5)3
 12( 5) 16   81

Z Polynomial Division

We can find quotients of polynomials by a long-division process similar to the one used in

arithmetic. Example 5 will illustrate the process.

Polynomial Long Division

Divide P(x) 3x3
 5  2x4

 x by 2 x.

EXAMPLE 5 

SOLUTION First, rewrite the dividend P(x) in descending powers of x, inserting 0 as the coefficient for

any missing terms of degree less than 4:

P(x) 2x4
 3x3

 0x2
 x  5



The procedure illustrated in Example 5 is called the division algorithm. The concluding

equation of Example 5 (before the check) may be multiplied by the divisor x  2 to give

the following form:

Dividend ⴝ Divisor ⴢ Quotient ⴙ Remainder

2x4
 3x3

 x  5  (x  2)(2x3
 x2

 2x  5)  5

This last equation is an identity: it is true for all replacements of x by real or complex num-

bers including x   2. Theorem 3, which we state without proof, gives the general result

of applying the division algorithm when the divisor has the form x  r.
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Similarly, rewrite the divisor 2  x in the form x  2. Then divide the first term x of the divi-

sor into the first term 2x4 of the dividend. Multiply the result, 2x3, by the divisor, obtaining

2x4
 4x3. Line up like terms, subtract as in arithmetic, and bring down 0x2. Repeat the process

until the degree of the remainder is less than the degree of the divisor.

Divisor

Subtract

Subtract

Subtract

Remainder

Therefore,

2x4
 3x3

 x  5

x  2
 2x3

 x2
 2x  5  

5

x  2

2x2
 4x

 5x  5

 5x  10

5

 x3
 0x2

 x3
 2x2

2x2
 x

2x4
 4x3

Quotient

Dividend

   2x3
 x2

 2x  5

x  2 2x4
 3x3

 0x2
 x  5

CHECK You can always check division using multiplication:

�  2x4
 3x3

 x  5

  (x  2)(2x3
 x2

 2x  5)  5

(x  2) c 2x3
 x2

 2x  5  
5

x  2
d

MATCHED PROBLEM 5 Divide 6x2
 30  9x3 by x  2.

�

Multiply and

collect like terms

Z THEOREM 3 Division Algorithm

For each polynomial P(x) of degree greater than 0 and each number r, there exists a

unique polynomial Q(x) of degree 1 less than P(x) and a unique number R such that

P(x)  (x  r)Q(x)   R

The polynomial Q(x) is called the quotient, x  r is the divisor, and R is the

remainder. Note that R may be 0.

Subtract



There is a shortcut called synthetic division for the long division of Example 5. First

write the coefficients of the dividend and the negative of the constant term of the divisor

in the format shown below at the left. Bring down the 2 as indicated next on the right, mul-

tiply by  2, and record the product  4. Add 3 and  4, bringing down their sum  1. Repeat

the process until the coefficients of the quotient and the remainder are obtained.
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 2

Negative of constant
term of divisor

Dividend coefficients

2 3 0  1  5 2 3 0  1  5

 4   2 4 10

2  1 2   5 52

Dividend coefficients

Quotient
coefficients

Remainder

Compare the preceding synthetic division to the long division shown below, in which

the essential numerals appear in color, to convince yourself that synthetic division produces

the correct quotient and remainder. (In synthetic division we use the negative of the con-

stant term of the divisor so we can add rather than subtract.)

5

ⴚ5x   5

 5x ⴚ 10

2x2
 1x

2x2
ⴙ 4x

ⴚ1x3
 0x2

 1x3
ⴚ 2x2

2x4
 4x3

 2x3
ⴚ 1x2

ⴙ 2x ⴚ 5

x ⴙ 2 2x4
 3x3

 0x2
ⴚ 1x ⴚ 5

Quotient

DividendDivisor

Remainder

Z KEY STEPS IN THE SYNTHETIC DIVISION PROCESS

To divide the polynomial P(x) by x  r:

Step 1. Arrange the coefficients of P(x) in order of descending powers of x. Write

0 as the coefficient for each missing power.

Step 2. After writing the divisor in the form x  r, use r to generate the second

and third rows of numbers as follows. Bring down the first coefficient of

the dividend and multiply it by r; then add the product to the second coef-

ficient of the dividend. Multiply this sum by r, and add the product to the

third coefficient of the dividend. Repeat the process until a product is added

to the constant term of P(x).

Step 3. The last number to the right in the third row of numbers is the remainder.

The other numbers in the third row are the coefficients of the quotient,

which is of degree 1 less than P(x).
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EXAMPLE 6 Synthetic Division

Use synthetic division to divide by Find the quotient

and remainder. Write the conclusion in the form of Theorem 3.P(x)  (x  r)Q(x)  R

x  3.P(x)  4x5
 30x3

 50x  2

SOLUTION Because we have and

4 0  30 0  50  2

 12 36  18 54  12

 3 4  12 6  18 4  14

The quotient is with a remainder of So

�4x5
 30x3

 50x  2  (x  3)(4x4
 12x3

 6x2
 18x  4)  14

 14.4x4
 12x3

 6x2
 18x  4

r   3,x  3  x  ( 3),

MATCHED PROBLEM 6 Repeat Example 6 with and divisor x  4.

�

P(x)  3x4
 11x3

 18x  8

ZZZ EXPLORE-DISCUSS 2 Let P(x) x3
 3x2

 2x  8.

(A) Evaluate P(x) for

(i) x   2 (ii) x  1 (iii) x  3

(B) Use synthetic division to find the remainder when P(x) is divided by

(i) x  2 (ii) x  1 (iii) x  3

What conclusion does a comparison of the results in parts A and B suggest?

Z Remainder and Factor Theorems

Explore-Discuss 2 suggests that when a polynomial P(x) is divided by x  r, the remain-

der is equal to P(r), the value of the polynomial P(x) at x  r. In Problem 87 of Exercises

4-1, you are asked to complete a proof of this fact, which is called the remainder theorem.

Two Methods for Evaluating Polynomials

If P(x) 4x4
 10x3

 19x  5, find P( 3) by

(A) Using the remainder theorem and synthetic division

(B) Evaluating P( 3) directly

Z THEOREM 4 Remainder Theorem

If R is the remainder after dividing the polynomial P(x) by x  r, then

P(r)  R

EXAMPLE 7 

SOLUTIONS (A) Use synthetic division to divide P(x) by x  ( 3).

4 10 0 19 5

 12 6  18  3

 3 4  2 6 1 2  R  P( 3)
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MATCHED PROBLEM 7 Repeat Example 7 for P(x)  3x4
 16x2

 3x  7 and x   2.

�

Z THEOREM 5 Factor Theorem

If r is a zero of the polynomial P(x), then x r is a factor of P(x). Conversely, if

x  r is a factor of P(x), then r is a zero of P(x).

You might think the remainder theorem is not a very effective tool for evaluating polyno-

mials. But let’s consider the number of operations performed in parts A and B of Example 7.

Synthetic division requires only four multiplications and four additions to find P( 3), whereas

the direct evaluation requires ten multiplications and four additions. [Note that evaluating

4( 3)4 actually requires five multiplications.] The difference becomes even larger as the degree

of the polynomial increases. Computer programs that involve numerous polynomial evaluations

often use synthetic division because of its efficiency. We will find synthetic division and the

remainder theorem to be useful tools later in this chapter.

The remainder theorem shows that the division algorithm equation,

P(x) (x  r)Q(x) R

can be written in the form where R is replaced by P(r):

P(x) (x  r)Q(x) P(r)

Therefore, x  r is a factor of P(x) if and only if P(r) 0, that is, if and only if r is

a zero of the polynomial P(x). This result is called the factor theorem.

Factors of Polynomials

Use the factor theorem to show that x  1 is a factor of P(x) x25
 1 but is not a factor

of Q(x) x25
 1.

EXAMPLE 8

SOLUTION Because

P( 1) ( 1)25
 1   1  1  0

is a factor of On the other hand,

Q( 1) ( 1)25
 1   1  1   2

and x  1 is not a factor of x25
 1. �

x25
 1.x  ( 1)  x  1

MATCHED PROBLEM 8 Use the factor theorem to show that x  i is a factor of P(x) x8
 1 but is not a factor

of Q(x) x8
 1.

�

One consequence of the factor theorem is Theorem 6 (a proof is outlined in Problem

88 in Exercises 4-1).

(B) P( 3) 4( 3)4
 10( 3)3

 19( 3) 5

 2 �



Theorem 6 says that the graph of a polynomial of degree n with real coefficients has

at most n real zeros (Property 3 of Theorem 1). The polynomial

H(x) x
6
 7x4

 12x2
 x  2

for example, has degree 6 and the maximum number of zeros [see Fig. 5(f ), p. 263]. Of

course, polynomials of degree 6 may have fewer than six real zeros. In fact, p(x) x
6
 1

has no real zeros. However, it can be shown that the polynomial p(x) x
6
 1 has exactly

six complex zeros.

Z Mathematical Modeling and Data Analysis

In Chapters 2 and 3 we saw that linear and quadratic functions can be useful models for

certain sets of data. For some data, however, no linear function and no quadratic function

can provide a reasonable model. In that case, we investigate the suitability of polynomial

models of degree greater than 2. In Examples 9 and 10 we discuss cubic and quartic models,

respectively, for the given data.
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Z THEOREM 6 Zeros of Polynomials

A polynomial of degree n has at most n zeros.

Estimating the Weight of Fish

Scientists and fishermen often estimate the weight of a

fish from its length. The data in Table 1 give the aver-

age weight of North American sturgeon for certain

lengths.

Because weight is associated with volume, which

involves three dimensions, we might expect that weight

would be associated with the cube of the length. A cubic

model for the data is given by

where y is the weight (in ounces) of a sturgeon that has length x (in inches).

(A) Use the model to estimate the weight of a sturgeon of length 56 inches.

(B) Compare the weight of a sturgeon of length 44 inches as given by Table 1 with the

weight given by the model.

y  0.00526x3
 0.117x2

 1.43x  5.00

EXAMPLE 9 

Table 1 Sturgeon

Length (in.) Weight (oz.)

x y

18 13

22 26

26 46

30 75

34 115

38 166

44 282

52 492

60 796

Source: www.thefishernet.com

SOLUTIONS (A) If x  56, then

(B) If x  44, then

The weight given by the table, 282 ounces, is 3 ounces greater than the weight given

by the model. �

y  0.00526(44)3
 0.117(44)2

 1.43(44)  5.00  279 ounces

y  0.00526(56)3
 0.117(56)2

 1.43(56)  5.00  632 ounces
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Technology Connections

Figure 8 shows the details of constructing the cubic model

of Example 9 on a graphing calculator.

Z Figure 8

0

0

1,000

70

(a) Entering the data (b) Finding the model
(c) Graphing the data and the model

MATCHED PROBLEM 9 Use the cubic model of Example 9.

(A) Estimate the weight of a sturgeon of length 65 inches.

(B) Compare the weight of a sturgeon of length 30 inches as given by Table 1 with the

weight given by the model.

�

Hydroelectric Power

The data in Table 2 gives the annual consumption of hydro-

electric power (in quadrillion BTU) in the United States

for selected years since 1983. From Table 2 it appears that

a polynomial model of the data would have three turning

points—near 1989, 1997, and 2001. Because a polynomial

with three turning points must have degree at least four,

we can model the data with a quartic (fourth-degree)

polynomial:

y  0.00013x4
 0.0067x3

 0.107x2
 0.59x  4.03

where y is the consumption (in quadrillion BTU) and x is time in years with x  0 repre-

senting 1983.

(A) Use the model to predict the consumption of hydroelectric power in 2018.

(B) Compare the consumption of hydroelectric power in 2003 (as given by Table 2) to the

consumption given by the model.

EXAMPLE 10 

SOLUTIONS (A) If x  35 (which represents the year 2018), then

y  0.00013(35)4
 0.0067(35)3

 0.107(35)2
 0.59(35)  4.03   22.3

The model predicts a consumption of 22.3 quadrillion BTU in 2018. However,

because the predicted consumption for 2018 is so dramatically greater than earlier

consumption levels, it is unlikely to be accurate. This brings up an important point: A

model that fits a set of data points well is not automatically a good model for

predicting future trends.

Table 2

U.S. Consumption of

Hydroelectric Power

Year (Quadrillion BTU)

1983 3.90

1985 3.40

1987 3.12

1989 2.99

1991 3.14

1993 3.13

1995 3.48

1997 3.88

1999 3.47

2001 2.38

2003 2.53

2005 2.61

Source: U.S. Department of Energy



(B) If x  20 (which represents 2003), then

y  0.00013(20)4
 0.0067(20)3

 0.107(20)2
 0.59(20)  4.03  2.23

The consumption reported in the table, 2.53 quadrillion BTU, is 0.30 quadrillion BTU

greater than the consumption given by the model. �
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Technology Connections

Figure 9 shows the details of constructing the quartic model of Example 10 on a graphing calculator.

Z Figure 9

 2

0

5

30

(a) (b)
(c)

MATCHED PROBLEM 10 Use the quartic model of Example 10.

(A) Estimate the consumption of hydroelectric power in 2000.

(B) Compare the consumption of hydroelectric power in 1991 (as given by Table 2) to

the consumption given by the model.

�

ANSWERS TO MATCHED PROBLEMS

1. (A)  1, 1, 2

(B) The zeros are  5,  2, 2, 2i,  2i,  1  2i, and  1  2i; the x intercepts are  5,  2, 

and 2.

2. (A) Properties 1 and 5

(B) Property 5

(C) Properties 1 and 5

3. (A) as and as 

(B) as and as 

4.

zeros:  1, 3; turning point; (2,  27)

5. 9x2
 24x  48  

66

x  2

x

y

 200

5 5

200

xS  .Q(x)S xS Q(x)S 

xS  .P(x)S xS P(x)S  
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6.

7. for both parts, as it should

8. so is a factor of 

so is not a factor of 

9. (A) 1,038 in.

(B) The weight given in the table is 0.38 oz greater than the weight given by the model.

10. (A) 2.86 quadrillion BTU

(B) The consumption given in the table is 0.12 quadrillion BTU less than the consumption

given by the model.

x8
 1x  iQ(i)  2,

x8
 1;x  iP(i)  0,

P( 2)   3

3x4
 11x3

 18x  8  (x  4)(3x3
 x2

 4x  2)

4-1 Exercises

1. What is a polynomial function?

2. Explain the connection between the zeros of a polynomial and

its linear factors.

3. Explain what is wrong with the following setup for dividing 

x4
 5x2

 2x  6 by x  2 using synthetic division.

4. Explain what is wrong with the following setup for dividing 

3x3
 x2

 8x  9 by x  4 using synthetic division.

In Problems 5–8, decide whether the statement is true or false,

and explain your answer.

5. Every quadratic function is a polynomial function.

6. Every polynomial of degree 3 has three x intercepts.

7. If a polynomial has no x intercepts, then it has no zeros.

8. Every polynomial function is continuous.

In Problems 9–12, a is a positive real number. Match each

function with one of graphs (a)–(d).

9. f (x)  ax3
10. g(x)   ax4

11. h(x)  ax6
12. k(x)   ax5

(b)(a)

x

y

x

y

 3  1 8 9

4 0       
 1 5  2 6

2 0       
In Problems 13–16, list the real zeros and turning points, and

state the left and right behavior, of the polynomial function P(x)

that has the indicated graph.

13. 

14. 

x

y

 5

5 5

5

x

y

 5

5 5

5

(d)(c)

x

y

x

y
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15. 

16. 

In Problems 17–20, explain why each graph is not the graph of a

polynomial function.

17. 

18. 

19. 

x

y

 3

3 3

3

x

y

 5

5 5

5

x

y

 2

2 2

2

x

y

 5

5 5

5

x

y

 5

5 5

5

20. 

In Problems 21–24, list all zeros of each polynomial function, and

specify those zeros that are x intercepts.

21. P(x) x(x2
 9)(x2

 4)

22. P(x) (x2
 4)(x4

 1)

23. P(x) (x  5)(x2
 9)(x2

 16)

24. P(x) (x2
 5x  6)(x2

 5x  7)

In Problems 25–34, use algebraic long division to find the

quotient and the remainder.

25. (3x2
 5x  6)  (x  1)

26. (2x2
 7x  4)  (x  2)

27. (4m2
 1)  (m  1)

28. (y2
 9)  ( y  3)

29. (6  6x  8x2)  (x  1)

30. (11x  2  12x2)  (3x  2)

31. 32. 

33. (3y  y2
 2y3

 1)  ( y  2)

34. (3  x3
 x)  (x  3)

In Problems 35–40, divide using synthetic division.

35. (x2
 3x  7)  (x  2)

36. (x2
 3x  3)  (x  3)

37. (4x2
 10x  9)  (x  3)

38. (2x2
 7x  5)  (x  4)

39. 40. 

In Problems 41–44, is the given number a zero of the polynomial?

Use synthetic division.

41. x2
 4x  221;  17

42. x2
 7x  551; 29

43. 2x3
 38x2

 x  19;  19

44. 2x3
 397x  70; 14

x3
 2x2

 3x  4

x  2

2x3
 3x  1

x  2

a3
 27

a  3

x3
 1

x  1

x

y

 3

3 3

3
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In Problems 45–48, determine whether the second polynomial is a

factor of the first polynomial without dividing or using synthetic

division.

45. x18
 1; x  1 46. x18

 1; x  1

47. 3x3
 7x2

 8x  2; x  1

48. 3x4
 2x3

 5x  6; x  1

Use synthetic division and the remainder theorem in 

Problems 49–54.

49. Find P( 2), given P(x)  3x2
 x  10.

50. Find P( 3), given P(x)  4x2
 10x  8.

51. Find P(2), given P(x)  2x3
 5x2

 7x  7.

52. Find P(5), given P(x)  2x3
 12x2

 x  30.

53. Find P( 4), given P(x)  x4
 10x2

 25x  2.

54. Find P( 7), given P(x) x4
 5x3

 13x2
 30.

In Problems 55–62, use synthetic division to find the quotient and

the remainder. As coefficients get more involved, a calculator

should prove helpful. Do not round off.

55. (3x4
 x  4)  (x  1)

56. (5x4
 2x2

 3)  (x  1)

57. (x5
 1)  (x  1)

58. (x4
 16)  (x  2)

59. (3x4
 2x3

 4x  1)  (x  3)

60. (x4
 3x3

 5x2
 6x  3)  (x  4)

61. (2x6
 13x5

 75x3
 2x2

 50)  (x  5)

62. (4x6
 20x5

 24x4
 3x2

 13x  30)  (x  6)

In Problems 63–68, without graphing, state the left and right behav-

ior, the maximum number of x intercepts, and the maximum number

of local extrema.

63. P(x) x3
 5x2

 2x  6

64. P(x) x3
 2x2

 5x  3

65. P(x)  x3
 4x2

 x  5

66. P(x)  x3
 3x2

 4x  4

67. P(x) x4
 x3

 5x2
 3x  12

68. P(x)  x4
 6x2

 3x  16

In Problems 69–72, either give an example of a polynomial with

real coefficients that satisfies the given conditions or explain why

such a polynomial cannot exist.

69. P(x) is a third-degree polynomial with one x intercept.

70. P(x) is a fourth-degree polynomial with no x intercepts.

71. P(x) is a third-degree polynomial with no x intercepts.

72. P(x) is a fourth-degree polynomial with no turning points.

In Problems 73 and 74, divide, using synthetic division.

73. (x3
 3x2

 x  3)  (x  i)

74. (x3
 2x2

 x  2)  (x  i)

75. Let P(x) x2
 2ix  10. Use synthetic division to find:

(A) P(2  i)

(B) P(5  5i)

(C) P(3  i)

(D) P( 3 i)

76. Let P(x) x2
 4ix  13. Use synthetic division to find:

(A) P(5  6i)

(B) P(1  2i)

(C) P(3  2i)

(D) P( 3 2i)

In Problems 77–82, approximate (to two decimal places) the x

intercepts and the local extrema.

77. P(x) 40  50x  9x2
 x3

78. P(x) 40  70x  18x2
 x3

79. P(x) 0.04x3
 10x  5

80. P(x)  0.01x3
 2.8x  3

81. P(x) 0.1x4
 0.3x3

 23x2
 23x  90

82. P(x) 0.1x4
 0.2x3

 19x2
 17x  100

83. (A) What is the least number of turning points that a polyno-

mial function of degree 4, with real coefficients, can have?

The greatest number? Explain and give examples.

(B) What is the least number of x intercepts that a polynomial

function of degree 4, with real coefficients, can have? The

greatest number? Explain and give examples.

84. (A) What is the least number of turning points that a polyno-

mial function of degree 3, with real coefficients, can have?

The greatest number? Explain and give examples.

(B) What is the least number of x intercepts that a polynomial

function of degree 3, with real coefficients, can have? The

greatest number? Explain and give examples.

85. Is every polynomial of even degree an even function? Explain.

86. Is every polynomial of odd degree an odd function? Explain.

87. Prove the remainder theorem (Theorem 4):

(A) Write the result of the division algorithm if a polynomial

P(x) is divided by x  r.

(B) Evaluate both sides of the equation from part (A) when 

x  r. What can you conclude?

88. In this problem, we will prove that a polynomial of degree n

has at most n zeros (Theorem 6). Give a reason for each step.

Let P(x) be a polynomial of degree n, and suppose that P has n

distinct zeros r1, r2, . . . , rn . We will show that it is impossible

for P to have any other zeros.

Step 1: We can write P(x) in the form P(x)  (x  r1)Q1(x),

where the degree of Q1(x) is n 1.
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Step 2: r2 is a zero of Q1(x).

Step 3: We can write Q1(x) in the form Q1(x)  (x r2)Q2(x),

where the degree of Q2(x) is n 2.

Step 4: P(x)  (x  r1)(x  r2)Q2(x)

Step 5: P(x)  (x  r1)(x  r2). . .(x  rn)Qn(x), where the

degree of Qn(x) is 0.

Step 6: The only zeros of P are r1, r2, . . . , rn.

APPLICATIONS

89. REVENUE The price–demand equation for 8,000-BTU window

air conditioners is given by

p  0.0004x2
 x  569 0  x  800

where x is the number of air conditioners that can be sold at a price

of p dollars each.

(A) Find the revenue function.

(B) Find the number of air conditioners that must be sold to maxi-

mize the revenue, the corresponding price to the nearest dollar, and

the maximum revenue to the nearest dollar.

90. PROFIT Refer to Problem 89. The cost of manufacturing 8,000-

BTU window air conditioners is given by

C(x) 10,000  90x

where C(x) is the total cost in dollars of producing x air

conditioners.

(A) Find the profit function.

(B) Find the number of air conditioners that must be sold to maxi-

mize the profit, the corresponding price to the nearest dollar, and

the maximum profit to the nearest dollar.

91. CONSTRUCTION A rectangular container measuring 1 foot by 

2 feet by 4 feet is covered with a layer of lead shielding of uniform

thickness (see the figure).

(A) Find the volume of lead shielding V as a function of the thick-

ness x (in feet) of the shielding.

(B) Find the volume of the lead shielding if the thickness of the

shielding is 0.05 feet.

92. MANUFACTURING A rectangular storage container measuring 

2 feet by 2 feet by 3 feet is coated with a protective coating of plastic

of uniform thickness.

(A) Find the volume of plastic V as a function of the thickness x (in

feet) of the coating.

Lead shielding

4

2

1

(B) Find the volume of the plastic coating to four decimal places if

the thickness of the shielding is 0.005 feet.

Problems 93–96 require a graphing calculator or a computer that

can calculate cubic regression polynomials for a given data set.

93. HEALTH CARE Table 3 shows the total national health care

expenditures (in billion dollars) and the per capita expenditures (in

dollars) for selected years since 1960.

Table 3 National Health Care Expenditures

Total Expenditures Per Capita

Year (Billion $) Expenditures ($)

1960 28 148

1970 75 356

1980 253 1,100

1990 714 2,814

2000 1,353 4,789

2007 2,241 7,421

Source: U.S. Census Bureau.

(A) Let x represent the number of years since 1960 and find a cubic

regression polynomial for the total national expenditures.

(B) Use the polynomial model from part A to estimate the total

national expenditures (to the nearest billion) for 2018.

94. HEALTH CARE Refer to Table 3.

(A) Let x represent the number of years since 1960 and find a cubic

regression polynomial for the per capita expenditures.

(B) Use the polynomial model from part A to estimate the per

capita expenditures (to the nearest dollar) for 2018.

95. MARRIAGE Table 4 shows the marriage and divorce rates per

1,000 population for selected years since 1950.

Table 4 Marriages and Divorces (per 1,000 Population)

Year Marriages Divorces

1950 11.1 2.6

1960 8.5 2.2

1970 10.6 3.5

1980 10.6 5.2

1990 9.8 4.7

2000 8.2 4.1

Source: U.S. Census Bureau.

(A) Let x represent the number of years since 1950 and find a cubic

regression polynomial for the marriage rate.

(B) Use the polynomial model from part A to estimate the marriage

rate (to one decimal place) for 2016.

96. DIVORCE Refer to Table 4.

(A) Let x represent the number of years since 1950 and find a cubic

regression polynomial for the divorce rate.

(B) Use the polynomial model from part A to estimate the divorce

rate (to one decimal place) for 2016.
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4-2 Real Zeros and Polynomial Inequalities

Z Upper and Lower Bounds for Real Zeros

Z Location Theorem and Bisection Method

Z Approximating Real Zeros at Turning Points

Z Polynomial Inequalities

Z Mathematical Modeling

The real zeros of a polynomial P(x) with real coefficients are just the x intercepts of the graph

of P(x). So an obvious strategy for finding the real zeros consists of two steps:

1. Graph P(x).

2. Approximate each x intercept.

In this section, we develop important tools for carrying out this strategy: the upper and

lower bound theorem, which determines an interval [a, b] that is guaranteed to contain all

x intercepts of P(x), and the bisection method, which permits approximation of x intercepts

to any desired accuracy. We emphasize the approximation of real zeros in this section; the

problem of finding zeros exactly, when possible, is considered in Section 4-3.

Z Upper and Lower Bounds for Real Zeros

On which interval should you graph a polynomial P(x) in order to see all of its x intercepts?

The answer is provided by the upper and lower bound theorem. This theorem explains how

to find two numbers: a lower bound, which is less than or equal to all real zeros of the poly-

nomial, and an upper bound, which is greater than or equal to all real zeros of the polyno-

mial. A proof of Theorem 1 is outlined in Problems 67 and 68 of Exercises 4-2.

Z THEOREM 1 Upper and Lower Bound Theorem

Let P(x) be a polynomial of degree with real coefficients, 

1. Upper bound: A number is an upper bound for the real zeros of P(x) if,

when P(x) is divided by by synthetic division, all numbers in the

quotient row, including the remainder, are nonnegative.

2. Lower bound: A number is a lower bound for the real zeros of P(x) if,

when P(x) is divided by by synthetic division, all numbers in the

quotient row, including the remainder, alternate in sign.

[Note: In the lower bound test, if 0 appears in one or more places in the quotient

row, including the remainder, the sign in front of it can be considered either positive

or negative, but not both. For example, the numbers 1, 0, 1 can be considered to

alternate in sign, whereas 1, 0,  1 cannot.]

x  r

r 6 0

x  r

r 7 0

an 7 0:n 7 0

Bounding Real Zeros

Let P(x)  x4
 2x3

 10x2
 40x  90. Find the smallest positive integer and the largest

negative integer that, by Theorem 1, are upper and lower bounds, respectively, for the real

zeros of P(x).

EXAMPLE 1 
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SOLUTION We perform synthetic division for r  1, 2, 3, . . . until the quotient row turns nonnegative;

then repeat this process for r   1,  2,  3, . . . until the quotient row alternates in sign.

We organize these results in the synthetic division table shown below. In a synthetic divi-

sion table we dispense with writing the product of r with each coefficient in the quotient

and simply list the results in the table.

1  2  10 40  90

1 1  1  11 29  61

2 1 0  10 20  50

3 1 1  7 19  33

4 1 2  2 32 38

UB 5 1 3 5 65 235

 1 1  3  7 47  137

 2 1  4  2 44  178

 3 1  5 5 25  165

 4 1  6 14  16  26

LB  5 1  7 25  85 335

The graph of P(x)  x4
 2x3

 10x2
 40x  90 for is shown in Figure 1.

Theorem 1 guarantees that all the real zeros of P(x) are between  5 and 5. We can be cer-

tain that the graph does not change direction and cross the x axis somewhere outside the

viewing window in Figure 1. �

 5  x  5

This quotient row is nonnegative; 

5 is an upper bound (UB).

This quotient row alternates in sign;

ⴚ5 is a lower bound (LB).

←E

←E

 200

 5

400

5

Z Figure 1 P(x)  x
4

 2x
3

 

10x
2

 40x  90.

MATCHED PROBLEM 1 Let P(x)  x4
 5x3

 x2
 40x   70. Find the smallest positive integer and the largest

negative integer that, by Theorem 1, are upper and lower bounds, respectively, for the real

zeros of P(x).

�

EXAMPLE 2 Bounding Real Zeros

Let P(x)  x3
 30x2

 275x  720. Find the smallest positive integer multiple of 10 and

the largest negative integer multiple of 10 that, by Theorem 1, are upper and lower bounds,

respectively, for the real zeros of P(x).

SOLUTION We construct a synthetic division table to search for bounds for the zeros of P(x). The size

of the coefficients in P(x) indicates that we can speed up this search by choosing larger

increments between test values.

1  30 275  720

10 1  20 75 30

20 1  10 75 780

UB 30 1 0 275 7,530

LB  10 1  40 675  7,470

 100

 10

100

30

Z Figure 2 P(x)  x
3

 30x
2

 

275x  720.

Therefore, all real zeros of P(x)  x3
 30x2

 275x  720 must lie between  10 and

30, as confirmed by Figure 2. �

MATCHED PROBLEM 2 Let P(x)  x3
 25x2

 170x  170. Find the smallest positive integer multiple of 10 and

the largest negative integer multiple of 10 that, by Theorem 1, are upper and lower bounds,

respectively, for the real zeros of P(x).

�
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Technology Connections

How do you determine the correct viewing window for

graphing a function? This is one of the most frequently

asked questions about graphing calculators. For polyno-

mial functions, the upper and lower bound theorem gives

an answer: let Xmin and Xmax be the lower and upper

bounds, respectively, of Theorem 1 (appropriate values

for Ymin and Ymax can then be found using TRACE). We

can approximate the zeros, all of which appear in the cho-

sen viewing window, using the ZERO command. The upper

and lower bound theorem and the ZERO command on a

graphing calculator are two important mathematical tools

that work very well together.

Z Location Theorem and Bisection Method

The graph of every polynomial function is continuous. Because the polynomial function

P(x)  x5
 3x  1 is negative when x  0 [P(0)   1] and positive when x  1

[P(1) 3], the graph of P(x) must cross the x axis at least once between x  0 and x 1

(Fig. 3). This observation is the basis for Theorem 2 and leads to a simple method for

approximating zeros.
 5

 5

5

5

Z Figure 3 P(x) x
5
 3x  1.

Z THEOREM 2 Location Theorem*

Suppose that a function f is continuous on an interval I that contains numbers 

a and b. If f (a) and f (b) have opposite signs, then the graph of f has at least one

x intercept between a and b.

The conclusion of Theorem 2 says that at least one zero of the function is “located” between

a and b. There may be more than one zero between a and b: if g(x) x3
 x2

 2x 1, then

g( 2) and g(2) have opposite signs and there are three zeros between x  2 and x 2

[Fig. 4(a)]. The converse of Theorem 2 is false: h(x) x2 has an x intercept at x  0 but

does not change sign [Fig. 4(b)].

 5

 5

5

5

 5

 5

5

5

Z Figure 4 Polynomials may or may not change sign at a zero.

(a) (b)

*The location theorem is a formulation of the important intermediate value theorem of calculus.

When synthetic division is used to divide a polynomial P(x) by x 3 the remain-

der is  33. When the same polynomial is divided by x  4 the remainder is 38.

Must P(x) have a zero between 3 and 4? Explain.

ZZZ EXPLORE-DISCUSS 1
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Explore-Discuss 2 will provide an introduction to the repeated systematic application

of the location theorem (Theorem 2) called the bisection method. This method forms the

basis for the zero approximation routines in many graphing calculators.

Let P(x)  x
5

 3x   1. Because P(0) is negative and P(1) is positive, the

location theorem guarantees that P(x) must have at least one zero in the inter-

val (0, 1).

(A) Is P(0.5) positive or negative? Does the location theorem guarantee a zero of

P(x) in the interval (0, 0.5) or in (0.5, 1)?

(B) Let m be the midpoint of the interval from part A that contains a zero of P(x).

Is P(m) positive or negative? What does this tell you about the location of the zero?

(C) Explain how this process could be used repeatedly to approximate a zero to

any desired accuracy.

ZZZ EXPLORE-DISCUSS 2

The bisection method is a systematic application of the procedure suggested in

Explore-Discuss 2: Let P(x) be a polynomial with real coefficients. If P(x) has opposite

signs at the endpoints of an interval (a, b), then by the location theorem P(x) has a zero

in (a, b). Bisect this interval (that is, find the midpoint check the sign of

P(m), and select the interval (a, m) or (m, b) that has opposite signs at the endpoints.

We repeat this bisection procedure (producing a set of intervals, each contained in and

half the length of the previous interval, and each containing a zero) until the desired

accuracy is obtained. If at any point in the process P(m)  0, we stop, because a real

zero m has been found. Example 3 illustrates the procedure, and clarifies when the pro-

cedure is finished.

m  
a  b

2 ),

EXAMPLE 3 The Bisection Method

The polynomial P(x)  x
4

 2x
3

 10x
2

 40x  90 of Example 2 has a zero between

3 and 4. Use the bisection method to approximate it to one-decimal-place accuracy.

SOLUTION We organize the results of our calculations in Table 1. Because the sign of P(x) changes at

the endpoints of the interval (3.5625, 3.625), we conclude that a real zero lies in this inter-

val and is given by r  3.6 to one-decimal place accuracy (each endpoint rounds to 3.6).

Table 1 Bisection Approximation

Sign Change Interval Midpoint
Sign of P

(a, b) m P(a) P(m) P(b)

(3, 4) 3.5    

(3.5, 4) 3.75    

(3.5, 3.75) 3.625    

(3.5, 3.625) 3.5625    

(3.5625, 3.625) We stop here    



Figure 5 illustrates the nested intervals produced by the bisection method in Table 1.

Match each step in Table 1 with an interval in Figure 5. Note how each interval that

contains a zero gets smaller and smaller and is contained in the preceding interval that

contained the zero.

If we had wanted two-decimal-place accuracy, we would have continued the process in

Table 1 until the endpoints of a sign change interval rounded to the same two-decimal-place

number. �

43.753.5

3.5625 3.625

3

x))( ( )(
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Z Figure 5 Nested intervals produced by the

bisection method in Table 1.

MATCHED PROBLEM 3 The polynomial P(x)  x
4
 2x3

 10x2
 40x  90 of Example 1 has a zero between

 5 and  4. Use the bisection method to approximate it to one-decimal-place accuracy.

�

EXAMPLE 4 Approximating Zeros at Turning Points

Let P(x)  x
5
 6x4

 4x3
 24x2

 16x  32. Find the smallest positive integer and the

largest negative integer that, by Theorem 1, are upper and lower bounds, respectively, for

the real zeros of P(x). Approximate the zeros to two decimal places, using maximum or

minimum commands to approximate any zeros at turning points.

Z Approximating Real Zeros at Turning Points

The bisection method for approximating zeros fails if a polynomial has a turning point at a

zero, because the polynomial does not change sign at such a zero. Most graphing calculators

use methods that are more sophisticated than the bisection method. Nevertheless, it is not

unusual to get an error message when using the zero command to approximate a zero that is

also a turning point. In this case, we can use the maximum or minimum command, as appro-

priate, to approximate the turning point, and the zero.

The pertinent rows of a synthetic division table show that 2 is the upper bound and  6 is

the lower bound:

1 6 4  24  16 32

1 1 7 11  13  29 3

2 1 8 20 16 16 64

 5 1 1  1  19 79  363

 6 1 0 4  48 272  1600

Examining the graph of P(x) we find three zeros: the zero  3.24, found using the MAXIMUM

command [Fig. 6(a)]; the zero  2, found using the ZERO command [Fig. 6(b)]; and the zero

1.24, found using the MINIMUM command [Fig. 6(c)].

SOLUTION



Z Polynomial Inequalities

We can apply the techniques we have introduced for finding real zeros to solve polynomial

inequalities. Consider, for example, the inequality

The real zeros of P(x)  x3
 2x2

 5x  6 are easily found to be  2, 1, and 3. They

partition the x axis into four intervals

and

On any one of these intervals, the graph of P is either above the x axis or below the x axis,

because, by the location theorem, a continuous function can change sign only at a zero.

One way to decide whether the graph of P is above or below the x axis on a given

interval, say ( 2, 1), is to choose a “test number” that belongs to the interval, 0, for exam-

ple, and evaluate P at the test number. Because P(0)  6  0, the graph of P is above the

x axis throughout the interval ( 2, 1). A second way to decide whether the graph of P is

above or below the x axis on ( 2, 1) is to simply inspect the graph of P. Each technique

has its advantages, and both are illustrated in the solutions to Examples 5 and 6.

(3,  )(  ,  2), ( 2, 1), (1, 3),

x3
 2x2

 5x  6 7 0
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 40

 6

40

2

 40

 6

40

2

 40

 6

40

2

(a) (b) (c)

Z Figure 6 Zeros of P(x)  x
5

 6x
4

  4x
3

 24x
2

 16x  32. �

MATCHED PROBLEM 4 Let P(x)  x5
 6x4

 40x2
 12x  72. Find the smallest positive integer and the largest

negative integer that, by Theorem 1, are upper and lower bounds, respectively, for the real

zeros of P(x). Approximate the zeros to two decimal places, using maximum or minimum

commands to approximate any zeros at turning points.

�

EXAMPLE 5 Solving Polynomial Inequalities

Solve the inequality x3
 2x2

 5x  6  0.

SOLUTION Let P(x)  x3
 2x2

 5x  6. Then

P(1)  13
 2(12)  5  6  0

so 1 is a zero of P and x  1 is a factor. Dividing P(x) by x  1 (details omitted) gives

the quotient x2 – x  6. Therefore,

P(x)  (x  1)(x2
 x   6)  (x  1)(x  2)(x  3)

The zeros of P are  2, 1, and 3. They partition the x axis into the four intervals shown in

the table on page 284. A test number is chosen from each interval as indicated to determine

whether P(x) is positive (above the x axis) or negative (below the x axis) on that interval.



Interval (  ,  2) ( 2, 1) (1, 3) (3,  )

Test number x  3 0 2 4

P(x)  24 6  4 18

Sign of P     
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We conclude that the solution set of the inequality is the intervals where P(x) is positive:

( 2, 1) ´ (3,  ) �

MATCHED PROBLEM 5 Solve the inequality x3
 x2

 x  1  0.

�

EXAMPLE 6 Solving Polynomial Inequalities with a Graphing Calculator

Solve 3x2
 12x  4  2x3

 5x2
 7 to three decimal places.

SOLUTION Subtracting the right-hand side gives the equivalent inequality

P(x)    2x3
 8x2

 12x  11  0

The zeros of P(x), to three decimal places, are  1.651, 0.669, and 4.983 [Fig. 7(a)]. 

By inspecting the graph of P we see that P is above the x axis on the intervals

(  ,  1.651) and (0.669, 4.983). So the solution set of the inequality is

(  ,  1.651] ´ [0.669, 4.983]

The square brackets indicate that the endpoints of the intervals—the zeros of the polynomial—

also satisfy the inequality.

An alternative to inspecting the graph of P is to inspect the graph of

The function f (x) has the value 1 if P(x) is positive, because then the absolute value of P(x)

is equal to P(x). Similarly, f (x) has the value  1 if P(x) is negative. This technique makes

it easy to identify the solution set of the original inequality [Fig. 7(b)] and often eliminates

difficulties in choosing appropriate window variables.

f (x)  

P(x)

 P(x) 

 100

 10

100

10

 10

 10

10

10

(a) P(x) ⴝ ⴚ2x
3
ⴙ 8x

2
ⴙ 12x ⴚ 11

(b) f (x) ⴝ
P(x)

 P(x) 

Z Figure 7 �

MATCHED PROBLEM 6 Solve to three decimal places 5x3
 13x  4x2

 10x  5.

�
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EXAMPLE 7 Construction

An oil tank is in the shape of a right circular cylinder with a hemisphere at each end (Fig. 8).

The cylinder is 55 inches long, and the volume of the tank is 11,000 cubic inches

(approximately 20 cubic feet). Let x denote the common radius of the hemispheres and

the cylinder.

Z Figure 8

55 inches

x
x

(A) Find a polynomial equation that x must satisfy.

(B) Approximate x to one decimal place.

Z Mathematical Modeling

(A) If x is the common radius of the hemispheres and the cylinder in inches, then

11,000    55 x2
Multiply by 3  .

33,000  4x3
 165x2

Subtract 33,000 from both sides.

0  4x3
 165x2

 33,000

The radius we are looking for (x) must be a positive zero of

P(x)  4x3
 165x2

 33,000

(B) Because the coefficients of P(x) are large, we use larger increments in the synthetic

division table:

4 165 0  33,000

10 4 205 2,050  12,500

UB 20 4 245 4,900 65,000

Applying the bisection method to the interval [10, 20] (nine midpoints are calculated;

details omitted) or graphing y  P(x) for 0 x 20 (Fig. 9), we see that x 12.4 inches

(to one decimal place). �

4
3 
 x

3

°Volume

of

tank

¢  ° Volume

of two

hemispheres

¢  °Volume

of

cylinder

¢
SOLUTIONS

MATCHED PROBLEM 7 Repeat Example 7 if the volume of the tank is 44,000 cubic inches.

�

ANSWERS TO MATCHED PROBLEMS

1. Lower bound:  3; upper bound: 6 2. Lower bound:  10; upper bound: 30

3. x   4.1 4. Lower bound:  2; upper bound: 6;  1.65, 2, 3.65

5. 6.

7. (A) P(x)  4x3
 165x2

 132,000  0 (B) 22.7 inches

(  ,  1.899) 傼 (0.212, 2.488)(  ,  1) 傼 ( 1, 1)

 70,000

0

70,000

20

P(x)  4x
3
 165x

2
 33,000.

Z Figure 9 



286 C H A P T E R  4 POLYNOMIAL AND RATIONAL FUNCTIONS

21. P(x) x4
 3x3

 4x2
 2x  9

22. P(x) x4
 4x3

 6x2
 4x  7

23. P(x) x5
 3x3

 3x2
 2x  2

24. P(x) x5
 3x4

 3x2
 2x  1

In Problems 25–30, (A) use the location theorem to explain why

the polynomial function has a zero in the indicated interval; and

(B) determine the number of additional intervals required by the

bisection method to obtain a one-decimal-place approximation to

the zero and state the approximate value of the zero.

25. P(x) x3
 2x2

 5x  4; (3, 4)

26. P(x) x3
 x2

 4x  1; (1, 2)

27. P(x) x3
 2x2

 x  5; ( 2,  1)

28. P(x) x3
 3x2

 x  2; (3, 4)

29. P(x) x4
 2x3

 7x2
 9x  7; (3, 4)

30. P(x) x4
 x3

 9x2
 9x  4; (2, 3)

In Problems 31–36, (A) find the smallest positive integer and

largest negative integer that, by Theorem 1, are upper and lower

bounds, respectively, for the real zeros of P(x); and (B) use the

bisection method to approximate a real zero of each polynomial to

one decimal place.

31. P(x) x3
 2x2

 3x  8

32. P(x) x3
 3x2

 4x  5

33. P(x) 2x3
 x2

 2x  1

34. P(x)  2x3
 x2

 4x  2

35. P(x)  x4
 x2

 6 36. P(x)  x4
 2x2

 3

Problems 37–40, refer to the polynomial

P(x) (x  1)2(x  2)(x 3)4

37. Can the zero at x  1 be approximated by the bisection

method? Explain.

38. Can the zero at x  2 be approximated by the bisection

method? Explain.

39. Can the zero at x  3 be approximated by the bisection

method? Explain.

40. Which of the zeros can be approximated by a maximum

approximation routine? By a minimum approximation routine?

By the zero approximation routine on your graphing calculator?

4-2 Exercises

1. Given a polynomial of degree n  0, explain why there must

exist an upper bound and a lower bound for its real zeros.

2. State the location theorem in your own words.

3. A polynomial P has degree 6 and leading coefficient 1. If syn-

thetic division by x   5 results in all positive numbers in the quo-

tient row, is 10 an upper bound for the real zeros of P? Explain.

4. A polynomial has degree 12 and leading coefficient 1. If synthetic

division by x  5 results in numbers that alternate in sign in the

quotient row, is 10 a lower bound for the real zeros of P? Explain.

5. Explain the basic steps in the bisection method.

6. If you use the bisection method to approximate a real root to

three decimal place accuracy, explain how you can tell when

the method is finished. 

In Problems 7–10, approximate the real zeros of each polynomial

to three decimal places.

7. P(x) x2
 5x  2

8. P(x) 3x2
 7x  1

9. P(x) 2x3
 5x  2

10. P(x) x3
 4x2

 8x  3

In Problems 11–14, use the graph of P(x) to write the solution set

for each inequality.

11. P(x) 0 12. P(x) 0

13. P(x) 0 14. P(x) 0

In Problems 15–18, solve each polynomial inequality to three

decimal places (note the connection with Problems 7–10).

15. x2
 5x  2  0 16. 3x2

 7x  1  0

17. 2x3
 5x  2  0 18. x3

 4x2
 8x  3  0

Find the smallest positive integer and largest negative integer

that, by Theorem 1, are upper and lower bounds, respectively, for

the real zeros of each of the polynomials given in Problems 19–24.

19. P(x) x3
 3x  1 20. P(x) x3

 4x2
 4

 20

 5

20

5
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In Problems 41–46, approximate the zeros of each polynomial

function to two decimal places, using maximum or minimum

commands to approximate any zeros at turning points.

41. P(x) x4
 4x3

 10x2
 28x  49

42. P(x) x4
 4x3

 4x2
 16x  16

43. P(x) x5
 6x4

 4x3
 24x2

 16x  32

44. P(x) x5
 6x4

 2x3
 28x2

 15x  2

45. P(x) x5
 6x4

 11x3
 4x2

 3.75x  0.5

46. P(x) x5
 12x4

 47x3
 56x2

 15.75x  1

In Problems 47–52, solve each polynomial inequality.

47. x2
  9 48. 1  x2

  0

49. x3
  16x 50. 2x  x2

 x3

51. x4
 4  5x2

52. 2  x  x2
 x3

  x4

In Problems 53–58, solve each polynomial inequality to three

decimal places.

53. x2
 7x  3  x3

 x  4 54. x4
 1  3x2

55. x4
 8x3

 17x2
 9x  2

56. x3
 5x  2x3

 4x2
 6

57. (x2
 2x  2)2

 2

58. 5  2x  (x2
 4)2

In Problems 59–64, (A) find the smallest positive integer multiple

of 10 and largest negative integer multiple of 10 that, by Theorem 1,

are upper and lower bounds, respectively, for the real zeros of

each polynomial; and (B) approximate the real zeros of each

polynomial to two decimal places.

59. P(x) x3
 24x2

 25x  10

60. P(x) x3
 37x2

 70x  20

61. P(x) x4
 12x3

 900x2
 5,000

62. P(x) x4
 12x3

 425x2
 7,000

63. P(x) x4
 100x2

 1,000x  5,000

64. P(x) x4
 5x3

 50x2
 500x  7,000

65.When synthetic division is used to divide a polynomial P(x) by

x  4 the remainder is 10. When the same polynomial is

divided by x  5 the remainder is  8. Must P(x) have a zero

between  5 and  4? Explain.

66.When synthetic division is used to divide a polynomial Q(x) by

x  4 the remainder is 10. When the same polynomial is di-

vided by x  5 the remainder is 8. Could Q(x) have a zero

between  5 and  4? Explain.

67. Give a reason for each step in the proof of the upper bound case

of Theorem 1 on page 278. 

Step 1: P(x) can be written in the form P(x)  (x r)Q(x)  R,

where the coefficients of Q(x) and R are positive. 

Step 2: Suppose s  r  0. Then P(s)  0. 

Step 3: r is an upper bound for the real zeros of P(x).

68. Give a reason for each step in the proof of the lower bound case

of Theorem 1 on page 278.

Step 1: P(x) can be written in the form P(x)  (x r)Q(x)  R,

where the coefficients of Q(x) and R alternate in sign. 

Step 2: Suppose s r 0. If P has even degree, then P(s)  0;

if P has odd degree, then P(s)  0. 

Step 3: r is a lower bound for the real zeros of P(x).

Problems 69 and 70 explore the cases in which 0 is an upper

bound or lower bound for the real zeros of a polynomial. These

cases are not covered by Theorem 1, the upper and lower bound

theorem, as formulated on page 278.

69. Let P(x) be a polynomial of degree n  0 such that all of the

coefficients of P(x) are nonnegative. Explain why 0 is an upper

bound for the real zeros of P(x).

70. Let P(x) be a polynomial of degree n 0 such that an 0 and the

coefficients of P(x) alternate in sign (as in Theorem 1, a coefficient

0 can be considered either positive or negative, but not both).

Explain why 0 is a lower bound for the real zeros of P(x).

APPLICATIONS

Express the solutions to Problems 71–76 as the roots of a

polynomial equation of the form P(x) ⫽ 0 and approximate these

solutions to one decimal place.

71. GEOMETRY Find all points on the graph of y  x2 that are one

unit away from the point (1, 2). [Hint: Use the distance formula

from Section 2-2.]

72. GEOMETRY Find all points on the graph of y  x2 that are one

unit away from the point (2, 1).

73. MANUFACTURING A box is to be made out of a piece of card-

board that measures 18 by 24 inches. Squares, x inches on a side,

will be cut from each corner, and then the ends and sides will be

folded up (see the figure). Find the value of x that would result in a

box with a volume of 600 cubic inches.

74. MANUFACTURING A box with a hinged lid is to be made out of

a piece of cardboard that measures 20 by 40 inches. Six squares, x

inches on a side, will be cut from each corner and the middle, and

then the ends and sides will be folded up to form the box and its lid

24 in.

1
8
 i
n

.

x

x
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(see the figure). Find the value of x that would result in a box with

a volume of 500 cubic inches.

75. CONSTRUCTION A propane gas tank is in the shape of a right

circular cylinder with a hemisphere at each end (see the figure). If

the overall length of the tank is 10 feet and the volume is 20 cubic

feet, find the common radius of the hemispheres and the cylinder.

10 feet

x
x

40 in.

2
0
 i
n

.

x

x

76. SHIPPING A shipping box is reinforced with steel bands in all

three directions (see the figure). A total of 20.5 feet of steel tape is

to be used, with 6 inches of waste because of a 2-inch overlap in

each direction. If the box has a square base and a volume of 2 cubic

feet, find the side length of the base.

x

x

y

The graph of the polynomial function P(x) x2
 4 does not cross the x axis, so P(x) has

no real zeros. It does, however, have complex zeros, 2i and  2i; by the factor theorem,

x2
 4  (x  2i)(x  2i). The fundamental theorem of algebra guarantees that every non-

constant polynomial with real or complex coefficients has a complex zero; as a result, such

a polynomial can be factored as a product of linear factors. In Section 4-3, we study the

fundamental theorem and its implications, including results on the graphs of polynomials

with real coefficients. Finally, we consider a problem that has led to important advances in

mathematics and its applications: When can zeros of a polynomial be found exactly?

Z The Fundamental Theorem of Algebra

The fundamental theorem of algebra was proved by Karl Friedrich Gauss (1777–1855), one

of the greatest mathematicians of all time, in his doctoral thesis. A proof of the theorem is

beyond the scope of this book, so we will state and use it without proof.

4-3 
Complex Zeros and Rational Zeros 
of Polynomials

Z The Fundamental Theorem of Algebra

Z Factors of Polynomials with Real Coefficients

Z Graphs of Polynomials with Real Coefficients

Z Rational Zeros



Suppose that a polynomial P(x) is factored as a product of n linear factors. Any zero r of

P(x) must be a zero of one or more of the factors. The number of linear factors that have

zero r is said to be the multiplicity of r. For example, the polynomial

P(x)  (x  5)3(x  1)2(x  6i)(x  2  3i) (1)

has degree 7 and is written as a product of seven linear factors. P(x) has just four zeros,

namely 5,  1, 6i, and  2  3i. Because the factor x  5 appears to the power 3, we say that

the zero 5 has multiplicity 3. Similarly,  1 has multiplicity 2, 6i has multiplicity 1, and  2  3i

has multiplicity 1. A zero of multiplicity 2 is called a double zero, and a zero of multiplicity

3 is called triple zero. Note that the sum of the multiplicities is always equal to the degree

of the polynomial: for P(x) in equation (1), 3  2  1  1  7.
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Z THEOREM 1 Fundamental Theorem of Algebra

Every polynomial of degree n > 0 with complex coefficients has a complex zero.

If P(x) is a polynomial of degree n  0 with complex coefficients, then by Theorem 1 it

has a zero r1. So x  r1 is a factor of P(x) by Theorem 5 of Section 4-1, and

P(x)  (x  r1)Q(x), deg Q(x)  n  1

Now, if deg Q(x)  0, then, applying the fundamental theorem to Q(x), Q(x) has a root r2

and therefore a factor x  r2. (It is possible that r2 is equal to r1.) By continuing this rea-

soning we obtain a proof of Theorem 2.

Z THEOREM 2 n Linear Factors Theorem

Every polynomial of degree n  0 with complex coefficients can be factored as a

product of n linear factors.

Multiplicities of Zeros

Find the zeros and their multiplicities:

(A) P(x)  (x  2)7(x  4)8(x2
 1)

(B) Q(x)  (x  1)3(x2
 1)(x  1  i)

EXAMPLE 1 

SOLUTIONS (A) Note that x2
 1  0 has the solutions i and  i. The zeros of P(x) are  2

(multiplicity 7), 4 (multiplicity 8), i and  i (each multiplicity 1).

(B) Note that x2
 1  (x  1)(x  1), so x  1 appears four times as a factor of Q(x).

The zeros of Q(x) are  1 (multiplicity 4), 1 (multiplicity 1), and  1   i

(multiplicity 1). �

MATCHED PROBLEM 1 Find the zeros and their multiplicities:

(A) P(x)  (x  5)3(x  3)2(x2
 16)

(B) Q(x)  (x2
 25)3(x  5)(x  i)

�



Z Factors of Polynomials with Real Coefficients

If p qi is a zero of P(x) ax2
 bx c, where a, b, c, p, and q are real numbers, then

Take the conjugate of both sides.

if z is real,

Therefore, p  qi is also a zero of P(x). This method of proof can be applied to any poly-

nomial P(x) of degree n  0 with real coefficients, justifying Theorem 3.

 P(p  qi)  0

 a(p  qi)2
 b(p  qi)  c  0

p ⴙ qi ⴝ p ⴚ qiz ⴝ z a ( p  qi)2
 b (p  qi)  c  0

zw ⴝ z wz ⴙ w ⴝ z ⴙ w, a( p  qi)2
 b(p  qi)  c  0

 a( p  qi)2
 b(p  qi)  c  0

 P(p  qi)  0
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If a polynomial P(x) of degree n  0 has real coefficients and a linear factor of the

form x  ( p  qi) where q  0, then, by Theorem 3, P(x) also has the linear factor

x  (p  qi). But

[x  (p  qi)][x  (p  qi)]  x2
 2px  p2

 q2

which is a quadratic factor of P(x) with real coefficients and imaginary zeros. By this rea-

soning we can prove Theorem 4.

Z THEOREM 3 Imaginary Zeros of Polynomials with Real Coefficients

Imaginary zeros of polynomials with real coefficients, if they exist, occur in

conjugate pairs.

Z THEOREM 4 Linear and Quadratic Factors Theorem*

If P(x) is a polynomial of degree n  0 with real coefficients, then P(x) can be

factored as a product of linear factors (with real coefficients) and quadratic factors

(with real coefficients and imaginary zeros).

Factors of Polynomials

Factor P(x) x3
 x2

 4x  4 in two ways:

(A) As a product of linear factors (with real coefficients) and quadratic factors (with real

coefficients and imaginary zeros)

(B) As a product of linear factors with complex coefficients

EXAMPLE 2 

SOLUTIONS (A) Note that P( 1) 0, so  1 is a zero of P(x) (or graph P(x) and note that  1 is an

x intercept). Therefore, x  1 is a factor of P(x). Using synthetic division, the

quotient is x2
 4, which has imaginary roots. Therefore,

P(x) (x  1)(x2
 4)

*Theorem 4 underlies the technique of decomposing a rational function into partial fractions, which is useful in

calculus. See Appendix A, Section A-2.



An alternative solution is to factor by grouping:

x
3

 x
2

 4x  4  x
2(x  1)  4(x  1)

 (x2
 4)(x  1)

(B) Because x2
 4 has roots 2i and  2i,

P(x)  (x  1)(x  2i)(x  2i) �
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MATCHED PROBLEM 2 Factor P(x)  x
5

 x
4

 x  1 in two ways:

(A) As a product of linear factors (with real coefficients) and quadratic factors (with real

coefficients and imaginary zeros)

(B) As a product of linear factors with complex coefficients

�

Z Graphs of Polynomials with Real Coefficients

The factorization described in Theorem 4 gives additional information about the graphs of

polynomial functions with real coefficients. For certain polynomials the factorization of

Theorem 4 will involve only linear factors; for others, only quadratic factors. Of course if only

quadratic factors are present, then the degree of the polynomial P(x) must be even. In other

words, a polynomial P(x) of odd degree with real coefficients must have a linear factor with

real coefficients. This proves Theorem 5.

Z THEOREM 5 Real Zeros and Polynomials of Odd Degree

Every polynomial of odd degree with real coefficients has at least one real zero,

and consequently at least one x intercept.

The graph of the polynomial P(x)  x(x  1)2(x  1)4(x  2)3 is shown in Figure 1.

Find the real zeros of P(x) and their multiplicities. How can a real zero of even mul-

tiplicity be distinguished from a real zero of odd multiplicity using only the graph?

ZZZ EXPLORE-DISCUSS 1

For polynomials with real coefficients, as suggested by Explore-Discuss 1, you can easily

distinguish real zeros of even multiplicity from those of odd multiplicity using only the

graph. Theorem 6, which we state without proof, tells how to do that.

Z THEOREM 6 Zeros of Even or Odd Multiplicity

Let P(x) be a polynomial with real coefficients:

1. If r is a real zero of P(x) of even multiplicity, then P(x) has a turning point at

r and does not change sign at r. (The graph just touches the x axis, then

changes direction.)

2. If r is a real zero of P(x) of odd multiplicity, then P(x) does not have a turning

point at r and changes sign at r. (The graph continues through to the opposite

side of the x axis.)

Z Figure 1 Graph of 

P(x)   x(x  1)
2
(x  1)

4
(x  2)

3
.

 3

 3

3

3



Z Rational Zeros

From a graphical perspective, finding a zero of a polynomial means finding a good approx-

imation to an actual zero. A graphing calculator, for example, might give 2 as a zero of

P(x) x2
 (4  10 9) even though P(2) is equal to  10 9, not 0 (Fig. 4).

It is natural, however, to want to find zeros exactly. Although this is impossible in gen-

eral, we will adopt an algebraic strategy to find exact zeros in a special case, that of rational

zeros of polynomials with rational coefficients. We will find a graphing calculator to be

helpful in carrying out the algebraic strategy.

First note that a polynomial with rational coefficients can always be written as a con-

stant times a polynomial with integer coefficients. For example,

Because the zeros of P(x) are the zeros of 6x3
 8x2

 21x  60, it is sufficient, for the

purpose of finding rational zeros of polynomials with rational coefficients, to study just the

polynomials with integer coefficients.

We introduce the rational zero theorem by examining the following quadratic polyno-

mial whose zeros can be found easily by factoring:

P(x) 6x2
 13x  5  (2x  5)(3x 1)

Zeros of P(x): and  
1

3
 
 1

3

5

2

  
1

12
 (6x3

 8x2
 21x  60)

 P(x)  
1

2
  x3
 

2

3
 x2
 

7

4
 x  5
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Z Figure 2

 5

 5

5

5

EXAMPLE 3 Multiplicities from Graphs

Figure 2 shows the graph of a polynomial function of degree 6. Find the real zeros and their

multiplicities.

SOLUTION The numbers  2,  1, 1, and 2 are real zeros (x intercepts). The graph has turning points

at x   1 but not at x   2. Therefore, by Theorem 6, the zeros  1 and 1 have even mul-

tiplicity, and  2 and 2 have odd multiplicity. Because the sum of the multiplicities must

equal 6 (the degree), the zeros  1 and 1 each have multiplicity 2, and the zeros  2 and 2

each have multiplicity 1. �

MATCHED PROBLEM 3 Figure 3 shows the graph of a polynomial function of degree 7. Find the real zeros and

their multiplicities.

�

Z Figure 3

 10

 4

5

4

Z Figure 4 P(x) x
2
 (4  10

 9
).

 10

 10

10

10



Theorem 7 enables us to construct a finite list of possible rational zeros of P(x). Each

number in the list must then be tested to determine whether or not it is actually a zero. As

Example 4 illustrates, a graphing calculator can often reduce the effort required to locate

rational zeros. 
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Z THEOREM 7 Rational Zero Theorem

If the rational number b c, in lowest terms, is a zero of the polynomial

P(x)  an x
n

 an 1 xn 1
 . . .  a1x  a0 an   0

with integer coefficients, then b must be an integer factor of a0 and c must be an

integer factor of an.

P(x) ⴝ anx
n
ⴙ anⴚ1x

nⴚ1
ⴙ . . .ⴙ a1x ⴙ a0

b must be a

factor of a0c must be a 

factor of an

b

c

EXAMPLE 4 Finding Rational Zeros

Find all the rational zeros for P(x)  2x3
 9x2

 7x  6.

SOLUTION If b c in lowest terms is a rational zero of P(x), then b must be a factor of  6 and c must

be a factor of 2.

Possible values of b are the integer factors of  6:  1,  2,  3,  6 (2)

Possible values of c are the integer factors of 2:  1,  2 (3)

Writing all possible fractions b c where b is from (2) and c is from (3), we have

Possible rational zeros for P(x): (4)

[Note that all fractions are in lowest terms and duplicates like are

not repeated.] If P(x) has any rational zeros, they must be in list (4). We can test each num-

ber r in this list simply by evaluating P(r). However, exploring the graph of first

will usually indicate which numbers in the list are the most likely candidates for zeros.

Examining a graph of P(x), we see that there are zeros near  3, near  2, and between 0

and 1, so we begin by evaluating P(x) at  3,  2, and (Fig. 5).1
2

y  P(x)

 6  2   3

 1,  2,  3,  6,  1
2,  

3
2

 10

 5

10

5

 10

 5

10

5

 10

 5

10

5

(a) (b) (c)

Z Figure 5

Notice that the numerators 5 and  1 of the zeros are both integer factors of  5, the con-

stant term in P(x). The denominators 2 and 3 of the zeros are both integer factors of 6, the

coefficient of the highest-degree term in P(x). These observations are generalized in Theo-

rem 7 (a proof is outlined in Problem 89 of Exercises 4-3).



As we saw in the solution of Example 4, rational zeros can be located by simply eval-

uating the polynomial. However, if we want to find multiple zeros, imaginary zeros, or exact

values of irrational zeros, we need to consider reduced polynomials. If r is a zero of a poly-

nomial P(x), then we can write

where Q(x) is a polynomial of degree one less than the degree of P(x). The quotient poly-

nomial Q(x) is called a reduced polynomial for P(x). In Example 4, after determining that

 3 is a zero of P(x), we can write

2 9 7  6

 6  9 6

 3 2 3  2 0

Because the reduced polynomial is a quadratic, we can find its zeros

by factoring or the quadratic formula. We get

and we see that the zeros of P(x) are  3,  2, and as before.1
2,

P(x)  (x  3)(2x2
 3x  2)  (x  3)(x  2)(2x  1)

Q(x)  2x2
 3x  2

  (x  3)Q(x)

  (x  3)(2x2
 3x  2)

 P(x)  2x3
 9x2

 7x  6

P(x)  (x  r)Q(x)
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Therefore,  3,  2, and are rational zeros of P(x). Because a third-degree polynomial can

have at most three zeros, we have found all the rational zeros. There is no need to test the

remaining candidates in list (4). �

1
2

MATCHED PROBLEM 4 Find all rational zeros for 

�

P(x)  2x3
 x2

 11x  10.

EXAMPLE 5 Finding Rational and Irrational Zeros

Find all zeros exactly for P(x)  2x3
 7x2

 4x  3.

SOLUTION First, list the possible rational zeros:

Examining the graph of (Fig. 6), we see that there is a zero between  1 and 0, another

between 1 and 2, and a third between 2 and 3. We test the only likely candidates, and 

and

So is a zero, but is not. Using synthetic division (details omitted), we can write

Because the reduced polynomial is quadratic, we can use the quadratic formula to find the

exact values of the remaining zeros:

Divide both sides by 2.

Use the quadratic formula.

  
2  212

2
 1  12

 x  
2  14  4(1)( 1)

2

 x2
 2x  1  0

 2x2
 4x  2  0

P(x)  (x  3
2)(2x2

 4x  2)

 
1
2

3
2

P(3
2)  0P( 1

2)   1

3
2: 

1
2

y  P(x)

 1,  3,  1
2,  

3
2

 5

 5

5

5

Z Figure 6



So the exact zeros of P(x) are and �1  12.*3
2
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MATCHED PROBLEM 5 Find all zeros exactly for 

�

P(x)  3x3
 10x2

 5x  4.

*By analogy with Theorem 3 (imaginary zeros of polynomials with real coefficients occur in conjugate pairs), it

can be shown that if is a zero of a polynomial with rational coefficients, where r, s, and t are rational

but t is not the square of a rational, then is also a zero.r  s1t

r  s1t

Finding Rational and Imaginary Zeros

Find all zeros exactly for P(x)  x4
 6x3

 14x2
 14x  5.

EXAMPLE 6

SOLUTION The possible rational zeros are and Examining the graph of P(x) (Fig. 7), we see

that 1 is a zero. Because the graph of P(x) does not appear to change sign at 1, this may

be a multiple root. Using synthetic division (details omitted), we find that

The possible rational zeros of the reduced polynomial

are and Examining the graph of Q(x) (Fig. 8), we see that 1 is a rational zero. After

a division, we have a quadratic reduced polynomial:

We use the quadratic formula to find the zeros of Q1(x):

So the exact zeros of P(x) are 1 (multiplicity 2), 2  i, and 2  i. �

  
4  1 4

2
 2  i

 x  
4  116  4(1)(5)

2

 x2
 4x  5  0

Q(x)  (x  1)Q1(x)  (x  1)(x2
 4x  5)

 5. 1

Q(x)  x3
 5x2

 9x  5

P(x)  (x  1)(x3
 5x2

 9x  5)

 5. 1

 1

 1

5

5

 5

 1

5

5

Z Figure 7

Z Figure 8

Find all zeros exactly for 

�

P(x)  x4
 4x3

 10x2
 12x  5.MATCHED PROBLEM 6

 50

 5

50

5

Z Figure 9 P(x)  x
3
 6x  2.

REMARK

We were successful in finding all the zeros of the polynomials in Examples 5 and 6 because

we could find sufficient rational zeros to reduce the original polynomial to a quadratic. This

is not always possible. For example, the polynomial

has no rational zeros, but does have an irrational zero at (Fig. 9). The other

two zeros are imaginary. The techniques we have developed will not find the exact value of

these roots.

x ⬇ 0.32748

P(x)  x3
 6x  2
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zeros are integers. Write the polynomial as a product of linear

factors. Indicate the degree of the polynomial.

19. 20.

21. 22. 

23. 24.

In Problems 25–28, factor each polynomial in two ways: 

(A) as a product of linear factors (with real coefficients) and

x

P(x)

 15

5 5

15

x

P(x)

 15

5 5

15

x

P(x)

 15

5 5

15

x

P(x)

 15

5 5

15

x

P(x)

 15

5 5

15

x

P(x)

 15

5 5

15

4-3 Exercises

1. Explain in your own words what the fundamental theorem of

algebra says.

2. Does every polynomial of degree  0 with real coefficients

have a real zero? Explain.

3. What is meant by the multiplicity of a zero of a polynomial?

4. If P(x) is a polynomial with integer coefficients and leading

coefficient 1, explain why every rational zero of P(x) is actually

an integer.

Write the zeros of each polynomial in Problems 5–12, and indicate

the multiplicity of each. What is the degree of each polynomial?

5.

6.

7.

8.

9.

10. 

11.

12.

In Problems 13–18, find a polynomial P(x) of lowest degree, with

leading coefficient 1, that has the indicated set of zeros. Write P(x)

as a product of linear factors. Indicate the degree of P(x).

13. 3 (multiplicity 2) and  4

14.  2 (multiplicity 3) and 1 (multiplicity 2)

15.  7 (multiplicity 3), 

16. (multiplicity 2), 

17. (multiplicity 2)

18. (multiplicity 2), (multiplicity 2), and 4 (multi-

plicity 3)

In Problems 19–24, find a polynomial of lowest degree, with

leading coefficient 1, that has the indicated graph. Assume all

 i13i13

(2  3i), (2  3i),  4

5  17, 5  171
3

 3  12,  3  12

P(x)  (x2
 7x  10)2(x2

 6x  10)3

P(x)  (x2
 4)3(x2

 4)5(x  2i)

P(x)  6x2(5x  4)(3x  2)

P(x)  x3(2x  1)2

P(x)  5(x  2)3(x  3)2(x  1)

P(x)  3(x  4)3(x  3)2(x  1)

P(x)  (x  5)(x  7)2

P(x)  (x  8)3(x  6)2

ANSWERS TO MATCHED PROBLEMS

1. (A) 5 (multiplicity 3),  3 (multiplicity 2), 4i and  4i (each multiplicity 1)

(B)  5 (multiplicity 4), 5 (multiplicity 3), i (multiplicity 1)

2. (A) (B) 

3.  3 (multiplicity 2),  2 (multiplicity 1),  1 (multiplicity 1), 0 (multiplicity 2), 1 (multiplicity 1)

4. 5. 6.  1 (multiplicity 2),  1  2i,  1  2i4
3, 1  12, 1  12 2,  1, 52

(x  1)(x  1)2(x  i)(x  i)(x  1)(x  1)2(x2
 1)
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58.

59.

60.

In Problems 61–68, find a polynomial P(x) that satisfies all of the

given conditions. Write the polynomial using only real coefficients.

61. 2  5i is a zero; leading coefficient 1; degree 2

62. 4  3i is a zero; leading coefficient 1; degree 2

63. 6  i is a zero; degree 2

64. 1  4i is a zero; degree 2

65.  5 and 8i are zeros; leading coefficient 1; degree 3

66. 7 and  2i are zeros; leading coefficient 1; degree 3

67. i and are zeros; degree 4

68.  i and are zeros; degree 4

In Problems 69–74, multiply.

69.

70.

71.

72.

73.

74.

In Problems 75–80, find all other zeros of P(x), given the

indicated zero.

75. is one zero

76. is one zero

77. is one zero

78. 4i is one zero

79. is one zero

80. is one zero

In Problems 81–86, final all zeros (rational, irrational, and

imaginary) exactly.

81.

82.

83.

84.

85.

86.

87. The solutions to the equation x3
 1  0 are all the cube roots of 1.

(A) 1 is obviously a cube root of 1; find all others.

(B) How many distinct cube roots of 1 are there?

P(x)  x5
 6x4

 6x3
 28x2

 72x  48

P(x)  4x4
 44x3

 145x2
 192x  90

P(x)  6x4
 35x3

 2x2
 233x  360

P(x)  4x4
 4x3

 49x2
 64x  240

P(x)  2x3
 9x2

 2x  30

P(x)  3x3
 37x2

 84x  24

 3iP(x)  x4
 2x3

 7x2
 18x  18;

2  iP(x)  x4
 4x3

 3x2
 8x  10;

P(x)  x3
 2x2

 16x  32;

 5iP(x)  x3
 3x2

 25x  75;

1  iP(x)  x3
 x2

 4x  6;

3  iP(x)  x3
 5x2

 4x  10;

(x  bi)(x  bi)

[x  (a  bi)][x  (a  bi)]

[x  (5  2i)][x  (5  2i)]

[x  (3  4i)][x  (3  4i)]

[x  (2  3i)][x  (2  3i)]

[x  (4  5i)][x  (4  5i)]

P(1)  20;3  i

P(1)  10;1  i

P(0)  51;

P(0)  74;

P(x)  2x4
 3x3

 4x2
 3x  2

P(x)  4x4
 4x3

 9x2
 x  2

P(x)  x3
 8x2

 17x  4quadratic factors (with real coefficients and imaginary zeros); and

(B) as a product of linear factors with complex coefficients.

25.

26.

27.

28.

In Problems 29–34, list all possible rational zeros (Theorem 7) of

a polynomial with integer coefficients that has the given leading

coefficient an and constant term a0.

29. an  1, a0   4 30. an  1, a0  9

31. an  10, a0  1 32. an  6, a0   1

33. an  7, a0   2 34. an  3, a0  8

When searching for zeros of a polynomial, a graphing calculator

often can be helpful in eliminating from consideration certain

candidates for rational zeros.

In Problems 35–40, write P(x) as a product of linear factors.

35. is a zero

36. 3 is a double zero

37. i is a double zero

38. 1 and are zeros

39. 41; is a zero

40. is a zero

In Problems 41–48, find all roots exactly (rational, irrational, and

imaginary) for each polynomial equation.

41. 42.

43.

44.

45.

46.

47. 48.

In Problems 49–54, find all zeros exactly (rational, irrational, and

imaginary) for each polynomial.

49. 50.

51. 52.

53.

54.

In Problems 55–60, write each polynomial as a product of linear

factors.

55. 56. 

57. P(x)  x3
 2x2

 9x  4

P(x)  6x3
 17x2

 4x  3P(x)  6x3
 13x2

 4

P(x)  x4
 

13
4 x2
 

5
2x  

1
4

P(x)  x4
 5x3

 
15
2 x2
 2x  2

P(x)  x4
 

7
6x3
 

7
3x2
 

5
2xP(x)  x4

 
21
10  

x3
 

2
5 
x

P(x)  x3
 7x2

 36P(x)  x3
 19x  30

x4
 29x2

 100  0x4
 10x2

 9  0

x4
 2x2

 16x  15  0

x4
 2x3

 5x2
 8x  4  0

x4
 4x2

 4x  1  0

x4
 4x3

 x2
 20x  20  0

2x3
 10x2

 12x  4  02x3
 5x2

 1  0

 
2
3P(x)  3x3

 10x2
 31x  26;

1
2P(x)  2x3

 17x2
 90x  

 1P(x)  x4
 1;

P(x)  x4
 2x2

 1;

P(x)  x3
 4x2

 3x  18;

 1P(x)  x3
 9x2

 24x  16;

P(x)  x5
 x4

 x  1

P(x)  x3
 x2

 25x  25

P(x)  x4
 18x2

 81

P(x)  x4
 5x2

 4
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much should this amount be to create a new storage unit with vol-

ume 10 times the old?

94. CONSTRUCTION A rectangular box has dimensions 1 by 1 by

2 feet. If each dimension is increased by the same amount, how

much should this amount be to create a new box with volume six

times the old?

95. PACKAGING An open box is to be made from a rectangular

piece of cardboard that measures 8 by 5 inches, by cutting out

squares of the same size from each corner and bending up the sides

(see the figure). If the volume of the box is to be 14 cubic inches,

how large a square should be cut from each corner? [Hint: Deter-

mine the domain of x from physical considerations before starting.]

96. FABRICATION An open metal chemical tank is to be made from

a rectangular piece of stainless steel that measures 10 by 8 feet, by

cutting out squares of the same size from each corner and bending

up the sides (see the figure for Problem 95). If the volume of the

tank is to be 48 cubic feet, how large a square should be cut from

each corner?

xx

xx

x x

x x

88. The solutions to the equation x3
 8  0 are all the cube roots

of 8.

(A) 2 is obviously a cube root of 8; find all others.

(B) How many distinct cube roots of 8 are there?

89. Give a reason for each step in the proof of the rational zero

theorem, assuming that P(x) has degree two.

Step 1:

Step 2:

Step 3:

Step 4: b is a factor of  a0c2, so b is a factor of a0.

Step 5: Modify steps 3 and 4 to conclude that c is a factor of a2.

90. Explain how the ideas in Problem 89 can be adapted to give a

proof of the rational zero theorem for P(x) of degree n.

91. Given P(x) x2
 2ix 5 with 2 i a zero, show that 2 i is

not a zero of P(x). Does this contradict Theorem 3? Explain.

92. If P(x) and Q(x) are two polynomials of degree n, and if

P(x) Q(x) for more than n values of x, then how are P(x) and Q(x)

related? [Hint: Consider the polynomial .]

APPLICATIONS

Find all rational solutions exactly, and find irrational solutions

to one decimal place.

93. STORAGE A rectangular storage unit has dimensions 1 by 2 by

3 feet. If each dimension is increased by the same amount, how

D(x)  P(x)  Q(x)

a2b2
 a1bc   a0c2

a2b2
 a1bc  a0c2

 0

a2 (b
c)

2
 a1(b

c)  a0  0

In Section 4-4, we will apply our knowledge of graphs and zeros of polynomial functions to

study the graphs of rational functions, that is, functions that are quotients of polynomials.

Our goal will be to produce hand sketches that clearly show all of the important features

of the graph.

Z Rational Functions and Properties of Their Graphs

The number is called a rational number because it is a quotient (or ratio) of integers. The

function

is called a rational function because it is a quotient of polynomials.

f (x)  
x  1

x2
 x  6

7
13

4-4 Rational Functions and Inequalities

Z Rational Functions and Properties of Their Graphs

Z Vertical and Horizontal Asymptotes

Z Analyzing the Graph of a Rational Function

Z Rational Inequalities
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Z DEFINITION 1 Rational Function

A function f is a rational function if it can be written in the form

where p(x) and q(x) are polynomials.

f (x)  
p(x)

q(x)

When working with rational functions, we will assume that the coefficients of

p(x) and q(x) are real numbers, and that the domain of f is the set of all real

numbers x such that q(x)� 0.

If a real number c is a zero of both p(x) and q(x), then, by the factor theorem, x  c is a

factor of both p(x) and q(x). The graphs of

and

are then identical, except possibly for a “hole” at x  c (Fig. 1).

Later in this section we will explain how to handle the minor complication caused by

common real zeros of p(x) and q(x). But to avoid that complication now,

unless stated to the contrary, we will assume that for any rational function f

we consider, p(x) and q(x) have no real zero in common.

Because a polynomial q(x) of degree n has at most n real zeros, there are at most n

real numbers that are not in the domain of . Because a fraction equals 0

only if its numerator is 0, the x intercepts of the graph of f are the real zeros of a polyno-

mial p(x) of degree m. So the number of x intercepts of f is at most m.

f (x)  P(x) q(x)

fr(x)  
pr(x)

qr(x)
f (x)  

p(x)

q(x)
 

(x  c)pr(x)

(x  c)qr(x)

x

y

 5

5 5

5

(1, 2)

x

y

 5

5 5

5

(a) f(x) ⴝ
(x ⴚ 1)(x

2
ⴚ 3)

x ⴚ 1

(b) f(x) ⴝ x
2
ⴚ 3

Z Figure 1

EXAMPLE 1 Domain and x Intercepts

Find the domain and x intercepts for f (x)  
2x2
 2x  4

x2
 9

.

SOLUTION 

Because q(x) 0 for x 3 and x   3, the domain of f is

or

Because p(x) 0 for x 2 and x   1, the zeros of f, and the x intercepts of f, are  1

and 2. �

(  ,  3) 傼 ( 3, 3) 傼 (3,  )x    3

f (x)  
p(x)

q(x)
 

2x2
 2x  4

x2
 9

 
2(x  2)(x  1)

(x  3)(x  3)

MATCHED PROBLEM 1 Find the domain and x intercepts for 

�

f (x)  
3x2
 12

x2
 2x  3

.

The graph of the rational function

is shown in Figure 2 on the next page.

f (x)  
x2
 1.44

x3
 x



The domain of f consists of all real numbers except x   1, x  0, and x  1 (the zeros

of the denominator x3
 x). The dotted vertical lines at x   1 indicate that those values

of x are excluded from the domain (a dotted vertical line at x  0 would coincide with the

y axis and is omitted). The graph is discontinuous at x   1, x  0, and x  1, but is

continuous elsewhere and has no sharp corners. The zeros of f are the zeros of the numer-

ator x2
 1.44, namely x   1.2 and x  1.2. The graph of f has four turning points. Its

left and right behavior is the same as that of the function (the graph is close to

the x axis for very large and very small values of x). The graph of f illustrates the general

properties of rational functions that are listed in Theorem 1. We have already justified Prop-

erty 3; the other properties are established in calculus.

g (x)  
1
x
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Z Figure 2 f (x)  
x
2

 1.44

x
3

 x

.

x

y

 5

5 5

5

Z THEOREM 1 Properties of Rational Functions

Let be a rational function where p(x) and q(x) are polynomials of

degrees m and n, respectively. Then the graph of f(x):

1. Is continuous with the exception of at most n real numbers

2. Has no sharp corners

3. Has at most m real zeros

4. Has at most m  n  1 turning points

5. Has the same left and right behavior as the quotient of the leading terms of

p(x) and q(x)

 f (x)  p(x) q(x)

Figure 3 shows graphs of several rational functions, illustrating the properties of Theorem 1.

Z Figure 3 Graphs of rational

functions.

x

y

 5

5 5

5

x

y

 3

3 3

3

x

y

 2

2 2

2

(a) f(x) ⴝ
1

x
(b) g(x) ⴝ

1

x
2
ⴚ 1

(c) h(x) ⴝ
1

x
2
ⴙ 1
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Z Figure 3 (continued)

x

y

 15

5 5

15

x

y

 3

3 3

3

x

y

 2

10 10

2

(d) F (x) ⴝ
x

2
ⴙ 3x

x ⴚ 1
(e) G(x) ⴝ

ⴚx ⴚ 1

x
3
ⴚ 4x

(f) H(x) ⴝ
x

2
ⴙ x ⴙ 1

x
2
ⴙ 1

EXAMPLE 2 Properties of Graphs of Rational Functions

Use Theorem 1 to explain why each graph is not the graph of a rational function.

x

y

 3

3 3

3

x

y

 3

3 3

3

x

y

 3

3 3

3

(A) (B)  (C)  

SOLUTIONS (A) The graph has a sharp corner when x  0, so Property 2 is not satisfied.

(B) The graph has an infinite number of turning points, so Property 4 is not satisfied.

(C) The graph has an infinite number of zeros (all values of x between 0 and 1, inclusive,

are zeros), so Property 3 is not satisfied. �

MATCHED PROBLEM 2 Use Theorem 1 to explain why each graph is not the graph of a rational function.

(A) (B)  (C)  

x

y

 3

3 3

3

x

y

 3

3 3

3

x

y

 3

3 3

3

�



Z Vertical and Horizontal Asymptotes

The graphs of Figure 3 on pages 300–301 exhibit similar behaviors near points of discon-

tinuity that can be described using the concept of vertical asymptote. Consider, for exam-

ple, the rational function of Figure 3(a). As x approaches 0 from the right, the

points on the graph have larger and larger y coordinates—that is, increases without

bound—as confirmed by Table 1. We write this symbolically as

as

and say that the line x  0 (the y axis) is a vertical asymptote for the graph of f.

xS 0 
1

x
S 

1
x(x, 1x)

f (x)  1
x
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Table 1 Behavior of 1兾x as 

x 1 0.1 0.01 0.001 0.0001 0.000 01 0.000 001 . . . x approaches 0 from the right 

1兾x 1 10 100 1,000 10,000 100,000 1,000,000 . . . 1兾x increases without bound (1 xS )

(xS 0
ⴙ

)

xS 0
 

Table 2 Behavior of 1兾x as 

x  1  0.1  0.01  0.001  0.0001  0.000 01  0.000 001 . . . x approaches 0 from the left 

1兾x  1  10  100  1,000  10,000  100,000  1,000,000 . . . 1兾x decreases without bound (1 xSⴚ )

(xS 0
ⴚ

)

xS 0
 

Z Figure 3(a) Graphs of rational

functions.

x

y

 5

5 5

5

(a) f(x) ⴝ
1

x

If x approaches 0 from the left, the points on the graph have smaller and smaller y

coordinates—that is, decreases without bound—as confirmed by Table 2. We write this

symbolically as

as xS 0 
1

x
S  

1
x

(x, 1x)

Z DEFINITION 2 Vertical Asymptote

The vertical line x  a is a vertical asymptote for the graph of y  f (x) if

or as or as

(that is, if f (x) either increases or decreases without bound as x approaches a from

the right or from the left).

xS a xS a f(x)S    f(x)S 

Z THEOREM 2 Vertical Asymptotes of Rational Functions

Let be a rational function. If a is a zero of q(x), then the line x  a

is a vertical asymptote of the graph of f.*
 f (x)  p(x) q(x)

*Recall that we are assuming that p(x) and q(x) have no real zero in common. Theorem 2 is not valid without

this assumption.

Construct tables similar to Tables 1 and 2 for and discuss the behavior of

the graph of g(x) near x  0.

g(x)  1

x2ZZZ EXPLORE-DISCUSS 1
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For example,

has three vertical asymptotes, x   1, x  0, and x  1 (see Fig. 2 on p. 300).

The left and right behavior of some, but not all, rational functions can be described using

the concept of horizontal asymptote. Consider As values of x get larger and larger—

that is, as x increases without bound—the points have y coordinates that are positive

and approach 0, as confirmed by Table 3. Similarly, as values of x get smaller and smaller—

that is, as x decreases without bound—the points have y coordinates that are negative

and approach 0, as confirmed by Table 4. We write these facts symbolically as

as and as

and say that the line (the x axis) is a horizontal asymptote for the graph of f.y  0

x S    x S  
1

x
S 0

(x, 1x)

(x, 1x)

f (x)  
1
x.

f (x)  
x2

 1.44

x3
 x

 
x2

 1.44

x(x  1)(x  1)

Table 3 Behavior of 1/x as x S  

x 1 10 100 1,000 10,000 100,000 1,000,000 . . . x increases without bound (x S  )

1兾x 1 0.1 0.01 0.001 0.0001 0.000 01 0.000 001 . . . 1兾x approaches 0 (1兾x S 0)

Table 4 Behavior of 1/x as x S   

x  1  10  100  1,000  10,000  100,000  1,000,000 . . . x decreases without bound (x Sⴚ )

1兾x  1  0.1  0.01  0.001  0.0001  0.000 01  0.000 001 . . . 1兾x approaches 0 (1兾x S 0)

Construct tables similar to Tables 3 and 4 for each of the following functions, and

discuss the behavior of each as and as 

(A) (B) (C) h(x)  
3x3

x2
 1

g(x)  
3x2

x2
 1

f (x)  
3x

x2
 1

x S   :x S  

ZZZ EXPLORE-DISCUSS 2

A rational function has the same left and right behavior as the quotient of

the leading terms of p(x) and q(x) (Property 5 of Theorem 1). Consequently, a rational func-

tion has at most one horizontal asymptote. Moreover, we can determine easily whether a

rational function has a horizontal asymptote, and if it does, find its equation. Theorem 3

gives the details.

 f (x)  p(x) q(x)

Z DEFINITION 3 Horizontal Asymptote

The horizontal line y  b is a horizontal asymptote for the graph of y  f (x) if

as or as

(that is, if f (x) approaches b as x increases without bound or as x decreases without

bound).

x S  x S    f (x) S b
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Z THEOREM 3 Horizontal Asymptotes of Rational Functions

Consider the rational function

where 

1. If m  n, the line y  0 (the x axis) is a horizontal asymptote.

2. If m  n, the line is a horizontal asymptote.

3. If m  n, there is no horizontal asymptote.

In 1 and 2, the graph of f approaches the horizontal asymptote both as and

as xS  .

xS 

y  am  bn

am  0, bn  0.

f (x)  
amx

m
 p  a1x  a0

bnx
n
 p  b1x  b0

EXAMPLE 3 Finding Vertical and Horizontal Asymptotes 
for a Rational Function

Find all vertical and horizontal asymptotes for

f (x)  
p(x)

q(x)
 

2x2
 2x  4

x2
 9

SOLUTION Because the graph of f (x) has vertical asymptotes at 

x  3 and x   3 (Theorem 1). Because p(x) and q(x) have the same degree, the line

is a horizontal asymptote (Theorem 3, part 2). �

a2 ⴝ 2, b2 ⴝ 1y   
a2

b2

  
2

1
 2

q(x)  x2
 9  (x  3)(x  3),

*

*Throughout the book, dashed boxes—called think boxes—are used to represent steps that may be performed

mentally.

Z Analyzing the Graph of a Rational Function

We now use the techniques for locating asymptotes, along with other graphing aids discussed

in the text, to graph several rational functions. First, we outline a systematic approach to the

problem of graphing rational functions.

MATCHED PROBLEM 3 Find all vertical and horizontal asymptotes for

�

f (x)  
3x2
 12

x2
 2x  3
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Z ANALYZING AND SKETCHING THE GRAPH OF A RATIONAL FUNCTION: 
f(x) ⴝ p(x)冒q(x)

Step 1. Intercepts. Find the real solutions of the equation p(x)  0 and use these

solutions to plot any x intercepts of the graph of f. Evaluate f (0), if it

exists, and plot the y intercept.

Step 2. Vertical Asymptotes. Find the real solutions of the equation q(x)  0 and use

these solutions to determine the domain of f, the points of discontinuity, and

the vertical asymptotes. Sketch any vertical asymptotes as dashed lines.

Step 3. Horizontal Asymptotes. Determine whether there is a horizontal asymp-

tote and, if so, sketch it as a dashed line.

Step 4. Complete the Sketch. For each interval in the domain of f, plot additional

points and join them with a smooth continuous curve.

EXAMPLE 4 Graphing a Rational Function

Graph f (x)  
2x

x  3
.

SOLUTION

Step 1. Intercepts. Find real zeros of p(x)  2x and find f(0):

2x  0

x  0 x intercept

f (0)  0 y intercept

The graph crosses the coordinate axes only at the origin. Plot this intercept, as

shown in Figure 4.

f (x)  
2x

x  3
 

p(x)

q(x)

x

y

 10

10 10

10

Vertical
asymptote

Horizontal
asymptote

x and y intercepts

Intercepts and asymptotes

Z Figure 4

Step 2. Vertical Asymptotes. Find real zeros of q(x)  x  3:

x  3  0

x  3

The domain of f is f is discontinuous at x  3, and the graph

has a vertical asymptote at x  3. Sketch this asymptote, as shown in Figure 4.

Step 3. Horizontal Asymptote. Because p(x) and q(x) have the same degree, the line 

y  2 is a horizontal asymptote, as shown in Figure 4.

Step 4. Complete the Sketch. By plotting a few additional points, we obtain the graph in

Figure 5. Notice that the graph is a smooth continuous curve over the interval

(  , 3) 傼 (3,  ),x

y

 10

10 10

10

f(x)  
2x

x   3

Z Figure 5



and over the interval As expected, there is a break in the graph at

x  3. �

(3,  ).(  , 3)

306 C H A P T E R  4 POLYNOMIAL AND RATIONAL FUNCTIONS

MATCHED PROBLEM 4 Proceed as in Example 4 and sketch the graph of 

�

f (x)  
3x

x  2
.

Technology Connections

Refer to Example 4. When is graphed on a

graphing calculator [Fig. 6(a)], it appears that the graphing

calculator has also drawn the vertical asymptote at x ⴝ 3,

but this is not the case. Many graphing calculators, when set

in connected mode, calculate points on a graph and connect

these points with line segments. The last point plotted to the

left of the asymptote and the first plotted to the right of 

the asymptote will usually have very large y coordinates. If

these y coordinates have opposite signs, then the graphing

f (x) ⴝ 2x (x ⴚ 3) calculator may connect the two points with a nearly vertical

line segment, which gives the appearance of an asymptote.

If you wish, you can set the calculator in dot mode to plot the

points without the connecting line segments [Fig. 6(b)].

Depending on the scale, a graph may even appear to be

continuous at a vertical asymptote [Fig. 6(c)]. It is important

to always locate the vertical asymptotes as we did in step 2

before turning to the graphing calculator graph to complete

the sketch.

 10

 10

10

10

 10

 10

10

10

 40

 40

40

40

Z Figure 6 Graphing calculator graphs of f (x)  
2x

x  3
.

(a) Connected mode (b) Dot mode (c) Connected mode

In Examples 5 and 6 we will just list the results of each step in the graphing strategy

and omit the computational details.

EXAMPLE 5 Graphing a Rational Function

Graph f (x)  
x2

 6x  9

x2
 x  2

.

SOLUTION

x intercept: x  3

y intercept: 

Domain: 

Points of discontinuity: x   2 and x  1

Vertical asymptotes: x   2 and x  1

Horizontal asymptote: y  1

Locate the intercepts, draw the asymptotes, and plot additional points in each interval of

the domain of f to complete the graph (Fig. 7).

(  ,  2) 傼 ( 2, 1) 傼 (1,  )

f (0)   
9
2   4.5

f (x)  
x2

 6x  9

x2
 x  2

 
(x  3)2

(x  2)(x  1)
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MATCHED PROBLEM 5 Graph f (x)  
x2

x2
 7x  10

.

x

y

10 10

10 f(x)  
x2   6x   9

x2   x   2

Z Figure 7

ZZZ CAUTION ZZZ The graph of a function cannot cross a vertical asymptote, but the same statement is

not true for horizontal asymptotes. The rational function

has the line y  2 as a horizontal asymptote. The graph of f in Figure 8 clearly shows

that the graph of a function can cross a horizontal asymptote. The definition of a hor-

izontal asymptote requires f (x) to approach b as x increases or decreases without bound,

but it does not preclude the possibility that f (x)  b for one or more values of x.

f (x)  
2x6

 x5
 5x3

 4x  2

x6
 1

 5

4

y

x
5

y   2 is a horizontal asymptote

2x6   x5   5x3   4x   2

x6   1
f(x)  

Z Figure 8 Multiple intersections of a graph and a horizontal asymptote.

EXAMPLE 6 Graphing a Rational Function

Graph f (x)  
x2
 3x  4

x  2
.

SOLUTION

x intercepts: x   1 and x  4

y intercept: f (0)  2

Domain: 

Points of discontinuity: x  2

Vertical asymptote: x  2

No horizontal asymptote

(  , 2) 傼 (2,  )

f (x)  
x2
 3x  4

x  2
 

(x  1)(x  4)

x  2

�
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x

y

10 10

10

Intercepts and asymptotes

 10

Oblique
asymptote
y   x   1

x

y

10 10

10

f(x)  
x2   3x   4

x   2

y   x   1

 10

Z Figure 9 Z Figure 10

Generalizing the results of Example 6, we have Theorem 4.

Z THEOREM 4 Oblique Asymptotes and Rational Functions

If where p(x) and q(x) are polynomials and the degree of p(x) is

1 more than the degree of q(x), then f(x) can be expressed in the form

where the degree of r(x) is less than the degree of q(x). The line

is an oblique asymptote for the graph of f. That is,

as or xS xS  [ f (x)  (mx  b)] S 0

y  mx  b

f (x)  mx  b  
r(x)

q(x)

 f (x)  p(x)  q(x),

MATCHED PROBLEM 6 Graph, including any oblique asymptotes, 

�

f (x)  
x2

 5

x  1
.

Although the graph of f does not have a horizontal asymptote, we can still gain some useful

information about the behavior of the graph as and as if we first perform a

long division:

This shows that

As or and the graph of f approaches the line y  x   1.

This line is called an oblique asymptote for the graph of f. The asymptotes and intercepts

are shown in Figure 9, and the graph of f is sketched in Figure 10.

6 (x  2)S 0xS ,xS  

f (x)  
x2

 3x  4

x  2
 x  1  

6

x  2

 6

 x  4

 x  2

x2
 2x

 x  1

x  2冄x2
 3x  4

xS xS  

�

Quotient

Remainder
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At the beginning of this section we made the assumption that for a rational function

the polynomials p(x) and q(x) have no common real zero. Now we aban-

don that assumption. Suppose that p(x) and q(x) have one or more real zeros in common.

Then, by the factor theorem, p(x) and q(x) have one or more linear factors in common, so

f(x) can be “reduced.” We proceed to divide out common linear factors in

until we obtain a rational function

in which and have no common real zero. We analyze and graph then insert

“holes” as required in the graph of to obtain the graph of f. Example 7 illustrates the details.fr

fr(x),qr(x)pr(x)

fr(x)  
pr(x)

qr(x)

f (x)  
p(x)

q(x)

f (x)  p(x) q(x),

EXAMPLE 7 Graphing Arbitrary Rational Functions

Graph f (x)  
2x5

 4x4
 6x3

x5
 3x4

 3x3
 7x2

 6x
.

SOLUTION The real zeros of

(obtained by graphing or factoring) are  1, 0, and 3.

The real zeros of

are  1, 0, 2, and 3. The common zeros are  1, 0, and 3. Factoring and dividing out com-

mon linear factors gives

and

We analyze as usual:

x intercept: x  0

y intercept: 

Domain: 

Points of discontinuity: x   1, x  2

Vertical asymptotes: x   1, x  2

Horizontal asymptote: y  2

The graph of f is identical to the graph of except possibly at the common real zeros  1,

0, and 3. We consider each common zero separately.

x   1: Both f and are undefined (no difference in their graphs).

x  0: f is undefined but so the graph of f has a hole at (0, 0).

x  3: f is undefined but so the graph of f has a hole at (3, 4.5).

Therefore, f (x) has the following analysis:

x intercepts: none

y intercepts: none

Domain: 

Points of discontinuity: x   1, x  0, x  2, x  3

(  ,  1) 傼 ( 1, 0) 傼 (0, 2) 傼 (2, 3) 傼 (3,  )

fr(3)  4.5,

fr(0)  0,

fr

fr

(  ,  1) 傼 ( 1, 2) 傼 (2,  )

fr(0)  0

fr(x)

fr (x)  
2x2

(x  1)(x  2)
f (x)  

2x3(x  1)(x  3)

x(x  1)2(x  2)(x  3)

q(x)  x5
 3x4

 3x3
 7x2

 6x

p(x)  2x5
 4x4

 6x3
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x

y

 5

5 5

5

x

y

 5

5 5

5

Z Figure 11 �

(a) f  (x) ⴝ
2x

5
ⴚ 4x

4
ⴚ 6x

3

x
5
ⴚ 3x

4
ⴚ 3x

3
ⴙ 7x

2
ⴙ 6x

(b) fr(x) ⴝ
2x

2

(x ⴙ 1)(x ⴚ 2)

MATCHED PROBLEM 7 Graph 

�

f (x)  
x3
 x

x4
 x2.

Z Rational Inequalities

A rational function can change sign at a real zero of p(x) (where f has an

x intercept) or at a real zero of q(x) (where f is discontinuous), but nowhere else (because

f is continuous except where it is not defined). Rational inequalities can therefore be solved

in the same way as polynomial inequalities, except that the partition of the x axis is deter-

mined by the zeros of p(x) and the zeros of q(x).

f (x)  p(x) q(x)

EXAMPLE 8 Solving Rational Inequalities

Solve 
x3
 4x2

x2
 4

6 0.

SOLUTION Let

The zeros of

are 0 and  4. The zeros of

are  2 and 2. These four zeros partition the x axis into the five intervals shown in the table.

A test number is chosen from each interval as indicated to determine whether f (x) is 

positive or negative.

q(x)  x2
 4  (x  2)(x  2)

p(x)  x3
 4x2

 x2(x  4)

f (x)  
p(x)

q(x)
 

x3
 4x2

x2
 4

Vertical asymptotes: x   1, x  2

Horizontal asymptote: y  2

Holes: (0, 0), (3, 4.5)

Figure 11 shows the graphs of f and .fr
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EXAMPLE 9 Solving Rational Inequalities with a Graphing Calculator

Solve to three decimal places.1  
9x  9

x2
 x  3

SOLUTION First we convert the inequality to an equivalent inequality in which one side is 0:

Subtract from both sides.

Find a common denominator.

Simplify.

The zeros of x2
 8x  6, to three decimal places, are 0.838 and 7.162. The zeros

of x2
 x 3 are  2.303 and 1.303. These four zeros partition the x axis into five intervals:

( 2.303, 0.838), (0.838, 1.303), (1.303, 7.162), and 

We graph

and

(Fig. 12) and observe that the graph of f is above the x axis on the intervals (  ,  2.303),

(0.838, 1.303), and (7.162,  ). So the solution set of the inequality is

Note that the endpoints that are zeros of f are included in the solution set of the inequality,

but not the endpoints at which f is undefined. �

(  ,  2.303) 傼 [0.838, 1.303) 傼 [7.162,  )

g(x)  
f (x)

冟   f (x)冟
f (x)  

x2
 8x  6

x2
 x  3

(7.162,  )(  ,  2.303),

 
x2
 8x  6

x2
 x  3

 0

 
x2
 x  3

x2
 x  3

 
9x  9

x2
 x  3

 0

 1  
9x  9

x2
 x  3

 0

9x ⴚ 9

x
2
ⴙ x ⴚ 3

 1  
9x  9

x2
 x  3

MATCHED PROBLEM 8 Solve 

�

x2
 1

x2
 9

 0.

Interval Test number x f (x) Sign of f

(  ,  4)  5  25/21  

( 4,  2)  3 9/5  

( 2, 0)  1  1  

(0, 2) 1  5/3  

(2,  ) 3 63/5  

We conclude that the solution set of the inequality is

�(  ,  4) 傼 ( 2, 0) 傼 (0, 2)

 10

 10

10

10

 10

 10

10

10

(a) f (x) ⴝ
x

2
ⴚ 8x ⴙ 6

x
2
ⴙ x ⴚ 3

(b) g(x) ⴝ
f (x)

冟   f (x)冟

Z Figure 12

MATCHED PROBLEM 9 Solve to three decimal places.

�

x3
 4x2

 7

x2
 5x  1

 0
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ANSWERS TO MATCHED PROBLEMS

1. Domain: (  ,  3) ( 3, 1) (1,  ); x intercepts: x   2, x  2

2. (A) Properties 3 and 4 are not satisfied.

(B) Property 1 is not satisfied.

(C) Properties 1 and 3 are not satisfied.

3. Vertical asymptotes: x  3, x  1; horizontal asymptote: y  3

4. 5.

6. 7.

8. 9. ( 0.193, 1.164] 傼 (5.193,  )[ 3.391,  1.773] 傼(  ,  3) 傼 [ 1, 1] 傼 (3,  )

x3   x

x4   x2
f(x)  

x

y

 5

5 5

5

x

y

10 10

f(x)  
x2   5

x   1

y   x   1

x

y

 10

10 10

10

f(x)  
x2

x2   7x   10

x

y

10 10

10

f(x)  
3x

x   2

´´

4-4 Exercises

1. Is every polynomial function a rational function? Explain.

2. Is every rational function a polynomial function? Explain.

3. Explain in your own words what a vertical asymptote is.

4. Explain in your own words what a horizontal asymptote is.

5. Explain in your own words what an oblique asymptote is.

6. Explain why a rational function can’t have both a horizontal

asymptote and an oblique asymptote. 

In Problems 7–10, match each graph with one of the following

functions:

k(x)  
4  2x

x  2
h(x)  

2x  4

x  2

g(x)  
2x  4

2  x
f (x)  

2x  4

x  2

7. 8.

x

y

 10

10

10x

y

 10

10

10
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9. 10.

11. Let Complete each statement:

(A) As 

(B) As 

(C) As 

(D) As 

12. Let Complete each statement:

(A) As 

(B) As 

(C) As 

(D) As 

13. Let Complete each statement:

(A) As 

(B) As 

(C) As 

(D) As 

14. Let Complete each statement:

(A) As 

(B) As 

(C) As 

(D) As 

In Problems 15–22, find the domain and x intercepts.

15. 16.

17. 18.

19. 20.

21. 22.

In Problems 23–30, find all vertical and horizontal asymptotes.

23. 24.

25. 26. t(x)  
3x  4

x2
 49

s(x)  
2x  3

x2
 16

g(x)  
7x  2

x  3
f (x)  

5x  1

x  2

G(x)  
x4
 x2

 1

x2
 25

F(x)  
x4
 16

x2
 36

s(x)  
x2
 4x  5

x2
 4

r(x)  
x2
 3x  4

x2
 1

k(x)  
x2
 9

x
h(x)  

x  6

x2
 4

g(x)  
2x  10

x  1
f (x)  

3x  9

x

xS , k(x)S ?

xS  , k(x)S ?

xS 2 , k(x)S ?

xS 2 , k(x)S ?

k(x)  
4  2x

x  2
.

xS , h(x)S ?

xS  , h(x)S ?

xS 2 , h(x)S ?

xS 2 , h(x)S ?

h(x)  
2x  4

x  2
.

xS , g(x)S ?

xS  , g(x)S ?

xS 2 , g(x)S ?

xS 2 , g(x)S ?

g(x)  
2x  4

2  x
.

xS ,  f (x)S ?

xS  ,  f (x)S ?

xS 2 ,  f (x)S ?

xS 2 ,  f (x)S ?

f (x)  
2x  4

x  2
.

x

y

10 10

10

x

y

 10

10 10

10

27. 28.

29. 30.

In Problems 31–34, explain why each graph is not the graph of a

rational function.

31.

32.

33.

34.

In Problems 35–38, explain how the graph of f differs from the

graph of g.

35.

36. f (x)  
x  5

x2
 25

; g(x)  
1

x  5

f (x)  
x2
 2x

x
; g(x)  x  2

x

y

 5

5 5

5

x

y

 3

3 3

3

x

y

 5

5 5

5

x

y

 5

5 5

5

k(x)  
6x2

 5x  1

7x2
 28x

h(x)  
3x2

 8

2x2
 6x

q(x)  
x3
 1

x  1
p(x)  

x2
 2x  1

x
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37.

38.

In Problems 39–52, use the graphing strategy outlined in the text

to sketch the graph of each function.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

In Problems 53–56, give an example of a rational function that

satisfies the given conditions.

53. Real zeros:  2,  1, 1, 2; vertical asymptotes: none; horizontal

asymptote: y  3

54. Real zeros: none; vertical asymptotes: x  4; horizontal

asymptote: y   2

55. Real zeros: none; vertical asymptotes: x  10; oblique asymp-

tote: y  2x  5

56. Real zeros: 1, 2, 3; vertical asymptotes: none; oblique asymp-

tote: y  2  x

In Problems 57–64, solve each rational inequality.

57. 58.

59. 60.

61. 62.

63. 64.

In Problems 65–72, solve each rational inequality to three decimal

places.

65. 66.
x3
 4

x2
 x  3

 0
x2
 7x  3

x  2
7 0

1

x2
 8x  12

 
1

x

5x

x2
 1

6
9

x

3x  7

x2
 6x

6 2
x2
 4x  20

3x
 4

x  4

x2
 9

 0
x2
 16

5x  2
7 0

2x  1

x  3
7 0

x

x  2
 0

f (x)  
7x2

(2x  3)2
f (x)  

12x2

(3x  5)2

f (x)  
x

x2
 1

g(x)  
2

x2
 1

p(x)  
x

1  x2
f (x)  

x

x2
 1

g(x)  
6

x2
 x  6

f (x)  
9

x2
 9

f (x)  
x2
 1

x2
g(x)  

1  x2

x2

f (x)  
3x

x  3
f (x)  

x

x  1

g(x)  
1

x  3
f (x)  

1

x  4

f (x)  
x2
 x  12

x  4
; g(x)  x  3

f (x)  
x  2

x2
 10x  16

; g(x)  
1

x  8
67. 68.

69. 70.

71. 72.

In Problems 73–78, find all vertical, horizontal, and oblique

asymptotes.

73. 74.

75. 76.

77. 78.

In Problems 79–84, use the graphing strategy outlined in the text

to sketch the graph of each function. Write the equations of all

vertical, horizontal, and oblique asymptotes.

79. 80.

81. 82.

83. 84.

In calculus, it is often necessary to consider rational functions

that are not in lowest terms, such as the functions given in

Problems 85–88. For each function, state the domain. Write the

equations of all vertical and horizontal asymptotes, and sketch

the graph.

85. 86.

87. 88.

APPLICATIONS

89. EMPLOYEE TRAINING A company producing electronic com-

ponents used in television sets has established that on the average,

a new employee can assemble N(t) components per day after t days

of on-the-job training, as given by

Sketch the graph of N, including any vertical or horizontal

asymptotes. What does N approach as 

90. PHYSIOLOGY In a study on the speed of muscle contraction

in frogs under various loads, researchers W. O. Fems and J. Marsh

found that the speed of contraction decreases with increasing

loads. More precisely, they found that the relationship between

tS ?

t  0N(t)  
50t

t  4

s(x)  
x  1

x2
 1

r(x)  
x  2

x2
 4

g(x)  
x2
 1

x  1
f (x)  

x2
 4

x  2

G(x)  
x4
 1

x3
F(x)  

8  x3

4x2

h(x)  
x2
 x  2

2x  4
k(x)  

x2
 4x  3

2x  4

g(x)  
x2
 1

x
f (x)  

x2
 1

x

s(x)  
 3x2

 5x  9

x
r(x)  

2x2
 3x  5

x

q(x)  
x5

x3
 8

p(x)  
x3

x2
 1

g(x)  
3x2

x  2
f (x)  

2x2

x  1

1

x2
 1

6
x2

x4
 1

4

x  1
 

7

x

x

x2
 5x  6

 0.5
3x  2

x  5
7 10

x  4

x2
 1

7 2
9

x
 

5

x2
 1



S E C T I O N  4 – 5 Variation and Modeling 315

speed of contraction S (in centimeters per second) and load w (in

grams) is given approximately by

Sketch the graph of S, including any vertical or horizontal

asymptotes. What does S approach as 

91. RETENTION An experiment on retention is conducted in a psy-

chology class. Each student in the class is given 1 day to memorize

the same list of 40 special characters. The lists are turned in at the

end of the day, and for each succeeding day for 20 days each student

is asked to turn in a list of as many of the symbols as can be recalled.

Averages are taken, and it is found that a good approximation of the

average number of symbols, N(t), retained after t days is given by

Sketch the graph of N, including any vertical or horizontal

asymptotes. What does N approach as 

92. LEARNING THEORY In 1917, L. L. Thurstone, a pioneer in

quantitative learning theory, proposed the function

to describe the number of successful acts per unit time that a person

could accomplish after x practice sessions. Suppose that for a par-

ticular person enrolling in a typing class,

where f (x) is the number of words per minute the person is able to

type after x weeks of lessons. Sketch the graph of f, including any

vertical or horizontal asymptotes. What does f approach as 

In Problems 93–96, use the fact from calculus that a function of

the form

has its minimum value when x  1c a.

x 7 0c 7 0,a 7 0,q(x)  ax  b  
c

x
,

xS ?

x  0f (x)  
50(x  1)

x  5

f (x)  
a(x  c)

(x  c)  b

tS ?

t  1N(t)  
5t  30

t

wS ?

w  5S(w)  
26  0.06w

w

93. REPLACEMENT TIME A desktop office copier has an initial

price of $2,500. A maintenance/service contract costs $200 for

the first year and increases $50 per year thereafter. It can be

shown that the total cost of the copier after n years is given by

C(n)  2,500  175n  25n2

The average cost per year for n years is 

(A) Find the rational function 

(B) When is the average cost per year a minimum? (This is

frequently referred to as the replacement time for this piece

of equipment.)

(C) Sketch the graph of including any asymptotes.

94. AVERAGE COST The total cost of producing x units of a certain

product is given by

The average cost per unit for producing x units is 

(A) Find the rational function 

(B) At what production level will the average cost per unit be minimal?

(C) Sketch the graph of including any asymptotes.

95. CONSTRUCTION A rectangular dog pen is to be made to en-

close an area of 225 square feet.

(A) If x represents the width of the pen, express the total length L

of the fencing material required for the pen in terms of x.

(B) Considering the physical limitations, what is the domain of the

function L?

(C) Find the dimensions of the pen that will require the least

amount of fencing material.

(D) Graph the function L, including any asymptotes.

96. CONSTRUCTION Rework Problem 95 with the added assump-

tion that the pen is to be divided into two sections, as shown in the

figure. (Approximate dimensions to three decimal places.)

x

x

x

C,

C.

C(x) x.C(x)  

C(x)  1
5 
x2
 2x  2,000

C,

C.

C(n)  C(n) n.

4-5 Variation and Modeling

Z Direct Variation

Z Inverse Variation

Z Joint and Combined Variation

If you work more hours at a part-time job, then you will get more pay. If you increase

your average speed in a bicycle race, then you will decrease the time required to finish.

The relationship between hours and pay in the first instance, and between average speed

and finishing time in the second, are expressed by saying “Pay is directly proportional to



The perimeter P of a square is directly proportional to the side length x; the constant

of proportionality is 4 and the equation of variation is P  4x. Similarly, the circumference

C of a circle is directly proportional to the radius r; the constant of proportionality is 2 

and the equation of variation is C  2 r.

Note that the equation of direct variation y  kx, k  0, gives a linear model with

nonzero slope that passes through the origin (Fig. 1).

316 C H A P T E R  4 POLYNOMIAL AND RATIONAL FUNCTIONS

Z DEFINITION 1 Direct Variation

Let x and y be variables. The statement y is directly proportional to x (or y varies

directly as x) means

for some nonzero constant k, called the constant of proportionality (or constant

of variation).

y  kx 

x

y

y   kx, k   0

Z Figure 1 Direct variation.

Direct Variation

The force F exerted by a spring is directly proportional to the distance x that it is stretched

(Hooke’s law). Find the constant of proportionality and the equation of variation if F  12

pounds when x  1
3 foot.

EXAMPLE 1

SOLUTION The equation of variation has the form F kx. To find the constant of proportionality, sub-

stitute F  12 and and solve for k.

Let F ⴝ 12 and 

Multiply both sides by 3.

Therefore, the constant of proportionality is k 36 and the equation of variation is

�F  36x

 k  36

 12  k (1
3)

x ⴝ
1
3. F  kx

x  1
3

MATCHED PROBLEM 1 Find the constant of proportionality and the equation of variation if p is directly propor-

tional to v, and p  200 when v  8.

�

Z Inverse Variation

If variables x and y are inversely proportional, the functional relationship between them is

a constant multiple of the rational function y  1兾x.

hours worked, but average speed is inversely proportional to finishing time.” Such state-

ments, which describe how one quantity varies with respect to another, have a precise math-

ematical meaning. The purpose of this section is to explain the terminology of variation

and how it is used in engineering and the sciences. 

Z Direct Variation

The perimeter of a square is a constant multiple of the side length, and the circumference

of a circle is a constant multiple of the radius. These are examples of direct variation.
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Z DEFINITION 2 Inverse Variation

Let x and y be variables. The statement y is inversely proportional to x (or y

varies inversely as x) means

for some nonzero constant k, called the constant of proportionality (or constant

of variation).

y  
k

x

The rate r and time t it takes to travel a distance of 100 miles are inversely propor-

tional (recall that distance equals rate times time, d rt). The equation of variation is

and the constant of proportionality is 100.

The equation of inverse variation, y  k兾x, determines a rational function having the y

axis as a vertical asymptote and the x axis as a horizontal asymptote (Fig. 2). In most appli-

cations, the constant k of proportionality will be positive, and only the portion of the graph

in Quadrant I will be relevant. If x is very large, then y is close to 0; if x is close to 0, then

y is very large.

t  
100

r

Z Figure 2 Inverse variation.

x

y

y   k/x, k   0

Inverse Variation

The note played by each pipe in a pipe organ is determined by the frequency of vibration

of the air in the pipe. The fundamental frequency f of vibration of air in an organ pipe is

inversely proportional to the length L of the pipe. (This is why the low frequency notes come

from the long pipes.)

(A) Find the constant of proportionality and the equation of variation if the fundamental

frequency of an 8-foot pipe is 64 vibrations per second.

(B) Find the fundamental frequency of a 1.6-foot pipe.

EXAMPLE 2

SOLUTIONS (A) The equation has the form f  k兾L. To find the constant of proportionality, substitute

L  8 and f  64 and solve for k.

Let f ⴝ 64 and L ⴝ 8.

Multiply both sides by 8.

The constant of proportionality is k  512 and the equation of variation is

(B) If L  1.6, then vibrations per second. �f  512
1.6  320

f  
512

L

 k  512

 64  
k

8

 f  
k

L

MATCHED PROBLEM 2 Find the constant of proportionality and the equation of variation if P is inversely propor-

tional to V, and P  56 when V  3.5.

�



Z Joint and Combined Variation

The area of a rectangle is the product of its length and width. This is an example of joint

variation.
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Z DEFINITION 3 Joint Variation

Let x, y, and w be variables. The statement w is jointly proportional to x and y

(or w varies jointly as x and y) means

for some nonzero constant k, called the constant of proportionality (or constant

of variation).

w  kxy

The area of a rectangle, for example, is jointly proportional to its length and width with

constant of proportionality 1; the equation of variation is A  LW.

The concept of joint variation can be extended to apply to more than three variables.

For example, the volume of a box is jointly proportional to its length, width, and height:

V  LWH. Similarly, the concepts of direct and inverse variation can be extended. For exam-

ple, the area of a circle is directly proportional to the square of its radius; the constant of

proportionality is  and the equation of variation is A   r2.

The three basic types of variation also can be combined. For example, Newton’s law

of gravitation, “The force of attraction F between two objects is jointly proportional to their

masses m1 and m2 and inversely proportional to the square of the distance d between them,”

has the equation

F  k 

m1m2

d 
2

Joint Variation

The volume V of a right circular cone is jointly proportional to the square of its radius r and

its height h. Find the constant of proportionality and the equation of variation if a cone of

height 8 inches and radius 3 inches has a volume of 24 cubic inches.

EXAMPLE 3

SOLUTION The equation of variation has the form V  kr2h. To find the constant of proportionality k,

substitute V   24 , r  3, and h  8.

Let V ⴝ 24 , r ⴝ 3, and hⴝ 8.

Simplify.

Divide both sides by 72.

The constant of proportionality is and the equation of variation is

�V  

 

3
 r2h

k  

 

3

 k  

 

3

 24  72k

 24  k(3)28

 V  kr2h

MATCHED PROBLEM 3 The volume V of a box with a square base is jointly proportional to the square of a side

x of the base and the height h. Find the constant of proportionality and the equation of

variation.

�
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Combined Variation

The frequency f of a vibrating guitar string is directly proportional to the square root of the

tension T and inversely proportional to the length L. What is the effect on the frequency if

the length is doubled and the tension is quadrupled?

EXAMPLE 4

SOLUTION The equation of variation has the form

Let f1, T1, and L1 denote the initial frequency, tension, and length, respectively. Then

L2  2L1 and T2  4T1. Therefore,

Let L2ⴝ 2L1, and T2 ⴝ 4T1.

Simplify the radical.

Cancel and use the equation of variation.

We conclude that there is no effect on the frequency—the pitch remains the same. �

  f1

  k 

21T1

2L1

  k 

14T1

2L1

 f2  k  

1T2

L2

f  k 

1T

L

MATCHED PROBLEM 4 Refer to Example 4. What is the effect on the frequency if the tension is increased by a

factor of 4 and the length is cut in half ?

�

Refer to the equation of variation in Example 4. Explain why the frequency f, for fixed

T, is a rational function of L, but f is not, for fixed L, a rational function of T.

ZZZ EXPLORE-DISCUSS 1

ANSWERS TO MATCHED PROBLEMS

1. 2. 3.

4. The frequency is increased by a factor of 4.

V  x2hk  1;P  
196

V
k  196;p  25vk  25;

3. Suppose that y is inversely proportional to x and that the con-

stant of proportionality is positive. If x increases, what happens

to y? Explain.

4. Explain what it means for w to be jointly proportional to x and y.

5. Suppose that y varies directly with x. What is the value of y

when x  0? Explain.

4-5 Exercises

1. Suppose that y is directly proportional to x and that the constant

of proportionality is positive. If x increases, what happens to y?

Explain.

2. Suppose that y is directly proportional to x and that the constant

of proportionality is negative. If x increases, what happens to y?

Explain.
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31. The maximum safe load L for a horizontal beam varies jointly

as its width w and the square of its height h, and inversely as its

length x.

32. The number N of long-distance phone calls between two cities

varies jointly as the populations P1 and P2 of the two cities, and

inversely as the distance d between the two cities.

33. The f-stop numbers N on a camera, known as focal ratios, are

directly proportional to the focal length F of the lens and in-

versely proportional to the diameter d of the effective lens

opening.

34. The time t required for an elevator to lift a weight is jointly

proportional to the weight w and the distance d through

which it is lifted, and inversely proportional to the power P

of the motor.

35. Suppose that f varies directly as x. Show that the ratio x1兾x2 of

two values of x is equal to f1兾f2, the ratio of the corresponding

values of f.

36. Suppose that f varies inversely as x. Show that the ratio x1兾x2 of

two values of x is equal to f2兾f1, the reciprocal of the ratio of

corresponding values of f.

APPLICATIONS

37. PHYSICS The weight w of an object on or above the surface of

the Earth varies inversely as the square of the distance d between

the object and the center of Earth. If a girl weighs 100 pounds on

the surface of Earth, how much would she weigh (to the nearest

pound) 400 miles above Earth’s surface? (Assume the radius of

Earth is 4,000 miles.)

38. PHYSICS A child was struck by a car in a crosswalk. The driver

of the car had slammed on his brakes and left skid marks 160 feet

long. He told the police he had been driving at 30 miles/hour. The

police know that the length of skid marks L (when brakes are

applied) varies directly as the square of the speed of the car v, and

that at 30 miles/hour (under ideal conditions) skid marks would be

40 feet long. How fast was the driver actually going before he

applied his brakes?

39. ELECTRICITY Ohm’s law states that the current I in a wire varies

directly as the electromotive forces E and inversely as the resistance

R. If I 22 amperes when E 110 volts and R 5 ohms, find I if

E 220 volts and R 11 ohms.

40. ANTHROPOLOGY Anthropologists, in their study of race and

human genetic groupings, often use an index called the cephalic in-

dex. The cephalic index C varies directly as the width w of the head

and inversely as the length l of the head (both when viewed from the

top). If an Indian in Baja California (Mexico) has measurements of

C  75, w  6 inches, and l  8 inches, what is C for an Indian in

northern California with w  8.1 inches and l  9 inches?

41. PHYSICS If the horsepower P required to drive a speedboat

through water is directly proportional to the cube of the speed v of

the boat, what change in horsepower is required to double the speed

of the boat?

42. ILLUMINATION The intensity of illumination E on a surface is in-

versely proportional to the square of its distance d from a light

source. What is the effect on the total illumination on a book if the

distance between the light source and the book is doubled?

6. Suppose that y varies inversely with x. What is the value of y

when x  1? Explain. 

In Problems 7–22, translate each statement into an equation using

k as the constant of proportionality.

7. F is inversely proportional to x.

8. y is directly proportional to the square of x.

9. R is jointly proportional to S and T.

10. u is inversely proportional to v.

11. L is directly proportional to the cube of m.

12. W is jointly proportional to X, Y, and Z.

13. A varies jointly as the square of c and d.

14. q varies inversely as t.

15. P varies directly as x.

16. f varies directly as the square of b.

17. h varies inversely as the square root of s.

18. C varies jointly as the square of x and cube of y.

19. R varies directly as m and inversely as the square of d.

20. T varies jointly as p and q and inversely as w.

21. D is jointly proportional to x and the square of y and inversely

proportional to z.

22. S is directly proportional to the square root of u and inversely

proportional to v.

23. u varies directly as the square root of v. If u  3 when v  4,

find u when v  10.

24. y varies directly as the cube of x. If y  48 when x  4, find y

when x  8.

25. L is inversely proportional to the square of M. If L  9 when

M  9, find L when M  6.

26. I is directly proportional to the cube root of y. If I  5 when

y  64, find I when y  8.

27. Q varies jointly as m and the square of n, and inversely as P. If

Q  2 when m  3, n  6, and P  12, find Q when 

m  4, n  18, and P  2.

28. w varies jointly as x, y, and z. If w 36 when x 2, y 8, and

z  12, find w when x  1, y  2, and z  4.

In Problems 29–34, translate each statement into an equation

using k as the constant of variation.

29. The biologist René Réaumur suggested in 1735 that the length

of time t that it takes fruit to ripen is inversely proportional to

the sum T of the average daily temperatures during the growing

season.

30. The erosive force P of a swiftly flowing stream is directly pro-

portional to the sixth power of the velocity v of the water.
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43. MUSIC The frequency of vibration f of a musical string is

directly proportional to the square root of the tension T and

inversely proportional to the length L of the string. If the tension of

the string is increased by a factor of 4 and the length of the string is

doubled, what is the effect on the frequency?

44. PHYSICS In an automobile accident the destructive force F of

a car is (approximately) jointly proportional to the weight w of the

car and the square of the speed v of the car. (This is why accidents

at high speed are generally so serious.) What would be the effect on

the destructive forces of a car if its weight were doubled and its

speed were doubled?

45. SPACE SCIENCE The length of time t a satellite takes to

complete a circular orbit of Earth varies directly as the radius r of

the orbit and inversely as the orbital velocity v of the satellite. If

t  1.42 hours when r  4,050 miles and v  18,000 miles hour

(Sputnik I), find t to two decimal places for r  4,300 miles and

v  18,500 miles hour.

46. GENETICS The number N of gene mutations resulting from x-

ray exposure varies directly as the size of the x-ray dose r. What is

the effect on N if r is quadrupled?

47. BIOLOGY In biology there is an approximate rule, called the

bioclimatic rule for temperate climates, which states that the differ-

ence d in time for fruit to ripen (or insects to appear) varies directly

as the change in altitude h. If d  4 days when h  500 feet, find

d when h  2,500 feet.

48. PHYSICS Over a fixed distance d, speed r varies inversely as

time t. Police use this relationship to set up speed traps. If in a given

speed trap r  30 miles hour when t  6 seconds, what would be

the speed of a car if t  4 seconds?

49. PHYSICS The length L of skid marks of a car’s tires (when the

brakes are applied) is directly proportional to the square of the

speed v of the car. How is the length of skid marks affected by dou-

bling the speed?

50. PHOTOGRAPHY In taking pictures using flashbulbs, the lens

opening (f-stop number) N is inversely proportional to the distance

d from the object being photographed. What adjustment should you

make on the f-stop number if the distance between the camera and

the object is doubled?

51. ENGINEERING The total pressure P of the wind on a wall

is jointly proportional to the area of the wall A and the square of the

velocity of the wind v. If P 120 pounds when A 100 square feet

and v  20 miles/hour, find P if A  200 square feet and v  30

miles/hour.

52. ENGINEERING The thrust T of a given type of propeller is

jointly proportional to the fourth power of its diameter d and the

square of the number of revolutions per minute n it is turning. What

happens to the thrust if the diameter is doubled and the number of

revolutions per minute is cut in half?

53. PSYCHOLOGY In early psychological studies on sensory per-

ception (hearing, seeing, feeling, and so on), the question was

asked: “Given a certain level of stimulation S, what is the minimum

amount of added stimulation  S that can be detected?” A German

physiologist, E. H. Weber (1795–1878) formulated, after many ex-

periments, the famous law that now bears his name: “The amount

of change  S that will be just noticed varies directly as the magni-

tude S of the stimulus.”

(A) Write the law as an equation of variation.

(B) If a person lifting weights can just notice a difference of

1 ounce at the 50-ounce level, what will be the least difference she

will be able to notice at the 500-ounce level?

(C) Determine the just noticeable difference in illumination a person

is able to perceive at 480 candlepower if he is just able to perceive a

difference of 1 candlepower at the 60-candle-power level.

54. PSYCHOLOGY Psychologists in their study of intelligence often

use an index called IQ. IQ varies directly as mental age MA and in-

versely as chronological age CA (up to the age of 15). If a 12-year-

old boy with a mental age of 14.4 has an IQ of 120, what will be the

IQ of an 11-year-old girl with a mental age of 15.4?

55. GEOMETRY The volume of a sphere varies directly as the cube

of its radius r. What happens to the volume if the radius is doubled?

56. GEOMETRY The surface area S of a sphere varies directly as the

square of its radius r. What happens to the area if the radius is cut

in half?

57. MUSIC The frequency of vibration of air in an open organ pipe

is inversely proportional to the length of the pipe. If the air column

in an open 32-foot pipe vibrates 16 times per second (low C), then

how fast would the air vibrate in a 16-foot pipe?

58. MUSIC The frequency of pitch f of a musical string is directly

proportional to the square root of the tension T and inversely propor-

tional to the length l and the diameter d. Write the equation of vari-

ation using k as the constant of variation. (It is interesting to note

that if pitch depended on only length, then pianos would have to

have strings varying from 3 inches to 38 feet.)

4-1 Polynomial Functions and Models

A function that can be written in the form 

P(x) anxn
  an 1xn 1

 . . .  a1x  a0, an   0,

is a polynomial function of degree n. In this chapter, when not

specified otherwise, the coefficients an, an 1, . . . , a1, a0 are com-

plex numbers and the domain of P is the set of complex numbers. A

number r is said to be a zero (or root) of a function P(x) if P(r)  0.

The real zeros of P(x) are just the x intercepts of the graph of P(x).

A point on a continuous graph that separates an increasing portion

from a decreasing portion, or vice versa, is called a turning point.

If P(x) is a polynomial of degree n 0 with real coefficients, then

the graph of P(x):

1. Is continuous for all real numbers

2. Has no sharp corners

7
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3. Has at most n real zeros

4. Has at most n –1 turning points

5. Increases or decreases without bound as x S  and as 

x S   

The left and right behavior of such a polynomial P(x) is determined

by its highest degree or leading term: As x S   , both anxn and

P(x) approach  , with the sign depending on n and the sign of an.

For any polynomial P(x) of degree n, we have the following

important results:

Division Algorithm

P(x) (x  r)Q(x) R where the quotient Q(x) and remainder R

are unique; x – r is the divisor.

Remainder Theorem

P(r) R

Factor Theorem

x – r is a factor of P(x) if and only if R 0.

Zeros of Polynomials

P(x) has at most n zeros.

Synthetic division is an efficient method for dividing polyno-

mials by linear terms of the form x – r.

4-2 Real Zeros and Polynomial Inequalities

The following theorems are useful in locating and approximating

all real zeros of a polynomial P(x) of degree n 0 with real coef-

ficients, an 0:

Upper and Lower Bound Theorem

1. Upper bound: A number r 0 is an upper bound for the real

zeros of P(x) if, when P(x) is divided by x – r using synthetic

division, all numbers in the quotient row, including the

remainder, are nonnegative.

2. Lower bound: A number r 0 is a lower bound for the real

zeros of P(x) if, when P(x) is divided by x – r using synthetic

division, all numbers in the quotient row, including the

remainder, alternate in sign.

Location Theorem

Suppose that a function f is continuous on an interval I that contains

numbers a and b. If f (a) and f (b) have opposite signs, then the

graph of f has at least one x intercept between a and b.

The bisection method uses the location theorem repeatedly to

approximate real zeros to any desired accuracy.

Polynomial inequalities can be solved by finding the zeros

and inspecting the graph of an appropriate polynomial with real

coefficients.

4-3 Complex Zeros and Rational Zeros of Polynomials

If P(x) is a polynomial of degree n 0 we have the following

important theorems:

Fundamental Theorem of Algebra

P(x) has at least one zero.

7

6

7

7

7

n Linear Factors Theorem

P(x) can be factored as a product of n linear factors.

If P(x) is factored as a product of linear factors, the number of

linear factors that have zero r is said to be the multiplicity of r.

Imaginary Zeros Theorem

Imaginary zeros of polynomials with real coefficients, if they exist,

occur in conjugate pairs.

Linear and Quadratic Factors Theorem

If P(x) has real coefficients, then P(x) can be factored as a product

of linear factors (with real coefficients) and quadratic factors (with

real coefficients and imaginary zeros).

Real Zeros and Polynomials of Odd Degree

If P(x) has odd degree and real coefficients, then the graph of P has

at least one x intercept.

Zeros of Even or Odd Multiplicity

Let P(x) have real coefficients:

1. If r is a real zero of P(x) of even multiplicity, then P(x) has a

turning point at r and does not change sign at r.

2. If r is a real zero of P(x) of odd multiplicity, then P(x) does not

have a turning point at r and changes sign at r.

Rational Zero Theorem

If the rational number b/c, in lowest terms, is a zero of the polynomial

with integer coefficients, then b must be an integer factor of a0 and

c must be an integer factor of an.

If P(x) (x  r)Q(x), then Q(x) is called a reduced polyno-

mial for P(x).

4-4 Rational Functions and Inequalities

A function f is a rational function if it can be written in the form

where p(x) and q(x) are polynomials of degrees m and n, respectively.

The graph of a rational function f(x):

1. Is continuous with the exception of at most n real numbers

2. Has no sharp corners

3. Has at most m real zeros

4. Has at most m  n – 1 turning points

5. Has the same left and right behavior as the quotient of the

leading terms of p(x) and q(x)

The vertical line x  a is a vertical asymptote for the graph 

of y  f (x) if f (x) S  or f (x) S   as x S a or as x S a . The

horizontal line y  b is a horizontal asymptote for the graph of

y  f (x) if f (x) S b as x S   or as x S  . The line y  mx  b

is an oblique asymptote if [ f (x) (mx b)] S 0 as x S   or

as x S  .

f (x)  
p(x)

q(x)

an  0P(x)  an 
xn
 an 1xn 1

 # # #  a1x  a0
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Work through all the problems in this chapter review, and check

answers in the back of the book. Answers to all review problems

are there, and following each answer is a number in italics

indicating the section in which that type of problem is discussed.

Where weaknesses show up, review appropriate sections in the text.

1. List the real zeros and turning points, and state the left and

right behavior, of the polynomial function that has the indi-

cated graph.

2. Use synthetic division to divide P(x)  2x3
 3x2

 1 

by D(x)  x  2, and write the answer in the form 

P(x)  D(x)Q(x) R.

x

y

 5

5 5

5

3. If P(x) x5
 4x4

 9x2
 8, find P(3) using the remainder

theorem and synthetic division.

4. What are the zeros of P(x) 3(x 2)(x 4)(x 1)?

5. If P(x) x2
 2x  2 and P(1 i)  0, find another zero of

P(x).

6. Let P(x) be the polynomial whose graph is shown in the

following figure.

(A) Assuming that P(x) has integer zeros and leading coeffi-

cient 1, find the lowest-degree equation that could produce

this graph.

(B) Describe the left and right behavior of P(x).

x

P(x)

 5

5 5

5

CHAPTER 4 Review Exercises

Let 

1. If m n, the line y  0 (the x axis) is a horizontal asymptote.

2. If m n, the line y  am兾bn is a horizontal asymptote.

3. If there is no horizontal asymptote.

Analyzing and Sketching the Graph of a Rational Function:

f (x) ⴝ p(x)兾q(x)

Step 1. Intercepts. Find the real solutions of the equation p(x)  0

and use these solutions to plot any x intercepts of the graph

of f. Evaluate f(0), if it exists, and plot the y intercept.

Step 2. Vertical Asymptotes. Find the real solutions of the equation

q(x)  0 and use these solutions to determine the domain of

f, the points of discontinuity, and the vertical asymptotes.

Sketch any vertical asymptotes as dashed lines.

Step 3. Horizontal Asymptotes. Determine whether there is a hor-

izontal asymptote and, if so, sketch it as a dashed line.

Step 4. Complete the Sketch. For each interval in the domain of f,

plot additional points and join them with a smooth

continuous curve.

Rational inequalities can be solved by finding the zeros of p(x)

and q(x), for an appropriate rational function and

inspecting the graph of f.

f (x)  p(x) q(x),

m 7 n,

6

bn  0.am  0,f (x)  
am 

xm
 # # #  a1x  a0

bn 
xn
 # # #  b1x  b0

,
4-5 Variation and Modeling

Let x and y be variables. The statement:

1. y is directly proportional to x (or y varies directly as x) means

y  kx

for some nonzero constant k;

2. y is inversely proportional to x (or y varies inversely as x) means

for some nonzero constant k;

3. w is jointly proportional to x and y (or w varies jointly as x

and y) means

w  kxy

for some nonzero constant k.

In each case the nonzero constant k is called the constant of pro-

portionality (or constant of variation).

The three basic types of variation also can be combined. For

example, Newton’s law of gravitation, “The force of attraction F

between two objects is jointly proportional to their masses m1

and m2 and inversely proportional to the square of the distance d

between them” has the equation

F  k 

m1m2

d 2

y  
k

x



7.According to the upper and lower bound theorem, which of 

the following are upper or lower bounds of the zeros of 

P(x)  x3
 4x2

 2?

 2,  1, 3, 4

8. How do you know that has at least

one real zero between 1 and 2?

9. List all possible rational zeros of a polynomial with integer coef-

ficients that has leading coefficient 5 and constant term  15.

10. Find all rational zeros for P(x) = 5x2
 74x 15.

11. Find the domain and x intercepts for:

(A)

(B)

12. Find the horizontal and vertical asymptotes for the functions in

Problem 11.

13. Explain why the graph is not the graph of a polynomial function.

In Problems 14–19, translate each statement into an equation

using k as the constant of proportionality.

14. F is directly proportional to the square root of x.

15. G is jointly proportional to x and the square of y.

16. H is inversely proportional to the cube of z.

17. R varies jointly as the square of x and the square of y.

18. S varies inversely as the square of u.

19. T varies directly as v and inversely as w.

20. Let P(x) x3
 3x2

 3x 4.

(A) Graph P(x) and describe the graph verbally, including the

number of x intercepts, the number of turning points, and

the left and right behavior.

(B) Approximate the largest x intercept to two decimal places.

21. If P(x) 8x4
 14x3

 13x2
 4x 7, find Q(x) and R such

that What is 

22. If P(x) 4x3
 8x2

 3x 3, find using the remainder

theorem and synthetic division.

23. Use the quadratic formula and the factor theorem to factor

P(x) x2
 2x 1.

24. Is x  1 a factor of P(x)  9x26
 11x17

 8x11
 5x4

 7?

Explain, without dividing or using synthetic division.

P( 1
2)

P(1
4)?P(x)  (x  1

4)Q(x)  R.

x

y

 5

5 5

5

g (x)   

7x  3

x2
 2x  8

f (x)   

6x

x  5

P(x)  2x3
 3x2

 x  5
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25. Determine all rational zeros of P(x) 2x3
 3x2

 18x 8.

26. Factor the polynomial in Problem 25 into linear factors.

27. Find all rational zeros of P(x) x3
 3x2

 5.

28. Find all zeros (rational, irrational, and imaginary) exactly for

P(x) 2x4
 x3

 2x 1.

29. Factor the polynomial in Problem 28 into linear factors.

30. If P(x) (x 1)2(x 1)3(x2
 1)(x2

 1), what is its degree?

Write the zeros of P(x), indicating the multiplicity of each if greater

than 1.

31. Factor P(x) x4
 5x2

 36 in two ways:

(A) As a product of linear factors (with real coefficients) and

quadratic factors (with real coefficients and imaginary

zeros)

(B) As a product of linear factors with complex coefficients

32. Let P(x) x5
 10x4

 30x3
 20x2

 15x 2.

(A) Approximate the zeros of P(x) to two decimal places and

state the multiplicity of each zero.

(B) Can any of these zeros be approximated with the bisection

method? A maximum command? A minimum command?

Explain.

33. Let P(x) x4
 2x3

 30x2
 25.

(A) Find the smallest positive and largest negative integers

that, by Theorem 1 in Section 4-2, are upper and lower

bounds, respectively, for the real zeros of P(x).

(B) If (k, k  1), k an integer, is the interval containing the

largest real zero of P(x), determine how many additional

intervals are required in the bisection method to approxi-

mate this zero to one decimal place.

(C) Approximate the real zeros of P(x) of two decimal places.

34. Let 

(A) Find the domain and the intercepts for f.

(B) Find the vertical and horizontal asymptotes for f.

(C) Sketch a graph of f. Draw vertical and horizontal asymp-

totes with dashed lines.

35. Solve each polynomial inequality to three decimal places:

(A) x3
 5x  4  0

(B) x3
 5x  4  2

36. Explain why the graph is not the graph of a rational function.

37. B varies inversely as the square root of c. If B  5 when 

c 4, find B when c 25.

38. D is jointly proportional to x and y. If D  10 when x  3 and

y 2, find D when x 9 and y 8.

x

y

 5

5 5

5

f (x)  
x  1

2x  2
.
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APPLICATIONS

In Problems 55–58, express the solutions as the roots of a

polynomial equation of the form P(x)  0. Find rational solutions

exactly and irrational solutions to one decimal place.

55. ARCHITECTURE An entryway is formed by placing a rectangu-

lar door inside an arch in the shape of the parabola with graph

y  16  x2, x and y in feet (see the figure). If the area of the door

is 48 square feet, find the dimensions of the door.

56. CONSTRUCTION A grain silo is formed by attaching a hemi-

sphere to the top of a right circular cylinder (see the figure). If the

cylinder is 18 feet high and the volume of the silo is 486 cubic feet,

find the common radius of the cylinder and the hemisphere.

57. MANUFACTURING A box is to be made out of a piece of card-

board that measures 15 by 20 inches. Squares, x inches on a side,

will be cut from each corner, and then the ends and sides will be

folded up (see the figure). Find the value of x that would result in a

box with a volume of 300 cubic inches.

20 in.

1
5
 i
n

.

x

x

18 feet

x

x

16 y   16   x2

x

y

4 4

39. Use synthetic division to divide P(x)  x3
 3x  2 by

[x (1 i)]. Write the answer in the form P(x) D(x)Q(x) R.

40. Find a polynomial of lowest degree with leading coefficient 1

that has zeros (multiplicity 2),  3, and 1 (multiplicity 3).

(Leave the answer in factored form.) What is the degree of the

polynomial?

41. Repeat Problem 40 for a polynomial P(x) with zeros  5, 2 3i,

and 2 3i.

42. Find all zeros (rational, irrational, and imaginary) exactly for

P(x) 2x5
 5x4

 8x3
 21x2

 4.

43. Factor the polynomial in Problem 42 into linear factors.

44. Let P(x) x4
 16x3

 47x2
 137x  73. Approximate (to

two decimal places) the x intercepts and the local extrema.

45.What is the minimal degree of a polynomial P(x), given that

P( 1)   4, P(0) 2, P(1)  5, and P(2) 3? Justify your

conclusion.

46. If P(x) is a cubic polynomial with integer coefficients and if

1 2i is a zero of P(x), can P(x) have an irrational zero? Explain.

47.The solutions to the equation x3
 27 0 are the cube roots of 27.

(A) How many cube roots of 27 are there?

(B) 3 is obviously a cube root of 27; find all others.

48. Let P(x) x4
 2x3

 500x2
 4,000.

(A) Find the smallest positive integer multiple of 10 and the

largest negative integer multiple of 10 that, by Theorem 1 in

Section 4-2, are upper and lower bounds, respectively, for

the real zeros of P(x).

(B) Approximate the real zero of P(x) to two decimal places.

49. Graph

Indicate any vertical, horizontal, or oblique asymptotes with

dashed lines.

50. Use a graphing calculator to find any horizontal asymptotes for 

51. Solve each rational inequality:

(A) (B) 

52. Solve each rational inequality to three decimal places:

(A) 

(B) 

53. If P(x) x3
 x2

 5x 4, determine the number of real zeros

of P(x) and explain why P(x) has no rational zeros.

54. Give an example of a rational function f(x) that satisfies the fol-

lowing conditions: the real zeros of f are  3, 0, and 2; the verti-

cal asymptotes of f are the line x   1 and x  4; and the line

y 5 is a horizontal asymptote.

x2
 3

x3
 3x  1

7
5

x2

x2
 3

x3
 3x  1

 0

17

x  3
7

5

x

x  2

5  x
 0

f (x)  
2x

2x2
 3x  4

f (x)  
x2
 2x  3

x  1

 
1
2



58. PHYSICS The centripetal force F of a body moving in a circular

path at constant speed is inversely proportional to the radius r of the

path. What happens to F if r is doubled?

59. PHYSICS The Maxwell–Boltzmann equation says that the aver-

age velocity v of a molecule varies directly as the square root of the

absolute temperature T and inversely as the square root of its molec-

ular weight w. Write the equation of variation using k as the constant

of variation.

60. WORK The amount of work A completed varies jointly as the

number of workers W used and the time t they spend. If 10 workers

can finish a job in 8 days, how long will it take 4 workers to do the

same job?

61. SIMPLE INTEREST The simple interest I earned in a given time

is jointly proportional to the principal p and the interest rate r. If

$100 at 4% interest earns $8, how much will $150 at 3% interest

earn in the same period?

Problems 62 and 63 require a graphing calculator or a computer

that can calculate cubic regression polynomials for a given 

data set.

62. ADVERTISING A chain of appliance stores uses television ads to

promote the sale of refrigerators. Analyzing past records produced the

data in the table, where x is the number of ads placed monthly and y is

the number of refrigerators sold that month.

(A) Find a cubic regression equation for these data using the num-

ber of ads as the independent variable.

(B) Estimate (to the nearest integer) the number of refrigerators that

would be sold if 15 ads are placed monthly.

(C) Estimate (to the nearest integer) the number of ads that should

be placed to sell 750 refrigerators monthly.

Number of Ads Number of Refrigerators

x y

10 270

20 430

25 525

30 630

45 890

48 915

63. CRIME STATISTICS According to data published by the FBI, the

crime index in the United States has shown a downward trend since

the early 1990s. The crime index is defined as the number of crimes

per 100,000 inhabitants.

Year Crime index

1987 5,550

1992 5,660

1997 4,930

2002 4,119

2007 3,016

Source: Federal Bureau of Investigation

(A) Find a cubic regression model for the crime index if x 0 repre-

sents 1987.

(B) Use the cubic regression model to predict the crime index in 2020.

(C) Do you expect the model to give accurate predictions after 2020?

Explain.
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CHAPTER 4

ZZZ GROUP ACTIVITY Interpolating Polynomials

How could you find a polynomial whose graph passes through

the points (1, 1) and (2, 3)? You could use the point-slope form

of the equation of a line. How could you find a polynomial

P(x) whose graph passes through all four of the points (1, 1),

(2, 3), (3,  3), and (4, 1)?  Such a polynomial is called an in-

terpolating polynomial for the four points. The key is to write

the unknown polynomial P(x) in the form

P(x)  a0  a1(x  1)  a2(x  1)(x 2) 

 a3(x  1)(x 2)(x 3) 

To find a0 , substitute 1 for x. Next, to find a1, substitute 2 for x.

Then, to find a2, substitute 3 for x. Finally, to find a3, substitute

4 for x.

(A) Find a0, a1, a2, and a3.

(B) Expand P(x) and verify that P(x) 3x3
 22x2

 47x 27.

(C) Explain why P(x) is the only polynomial of degree 3

whose graph passes through the four given points.

(D) Give an example to show that the interpolating polynomial

for a set of n  1 points may have degree less than n.

(E) Find the interpolating polynomial for the five points 

( 2,  3), ( 1, 0), (0, 5), (1, 0), and (2,  3).



Exponential and

Logarithmic Functions

MOST of the functions we’ve worked with so far have been polynomial

or rational functions, with a few others involving roots. Functions that

can be expressed in terms of addition, subtraction, multiplication,

division, and roots of variables and constants are called algebraic

functions. In Chapter 5, we will study exponential and logarithmic

functions. These functions are not algebraic; they belong to the class

of transcendental functions. Exponential and logarithmic functions

are used to model a surprisingly wide variety of real-world phenom-

ena: growth of populations of people, animals, and bacteria; decay

of radioactive substances; epidemics; magnitudes of sounds and

earthquakes. These and many other applications will be studied in

this chapter.

C

CHAPTER

5
OUTLINE

5-1 Exponential Functions

5-2 Exponential Models

5-3 Logarithmic Functions

5-4 Logarithmic Models

5-5 Exponential and Logarithmic
Equations

Chapter 5 Review

Chapter 5 Group Activity:
Comparing Regression Models



Many of the functions we’ve studied so far have included exponents. But in every case, the

exponent was a constant, and the base was often a variable. In this section, we will reverse

those roles. In an exponential function, the variable appears in an exponent. As we’ll see,

this has a significant effect on the properties and graphs of these functions. A review of the

basic properties of exponents in Section R-2, would be very helpful before moving on.

Z Defining Exponential Functions

Let’s start by noting that the functions f and g given by

and

are not the same function. Whether a variable appears as an exponent with a constant base

or as a base with a constant exponent makes a big difference. The function g is a quadratic

function, which we have already discussed. The function f is an exponential function.

The graphs of f and g are shown in Figure 1. As expected, they are very different.

We know how to define the values of for many types of inputs. For positive inte-

gers, it’s simply repeated multiplication:

For negative integers, we use properties of negative exponents:

For rational numbers, a calculator comes in handy:

The only catch is that we don’t know how to define for all real numbers. For example,

what does

mean? Your calculator can give you a decimal approximation, but where does it come from?

That question is not easy to answer at this point. In fact, a precise definition of must

wait for more advanced courses. For now, we will simply state that for any positive real

number b, the expression is defined for all real values of x, and the output is a real num-

ber as well. This enables us to draw the continuous graph for in Figure 1. In Prob-

lems 79 and 80 in Exercises 5-1, we will explore a method for defining for irrational x

values like 12.

bx

f (x)  2x

bx

212

212

2x

2
9
4
 24 29

⬇ 4.82
3
2
 223

⬇ 2.8;2
1
2
 12 ⬇ 1.4;

2 1
 

1

2
;  2 2

 

1

22
 

1

4
;  2 3

 

1

23
 

1

8

24
 2 ⴢ 2 ⴢ 2 ⴢ 2  1623

 2 ⴢ 2 ⴢ 2  8;22
 2 ⴢ 2  4;

2x

g(x)  x2f (x)  2x
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5-1 Exponential Functions

Z Defining Exponential Functions

Z Graphs of Exponential Functions

Z Additional Exponential Properties

Z The Exponential Function with Base e

Z Compound Interest

Z Interest Compounded Continuously

Z Figure 1

y   x2

x

y

5 5

10

y   2
x

x

y

5 5

10

(a)

(b)



The domain of f is the set of all real numbers, and it can be shown that the range of f

is the set of all positive real numbers. We require the base b to be positive to avoid imagi-

nary numbers such as Problems 53 and 54 in Exercises 5-1 explore why and

are excluded.

Z Graphs of Exponential Functions

b  1

b  0( 2)1 2.
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Z DEFINITION 1 Exponential Function

The equation

defines an exponential function for each different constant b, called the base. The

independent variable x can assume any real value.

b 7 0, b  1f (x)  bx

Compare the graphs of and by plotting both functions on the

same coordinate system. Find all points of intersection of the graphs. For which

values of x is the graph of f above the graph of g? Below the graph of g? Are the

graphs of f and g close together as As Discuss.x S  ?x S   ?

g(x)  2xf (x)  3x
ZZZ EXPLORE-DISCUSS 1

The graphs of for and 5 are shown in Figure 2. Note that all three have

the same basic shape, and pass through the point (0, 1). Also, the x axis is a horizontal

asymptote for each graph, but only as The main difference between the graphs is

their steepness.

Next, let’s look at the graphs of for and (Fig. 3). Again, all three have

the same basic shape, pass through (0, 1), and have horizontal asymptote but we can

see that for the asymptote is only as In general, for bases less than 1, the

graph is a reflection through the y axis of the graphs for bases greater than 1.

The graphs in Figures 2 and 3 suggest that the graphs of exponential functions have

the properties listed in Theorem 1, which we state without proof.

x S   .b 6 1,

y  0,

1
5b  

1
2, 

1
3,y  bx

x S  .

b  2, 3,y  bx

Z Figure 2 y  b
x
 for b  2, 3, 5.

5 5

10

5

y

x

y3   5
x

y2   3
x

y1   2
x

Z Figure 3 for b  
1
2, 

1
3, 

1
5.y  b

x

5 5

10

5

y

x

冢 冣1

2
y1         

x

冢 冣1

3
y2         

x

冢 冣1

5
y3         

x

Z THEOREM 1 Properties of Graphs of Exponential Functions

Let be an exponential function, Then the graph of f (x):

1. Is continuous for all real numbers

2. Has no sharp corners

3. Passes through the point (0, 1)

4. Lies above the x axis, which is a horizontal asymptote either as or

but not both

5. Increases as x increases if decreases as x increases if 

6. Intersects any horizontal line at most once (that is, f is one-to-one)

0 6 b 6 1b 7 1;

x S  ,

x S  

b 7 0, b  1.f (x)  bx

These properties indicate that the graphs of exponential functions are distinct from the

graphs we have already studied. (Actually, property 4 is enough to ensure that graphs of

exponential functions are different from graphs of polynomials and rational functions.)

Property 6 is important because it guarantees that exponential functions have inverses.

Those inverses, called logarithmic functions, are the subject of Section 5-3.



Transformations of exponential functions are very useful in modeling real-world phe-

nomena, like population growth and radioactive decay. These are among the applications

we’ll study in Section 5-2. It is important to understand how the graphs of those functions

are related to the graphs of the exponential functions in this section. In Example 1, we will

use the transformations we studied in Section 3-3 to examine this relationship.
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EXAMPLE 1 Transformations of Exponential Functions

For the function , use transformations to explain how the graph of g is related

to the graph of in Figure 1(b). Find the intercepts and asymptotes, and draw the

graph of g.

f (x)  2x
g(x)  1

4 (2x )

SOLUTION The graph of g is a vertical shrink of the graph of f by a factor of . So like f, g (x)  0

for all real numbers x, and as . In other words, there are no x intercepts,

and the x axis is a horizontal asymptote. Since , is the y intercept. Plot-

ting the intercept and a few more points, we obtain the graph of g shown in the figure, with

a portion magnified to illustrate the behavior better.

1
4g(0)  1

4 (20)  1
4

xS  g(x)S 0

1
4

x

y

0.5

⫺1⫺2⫺3

1

x

y

5

5⫺5

10

MATCHED PROBLEM 1 Let Use transformations to explain how the graph of g is related to the graph

of the exponential function f (x)  4x. Find the intercepts and asymptotes, and sketch the

graph of g.

�

Z Additional Exponential Properties

Exponential functions whose domains include irrational numbers obey the familiar laws of

exponents for rational exponents. We summarize these exponent laws here and add two other

useful properties.

g(x)  1
2 
(4 x ).

Z EXPONENTIAL FUNCTION PROPERTIES

For a and b positive, a  1, b  1, and x and y real:

1. Exponent laws:

axay
 ax y (ax)y  axy (ab)x axbx

2. ax ay if and only if x  y. 

3. For x  0, ax bx if and only if a  b.

2
5x

2
7x
     ⴝ 2

5xⴚ7x    
ⴝ 2

ⴚ2x
a 
x

a 
y  a 

x yaa
b
bx  a 

x

bx

If 6
4x
⫽ 6

2xⴙ4
, then 4x⫽ 2x ⴙ 4, and x⫽ 2.

If a
4
⫽ 3

4
, then a ⫽ 3.

*

*Throughout the book, dashed boxes—called think boxes—are used to represent steps that may be performed mentally.

�



Property 2 is another way to express the fact that the exponential function f(x) ax is one-

to-one (see property 6 of Theorem 1). Because all exponential functions of the form f(x) ax

pass through the point (0, 1) (see property 3 of Theorem 1), property 3 indicates that the

graphs of exponential functions with different bases do not intersect at any other points.
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EXAMPLE 2 Using Exponential Function Properties

Solve 4x 3
 8 for x.

SOLUTION Express both sides in terms of the same base, and use property 2 to equate exponents.

4x 3
 8 Express 4 and 8 as powers of 2.

(22)x 3
 23

Use the property (a
x
)
y
ⴝ a

xy
.

22x 6
 23

Use property 2 to set exponents equal.

2x  6  3 Add 6 to both sides.

2x  9 Divide both sides by 2.

x  9
2

CHECK 4(9 2) 3
 43 2  (14)3

 23
 
✓

8

Technology Connections

As an alternative to the algebraic method of Example 2, you

can use a graphing calculator to solve the equation

4
xⴚ3
ⴝ 8. Graph y1ⴝ 4

xⴚ3
and y2ⴝ 8, then use the inter-

sect command to obtain x ⴝ 4.5 (Fig. 4).

Z Figure 4

⫺10

⫺10

10

10

MATCHED PROBLEM 2 Solve 27x 1
 9 for x.

�

Z The Exponential Function with Base e

Surprisingly, among the exponential functions it is not the function with base 2

or the function with base 10 that is used most frequently in mathematics. Instead,

the most commonly used base is a number that you may not be familiar with.

h(x)  10x

g(x)  2x

(A) Calculate the values of for and 5. Are the values

increasing or decreasing as x gets larger?

(B) Graph and discuss the behavior of the graph as x increases

without bound.

y  [1  (1/x)]x

x  1, 2, 3, 4,[1  (1/x)]xZZZ EXPLORE-DISCUSS 2

�



By calculating the value of for larger and larger values of x (Table 1), it

looks like approaches a number close to 2.7183. In a calculus course, we can

show that as x increases without bound, the value of approaches an irrational

number that we call e. Just as irrational numbers such as and have unending, non-

repeating decimal representations, e also has an unending, nonrepeating decimal represen-

tation. To 12 decimal places,

Don’t let the symbol “e” intimidate you! It’s just a number. 

Exactly who discovered e is still being debated. It is named after the great Swiss math-

ematician Leonhard Euler (1707–1783), who computed e to 23 decimal places using

The constant e turns out to be an ideal base for an exponential function because in cal-

culus and higher mathematics many operations take on their simplest form using this base.

This is why you will see e used extensively in expressions and formulas that model real-

world phenomena.

[1  (1 x)]x.

0⫺2 ⫺1 21 3 4

兹2 e

e ⴝ 2.718 281 828 459

12 

[1  (1 x)]x

[1  (1 x)]x

[1  (1 x)]x
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Z DEFINITION 2 Exponential Function with Base e

For x a real number, the equation

defines the exponential function with base e.

f (x)  ex

The exponential function with base e is used so frequently that it is often referred to

as the exponential function. The graphs of and are shown in Figure 5.y  e xy  ex
Z Figure 5 Exponential functions.

y

5⫺5

10

20

x

y ⫽ e⫺x y ⫽ ex

EXAMPLE 3 Analyzing a Graph

Let g(x)  4  ex兾2. Use transformations to explain how the graph of g is related to the

graph of f1(x)  ex. Determine whether g is increasing or decreasing, find any asymptotes,

and sketch the graph of g.

SOLUTION The graph of g can be obtained from the graph of f1 by a sequence of three transforma-

tions:

f1(x)  ex
S f2(x)  ex兾2

S f3(x)   ex兾2
S g(x)  4  ex兾2

Horizontal Reflection Vertical 

stretch in x axis translation

[See Fig. 6(a) for the graphs of f1, f2, and f3, and Fig. 6(b) for the graph of g.] The function

g is decreasing for all x. Because ex兾2
S 0 as x S  , it follows that g(x)  4  ex兾2 

S 4

as x S   . Therefore, the line y  4 is a horizontal asymptote [indicated by the dashed

line in Fig. 6(b)]; there are no vertical asymptotes. [To check that the graph of g (as obtained

by graph transformations) is correct, plot a few points.]

Table 1

x

1 2

10 2.593 74 …

100 2.704 81 …

1,000 2.716 92 …

10,000 2.718 14 …

100,000 2.718 27 …

1,000,000 2.718 28 …

a1 ⴙ
1

x

bx



Let g(x) 2ex兾2  5. Use transformations to explain how the graph of g is related to the

graph of f1(x) ex. Describe the increasing/decreasing behavior, find any asymptotes, and

sketch the graph of g.

�

Z Compound Interest

The fee paid to use someone else’s money is called interest. It is usually computed as a

percentage, called the interest rate, of the original amount (or principal) over a given

period of time. At the end of the payment period, the interest paid is usually added to the

principal amount, so the interest in the next period is earned on both the original amount,

as well as the interest previously earned. Interest paid on interest previously earned and

reinvested in this manner is called compound interest.

Suppose you deposit $1,000 in a bank that pays 8% interest compounded semiannually.

How much will be in your account at the end of 2 years? “Compounded semiannually”

means that the interest is paid to your account at the end of each 6-month period, and the

interest will in turn earn more interest. To calculate the interest rate per period, we take

the annual rate r, 8% (or 0.08), and divide by the number m of compounding periods per

year, in this case 2. If represents the amount of money in the account after one com-

pounding period (6 months), then

Factor out $1,000.

We will next use to represent the amounts at the end of the second, third,

and fourth periods. (Note that the amount we’re looking for is is calculated by mul-

tiplying the amount at the beginning of the second compounding period by 1.04.

  $1,169.86

  $1,000(1  0.04)4

  [$1,000(1  0.04)3](1  0.04)

 A4  A3(1  0.04)

  $1,000(1  0.04)3

  [$1,000(1  0.04)2](1  0.04)

 A3  A2(1  0.04)

  $1,000(1  0.04)2

  [$1,000(1  0.04)](1  0.04)

 A2  A1(1  0.04)

(A1)

A4.) A2

A2, A3, and A4

  $1,000(1  0.04)

 A1  $1,000  $1,000 a0.08

2
b

Principal ⴙ 4% of principal

A1
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Z Figure 6 �

x

y

⫺5

5⫺5

5

f1 f2

f3

x

y

⫺5

5⫺5

5

y ⫽ 4

g(x) ⫽ 4 ⫺ ex/2

(a) (b)

MATCHED PROBLEM 3

Substitute our expression for 

Multiply.

Substitute our expression for 

Multiply.

Substitute our expression for 

Multiply.

Pa1 ⴙ
r

m
b4

A3.

Pa1 ⴙ
r

m
b3

A2.

Pa1 ⴙ
r

m
b2

A1.



What do you think the savings and loan will owe you at the end of 6 years (12 com-

pounding periods)? If you guessed

you have observed a pattern that is generalized in the following compound interest formula:

A  $1,000(1  0.04)12
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Z COMPOUND INTEREST

If a principal P is invested at an annual rate r compounded m times a year, then

the amount A in the account at the end of n compounding periods is given by

Note that the annual rate r must be expressed in decimal form, and that 

where t is years.

n  mt,

A  Pa1  
r

m
bn

Compound Interest

If you deposit $5,000 in an account paying 9% compounded daily,* how much will you

have in the account in 5 years? Compute the answer to the nearest cent.

MATCHED PROBLEM 4 If $1,000 is invested in an account paying 10% compounded monthly, how much will be in

the account at the end of 10 years? Compute the answer to the nearest cent.

�

EXAMPLE 4

SOLUTION We will use the compound interest formula with P   5,000, r  0.09, (which is 9% written

as a decimal), m  365, and n  5(365)  1,825:

Let P ⴝ 5,000, r ⴝ 0.09, m ⴝ 365, n ⴝ 5(365), or 1,825

Calculate to nearest cent.

�  $7,841.13

  5,000 a1  
0.09

365
b1,825

 A  P a1  
r

m
bn

EXAMPLE 5 Comparing Investments

If $1,000 is deposited into an account earning 10% compounded monthly and, at the same

time, $2,000 is deposited into an account earning 4% compounded monthly, will the first

account ever be worth more than the second? If so, when?

SOLUTION Let y1 and y2 represent the amounts in the first and second accounts, respectively, then

P ⴝ 1,000, r ⴝ 0.10, m ⴝ 12

P ⴝ 2,000, r ⴝ 0.04, m ⴝ 12

where x is the number of compounding periods (months). Examining the graphs of y1 and

y2 [Fig. 7(a)], we see that the graphs intersect at x ⬇ 139.438 months. Because compound

 y2  2,000(1  0.04 12)x
 y1  1,000(1  0.10 12)x

*In all problems involving interest that is compounded daily, we assume a 365-day year.



If $4,000 is deposited into an account earning 10% compounded quarterly and, at the same

time, $5,000 is deposited into an account earning 6% compounded quarterly, when will the

first account be worth more than the second?

�
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0

0

5,000

240

(a) (b)

Z Figure 7 �

MATCHED PROBLEM 5

interest is paid at the end of each compounding period, we compare the amount in the

accounts after 139 months and after 140 months [Fig. 7(b)]. The first account is worth more

than the second for x  140 months, or after 11 years and 8 months.

Z Interest Compounded Continuously

If $1,000 is deposited in an account that earns compound interest at an annual rate of 8% for

2 years, how will the amount A change if the number of compounding periods is increased?

If m is the number of compounding periods per year, then

The amount A is computed for several values of m in Table 2. Notice that the largest gain

appears in going from annually to semiannually. Then, the gains slow down as m increases.

In fact, it appears that A might be approaching something close to $1,173.50 as m gets larger

and larger.

Table 2 Effect of Compounding Frequency

Compounding Frequency m

Annually 1 $1,166.400

Semiannually 2 1,169.859

Quarterly 4 1,171.659

Weekly 52 1,173.367

Daily 365 1,173.490

Hourly 8,760 1,173.501

We now return to the general problem to see if we can determine what happens to

as m increases without bound. A little algebraic manipulation of theA  P [1  (r/m)]mt

A ⴝ 100a1 ⴙ
0.08

m
b2m

A  1,000a1  
0.08

m
b2m



compound interest formula will lead to an answer and a significant result in the mathematics

of finance:

Does the expression within the square brackets look familiar? Recall from the first part of

this section that

as

Because the interest rate r is fixed, as So and

as

This is known as the continuous compound interest formula, a very important and widely

used formula in business, banking, and economics.

mS Pa1  
r

m
bmt  P c a1  

1

x
bx d rtS Pe

rt

(1  1
x
)xS e,mS .x  m/rS 

xS a1  
1

x
bxS e

  P c a1  
1

x
bx d rt

  Pa1  
1

m/r
b(m/r)rt

 A  Pa1  
r

m
bmt
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Z CONTINUOUS COMPOUND INTEREST FORMULA

If a principal P is invested at an annual rate r compounded continuously, then the

amount A in the account at the end of t years is given by

The annual rate r must be expressed as a decimal.

A  Pe
rt

EXAMPLE 6 Continuous Compound Interest

If $1,000 is invested at an annual rate of 8% compounded continuously, what amount, to

the nearest cent, will be in the account after 2 years?

SOLUTION Use the continuous compound interest formula to find A when P  $1,000, r  0.08, and

t  2:

A  Pe
rt

8% is equivalent to r ⴝ 0.08.

 $1,000e(0.08)(2)
Calculate to nearest cent.

 $1,173.51

Notice that the values calculated in Table 2 get closer to this answer as m gets larger. �

MATCHED PROBLEM 6 What amount will an account have after 5 years if $1,000 is invested at an annual rate of 12%

compounded annually? Quarterly? Continuously? Compute answers to the nearest cent.

�

Replace with and mt with 

Replace with variable x.
m

r

m

r
ⴢ rt.

1

m/r
,

r

m
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ANSWERS TO MATCHED PROBLEMS

1. The graph of g is the same as the graph of f reflected in the y axis and vertically shrunk by a

factor of 

x intercepts: none

y intercept: 

horizontal asymptote: y ⫽ 0 (x axis)

vertical asymptotes: none

2.

3. The graph of g is the same as the graph of f1 stretched horizontally by a factor of 2, stretched

vertically by a factor of 2, and shifted 5 units down; g is increasing.

horizontal asymptote: y ⫽ ⫺5

vertical asymptote: none

4. $2,707.04 5. After 23 quarters

6. Annually: $1,762.34; quarterly: $1,806.11; continuously: $1,822.12

x

y

⫺10

5⫺5

10

g

y ⫽ ⫺5

x ⫽ ⫺1
3

5⫺5

40

30

20

x

y

10

1

1 2 3

1
2

1
2.

4. Explain why and are really the

same function. Can you use this fact to add to your answer for

Problem 3?

5. How do we know that the equation has no solution?

6. Define the following terms related to compound interest:

principal, interest rate, compounding period.

ex ⫽ 0

g(x) ⫽ 4⫺xf (x) ⫽ (1/4)x

5-1 Exercises

1.What is an exponential function?

2.What is the significance of the symbol e in the study of expo-

nential functions?

3. For a function explain how you can tell if the

graph increases or decreases without looking at the graph.

f (x) ⫽ bx,



7. Match each equation with the graph of f, g, m, or n in the figure.

(A) y  (0.2)x (B) y  2x

(C) (D) y  4x

8. Match each equation with the graph of f, g, m, or n in the figure.

(A) y  e 1.2x (B) y  e0.7x

(C) y  e 0.4x (D) y  e1.3x

In Problems 9–16, use a calculator to compute answers to four

significant digits.

9. 10.

11. 12.

13. 14.

15. 16.

In Problems 17–24, simplify.

17. 103x 1104 x
18. (43x)2y

19. 20.

21. 22. (2x3y)z

23. 24.

In Problems 25–32, use transformations to explain how the graph

of g is related to the graph of f(x)  ex. Determine whether g is

increasing or decreasing, find the asymptotes, and sketch the

graph of g.

25. g(x)  3ex
26. g(x)  2e x

27. 28.

29. g(x)  2  ex
30. g(x)   4  ex

31. g(x)  ex 2
32. g(x)  ex 1

In Problems 33–50, solve for x.

33. 53x
 54x 2

34. 102 3x
 105x 6

35.  72x 3
36. 45x x2

 4
 6

7x2

g(x)  
1
5 e 

xg(x)  
1
3 e x

e4 3x

e2 5x

e5x

e2x 1

a4x

5yb
3z

5x 3

5x 4

3x

31 x

3 
 3  

2

2 
 2  

2

e121e

e  e 1e2
 e 2

3 12513

0

 4

6

4

f

g m n

0

 2

6

2

f g m

n

y  (1
3)

x
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37. 38.

39. (1  x)5
 (2x  1)5

40. 53
 (x  2)3

41. 2xe x
 0 42. (x  3)ex

 0

43. x2ex
 5xex

 0 44. 3xe x
 x2e x

 0

45. 9x2

 33x 1
46. 4x2

 2x 3

47. 25x 3
 125x

48. 45x 1
 162x 1

49. 42x 7
 8x 2

50. 1002x 3
 1,000x 5

51. Find all real numbers a such that a2
 a 2. Explain why this

does not violate the second exponential function property in

the box on page 330.

52. Find real numbers a and b such that a  b but a4
 b4.

Explain why this does not violate the third exponential func-

tion property in the box on page 330.

53. Evaluate for and 3. Why is 

b   1 excluded when defining the exponential function y   bx?

54. Evaluate for and 3. Why is 

b   0 excluded when defining the exponential function y   bx?

In Problems 55–64, use transformations to explain how the graph

of g is related to the graph of the given exponential function f.

Determine whether g is increasing or decreasing, find any

asymptotes, and sketch the graph of g.

55.

56.

57.

58.

59. g(x)  500(1.04)x; f (x)  1.04x

60. g(x)  1,000(1.03)x; f (x)  1.03x

61. g(x)  1  2ex 3; f (x)  ex

62. g(x)  4ex 1
 7; f (x)  ex

63. g(x)  3  4e2 x; f (x)  ex

64. g(x)   2  5e4 x; f (x)  ex

In Problems 65–68, simplify.

65. 66.

67. (ex
 e x)2

 (ex
 e x)2

68. ex(e x
 1)  e x(ex

 1)

In Problems 69–76, use a graphing calculator to find local

extrema, y intercepts, and x intercepts. Investigate the behavior as

x S  and as x   and identify any horizontal asymptotes.

Round any approximate values to two decimal places.

69. f(x)  2  ex 2
70. g(x)   3  e1 x

71. s(x)  72. r(x)  ex2

e x2

5x4e5x
 4x3e5x

x8

 2x3e 2x
 3x2e 2x

x6

f (x)  (2
3)

xg(x)  5  (2
3)

3x;

f (x)  (1
4)

xg(x)  (1
4)

x 2  3;

f (x)  (1
3)

xg(x)   (1
3)

 x;

f (x)  (1
2)

xg(x)   (1
2)

x;

x   3,  2,  1, 0, 1, 2,y  0x

x   3,  2,  1, 0, 1, 2,y  1x

(7
3)

2 x
 

3
7(4

5)
6x 1

 
5
4



73. 74.

75. 76.

77. Use a graphing calculator to investigate the behavior of

f (x) (1  x)1兾x as x approaches 0.

78. Use a graphing calculator to investigate the behavior of

f (x) (1  x)1兾x as x approaches  .

79. The irrational number is approximated by 1.414214 to six

decimal places. Each of 1.41, 1.414, 1.4142, 1.41421,

and 1.414214 is a rational number, so we know how to define

for each. Compute the value of for each of these x values,

and use your results to estimate the value of Then com-

pute using your calculator to check your estimate.

80. The irrational number is approximated by 1.732051 to six

decimal places. Each of 1.73, 1.732, 1.7321, 1.73205,

and 1.732051 is a rational number, so we know how to define

for each. Compute the value of for each of these x values,

and use your results to estimate the value of Then com-

pute using your calculator to check your estimate.

It is common practice in many applications of mathematics to

approximate nonpolynomial functions with appropriately selected

polynomials. For example, the polynomials in Problems 81–84,

called Taylor polynomials, can be used to approximate the exponen-

tial function f(x) e x. To illustrate this approximation graphically,

in each problem graph f(x) ex and the indicated polynomial in the

same viewing window,  4 x 4 and  5 y 50.

81.

82. 

83.

84.

85. Investigate the behavior of the functions f1(x)  x兾ex,

f2(x) x2兾ex, and f3(x) x3兾ex as x S  and as x S   , and

find any horizontal asymptotes. Generalize to functions of the

form fn(x) xn兾ex, where n is any positive integer.

86. Investigate the behavior of the functions g1(x)  xex,

g2(x) x2ex, and g3(x) x3ex as x S  and as x S   , and

find any horizontal asymptotes. Generalize to functions of the

form gn(x) xnex, where n is any positive integer.

APPLICATIONS*

87. FINANCE A couple just had a new child. How much should

they invest now at 6.25% compounded daily to have $100,000 for

the child’s education 17 years from now? Compute the answer to

the nearest dollar.

88. FINANCE A person wants to have $25,000 cash for a new car

5 years from now. How much should be placed in an account now if

the account pays 4.75% compounded weekly? Compute the answer

to the nearest dollar.

P4(x)  1  x  1
2x

2
 

1
6x

3
 

1
24x

4
 

1
120 

x5

P3(x)  1  x  1
2x

2
 

1
6x

3
 

1
24x

4

P2(x)  1  x  1
2x

2
 

1
6x

3

P1(x)  1  x  1
2x

2

313

313.

3x3x

x  1.7,

13

212

212.

2x2x

x  1.4,

12

g(x)  
3x
 3 x

2
f (x)  

2x
 2 x

2

G(x)  
100

1  e xF(x)  
200

1  3e x
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89. MONEY GROWTH If you invest $5,250 in an account paying

6.38% compounded continuously, how much money will be in the

account at the end of

(A) 6.25 years? (B) 17 years?

90. MONEY GROWTH If you invest $7,500 in an account paying

5.35% compounded continuously, how much money will be in the

account at the end of

(A) 5.5 years? (B) 12 years?

91. FINANCE If $3,000 is deposited into an account earning 8%

compounded daily and, at the same time, $5,000 is deposited into

an account earning 5% compounded daily, will the first account

ever be worth more than the second? If so, when?

92. FINANCE If $4,000 is deposited into an account earning 9%

compounded weekly and, at the same time, $6,000 is deposited

into an account earning 7% compounded weekly, will the first ac-

count ever be worth more than the second? If so, when?

93. FINANCE Will an investment of $10,000 at 4.9% compounded

daily ever be worth more at the end of any quarter than an invest-

ment of $10,000 at 5% compounded quarterly? Explain.

94. FINANCE A sum of $5,000 is invested at 7% compounded

semiannually. Suppose that a second investment of $5,000 is

made at interest rate r compounded daily. Both investments are

held for 1 year. For which values of r, to the nearest tenth of a per-

cent, is the second investment better than the first? Discuss.

95. PRESENT VALUE A promissory note will pay $30,000 at matu-

rity 10 years from now. How much should you pay for the note now

if the note gains value at a rate of 6% compounded continuously?

96. PRESENT VALUE A promissory note will pay $50,000 at ma-

turity years from now. How much should you pay for the note now

if the note gains value at a rate of 5% compounded continuously?

97. MONEY GROWTH The website Bankrate.com publishes a

weekly list of the top savings deposit yields. In the category of

3-year certificates of deposit, the following were listed:

Flagstar Bank, FSB 3.12% (CQ)

UmbrellaBank.com 3.00% (CD)

Allied First Bank 2.96% (CM)

where CQ represents compounded quarterly, CD compounded

daily, and CM compounded monthly. Find the value of $5,000 in-

vested in each account at the end of 3 years.

98. Refer to Problem 97. In the 1-year certificate of deposit cate-

gory, the following accounts were listed:

GMAC Bank 2.91% (CD)

UFBDirect.com 2.86% (CM)

Find the value of $10,000 invested in each account at the end of 1 year.

99. FINANCE Suppose $4,000 is invested at 6% compounded

weekly. How much money will be in the account in

(A) year? (B) 10 years?

100. FINANCE Suppose $2,500 is invested at 4% compounded

quarterly. How much money will be in the account in

(A) year? (B) 15 years?3
4

1
2

51
2

*Round monetary amounts to the nearest cent unless specified

otherwise. In all problems involving interest that is compounded daily,

assume a 365-day year.



One of the best reasons for studying exponential functions is the fact that many things

that occur naturally in our world can be modeled accurately by these functions. In this sec-

tion, we will study a wide variety of applications, including growth of populations of

people, animals, and bacteria; radioactive decay; spread of epidemics; propagation of

rumors; light intensity; atmospheric pressure; and electric circuits. The regression tech-

niques we used in Chapter 1 to construct linear and quadratic models will be extended

to construct exponential models.

Z Mathematical Modeling

Populations tend to grow exponentially and at different rates. A convenient and easily under-

stood measure of growth rate is the doubling time—that is, the time it takes for a popula-

tion to double. Over short periods the doubling time growth model is often used to model

population growth:

where

Note that when t   d,

A  A02d兾d  A02

and the population is double the original, as it should be. We will use this model to solve

a population growth problem in Example 1.

 d  Doubling time

 A0  Population at time t  0

A  Population at time t

A ⴝ A02t d
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5-2 Exponential Models

Z Mathematical Modeling

Z Data Analysis and Regression

Z A Comparison of Exponential Growth Phenomena

EXAMPLE 1 Population Growth

According to a 2008 estimate, the population of Nicaragua was about 5.7 million, and that

population is growing due to a high birth rate and relatively low mortality rate. If the pop-

ulation continues to grow at the current rate, it will double in 37 years. If the growth remains

steady, what will the population be in

(A) 15 years? (B) 40 years?

Calculate answers to three significant digits.

We can use the doubling time growth model, A  A0(2)t兾d with A0  5.7 and d  37:

A  5.7(2)t兾37
See Figure 1.

SOLUTIONS



(A) Find A when t   15 years:

To 3 significant digits

(B) Find A when t   40 years:

To 3 significant digits � A  5.7(2)40 37
 12.1 million

 A  5.7(2)15 37
 7.55 million
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5010 20 30 40

20

12

16

4

8

A (millions)

t

Z Figure 1 A  5.7(2)
t兾37

Before the great housing bust, Palm Coast, Florida, was the fastest-growing city in America.

Its population was about 34,000 in 2000, and it doubled in 6.6 years. If the population had

continued growing at that rate, what would it be in

(A) 2010? (B) 2020?

Calculate answers to three significant digits.

�

MATCHED PROBLEM 1

The doubling time growth model would not be expected to give accurate results

over long periods. According to the doubling time growth model of Example 1,

what was the population of Nicaragua 500 years ago when it was settled as a

Spanish colony? What will the population of Nicaragua be 200 years from now?

Explain why these results are unrealistic. Discuss factors that affect human pop-

ulations that are not taken into account by the doubling time growth model.

ZZZ EXPLORE-DISCUSS 1

The doubling time model is not the only one used to model populations. An alternative

model based on the continuous compound interest formula will be used in Example 2. In

this case, the formula is written as

where

The relative growth rate is written as a percentage in decimal form. For example, if a

population is growing so that at any time the population is increasing at 3% of the current

population per year, the relative growth rate k would be 0.03.

 k  Relative growth rate

 A0  Population at time t  0

 A  Population at time t

A  A0e
kt

EXAMPLE 2 Medicine—Bacteria Growth

Cholera, an intestinal disease, is caused by a cholera bacterium that multiplies exponentially

by cell division as modeled by

A  A0e
1.386t



where A is the number of bacteria present after t hours and A0 is the number of bacteria

present at t   0. If we start with 1 bacterium, how many bacteria will be present in

(A) 5 hours? (B) 12 hours?

Calculate the answers to three significant digits.
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(A) Use A0   1 and t   5:

A   A0e
1.386t

Let A0 ⴝ 1 and t ⴝ 5.

  e
1.386(5)

Calculate to three significant digits.

⬇ 1,020

(B) Use A0   1 and t   12:

A   A0e
1.386t

Let A0 ⴝ 1 and t ⴝ 12.

  e
1.386(12)

Calculate to three significant digits.

  16,700,000 �

SOLUTIONS

Repeat Example 2 if A  A0e
0.783t and all other information remains the same.

�

MATCHED PROBLEM 2

Exponential functions can also be used to model radioactive decay, which is sometimes

referred to as negative growth. Radioactive materials are used extensively in medical diag-

nosis and therapy, as power sources in satellites, and as power sources in many countries.

If we start with an amount A0 of a particular radioactive substance, the amount declines

exponentially over time. The rate of decay varies depending on the particular radioactive

substance. A convenient and easily understood measure of the rate of decay is the half-life

of the material—that is, the time it takes for half of a particular material to decay. We can

use the following half-life decay model:

where

Note that when the amount of time passed is equal to the half-life (t   h),

and the amount of radioactive material is half the original amount, as it should be.

A  A02 h h  A02 1
 A0 ⴢ

1
2

 h  Half-life

 A0  Amount at time t  0

 A  Amount at time t

 ⴝ A02 t h

 A ⴝ A0(
1
2)
t h

EXAMPLE 3 Radioactive Decay

The radioactive isotope gallium 67 (67Ga), used in the diagnosis of malignant tumors, has

a biological half-life of 46.5 hours. If we start with 100 milligrams of the isotope, how

many milligrams will be left after

(A) 24 hours? (B) 1 week?

Calculate answers to three significant digits.



We can use the half-life decay model:

Using A0   100 and h   46.5, we obtain

A   100(2 t兾46.5) See Figure 2.

(A) Find A when t   24 hours:

A   100(2 24/46.5) Calculate to three significant digits.

  69.9 milligrams

(B) Find A when t   168 hours Be careful about units! Half-life was given in hours.

(1 week   168 hours):

A   100(2 168/46.5) Calculate to three significant digits.

  8.17 milligrams �

A  A0(1
2)

t h  A02 t h
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SOLUTIONS

Hours

200100

100

50

t

A (milligrams)

Z Figure 2 A   100(2
 t兾46.5

).

MATCHED PROBLEM 3 Radioactive gold 198 (198Au), used in imaging the structure of the liver, has a half-life

of 2.67 days. If we start with 50 milligrams of the isotope, how many milligrams will be

left after:

(A) day? (B) 1 week?

Calculate answers to three significant digits.

�

1
2

In Example 2, we saw that a base e exponential function can be used as an alternative to

the doubling time model. Not surprisingly, the same can be said for the half-life model. In

this case, the formula will be

where

Our atmosphere is constantly being bombarded with cosmic rays. These rays produce neu-

trons, which in turn react with nitrogen to produce radioactive carbon-14. Radioactive car-

bon-14 enters all living tissues through carbon dioxide, which is first absorbed by plants. As

long as a plant or animal is alive, carbon-14 is maintained in the living organism at a con-

stant level. Once the organism dies, however, carbon-14 decays according to the equation

Carbon-14 decay equation

where A is the amount of carbon-14 present after t years and is the amount present

at time This can be used to calculate the approximate age of fossils.t  0.

A0

A  A0e
 0.000124t

k  a positive constant specific to the type of material

A0  the amount at time t  0

A  the amount of radioactive material at time t

A  A0e
 kt

EXAMPLE 4 Carbon-14 Dating

If 1,000 milligrams of carbon-14 are present in the tissue of a recently deceased animal,

how many milligrams will be present in

(A) 10,000 years? (B) 50,000 years?

Calculate answers to three significant digits.



Substituting A0   1,000 in the decay equation, we have

A   1,000e 0.000124t
See Figure 3.

(A) Solve for A when t   10,000:

A   1,000e 0.000124(10,000)
Calculate to three significant digits.

  289 milligrams

(B) Solve for A when t   50,000:

A   1,000e 0.000124(50,000)
Calculate to three significant digits.

  2.03 milligrams

More will be said about carbon-14 dating in Exercises 5-5, where we will be interested in

solving for t after being given information about A and A0. �
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t
50,000

1,000

500

A

Z Figure 3

SOLUTIONS

Referring to Example 4, how many milligrams of carbon-14 would have to be present at

the beginning to have 10 milligrams present after 20,000 years? Compute the answer to four

significant digits.

�

MATCHED PROBLEM 4

One of the problems with using exponential functions to model things like population is that

the growth is completely unlimited in the long term. But in real life, there is often some rea-

sonable maximum value, like the largest population that space and resources allow. We can

use modified versions of exponential functions to model such phenomena more realistically.

One such type of function is called a learning curve since it can be used to model the

performance improvement of a person learning a new task. Learning curves are functions

of the form where c and k are positive constants.A  c(1  e kt),

EXAMPLE 5 Learning Curve

People assigned to assemble circuit boards for a computer manufacturing company undergo

on-the-job training. From past experience, it was found that the learning curve for the aver-

age employee is given by

A  40(1  e 0.12t)

where A is the number of boards assembled per day after t days of training (Fig. 4).

(A) How many boards can an average employee produce after 3 days of training? After

5 days of training? Round answers to the nearest integer.

(B) Does A approach a limiting value as t increases without bound? Explain.

(A) When t  3,

A  40(1  e 0.12(3))  12 Rounded to nearest integer

so the average employee can produce 12 boards after 3 days of training. Similarly,

when t 5,

A  40(1  e 0.12(5))  18 Rounded to nearest integer

Z Figure 4 A 40(1 e
 0.12t

).

50

10

5010
t

A

Days

20

30

40

20 30 40

SOLUTION



(B) Because e 0.12t approaches 0 as t increases without bound,

A  40(1  e 0.12t ) S 40(1  0)  40

So the limiting value of A is 40 boards per day. (Note the horizontal asymptote with

equation A   40 that is indicated by the dashed line in Fig. 4.) �

 
1

e0.12t

S E C T I O N  5 – 2 Exponential Models 345

MATCHED PROBLEM 5 A company is trying to expose as many people as possible to a new product through televi-

sion advertising in a large metropolitan area with 2 million potential viewers. 

A model for the number of people A, in millions, who are aware of the product after t days

of advertising was found to be

A  2(1  e 0.037t)

(A) How many viewers are aware of the product after 2 days? After 10 days? Express

answers as integers, rounded to three significant digits.

(B) Does A approach a limiting value as t increases without bound? Explain.

�

Another limited-growth model is useful for phenomena such as the spread of an epidemic

or the propagation of a rumor. It is called the logistic equation, and is given by

where M, c, and k are positive constants. Logistic growth, illustrated in Example 6, also

approaches a limiting value as t increases without bound.

A  
M

1  ce kt

EXAMPLE 6 Logistic Growth in an Epidemic

A certain community consists of 1,000 people. One individual who has just returned from

another community has a particularly contagious strain of influenza. Assume the commu-

nity has not had influenza shots and all are susceptible. The spread of the disease in the

community is predicted to be given by the logistic curve

where A is the number of people who have contracted the flu after t days.

(A) How many people have contracted the flu after 10 days? After 20 days?

(B) Does A approach a limiting value as t increases without bound? Explain.

A(t)  
1,000

1  999e 0.3t

(A) When t   10,

Rounded to nearest integer

so 20 people have contracted the flu after 10 days. Similarly, when t   20,

Rounded to nearest integer

so 288 people have contracted the flu after 20 days.

A  
1,000

1  999e 0.3(20)
 288

A  
1,000

1  999e 0.3(10)
 20

SOLUTIONS



A group of 400 parents, relatives, and friends are waiting anxiously at Kennedy Airport for

a charter flight returning students after a year in Europe. It is stormy and the plane is late.

A particular parent thought he heard that the plane’s radio had gone out and related this

news to some friends, who in turn passed it on to others. The propagation of this rumor is

predicted to be given by

where A is the number of people who have heard the rumor after t minutes.

(A) How many people have heard the rumor after 10 minutes? After 20 minutes? Round

answers to the nearest integer.

(B) Does A approach a limiting value as t increases without bound? Explain.

�

A(t)  
400

1  399e 0.4t
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Z Figure 5 A  
1,000

1  999e
 0.3t

.

1,500

300

5010
t

A

Days

600

900

1,200

20 30 40

MATCHED PROBLEM 6

Z Data Analysis and Regression

Many graphing calculators have options for exponential and logistic regression. We can use

exponential regression to fit a function of the form to a set of data points, and

logistic regression to fit a function of the form

to a set of data points. The techniques are similar to those introduced in Chapters 2 and 3

for linear and quadratic functions.

y  
c

1  ae bx

y  abx

(B) Because e 0.3t approaches 0 as t increases without bound,

So the limiting value is 1,000 individuals (everyone in the community will eventu-

ally get the flu). (Note the horizontal asymptote with equation A   1,000 that is

indicated by the dashed line in Fig. 5.)

A  

1,000

1  999e 0.3t  
S  

1,000

1  999(0)
 1,000

�
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EXAMPLE 7 Infectious Diseases

The U.S. Department of Health and Human Services published the data in Table 1.

An exponential model for the data on mumps is given by

A   81,082(0.844)t

where A is the number of reported cases of mumps and t is time in years with t   0

representing 1970.

(A) Use the model to predict the number of reported cases of mumps in 2010.

(B) Compare the actual number of cases of mumps reported in 1980 to the number given

by the model.

Table 1 Reported Cases of Infectious Diseases

Year Mumps Rubella

1970 104,953 56,552

1980 8,576 3,904

1990 5,292 1,125

1995 906 128

2000 323 152

2005 314 11

(A) The year 2010 is represented by t   40. Evaluating A   81,082(0.844)t at t   40

gives a prediction of 92 cases of mumps in 2010.

(B) The year 1980 is represented by t   10. Evaluating A   81,082(0.844)t at t   10

gives 14,871 cases in 1980. The actual number of cases reported in 1980 was 8,576,

nearly 6,300 less than the number given by the model.

SOLUTIONS

Technology Connections

Figure 6 shows the details of constructing the exponential model of Example 7 on a graphing calculator.

Z Figure 6

 10,000

 5

110,000

45

�

(a) Entering the data (b) Finding the model (c) Graphing the data and the
model



(A) The year 2010 is represented by t   25. Evaluating

at t   25 gives a prediction of approximately 940,000 cases of AIDS diagnosed by

2010.

A  
947,000

1  17.3e
 0.313t
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EXAMPLE 8 AIDS Cases and Deaths

The U.S. Department of Health and Human Services published the data in Table 2.

A logistic model for the data on AIDS cases is given by

where A is the number of AIDS cases diagnosed by year t with t   0 representing 1985.

(A) Use the model to predict the number of AIDS cases diagnosed by 2010.

(B) Compare the actual number of AIDS cases diagnosed by 2005 to the number given

by the model.

A  
947,000

1  17.3e
 0.313t

Table 2 Acquired Immunodeficiency Syndrome (AIDS)

Cases and Deaths in the United States

Cases Diagnosed Known Deaths

Year to Date to Date

1985 23,185 12,648

1988 107,755 62,468

1991 261,259 159,294

1994 493,713 296,507

1997 672,970 406,179

2000 774,467 447,648

2005 944,306 529,113

SOLUTIONS

An exponential model for the data on rubella in Table 1 is given by

A   54,988(0.799)t

where A is the number of reported cases of rubella and t is time in years with t   0

representing 1970.

(A) Use the model to predict the number of reported cases of rubella in 2010.

(B) Compare the actual number of cases of rubella reported in 1980 to the number given

by the model.

�

MATCHED PROBLEM 7



A logistic model for the data on deaths from AIDS in Table 2 is given by

where A is the number of known deaths from AIDS by year t with t  0 representing

1985.

(A) Use the model to predict the number of known deaths from AIDS by 2010.

(B) Compare the actual number of known deaths from AIDS by 2005 to the number

given by the model.

�

A  

521,000

1  18.8e 0.349t
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Technology Connections

Figure 7 shows the details of constructing the logistic model of Example 8 on a graphing calculator.

Z Figure 7

(a) Entering the data (b) Finding the model (c) Graphing the data and the
model

0

 5

1,000,000

20

MATCHED PROBLEM 8

(B) The year 2005 is represented by t   20. Evaluating

at t   20 gives 916,690 cases in 2005. The actual number of cases diagnosed by 2005

was 944,306, nearly 28,000 greater than the number given by the model.

A  

947,000

1  17.3e 0.313t

Z A Comparison of Exponential Growth Phenomena

The equations and graphs given in Table 3 compare several widely used growth models.

These are divided basically into two groups: unlimited growth and limited growth. Follow-

ing each equation and graph is a short, incomplete list of areas in which the models are used.

We have only touched on a subject that has been extensively developed and that you are

likely to study in greater depth in the future.

�
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t

A

0

M

t

A

0

c

t

A

0

c

Table 3 Exponential Growth and Decay

Description Equation Graph Short List of Uses

Unlimited growth A  A0e
kt

k  0

Short-term population

growth (people, bacteria,

etc.); growth of money at

continuous compound

interest

t

A

0

c

Exponential decay A  A0e
 kt

k  0

Radioactive decay; light

absorption in water, glass,

and the like; atmospheric

pressure; electric circuits

Limited growth A  c(1  e kt)

c, k  0

Learning skills; sales fads;

company growth; electric

circuits

Logistic growth

c, k, M 7 0

A  
M

1  ce kt
Long-term population

growth; epidemics; sales 

of new products; spread 

of rumors; company

growth

ANSWERS TO MATCHED PROBLEMS

1. (A) 97,200

(B) 278,000

2. (A) 50 bacteria

(B) 12,000 bacteria

3. (A) 43.9 milligrams

(B) 8.12 milligrams

4. 119.4 milligrams

5. (A) 143,000 viewers; 619,000 viewers

(B) A approaches an upper limit of 2 million, the number of potential viewers

6. (A) 48 individuals; 353 individuals

(B) A approaches an upper limit of 400, the number of people in the entire group.

7. (A) 7 cases

(B) The actual number of cases was 1,927 less than the number given by the model.

8. (A) 519,000 deaths

(B) The actual number of known deaths was approximately 17,000 greater than the number given

by the model.



S E C T I O N  5 – 2 Exponential Models 351

of Drosophila flies. In a laboratory situation with ample food sup-

ply and space, the doubling time for a particular population is 

2.4 days. If we start with 5 male and 5 female flies, how many flies

should we expect to have in

(A) 1 week?

(B) 2 weeks?

16. POPULATION GROWTH It was estimated in 2008 that Kenya

had a population of about 38,000,000 people, and a doubling

time of 25 years. If growth continues at the same rate, find the

population in

(A) 2012

(B) 2040

Calculate answers to two significant digits.

17. COMPUTER DESIGN In 1965, Gordon Moore, founder of Intel,

predicted that the number of transistors that could be placed on a

computer chip would double every 2 years. This has come to be

known as Moore’s law. In 1970, 2,200 transistors could be placed

on a chip. Use Moore’s law to predict the number of transistors in

(A) 1990

(B) 2005

18. HISTORY OF TECHNOLOGY The earliest mechanical clocks ap-

peared around 1350 in Europe, and would gain or lose an average

of 30 minutes per day. After that, accuracy roughly doubled every

30 years. Find the predicted accuracy of clocks in

(A) 1700

(B) 2000

19. INSECTICIDES The use of the insecticide DDT is no longer

allowed in many countries because of its long-term adverse effects.

If a farmer uses 25 pounds of active DDT, assuming its half-life is

12 years, how much will still be active after

(A) 5 years?

(B) 20 years?

Compute answers to two significant digits.

20. RADIOACTIVE TRACERS The radioactive isotope technetium-

99m is used in imaging the brain. The isotope has a half-

life of 6 hours. If 12 milligrams are used, how much will be present

after

(A) 3 hours?

(B) 24 hours?

Compute answers to three significant digits.

21. POPULATION GROWTH According to the CIA World Factbook,

the population of the world was estimated to be about 6.8 billion

people in 2008, and the population was growing continuously at a

relative growth rate of 1.188%. If this growth rate continues, what

would the population be in 2020 to two significant digits?

22. POPULATION GROWTH According to the CIA World Factbook,

the population of Mexico was about 100 million in 2008, and was

growing continuously at a relative growth rate of 1.142%. If that

growth continues, what will the population be in 2015 to three sig-

nificant digits?

(99mTc)

5-2 Exercises

1. Define the terms “doubling time” and “half-life” in your own

words.

2. One of the models below represents positive growth, and the

other represents negative growth. Classify each, and explain

how you decided on your answer. (Assume that 

3. Explain the difference between exponential growth and limited

growth.

4. Explain why a limited growth model would be more accurate

than regular exponential growth in modeling the long-term

population of birds on an island in Lake Erie.

In Problems 5–8, write an exponential equation describing the

given population at any time t.

5. Initial population 200; doubling time 5 months

6. Initial population 5,000; doubling time 3 years

7. Initial population 2,000; continuous growth at 2% per year

8. Initial population 500; continuous growth at 3% per week

In Problems 9–12, write an exponential equation describing the

amount of radioactive material present at any time t.

9. Initial amount 100 grams; half-life 6 hours

10. Initial amount 5 pounds; half-life 1,300 years

11. Initial amount 4 kilograms; continuous decay at 12.4% per

year

12. Initial amount 50 milligrams; continuous decay at 0.03% per

year

APPLICATIONS

13. GAMING A person bets on red and black on a roulette wheel

using a Martingale strategy. That is, a $2 bet is placed on red, and

the bet is doubled each time until a win occurs. The process is then

repeated. If black occurs n times in a row, then L  2n dollars is lost

on the nth bet. Graph this function for 1  n  10. Although the

function is defined only for positive integers, points on this type of

graph are usually joined with a smooth curve as a visual aid.

14. BACTERIAL GROWTH If bacteria in a certain culture double

every hour, write an equation that gives the number of bacteria A

in the culture after t hours, assuming the culture has 100 bacteria at

the start. Graph the equation for 0  t  5.

15. POPULATION GROWTH Because of its short life span and fre-

quent breeding, the fruit fly Drosophila is used in some genetic

studies. Raymond Pearl of Johns Hopkins University, for example,

studied 300 successive generations of descendants of a single pair

1
2

A  A0ektA  A0e kt

k 7 0.)



23. POPULATION GROWTH In 2005 the population of Russia was

143 million and the population of Nigeria was 129 million. If the

populations of Russia and Nigeria grow continuously at relative

growth rates of and 2.56%, respectively, in what year did

Nigeria have a greater population than Russia?

Use the Internet to find if the prediction was accurate.

24. POPULATION GROWTH In 2005 the population of Germany

was 82 million and the population of Egypt was 78 million. If the

populations of Germany and Egypt grow continuously at relative

growth rates of 0% and 1.78%, respectively, in what year did Egypt

have a greater population than Germany? 

Use the Internet to find if the prediction was accurate.

25. SPACE SCIENCE Radioactive isotopes, as well as solar cells,

are used to supply power to space vehicles. The isotopes gradually

lose power because of radioactive decay. On a particular space

vehicle the nuclear energy source has a power output of P watts

after t days of use as given by

Graph this function for 

26. EARTH SCIENCE The atmospheric pressure P, in pounds per

square inch, decreases exponentially with altitude h, in miles above

sea level, as given by

Graph this function for 

27. MARINE BIOLOGY Marine life is dependent upon the micro-

scopic plant life that exists in the photic zone, a zone that goes to a

depth where about 1% of the surface light still remains. Light inten-

sity I relative to depth d, in feet, for one of the clearest bodies of

water in the world, the Sargasso Sea in the West Indies, can be

approximated by

where is the intensity of light at the surface. To the nearest

percent, what percentage of the surface light will reach a depth of

(A) 50 feet?

(B) 100 feet?

28. MARINE BIOLOGY Refer to Problem 27. In some waters with a

great deal of sediment, the photic zone may go down only 15 to

20 feet. In some murky harbors, the intensity of light d feet below

the surface is given approximately by

What percentage of the surface light will reach a depth of

(A) 10 feet?

(B) 20 feet?

29. AIDS EPIDEMIC The World Health Organization estimated

that there were 33.2 million people worldwide living with the

HIV infection in 2007, and that the number had been growing

continuously at a relative growth rate of 2.37%. If the growth

I  I0e 0.23d

I0

I  I0e 0.00942d

0  h  10.

P  14.7e 0.21h

0  t  100.

P  75e 0.0035t

 0.37%

continues at the rate, find the number of people that will be living

with HIV in

(A) 2014

(B) 2020

30. AIDS EPIDEMIC The World Health Organization estimated that

there were 3.25 million deaths from AIDS in 2007, and that the

number had been growing continuously at a relative growth rate of

3.0%. If the growth continues at this rate, find the number of ex-

pected deaths from AIDS in

(A) 2012

(B) 2030

31. NEWTON’S LAW OF COOLING This law states that the rate at

which an object cools is proportional to the difference in temperature

between the object and its surrounding medium. The temperature T

of the object t hours later is given by

where is the temperature of the surrounding medium and is

the temperature of the object at Suppose a bottle of wine at a

room temperature of is placed in the refrigerator to cool before

a dinner party. If the temperature in the refrigerator is kept at 

and find the temperature of the wine, to the nearest degree,

after 3 hours. (In Exercises 5-5 we will find out how to determine k.)

32. NEWTON’S LAW OF COOLING Refer to Problem 31. What is the

temperature, to the nearest degree, of the wine after 5 hours in the

refrigerator?

33. PHOTOGRAPHY An electronic flash unit for a camera is acti-

vated when a capacitor is discharged through a filament of wire.

After the flash is triggered, and the capacitor is discharged, the cir-

cuit (see the figure) is connected and the battery pack generates a

current to recharge the capacitor. The time it takes for the capacitor

to recharge is called the recycle time. For a particular flash unit

using a 12-volt battery pack, the charge q, in coulombs, on the

capacitor t seconds after recharging has started is given by

Find the value that q approaches as t increases without bound and

interpret.

34. MEDICINE An electronic heart pacemaker uses the same type

of circuit as the flash unit in Problem 33, but it is designed so that

the capacitor discharges 72 times a minute. For a particular pace-

maker, the charge on the capacitor t seconds after it starts recharg-

ing is given by

Find the value that q approaches as t increases without bound and

interpret.

q  0.000 008(1  e 2t )

I

R

V

C

S

q  0.0009(1  e 0.2t)

k  0.4,

40°F

72°F

t  0.

T0Tm

T  Tm  (T0  Tm)e kt
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35. WILDLIFE MANAGEMENT A herd of 20 white-tailed deer is in-

troduced to a coastal island where there had been no deer before. Their

population is predicted to increase according to the logistic curve

where A is the number of deer expected in the herd after t years.

(A) How many deer will be present after 2 years? After 6 years?

Round answers to the nearest integer.

(B) How many years will it take for the herd to grow to 50 deer?

Round answer to the nearest integer.

(C) Does A approach a limiting value as t increases without bound?

Explain.

36. TRAINING A trainee is hired by a computer manufacturing

company to learn to test a particular model of a personal computer

after it comes off the assembly line. The learning curve for an aver-

age trainee is given by

where A is the number of computers an average trainee can test per

day after t days of training.

(A) How many computers can an average trainee be expected to test

after 3 days of training? After 6 days? Round answers to the nearest

integer.

(B) How many days will it take until an average trainee can test 

30 computers per day? Round answer to the nearest integer.

(C) Does A approach a limiting value as t increases without bound?

Explain.

Problems 37–40 require a graphing calculator or a computer that

can calculate exponential and logistic regression models for a

given data set.

37. DEPRECIATION Table 4 gives the market value of a minivan (in

dollars) x years after its purchase. Find an exponential regression

model of the form for this data set. Round to four signifi-

cant digits. Estimate the purchase price of the van. Estimate the

value of the van 10 years after its purchase. Round answers to the

nearest dollar.

Table 4

x Value ($)

1 12,575

2 9,455

3 8,115

4 6,845

5 5,225

6 4,485

Source: Kelley Blue Book

y ⫽ abx

A ⫽
200

4 ⫹ 21e⫺0.1t

A ⫽
100

1 ⫹ 4e⫺0.14t

38. DEPRECIATION Table 5 gives the market value of an SUV (in

dollars) x years after its purchase. Find an exponential regression

model of the form for this data set. Estimate the purchase

price of the SUV. Estimate the value of the SUV 10 years after its

purchase. Round answers to the nearest dollar.

Table 5

x Value ($)

1 23,125

2 19,050

3 15,625

4 11,875

5 9,450

6 7,125

Source: Kelley Blue Book

39. NUCLEAR POWER Table 6 gives data on nuclear power genera-

tion by region for the years 1980–2005.

Table 6 Nuclear Power Generation

(Billion Kilowatt-Hours)

North Central and

Year America South America

1980 287.0 2.2

1985 440.8 8.4

1990 649.0 9.0

1995 774.4 9.5

2000 830.9 10.9

2005 879.7 16.3

Source: U.S. Energy Information Administration

(A) Let x represent time in years with x⫽ 0 representing 1980.

Find a logistic regression model for the generation of

nuclear power in North America. (Round the constants a, b, and c

to three significant digits.)

(B) Use the logistic regression model to predict the generation of

nuclear power in North America in 2010 and 2020.

40. NUCLEAR POWER Refer to Table 6.

(A) Let x represent time in years with x⫽ 0 representing 1980.

Find a logistic regression model for the generation of

nuclear power in Central and South America. (Round the constants

a, b, and c to three significant digits.)

(B) Use the logistic regression model to predict the generation of

nuclear power in Central and South America in 2010 and 2020.

( y ⫽ c

1 ⫹ ae⫺bx)

( y ⫽ c

1 ⫹ ae⫺bx)

y ⫽ abx
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Solving an equation like is easy: We know that so is the solution.

But what about an equation like There probably is an exponent x between 2 and 3

for which is 20, but its exact value is not at all clear.

Compare this situation to an equation like This is easy to solve because we

know that and are both 9. But what about To solve this equation, we

needed to introduce a new function to be the opposite of the squaring function. This, of

course, is the function 

In this section, we will do something very similar with exponential functions. In the

first section of this chapter, we learned that exponential functions are one-to-one, so we can

define their inverses. These are known as the logarithmic functions.

Z Defining Logarithmic Functions

The exponential function for is a one-to-one function, and there-

fore has an inverse. Its inverse, denoted (read “log to the base b of x”) is

called the logarithmic function with base b. Just like exponentials, there are different loga-

rithmic functions for each positive base other than 1. A point (x, y) is on the graph of

if and only if the point (y, x) is on the graph of In other words,

if and only if 

In a specific example,

if and only if and

is the power to which 2 must be raised to obtain x: 

We can use this fact to learn some things about the logarithmic functions from our

knowledge of exponential functions. For example, the graph of is the graph

of reflected through the line Also, the domain of is the

range of and vice versa.

In Example 1, we will use information about to graph its inverse, 

log2  
x.f  1(x)  

f (x)  2x

f (x)  bx,

f  1(x)  logb  
xy  x.f (x)  bx

f  1(x)  logb  
x

2log2 x
 2y

 x.log2 x

x  2y,y  log2  
x

x  byy  logb  
x

f  bx.f  1
 logb  

x

f  1(x)  logb   
x

b  1,b 7 0,f (x)  bx

f (x)  1x.

x2
 20?( 3)232

x2
 9.

3x

3x
 20?

x  232
 9,3x

 9

5-3 Logarithmic Functions

Z Defining Logarithmic Functions

Z Converting Between Logarithmic Form and Exponential Form

Z Properties of Logarithmic Functions

Z Common and Natural Logarithms

Z The Change-of-Base Formula

EXAMPLE 1 Graphing a Logarithmic Function

Make a table of values for and reverse the ordered pairs to obtain a table of values

for Then use both tables to graph f (x) and on the same set of axes.f  1(x)f  1(x)  log2  
x.

f (x)  2x

SOLUTION We chose to evaluate f for integer values from to 3. The tables are shown here, along with

the graph (Fig. 1). Note the important comments about domain and range below the graph.

 3
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It is very important to remember that the equations and 

define the same function, and as such can be used interchangeably.

Because the domain of an exponential function includes all real numbers and its range

is the set of positive real numbers, the domain of a logarithmic function is the set of all

positive real numbers and its range is the set of all real numbers. For example, is

defined, but and are not defined.

In short, the function for any b is only defined for positive x values. Typi-

cal logarithmic curves are shown in Figure 2. Notice that in each case, the y axis is a ver-

tical asymptote for the graph.

The graphs in Example 1 and Figure 2 suggest that logarithmic graphs share some com-

mon properties. Several of these properties are listed in Theorem 1. It might be helpful in

understanding them to review Theorem 1 in Section 5-1. Each of these properties is a con-

sequence of a corresponding property of exponential graphs.

y  logb  x

log10  
( 5)log10 0

log10 3

x  byy  logb   
x

MATCHED PROBLEM 1 Repeat Example 1 for and 

�

f  1(x)  log1 2 x.f (x)  (1
2)

x

f

x y  2x

0 1

1 2

2 4

3 8

1
2 1

1
4 2

1
8 3

x y  log2 x

1 0

2 1

4 2

8 3

 11
2

 21
4

 31
8

f
 1

Z Figure 1 Logarithmic function with base 2.

 5

5 10 5

10

5

x

y
f

y   2x y   x

f 1

y   log2 x

Ordered

pairs

reversed

DOMAIN of f  ( , )  RANGE of f
 1

RANGE of f  (0, )   DOMAIN of f
 1

 

   

�

Z DEFINITION 1 Logarithmic Function

For the inverse of denoted is the

logarithmic function with base b.

Logarithmic form Exponential form

is equivalent to

The log to the base b of x is the exponent to which b must be raised to obtain x.

For example,

is equivalent to

is equivalent to

Remember: A logarithm is an exponent.

x  eyy  loge  
x

x  10yy  log10  
x

x  byy  logb  
x

f  1(x)  logb  
x,f  (x)  bx,b 7 0, b  1,

Z Figure 2 Typical logarithmic

graphs.

x

y

0 1

y   logb x
0   b   1

DOMAIN   (0,  )
RANGE   (  ,  )

x

y

y   logb x
b   1

DOMAIN   (0,  )
RANGE   (  ,  )

0 1

(a)

(b)



Z Converting Between Logarithmic 

Form and Exponential Form

We now look into the matter of converting logarithmic forms to equivalent exponential forms,

and vice versa. Throughout the remainder of the chapter, it will be useful to sometimes con-

vert a logarithmic expression into the equivalent exponential form. At other times, it will be

useful to do the reverse.
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Z THEOREM 1 Properties of Graphs of Logarithmic Functions

Let be a logarithmic function, Then the graph of f (x):

1. Is continuous on its domain 

2. Has no sharp corners

3. Passes through the point (1, 0)

4. Lies to the right of the y axis, which is a vertical asymptote

5. Is increasing as x increases if is decreasing as x increases if 

6. Intersects any horizontal line exactly once, so is one-to-one

0 6 b 6 1b 7 1;

(0,  )

b 7 0, b  1.f  (x)  logb  x

For the exponential function graph f and on the same coor-

dinate system. Then sketch the graph of Discuss the domains and ranges

of f and its inverse. By what other name is known?f  1

f  1.

y  xf (x)  (2
3)
x,ZZZ EXPLORE-DISCUSS 1

EXAMPLE 2 Logarithmic–Exponential Conversions

Change each logarithmic form to an equivalent exponential form.

(A) (B) (C) log2 
 (1

4)   2log25 5  
1
2log2 8  3

SOLUTIONS (A) is equivalent to

(B) is equivalent to

(C) is equivalent to

Note that in each case, the base of the logarithm matches the base of the corresponding

exponent. �

1
4  2 2.log2  (

1
4)   2

5  251 2.log25 5  
1
2

8  23.log2 8  3

MATCHED PROBLEM 2 Change each logarithmic form to an equivalent exponential form.

(A) (B) (C) 

�

log3 (
1
9)   2log36 6  

1
2log3 27  3

EXAMPLE 3 Logarithmic–Exponential Conversions

Change each exponential form to an equivalent logarithmic form.

(A) (B) (C) 1
5  5 13  1949  72
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To gain a little deeper understanding of logarithmic functions and their relationship to

the exponential functions, we will consider a few problems where we want to find x, b, or

y in given the other two values. All values were chosen so that the problems

can be solved without a calculator. In each case, converting to the equivalent exponential

form is useful.

y  logb  x,

SOLUTIONS (A) is equivalent to

(B) is equivalent to Recall that 

(C) is equivalent to

Again, the bases match. �

log5  
(1

5)   1.1
5  5 1

19  9
1 2.log9 3  

1
2.3  19

log7 49  2.49  72

MATCHED PROBLEM 3 Change each exponential form to an equivalent logarithmic form.

(A) (B) (C) 

�

1
16  4 22  1

3
864  43

EXAMPLE 4 Solutions of the Equation 

Find x, b, or y as indicated.

(A) Find y: (B) Find x: (C) Find b: logb 81  4.log3  x   2.y  log4 8.

y  logb x

SOLUTIONS (A) Write in equivalent exponential form.

Write each number to the same base 2.

Recall that if and only if 

We conclude that 

(B) Write in equivalent exponential form.

We conclude that 

(C) Write in equivalent exponential form:

Write 81 as a fourth power.

b could be 3 or  3, but the base of a logarithm must be positive.

We conclude that �log3 81  4.

 b  3

 34
 b4

 81  b4

logb 81  4

log3  (
1
9)   2.

  
1

32  
1

9

 x  3 2

log3  x   2

3
2  log4 8.

 y  
3
2

 2y  3

m  n.b
m
 b

n 23
 22y

 8  4y

y  log4 8

MATCHED PROBLEM 4 Find x, b, or y as indicated.

(A) Find y: (B) Find x: (C) Find b: 

�

logb 100  2.log2 x   3.y  log9 27.



Z Properties of Logarithmic Functions

Some of the properties of exponential functions that we studied in Section 5-1 can be used

to develop corresponding properties of logarithmic functions. Several of these important prop-

erties of logarithmic functions are listed in Theorem 2. We will justify them individually.
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Z THEOREM 2 Properties of Logarithmic Functions

If b, M, and N are positive real numbers, and p and x are real numbers, then

1. 5. if and only if

2. 6. 

3. 7. 

4. 8. logb  M
p
 p  logb  Mblogb x  x, x 7 0

logb  

M

N
 logb  M  logb  Nlogb  b

x
 x

logb  MN  logb  M  logb  Nlogb  b  1

M  Nlogb  M  logb  Nlogb 1  0

b  1,

ZZZ CAUTION ZZZ 1. In properties 3 and 4, it’s essential that the base of the exponential and the base of

the logarithm are the same.

2. Properties 6 and 7 are often misinterpreted, so you should examine them carefully.

logb (M  N )  logb M  logb N

logb M

logb N
 logb M  logb N

cannot be simplified.

cannot be simplified.logb (M  N)

logb M  logb N  logb MN;

logb M

logb N

logb M  logb N  logb 
M

N
;

Now we will justify properties in Theorem 2.

1. because

2. because

3 and 4. These are simply another way to state that and are

inverse functions. Property 3 can be written as for all x in the domain

of f. Property 4 can be written as for all x in the domain of This

matches our characterization of inverse functions in Theorem 5, Section 3-6. Together,

these properties say that if you apply an exponential function and a logarithmic func-

tion with the same base consecutively (in either order) you end up with the same

value you started with.

5. This follows from the fact that logarithmic functions are one-to-one.

Properties 6, 7, and 8 are used often in manipulating logarithmic expressions. We will

justify them in Problems 111 and 112 in Exercises 5-3, and Problem 69 in the Chapter 5

Review Exercises.

f  1.f ( f  1(x))  x

f  1( f (x))  x

f  1(x)  logb xf (x)  bx
b1
 b.logb b  1

b0
 1.logb 1  0

EXAMPLE 5 Using Logarithmic Properties

Simplify, using the properties in Theorem 2.

(A) (B) (C)

(D) (E) (F) eloge x
2

10log10 7log10 0.01

loge e
2x 1log10 10loge 1
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Z Common and Natural Logarithms

To work with logarithms effectively, we will need to be able to calculate (or at least approx-

imate) the logarithms of any positive number to a variety of bases. Historically, tables were

used for this purpose, but now calculators are used because they are faster and can find far

more values than any table can possibly include. 

Of all possible bases, there are two that are used most often. Common logarithms are

logarithms with base 10. Natural logarithms are logarithms with base e. Most calculators

have a function key labeled “log” and a function key labeled “ln.” The former represents

the common logarithmic function and the latter the natural logarithmic function. In fact,

“log” and “ln” are both used in most math books, and whenever you see either used in this

book without a base indicated, they should be interpreted as follows:

SOLUTIONS (A) Property 1 (B) Property 2

(C) Property 3 (D) Property 3

(E) Property 4 (F) Property 4 �e
loge x

2

 x
210log10 7

 7

log10 0.01  log10 10 2
  2loge e

2x 1
 2x  1

log10 10  1loge 1  0

MATCHED PROBLEM 5 Simplify, using the properties in Theorem 2.

(A) (B) (C)

(D) (E) (F)

�

e
loge (x

4
 1)10log10 4loge e

m n

log10 1log5 25log10 10 5

Z LOGARITHMIC FUNCTIONS

Common logarithmic function

Natural logarithmic function y  ln x  loge x

 y  log x  log10 x

(A) Sketch the graph of and y  x in the same coordinate

system and state the domain and range of the common logarithmic function.

(B) Sketch the graph of and in the same coordinate

system and state the domain and range of the natural logarithmic function.

y  xy  e
x, y  ln x,

y  10x, y  log x,ZZZ EXPLORE-DISCUSS 2

EXAMPLE 6 Calculator Evaluation of Logarithms

Use a calculator to evaluate each to six decimal places.

(A) log 3,184 (B) ln 0.000 349 (C) log ( 3.24)

SOLUTIONS (A) (B) 

(C)

Why is an error indicated in part C? Because is not in the domain of the log func-

tion. [Note: Calculators display error messages in various ways. Some calculators use a more

advanced definition of logarithmic functions that involves complex numbers. They will

 3.24

log ( 3.24)  Error

ln 0.000 349   7.960 439log 3,184  3.502 973



When working with common and natural logarithms, we will follow the common prac-

tice of using the equal sign “ ” where it might be technically correct to use the approxi-

mately equal sign “ .” No harm is done as long as we keep in mind that in a statement such

as the number on the right is only assumed accurate to three decimal

places and is not exact.

log 3.184  0.503,

⬇
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MATCHED PROBLEM 6 Use a calculator to evaluate each to six decimal places.

(A) log 0.013 529 (B) ln 28.693 28 (C) 

�

ln ( 0.438)

Graphs of the functions and 

are shown in the graphing calculator display of Fig-

ure 3. Which graph belongs to which function? It

appears from the display that one of the functions

might be a constant multiple of the other. Is that true?

Find and discuss the evidence for your answer.

g(x)  ln xf  (x)  log xZZZ EXPLORE-DISCUSS 3

Z Figure 3

 2

0

2

5

EXAMPLE 7 Calculator Evaluation of Logarithms

Use a calculator to evaluate each expression to three decimal places.

(A) (B) (C) log 2  log 1.1log 
2

1.1

log 2

log 1.1

SOLUTIONS (A) Enter as 

(B) Enter as 

(C) Note that but

(see Theorem 2). �log 
2

1.1
 log 2  log 1.1

log 2

log 1.1
 log 2  log 1.1,log 2  log 1.1  0.260.

log (2  1.1).log 
2

1.1
 0.260

(log 2)  (log 1.1).
log 2

log 1.1
 7.273

MATCHED PROBLEM 7 Use a calculator to evaluate each to three decimal places.

(A) (B) (C) 

�

ln 3  ln 1.08ln  

3

1.08

ln 3

ln 1.08

We now turn to the opposite problem: Given the logarithm of a number, find the number.

To solve this problem, we make direct use of the logarithmic–exponential relationships, and

change logarithmic expressions into exponential form.

display an ordered pair, representing a complex number, as the value of rather

than an error message. You should interpret such a display as indicating that the number

entered is not in the domain of the logarithmic function as we have defined it.] �

log ( 3.24),
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Z LOGARITHMIC–EXPONENTIAL RELATIONSHIPS

is equivalent to

is equivalent to x  e
y.ln  x  y

x  10y.log x  y

EXAMPLE 8 Solving for x

Find x to three significant digits, given the indicated logarithms.

(A) (B) ln x  2.386log x   9.315

logb x  y

SOLUTIONS (A) Change to exponential form (Definition 1).

Notice that the answer is displayed in scientific notation in the calculator.

(B) Change to exponential form (Definition 1).

�  10.9

 x  e
2.386

 ln x  2.386

  4.84  10 10

 x  10 9.315

 log x   9.315

MATCHED PROBLEM 8 Find x to four significant digits, given the indicated logarithms.

(A) (B) 

�

log x  12.0821ln x   5.062

Z The Change-of-Base Formula

How would you find the logarithm of a positive number to a base other than 10 or e? For

example, how would you find log3 5.2? In Example 9 we evaluate this logarithm using sev-

eral properties of logarithms. Then we develop a change-of-base formula to find such log-

arithms more easily.

EXAMPLE 9 Evaluating a Base 3 Logarithm

Evaluate to four decimal places.log3 5.2

SOLUTION Let and proceed as follows:

Change to exponential form.

Apply the natural log (or common log) to each side.

which brings the exponent y in front of ln 3 as a factor.

Solve for y.

y  
ln 5.2

ln 3

ln 5.2  y ln 3

Use logb M
p
 p logb M,ln 5.2  ln 3y

5.2  3y

log3 5.2  y

y  log3 5.2

Example 8 was solved algebraically using logarithmic–exponential relationships.

Use the INTERSECT command on a graphing calculator to solve this problem

graphically. Discuss the relative merits of the two approaches.

ZZZ EXPLORE-DISCUSS 4



Replace y with log3 5.2 from the first step, and use a calculator to evaluate the right side:

�log3 5.2  
ln 5.2

ln 3
 1.5007
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MATCHED PROBLEM 9 Evaluate log0.5 0.0372 to four decimal places.

�

If we repeat the process we used in Example 9 on a generic logarithm, something interest-

ing happens. The goal is to evaluate where b is any acceptable base, and N is any

positive real number. As in Example 9, let 

This provides a formula for evaluating a logarithm to any base by using natural log:

We could also have used log base 10 rather than natural log, and developed an alternative

formula:

In fact, the same approach would enable us to rewrite in terms of a logarithm with

any base we choose!

logb N

logb N  
log N

log b

logb N  
ln N

ln b

 y  
ln N

ln b

 ln N  y ln b

 ln N  ln by

 N  by

 logb N  y

y  logb N.

logb N,

Write in exponential form.

Apply natural log to each side.

Use (property 8, Theorem 2).

Solve for y.

ln b y
 y ln  b

Z THE CHANGE-OF-BASE FORMULA

For any and any positive real number N,

where a is any positive number other than 1.

logb N  
loga N

loga b

b  1,b 7 0,

If b is any positive real number different from 1, the change-of-base formula shows

that the function is a constant multiple of the natural logarithmic func-

tion; that is, ln x for some k.

(A) Graph the functions and 

(B) Write each function of part A in the form by finding the base b to

two decimal places.

(C) Is every exponential function a constant multiple of Explain.y  ex?y  bx

y  logb x

y   3 ln  x.y  ln x, y  2 ln x, y  0.5 ln x,

logb x  k

y  logb x

ZZZ EXPLORE-DISCUSS 5
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2. (A) (B) (C) 

3. (A) (B) (C) 

4. (A) (B) (C) 

5. (A) (B) 2 (C) 0 (D) (E) 4 (F) 

6. (A) (B) 3.356 663 (C) Not possible

7. (A) 14.275 (B) 1.022 (C) 1.022

8. (A) (B) 9. 4.7486x  1.208  1012x  0.006 333

 1.868 734

x4
 1m  n 5

b  10x  
1
8y  

3
2

log4 (
1
16)   2log8 2  

1
3log4 64  3

1
9  3 26  361 227  33

ANSWERS TO MATCHED PROBLEMS

1.

x y  log1/2 x

8

4

2

1 0

1

2

3
1
8

1
4

1
2

 1

 2

 3

f
 1

f

x y  

8

4

2

0 1

1

2

3
1
8

1
4

1
2

 1

 2

 3

a1

2
bx

 5

105 5

10

5

y   log1/2 x

y
y   x

x

冢 冣1

2

x
y  

f

f  1

Rewrite Problems 13–18 in equivalent logarithmic form.

13. 14.

15. 16.

17. 18.

In Problems 19–22, make a table of values similar to the one in

Example 1, then use it to graph both functions by hand.

19.

20.

21.

22.

In Problems 23–38, simplify each expression using Theorem 2.

23. 24. 25.

26. 27. 28. log10 105loge e
4log7 7

log0.5 0.5log25 1log16 1

f  1(x)  log xf (x)  10x

f  1(x)  log2/3 xf (x)  (2
3)

x

f  1(x)  log1/3 xf (x)  (1
3)

x

f  1(x)  log3 xf (x)  3x

(5
2)

 2
 0.16(2

3)
3

 
8
27

1
8  2 31

2  32 1 5

9  272 38  43 2

5-3 Exercises

1. Describe the relationship between logarithmic functions and

exponential functions in your own words.

2. Explain why there are infinitely many different logarithmic

functions.

3.Why are logarithmic functions undefined for zero and negative

inputs?

4. Why is for any base?

5. Explain how to calculate on a calculator that only has

log buttons for base 10 and base e.

6. Using the word “inverse,” explain why for any x

and any acceptable base b.

Rewrite Problems 7–12 in equivalent exponential form.

7. 8.

9. 10.

11. 12. log2 1
64   6log6 1

36   2

log10 1,000  3log10 0.001   3

log5 125  3log3 81  4

logb b
x

 x

log5 3

logb 1  0



29. 30. 31.

32. 33. 34.

35. 36. 37.

38.

In Problems 39–46, evaluate to four decimal places.

39. 40.

41. 42.

43. 44.

45. 46.

In Problems 47–54, evaluate x to four significant digits.

47. 48.

49. 50.

51. 52.

53. 54.

Find x, y, or b, as indicated in Problems 55–72.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71. 72.

In Problems 73–78, evaluate to three decimal places.

73. 74.

75. 76.

77. 78. 

In Problems 79–82, rewrite the expression in terms of log x and log y.

79. 80.

81. 82. log a x2

1y
blog (x4y3)

log (xy)log ax

y
b

log 200

3 log 2

ln 150

2 ln 3

ln 4

ln 1.2

ln 3

ln 1.15

log 2

log 1.12

log 2

log 1.15

log9 27 ⫽ ylog16 8 ⫽ y

log25 x ⫽ ⫺
3
2log8 x ⫽ ⫺

4
3

logb 4 ⫽
2
3logb 1,000 ⫽ 3

2

log49 (
1
7) ⫽ ylog1Ⲑ3 9 ⫽ y

log8 x ⫽
1
3log4 x ⫽

1
2

logb b ⫽ 1logb 1 ⫽ 0

logb 10⫺3
⫽ ⫺3logb 16 ⫽ 2

log8 64 ⫽ ylog4 16 ⫽ y

log3 x ⫽ 3log2 x ⫽ 2

ln x ⫽ ⫺4.1083ln x ⫽ ⫺0.3916

ln x ⫽ 5.0884ln x ⫽ 3.8655

log x ⫽ ⫺2.0411log x ⫽ ⫺3.1773

log x ⫽ 1.9168log x ⫽ 5.3027

log17 304.66log5 120.24

log9 78log7 13

ln 19.722ln 54.081

log 691,450log 49,236

log218

log5 1
3

5eloge 10eloge 5

log1Ⲑ5 ( 1
25)log1Ⲑ2 2log4 256

log3 27log10 100log10 0.01 In Problems 83–86, rewrite the expression as a single log.

83. 84.

85. 86.

In Problems 87–90, given that and find:

87. 88.

89. 90.

In Problems 91–98, use transformations to explain how the graph

of g is related to the graph of the given logarithmic function f.

Determine whether g is increasing or decreasing, find its domain

and asymptote, and sketch the graph of g.

91.

92.

93.

94.

95.

96.

97.

98.

In Problems 99–102, find 

99. 100.

101. 102.

103. Let 

(A) Find (B) Graph 

(C) Reflect the graph of in the line to obtain the

graph of f.

104. Let 

(A) Find (B) Graph 

(C) Reflect the graph of in the line to obtain the

graph of f.

105. What is wrong with the following “proof ” that 3 is less than 2?

Divide both sides by 27.

Divide both sides by 

3 6 2

log 
1
3.3 log 13 6 2 log 13

log (1
3)

3
6 log (1

3)
2

(1
3)

3
6 (1

3)
2

1
27 6

1
9

1
27 6

3
27

1 6 3

y ⫽ xf ⫺1

f ⫺1.f ⫺1.

f  (x) ⫽ log2 (⫺3 ⫺x).

y ⫽ xf ⫺1

f ⫺1.f ⫺1.

f (x) ⫽ log3 (2 ⫺ x).

f  (x) ⫽ 2 log2 (x ⫺ 5)f  (x) ⫽ 4 log3 (x ⫹ 3)

f  (x) ⫽ log1Ⲑ3 xf  (x) ⫽ log5 x

f⫺1.

g (x) ⫽ ⫺3 ⫺ 2 ln  x; f  (x) ⫽ ln  x

g (x) ⫽ 5 ⫺ 3 ln  x; f  (x) ⫽ ln  x

g (x) ⫽ 2 ⫺ log x; f  (x) ⫽ log x

g (x) ⫽ ⫺1 ⫺ log x; f  (x) ⫽ log x

g (x) ⫽ log1Ⲑ2 (x ⫹ 3); f  (x) ⫽ log1Ⲑ2 x

g (x) ⫽ log1Ⲑ3 (x ⫺ 2); f  (x) ⫽ log1Ⲑ3 x

g (x) ⫽ ⫺4 ⫹ log3 x; f  (x) ⫽ log3 x

g (x) ⫽ 3 ⫹ log2 x; f  (x) ⫽ log2 x

log (x5y3)log a1x

y3
b

log ax

y
blog (xy)

log y ⫽ 3,log x ⫽ ⫺2

log a ⫺ 2 log b ⫹ 3 log c2 ln x ⫹ 5 ln y ⫺ ln z

log3 x ⫹ log3 yln x ⫺ ln y
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106. What is wrong with the following “proof ” that 1 is greater

than 2?

Multiply both sides by 

Multiply both sides by 8.

The polynomials in Problems 107–110, called Taylor polynomials,

can be used to approximate the function To

illustrate this approximation graphically, in each problem, graph

g(x)  ln (1  x).

1 7 2

1
8 7

1
4

(1
2)

3
7 (1

2)
2

log (1
2)

3
7 log (1

2)
2

3 log 12 7 2 log 12

log 
1
2.3 7 2

and the indicated polynomial in the same viewing

window, and 

107. 108.

109.

110.

111. Prove that for any positive M, N, and b

(Hint: Start by writing 

and and changing each to exponential

form.)

112. Prove that for any positive integer p and any positive b

and M [Hint: Write as

( p factors).]M  M  
p M

Mplogb M
p
 p logb M.(b  1),

v  logb Nlogb Mu  

logb M  logb N.logb (
M
N)  

(b  1),

P4(x)  x  1
2 
x2
 

1
3 
x3
 

1
4 
x4
 

1
5 
x5

P3(x)  x  1
2 
x2
 

1
3 
x3
 

1
4 
x4

P2(x)  x  1
2 
x2
 

1
3 
x3P1(x)  x  1

2 
x2

 2  y  2. 1  x  3

g(x)  ln (1  x)

5-4 Logarithmic Models

Z Logarithmic Scales

Z Data Analysis and Regression

Logarithmic functions occur naturally as the inverses of exponential functions. But that’s not

to say that they are not useful in their own right. Some of these uses are probably familiar to

you, but you might not have realized that they involved logarithmic functions.

In this section, we will study logarithmic scales that are used to compare the intensity

of sounds, the severity of earthquakes, and the brightness of distant stars. We will also look

at using regression to model data with a logarithmic function, and discuss what sort of data

is likely to fit such a model.

Z Logarithmic Scales

SOUND INTENSITY: The human ear is able to hear sound over a very wide range of intensi-

ties. The loudest sound a healthy person can hear without damage to the eardrum has an

intensity 1 trillion (1,000,000,000,000) times that of the softest sound a person can hear. If

we were to use these intensities as a scale for measuring volume, we would be stuck using

numbers from zero all the way to the trillions, which seems cumbersome, if not downright

silly. In the last section, we saw that logarithmic functions increase very slowly. We can take

advantage of this to create a scale for sound intensity that is much more condensed, and

therefore more manageable.

The decibel scale for sound intensity is an example of such a scale. The decibel, named

after the inventor of the telephone, Alexander Graham Bell (1847–1922), is defined as follows:

Decibel scale (1)

where D is the decibel level of the sound, I is the intensity of the sound measured in watts

per square meter and is the intensity of the least audible sound that an average

healthy young person can hear. The latter is standardized to be watts per square

meter. Table 1 lists some typical sound intensities from familiar sources. In Example 1 and

Problems 5 and 6 in Exercises 5-4, we will calculate the decibel levels for these sounds.

I0  10 12

I0(W/m2),

D  10 log 
I

I0

Table 1 Typical Sound

Intensities

Sound 

Intensity 

(W兾m2) Sound

Threshold of

hearing

Whisper

Normal 

conversation

Heavy traffic

Jackhammer

Threshold 

of pain

Jet plane 8.3  102

1.0  100

3.2  10 3

8.5  10 4

3.2  10 6

5.2  10 10

1.0  10 12
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Sound Intensity

(A) Find the number of decibels from a whisper with sound intensity watts

per square meter, then from heavy traffic at watts per square meter.

Round your answers to two decimal places.

(B) How many times larger is the sound intensity of heavy traffic compared to a whisper?

8.5  10 4

5.2  10 10

EXAMPLE 1

(A) We can use the decibel formula (1) with First, we use 

Substitute 

Simplify the fraction.

Next, for heavy traffic:

Substitute 

Simplify the fraction.

(B) Dividing the larger intensity by the smaller,

we see that the sound intensity of heavy traffic is more than 1.6 million times as

great as the intensity of a whisper! �

8.5  10 4

5.2  10 10  1,634,615.4

  89.29 decibels

  10 log 850,000,000

  10 log 
8.5  10 4

10 12

I  8.5  10
 4

, I0  10
 12

. D  10 log 
I

I0

  27.16 decibels

  10 log 520

  10 log 
5.2  10 10

10 12

I  5.2  10
 10

, I0  10
 12

. D  10 log 
I

I0

I  5.2  10 10:I0  10 12.SOLUTIONS

MATCHED PROBLEM 1 Find the number of decibels from a jackhammer with sound intensity watts per

square meter. Compute the answer to two decimal places.

�

3.2  10 3

Suppose that you are asked to draw a graph of the data in Table 1, with sound

intensities on the x axis, and the corresponding decibel levels on the y axis.

(A) What would be the coordinates of the point corresponding to a jackhammer

(see Matched Problem 1)?

(B) Suppose the axes of this graph are labeled as follows: Each tick mark on the

x axis corresponds to the intensity of the least audible sound watts per

square meter), and each tick mark on the y axis corresponds to 1 decibel. If there

is inch between all tick marks, how far away from the x axis is the point you

found in part A? From the y axis? (Give the first answer in inches and the second

in miles!) Discuss your result.

1
8

(10 12

ZZZ EXPLORE-DISCUSS 1

EARTHQUAKE INTENSITY: The energy released by the largest earthquake recorded, measured in

joules, is about 100 billion (100,000,000,000) times the energy released by a small earthquake

that is barely felt. In 1935 the California seismologist Charles Richter devised a logarithmic
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scale that bears his name and is still widely used in the United States. The magnitude of an

earthquake M on the Richter scale* is given as follows:

Richter scale (2)

where E is the energy released by the earthquake, measured in joules, and is the energy

released by a very small reference earthquake, which has been standardized to be

The destructive power of earthquakes relative to magnitudes on the Richter scale is indi-

cated in Table 2.

E0  104.40 joules

E0

M  
2

3
 log 

E

E0

*Originally, Richter defined the magnitude of an earthquake in terms of logarithms of the maximum seismic wave

amplitude, in thousandths of a millimeter, measured on a standard seismograph. Equation (2) gives essentially the

same magnitude that Richter obtained for a given earthquake but in terms of logarithms of the energy released by

the earthquake.

Table 2 The Richter Scale

Magnitude on Destructive 

Richter Scale Power

Small

Moderate

Large

Major

Great7.5 6 M

6.5 6 M 6 7.5

5.5 6 M 6 6.5

4.5 6 M 6 5.5

M 6 4.5

Earthquake Intensity

The 1906 San Francisco earthquake released approximately of energy.

Another quake struck the Bay Area just before game 3 of the 1989 World Series, releasing

of energy.

(A) Find the magnitude of each earthquake on the Richter scale. Round your answers to

two decimal places.

(B) How many times more energy did the 1906 earthquake release than the one in 1989?

1.12  1015 joules

5.96  1016 joules

EXAMPLE 2

SOLUTIONS (A) We can use the magnitude formula (2) with First, for the 1906 earthquake,

Substitute 

Next, for the 1989 earthquake, 

Substitute 

(B) Dividing the larger energy release by the smaller,

we see that the 1906 earthquake released 53.2 times as much energy as the 1989

quake. �

5.96  1016

1.12  1015  53.2

  7.1

  
2

3
 log 

1.12  1015

104.40

E  1.12  10
15

, E0  10
4.40. M  

2

3
 log 

E

E0

E  1.12  1015

  8.25

  
2

3
 log 

5.96  1016

104.40

E  5.96  10
16

, E0  10
4.40. M  

2

3
 log 

E

E0

E  5.96  1016:

E0  104.40.

MATCHED PROBLEM 2 A 1985 earthquake in central Chile released approximately of energy.

What was its magnitude on the Richter scale? Compute the answer to two decimal places.

�

1.26  1016 joules
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EXAMPLE 3 Earthquake Intensity

If the energy release of one earthquake is 1,000 times that of another, how much larger is

the Richter scale reading of the larger than the smaller?

SOLUTION Let

and

be the Richter equations for the smaller and larger earthquakes, respectively. Since the larger

earthquake released 1,000 times as much energy, we can write 

Substitute for 

Use 

Distribute.

An earthquake with 1,000 times the energy of another has a Richter scale reading of 2 more

than the other. �

  2  M1

2

3
 log 

E1

E0

 is M1!  
2

3
(3)  

2

3
 log 

E1

E0

  
2

3
a3  log 

E1

E0

b
log 1,000  log 10

3
 3  

2

3
alog 1,000  log 

E1

E0

b
log (MN)  log M  log N; 

1,000E1

E0

 1,000  

E1

E0

  
2

3
 log 

1,000E1

E0

E2.1,000E1 M2  
2

3
 log 

E2

E0

E2  1,000E1.

M2  
2

3
 log 

E2

E0

M1  
2

3
 log 

E1

E0

MATCHED PROBLEM 3 If the energy release of one earthquake is 10,000 times that of another, how much larger is

the Richter scale reading of the larger than the smaller?

�

ROCKET FLIGHT: The theory of rocket flight uses advanced mathematics and physics to show

that the velocity v of a rocket at burnout (depletion of fuel supply) is given by

Rocket equation (3)

where c is the exhaust velocity of the rocket engine, is the takeoff weight (fuel, struc-

ture, and payload), and is the burnout weight (structure and payload).

Because of the Earth’s atmospheric resistance, a launch vehicle velocity of at least

9.0 kilometers per second is required to achieve the minimum altitude needed for a stable

orbit. Formula (3) indicates that to increase velocity v, either the weight ratio must

be increased or the exhaust velocity c must be increased. The weight ratio can be increased

by the use of solid fuels, and the exhaust velocity can be increased by improving the fuels,

solid or liquid.

Wt Wb

Wb

Wt

v  c ln  
Wt

Wb

EXAMPLE 4 Rocket Flight Theory

A typical single-stage, solid-fuel rocket may have a weight ratio and an

exhaust velocity kilometers per second. Would this rocket reach a launch velocity

of 9.0 kilometers per second?

c  2.38

Wt Wb  18.7
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Z Data Analysis and Regression

Based on the logarithmic graphs we studied in the last section, when a quantity increases

relatively rapidly at first, but then levels off and increases very slowly, it might be a good

candidate to be modeled by a logarithmic function. Most graphing calculators with regres-

sion commands can fit functions of the form to a set of data points using

the same techniques we used earlier for other types of regression.

y  a  b ln  x

SOLUTION We can use the rocket equation (3) with and 

The velocity of the launch vehicle is far short of the 9.0 kilometers per second required to

achieve orbit. This is why multiple-stage launchers are used—the deadweight from a pre-

ceding stage can be jettisoned into the ocean when the next stage takes over. �

  6.97 kilometers per second

  2.38 ln 18.7

 v  c ln  

Wt

Wb

Wt Wb  18.7:c  2.38

MATCHED PROBLEM 4 A launch vehicle using liquid fuel, such as a mixture of liquid hydrogen and liquid oxygen,

can produce an exhaust velocity of kilometers per second. However, the weight ratio

must be low—around 5.5 for some vehicles—because of the increased structural

weight to accommodate the liquid fuel. How much more or less than the 9.0 kilometers per

second required to reach orbit will be achieved by this vehicle?

�

Wt Wb

c  4.7

EXAMPLE 5 Home Ownership Rates

The U.S. Census Bureau published the data in Table 3 on home ownership rates.

A logarithmic model for the data is given by

R   36.7  23.0 ln t

where R is the home ownership rate and t is time in years with t  0 representing 1900.

(A) Use the model to predict the home ownership rate in 2015.

(B) Compare the actual home ownership rate in 1950 to the rate given by the model.

Table 3 Home Ownership

Rates

Home Ownership 

Year Rate (%)

1940 43.6

1950 55.0

1960 61.9

1970 62.9

1980 64.4

1990 64.2

2000 67.4 

SOLUTIONS (A) The year 2015 is represented by t  115. Evaluating

R   36.7  23.0 ln t

at t  115 predicts a home ownership rate of 72.4% in 2015.

(B) The year 1950 is represented by t  50. Evaluating

R   36.7  23.0 ln t

at t  50 gives a home ownership rate of 53.3% in 1950. The actual home owner-

ship rate in 1950 was 55%, approximately 1.7% greater than the number given by

the model.
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MATCHED PROBLEM 5 Refer to Example 5. The home ownership rate in 2008 was 67.8%. If this data is added to

Table 3, a logarithmic model for the expanded data is given by

R ⫽ ⫺30.6 ⫹ 21.5 ln t

where R is the home ownership rate and t is time in years with t ⫽ 0 representing 1900.

(A) Use the model to predict the home ownership rate in 2015.

(B) Compare the actual home ownership rate in 1950 to the rate given by the model.

�

Technology Connections

Figure 1 shows the details of constructing the logarithmic model of Example 5 on a graphing calculator.

0

0

100

120

Z Figure 1

(a) Entering the data (b) Finding the model (c) Graphing the data and the model

ANSWERS TO MATCHED PROBLEMS

1. 95.05 decibels 2. 7.80 3. 2.67 4. 1 kilometer per second less

5. (A) 70.5% (B) The actual rate was 1.5% greater than the rate given by the model.

(B) The threshold of pain, 1.0 watt per square meter?

Compute answers to two significant digits.

6. SOUND What is the decibel level of

(A) A normal conversation, watts per square meter?

(B) A jet plane with an afterburner, watts per square

meter?

Compute answers to two significant digits.

7. SOUND If the intensity of a sound from one source is 1,000

times that of another, how much more is the decibel level of the

louder sound than the quieter one?

8.3 ⫻ 102

3.2 ⫻ 10⫺6

5-4 Exercises

1. Describe the decibel scale in your own words.

2. Describe the Richter scale in your own words.

3. Explain why logarithms are a good choice for describing sound

intensity and earthquake magnitude.

4. Think of a real-life quantity that is likely to be modeled well

by a logarithmic function, and explain your reasoning.

APPLICATIONS

5. SOUND What is the decibel level of

(A) The threshold of hearing, watts per square

meter?

1.0 ⫻ 10⫺12

�
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8. SOUND If the intensity of a sound from one source is 10,000

times that of another, how much more is the decibel level of the

louder sound than the quieter one?

9. EARTHQUAKES One of the strongest recorded earthquakes to

date was in Colombia in 1906, with an energy release of

What was its magnitude on the Richter scale?

Compute the answer to one decimal place.

10. EARTHQUAKES Anchorage, Alaska, had a major earthquake in

1964 that released of energy. What was its mag-

nitude on the Richter scale? Compute the answer to one decimal

place.

11. EARTHQUAKES The 1933 Long Beach, California, earthquake

had a Richter scale reading of 6.3, and the 1964 Anchorage, Alaska,

earthquake had a Richter scale reading of 8.3. How many times

more powerful was the Anchorage earthquake than the Long Beach

earthquake?

12. EARTHQUAKES Generally, an earthquake requires a magnitude

of over 5.6 on the Richter scale to inflict serious damage. How

many times more powerful than this was the great 1906 Colombia

earthquake, which registered a magnitude of 8.6 on the Richter

scale?

13. EXPLOSIVE ENERGY The atomic bomb dropped on Nagasaki,

Japan, on August 9, 1945, released about of

energy. What would be the magnitude of an earthquake that re-

leased that much energy?

14. EXPLOSIVE ENERGY The largest and most powerful nuclear

weapon ever detonated was tested by the Soviet Union on October 30,

1961, on an island in the Arctic Sea. The blast was so powerful there

were reports of windows breaking in Finland, over 700 miles away.

The detonation released about of energy. What

would be the magnitude of an earthquake that released that much

energy?

15. ASTRONOMY A moderate-size solar flare observed on the sun on

July 9, 1996, released enough energy to power the United States for

almost 23,000 years at 2001 consumption levels, 

What would be the magnitude of an earthquake that released that

much energy?

16. CONSTRUCTION The energy released by a typical construc-

tion site explosion is about What would be the

magnitude of an earthquake that released that much energy?

17. SPACE VEHICLES A new solid-fuel rocket has a weight ratio

and an exhaust velocity kilometers per

second. What is its velocity at burnout? Compute the answer to two

decimal places.

18. SPACE VEHICLES A liquid-fuel rocket has a weight ratio

and an exhaust velocity kilometers per sec-

ond. What is its velocity at burnout? Compute the answer to two

decimal places.

19. CHEMISTRY The hydrogen ion concentration of a substance is

related to its acidity and basicity. Because hydrogen ion concentra-

tions vary over a very wide range, logarithms are used to create a

compressed pH scale, which is defined as follows:

pH   log [H ]

c  5.2Wt Wb  6.2

c  2.57Wt Wb  19.8

7.94  105 joules.

2.38  1021 joules.

2.1  1017 joules

1.34  1014 joules

7.08  1016 joules

1.99  1017 joules.

where is the hydrogen ion concentration, in moles per liter.

Pure water has a pH of 7, which means it is neutral. Substances with

a pH less than 7 are acidic, and those with a pH greater than 7 are

basic. Compute the pH of each substance listed, given the indicated

hydrogen ion concentration. Also, indicate whether each substance

is acidic or basic. Compute answers to one decimal place.

(A) Seawater, 

(B) Vinegar, 

20. CHEMISTRY Refer to Problem 19. Compute the pH of each

substance below, given the indicated hydrogen ion concentration.

Also, indicate whether it is acidic or basic. Compute answers to one

decimal place.

(A) Milk, 

(B) Garden mulch, 

21. ECOLOGY Refer to Problem 19. Many lakes in Canada and the

United States will no longer sustain some forms of wildlife be-

cause of the increase in acidity of the water from acid rain and

snow caused by sulfur dioxide emissions from industry. If the pH

of a sample of rainwater is 5.2, what is its hydrogen ion concen-

tration in moles per liter? Compute the answer to two significant

digits.

22. ECOLOGY Refer to Problem 19. If normal rainwater has a pH of

5.7, what is its hydrogen ion concentration in moles per liter? Com-

pute the answer to two significant digits.

23. ASTRONOMY The brightness of stars is expressed in terms of

magnitudes on a numerical scale that increases as the brightness

decreases. The magnitude m is given by the formula

where L is the light flux of the star and is the light flux of the

dimmest stars visible to the naked eye.

(A) What is the magnitude of the dimmest stars visible to the

naked eye?

(B) How many times brighter is a star of magnitude 1 than a star of

magnitude 6?

24. ASTRONOMY An optical instrument is required to observe stars

beyond the sixth magnitude, the limit of ordinary vision. However,

even optical instruments have their limitations. The limiting magni-

tude L of any optical telescope with lens diameter D, in inches, is

given by

(A) Find the limiting magnitude for a homemade 6-inch reflecting

telescope.

(B) Find the diameter of a lens that would have a limiting magni-

tude of 20.6.

Compute answers to three significant digits.

Problems 25 and 26 require a graphing calculator or a computer

program that can calculate a logarithmic regression model for a

given data set.

25. INTERNET ACCESS Table 4 on page 372 shows the percentage

of Americans that had access to the Internet either at home or at

work between 2000 and 2006. Let x represent years since 1995.

L  8.8  5.1 log D

L0

m  6  2.5 log 
L

L0

3.78  10 6

2.83  10 7

9.32  10 4

4.63  10 9

[H ]



(A) Find a logarithmic regression model for the

percentage with home access. Round a and b to three significant

digits. Use your model to estimate the percentage in 2008 and

2015.

(B) Examine the model for larger and larger values of x. Does it re-

main reasonable in the long term?

26. INTERNET ACCESS Refer to Table 4.

(A) Find a logarithmic regression model for the

percentage with work access. (Keep in mind that x represents years

since 1995.) Round a and b to three significant digits. Use your

model to estimate the percentage in 2008 and 2015.

(B) Examine the model for larger and larger values of x. Does it

remain reasonable in the long term?

(y  a  b ln x)

(y  a  b ln x)
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Table 4 Internet Access in the United States

Percentage with Home Percentage with Work 

Year Access Access

2000 46.9 35.2

2001 58.4 37.5

2002 59.3 40.2

2003 65.1 49.6

2005 66.2 55.1

2006 68.1 55.8

We have seen that many quantities can be modeled by exponential or logarithmic functions.

So it’s not surprising that equations involving exponential or logarithmic expressions, like

those shown next, are useful in studying those quantities.

and

Equations like these are called exponential and logarithmic equations, respectively. The

properties of logarithms that we studied in Section 5-3 will play a key role in solving both

types of equations.

Z Solving Exponential Equations

The distinguishing feature of exponential equations is that the variable appears in an expo-

nent. Before defining logarithms, we didn’t have a reliable method for removing variables

from an exponent: Now we do. We’ll illustrate how these properties are helpful in Exam-

ples 1-4.

log (x  3)  log x  123x 2
 5

5-5 Exponential and Logarithmic Equations

Z Solving Exponential Equations

Z Solving Logarithmic Equations

EXAMPLE 1 Solving an Exponential Equation

Find all solutions to to four decimal places.23x 2
 5

SOLUTION In order to have any chance of solving for x, we will first need to get x out of the expo-

nent. This is where logs come in very handy.

 3x  2  
log 5

log 2

 (3x  2) log 2  log 5

 log 23x 2
 log 5

 23x 2
 5 Take the common or natural log of both sides.

Use to get out of the exponent position.

Divide both sides by log 2.

Add 2 to both sides.

3x  2logb N
p
 p logb N
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Divide both sides by 3, or multiply both sides by .

Use a calculator.

Solution to four decimal places

1

3

�  1.4406

 x  
1

3
 a2  

log 5

log 2
b

 3x  2  
log 5

log 2

MATCHED PROBLEM 1 Solve for x to four decimal places.

�

351 2x
 7

EXAMPLE 2 Compound Interest

Recall that when an amount of money P (principal) is invested at an annual rate r com-

pounded annually, the amount of money A in the account after n years, assuming no with-

drawals, is given by

How many years to the nearest year will it take the money to double if it is invested at 6%

compounded annually?

A  P a1  
r

m
bn  P(1  r)n

SOLUTION The interest rate is r  0.06, and we want the amount A to be twice the principal, or 2P.

So we substitute r  0.06 and A  2P, and solve for n.

�  12 years

 n  
log 2

log 1.06

 log 2  n log 1.06

 log 2  log 1.06n

 2  1.06n

 2P  P(1.06)n

MATCHED PROBLEM 2 Repeat Example 2, changing the interest rate to 9% compounded annually.

�

m  1 for annual compounding.

Divide both sides by P to isolate (1.06)
n
.

Take the common or natural log of both sides.

Note how log properties are used to get n out of the exponent position.

Divide both sides by log 1.06 (which is just a number!).

Calculate to the nearest year.

EXAMPLE 3 Atmospheric Pressure

The atmospheric pressure P, in pounds per square inch, at x miles above sea level is given

approximately by

P  14.7e 0.21x

At what height will the atmospheric pressure be half the sea-level pressure? Compute the

answer to two significant digits.

SOLUTION Since x is miles above sea level, sea-level pressure is the pressure at x  0, which is 14.7e0,

or 14.7.

One-half of sea level pressure is 14.7兾2  7.35. Now our problem is to find x so that

P  7.35; that is, we solve 7.35  14.7e 0.21x for x:

 ln 0.5  ln e 0.21x

 0.5  e
 0.21x

 7.35  14.7e 0.21x
Divide both sides by 14.7 to isolate the exponential.

Because the base is e, take the natural log of both sides.

In e
a

 a, so ln e
 0.21x

   0.21x



The graph of

(1)

is a curve called a catenary (Fig. 1). A uniform cable suspended between two fixed points

is a physical example of such a curve, which resembles a parabola, but isn’t.

y  
e
x
 e

 x

2
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�  3.3 miles

 x  
ln 0.5

 0.21

 ln 0.5   0.21x Divide both sides by  0.21.

Calculate to two significant digits.

MATCHED PROBLEM 3 Using the formula in Example 3, find the altitude in miles so that the atmospheric pressure

will be one-eighth that at sea level. Compute the answer to two significant digits.

�

x

y

5 5

5

10

y  
ex

   e x

2

ZFigure 1 Catenary.

EXAMPLE 4 Solving an Exponential Equation

In equation (1), find x when y  2.5. Compute the answer to four decimal places.

SOLUTION

Let then

Note that the method produces exact solutions, an important consideration in certain calculus

applications (see Problems 57–60 of Exercises 5-5). �

   1.5668, 1.5668

 x  ln 
5  121

2

 ln ex  ln 
5  121

2

 ex  
5  121

2

  
5  121

2

 u  
5  125  4(1)(1)

2

 u2
 5u  1  0

u  e
x;

 e2x
 5ex  1  0

 5ex  e
2x

 1

 5  e
x

 e
 x

 2.5  
e
x

 e
 x

2

 y  
e
x

 e
 x

2
Let y 2.5.

Multiply both sides by 2.

Multiply both sides by e
x
.

Subtract 5e
x

from both sides.

This is a quadratic in e
x
.

MATCHED PROBLEM 4 Given find x for Compute the answer to three decimal places.

�

y  1.5.y  (e 
x

 e
 x) 2,

Use the quadratic formula.

Simplify.

Replace u with e
x

and solve for x.

Take the natural log of both sides 

(both values on the right are positive).

logb b
x
 x, so ln e

x 
 x.

Exact solutions

Rounded to four decimal places.



Z Solving Logarithmic Equations

We will now illustrate the solution of several types of logarithmic equations.
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EXAMPLE 5 Solving a Logarithmic Equation

Solve log (x  3)  log x  1, and check.

EXAMPLE 6 Solving a Logarithmic Equation

Solve (ln x)2
 ln x2.

SOLUTION First use properties of logarithms to express the left side as a single logarithm, then con-

vert to exponential form and solve for x.

log (x  3)  log x  1

log [x(x  3)]  1

x(x  3)  101

x
2
 3x  10  0

(x  5)(x  2)  0

x   5, 2

CHECK x   5: log ( 5  3)  log ( 5) is not defined 

because the domain of the log function is 

x  2: log (2  3)  log 2  log 5  log 2

The only solution to the original equation is x  2. Extraneous solutions are common in

log equations, so answers should always be checked in the original equation to see whether

any should be discarded. �

 log (5  2)  log 10  
✓

1

(0,  ).

SOLUTION There are no logarithmic properties for simplifying (ln x)2. However, we can simplify ln x2,

obtaining an equation involving ln x and (ln x)2.

Checking that both x  1 and x  e
2 are solutions to the original equation is left to you. �

  1  x  e
2

 x  e
0  ln x  2

 ln x  0  or   ln x  2  0

 (ln x)(ln x  2)  0

 (ln x)2
 2 ln x  0

 (ln x)2
 2 ln x

 (ln x)2
 ln x2

MATCHED PROBLEM 5 Solve log (x  15)  2  log x, and check.

�

MATCHED PROBLEM 6 Solve 

�

log x2
 (log x)2.

Combine left side using log M  log N  log MN.

Change to equivalent exponential form (the base is 10).

Write in ax
2
 bx  c  0 form and solve.

Factor.

If ab  0, then a  0 or b  0.

ln M
p
 p ln M, so ln x

2
 2 ln x.

This is a quadratic equation in ln x. Move all nonzero terms to the left.

Factor out ln x.

If ab 0, then a 0 or b 0.

If ln x a, x e
a
.
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EXAMPLE 7 Earthquake Intensity

Recall from Section 5-4 that the magnitude of an earthquake on the Richter scale is given by

Solve for E in terms of the other symbols.

M  
2

3
 log 

E

E0

SOLUTION

� E  E0103M 2

 
E

E0

 103M 2

 log 

E

E0

 
3M

2

 M  
2

3
 log 

E

E0

MATCHED PROBLEM 7 Solve the rocket equation from Section 5-4 for in terms of the other symbols:

�

v  c ln 
Wt

Wb

Wb

ZZZ CAUTION ZZZ Note that

You might find it helpful to keep these straight by writing logb x2 as logb (x2).

(logb x)2
 logb x2

Multiply both sides by and switch sides.

Change to exponential form with base 10.

Multiply both sides by E0.

3
2

(logb x)
2
 (logb x)(logb x)

logb x
2
 2 logb x

6. Can you use a logarithm with the same base to solve both equa-

tions below? Explain.

ex
 10 and 5x

 8

In Problems 7–16, solve to three significant digits.

7. 8.

9. 10. 

11. 12.

13. 14. 13  e3x 5
 23e2x 1

 68  207

e x
 0.0142e 

x
 3.65

105x 2
 348103x 1

 92

10x
 14.310 x

 0.0347

5-5 Exercises

1. Which property of logarithms do you think is most useful in

solving exponential equations? Explain.

2. Which properties of logarithms do you think are most useful in

solving equations with more than one logarithm? Explain.

3. If u and v represent expressions with variable x, how can you

solve equations of the form logb u logb v for x? Explain why

this works.

4. Why is it especially important to check answers when solving

logarithmic equations?

5. Explain the difference between (ln x)2 and ln x2.

ANSWERS TO MATCHED PROBLEMS

1. 2. More than double in 9 years, but not quite double in 8 years

3. 9.9 miles 4. x  1.195 5. x  20 6. x  1,100 7. Wb  Wt e v c

x  0.2263
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54. L  8.8  5.1 log D for D (astronomy)

55. for t (circuitry)

56. for n (annuity)

The following combinations of exponential functions define four 

of six hyperbolic functions, a useful class of functions in calculus

and higher mathematics. Solve Problems 57–60 for x in terms of y.

The results are used to define inverse hyperbolic functions,

another useful class of functions in calculus and higher

mathematics.

57. 58. 

59. 60. 

In Problems 61–68, use a graphing calculator to approximate to

two decimal places any solutions of the equation in the interval

0  x  1. None of these equations can be solved exactly using

any step-by-step algebraic process.

61. 62. 

63. 64. 

65. 66. 

67. 68. 

APPLICATIONS

69. COMPOUND INTEREST How many years, to the nearest year,

will it take a sum of money to double if it is invested at 7% com-

pounded annually?

70. COMPOUND INTEREST How many years, to the nearest year,

will it take money to quadruple if it is invested at 6% compounded

annually?

71. COMPOUND INTEREST At what annual rate compounded con-

tinuously will $1,000 have to be invested to amount to $2,500 in 10

years? Compute the answer to three significant digits.

72. COMPOUND INTEREST How many years will it take $5,000 to

amount to $8,000 if it is invested at an annual rate of 9% com-

pounded continuously? Compute the answer to three significant

digits.

73. IMMIGRATION According to the U.S. Office of Immigration

Statistics, there were 10.5 million illegal immigrants in the United

States in May 2005, and that number had grown to 11.3 million by

May 2007.

(A) Find the relative growth rate if we use the model for

population growth. Round to three significant digits.

(B) Use your answer from part A to write a function describing the

illegal immigrant population in millions in terms of years after May

2005, and use it to predict when the illegal immigrant population

should reach 20 million.

P  P0ert

ln x  x  0ln x  e 
x

 0

ln x  x2
 0ln x  2x  0

xe2x
 1  0e x

 x  0

3 x
 3x  02 x

 2x  0

y  
e 

x
 e x

e 
x

 e xy  
e 

x
 e x

e 
x

 e x

y  
e 

x
 e x

2
y  

e 
x

 e x

2

S  R 

(1  i)n
 1

i

I  
E

R
 (1  e Rt L)

15. 16.

In Problems 17–26, solve exactly.

17. log5 x  2 18. log3 y  4

19. log (t  4)    1 20. ln (2x  3)   0

21. 22.

23. 

24.

25. 

26. 

In Problems 27–34, solve to three significant digits.

27. 28. 

29. 30. 

31. 32.

33. 34. 

In Problems 35–48, solve exactly.

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 46. 

47. 48. 

Solve Problems 49–56 for the indicated variable in terms of the

remaining symbols. Use the natural log for solving exponential

equations.

49. A  Pert for r (finance)

50. for t (finance)

51. for I (sound)

52. for A (decay)

53. for I (astronomy)M  6  2.5 log 
I

I0

t  
 1

k
 (ln A  ln A0)

D  10 log 
I

I0

A  P a1  
r

n
bnt

log (log x)  1ln (ln x)  1

(log x)3
 log x4(ln x)3

 ln x4

1  ln (x  1)  ln (x  1)

ln (x  1)  ln (3x  3)

1  log (x  2)  log (3x  1)

log (2x  1)  1  log (x  1)

ln (x  1)  ln (3x  1)  ln x

ln x  ln (2x  1)  ln (x  2)

log (6x  5)  log 3  log 2  log x

log x  log 5  log 2  log (x  3)

log (x  3)  log (6  4x)

log (5  2x)  log (3x  1)

ex2

 125e x2

 0.23

438  200e0.25x123  500e 0.12x

e0.32x
 0.47  0e 1.4x

 5  0

3  1.06x2  1.05x

log (2x  1)  1  log (x  2)

log (x  1)  log (x  1)  1

log (x  9)  log 100x  3

log x  log (x  3)  1

log x  log 8  1log 5  log x  2

343 x
 0.089232 x

 0.426
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If a fragment of a wooden tool found and dated in 2004 had 88.3% of

the amount of carbon-14 in a living sample, when was this tool made?

82. CARBON-14 DATING In 1998, the Shroud of Turin was exam-

ined by researchers, who found that plant fibers in the fabric had

92.1% of the amount of carbon-14 in a living sample. If this is ac-

curate, when was the fabric made?

83. PHOTOGRAPHY An electronic flash unit for a camera is

activated when a capacitor is discharged through a filament of wire.

After the flash is triggered and the capacitor is discharged, the cir-

cuit (see the figure) is connected and the battery pack generates a

current to recharge the capacitor. The time it takes for the capacitor

to recharge is called the recycle time. For a particular flash unit us-

ing a 12-volt battery pack, the charge q, in coulombs, on the capac-

itor t seconds after recharging has started is given by

q  0.0009(1  e 0.2t)

How many seconds will it take the capacitor to reach a charge

of 0.0007 coulomb? Compute the answer to three significant digits.

84. ADVERTISING A company is trying to expose as many people

as possible to a new product through television advertising in a

large metropolitan area with 2 million possible viewers. A model

for the number of people N, in millions, who are aware of the prod-

uct after t days of advertising was found to be

N  2(1 – e 0.037t)

How many days, to the nearest day, will the advertising campaign

have to last so that 80% of the possible viewers will be aware of the

product?

85. NEWTON’S LAW OF COOLING This law states that the rate at

which an object cools is proportional to the difference in tempera-

ture between the object and its surrounding medium. The tempera-

ture T of the object t hours later is given by

T  Tm  (T0 Tm)e kt

where Tm is the temperature of the surrounding medium and T0 is the

temperature of the object at t 0. Suppose a bottle of wine at a room

temperature of is placed in a refrigerator at to cool before

a dinner party. After an hour the temperature of the wine is found to

be Find the constant k, to two decimal places, and the time,

to one decimal place, it will take the wine to cool from 72 to 

86. MARINE BIOLOGY Marine life is dependent upon the micro-

scopic plant life that exists in the photic zone, a zone that goes to a

depth where about 1% of the surface light still remains. Light inten-

sity is reduced according to the exponential function

I  I0e kd

where I is the intensity d feet below the surface and I0 is the inten-

sity at the surface. The constant k is called the coefficient of extinc-

tion. At Crystal Lake in Wisconsin it was found that half the surface

light remained at a depth of 14.3 feet. Find k, and find the depth of

the photic zone. Compute answers to three significant digits.

50°F.

61.5°F.

40°F72°F

I

R

V

C

S

74. POPULATION GROWTH According to U.S. Census Bureau esti-

mates, the population of the United States was 227.2 million on

July 1, 1980, and 249.5 million on July 1, 1990.

(A) Find the relative growth rate if we use the model for

population growth. Round to three significant digits.

(B) Use your answer from part A to write a function describing the

population of the United States in millions in terms of years after

July 1980, and use it to predict when the  population should reach

400 million.

(C) Use your function from part B to estimate the population of the

United States today, then compare your estimate to the one found at

www.census.gov/population/www/popclockus.html.

75. WORLD POPULATION A mathematical model for world popu-

lation growth over short periods is given by

P  P0ert

where P is the population after t years, P0 is the population at t 0,

and the population is assumed to grow continuously at the annual

rate r. How many years, to the nearest year, will it take the world

population to double if it grows continuously at an annual rate of

1.14%?

76. WORLD POPULATION Refer to Problem 75. Starting with a

world population of 6.8 billion people (the estimated population in

March 2009) and assuming that the population grows continuously at

an annual rate of 1.14%, how many years, to the nearest year, will it

be before there is only 1 square yard of land per person? Earth con-

tains approximately square yards of land.

77. MEDICAL RESEARCH A medical researcher is testing a ra-

dioactive isotope for use in a new imaging process. She finds that

an original sample of 5 grams decays to 1 gram in 6 hours. Find the

half-life of the sample to three significant digits. [Recall that the

half-life model is where is the original amount and

h is the half-life.]

78. CARBON-14 DATING If 90% of a sample of carbon-14 remains

after 866 years, what is the half-life of carbon-14? (See Problem 77

for the half-life model.)

As long as a plant or animal remains alive, carbon-14 is maintained

in a constant amount in its tissues. Once dead, however, the plant or

animal ceases taking in carbon, and carbon-14 diminishes by

radioactive decay. The amount remaining can be modeled by the

equation where A is the amount after t years, and

is the amount at time Use this model to solve Problems

79–82.

79. CARBON-14 DATING In 2003, Japanese scientists announced

the beginning of an effort to bring the long-extinct woolly mam-

moth back to life using modern cloning techniques. Their efforts

were focused on an especially well-preserved specimen discovered

frozen in the Siberian ice. Nearby samples of plant material were

found to have 28.9% of the amount of carbon-14 in a living sample.

What was the approximate age of these samples?

80. CARBON-14 DATING In 2004, archaeologist Al Goodyear dis-

covered a site in South Carolina that contains evidence of the earli-

est human settlement in North America. Carbon dating of burned

plant material indicated 0.2% of the amount of carbon-14 in a live

sample. How old was that sample?

81. CARBON-14 DATING Many scholars believe that the earliest nonna-

tive settlers of North America were Vikings who sailed from Iceland.

t  0.A0

A  A0e 0.000124t,

A0A  A0(1
2)

t/h,

1.7  1014

P  P0ert
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Problems 87–90 are based on the Richter scale equation from

Section 5-4, where M is the magnitude and E is the

amount of energy in joules released by the earthquake. Round all

calculations to three significant digits.

87. EARTHQUAKES There were 12 earthquakes recorded world-

wide in 2008 with magnitude at least 7.0.

(A) How much energy is released by a magnitude 7.0 earthquake?

(B) The total average daily consumption of energy for the entire

United States in 2006 was joules. How many days

could the energy released by a magnitude 7.0 earthquake power the

United States?

88. EARTHQUAKES On December 26, 2004, a magnitude 9.0 earth-

quake struck in the Indian Ocean, causing a massive tsunami that

resulted in over 230,000 deaths.

(A) How much energy was released by this earthquake?

2.88  1014

M  
2
3 log E

104.40,

(B) The total average daily consumption of energy for the entire

United States in 2006 was joules. How many days

could the energy released by a magnitude 9.0 earthquake power the

United States?

89. EARTHQUAKES There were 12 earthquakes worldwide in 2008

with magnitudes between 7.0 and 7.9. Assume that these earthquakes

had an average magnitude of 7.5. How long could the total energy re-

leased by these 12 earthquakes power the United States, which had a

total energy consumption of joules in 2006?

90. EARTHQUAKES There were 166 earthquakes worldwide in

2008 with magnitudes between 6.0 and 6.9. Assume that these

earthquakes had an average magnitude of 6.5. How long could the

total energy released by these 166 earthquakes power the United

States, which had a total energy consumption of joules

in 2006?

1.05  1017

1.05  1017

2.88  1014

5-1 Exponential Functions

The equation f(x)  bx, b  0, b  1, defines an exponential func-

tion with base b. The domain of f is (  ,  ) and the range is 

(0,  ). The graph of f is a continuous curve that has no sharp cor-

ners; passes through (0, 1); lies above the x axis, which is a horizon-

tal asymptote; increases as x increases if b  1; decreases as x

increases if b  1; and intersects any horizontal line at most once.

The function f is one-to-one and has an inverse. We often use the

following exponential function properties:

1. axay
 ax y (ax)y

 axy (ab)x
 axbx

2. ax
 ay if and only if x  y.

3. For x  0, ax
 bx if and only if a  b.

As x approaches  , the expression [1  (1兾x)]x approaches the ir-

rational number e ⬇ 2.718 281 828 459. The function f (x)  ex is

called the exponential function with base e. The growth of money

in an account paying compound interest is described by

A  P(1  r兾m)n, where P is the principal, r is the annual rate, m

is the number of compounding periods in 1 year, and A is the

amount in the account after n compounding periods.

If the account pays continuous compound interest, the

amount A in the account after t years is given by A  Pert.

5-2 Exponential Models

Exponential functions are used to model various types of growth:

1. Population growth can be modeled by using the doubling time

growth model where A is the population at time t,

is the population at time and d is the doubling time—t  0,A0

A  A02t d,

ax

ay  ax yaa

b
bx

 
ax

bx

the time it takes for the population to double. Another model of

population growth, where is the population at

time zero and k is a positive constant called the relative growth

rate, uses the exponential function with base e. This model is

used for many other types of quantities that exhibit exponential

growth as well.

2. Radioactive decay can be modeled by using the half-life decay

model where A is the amount at time t,

is the amount at time and h is the half-life—the time it

takes for half the material to decay. Another model of

radioactive decay, , where is the amount at time

zero and k is a positive constant, uses the exponential function

with base e. This model can be used for other types of quantities

that exhibit negative exponential growth as well.

3. Limited growth—the growth of a company or proficiency at

learning a skill, for example—can often be modeled by the

equation where A and k are positive constants.

Logistic growth is another limited growth model that is useful

for modeling phenomena like the spread of an epidemic, or sales of a

new product. The logistic model is where c, k,

and M are positive constants. A good comparison of these different

exponential models can be found in Table 3 at the end of Section 5-2.

Exponential regression can be used to fit a function of the

form to a set of data points. Logistic regression can be

used to find a function of the form 

5-3 Logarithmic Functions

The logarithmic function with base b is defined to be the inverse

of the exponential function with base b and is denoted by y   logbx.

So y  logbx if and only if x  by, b  0, b  1. The domain of a

logarithmic function is (0,  ) and the range is (  ,  ). The graph

of a logarithmic function is a continuous curve that always passes

y  c (1  ae bx).

y  ab x

A  M/(1  ce kt ),

y  A(1  e kt ),

A0A  A0e kt

t  0,A0

A  A0(1
2)

t h  A02 t h,

A0A  A0ekt,
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through the point (1, 0) and has the y axis as a vertical asymptote.

The following properties of logarithmic functions are useful:

1. logb 1 ⫽ 0

2. logb b ⫽ 1

3. logb bx
⫽ x

4. blogbx
⫽ x, x ⬎ 0

5. logb MN ⫽ logb M ⫹ logb N

6.

7. logb Mp
⫽ p logb M

8. logb M ⫽ logb N if and only if M ⫽ N

Logarithms to the base 10 are called common logarithms and are

denoted by log x. Logarithms to the base e are called natural loga-

rithms and are denoted by ln x. So log x ⫽ y is equivalent to

x ⫽ 10y, and ln x ⫽ y is equivalent to x ⫽ ey.

The change-of-base formula, logb N ⫽ (loga N)兾(loga b), re-

lates logarithms to two different bases and can be used, along with a

calculator, to evaluate logarithms to bases other than e or 10.

5-4 Logarithmic Models

The following applications involve logarithmic functions:

1. The decibel is defined by D ⫽ 10 log (I兾I0), where D is the

decibel level of the sound, I is the intensity of the sound, and

I0 ⫽ 10⫺12 watts per square meter is a standardized sound level.

logb 
M

N
⫽ logb M ⫺ logb N
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2. The magnitude M of an earthquake on the Richter scale is

given by where E is the energy released by

the earthquake and E0 ⫽ 104.40 joules is a standardized energy

level.

3. The velocity v of a rocket at burnout is given by the rocket

equation v ⫽ c ln (Wt兾Wb), where c is the exhaust velocity, Wt

is the takeoff weight, and Wb is the burnout weight.

Logarithmic regression can be used to fit a function of the form

y ⫽ a ⫹ b ln x to a set of data points.

5-5 Exponential and Logarithmic Equations

Exponential equations are equations in which the variable appears

in an exponent. If the exponential expression is isolated, applying a

logarithmic function to both sides and using the property

will enable you to remove the variable from the

exponent. If the exponential expression is not isolated, we can use

previously developed techniques to first solve for the exponential,

then solve as above.

Logarithmic equations are equations in which the variable

appears inside a logarithmic function. In most cases, the key to

solving them is to change the equation to the equivalent exponen-

tial expression. For equations with multiple log expressions, prop-

erties of logarithms can be used to combine the expressions

before solving.

logb  N
p

⫽ p logb  N

M ⫽
2
3 log (EⲐE0),

Work through all the problems in this chapter review and check

answers in the back of the book. Answers to all review problems

are there, and following each answer is a number in italics

indicating the section in which that type of problem is discussed.

Where weaknesses show up, review appropriate sections in the text.

1. Match each equation with the graph of f, g, m, or n in the figure.

(A) y ⫽ log2 x (B) y ⫽ 0.5x

(C) y ⫽ log0.5 x (D) y ⫽ 2x

2. Write in logarithmic form using base 10: m ⫽ 10n.

⫺3

⫺4.5

3

4.5

f g

m

n

3. Write in logarithmic form using base e: x ⫽ ey.

Write the expression in Problems 4 and 5 in exponential form.

4. log x ⫽ y 5. ln y ⫽ x

6. (A) Plot at least five points, then draw a hand sketch of the graph

of 

(B) Use your result from part A to sketch the graph of

In Problems 7 and 8, simplify.

7. 8.

In Problems 9–11, solve for x exactly. 

9. log2 x ⫽ 3 10. logx 25 ⫽ 2 11. log3 27 ⫽ x

a e 
x

e⫺xb
x7x⫹2

72⫺x

y ⫽ log4Ⲑ3 x.

y ⫽ (4
3)

x.
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In Problems 12–15, solve for x to three significant digits.

12. 10x
 17.5 13. ex

 143,000

14. ln x   0.015 73 15. log x  2.013

Evaluate the expression in Problems 16–19 to four significant

digits using a calculator.

16. ln  17. log ( e)

18.  
ln 2

19. 

20. Write as a single log: 

21. Write in terms of ln a and ln b: 

In Problems 22–35, solve for x exactly.

22. 23.

24. log2 (4x  5)  5 25. ln (x  5)  0

26. ln (2x  1)  ln (x  3)

27. log (x2
 3)  2 log (x  1)

28. ex2
 3

 e2x
29. 4x 1

 21 x

30. 2x2e x
 18e x

31. log1兾4 16  x

32. logx 9   2 33.

34. logx e5
 5 35. 10log10x

 33

In Problems 36–45, solve for x to three significant digits.

36. x  2(101.32) 37. x  log5 23

38. ln x   3.218 39. x  log (2.156  10 7)

40. 41. 25  5(2x)

42. 4,000  2,500(e0.12x) 43. 0.01  e 0.05x

44. 52x 3
 7.08 45.

In Problems 46–51, solve for x exactly. 

46. log 3x2
 log 9x  2

47. log x  log 3  log 4  log (x  4)

48. ln (x  3)  ln x  2 ln 2

49. ln (2x  1)  ln (x  1)  ln x

50. (log x)3
 log x9

51. ln (log x)  1

In Problems 52 and 53, simplify.

52. (ex
 1)(e x

 1)  ex(e x
 1)

53. (ex
 e x)(ex

 e x)  (ex
 e x)2

ex
 e x

2
 1

x  
ln 4

ln 2.31

log16 x  
3
2

102x
 5003x

 120

ln 
a5

1b

2 log a  
1

3
 log b  log c

e 
 e  

2
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In Problems 54–57, use transformations to explain how the graph

of g is related to the graph of the given logarithmic function f.

Determine whether g is increasing or decreasing, find its domain

and any asymptotes, and sketch the graph of g.

54.

55. g(x)  2ex
 4; f(x)  ex

56. g(x)   2  log4 x; f(x)  log4 x

57. g(x)  1  2 log1兾3 x; f(x)  log1兾3 x

58. If the graph of y  ex is reflected in the line y  x, the graph of

the function y  ln x is obtained. Discuss the functions that are

obtained by reflecting the graph of y  ex in the x axis and the

y axis.

59. (A) Explain why the equation e x兾3
 4 ln (x  1) has exactly

one solution.

(B) Find the solution of the equation to three decimal places.

60. Approximate all real zeros of f(x)  4  x2
 ln x to three deci-

mal places.

61. Find the coordinates of the points of intersection of

f (x)  10x 3 and g(x)  8 log x to three decimal places.

In Problems 62–65, solve for the indicated variable in terms of the

remaining symbols.

62. for I (sound intensity)

63. for x (probability)

64. for I (X-ray intensity)

65. for n (finance)

66. Write ln y   5t  ln c in an exponential form free of loga-

rithms; then solve for y in terms of the remaining symbols.

67. For graph f and on the same coor-

dinate system. What are the domains and ranges for f and 

68. Explain why 1 cannot be used as a logarithmic base.

69. Prove that logb (MN)  logb M  logb N.

APPLICATIONS

70. POPULATION GROWTH Many countries have a population

growth rate of 3% (or more) per year. At this rate, how many years

will it take a population to double? Use the annual compounding

growth model P  P0(1  r)t. Compute the answer to three signifi-

cant digits.

71. POPULATION GROWTH Repeat Problem 70 using the continu-

ous compounding growth model P  P0ert.

72. CARBON 14-DATING How many years will it take for carbon-14

to diminish to 1% of the original amount after the death of a plant or

animal? Use the formula A  A0e 0.000124t. Compute the answer to

three significant digits.

f  
 1?

f  
 1f  5(x, y) 冟  y  log2 x6,

r  P 
i

1  (1  i) n

x   
1

k
 ln 

I

I0

y  
1

12 
 e x2

 2

D  10 log 
I

I0

g (x)  3  
1
3 2

x; f (x)  2x



73. MEDICINE One leukemic cell injected into a healthy mouse will

divide into two cells in about At the end of the day these two

cells will divide into four. This doubling continues until 1 billion cells

are formed; then the animal dies with leukemic cells in every part of

the body.

(A) Write an equation that will give the number N of leukemic cells

at the end of t days.

(B) When, to the nearest day, will the mouse die?

74.MONEY GROWTH Assume $1 had been invested at an annual rate

of 3% compounded continuously in the year A.D. 1. What would be

the value of the account in the year 2011? Compute the answer to two

significant digits.

75. PRESENT VALUE Solving for P, we obtain 

which is the present value of the amount A due in t years if money is

invested at a rate r compounded continuously.

(A) Graph 

(B) What does it appear that P tends to as t tends to infinity? [Con-

clusion: The longer the time until the amount A is due, the smaller

its present value, as we would expect.]

76. EARTHQUAKES The 1971 San Fernando, California, earthquake

released 1.99 1014 joules of energy. Compute its magnitude on the

Richter scale using the formula where E0 104.40

joules. Compute the answer to one decimal place.

77. EARTHQUAKES Refer to Problem 76. If the 1906 San Francisco

earthquake had a magnitude of 8.3 on the Richter scale, how much

energy was released? Compute the answer to three significant digits.

78. SOUND If the intensity of a sound from one source is 100,000

times that of another, how much more is the decibel level of the

louder sound than the softer one? Use the formula D 10 log (I兾I0).

79. MARINE BIOLOGY The intensity of light entering water is re-

duced according to the exponential function

where I is the intensity d feet below the surface, I0 is the intensity at

the surface, and k is the coefficient of extinction. Measurements in

the Sargasso Sea in the West Indies have indicated that half the sur-

face light reaches a depth of 73.6 feet. Find k, and find the depth at

which 1% of the surface light remains. Compute answers to three sig-

nificant digits.

80. WILDLIFE MANAGEMENT A lake formed by a newly con-

structed dam is stocked with 1,000 fish. Their population is expected

to increase according to the logistic curve

where N is the number of fish, in thousands, expected after t years.

The lake will be open to fishing when the number of fish reaches

20,000. How many years, to the nearest year, will this take?

N  
30

1  29e 1.35t

I  I0e kd

M  
2
3 log (E E0),

P  1,000(e 0.08t ), 0  t  30.

P  Ae rt,A  Pert

1
2 day.
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Problems 81 and 82 require a graphing calculator or a computer

that can calculate exponential, logarithmic, and logistic

regression models for a given data set.

81. MEDICARE The annual expenditures for Medicare (in billions of

dollars) by the U.S. government for selected years since 1980 are

shown in Table 1. Let x represent years since 1980.

(A) Find an exponential regression model of the form for

these data. Round to three significant digits. Estimate (to the near-

est billion) the total expenditures in 2010 and in 2020.

(B) When (to the nearest year) will the total expenditures reach

$900 billion?

Table 1 Medicare Expenditures

Year Billion $

1980 37

1985 72

1990 111

1995 181

2000 225

2005 342

Source: U.S. Bureau of the Census

82. Table 2 lists the number of cell phone subscribers in the United

States for selected years from 1994 to 2006. Let x 0 correspond to

1990 and round all coefficients to four significant digits.

(A) Find a logarithmic regression model of the form ln x

for the data, then use the model to predict the number of subscribers

in 2015.

(B) Repeat part A, this time finding a logistic regression model of

the form .

(C) Which of the models do you think models the data better?

Explain. Consider how well it fits the points from the table, as well

as how well you think it predicts long-term trends.

Table 2 Cell Phone Subscribers in the U.S.

Year Subscribers in millions

1994 24.13

1997 55.31

2000 109.5

2003 158.8

2006 233.0

Source: CTIA—The Wireless Association

y  c (1  ae bx)

y  a  b

y  abx
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CHAPTER 5 

ZZZ GROUP ACTIVITY Comparing Regression Models

We have used polynomial, exponential, and logarithmic regres-

sion models to fit curves to data sets. How can we determine

which equation provides the best fit for a given set of data? There

are two principal ways to select models. The first is to use infor-

mation about the type of data to help make a choice. For example,

we expect the weight of a fish to be related to the cube of its

length. And we expect most populations to grow exponentially, at

least over the short term. The second method for choosing among

equations involves developing a measure of how closely an equa-

tion fits a given data set. This is best introduced through an exam-

ple. Consider the data set in Figure 1, where L1 represents the x

coordinates and L2 represents the y coordinates. The graph of this

data set is shown in Figure 2. Suppose we arbitrarily choose the

equation y1⫽ 0.6x⫹ 1 to model these data (Fig. 3).

Each of these differences is called a residual. Note that three of

the residuals are positive and one is negative (three of the points

lie above the line, one lies below). The most commonly accepted

measure of the fit provided by a given model is the sum of the

squares of the residuals (SSR). When squared, each residual

(whether positive or negative or zero) makes a nonnegative con-

tribution to the SSR.

(A) A linear regression model for the data in Figure 1 is given by

Compute the SSR for the data and y2, and compare it to the

one we computed for y1.

It turns out that among all possible linear polynomials, the

linear regression model minimizes the sum of the squares of the

residuals. For this reason, the linear regression model is often

called the least-squares line. A similar statement can be made for

polynomials of any fixed degree. That is, the quadratic regression

model minimizes the SSR over all quadratic polynomials, the cu-

bic regression model minimizes the SSR over all cubic polynomi-

als, and so on. The same statement cannot be made for exponen-

tial or logarithmic regression models. Nevertheless, the SSR can

still be used to compare exponential, logarithmic, and polynomial

models.

(B) Find the exponential and logarithmic regression models for

the data in Figure 1, compute their SSRs, and compare with

the linear model.

(C) National annual advertising expenditures for selected years

since 1950 are shown in Table 1 where x is years since 1950

and y is total expenditures in billions of dollars. Which re-

gression model would fit this data best: a quadratic model, a

cubic model, or an exponential model? Use the SSRs to sup-

port your choice.

y2 ⫽ 0.35x ⫹ 3

⫹ (7 ⫺ 5.8)2
⫽ 9.8

 SSR ⫽ (4 ⫺ 2.2)2
⫹ (5 ⫺ 3.4)2

⫹ (3 ⫺ 4.6)2

Z Figure 1
Z Figure 2

Z Figure 3 y1⫽ 0.6x⫹ 1.

0

0

10

10

0

0

10

10

Z Figure 4

Z Figure 5 Here⫹ is L2 and

䊐 is L3.

0

0

10

10

To measure how well the graph of y1 fits these data, we ex-

amine the difference between the y coordinates in the data set

and the corresponding y coordinates on the graph of y1 (L3 in

Figs. 4 and 5). Table 1 Annual Advertising Expenditures,
1950–2000

x (years) 0 10 20 30 40 50

y (billion $) 5.7 12.0 19.6 53.6 128.6 247.5

Source: U.S. Bureau of the Census.





Additional Topics in 
Analytic Geometry

ANALYTIC geometry is the study of geometric objects using algebraic
techniques. René Descartes (1596–1650), the French philosopher
and mathematician, is generally recognized as the founder of the
subject. We used analytic geometry in Chapter 2 to obtain equations
of lines and circles. In Chapter 6, we take a similar approach to the
study of parabolas, ellipses, and hyperbolas. Each of these geometric
objects is a conic section, that is, the intersection of a plane and a
cone. We will derive equations for the conic sections and explore a
wealth of applications in architecture, communications, engineering,
medicine, optics, and space science.
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6-1 Conic Sections; Parabola

Z Conic Sections

Z Definition of a Parabola

Z Drawing a Parabola

Z Standard Equations and Their Graphs

Z Applications

In Section 6-1 we introduce the general concept of a conic section and then discuss the par-

ticular conic section called a parabola. In Sections 6-2 and 6-3 we will discuss two other

conic sections called ellipses and hyperbolas.

Z Conic Sections

In Section 2-3 we found that the graph of a first-degree equation in two variables,

(1)

where A and B are not both 0, is a straight line, and every straight line in a rectangular

coordinate system has an equation of this form. What kind of graph will a second-degree equa-

tion in two variables,

(2)

where A, B, and C are not all 0, yield for different sets of values of the coefficients? The graphs

of equation (2) for various choices of the coefficients are plane curves obtainable by intersect-

ing a cone* with a plane, as shown in Figure 1. These curves are called conic sections.

Ax2
 Bxy  Cy2

 Dx  Ey  F  0

Ax  By  C

Z Figure 1 Conic sections.

*Starting with a fixed line L and a fixed point V on L, the surface formed by all straight lines through V

making a constant angle  with L is called a right circular cone. The fixed line L is called the axis of the

cone, and V is its vertex. The two parts of the cone separated by the vertex are called nappes.

Circle Ellipse Parabola Hyperbola

L

V



Constant

Nappe

If a plane cuts clear through one nappe, then the intersection curve is called a circle if the

plane is perpendicular to the axis and an ellipse if the plane is not perpendicular to the axis. If

a plane cuts only one nappe, but does not cut clear through, then the intersection curve is called



a parabola. Finally, if a plane cuts through both nappes, but not through the vertex, the result-

ing intersection curve is called a hyperbola. A plane passing through the vertex of the cone

produces a degenerate conic—a point, a line, or a pair of lines.

Conic sections are very useful and are readily observed in your immediate surroundings:

wheels (circle), the path of water from a garden hose (parabola), some serving platters

(ellipses), and the shadow on a wall from a light surrounded by a cylindrical or conical

lamp shade (hyperbola) are some examples (Fig. 2). We will discuss many applications of

conics throughout the remainder of this chapter.
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Z Definition of a Parabola

The following definition of a parabola is a coordinate-free definition. It does not depend

on the coordinates of points in any coordinate system.

Z Figure 2 Examples of conics.

Water from Lamp light

garden hose Serving platter shadow

Wheel (circle) (parabola) (ellipse) (hyperbola)

(a) (b) (c) (d)

Z DEFINITION 1 Parabola

A parabola is the set of all points in

a plane equidistant from a fixed point

F and a fixed line L (not containing F)

in the plane. The fixed point F is

called the focus, and the fixed line L

is called the directrix. A line through

the focus perpendicular to the directrix

is called the axis of symmetry, and

the point on the axis of symmetry

halfway between the directrix and

focus is called the vertex.

d1   d2

d1

d2

P

F (Focus)
V (Vertex)

Parabola

Directrix

Axis of symmetry
L

Z Drawing a Parabola

Using Definition 1, we can draw a parabola with fairly simple equipment—a straightedge,

a right-angle drawing triangle, a piece of string, a thumbtack, and a pencil. Referring to

Figure 3 on the next page, tape the straightedge along the line AB and place the thumbtack

above the line AB. Place one leg of the triangle along the straightedge as indicated, then

take a piece of string the same length as the other leg, tie one end to the thumbtack, and

fasten the other end with tape at C on the triangle. Now press the string to the edge of the

triangle, and keeping the string taut, slide the triangle along the straightedge. Because DE

will always equal DF, the resulting curve will be part of a parabola with directrix AB lying

along the straightedge and focus F at the thumbtack.



Z Standard Equations and Their Graphs

Using the definition of a parabola and the distance formula

(3)

we can derive simple standard equations for a parabola located in a rectangular coordinate

system with its vertex at the origin and its axis of symmetry along a coordinate axis. We

start with the axis of symmetry of the parabola along the x axis and the focus at F  (a, 0).

We locate the parabola in a coordinate system as in Figure 4 and label key lines and points.

This is an important step in finding an equation of a geometric figure in a coordinate sys-

tem. Note that the parabola opens to the right if a  0 and to the left if a  0. The vertex

is at the origin, the directrix is x   a, and the coordinates of M are ( a, y).

d  2(x2  x1)2
 ( y2  y1)2
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Z Figure 3 Drawing a parabola. String

C

D

E

A B

F

The line through the focus F that is perpendicular to the axis of symmetry of a

parabola intersects the parabola in two points G and H. Explain why the distance

from G to H is twice the distance from F to the directrix of the parabola.

ZZZ EXPLORE-DISCUSS 1

Z Figure 4 Parabola with vertex at

the origin and axis of symmetry

the x axis.

x

y

d1

d2

Directrix
x    a

M   ( a, y) P   (x, y)

Focus

F   (a, 0) a
x

y

d1

d2

Directrix
x    a

M   ( a, y)P   (x, y)

Focus

F   (a, 0)  a

a ⬎ 0, focus on positive x axis a ⬍ 0, focus on negative x axis

(a) (b)

The point P  (x, y) is a point on the parabola if and only if

Use equation (3).

Square both sides.

Simplify.

(4)

Equation (4) is the standard equation of a parabola with vertex at the origin, axis of sym-

metry the x axis, and focus at (a, 0).

 y2
 ⴝ 4ax

 x2
 2ax  a2

 x2
 2ax  a2

 y2

 (x  a)2
 (x  a)2

 y2

 2(x  a)2
 ( y  y)2

 2(x  a)2
 ( y  0)2

 d(P, M )  d(P, F)

 d1  d2



By a similar derivation (see Problem 57 in Exercises 6-1), the standard equation of a

parabola with vertex at the origin, axis of symmetry the y axis, and focus at (0, a) is given

by equation (5).

(5)

Looking at Figure 5, note that the parabola opens upward if a  0 and downward if a  0.

x
2
 4ay
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Z Figure 5 Parabola with vertex at

the origin and axis of symmetry

the y axis.

a ⬎ 0, focus on positive y axis a ⬍ 0, focus on negative y axis

(a) (b)

x

y

 a

d1

d2

Directrix

y    a

P   (x, y)

N   (x,  a)

F   (0, a)

Focus
x

y

 a

d1

d2

Directrix

y    a

P   (x, y)

N   (x,  a)

F   (0, a)

Focus

We summarize these results for easy reference in Theorem 1.

EXAMPLE 1 Graphing a Parabola

Locate the focus and directrix and sketch the graph of y2
 16x.

The equation y2
 16x has the form y2

 4ax with 4a 16, so a 4. Therefore, the focus is

(4, 0) and the directrix is the line x   4. To sketch the graph, we choose some values of x

that make the right side of the equation a perfect square and solve for y.

x 0 1 4

y 0  4  8

Z THEOREM 1 Standard Equations of a Parabola with Vertex at (0, 0)

1. y2
 4ax

Vertex: (0, 0)

Focus: (a, 0)

Directrix: x   a

Symmetric with respect 

to the x axis

Axis of symmetry

the x axis

2. x2
 4ay

Vertex: (0, 0)

Focus: (0, a)

Directrix: y   a

Symmetric with 

respect to the y axis

Axis of symmetry the 

y axis

x

y

F
0

x

y

F
0

a ⬍ 0 (opens left) a ⬎ 0 (opens right)

a ⬍ 0 (opens down) a ⬎ 0 (opens up)

x

y

F

0

x

y

F

0

SOLUTION



Note that x must be greater than or equal to 0 for y to be a real number. Then we plot the

resulting points. Because a ⬎ 0, the parabola opens to the right (Fig. 6).
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MATCHED PROBLEM 1 Graph y2
⫽ ⫺8x, and locate the focus and directrix.

�

Z Figure 6

⫺10

10⫺10

10

Directrix

x ⫽ ⫺4 Focus

F ⫽ (4, 0)
x

y

Technology Connections

To graph y
2
ⴝ 16x on a graphing calculator, we solve the

equation for y.

Take square roots.

This results in two functions, and 

Entering these functions in a graphing calculator (Fig. 7)

and graphing in a standard viewing window produces the

graph of the parabola (Fig. 8).

y ⴝ ⴚ41x.y ⴝ 41x

 y ⴝ ⴞ41x

 y
2
ⴝ 16x

Z Figure 7 Z Figure 8
⫺10

⫺10

10

10

Directrix

x ⫽ ⫺4

Focus

F ⫽ (4, 0)

A common error in making a quick sketch of y2
⫽ 4ax or x2

⫽ 4ay is to sketch

the first with the y axis as its axis of symmetry and the second with the x axis as

its axis of symmetry. The graph of y2
⫽ 4ax is symmetric with respect to the x axis,

and the graph of x2
⫽ 4ay is symmetric with respect to the y axis, as a quick sym-

metry check will reveal.

ZZZ CAUTION ZZZ

EXAMPLE 2 Finding the Equation of a Parabola

(A) Find the equation of a parabola having the origin as its vertex, the y axis as its axis

of symmetry, and (⫺10, ⫺5) on its graph.

(B) Find the coordinates of its focus and the equation of its directrix.

SOLUTIONS (A) Because the axis of symmetry of the parabola is the y axis, the parabola has an

equation of the form x2
⫽ 4ay. Because (⫺10, ⫺5) is on the graph, we have

Substitute x ⴝⴚ10 and y ⴝⴚ5.

Simplify.

Divide both sides by ⴚ20.

 a ⫽ ⫺5

 100 ⫽ ⫺20a

 (⫺10)2
⫽ 4a(⫺5)

 x2
⫽ 4ay

�



(A) Find the equation of a parabola having the origin as its vertex, the x axis as its axis

of symmetry, and (4,  8) on its graph.

(B) Find the coordinates of its focus and the equation of its directrix.

�
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Therefore, the equation of the parabola is

(B) Focus: F  (0, a)  (0,  5)

Directrix:

� y  5

 y   a

 x2
  20y

 x2
 4( 5)y

MATCHED PROBLEM 2

Z Applications

If you are observant, you will find many applications of parabolas in the physical world.

Parabolas are key to the design of suspension bridges, arch bridges, microphones, symphony

shells, satellite antennas, radio and optical telescopes, radar equipment, solar furnaces, and

searchlights.

Figure 9(a) illustrates a parabolic reflector used in all reflecting telescopes—from 3- to

6-inch home types to the 200-inch research instrument on Mount Palomar in California.

Parallel light rays from distant celestial bodies are reflected to the focus off a parabolic mir-

ror. If the light source is the sun, then the parallel rays are focused at F and we have a solar

furnace. Temperatures of over 6,000 C have been achieved by such furnaces. If we locate

a light source at F, then the rays in Figure 9(a) reverse, and we have a spotlight or a search-

light. Automobile headlights can use parabolic reflectors with special lenses over the light

to diffuse the rays into useful patterns.

Figure 9(b) shows a suspension bridge, such as the Golden Gate Bridge in San

Francisco. The suspension cable is a parabola. It is interesting to note that a free-hanging

cable, such as a telephone line, does not form a parabola. It forms another curve called

a catenary.

Figure 9(c) shows a concrete arch bridge. If all the loads on the arch are to be com-

pression loads (concrete works very well under compression), then using physics and

advanced mathematics, it can be shown that the arch must be parabolic.

Z Figure 9 Uses of parabolic forms.

Parallel
light
rays

Parabolic reflector

F

Suspension bridge

Parabola

Arch bridge

Parabola

(a) (b) (c)



Step 2. Find the equation of the parabola in the figure. Because the parabola has the y axis

as its axis of symmetry and the vertex at the origin, the equation is of the form

x
2
 4ay

We are given F  (0, a)  (0, 2); so a  2, and the equation of the parabola is

x
2
 8y

Step 3. Use the equation found in step 2 to find the radius R of the opening. Because

(R, 5) is on the parabola, we have

� R  140 ⬇ 6.3 inches

 R2
 8(5)
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EXAMPLE 3 Parabolic Reflector

A paraboloid is formed by revolving a parabola about its axis of symmetry. A spotlight in

the form of a paraboloid 5 inches deep has its focus 2 inches from the vertex. Find, to one

decimal place, the radius R of the opening of the spotlight.

SOLUTION Step 1. Locate a parabolic cross section containing the axis of symmetry in a rectangular

coordinate system, and label all known parts and parts to be found. This is a very

important step and can be done in infinitely many ways. We can make things

simpler for ourselves by locating the vertex at the origin and choosing a coordi-

nate axis as the axis of symmetry. We choose the y axis as the axis of symmetry

of the parabola with the parabola opening upward (Fig. 10).

x

y

5 5

5
(R, 5)

F   (0, 2)

Spotlight

R

Z Figure 10

MATCHED PROBLEM 3 Repeat Example 3 with a paraboloid 12 inches deep and a focus 9 inches from the 

vertex.

�

ANSWERS TO MATCHED PROBLEMS

1. Focus: ( 2, 0)

Directrix: x  2

x 0  2

y 0  4

2. (A) y2
 16x (B) Focus: (4, 0); Directrix: x   4

3. R  20.8 inches

 5

5 5

5

Directrix
x   2

( 2, 0)

F
x

y
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37. Focus (2, 0) 38. Focus ( 4, 0)

In Problems 39–44, find the equation of the parabola having its

vertex at the origin, its axis of symmetry as indicated, and passing

through the indicated point.

39. y axis; (4, 2) 40. x axis; (4, 8)

41. x axis; ( 3, 6) 42. y axis; ( 5, 10)

43. y axis; ( 6,  9) 44. x axis; ( 6,  12)

In Problems 45–48, find the first-quadrant points of intersection for

each pair of parabolas to three decimal places.

45. x2
 4y 46. y2

 3x

y2
 4x x2

 3y

47. y2
 6x 48. x2

 7y

x2
 5y y2

 2x

49. Consider the parabola with equation x2
 4ay.

(A) How many lines through (0, 0) intersect the parabola in ex-

actly one point? Find their equations.

(B) Find the coordinates of all points of intersection of

the parabola with the line through (0, 0) having slope

m  0.

50. Find the coordinates of all points of intersection of the

parabola with equation x2
 4ay and the parabola with equa-

tion y2
 4bx.

51. The line segment AB through the focus in the figure is

called a focal chord of the parabola. Find the coordinates of

A and B.

52. The line segment AB through the focus in the figure is

called a focal chord of the parabola. Find the coordinates of

A and B.

x

y

F   (a, 0)

0

A

B

y2   4ax

x

y

0

F   (0, a)

A B

x2   4ay

 

6-1 Exercises

1. List the seven different types of conic sections.

2. Explain how each of the seven types of conic sections can be

obtained as the intersection of a cone and a plane.

3. What is a degenerate conic?

4.Give a coordinate-free definition of a parabola in your own

words.

5.What happens to light rays that are parallel to the axis of a

parabolic mirror when they hit the mirror?

6.What happens to light rays that are emitted from the focus of

a parabolic mirror when they hit the mirror?

In Problems 7–10, a parabola has its vertex at the origin and the

given directrix. Find the coordinates of the focus.

7. x  8 8. x   5

9. y   10 10. y  6

In Problems 11–14, a parabola has its vertex at the origin and the

given focus. Find the equation of the directrix.

11. (0,  15) 12. (0, 9)

13. (25, 0) 14. ( 21, 0)

In Problems 15–24, graph each equation, and locate the focus and

directrix.

15. y2
 4x 16. y2

 8x

17. x2
 8y 18. x2

 4y

19. y2
  12x 20. y2

  4x

21. x2
  4y 22. x2

  8y

23. y2
  20x 24. x2

  24y

In Problems 25–30, find the coordinates to two decimal places of

the focus of the parabola.

25. y2
 39x 26. x2

 58y

27. x2
  105y 28. y2

  93x

29. y2
  77x 30. x2

  205y

In Problems 31–38, find the equation of a parabola with vertex at

the origin, axis of symmetry the x or y axis, and

31. Directrix y  3 32. Directrix y 4

33. Focus (0,  7) 34. Focus (0, 5)

35. Directrix x 6 36. Directrix x  9



In Problems 53–56, use the definition of a parabola and the

distance formula to find the equation of a parabola with

53. Directrix y  4 and focus (2, 2)

54. Directrix y 2 and focus ( 3, 6)

55. Directrix x 2 and focus (6,  4)

56. Directrix x  3 and focus (1, 4)

57. Use the definition of a parabola and the distance formula to de-

rive the equation of a parabola with focus F (0, a) and direc-

trix y  a for a  0.

58. Let F be a fixed point and let L be a fixed line in the plane that

contains F. Describe the set of all points in the plane that are

equidistant from F and L.

APPLICATIONS

59. ENGINEERING The parabolic arch in the concrete bridge in the

figure must have a clearance of 50 feet above the water and span a

distance of 200 feet. Find the equation of the parabola after inserting

a coordinate system with the origin at the vertex of the parabola and

the vertical y axis (pointing upward) along the axis of symmetry of

the parabola.

60. ASTRONOMY The cross section of a parabolic reflector with 

6-inch diameter is ground so that its vertex is 0.15 inch below the

rim (see the figure).

0.15 inch

6 inches

Parabolic

reflector

(A) Find the equation of the parabola after inserting an xy coordi-

nate system with the vertex at the origin and the y axis (pointing up-

ward) the axis of symmetry of the parabola.

(B) How far is the focus from the vertex?

61. SPACE SCIENCE A designer of a 200-foot-diameter parabolic

electromagnetic antenna for tracking space probes wants to place

the focus 100 feet above the vertex (see the figure).

(A) Find the equation of the parabola using the axis of symmetry

of the parabola as the y axis (up positive) and vertex at the 

origin.

(B) Determine the depth of the parabolic reflector.

62. SIGNAL LIGHT A signal light on a ship is a spotlight with par-

allel reflected light rays (see the figure). Suppose the parabolic re-

flector is 12 inches in diameter and the light source is located at the

focus, which is 1.5 inches from the vertex.

(A) Find the equation of the parabola using the axis of symmetry

of the parabola as the x axis (right positive) and vertex at the

origin.

(B) Determine the depth of the parabolic reflector.

Focus

Signal light

100 ft

200 ft

Radio telescope

Focus
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Z Drawing an Ellipse

An ellipse is easy to draw. All you need is a piece of string, two thumbtacks, and a pencil

or pen (see Figure 1 on the next page). Place the two thumbtacks in a piece of cardboard.

These form the foci of the ellipse. Take a piece of string longer than the distance between

the two thumbtacks—this represents the constant in the definition—and tie each end to a

thumbtack. Finally, catch the tip of a pencil under the string and move it while keeping the

string taut. The resulting figure is by definition an ellipse. Ellipses of different shapes result,

depending on the placement of thumbtacks and the length of the string joining them.
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6-2 Ellipse

Z Definition of an Ellipse

Z Drawing an Ellipse

Z Standard Equations of Ellipses and Their Graphs

Z Applications

We start our discussion of the ellipse with a coordinate-free definition. Using this defini-

tion, we show how an ellipse can be drawn and we derive standard equations for ellipses

specially located in a rectangular coordinate system.

Z Definition of an Ellipse

The following is a coordinate-free definition of an ellipse:

Z DEFINITION 1 Ellipse

An ellipse is the set of all points P in a plane

such that the sum of the distances from P to

two fixed points in the plane is a constant (the

constant is required to be greater than the

distance between the two fixed points). Each of

the fixed points, F and F, is called a focus,

and together they are called foci. Referring to

the figure, the line segment V  V through the

foci is the major axis. The perpendicular

bisector B B of the major axis is the minor axis. Each end of the major axis, V  

and V, is called a vertex. The midpoint of the line segment F F is called the center

of the ellipse.

d1   d2   Constant

V  

F 

B 

B

F

P

V

d1

d2



Z Standard Equations of Ellipses and Their Graphs

Using the definition of an ellipse and the distance formula, we can derive standard equa-

tions for an ellipse located in a rectangular coordinate system. We start by placing an ellipse

in the coordinate system with the foci on the x axis at F  ( c, 0) and F  (c, 0) with

c  0 (Fig. 2). By definition 1 the constant sum d1  d2 is required to be greater than 

2c (the distance between F and F ). Therefore, the ellipse intersects the x axis at 

points V  ( a, 0) and V  (a, 0) with a  c  0, and it intersects the y axis at points 

B    ( b, 0) and B  (b, 0) with b  0.
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Z Figure 2 Ellipse with foci on x axis.

x

y

P   (x, y)

F   (c, 0)F    ( c, 0) a

 b

a

b

d1 d2

d1   d2   Constant   d(F, F )
c   0

0

Study Figure 2: Note first that if P  (a, 0), then d1  d2  2a. (Why?) Therefore,

the constant sum d1  d2 is equal to the distance between the vertices. Second, if

P  (0, b), then d1  d2  a and a2
 b2

 c2 by the Pythagorean theorem; in partic-

ular, a  b.

Referring again to Figure 2, the point P  (x, y) is on the ellipse if and only if

d1  d2  2a

Using the distance formula for d1 and d2, eliminating radicals, and simplifying (see Prob-

lem 49 in Exercises 6-2), we obtain the equation of the ellipse pictured in Figure 2:

By similar reasoning (see Problem 50 in Exercises 6-2) we obtain the equation of

an ellipse centered at the origin with foci on the y axis. Both cases are summarized in

Theorem 1.

x2

a2
ⴙ

y2

b2
ⴝ 1

d1 d2

FocusFocus
String

Note that d1   d2 always

adds up to the length of the

string, which does not change.

P

Z Figure 1 Drawing an ellipse.
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Z THEOREM 1 Standard Equations of an Ellipse with Center at (0, 0)

1. a  b  0

x intercepts:  a (vertices)

y intercepts:  b

Foci: F    ( c, 0), F (c, 0)

c2
 a2

 b2

Major axis length  2a

Minor axis length  2b

2. a  b  0

x intercepts:  b

y intercepts:  a (vertices)

Foci: F  (0,  c), F  (0, c)

c2
 a2

 b2

Major axis length  2a

Minor axis length  2b

[Note: Both graphs are symmetric with 

respect to the x axis, y axis, and origin. 

Also, the major axis is always longer 

than the minor axis.]

x2

b2  
y2

a2  1

x2

a2  
y2

b2  1

x

y

b

 b

 c c a0 a
F F

x

y

F

F 

 a

0 b b

a

c

 c

The line through a focus F of an ellipse that is perpendicular to the major axis

intersects the ellipse in two points G and H. For each of the two standard equa-

tions of an ellipse with center (0, 0), find an expression in terms of a and b for

the distance from G to H.

ZZZ EXPLORE-DISCUSS 1

EXAMPLE 1 Graphing an Ellipse

Find the coordinates of the foci, find the lengths of the major and minor axes, and graph

the following equation:

9x2
 16y2

 144

SOLUTION First, write the equation in standard form by dividing both sides by 144 and determine a and b:

Divide both sides by 144.

Simplify.

a  4 and b  3

 
x2

16
 
y2

9
 1

 
9x2

144
 

16y2

144
 

144

144

 9x2
 16y2

 144

*

*Throughout the book, dashed boxes—called think boxes—are used to represent steps that may be performed

mentally.
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x intercepts:  4 Major axis length: 2(4)  8

y intercepts:  3 Minor axis length: 2(3)  6

Foci: c2
 a2

 b2
Substitute a ⴝ 4 and b ⴝ 3.

 16  9

 7

c must be positive.

So the foci are and 

Plot the foci and intercepts and sketch the ellipse (Fig. 3). �

F  (17, 0).F¿  ( 17, 0)

c  17

MATCHED PROBLEM 1 Find the coordinates of the foci, find the lengths of the major and minor axes, and graph

the following equation:

x2
 4y2

 4

�

Z Figure 3

 3

c 40 4  c

3

x
F F

y

EXAMPLE 2 Graphing an Ellipse

Find the coordinates of the foci, find the lengths of the major and minor axes, and graph

the following equation:

2x2
 y2

 10

SOLUTION First, write the equation in standard form by dividing both sides by 10 and determine a and b:

Divide both sides by 10.

Simplify.

and

y intercepts: Major axis length: 

x intercepts: Minor axis length: 

Foci: Substitute 

c must be positive.

So the foci are and 

Plot the foci and intercepts and sketch the ellipse (Fig. 4).

F  (0, 15).F¿  (0,  15)

 c  15

  5

  10  5

b ⴝ 15.a ⴝ 110, c2
 a2

 b2

215 ⬇ 4.47 15 ⬇  2.24

2110 ⬇ 6.32 110 ⬇  3.16

b  15a  110

 
x2

5
 

y2

10
 1

 
2x2

10
 

y2

10
 

10

10

 2x2
 y2

 10

Z Figure 4

x

F 

F

y

 c

c

兹10

 兹5

 兹10

兹50
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MATCHED PROBLEM 2 Find the coordinates of the foci, find the lengths of the major and minor axes, and graph

the following equation:

�

3x2
 y2

 18

Technology Connections

To graph the ellipse of Example 2 on a graphing calculator,

solve the original equation for y:

Subtract 2x
2

from both sides.

Take square roots of both sides.

This produces two functions, and

which are graphed in Figure 5. Notice

that we used a squared viewing window to avoid distorting

the shape of the ellipse. Also note the gaps in the graph

y2 ⴝ ⴚ210 ⴚ 2x
2,

y1 ⴝ 210 ⴚ 2x
2

 y ⴝⴞ210 ⴚ 2x
2

 y
2
ⴝ 10 ⴚ 2x

2

 2x
2
ⴙ y

2
ⴝ 10

near the x intercepts; they are due to the relatively low res-

olution of the graphing calculator screen.

Z Figure 5

 4

 6

4

6

EXAMPLE 3 Finding the Equation of an Ellipse

Find an equation of an ellipse in the form

if the center is at the origin, the major axis is along the y axis, and

(A) Length of major axis  20 (B) Length of major axis  10

Length of minor axis  12 Distance of foci from center  4

M, N 7 0
x2

M
 

y2

N
 1

SOLUTIONS (A) Compute x and y intercepts and make a rough sketch of the ellipse, as shown in

Figure 6.

x2

36
 

y2

100
 1

b  
12

2
 6a  

20

2
 10

x2

b2  
y2

a2  1

Z Figure 6

 10

10 10

10

x

y

�
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Z Figure 7 �

b0
 b

x

y

 5

5

4

(B) Make a rough sketch of the ellipse, as shown in Figure 7; locate the foci and y

intercepts, then determine the x intercepts using the fact that a2
 b2

 c2:

x2

9
 
y2

25
 1

b  3

b2
 52

 42
 25  16  9a  

10

2
 5

x2

b2  
y2

a2  1

MATCHED PROBLEM 3 Find an equation of an ellipse in the form

if the center is at the origin, the major axis is along the x axis, and

(A) Length of major axis  50 (B) Length of minor axis  16

Length of minor axis  30 Distance of foci from center  6

�

M, N 7 0
x2

M
 
y2

N
 1

Z Applications

Ellipses have many applications: orbits of satellites, planets, and comets; shapes of galax-

ies; gears and cams, some airplane wings, boat keels, and rudders; tabletops; public foun-

tains; and domes in buildings are a few examples (Fig. 8).

Z Figure 8 Uses of elliptical forms.

Sun

Planet

Planetary motion Elliptical gears

FF 

Elliptical dome

(a) (b) (c)



Johannes Kepler (1571–1630), a German astronomer, discovered that planets move in

elliptical orbits, with the sun at a focus, and not in circular orbits as had been thought before

[Fig. 8(a)]. Figure 8(b) shows a pair of elliptical gears with pivot points at foci. Such gears

transfer constant rotational speed to variable rotational speed, and vice versa. Figure 8(c)

shows an elliptical dome. An interesting property of such a dome is that a sound or light

source at one focus will reflect off the dome and pass through the other focus. One of the

chambers in the Capitol Building in Washington, D.C., has such a dome, and is referred to

as a whispering room because a whispered sound at one focus can be easily heard at the

other focus.

A fairly recent application in medicine is the use of elliptical reflectors and ultrasound

to break up kidney stones. A device called a lithotripter is used to generate intense sound

waves that break up the stone from outside the body, eliminating the need for surgery. To

be certain that the waves do not damage other parts of the body, the reflecting property of

the ellipse is used to design and correctly position the lithotripter.
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EXAMPLE 4 Medicinal Lithotripsy

A lithotripter is formed by rotating the portion of an ellipse below the minor axis around

the major axis (Fig. 9). The lithotripter is 20 centimeters wide and 16 centimeters deep. If

the ultrasound source is positioned at one focus of the ellipse and the kidney stone at the

other, then all the sound waves will pass through the kidney stone. How far from the kid-

ney stone should the point V on the base of the lithotripter be positioned to focus the sound

waves on the kidney stone? Round the answer to one decimal place.

Z Figure 9 Lithotripter.

16 cm

Ultrasound
source

Base V

Kidney
stone

20 cm

SOLUTION From Figure 9 we see that a 16 and b 10 for the ellipse used to form the lithotripter.

So the distance c from the center to either the kidney stone or the ultrasound source is given

by

and the distance from the base of the lithotripter to the kidney stone is 16  12.5  28.5

centimeters. �

c  2a
2
 b

2
 2162

 102
 2156 ⬇ 12.5

  

MATCHED PROBLEM 4 Because lithotripsy is an external procedure, the lithotripter described in Example 4 can

be used only on stones within 12.5 centimeters of the surface of the body. Suppose a kid-

ney stone is located 14 centimeters from the surface. If the diameter is kept fixed at 

20 centimeters, how deep must a lithotripter be to focus on this kidney stone? Round

answer to one decimal place.

�



402 C H A P T E R  6 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY

ANSWERS TO MATCHED PROBLEMS

1.

2.

3. (A) (B) 4. 17.2 centimeters
x2

100
 

y2

64
 1

x2

625
 

y2

225
 1

 兹6 兹6

兹18

 兹18

F 

F

x

y

Foci:  F     (0,  兹12), F   (0, 兹12)
Major axis length   2兹18 ⬇ 8.49
Minor axis length   2兹6 ⬇ 4.90

20 2

1

 1

F F
x

y Foci:  F     ( 兹3, 0), F   (兹3, 0)
Major axis length   4
Minor axis length   2

1. Give a coordinate-free definition of an ellipse in your own

words.

2. Explain how the major axis of an ellipse differs from the mi-

nor axis.

3. Given the major axis of an ellipse and the foci, describe a pro-

cedure for drawing the ellipse.

4. Is the graph of an ellipse the graph of a function? Explain.

5. Is a circle an ellipse? Explain.

6. Using the definition of an ellipse, explain why the minor axis

is shorter than the major axis.

In Problems 7–10, find the distance between the foci of the ellipse.

7. Major axis length  10

Minor axis length  8

8. Major axis length  26

Minor axis length  10

9. Major axis length  2

Minor axis length  1

10. Major axis length  4

Minor axis length  3

6-2 Exercises

In Problems 11–14, find the length of the major axis of the ellipse.

11. Distance between foci  14

Minor axis length  48

12. Distance between foci  10

Minor axis length  1

13. Distance between foci  5

Minor axis length  5

14. Distance between foci  3

Minor axis length  

In Problems 15–20, sketch a graph of each equation, find the

coordinates of the foci, and find the lengths of the major and

minor axes.

15. 16. 17. 

18. 19. x2
 9y2

 9 20. 4x2
 y2

 4

In Problems 21–24, match each equation with one of graphs

(a)–(d).

21. 9x2
 16y2

 144 22. 16x2
 9y2

 144

x2

4
 

y2

9
 1

x2

4
 

y2

25
 1

x2

9
 

y2

4
 1

x2

25
 

y2

4
 1

313



23. 4x2
 y2

 16 24. x2
 4y2

 16

(a) (b)

(c) (d)

In Problems 25–30, sketch a graph of each equation, find the

coordinates of the foci, and find the lengths of the major and

minor axes.

25. 25x2
 9y2

 225 26. 16x2
 25y2

 400

27. 2x2
 y2

 12 28. 4x2
 3y2

 24

29. 4x2
 7y2

 28 30. 3x2
 2y2

 24

In Problems 31–42, find an equation of an ellipse in the form

if the center is at the origin, and

31. The graph is

32. The graph is

x

y

 10

10 10

10

x

y

 10

10 10

10

M, N 7 0
x2

M
 

y2

N
 1

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

S E C T I O N  6 – 2 Ellipse 403

33. The graph is

34. The graph is

35. Major axis on x axis

Major axis length  10

Minor axis length  6

36. Major axis on x axis

Major axis length  14

Minor axis length  10

37. Major axis on y axis

Major axis length  22

Minor axis length  16

38. Major axis on y axis

Major axis length  24

Minor axis length  18

39. Major axis on x axis

Major axis length  16

Distance of foci from center  6

40. Major axis on y axis

Major axis length  24

Distance of foci from center  10

41. Major axis on y axis

Minor axis length  20

Distance of foci from center 

42. Major axis on x axis

Minor axis length  14

Distance of foci from center 

43. Explain why an equation whose graph is an ellipse does not de-

fine a function.

44. Consider all ellipses having (0,  1) as the ends of the minor

axis. Describe the connection between the elongation of the el-

lipse and the distance from a focus to the origin.

45. Find an equation of the set of points in a plane, each of whose

distance from (2, 0) is one-half its distance from the line x 8.

Identify the geometric figure.

46. Find an equation of the set of points in a plane, each of whose

distance from (0, 9) is three-fourths its distance from the line

y  16. Identify the geometric figure.

 1200

 170

x

y

 10

10 10

10

x

y

 10

10 10

10



47. Let F and F⬘ be two points in the plane and let c denote the con-

stant d(F, F⬘). Describe the set of all points P in the plane such

that the sum of the distances from P to F and F⬘ is equal to the

constant c.

48. Let F and F⬘ be two points in the plane and let c be a constant

such that 0⬍ c ⬍ d(F, F⬘). Describe the set of all points P in

the plane such that the sum of the distances from P to F and F⬘

is equal to the constant c.

49. Study the following derivation of the standard equation of an

ellipse with foci (⫾c, 0), x intercepts (⫾a, 0), and y intercepts

(0, ⫾b). Explain why each equation follows from the equa-

tion that precedes it. [Hint: Recall from Figure 2 on page 396

that a2
⫽ b2

⫹ c2.]

50. Study the following derivation of the standard equation of an

ellipse with foci (0, ⫾c), y intercepts (0, ⫾a), and x inter-

cepts (⫾b, 0). Explain why each equation follows from the

equation that precedes it. [Hint: Recall from Figure 2 on

page 396 that a2
⫽ b2

⫹ c2.]

APPLICATIONS

51. ENGINEERING The semielliptical arch in the concrete bridge in

the figure must have a clearance of 12 feet above the water and span

a distance of 40 feet. Find the equation of the ellipse after inserting

a coordinate system with the center of the ellipse at the origin and

the major axis on the x axis. The y axis points up, and the x axis

points to the right. How much clearance above the water is there 5

feet from the bank?

 
x2

b2
⫹

y2

a2
⫽ 1

 x2
⫹ a1 ⫺

c2

a2
b y2

⫽ a2
⫺ c2

 x2
⫹ ( y ⫺ c)2

⫽ a2
⫺ 2cy ⫹

c2y2

a2

 2x2
⫹ ( y ⫺ c)2

⫽ a ⫺
cy

a

 x2
⫹ ( y ⫹ c)2

⫽ 4a2
⫺ 4a2x2

⫹ ( y ⫺ c)2
⫹ x2

⫹ ( y ⫺ c)2

 2x2
⫹ ( y ⫹ c)2

⫽ 2a ⫺ 2x2
⫹ ( y ⫺ c)2

 d1 ⫹ d2 ⫽ 2a

 
x2

a2
⫹

y2

b2
⫽ 1

 a1 ⫺
c2

a2
b x2

⫹ y2
⫽ a2

⫺ c2

 (x ⫺ c)2
⫹ y2

⫽ a2
⫺ 2cx ⫹

c2x2

a2

 2(x ⫺ c)2
⫹ y2

⫽ a ⫺
cx

a

 (x ⫹ c)2
⫹ y2

⫽ 4a2
⫺ 4a2(x ⫺ c)2

⫹ y2
⫹ (x ⫺ c)2

⫹ y2

 2(x ⫹ c)2
⫹ y2

⫽ 2a ⫺ 2(x ⫺ c)2
⫹ y2

 d1 ⫹ d2 ⫽ 2a

52. DESIGN A 4 ⫻ 8 foot elliptical tabletop is to be cut out of a

4 ⫻ 8 foot rectangular sheet of teak plywood (see the figure). To

draw the ellipse on the plywood, how far should the foci be located

from each edge and how long a piece of string must be fastened to

each focus to produce the ellipse (see Fig. 1 on page 396)? Com-

pute the answer to two decimal places.

53. AERONAUTICAL ENGINEERING Of all possible wing shapes, it

has been determined that the one with the least drag along the trail-

ing edge is an ellipse. The leading edge may be a straight line, as

shown in the figure. One of the most famous planes with this design

was the World War II British Spitfire. The plane in the figure has a

wingspan of 48.0 feet.

(A) If the straight-line leading edge is parallel to the major axis

of the ellipse and is 1.14 feet in front of it, and if the leading edge

is 46.0 feet long (including the width of the fuselage), find the

equation of the ellipse. Let the x axis lie along the major axis

(positive right), and let the y axis lie along the minor axis (posi-

tive forward).

(B) How wide is the wing in the center of the fuselage (assuming

the wing passes through the fuselage)?

Compute quantities to three significant digits.

54. NAVAL ARCHITECTURE Currently, many high-performance

racing sailboats use elliptical keels, rudders, and main sails for the

reasons stated in Problem 53—less drag along the trailing edge. In

the accompanying figure, the ellipse containing the keel has a 12.0-

foot major axis. The straight-line leading edge is parallel to the ma-

Leading edge

Fuselage Trailing edge

Elliptical
wings and tail

F

F⬘

Elliptical table

String

Elliptical bridge
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jor axis of the ellipse and 1.00 foot in front of it. The chord is 1.00

foot shorter than the major axis.

Rudder
Keel
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(A) Find the equation of the ellipse. Let the y axis lie along the mi-

nor axis of the ellipse, and let the x axis lie along the major axis,

both with positive direction upward.

(B) What is the width of the keel, measured perpendicular to the

major axis, 1 foot up the major axis from the bottom end of the

keel?

Compute quantities to three significant digits.

As before, we start with a coordinate-free definition of a hyperbola. Using this definition,

we show how a hyperbola can be drawn and we derive standard equations for hyperbolas

specially located in a rectangular coordinate system.

Z Definition of a Hyperbola

The following is a coordinate-free definition of a hyperbola:

6-3 Hyperbola

Z Definition of a Hyperbola

Z Drawing a Hyperbola

Z Standard Equations and Their Graphs

Z Applications

Z DEFINITION 1 Hyperbola

A hyperbola is the set of all points P in a plane

such that the absolute value of the difference of

the distances from P to two fixed points in the

plane is a positive constant (the constant is

required to be less than the distance between the

two fixed points). Each of the fixed points, and

F, is called a focus. The intersection points and

V of the line through the foci and the two branches

of the hyperbola are called vertices, and each is

called a vertex. The line segment is called the

transverse axis. The midpoint of the transverse axis is the center of the hyperbola.

V¿V

V¿

F¿

F

P

F 
V  

V

兩d1   d2兩   Constant

d1

d2



Z Drawing a Hyperbola

Thumbtacks, a straightedge, string, and a pencil are all that are needed to draw a hyperbola

(Fig. 1). Place two thumbtacks in a piece of cardboard—these form the foci of the hyper-

bola. Rest one corner of the straightedge at the focus so that it is free to rotate about this

point. Cut a piece of string shorter than the length of the straightedge, and fasten one end

to the straightedge corner A and the other end to the thumbtack at F. Now push the string

with a pencil up against the straightedge at B. Keeping the string taut, rotate the straightedge

about keeping the corner at The resulting curve will be part of a hyperbola. Other

parts of the hyperbola can be drawn by changing the position of the straightedge and string.

To see that the resulting curve meets the conditions of the definition, note that the difference

of the distances and BF is

  Constant

  aStraightedge

length
b  aString

length
b

  AF¿  (BF  BA)

 BF¿  BF  BF¿  BA  BF  BA

BF¿

F¿.F¿,

F¿

406 C H A P T E R  6 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY

B

A

F 

String

F

Z Figure 1 Drawing a hyperbola.

Z Standard Equations of Hyperbolas and Their Graphs

Using the definition of a hyperbola and the distance formula, we can derive standard equa-

tions for a hyperbola located in a rectangular coordinate system. We start by placing a hyper-

bola in the coordinate system with the foci on the x axis at F  ( c, 0) and F  (c, 0) with

Z Figure 2 Hyperbola with foci on

the x axis.

d1
d2

x

y

F    ( c, 0)  a a F   (c, 0)

c   0
兩d1   d2兩   Positive constant   d(F, F )

P   (x, y)



c  0 (Fig. 2). By definition 1, the constant difference |d1  d2 | is required to be less than
2c (the distance between F and F ). Therefore, the hyperbola intersects the x axis at points
V  ( a, 0) and V (a, 0) with c a  0. The hyperbola does not intersect the y axis,
because the constant difference |d1  d2 | is required to be positive by definition 1.

Study Figure 2: Note that if P  (a, 0), then |d1  d2 |  2a. (Why?) Therefore, the
constant |d1  d2 | is equal to the distance between the vertices.

It is convenient to let so that c2
 a2

 b2. (Unlike the situation for
ellipses, b may be greater than or equal to a.)

Referring again to Figure 2, the point P (x, y) is on the hyperbola if and only if

|d1  d2 |  2a

Using the distance formula for d1 and d2, eliminating radicals, and simplifying (see
Problem 57 in Exercises 6-3), we obtain the equation of the hyperbola pictured in 
Figure 2:

Although the hyperbola does not intersect the y axis, the points (0, b) and (0,  b) are
significant; the line segment joining them is called the conjugate axis of the hyperbola.
Note that the conjugate axis is perpendicular to the transverse axis, that is, the line segment
joining the vertices (a, 0) and ( a, 0). The rectangle with corners (a, b), (a,  b), 
( a,  b), and ( a, b) is called the asymptote rectangle because its extended diagonals
are asymptotes for the hyperbola (Fig. 3). In other words, the hyperbola approaches the lines

as |x | becomes larger (see Problems 53 and 54 in Exercises 6-3). As a result, it
is helpful to include the asymptote rectangle and its extended diagonals when sketching the
graph of a hyperbola.

y   b
a x

x2

a2 ⴚ

y2

b2 ⴝ 1

b  2c2
 a2,
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Z Figure 3 Asymptotes.

x

y

b

 a a
0

 b

Asymptote

b
a
xy    

Asymptote

b
a
xy   

x2 y2

a2 b2
   1

Note that the four corners of the asymptote rectangle (Fig. 3) are equidistant from the
origin, at distance Therefore,

A circle, with center at the origin, that passes through all four corners of the

asymptote rectangle of a hyperbola also passes through its foci.

By similar reasoning (see Problem 58 in Exercises 6-3) we obtain the equation of a
hyperbola centered at the origin with foci on the y axis. Both cases are summarized in
Theorem 1.

2a2
 b2

 c.
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Z THEOREM 1 Standard Equations of a Hyperbola with Center at (0, 0)

1.

x intercepts:  a (vertices)

y intercepts: none

Foci: F  ( c, 0), F (c, 0)

c2
 a2

 b2

Transverse axis length  2a

Conjugate axis length  2b

Asymptotes: 

2.

x intercepts: none

y intercepts:  a (vertices)

Foci: F  (0,  c), F  (0, c)

c2
 a2

 b2

Transverse axis length  2a

Conjugate axis length  2b

Asymptotes: 

[Note: Both graphs are symmetric with respect to the x axis, y axis, and origin.]

y   
a

b
 x

y2

a2  
x2

b2  1

y   
b

a
 x

x2

a2  
y2

b2  1

b

c

 a a c c

 b

FF 
x

y

a

c

 b b

c

 c

 a

F

F 

x

y

EXAMPLE 1 Graphing Hyperbolas

Find the coordinates of the foci, find the lengths of the transverse and conjugate axes, find

the equations of the asymptotes, and graph the following equation:

9x2
 16y2

 144

SOLUTION First, write the equation in standard form by dividing both sides by 144 and determine a

and b:

Divide both sides by 144.

Simplify.

a  4 and b  3

x2

16
 
y2

9
 1

 
9x2

144
  

16y2

144
 

144

144

 9x2
 

 16y2
 144

The line through a focus F of a hyperbola that is perpendicular to the transverse

axis intersects the hyperbola in two points G and H. For each of the two standard

equations of a hyperbola with center (0, 0), find an expression in terms of a and

b for the distance from G to H.

ZZZ EXPLORE-DISCUSS 1



x intercepts:  4 Transverse axis length  2(4)  8

y intercepts: none Conjugate axis length  2(3)  6

Substitute a  4 and b  3.

So the foci are F  ( 5, 0) and F  (5, 0).

Plot the foci and x intercepts, sketch the asymptote rectangle and the asymptotes, then

sketch the hyperbola (Fig. 4). The equations of the asymptotes are (note that the

diagonals of the asymptote rectangle have slope  3
4).

y   3
4 
x

 c  5

  25

  16  9

 Foci: c2
 a2

 b2
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MATCHED PROBLEM 1 Find the coordinates of the foci, find the lengths of the transverse and conjugate axes, and

graph the following equation:

16x2
 25y2

 400

�

c c

c

FF 
x

y

 5

6 6

5

Z Figure 4 �

EXAMPLE 2 Graphing Hyperbolas

Find the coordinates of the foci, find the lengths of the transverse and conjugate axes, find

the equations of the asymptotes, and graph the following equation:

16y2
 9x2

 144

SOLUTION Write the equation in standard form:

Divide both sides by 144.

a  3 and b  4

y intercepts:  3 Transverse axis length  2(3)  6

x intercepts: none Conjugate axis length  2(4)  8

Substitute a ⴝ 3 and b ⴝ 4.

So the foci are F  (0,  5) and F (0, 5).

Plot the foci and y intercepts, sketch the asymptote rectangle and the asymptotes, then

sketch the hyperbola (Fig. 5). The equations of the asymptotes are (note that the

diagonals of the asymptote rectangle have slope  3
4).

y   3
4 
x

 c  5

  25

  9  16

 Foci: c2
 a2

 b2

 
y2

9
 

x2

16
 1

 16y2
  9x2

 144
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c

c

 c

F

F 

x

y

 6

6 6

6

Z Figure 5 �

MATCHED PROBLEM 2 Find the coordinates of the foci, find the lengths of the transverse and conjugate axes, and

graph the following equation:

25y2
 16x2

 400

�

ZZZ CAUTION ZZZ When making a quick sketch of a hyperbola, it is a common error to have the

hyperbola opening up and down when it should open left and right, or vice versa.

The mistake can be avoided if you first locate the intercepts accurately.

EXAMPLE 3 Graphing Hyperbolas

Find the coordinates of the foci, find the lengths of the transverse and conjugate axes, and

graph the following equation:

2x2
 y2

 10

SOLUTION Divide both sides by 10.

and

x intercepts: Transverse axis length

y intercepts: none Conjugate axis length

Substitute and 

So the foci are and 

Plot the foci and x intercepts, sketch the asymptote rectangle and the asymptotes, then

sketch the hyperbola (Fig. 6). �

F  (115, 0).F¿  ( 115, 0)

 c  115

  15

  5  10

b ⴝ 110.a ⴝ 15 Foci: c2
 a2

 b2

 2110 ⬇ 6.32

 215 ⬇ 4.47 15

b  110a  15

 
x2

5
  

y2

10
 1

 2x2
 

 y2
 10

Z Figure 6

 c c

c

F F
x

y

 5

5 5

5

Two hyperbolas of the form

and

are called conjugate hyperbolas. In Examples 1 and 2 and in Matched Problems 1 and 2,

the hyperbolas are conjugate hyperbolas—they share the same asymptotes.

M, N 7 0
y2

N
 

x2

M
 1

x2

M
 

y2

N
 1
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MATCHED PROBLEM 3 Find the coordinates of the foci, find the lengths of the transverse and conjugate axes, and

graph the following equation:

y2
 3x2

 12

�

EXAMPLE 4 Finding the Equation of a Hyperbola

Find an equation of a hyperbola in the form

if the center is at the origin, and:

(A) Length of transverse axis is 12 (B) Length of transverse axis is 6

Length of conjugate axis is 20 Distance of foci from center is 5

M, N 7 0
y2

M
 

x2

N
 1

SOLUTIONS (A) Start with

and find a and b:

and

So the equation is

(B) Start with

and find a and b:

To find b, sketch the asymptote rectangle (Fig. 7), label known parts, and use the

Pythagorean theorem:

So the equation is

�

y2

9
 

x2

16
 1

 b  4

  16

 b2
 52

 32

a  

6

2
 3

y2

a2  

x2

b2  1

y2

36
 

x2

100
 1

b  

20

2
 10a  

12

2
 6

y2

a2  

x2

b2  1

Z Figure 7 Asymptote rectangle.

b b

5
3

F 

F

x

y

 5

5



Z Applications

You may not be aware of the many important uses of hyperbolic forms. They are encoun-

tered in the study of comets; the loran system of navigation for pleasure boats, ships, and

aircraft; sundials; capillary action; nuclear reactor cooling towers; optical and radio tele-

scopes; and contemporary architectural structures. The TWA building at Kennedy Airport

is a hyperbolic paraboloid, and the St. Louis Science Center Planetarium is a hyperboloid.

With such structures, thin concrete shells can span large spaces [Fig. 8(a)]. Some comets

from outer space occasionally enter the sun’s gravitational field, follow a hyperbolic path

around the sun (with the sun as a focus), and then leave, never to be seen again [Fig. 8(b)].

Example 5 illustrates the use of hyperbolas in navigation.
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MATCHED PROBLEM 4 Find an equation of a hyperbola in the form

if the center is at the origin, and:

(A) Length of transverse axis is 50 (B) Length of conjugate axis is 12

Length of conjugate axis is 30 Distance of foci from center is 9

�

M, N 7 0
x2

M
 

y2

N
 1

(A) Does the line with equation y  x intersect the hyperbola with equation

x2
 (y2兾4)  1? If so, find the coordinates of all intersection points.

(B) Does the line with equation y  3x intersect the hyperbola with equation

x2
 ( y2兾4)  1? If so, find the coordinates of all intersection points.

(C) For which values of m does the line with equation y  mx intersect the hyper-

bola ? Find the coordinates of all intersection points.
x2

a2
 

y2

b2
 1

ZZZ EXPLORE-DISCUSS 2

Sun

Comet

St. Louis Planetarium

(a)

Comet around sun

(b)

Z Figure 8 Uses of hyperbolic

forms.

EXAMPLE 5 Navigation

A ship is traveling on a course parallel to and 60 miles from a straight shoreline. Two trans-

mitting stations, S1 and S2, are located 200 miles apart on the shoreline (Fig. 9). By tim-

ing radio signals from the stations, the ship’s navigator determines that the ship is between

the two stations and 50 miles closer to S2 than to S1. Find the distance from the ship to

each station. Round answers to one decimal place.
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SOLUTION If d1 and d2 are the distances from the ship to S1 and S2, respectively, then d1 d2 50 and

the ship must be on the hyperbola with foci at S1 and S2 and fixed difference 50, as illustrated

in Figure 10. In the derivation of the equation of a hyperbola, we represented the fixed differ-

ence as 2a. So for the hyperbola in Figure 10 we have

 b  21002
 252

 29,375

 a  1
2 
(50)  25

 c  100

S1
S2

d1 d2

200 miles 

60 miles 

Z Figure 9 d1  d2  50.

Z Figure 10

100 100

S1 S2
(x, 60)

x

y

200

MATCHED PROBLEM 5 Repeat Example 5 if the ship is 80 miles closer to S2 than to S1.

�

The equation for this hyperbola is

Substitute y  60 and solve for x (see Fig. 10):

Add to both sides.

Multiply both sides by 625.

Simplify.

So (The negative square root is discarded, because the ship is closer to

S2 than to S1.)

Distance from ship to S1 Distance from ship to S2

Notice that the difference between these two distances is 50, as it should be. �

 ⬇ 92.6 miles ⬇ 142.6 miles

  18,582.9841  120,346.9841

 d2  2(29.41  100)2
 602 d1  2(29.41  100)2

 602

x  1865 ⬇ 29.41

  865

 x2
 625 

3,600  9,375

9,375

 
x2

625
 

3,600

9,375
 1

60
2

9,375
 
x2

625
 

602

9,375
 1

x2

625
 

y2

9,375
 1
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ANSWERS TO MATCHED PROBLEMS

1.

2.

3.

4. (A) (B) 5. d2  79.5 milesd1  159.5 miles,
x2

45
 

y2

36
 1

x2

625
 

y2

225
 1

c

c

 c F 

F

y2
x2

12 4
   1

Foci:  F     (0,  4), F   (0, 4)

Transverse axis length   2兹12 ⬇ 6.93
Conjugate axis length   4

x

y

 6

5 5

6

c

c

 c

F

F 

y2
x2

16 25
   1

Foci:  F     (0,  兹41), F   (0, 兹41)
Transverse axis length   8
Conjugate axis length   10

x

y

 10

10 10

10

c c

c
F F

x2 y 2

25 16
   1

Foci:  F     ( 兹41, 0), F   (兹41, 0)
Transverse axis length   10
Conjugate axis length   8

x

y

 10

10 10

10

Ship

S1
S2

S3

p1 p2

q1

q2

Z Figure 11 Loran navigation.

Example 5 illustrates a simplified form of the loran (LOng RAnge Navigation) system.

In practice, three transmitting stations are used to send out signals simultaneously (Fig. 11),

instead of the two used in Example 5. A computer onboard a ship will record these signals

and use them to determine the differences of the distances that the ship is to S1 and S2, and

to S2 and S3. Plotting all points so that these distances remain constant produces two

branches, p1 and p2, of a hyperbola with foci S1 and S2, and two branches, q1 and q2, of a

hyperbola with foci S2 and S3. It is easy to tell which branches the ship is on by compar-

ing the signals from each station. The intersection of a branch of each hyperbola locates

the ship and the computer expresses this in terms of longitude and latitude.
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1. Give a coordinate-free definition of a hyperbola in your own

words.

2. Explain how the transverse axis of a hyperbola differs from

the conjugate axis.

3. Given the transverse axis and foci of a hyperbola, describe a

procedure for drawing the hyperbola.

4. Is the graph of a hyperbola the graph of a function? Explain.

5. Is the conjugate axis of a hyperbola always shorter then the

transverse axis? Explain.

6. Explain what an asymptote rectangle is, and how it is related

to the graph of a hyperbola.

In Problems 7–10, find the distance between the foci of the hyperbola.

7. Transverse axis length = 24

Conjugate axis length = 18

8. Transverse axis length = 25

Conjugate axis length = 60

9. Transverse axis length = 1 

Conjugate axis length = 3

10. Transverse axis length = 7

Conjugate axis length = 1

In Problems 11–14, match each equation with one of graphs (a)–(d).

11. x2
 y2

 1 12. y2
 x2

 1

13. y2
 x2

 4 14. x2
 y2

 4

(a) (b)

(c) (d)

x
5 5

 5

5

y

x
5 5

 5

5

y

x
5 5

 5

5

y

x
5 5

 5

5

y

6-3 Exercises

Sketch a graph of each equation in Problems 15–26, find the

coordinates of the foci, and find the lengths of the transverse and

conjugate axes.

15. 16.

17. 18.

19. 4x2
 y2

 16 20. x2
 9y2

 9

21. 9y2
 16x2

 144

22. 4y2
 25x2

 100

23. 3x2
 2y2

 12

24. 3x2
 4y2

 24

25. 7y2
 4x2

 28

26. 3y2
 2x2

 24

In Problems 27–38, find an equation of a hyperbola in the form

or

if the center is at the origin, and:

27. The graph is

28. The graph is

x

y

10 10

 10

10

(4, 5)

x

y

10 10

 10

10

(5, 4)

M, N 7 0
y2

N
 

x2

M
 1

x2

M
 

y2

N
 1

y2

25
 

x2

9
 1

y2

4
 

x2

9
 1

x2

9
 

y2

25
 1

x2

9
 

y2

4
 1



29. The graph is

30. The graph is

31. Transverse axis on x axis
Transverse axis length  14
Conjugate axis length  10

32. Transverse axis on x axis
Transverse axis length  8
Conjugate axis length  6

33. Transverse axis on y axis
Transverse axis length  24
Conjugate axis length  18

34. Transverse axis on y axis
Transverse axis length  16
Conjugate axis length  22

35. Transverse axis on x axis
Transverse axis length  18
Distance of foci from center  11

36. Transverse axis on x axis
Transverse axis length  16
Distance of foci from center  10

37. Conjugate axis on x axis
Conjugate axis length  14
Distance of foci from center 

38. Conjugate axis on x axis
Conjugate axis length  10
Distance of foci from center 

In Problems 39–46, find the equations of the asymptotes of each

hyperbola.

39. 40.
x2

16
 

y2

36
 1

x2

25
 

y2

4
 1

  170

  1200

x

y

10 10

 10

10

(5, 3)

x

y

10 10

 10

10

(3, 5)
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41. 42.

43. 9x2
 y2

 9 44. x2
 4y2

 4

45. 2y2
 3x2

 1

46. 5y2
 6x2

 1

47. (A) How many hyperbolas have center at (0, 0) and a focus at
(1, 0)? Find their equations.

(B) How many ellipses have center at (0, 0) and a focus at
(1, 0)? Find their equations.

(C) How many parabolas have center at (0, 0) and focus at
(1, 0)? Find their equations.

48. How many hyperbolas have the lines y   2x as asymptotes?
Find their equations.

49. Find all intersection points of the graph of the hyperbola
x2
 y2

 1 with the graph of each of the following lines:
(A) y 0.5x

(B) y 2x

For what values of m will the graph of the hyperbola and the
graph of the line y  mx intersect? Find the coordinates of
these intersection points.

50. Find all intersection points of the graph of the hyperbola
y2
 x2

 1 with the graph of each of the following lines:
(A) y 0.5x

(B) y 2x

For what values of m will the graph of the hyperbola and the
graph of the line y  mx intersect? Find the coordinates of
these intersection points.

51. Find all intersection points of the graph of the hyperbola
y2
 4x2

 1 with the graph of each of the following lines:
(A) y x

(B) y 3x

For what values of m will the graph of the hyperbola and the
graph of the line y  mx intersect? Find the coordinates of
these intersection points.

52. Find all intersection points of the graph of the hyperbola
4x2
 y2

 1 with the graph of each of the following lines:
(A) y x

(B) y 3x

For what values of m will the graph of the hyperbola and the
graph of the line y  mx intersect? Find the coordinates of
these intersection points.

53. Consider the hyperbola with equation

(A) Show that 

(B) Explain why the hyperbola approaches the lines 
as becomes larger.

(C) Does the hyperbola approach its asymptotes from above or
below? Explain.

|x|
y   b

a 
x

y    
b
a x 21 a2

x2.

x2

a2
 

y2

b2
 1

y2

9
 

x2

25
 1

y2

4
 

x2

16
 1



54. Consider the hyperbola with equation

(A) Show that 

(B) Explain why the hyperbola approaches the lines 
as becomes larger.

(C) Does the hyperbola approach its asymptotes from above or
below? Explain.

55. Let F and F be two points in the plane and let c be a constant
such that c d(F, F ). Describe the set of all points P in the
plane such that the absolute value of the difference of the dis-
tances from P to F and F is equal to the constant c.

56. Let F and F be two points in the plane and let c denote the con-
stant d(F, F ). Describe the set of all points P in the plane such
that the absolute value of the difference of the distances from P
to F and F is equal to the constant c.

57. Study the following derivation of the standard equation
of a hyperbola with foci ( c, 0), x intercepts ( a, 0), and end-
points of the conjugate axis (0,  b). Explain why each equa-
tion follows from the equation that precedes it. [Hint: Recall
that c2

 a2
 b2.]

58. Study the following derivation of the standard equation 
of a hyperbola with foci (0,  c), y intercepts (0,  a), and end-
points of the conjugate axis ( b, 0). Explain why each equa-
tion follows from the equation that precedes it. [Hint: Recall
that c2

 a2
 b2.]

 
y2

a2
 

x2

b2
 1

 x2
 a1  

c2

a2
b y2

 a2
 c2

 x2
 (y  c)2

 a2
 2cy  

c2y2

a2

  2x2
 ( y c)2

 a 
cy

a

 x2
 ( y c)2

 4a2
 4a2x2

 ( y c)2
 x2

 ( y c)2

 2x2
 ( y  c)2

  2a  2x2
 ( y  c)2

 |d1  d2|  2a

 
x2

a2
 

y2

b2
 1

 a1  
c2

a2
b x2

 y2
 a2

 c2

 (x  c)2
 y2

 a2
 2cx  

c2x2

a2

  2(x  c)2
 y2

 a  
cx

a

 (x  c)2
 y2

 4a2
 4a2(x  c)2

 y2
 (x  c)2

 y2

 2(x  c)2
 y2

  2a  2(x  c)2
 y2

 |d1  d2|  2a

|x|
y   a

b 
x

y   a
b x 21  b2

x2.

y2

a2
 

x2

b2
 1
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ECCENTRICITY Problems 59 and 60 (and Problems 45 and 

46 in Exercises 6-2) are related to a property of conics called

eccentricity, which is denoted by a positive real number E.

Parabolas, ellipses, and hyperbolas all can be defined in terms of E,

a fixed point called a focus, and a fixed line not containing the

focus called a directrix as follows: The set of points in a plane

each of whose distance from a fixed point is E times its distance

from a fixed line is an ellipse if 0  E  1, a parabola if E  1,

and a hyperbola if E  1.

59. Find an equation of the set of points in a plane each of whose
distance from (3, 0) is three-halves its distance from the line

Identify the geometric figure.

60. Find an equation of the set of points in a plane each of whose
distance from (0, 4) is four-thirds its distance from the line

Identify the geometric figure.

APPLICATIONS

61. ARCHITECTURE An architect is interested in designing a thin-
shelled dome in the shape of a hyperbolic paraboloid, as shown in
Figure (a). Find the equation of the hyperbola located in a coordi-
nate system [Fig. (b)] satisfying the indicated conditions. How far
is the hyperbola above the vertex 6 feet to the right of the vertex?
Compute the answer to two decimal places.

Hyperbolic paraboloid

(a)

Hyperbola part of dome

(b)

62. NUCLEAR POWER A nuclear reactor cooling tower is a
hyperboloid, that is, a hyperbola rotated around its conjugate axis,
as shown in Figure (a) on page 418. The equation of the hyperbola
in Figure (b) used to generate the hyperboloid is

x2

1002
 

y2

1502
 1

(8, 12)

x

y

10 10

10

Hyperbola

Parabola

y  9
4.

x  4
3.



Nuclear reactor cooling tower

(a)

Hyperbola part of dome

(b)

If the tower is 500 feet tall, the top is 150 feet above the center of

the hyperbola, and the base is 350 feet below the center, what is the

radius of the top and the base? What is the radius of the smallest cir-

cular cross section in the tower? Compute answers to three signifi-

cant digits.

63. SPACE SCIENCE In tracking space probes to the outer planets,

NASA uses large parabolic reflectors with diameters equal to two-

thirds the length of a football field. Needless to say, many design

problems are created by the weight of these reflectors. One weight

problem is solved by using a hyperbolic reflector sharing the

parabola’s focus to reflect the incoming electromagnetic waves to

the other focus of the hyperbola where receiving equipment is in-

stalled (see the figure).

x

y

 500

500 500

500
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(a)

(b)

For the receiving antenna shown in the figure, the common focus

F is located 120 feet above the vertex of the parabola, and focus

F (for the hyperbola) is 20 feet above the vertex. The vertex of

the reflecting hyperbola is 110 feet above the vertex for the

parabola. Introduce a coordinate system by using the axis of the

parabola as the y axis (up positive), and let the x axis pass through

the center of the hyperbola (right positive). What is the equation

of the reflecting hyperbola? Write y in terms of x.

Radio telescope

F 

F

Incoming
wave

Common
focus

Hyperbola

Hyperbola
focus

Receiving cone
Parabola

6-1 Conic Sections; Parabola

The plane curves obtained by intersecting a right circular cone with

a plane are called conic sections. If the plane cuts clear through one

nappe, then the intersection curve is called a circle if the plane is

perpendicular to the axis and an ellipse if the plane is not perpendi-

cular to the axis. If a plane cuts only one nappe, but does not cut

clear through, then the intersection curve is called a parabola. If a

plane cuts through both nappes, but not through the vertex, the re-

sulting intersection curve is called a hyperbola. A plane passing

through the vertex of the cone produces a degenerate conic—a

point, a line, or a pair of lines. The figure illustrates the four nonde-

generate conics.
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Circle Ellipse

Parabola Hyperbola

The graph of

Ax2
 Bxy  Cy2

 Dx  Ey  F  0

is a conic, a degenerate conic, or the empty set.

The following is a coordinate-free definition of a parabola:

Parabola

A parabola is the set of all points in a plane equidistant from a fixed

point F and a fixed line L (not containing F) in the plane. The fixed

point F is called the focus, and the fixed line L is called the direc-

trix. A line through the focus perpendicular to the directrix is called

the axis of symmetry, and the point on the axis halfway between the

directrix and focus is called the vertex.

From the definition of a parabola, we can obtain the following stan-

dard equations:

Standard Equations of a Parabola with Vertex at (0, 0)

1. y2
 4ax

Vertex: (0, 0)

Focus: (a, 0)

Directrix: x   a

Symmetric with respect to the x axis 

Axis of symmetry the x axis

d1   d2

d1

d2

P

F(Focus)
V(Vertex)

Parabola

Directrix

Axis of symmetry
L

Review 419

a ⬍ 0 (opens left) a ⬎ 0 (opens right)

2. x2
 4ay

Vertex: (0, 0)

Focus: (0, a)

Directrix: y   a

Symmetric with respect to the y axis

Axis of symmetry the y axis

a ⬍ 0 (opens down) a ⬎ 0 (opens up)

6-2 Ellipse

The following is a coordinate-free definition of an ellipse:

Ellipse

An ellipse is the set of all points P in a plane such that the sum of

the distances from P to two fixed points in the plane is a constant

(the constant is required to be greater than the distance between the

two fixed points). Each of the fixed points, F and F, is called a

focus, and together they are called foci. Referring to the figure, the

line segment V V through the foci is the major axis. The perpendi-

cular bisector B B of the major axis is the minor axis. Each end of

the major axis, V and V, is called a vertex. The midpoint of the line

segment F F is called the center of the ellipse.

From the definition of an ellipse, we can obtain the following stan-

dard equations:

Standard Equations of an Ellipse with Center at (0, 0)

1. a  b  0

x intercepts: a (vertices)

y intercepts: b

x2

a2
 

y2

b2
 1

d1   d2   Constant

V  

F 

B 

B

F

P

V

d1

d2

x

y

F

0

x

y

F

0

x

y

F
0

x

y

F
0



Foci: F  ( c, 0), F  (c, 0) c2
 a2

 b2

Major axis length  2a

Minor axis length  2b

2. a  b  0

x intercepts:  b

y intercepts:  a (vertices)

Foci: F  (0,  c), F  (0, c) c2
 a2

 b2

Major axis length  2a

Minor axis length  2b

[Note: Both graphs are symmetric with respect to the x axis, y axis,

and origin. Also, the major axis is always longer than the minor

axis.]

6-3 Hyperbola

The following is a coordinate-free definition of a hyperbola:

Hyperbola

A hyperbola is the set of all points P in a plane such that the ab-

solute value of the difference of the distances from P to two fixed

points in the plane is a positive constant (the constant is required to

be less than the distance between the two fixed points). Each of the

fixed points, F and F, is called a focus. The intersection points V 

and V of the line through the foci and the two branches of the hyper-

bola are called vertices, and each is called a vertex. The line seg-

ment V V is called the transverse axis. The midpoint of the trans-

verse axis is the center of the hyperbola. The line segment

perpendicular to the transverse axis that goes through the center is

called the conjugate axis.

x

y

F

F 

 a

0 b b

a

c

 c

x2

b2
 

y2

a2
 1

x

y

b

 b

 c c a0 a
F F
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From the definition of a hyperbola, we can obtain the following

standard equations:

Standard Equations of a Hyperbola with Center at (0, 0)

1.

x intercepts:  a (vertices)

y intercepts: none

Foci: F  ( c, 0), F  (c, 0) c2
 a2

 b2

Transverse axis length  2a

Conjugate axis length  2b

Asymptotes: y   x

2.

x intercepts: none

y intercepts:  a (vertices)

Foci: F  (0,  c), F  (0, c) c2
 a2

 b2

Transverse axis length  2a

Conjugate axis length  2b

Asymptotes: y    x

[Note: Both graphs are symmetric with respect to the x axis, y axis,

and origin.]

a

c

 b b

c

 c

 a

F

F 

x

y

a

b

y2

a2
 

x2

b2
 1

b

c

 a a c c

 b

FF 
x

y

b

a

x2

a2
 

y2

b2
 1

F

F 
V  

V

兩d1   d2兩   Constant

d1

d2

P



Review Exercises 421

Work through all the problems in this chapter review and check

answers in the back of the book. Answers to all review problems

are there, and following each answer is a number in italics

indicating the section in which that type of problem is discussed.

Where weaknesses show up, review appropriate sections in the text.

In Problems 1–6, graph each equation and locate foci. Locate the

directrix for any parabolas. Find the lengths of major, minor,

transverse, and conjugate axes where applicable.

1. 9x2
 25y2

 225 2. x2
  12y

3. 25y2
 9x2

 225 4. x2
 y2

 16

5. y2
 8x 6. 2x2

 y2
 8

7. Find the equation of the parabola having its vertex at the origin,

its axis of symmetry the x axis, and ( 4,  2) on its graph.

In Problems 8 and 9, find the equation of the ellipse in the form

if the center is at the origin, and:

8. Major axis on x axis

Major axis length  12

Minor axis length  10

9. Major axis on y axis

Minor axis length  12

Distance between foci  16

In Problems 10 and 11, find the equation of the hyperbola in the

form

or M, N  0

if the center is at the origin, and:

10. Transverse axis on y axis

Conjugate axis length  6

Distance between foci  8

11. Transverse axis on x axis

Transverse axis length  14

Conjugate axis length  16

12. Find the equation of the parabola having directrix y 5 and

focus (0,  5).

13. Find the foci of the ellipse through the point ( 6, 0) if the center

is at the origin, the major axis is on the x axis, and the major axis

has twice the length of the minor axis.

14. Find the y intercepts of a hyperbola if the center is at the origin,

the conjugate axis is on the x axis and has length 4, and (0,  3)

is a focus.

y2

M
 

x2

N
 1

x2

M
 

y2

N
 1

M, N 7 0
x2

M
 

y2

N
 1

15. Find the directrix of a parabola having its vertex at the origin and

focus ( 4, 0).

16. Find the points of intersection of the parabolas x2
 8y and

y2
  x.

17. Find the x intercepts of an ellipse if the center is at the origin,

the major axis is on the y axis and has length 14, and (0, 1) is

a focus.

18. Find the foci of the hyperbola through the point (0,  4) if the

center is at the origin, the transverse axis is on the y axis, and the

conjugate axis has twice the length of the transverse axis.

19. Use the definition of a parabola and the distance formula

to find the equation of a parabola with directrix x  6 and focus

at (2, 4).

20. Find an equation of the set of points in a plane each of whose

distance from (4, 0) is twice its distance from the line x  1.

Identify the geometric figure.

21. Find an equation of the set of points in a plane each of whose

distance from (4, 0) is two-thirds its distance from the line

x  9. Identify the geometric figure.

In Problems 22–24, find the equations of the asymptotes of each

hyperbola.

22. 23.

24. 4x2
 y2

 1

APPLICATIONS

25. COMMUNICATIONS A parabolic satellite television antenna has

a diameter of 8 feet and is 1 foot deep. How far is the focus from the

vertex?

26. ENGINEERING An elliptical gear is to have foci 8 centimeters

apart and a major axis 10 centimeters long. Letting the x axis lie

along the major axis (right positive) and the y axis lie along the mi-

nor axis (up positive), write the equation of the ellipse in the standard

form

27. SPACE SCIENCE A hyperbolic reflector for a radio telescope (such

as that illustrated in Problem 63, Exercises 6-3) has the equation

If the reflector has a diameter of 30 feet, how deep is it? Compute the

answer to three significant digits.

y2

402
 

x2

302
 1

x2

a2
 

y2

b2
 1

y2

64
 

x2

4
 1

x2

49
 

y2

25
 1
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CHAPTER 6 

ZZZ GROUP ACTIVITY Focal Chords

Many of the applications of the conic sections are based on their

reflective or focal properties. One of the interesting algebraic

properties of the conic sections concerns their focal chords.

If a line through a focus F contains two points G and H of a

conic section, then the line segment GH is called a focal chord.

Let G  (x1, y1) and H  (x2, y2) be points on the graph of

x2
 4ay such that GH is a focal chord. Let u denote the length of

GF and v the length of FH (Fig. 1).

(A) Use the distance formula to show that u  y1  a.

(B) Show that G and H lie on the line y  a  mx, where

m  (y2  y1)兾(x2  x1).

(C) Solve y  a  mx for x and substitute in x2
 4ay, obtain-

ing a quadratic equation in y. Explain why y1y2  a2.

(D) Show that 

(E) Show that Explain why this 

implies that u  v  4a, with equality if and only if u  v  2a.

(F) Which focal chord is the shortest? Is there a longest focal

chord?

(G) Is a constant for focal chords of the ellipse? For

focal chords of the hyperbola? Obtain evidence for your

answers by considering specific examples.

1

u
 

1

v

u  v  4a  

(u  2a)2

u  a
.

1

u
 

1

v
 

1

a
.

Z Figure 1 Focal chord GH of the

parabola x
2

  4ay.

x

y

G

F
H

u

v

(2a, a)



Systems of Equations

and Matrices

WE have seen many real-world situations where solving an equation

is valuable.  But the world is a very complicated place, and many

more situations lead to more than one variable. In that case, solving

a system of equations becomes important. In this chapter, we will

study a variety of methods for solving systems of equations. We will

begin with linear systems with two or three variables using algebraic

techniques similar to those we used for solving individual equations.

Then we will introduce a variety of matrix methods for solving linear

systems. These methods can be applied to very large systems that

model very complicated real-world problems.
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We have seen a wide variety of real-world problems that can be solved by writing and solv-

ing an equation. But a lot of problems have extra conditions that makes writing a single

equation impractical. In this case, two or more equations might be needed to model the sit-

uation. In this section, we’ll examine how to solve two or more equations together, then see

how to apply what we learn.

Z Systems of Equations

To illustrate the basic concepts, we’ll use a simple example. At one campus coffee shop,

muffins cost $2 each, and lattes are $3 each. If a total of seven items are sold for $18, how

many of each item were sold?

There are two natural variables in the problem: the number of muffins, which we’ll call

x, and the number of lattes, which we’ll call y. Then

Seven items total

Total cost is $18.

This is called a system of linear equations in two variables. The solution to the problem

is found by finding all pairs of numbers x and y that make both equations true.

In general, we will study solving linear systems of the type

System of two linear equations in two variables

where x and y are variables, a, b, c, and d are real numbers called the coefficients of x and

y, and h and k are real numbers called the constant terms in the equations. A pair of num-

bers and is a solution of this system if each equation is satisfied by the pair.

The set of all such pairs of numbers is called the solution set for the system. To solve a

system is to find its solution set.

Z Solving by Graphing

Recall that the graph of a linear equation is the line consisting of all ordered pairs that sat-

isfy the equation. To solve the coffee shop problem by graphing, we will graph both equa-

tions in the same coordinate system. The coordinates of any points that the lines have in

common must be solutions to the system, because they must satisfy both equations.

y  y0x  x0

cx  dy  k

ax  by  h

2x  3y  18

 x   y   7
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7-1 Systems of Linear Equations

Z Systems of Equations

Z Solving by Graphing

Z Solving by Substitution

Z Solving Using Elimination by Addition

Z Applications

EXAMPLE 1 Solving a System by Graphing

Solve the coffee shop problem by graphing:

2x  3y  18

x  y  7



Muffins*

Lattesy ⫽ 4

x ⫽ 3
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Find the x and y intercepts for each line.

x ⫹ y ⫽ 7 2x ⫹ 3y ⫽ 18

x y x y

0 7 0 6

7 0 9 0

Plot these points, graph the two lines, estimate the intersection point visually (Fig. 1), and

check the estimate.

SOLUTION

x

y

10

5

5

10

x ⫹ y ⫽ 7

(3, 4)

2x ⫹ 3y ⫽ 18

Z Figure 1

CHECK

� 18 ⫽
✓

187 ⫽
✓

7

 2(3) ⫹ 3(4) ⫽
?

183 ⫹ 4 ⫽
?

7

 2x ⫹ 3y ⫽ 18x ⫹ y ⫽ 7

*When the solution set for a linear system is a single point, we will follow the common practice of writing the

solution as (3, 4) or as rather than the more formal expression 5(3, 4)6.y ⫽ 4,x ⫽ 3,

MATCHED PROBLEM 1 Solve by graphing:

�

x ⫹ 2y ⫽ ⫺3

x ⫺ y ⫽ 3

Technology Connections

To solve Example 1 with a graphing calculator, first solve

each equation for y:

Subtract x from both sides.

Subtract 2x from both sides.

Divide both sides by 3.

Next, enter these functions in the equation editor of a

graphing calculator (Fig. 2) and use the intersect com-

mand to find the intersection point (Fig. 3).

 y ⴝ 6 ⴚ
2
3  
x

 3y ⴝ 18 ⴚ 2x

 2x ⴙ 3y ⴝ 18

 y ⴝ 7 ⴚ x

 x ⴙ y ⴝ 7

From Figure 3, we see that the solution is

Muffins

Lattesy ⴝ 4

x ⴝ 3

Z Figure 2 Z Figure 3
⫺10

⫺10

10

10



It is clear that Example 1 has exactly one solution, because the lines have exactly one

point of intersection. In general, lines in a rectangular coordinate system are related to each

other in one of three ways, as illustrated in Example 2.

426 C H A P T E R  7 SYSTEMS OF EQUATIONS AND MATRICES

EXAMPLE 2 Determining the Nature of Solutions

Match each of the following systems with one of the graphs in Figure 4 and discuss the

nature of the solutions:

(A) 2x 3y  2 (B) 4x 6y  12 (C) 2x 3y   6

x  2y  8 2x  3y   6  x  
3
2 
y  3

(A) Write each equation in slope–intercept form:

One positive slope, one negative

The graphs of these two lines match graph (b). There is exactly one solution: x  4,

y  2.

(B) 

Slopes are equal.

The graphs of these parallel lines match graph (c). There is no solution.

(C) 

Same line!

The graph of these identical lines match graph (a). There are an infinite number of

solutions. �

y  
2
3 x  2y  

2
3 x  2

3
2 y  x  3 3y   2x  6

 x  
3
2 y  3 2x  3y   6

y   
2
3x  2y   

2
3 x  2

3y   2x  66y   4x  12

2x  3y   64x  6y  12

 y   1
2 x  4 y  2

3 x  
2
3

 2y   x  8  3y   2x  2

 x  2y  8 2x  3y  2

x

y

 5

5 5

5

x

y

 5

5 5

5

(4, 2)

 5

5 5

5

x

y

Z Figure 4

(a) (b) (c)

SOLUTIONS

Solve each of the following systems by graphing:

(A) 2x 3y  12 (B) x  3y   3 (C) 2x  3y  12

x  3y   3  2x  6y  12

�

 x  
3
2 y   6

MATCHED PROBLEM 2



Next, we’ll define some terms that can be used to describe the different types of solu-

tions to systems of equations illustrated in Example 2.
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Z SYSTEMS OF LINEAR EQUATIONS: BASIC TERMS

A system of linear equations is consistent if it has one or more solutions and

inconsistent if no solutions exist. Furthermore, a consistent system is said to be

independent if it has exactly one solution (often referred to as the unique solu-

tion) and dependent if it has more than one solution.

Referring to the three systems in Example 2, the system in part A [Fig. 4(b)] is con-

sistent and independent, with the unique solution x  4 and y  2. The system in part B

[Fig. 4(c)] is inconsistent, with no solution. And the system in part C [Fig. 4(a)] is consis-

tent and dependent, with an infinite number of solutions: all the points on the two coincid-

ing lines.

Can a consistent and dependent linear system have exactly two solutions? Exactly

three solutions? Explain.

ZZZ EXPLORE-DISCUSS 1

In general, any two lines in a rectangular coordinate plane either intersect in exactly

one point, or are parallel, or coincide (have identical graphs). So, the systems in Example 2

illustrate the only three possible types of solutions for systems of two linear equations in

two variables. These ideas are summarized in Theorem 1.

Z THEOREM 1 Possible Solutions to a Linear System

A system of linear equations must have

1. Exactly one solution Consistent and independent

or

2. No solution Inconsistent

or

3. Infinitely many solutions Consistent and dependent

Note: While the geometric discussion presented here only applies to systems of equations

with two variables, the same three possibilities remain for systems of linear equations with

more than two variables.

Z Solving by Substitution

The accuracy of solutions found by graphing depends a lot on how accurate the graph is

when the graphs are drawn by hand. If the solutions are found using a graphing calculator,

you will likely get very accurate solutions, but they probably won’t be exact. Worse still,

the solutions can be very difficult to find, depending on the window settings that you choose.

Also, for systems with more than two variables, the geometry gets extremely complicated.

For all of these reasons, we will next turn our attention to solving systems algebraically.

There are a number of different techniques that can be used. One of the simplest is the sub-

stitution method.



Solve by substitution and check:

�

 x  2y   3

 x  y  3
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EXAMPLE 3 Solving a System by Substitution

Use substitution to solve the coffee shop problem: x  y  7

2x  3y  18

We will return to the coffee shop problem from page 424 to illustrate the substitution method.

Step 1: Solve either equation for one variable. It will be easy to solve the first equation for

y in terms of x:

Solve the first equation for y in terms of x.

Substitute into the second equation.

Step 2: Substitute 7  x for y in the second equation.

y ⴝ 7 ⴚ x, so replace y with 7 ⴚ x.

Multiply out parentheses.

Collect x terms on the left and constant terms on the right.

Multiply both sides by ⴚ1.

Step 3: Replace x with 3 in y  7  x:

The solution is 3 muffins and 4 lattes, as we found and checked earlier. �

 y ⴝ 4

 y  7  3

 y  7  x

 x ⴝ 3

  x   3

 2x  21  3x  18

 2x  3(7  x)  18

 2x  3y  18

 y  7  x

 x  y  7

SOLUTION

MATCHED PROBLEM 3

The following box summarizes the steps for solving a system using the substitution method.

Z SOLVING SYSTEMS OF TWO LINEAR EQUATIONS 
IN TWO VARIABLES: THE SUBSTITUTION METHOD

1. Choose one of the two equations and solve it for one of the two variables. (Make

a choice that avoids fractions, if possible.)

2. Substitute the result of step 1 into the equation that was not used in step 1 and

solve the resulting linear equation in one variable.

3. Substitute the result of step 2 into the expression obtained in step 1 to find the

value of the second variable.

Use substitution to solve each of the following systems. Discuss the nature of the

solution sets you obtain.

 2x  6y  7   2x  6y  8

 x  3y  4   x  3y  4

ZZZ EXPLORE-DISCUSS 2



Z Solving Using Elimination by Addition

Now we turn to elimination by addition. This is probably the most important method of

solution, since it is readily generalized to larger systems. The method involves the replace-

ment of systems of equations with simpler equivalent systems, by performing appropriate

operations, until we obtain a system with an obvious solution. Equivalent systems of equa-

tions are, as you would expect, systems that have exactly the same solution set. Theorem 2

lists operations that produce equivalent systems.
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Z THEOREM 2 Elementary Equation Operations Producing 
Equivalent Systems

A system of linear equations is transformed into an equivalent system if:

1. Two equations are interchanged.

2. An equation is multiplied by a nonzero constant.

3. A constant multiple of another equation is added to a given equation.

We’ll return one more time to the coffee shop problem to illustrate why elimination by addi-

tion works so well. The system of equations was

Notice that if we use the third operation in Theorem 2, adding  2 times the first equation

to the second one, we get

This eliminated x, and left behind an equation with only y. We could then easily substitute

back in to find x.

We will rely mostly on operations 2 and 3 for now, but  operation 1 will come in espe-

cially handy later in the section.  Examples 4 and 5 illustrate the use of elimination by addi-

tion on two and three variable systems.

y  4

2x  3y  18

 2x  2y   14

2x  3y  18

 x   y   7

EXAMPLE 4 Solving a System Using Elimination by Addition

Solve using elimination by addition:

2x  5y   1

3x  2y  8

We will use Theorem 2 to eliminate one of the variables and get an easy equation with one

variable.

Now solve for x.

 x ⴝ 2

 19x  38

 4x  10y   2

 15x  10y    40

2x  5y   1

If we multiply the top equation by 5,

the bottom by 2, and then add, we

can eliminate y.

 3x  2y  8

SOLUTION



When a system has three equations, we will use elimination to reduce to a system with two

equations and two variables, then solve like we did in Example 4. To help you follow a

solution, we will number the equations as E1, E2, and so on.
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The equation x  2 paired with either of the two original equations produces an equivalent

system. So, we can substitute x  2 back into either of the two original equations to solve

for y. We choose the second equation.

 y ⴝ ⴚ1

 5y   5

 2(2)  5y   1

x  2, y   1, or (2,  1).SOLUTION

CHECK

� 8  
✓

8    1  
✓
 1

 3(2)  2( 1)  
?

8   2(2)  5( 1)  
?
 1

 3x  2y  8   2x  5y   1

MATCHED PROBLEM 4 Solve using elimination by addition:

�

 5x  4y  7

 6x  3y  3

EXAMPLE 5 Solution Using Elimination by Addition

E1

E2

E3  2x  3y  2z  2

 3x  5y  4z  15

 x  2y  3z  2

Since the coefficient of x in E1 is 1, our calculations will be simplified if we use E1 to elim-

inate x from the other equations. First we eliminate x from E2 by multiplying E1 by  3 and

adding the result to E2.

SOLUTION

ⴚ3E1

E2

E4   11y   13z   9

3x  5y  4z   15

  3x  6y  9z    6

Equivalent System

E1

E4

E3  2x   3y   2z  2

  11y   13z  9

 x   2y   3z  2

Now we use E1 to eliminate x (the same variable eliminated above) from E3 by multiply-

ing E1 by 2 and adding the result to E3.

2E1

E3

E5 y  8z  6

  2x  3y  2z  2

 2x  4y  6z  4

Equivalent System

E1

E4

E5  y   8z  6

  11y   13z  9

 x   2y   3z  2

Notice that E4 and E5 form a system of two equations with two variables. Next we use E5

to eliminate y from E4 and replace E4 with the result.

11E5

E4

E6  75z   75

  11y  13z   9

 11y  88z   66



CHECK To check the solution, we must check each equation in the original system:
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Now we can easily solve for z.

E6

Next substitute z  1 in E4 or E5 and solve for y.

E5

Finally, substitute y   2 and z  1 in any of E1, E2, or E3 and solve for x.

E1

The solution to the original system is (3,  2, 1) or x  3, y   2, z  1.

 x ⴝ 3

 x  2( 2)  3(1)  2

 x  2y  3z  2

  y ⴝ  ⴚ2

 y   8(1)   6

 y   8z   6

 z ⴝ 1

 75z  75

E1

 2  
✓

2

 3  2( 2)  3(1)  
?

2

 x  2y  3z  2 E2

 15  
✓

15

 3(3)  5( 2)  4(1)  
?

15

 3x  5y  4z  15 E3

� 2  
✓

2

  2(3)  3( 2)  2(1)  
?

2

  2x  3y  2z  2

Solve:

�

4x  5y  4z    12

3x  2y  2z   1

2x  3y  5z    12

MATCHED PROBLEM 5

Let’s see what happens in the solution process when a system either has no solution or

has infinitely many solutions. Consider the solutions to the following system:

 x  3y  2

 2x  6y   3

Solution by Substitution

Solve the second equation for x

and substitute in the first equation.

 4   3

 4  6y  6y   3

 2(2  3y)  6y   3

 x  2  3y

Solution by Elimination

Multiply the second equation by  2

and add to the first equation.

 0   7

  2x  6y   4

 2x  6y   3

Both methods of solution lead to a contradiction (a statement that is false). An assumption

that the original system has solutions must be false. This tells us that the system has no

solution. The graphs of the equations are parallel and the system is inconsistent.

Now consider the system

  2x  y   8

 x  
1
2 y  4



This time both solution methods lead to a statement that is always true. This means that the

two original equations are equivalent. That is, their graphs coincide. The system is depen-

dent and has an infinite number of solutions. There are many different ways to represent

this infinite solution set. For example,

x any real number}

and

y any real number}

both represent the solutions to this system. For reasons that will become apparent later, it is

customary to introduce a new variable, called a parameter, and express both variables in terms

of this new variable. If we let x  s and y  2s  8 in S1, we can express the solution set as

s any real number}

Some particular solutions to this system are obtained by choosing particular values for the

parameter.

s ⴝⴚ1 s ⴝ 2 s ⴝ 5 s ⴝ 9.4

(9.4, 10.8)(5, 2)(2,  4)( 1,  10)

5(s, 2s  8) ƒ

S2  5(x, y) ƒ  x  
1
2 y  4,

S1  5(x, y) ƒ  y  2x  8,
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Solution by Substitution

Solve the first equation for x and substi-

tute in the second equation.

  8   8

  y  8  y   8

  2 (1
2 y  4)  y   8

 x  1
2 y  4

Solution by Elimination

Multiply the first equation by 2 and add

to the second equation.

 0  0

  2x  y   8

 2x  y  8

EXAMPLE 6 Using Elimination by Addition

Solve:

E1

E2

E3 2x   3y   5z  6

 x   y   5z  1

 x   y   z  3

Use E1 to eliminate z from E2 and replace E2 with the result.SOLUTION

5E1

E2

E4 6x   4y    16

 x   y  5z   1

 5x   5y  5z   15

Equivalent System

E1

E4

E3 2x   3y  5z   6

 6x   4y    16

 x   y   z    3

Use E1 to eliminate z from E3 and replace E3 with the result.

ⴚ5E1

E3

E5  3x  2y     9

 2x  3y  5z   6

  5x  5y  5z    15

Equivalent System

E1

E4

E5  3x   2y     9

 6x   4y    16

 x   y  z   3



Now treat E4 and E5 as a system of two equations, and eliminate y.

E4

2E5

E6

Stop! We have obtained a contradiction. The original system is inconsistent and has no solu-

tion. (Note: It’s impossible to check in this case.) �

 0    2

  6x  4y    18

 6x  4y   16
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Solve:

�

 x  5y  7z  1

 3x  2y  2z  2

 2x  3y  5z  3

MATCHED PROBLEM 6

EXAMPLE 7 Using Elimination by Addition

Solve:

E1

E2

E3 3x  y  3z  5

 2x  y   z  3

 x  y   z  1

Use E1 to eliminate y from E2 and replace E2 with the result.SOLUTION

 E1

E2

E4 x  2z  2

 2x  y  z  3

  x  y  z   1

Equivalent System

E1

E4

E3 3x  y   3z  5

 x    2z  2

 x  y   z  1

Use E1 to eliminate y from E3 and replace E3 with the result.

ⴚE1

E3

E5 2x  4z  4

 3x  y  3z  5

  x  y   z   1

Equivalent System

E1

E4

E5 2x    4z  4

 x    2z  2

 x  y   z  1

Use E4 to eliminate z from E5 and replace E5 with the result.

ⴚ2E4

E5

E6   0   0

 2x    4z   4

  2x    4z    4

Equivalent System

E1

E4 x    2z  2

 x  y   z  1

Since E6 is true for all x, y, and z, it provides no information about the systems’ solution

set and can be discarded. The solutions to the last equivalent system can be described by

introducing a parameter. If we let z  s, then, using E4, we can write x  2s  2. Substi-

tuting for x and z in E1 and solving for y, we have

E1

 y   3s  1

 2s  2  y  s  1

 x  y  z  1



The solution set is given by

The check is left to the reader. �

5(2s  2,  3s  1, s) | s any real number6
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Solve:

�

x   6z   1

2x   y  5z  2

3x  2y  4z  5

MATCHED PROBLEM 7

Z Applications

Examples 8–10 illustrate the advantages of using systems of equations in solving word
problems.

Refer to the solution to Example 7. The given representation of the solution set is
not the only one. Which of the following is a representation of the solution set?
Justify your answer.

(A) {(t, 2  1.5t, 0.5t   1) | t any real number}

(B) {(2u  4,  2u  3, u) | u any real number}

Let y  v, where v is any real number, express x and z in terms of v, and find
another representation of the solution set for Example 7.

ZZZ EXPLORE-DISCUSS 3

EXAMPLE 8 Airspeed

An airplane makes the 2,400-mile trip from Washington, D.C. to San Francisco in 7.5 hours
and makes the return trip in 6 hours. Assuming that the plane travels at a constant airspeed
and that the wind blows at a constant rate from west to east, find the plane’s airspeed and
the wind rate.

Washington,
D.C.

San
Francisco

2,400
miles

Let x represent the airspeed of the plane and let y represent the rate at which the wind is
blowing (both in miles per hour). The plane’s speed relative to the ground is determined by
combining these two rates; that is,

Applying the familiar formula D  RT to each leg of the trip leads to the following system
of equations:

Washington to San Francisco: 7.5 hr, 2,400 mi

San Francisco to Washington: 6 hr, 2,400 mi

After simplification, we have

Add these two equations to eliminate y:

Airspeed x ⴝ 360 mph

 2x  720

 x  y  400

 x  y  320

 2,400  6(x  y)

 2,400  7.5(x  y)

 x  y  Ground speed flying west to east (airspeed  wind)

 x  y  Ground speed flying east to west (airspeed  wind)

SOLUTION



Substitute for x in the second equation:

Wind rate y ⴝ 40 mph

 360  y  400

 x  y  400
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EXAMPLE 9 Supply and Demand

Using collected data and regression analysis, an analyst arrives at the following price–demand

and price–supply equations for the sale of cherries each day in a major urban area.

Demand equation (consumer)

Supply equation (supplier)

where q represents the quantity of cherries in thousands of pounds and p represents the price

in dollars per pound. For example, we see (Fig. 5) that consumers will purchase 11 thousand

pounds (q  11) when the price is p   0.2(11)  5.6  $3.40 per pound. On the other

hand, suppliers will be willing to supply 17 thousand pounds of cherries at $3.40 per pound

(solve 3.4  0.1q  1.7 for q). So, at $3.40 per pound the suppliers are willing to supply more

cherries than the consumers are willing to purchase. The supply exceeds the demand at that

price, and the price will come down. Find the equilibrium quantity and the equilibrium price.

 p  0.1q  1.7

 p   0.2q  5.6

CHECK

� 2,400  
✓

2,400   2,400  
✓

2,400

 2,400  
?

7.5(360  40)   2,400  
?

6(360  40)

 2,400  7.5(x  y)   2,400  6(x  y)

A boat takes 8 hours to travel 80 miles upstream and 5 hours to return to its starting point.

Find the speed of the boat in still water and the speed of the current.

�

MATCHED PROBLEM 8

The quantity of a product that people are willing to buy (known as the demand) during

some period of time depends on its price. Generally, the higher the price, the less the demand;

the lower the price, the greater the demand. Similarly, the quantity of a product that a sup-

plier is willing to sell during some period of time (known as the supply) also depends on the

price. Generally, a supplier will be willing to supply more of a product at higher prices and

less of a product at lower prices. The simplest supply and demand model is a linear model.

If the demand for a product is greater than the supply, the price tends to rise. If the demand

is less than the supply, the price tends to fall. So the price tends to stabilize at an equilib-

rium price; at that price, the supply and demand are equal, and that common quantity is called

the equilibrium quantity. Example 9 illustrates the basic concepts of supply and demand.
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The price–demand and price–supply equations for strawberries in a certain city are

Demand equation

Supply equation

where q represents the quantity in thousands of pounds and p represents the price in dollars.

Find the equilibrium quantity and the equilibrium price.

�

 p ⫽ 0.04q ⫹ 1.84

 p ⫽ ⫺0.2q ⫹ 4

MATCHED PROBLEM 9

Z Figure 6
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EXAMPLE 10 Production Scheduling

A garment industry manufactures three shirt styles. Each style shirt requires the services of

three departments as listed in the table. The cutting, sewing, and packaging departments have

available a maximum of 1,160, l,560, and 480 labor-hours per week, respectively. How many

of each style shirt must be produced each week for the plant to operate at full capacity?

Style A Style B Style C Time Available

Cutting department 0.2 hr 0.4 hr 0.3 hr 1,160 hr

Sewing department 0.3 hr 0.5 hr 0.4 hr 1,560 hr

Packaging department 0.1 hr 0.2 hr 0.1 hr 480 hr

Let

x ⫽ Number of style A shirts produced per week

y ⫽ Number of style B shirts produced per week

z ⫽ Number of style C shirts produced per week

Then

Cutting department

Sewing department

Packaging department0.1x ⫹ 0.2y ⫹ 0.1z ⫽ 480

0.3x ⫹ 0.5y ⫹ 0.4z ⫽ 1,560

0.2x ⫹ 0.4y ⫹ 0.3z ⫽ 1,160

SOLUTION

To find the equilibrium quantity, we solve the linear system

Demand equation (consumer)

Supply equation (supplier)

using substitution (substituting p 0.2q 5.6 into the second equation).

Substitute p ⴝⴚ0.2q ⴙ 5.6.

Add 0.2q to both sides.

Subtract 1.7 from both sides.

Divide both sides by 0.3.

Equilibrium quantity

Now substitute q ⫽ 13 back into either of the original equations in the system and solve

for p (we choose the second equation):

Equilibrium price

So if the price of cherries is $3 per pound, then the supplier would supply 13,000 pounds

of cherries and the consumer would demand (purchase) 13,000 pounds of cherries. In other

words, the market would be in equilibrium (see Fig. 6). �

 p ⴝ $3 per pound

 p ⫽ 0.1(13) ⫹ 1.7

 q ⴝ 13 thousand pounds

 3.9 ⫽ 0.3q

 5.6 ⫽ 0.3q ⫹ 1.7

 ⫺0.2q ⫹ 5.6 ⫽ 0.1q ⫹ 1.7

 p ⫽ 0.1q ⫹ 1.7

⫹⫽ ⫺

 p ⫽ 0.1q ⫹ 1.7

 p ⫽ ⫺0.2q ⫹ 5.6

SOLUTION
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Use E3 to eliminate z from E1 and replace E1 with the result.

E1

ⴚ3E3

E4⫺x ⫺ 2y ⫽ ⫺2,800

 ⫺3x ⫺ 6y ⫺ 3z ⫽  ⫺14,400

 2x ⫹ 4y ⫹ 3z ⫽  11,600

Equivalent System

E4

E2

E3 x ⫹ 2y ⫹ z ⫽  4,800

 3x ⫹ 5y ⫹ 4z ⫽  15,600

 ⫺x ⫺ 2y  ⫽  ⫺2,800

Use E3 to eliminate z from E2 and replace E2 with the result.

E2

ⴚ4E3

E5 ⫺x ⫺ 3y ⫽ ⫺3,600

 ⫺4x ⫺ 8y ⫺ 4z ⫽  ⫺19,200

 3x ⫹ 5y ⫹ 4z ⫽  15,600

Equivalent System

E4

E5

E3 x ⫹ 2y ⫹ z ⫽  4,800

 ⫺x ⫺ 3y  ⫽  ⫺3,600

 ⫺x ⫺ 2y  ⫽  ⫺2,800

Now treat E4 and E5 as a system of two equations; eliminate x.

ⴚE4

E5

E6

From E6 we see that

Substitute y ⫽ 800 in E4 or E5 and solve for x.

E4

Substitute x ⫽ 1,200 and y ⫽ 800 in E1, E2, or E3 and solve for z.

E3

Each week, the company should produce 1,200 style A shirts, 800 style B shirts, and 2,000

style C shirts to operate at full capacity. You should check this solution. �

 z ⴝ 2,000

 1,200 ⫹ 2(800) ⫹ z ⫽ 4,800

 x ⫹ 2y ⫹ z ⫽ 4,800

 x  ⴝ 1,200

 ⫺x ⫺ 2(800) ⫽ ⫺2,800

 ⫺x ⫺ 2y  ⫽ ⫺2,800

y ⴝ 800

  ⫺y  ⫽  ⫺800

 ⫺x ⫺  3y  ⫽  ⫺3,600

 x ⫹  2y  ⫽  2,800

Repeat Example 10 with the cutting, sewing, and packaging departments having available a

maximum of 1,180, 1,560, and 510 labor-hours per week, respectively.

�

MATCHED PROBLEM 10

We can clear the system of decimals by multiplying each side of each equation by 10:

E1

E2

E3x ⫹ 2y ⫹ z ⫽ 4,800

3x ⫹ 5y ⫹ 4z ⫽ 15,600

2x ⫹ 4y ⫹ 3z ⫽ 11,600



438 C H A P T E R  7 SYSTEMS OF EQUATIONS AND MATRICES

7-1 Exercises

1. Explain in your own words how to solve a system of two linear
equations by graphing.

2. Explain in your own words how to solve a system of two linear
equations by substitution.

3. Explain in your own words how to solve a system of two linear
equations using elimination by addition.

4.Which of the three solving techniques is the best choice for a
system of three equations? Why?

5. Can a system of two linear equations have exactly two solu-
tions? Explain.

6. Describe how the solution sets differ for systems of linear
equations that are consistent, inconsistent, and dependent.

Match each system in Problems 7–10 with one of the following

graphs, and use the graph to solve the system.

7. 8.

9. 10.

2x  y  53x  2y   3
4x  2y  102x  y  5

x  2y  0x  2y  0
x  y  32x  4y  8

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

x

y

 5

5 5

5

(a) (b)

(c) (d)

x  1, y   2

  3  
✓

 3
 1  2( 2)  

?
 3

2y   3x  

 3  
✓

3
 1  ( 2)  

?
3

 Check:  x  y  3

ANSWERS TO MATCHED PROBLEMS

1.

2. (A) (3, 2) or x  3 and y  2 (B) No solutions (C) Infinite number of solutions
3. x  1, y   2
4. x   1, y  3
5. ( 1, 0, 2) or x   1, y  0, z  2
6. Inconsistent system with no solution
7. {( 6s  1, 7s  4, s) | s any real number}
8. Boat: 13 mph; current: 3 mph
9. Equilibrium quantity   9 thousand pounds; Equilibrium price   $2.20 per pound

10. Each week, the company should produce 900 style A shirts, 1,300 style B shirts, and 1,600
style C shirts to operate at full capacity.

x

y

 5

5 5

5

x   2y    3

x   y   3

(1,  2)



Solve the system of equations in Problems 11–46.

11. x  y  7 12. x  y  2

x  y  3 x  y  4

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28. 

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

In Problems 47 and 48, solve each system for p and q in terms of 

x and y. Explain how you could check your solution and then

perform the check.

47. x  2  p  2q 48. x   1  2p  q

y  3  p  3q y 4  p  q

 2x   11y   3z   2 x   y   z    4

 x   3y   z   1 2x   5y   4z    16

 x   8y   2z    1  x   2y   z    4

 x  5y   z   25x  4y  2z   23

  2x  3y   2z    33x  2y  5z   34

 x  2y   z   22x  3y  3z    5

 u  4v   w    5  a  2b   c   9

 2u  3v   2w    5 a  3b   2c    15

 3u  2v   3w   11 2a  4b   3c    6

 3x   y   2z   2 7x  y   5z   15

 x   2y   z    3 2x  y   z   6

 2x   y   3z   7 x  y   z   1

 2x   y   5z    3 4x  2y   z   9

  x   4y   4z   1 x   3z   6

 x   3y   z   4 2x   z   5

 2x  4y  3z  6 x  y  z   1

 8x  6y   4 2y  z    1

  4x  3y   1 x  3y    2

 y   z  2 x  2y   3z  0

 x  2z  1  4y   2z  1

 x  y   z  3 2y   z  2

  y   3  x  2y  3z   7

 x  3y   2z   9 x  3y   2

 2y   z    4  2x   2

3.7x  6.4y   4.510.1y  2.9z  26.15

5.4x  4.2y   12.9 2.3y  4.1z   14.21

2x  3y   107
3x  

5
4 
y   5

5x  2y  82
5x  

3
2 
y  2

0.8u  0.3v  0.79y  100  0.04x

0.2u  0.5v  0.07y  0.08x

15p  10q   105m  3n  7

3p  8q  47m  12n   1

11x  2y  13x  11y   7

9x  3y  244x  3y  26

2x  3y  1x  3y  12

3x  y  7x  y  4

8x  32y  40 9x  3y  6

2x  8y  103x  y   2

2m  4n   86u  10v   30

m  2n  43u  5v  15

x  2y  107x  2y  8

3x  y  23x  2y  12
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Problems 49 and 50 refer to the system

ax  by  h

cx  dy  k

where x and y are variables and a, b, c, d, h, and k are real constants.

49. Solve the system for x and y in terms of the constants a, b, c, d,

h, and k. Clearly state any assumptions you must make about

the constants during the solution process.

50. Discuss the nature of solutions to systems that do not satisfy

the assumptions you made in Problem 49.

APPLICATIONS

51. AIRSPEED It takes a private airplane 8.75 hours to make the

2,100-mile flight from Atlanta to Los Angeles and 5 hours to make the

return trip. Assuming that the wind blows at a constant rate from Los

Angeles to Atlanta, find the airspeed of the plane and the wind rate.

52. AIRSPEED A plane carries enough fuel for 20 hours of flight at

an airspeed of 150 miles per hour. How far can it fly into a 30 mph

headwind and still have enough fuel to return to its starting point?

(This distance is called the point of no return.)

53. RATE–TIME A crew of eight can row 20 kilometers per hour in

still water. The crew rows upstream and then returns to its starting

point in 15 minutes. If the river is flowing at 2 km/h, how far up-

stream did the crew row?

54. RATE–TIME It takes a boat 2 hours to travel 20 miles down a

river and 3 hours to return upstream to its starting point. What is the

rate of the current in the river?

55. BUSINESS A company that supplies bulk candy to bakeries

has one batch of chocolate chips that are 50% dark chocolate and

50% milk chocolate. They have another batch that is 80% dark

chocolate and 20% milk chocolate. One of their customers sends

in a rush order for 100 lb of a mix that is 68% dark chocolate.

How many pounds from each batch should be mixed to meet this

order?

56. BUSINESS A jeweler has two bars of gold alloy in stock, one of

12 carats and the other of 18 carats (24-carat gold is pure gold, 12-

carat is pure, 18-carat gold is pure, and so on). How many

grams of each alloy must be mixed to obtain 10 grams of 14-carat

gold?

18
24

12
24



57. BREAK-EVEN ANALYSIS It costs a small recording company

$17,680 to prepare a compact disc. This is a one-time fixed cost that

covers recording, package design, and so on. Variable costs, includ-

ing such things as manufacturing, marketing, and royalties, are

$4.60 per CD. If the CD is sold to music shops for $8 each, how

many must be sold for the company to break even?

58. FINANCE Suppose you have $12,000 to invest. If part is in-

vested at 10% and the rest at 15%, how much should be invested at

each rate to yield 12% on the total amount invested?

59. PRODUCTION A supplier for the electronics industry manufac-

tures keyboards and screens for graphing calculators at plants in

Mexico and Taiwan. The hourly production rates at each plant are

given in the table. How many hours should each plant be operated to

fill an order for exactly 4,000 keyboards and exactly 4,000 screens?

Plant Keyboards Screens

Mexico 40 32

Taiwan 20 32

60. PRODUCTION A company produces Italian sausages and

bratwursts at plants in Green Bay and Sheboygan. The hourly pro-

duction rates at each plant are given in the table. How many hours

should each plant be operated to exactly fill an order for 62,250 Italian

sausages and 76,500 bratwursts?

Plant Italian Sausage Bratwurst

Green Bay 800 800

Sheboygan 500 1,000

61. SUPPLY AND DEMAND Suppose the supply and demand equa-

tions for printed T-shirts in a resort town for a particular week are

p  0.007q  3 Supply equation

p   0.018q  15 Demand equation

where p is the price in dollars and q is the quantity.

(A) Find the supply and the demand (to the nearest unit) if T-shirts

are priced at $4 each. Discuss the stability of the T-shirt market at

this price level.

(B) Find the supply and the demand (to the nearest unit) if T-shirts

are priced at $8 each. Discuss the stability of the T-shirt market at

this price level.

(C) Find the equilibrium price and quantity.

(D) Graph the two equations in the same coordinate system and

identify the equilibrium point, supply curve, and demand curve.

62. SUPPLY AND DEMAND Suppose the supply and demand equa-

tions for printed baseball caps in a resort town for a particular

week are

p  0.006q  2 Supply equation

p   0.014q  13 Demand equation

where p is the price in dollars and q is the quantity in hundreds.

(A) Find the supply and the demand (to the nearest unit) if baseball

caps are priced at $4 each. Discuss the stability of the baseball cap

market at this price level.

(B) Find the supply and the demand (to the nearest unit) if baseball

caps are priced at $8 each. Discuss the stability of the baseball cap

market at this price level.

(C) Find the equilibrium price and quantity.

(D) Graph the two equations in the same coordinate system and

identify the equilibrium point, supply curve, and demand curve.

63. SUPPLY AND DEMAND At $0.60 per bushel, the daily supply for

wheat is 450 bushels and the daily demand is 645 bushels. When the

price is raised to $0.90 per bushel, the daily supply increases to 750

bushels and the daily demand decreases to 495 bushels. Assume that

the supply and demand equations are linear.

(A) Find the supply equation.

(B) Find the demand equation.

(C) Find the equilibrium price and quantity.

64. SUPPLY AND DEMAND At $1.40 per bushel, the daily supply

for soybeans is 1,075 bushels and the daily demand is 580 bushels.

When the price falls to $1.20 per bushel, the daily supply decreases

to 575 bushels and the daily demand increases to 980 bushels.

Assume that the supply and demand equations are linear.

(A) Find the supply equation.

(B) Find the demand equation.

(C) Find the equilibrium price and quantity.

65. EARTH SCIENCE An earthquake emits a primary wave and a

secondary wave. Near the surface of the Earth the primary wave

travels at about 5 miles per second and the secondary wave at about

3 miles per second. From the time lag between the two waves arriv-

ing at a given receiving station, it is possible to estimate the distance

to the quake. (The epicenter can be located by obtaining distance

bearings at three or more stations.) Suppose a station measured a

time difference of 16 seconds between the arrival of the two waves.

How long did each wave travel, and how far was the earthquake

from the station?

66. EARTH SCIENCE A ship using sound-sensing devices above 

and below water recorded a surface explosion 6 seconds sooner by

its underwater device than its above-water device. Sound travels in

air at about 1,100 feet per second and in seawater at about 5,000

feet per second.

(A) How long did it take each sound wave to reach the ship?

(B) How far was the explosion from the ship?

67. PRODUCTION SCHEDULING A company manufactures three

products; lawn mowers, snowblowers, and chain saws. The labor,

material, and shipping costs for manufacturing one unit of each

product are given in the table. The weekly allocations for labor, ma-

terials, and shipping are $35,000, $50,000, and $20,000, respec-

tively. How many of each type of product should be manufactured

each week in order to exactly use the weekly allocations?

Product Labor Materials Shipping

Lawn mower $20 $35 $15

Snowblower $30 $50 $25

Chain saw $45 $40 $10

68. PRODUCTION SCHEDULING A company manufactures three

products; desk chairs, file cabinets, and printer stands. The labor,

material, and shipping costs for manufacturing one unit of each

product are given in the table. The weekly allocations for labor, ma-

terials, and shipping are $21,100, $31,500, and $11,900, respec-
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tively. How many of each type of product should be manufactured

each week in order to exactly use the weekly allocations?

Product Desk Chair File Cabinet Printer Stand

Labor $30 $35 $40

Materials $45 $60 $55

Shipping $25 $20 $15

69. PRODUCTION SCHEDULING A company has plants located in

Michigan, New York, and Ohio where it manufactures laptop com-

puters, desktop computers, and servers. The number of units of

each product that can be produced per day at each plant are given

in the table below. The company has orders for 2,150 laptop com-

puters, 2,300 desktop computers, and 2,500 servers. How many

days should the company operate each plant in order to exactly fill

these orders?

Plant Michigan New York Ohio

Laptop 10 70 60

Desktop 20 50 80

Server 40 30 90

70. PRODUCTION SCHEDULING A company has plants located in

Maine, Utah, and Oregon where it manufactures stoves, refrigerators,

and dishwashers. The number of units of each product that can be pro-

duced per day at each plant are given in the table. The company has

orders for 1,500 stoves, 2,350 refrigerators, and 2,400 dishwashers.

How many days should the company operate each plant in order to

exactly fill these orders? Set up a system of equations whose solution

would answer this question and solve the system.

Plant Stoves Refrigerators Dishwashers

Maine 30 70 60

Utah 20 50 50

Oregon 40 30 40

71. INVESTMENT Due to recent volatility in the stock market,

Catalina’s financial advisor suggests that she reallocate $70,000 of

her retirement fund to bonds.  He recommends a mix of treasury

bonds earning 4% annually, municipal bonds earning 3.5% annu-

ally, and corporate bonds earning 4.5% annually.  For tax reasons,

he also recommends that the amount invested in treasury bonds

should be equal to the sum of the amount invested in the other cat-

egories.  If Catalina follows these recommendations, and the goal is

to produce $2,900 in annual interest income, how much will she in-

vest in each of the three types of bonds?

72. INVESTMENT When the real estate market begins to rebound,

Catalina (see Problem 71) decides to reallocate her investment mix.

At this point, her investment has grown to $76,000.  She’ll leave

some money in treasury and corporate bonds, but will replace mu-

nicipal bonds with a real estate investment trust that guarantees a

6.5% annual return.  If she plans to leave as much in treasury bonds

as the sum of the other two investments, how much should she

invest in each to reach her new goal of earning an annual interest

income of $3,600?

7-2
Solving Systems of Linear Equations Using 
Gauss–Jordan Elimination

Z Matrices and Row Operations

Z Reduced Matrices

Z Solving Systems by Gauss–Jordan Elimination

Z Application

In this section, we introduce Gauss–Jordan elimination, a step-by-step procedure for solv-

ing systems of linear equations. This procedure works for any system of linear equations

and is easily implemented on a computer. In fact, the TI-84 has a built-in procedure for per-

forming Gauss–Jordan elimination.

Z Matrices and Row Operations

In solving systems of equations using elimination by addition, the coefficients of the vari-

ables and the constant terms played a central role. The process can be made more efficient



by the introduction of a mathematical form called a matrix. A matrix (plural matrices) is

a rectangular array of numbers written within brackets. Two examples are

(1)

Each number in a matrix is called an element of the matrix. Matrix A has six elements

arranged in two rows and three columns. Matrix B has 12 elements arranged in four rows

and three columns. If a matrix has m rows and n columns, it is called an m ⴛ n matrix

(read “m by n matrix”). The expression is called the size of the matrix, and the num-

bers m and n are called the dimensions of the matrix. It is important to note that the num-

ber of rows is always given first. Referring to equations (1), A is a matrix and B is a

matrix. A matrix with n rows and n columns is called a square matrix of order n.

A matrix with only one column is called a column matrix, and a matrix with only one row

is called a row matrix. These definitions are illustrated by the following:

3 ⴛ 3 4 ⴛ 1 1 ⴛ 4

Square matrix of order 3 Column matrix Row matrix

The position of an element in a matrix is the row and column containing the element.

This is usually denoted using double subscript notation aij, where i is the row and j is the

column containing the element aij, as illustrated next:

Note that a12 is read “a sub one two,” not “a sub twelve.” The elements a11  1, a22  0,

and a33  4 make up the principal diagonal of A. In general, the principal diagonal of a

matrix A consists of the elements aii, i  1, 2, . . . n.

a11   1, a12  5, a13   3, a14  4

a21   6, a22  0, a23   4, a24  1

a31   2, a32  3, a33   4, a34  7
A  £ 1 5  3 4

6 0  4 1

 2 3 4 7

§

[2 1
2 0  

2
3 ]≥ 3

 2

1

0

¥£ 0.5 0.2 1.0

0.0 0.3 0.5

0.7 0.0 0.2

§

4  3

2  3

m  n

B  ≥ 5 4 11

0 1 6

 2 12 8

 3 0  1

¥A  c 1  3 7

5 0  4
d
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Technology Connections

Most graphing calculators are capable of storing and manip-

ulating matrices. Figure 1 shows matrix A displayed in the

matrix editing screen of a TI-84 graphing calculator. The size

of the matrix is given at the top of the screen, and the posi-

tion of the currently selected element is given at the bottom.

Notice that a comma is used in the notation for the position.

This is common practice on graphing calculators but it’s

almost never written or typed that way.

*The onscreen display of A was too large to fit on the screen of a TI-84, so we pasted together two screen shots to form Figure 1. When this happens

on your graphing calculator, you will have to scroll left and right and/or up and down to see the entire matrix.

Z Figure 1 Matrix notation on a TI-84 graphing calculator.*



Now we turn our attention to the connection between matrices and systems of equa-

tions. Consider the system of equations

(2)

If we remove the variables and leave behind the numbers, we can think of the result as a matrix:

This is known as the augmented coefficient matrix for the system. We can also define the

coefficient matrix and the constant matrix for the system, as shown in Figure 2. The aug-

mented coefficient matrix contains all of the information about the system needed to solve

it. Note that we put in a coefficient of zero for the missing y in the second equation, and

that we drew a vertical bar to separate the coefficients from the constants. (Matrices dis-

played on a graphing calculator won’t have that line.)

Since we would like to be able to use matrices to solve large systems with many vari-

ables, moving forward we will use and the like, rather than x, y, z, and so on. In

this notation, we will rewrite system (2) as

x1  5x2  3x3  4

6x1  4x3  1

 2x1  3x2  4x3  7

In Section 7-1, we used Ei to denote the equations in a linear system. Now we use Ri to

denote the rows and Ci to denote the columns, respectively, in a matrix, as illustrated below

for system (2).

C1 C2 C3 C4

(3)

Our goal will be to learn how to perform the basic steps we used to solve systems using

elimination by addition, but on an augmented matrix. This enables us to focus on the num-

bers without being concerned about algebraic manipulations.

R1

R2

R3

£ 1 5  3 
6 0  4 
 2 3 4 †  4 1 7

§

x1, x2, x3,

£ 1 5  3 4

6 0  4 † 1

 2 3 4 7

§

x  5y  3z  4

6x     4z  1

 2x  3y  4z  7
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Z Figure 2

Coefficient Constant

matrix matrix

£ 4

1

7

§£ 1 5  3

6 0  4

 2 3 4

§

EXAMPLE 1 Writing an Augmented Coefficient Matrix

Write the augmented coefficient matrix corresponding to each of the following systems.

(A) 2x1  4x2  5 (B)  3x1  2x3   4 (C) 2x1  x2  4

 3x1  x2   6 7x1  5x2  3x3  0 3x1  5x3  6

 2x2  x3   3

SOLUTIONS

(A) (B) (C) 

�

£ 2  1 0 4

3 0  5 † 6

0  2 1  3

§c 3 0 2 `  4

7  5 3 0
dc 2  4

 3 1
` 5

 6
d

MATCHED PROBLEM 1 Write the augmented coefficient matrix corresponding to each of the following systems.

(A)  x1  2x2   3 (B)  2x2  2x3   4 (C) 2x1  x2  x3  4

3x1  5x2  8 7x1  5x2  3x3  0 3x1  4x2  6

x1  5x3   3

�



Recall that two linear systems are said to be equivalent if they have the same solution

set. In Theorem 2, Section 7-1, we used the operations listed next to transform linear sys-

tems into equivalent systems:

(A) Two equations are interchanged.

(B) An equation is multiplied by a nonzero constant.

(C) A constant multiple of one equation is added to another equation.

Paralleling this approach, we now say that two augmented matrices are row-equivalent,

denoted by the symbol ⬃ between the two matrices, if they are augmented matrices of equiv-

alent systems of equations. How do we transform augmented matrices into row-equivalent

matrices? We use Theorem 1, which gives the matrix analogs of operations (A), (B), and (C).
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Z THEOREM 1 Elementary Row Operations Producing Row-Equivalent Matrices

An augmented matrix is transformed into a row-equivalent matrix if any of the

following row operations is performed:

1. Two rows are interchanged 

2. A row is multiplied by a nonzero constant 

3. A constant multiple of one row is added to another row 

[Note: The arrow means “replaces.”]

(kRj  Ri 
S

 
Ri).

(kRi 
S

 
Ri).

(Ri  4  Rj).

EXAMPLE 2 Row Operations

Perform each of the indicated row operations on the following augmented coefficient

matrix.

(A) (B) (C) ( 2)R 1  R2S R2
1
2R2S R2R1 4 R2

c 1  4 3

2 4
`
 8

d

SOLUTIONS
(A) (B) (C) 

�

c 1  4 ` 3

0 12  14
dc 1  4 3

1 2
`
 4

dc 2 4 `  8

1  4 3
d

MATCHED PROBLEM 2 Perform each of the indicated row operations on the following augmented coefficient matrix.

(A) (B) (C) 
�

( 3)R 1  R2S R2
1
3R2S R2R1 4 R2

c 1  2 3

3  6
`
 3

d

Z Reduced Matrices

The goal of the elimination process is to transform a system of equations into an equiva-

lent system whose solution is easy to find. Now our goal is to use a sequence of matrix

row operations to transform an augmented coefficient matrix into a simpler equivalent

matrix that corresponds to a system with an obvious solution. Example 3 illustrates the

process of interpreting the solution of a system given its augmented coefficient matrix.



Next, we will define a particular matrix form that makes it simple to find solutions of the
corresponding system.
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EXAMPLE 3 Interpreting an Augmented Coefficient Matrix

Write the system corresponding to each of the following augmented coefficient matrices and
find its solution.

(A) (B) (C) £1 0 2  4

0 1  3 † 6

0 0 0 0

§£1 0 2  4

0 1  3 † 6

0 0 0 1

§£1 0 0  4

0 1 0 † 6

0 0 1 0

§
SOLUTIONS (A) The corresponding system is

x1   4 1 ⴢ x1 ⴙ 0 ⴢ x2 ⴙ 0 ⴢ x3 ⴝ x1

x2   6

x3   0

and ( 4, 6, 0) is the solution.

(B) The corresponding system is

The third equation, 0  1, is a contradiction, so the system has no solutions.

(C) The first two rows of this augmented coefficient matrix correspond to the system

This is a dependent system with an infinite number of solutions. Introducing a
parameter s, we can write

So the solution set is

{( 2s  4, 3s  6, s) | s any real number} �

    x3   s  x3  s

x2   3s   6 or  x2  3s  6

x1   2s    4 x1   2s  4

 x2  3x3   6

 x1  2x3   4

 0 ⴢ x1   0 ⴢ x2  0 ⴢ x3  1

    x2  3x3  6

 x1   2x3   4

The third row corresponds to the

equation 0 ⴝ 0, which is always

true and can be discarded.

MATCHED PROBLEM 3 Write the system corresponding to each of the following augmented coefficient matrices
and find its solution.

(A) (B) (C) 

�

£1 0  3

0 1 4

0 0 0

 †  5

 7

1

§£1 0  3

0 1 4

0 0 0

 †  5

 7

0

§£ 1 0 0

0 1 0

0 0 1

 †  5

 7

0

§

If an augmented coefficient matrix contains a row where every element on the
left of the vertical line is 0 and the single element on the right is a nonzero num-
ber, what can you say about the solution of the corresponding system?

ZZZ EXPLORE-DISCUSS 1



For example, each of the following matrices is in reduced form. Before moving on, you

should verify that each matrix satisfies all four conditions in Definition 1.

£ 1 0 4

0 1 3

0 0 0

 †  00
1

§£ 1 4 0 0

0 0 1 0

0 0 0 1

 †  32
6

§£ 1 0

0 1

0 0

 †  3

 1

0

§£ 1 0 0

0 1 0

0 0 1

 †  2

 1

3

§c 1 0

0 1
 `  2

 3
d
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Z DEFINITION 1 Reduced Matrix

A matrix is in reduced form* if:

1. Each row consisting entirely of 0’s is below any row having at least one nonzero

element.

2. The leftmost nonzero element in each row is 1.

3. The column containing the leftmost 1 of a given row has 0’s above and below

the 1.

4. The leftmost 1 in any row is to the right of the leftmost 1 in the preceding row.

EXAMPLE 4 Reduced Forms

The matrices shown next are not in reduced form. Indicate which condition in the defini-

tion is violated for each matrix. State the row operation(s) required to transform the matrix

to reduced form, and find the reduced form.

(A) (B)

(C) (D) £ 1 0 0

0 2 0

0 0 1

 †   1

3

 5

§£ 1 0

0 0

0 1

 †   3

0

 2

§
c 1 2  2

0 0 1
 `  3

 1
dc 0 1

1 0
 `   2

3
d

SOLUTIONS (A) Condition 4 is violated: The leftmost 1 in row 2 is not to the right of the leftmost 1

in row 1. Perform the row operation to obtain the reduced form:

(B) Condition 3 is violated: The column containing the leftmost 1 in row 2 does not have a

zero above the 1. Perform the row operation to obtain the reduced form:

(C) Condition 1 is violated: The second row contains all zeros, and it is not below any

row having at least one nonzero element. Perform the row operation to

obtain the reduced form:

£ 1 0

0 1

0 0

 †   3

 2

0

§R2 4 R3£ 1 0

0 0

0 1

 †   3

0

 2

§
R2 4 R3

c 1 2 0

0 0 1
 `  1

 1
d2R2  R1S R1c 1 2  2

0 0 1
 `  3

 1
d

2R2  R1S R1

c 1 0

0 1
 `  3

 2
dR1 4 R2c 0 1

1 0
 `   2

3
d
R1 4 R2

*The reduced form we have defined here is sometimes called the reduced row echelon form, and most

graphing calculators use the abbreviation rref to refer to it. There are other reduced forms that can be used to

solve systems of equations, but we will use the term “reduced form” for simplicity.



Z Solving Systems by Gauss–Jordan Elimination

We are now ready to outline the Gauss–Jordan elimination method for solving systems of

linear equations. The method systematically transforms an augmented matrix into a reduced

form. The system corresponding to a reduced augmented coefficient matrix is called a

reduced system. As we will see, reduced systems are easy to solve.

The Gauss–Jordan elimination method is named after the German mathematician

Carl Friedrich Gauss (1777–1855) and the German geodesist Wilhelm Jordan

(1842–1899). Gauss, one of the greatest mathematicians of all time, used a method of

solving systems of equations that was later generalized by Jordan to solve problems in

large-scale surveying.
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(D) Condition 2 is violated: The leftmost nonzero element in row 2 is not a 1. Perform

the row operation to obtain the reduced form:

�

£ 1 0 0

0 1 0

0 0 1

 †   1
3
2

 5

§1
2R2S R2£ 1 0 0

0 2 0

0 0 1

 †   1

3

 5

§
1
2R2S R2

MATCHED PROBLEM 4 The matrices below are not in reduced form. Indicate which condition in the definition is

violated for each matrix. State the row operation(s) required to transform the matrix to

reduced form and find the reduced form.

(A) (B) 

(C) (D) 

�

£ 1 2 0

0 0 0

0 0 1

 †  30
4

§£ 0 1 0

1 0 0

0 0 1

 †   3

0

2

§
£ 1 5 4

0 1 2

0 0 0

 †  3

 1

0

§c 1 0

0 3
 `  2

 6
d

EXAMPLE 5 Solving a System Using Gauss–Jordan Elimination

Solve by Gauss–Jordan elimination: 2x1  2x2  x3  3

3x1  x2  x3  7

x1  3x2  2x3  0

SOLUTION Write the augmented matrix and follow the steps indicated at the right to produce a reduced

form.

2

3

1

 2

1

 3

1

 1

2

3

7

0

R1 ↔ R3

⬃

冤 冥ⱍNeed a 1 here.

1

3

2

 3

1

 2

2

 1

1

0

7

3

(ⴚ3)R1 ⴙ R2 → R2

(ⴚ2)R1 ⴙ R3 → R3

冤 冥ⱍNeed 0’s here.

Step 1: Choose the 

leftmost nonzero column 

and get a 1 at the top.

Step 2: Use multiples of 

the row containing the 1 

from step 1 to get zeros in 

all remaining places in the 

column containing this 1.



The solution to this system is x1  2, x2  0, x3   1. You should check this solution in

the original system.

 x3   1

 x2  0

 x1  2

⬃
1

0

0

 3

10

4

2

 7

 3

0

7

3

0.1R2 → R2冤 冥ⱍNeed a 1 here.

⬃
1

0

0

 3

1

4

2

 0.7

 3

0

0.7

3 (ⴚ4)R2 ⴙ R3 → R3

3R2 ⴙ R1 → R1

冤 冥ⱍNeed 0’s here.

⬃
1

0

0

0

1

0

 0.1

 0.7

 0.2

2.1

0.7

0.2 (ⴚ5)R3 → R3

冤 冥ⱍNeed a 1 here.

⬃
1

0

0

0

1

0

 0.1

 0.7

1

2.1

0.7

 1

0.7R3 ⴙ R2 → R2

0.1R3 ⴙ R1 → R1

冤 冥ⱍ
⬃

1

0

0

0

1

0

0

0

1

2

0

 1
冤 冥ⱍ

Need 0’s here.

Step 3: Repeat step 1 with 

the submatrix formed by 

(mentally) deleting the        

top (shaded) row.

Step 3: Repeat step 1 with 

the submatrix formed by 

(mentally) deleting the top 

two (shaded) rows.

Step 4: Repeat step 2 with 

the entire matrix.

Step 4: Repeat step 2 with 

the entire matrix.

The matrix is now in 

reduced form, and we can 

proceed to solve the 

corresponding reduced 

system.

448 C H A P T E R  7 SYSTEMS OF EQUATIONS AND MATRICES

MATCHED PROBLEM 5 Solve by Gauss–Jordan elimination:

�

 2x1  x2   3x3  3

 x1  2x2  x3  3

 3x1  x2   2x3  2

Z GAUSS–JORDAN ELIMINATION

Step 1. Choose the leftmost nonzero column and use appropriate row operations

to get a 1 at the top.

Step 2. Use multiples of the row containing the 1 from step 1 to get zeros in all

remaining places in the column containing this 1.

Step 3. Repeat step 1 with the submatrix formed by (mentally) deleting the row

used in step 2 and all rows above this row.

Step 4. Repeat step 2 with the entire matrix, including the mentally deleted rows.

Continue this process until the entire matrix is in reduced form.

[Note: If at any point in this process we obtain a row with all zeros to the left

of the vertical line and a nonzero number to the right, we can stop, since we will

have a contradiction: 0  n, We can then conclude that the system has

no solution.]

n  0.

�



Note that if we were to use rref on a graphing calculator for Example 6, it would con-

tinue reducing further. But the final reduced form would still show a contradiction.
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Technology Connections

Figure 3 illustrates the solution of Example 5 on a TI-84

graphing calculator using the built-in rref (reduced row-

echelon form) routine for finding reduced forms. Notice that

in row 2 and column 4 of the reduced form the graphing cal-

culator has displayed the very small number -3.5E-13

instead of the exact value 0. This is a common occurrence

caused by rounding error on a graphing calculator and

causes no problems. Just replace any very small numbers

displayed in scientific notation with 0.

Z Figure 3 Using rref on a TI-84 graphing calculator.

EXAMPLE 6 Solving a System Using Gauss–Jordan Elimination

Solve by Gauss–Jordan elimination: 2x1  4x2  x3   4

4x1  8x2  7x3  2

 2x1  4x2  3x3  5

SOLUTION

The system is inconsistent and has no solution. �

We stop the Gauss–Jordan elimination,

even though the matrix is not in

reduced form, since the last row

produces a contradiction

⬃ £1  2 0

0 0 1

0 0 0

 †   3

2

5

§

(ⴚ0.5)R2ⴙ R1 S R1

2R2ⴙ R3 S R3

⬃ £1  2 0.5

0 0 1

0 0  2

 †   2

2

1

§

0.2R2 S R2 Note that column 3 is the

leftmost nonzero column

in this submatrix.
⬃ £1  2 0.5

0 0 5

0 0  2

 †   2

10

1

§

(Next, get zeros below that 1.)

(ⴚ4)R1ⴙ R2 S R2

2R1ⴙ R3 S R3

⬃ £ 1  2 0.5

4  8 7

 2 4  3

 †   2

2

5

§

0.5R1 S R1 (To get 1 in upper left corner) £ 2  4 1

4  8 7

 2 4  3

 †   4

2

5

§

MATCHED PROBLEM 6 Solve by Gauss–Jordan elimination:

�

2x1  4x2  x3   8

4x1  8x2  3x3  4

 2x1  4x2  x3  11



In general,

If the number of leftmost 1’s in a reduced augmented coefficient matrix is less

than the number of variables in the system and there are no contradictions,

then the system is dependent and has infinitely many solutions.
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EXAMPLE 7 Solving a System Using Gauss–Jordan Elimination

Solve by Gauss–Jordan elimination: 3x1  6x2  9x3  15

2x1  4x2  6x3  10

 2x1  3x2  4x3   6

SOLUTION R1 S R1

Note that the leftmost variable in each equation appears in one and only one equation. We

solve for the leftmost variables x1 and x2 in terms of the remaining variable x3:

This dependent system has an infinite number of solutions. We will use a parameter to rep-

resent all the solutions. If we let x3  t, then for any real number t,

is a solution. You should check that ( t   3, 2t   4, t) is a solution of the original sys-

tem for any real number t. Some particular solutions are

t ⴝ 0 t ⴝ ⴚ2 t ⴝ 3.5

( 3, 4, 0) ( 1, 0,  2) ( 6.5, 11, 3.5) �

x1   t  3

x2  2t  4

x3  t

x1   x3  3

x2  2x3  4

We discard the equation corresponding to the

third (all 0) row in the reduced form, since it

is satisfied by all values of x1, x2, and x3.

x1  x3   3

x2  2x3  4

This matrix is now in reduced form.

Write the corresponding reduced

system and solve.⬃ £1 0 1

0 1  2

0 0 0

 †   3

4

0

§

(ⴚ2)R2ⴙ R1 S R1

⬃ £1 2  3

0 1  2

0 0 0

 †  54
0

§

R2 4 R3 Note that we must interchange

rows 2 and 3 to obtain a nonzero

entry at the top of the second

column of this submatrix.

⬃ £1 2  3

0 0 0

0 1  2

 †  50
4

§
(ⴚ2)R1ⴙ R2 S R2

2R1ⴙ R3 S R3

⬃ £ 1 2  3

2 4  6

 2  3 4

 †  5

10

 6

§

1
3 £ 3 6  9

2 4  6

 2  3 4

 †  15

10

 6

§

MATCHED PROBLEM 7 Solve by Gauss–Jordan elimination:

�

2x1  2x2  4x3   2

3x1  3x2  6x3   3

 2x1  3x2  x3  7



There are many different ways to use the reduced augmented coefficient matrix to

describe the infinite number of solutions of a dependent system. We will always proceed as

follows: Solve each equation in a reduced system for its leftmost variable and then intro-

duce a different parameter for each remaining variable. Example 8 illustrates a dependent

system where two parameters are required to describe the solution.
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EXAMPLE 8 Solving a System Using Gauss–Jordan Elimination

Solve by Gauss–Jordan elimination: x1  2x2  4x3  x4  x5  1

2x1  4x2  8x3  3x4  4x5  2

x1  3x2  7x3  3x5   2

SOLUTION

Solve for the leftmost variables x1, x2, and x4 in terms of the remaining variables x3 and x5:

If we let x3  s and x5  t, then for any real numbers s and t,

is a solution. The check is left for you to perform. �

 x5  t

 x4  2t

 x3  s

 x2   3s  2t  3

 x1  2s  3t  7

 x4  2x5

 x2   3x3  2x5  3

 x1  2x3  3x5  7

x1  2x3  3x5  7

x2  3x3  2x5   3

x4  2x5  0

Matrix is in reduced form.⬃ £1 0  2 0  3

0 1 3 0 2

0 0 0 1  2

 †  7

 3

0

§

(ⴚ3)R3ⴙ R1 S R1

R3ⴙ R2 S R2
⬃ £1 0  2 3  9

0 1 3  1 4

0 0 0 1  2

 †  7

 3

0

§

(ⴚ2)R2ⴙ R1 S R1

⬃ £1 2 4 1  1

0 1 3  1 4

0 0 0 1  2

 †  1

 3

0

§
R2 4 R3⬃ £1 2 4 1  1

0 0 0 1  2

0 1 3  1 4

 †  1

0

 3

§
(ⴚ2)R1 ⴙ R2 S R2

(ⴚ1)R1 ⴙ R3 S R3

 £1 2 4 1  1

2 4 8 3  4

1 3 7 0 3

 †  1

2

 2

§

MATCHED PROBLEM 8 Solve by Gauss–Jordan elimination:

�

x1  x2  2x3  2x5  3

 2x1  2x2  4x3  x4  x5   5

3x1  3x2  7x3  x4  4x5  6



Z Application

Dependent systems probably seem very abstract to you—a solution like the one in Example 8

doesn’t seem like it would apply to any real–world situations. But in Example 9, we will

solve a problem where a dependent system leads to real solutions.
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EXAMPLE 9 Purchasing

A chemical manufacturer plans to purchase a fleet of 24 railroad tank cars with a combined

carrying capacity of 250,000 gallons. Tank cars with three different carrying capacities are

available: 6,000 gallons, 8,000 gallons, and 18,000 gallons. How many of each type of tank

car should be purchased?

SOLUTION Let

Then

Total number of tank cars

Total carrying capacity

Now we can form the augmented matrix of the system and solve by using Gauss–Jordan

elimination:

(simplify R2)

(ⴚ6)R1ⴙ R2 R2

(ⴚ1)R2 ⴙ R1 R1

Matrix is in reduced form.

Let x3  t. Then for t any real number,

is a solution—or is it? Since the variables in this system represent the number of tank cars

purchased, the values of x1, x2, and x3 must be nonnegative integers. The third equation requires

that t must be a nonnegative integer. The first equation requires that 5t 29 0, so t must

be at least 6. The middle equation requires that  6t 53 0, so t can be no larger than 8.

 x3  t

 x2   6t  53

 x1  5t  29

x2  6x3  53  or  x2   6x3  53

x1  5x3   29  or  x1  5x3  29

 ⬃ c 1 0  5

0 1 6
 `   29

53
d

S

 ⬃ c 1 1 1

0 1 6
 `  24

53
d

1
2  
R2S R2

 ⬃ c 1 1 1

0 2 12
 `  24

106
d

S

 ⬃ c 1 1 1

6 8 18
 `  24

250
d

1
1,000  

R2 S R2

 c 1 1 1

6,000 8,000 18,000
 `  24

250,000
d

 6,000x1   8,000x2   18,000x3  250,000

 x1   x2   x3  24

 x3  Number of 18,000-gallon tank cars

 x2  Number of 8,000-gallon tank cars

 x1  Number of 6,000-gallon tank cars



So, 6, 7, and 8 are the only possible values for t. There are three different possible combi-
nations that meet the company’s specifications of 24 tank cars with a total carrying capacity
of 250,000 gallons, as shown in Table 1:
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Table 1

6,000-Gallon 8,000-Gallon 18,000-Gallon

Tank Cars Tank Cars Tank Cars

t x1 x2 x3

6 1 17 6

7 6 11 7

8 11 5 8

The final choice would probably be influenced by other factors. For example, the com-
pany might want to minimize the cost of the 24 tank cars. �

MATCHED PROBLEM 9 A commuter airline plans to purchase a fleet of 30 airplanes with a combined carrying capac-
ity of 960 passengers. The three available types of planes carry 18, 24, and 42 passengers,
respectively. How many of each type of plane should be purchased?

�

ANSWERS TO MATCHED PROBLEMS

1. (A) (B) (C) 

2. (A) (B) (C) 

3. (A) x1  5, x2   7, x3  0 or (5,  7, 0)
(B) x1  3s  5, x2   4s  7, x3  s, s any real number; or 

{(3s  5,  4s  7, s) | s any real number} (C) No solution
4. (A) Condition 2 is violated: The 3 in row 2 and column 2 should be a 1. Perform the operation

to obtain:

(B) Condition 3 is violated: The 5 in row 1 and column 2 should be a 0. Perform the operation
to obtain:

(C) Condition 4 is violated: The leftmost 1 in the second row is not to the right of the leftmost
1 in the first row. Perform the operation to obtain:

(D) Condition 1 is violated: The all-zero second row should be at the bottom. Perform the
operation to obtain:

£ 1 2 0

0 0 1

0 0 0

 †  34
0

§
R2 4 R3

£ 1 0 0

0 1 0

0 0 1

 †  0

 3

2

§
R1 4 R2

£ 1 0  6

0 1 2

0 0 0

 †  8

 1

0

§
( 5)R2  R1S R1

c 1 0

0 1
 `  2

 2
d

1
3R2S R2

c 1  2

0 0
 `  3

 12
dc 1  2

1  2
 `  3

 1
dc 3  6

1  2
 `   3

3
d

£ 2  1 1

3 4 0

1 0 5

 †  4

6

 3

§c 0  2 2

7  5 3
 `   4

0
dc 1 2

3  5
 `   3

8
d



18-Passenger 24-Passenger 42-Passenger

Planes Planes Planes

t x1 x2 x3

14 2 14 14

15 5 10 15

16 8 6 16

17 11 2 17
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5. x1  1, x2   1, x3  0 or (1,  1, 0)
6. No solution
7. x1  5t  4, x2 3t  5, x3  t, t any real number; or {(5t  4, 3t  5, t) | t any real number}
8. x1  s  7, x2  s, x3  t  2, x4   3t  1, x5  t, s and t any real numbers; or

{(s  7, s, t  2,  3t  1, t) | s and t any real numbers}
9.

In Problems 19–26, write the linear system corresponding to each

reduced augmented matrix and solve.

19. 20. 

21. 22.

23. 24.

25. 26.

Perform each of the row operations indicated in Problems 27–38

on the following matrix:

27. 28. 29.

30. 31. 32.

33. 34.

35. 36.

37. 38. 1R1  R2S R2( 1)R1  R2S R2

( 3)R1  R2S R2( 2)R1  R2S R2

( 1
2)R2  R1S R1( 4)R1  R2S R2

 1R2S R22R2S R2 2R1S R1

 4R1S R1
1
2R2S R2R1 4 R2

c1  3

4  6
 `  2

 8
d

c1 0  2 3

0 1  1 2
 `  4

 1
dc1  2 0  3

0 0 1 3
 `   5

2
d

£1 0

0 1

0 0

 †  5

 3

0

§£1 0

0 1

0 0

 †  00
1

§
£1  2 0

0 0 1

0 0 0

 †   3

5

0

§£1 0  2

0 1 1

0 0 0

 †  3

 5

0

§
≥ 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ∞   2

0

1

3

¥£1 0 0

0 1 0

0 0 1

 †   2

3

0

§

7-2 Exercises

1. What is the size of a matrix?

2. What is a row matrix? What is its size?

3. What is a column matrix? What is its size?

4. What is a square matrix?

5. What does mean?

6. What is the principal diagonal of a matrix?

7. What is an augmented coefficient matrix?

8. What operations can you perform on an augmented coefficient
matrix to produce a row-equivalent matrix?

9. What is a reduced matrix and how is it used to solve a system of
linear equations?

10. Describe the Gauss–Jordan elimination process in your own
words.

In Problems 11–18, indicate whether each matrix is in reduced form.

11. 12.

13. 14.

15. 16.

17. 18. c 0 0 1

0 0 0
 `  0

0
dc0 1 6 0

0 0 0 1
 `   8

1
d

£1  2 4

0 0 1

0 0 0

 †  1

 3

0

§£0 0 1

0 1 0

1 0 0

 †  2

 5

4

§
£1  1 4

0 0 0

0 0 0

 †  00
1

§£0 1  2

0 0 0

0 0 0

 †  01
0

§
c 1 0

0 1
 `  5

 3
dc1 0

0 2
 `   1

6
d

aij



Use row operations to change each matrix in Problems 39–44 to

reduced form.

39. 40.

41. 42.

43. 44.

Solve Problems 45–70 using Gauss–Jordan elimination.

45. 46.

47. 48.

49. 50.

51.

52.

53.

54.

55.

56.

57. 58.

59.

60.

61.

62.

8x1  2x2  9x3   1

 4x1  x2  3x3   10

4x1  x2  2x3  3

 3x1  3x2  6x3  3

2x1  2x2  4x3   2

x1  3x2  x3  1

x1  4x2  2x3  0

 2x1  x2  3x3   7

x1  2x2  3x3  2

2x1  3x2  x3  1

3x1  4x2  x3  1

x1  x2   2x1  x2   1

3x1  2x2  73x1  2x2  7

2x1  x2  02x1  x2  0

3x1  3x2  3x3  6

2x1  4x2  6x3  10

x1  2x2  7

2x1  x2  3x3  8

3x1  6x2  12x3   9

4x1  7x2  13x3   10

2x1  7x2  15x3   12

2x1  4x2  2x3   4

2x1  x2  5x3  8

3x1  8x2  x3   18

2x1  11x3  7

x1  x2  x3   1

3x1  5x2  x3   7

x1  5x2  12x3  1

3x1  9x2  21x3  0

2x1  4x2  10x3   2

 3x1  6x2  3 2x1  4x2  6

2x1  4x2   23x1  6x2   9

 4x1  6x2  72x1  4x2   8

2x1  3x2   2x1  2x2  4

 3x1  x2  5 2x1  x2   3

x1  3x2   5x1  4x2   2

£ 0  2 8

2  2 6

0  1 4

 †  1

 4
1
2

§£ 1 2  2

0 3  6

0  1 2

 †   1

1

 
1
3

§

£ 1 0 4

0 1  3

0 0  2

 †  0

 1

2

§£ 1 0  3

0 1 2

0 0 3

 †  1

0

 6

§
c 1 3

0 2
 `  1

 4
dc 1 2

0 1
 `   1

3
d
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63.

64.

65.

66.

67.

68.

69.

70.

71. Consider a consistent system of three linear equations in three

variables. Discuss the nature of the solution set for the system

if the reduced form of the augmented coefficient matrix has

(A) One leftmost 1

(B) Two leftmost 1’s

(C) Three leftmost 1’s

(D) Four leftmost 1’s

72. Consider a system of three linear equations in three variables.

Give examples of two reduced forms that are not row equiva-

lent if the system is

(A) Consistent and dependent

(B) Inconsistent

APPLICATIONS

73. BUYING Suppose that you have a $129 credit on your account

at Amazon.com, and you want to spend it all on sale CDs at $10

each, sale DVDs at $12 each, and sale books at $7 each. If you buy

13 items total, how many will you buy of each?

74. PETTY CRIME Shady Grady finds a parking meter with a bro-

ken lock and scoops out the change inside.  The meter accepts

nickels, dimes, and quarters, and there were 32 coins inside with

a total value of $6.80. How many of each type of coin did Grady

get?

75. CHEMISTRY A chemist has two solutions of sulfuric acid: a

20% solution and an 80% solution. How much of each should be

used to obtain 100 liters of a 62% solution?

   x1  3x2  x3  x5   3

2x1  6x2  2x3  2x4  4x5  4

   x1  5x2  2x3  2x4  2x5  0

  x1  3x2  x3  x4  2x5  2

 x1  2x2  3x3  x4  x5  3

3x1  6x2  x3  x4  5x5  4

 2x1  4x2  2x3  2x4  2x5  0

x1  2x2  x3  x4  2x5  2

  2x1  5x2  11x3  3x4  5.6

  2x1  x3  3x4   4.4

 x1  x2  x3  1.1

x1  x2  4x3  x4  1.3

4x1  3x2  8x3  2x4  0.6

3x1  x2  10x3  4x4  2.9

 2x1  4x2  3x3  x4  0.5

x1  x2  3x3  2x4  1

x1  2x2  2x3  x4  3

2x1  4x2  5x3  4x4  8

x1  5x2  7x3  7x4  13

2x1  5x2  9x3  4x4  16

x1  2x2  4x3  x4  7

4x1  2x2  4x3  12

2x1  x2  3x3  1

5x1  3x2  2x3  13

6x1  15x2  x3   19

 4x1  10x2  2x3  6

2x1  5x2  3x3  7



76. CHEMISTRY A chemist has two solutions: one containing 40%

alcohol and another containing 70% alcohol. How much of each

should be used to obtain 80 liters of a 49% solution?

77. GEOMETRY Find a, b, and c so that the graph of the parabola

with equation y⫽ a⫹ bx⫹ cx2 passes through the points (⫺2, 3),

(⫺1, 2), and (1, 6).

78. GEOMETRY Find a, b, and c so that the graph of the parabola

with equation y ⫽ a ⫹ bx ⫹ cx2 passes through the points (1, 3),

(2, 2), and (3, 5).

79. PRODUCTION SCHEDULING A small manufacturing plant

makes three types of inflatable boats: one-person, two-person, and

four-person models. Each boat requires the services of three depart-

ments, as listed in the table. The cutting, assembly, and packaging

departments have available a maximum of 380, 330, and 120 labor-

hours per week, respectively. How many boats of each type must be

produced each week for the plant to operate at full capacity?

One-Person Two-Person Four-Person

Boat Boat Boat

Cutting 

department 0.5 h 1.0 h 1.5 h

Assembly 

department 0.6 h 0.9 h 1.2 h

Packaging 

department 0.2 h 0.3 h 0.5 h

80. PRODUCTION SCHEDULING Repeat Problem 79 assuming the

cutting, assembly, and packaging departments have available a

maximum of 350, 330, and 115 labor-hours per week, respectively.

81. PRODUCTION SCHEDULING Rework Problem 79 assuming the

packaging department is no longer used.

82. PRODUCTION SCHEDULING Rework Problem 80 assuming the

packaging department is no longer used.

83. PRODUCTION SCHEDULING Rework Problem 79 assuming the

four-person boat is no longer produced.

84. PRODUCTION SCHEDULING Rework Problem 80 assuming the

four-person boat is no longer produced.

85. NUTRITION A dietitian in a hospital is to arrange a special diet

using three basic foods. The diet is to include exactly 340 units of cal-

cium, 180 units of iron, and 220 units of vitamin A. The number of

units per ounce of each special ingredient for each of the foods is

indicated in the table. How many ounces of each food must be used

to meet the diet requirements?

Units per Ounce

Food A Food B Food C

Calcium 30 10 20

Iron 10 10 20

Vitamin A 10 30 20

86. NUTRITION Repeat Problem 85 if the diet is to include exactly

400 units of calcium, 160 units of iron, and 240 units of vitamin A.

87. NUTRITION Solve Problem 85 with the assumption that food C

is no longer available.
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88. NUTRITION Solve Problem 86 with the assumption that food C

is no longer available.

89. NUTRITION Solve Problem 85 assuming the vitamin A require-

ment is deleted.

90. NUTRITION Solve Problem 86 assuming the vitamin A require-

ment is deleted.

91. SOCIOLOGY Two sociologists have grant money to study

school busing in a particular city. They wish to conduct an opinion

survey using 600 telephone contacts and 400 house contacts. Sur-

vey company A has personnel to do 30 telephone and 10 house con-

tacts per hour; survey company B can handle 20 telephone and 20

house contacts per hour. How many hours should be scheduled for

each firm to produce exactly the number of contacts needed?

92. SOCIOLOGY Repeat Problem 91 if 650 telephone contacts and

350 house contacts are needed.

93. DELIVERY CHARGES United Express, a nationwide package

delivery service, charges a base price for overnight delivery of pack-

ages weighing 1 pound or less and a surcharge for each additional

pound (or fraction thereof). A customer is billed $27.75 for shipping

a 5-pound package and $64.50 for shipping a 20-pound package.

Find the base price and the surcharge for each additional pound.

94. DELIVERY CHARGES Refer to Problem 93. Federated Shipping,

a competing overnight delivery service, informs the customer in

Problem 93 that it would ship the 5-pound package for $29.95 and

the 20-pound package for $59.20.

(A) If Federated Shipping computes its cost in the same manner as

United Express, find the base price and the surcharge for Federated

Shipping.

(B) Devise a simple rule that the customer can use to choose the

cheaper of the two services for each package shipped. Justify your

answer.

95. RESOURCE ALLOCATION A coffee manufacturer uses Colom-

bian and Brazilian coffee beans to produce two blends, robust and

mild. A pound of the robust blend requires 12 ounces of Colombian

beans and 4 ounces of Brazilian beans. A pound of the mild blend

requires 6 ounces of Colombian beans and 10 ounces of Brazilian

beans. Coffee is shipped in 132-pound burlap bags. The company

has 50 bags of Colombian beans and 40 bags of Brazilian beans on

hand. How many pounds of each blend should it produce in order to

use all the available beans?

96. RESOURCE ALLOCATION Refer to Problem 95.

(A) If the company decides to discontinue production of the robust

blend and only produce the mild blend, how many pounds of the

mild blend can it produce and how many beans of each type will it

use? Are there any beans that are not used?

(B) Repeat part A if the company decides to discontinue production

of the mild blend and only produce the robust blend.
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7-3 Matrix Operations

Z Adding and Subtracting Matrices

Z Multiplying a Matrix by a Number

Z Finding the Product of Two Matrices

In Section 7-2, we introduced basic matrix terminology and solved systems of equations by

performing row operations on augmented coefficient matrices. Matrices have many other

useful applications and possess an interesting mathematical structure in their own right. As

we will see, matrix addition and multiplication are similar to real number addition and mul-

tiplication in many respects, but there are some important differences.

Z Adding and Subtracting Matrices

Before we can discuss arithmetic operations for matrices, we have to define equality for

matrices. Two matrices are equal if they have the same size and their corresponding ele-

ments are equal. For example,

2  3 2 3

if and only if

The sum of two matrices of the same size is a matrix with elements that are the sums of

the corresponding elements of the two given matrices.

Addition is not defined for matrices of different sizes.

a  u b  v c  w

d  x e  y   f  z
ca b c

d e f
d  cu v w

x y z
d

EXAMPLE 1 Matrix Addition

Add:

(A) (B) c2 1 4

3 2  3
d  £ 0 2

 3 5

 1 4

§c2  3 0

1 2  5
d  c 3 1 2

 3 2 5
d

SOLUTIONS
(A) 

(B) 

Because the first matrix is 2 3 and the second is 3 2, this sum is not defined. �

c2 1 4

3 2  3
d  £ 0 2

 3 5

 1 4

§
  c 5  2 2

 2 4 0
d

 c2  3 0

1 2  5
d  c 3 1 2

 3 2 5
d  c (2  3) ( 3  1) (0  2)

(1  3) (2  2) ( 5  5)
d *

*Throughout the book, dashed boxes—called think boxes—are used to represent steps that may be performed

mentally.
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Because we add two matrices by adding their corresponding elements (which are real

numbers), it follows from the properties of real numbers that matrices of the same size are

commutative and associative relative to addition. That is, if A, B, and C are matrices of the

same size, then

A   B   B   A Commutative

(A   B)   C   A   (B   C) Associative

A matrix with elements that are all 0’s is called a zero matrix. Examples of zero matri-

ces are shown in Figure 2.

[Note: “0” is often used to denote the zero matrix of any size.]

The negative of a matrix M, denoted by  M, is a matrix with elements that are the

negatives of the elements in M. So if

then

Based on our definition of addition, M   ( M)   0 (a zero matrix).

If A and B are matrices of the same size, then we define subtraction as follows.

A   B   A   ( B)

To subtract matrix B from matrix A, we subtract corresponding elements.

 M  c a  b

 c  d
d

M  c a b

c d
d

MATCHED PROBLEM 1 Add:

(A) (B) 

�

[1  2 7]  [ 2 4 3  1]£ 3 2

 1  1

0 3

§  £ 2 3

1  1

2  2

§

Technology Connections

Graphing calculators can be used to solve problems involv-

ing matrix operations. Figure 1 illustrates the solutions to

Example 1A and 1B on a graphing calculator.

(a) Example 1A (b) Example 1B

Z Figure 1 Matrix addition on a graphing calculator.

Z Figure 2 Zero matrices.

[0 0 0]

c 0 0

0 0
d

≥ 0

0

0

0

¥
£ 0 0 0 0

0 0 0 0

0 0 0 0

§

EXAMPLE 2 Matrix Subtraction

Subtract: c3  2

5 0
d  c 2 2

3 4
d



Z Multiplying a Matrix by a Number

The product of a number k and a matrix M, denoted by kM, is a matrix formed by mul-

tiplying each element of M by k.
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SOLUTION
Subtract the matrices on the left side.

Simplify.

Set corresponding elements equal to each other.

� a  6   b  2   c   7   d  10

 a  2  4   b  1  3   c  5   2   d  6   4

 ca  2 b  1

c  5 d  6
d  c 4 3

 2 4
d

 ca  2 b  ( 1)

c  ( 5) d  6
d  c 4 3

 2 4
d

 ca b

c d
d  c 2  1

 5 6
d  c 4 3

 2 4
d

SOLUTION
�c 3  2

5 0
d  c 2 2

3 4
d   c 3  ( 2)  2  2

5  3 0  4
d   c5  4

2  4
d

MATCHED PROBLEM 2 Subtract: [2  3 5]   [3  2 1]

�

EXAMPLE 3 Matrix Equations

Find a, b, c, and d so that

ca b

c d
d  c 2  1

 5 6
d  c 4 3

 2 4
d

Find a, b, c, and d so that

�

ca b

c d
d  c 4 2

1  3
d  c 2 5

8 2
d

MATCHED PROBLEM 3

EXAMPLE 4 Multiplying a Matrix by a Number

Multiply:  2 £ 3  1 0

 2 1 3

0  1  2

§

Multiply: 

�

10 £ 1.3

0.2

3.5

§MATCHED PROBLEM 4

SOLUTION

�

 2 £ 3  1 0

 2 1 3

0  1  2

§  £ 6 2 0

4  2  6

0 2 4

§
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Multiplication of two numbers can be interpreted as repeated addition if one of the

numbers is a positive integer. That is,

2a   a   a 3a   a   a   a 4a   a   a   a   a

and so on. How does this apply to multiplication of a matrix by a number?

ZZZ EXPLORE-DISCUSS 1

We use matrix addition for part A, matrix subtraction for part B, and multiplication of a

matrix by a number for part C.

Compact Luxury

(A) 

(B) 

Compact Luxury

(C) 3% of September sales

�

Fong

Petris
  c $4,320 $8,640

$5,400 $6,480
d

 0.03B  c (0.03)($144,000) (0.03)($288,000)

(0.03)($180,000) (0.03)($216,000)
d

Fong September sales   August sales

Petris
B  A  c $108,000 $216,000

$108,000 $216,000
d

Fong Sum of sales for August and September

Petris
A  B  c $180,000 $360,000

$252,000 $216,000
d

SOLUTIONS

EXAMPLE 5 Sales and Commissions

Ms. Fong and Mr. Petris are salespeople for a new car agency that sells only two models.

August was the last month for this year’s models, and next year’s models were introduced

in September. Gross dollar sales for each month are given in the following matrices:

AUGUST SALES SEPTEMBER SALES

Compact Luxury Compact Luxury

Fong

Petris

For example, Ms. Fong had $36,000 in compact sales in August and Mr. Petris had $216,000

in luxury car sales in September.

(A) What were the combined dollar sales in August and September for each salesperson

and each model?

(B) What was the increase in dollar sales from August to September?

(C) If both salespeople receive a 3% commission on gross dollar sales, compute the com-

mission for each salesperson for each model sold in September.

c $144,000 $288,000

$180,000 $216,000
d  Bc $36,000 $72,000

$72,000 $0
d  A

Matrix operations have many applications, particularly in business.

Repeat Example 5 with

�

A  c $72,000 $72,000

$36,000 $72,000
d  and  B  c $180,000 $216,000

$144,000 $216,000
d

MATCHED PROBLEM 5



Z DEFINITION 1 Product of a Row Matrix and a Column Matrix

The product of a 1  n row matrix and an n  1 column matrix is a 1  1 matrix

given by

n  1

 [a1b1  a2b2  
. . .  anbn ]≥ b1

b2

o

bn

¥[a1 a2 . . . an ]

Example 5 involved an agency with only two salespeople and two models. A more real-

istic problem might involve 20 salespeople and 15 models. Problems of this size are often

solved using spreadsheets on a computer. Figure 3 illustrates a spreadsheet solution to

Example 5.
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Compact

BA

1

August Sales2

$36,0003 Fong

$72,0004 Petris

Combined Sales5

$180,0006 Fong

$252,0007 Petris

Luxury

C

$72,000

$0

$360,000

$216,000

Compact

D

September Sales

$144,000

$180,000

Sales Increases

$108,000

$108,000

Luxury

E

$288,000

$216,000

$216,000

$216,000

Compact

F

September Commissions

$4,320

$5,400

Luxury

G

$8,640

$6,480

Z Figure 3

Z Finding the Product of Two Matrices

Next we will define a way to multiply two matrices. It will probably seem strange to

you at first;  eventually you will see examples of why it is useful in many problems. In par-

ticular, matrix multiplication will help us to develop an alternative method for solving lin-

ear systems that have the same number of variables and equations.

We start by defining the product of two special matrices, a row matrix and a column matrix.

1  n

Note that the number of elements in the row matrix and in the column matrix must be

the same for the product to be defined.

EXAMPLE 6 Product of a Row Matrix and a Column Matrix

Multiply:  [2  3 0] £ 5

2

 2

§

MATCHED PROBLEM 6

Multiply: 

�

[ 1 0 3 2] ≥ 2

3

4

 1

¥

SOLUTION

�  [ 10  6  0]   [ 16]

 [2  3 0] £ 5

2

 2

§  [(2)( 5)  ( 3)(2)  (0)( 2)]



The answer to Example 6 is a 1 ⫻ 1 matrix, which we represented with [⫺16]. From

now on, if the result of a calculation is a 1 ⫻ 1 matrix, we’ll usually omit the brackets and

write the answer as a real number.
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EXAMPLE 7 Production Scheduling

A factory produces a slalom water ski that requires 4 labor-hours in the fabricating depart-

ment and 1 labor-hour in the finishing department. Fabricating personnel receive $10 per

hour, and finishing personnel receive $8 per hour. Find the total labor cost per ski.

SOLUTION Total labor cost per ski is given by the product

or $48 per ski �[4 1] c10

8
d ⫽ [(4)(10) ⫹ (1)(8)] ⫽ [40 ⫹ 8] ⫽ [48]

MATCHED PROBLEM 7 If the factory in Example 7 also produces a trick water ski that requires 6 labor-hours in

the fabricating department and 1.5 labor-hours in the finishing department. Find the total-

labor cost per ski by multiplying an appropriate row matrix and column matrix.

�

We will now use the product of a 1 ⫻ n row matrix and an n ⫻ 1 column matrix to

extend the definition of matrix product to more general matrices.

Z DEFINITION 2 Matrix Product

If A is an m⫻ p matrix and B is a p⫻ n matrix, then the matrix product of A and

B, denoted AB, is an m ⫻ n matrix whose element in the ith row and jth column is

the real number obtained from the product of the ith row of A and the jth column

of B. If the number of columns in A does not equal the number of rows in B, then

the matrix product AB is not defined.

It is important to check sizes before starting the multiplication process. If A is an a ⫻ b

matrix and B is a c ⫻ d matrix, then if b ⫽ c, the product AB will exist and will be an

a ⫻ d matrix (see Fig. 4). If b � c, then the product AB does not exist.

The definition is not as complicated as it looks. An example should help clarify the

process. For

A is 2 ⫻ 3, B is 3 ⫻ 2, and so AB is 2 ⫻ 2. To find the first row of AB, we take the prod-

uct of the first row of A with every column of B and write each result as a real number,

not a 1⫻ 1 matrix. The second row of AB is computed in the same manner. The four prod-

ucts of row and column matrices used to produce the four elements in AB are shown in the

dashed box below. These products are usually calculated mentally, or with the aid of a cal-

culator, and need not be written out. The shaded portions highlight the steps involved in

computing the element in the first row and second column of AB.

A ⫽ c 2 3 ⫺1

⫺2 1 2
d  and  B ⫽ £ 1 3

2 0

⫺1 2

§

Must be

the same

(b ⫽ c)
Size of

product

a ⫻ da ⫻ b  c ⫻ d

A B• ABⴝ

Z Figure 4
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EXAMPLE 8 Matrix Multiplication

Given

Find each product that is defined:

(A) AB (B) BA (C) CD (D) DC

D  c1 2

3 6
dC  c 2 6

 1  3
dB  c1  1 0 1

2 1 2 0
dA  £ 2 1

1 0

 1 2

§

3  2
2  4

(A) 

3  4

2  4
3  2

(B) 

Product is not defined.

2  2 2  2

(C) 

2  2

 c 20 40

 10  20
d

 c (2)(1)  (6)(3) (2)(2)  (6)(6)

( 1)(1)  ( 3)(3) ( 1)(2)  ( 3)(6)
dCD  c 2 6

 1  3
d c 1 2

3 6
d

BA  c1  1 0 1

2 1 2 0
d £ 2 1

1 0

 1 2

§

  £4  1 2 2

1  1 0 1

3 3 4  1

§

  £ (2)(1)  (1)(2) (2)( 1)  (1)(1) (2)(0)  (1)(2) (2)(1)  (1)(0)

(1)(1)  (0)(2) (1)( 1)  (0)(1) (1)(0)  (0)(2) (1)(1)  (0)(0)

( 1)(1)  (2)(2) ( 1)( 1)  (2)(1) ( 1)(0)  (2)(2) ( 1)(1)  (2)(0)

§

AB  £ 2 1

1 0

 1 2

§  c1  1 0 1

2 1 2 0
d

SOLUTIONS



2  2 2 2 2  2

(D) 
�

 c0 0

0 0
d  c (1)(2)  (2)( 1) (1)(6)  (2)( 3)

(3)(2)  (6)( 1) (3)(6)  (6)( 3)
dDC  c1 2

3 6
d c 2 6

 1  3
d
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MATCHED PROBLEM 8 Find each product, if it is defined:

(A) (B) 

(C) (D) 

�

c 2 4

1  2
d c 1 2

 1  2
dc 1 2

 1  2
d c 2 4

1  2
d

£ 1 1

2 3

1 0

§ c 1 0 3  2

1 2 2 0
dc 1 0 3  2

1 2 2 0
d £ 1 1

2 3

1 0

§

In the arithmetic of real numbers, it doesn’t matter in which order we multiply; for

example, 5  7  7  5. In matrix multiplication, however, it does make a difference. That

is, AB does not always equal BA, even if both multiplications are defined and both prod-

ucts are the same size (see Examples 8C and 8D). In other words,

Matrix multiplication is not commutative.

Also, AB may be zero with neither A nor B equal to zero (see Example 8D). That is,

The zero property does not hold for matrix multiplication.

(See Section R-1 for a discussion of the zero property for real numbers.)

Just as we used the familiar algebraic notation AB to represent the product of matrices A

and B, we use the notation A2 for AA (the product of A with itself ), A3 for AAA, and so on.

In addition to the commutative and zero properties, there are other significant dif-

ferences between real number multiplication and matrix multiplication.

(A) In real number multiplication, the only real number whose square is 0 is the

real number 0 (02
 0). Find at least one 2  2 matrix A with all elements nonzero

such that A2
 0, where 0 is the 2  2 zero matrix.

(B) In real number multiplication, the only nonzero real number that is equal to

its square is the real number 1 (12
 1). Find at least one 2  2 matrix A with all

elements nonzero such that A2
 A.

ZZZ EXPLORE-DISCUSS 2

We’ll return to our study of the properties of matrix multiplication in Section 7-4. We will

conclude this section with an application of matrix multiplication.

EXAMPLE 9 Labor Costs

If we combine the time requirements for making slalom and trick water skis discussed in

Example 7 and Matched Problem 7, we get

Labor-hours per ski

Assembly Finishing

department department

c6 h   1.5 h

4 h   1 h
d  L

Trick ski

Slalom ski



Now suppose that the company has two manufacturing plants, X and Y, in different parts of

the country and that the hourly rates for each department are given in the following matrix:

Hourly Wages

Plant Plant

X Y

Find the matrix products HL and LH, and decide if either matrix has a meaningful inter-

pretation in terms of ski production.

c $10 $12

$ 8 $10
d  H

Assembly department

Finishing department
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SOLUTION Since H and L are both 2  2 matrices, we can find the product of H and L in either order

and the result will be a 2  2 matrix:

How can we interpret the elements in these products? Let’s begin with the product HL. The

element 108 in the first row and first column of HL is the product of the first row matrix

of H and the first column matrix of L:

Plant Plant

X Y

Notice that $60 is the labor cost for assembling a trick ski at Plant X and $48 is the labor

cost for assembling a slalom ski at Plant Y. Although both numbers represent labor costs,

it makes no sense to add them together. They do not pertain to the same type of ski or to

the same plant. So, even though the product HL happens to be defined mathematically, it

has no useful interpretation in this problem.

Now let’s consider the product LH. The element 72 in the first row and first column of

LH is given by the following product:

Assembly Finishing

[6 1.5]

where $60 is the labor cost for assembling a trick ski at Plant X and $12 is the labor cost

for finishing a trick ski at Plant X. The sum is the total labor cost for producing a trick ski

at Plant X. The other elements in LH also represent total labor costs, as indicated by the

row and column labels shown below:

Labor costs per ski

Plant Plant

X Y

�

Trick ski

Slalom ski
LH  c $72 $87

$48 $58
d

  6(10)  1.5(8)  60  12  72
Assembly

Finishing
c 10

8
d

  10(6)  12(4)  60  48  108
Trick

Slalom
[10 12] c 6

4
d

 LH  c 6 1.5

4 1
d c 10 12

8 10
d  c 72 87

48 58
d

 HL  c 10 12

8 10
d c 6 1.5

4 1
d  c 108 27

88 22
d

Refer to Example 9. The company wants to know how many hours to schedule in each

department in order to produce 1,000 trick skis and 2,000 slalom skis. These production

requirements can be represented by either of the following matrices:

Trick Slalom

skis skis

Using the labor-hour matrix L from Example 9, find PL or LQ, whichever has a meaningful

interpretation for this problem, and label the rows and columns accordingly.

�

Trick skis

Slalom skis
Q  c 1,000

2,000
dP  [1,000 2,000]

MATCHED PROBLEM 9



ANSWERS TO MATCHED PROBLEMS

1. (A) (B) Not defined 2. 3. a ⫽⫺6, b ⫽ 7, c ⫽ 9, d ⫽⫺1

4. 5. (A) (B) (C) 

6. [8] 7. or $72

8. (A) Not defined (B) (C) (D) 

9. Assembly Finishing

Labor hoursPL ⫽ [14,000 3,500]

c⫺6 ⫺12

3 6
dc0 0

0 0
d£ 2 2 ⫺1 2

1 6 12 ⫺4

⫺1 0 3 ⫺2

§
[6 1.5] c10

8
d ⫽ [72]

c$5,400 $6,480

$4,320 $6,480
dc$108,000 $144,000

$108,000 $144,000
dc $252,000 $288,000

$180,000 $288,000
d£ 13

2

35

§
[⫺1 ⫺1 4]£1 5

0 ⫺2

2 1

§
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ZZZ CAUTION ZZZ Example 9 and Matched Problem 9 illustrate an important point about matrix multi-

plication. Even if you are using a graphing calculator to perform the calculations in

a matrix product, you will still need to know the definition of matrix multiplication

so that you can interpret the results correctly.

13.

14.

15.

16.

17.

18.

19.

20. c 1
2 ⫺

3
4

5
4 ⫺

3
2

d ⫺ c 9
2

1
4

⫺
7
4

1
2

d
£ 4 ⫺7

10 11

⫺13 ⫺9

§ ⫺ c 4 10 ⫺13

⫺7 11 ⫺9
d

£ 6 2

⫺4 1

3 0

§ ⫺ £ 0 5

⫺7 2

⫺1 0

§
c5 ⫺1 0

4 6 3
d ⫺ c 2 4 ⫺6

3 5 ⫺5
d

c6 ⫺2 3

4 ⫺8 ⫺7
d ⫹ £ 3 6

9 ⫺2

⫺1 4

§
£ 4 0

⫺2 3

8 1

§ ⫹ c⫺1 0 4

2 5 ⫺6
d

c 6 ⫺2 3

4 ⫺8 ⫺7
d ⫹ c3 9 ⫺1

6 ⫺2 4
d

£ 4 0

⫺2 3

8 1

§ ⫹ £⫺1 2

0 5

4 ⫺6

§

7-3 Exercises

1.What conditions must matrics A and B satisfy so that A ⫹ B

exists?

2.What conditions must matrices A and B satisfy so that AB

exists?

3.What conditions must matrices A and B satisfy so that BA

exists?

4.What conditions must matrices A and B satisfy so that both AB

and BA exist?

5. What is the negative of a matrix?

6. How do you subtract two matrices?

7. How do you multiply a matrix by a number?

8. If A is a 1 ⫻ n matrix and B is an n⫻ 1 matrix, how do you find

the product AB? What is the size of AB?

9. If A is a 1 ⫻ n matrix and B is an n⫻ 1 matrix, how do you find

the product BA? What is the size of BA?

10. Describe the operation of matrix multiplication in your own

words.

Perform the indicated operations in Problems 11–24, if possible.

11. 12. c0 8

2 ⫺1
d ⫹ c 9 ⫺4

7 5
dc5 ⫺2

3 0
d ⫹ c⫺3 7

1 ⫺6
d
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21.

22. 23.

24.

Find the products in Problems 25–38.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

Problems 39–56 refer to the following matrices.

Perform the indicated operations, if possible.

39. CA 40. AC 41. BA

42. AB 43. C2
44. B2

45. C  DA 46. B  AD 47. 0.2CD

48. 0.1DB 49. 2DB  5CD 50. 3BA  4AC

51. ( 1)AC 3DB 52. ( 2)BA 6CD

53. CDA 54. ACD

55. DBA 56. BAD

In Problems 57 and 58, use a graphing calculator to calculate B,

B2, B3, . . . and AB, AB2, AB3, . . . . Describe any patterns you

observe in each sequence of matrices.

57. and 

58. and B  c0.9 0.1

0.3 0.7
dA  [0.4 0.6]

B  c0.4 0.6

0.2 0.8
dA  [0.3 0.7]

D  £3  2

0  1

1 2

§C  £ 1 0 2

4  3 1

 2 3 5

§
B  c 3 1

2 5
dA  c2  1 3

0 4  2
d

c 7 0

0 3
d c 9  2

 4  1
dc 8  3

 5 3
d c 2 0

0 6
d

c 2 7

3  1
d c 4  1

0 5
dc 5 1

4 6
d c2 0

3 8
d

c 3 7

 1  9
d c 4

 1
dc 6 3

2  5
d c 1

3
d

£ 2

 1

1

§ [1  2 2]£ 1

2

 3

§ [3  2  4]

[1  2 2] £ 2

 1

1

§[3  2  4] £ 1

2

 3

§
c 3

 4
d [2  1]c 5

 3
d [4  2]

[ 2 4] c 3

 8
d[5 3] c4

7
d

5 c 7 3 0 9

4  5 6 2
d

4 c 3  4 7

 2 9 5
dc10

20
d  [20 10]

c 2.4  2.8 3.9

 1.6 0 4.2
d  c 7  2.2  2.2

 3.2  3.2 1
d 59. Find a, b, c, and d so that

60. Find x and y so that

61. Find w, x, y, and z so that

62. Find x and y so that

In Problems 63 and 64, let a, b, and c be any nonzero real

numbers, and let

and

63. If A2
 0, how are a, b, and c related? Use this relationship to

provide several examples of 2  2 matrices with no zero en-

tries whose square is the zero matrix.

64. If A2
 I, how are a, b, and c related? Use this relationship to

provide several examples of 2  2 matrices with no zero en-

tries whose square is the matrix I.

Problems 65 and 66 refer to the matrices

and 

65. If AB  0, how are a, b, c, and d related? Use this relationship

to provide several examples of 2  2 matrices A with no zero

entries that satisfy AB 0.

66. If BA  0, how are a, b, c, and d related? Use this relationship

to provide several examples of 2  2 matrices A with no zero

entries that satisfy BA  0.

67. Find x and y so that

68. Find x and y so that

69. Find a, b, c, and d so that

70. Find a, b, c, and d so that

71. A square matrix is a diagonal matrix if all elements not on the

principal diagonal are zero. So a 2  2 diagonal matrix has the

form

A  ca 0

0 d
d

c1  2

2  3
d c a b

c d
d  c 1 0

3 2
d

c1 3

1 4
d c a b

c d
d  c 6  5

7  7
d

c x  1

1 0
d c 2 1

4 1
d  c y y

2 1
d

c 1 3

 2  2
d c x 1

3 2
d  c y 7

y  6
d

B  c 1 1

1 1
dA  ca b

c d
d

I  c1 0

0 1
dA  ca b

c  a
d

c x  1

 2 y
d  c4y 4

5 3x
d  c 12  5

 4  14
d

c 3 0

 7  11
d  cw x

y z
d  c 9 1

4 6
d

c 3x 5

 1 4x
d  c 2y  3

 6  y
d  c 7 2

 7 2
d

ca b

c d
d  c2  3

0 1
d  c1  2

3  4
d



where a and d are any real numbers. Discuss the validity of

each of the following statements. If the statement is always

true, explain why. If not, give examples.

(A) If A and B are 2  2 diagonal matrices, then A  B is a

2  2 diagonal matrix.

(B) If A and B are 2  2 diagonal matrices, then

A  B  B  A.

(C) If A and B are 2  2 diagonal matrices, then AB is a 2  2

diagonal matrix.

(D) If A and B are 2  2 diagonal matrices, then AB  BA.

72.A square matrix is an upper triangular matrix if all elements

below the principal diagonal are zero. So a 2  2 upper triangu-

lar matrix has the form

where a, b, and d are any real numbers. Discuss the validity of

each of the following statements. If the statement is always

true, explain why. If not, give examples.

(A) If A and B are 2  2 upper triangular matrices, then 

A  B is a 2  2 upper triangular matrix.

(B) If A and B are 2  2 upper triangular matrices, then 

A  B  B  A.

(C) If A and B are 2  2 upper triangular matrices, then AB is a

2  2 upper triangular matrix.

(D) If A and B are 2  2 upper triangular matrices, then 

AB  BA.

73.A company with two different plants makes satellite radios and

GPS units.  The production costs for each item are given in the

following matrices:

Plant X Plant Y

Radio GPS Radio GPS

Find the matrix and explain what information it pro-

vides.

74. Suppose that the company in Problem 73 experiences an in-

crease in the cost of both labor and materials at plant X.  Find the

matrix If it provides the average cost of production

for the two plants, by how much were the costs at plant X increased?

75. MARKUP An import car dealer sells three models of a car.

Current dealer invoice price (cost) and the retail price for the basic

models and the indicated options are given in the following two

matrices (where “Air” means air conditioning):

Dealer Invoice Price

Basic CD Cruise

Car Air changer Control

Retail Price

Basic CD Cruise

Car Air changer Control

£ $13,900   $783   $263   $215

$15,000 $838 $395 $236

$18,300 $967 $573 $248

§  N

Model A

Model B

Model C

£ $10,400   $682   $215   $182

$12,500 $721 $295 $182

$16,400 $827 $443 $192

§  M

Model A

Model B

Model C

1
2 
(1.2A  B).

1
2 
(A  B),

c $36   $27

$54 $74
d  Bc $30   $25

$60 $80
d  A

Materials

Labor

A  c a b

0 d
d

We define the markup matrix to be N  M (markup is the differ-

ence between the retail price and the dealer invoice price). Suppose

the value of the dollar has had a sharp decline and the dealer invoice

price is to have an across-the-board 15% increase next year. To stay

competitive with domestic cars, the dealer increases the retail prices

only 10%. Calculate a markup matrix for next year’s models and the

indicated options. (Compute results to the nearest dollar.)

76. MARKUP Referring to Problem 75, what is the markup ma-

trix resulting from a 20% increase in dealer invoice prices and

an increase in retail prices of 15%? (Compute results to the

nearest dollar.)

77. LABOR COSTS A company with manufacturing plants located in

different parts of the country has labor-hour and wage requirements

for the manufacturing of three types of inflatable boats as given in

the following two matrices:

Labor-Hours per Boat

Cutting Assembly Packaging

Department Department Department

Hourly Wages

Plant I Plant II

(A) Find the labor costs for a one-person boat manufactured at

plant I.

(B) Find the labor costs for a four-person boat manufactured at

plant II.

(C) Discuss possible interpretations of the elements in the matrix

products MN and NM.

(D) If either of the products MN or NM has a meaningful interpre-

tation, find the product and label its rows and columns.

78. INVENTORY VALUE A personal computer retail company sells

five different computer models through three stores located in a

large metropolitan area. The inventory of each model on hand in

each store is summarized in matrix M. Wholesale (W ) and retail (R)

values of each model computer are summarized in matrix N.

Model

A B C D E

W R

(A) What is the retail value of the inventory at store 2?

(B) What is the wholesale value of the inventory at store 3?

(C) Discuss possible interpretations of the elements in the matrix

products MN and NM.

A

B

C

D

E

N  E $700 $840

$1,400 $1,800

$1,800 $2,400

$2,700 $3,300

$3,500 $4,900

U

Store 1

Store 2

Store 3

M  £ 4 2 3 7 1

2 3 5 0 6

10 4 3 4 3

§

Cutting department

Assembly department

Packaging department

N  £ $8   $9

$10 $12

$5 $6

§

One-person boat

Two-person boat

Four-person boat

M  £ 0.6 h   0.6 h   0.2 h

1.0 h 0.9 h 0.3 h

1.5 h 1.2 h 0.4 h

§
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(D) If either of the products MN or NM has a meaningful interpre-

tation, find the product and label its rows and columns.

(E) Discuss methods of matrix multiplication that can be used to

find the total inventory of each model on hand at all three stores.

State the matrices that can be used, and perform the necessary

operations.

(F) Discuss methods of matrix multiplication that can be used to

find the total inventory of all five models at each store. State the ma-

trices that can be used, and perform the necessary operations.

79. AIRFREIGHT A nationwide airfreight service has connecting

flights between five cities, as illustrated in the figure. To represent

this schedule in matrix form, we construct a 5 ⫻ 5 incidence

matrix A, where the rows represent the origins of each flight and the

columns represent the destinations. We place a 1 in the ith row and

jth column of this matrix if there is a connecting flight from the ith

city to the jth city and a 0 otherwise. We also place 0s on the princi-

pal diagonal, because a connecting flight with the same origin and

destination does not make sense.

Now that the schedule has been represented in the mathematical

form of a matrix, we can perform operations on this matrix to ob-

tain information about the schedule.

(A) Find A2. What does the 1 in row 2 and column 1 of A2 indicate

about the schedule? What does the 2 in row 1 and column 3 indicate

about the schedule? In general, how would you interpret each ele-

ment off the principal diagonal of A2? [Hint: Examine the diagram

for possible connections between the ith city and the jth city.]

(B) Find A3. What does the 1 in row 4 and column 2 of A3 indicate

about the schedule? What does the 2 in row 1 and column 5 indicate

about the schedule? In general, how would you interpret each ele-

ment off the principal diagonal of A3?

(C) Compute A, A ⫹ A2, A ⫹ A2
⫹ A3, . . . , until you obtain a ma-

trix with no zero elements (except possibly on the principal diago-

nal), and interpret.

80. AIRFREIGHT Refer to Problem 79. Find the incidence matrix

A for the flight schedule illustrated in the figure. Compute 

A, A ⫹ A2, A ⫹ A2
⫹ A3, . . . , until you obtain a matrix with no zero

elements (except possibly on the principal diagonal), and interpret.

1 2

54

3

Louisville Milwaukee

Newark

Phoenix Oakland

1 2

54

3

Atlanta Baltimore

Chicago 

Denver El Paso

81. POLITICS In a local election, a group hired a public relations

firm to promote its candidate in three ways: telephone, house calls,

and direct mail. The cost per contact is given in matrix M:

Cost per

Contact

The number of contacts of each type made in two adjacent cities is

given in matrix N:

Telephone House Call Mail

(A) Find the total amount spent in Berkeley.

(B) Find the total amount spent in Oakland.

(C) Discuss possible interpretations of the elements in the matrix

products MN and NM.

(D) If either of the products MN or NM has a meaningful interpre-

tation, find the product and label its rows and columns.

(E) Discuss methods of matrix multiplication that can be used to

find the total number of telephone calls, house calls, and letters.

State the matrices that can be used, and perform the necessary

operations.

(F) Discuss methods of matrix multiplication that can be used to

find the total number of contacts in Berkeley and in Oakland.

State the matrices that can be used, and perform the necessary

operations.

82. NUTRITION A nutritionist for a cereal company blends two -

cereals in different mixes. The amounts of protein, carbohydrate,

and fat (in grams per ounce) in each cereal are given by matrix M.

The amounts of each cereal used in the three mixes are given by

matrix N.

Cereal Cereal

A B

Mix X Mix Y Mix Z

(A) Find the amount of protein in mix X.

(B) Find the amount of fat in mix Z.

(C) Discuss possible interpretations of the elements in the matrix

products MN and NM.

(D) If either of the products MN or NM has a meaningful interpre-

tation, find the product and label its rows and columns.

83. TOURNAMENT SEEDING To rank players for an upcoming ten-

nis tournament, a club decides to have each player play one set with

every other player. The results are given in the table.

Cereal A

Cereal B
N ⫽ c15 oz 10 oz 5 oz

5 oz 10 oz 15 oz
d

Protein

Carbohydrate

Fat

M ⫽ £ 4 gⲐoz 2 gⲐoz

20 gⲐoz 16 gⲐoz

3 gⲐoz 1 gⲐoz

§

Berkeley

Oakland
N ⫽ c1,000   500   5,000

2,000 800 8,000
d

Telephone

House Call

Mail

M ⫽ £$0.80

$1.50

$0.40

§
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Destination

1 2 3 4 5

E0 1 0 1 0

0 0 1 0 0

1 0 0 0 1

0 0 1 0 0

0 0 0 1 0

U ⫽ A

1

2

3

4

5

O
ri
g
in



Player Defeated

1. Aaron Charles, Dan, Elvis

2. Bart Aaron, Dan, Elvis

3. Charles Bart, Dan

4. Dan Frank

5. Elvis Charles, Dan, Frank

6. Frank Aaron, Bart, Charles

(A) Express the outcomes as an incidence matrix A by placing a 1

in the ith row and jth column of A if player i defeated player j, and

a 0 otherwise (see Problem 79).

(B) Compute the matrix B  A  A2

(C) Discuss matrix multiplication methods that can be used to find

the sum of each of the rows in B. State the matrices that can be used

and perform the necessary operations.

(D) Rank the players from strongest to weakest. Explain the reason-

ing behind your ranking.

84. PLAYER RANKING Each member of a chess team plays one

match with every other player. The results are given in the table.

Player Defeated

1. Anne Diane

2. Bridget Anne, Carol, Diane

3. Carol Anne

4. Diane Carol, Erlene

5. Erlene Anne, Bridget, Carol

(A) Express the outcomes as an incidence matrix A by placing a 1

in the ith row and jth column of A if player i defeated player j, and

a 0 otherwise (see Problem 79).

(B) Compute the matrix B  A  A2

(C) Discuss matrix multiplication methods that can be used to find

the sum of each of the rows in B. State the matrices that can be used

and perform the necessary operations.

(D) Rank the players from strongest to weakest. Explain the reasoning

behind your ranking.
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Now that we know a bit about matrix multiplication, we will see how it can be used to solve

certain systems of equations.

Z The Identity Matrix for Multiplication

We know that for any real number a, The number 1 is called the iden-

tity for real number multiplication. Is there a matrix analog? That is, if M is an arbitrary

matrix, is there a matrix I with the property that IM  MI  M? It turns out that, in gen-

eral, the answer is no. But the set of square matrices of order n (matrices with n rows

and n columns) does have an identity.

1  a  a  1  a.

7-4
Solving Systems of Linear Equations 

Using Matrix Inverse Methods

Z The Identity Matrix for Multiplication

Z Finding the Inverse of a Square Matrix

Z Matrix Equations

Z Matrix Equations and Systems of Linear Equations

Z Application: Cryptography
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(A) Pick any 2 ⫻ 2 matrix you like, and multiply it by the following matrix in both

possible orders.

(B) Repeat (A) for any 3 ⫻ 3 matrix you like, but multiply by the matrix

What can you conclude?

£ 1 0 0

0 1 0

0 0 1

§

c 1 0

0 1
d

ZZZ EXPLORE-DISCUSS 1

Z DEFINITION 1 Identity Matrix

The identity matrix for multiplication for the set of all square matrices of order

n is the square matrix of order n, denoted by I, with 1’s along the principal diagonal

(from upper left corner to lower right corner) and 0’s elsewhere.

In Explore-Discuss 1, we saw that

and

are the identity matrices for square matrices of order 2 and 3, respectively.

We will show in Exercises 7-4 that if M is any square matrix of order n and I is the

identity matrix of order n, then

Note: If M is an m ⫻ n matrix that is not square then it is still possible to mul-

tiply M on the left and on the right by an identity matrix, but not with the same-size iden-

tity matrix. To avoid the complications involved with associating two different identity

matrices with each nonsquare matrix, we will restrict our attention in this section to square

matrices.

Z Finding the Inverse of a Square Matrix

In the set of real numbers, we know that for each real number a, except 0, there exists a

real number a⫺1 such that

The number is called the inverse of the number a relative to multiplication, or the mul-

tiplicative inverse of a. For example, is the multiplicative inverse of 2, since 

We will use this idea to define the inverse of a square matrix.

2⫺1(2) ⫽ 1.2⫺1

a⫺1

a⫺1a ⫽ 1

(m � n),

IM ⫽ MI ⫽ M

£ 1 0 0

0 1 0

0 0 1

§c 1 0

0 1
d



The multiplicative inverse of a nonzero real number a also can be written as 1 a, but

this notation is never used for matrix inverses.

Let’s use Definition 2 to find if it exists, for

We are looking for a matrix

such that

We can write

A I

and try to find a, b, c, and d so that the product of A and is the identity matrix I. Mul-

tiplying A and on the left side, we get

which is true only if

R1 4 R2 R1 4 R2

 2R1  R2 S R2  2R1  R2 S R2c 1 2 ` 1

2 3 0
dc 1 2 ` 0

2 3 1
d

c 2 3 ` 0

1 2 1
dc 2 3 ` 1

1 2 0
d

 c  2d  1 a  2b  0

 2c  3d  0 2a  3b  1

c (2a  3b) (2c  3d )

(a  2b) (c  2d )
d  c 1 0

0 1
d

A
 1

A
 1

c 2 3

1 2
d c a c

b d
d  c 1 0

0 1
d

A
 1

AA
 1
 A

 1
A  I

A
 1
 c a c

b d
d

A  c 2 3

1 2
d

A
 1,

/
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Z DEFINITION 2 Inverse of a Square Matrix

If A is a square matrix of order n and if there exists a matrix (read “A inverse”)

such that

then is called the multiplicative inverse of A or, more simply, the inverse of A.

If no such matrix exists, then A is said to be a singular matrix.

A
 1

A
 1

A  AA
 1
 I

A
 1

Let 

(A) How are the entries in A and B related?

(B) Find AB. Is B the inverse of A?

(C) Find AC. Is C the inverse of A?

C  c 1⁄2  1⁄2

 1⁄2 1
dB  c 1⁄4 1⁄2

1⁄2 1⁄2
dA  c 4 2

2 2
dZZZ EXPLORE-DISCUSS 2

Use Gauss–Jordan

elimination to solve

each system.



( 1)R2 S R2 ( 1)R2 S R2

( 1)R2  R1 S R1 ( 1)R2  R1 S R1

A
 1
 ca b

c d
d  c 2  3

 1 2
d

d  2c   3,b   1a  2,

c 1 0 `  3

0 1 2
dc 1 0 ` 2

0 1  1
d

c 1 2 ` 1

0 1 2
dc 1 2 ` 0

0 1  1
d

c 1 2 ` 1

0  1  2
dc 1 2 ` 0

0  1 1
d
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CHECK A I A

Unlike nonzero real numbers, inverses do not always exist for nonzero square matrices. For

example, if

then, proceeding as before, we are led to the systems

( 2)R1  R2 ( 2)R1  R2

The last row of each augmented coefficient matrix contains a contradiction. So each sys-

tem is inconsistent and has no solution. We conclude that B 1 does not exist and B is a sin-

gular matrix.

c 2 1 ` 0

0 0 1
dc 2 1 ` 0

0 0  2
d

c 2 1 ` 0

4 2 1
dc 2 1 ` 1

4 2 0
d

4c  2 d  14a  2 b  0

2c   d  02a   b  1

B  c 2 1

4 2
d

c 2 3

1 2
d c 2  3

 1 2
d  c 1 0

0 1
d  c 2  3

 1 2
d c 2 3

1 2
d

A
 1

A
 1

Use Gauss–Jordan

elimination to solve

each system.

Technology Connections

Most graphing calculators can find matrix inverses and can

identify singular matrices. Figure 1 shows the calculation of

for the matrix A discussed earlier. Figure 2 shows the

error message that results when the inverse operation is ap-

plied to the singular matrix B discussed earlier.

A
 1

Note that the inverse operation is performed by pressing

the x
 1

key. Entering [A]^( 1) results in an error message

(Fig. 3).

Z Figure 1 Z Figure 2 Z Figure 3



Being able to find inverses, when they exist, leads to direct and simple solutions to many
practical problems.

The algebraic method outlined for finding the inverse, if it exists, gets very involved
for matrices of order larger than 2. Now that we know what we are looking for, we can use
augmented matrices, as in Section 7-2, to make the process more efficient. Details are illus-
trated in Example 1.
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EXAMPLE 1 Finding an Inverse

Find the inverse, if it exists, of

A ⫽ £ 1 ⫺1 1

0 2 ⫺1

2 3 0

§
We start as before and write

A I

Equating corresponding terms, we see that this is true only if

Now we write augmented matrices for each of the three systems:

First Second Third

If you look carefully at the side-by-side solutions on pages 472 and 473, you will see that
the exact same row operations were performed on each augmented matrix. The same would
happen here; all three preceding augmented matrices have the same coefficient matrix. To
save time, we’ll combine all three into one, as shown next.

(1)

We now try to perform row operations on matrix (1) until we obtain a row-equivalent matrix
that looks like matrix (2):

I B

(2)

If this can be done, then the new matrix to the right of the vertical bar is Now let’s
try to transform matrix (1) into a form like that of matrix (2). We follow the same

A⫺1!

£ 1 0 0 a d g

0 1 0 † b e h

0 0 1 c f i

§ ⫽ [ I | B]

£ 1 ⫺1 1 1 0 0

0 2 ⫺1 † 0 1 0

2 3 0 0 0 1

§ ⫽ [A | I ]

£ 1 ⫺1 1 1

0 2 ⫺1 † 0

2 3 0 0

§  £ 1 ⫺1 1 0

0 2 ⫺1 † 1

2 3 0 0

§  £ 1 ⫺1 1 0

0 2 ⫺1 † 0

2 3 0 1

§

a ⫺ b ⫹ c ⫽ 1 d ⫺ e ⫹ f ⫽ 0 g ⫺ h ⫹ i ⫽ 0

2b ⫺ c ⫽ 0 2e ⫺ f ⫽ 1 2h ⫺ i ⫽ 0

2a ⫹ 3b ⫽ 0  2d ⫹ 3e ⫽ 0  2g ⫹ 3h ⫽ 1

£ 1 ⫺1 1

0 2 ⫺1

2 3 0

§ £a d g

b e h

c f i

§ ⫽ £ 1 0 0

0 1 0

0 0 1

§
A
ⴚ1

SOLUTION



sequence of steps as in the solution of linear systems by Gauss–Jordan elimination (see
Section 7-2):

A I

We suspect that matrix B is actually A 1, but we should check.

 ⬃ £ 1 0 0 3 3  1

0 1 0 †  2  2 1

0 0 1  4  5 2

§  [ I 0  B ]

 ⬃ £ 1 0 1
2 1 1

2 0

0 1  

1
2 † 0 1

2 0

0 0 1  4  5 2

§

 ⬃ £ 1 0 1
2 1 1

2 0

0 1  

1
2 † 0 1

2 0

0 0 1
2  2  

5
2 1

§

 ⬃ £ 1  1 1 1 0 0

0 1  

1
2 † 0 1

2 0

0 5  2  2 0 1

§

 ⬃ £ 1  1 1 1 0 0

0 2  1 † 0 1 0

0 5  2  2 0 1

§

 £ 1  1 1 1 0 0

0 2  1 † 0 1 0

2 3 0 0 0 1

§
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1
2R3  R2S R2

( 
1
2)R3  R1S R1

2R3S R3

( 5)R2  R3S R3

R2  R1S R1

1
2R2S R2

( 2)R1  R3S R3

CHECK Because the definition of matrix inverse requires that

and (3)

it appears that we must compute both and to check our work. However, it can be
shown that if one of the equations in (3) is satisfied, then the other is also satisfied. So, for
checking purposes it’s enough to compute either or —we don’t need to do both.

�A
 1

A  £ 3 3  1

 2  2 1

 4  5 2

§ £ 1  1 1

0 2  1

2 3 0

§  £ 1 0 0

0 1 0

0 0 1

§  I

AA
 1

A
 1

A

AA
 1

A
 1

A

AA
 1
 IA

 1
A  I

MATCHED PROBLEM 1

Let 

(A) Form the augmented matrix 

(B) Use row operations to transform into 

(C) Verify by multiplication that 
�

B  A
 1.

[ I | B ] .[A | I ]

[A | I ] .

A  £ 3  1 1

 1 1 0

1 0 1

§

The procedure used in Example 1 can be used to find the inverse of any square matrix
if the inverse exists, and will also indicate when the inverse does not exist. These ideas are
summarized in Theorem 1.
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Z THEOREM 1 Inverse of a Square Matrix A

If is transformed by row operations into then the resulting matrix B
is If, however, we obtain all 0s in one or more rows to the left of the vertical
line, then does not exist.A

 1
A
 1.

[ I | B ] ,[A | I ]

EXAMPLE 2 Finding a Matrix Inverse

Find given A  c 4  1

 6 2
dA

 1,

You should check our work by showing that      �A
 1

A  I.

A
 1
 c 1 1

2

3 2
d

 ⬃ c 1

0

0

1
 `  1

3

1
2

2
d

 ⬃ c 1

0

 

1
4

1
 `  1

4

3

0

2
d

 ⬃ c 1

0

 

1
4
1
2

 `  143
2

0

1
d

 ⬃ c 1

 6

1
4

2
 `  1

4

0

0

1
d

 c 4

 6

 1

2
 `  1 0

0 1
dSOLUTION

1
4R2  R1S R1

2R2S R2

6R1  R2S R2

1
4R1S R1

MATCHED PROBLEM 2
Find given 

�

A  c 2  6

1  2
dA

 1,

EXAMPLE 3 Finding an Inverse

Find if it exists, given B  c 10  2

 5 1
dB

 1,

We have all 0s in the second row to the left of the vertical line. Therefore, does not
exist. �

B
 1

 ⬃ c 1  

1
5

0 0
 `  1

10 0
1
2 1

d
 c 10  2

 5 1
` 1 0

0 1
d ⬃ c 1  

1
5

 5 1
 `  1

10 0

0 1
dSOLUTION

MATCHED PROBLEM 3
Find if it exists, given 

�

B  c 6  3

 2 1
dB

 1,



Z Matrix Equations

Before we discuss the solution of matrix equations, you might find it helpful to briefly review

the basic properties of real numbers discussed in Section R-1.
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Let a, b, and c be real numbers, with Solve each equation for x.

(A) (B) ax  b  cax  b

a  0.ZZZ EXPLORE-DISCUSS 3

Solving simple matrix equations follows very much the same procedures used in solv-

ing real number equations. We have, however, less freedom with matrix equations, because

matrix multiplication is not commutative. In solving matrix equations, we will be guided

by the properties of matrices summarized in Theorem 2. (Some of these properties were

introduced previously.)

Z THEOREM 2 Basic Properties of Matrices

Assuming all products and sums are defined for the indicated matrices A, B, C, I,

and 0, then

Addition Properties

Associative:

Commutative:

Additive Identity:

Additive Inverse:

Multiplication Properties

Associative Property:

Multiplicative Identity:

Multiplicative Inverse: If A is a square matrix and exists, 

then 

Combined Properties

Left Distributive:

Right Distributive:

Equality

Addition: If then 

Left Multiplication: If then 

Right Multiplication: If then AC  BC.A  B,

CA  CB.A  B,

A  C  B  C.A  B,

(B  C )A  BA  CA

A(B  C )  AB  AC

AA
 1
 A

 1
A  I.

A
 1

AI  IA  A

A(BC )  (AB)C

A  ( A)  ( A)  A  0

A  0  0  A  A

A  B  B  A

(A  B)  C  A  (B  C )

The process of solving certain types of simple matrix equations is best illustrated by

an example.

EXAMPLE 4 Solving a Matrix Equation

Given an n  n matrix A and n  1 column matrices B and X, solve AX  B for X. Assume

all necessary inverses exist.



Z Matrix Equations and Systems of Linear Equations

We will now show how independent systems of linear equations with the same number of

variables as equations can be solved by first converting the system into a matrix equation

of the form AX  B and using , as obtained in Example 4.X  A
 1

B
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We are interested in finding a column matrix X that satisfies the matrix equation AX  B. To

solve this equation, we multiply both sides, on the left, by assuming it exists, to isolate

X on the left side.

Use the left multiplication property.

Associative property

A
 1
A  I

IX X

� X  A
 1

B

 IX  A
 1

B

 (A 1
A)X  A

 1
B

 A 1(AX )  A
 1

B

 AX  B

A
 1,

SOLUTION

MATCHED PROBLEM 4 Given an n  n matrix A and n  1 column matrices B, C, and X, solve AX  C  B for X.

Assume all necessary inverses exist.

�

ZZZ CAUTION ZZZ 1. Do not mix the left multiplication property and the right multiplication property. If

AX  B, then

2. Matrix division is not defined. If a, b, and x are real numbers, then the solution

of ax  b can be written either as x  a
 1

b or as But if A, B, and X are

matrices, the solution of AX  B must be written as X A
 1

B. The expression

is not defined for matrices.B

A

x  
b

a.

A
 1(AX  )  BA

 1

EXAMPLE 5 Using Inverses to Solve Systems of Equations

Use matrix inverse methods to solve the system

(4)

2x1  3x2  1

2x2  x3  1

x1  x2  x3  1

First, we will convert the system of equations (4) into a matrix equation:

A X B

(5)

You should check that the matrix equation (5) is equivalent to the original system of equa-

tions (4) by performing the multiplication on the left side, and then equating correspon-

ding elements.  

If we can find the column matrix X, it will provide a solution to the system. In Exam-

ple 4, we found that if AX  B and A 1 exists, then X  A
 1

B. So our job is to find A 1

£1  1 1

0 2  1

2 3 0

§ £ x1

x2

x3

§  £1

1

1

§

SOLUTION



and multiply it by the constant matrix B on the left. In Example 1, we found that the inverse

of matrix A is

So the equation X  A
 1

B is

X A
 1

B

and we can conclude that x1  5, x2   3, and x3   7. Check this result in system (4). �

£ x1

x2

x3

§  £ 3 3  1

 2  2 1

 4  5 2

§ £1

1

1

§  £ 5

 3

 7

§

A
 1
 £ 3 3  1

 2  2 1

 4  5 2

§
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MATCHED PROBLEM 5 Use matrix inverse methods to solve the system:

[Note: The inverse of the coefficient matrix was found in Matched Problem 1.]

�

 x1   x3  2

  x1  x2   3

 3x1  x2  x3  1

Z USING INVERSE METHODS TO SOLVE SYSTEMS OF EQUATIONS

If the number of equations in a system equals the number of variables and the coef-

ficient matrix has an inverse, then the system will always have a unique solution

that can be found by using the inverse of the coefficient matrix to solve the corre-

sponding matrix equation.

Matrix equation Solution

X  A
 1

BAX  B

At first, matrix inverse methods don’t seem any better than Gauss–Jordan elimination—

both require applying row operations to an augmented matrix. The advantage of the inverse

method becomes apparent when solving a number of systems with a common coefficient

matrix, as in Example 6.

EXAMPLE 6 Using Inverses to Solve Systems of Equations

Use matrix inverse methods to solve each of the following systems: 2x1  3x2   3 2x1  3x2  4

 2x2  x3  2 2x2  x3  1

(B) x1  x2  x3   5(A) x1  x2  x3  3

Notice that both systems have the same coefficient matrix A as system (4) in Example 5.

Only the constant terms have been changed. So we can use to solve these systems just

as we did in Example 5.

A
 1

SOLUTIONS



(A) X A
 1

B

The solution is, x1  8, x2   4, and x3   9

(B) X A
 1

B

The solution is, x1   6, x2  3, and x3  4 �

£ x1

x2

x3

§  £ 3 3  1

 2  2 1

 4  5 2

§ £ 5

2

 3

§  £ 6

3

4

§

£ x1

x2

x3

§  £ 3 3  1

 2  2 1

 4  5 2

§ £3

1

4

§  £ 8

 4

 9

§
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MATCHED PROBLEM 6 Use matrix inverse methods to solve each of the following systems (see Matched Problem 5):

�

  x1  x3   4  x1  x3  2

  x1  x2  1  x1  x2   3

(B)  3x1  x2  x3   5(A)  3x1  x2  x3  3

As Examples 5 and 6 illustrate, inverse methods are very convenient for hand calcula-

tions because once the inverse is found, it can be used to solve any new system formed by

changing only the constant terms. Since most graphing calculators can compute the inverse

of a matrix, this method also adapts readily to graphing calculator solutions. However, if your

graphing calculator also has a built-in procedure for finding the reduced form of an aug-

mented coefficient matrix, then it is just as convenient to use Gauss–Jordan elimination. Fur-

thermore, Gauss–Jordan elimination can be used in all cases and, as noted previously, matrix

inverse methods cannot always be used.

The application in Example 7 illustrates the usefulness of matrix inverses.

EXAMPLE 7 Investment Allocation

An investment adviser currently has two types of investments available for clients: an invest-

ment A that pays 4% per year and an investment B of higher risk that pays 8% per year. Clients

may divide their investments between the two to achieve any total return desired between 4

and 8%. However, the higher the desired return, the higher the risk. How should each client

listed in the table invest to achieve the indicated return?

Client

1 2 3 k

Total investment $20,000 $50,000 $10,000 k1

Annual return desired $1,200 $3,750 $500 k2

(6%) (7.5%) (5%)

We will first solve the problem for an arbitrary client k using inverses, and then apply the

result to the three specific clients.

Let

x1  Amount invested in A

x2  Amount invested in B

SOLUTION



Then

Total invested

Total annual return (4% of X1  8% of X2)

Write as a matrix equation:

A X B

We now find by starting with and proceeding as discussed earlier.

100 R2 : R2 (To eliminate decimals)

 4R1  R2 : R2

1/4 R2 : R2

( 1)R2  R1 : R1

So A has an inverse, and

A
 1
 c 2  25

 1 25
d

⬃ c 1 0

0 1
` 2  25

 1 25
d

⬃ c 1 1

0 1
` 1 0

 1 25
d

⬃ c 1 1

0 4
` 1 0

 4 100
d

⬃ c 1 1

4 8
` 1 0

0 100
d

c 1 1

0.04 0.08
` 1 0

0 1
d

[A | I ]A
 1

c 1 1

0.04 0.08
d c x1

x2

d  c k1

k2

d

 0.04x1   0.08x2  k2

 x1   x2  k1
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CHECK A
 1

A I

Also,

X A
 1

B

To solve each client’s investment problem, we replace k1 and k2 with appropriate values
from the table and multiply by A 1.

Client 1

To draw $1,200 interest, invest $10,000 at 4% and $10,000 at 8%.

Client 2

To draw $3,750 interest, invest $6,250 at 4% and $43,750 at 8%.

Client 3

To draw $500 interest, invest $7,500 at 4% and $2,500 at 8%. �

c x1

x2

d  c 2  25

 1 25
d c 10,000

500
d  c 7,500

2,500
d

c x1

x2

d  c 2  25

 1 25
d c 50,000

3,750
d  c 6,250

43,750
d

c x1

x2

d  c 2  25

 1 25
d c 20,000

1,200
d  c 10,000

10,000
d

c x1

x2

d  c 2  25

 1 25
d c k1

k2

d

c 1 1

0.04 0.08
d  c 1 0

0 1
dc 2  25

 1 25
d



Z Application: Cryptography

Matrix inverses can be used to provide a simple and effective procedure for encoding and

decoding messages. To begin, we assign the numbers 1 to 26 to the letters in the alphabet,

as shown. We also assign the number 27 to a blank to provide for space between words.

(A more sophisticated code could include both uppercase and lowercase letters and punc-

tuation symbols.)

A B C D E F G H I J K L M N

1 2 3 4 5 6 7 8 9 10 11 12 13 14

O P Q R S T U V W X Y Z Blank

15 16 17 18 19 20 21 22 23 24 25 26 27

The message SPRING BREAK corresponds to the sequence

19 16 18 9 14 7 27 2 18 5 1 11

Any matrix whose elements are positive integers and whose inverse exists can be used as

an encoding matrix. For example, to use the 2 ⫻ 2 matrix

to encode the preceding message, first we divide the numbers in the sequence into groups

of 2 and use these groups as the columns of a matrix with 2 rows. (We would have added

an extra blank in the last entry if the last column had an empty space.) Then we multiply

this matrix on the left by A:

The coded message is

124 159 99 126 77 98 114 143 87 110 37 49

This message can be decoded simply by putting it back into matrix form and multiplying on

the left by the decoding matrix A⫺1. Since A⫺1 is easily determined if A is known, the encod-

ing matrix A is the only key needed to decode messages encoded in this manner. Although sim-

ple in concept, codes of this type can be very difficult to crack.

c 4 3

5 4
d c 19 18 14 27 18 1

16 9 7 2 5 11
d ⫽ c124 99 77 114 87 37

159 126 98 143 110 49
d

A ⫽ c4 3

5 4
d
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Cryptography

The message

31 54 69 37 64 82 23 50 66 51 69 75 23 30 36 65 84 84

was encoded with the matrix A shown next. Use a graphing calculator to decode this message.

A ⫽ £0 2 1

1 2 1

2 1 1

§

EXAMPLE 8

SOLUTION We begin by entering the 3 ⫻ 3 encoding matrix A (Fig. 4). Then we enter the coded mes-

sage in the columns of a matrix C with three rows (Fig. 4). If B is the matrix containing the

uncoded message, then B and C are related by C ⫽ AB. To find B, we multiply both sides of

the equation C ⫽ AB by (Fig. 5).A
⫺1

MATCHED PROBLEM 7 Repeat Example 7 with investment A paying 5% and investment B paying 9%.

�
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Writing the numbers in the columns of this matrix in sequence and using the correspon-

dence between numbers and letters noted earlier produces the decoded message:

23 8 15 27 9 19 27 11 1 18 12 27 7 1 21 19 19 27

W H O I S K A R L G A U S S

The answer to this question can be found somewhere in this chapter. �

Z Figure 4 Z Figure 5

MATCHED PROBLEM 8 The message

46 84 85 55 101 100 59 95 132 25 42 53 52 91 90 43 71 83 19 37 25

was encoded with the matrix A shown here. Decode this message.

�

A  £ 1 1 1

2 1 2

2 3 1

§

ANSWERS TO MATCHED PROBLEMS

1. (A) (B)

(C)

2. 3. Does not exit

4.

5.

6. (A) (B)

7. Client 1: $15,000 in A and $5,000 in B; Client 2: $18,750 in A and

$31,250 in B; Client 3: $10,000 in A

8. WHO IS WILHELM JORDAN

A
 1
 c 2.25  25

 1.25 25
d ;

x1  0, x2  1, x3   4x1   2, x2   5, x3  4

x1  2, x2  5, x3  0

 X  A
 1(B  C )

 IX  A
 1(B  C )

 (A 1
A) X  A

 1(B  C )

 A 1(AX  )  A
 1(B  C )

 AX  B  C

 AX  0  B  C

 AX  (C  C )  B  C

 (AX  C )  C  B  C

 AX  C  B

c 1 3

 
1
2 1

d
£ 1 1  1

1 2  1

 1  1 2

§ £ 3  1  1

 1 1 0

1 0 1

§  £ 1 0 0

0 1 0

0 0 1

§

1 0 0£ 0 1 0

0 0 1

 †  1 1  1

1 2  1

 1  1 2

§3  1  1£ 1 1 0

1 0 1

 †  1 0 0

0 1 0

0 0 1

§
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23.

24.

Write the matrix equations in Problems 25–28 as systems of linear

equations without matrices.

25. 26. 

27.

28. 

Write each system in Problems 29–32 as a matrix equation of the

form 

29. 30. 

31. 32.

In Problems 33–40, find x1 and x2.

33. 34. 

35 36. 

37. 38. 

39. 40. 

In Problems 41–60, given A, find A⫺1
, if it exists. Check each

inverse by showing A⫺1A ⫽ I.

41. 42. 43. 

44. 45. 46. c11 4

3 1
dc⫺5 7

2 ⫺3
dc 3 ⫺4

⫺2 3
d

c⫺1 ⫺2

2 5
dc 0 ⫺1

⫺1 3
dc1 9

0 1
d

c1 1

3 ⫺2
d c x1

x2

d ⫽ c 10

20
dc1 1

2 ⫺3
d c x1

x2

d ⫽ c15

10
d

c 1 3

1 4
d c x1

x2

d ⫽ c 9

6
dc1 ⫺1

1 ⫺2
d c x1

x2

d ⫽ c5

7
d

c x1

x2

d ⫽ c 3 ⫺1

0 2
d c⫺2

1
dc x1

x2

d ⫽ c⫺2 3

2 ⫺1
d c 3

2
d

c x1

x2

d ⫽ c⫺2 1

⫺1 2
d c 3

⫺2
dc x1

x2

d ⫽ c3 ⫺2

1 4
d c⫺2

1
d

2x1 ⫹ 3x3 ⫽ 5

x1 ⫺ 2x2 ⫹ x3 ⫽ ⫺4

⫺x1 ⫹ 3x2 ⫽ 2

x1 ⫺ 2x2 ⫹ x3 ⫽ ⫺1

⫺x1 ⫹ x2 ⫽ 2

2x1 ⫹ 3x2 ⫹ x3 ⫽ ⫺3

x1 ⫺ 2x2 ⫽ 7

⫺3x1 ⫹ x2 ⫽ ⫺3

4x1 ⫺ 3x2 ⫽ 2

x1 ⫹ 2x2 ⫽ 1

AX ⫽ B.

£ 1 ⫺2 0

⫺3 1 ⫺1

2 0 4

§ £ x1

x2

x3

§ ⫽ £ 3

⫺2

5

§
£⫺2 0 1

1 2 1

0 1 ⫺1

§ £ x1

x2

x3

§ ⫽ £ 3

⫺4

2

§
c⫺3 1

⫺1 2
d c x1

x2

d ⫽ c⫺2

5
dc 2 ⫺1

1 3
d c x1

x2

d ⫽ c 3

⫺2
d

£1 0 ⫺1

3 1 ⫺1

0 0 0

§ ; £ 1 0 ⫺1

⫺3 1 ⫺2

0 0 1

§
£1 ⫺1 1

0 2 ⫺1

2 3 0

§ ; £ 3 3 ⫺1

⫺2 ⫺2 1

⫺4 ⫺5 2

§

7-4 Exercises

1. What is an identity matrix?

2. What is the (multiplicative) inverse of a real number? Does

every real number have an inverse?

3. What is the (multiplicative) inverse of a matrix? Does every

matrix have an inverse?

4. What is a singular matrix?

5. Describe the process for finding the inverse of a matrix by hand.

6. Explain how inverse matrices can be used to solve systems of

linear equations by hand.

7. Explain how inverse matrices can be used to solve systems of

linear equations on a graphing calculator.

8. How would you solve a linear system that has more variables

than equations?

9. How would you solve a linear system that has fewer variables

than equations?

10. How would you solve a linear system if the number of variables

and the number of equations are equal?

Perform the indicated operations in Problems 11–14.

11. 12. 

13. 

14.

In Problems 15–24, examine the product of the two matrices to

determine if each is the inverse of the other.

15. 16.

17. 18.

19. 20.

21.

22. £ 1 0 1

⫺3 1 ⫺2

0 0 1

§ ; £1 0 ⫺1

3 1 ⫺1

0 0 1

§
£ 1 2 0

0 1 0

⫺1 ⫺1 1

§ ; £ 1 ⫺2 0

0 1 0

1 ⫺1 0

§
c 7 4

⫺5 ⫺3
d ; c 3 4

⫺5 ⫺7
dc⫺5 2

⫺8 3
d ; c3 ⫺2

8 ⫺5
d

c 5 ⫺7

⫺2 3
d ; c 3 7

2 5
dc 2 2

⫺1 ⫺1
d ; c 1 1

⫺1 ⫺1
d

c⫺2 ⫺1

⫺4 2
d ; c1 ⫺1

2 ⫺2
dc 3 ⫺4

⫺2 3
d ; c3 4

2 3
d

£⫺2 1 3

2 4 ⫺2

5 1 0

§ £1 0 0

0 1 0

0 0 1

§
£1 0 0

0 1 0

0 0 1

§ £⫺2 1 3

2 4 ⫺2

5 1 0

§
c2 ⫺3

4 5
d c 1 0

0 1
dc1 0

0 1
d c 2 ⫺3

4 5
d
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47. 48. 

49. 50. 

51. 52. 

53. 54. 

55. 56. 

57. 58. 

59. 60. 

Write each system in Problems 61–68 as a matrix equation and

solve using inverses. [ Note: the inverse of each coefficient matrix

was found earlier in this exercise in the indicated problem. ]

61. 

(A)

(B)

(C)

(see Problem 43.)

62. 

(A)

(B)

(C)

(see Problem 44.)

63. 

(A)

(B)

(C)

(see Problem 45.)

64. 

(A)

(B)

(C)

(see Problem 46.)

65. 

(A)

(B)

(C)

(see Problem 51.)

k1  3, k2   2, k3  0

k1   1, k2  0, k3   4

k1  1, k2  1, k3  2

  x2  x3  k3

  x1   x2  x3  k2

 x1  x2  k1

k1  4, k2  5

k1   1, k2  9

k1   2, k2   3

 3x1   x2  k2

 11x1   4x2  k1

k1  6, k2  0

k1  8, k2   4

k1   5, k2  1

 2x1  3x2  k2

  5x1  7x2  k1

k1  0, k2   4

k1  6, k2  5

k1  3, k2   1

  2x1  3x2  k2

 3x1  4x2  k1

k1   3, k2   2

k1   4, k2  1

k1  2, k2  5

 2x1  5x2  k2

  x1  2x2  k1

£ 1  5  10

0 1 6

1  4  3

§£ 1 5 10

0 1 4

1 6 15

§
£ 1  1 0

2  1 1

0 1 1

§£ 2 1 1

1 1 0

 1  1 0

§
£ 4 2  1

1 1  1

 3  1 1

§£ 2 2  1

0 4  1

 1  2 1

§
£ 1  1 1

 2 3 2

3  3 2

§£ 1 2 5

3 5 9

1 1  2

§
£ 2  1 0

0 1 1

1 0 1

§£ 1  1 0

 1 1  1

0  1 1

§
c 5 4

4  3
dc 2 3

3 5
d

c 2  4

 3 6
dc 3 9

2 6
d 66. 

(A)

(B)

(C)

(see Problem 52.)

67.

(A)

(B)

(C)

(see Problem 53.)

68. 

(A) 

(B) 

(C) 

(see Problem 54.)

For matrices A and B and matrices C, D, and X,

solve each matrix equation in Problems 69–74 for X. Assume all

necessary inverses exist.

69. 70. 

71. 72. 

73. 74. 

75. Discuss the existence of for diagonal matrices of

the form

76. Discuss the existence of for upper triangular matri-

ces of the form

77. Find and for each of the following matrices.

(A) (B)

78. Based on your observations in Problem 77, if for a

square matrix A, what is Give a mathematical argument to

support your conclusion.

79. Find for each of the following matrices.

(A) (B)

80. Based on your observations in Problem 79, if exists for a

square matrix A, what is Give a mathematical argu-

ment to support your conclusion.

81. Find and for each of the following

pairs of matrices.

(A) and B  c 3 7

2 5
dA  c 3 4

2 3
d

B 1A 1A 1B 1,(AB) 1,

(A 1) 1?

A 1

A  c 5 5

 1 3
dA  c 4 2

1 3
d

(A 1) 1

A2?

A  A 1

A  c 2  1

3 2
dA  c 3 2

 4  3
d

A2A 1

A  c a b

0 d
d

2  2A 1

A  c a 0

0 d
d
2  2A 1

AX  C  BX  7X  DAX  C  3X

X  C  AX  BXX  AX  C

AX  BX  C  DAX  BX  C

n  1n  n

k1   2, k2  0, k3  1

k1  0, k2  4, k3  5

k1  3, k2   1, k3  0

 3x1   3x2   2x3  k3

  2x1   3x2   2x3  k2

 x1   x2   x3  k1

k1   6, k2  0, k3  2

k1  5, k2   1, k3  0

k1  0, k2  1, k3  4

 x1   x2   2x3  k3

 3x1   5x2   9x3  k2

 x1   2x2   5x3  k1

k1   1, k2  2, k3   5

k1  2, k2   3, k3  1

k1   2, k2  4, k3   1

x1  x3  k3

 x2   x3  k2

2x1   x2   k1
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(B) and

82. Based on your observations in Problems 81, which of the fol-

lowing is a true statement? Give a mathematical argument to

support your conclusion.

(A)

(B)

APPLICATIONS

Problems 83–86 refer to the encoding matrix 

83. CRYPTOGRAPHY Encode the message LEBRON JAMES with

the matrix A.

84. CRYPTOGRAPHY Encode the message KOBE BRYANT with

the matrix A.

85. CRYPTOGRAPHY The following message was encoded with the

matrix A. Decode the message.

31 12 150 55 57 20 150 59 103 39

160 61 61 22 192 73

86. CRYPTOGRAPHY The following message was encoded with the

matrix A.  Decode the message.

49 18 103 41 159 62 61 22 47 18

105 41

Problems 87–90 require the use of a graphing calculator. To use the

5 5 encoding matrix B given below, form a matrix with 5 rows

and as many columns as necessary to accommodate each message.

87. CRYPTOGRAPHY Encode the message NEW ENGLAND

PATRIOTS with the matrix B.

88. CRYPTOGRAPHY Encode the message PITTSBURGH

STEELERS with the matrix B.

89. CRYPTOGRAPHY The following message was encoded with the

matrix B. Decode the message.

32 25 55 19 41 51 64 103 39 100 62

109 114 62 92 58 115 105 73 113 39

110 85 65  111

90. CRYPTOGRAPHY The following message was encoded with the

matrix B. Decode the message.

44 45 88 29 82 51 61 86 45 84 35 63

74 37 77 46 108 61 72  65

Solve Problems 91–97 using systems of equations and matrix

inverses.

91. RESOURCE ALLOCATION A concert hall has 10,000 seats.  If

tickets are $20 and $30, how many of each type of ticket should be

B  E1 0 1 0 1

0 1 1 0 3

2 1 1 1 1

0 0 1 0 2

1 1 1 2 1

U

A  c 3 5

1 2
d

(AB) 1
 B 1A 1

(AB) 1
 A 1B 1

B  c 6 2

2 1
dA  c 1  1

2 3
d sold (assuming that all seats can be sold) to bring in each of the re-

turns indicated in the table?  Use decimals in computing the inverse.

Concert

1 2 3

Tickets sold 10,000 10,000 10,000

Return required $240,000 $250,000 $270,000

92. PRODUCTION SCHEDULING Labor and material costs for man-

ufacturing two guitar models are given in the following table:

Guitar Model Labor Cost Material Cost

A $30 $20

B $40 $30

If a total of $3,000 a week is allowed for labor and material, how

many of each model should be produced each week to exactly use

each of the allocations of the $3,000 indicated in the following

table? Use decimals in computing the inverse.

Weekly Allocation

1 2 3

Labor $1,800 $1,750 $1,720

Material $1,200 $1,250 $1,280

93. CIRCUIT ANALYSIS A direct current electric circuit consisting

of conductors (wires), resistors, and batteries is diagrammed in the

figure.

If I1, I2, and I3 are the currents (in amperes) in the three branches

of the circuit and V1 and V2 are the voltages (in volts) of the two

batteries, then Kirchhoff’s* laws can be used to show that the cur-

rents satisfy the following system of equations:

Solve this system for:

(A) V1  10 volts, V2  10 volts

(B) V1  10 volts, V2  15 volts

(C) V1  15 volts, V2  10 volts

 I2   2I3  V2

 I1   I2  V1

 I1  I2   I3  0

    

1 ohm 1 ohm 2 ohms

V1

I1 I2 I3

V2

*Gustav Kirchhoff (1824–1887), a German physicist, was among the

first to apply theoretical mathematics to physics. He is best known for

his development of certain properties of electric circuits, which are now

known as Kirchhoff’s laws.
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94. CIRCUIT ANALYSIS Repeat Problem 93 for the electric circuit

shown in the figure.

95. GEOMETRY The graph of f(x)  ax2
 bx  c passes through

the points (1, k1), (2, k2), and (3, k3). Determine a, b, and c for:

(A) k1   2, k2  1, k3  6

(B) k1  4, k2  3, k3   2

(C) k1  8, k2   5, k3  4

    

1 ohm 2 ohms 2 ohms

V1

I1 I2 I3

V2

 2I2   2I3  V2

 I1   2I2  V1

 I1  I2   I3  0

96. GEOMETRY Repeat Problem 95 if the graph passes through the

points ( 1, k1), (0, k2), and (1, k3).

97. DIETS A biologist has available two commercial food mixes

with the following percentages of protein and fat:

Mix Protein (%) Fat (%)

A 20 2

B 10 6

How many ounces of each mix should be used to prepare each of

the diets listed in the following table?

Diet

1 2 3

Protein 20 oz 10 oz 10 oz

Fat 6 oz 4 oz 6 oz

7-5 Determinants and Cramer’s Rule

Z Defining First- and Second-Order Determinants

Z Evaluating Third-Order Determinants

Z Using Cramer’s Rule to Solve Systems of Equations

In this section, we’ll study one more method for solving systems of linear equations using

matrices. Like the inverse method, it works only for systems with the same number of equa-

tions and variables. The biggest advantage is that it’s purely computational—it requires very

little symbol manipulation. The method is based on determinants.

Z Defining First- and Second-Order Determinants

For any square matrix A, the determinant of A is a real number denoted by det (A) or .

If A is a square matrix of order n, then det (A) is called a determinant of order n. If

is a square matrix of order 1, then

is a first-order determinant. Now we proceed to define determinants of higher order.

Given a second-order square matrix the second-order determinant

of A is

(1)det (A)  `a11 a12

a21 a22

`  a11a22  a21a12

A  ca11 a12

a21 a22

d ,

det (A)  a11

A  [a11]

冟A冟*

*The absolute value notation will now have two interpretations: the absolute value of a real number or the

determinant of a square matrix. These concepts are not the same. You must always interpret in terms of the

context in which it is used.

冟A冟
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Formula (1) is easily remembered if you notice that the expression on the right is the

product of the elements on the principal diagonal, from upper left to lower right, minus the

product of the elements on the secondary diagonal, from lower left to upper right.

EXAMPLE 1 Evaluating a Second-Order Determinant

Find `⫺1 2

⫺3 ⫺4
` .

SOLUTIONS
det (A)

�⫽ 10

⫽ 4 ⫺ (⫺6)

⫽ (⫺1)(⫺4) ⫺ (⫺3)(2)

⫽ `⫺1 2

⫺3 ⫺4
`

MATCHED PROBLEM 1 Find 

�

` 3 ⫺5

4 ⫺2
` .

ZZZ CAUTION ZZZ

Remember that is a matrix, but represents a real number, 

the determinant of A. We will often refer to as a determinant, and refer to 

the process of finding the real number it represents as “evaluating the determinant.”

` 3 ⫺5

4 ⫺2
`

` 3 ⫺5

4 ⫺2
`A ⫽ c 3 ⫺5

4 ⫺2
d

Technology Connections

Most graphing calculators have a command to calculate de-

terminants. On the TI-84, it is on the MATRIX-MATH menu.

In Figure 1, the determinant from Example 1 is calculated.

Z Figure 1

Z Evaluating Third-Order Determinants

Given the matrix the third-order determinant of A is

det (2)(A) ⫽ † a11 a12 a13

a21 a22 a23

a31 a32 a33

† ⫽ a11a22a33 ⫺ a11a32a23 ⫹ a21a32a13 ⫺ a21a12a33

⫹ a31a12a23 ⫺ a31a22a13

A ⫽ Ca11 a12 a13

a21 a22 a23

a31 a32 a33

S ,



Don’t panic! You don’t need to memorize formula (2). After we introduce the ideas of

minor and cofactor below, we will state a theorem that can be used to obtain the same result

with much less trouble.

The minor of an element in a third-order determinant is a second-order determinant

obtained by deleting the row and column that contains the element. For example, in the

determinant in formula (2),

Deletions are usually done mentally.

Minor of a23  

Minor of a32   a11a23  a21a13† a11 a12 a13

a21 a22 a23

a31 a32 a33

†` a11 a13

a21 a23

`
 a11a32  a31a12† a11 a12 a13

a21 a22 a23

a31 a32 a33

†` a11 a12

a31 a32

`
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Write the minors of the other seven elements in the determinant in formula (2).ZZZ EXPLORE-DISCUSS 1

A quantity closely associated with the minor of an element is the cofactor of an ele-

ment (from the ith row and jth column), which is defined as the product of the minor

of and ( 1)i j.aij

aij

Z DEFINITION 1 Cofactor

Cofactor of (Minor of aij)aij  ( 1)i j

So a cofactor is just a minor with either a positive or negative sign. The sign is deter-

mined by raising to a power that is the sum of the numbers indicating the row and col-

umn in which the element appears. Note that is 1 if is even and if 

is odd. So if we are given the determinant

then

Cofactor of 

Cofactor of  a11  ( 1)1 1 ` a22 a23

a32 a33

`  ` a22 a23

a32 a33

`  a22a33  a32a23

 a23  ( 1)2 3 ` a11 a12

a31 a32

`   ` a11 a12

a31 a32

`   (a11a32  a31a12)

† a11 a12 a13

a21 a22 a23

a31 a32 a33

†
i  j 1i  j( 1)i j

 1

EXAMPLE 2 Finding Cofactors

Find the cofactors of and 5 in the determinant

† 2 0 3

1  6   5

 1 2 0

†
 2



[Note: The sign in front of the minor, can be determined rather mechanically by

using a checkerboard pattern of and signs over the determinant, starting with  in

the upper left-hand corner:

Use either the checkerboard or the exponent method—whichever is easier for you—to deter-

mine the sign in front of the minor.]

Theorem 1 will give us a step-by-step procedure for finding third-order determinants

without having to memorize formula (2).

 

 

 

 

 

 

 

 

 

  

( 1)i j,
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SOLUTION
ⴚ2 is a11

5 is a23

�   [( 2)(2)  ( 1)(0)]  4

 Cofactor of 5  ( 1)2 3 ` 2 0

 1 2
`   ` 2 0

 1 2
`

  ( 6)(0)  (2)(5)   10

 Cofactor of  2  ( 1)1 1 ` 6 5

2 0
`  ` 6 5

2 0
`

MATCHED PROBLEM 2 Find the cofactors of 2 and 3 in the determinant in Example 2.

�

Z THEOREM 1 Computing a Third-Order Determinant

The value of a determinant of order 3 is the sum of three products obtained by

multiplying each element in any row or any column by its cofactor. This is called

expanding along a row or column.

Proving Theorem 1 requires six different calculations: expanding an arbitrary third-

order determinant along each of the rows and columns, and showing that the result matches

formula (2). You will be asked to complete a couple of those cases in the exercises.

EXAMPLE 3 Evaluating a Third-Order Determinant

Evaluate † 2  2 0

 3 1 2

1  3  1

†
SOLUTION We can choose any row or column to expand along. We will choose the first row because

of the zero: we won’t need to find that cofactor because it will be multiplied by zero.

�  (2)(5)  (2)(1)  12

  (2)(1)[(1)( 1)  ( 3)(2)]  ( 2)( 1)[( 3)( 1)  (1)(2)]

  2 c ( 1)1 1 ` 1 2

 3  1
` d  ( 2) c ( 1)1 2 `  3 2

1  1
` d  0

 † 2  2 0

 3 1 2

1  3  1

†  a11 aCofactor

of a11
b  a12 aCofactor

of a12
b  a13 aCofactor

of a13
b



It’s important to note that the determinant will work out the same regardless of which row

or column you choose to expand along. So if possible, you should choose a row or column

with one or more zeros to minimize the number of computations.

Z Using Cramer’s Rule to Solve Systems of Equations

Now we will see how determinants can be used to solve systems of equations. We’ll start

by investigating two equations in two variables, and then extend our results to three equa-

tions in three variables.

Instead of thinking of each system of linear equations in two variables as a different

problem, let’s see what happens when we attempt to solve the general system

(3A)

(3B)

once and for all, in terms of the unspecified real constants and 

We proceed by multiplying equations (3A) and (3B) by suitable constants so that when

the resulting equations are added, left side to left side and right side to right side, one of

the variables drops out. Suppose we choose to eliminate y. What constant should we use to

make the coefficients of y the same except for the signs? Multiply equation (3A) by and

(3B) by then add:

a22(3A):

ⴚa12(3B):

y is eliminated. Factor out x.

Solve for x.

At this point, the numerator and denominator might remind you of second-order deter-

minants. In fact, the value of x can be written as

Similarly, starting with system (3A) and (3B) and eliminating x (this is left as an exer-

cise), we obtain

These results are summarized in Theorem 2, Cramer’s rule, which is named after the

Swiss mathematician Gabriel Cramer (1704–1752).

y  

` a11

a21

k1

k2

`
` a11

a21

a12

a22
`

x  

` k1

k2

a12

a22

`
` a11

a21

a12

a22
`

a11a22 ⴚ a21a12 � 0 x  
k1a22  k2a12

a11a22  a21a12

 (a11a22  a21a12)x  k1a22  k2a12

 a11a22x  a21a12x  0y   k1a22  k2a12

  a21a12x  a12a22y   k2a12

a11a22x  a12a22y   k1a22

 a12;

a22

k2.a11, a12, a21, a22, k1,

a21x  a22y  k2

a11x  a12y  k1
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MATCHED PROBLEM 3

Evaluate 

�

† 2 1  1

 2  3 0

 1 2 1

†



The determinant D is called the coefficient determinant. If then the system has

exactly one solution, which is given by Cramer’s rule. If, on the other hand, then it

can be shown that the system is either inconsistent and has no solutions or is dependent

and has an infinite number of solutions. In that case, we would need to use other methods

to determine the exact nature of the solutions.

D  0,

D  0,
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Z THEOREM 2 Cramer’s Rule for Two Equations and Two Variables

Given the system

then

x  

` k1

k2

a12

a22

`
D

    and   y  

` a11

a21

k1

k2

`
D

a11x  a12y  k1

a21x  a22y  k2

    with    D  ` a11

a21

a12

a22

`  0

EXAMPLE 4 Solving a Two-Variable System with Cramer’s Rule

Solve using Cramer’s rule:    3x  5y  2

 4x  3y   1

SOLUTIONS First find the determinant of the coefficient matrix:

Now replace the x column with the constants and find the determinant, then divide by  11.

Now repeat, this time replacing the y column with the constants.

The solution to the system is .
�

x   
1

11
, y   

5

11

y  

` 3

 4

2

 1
`

 11
 
 3  ( 8)

 11
  

5

11

x  

` 2

 1

 5

3
`

 11
 

6  5

 11
  

1

11

D  ` 3  5

 4 3
`  9  20   11

MATCHED PROBLEM 4 Solve using Cramer’s rule:

�

 4x  3y   10

3x  2y   4

Cramer’s rule can be generalized completely for any size linear system that has the

same number of variables as equations. However, it cannot be used to solve systems where

the number of variables is not equal to the number of equations. In Theorem 3 we state with-

out proof Cramer’s rule for three equations in three variables.



You can easily remember these determinant formulas for x, y, and z if you observe the

following:

1. Determinant D is formed from the coefficients of x, y, and z, keeping the same rela-

tive position in the determinant as found in the system of equations.

2. Determinant D appears in the denominators for x, y, and z.

3. The numerator for x can be obtained from D by replacing the coefficients of x 

and with the constants and respectively. Similar statements can be made

for the numerators for y and z.

k3,k1, k2,a31)

(a11, a21,
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Z THEOREM 3 Cramer’s Rule for Three Equations in Three Variables

Given the system

then

x  

† k1

k2

k3

a12

a22

a32

a13

a23

a33

†
D

    y  

† a11

a21

a31

k1

k2

k3

a13

a23

a33

†
D

    z  

† a11

a21

a31

a12

a22

a32

k1

k2

k3

†
D

a11x  a12y  a13z  k1

a21x  a22y  a23z  k2

a31x  a32y  a33z  k3

    with    D   † a11

a21

a31

a12

a22

a32

a13

a23

a33

†  0

EXAMPLE 5 Solving a Three-Variable System with Cramer’s Rule

Solve using Cramer’s rule:

x  z  3

3y  z   4

x  y  2

SOLUTION

�

 z  

† 10
1

  1

3

0

2

 4

3

†
2

  
1

2

 y  

† 10
1

2

 4

3

0

 1

1

†
2

  
3

2

 x  

† 2

 4

3

  1

3

0

0

 1

1

†
2

  
7

2

 D  † 10
1

  1

3

0

0

 1

1

†  2



Cofactor expansion can be used to find determinants of orders higher than 3, so

Cramer’s rule can be used for systems with more than three variables. For large systems,

however, the Gauss-Jordan method, which involves fewer arithmetic operations than

Cramer’s Rule, is a more practical choice.
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MATCHED PROBLEM 5 Solve using Cramer’s rule:

�

x  y  1

x  y  z  0

3x  z  5

ANSWERS TO MATCHED PROBLEMS

1. 14 2. Cofactor of cofactor of 3. 3

4. 5. x  
6
5, y   

1
5, z   

7
5x  

8
17, y   

46
17

3   42  13;

17. 2x  y  1 18. x  3y  1

5x  3y  2 2x  8y  0

19. 2x  y   3 20.  3x  2y  1

 x  3y  3 2x  3y   3

21. 4x  3y  4 22. 5x  2y   1

3x  2y   2 2x  3y  2

Problems 23–30 pertain to the following determinant:

Write the minor of each element given in Problems 23–26. Leave

the answer in determinant form.

23. 24. 25. 26.

Write the cofactor of each element given in Problems 27–30, and

evaluate each.

27. 28. 29. 30.

Evaluate the determinant in Problems 31–40 using cofactors.

31. 32.

33. 34. † 4  2  0

9 5 4

1 2 0

†† 0 1 5

3  7 6

0  2  3

†
† 2  3  5

0  3 1

0 6 2

†† 1 0 0

 2 4 3

5  2 1

†

a12a23a33a11

a12a23a33a11

† 5  1  3

3 4 6

0  2 8

†

7-5 Exercises

1. Explain the difference between and 

2. Explain the difference between a matrix and a minor.

3. Explain the difference between a minor and a cofactor.

4. How do you evaluate a third-order determinant?

5. If A is the coefficient matrix for a linear system and

what can you conclude about the solution set for

the system?

6. Can you use Cramer’s rule to solve a linear system with a 

3   2 coefficient matrix? Explain.

7. Can you use Cramer’s rule to solve a linear system with a 

4   4 coefficient matrix? Explain.

8. List all the possible solution methods for linear systems that we

have discussed in this chapter. Which is your favorite and why?

Evaluate each second-order determinant in Problems 9–14.

9. 10.

11. 12.

13. 14.

Solve the system in Problems 15–22 using Cramer’s rule.

15. x  2y  1 16. x  2y  3

x  3y   1 x  3y  5

`  0.7  2.3

1.9  4.8
`` 4.3  1.2

 5.1 3.7
`

` 9  2

4 0
`` 3  7

 5 6
`

` 8  3

4 1
`` 5 4

2 3
`

det (A)  0,

2  2

` a11 a12

a21 a22

` .c a11 a12

a21 a22

d



35. 36. 

37. 38. 

39. 40. 

Solve Problems 41–44 to two significant digits using Cramer’s rule.

41. 0.9925x  0.9659y  0

0.1219x  0.2588y  2,500

42. 0.9877x  0.9744y  0

0.1564x  0.2250y  1,900

43. 0.9954x  0.9942y  0

0.0958x  0.1080y  155

44. 0.9973x  0.9957y  0

0.0732x  0.0924y  112

Solve Problems 45–52 using Cramer’s rule:

45. 46.

47. 48.

49. 50.

51. 52.

Discuss the number of solutions for the systems in Problems 53 and

54 where a and b are real numbers. Use Cramer’s rule where

appropriate and Gauss–Jordan elimination otherwise.

53. ax  3y  b 54. 2x  ay  b

2x  4y  5 3x  4y  7

In Problems 55 and 56, use Cramer’s rule to solve for x only.

55. 56.

In Problems 57 and 58, use Cramer’s rule to solve for y only.

57. 58.

3x  4y  2z  45x  3y  2z  0

 x  y  2z  515x  7y  9z   13

2x  y  4z  1512x  14y  11z  5

 4x  y  2z  1x  y  z  3

3x  y  z  2 4x  3y  2z   11

x  4y  3z  252x  3y  z   3

x  y  z  2x  y  2z  4

x  y  z   1x  y  z  2

2x  y  22y  z   3

x  y  z  1x  3y   2

2x  y   3x  2z  3

x  z  33y  z   1

 x  3z  7 y  z  1

2y  z  32y  z  0

x  3y   3x  y  1

 x  z  5 x  z   3

2y  z  02y  z   5

x  y   4x  y  0

† 4  6 3

 1 4 1

5  6 3

†† 1 4 3

2 1 6

3  2 9

†
† 3 2 1

 1 5 1

2 3 1

†† 1 4 1

1 1  2

2 1  1

†
† 0 2  1

 6 3 1

7  9  2

†† 1 2  3

 2 0  6

4  3 2

†
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In Problems 59 and 60, use Cramer’s rule to solve for z only.

59. 60.

If A is a matrix, det A can be evaluated by the following

diagonal expansion. Form a matrix by augmenting A on the

right with its first two columns, and compute the diagonal products

indicated by the arrows:

Diagonal expansion formula

p4 p5 p6 p1 p2 p3

The determinant of A is given by [compare with formula (2)]

det A  p1  p2  p3  p4  p5  p6

 a11a22a33  a12a23a31  a13a21a32   a13a22a31

 a11a23a32  a12a21a33

[Caution: The diagonal expansion procedure works only for 

matrices. Do not apply it to matrices of any other size.]

Use the diagonal expansion formula to evaluate the determinants in

Problems 61 and 62.

61. 62.

A square matrix is called an upper triangular matrix if all elements

below the principal diagonal are zero. In Problems 63–66,

determine whether the statement is true or false. If true, explain

why. If false, give a counterexample.

63. If the determinant of an upper triangular matrix is 0, then the

elements on the principal diagonal are all 0.

64. If A and B are upper triangular matrices, then 

65. The determinant of an upper triangular matrix is the product of

the elements on the principal diagonal.

66. If A and B are upper triangular matrices, then 

67. Show that the expansion of the determinant

by the first column is the same as its expansion by the third row,

and that both match formula (2).

68. Repeat Problem 67, using the second row and the third column.

69. If

and

show that det (AB)  (det A)(det B).

B  c 1 3

2 1
dA  c 2 3

1  2
d

† a11 a12 a13

a21 a22 a23

a31 a32 a33

†

(det A)(det B).det (AB)  

det A  det B.det (A  B)  

† 4 1  5

1 2  6

 3  1 7

†† 2 6  1

5 3  7

 4  2 1

†

3  3

Ca11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

S
p1, p2, . . . , p6

3  5

3  3

8x  5y  4z  45x  7y  10z  33

10x  8y  7z  1 9x  8y  7z   13

13x  11y  10z  23x  4y  5z  18



70. If

and

show that 

It is clear that is a solution to each of the

systems given in Problem 71. Use Cramer’s rule to determine

whether this solution is unique. [Hint: If what can you

conclude? If what can you conclude?]

71. (a). (b).

72. Prove Theorem 2 for y.

APPLICATIONS

73. REVENUE ANALYSIS A supermarket sells two brands of coffee:

brand A at $p per pound and brand B at $q per pound. The daily de-

mand equations for brands A and B are, respectively,

(1)

(both in pounds). The daily revenue R is given by

R  xp  yq

y  300  2p  3q

x  200  6p  4q

 2x  y  3z  0x  y  3z  0

5x  5y  9z  04x  y  6z  0

3x  y  3z  0x  4y  9z  0

D  0,

D  0,

x  0, y  0, z  0

det (AB)  (det A)(det B).

B  c w x

y z
dA  c a b

c d
d
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(A) To analyze the effect of price changes on the daily revenue, an

economist wants to express the daily revenue R in terms of p and q

only. Use system (1) to eliminate x and y in the equation for R, ex-

pressing the daily revenue in terms of p and q.

(B) To analyze the effect of changes in demand on the daily rev-

enue, the economist now wants to express the daily revenue in

terms of x and y only. Use Cramer’s rule to solve system (1) for p

and q in terms of x and y and then express the daily revenue R in

terms of x and y.

74. REVENUE ANALYSIS A company manufactures ten-speed and

three-speed bicycles. The weekly demand equations are

(2)

where $p is the price of a ten-speed bicycle, $q is the price of a

three-speed bicycle, x is the weekly demand for ten-speed bicycles,

and y is the weekly demand for three-speed bicycles. The weekly

revenue R is given by

(A) Use system (2) to express the daily revenue in terms of x and y

only.

(B) Use Cramer’s rule to solve system (2) for x and y in terms of

p and q, and then express the daily revenue R in terms of p and q

only.

R  xp  yq

q  130  4x  4y

p  230  10x  5y

7-1 Systems of Linear Equations

A system of two linear equations in two variables is a system of the

form

ax   by   h
(1)

cx   dy   k

where x and y are variables; a, b, c, and d are real numbers called

the coefficients of x and y, and h and k are real numbers called the

constant terms in the equations. The ordered pair of numbers 

(x0, y0) is a solution to system (1) if each equation is satisfied by the

pair. The set of all such ordered pairs of numbers is called the solu-

tion set for the system. To solve a system is to find its solution set.

In general, a system of linear equations has exactly one

solution, no solution, or infinitely many solutions. A system of lin-

ear equations is consistent if it has one or more solutions and

inconsistent if no solutions exist. A consistent system is said to be

independent if it has exactly one solution and dependent if it has

more than one solution.

To solve a system by substitution, solve either equation for

either variable, substitute in the other equation, solve the resulting

linear equation in one variable, and then substitute this value into the

expression obtained in the first step to find the other variable.

Two systems of equations are equivalent if both have the same

solution set. To solve a system of equations using elimination by

addition, use Theorem 2 to find a simpler equivalent system whose

solution is obvious.

As stated in Theorem 2, a system of linear equations is trans-

formed into an equivalent system if:

1. Two equations are interchanged.

2. An equation is multiplied by a nonzero constant.

3. A constant multiple of another equation is added to a given

equation.

The solution set S of a dependent system is often expressed

in terms of a parameter. Any element in S is called a particular

solution.

Any equation that can be written in the form

ax   by   cz   k

where a, b, c, and k are constants (not all a, b, and c zero) is called

a linear equation in three variables. The method of elimination

by addition can be used for systems of linear equations in three

variables.
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7-2 Solving Systems of Linear Equations Using 

Gauss–Jordan Elimination

The method of solution using elimination by addition can be trans-

formed into a more efficient method for larger-scale systems by the

introduction of an augmented matrix. A matrix is a rectangular ar-

ray of numbers written within brackets. Each number in a matrix is

called an element of the matrix. If a matrix has m rows and n

columns, it is called an m ⴛ n matrix (read “m by n matrix”). The

expression m n is called the size of the matrix, and the numbers m

and n are called the dimensions of the matrix. A matrix with n rows

and n columns is called a square matrix of order n. A matrix with

only one column is called a column matrix, and a matrix with only

one row is called a row matrix. The position of an element in a ma-

trix is the row and column containing the element. This is usually

denoted using double subscript notation aij, where i is the row and

j is the column containing the element aij. The principal diagonal

of a matrix A consists of the elements aii, i  1, 2, . . . , n. Rather than

using x, y, and z to denote variables, we will use subscript notation

x1, x2, and x3.

Related to the system

x1   5x2  3x3   4

6x1  4x3   1

 2x1   3x2   4x3  7

are the following matrices:

Coefficient Constant Augmented coefficient

matrix matrix matrix

Two augmented matrices are row-equivalent, denoted by the

symbol ⬃ between the two matrices, if they are augmented matri-

ces of equivalent systems of equations. An augmented matrix is

transformed into a row-equivalent matrix if any of the following

row operations is performed:

1. Two rows are interchanged.

2. A row is multiplied by a nonzero constant.

3. A constant multiple of another row is added to a given row.

These correspond to the operations on equations from Theorem 2 in

Section 7–1. The following symbols are used to describe these row

operations:

1. means “interchange row i with row j.”

2. means “multiply row i by the constant k.”

3. means “multiply row j by the constant k and add

to row i.”

As before, our objective is to start with the augmented matrix

of a linear system and transform it using row operations into a sim-

ple form where the solution can be found easily. The simple form,

called the reduced form, is achieved if:

1. Each row consisting entirely of 0’s is below any row having at

least one nonzero element.

2. The leftmost nonzero element in each row is 1.

kRj  Ri S Ri

kRi S Ri

Ri 4 Rj

£ 1 5  3

6 0  4

 2 3 4

 †  41
7

§£4

1

7

§£ 1 5  3

6 0  4

 2 3 4

§

3. The column containing the leftmost 1 of a given row has 0’s

above and below the 1.

4. The leftmost 1 in any row is to the right of the leftmost 1 in the

preceding row.

A reduced system is a system of linear equations that corresponds

to a reduced augmented matrix. When a reduced system has more

variables than equations and contains no contradictions, the system

is dependent and has infinitely many solutions.

The Gauss–Jordan elimination procedure for solving a system

of linear equations is given in step-by-step form as follows:

Step 1. Choose the leftmost nonzero column, and use appropriate

row operations to get a 1 at the top.

Step 2. Use multiples of the row containing the 1 from step 1 to get

zeros in all remaining places in the column containing this 1.

Step 3. Repeat step 1 with the submatrix formed by (mentally)

deleting the row used in step 2 and all rows above this row.

Step 4. Repeat step 2 with the entire matrix, including the men-

tally deleted rows. Continue this process until the entire

matrix is in reduced form.

If at any point in the preceding process we obtain a row with all 0’s

to the left of the vertical line and a nonzero number n to the right,

we can stop, since we have a contradiction: 0   n, We can

then conclude that the system has no solution. If this does not hap-

pen and we obtain an augmented matrix in reduced form without

any contradictions, the solution can be found by converting back to

equation form.

7-3 Matrix Operations

Two matrices are equal if they are the same size and their corre-

sponding elements are equal. The sum of two matrices of the same

size is a matrix with elements that are the sums of the correspon-

ding elements of the two given matrices. Matrix addition is com-

mutative and associative. A matrix with all zero elements is called

the zero matrix. The negative of a matrix M, denoted  M, is a

matrix with elements that are the negatives of the elements in M. If

A and B are matrices of the same size, then we define subtraction

as follows: A B  A  ( B). The product of a number k and a

matrix M, denoted by kM, is a matrix formed by multiplying each

element of M by k. The product of a row matrix and an

column matrix is a matrix given by

1 ⴛ n

n ⴛ 1

1 ⴛ 1

If A is an matrix and B is a matrix, then the matrix

product of A and B, denoted AB, is an m  n matrix whose ele-

ment in the ith row and jth column is the real number obtained

from the product of the ith row of A and the jth column of B. If

the number of columns in A does not equal the number of rows 

in B, then the matrix product AB is not defined. Matrix multi-

plication is not commutative, and the zero property does not

hold for matrix multiplication. That is, for matrices A and B,

the matrix product AB can be zero without either A or B being the

zero matrix.

p  nm  p

  [a1b1  a2b2  
# # #  anbn ]≥ b1

b2

o

bn

¥[a1 a2 . . . an ]

1  1n  1

1  n

n  0.
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7-4 Solving Systems of Linear Equations Using 

Matrix Inverse Methods

The identity matrix for multiplication for the set of all square ma-
trices of order n is the square matrix of order n, denoted by I, with
1’s along the principal diagonal (from upper left corner to lower
right corner) and 0’s elsewhere. If M is a square matrix of order n
and I is the identity matrix of order n, then

IM  MI  M

If M is a square matrix of order n and if there exists a matrix M 1

(read “M inverse”) such that

M 1M   MM 1
  I

then M 1 is called the multiplicative inverse of M or, more simply,
the inverse of M. If the augmented matrix is transformed by
row operations into then the resulting matrix B is M 1. If,
however, we obtain all 0’s in one or more rows to the left of the verti-
cal line, then M 1 does not exist and M is called a singular matrix.

A system of linear equations with the same number of vari-
ables as equations such as

a11x1 a12x2   a13x3  k1

a21x1   a22x2   a23x3   k2

a31x1   a32x2   a33x3   k3

can be written as the matrix equation

A X B

If the inverse of A exists, then the matrix equation has a unique so-
lution given by

X   A 1B

After multiplying B by A 1 on the left, it is easy to read the solution
to the original system of equations.

7-5 Determinants and Cramer’s Rule

Associated with each square matrix A is a real number called the
determinant of the matrix. The determinant of A is denoted by
det A, or simply by writing the array of elements in A using ver-
tical lines in place of square brackets. For example,

det c a11

a21

a12

a22

d  ` a11

a21

a12

a22

`

£ a11 a12 a13

a21 a22 a23

a31 a32 a33

§ £ x1

x2

x3

§  £ k1

k2

k3

§

[ I | B ] ,
[M | I ]

A determinant of order n is a determinant with n rows and n

columns.
The value of a second-order determinant is the real number

given by

The value of a third-order determinant is the sum of three prod-
ucts obtained by multiplying each element of any one row (or each
element of any one column) by its cofactor. The cofactor of an el-

ement (from the ith row and jth column) is the product of the mi-
nor of and The minor of an element is the determi-
nant remaining after deleting the ith row and jth column.

Systems of equations having the same number of variables as
equations can also be solved using determinants and Cramer’s rule.
Cramer’s rule for three equations and three variables is as fol-
lows: Given the system

then

Cramer’s rule can be generalized completely for any size linear
system that has the same number of variables as equations. The for-
mulas are easily remembered if you observe the following:

1. Determinant D is formed from the coefficients of x, y, and z,
keeping the same relative position in the determinant as found in
the system of equations.

2. Determinant D appears in the denominators for x, y, and z.

3. The numerator for x can be obtained from D by replacing the
coefficients of x and with the constants and

respectively. Similar statements can be made for the numera-
tors for y and z.

Cramer’s rule is rarely used to solve systems of order higher
than 3 by hand, because more efficient methods are available.
Cramer’s rule, however, is a valuable tool in more advanced theoret-
ical and applied mathematics.

k3,
k1, k2,a31)(a11, a21,

x  

† k1

k2

k3

a12

a22

a32

a13

a23

a33

†
D

 y  

† a11

a21

a31

k1

k2

k3

a13

a23

a33

†
D

 z  

† a11

a21

a31

a12

a22

a32

k1

k2

k3

†
D

a11x  a12 y  a13 z  k1

a21x  a22 y  a23 z  k2

a31x  a32 y  a33 z  k3

  with  D  † a11

a21

a31

a12

a22

a32

a13

a23

a33

†  0

aij( 1)i j.aij

aij

` a11

a21

a12

a22

`  a11a22  a21a12
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Work through all the problems in this chapter review and check

answers in the back of the book. Answers to all review problems

are there, and following each answer is a number in italics

indicating the section in which that type of problem is discussed.

Where weaknesses show up, review appropriate sections in the text.

Solve the system in Problems 1–5 using substitution or

elimination by addition.

1. 2.

  2x  4y  13x  2y  0
3x  6y  52x  y  7
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3. 4.

5.

6. Solve the system by graphing.

Perform each of the row operations indicated in Problems 7–9 on

the following augmented matrix:

7. 8.

9.

In Problems 10–12, write the linear system corresponding to each

reduced augmented matrix and solve.

10. 11.

12.

In Problems 13–21, perform the operations that are defined, given

the following matrices:

13. AB 14. CD 15. CB

16. AD 17. A  B 18. C  D

19. A  C 20. 2A 5B 21. CA  C

22. Find the inverse of

Show that A 1A I.

23. Write the system

3x1 2x2 k1

4x1 3x2 k2

as a matrix equation, and solve using matrix inverse methods for:

(A) k1 3, k2 5 (B) k1 7, k2 10

(C) k1 4, k2 2

Evaluate the determinants in Problems 24 and 25.

24. 25. † 20
1

3

5

 4

 4

0

 2

†` 2

 5

 3

 1
`

A  c 4 7

 1  2
d

D  c 3

 2
dC  [ 1 4]B  c 1 5

 4 6
dA  c4  2

0 3
d

c 1  1

0 0
 `  4

0
d

c 1  1

0 0
 `  4

1
dc1 0

0 1
 `  4

 7
d

( 3)R1  R2S R2

1
3R2S R2R1 4 R2

c 1  4

3  6
 `  5

12
d

 x  3y   1

 3x  2y  8

 3x  4y  3z  3

 x  2y  2z  4

 2x   y   z  5

 2x   y  5z   3

  x  4y  4z  1  2x   32 
y  4

 x  3y   z  44x   3y   8 26. Solve the system using Cramer’s rule:

27. Use Gauss–Jordan elimination to solve the system

x1 x2  4

2x1  x2  2

Then write the linear system represented by each augmented ma-

trix in your solution, and solve each of these systems graphically.

Discuss the relationship between the solutions of these systems.

28. Use an intersection routine on a graphing calculator to approxi-

mate the solution of the following system to two decimal places:

Solve the system in Problems 29–34 using Gauss–Jordan elimination.

29. 30.

31. 32.

33. 34.

In Problems 35–40, perform the operations that are defined, given

the following matrices:

35. AD 36. DA 37. BC

38. CB 39. DE 40. ED

41. Find the inverse of

Show that AA 1
 I.

42. Write the system

x1 2x2 3x3 k1

2x1 3x2 4x3 k2

x1 2x2 x3 k3

as a matrix equation, and solve using matrix inverse methods

for:

(A) k1  1, k2  3, k3  3

(B) k1  0, k2  0, k3   2

(C) k1   3, k2   4, k3  1

A  £ 1 0 4

 2 1 0

4  1 4

§

E  c 9  3

 6 2
dD  c7 0  5

0 8  2
d

C  [2 4  1]B  £ 6

0

 4

§A  £ 1 2

4 5

 3  1

§

 x1   3x2    2

 3x1   x2   2x3    3 2x1   x2   0

 x1   2x2   x3   2  x1   2x2   1

3x1  5x2   1 x1  2x2  x3  3

2x1  3x2  x3   32x1  3x2  4x3  3

x1  2x2  x3  2 x1  2x2  3x3  1

x2   2x3  4

x1   x3   2 x1  3x2  8

x1   x2  1 3x1  2x2  3

  2x  7y  10

 x  3y   9

 x  3y   1

 3x  2y  8
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Evaluate the determinants in Problems 43 and 44.

43. 44. 

45. Solve for y only using Cramer’s rule:

46. Solve using Gauss–Jordan elimination:

47. Show that

48. Discuss the number of solutions for the system corresponding to

the reduced form shown here if

(A) m 0

(B) m  0 and n  0

(C) m  0 and n   0

49. Discuss the number of solutions for a system of n equations in n

variables if the coefficient matrix:

(A) Has an inverse.

(B) Does not have an inverse.

50. If A is a nonzero square matrix of order n satisfying A2
  0, can

A 1 exist? Explain.

51. For n n matrices A and C and n 1 column matrices B and X,

solve for X assuming all necessary inverses exist:

AX B  CX

52. Find the inverse of

Show that A 1A  I.

53. Clear the decimals in the system

by multiplying the first two equations by 100. Then write the re-

sulting system as a matrix equation and solve using the inverse

found in Problem 52.

 x1   x2   x3   7,000

 0.04x1   0.05x2   0.06x3   120

 0.04x1   0.05x2   0.06x3   360

A  £ 4 5 6

4 5  6

1 1 1

§

£ 1 0  3

0 1 2

0 0 m

 †  45
n

§

` u

w

v

x
`  ` u  kv

w  kx

v

x
`

 0.04x1   0.05x2   0.06x3  120

 0.04x1   0.05x2   0.06x3  360

 x1   x2   x3  7,000

 2x  2y  z  2

 y  z  4

 x  2y  z   6

† 2

 3

1

 1

5

 2

  1

2

4

†`  1
4
1
2

3
2
2
3

`
APPLICATIONS

54. BUSINESS A container holds 120 packages. Some of the pack-

ages weigh pound each, and the rest weigh pound each. If the 

total contents of the container weigh 48 pounds, how many are there

of each type of package?

55. DIET A laboratory assistant needs a food mix that contains,

among other things, 27 grams of protein, 5.4 grams of fat, and

19 grams of moisture. He has available mixes A, B, and C with the

compositions listed in the table. How many grams of each mix should

be used to get the desired diet mix? Set up a system of equations and

solve using Gauss–Jordan elimination.

Mix Protein (%) Fat (%) Moisture (%)

A 30 3 10

B 20 5 20

C 10 4 10

56. RESOURCE ALLOCATION A Colorado mining company operates

mines at Big Bend and Saw Pit. The Big Bend mine produces 

ore that is 5% nickel and 7% copper. The Saw Pit mine produces

ore that is 3% nickel and 4% copper. How many tons of ore should

be produced at each mine to obtain the amounts of nickel and cop-

per listed in the table? Set up a matrix equation and solve using

matrix inverses.

Nickel Copper

(A) 3.6 tons 5 tons

(B) 3 tons 4.1 tons

(C) 3.2 tons 4.4 tons

57. LABOR COSTS A company with manufacturing plants in North

and South Carolina has labor-hour and wage requirements for the

manufacturing of computer desks and printer stands as given in ma-

trices L and H:

Labor-hour requirements

Fabricating Assembly Packaging

department department department

Hourly wages

North South

Carolina Carolina

plant plant

(A) Find the labor cost for producing one printer stand at the South

Carolina plant.

(B) Discuss possible interpretations of the elements in the matrix

products HL and LH.

(C) If either of the products HL or LH has a meaningful

interpretation, find the product and label its rows and columns.

Fabricating department

Assembly department

Packaging department

H  £ $11.50 $10.00

$9.50 $8.50

$5.00 $4.50

§

Desk

Stand

0.8 h

0.6 h
d2.4 h

1.8 h
L  c 1.7 h

0.9 h

1
3

1
2
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58. LABOR COSTS The monthly production of computer desks and

printer stands for the company in Problem 57 for the months of Jan-

uary and February are given in matrices J and F:

January production

North South

Carolina Carolina

plant plant

February production

North South

Carolina Carolina

plant plant

(A) Find the average monthly production for the months of January

and February.

Desks

Stands
F  c1,700 1,810

930 740
d

Desks

Stands
J  c1,500 1,650

850 700
d

(B) Find the increase in production from January to February.

(C) Find and interpret.

59. CRYPTOGRAPHY The following message was encoded with the

matrix B shown below. Decode the message:

21 21 27 30 28 31 29 34 50

46 35 62 19 21 39 52 52 79

60. PUZZLE A piggy bank contains 30 coins worth $1.90.

(A) If the bank contains only nickels and dimes, how many coins of

each type does it contain?

(B) If the bank contains nickels, dimes, and quarters, how many

coins of each type does it contain?

B  £ 1 1 0

1 0 1

1 1 1

§

J c1

1
d
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CHAPTER 7

ZZZ GROUP ACTIVITY Modeling with Systems of Linear Equations

In this group activity, we will consider two real-world problems

that can be solved using systems of linear equations: heat con-

duction and traffic flow. Both problems involve using a grid and

a basic assumption to construct the model (the system of equa-

tions). Gauss–Jordan elimination is then used to solve the model.

In the heat conduction problem, the solution of the model is eas-

ily interpreted in terms of the original problem. The system in the

second problem is dependent, and the solution requires a more

careful interpretation.

I HEAT CONDUCTION

A metal grid consists of four thin metal bars. The end of each

bar of the grid is kept at a constant temperature, as shown in

Figure 1. We assume that the temperature at each intersection

point in the grid is the average of the temperatures at the four

adjacent points in the grid (adjacent points are either other in-

tersection points or ends of bars). So the temperature x1 at the

intersection point in the upper left-hand corner of the grid must

satisfy

Left Above Right Below

(40  0  x2  x3)

Find equations for the temperature at the other three intersection

points, and solve the resulting system to find the temperature at

each intersection point in the grid.

II TRAFFIC FLOW

The rush-hour traffic flow for a network of four one-way

streets in a city is shown in Figure 2 on page 506. The numbers

next to each street indicate the number of vehicles per hour

that enter and leave the network on that street. The variables

x1, x2, x3, and x4 represent the flow of traffic between the four

intersections in the network. For a smooth flow of traffic, we

assume that the number of vehicles entering each intersection

should always equal the number leaving. For example, since

1,500 vehicles enter the intersection of 5th Street and Wash-

ington Avenue each hour and x1   x4 vehicles leave this inter-

section, we see that x1   x4   1,500.

(A) Find the equations determined by the traffic flow at each

of the other three intersections.

(B) Find the solution to the system in part A.

x1  
1
4

0 40 

20 20 

x2x1

x3 x4

40 

40 

0 

40 

Z Figure 1
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(C) What is the maximum number of vehicles that can travel

from Washington Avenue to Lincoln Avenue on 5th Street?

What is the minimum number?

(D) If traffic lights are adjusted so that 1,000 vehicles per hour

travel from Washington Avenue to Lincoln Avenue on 5th

Street, determine the flow around the rest of the network.

6th St.

700

x4

x1

x2

x3
400

900

600

600

500
500

5th St.

Lincoln Ave.

800

Washington Ave.

Z Figure 2



Sequences, Induction,

and Probability

THE lists

1, 4, 9, 16, 25, 36, 49, 64, . . .

and

3, 6, 3, 1, 4, 2, 1, 4, . . .

are examples of sequences. In the first sequence, a pattern is notice-

able: You probably recognize it as the sequence of perfect squares. Its

terms are increasing, and as we will see, the differences between terms

form a clear pattern. You probably don’t recognize the second sequence

because the terms don’t suggest an obvious pattern. In fact, we ob-

tained the second sequence by recording the results of repeatedly toss-

ing a single die. Sequences, and the related concept of series, are use-

ful tools in almost all areas of mathematics. In this chapter, they will

play roles in the development of several topics: a method of proof

called mathematical induction, techniques for counting, and probability.

C

CHAPTER

8
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8-2 Mathematical Induction

8-3 Arithmetic and Geometric
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8-4 Multiplication Principle,
Permutations, and
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8-6 The Binomial Formula

Chapter 8 Review
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Sequences Specified by
Recursion Formulas



In this section, we introduce special notation and formulas for representing and generating

sequences and sums of sequences.

Z Defining Sequences

Consider the following list of numbers: 1, 3, 5, 7, 9, . . . . This is an example of a sequence,

which can be defind informally as a list of numbers in a specific order. This particular

sequence is the sequence of positive odd integers.

Now consider the function f given by

f (n)  2n  1 (1)

where the domain of f is {1, 2, 3, . . .} (that is, the set of natural numbers N ). Note that

f (1)  2(1)  1  1

f (2)  2(2)  1  3

f (3)  2(3)  1  5

The outputs of the function f form the same list of odd positive integers that we started

with above. This provides an alternative (and more precise) definition of sequence: A

sequence is a function whose domain is a set of successive integers. 

While the function f above is a perfectly good way to describe a sequence, a special

notation for describing sequences with formulas has evolved over the years. Our first order

of business should be to become familiar with this notation.

To start, the range value f (n) is usually symbolized more compactly with a symbol such

as an. So in place of equation (1) we write

an  2n  1

The domain is understood to be the set of natural numbers N unless stated to the con-

trary or the context indicates otherwise. The elements in the range are called terms of

the sequence: a1 is the first term, a2 the second term, and an the nth term, or the gen-

eral term:

a1  2(1)  1  1 First term

a2  2(2)  1  3 Second term

a3  2(3)  1  5 Third term

o o

The ordered list of elements

1, 3, 5, . . . , 2n  1, . . .

in which the terms of a sequence are written in their natural order with respect to the domain

values, is often informally referred to as a sequence. A sequence is also represented in the

abbreviated form {an}, where a symbol for the nth term is placed between braces. For exam-

ple, we can refer to the sequence

1, 3, 5, . . . , 2n  1, . . .

as the sequence {2n  1}.
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8-1 Sequences and Series

Z Defining Sequences

Z Defining Series



If the domain of a function is a finite set of successive integers, then the sequence is

called a finite sequence. If the domain is an infinite set of successive integers, then the

sequence is called an infinite sequence. The preceding sequence {2n  1} is an example

of an infinite sequence.
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Technology Connections

Some graphing calculators have a special sequence mode

that can be useful when studying sequences. Figure 1(a)

shows the sequence {2nⴚ 1} entered in the sequence editor.

Figure 1(b) shows the graph of the sequence. Figure 1(c)

displays the sequence in a table.

Z Figure 1

0

0

20

10

(a) (b) (c)

Some sequences are specified by a recursion formula—that is, a formula that defines each

term in terms of one or more preceding terms. The sequence we have chosen to illustrate a

recursion formula is a very famous sequence in the history of mathematics called the Fibonacci

sequence. It is named after the most celebrated mathematician of the thirteenth century,

Leonardo Fibonacci from Italy (1180?–1250?).

Fibonacci Sequence

List the first seven terms of the sequence specified by

 a
n
 a

n 2  a
n 1  n  3

 a2  1

 a1  1

EXAMPLE 1

SOLUTION

� 13 a5  a6  5  8a7

 8 a4  a5  3  5a6

 5 a3  a4  2  3a5

 3 a2  a3  1  2a4

 2 a1  a2  1  1a3

 1a2

 1a1

*

*Throughout the book, dashed boxes—called think boxes—are used to represent steps that may be performed

mentally.



Now we consider the reverse problem. That is, can a sequence be defined just by list-

ing the first three or four terms of the sequence? And can we then use these initial terms

to find a formula for the nth term? In general, without other information, the answer to the

first question is no. As Explore-Discuss 1 illustrates, many different sequences may start off

with the same terms. Simply listing the first three terms, or any other finite number of terms,

does not specify a particular sequence. In fact, it can be shown that given any list of m

numbers, there are an infinite number of sequences whose first m terms agree with these

given numbers.

What about the second question? That is, given a few terms, can we find the general

formula for at least one sequence whose first few terms agree with the given terms? The

answer to this question is a qualified yes. If we can observe a simple pattern in the given terms,

then we may be able to construct a general term that will produce the pattern. Example 2

illustrates this approach.
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A multiple-choice test question asked for the next term in the sequence:

1, 3, 9, . . .

and gave the following choices:

(A) 16 (B) 19 (C) 27

Which is the correct answer?

Compare the first four terms of the following sequences:

(A) an  3n 1
(B) (C)

Now which of the choices appears to be correct?

cn  8n  
12

n
 19bn  1  2(n  1)2

ZZZ EXPLORE-DISCUSS 1

Finding the General Term of a Sequence

Find the general term of a sequence whose first four terms are

(A) 5, 6, 7, 8, . . . (B) 2,  4, 8,  16, . . .

EXAMPLE 2

SOLUTIONS (A) Because these terms are consecutive integers, one solution is an  n, n  5. If we

want the domain of the sequence to be all natural numbers, then another solution is

bn  n  4.

(B) Each of these terms can be written as the product of a power of 2 and a power of  1:

If we choose the domain to be all natural numbers, then a solution is

�an  ( 1)n 12n

  16  ( 1)324

 8  ( 1)223

  4  ( 1)122

 2  ( 1)021

MATCHED PROBLEM 1 List the first seven terms of the sequence specified by

�

 an  an 2  an 1   n  3

 a2  1

 a1  1



Z Defining Series

If a1, a2, a3, . . . , an, . . . is a sequence, then the expression

is called a series. If the sequence is finite, the corresponding series is a finite series. If the

sequence is infinite, the corresponding series is an infinite series. For example,

1, 2, 4, 8, 16 Finite sequence

1  2  4  8  16 Finite series

We will restrict our discussion to finite series in this section.

Series are often represented in a compact form called summation notation using the

symbol a, which is a stylized version of the Greek letter sigma. Consider the following

examples:

The terms on the right are obtained from the expression on the left by successively replac-

ing the summing index k with integers, starting with the first number indicated below a
and ending with the number that appears above a. For example, if we are given the

sequence

1

2
, 

1

4
, 

1

8
, . . ., 

1

2n

Domain is the set of integers 

k satisfying 0 ⱕ k ⱕ n.
 a

n

k   0
 ck  c0  c1  c2  

. . .  cn

 a
7

k   3
 bk  b3  b4  b5  b6  b7

 a
4

k   1
 ak  a1  a2  a3  a4

a1  a2  a3  
. . .  an  

. . .
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MATCHED PROBLEM 2 Find the general term of a sequence whose first four terms are

(A) 2, 4, 6, 8, . . . (B) 

�

1,  1
2, 

1
4,  

1
8, . . .

The sequence with general term is closely related to the 

Fibonacci sequence. Compute the first 20 terms of both sequences and discuss the

relationship. [The first seven values of bn are shown in Fig. 2(b)].

bn  
15

5
 a1  15

2
 bn

ZZZ EXPLORE-DISCUSS 2

Z Figure 2

(a) (b)

In general, there is usually more than one way of representing the nth term of a given

sequence. This was seen in the solution of Example 2, part A. However, unless stated to the

contrary, we assume the domain of the sequence is the set of natural numbers N.



the corresponding series is

a
n

k   1

 
1

2k
 

1

2
 

1

4
 

1

8
 . . .  

1

2n
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Writing the Terms of a Series

Write without summation notation: a
5

k   1

 
k  1

k

EXAMPLE 3

SOLUTION

�

  0  
1

2
 

2

3
 

3

4
 

4

5

 a
5

k   1

 
k  1

k
 

1  1

1
 

2  1

2
 

3  1

3
 

4  1

4
 

5  1

5

MATCHED PROBLEM 3 Write without summation notation: 

�

a
5

k   0

 
( 1)k

2k  1

If the terms of a series are alternately positive and negative, it is called an alternating

series. Example 4 deals with the representation of such a series.

Writing a Series in Summation Notation

Write the following series using summation notation:

(A) Start the summing index at k  1.

(B) Start the summing index at k  0.

1  
1

2
 

1

3
 

1

4
 

1

5
 

1

6

EXAMPLE 4

SOLUTIONS (A) ( 1)k 1 provides the alternation of sign, and 1 k provides the other part of each

term. So we can write

as can be easily checked.

(B) ( 1)k provides the alternation of sign, and 1 (k  1) provides the other part of each

term. We write the series as

as can be checked. �

a
5

k   0

 
( 1)k

k  1

a
6

k   1

 
( 1)k 1

k

MATCHED PROBLEM 4 Write the following series using summation notation:

(A) Start with k  1. (B) Start with k  0.

�

1  
2

3
 

4

9
 

8

27
 

16

81



ANSWERS TO MATCHED PROBLEMS

1. 1, 1, 0, 1,  1, 2,  3 2. (A) an  2n (B)

3. 4. (A) (B) a
4

k   0
 ( 1)k a2

3
bk

a
5

k   1
 ( 1)k 1a2

3
bk 1

1  1
3  

1
5  

1
7  

1
9  

1
11

an  ( 1)n 1a1

2
bn 1
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27. 28.

29. a1  7; an  an 1  4, n  2

30. a1  3; an  an 1  5, n  2

31.

32. a1  2; an  2an 1, n  2

In Problems 33–36, write the first seven terms of each sequence.

33. a1  1, a2  2, an  an 2  2an 1, n  3

34. a1  1, a2   1, an  an 2  an 1, n  3

35. a1   1, a2  2, an  2an 2  an 1, n  3

36. a1  2, a2  1, an   an 2  an 1, n  3

In Problems 37–48, find a general term an for the given sequence

a1, a2, a3, a4, . . .

37.  2,  1, 0, 1, . . . 38. 10, 11, 12, 13, . . .

39. 5, 7, 9, 11, . . . 40. 1,  1,  3,  5, . . .

41.  1, 1,  1, 1, . . . 42.

43. 44.

45.  3, 9,  27, 81, . . . 46. 5, 25, 125, 625, . . .

47. 48. x,  x3, x5,  x7, . . .

In Problems 49–54:

(A) Find the first four terms of the sequence.

(B) Find a general term bn for a different sequence that has the

same first three terms as the given sequence.

49. an  n2
 n  2 50. an  9n2

 21n  14

51. an  6n2
 11n  6 52. an  25n2

 60n  36

53. an  2n2
 8n  7 54. an   4n2

 15n  12

In Problems 55–58, use a graphing calculator to graph the first

20 terms of each sequence.

55. an  1 n 56. an  2   n

57. an  ( 0.9)n
58. a1   1, an  

2
3 an 1  

1
2

x, 
x2

2
, 

x3

3
, 

x4

4
, . . .

1
3, 

2
4, 

3
5, 

4
6, . . .2, 32, 

4
3, 

5
4, . . .

1,  1
2, 

1
3,  

1
4, . . .

a1  4; an  
1
4an 1, n  2

an  ( 3
2)

n 1an  ( 1
2)

n 1

8-1 Exercises

1. Explain the difference between a sequence and a series.

2. What is a recursion formula?

3. Explain how the Fibonacci sequence can be defined by means

of a recursion formula.

4. Explain summation notation.

5. Explain why the following statement is not true: The general

term of the sequence 1, 3, 7, . . . is 2n
 1.

6. Explain why at least one term must be provided when defining

a sequence recursively.

Write the first four terms for each sequence in Problems 7–12.

7. an  n  2 8. an  n  3

9. 10.

11. an  ( 2)n 1
12.

13. Write the eighth term in the sequence in Problem 7.

14. Write the tenth term in the sequence in Problem 8.

15. Write the one-hundredth term in the sequence in Problem 9.

16. Write the two-hundredth term in the sequence in Problem 10.

In Problems 17–22, write each series in expanded form without

summation notation.

17. 18.

19. 20.

21. 22.

Write the first five terms of each sequence in Problems 23–32.

23. an  ( 1)n 1n2
24.

25. 26. an  n[1  ( 1)n]an  
1

3
 a1  

1

10nb
an  ( 1)n 1a 1

2nb

a
6

k   1
 ( 1)k 1ka

4

k   1
 ( 1)k

a
5

k   1
 a1

3
bk

a
3

k   1

 
1

10k

a
4

k   1
 k

2

a
5

k   1
 k

an  

( 1)n 1

n2

an  a1  
1

n
bn

an  
n  1

n  1



In Problems 59–64, write each series in expanded form without

summation notation.

59. 60.

61. 62.

63. 64.

In Problems 65–72, write each series using summation notation

with the summing index k starting at k  1.

65. 12
 22

 32
 42

66. 2  3  4  5  6

67.

68.

69.

70.

71.

72.

The sequence

M a positive real number

can be used to find to any decimal-place accuracy desired.

To start the sequence, choose a1 arbitrarily from the positive real

numbers. Problems 73 and 74 are related to this sequence.

73. (A) Find the first four terms of the sequence

(B) Compare the terms with from a calculator.

(C) Repeat parts A and B letting a1 be any other positive num-

ber, say 1.

74. (A) Find the first four terms of the sequence

(B) Find with a calculator, and compare with the results of

part A.

(C) Repeat parts A and B letting a1 be any other positive num-

ber, say 3.

75. Let {an} denote the Fibonacci sequence and let {bn} denote the

sequence defined by b1  1, b2  3, and bn  bn 1   bn 2

for n  3. Compute 10 terms of the sequence {cn}, where

cn  bn an. Describe the terms of {cn} for large values of n.

15

n  2an  

a2
n 1  5

2an 1

a1  2

12

n  2an  

a2
n 1  2

2an 1

a1  3

1M

n  2,an  

a2
n 1  M

2an 1

1

2
 

1

4
 

1

8
 . . .  

( 1)n 1

2n

1  4  9  . . .  ( 1)n 1n2

2  
3

2
 

4

3
 . . .  

n  1

n

1  
1

22
 

1

32
 . . .  

1

n2

1  
1

2
 

1

3
 

1

4

1

2
 

1

22
 

1

23
 

1

24
 

1

25

a
4

k   0

 
( 1)kx2k 1

2k  1a
5

k   1

 
( 1)k 1

k
 xk

a
5

k   1
 x

k 1
a
3

k   1

 
1

k
 xk 1

a
5

k   1
 ( 1)k 1(2k  1)2

a
4

k   1

 
( 2)k 1

k
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76. Define sequences {un} and {vn} by u1  1, v1  0,

un  un 1  vn 1 and vn  un 1 for n  2. Find the first

10 terms of each sequence, and explain their relationship to the

Fibonacci sequence.

In calculus, it can be shown that

where the larger n is, the better the approximation. Problems 77

and 78 refer to this series. Note that n!, read “n factorial,” is

defined by 0!   1 and n!  1 2 3 . . . n for n 苸 N.

77.Approximate e0.2 using the first five terms of the series. Com-

pare this approximation with your calculator evaluation of e0.2.

78.Approximate e 0.5 using the first five terms of the series. Com-

pare this approximation with your calculator evaluation of e 0.5.

79. Show that 

80. Show that 

APPLICATIONS

81. PHYSICS Suppose that a rubber ball is dropped from a height

of 20 feet. If it bounces 10 times, with each bounce going half as

high as the one before, the heights of these bounces can be de-

scribed by the sequence 

(A) How high is the fifth bounce? The tenth?

(B) Find the value of the series What does this number

represent?

82. PHYSICS A bungee jumper dives off a bridge that is 300 feet

above the ground. He bounces back 100 feet on the first bounce, then

continues to bounce nine more times before coming to rest, with each

bounce 1/3 as high as the previous. The heights of these bounces can

be described by the sequence 

(A) How high is the fifth bounce? The tenth?

(B) Find the value of the series What does this number

represent?

83. SALARY INCREMENT Suppose that you are offered a job with a

starting annual salary of $40,000 and annual increases of 4% of the

current salary.

(A) Write out the first six terms of a sequence whose terms de-

scribe your salary in the first 6 years on this job.

(B) Write the general term of the sequence in part A.

(C) Find the value of the series What does this number

represent?

84. SALARY INCREMENT A marketing firm is advertising entry-

level positions with a starting annual salary of $24,000 and annual

increments of 3% of the current salary.

(A) Write out the first six terms of a sequence whose terms de-

scribe the salary for this position in the first 6 years on this job.

(B) Write the general term of the sequence in part A.

(C) Find the value of the series What does this number

represent?
a
6

n 1

an.

an

a
6

n 1

an.

an

a
10

n 1

an.

(1  n  10).an  100(1
3)

n 1

a
10

n 1

an.

(1  n  10).an  10(1
2)

n 1

a
n

k   1
 (ak  bk)  a

n

k   1
 ak  a

n

k   1
 bk

a
n

k   1
 cak  c a

n

k   1
 ak

ⴢⴢⴢⴢ

ex
 a

 

k   0

 
xk

k!
 1  

x

1!
 

x2

2!
 

x3

3!
 . . .  

xn

n!
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8-2 Mathematical Induction

Z Using Counterexamples

Z Using Mathematical Induction

Z Additional Examples of Mathematical Induction

Z Three Famous Problems

Many of the most important facts and formulas in this book have been stated as theorems.

But a theorem is not a theorem until it has been proved, and proving theorems is one of the

most challenging tasks in mathematics. There is a big difference between being pretty sure

that a statement is true, and proving that statement. Let’s look at an example.

Suppose that we are interested in the sum of the first n consecutive odd integers, where

n is a positive integer. We can begin by writing the sums for the first few values of n to see

if we can observe a pattern:

Is there any pattern to the sums 1, 4, 9, 16, and 25? You most likely noticed that each is a

perfect square and, in fact, each is the square of the number of terms in the sum. So the

following conjecture* seems reasonable:

CONJECTURE P : For each positive integer n,

(Recall that the general term was used to list the odd positive integers in the last

section.)

At this point, you may be pretty sure that our conjecture is true. You might even look

at the previous five calculations and think that we have proved our conjecture. But in actu-

ality, all we have proved is that the conjecture is true for and 5. We are trying

to prove that it is true for every positive integer, not just those five! With that in mind, con-

tinuing to check the conjecture for specific n’s like 6, 7, 8, . . . is pointless: You can keep

trying for the rest of your life, but you will never be able to check every positive integer.

Instead, in this section, we will use a much more powerful tool called mathematical induc-

tion to prove conjectures. Before we learn about this method of proof, we first consider how

to prove that a conjecture is false.

Z Using Counterexamples

Consider the following conjecture:

CONJECTURE Q: For each positive integer n, the number is a prime number.

Since the conjecture states that this fact is true for every positive integer n, if we can

find even one positive integer n for which it is false, then the conjecture will be proved false.

A single case or example for which a conjecture fails is called a counterexample. We

checked the conjecture for a few particular cases in Table 1. From the table, it certainly appears

n2
⫺ n ⫹ 41

n ⫽ 1, 2, 3, 4,

2n ⫺ 1

1 ⫹ 3 ⫹ 5 ⫹ . . . ⫹ (2n ⫺ 1) ⫽ n2

n ⴝ 5 1 ⫹ 3 ⫹ 5 ⫹ 7 ⫹ 9 ⫽ 25

n ⴝ 4 1 ⫹ 3 ⫹ 5 ⫹ 7 ⫽ 16

n ⴝ 3 1 ⫹ 3 ⫹ 5 ⫽ 9

n ⴝ 2 1 ⫹ 3 ⫽ 4

n ⴝ 1 1 ⫽ 1

*A conjecture is a statement that is believed to be true, but has not been proved.

Table 1

n Prime?

1 41 Yes

2 43 Yes

3 47 Yes

4 53 Yes

5 61 Yes 

n
2
ⴚ n ⴙ 41



that conjecture Q has a good chance of being true. You may want to check a few more cases.

If you persist, you will find that conjecture Q is true for n up to 40.

Most students would guess that the statement is always true long before getting to

But then something interesting happens at 

which is not prime. Because provides a counterexample, conjecture Q is false. Here

we see the danger of generalizing without proof from a few special cases, even if that “few”

is 40 cases!

This example was discovered by Euler (1701–1783), the same mathematician that intro-

duced the number e as the base of the natural exponential function.

n  41

412
 41  41  412

n  41:n  41.
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Finding a Counterexample

Prove that the following conjecture is false by finding a counterexample: For every positive

integer at least half of the positive integers less than or equal to n are prime.n  2,

EXAMPLE 1

SOLUTION We will check the conjecture for positive integer values of n starting at 2.

Fraction of positive integers 

Primes less than less than or equal to n

n or equal to n that are prime True or false

2 2 1/2 True

3 2, 3 2/3 True

4 2, 3 2/4 True

5 2, 3, 5 3/5 True

6 2, 3, 5 3/6 True

7 2, 3, 5, 7 4/7 True

8 2, 3, 5, 7 4/8 True

9 2, 3, 5, 7 4/9 False

Since provides a counterexample, the conjecture is false. �n  9

MATCHED PROBLEM 1 Prove that the following conjecture is false by finding a counterexample: For every positive

integer n, the last digit of is less than 9.

�

n3

Z Using Mathematical Induction

To begin our study of proving conjectures, we will state the principle of mathematical induc-

tion, which forms the basis for all of our work in this section.

Z THEOREM 1 Principle of Mathematical Induction

Let be a statement associated with each positive integer n, and suppose the

following conditions are satisfied:

1. is true.

2. For any positive integer k, if is true, then is also true.

Then the statement is true for all positive integers n.Pn

Pk 1Pk

P1

Pn



In Example 2 we illustrate proof by mathematical induction by returning to our con-

jecture P from the beginning of the section.
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Theorem 1 must be read very carefully. At first glance, it seems to say that if we assume a

statement is true, then it is true. But that is not the case at all. If the two conditions in The-

orem 1 are satisfied, then we can reason as follows:

is true. Condition 1

is true, because P1 is true. Condition 2

is true, because P2 is true. Condition 2

is true, because P3 is true. Condition 2

Because this chain of implications never ends, we will eventually reach for any positive

integer n.

This is not the same as checking each case separately: The truth of any case follows

from knowing that the previous one is true once we have established condition 2.

To help visualize this process, picture a row of dominoes that goes on forever (Fig. 1)

and interpret the conditions in Theorem 1 as follows: Condition 1 says that the first domino

can be pushed over. Condition 2 says that if the kth domino falls, then so does the (k  1)st

domino. Together, these two conditions imply that all the dominoes must fall.

Pn

.

.

.

.

.

.

P4

P3

P2

P1

Condition 1: The first domino 

can be pushed over. 

(a)

Condition 2: If the kth domino 

falls, then so does the (k ⴙ 1)st. 

(b)

Conclusion: All the dominoes 

will fall. 

(c)

Z Figure 1 Interpreting mathematical induction.

Proving a Conjecture Using Induction

Prove that for all positive integers n,

1  3  5  . . .  (2n  1)  n2

EXAMPLE 2

SOLUTION State :

Pn: 1  3  5  . . .  (2n  1)  n2

Pn

CONDITION 1 Show that is true.

P1: 1  12

P1

CONDITION 2 Show that if is true, then must be true.

It’s a good idea to always write out both and at the beginning of this step to

see what we can use, and what we need to prove.

We assume this is a true statement.

We need to show 

that this is also true.

Note that can be simplified a bit:

Pk 1: 1  3  5  . . .  (2k  1)  (2k  1)  (k  1)2

Pk 1

Pk 1: 1  3  5  . . .  (2k  1)  [2(k  1)  1]  (k  1)2

Pk: 1  3  5  . . .  (2k  1)  k2

Pk 1Pk

Pk 1Pk
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We will perform algebraic operations on the equation (which we know is true) with a

goal of obtaining Note that the left side of is the left side of plus the addi-

tion term 

Add to both sides.

Factor the right side.

This is !

was obtained by adding the same number to both sides of so if is true, then

must be as well.Pk⫹1

PkPk,Pk⫹1

Pkⴙ1 1 ⫹ 3 ⫹ 5 ⫹ . . . ⫹ (2k ⫺ 1) ⫹ (2k ⫹ 1) ⫽ (k ⫹ 1)2

 1 ⫹ 3 ⫹ 5 ⫹ . . . ⫹ (2k ⫺ 1) ⫹ (2k ⴙ 1) ⫽ k
2
⫹ 2k ⴙ 1

2k ⴙ 1 1 ⫹ 3 ⫹ 5 ⫹ . . . ⫹ (2k ⫺ 1) ⫽ k
2

2k ⫹ 1.

PkPk⫹1Pk⫹1.

Pk

CONCLUSION

Both conditions of Theorem 1 are satisfied, so is true for all positive integers n. �Pn

MATCHED PROBLEM 2 Prove that for all positive integers n

�

1 ⫹ 2 ⫹ 3 ⫹ . . . ⫹ n ⫽
n(n ⫹ 1)

2

Z Additional Examples of Mathematical Induction

Now we will consider some additional examples of proof by induction. The first is another

summation formula. Mathematical induction is the primary tool for proving that formulas

of this type are true.

Proving a Summation Formula

Prove that for all positive integers n

1

2
⫹

1

4
⫹

1

8
⫹

. . .
⫹

1

2n
⫽

2n ⫺ 1

2n

EXAMPLE 3

PROOF State :

Pn: 1

2
⫹

1

4
⫹

1

8
⫹

. . .
⫹

1

2n
⫽

2n ⫺ 1

2n

Pn

PART 2 Show that if is true, then is true. Again, it is a good idea to always write

out both and at the beginning of any induction proof to see what is assumed and

what must be proved:

We assume is true.

We must show that Pkⴙ1

follows from Pk.

 Pk⫹1: 1

2
⫹

1

4
⫹

1

8
⫹ . . . ⫹

1

2k
⫹

1

2k⫹1
⫽

2k⫹1
⫺ 1

2k⫹1

Pk Pk : 1

2
⫹

1

4
⫹

1

8
⫹ . . . ⫹

1

2k
⫽

2k ⫺ 1

2k

Pk⫹1Pk

Pk⫹1Pk

PART 1 Show that is true.

So is true.P1

 ⫽
1

2

 P1: 1

2
⫽

21
⫺ 1

21

P1
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We start with the true statement add to both sides, and simplify the right side:

Add to both sides.

Find common denominator 

for right-hand side.

Write as single fraction.

Simplify.

So

and we have shown that if is true, then is true.

CONCLUSION

Both conditions in Theorem 1 are satisfied. Therefore, is true for all positive integers n. �Pn

Pk⫹1Pk

Pkⴙ1

1

2
⫹

1

4
⫹

1

8
⫹ . . . ⫹

1

2k
⫹

1

2k⫹1
⫽

2k⫹1
⫺ 1

2k⫹1

 ⫽
2k⫹1

⫺ 1

2k⫹1

 ⫽
2k⫹1

⫺ 2 ⫹ 1

2k⫹1

 ⫽
2k

⫺ 1

2k
ⴢ

2

2
⫹

1

2k⫹1

 
1

2
⫹

1

4
⫹

1

8
⫹ . . . ⫹

1

2k
ⴙ

1

2
kⴙ1

⫽
2k

⫺ 1

2k
ⴙ

1

2
kⴙ1

1

2
k⫹1

 
1

2
⫹

1

4
⫹

1

8
⫹ . . . ⫹

1

2k
⫽

2k
⫺ 1

2k

1Ⲑ2
k⫹1Pk,

MATCHED PROBLEM 3 Prove that for all positive integers n

�

2

3
⫹

2

9
⫹

2

27
⫹ p ⫹

2

3n ⫽
3n

⫺ 1

3n

Example 4 provides a proof of a law of exponents that previously we had to assume was

true. First we redefine an for n a positive integer, using a recursion formula:

Proving a Law of Exponents

Prove that for all positive integers n.

PROOF State 

PART 1 Show that is true.

Definition 1

Definition 1

So is true.P1

 ⫽ x1y1

 (xy)1
⫽ xy

P1

Pn: (xy)n ⫽ xnyn

Pn:

(xy)n ⫽ xnyn

EXAMPLE 4

Z DEFINITION 1 Recursive Definition of a
n

For n a positive integer

n 7 1 an⫹1
⫽ ana

 a1
⫽ a
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PART 2 Show that if is true, then is true.

Assume is true.

Show that follows from .

Here we start with the left side of and use to find the right side of :

Use 

Use properties of real numbers.

Use Definition 1 twice.

So and we have shown that if is true, then is true.

CONCLUSION

Both conditions in Theorem 1 are satisfied. Therefore, is true for all positive integers n. �Pn

Pk 1Pk(xy)k 1
 xk 1yk 1,

  xk 1yk 1

  (xkx)(yky)

  xkykxy

Pk: (xy)
k

ⴝ x
k
y
k (xy)k 1

 (xy)k(xy)1

Pk 1PkPk 1

PkPkⴙ1Pk 1: (xy)k 1
 xk 1yk 1

PkPk : (xy)k  xkyk

Pk 1Pk

MATCHED PROBLEM 4 Prove that for all positive integers n.

�

(x /y)n  x n/yn

Example 5 deals with factors of integers. Before we start, recall that an integer p is

divisible by an integer q if for some integer r.p  qr

Proving a Divisibility Property

Prove that is divisible by 5 for all positive integers n.

PROOF Use the definition of divisibility to state Pn as follows:

for some integer r

PART 1 Show that is true.

So is true.

PART 2 Show that if is true, then is true.

for some integer r Assume is true.

for some integer s Show that must follow.

As before, we start with the true statement Pk:

Multiply both sides by 4
2
.

Simplify.

Add 15 to both sides.

Factor out 5.

So

where is an integer, and we have shown that if is true, then is true.

CONCLUSION

Both conditions in Theorem 1 are satisfied. Therefore, is true for all positive integers n. �Pn

Pk 1Pks  16r  3

Pkⴙ142(k 1)
 1  5s

  5(16r  3)

 42(k 1)
 1  80r  15

 42k 2
 16  80r

 42(42k
 1)  42(5r)

 42k
 1  5r

Pkⴙ1Pk 1: 42(k 1)
 1  5s

PkPk: 42k
 1  5r

Pk 1Pk

P1

P1: 42
 1  15  5 ⴢ 3

P1

Pn: 42n
 1  5r

42n
 1

EXAMPLE 5
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MATCHED PROBLEM 5 Prove that is divisible by 7 for all positive integers n.

�

8n
 1

In some cases, a conjecture may be true only for where m is a positive integer,

rather than for all For example, see Problems 53 and 54 in Exercises 8-2. The principle

of mathematical induction can be extended to cover cases like this as follows:

n  0.

n  m,

Z Three Famous Problems

The problem of determining whether a certain statement about the positive integers is true may

be extremely difficult. Proofs may require remarkable insight and ingenuity and the develop-

ment of techniques far more advanced than mathematical induction. Consider, for example, the

famous problems of proving the following statements:

1. Lagrange’s Four Square Theorem, 1772: Each positive integer can be expressed as the

sum of four or fewer squares of positive integers.

2. Fermat’s Last Theorem, 1637: For does not have solutions in the

natural numbers.

3. Goldbach’s Conjecture, 1742: Every positive even integer greater than 2 is the sum of

two prime numbers.

The first statement was considered by the early Greeks and finally proved in 1772 by

Lagrange. Fermat’s last theorem, defying the best mathematical minds for over 350 years,

finally succumbed to a 200-page proof by Professor Andrew Wiles of Princeton University

in 1993. To this date no one has been able to prove or disprove Goldbach’s conjecture.

n 7 2, xn
 yn

 zn

Z THEOREM 2 Extended Principle of Mathematical Induction

Let m be a positive integer, let be a statement associated with each integer

and suppose the following conditions are satisfied:

1. is true.

2. For any integer if is true, then is also true.

Then the statement is true for all integers n  m.Pn

Pk 1Pkk  m,

Pm

n  m,

Pn

(A) Explain the difference between a theorem and a conjecture.

(B) Why is “Fermat’s last theorem” a misnomer? Suggest more accurate names for

the result.

ZZZ EXPLORE-DISCUSS 1

ANSWERS TO MATCHED PROBLEMS

1. The last digit of is greater than 8.

2. Sketch of proof.

Condition 1. is true.P11  
1(1  1)

2
.

Pn: 1  2  3  . . .  n  
n(n  1)

2

93
 729



Condition 2. Show that if is true, then is true.

Conclusion: is true for all positive integers n.

3. Sketch of proof. 

Part 1. is true.

Part 2. Show that if Pk is true, then Pk⫹1 is true.

Pk

Pkⴙ1

Conclusion: Pn is true for all positive integers n.

4. Sketch of proof. Pn:

Part 1. P1 is true.

Part 2. Show that if Pk is true, then Pk⫹1 is true.

Conclusion: Pn is true for all positive integers n.

5. Sketch of proof. Pn: 8n
⫺ 1 ⫽ 7r for some integer r

Part 1. 81
⫺ 1 ⫽ 7 ⫽ 7 ⴢ 1. P1 is true.

Part 2. Show that if Pk is true, then Pk⫹1 is true.

Pk

Pkⴙ1

Conclusion: Pn is true for all positive integers n.

 8k⫹1
⫺ 1 ⫽ 56r ⫹ 7 ⫽ 7(8r ⫹ 1) ⫽ 7s

 8(8k
⫺ 1) ⫽ 8(7r)

 8k
⫺ 1 ⫽ 7r

a  

x

y
bk⫹1

⫽ a  

x

y
bka  

x

y
b ⫽

xk

yk
 a  

x

y
b ⫽

xkx

yky
⫽

xk⫹1

yk⫹1

ax

y
b1

⫽
x

y
⫽

x1

y1
.

a  

x

y
bn

⫽
xn

yn

 ⫽
3k⫹1

⫺ 1

3k

 
2

3
⫹

2

9
⫹

2

27
⫹ p ⫹

2

3k
⫹

2

3k⫹1
⫽

3k
⫺ 1

3k
⫹

2

3k⫹1

 
2

3
⫹

2

9
⫹

2

27
⫹ p ⫹

2

3k
⫽

3k
⫺ 1

3k

2

3
⫽

31
⫺ 1

3
. P1

Pn: 
2

3
⫹

2

9
⫹

2

27
⫹

# # #

⫹
2

3n ⫽
3n

⫺ 1

3n

Pn

Pkⴙ1 ⫽
(k ⫹ 1)(k ⫹ 2)

2

 1 ⫹ 2 ⫹ 3 ⫹ . . . ⫹ k ⴙ (k ⴙ 1) ⫽

k(k ⫹ 1)

2
ⴙ (k ⴙ 1)

Pk 1 ⫹ 2 ⫹ 3 ⫹ . . . ⫹ k ⫽

k(k ⫹ 1)

2

Pk⫹1Pk
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In Problems 5–8, find the first positive integer n that causes the

statement to fail.

5. (3 ⫹ 5)n
⫽ 3n

⫹ 5n
6. n ⬍ 10

7. n2
⫽ 3n ⫺ 2 8. n3

⫹ 11n ⫽ 6n2
⫹ 6

Verify each statement Pn in Problems 9–14 for n ⫽ 1, 2, and 3.

9. Pn: 2 ⫹ 6 ⫹ 10 ⫹ ⭈ ⭈ ⭈ ⫹ (4n ⫺ 2) ⫽ 2n2

10. Pn: 4 ⫹ 8 ⫹ 12 ⫹ ⭈ ⭈ ⭈ ⫹ 4n ⫽ 2n(n ⫹ 1)

8-2 Exercises

1. What is a counterexample?

2. Explain how falling dominoes can be compared to the princi-

ple of mathematical induction.

3. In Theorem 1 (principle of mathematical induction), what do

Pk and Pk⫹1 represent?

4. The number n2
⫺ n ⫹ 41 is prime for n ⫽ 1, 2, . . . , 40. Does

this prove that n2
⫺ n ⫹ 41 is prime for every natural num-

ber n? Explain.



11. Pn: a5an
 a5 n

12. Pn: (a5)n
 a5n

13. Pn: 9n
 1 is divisible by 4

14. Pn: 4n
 1 is divisible by 3

Write Pk and Pk 1 for Pn as indicated in Problems 15–20.

15. Pn in Problem 9 16. Pn in Problem 10

17. Pn in Problem 11 18. Pn in Problem 12

19. Pn in Problem 13 20. Pn in Problem 14

In Problems 21–26, use mathematical induction to prove that each

Pn holds for all positive integers n.

21. Pn in Problem 9 22. Pn in Problem 10

23. Pn in Problem 11 24. Pn in Problem 12

25. Pn in Problem 13 26. Pn in Problem 14

In Problems 27–30, prove the statement is false by finding a

counterexample.

27. If n  2, then any polynomial of degree n has at least one real

zero.

28. Any positive integer n  7 can be written as the sum of three

or fewer squares of positive integers.

29. If n is a positive integer, then there is at least one prime number

p such that n  p  n  6.

30. If a, b, c, and d are positive integers such that a2
 b2

  c2
 d2,

then a   c or a  d.

In Problems 31–46, use mathematical induction to prove each

proposition for all positive integers n, unless restricted otherwise.

31. 2  22
 23

     2n
 2n 1

 2

32.

33.

34. 1  8  16      8(n  1)  (2n  1)2; n  1

35.

36.

37. 38.

39. aman
 am n; m, n 僆 N [Hint: Choose m as an arbitrary

element of N, and then use induction on n.]

40. (an)m
 amn; m, n 僆 N

41. xn
 1 is divisible by x  1, x  1 [Hint: Divisible means that

xn
 1  (x  1)Q(x) for some polynomial Q(x).]

42. xn
 yn is divisible by x  y; x y

a5

an  
1

an 5
; n 7 5

an

a3
 an 3; n 7 3

1 ⴢ 2 2 ⴢ 3 3 ⴢ 4 # # # n(n 1) 
n(n 1)(n 2)

3

12
 22

 32
 . . .  n2

 
n(n  1)(2n  1)

6

12
 32

 52
 # # #  (2n  1)2

 
1
3 (4n3

 n)

1

2
 

1

4
 

1

8
 . . .  

1

2n  1  a1

2
bn
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43. x2n
 1 is divisible by x  1; x  1

44. x2n
 1 is divisible by x  1; x   1

45. 13
 23

 33
     n3

 (1  2  3      n)2 [Hint:

See Matched Problem 2 following Example 2.]

46.

In Problems 47–50, suggest a formula for each expression, and

prove your conjecture using mathematical induction, n 僆 N.

47. 2  4  6      2n

48.

49. The number of lines determined by n points in a plane, no three

of which are collinear

50. The number of diagonals in a polygon with n sides

Prove Problems 51–54 true for all integers n as specified.

51. If a  1, then an
 1; n 僆 N

52. If then 

53. n2
 2n; n  3

54. 2n
 n2; n  5

In Problems 55–58, determine whether the statement is true or

false. If true, prove using mathematical induction. If false, find a

counterexample.

55. If n is a positive integer, then

1  2  3      (2n  1)  n

(that is, the alternating sum of the first 2n  1 positive integers is

equal to n).

56. If n is a positive integer, then

57. If n is a positive integer, then

3n 1
 4n 1

     (n  3)n 1
 (n  4)n 1

58. If n is a positive integer, then n2
 21n  1 is a prime number.

If {an} and {bn} are two sequences, we write {an}  {bn} if and

only if an  bn for all n 僆 N. In Problems 59–62, use mathematical

induction to show that {an}  {bn}.

59. a1  1, an  an 1 2; bn  2n  1

60. a1  2, an  an 1 2; bn  2n

61. a1  2, an  22an 1; bn  22n 1

62. a1  2, an  3an 1; bn  2 ⴢ 3n 1

12
 22

 32
 # # #  ( 1)n 1n2

 
( 1)n 1n(n  1)

2

0 6 an
6 1; n 僆 N0 6 a 6 1,

1

1 ⴢ 2
 

1

2 ⴢ 3
 

1

3 ⴢ 4
 # # #  

1

n(n  1)

 
1

n(n  1)(n  2)
 

n(n  3)

4(n  1)(n  2)

1

1 ⴢ 2 ⴢ 3
 

1

2 ⴢ 3 ⴢ 4
 

1

3 ⴢ 4 ⴢ 5
 # # #
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8-3 Arithmetic and Geometric Sequences

Z Arithmetic and Geometric Sequences

Z Developing nth-Term Formulas

Z Developing Sum Formulas for Finite Arithmetic Series

Z Developing Sum Formulas for Finite Geometric Series

Z Developing a Sum Formula for Infinite Geometric Series

For most sequences, it is difficult to add up an arbitrary number of terms of the sequence

without adding the terms one at a time. In this section, we will study two special types

of sequences, arithmetic sequences and geometric sequences. One of the things that

make them special is that we can develop formulas for the sum of the corresponding

series.

Z Arithmetic and Geometric Sequences

Consider the sequence defined by the general term an  5  2(n  1), n  1. The first

five terms are 5, 7, 9, 11, and 13. It’s not hard to see that after starting at 5, every term

is obtained by adding 2 to the previous term. This is an example of an arithmetic

sequence.

In short, a sequence is arithmetic when every term is obtained by adding some fixed

number to the previous term. This fixed number is called the common difference, and is

usually represented by the letter d.

Now consider the sequence with general term . The first five terms are

5, 10, 20, 40, and 80. It also starts at 5, but this time every term is obtained by multi-

plying the previous term by 2. This is an example of a geometric sequence.

an  5(2)n 1

Z DEFINITION 1 Arithmetic Sequence

A sequence

a1, a2, a3, . . . , an, . . .

is called an arithmetic sequence, or arithmetic progression, if there exists a

constant d, called the common difference, such that

an  an 1  d

That is,

an  an 1  d for every n  1



In short, a sequence is geometric when every term is obtained by multiplying the previ-

ous term by some fixed number. This fixed number is called the common ratio, and is

usually represented by the letter r.
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Z DEFINITION 2 Geometric Sequence

A sequence

a1, a2, a3, . . . , an, . . .

is called a geometric sequence, or geometric progression, if there exists a nonzero

constant r, called the common ratio, such that

That is,

an  ran 1 for every n  1

an

an 1

 r

(A) Graph the arithmetic sequence 5, 7, 9, . . . . 

Describe the graphs of all arithmetic sequences with common difference 2.

(B) Graph the geometric sequence 5, 10, 20, . . . .

Describe the graphs of all geometric sequences with common ratio 2.

ZZZ EXPLORE-DISCUSS 1

EXAMPLE 1 Recognizing Arithmetic and Geometric Sequences

Which of the following can be the first four terms of an arithmetic sequence? Of a geomet-

ric sequence?

(A) 1, 2, 3, 5, . . . (B)  1, 3,  9, 27, . . .

(C) 3, 3, 3, 3, . . . (D) 10, 8.5, 7, 5.5, . . .

SOLUTIONS (A) Because 2 1  5  3, there is no common difference, so the sequence is not an

arithmetic sequence. Because there is no common ratio, so the sequence is not

geometric either.

(B) The sequence is geometric with common ratio  3, but it is not arithmetic.

(C) The sequence is arithmetic with common difference 0 and it is also geometric with

common ratio 1.

(D) The sequence is arithmetic with common difference  1.5, but it is not geometric. �

2
1  

3
2,

MATCHED PROBLEM 1 Which of the following can be the first four terms of an arithmetic sequence? Of a geomet-

ric sequence?

(A) 8, 2, 0.5, 0.125, . . . (B)  7,  2, 3, 8, . . . (C) 1, 5, 25, 100, . . .

�



Z Developing nth-Term Formulas

If {an} is an arithmetic sequence with common difference d, then

a2  a1  d

a3  a2  d  a1  2d

a4  a3  d  a1  3d

This suggests Theorem 1, which can be proved by mathematical induction (see Problem 67

in Exercises 8-3).
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Z THEOREM 1 The nth Term of an Arithmetic Sequence

an  a1  (n  1)d for every n  1

Z THEOREM 2 The nth Term of a Geometric Sequence

an  a1r
n 1 for every n  1

Similarly, if {an} is a geometric sequence with common ratio r, then

a2  a1r

a3  a2r  a1r
2

a4  a3r  a1r
3

This suggests Theorem 2, which can also be proved by mathematical induction (see Problem

71 in Exercises 8-3).

EXAMPLE 2 Finding Terms in Arithmetic and Geometric Sequences

(A) If the first and tenth terms of an arithmetic sequence are 3 and 30, respectively, find

the fiftieth term of the sequence.

(B) If the first and tenth terms of a geometric sequence are 1 and 4, find the seventeenth

term to three decimal places.

SOLUTIONS (A) First use Theorem 1 with a1  3 and a10  30 to find d:

Substitute n ⴝ 10.

Substitute a10 ⴝ 30 and a1 ⴝ 3.

Solve for d.

Now find a50:

Substitute a1 ⴝ 3.

Simplify.

(B) First let n  10, a1  1, a10  4 and use Theorem 2 to find r.

an  a1r
n 1     

Substitute n ⴝ 10, a10 ⴝ 4, and a1 ⴝ 1.

4  1r
10 1    

Solve for r.

r  41 9

  150

  3  49 ⴢ 3

 a50  a1  (50  1)3

 d  3

 30  3  9d

 a10  a1  (10  1)d

 an  a1  (n  1)d



Now use Theorem 2 again, this time with n 17.

a17  a1r
16
 1(41 9)16

 416 9  11.758 �

 

S E C T I O N  8 – 3 Arithmetic and Geometric Sequences 523

MATCHED PROBLEM 2 (A) If the first and fifteenth terms of an arithmetic sequence are 5 and 23, respectively,

find the seventy-third term of the sequence.

(B) Find the eighth term of the geometric sequence 

�

1

64
,  

1

32
, 

1

16
, . . . .

 

Z Developing Sum Formulas for Finite Arithmetic Series

If a1, a2, a3, . . . , an is a finite arithmetic sequence, then the corresponding series 

a1  a2  a3  
. . .  an is called an arithmetic series. We will derive two simple and

very useful formulas for the sum of an arithmetic series. Let d be the common differ-

ence of the arithmetic sequence a1, a2, a3, . . . , an and let Sn denote the sum of the

series a1  a2  a3  
. . .  an.

Then

Sn  a1  (a1  d )  . . .  [a1  (n  2)d ]  [a1  (n  1)d]

Reversing the order of the sum, we obtain

Sn  [a1  (n  1)d ]  [a1  (n  2)d ]  . . .  (a1  d )  a1

Adding the left sides of these two equations and corresponding elements of the right sides,

we see that

2Sn  [2a1  (n  1)d ]  [2a1  (n  1)d]  . . .  [2a1  (n  1)d ]

 n[2a1  (n  1)d ]

This can be restated as in Theorem 3.

Z THEOREM 3 Sum of an Arithmetic Series—First Form

Sn  
n

2
[2a1  (n  1)d ]

Z THEOREM 4 Sum of an Arithmetic Series—Second Form

Sn  
n

2
 (a1  an)

By replacing a1  (n  1)d with an, we obtain a second useful formula for the sum.

The proof of the first sum formula by mathematical induction is left as an exercise (see

Problem 68 in Exercises 8-3).
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EXAMPLE 3 Finding the Sum of an Arithmetic Series

Find the sum of the first 26 terms of an arithmetic series if the first term is  7 and d  3.

SOLUTION Let n  26, a1   7, d  3, and use Theorem 3.

Substitute n ⴝ 26, a1ⴝⴚ7, and dⴝ 3.

Simplify.

�  793

 S26  
26
2  [2( 7)  (26  1)3]

 Sn  
n

2
 [2a1  (n  1)d ]

MATCHED PROBLEM 3 Find the sum of the first 52 terms of an arithmetic series if the first term is 23 and d   2.

�

EXAMPLE 4 Finding the Sum of an Arithmetic Series

Find the sum of all the odd numbers between 51 and 99, inclusive.

SOLUTION First, use a1  51, an  99, and Theorem 1 to find n:

an  a1  (n  1)d Substitute an ⴝ 99, a1ⴝ 51, and dⴝ 2.

99  51  (n  1)2 Solve for n.

n  25

Now use Theorem 4 to find S25:

Substitute n ⴝ 25, a1ⴝ 51, and an ⴝ 99.

�  1,875

 S25  
25
2  

(51  99)

 Sn  
n

2
 (a1  an)

MATCHED PROBLEM 4 Find the sum of all the even numbers between  22 and 52, inclusive.

�

EXAMPLE 5 Prize Money

A 16-team bowling league has $8,000 to be awarded as prize money. If the last-place team

is awarded $275 in prize money and the award increases by the same amount for each suc-

cessive finishing place, how much will the first-place team receive?

SOLUTION If a1 is the award for the first-place team, a2 is the award for the second-place team, and

so on, then the prize money awards form an arithmetic sequence with n  16, a16  275,

and S16  8,000. Use Theorem 4 to find a1.

Substitute n ⴝ 16, S16 ⴝ 8,000, a16ⴝ 275.

Solve for a1.

The first-place team receives $725. �

 a1  725

 8,000  16
2  

(a1  275)

 Sn  
n

2
 (a1  an)

MATCHED PROBLEM 5 Refer to Example 5. How much prize money is awarded to the second-place team?

�



Z Developing Sum Formulas for Finite Geometric Series

If a1, a2, a3, . . . , an is a finite geometric sequence, then the corresponding series a1 a2  

a3  
. . .  an is called a geometric series. As with arithmetic series, we can derive two

simple and very useful formulas for the sum of a geometric series. Let r be the common

ratio of the geometric sequence a1, a2, a3, . . . , an and let Sn denote the sum of the series

a1  a2  a3  
. . .  an. Then

Multiply both sides of this equation by r to obtain

Now subtract the left side of the second equation from the left side of the first, and the right

side of the second equation from the right side of the first to obtain

Factor out Sn

Solving for Sn, we obtain the following formula for the sum of a geometric series:

 Sn(1  r)  a1  a1r 
n

 Sn  rSn  a1  a1r 
n

rSn  a1r  a1r 
2
 a1r 

3
 . . .  a1r 

n 1
 a1r 

n

Sn  a1  a1r  a1r 
2
 a1r 

3
 . . .  a1r 

n 2
 a1r 

n 1

S E C T I O N  8 – 3 Arithmetic and Geometric Sequences 525

Z THEOREM 5 Sum of a Geometric Series—First Form

Sn  
a1  a1r 

n

1  r
  r  1

Z THEOREM 6 Sum of a Geometric Series—Second Form

Sn  
a1  ran

1  r
  r  1

Because or the sum formula also can be written in the fol-

lowing form:

ran  a1r 
n,an  a1r 

n 1,

The proof of the first sum formula (Theorem 5) by mathematical induction is left as

an exercise (see Problem 72, Exercises 8-3).

If r  1, then

Sn  a1  a1(1)  a1(12)  . . .  a1(1n 1)  na1

EXAMPLE 6 Finding the Sum of a Geometric Series

Find the sum of the first 20 terms of a geometric series if the first term is 1 and r  2.

SOLUTION Let n  20, a1  1, r  2, and use Theorem 5.

Substitute n ⴝ 20, a1 ⴝ 1, and r ⴝ 2.

  
1  1 ⴢ 220

1  2
 1,048,575

 Sn  
a1  a1r 

n

1  r



Z Developing a Sum Formula for Infinite Geometric Series

Consider a geometric series with a1  5 and What happens to the sum Sn as n

increases? To answer this question, we first write the sum formula in the more convenient

form

(1)

For a1  5 and 

Let’s look at some of the Sns:

It appears that becomes smaller and smaller as n increases and that the sum gets closer

and closer to 10.

In general, it is possible to show that, if then rn will get closer and closer to

0 as n increases. Symbolically, as So the term

in equation (1) will tend to 0 as n increases, and Sn will tend to

a1

1  r

a1r 
n

1  r

n S  .r 
n

S 0

 r 6 1,

(1
2)

n

 S20  10  10 a 1

1,048,576
b  9.999990 p

 o

 S4  10  10 a 1

16
b  9.375

 S3  10  10 a1

8
b  8.75

 S2  10  10 a1

4
b  7.5

Sn  10  10 a1

2
bn

r  
1
2,

Sn  

a1  a1r 
n

1  r
 

a1

1  r
 

a1r 
n

1  r

r  
1
2.
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Technology Connections

To calculate the sum of a series with a graphing calculator,

first generate the sequence using the sequence command,

then find its sum using the sum command. Figure 1 shows

the solution to Example 6.

Z Figure 1

�

MATCHED PROBLEM 6 Find the sum, to two decimal places, of the first 14 terms of a geometric series if the

first term is and r   2.

�

1
64



In other words, if then Sn can be made as close to

as we wish by taking n sufficiently large. So we can define the sum of an infinite geomet-

ric series by the following formula:

a1

1  r

 r 6 1,
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Z DEFINITION 3 Sum of an Infinite Geometric Series

 r 6 1S  
a1

1  r

If an infinite geometric series has no sum. r  1,

EXAMPLE 7 Expressing a Repeating Decimal as a Fraction

Represent the repeating decimal as the quotient of two integers. Recall

that a repeating decimal names a rational number and that any rational number can be rep-

resented as the quotient of two integers.

0.454 545 .
 . .  0.45

SOLUTION

The right side of the equation is an infinite geometric series with a1  0.45 and r 0.01. The

sum is

This shows that, and name the same rational number. You can check the result by

dividing 5 by 11. �

5
110.45

S  
a1

1  r
 

0.45

1  0.01
 

0.45

0.99
 

5

11

0.45  0.45  0.0045  0.000 045  . . .

MATCHED PROBLEM 7 Repeat Example 7 for 

�

0.818 181 . . .  0.81.

EXAMPLE 8 Economy Stimulation

A state government uses proceeds from a lottery to provide a tax rebate for property owners.

Suppose an individual receives a $500 rebate and spends 80% of this, and each of the recip-

ients of the money spent by this individual also spends 80% of what he or she receives, and

this process continues without end. According to the multiplier doctrine in economics, the

effect of the original $500 tax rebate on the economy is multiplied many times. What is the

total amount spent if the process continues as indicated?

SOLUTION The individual receives $500 and spends 0.8(500) $400. The recipients of this $400 spend

0.8(400) $320, the recipients of this $320 spend 0.8(320) $256, and so on. The total

spending generated by the $500 rebate is

400  320  256  . . .  400  0.8(400)  (0.8)2(400)  . . .

  

 



which we recognize as an infinite geometric series with and . The total

amount spent is

�S
 
 

a1

1  r
 

400

1  0.8
 

400

0.2
 $2,000

r  0.8a1  400
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MATCHED PROBLEM 8 Repeat Example 8 if the tax rebate is $1,000 and the percentage spent by all recipients

is 90%.

�

(A) Find an infinite geometric series with a1  10 whose sum is 1,000.

(B) Find an infinite geometric series with a1  10 whose sum is 6.

(C) Suppose that an infinite geometric series with a1  10 has a sum. Explain why

that sum must be greater than 5.

ZZZ EXPLORE-DISCUSS 2

ANSWERS TO MATCHED PROBLEMS

1. (A) The sequence is geometric with but not arithmetic.

(B) The sequence is arithmetic with d  5, but not geometric.

(C) The sequence is neither arithmetic nor geometric.

2. (A) 139 (B)  2 3.  1,456 4. 570 5. $695 6.  85.33

7. 8. $9,000 9
11

r  1
4,

Let a1, a2, a3, . . . , an , . . . be an arithmetic sequence. In Problems

9–16, find the indicated quantities.

9. a1   5, d  4; a2  ?, a3  ?, a4  ?

10. a1   18, d  3; a2  ?, a3  ?, a4  ?

11. a1   3, d  5; a15  ?, S11  ?

12. a1  3, d  4; a22  ?, S21  ?

13. a1  1, a2  5; S21  ?

14. a1  5, a2  11; S11  ?

15. a1  7, a2  5; a15  ?

16. a1   3, d   4; a10  ?

Let a1, a2, a3, . . . , an , . . . be a geometric sequence. In Problems

17–22, find each of the indicated quantities.

17. a1   6, a2  ?, a3  ?, a4  ?

18. a1  12, a2  ?, a3  ?, a4  ?r  2
3;

r   1
2;

8-3 Exercises

1. What is an arithmetic sequence?

2. What is a geometric sequence?

3. Explain the terms “common difference” and “common ratio.”

4. Explain how a repeating decimal can be viewed as a geometric

series.

5. Which infinite arithmetic series have a sum?

6. Which infinite geometric series have a sum?

In Problems 7 and 8, determine whether the following can be the

first three terms of an arithmetic or geometric sequence, and, if so,

find the common difference or common ratio and the next two

terms of the sequence.

7. (A)  11,  16,  21, . . . (B) 2,  4, 8, . . .

(C) 1, 4, 9, . . . (D) . . .

8. (A) 5, 20, 100, . . . (B)  5,  5,  5, . . .

(C) 7, 6.5, 6, . . . (D) 512, 256, 128, . . .

1
2, 

1
6, 

1
18,



19. a1 81, a10 ?

20. a1  64, a13  ?

21. a1  3, a7  2,187, r  3; S7  ?

22. a1  1, a7  729, r   3; S7  ?

Let a1, a2, a3, . . . , an , . . . be an arithmetic sequence. In Problems

23–30, find the indicated quantities.

23. a1  3, a20  117; d  ?, a101  ?

24. a1  7, a8  28; d  ?, a25  ?

25. a1   12, a40  22; S40  ?

26. a1  24, a24   28; S24  ?

27. a11  ?, S11  ?

28. a19  ?, S19  ?

29. a3  13, a10  55; a1  ?

30. a9   12, a13  3; a1  ?

Let a1, a2, a3, . . . , an , . . . be a geometric sequence. Find each of

the indicated quantities in Problems 31–42.

31. a1  8, a2  2; r  ?

32. a1   6, a2  2; r  ?

33. a1  120, a4   15; r  ?

34. 

35. 

36. a1  3, r  5; S9  ?

37. a1  1, a8  2,187; S8  ?

38. 

39. a3  72, a6   243; a1  ?

40. a4  8, a5  6; a1  ?

41. a1  1, a4   1; a100  ?

42. a1   1, a8  1; a99  ?

43. 

44. 

45. 

46. 

47. Find the sum of all the even integers between 21 and 135.

48. Find the sum of all the odd integers between 100 and 500.

49. Show that the sum of the first n odd natural numbers is n2,

using appropriate formulas from Section 8-3.

S7  a
7

k 1

3k
 ?

S7  a
7

k 1

( 3)k 1
 ?

S40  a
40

k 1

(2k  3)  ?

S51  a
51

k 1

(3k  3)  ?

a1  
1
2, a12  1,024; S12  ?

a1  9, r  2
3; S10  ?

a1  12, a6  8; r  ?

a1  
1
6, a2  

1
4;

a1  
1
3, a2  

1
2;

r  1
2;

 r  1
3; 
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50. Show that the sum of the first n even natural numbers is

n n2, using appropriate formulas from Section 8-3.

In Problems 51–60, find the sum of each infinite geometric series

that has a sum.

51. 

52. 

53. 

54. 

55. 1 0.1  0.01  . . .

56. 10 2  0.4  . . .

57. 

58. 

59. 1  1  1 . . .

60.  100 80  64  . . .

In Problems 61–66, represent each repeating decimal as the quo-

tient of two integers.

61. 62. 

63. 64. 

65. 

66. 

67. Prove, using mathematical induction, that if {an} is an arith-

metic sequence, then

for every 

68. Prove, using mathematical induction, that if {an} is an arith-

metic sequence, then

69. If in a given sequence, a1  2 and an  3an 1, find

an in terms of n.

70. For the sequence in Problem 69, find in terms

of n.

71. Prove, using mathematical induction, that if {an} is a geomet-

ric sequence, then

72. Prove, using mathematical induction, that if {an} is a geomet-

ric sequence, then

73. Is there an arithmetic sequence that is also geometric?

Explain.

74. Is there an infinite geometric sequence with that has

sum equal to Explain.1
2?

a1  1

n 僆 N, r  1Sn  
a1  a1r 

n

1  r

n 僆 Nan  a1r 
n 1

Sn  a
n

k 1

ak

n 7 1,

Sn  
n

2
[2a1  (n  1)d ]

n 7 1an  a1  (n  1)d

5.63  5.636 363 . . .

3.216  3.216 216 216 . . .

0.27  0.272 727 . . .0.54  0.545 454 . . .

0.5  0.5555 . . .0.7  0.7777 . . .

 6  4  8
3  

. . .

 1  1
2  

1
4  

. . .

1  4
3  

16
9  

. . .

3  1  1
3  

. . .

6  2  2
3  

. . .

2  1
2  

1
8  

. . .

 



APPLICATIONS

75. BUSINESS In investigating different job opportunities, you find

that firm A will start you at $25,000 per year and guarantee you a

raise of $1,200 each year whereas firm B will start you at $28,000

per year but will guarantee you a raise of only $800 each year. Over

a period of 15 years, how much would you receive from each firm?

76. BUSINESS In Problem 75, what would be your annual salary at

each firm for the tenth year?

77. ECONOMICS The government, through a subsidy program, dis-

tributes $1,000,000. If we assume that each individual or agency

spends 0.8 of what is received, and 0.8 of this is spent, and so on, how

much total increase in spending results from this government action?

78. ECONOMICS Because of reduced taxes, an individual has an

extra $600 in spendable income. If we assume that the individual

spends 70% of this on consumer goods, that the producers of these

goods in turn spend 70% of what they receive on consumer goods,

and that this process continues indefinitely, what is the total amount

spent on consumer goods?

79. BUSINESS If $P is invested at r% compounded annually, the

amount A present after n years forms a geometric sequence with a

common ratio 1  r. Write a formula for the amount present after n

years. How long will it take a sum of money P to double if invested

at 6% interest compounded annually?

80. POPULATION GROWTH If a population of A0 people grows at

the constant rate of r% per year, the population after t years forms

a geometric sequence with a common ratio 1  r. Write a formula

for the total population after t years. If the world’s population is in-

creasing at the rate of 2% per year, how long will it take to double?

81. FINANCE Eleven years ago an investment earned $7,000 for the

year. Last year the investment earned $14,000. If the earnings from

the investment have increased the same amount each year, what is

the yearly increase and how much income has accrued from the in-

vestment over the past 11 years?

82. AIR TEMPERATURE As dry air moves upward, it expands. In so

doing, it cools at the rate of about for each 1,000-foot rise. This

is known as the adiabatic process.

(A) Temperatures at altitudes that are multiples of 1,000 feet form

what kind of a sequence?

(B) If the ground temperature is write a formula for the tem-

perature Tn in terms of n, if n is in thousands of feet.

83. ENGINEERING A rotating flywheel coming to rest rotates 300

revolutions the first minute (see the figure). If in each subsequent

minute it rotates two-thirds as many times as in the preceding minute,

how many revolutions will the wheel make before coming to rest?

80°F,

5°F
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84. PHYSICS The first swing of a bob on a pendulum is 10 inches.

If on each subsequent swing it travels 0.9 as far as on the preceding

swing, how far will the bob travel before coming to rest?

85. FOOD CHAIN A plant is eaten by an insect, an insect by a

trout, a trout by a salmon, a salmon by a bear, and the bear is eaten

by you. If only 20% of the energy is transformed from one stage

to the next, how many calories must be supplied by plant food to

provide you with 2,000 calories from the bear meat?

86. GENEALOGY If there are 30 years in a generation, how many di-

rect ancestors did each of us have 600 years ago? By direct ancestors

we mean parents, grandparents, great-grandparents, and so on.

87. PHYSICS An object falling from rest in a vacuum near the sur-

face of the Earth falls 16 feet during the first second, 48 feet during

the second second, 80 feet during the third second, and so on.

(A) How far will the object fall during the eleventh second?

(B) How far will the object fall in 11 seconds?

(C) How far will the object fall in t seconds?

88. PHYSICS In Problem 87, how far will the object fall during:

(A) The twentieth second? (B) The t th second?

89. BACTERIA GROWTH A single cholera bacterium divides every

hour to produce two complete cholera bacteria. If we start with a

colony of A0 bacteria, how many bacteria will we have in t hours,

assuming adequate food supply?

90. CELL DIVISION One leukemic cell injected into a healthy

mouse will divide into two cells in about day. At the end of the day

these two cells will divide again, with the doubling process continu-

ing each day until there are 1 billion cells, at which time the mouse

dies. On which day after the experiment is started does this happen?

91. ASTRONOMY Ever since the time of the Greek astronomer

Hipparchus, second century B.C., the brightness of stars has been

measured in terms of magnitude. The brightest stars, excluding the

sun, are classed as magnitude 1, and the dimmest visible to the eye

are classed as magnitude 6. In 1856, the English astronomer N. R.

Pogson showed that first-magnitude stars are 100 times brighter

than sixth-magnitude stars. If the ratio of brightness between con-

secutive magnitudes is constant, find this ratio. [Hint: If bn is the

brightness of an nth-magnitude star, find r for the geometric se-

quence b1, b2, b3, . . . , given b1  100b6.]

92. PUZZLE If a sheet of very thin paper 0.001-inch thick is torn in

half, and each half is again torn in half, and this process is repeated

for a total of 32 times, how high will the stack of paper be if the

pieces are placed one on top of the other? Give the answer to the

nearest mile.

1
2

1
2

1
2



93. PUZZLE If you place 1¢ on the first square of a chessboard, 2¢

on the second square, 4¢ on the third, and so on, continuing to dou-

ble the amount until all 64 squares are covered, how much money

will be on the sixty-fourth square? How much money will there be

on the whole board?

94. MUSIC The notes on a piano, as measured in cycles per second,

form a geometric sequence.

(A) If A is 400 cycles per second and 12 notes higher, is 800

cycles per second, find the constant ratio r.

(B) Find the cycles per second for C, three notes higher than A.

A¿,
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95. ATMOSPHERIC PRESSURE If atmospheric pressure decreases

roughly by a factor of 10 for each 10-mile increase in altitude up to

60 miles, and if the pressure is 15 pounds per square inch at sea level,

what will the pressure be 40 miles up?

96. ZENO’S PARADOX Visualize a hypothetical 440-yard oval

racetrack that has tapes stretched across the track at the halfway

point and at each point that marks the halfway point of each re-

maining distance thereafter. A runner running around the track has

to break the first tape before the second, the second before the

third, and so on. From this point of view it appears that he will

never finish the race. This famous paradox is attributed to the

Greek philosopher Zeno (495–435 B.C.). If we assume the runner

runs at 440 yards per minute, the times between tape breakings

form an infinite geometric sequence. What is the sum of this

sequence?

97. GEOMETRY If the midpoints of the sides of an equilateral tri-

angle are joined by straight lines, the new figure will be an equilat-

eral triangle with a perimeter equal to half the original. If we start

with an equilateral triangle with perimeter 1 and form a sequence

of “nested” equilateral triangles proceeding as described, what

will be the total perimeter of all the triangles that can be formed in

this way?

98. PHOTOGRAPHY The shutter speeds and f-stops on a camera are

given as follows:

Shutter speeds:

f-stops: 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22

These are very close to being geometric sequences. Estimate their

common ratios.

99. GEOMETRY We know that the sum of the interior angles of a

triangle is Show that the sums of the interior angles of

polygons with 3, 4, 5, 6, . . . sides form an arithmetic sequence.

Find the sum of the interior angles for a 21-sided polygon.

180°.

1, 12, 
1
4, 

1
8, 

1
15, 

1
30, 

1
60, 

1
125, 

1
250, 

1
500

8-4 Multiplication Principle, Permutations,
and Combinations

Z Counting with the Multiplication Principle

Z Using Factorial Notation

Z Counting Permutations

Z Counting Combinations

Section 8-4 introduces some new mathematical tools that are usually referred to as count-

ing techniques. In general, a counting technique is a mathematical method of determin-

ing the number of objects in a set without actually enumerating the objects in the set

as 1, 2, 3, . . . . For example, we can count the number of squares in a checkerboard



(Fig. 1) by counting 1, 2, 3, . . . , 64. This is enumeration. Or we can note that there are

eight rows with eight squares in each row. So the total number of squares must be

8  8  64. This is a very simple counting technique.

Now consider the problem of assigning telephone numbers. How many different seven-

digit telephone numbers can be formed? As we will soon see, the answer is 107
 10,000,000,

a number that is much too large to obtain by enumeration. This shows that counting tech-

niques are essential tools if the number of elements in a set is very large. The techniques

developed in this section will be applied to a brief introduction to probability theory in Sec-

tion 8-5, and to a famous algebraic formula in Section 8-6.

Z Counting with the Multiplication Principle

We start with an example.
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EXAMPLE 1 Combined Outcomes

Suppose we flip a coin and then throw a single die (Fig. 2). What are the possible com-

bined outcomes?

SOLUTION One way to solve this problem is to use a tree diagram:

There are 12 possible combined outcomes—two ways in which the coin can come up fol-

lowed by six ways in which the die can come up. �

Die

Outcomes

Combined

Outcomes

StartStart

1

2

3

4

5

6

Coin

Outcomes

H

(H, 1)

(H, 2)

(H, 3)

(H, 4)

(H, 5)

(H, 6)

1

2

3

4

5

6

T

(T, 1)

(T, 2)

(T, 3)

(T, 4)

(T, 5)

(T, 6)

MATCHED PROBLEM 1 Use a tree diagram to determine the number of possible outcomes of throwing a single die

followed by flipping a coin.

�

Z Figure 2 Coin and die outcomes.

Heads Tails

Coin outcomes

Die outcomes

Now suppose you are asked, “From the 26 letters in the alphabet, how many ways can

3 letters appear in a row on a license plate if no letter is repeated?” To try to count the pos-

sibilities using a tree diagram would be extremely tedious, to say the least. The following

multiplication principle, also called the fundamental counting principle, enables us to

solve this problem easily. In addition, it forms the basis for several other counting tech-

niques developed later in this section.

Z Figure 1



In Example 1, we see that there are two possible outcomes from the first operation of

flipping a coin and six possible outcomes from the second operation of throwing a die. So

by the multiplication principle, there are possible combined outcomes of flip-

ping a coin followed by throwing a die. (Now try using the multiplication principle to solve

Matched Problem 1.)

To answer the license plate question, we reason as follows: There are 26 ways the first

letter can be chosen. After a first letter is chosen, 25 letters remain, so there are 25 ways a

second letter can be chosen. And after 2 letters are chosen, there are 24 ways a third letter

can be chosen. Using the multiplication principle, there are 26 ⴢ 25 ⴢ 24  15,600 possible

ways 3 letters can be chosen from the alphabet without allowing any letter to repeat. By

not allowing any letter to repeat, earlier selections affect the choice of subsequent selec-

tions. If we allow letters to repeat, then earlier selections do not affect the choice in subse-

quent selections, and there are 26 possible choices for each of the 3 letters. So, if we allow

letters to repeat, there are 26 ⴢ 26 ⴢ 26  263
 17,576 possible ways the 3 letters can be

chosen from the alphabet.

2 ⴢ 6  12
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Z MULTIPLICATION PRINCIPLE

1. If two operations O1 and O2 are performed in order with N1 possible outcomes for

the first operation and N2 possible outcomes for the second operation, then there are

possible combined outcomes of the first operation followed by the second.

2. In general, if n operations O1, O2, . . . , On, are performed in order, with possible

number of outcomes N1, N2, . . . , Nn, respectively, then there are

possible combined outcomes of the operations performed in the given order.

N1 ⴢ N2 ⴢ

. . .
ⴢ Nn

N1 ⴢ N2

EXAMPLE 2 Computer-Generated Tests

Many universities and colleges are now using computer-assisted testing procedures. Sup-

pose a screening test is to consist of five questions, and a computer stores five equiva-

lent questions for the first test question, eight equivalent questions for the second, six

for the third, five for the fourth, and ten for the fifth. How many different five-question

tests can the computer select? Two tests are considered different if they differ in one or

more questions.

SOLUTION O1: Select the first question N1: five ways

O2: Select the second question N2: eight ways

O3: Select the third question N3: six ways

O4: Select the fourth question N4: five ways

O5: Select the fifth question N5: ten ways

The computer can generate

5 ⴢ 8 ⴢ 6 ⴢ 5 ⴢ 10  12,000 different tests �

MATCHED PROBLEM 2 Each question on a multiple-choice test has five choices. If there are five such questions on

a test, how many different response sheets are possible if only one choice is marked for

each question?

�



The multiplication principle can be used to develop two additional counting techniques

that are extremely useful in more complicated counting problems. Both of these methods

use factorial notation, which we introduce next.

Z Using Factorial Notation

For n a natural number, n factorial—denoted by n!—is the product of the first n natural

numbers. Zero factorial is defined to be 1.
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EXAMPLE 3 Counting Code Words

How many three-letter code words are possible using the first eight letters of the alphabet if:

(A) No letter can be repeated? (B) Letters can be repeated?

(C) Adjacent letters cannot be alike?

SOLUTIONS (A) No letter can be repeated.

O1: Select first letter N1: eight ways

O2: Select second letter N2: seven ways Because one letter has been used

O3: Select third letter N3: six ways Because two letters have been used

There are

8 ⴢ 7 ⴢ 6  336 possible code words

(B) Letters can be repeated.

O1: Select first letter N1: eight ways

O2: Select second letter N2: eight ways Repeats are allowed.

O3: Select third letter N3: eight ways Repeats are allowed.

There are

8 ⴢ 8 ⴢ 8  83
 512 possible code words

(C) Adjacent letters cannot be alike.

O1: Select first letter N1: eight ways

O2: Select second letter N2: seven ways Cannot be the same as the first

O3: Select third letter N3: seven ways

There are

8 ⴢ 7 ⴢ 7  392 possible code words �

Cannot be the same as the second, 

but can be the same as the first

MATCHED PROBLEM 3 How many four-letter code words are possible using the first ten letters of the alphabet under

the three conditions stated in Example 3?

�

The postal service of a developing country is choosing a five-character postal code

consisting of letters (of the English alphabet) and digits. At least a half a million

postal codes must be accommodated. Which format would you recommend to make

the codes easy to remember?

ZZZ EXPLORE-DISCUSS 1



It is also useful to note that
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Z DEFINITION 1 n Factorial

For n a natural number

n!  n(n  1) ⴢ . . .
ⴢ 2 ⴢ 1

1!  1

0!  1

Z THEOREM 1 Recursion Formula for n Factorial

n!  n ⴢ (n  1)!

EXAMPLE 4 Evaluating Factorials

Evaluate each expression:

(A) 4! (B) 5! (C) (D) (E)
9!

6!3!

8!

5!

7!

6!

MATCHED PROBLEM 4 Find (A) 6! (B) (C) (D)

�

10!

7!3!

9!

6!

6!

5!

ZZZ CAUTION ZZZ When reducing fractions involving factorials, don’t confuse the single integer n

with the symbol n!, which represents the product of n consecutive integers.

6!

3!
ⴝ

6 ⴢ 5 ⴢ 4 ⴢ 3!

3!
ⴝ 6 ⴢ 5 ⴢ 4 ⴝ 120

6!

3!
 2!

A student used a calculator* to solve Matched Problem 4, as shown in Figure 3. Check

these answers. If any are incorrect, explain why and find a correct calculator solution.

ZZZ EXPLORE-DISCUSS 2

Z Figure 3

*The factorial symbol ! and related symbols can be found under the MATH-PROB menus on a TI-84 or TI-86.

SOLUTIONS (A) (B) (C)

(D) (E) �

9!

6!3!
 

9
3

ⴢ 8
4

ⴢ 7 ⴢ 6!

6! 3 ⴢ 2 ⴢ 1
 84

8!

5!
 

8 ⴢ 7 ⴢ 6 ⴢ 5!

5!
 336

7!

6!
 

7 ⴢ 6!

6!
 75!  5 ⴢ 4 ⴢ 3 ⴢ 2 ⴢ 1  1204!  4 ⴢ 3 ⴢ 2 ⴢ 1  24



It is interesting and useful to note that n! grows very rapidly. Compare the following:

5!  120 10!  3,628,800 15!  1,307,674,368,000

If n! is too large for a calculator to store and display, an error message is displayed. Find

the value of n such that your calculator will evaluate n!, but not (n  1)!.

Z Counting Permutations

Suppose four pictures are to be arranged from left to right on one wall of an art gallery.

How many arrangements are possible? Using the multiplication principle, there are four

ways of selecting the first picture. After the first picture is selected, there are three ways

of selecting the second picture. After the first two pictures are selected, there are two

ways of selecting the third picture. And after the first three pictures are selected, there

is only one way to select the fourth. So, the number of arrangements possible for the

four pictures is

or 24

In general, we refer to a particular arrangement, or ordering, of n objects without rep-

etition as a permutation of the n objects. How many permutations of n objects are there?

From the preceding reasoning, there are n ways in which the first object can be chosen,

there are n 1 ways in which the second object can be chosen, and so on. Applying the

multiplication principle, we have Theorem 2.

4 ⴢ 3 ⴢ 2 ⴢ 1  4!
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Now suppose the director of the art gallery decides to use only two of the four avail-

able pictures on the wall, arranged from left to right. How many arrangements of two pic-

tures can be formed from the four? There are four ways the first picture can be selected.

After selecting the first picture, there are three ways the second picture can be selected. So,

the number of arrangements of two pictures from four pictures, denoted by P4,2, is given by

P4,2  4 ⴢ 3  12

Or, in terms of factorials, multiplying 4 ⴢ 3 by 1 in the form 2! 2!, we have

This last form gives P4,2 in terms of factorials, which is useful in some cases.

A permutation of a set of n objects taken r at a time is an arrangement of the r

objects in a specific order. So, reasoning in the same way as in the preceding example, we

find that the number of permutations of n objects taken r at a time, denoted by

Pn,r, is given by

Multiplying the right side of this equation by 1 in the form (n  r)! (n  r)!, we obtain a

factorial form for Pn,r:

Pn,r  n(n  1)(n  2) ⴢ

. . .
ⴢ (n  r  1) 

(n  r)!

(n  r)!

Pn,r  n(n  1)(n  2) ⴢ

. . .
ⴢ (n  r  1)

0  r  n,

P4,2  4 ⴢ 3  
4 ⴢ 3 ⴢ 2!

2!
 

4!

2!

Z THEOREM 2 Permutations of n Objects

The number of permutations of n objects, denoted by Pn,n, is given by

Pn,n  n ⴢ (n  1) ⴢ

. . .
ⴢ 1  n!



But

We have developed Theorem 3.

n(n  1)(n  2) ⴢ . . .
ⴢ (n  r  1)(n  r)!  n!

S E C T I O N  8 – 4 Multiplication Principle, Permutations, and Combinations 537

Note that if r  n, then the number of permutations of n objects taken n at a time is

Recall, 0! ⴝ 1.

which agrees with Theorem 2, as it should.

The permutation symbol Pn,r also can be denoted by or P(n, r). Many calcu-

lators use nPr to denote the function that evaluates the permutation symbol.
n 
Pr,P 

n
r ,

Pn,n  
n!

(n  n)!
 

n!

0!
 n!

Z THEOREM 3 Permutation of n Objects Taken r at a Time

The number of permutations of n objects taken r at a time is given by

r factors

or

0  r  nPn,r  
n!

(n  r)!

Pn,r  n(n  1)(n  2) ⴢ . . .
ⴢ (n  r  1)y

EXAMPLE 5 Selecting Officers

From a committee of eight people, in how many ways can we choose a chair and a vice-

chair, assuming one person cannot hold more than one position?

SOLUTION We are actually asking for the number of permutations of eight objects taken two at a time—

that is, P8,2:

�P8,2  
8!

(8  2)!
 

8!

6!
 

8 ⴢ 7 ⴢ 6!

6!
 56

MATCHED PROBLEM 5 From a committee of ten people, in how many ways can we choose a chair, vice-chair, and

secretary, assuming one person cannot hold more than one position?

�

EXAMPLE 6 Evaluating Pn,r

Find the number of permutations of 25 objects taken

(A) Two at a time

(B) Four at a time

(C) Eight at a time
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SOLUTION Figure 4 shows the solution on a calculator. �

Z Figure 4

MATCHED PROBLEM 6 Find the number of permutations of 30 objects taken

(A) Two at a time (B) Four at a time (C) Six at a time

�

Z Counting Combinations

Now suppose that an art museum owns eight paintings by a given artist and another art

museum hopes to borrow three of these paintings for a special show. How many ways can

three paintings be selected for shipment out of the eight available? Here, the order of the

items selected doesn’t matter. What we are actually interested in is how many subsets of

three objects can be formed from a set of eight objects. We call such a subset a combi-

nation of eight objects taken three at a time. The total number of combinations is denoted

by the symbol

C8,3 or

To find the number of combinations of eight objects taken three at a time, C8,3, we make

use of the formula for Pn,r and the multiplication principle. We know that the number of per-

mutations of eight objects taken three at a time is given by P8,3, and we have a formula for

computing this quantity. Now suppose we think of P8,3 in terms of two operations:

O1: Select a subset of three objects (paintings)

N1: C8,3 ways

O2: Arrange the subset in a given order

N2: 3! ways

The combined operation, O1 followed by O2, produces a permutation of eight objects taken

three at a time. So,

To find C8,3, we replace P8,3 in the preceding equation with 8! (8  3)! and solve for C8,3:

The museum can make 56 different selections of three paintings from the eight available.

A combination of a set of n objects taken r at a time is an r-element subset of the

n objects. Reasoning in the same way as in the example, the number of combinations of n

 C8,3  
8!

3!(8  3)!
 

8 ⴢ 7 ⴢ 6 ⴢ 5!

3 ⴢ 2 ⴢ 1 ⴢ 5!
 56

 
8!

(8  3)!
 C8,3 ⴢ 3!

P8,3  C8,3 ⴢ 3!

a8

3
b



objects taken r at a time, denoted by Cn,r, can be obtained by solving for Cn,r

in the relationship

Pn,r ⴝ

n!

(n ⴚ r)!
  

n!

r!(n  r)!

 Cn,r  

Pn,r

r!

 Pn,r  Cn,r ⴢ r!

0  r  n,
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The combination symbols Cn,r and also can be denoted by or C(n, r).C 
n

r , nCr,an

r
b

MATCHED PROBLEM 7 How many subcommittees of three people can be chosen from a committee of eight people?

�

EXAMPLE 7 Selecting Subcommittees

From a committee of eight people, in how many ways can we choose a subcommittee of

two people?

SOLUTION Notice how this example differs from Example 5, where we wanted to know how many

ways a chair and a vice-chair can be chosen from a committee of eight people. In Exam-

ple 5, ordering matters. In choosing a subcommittee of two people, the ordering does not

matter. So, we are actually asking for the number of combinations of eight objects taken

two at a time. The number is given by

�C8,2  a8

2
b  8!

2!(8  2)!
 

8 ⴢ 7 ⴢ 6!

2 ⴢ 1 ⴢ 6!
 28

EXAMPLE 8 Evaluating Cn,r

Find the number of combinations of 25 objects taken

(A) Two at a time (B) Four at a time (C) Eight at a time

SOLUTION Figure 5 shows the solution on a calculator. Compare these results with Example 6. �

Z Figure 5

Z THEOREM 4 Combination of n Objects Taken r at a Time

The number of combinations of n objects taken r at a time is given by

0  r  nCn,r  an

r
b  Pn,r

r!
 

n!

r!(n  r)!



Remember: In a permutation, order counts. In a combination, order does not

count.

To determine whether a permutation or combination is needed, decide whether rear-

ranging the collection or listing makes a difference. If so, use permutations. If not, use com-

binations.
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Each of the following is a selection without repetition. Would you consider the

selection to be a combination? A permutation? Discuss your reasoning.

(A) A student checks out three books from the library.

(B) A baseball manager names his starting lineup.

(C) The newly elected president names his cabinet members.

(D) The president selects a delegation of three cabinet members to attend the

funeral of a head of state.

(E) An orchestra conductor chooses three pieces of music for a symphony

program.

ZZZ EXPLORE-DISCUSS 3

Z Figure 6 A standard deck of cards.

2
3
4
5 6 7 8 910 J Q K A

A

2
3
4 5

6 7 8 910 J Q K A

A

2
3
4
5 6 7 8 910 J Q K A

A
2
3
4 5

6 7 8 910 J Q K A

A

A standard deck of 52 cards (Fig. 6) has four 13-card suits: diamonds, hearts, clubs,

and spades. Each 13-card suit contains cards numbered from 2 to 10, a jack, a queen, a

king, and an ace. The jack, queen, and king are called face cards. Depending on the game,

the ace may be counted as the lowest and/or the highest card in the suit. Example 9, as well

as other examples and exercises in Chapter 8, refer to this standard deck.

MATCHED PROBLEM 9 From a standard 52-card deck, how many 5-card hands will have three hearts and two spades?

�

EXAMPLE 9 Counting Card Hands

Out of a standard 52-card deck, how many 5-card hands will have three aces and two kings?

EXAMPLE 10 Counting Serial Numbers

Serial numbers for a product are to be made using two letters followed by three numbers.

If the letters are to be taken from the first eight letters of the alphabet with no repeats and

the numbers from the 10 digits 0 through 9 with no repeats, how many serial numbers are

possible?

MATCHED PROBLEM 8 Find the number of combinations of 30 objects taken

(A) Two at a time (B) Four at a time (C) Six at a time

�

SOLUTION O1: Choose three aces out of four possible Order is not important.

N1: C4,3

O2: Choose two kings out of four possible Order is not important.

N2: C4,2

Using the multiplication principle, we have

�Number of hands  C4,3 ⴢ C4,2  4 ⴢ 6  24



17. The figure shows calculator solutions to Problems 11, 13, and

15. Check these answers. If any are incorrect, explain why and

find a correct calculator solution.

18. The figure shows calculator solutions to Problems 12, 14, and

16. Check these answers. If any are incorrect, explain why and

find a correct calculator solution.

8-4 Exercises

1. What is a permutation?

2. What is a combination?

3. Explain how n! can be defined by means of a recursion formula.

4. State the multiplication principle for counting in your own words.

5. Explain how permutations and combinations differ with re-

spect to order.

6. Explain how permutations and combinations are alike with re-

spect to repetition.

Evaluate the expression in Problems 7–16:

7. 9! 8. 10! 9. 11!

10. 12! 11. 12.

13. 14. 15.

16.
8!

3!(8  3)!

7!

4!(7  4)!

6!

4!2!

5!

2!3!

14!

12!

11!

8!
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SOLUTION O1: Choose two letters out of eight available Order is important.

N1: P8,2

O2: Choose three numbers out of ten available Order is important.

N2: P10,3

Using the multiplication principle, we have

�Number of serial numbers  P8,2 ⴢ P10,3  40,320

MATCHED PROBLEM 10 Repeat Example 10 under the same conditions, except the serial numbers are now to have

three letters followed by two digits with no repeats.

�

ANSWERS TO MATCHED PROBLEMS

1. There are 12 outcomes. 2. 55, or 3,125

3. (A) 10 ⴢ 9 ⴢ 8 ⴢ 7  5,040 (B) 10 ⴢ 10 ⴢ 10 ⴢ 10  10,000

(C) 10 ⴢ 9 ⴢ 9 ⴢ 9  7,290 4. (A) 720 (B) 6 (C) 504 (D) 120

5. 6. (A) 870 (B) 657,720 (C) 427,518,000

7. 8. (A) 435 (B) 27,405 (C) 593,775

9. C13,3 ⴢ C13,2  22,308 10. P8,3 ⴢ P10,2  30,240

C8,3  
8!

3!(8  3)!
 56

P10,3  
10!

(10  3)!
 720

H T H T H T H T H T H T

1 2 3 4 5 6

Start



numbers are possible, assuming no digit is repeated? Assuming

digits can be repeated?

40.A small combination lock on a suitcase has three wheels, each

labeled with digits from 0 to 9. How many opening combina-

tions of three numbers are possible, assuming no digit is re-

peated? Assuming digits can be repeated?

41. From a standard 52-card deck, how many 5-card hands will

have all hearts?

42. From a standard 52-card deck, how many 5-card hands will

have all face cards? All face cards, but no kings? Consider only

jacks, queens, and kings to be face cards.

43. How many different license plates are possible if each contains

three letters followed by three digits? How many of these

license plates contain no repeated letters and no repeated digits?

44. How may five-digit zip codes are possible? How many of these

codes contain no repeated digits?

45. From a standard 52-card deck, how many 7-card hands have

exactly five spades and two hearts?

46. From a standard 52-card deck, how many 5-card hands will

have two clubs and three hearts?

47.A catering service offers eight appetizers, ten main courses,

and seven desserts. A banquet chairperson is to select three ap-

petizers, four main courses, and two desserts for a banquet.

How many ways can this be done?

48. Three research departments have 12, 15, and 18 members, re-

spectively. If each department is to select a delegate and an al-

ternate to represent the department at a conference, how many

ways can this be done?

49. (A) Use a graphing calculator to display the sequences P10,0,

P10,1, . . . , P10,10 and 0!, 1!, . . . , 10! in table form, and

show that P10,r  r! for r   0, 1, . . . , 10.

(B) Find all values of r such that P10,r  r!

(C) Explain why Pn,r   r! whenever 0  r  n.

50. (A) How are the sequences and C10,0,

C10,1, . . . , C10,10 related?

(B) Use a graphing calculator to graph each sequence and con-

firm the relationship of part A.

51.A sporting goods store has 12 pairs of ski gloves of 12 different

brands thrown loosely in a bin. The gloves are all the same size.

In how many ways can a left-hand glove and a right-hand glove

be selected that do not match relative to brand?

52.A sporting goods store has six pairs of running shoes of six dif-

ferent styles thrown loosely in a basket. The shoes are all the

same size. In how many ways can a left shoe and a right shoe

be selected that do not match?

53. Eight distinct points are selected on the circumference of a

circle.

(A) How many chords can be drawn by joining the points in all

possible ways?

(B) How many triangles can be drawn using these eight points

as vertices?

(C) How many quadrilaterals can be drawn using these eight

points as vertices?

P10,0

0!
, 

P10,1

1!
, . . . , 

P10,10

10!

In Problems 19–26, evaluate.

19. P13,4 20. C20,10 21. P13,9

22. C20,4 23. C15,8 24. P11,3

25. C15,12 26. P11,8

In Problems 27 and 28, would you consider the selection to be a

combination or a permutation? Explain your reasoning.

27. (A) The recently elected chief executive officer (CEO) of a

company named three new vice-presidents, of marketing,

research, and manufacturing.

(B) The CEO selected three of her vice-presidents to attend the

dedication ceremony of a new plant.

28. (A) An individual rented four DVDs from a rental store to

watch over a weekend.

(B) The same individual did some holiday shopping by buying

four DVDs, one for his father, one for his mother, one for

his younger sister, and one for his older brother.

29.A particular new car model is available with five choices of

color, three choices of transmission, four types of interior, and

two types of engine. How many different variations of this

model car are possible?

30.A deli serves sandwiches with the following options: three

kinds of bread, five kinds of meat, and lettuce or sprouts. How

many different sandwiches are possible, assuming one item is

used out of each category?

31. In a horse race, how many different finishes among the first

three places are possible for a 10-horse race? Exclude ties.

32. In a long-distance foot race, how many different finishes

among the first five places are possible for a 50-person race?

Exclude ties.

33. How many ways can a subcommittee of three people be se-

lected from a committee of seven people? How many ways can

a president, vice-president, and secretary be chosen from a

committee of seven people?

34. Suppose nine cards are numbered with the nine digits from 1 to 9.

A three-card hand is dealt, one card at a time. How many hands

are possible where:

(A) Order is taken into consideration?

(B) Order is not taken into consideration?

35. There are 10 teams in a league. If each team is to play

every other team exactly once, how many games must be

scheduled?

36. Given seven points, no three of which are on a straight line,

how many lines can be drawn joining two points at a time?

37. How many four-letter code words are possible from the first six

letters of the alphabet, with no letter repeated? Allowing letters

to repeat?

38. How many five-letter code words are possible from the first

seven letters of the alphabet, with no letter repeated? Allowing

letters to repeat?

39.A combination lock has five wheels, each labeled with the 10

digits from 0 to 9. How many opening combinations of five
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54. Five distinct points are selected on the circumference of a

circle.

(A) How many chords can be drawn by joining the points in all

possible ways?

(B) How many triangles can be drawn using these five points as

vertices?

55. How many ways can two people be seated in a row of five

chairs? Three people? Four people? Five people?

56. Each of two countries sends five delegates to a negotiating

conference. A rectangular table is used with five chairs

on each long side. If each country is assigned a long side

of the table, how many seating arrangements are possible?

[Hint: Operation 1 is assigning a long side of the table to each

country.]

57.A basketball team has five distinct positions. Out of eight play-

ers, how many starting teams are possible if

(A) The distinct positions are taken into consideration?

(B) The distinct positions are not taken into consideration?

(C) The distinct positions are not taken into consideration, but

either Mike or Ken, but not both, must start?
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58. How many committees of four people are possible from a

group of nine people if

(A) There are no restrictions?

(B) Both Juan and Mary must be on the committee?

(C) Either Juan or Mary, but not both, must be on the committee?

59.A 5-card hand is dealt from a standard 52-card deck. Which is

more likely: the hand contains exactly one king or the hand

contains no hearts?

60.A 10-card hand is dealt from a standard 52-card deck. Which is

more likely: all cards in the hand are red or the hand contains

all four aces?

8-5 Sample Spaces and Probability

Z Sample Spaces and Events

Z Finding the Probability of an Event

Z Making Equally Likely Assumptions

Z Finding or Approximating Empirical Probability

This section provides an introduction to probability. It’s going to need to be a relatively brief

one, because probability is a topic to which entire books and courses are devoted. Proba-

bility involves many subtle notions, and care must be taken at the beginning to understand

the fundamental concepts on which the subject is based. Our development of probability,

because of space limitations, must be somewhat informal. More formal and precise treat-

ments can be found in books on probability.

Z Sample Spaces and Events

Our first step in constructing a mathematical model for probability studies is to describe

the type of experiments on which probability studies are based. Some types of experi-

ments do not yield the same results, no matter how carefully they are repeated under the

same conditions. These experiments are called random experiments. Some standard

examples of random experiments are flipping coins, rolling dice, observing the frequency

of defective items from an assembly line, or observing the frequency of deaths in a cer-

tain age group.

Probability theory is a branch of mathematics that has been developed to deal with out-

comes of random experiments. In the work that follows, the word experiment will be used

to mean a random experiment.



The outcomes of experiments are typically described in terms of sample spaces and

events. Our second step in constructing a mathematical model for probability studies is to

define these two terms.

Consider the experiment, “A single six-sided die is rolled.” What outcomes might we

observe? We might be interested in the number of dots facing up, or whether the number

of dots facing up is an even number, or whether the number of dots facing up is divisible

by 3, and so on. The list of possible outcomes appears endless. In general, there is no unique

method of analyzing all possible outcomes of an experiment. Therefore, before conducting

an experiment, it is important to decide just what outcomes are of interest.

In the die experiment, suppose we limit our interest to the number of dots facing up

when the die comes to rest. Having decided what to observe, we make a list of outcomes

of the experiment, called simple events, such that in each trial of the experiment, one and

only one of the results on the list will occur. The set of simple events for the experiment

is called a sample space for the experiment. The sample space S we have chosen for the

die-rolling experiment is

S  {1, 2, 3, 4, 5, 6}

Now consider the outcome, “The number of dots facing up is an even number.” This

outcome is not a simple event, because it will occur whenever 2, 4, or 6 dots appear, that

is, whenever an element in the subset

E  {2, 4, 6}

occurs. Subset E is called a compound event. In general, we have the following definition:
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Z DEFINITION 1 Event

Given a sample space S for an experiment, we define an event E to be any subset

of S. If an event E has only one element in it, it is called a simple event. If event E

has more than one element, it is called a compound event. We say that an event E

occurs if any of the simple events in E occurs.

EXAMPLE 1 Choosing a Sample Space

A nickel and a dime are tossed. How will we identify a sample space for this experiment?

SOLUTIONS There are a number of possibilities, depending on our interest. We will consider three.

(A) If we are interested in whether each coin falls heads (H) or tails (T), then, using a

tree diagram, we can easily determine an appropriate sample space for the

experiment:

Nickel Dime Combined

Outcomes Outcomes Outcomes

H
H HH

Start
T HT

T
H TH

T TT

The sample space is

S1  {HH, HT, TH, TT}

and there are four simple events in the sample space.



(B) If we are interested only in the number of heads that appear on a single toss of the

two coins, then we can let

S2  {0, 1, 2}

and there are three simple events in the sample space.

(C) If we are interested in whether the coins match (M) or don’t match (D), then we can let

S3  {M, D}

and there are only two simple events in the sample space. �
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MATCHED PROBLEM 1 An experiment consists of recording the boy–girl composition of families with two

children.

(A) What is an appropriate sample space if we are interested in the gender of each child

in the order of their births? Draw a tree diagram.

(B) What is an appropriate sample space if we are interested only in the number of girls

in a family?

(C) What is an appropriate sample space if we are interested only in whether the genders

are alike (A) or different (D)?

(D) What is an appropriate sample space for all three interests expressed above?

�

In Example 1, sample space S1 contains more information than either S2 or S3. If we

know which outcome has occurred in S1, then we know which outcome has occurred in S2

and S3. However, the reverse is not true. In this sense, we say that S1 is a more fundamen-

tal sample space than either S2 or S3.

Important Remark: There is no one correct sample space for a given experi-

ment. When specifying a sample space for an experiment, we include as much

detail as necessary to answer all questions of interest regarding the outcomes

of the experiment. If in doubt, include more elements in the sample space

rather than fewer.

Now let’s return to the two-coin problem in Example 1 and the sample space

S1  {HH, HT, TH, TT}

Suppose we are interested in the outcome, “Exactly 1 head is up.” Looking at S1, we find

that it occurs if either of the two simple events HT or TH occurs.* So, to say that the

event, “Exactly 1 head is up” occurs is the same as saying the experiment has an outcome

in the set

E  {HT, TH}

This is a subset of the sample space S1. The event E is a compound event.

*Technically, we should write {HT} and {TH}, because there is a logical distinction between an element of a

set and a subset consisting of only that element. But we will just keep this in mind and drop the braces for

simple events to simplify the notation.



Informally, to facilitate discussion, we often use the terms event and outcome of an

experiment interchangeably. So, in Example 2 we might say “the event ‘A sum of 11 turns

up’ ” in place of “the outcome ‘A sum of 11 turns up,’ ” or even write

E  A sum of 11 turns up  {(6, 5), (5, 6)}
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EXAMPLE 2 Rolling Two Dice

Consider an experiment of rolling two dice. A convenient sample space that will enable us

to answer many questions about events of interest is shown in Figure 1. Let S be the set of

all ordered pairs listed in the figure. Note that the simple event (3, 2) is to be distinguished

from the simple event (2, 3). The former indicates a 3 turned up on the first die and a 2 on

the second, whereas the latter indicates a 2 turned up on the first die and a 3 on the sec-

ond. What is the event that corresponds to each of the following outcomes?

(A) A sum of 7 turns up. (B) A sum of 11 turns up.

(C) A sum less than 4 turns up. (D) A sum of 12 turns up.

(1, 1)

(2, 1)

(3, 1)

(4, 1)

(5, 1)

(6, 1)

(1, 2)

(2, 2)

(3, 2)

(4, 2)

(5, 2)

(6, 2)

(1, 3)

(2, 3)

(3, 3)

(4, 3)

(5, 3)

(6, 3)

(1, 4)

(2, 4)

(3, 4)

(4, 4)

(5, 4)

(6, 4)

(1, 5)

(2, 5)

(3, 5)

(4, 5)

(5, 5)

(6, 5)

(1, 6)

(2, 6)

(3, 6)

(4, 6)

(5, 6)

(6, 6)

SECOND DIE

F
IR

S
T
 D

IE

Z Figure 1 A sample space for rolling two dice.

SOLUTIONS (A) By “A sum of 7 turns up,” we mean that the sum of all dots on both turned-up faces

is 7. This outcome corresponds to the event

{(6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6)}

(B) “A sum of 11 turns up” corresponds to the event

{(6, 5), (5, 6)}

(C) “A sum less than 4 turns up” corresponds to the event

{(1, 1), (2, 1), (1, 2)}

(D) “A sum of 12 turns up” corresponds to the event

{(6, 6)} �

MATCHED PROBLEM 2 Refer to the sample space in Example 2 (Fig. 1). What is the event that corresponds to each

of the following outcomes?

(A) A sum of 5 turns up.

(B) A sum that is a prime number greater than 7 turns up.

�



Technically speaking, an event is the mathematical counterpart of an outcome of an

experiment.

Z Finding the Probability of an Event

The next step in developing our mathematical model for probability studies is the introduc-

tion of a probability function. This is a function that assigns to an arbitrary event associ-

ated with a sample space a real number between 0 and 1, inclusive. We start by discussing

ways in which probabilities are assigned to simple events in S.
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Z DEFINITION 2 Probabilities for Simple Events

Given a sample space

S  {e1, e2, . . . , en}

with n simple events, to each simple event ei we assign a real number, denoted by

P(ei), that is called the probability of the event ei. These numbers may be assigned

in an arbitrary manner as long as the following two conditions are satisfied:

1. 0  P(ei)  1

2. P(e1)  P(e2)  . . .  P(en)  1

Any probability assignment that meets conditions 1 and 2 is said to be an acceptable

probability assignment.

The sum of the probabilities of all simple events in the

sample space is 1.

Our mathematical theory does not explain how acceptable probabilities are assigned to

simple events. These assignments are generally based on the expected or actual percentage

of times a simple event occurs when an experiment is repeated a large number of times.

Assignments based on this principle are called reasonable.

Let an experiment be the flipping of a single coin, and let us choose a sample space S

to be

S  {H, T}

If a coin appears to be fair, we are inclined to assign probabilities to the simple events in

S as follows:

and

These assignments are based on reasoning that, because there are two ways a coin can land,

in the long run a head will turn up half the time and a tail will turn up half the time. These

probability assignments are acceptable, because both of the conditions for acceptable prob-

ability assignments in Definition 2 are satisfied:

1. 0  P(H) 1, 0  P(T) 1

2.

But there are other acceptable assignments. Maybe after flipping a coin 1,000 times we

find that the head turns up 376 times and the tail turns up 624 times. With this result, we

might suspect that the coin is not fair and assign the simple events in the sample space S

the probabilities

P(H) .376 and P(T) .624

This is also an acceptable assignment. But the probability assignment

P(H) 1 and P(T) 0

P(H)  P(T)  1
2  

1
2  1

P(T)  1
2P(H)  1

2



though acceptable, is not reasonable, unless the coin has two heads. The assignment

P(H)  .6 and P(T)  .8

is not acceptable, because .6   .8   1.4, which violates condition 2 in Definition 2.

In probability studies, the 0 to the left of the decimal is usually omitted; we write .8

and not 0.8.

It is important to keep in mind that out of the infinitely many possible acceptable

probability assignments to simple events in a sample space, we are generally inclined to

choose one assignment over another based on reasoning or experimental results.

Given an acceptable probability assignment for simple events in a sample space S, how

do we define the probability of an arbitrary event E associated with S?
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Z DEFINITION 3 Probability of an Event E

Given an acceptable probability assignment for the simple events in a sample space

S, we define the probability of an arbitrary event E, denoted by P(E ), as follows:

1. If E is the empty set, then P(E)   0.

2. If E is a simple event, then P(E) has already been assigned.

3. If E is a compound event, then P(E) is the sum of the probabilities of all the

simple events in E.

4. If E is the sample space S, then P(E )   P(S )   1. This is a special case of 3.

EXAMPLE 3 Finding Probabilities of Events

Let’s return to Example 1, the tossing of a nickel and dime, and the sample space

S  {HH, HT, TH, TT}

Because there are four simple outcomes and the coins are assumed to be fair, it appears

that each outcome should occur in the long run 25% of the time. Let’s assign the same

probability of to each simple event in S:

Simple event, ei HH HT TH TT

P(ei)

This is an acceptable assignment according to Definition 2 and a reasonable assignment for

ideal coins that are perfectly balanced or coins close to ideal.

(A) What is the probability of getting exactly one head?

(B) What is the probability of getting at least one head?

(C) What is the probability of getting a head or a tail?

(D) What is the probability of getting three heads?

1
4

1
4

1
4

1
4

1
4

SOLUTIONS (A) E1 Getting one head {HT, TH}

Because E1 is a compound event, we use item 3 in Definition 3 and find P(E1) by

adding the probabilities of the simple events in E1. 

 P(E1)  P(HT)  P(TH)  
1
4  

1
4  

1
2

  



(B) E2 Getting at least 1 head {HH, HT, TH}

(C) E3   {HH, HT, TH, TT}   S

(D) Empty set

 P( )  0

E3  Getting three heads   

1
4 ⴙ

1
4 ⴙ

1
4 ⴙ

1
4 ⴝ 1 P(E3)  P(S )  1

  1
4  

1
4  

1
4  

3
4

 P(E2)  P(HH)  P(HT)  P(TH)
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Z STEPS FOR FINDING PROBABILITIES OF EVENTS

Step 1. Set up an appropriate sample space S for the experiment.

Step 2. Assign acceptable probabilities to the simple events in S.

Step 3. To obtain the probability of an arbitrary event E, add the probabilities of

the simple events in E.

The function P defined in steps 2 and 3 is called a probability function. The domain

of this function is all possible events in the sample space S, and the range is a set of real

numbers between 0 and 1, inclusive. �

MATCHED PROBLEM 3 Return to Matched Problem 1, recording the boy–girl composition of families with two chil-

dren and the sample space

S  {BB, BG, GB, GG}

Statistics from the U.S. Census Bureau indicate that an acceptable and reasonable probabil-

ity for this sample space is

Simple event, ei BB BG GB GG

P(ei) .26 .25 .25 .24

Find the probabilities of the following events:

(A) E1   Having at least one girl in the family

(B) E2   Having at most one girl in the family

(C) E3   Having two children of the same sex in the family

�

Z Making Equally Likely Assumptions

In tossing a nickel and dime (Example 3), we assigned the same probability, to each sim-

ple event in the sample space S   {HH, HT, TH, TT}. By assigning the same probability

to each simple event in S, we are actually making the assumption that each simple event is

as likely to occur as any other. We refer to this as an equally likely assumption. In gen-

eral, we have Definition 4.

1
4,



Under an equally likely assumption, we can develop a very useful formula for finding

probabilities of arbitrary events associated with a sample space S. Consider the following

example.

If a single die is rolled and we assume each face is as likely to come up as any other,

then for the sample space

S  {1, 2, 3, 4, 5, 6}

we assign a probability of to each simple event, because there are six simple events. Then

the probability of

E  Rolling a prime number  {2, 3, 5}

is

So, under the assumption that each simple event is as likely to occur as any other, the

computation of the probability of the occurrence of any event E in a sample space S is the

number of elements in E divided by the number of elements in S.

P(E)  P(2)  P(3)  P(5)  
1
6  

1
6  

1
6  

3
6  

1
2

1
6
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Z DEFINITION 4 Probability of a Simple Event Under an Equally Likely
Assumption

If, in a sample space

S  {e1, e2, . . . , en}

with n elements, we assume each simple event ei is as likely to occur as any other,

then we assign the probability 1 n to each. That is,

P(ei)  
1

n

Z THEOREM 1 Probability of an Arbitrary Event Under an Equally Likely
Assumption

If we assume each simple event in sample space S is as likely to occur as any other,

then the probability of an arbitrary event E in S is given by

P(E)  
Number of elements in E

Number of elements in S
 

n(E )

n(S )

EXAMPLE 4 Finding Probabilities of Events

If in rolling two dice we assume each simple event in the sample space shown in Figure 1

on page 546 is as likely as any other, find the probabilities of the following events:

(A) E1   A sum of 7 turns up (B) E2   A sum of 11 turns up

(C) E3   A sum less than 4 turns up (D) E4   A sum of 12 turns up



We now turn to some examples that make use of the counting techniques developed in

Section 8-4.
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SOLUTIONS Referring to Figure 1, we see that:

(A) (B) 

(C) (D) �P(E4)  
n(E4)

n(S)
 

1

36
P(E3)  

n(E3)

n(S)
 

3

36
 

1

12

P(E2)  
n(E2)

n(S)
 

2

36
 

1

18
P(E1)  

n(E1)

n(S)
 

6

36
 

1

6

MATCHED PROBLEM 4 Under the conditions in Example 4, find the probabilities of the following events:

(A) E5   A sum of 5 turns up

(B) E6   A sum that is a prime number greater than 7 turns up

�

A box contains four red balls and seven green balls. A ball is drawn at random

and then, without replacing the first ball, a second ball is drawn. Discuss whether

or not the equally likely assumption would be appropriate for the sample space

S  {RR, RG, GR, GG}.

ZZZ EXPLORE-DISCUSS 1

EXAMPLE 5 Drawing Cards

In drawing 5 cards from a 52-card deck without replacement, what is the probability of get-

ting five spades?

SOLUTION Let the sample space S be the set of all 5-card hands from a 52-card deck. Because the

order in a hand does not matter, n(S )   C52,5. The event we seek is

E   Set of all 5-card hands from 13 spades

Again, the order does not matter and n(E )   C13,5. Assuming that each 5-card hand is as

likely as any other,

�P(E )  
n(E )

n(S )
 

C13,5

C52,5

 
13! 5!8!

52! 5!47!
 

13!

5!8!
ⴢ

5!47!

52!
 .0005

MATCHED PROBLEM 5 In drawing 7 cards from a 52-card deck without replacement, what is the probability of get-

ting seven hearts?

�

EXAMPLE 6 Selecting Committees

The board of regents of a university is made up of 12 men and 16 women. If a committee

of six is chosen at random, what is the probability that it will contain three men and three

women?

SOLUTION Let S Set of all 6-person committees out of 28 people:

n(S )  C28,6

 



Let E   Set of all 6-person committees with 3 men and 3 women. To find n(E ), we use

the multiplication principle and the following two operations:

O1: Select 3 men out of the 12 available N1: C12,3

O2: Select 3 women out of the 16 available N2: C16,3

So

n(E )  C12,3 ⴢ C16,3

and

�P(E)  

n(E)

n(S )
 

C12,3 ⴢ C16,3

C28,6

 .327
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MATCHED PROBLEM 6 What is the probability that the committee in Example 6 will have four men and two

women?

�

Z Finding or Approximating Empirical Probability

In the earlier examples in this section we made a reasonable assumption about an experi-

ment and used deductive reasoning to assign probabilities. For example, it is reasonable to

assume that an ordinary coin will come up heads about as often as it will come up tails.

Probabilities determined in this manner are called theoretical probabilities. No experiments

are ever conducted. But what if the theoretical probabilities are not obvious? Then we assign

probabilities to simple events based on the results of actual experiments. Probabilities deter-

mined from the results of actually performing an experiment are called empirical proba-

bilities. As an experiment is repeated over and over, the percentage of times an event occurs

may get closer and closer to a single fixed number. If so, this single fixed number is gen-

erally called the actual probability of the event.

Like a coin, a thumbtack tossed into the air will land in one of two positions, point

up or point down [Fig. 2(a)]. Unlike a coin, we would not expect both events to occur

with the same frequency. Indeed, the frequencies of landing point up and point down

may well vary from one thumbtack to another [Fig. 2(b)]. Find two thumbtacks of dif-

ferent sizes and guess which one is likely to land point up more frequently. Then toss

each tack 100 times and record the number of times each lands point up. Did the

experiment confirm your initial guess?

ZZZ EXPLORE-DISCUSS 2

(a) Point up or point down

Z Figure 2

(b) Two different tacks

Suppose when tossing one of the thumbtacks in Explore-Discuss 2, we observe that the

tack lands point up 43 times and point down 57 times. Based on this experiment, it seems

reasonable to say that for this particular thumbtack

Probability assignments based on the results of repeated trials of an experiment are called

approximate empirical probabilities.

 P(Point down)  

57

100
 .57

 P(Point up)  

43

100
 .43



In general, if we conduct an experiment n times and an event E occurs with frequency

f (E ), then the ratio f (E ) n is called the relative frequency of the occurrence of event E in

n trials. We define the empirical probability of E, denoted by P(E ), by the number, if it

exists, that the relative frequency f (E ) n approaches as n gets larger and larger. Of course,

for any particular n, the relative frequency f (E ) n is generally only approximately equal to

P(E ). However, as n increases, we expect the approximation to improve.
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Z DEFINITION 5 Empirical Probability

If f (E) is the frequency of event E in n trials, then

P(E )  
Frequency of occurrence of E

Total number of trials
 

f (E )

n

If we can also deduce theoretical probabilities for an experiment, then we expect the

approximate empirical probabilities to approach the theoretical probabilities. If this does not

happen, then we should begin to suspect the manner in which the theoretical probabilities

were computed. If P(E ) is the theoretical probability of an event E and the experiment is

performed n times, then the expected frequency of the occurrence of E is n ⴢ P(E ).

EXAMPLE 7 Finding Approximate Empirical and Theoretical Probabilities

Two coins are tossed 500 times with the following frequencies of outcomes:

Two heads: 121

One head: 262

Zero heads: 117

(A) Compute the approximate empirical probability for each outcome.

(B) Compute the theoretical probability for each outcome.

(C) Compute the expected frequency for each outcome.

SOLUTIONS (A) 

(B) A sample space of equally likely simple events is S   {HH, HT, TH, TT}. Let

Then

 P(E3)  

n(E3)

n(S )
 

1

4
 .25

 P(E2)  

n(E2)

n(S )
 

2

4
 .50

 P(E1)  

n(E1)

n(S )
 

1

4
 .25

 E3  zero heads  5TT6

 E2  one head  5HT, TH6

 E1  two heads  5HH6

 P(zero heads)  
117

500
 .234

 P(one head)  
262

500
 .524

 P(two heads)  
121

500
 .242



(C) The expected frequencies are

The actual frequencies obtained from performing the experiment are reasonably close

to the expected frequencies. Increasing the number of trials of the experiment would

most likely produce even better approximations. �

E3: 500(.25)  125

E2: 500(.5)   250

E1: 500(.25)  125
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MATCHED PROBLEM 7 One die is rolled 500 times with the following frequencies of outcomes:

Outcome 1 2 3 4 5 6

Frequency 89 83 77 91 72 88

(A) Compute the approximate empirical probability for each outcome.

(B) Compute the theoretical probability for each outcome.

(C) Compute the expected frequency for each outcome.

�

Technology Connections

The data in Example 7 were not generated by tossing two

coins 500 times. Instead, the experiment was simulated by a

random number generator on a graphing calculator. The

command randint (0, 1, 500) produces a random sequence

of 500 terms; each term is 0 or 1 with equal liklihood. Think-

ing of 1 as heads and 0 as tails, such a sequence represents

500 tosses of a single coin. Adding two such sequences

together produces a sequence of 500 terms in which each

term represents the number of heads in a toss of two coins

[see Fig. 3(a)]. We determine the frequency of each outcome

(0, 1, or 2 heads) in 500 tosses of two coins as follows: first,

we construct a histogram [Figs. 3(b) and 3(c)], then we use

the TRACE command to read off the frequencies [Figs. 3(d),

3(e), and 3(f)]. Compare with the data of Example 7.

If you perform the same simulation on your graphing cal-

culator, you are not likely to get exactly the same results.

But the approximate empirical probabilities you obtain will

be close to the theoretical probabilities.

Z Figure 3 Simulating 500 tosses of two coins.

(a) Generating the

random numbers

(b) Setting up the
histogram

(c) Selecting the

window variables

(d) 0 heads: 117 (e) 1 head: 262 (f) 2 heads: 121
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EXAMPLE 8 Empirical Probabilities for an Insurance Company

An insurance company selected 1,000 drivers at random in a particular city to determine a

relationship between age and accidents. The data obtained are listed in Table 1. Compute

the approximate empirical probabilities of the following events for a driver chosen at ran-

dom in the city:

(A) E1: being under 20 years old and having exactly three accidents in 1 year

(B) E2: being 30–39 years old and having one or more accidents in 1 year

(C) E3: having no accidents in 1 year

(D) E4: being under 20 years old or* having exactly three accidents in 1 year

SOLUTIONS (A) 

(B) 

(C) 

(D) 

Notice that in this type of problem, which is typical of many realistic problems, approx-

imate empirical probabilities are the only type we can compute. �

P(E4)  
50  62  53  35  20  40  14  7  28

1,000
 .309

P(E3)  
50  64  82  38  43

1,000
 .277

P(E2)  
68  32  14  4

1,000
 .118

P(E1)  
35

1,000
 .035

Table 1

Accidents in 1 Year

Age 0 1 2 3 Over 3

Under 20 50 62 53 35 20

20–29 64 93 67 40 36

30–39 82 68 32 14 4

40–49 38 32 20 7 3

Over 49 43 50 35 28 24

MATCHED PROBLEM 8 Referring to Table 1 in Example 8, compute the approximate empirical probabilities of the

following events for a driver chosen at random in the city:

(A) E1: being under 20 years old with no accidents in 1 year

(B) E2: being 20–29 years old and having fewer than two accidents in 1 year

(C) E3: not being over 49 years old

�

*Interpret “or” in its inclusive sense, as customary in mathematics (a driver who is both under 20 and has three

accidents must be counted once in the frequency of E4).

Approximate empirical probabilities are often used to test theoretical probabilities.

Equally likely assumptions may not be justified in reality. In addition to this use, there are

many situations in which it is either very difficult or impossible to compute the theoretical
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probabilities for given events. For example, insurance companies use past experience to

establish approximate empirical probabilities to predict future accident rates; baseball teams

use batting averages, which are approximate empirical probabilities based on past experi-

ence, to predict the future performance of a player; and pollsters use approximate empiri-

cal probabilities to predict outcomes of elections.

ANSWERS TO MATCHED PROBLEMS

1. (A) S1   {BB, BG, GB, GG};

(B) S2   {0, 1, 2} (C) S3   {A, D} (D) The sample space in part A.

2. (A) {(4, 1), (3, 2), (2, 3), (1, 4)} (B) {(6, 5), (5, 6)}

3. (A) .74 (B) .76 (C) .5 4. (A) (B) 

5. C13,7 C52,7   .000013 6. (C12,4 ⴢ C16,2) C28,6   .158

7. (A) P(E1)  .178, P(E2)  .166, P(E3)  .154, P(E4)  .182, P(E5)  .144, P(E6)  .176

(B) for each (C) 83.3 for each

8. (A) P(E1)  .05 (B) P(E2)  .157 (C) P(E3)  .82

1
6  .167

P(E6)  1
18P(E5)  1

9

Sex of Sex of Combined 

First Child Second Child Outcomes

B
B BB

G BG

G
B GB

G GG

14.A single card is drawn from a standard 52-card deck. What is

the probability of getting a numbered card (that is, a two

through ten)?

15.A fair coin is tossed three times. What is the probability of get-

ting exactly two tails?

16.A fair coin is tossed three times. What is the probability of get-

ting three tails?

17. How would you interpret P(E)   1?

18. How would you interpret P(E)   0?

19.A spinner can land on four different colors: red (R), green (G),

yellow (Y), and blue (B). If we do not assume each color is as

likely to turn up as any other, which of the following probabil-

ity assignments have to be rejected, and why?

(A) P(R)  .15, P(G)   .35, P(Y )  .50, P(B)  .70

(B) P(R)  .32, P(G) .28, P(Y )  .24, P(B)  .30

(C) P(R)  .26, P(G) .14, P(Y )  .30, P(B)  .30

20. Under the probability assignments in Problem 19, part C, what

is the probability that the spinner will not land on blue?

21. Under the probability assignments in Problem 19, part C, what

is the probability that the spinner will land on red or yellow?

22. Under the probability assignments in Problem 19, part C, what

is the probability that the spinner will not land on red or yellow?

23.A ski jumper has jumped over 300 feet in 25 out of 250 jumps.

What is the approximate empirical probability of the next jump

being over 300 feet?

8-5 Exercises

1.What is a sample space?

2. Explain in your own words how the probability of an event is

defined in terms of probabilities of simple events.

3. Explain the difference between a theoretical probability and an

empirical probability.

4.What is an equally likely assumption?

5.A single fair die is rolled. What is the probability of getting a

one or a six?

6.A single fair die is rolled. What is the probability of getting a

number greater than three?

7.A single card is drawn from a standard 52-card deck. What is the

probability of getting a red card?

8.A single card is drawn from a standard 52-card deck. What is

the probability of getting a club?

9.A fair coin is tossed twice. What is the probability of getting

two heads?

10.A fair coin is tossed twice. What is the probability of getting at

least one head?

11.Two fair dice are rolled.What is the probability of getting doubles?

12. Two fair dice are rolled. What is the probability of getting dou-

ble sixes?

13.A single card is drawn from a standard 52-card deck. What is

the probability of getting a king or a queen?



24. In a certain city there are 4,000 youths between 16 and 20 years

old who drive cars. If 560 of them were involved in accidents

last year, what is the approximate empirical probability of a

youth in this age group being involved in an accident this year?

25. Out of 420 times at bat, a baseball player gets 189 hits. What is

the approximate empirical probability that the player will get a

hit next time at bat?

26. In a medical experiment, a new drug is found to help 2,400 out

of 3,000 people. If a doctor prescribes the drug for a particular

patient, what is the approximate empirical probability that the

patient will be helped?

27. A small combination lock on a suitcase has three wheels,

each labeled with the 10 digits from 0 to 9. If an opening

combination is a particular sequence of three digits with no

repeats, what is the probability of a person guessing the right

combination?

28. A combination lock has five wheels, each labeled with the

10 digits from 0 to 9. If an opening combination is a particular

sequence of five digits with no repeats, what is the probability

of a person guessing the right combination?

Problems 29–34 involve an experiment consisting of dealing

5 cards from a standard 52-card deck. In Problems 29–32, what is

the probability of being dealt:

29. Five black cards

30. Five hearts

31. Five face cards if an ace is considered to be a face card.

32. Five nonface cards if an ace is considered to be a one and not a

face card.

33. If we are interested in the number of aces in a 5-card hand,

would S   {0, 1, 2, 3, 4} be an acceptable sample space?

Would it be an equally-likely sample space? Explain.

34. If we are interested in the number of black cards in a 5-card

hand, would S   {0, 1, 2, 3, 4, 5} be an acceptable sample

space? Would it be an equally-likely sample space? Explain.

35. If four-digit numbers less than 5,000 are randomly formed

from the digits 1, 3, 5, 7, and 9, what is the probability of form-

ing a number divisible by 5? Digits may be repeated; for exam-

ple, 1,355 is acceptable.

36. If code words of four letters are generated at random using the let-

ters A, B, C, D, E, and F, what is the probability of forming a word

without a vowel in it? Letters may be repeated.

37. Suppose five thank-you notes are written and five envelopes

are addressed. Accidentally, the notes are randomly inserted

into the envelopes and mailed without checking the addresses.

What is the probability that all five notes will be inserted into

the correct envelopes?

38. Suppose six people check their coats in a checkroom. If all

claim checks are lost and the six coats are randomly returned,

what is the probability that all six people will get their own

coats back?
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In Problems 39–50, an experiment consists of rolling two fair

dice. Let a and b denote the numbers of dots on the two sides

facing up. Use the sample space shown in Figure 1 on page 546 to

find the probability of each event.

39. The sum of a and b is 3.

40. The sum of a and b is 5.

41. The sum of a and b is greater than 9.

42. The sum of a and b is less than 6.

43. The product of a and b is 12.

44. The product of a and b is 6.

45. The product of a and b is less than 5.

46. The product of a and b is greater than 15.

47. a  b

48. a b

49. At least one of a or b is a 6.

50. Exactly one of a or b is a 6.

51. Five thousand people work in a large auto plant. An individual

is selected at random and his or her birthday (month and day,

not year) is recorded. Set up an appropriate sample space for

this experiment and assign acceptable probabilities to the sim-

ple events.

52. In a hotly contested three-way race for governor of Minnesota,

the leading candidates are running neck-and-neck while the third

candidate is receiving half the support of either of the others.

Registered voters are chosen at random and are asked for which

of the three they are most likely to vote. Set up an appropriate

sample space for the random survey experiment and assign ac-

ceptable probabilities to the simple events.

53. A pair of dice is rolled 500 times with the following frequen-

cies:

(A) Compute the approximate empirical probability for each

outcome.

(B) Compute the theoretical probability for each outcome, as-

suming fair dice.

(C) Compute the expected frequency of each outcome.

(D) Describe how a random number generator could be used to

simulate this experiment. If your graphing calculator has a

random number generator, use it to simulate 500 tosses of

a pair of dice and compare your results with part C.

54. Three coins are flipped 500 times with the following frequen-

cies of outcomes:

Three heads: 58 Two heads: 198

One head: 190 Zero heads: 54

(A) Compute the approximate empirical probability for each

outcome.

(B) Compute the theoretical probability for each outcome, as-

suming fair coins.

(C) Compute the expected frequency of each outcome.

Sum 2 3 4 5 6 7 8 9 10 11 12

Frequency 11 35 44 50 71 89 72 52 36 26 14

 



(D) Describe how a random number generator could be used to

simulate this experiment. If your graphing calculator has a

random number generator, use it to simulate 500 tosses of

three coins and compare your results with part C.

55. (A) Is it possible to get 29 heads in 30 flips of a fair coin? Explain.

(B) If you flip a coin 50 times and get 42 heads, would you sus-

pect that the coin was unfair? Why or why not? If you suspect

an unfair coin, what empirical probabilities would you assign

to the simple events of the sample space?

56. (A) Is it possible to get nine double sixes in 12 rolls of a pair of

fair dice? Explain.

(B) If you roll a pair of dice 40 times and get 14 double sixes,

would you suspect that the dice were unfair? Why or why

not? If you suspect unfair dice, what empirical probability

would you assign to the event of rolling a double six?

An experiment consists of tossing three fair coins, but one of the

three coins has a head on both sides. Compute the probabilities of

obtaining the indicated results in Problems 57–62.

57. One head 58. Two heads

59. Three heads 60. Zero heads

61. More than one head 62. More than one tail

An experiment consists of rolling two fair dice and adding the dots

on the two sides facing up. Each die has one dot on two opposite

faces, two dots on two opposite faces, and three dots on two

opposite faces. Compute the probabilities of obtaining the

indicated sums in Problems 63–70.

63. 2 64. 3 65. 4 66. 5 67. 6

68. 7 69.An odd sum 70.An even sum

An experiment consists of dealing 5 cards from a standard 52-card

deck. In Problems 71–78, what is the probability of being dealt the

following cards?

71. Five cards, jacks through aces

72. Five cards, 2 through 10

73. Four aces

74. Four of a kind
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75. Straight flush, ace high; that is, 10, jack, queen, king, ace in

one suit

76. Straight flush, starting with 2; that is, 2, 3, 4, 5, 6 in one suit

77. Two aces and three queens

78. Two kings and three aces

APPLICATIONS

79. MARKET ANALYSIS A company selected 1,000 households at

random and surveyed them to determine a relationship between in-

come level and the number of television sets in a home. The infor-

mation gathered is listed in the table:

Televisions per Household

Yearly Income ($) 0 1 2 3 Above 3

Less than 12,000 0 40 51 11 0

12,000–19,999 0 70 80 15 1

20,000–39,999 2 112 130 80 12

40,000–59,999 10 90 80 60 21

60,000 or more 30 32 28 25 20

Compute the approximate empirical probabilities:

(A) Of a household earning $12,000–$19,999 per year and owning

exactly three television sets

(B) Of a household earning $20,000–$39,999 per year and owning

more than one television set

(C) Of a household earning $60,000 or more per year or owning

more than three television sets

(D) Of a household not owning zero television sets

80. MARKET ANALYSIS Use the sample results in Problem 79 to

compute the approximate empirical probabilities:

(A) Of a household earning $40,000–$59,999 per year and owning

zero television sets

(B) Of a household earning $12,000–$39,999 per year and owning

more than two television sets

(C) Of a household earning less than $20,000 per year or owning

exactly two television sets

(D) Of a household not owning more than three television sets

In a surprising number of areas in math, it turns out to be useful to expand expressions of

the form where n is a natural number. This is known as a binomial expansion.

Expanding a binomial is pretty straightforward for small values of n, but gets hard very

(a  b)n,

8-6 The Binomial Formula

Z Using Pascal’s Triangle

Z The Binomial Formula

Z Proving the Binomial Formula
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quickly as n increases. The good news is that it turns out that the coefficients in such an

expansion are related to counting techniques that we have already learned about.

Z Using Pascal’s Triangle

Let’s begin by expanding (a  b)n for the first few values of n. We include n  0, which

is not a natural number, for reasons of completeness that will become apparent later.

(1)

 (a  b)3
 a

3
 3a

2
b  3ab

2
 b

3

 (a  b)2
 a

2
 2ab  b

2

 (a  b)1
 a  b

 (a  b)0
 1

Based on the expansions in equations (1), how many terms would you expect

(a  b)n to have? What is the first term? What is the last term?

ZZZ EXPLORE-DISCUSS 1

Refer to Figure 1.

(A) How is the middle element of row 2 related to the elements in the row above?

(B) How are the two inner elements of row 3 related to the elements in the row

above?

(C) Based on your observations in parts A and B, conjecture the entries of row 4

and row 5. Check your conjecture by expanding (a  b)4 and (a  b)5.

ZZZ EXPLORE-DISCUSS 2

1 3

1

3 1

21 1

1 1

Z Figure 1 Pascal’s triangle.

Z Figure 2

Many students find Pascal’s triangle a useful tool for determining the coefficients in

the expansion of (a  b)n, especially for small values of n. Figure 2 contains output

from a program called PASCAL.* You should recognize the output in the table—it is the

first six lines of Pascal’s triangle. The major drawback of using this triangle, whether it

is generated by hand or on a graphing calculator, is that to find the elements in a given row,

you must write out all the preceding rows. It would be useful to find a formula that gives

the coefficients for a binomial expansion directly. Fortunately, such a formula exists—

the combination formula Cn,r introduced in Section 8-4.

Z The Binomial Formula

When working with binomial expansions, it is customary to use the notation (n

r ) for 

Recall the combination formula from Section 8-4.

Cn,r.

*Programs for TI-84 and TI-86 graphing calculators can be found at the website for this book.

Now let’s examine just the coefficients of the expansions in equations (1) arranged in

a form that is usually referred to as Pascal’s triangle (Fig. 1).

It is convenient to refer to the top row of Pascal’s triangle (containing a single 1) as

row 0. Then row 1 is “1 1,” row 2 is “1 2 1,” and row 3 is “1 3 3 1.” For n a natural num-

ber, the first two entries of row n are 1 and n.



COMBINATION FORMULA For nonnegative integers r and n, 

Theorem 1 establishes that the coefficients in a binomial expansion can always be

expressed in terms of the combination formula. This is a very important theoretical result

and a very practical tool. As we will see, using this theorem in conjunction with a graph-

ing calculator provides a very efficient method for expanding binomials.

an

r
b  Cn,r  

n!

r!(n  r)!

0  r  n,
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Z THEOREM 1 Binomial Formula

For n a positive integer

(a  b)n
 a

n

k   0
 an

k
b an k bk

We defer the proof of Theorem 1 until the end of this section. Because the values of

the combination formula are the coefficients in a binomial expansion, it is natural to call

them binomial coefficients.

EXAMPLE 1 Using the Binomial Formula

Use the binomial formula to expand (x  y)6.

Note that the coefficients (1, 6, 15, 20, 15, 6, 1) are the entries of row 6 of Pascal’s

triangle. �

  x6
 6x5y  15x4y2

 20x3y3
 15x2y4

 6xy5
 y6

  a6

0
b x6y0

 a6

1
b x5y  a6

2
b x4y2

 a6

3
b x3y3

 a6

4
b x2y4

 a6

5
b xy5

 a6

6
b x0y6

 (x  y)6
 a

6

k   0
 a6

k
b x6 ky 

k

MATCHED PROBLEM 1 Use the binomial formula to expand (x  1)5.

�

EXAMPLE 2 Using the Binomial Formula

Use the binomial formula to expand (3p  2q)4.

SOLUTION

Note that the coefficients (81,  216, 216,  96, 16) are formed by multiplying the entries

in row 4 of Pascal’s triangle (1, 4, 6, 4, 1) by the appropriate powers of 3 and  2.

  81p4
 216p3q  216p2q2

 96pq3
 16q4

  4(3)( 2)3pq3
 1(3)0( 2)4p0q4

  1(3)4( 2)0p4q0
 4(3)3( 2)p3q  6(3)2( 2)2p2q2

  a
4

k   0
 a4

k
b 34 k( 2)kp4 kqk

  a
4

k   0
 a4

k
b (3p)4 k( 2q)k

 (3p  2q)4
 [(3p)  ( 2q)]4
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Technology Connections

The table feature on a graphing calculator provides an effi-

cient alternative to calculating the coefficients of Example 2

one by one (Fig. 3).

Z Figure 3 y1 C4,x3
4 x

( 2)
x
.

MATCHED PROBLEM 2 Use the binomial formula to expand (2m  5n)3.

�

(A) Compute each term and also the sum of the alternating series

(B) What result about an alternating series can be deduced by letting a  1 and

b   1 in the binomial formula?

a6

0
b  a6

1
b  a6

2
b  . . .  a6

6
b

ZZZ EXPLORE-DISCUSS 3

EXAMPLE 3 Using the Binomial Formula

Find the term containing x9 in the expansion of (x  3)14.

SOLUTION In the expansion

the exponent of x is 9 when k  5. So the term containing x9 is

�a14

5
b x935

 (2,002)(243)x9
 486,486x9

(x  3)14
 a

14

k   0
 a14

k
b x14 k3k

MATCHED PROBLEM 3 Find the term containing y8 in the expansion of (2  y)14.

�

EXAMPLE 4 Using the Binomial Formula

If the terms in the expansion of (x  2)20 are arranged in decreasing powers of x, find the

fourth term and the sixteenth term.

SOLUTION In the expansion of (a  b)n, the exponent of b in the rth term is r  1 and the exponent

of a is n  (r  1). Therefore

Fourth term: Sixteenth term:

�   508,035,072 x5
   9,120x17

  
20 ⴢ 19 ⴢ 18 ⴢ 17 ⴢ 16

5 ⴢ 4 ⴢ 3 ⴢ 2 ⴢ 1
 x5( 32,768)  

20 ⴢ 19 ⴢ 18

3 ⴢ 2 ⴢ 1
 x17( 8)

a20

15
b x5( 2)15a20

3
b x17( 2)3

�



Z Proving the Binomial Formula

We now prove that the binomial formula holds for all natural numbers n using mathemati-

cal induction.

PROOF State the conjecture.

PART 1 Show that P1 is true.

P1 is true.

PART 2 Show that if Pk is true, then Pk 1 is true.

Assume Pk is true.

Show Pk ⴙ 1 is true.

We begin by multiplying both sides of Pk by (a  b):

The left side of this equation is the left side of Now we multiply out the right side

of the equation and try to obtain the right side of 

We now use the following facts (the proofs are left as exercises; see Problems 63–65, Exer-

cises 8-6).

to rewrite the right side as

 ak  1

k
b abk

 ak  1

k  1
b bk  1

 a
k 1

j 0
 ak  1

j
b ak  1 jb 

j

 ak  1

0
b ak  1

 ak  1

1
b akb  ak  1

2
b ak  1b2

 . . .

ak

k
b  ak  1

k  1
bak

0
b  ak  1

0
ba k

r  1
b  ak

r
b  ak  1

r
b

 c a k

k  1
b  ak

k
b d abk

 ak

k
b bk  1

 ak

0
b ak  1

 c ak

0
b  ak

1
b d akb  c ak

1
b  ak

2
b d ak 1b2

 . . .

Combine

like terms.
 c ak

0
b akb  ak

1
b ak  1b2

 . . .  a k

k  1
b abk

 ak

k
b bk  1 d

 c ak

0
b ak  1

 ak

1
b akb  ak

2
b ak  1b2

 . . .  ak

k
b abk d

Use the

distributive

property.
 (a  b)k  1

 c ak

0
b ak
 ak

1
b ak  1b  ak

2
b ak  2b2

 . . .  ak

k
b bk d (a  b)

Pk  1:

Pk 1.

(a  b)k(a  b)  c a
k

j   0
 a  

k

j
b ak  jb 

j d (a  b)

 Pk 1: (a  b)k  1
 a

k  1

j   0
 ak  1

j
b ak  1 jb 

j

 Pk: (a  b)k
 a

k

j   0
 a  

k

j
b ak jb 

j

a
1

j   0
 a  

1

j
b a1 jb 

j
 a1

0
b a  a1

1
b b  a  b  (a  b)1

(a  b)n
 a

n

j   0
 a  

n

j
b an jb 

jPn:
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MATCHED PROBLEM 4 If the terms in the expansion of (u  1)18 are arranged in decreasing powers of u, find the

fifth term and the twelfth term.

�



Because the right side of the last equation is the right side of Pk 1, we have shown that

Pk 1 follows from Pk.

CONCLUSION

Pn is true. That is, the binomial formula holds for all positive integers n.
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ANSWERS TO MATCHED PROBLEMS

1. x5
 5x4

 10x3
 10x2

 5x  1 2. 8m3
 60m2n  150mn2

 125n3

3. 192,192y8
4. 3,060u14;  31,824u7

45. (2m  n)12; eleventh term 46. (x  2y)20; third term

47. [(w 2)  2]12; seventh term 48. (x  3)10; fourth term

49. (3x  2y)8; sixth term 50. (2p  3q)7; fourth term

In Problems 51–54, use the binomial formula to expand and

simplify the difference quotient

for the indicated function f. Discuss the behavior of the simplified

form as h approaches 0.

51. f (x) x3
52. f (x) x4

53. f (x) x5
54. f (x) x6

In Problems 55–58, use a graphing calculator to graph each

sequence and to display it in table form.

55. Find the number of terms of the sequence

that are greater than one-half of the largest term.

56. Find the number of terms of the sequence

that are greater than one-half of the largest term.

57. (A) Find the largest term of the sequence a0, a1, a2, . . . , a10 to

three decimal places, where

(B) According to the binomial formula, what is the sum of the

series a0  a1  a2  
. . .  a10?

58. (A) Find the largest term of the sequence a0, a1, a2, . . . , a10 to

three decimal places, where

ak  a10

k
b (0.3)10 k(0.7)k

ak  a10

k
b (0.6)10 k(0.4)k

a40

0
b, a40

1
b, a40

2
b, . . . , a40

40
b

a20

0
b, a20

1
b, a20

2
b, . . . , a20

20
b

f (x  h)  f (x)

h

8-6 Exercises

1. What is a binomial?

2. What is a binomial coefficient?

3. Explain how the entries in Pascal’s triangle are generated.

4. How can Pascal’s triangle be used to expand (a  b)5?

In Problems 5–12, use Pascal’s triangle to evaluate each

expression.

5. 6. 7. 8.

9. C7,5 10. C7,3 11. C9,0 12. C10,10

In Problems 13–20, evaluate each expression.

13. 14. 15. 16.

17. C52,3 18. C52,4 19. C12,6 20. C12,11

Expand Problems 21–32 using the binomial formula.

21. (m  n)3
22. (x  2)3

23. (2x  3y)3

24. (3u  2v)3
25. (x  2)4

26. (x  y)4

27. (m  3n)4
28. (3p  q)4

29. (2x  y)5

30. (2x  1)5
31. (m  2n)6

32. (2x  y)6

In Problems 33–42, find the term of the binomial expansion

containing the given power of x.

33. 34. 35.

36. 37. 38.

39. 40. (x2
 1)9; x7

41. (x2
 1)9; x11

42. (x2
 1)10; x14

In Problems 43–50, find the indicated term in each expansion if

the terms of the expansion are arranged in decreasing powers of

the first term in the binomial.

43. (u  v)15; seventh term 44. (a  b)12; fifth term

(x2
 1)6; x8

(3x  2)17; x5(2x  3)18; x14(3x  1)12; x7

(2x  1)11; x6(x  1)8; x5(x  1)7; x4

a12

11
ba12

4
ba13

9
ba13

3
b

a9

7
ba9

6
ba8

4
ba8

3
b



(B) According to the binomial formula, what is the sum of the

series a0  a1  a2  
. . .  a10?

59. Evaluate (1.01)10 to four decimal places, using the binomial

formula. [Hint: Let 1.01  1  0.01.]

60. Evaluate (0.99)6 to four decimal places, using the binomial

formula.

61. Show that: 

62. Show that: 

63. Show that: 

64. Show that: 

65. Show that: ak

k
b  ak  1

k  1
b

ak

0
b  ak  1

0
b

a k

r  1
b  ak

r
b  ak  1

r
b

an

0
b  an

n
b

an

r
b  a n

n  r
b
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66. Show that: is given by the recursion formula

where 

67.Write 2n
 (1  1)n and expand, using the binomial formula to

obtain

68.Write 0  (1  1)n and expand, using the binomial formula, to

obtain

0  an

0
b  an

1
b  an

2
b  . . .  ( 1)nan

n
b

2n
 an

0
b  an

1
b  an

2
b  . . .  an

n
b

an

0
b  1.

an

r
b  n  r  1

r
 a n

r  1
b

an

r
b

8-1 Sequences and Series

A sequence is a function with the domain a set of successive inte-

gers. The symbol an, called the nth term, or general term, repre-

sents the range value associated with the domain value n. Unless

specified otherwise, the domain is understood to be the set of natu-

ral numbers. A finite sequence has a finite domain, and an infinite

sequence has an infinite domain. A recursion formula defines each

term of a sequence in terms of one or more of the preceding terms.

For example, the Fibonacci sequence is defined by

an an 1 an 2 for n 3, where a1 a2 1. If a1, a2, . . . , an, . . .

is a sequence, then the expression a1 a2 
. . .  an 

. . . is

called a series. A finite sequence produces a finite series, and an in-

finite sequence produces an infinite series. Series can be repre-

sented using the summation notation:

where k is called the summing index. If the terms in the series are

alternately positive and negative, the series is called an alternating

series.

8-2 Mathematical Induction

A wide variety of statements can be proven using the principle of

mathematical induction: Let Pn be a statement associated with each

positive integer n and suppose the following conditions are satisfied:

1. P1 is true.

2. For any positive integer k, if Pk is true, then Pk 1 is also true.

Then the statement Pn is true for all positive integers n.

a
n

k   m
 ak  am  am 1  

. . .  an

To use mathematical induction to prove statements involving

laws of exponents, it is convenient to state a recursive definition of an:

a
1
 a and a

n 1
  a

n
a for any integer n  1

To deal with conjectures that may be true only for n  m,

where m is a positive integer, we use the extended principle of

mathematical induction: Let m be a positive integer, let Pn be a

statement associated with each integer n  m, and suppose the fol-

lowing conditions are satisfied:

1. Pm is true.

2. For any integer k  m, if Pk is true, then Pk 1 is also true.

Then the statement Pn is true for all integers n m.

8-3 Arithmetic and Geometric Sequences

A sequence is called an arithmetic sequence, or arithmetic pro-

gression, if there exists a constant d, called the common differ-

ence, such that

or

for every 

The following formulas are useful when working with arithmetic

sequences and their corresponding series:

nth-Term Formula

Sum Formula—First Form

Sum Formula—Second Form Sn  
n

2
 (a1  an)

 Sn  
n

2
 [2a1  (n  1)d ]

 an  a1  (n  1)d

n 7 1

an  an 1  dan  an 1  d
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A sequence is called a geometric sequence, or a geometric pro-

gression, if there exists a nonzero constant r, called the common

ratio, such that

or for every 

The following formulas are useful when working with geometric

sequences and their corresponding series:

nth-Term Formula

Sum Formula—First Form

Sum Formula—Second Form

Sum of an Infinite Geometric

Series

8-4 Multiplication Principle, Permutations,

and Combinations

A counting technique is a mathematical method of determining

the number of objects in a set without actually enumerating them.

Given a sequence of operations, tree diagrams are often used to

list all the possible combined outcomes. To count the number of

combined outcomes without listing them, we use the multiplica-

tion principle (also called the fundamental counting principle):

1. If operations O1 and O2 are performed in order with N1 possible

outcomes for the first operation and N2 possible outcomes for the

second operation, then there are

possible outcomes of the first operation followed by the second.

2. In general, if n operations O1, O2, . . . , On are performed in order,

with possible number of outcomes N1, N2, . . . , Nn, respectively,

then there are

possible combined outcomes of the operations performed in the

given order.

The symbol n! is read n factorial and 0! is defined to be 1.

A particular arrangement or ordering of n objects without rep-

etition is called a permutation. The number of permutations of n

objects is given by

A permutation of a set of n objects taken r at a time is an

arrangement of the r objects in a specific order. The number of per-

mutations of n objects taken r at a time is given by

A combination of a set of n objects taken r at a time is an 

r-element subset of the n objects. The number of combinations of n

objects taken r at a time is given by

In a permutation, order is important. In a combination, order is not

important.

Cn,r  an

r
b  Pn,r

r!
 

n!

r!(n  r)!
  0  r  n

Pn,r  
n!

(n  r)!
  0  r  n

Pn,n  n ⴢ (n  1) ⴢ

. . .
ⴢ 1  n!

N1 ⴢ N2 ⴢ

. . .
ⴢ Nn

N1 ⴢ N2

 S  
a1

1  r
  r 6 1

 Sn  
a1  ran

1  r
 r  1

 Sn  
a1  a1r 

n

1  r
 r  1

 an  a1r 
n 1

n 7 1an  ran 1

an

an 1

 r

8-5 Sample Spaces and Probability

The outcomes of an experiment are called simple events if one and

only one of these results will occur in each trial of the experiment.

The set of all simple events is called the sample space. Any subset

of the sample space is called an event. An event is a simple event

if it has only one element in it and a compound event if it has more

than one element in it. We say that an event E occurs if any of the

simple events in E occurs. A sample space S1 is more fundamen-

tal than a second sample space S2 if knowledge of which event oc-

curs in S1 tells us which event in S2 occurs, but not conversely.

Given a sample space S {e1, e2, . . . , en} with n simple events,

to each simple event ei we assign a real number denoted by P(ei), that

is called the probability of the event ei and satisfies:

1. 0  P(ei)  1

2. P(e1)  P(e2)  . . .  P(en)  1

Any probability assignment that meets conditions 1 and 2 is said to

be an acceptable probability assignment.

Given an acceptable probability assignment for the simple

events in a sample space S, the probability of an arbitrary event

E is defined as follows:

1. If E is the empty set, then P(E )  0.

2. If E is a simple event, then P(E ) has already been assigned.

3. If E is a compound event, then P(E ) is the sum of the

probabilities of all the simple events in E.

4. If E is the sample space S, then P(E )  P(S )  1.

If each of the simple events in a sample space S  {e1, 

e2, . . . , en} with n simple events is equally likely to occur, then we

assign the probability 1 n to each. If E is an arbitrary event in S,

then

If we conduct an experiment n times and event E occurs with fre-

quency f (E ), then the ratio f(E ) n is called the relative frequency

of the occurrence of event E in n trials. As n increases, f (E ) n usu-

ally approaches a number that is called the empirical probability

P(E ). So f(E ) n is used as an approximate empirical probability

for P(E ).

If P(E ) is the theoretical probability of an event E and the ex-

periment is performed n times, then the expected frequency of the

occurrence of E is n ⴢ P(E ).

8-6 Binomial Formula

Pascal’s triangle is a triangular array of coefficients for the expan-

sion of the binomial (a  b)n, where n is a positive integer. Nota-

tion for the combination formula is

For n a positive integer, the binomial formula is

The numbers are called binomial coefficients.an

k
b, 0  k  n,

(a  b)n
 a

n

k   0

an

k
b an kbk

an

r
b  Cn,r  

n!

r!(n  r)!

P(E )  
Number of elements in E

Number of elements in S
 

n(E )

n(S )
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Work through all the problems in this chapter review and check

answers in the back of the book. Answers to all review problems

are there, and following each answer is a number in italics

indicating the section in which that type of problem is discussed.

Where weaknesses show up, review appropriate sections in the text.

1. Determine whether each of the following can be the first three

terms of a geometric sequence, an arithmetic sequence, or

neither.

(A) 16,  8, 4, . . . (B) 5, 7, 9, . . .

(C)  8,  5,  2, . . . (D) 2, 3, 5, . . .

(E)  1, 2,  4, . . .

In Problems 2–5:

(A) Write the first four terms of each sequence.

(B) Find a10. (C) Find S10.

2. an  2n  3 3.

4. a1   8; an  an 1  3, n  2

5. a1   1, an  ( 2)an 1, n  2

6. Find S in Problem 3.

Evaluate the expression in Problems 7–10.

7. 6! 8.

9. 10. C6,2 and P6,2

11.A single die is rolled and a coin is flipped. How many combined

outcomes are possible? Solve

(A) By using a tree diagram

(B) By using the multiplication principle

12. How many seating arrangements are possible with six people and

six chairs in a row? Solve by using the multiplication principle.

13. Solve Problem 12 using permutations or combinations, whichever

is applicable.

14. In a single deal of 5 cards from a standard 52-card deck, what is

the probability of being dealt five clubs?

15. Betty and Bill are members of a 15-person ski club. If the presi-

dent and treasurer are selected by lottery, what is the probability

that Betty will be president and Bill will be treasurer? A person

cannot hold more than one office.

16.A drug has side effects for 50 out of 1,000 people in a test.

What is the approximate empirical probability that a person us-

ing the drug will have side effects?

Verify the statement Pn in Problems 17–19 for n  1, 2, and 3.

17. Pn: 5  7  9  . . .  (2n  3)  n2
 4n

7!

2!(7  2)!

22!

19!

an  32(1
2)

n

18. Pn: 2  4  8  . . .  2n
 2n 1

 2

19. Pn: 49n
 1 is divisible by 6

In Problems 20–22, write Pk and Pk 1.

20. For Pn in Problem 17 21. For Pn in Problem 18

22. For Pn in Problem 19

23. Either prove the statement is true or prove it is false by finding

a counterexample: If n is a positive integer, then the 

sum of the series is less than 4.

Write Problems 24 and 25 without summation notation, and find

the sum.

24.

25.

26. S  27  18  12  . . .  ?

27.Write

using summation notation, and find S .

28. Someone tells you that the following approximate empirical

probabilities apply to the sample space {e1, e2, e3, e4}: P(e1) .1,

P(e2)   .2, P(e3)  .6, P(e4)  2. There are three reasons

why P cannot be a probability function. Name them.

29. Six distinct points are selected on the circumference of a circle.

How many triangles can be formed using these points as

vertices?

30. In an arithmetic sequence, a1  13 and a7  31. Find the com-

mon difference d and the fifth term a5.

31. How many three-letter code words are possible using the first

eight letters of the alphabet if no letter can be repeated? If letters

can be repeated? If adjacent letters cannot be alike?

32. Two coins are flipped 1,000 times with the following frequencies:

Two heads: 210

One head: 480

Zero heads: 310

(A) Compute the empirical probability for each outcome.

(B) Compute the theoretical probability for each outcome.

(C) Using the theoretical probabilities computed in part B,

compute the expected frequency of each outcome,

assuming fair coins.

Sn  
1

3
 

1

9
 

1

27
 . . .  

( 1)n 1

3n

S7  a
7

k   1

 
16

2k

S10  a
10

k   1
 (2k  8)

1  
1

2
 

1

3
 . . .  

1

n
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33. From a standard deck of 52 cards, what is the probability of ob-

taining a 5-card hand:

(A) Of all diamonds?

(B) Of three diamonds and two spades?

Write answers in terms of Cn,r or Pn,r, as appropriate. Do not

evaluate.

34.A group of 10 people includes one married couple. If four peo-

ple are selected at random, what is the probability that the mar-

ried couple is selected?

35.A spinning device has three numbers, 1, 2, 3, each as likely to

turn up as the other. If the device is spun twice, what is the prob-

ability that:

(A) The same number turns up both times?

(B) The sum of the numbers turning up is 5?

36. Use the formula for the sum of an infinite geometric series to

write as the quotient of two integers.

37. Solve the following problems using Pn,r or Cn,r, as appropriate:

(A) How many three-digit opening combinations are possible

on a combination lock with six digits if the digits cannot

be repeated?

(B) Suppose five tennis players have made the finals. If each

of the five players is to play every other player exactly

once, how many games must be scheduled?

Evaluate Problems 38–40.

38. 39. 40.

41. Expand (x  y)5 using the binomial formula.

42. Find the term containing x6 in the expansion of (x 2)9.

43. If the terms in the expansion of (2x  y)12 are arranged in de-

scending powers of x, find the tenth term.

Establish each statement in Problems 44–46 for all natural

numbers using mathematical induction.

44. Pn in Problem 17 45. Pn in Problem 18

46. Pn in Problem 19

In Problems 47 and 48, find the smallest positive integer n such

that an  bn by graphing the sequences {an} and {bn} with a

graphing calculator. Check your answer by using a graphing

calculator to display both sequences in table form.

47. an C50,n, bn 3n

48. a1 100, an 0.99an 1 5, bn 9 7n

49. How many different families with five children are possible, ex-

cluding multiple births, where the sex of each child in the order of

their birth is taken into consideration? How many families are

possible if the order pattern is not taken into account?

50.A free-falling body travels g/2 feet in the first second, 3g 2 feet

during the next second, 5g 2 feet the next, and so on. Find the

distance fallen during the twenty-fifth second and the total dis-

tance fallen from the start to the end of the twenty-fifth second.

a11

11
ba16

12
b20!

18!(20  18)!

0.727 272 . . .  0.72
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51. How many ways can two people be seated in a row of four chairs?

52. Expand (x  i)6, where i is the imaginary unit, using the bino-

mial formula.

53. If three people are selected from a group of seven men and

three women, what is the probability that at least one woman is

selected?

54. Three fair coins are tossed 1,000 times with the following fre-

quencies of outcomes:

Number of heads 0 1 2 3

Frequency 120 360 350 170

(A) What is the approximate empirical probability of obtaining

two heads?

(B) What is the theoretical probability of obtaining two heads?

(C) What is the expected frequency of obtaining two heads?

Prove that each statement in Problems 55–59 holds for all positive

integers using mathematical induction.

55.

56. is divisible by 

57. n, m positive integers

58. {an} {bn}, where an an 1 2, a1  3, bn  5 2n

59. (1!)1  (2!)2  (3!)3  . . .  (n!)n  (n  1)!  1 (From

U.S.S.R. Mathematical Olympiads, 1955–1956, Grade 10.)

APPLICATIONS

60. LOAN REPAYMENT You borrow $7,200 and agree to pay 1% of

the unpaid balance each month for interest. If you decide to pay an ad-

ditional $300 each month to reduce the unpaid balance, how much in-

terest will you pay over the 24 months it will take to repay this loan?

61. ECONOMICS Due to reduced taxes, an individual has an extra

$2,400 in spendable income. If we assume that the individual spends

75% of this on consumer goods, and the producers of those consumer

goods in turn spend 75% on consumer goods, and that this process

continues indefinitely, what is the total amount (to the nearest dollar)

spent on consumer goods?

62. COMPOUND INTEREST If $500 is invested at 6% compounded

annually, the amount A present after n years forms a geometric se-

quence with common ratio 1  0.06  1.06. Use a geometric se-

quence formula to find the amount A in the account (to the nearest

cent) after 10 years; after 20 years.

63. TRANSPORTATION A distribution center A wishes to distribute

its products to five different retail stores, B, C, D, E, and F, in a city.

How many different route plans can be constructed so that a single

truck can start from A, deliver to each store exactly once, and then re-

turn to the center?

64. MARKET ANALYSIS A DVD distributor selected 1,000 persons

at random and surveyed them to determine a relationship between

age of purchaser and annual DVD purchases. The results are given in

the table on page 568.

n 7 m;
an

am  an m;

x  y, x  yx2n
 y2n

a
n

k   1
 k

3
 a a

n

k   1
 kb

2



DVDs Purchased Annually

Age 0 1 2 Above 2 Totals

Under 12 60 70 30 10 170

12–18 30 100 100 60 290

19–25 70 110 120 30 330

Over 25 100 50 40 20 210

Totals 260 330 290 120 1,000

568 C H A P T E R  8 SEQUENCES, INDUCTION, AND PROBABILITY

Find the empirical probability that a person selected at random

(A) Is over 25 and buys exactly two DVDs annually.

(B) Is 12–18 years old and buys more than one DVD annually.

(C) Is 12–18 years old or buys more than one DVD annually.

65. QUALITY CONTROL Twelve precision parts, including two that

are substandard, are sent to an assembly plant. The plant manager

selects four at random and will return the whole shipment if one or

more of the samples are found to be substandard. What is the prob-

ability that the shipment will be returned?

CHAPTER 8

ZZZ GROUP ACTIVITY Sequences Specified by Recursion Formulas

The recursion formula* an 5an 1 6an 2, together with the

initial values a1 4, a2 14, specifies the sequence {an} whose

first several terms are 4, 14, 46, 146, 454, 1,394, . . . . The se-

quence {an} is neither arithmetic nor geometric. Nevertheless,

because it satisfies a simple recursion formula, it is possible to

obtain an nth-term formula for {an} that is analogous to the nth-

term formulas for arithmetic and geometric sequences. Such an

nth-term formula is valuable because it allows us to estimate a

term of a sequence without computing all the preceding terms.

If the geometric sequence {r
n} satisfies the preceding re-

cursion formula, then rn
 5r

n 1
 6r

n 2. Dividing both sides

by rn 2 leads to the quadratic equation r2
 5r 6  0, whose

solutions are r  2 and r  3. Now it is easy to check that the

geometric sequences {2n}  2, 4, 8, 16, . . . and {3n}  3, 9, 27,

81, . . . satisfy the recursion formula. Therefore, any sequence of

the form {u2n
 v3n}, where u and v are constants, will satisfy

the same recursion formula.

We now find u and v so that the first two terms of {u2n
 v3n}

are a1 4, a2 14. Letting n 1 and n 2 we see that u and v

must satisfy the following linear system:

2u  3v  4

4u  9v  14

Solving the system gives u  1, v 2. Therefore, an nth-term

formula for the original sequence is an ( 1)2n
 (2)3n.

Note that the nth-term formula was obtained by solving a

quadratic equation and a system of two linear equations in two

variables.

(A) Compute ( 1)2n
 (2)3n for n  1, 2, . . . , 6, and compare

with the terms of {an}.

(B) Estimate the one-hundredth term of {an}.

(C) Show that any sequence of the form {u2n
 v3n}, where

u and v are constants, satisfies the recursion formula

an  5an 1  6an 2.

(D) Find an nth-term formula for the sequence {bn} that is speci-

fied by b1 5, b2 55, bn 3bn 1 4bn 2.

(E) Find an nth-term formula for the Fibonacci sequence.

(F) Find an nth-term formula for the sequence {cn} that is specified

by c1  3, c2 15, c3 99, cn 6cn 1 3cn 2 10cn 3.

(Because the recursion formula involves the three terms that

precede cn, our method will involve the solution of a cubic

equation and a system of three linear equations in three

variables.)

*The program RECUR, found at the website for this book, evaluates the terms in any sequence defined by this type of recursion formula.
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A-2 A P P E N D I X  A

Work through all the problems in this cumulative review and

check answers in the back of the book. Answers to all review

problems are there, and following each answer is a number in

italics indicating the section in which that type of problem is

discussed. Where weaknesses show up, review appropriate

sections in the text.

1. Solve for x: 

In Problems 2–4, solve and graph the inequality.

2. 2(3  y)  4  5  y 3. 冟x  2冟  7

4. x2
 3x  10

5. Perform the indicated operations and write the answer in stan-

dard form:

(A) (2  3i)  ( 5  7i)

(B) (1  4i)(3  5i)

(C) 

In Problems 6–9, solve the equation.

6. 3x2
  12x 7. 4x2

 20  0

8. x2
 6x  2  0 9.

10. Given the points A   (3, 2) and B   (5, 6), find:

(A) Distance between A and B.

(B) Slope of the line through A and B.

(C) Slope of a line perpendicular to the line through A and B.

11. Find the equation of the circle with radius and center:

(A) (0, 0) (B) ( 3, 1)

12. Graph 2x  3y  6 and indicate its slope and intercepts.

13. Indicate whether each set defines a function. Find the domain

and range of each function.

(A) {(1, 1), (2, 1), (3, 1)}

(B) {(1, 1), (1, 2), (1, 3)}

(C) {( 2, 2), ( 1,  1), (0, 0), (1,  1), (2, 2)}

14. For f (x)  x2
 2x  5 and g(x)  3x  2, find:

(A) f ( 2)  g(3)

(B) ( f  g)(x)

(C) ( f g)(x)

(D) 

15. How are the graphs of the following related to the graph of

(A) 

(B) 

(C) y  冟x冟  2

y  冟x  2冟
y  2冟x冟

y  冟x冟?

f (a  h)  f (a)

h

°

12

x  112  x  0

5  i

2  3i

7x

5
 

3  2x

2
 

x  10

3
 2

Problems 16–18 refer to the function f given by the graph:

16. Find the domain and range of f. Express answers in interval

notation.

17. Is f an even function, an odd function, or neither? Explain.

18. Use the graph of f to sketch a graph of the following:

(A) y   f (x  1) (B) y  2f (x)  2

In Problems 19–21, solve the equation.

19. 20.

21.

In Problems 22–24, solve and graph the inequality.

22. 23.

24.

25. For what real values of x does the following expression

represent a real number?

26. Perform the indicated operations and write the final answers

in standard form:

(A) (2  3i)2
 (4  5i)(2  3i)  (2  10i)

(B) (C) 

27. Convert to a  bi form, perform the indicated operations, and

write the final answers in standard form:

(A) 

(B) (C) 

In Problems 28–31, solve the equation.

28. 29. 4x2/3
 4x1/3

 3  01  
14

y2
 

6

y

12  1 64

1 4

2  71 25

3  1 1

(5  21 9)  (2  31 16)

i353
5  

4
5i  

1
3
5  

4
5i

1x  2

x  4

x  1

2
7 x  2

2(3m  4)2
 2冟4x  9冟 7 3

2x  1  312x  1

3

x
 

6

x  1
 

1

x  1

x  3

2x  2
 

5x  2

3x  3
 

5

6

x

 5

5 5

5

f(x)
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30.

31.

Use a calculator to solve the equation or inequality in Problems

32 and 33. Compute answers to two decimal places.

32.

33.

34. Solve for y in terms of x:

35. Find each of the following for the function f given by the

graph shown in the figure.

(A) The domain of f

(B) The range of f

(C) f ( 3)  f ( 2)  f (2)

(D) The intervals over which f is increasing

(E) The x coordinates of any points of discontinuity

36. Write equations of the lines

(A) Parallel to

(B) Perpendicular to 

the line 3x  2y  12 and passing through the point ( 6, 1).

Write the final answers in the slope–intercept form y mx b.

37. Find the domain of 

38. Graph f (x)  x2
 2x 8. Show the axis of symmetry and ver-

tex, and find the range, intercepts, and maximum or minimum

value of f(x).

39. Given f (x)  1兾(x  2) and g(x)  (x  3)兾x, find What

is the domain of 

40. Find f  1(x) for f(x)  2x  5.

41.Graph, finding the domain, range, and any points of dis-

continuity:

42. Graph:

(A) 

(B) 

43. The graph in the figure is the result of applying a sequence of

transformations to the graph of Describe the transfor-

mations verbally and write an equation for the graph in the

figure.

y  冟x冟.

y   1x  1

y  21x  1

f (x)  e x  1 if x 6 0

x2
 1  if x  0

f ⴰ g?

f ⴰ g.

g(x)  1x  4.

x

 5

5 5

5

f(x)

x  2

x  1
 

2y  1

y  2

2.35x2
 10.44x  16.47  0

 3.45 6 1.86  0.33x  7.92

18t  2  21t  1

u4
 u2

 12  0

44. Let 

(A) Find f  1(x).

(B) Find the domain and range of f and f  1.

(C) Graph f, f 1, and y  x on the same coordinate system.

Check by graphing f, f  1, and y x in a squared window on a

graphing calculator.

45. Find the center and radius of the circle given by the equation

x2
 6x y2

 2y 0. Graph the circle and show the center and

the radius.

46. Discuss symmetry with respect to the x axis, y axis, and the ori-

gin for the equation

47.Write an equation for the graph in the figure in the form

y a(x h)2
 k, where a is either  1 or  1 and h and k are

integers.

48. Solve for y in terms of x:

49. Find all roots: 

50. Consider the quadratic equation

where b is a real number. Discuss the relationship between

the values of b and the three types of roots listed in Table 1 in

Section 1-5.

51. Find all solutions: 

52.Write in standard form: 

53. Given and find:

(A) Domain of g

(B) f兾g and its domain

(C) and its domainf ⴰ g

g(x)  24  x2,f (x)  x2

a  bi

a  bi
, a, b  0.

13  2x  1x  7  1x  4.

x2
 bx  1  0

3x2
 212x  1.

x  y

y  
x  y

x  y

 1

x

y

 5

5 5

5

xy  冟xy 冟  5

f (x)  1x  4

x

y

 5

5

5



54. Let f(x) ⫽ x2
⫺ 2x ⫺ 3, x ⱖ 1.

(A) Find f ⫺1(x).

(B) Find the domain and range of f⫺1.

(C) Graph f, f ⫺1, and y ⫽ x on the same coordinate system.

Check by graphing f, f ⫺1, and y ⫽ x in a squared window on a

graphing calculator.

APPLICATIONS

55. NUMBERS Find a number such that the number exceeds its re-

ciprocal by 

56. RATE–TIME A boat travels upstream for 35 miles and then re-

turns to its starting point. If the round-trip took 4.8 hours and the

boat’s speed in still water is 15 miles per hour, what is the speed of

the current?

57. CHEMISTRY How many gallons of distilled water must be

mixed with 24 gallons of a 90% sulfuric acid solution to obtain a

60% solution?

58. BREAK-EVEN ANALYSIS The publisher’s fixed costs for the pro-

duction of a new study guide are $41,800. Variable costs are $4.90

per book. If the book is sold to bookstores for $9.65, how many

must be sold for the publisher to break even?

59. FINANCE An investor instructs a broker to buy a certain stock

whenever the price per share p of the stock is within $10 of $200.

Express this instruction as an absolute value inequality.

60. PRICE AND DEMAND The weekly demand for mouthwash in a

chain of drugstores is 1,160 bottles at a price of $3.79 each. If the

price is lowered to $3.59, the weekly demand increases to 1,340

bottles. Assuming that the relationship between the weekly demand

x and the price per bottle p is linear, express x as a function of p.

How many bottles would the store sell each week if the price were

lowered to $3.29?

61. BUSINESS—PRICING A telephone company begins a new pric-

ing plan that charges customers for local calls as follows: The first

60 calls each month are 6 cents each, the next 90 are 5 cents each, the

next 150 are 4 cents each, and any additional calls are 3 cents each.

If C is the cost, in dollars, of placing x calls per month, write a piece-

wise definition of C as a function of x and graph.

62. CONSTRUCTION A homeowner has 80 feet of chain-link fenc-

ing to be used to construct a dog pen adjacent to a house (see the

figure).

(A) Express the area A(x) enclosed by the pen as a function of the

width x.

(B) From physical considerations, what is the domain of the func-

tion A?

(C) Graph A and determine the dimensions of the pen that will

make the area maximum.

x

x

3
2.

63. COMPUTER SCIENCE Let This function

can be used to determine if an integer is odd or even.

(A) Find f(1), f(2), f(3), and f(4).

(B) Find f (n) for any integer n. [Hint: Consider two cases,

n ⫽ 2k and n ⫽ 2k ⫹ 1, k an integer.]

64. DEPRECIATION Office equipment was purchased for $20,000

and is assumed to depreciate linearly to a scrap value of $4,000 after

8 years.

(A) Find a linear function v ⫽ d(t) that relates value v in dollars to

time t in years.

(B) Find t ⫽ d⫺1(v).

65. PROFIT AND LOSS ANALYSIS At a price of $p per unit, the

marketing department at a company estimates that the weekly cost

C and the weekly revenue R, in thousands of dollars, will be given

by the equations

Cost equation

Revenue equation

Find the prices for which the company has:

(A) A profit (B) A loss

66. SHIPPING A ship leaves port A, sails east to port B, and then

north to port C, a total distance of 115 miles. The next day the ship

sails directly from port C back to port A, a distance of 85 miles.

Find the distance between ports A and B and between ports B and C.

67. PHYSICS The distance s above the ground (in feet) of an object

dropped from a hot-air balloon t seconds after it is released is given by

s ⫽ a ⫹ bt2

where a and b are constants. Suppose the object is 2,100 feet above

the ground 5 seconds after its release and 900 feet above the ground

10 seconds after its release.

(A) Find the constants a and b.

(B) How high is the balloon?

(C) How long does the object fall?

68. PRICE AND DEMAND The demand for barley q (in thousands of

bushels) and the corresponding price p (in cents) at a midwestern

grain exchange are shown in the figure.

(A) What is the demand (to the nearest thousand bushels) when the

price is 325 cents per bushel?

(B) Does the demand increase or decrease if the price is increased

to 340 cents per bushel? By how much?

(C) Does the demand increase or decrease if the price is decreased

to 315 cents per bushel? By how much?

(D) Write a brief description of the relationship between price and

demand illustrated by this graph.

5010 20 30 40

350

340

330

320

310

P
ri

ce
 (

in
 c

e
n

ts
)

Barley
(thousands of bushels)

q

p

 R ⫽ 15p ⫺ 2p2

 C ⫽ 88 ⫺ 12p

f (x) ⫽ x ⫺ 2 冀xⲐ2 冁 .
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(E) Use the graph to estimate the price (to the nearest cent) when

the demand is 20, 25, 30, 35, and 40 thousand bushels. Use these

data to find a quadratic regression model for the price of barley us-

ing the demand as the independent variable.

69. STOPPING DISTANCE Table 1 contains data related to the

length of the skid marks left by an automobile when making an

emergency stop. A model for the skid mark length L (in feet) is

where s is speed in miles per hour.

(A) Graph L f(s) and the data for skid mark length on the same axes.

(B) Find s f  1(L) and find its domain and range.

(C) An insurance investigator finds skid marks 220 feet long at the

scene of an accident involving this automobile. How fast (to the near-

est mile per hour) was the automobile traveling when it made these

skid marks?

s  20L  f (s)  0.05s2
 0.2s  6.5,

Table 1 Skid Marks

Speed Length of Skid Marks

(mph) (feet)

20 24

30 48

40 77

50 115

60 187

70 246

80 312

3. For P(x) 3x3
 5x2

 18x  3 and D(x) x  3, use syn-

thetic division to divide P(x) by D(x), and write the answer in

the form P(x) D(x)Q(x) R.

4. Let P(x)  2(x  2)(x  3)(x  5). What are the zeros of

P(x)?

5. Let P(x) 4x3
 5x2

 3x  1. How do you know that P(x)

has at least one real zero between 1 and 2?

6. Let P(x) x3
 x2

 10x  8. Find all rational zeros for P(x).

7. Solve for x.

(A) y 10x (B) y ln x

8. Simplify.

(A) (2ex)3 (B) 

9. Solve for x exactly. Do not use a calculator or a table.

(A) log3 x  2

(B) log3 81  x

(C) logx 4   2

10. Solve for x to three significant digits.

(A) 10x
 2.35 (B) ex

 87,500

(C) log x   1.25 (D) ln x  2.75

In Problems 11 and 12, translate each statement into an equation

using k as the constant of proportionality.

11. E varies directly as p and inversely as the cube of x.

12. F is jointly proportional to q1 and q2 and inversely proportional

to the square of r.

e3x

e 2x

Work through all the problems in this cumulative review and check

answers in the back of the book. Answers to all review problems

are there, and following each answer is a number in italics indi-

cating the section in which that type of problem is discussed. Where

weaknesses show up, review appropriate sections in the text.

1. Let P(x) be the polynomial whose graph is shown in the

figure.

(A) Assuming that P(x) has integer zeros and leading coeffi-

cient 1, find the lowest-degree equation that could produce

this graph.

(B) Describe the left and right behavior of P(x).

2. Match each equation with the graph of f, g, m, or n in the

figure.

(A) (B) 

(C) (D) 

 3

 4.5

3

4.5

m

f

n

g

y  (4
3)

x
 (3

4)
xy  (3

4)
x
 (4

3)
x

y  (4
3)

xy  (3
4)

x

x

 5

5 5

5

P(x)

CHAPTERS 4–5 Cumulative Review Exercises



13. Explain why the graph in the figure is not the graph of a poly-

nomial function.

14. Explain why the graph in the figure is not the graph of a ra-

tional function.

15. The function f subtracts the square root of the domain element

from three times the natural log of the domain element. Write

an algebraic definition of f.

16.Write a verbal description of the function f(x)  100e0.5x
 50.

17. Let 

(A) Find the domain and the intercepts for f.

(B) Find the vertical and horizontal asymptotes for f.

(C) Sketch the graph of f. Draw vertical and horizontal asymp-

totes with dashed lines.

18. Find all zeros of P(x) (x3
 4x)(x  4), and specify those

zeros that are x intercepts.

19. Solve (x3
 4x)(x  4)  0.

20. If P(x) 2x3
 5x2

 3x  2, find using the remainder

theorem and synthetic division.

21. Which of the following is a factor of P(x)?

(A) x 1 (B) x 1

22. Let P(x) x4
 8x2

 3.

(A) Graph P(x) and describe the graph verbally, including the

number of x intercepts, the number of turning points, and

the left and right behavior.

(B) Approximate the largest x intercept to two decimal places.

23. Let P(x) x5
 8x4

 17x3
 2x2

 20x  8.

(A) Approximate the zeros of P(x) to two decimal places and

state the multiplicity of each zero.

(B) Can any of these zeros be approximated with the bisection

method? The MAXIMUM or MINIMUM commands?

Explain.

24. Let P(x) x4
 2x3

 20x2
 30.

(A) Find the smallest positive and largest negative integers

that, by Theorem 1 in Section 4-2, are upper and lower

bounds, respectively, for the real zeros of P(x).

(B) If (k, k  1), k an integer, is the interval containing the

largest real zero of P(x), determine how many additional

intervals are required in the bisection method to approxi-

mate this zero to one decimal place.

(C) Approximate the real zeros of P(x) to two decimal places.

P(x)  x25
 x20

 x15
 x10

 x5
 1

P(1
2)

f (x)  
2x  8

x  2
.

x

y

 5

5 5

5

25. Find all zeros (rational, irrational, and imaginary) exactly for

P(x) 4x3
 20x2

 29x  15.

26. Final all zeros (rational, irrational, and imaginary) exactly for

P(x) x4
 5x3

 x2
 15x  12, and factor P(x) into linear

factors.

In Problems 27–36, solve for x exactly. Do not use a calculator or

a table.

27. 2x2

 4x 4
28. 2x2e x

 xe x
 e x

29. eln x
 2.5 30. logx 104

 4

31.

32. ln (x 4)  ln (x 4)  2 ln 3

33. ln (2x2
 2)  2 ln (2x 4)

34. log x  log (x  15)  2

35. log (ln x)  1 36. 4 (ln x)2
 ln x2

In Problems 37–41, solve for x to three significant digits.

37. x  log3 41 38. ln x  1.45

39. 4(2x)  20 40. 10e 0.5x
 1.6

41.

42. G is directly proportional to the square of x. If G  10 when

x  5, find G when x  7.

43. H varies inversely as the cube of r. If H 162 when r  2, find

H when r  3.

In Problems 44–50, find the domain, range, and the equations of

any horizontal or vertical asymptotes.

44. f (x) 3  2x

45. f (x) 2  log3 (x  1)

46. f (x) 5  4x3

47. f (x) 3  2x4

48.

49. f (x) 20e x
 15

50. f (x) 8  ln (x 2)

51. If the graph of y  ln x is reflected in the line y  x, the graph

of the function y ex is obtained. Discuss the functions that

are obtained by reflecting the graph of y  ln x in the x axis and

in the y axis.

52. (A) Explain why the equation e x
 ln x has exactly one solu-

tion.

(B) Approximate the solution of the equation to two decimal

places.

f (x)  
5

x  3

e 
x
 e x

e 
x
 e x  

1

2

log9 x   3
2
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In Problems 53 and 54, factor each polynomial in two ways: 

(A) As a product of linear factors (with real coefficients) and

quadratic factors (with real coefficients and imaginary zeros). 

(B) As a product of linear factors with complex coefficients.

53. P(x)  x4
 9x2

 18

54. P(x)  x4
 23x2

 50

55. Graph f and indicate any horizontal, vertical, or oblique

asymptotes with dashed lines:

56. Let P(x)  x4
 28x3

 262x2
 922x  1.083. Approxi-

mate (to two decimal places) the x intercepts and the local

extrema.

57. Find a polynomial of lowest degree with leading coefficient 1

that has zeros  1 (multiplicity 2), 0 (multiplicity 3), 3  5i,

and 3  5i. Leave the answer in factored form. What is the de-

gree of the polynomial?

58. If P(x) is a fourth-degree polynomial with integer coefficients

and if i is a zero of P(x), can P(x) have any irrational zeros?

Explain.

59. Let P(x)  x4
 9x3

 500x2
 20,000.

(A) Find the smallest positive integer multiple of 10 and the

largest negative integer multiple of 10 that, by Theorem 1

in Section 4-2, are upper and lower bounds, respectively,

for the real zeros of P(x).

(B) Approximate the real zeros of P(x) to two decimal places.

60. Find all zeros (rational, irrational, and imaginary) exactly for

P(x)  x5
 4x4

 3x3
 10x2

 10x  12

and factor P(x) into linear factors.

61. Find rational roots exactly and irrational roots to two decimal

places for

P(x)  x5
 4x4

 x3
 11x2

 8x  4

62. Give an example of a rational function f(x) that satisfies the fol-

lowing conditions: the real zeros of f are 5 and 8; x  1 is the

only vertical asymptote; and the line y  3 is a horizontal

asymptote.

63. Use natural logarithms to solve for n.

64. Solve ln y  5x  ln A for y. Express the answer in a form that

is free of logarithms.

65. Solve for x.

66. Solve 
x3

 x

x3
 8

 0.

y  
ex

 2e x

2

A  P  

(1  i)n
 1

i

f (x)  
x2

 4x  8

x  2
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67. Solve (to three decimal places)

APPLICATIONS

68. SHIPPING A mailing service provides customers with

rectangular shipping containers. The length plus the girth of one of

these containers is 10 feet (see the figure). If the end of the con-

tainer is square and the volume is 8 cubic feet, find the side length

of the end. Find solutions exactly; round irrational solutions to two

decimal places.

69. GEOMETRY The diagonal of a rectangle is 2 feet longer than

one of the sides, and the area of the rectangle is 6 square feet. Find

the dimensions of the rectangle to two decimal places.

70. POPULATION GROWTH If the Democratic Republic of the

Congo has a population of about 60 million people and a doubling

time of 23 years, find the population in

(A) 5 years (B) 30 years

Compute answers to three significant digits.

71. COMPOUND INTEREST How long will it take money invested

in an account earning 7% compounded annually to double? Use the

annual compounding growth model P  P0(1  r)t, and compute

the answer to three significant digits.

72. COMPOUND INTEREST Repeat Problem 71 using the contin-

uous compound interest model P  P0ert.

73. EARTHQUAKES If the 1906 and 1989 San Francisco earth-

quakes registered 8.3 and 7.1, respectively, on the Richter scale,

how many times more powerful was the 1906 earthquake than

the 1989 earthquake? Use the formula where

E0  104.40 joules, and compute the answer to one decimal

place.

74. SOUND If the decibel level at a rock concert is 88, find the inten-

sity of the sound at the concert. Use the formula D  10 log (I兾I0),

where I0  10 12 watts per square meter, and compute the answer

to two significant digits.

75. ASTRONOMY The square of the time t required for a planet to

make one orbit around the sun varies directly as the cube of its

mean (average) distance d from the sun. Write the equation of vari-

ation, using k as the constant of variation.

M  
2
3 log (E E0),

Len
gth

x

x
y

Girth

4x

x2
 1

6 3



76. PHYSICS Atoms and molecules that make up the air cons-

tantly fly about like microscopic missiles. The velocity v of a par-

ticular particle at a fixed temperature varies inversely as the

square root of its molecular weight w. If an oxygen molecule in

air at room temperature has an average velocity of 0.3 mile/second,

what will be the average velocity of a hydrogen molecule, given

that the hydrogen molecule is one-sixteenth as heavy as the

oxygen molecule?

Problems 77 and 78 require a graphing calculator or a computer

that can calculate linear, quadratic, cubic, and exponential

regression models for a given data set.

77. Table 1 shows the life expectancy (in years) at birth for resi-

dents of the United States from 1970 to 1995. Let x represent years

since 1970. Use the indicated regression model to estimate the life

expectancy (to the nearest tenth of a year) for a U.S. resident born

in 2010.

(A) Linear regression (B) Quadratic regression

(C) Cubic regression (D) Exponential regression

A-8 A P P E N D I X  A

Table 1

Year Life Expectancy

1970 70.8

1975 72.6

1980 73.7

1985 74.7

1990 75.4

1995 75.9

2000 77.0

2005 77.7

Source: U.S. Census Bureau

78. Refer to Problem 77. The Census Bureau projected the life ex-

pectancy for a U.S. resident born in 2010 to be 77.9 years. Which

of the models in Problem 77 is closest to the Census Bureau

projection?

Work through all the problems in this cumulative review and check

answers in the back of the book. Answers to all review problems

are there, and following each answer is a number in italics

indicating the section in which that type of problem is discussed.

Where weaknesses show up, review appropriate sections in the

text. Note that Problems 4, 15, 16, 40, 41, 48, 49, and 88 are from

sections that appear online.

1. Solve using substitution or elimination by addition:

3x  5y  11

2x  3y  1

2. Solve by graphing: 2x  y   4

3x  y   1

3. Solve by substitution or elimination by addition:

4. Solve by graphing: 3x  5y  15

x, y   0

5. Determine whether each of the following can be the first three

terms of an arithmetic sequence, a geometric sequence, or nei-

ther.

(A) 20, 15, 10, . . . (B) 5, 25, 125, . . .

(C) 5, 25, 50, . . . (D) 27,  9, 3, . . .

(E)  9,  6,  3, . . .

 2x   y  1

  6x  3y  2

In Problems 6–8:

(A) Write the first four terms of each sequence.

(B) Find a8. (C) Find S8.

6. an  2 ⴢ 5n
7. an  3n  1

8. a1  100; an  an 1  6, n  2

9. Evaluate each of the following:

(A) 8! (B) (C) 

10. Evaluate each of the following:

(A) (B) C7,2 (C) P7,2

In Problems 11–13, graph each equation and locate foci. Locate

the directrix for any parabolas. Find the lengths of major, minor,

transverse, and conjugate axes where applicable.

11. 25x2
 36y2

 900 12. 25x2
 36y2

 900

13. 25x2
 36y  0

14. Find each determinant:

(A) (B) 

15. Solve x2
 y2

 2

2x  y  1

` 5 3

 5  3
``  3 5

2  2
`

a7

2
b

9!

3!(9  3)!

32!

30!
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16. Find the maximum and minimum value of z  2x  3y over

the feasible region S:

17. Perform the operations that are defined, given the following

matrices:

(A) M 2N (B) P Q (C) PQ

(D) MN (E) PN (F) QM

18.A coin is flipped three times. How many combined outcomes

are possible? Solve

(A) By using a tree diagram

(B) By using the multiplication principle

19. How many ways can four distinct books be arranged on a

shelf? Solve

(A) By using the multiplication principle

(B) By using permutations or combinations, whichever is ap-

plicable

20. In a single deal of 3 cards from a standard 52-card deck, what

is the probability of being dealt three diamonds?

21. Each of the 10 digits 0 through 9 is printed on 1 of 10 differ-

ent cards. Four of these cards are drawn in succession with-

out replacement. What is the probability of drawing the dig-

its 4, 5, 6, and 7 by drawing 4 on the first draw, 5 on the

second draw, 6 on the third draw, and 7 on the fourth draw?

What is the probability of drawing the digits 4, 5, 6, and 7 in

any order?

22.A thumbtack lands point down in 38 out of 100 tosses. What is

the approximate empirical probability of the tack landing

point up?

23.Write the linear system corresponding to each augmented

matrix and solve:

(A) (B) 

(C) 

24. Given the system: 

(A) Write the augmented matrix for the system.

(B) Transform the augmented matrix into reduced form.

(C) Write the solution to the system.

  x1  x2  5

 x1  x2  3

c 1  2

0 0
`  3
1
d

c1  2

0 0
`  3
0
dc 1 0

0 1
` 3

 4
d

 Q  c 1

2
d P  [1 2]

 N  c 1 2

 1 3
d M  c2 1

1  3
d

x

y

5

(0, 10)

(0, 4)

(6, 7)

(5, 0)

S
5
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25. Given the system: 

(A) Write the system as a matrix equation of the form 

AX  B.

(B) Find the inverse of the coefficient matrix A.

(C) Use A 1 to find the solution for k1   2 and k2  1.

(D) Use A 1 to find the solution for k1  1 and k2   2.

26. Use Gauss–Jordan elimination to solve the system

Then write the linear system represented by each augmented

matrix in your solution, and solve each of these systems graph-

ically. Discuss the relationship between the solutions of these

systems.

27. Solve graphically to two decimal places:

Verify the statement Pn in Problems 28 and 29 for n 1, 2, and 3.

28. Pn: 1  5  9  . . .  (4n  3)  n(2n  1)

29. Pn: n2
 n  2 is divisible by 2

In Problems 30 and 31, write Pk and Pk 1.

30. For Pn in Problem 28 31. For Pn in Problem 29

32. Find the equation of the parabola having its vertex at the origin,

its axis the y axis, and (2,  8) on its graph.

33. Find an equation of an ellipse in the form

if the center is at the origin, the major axis is the x axis, the ma-

jor axis length is 10, and the distance of the foci from the cen-

ter is 3.

34. Find an equation of a hyperbola in the form

if the center is at the origin, the transverse axis length is 16, and

the distance of the foci from the center is 

Solve Problems 35–37 using Gauss–Jordan elimination.

35. 36.

37.

38. Given and Find:

(A) MN (B) NM

N  £ 1

 1

2

§ .M  [1 2  1]

 3x1  2x2  x3    5

 x1  2x2  x3   1

 6x2  9x3   0 2x1  3x2  x3   0

 4x2  6x3    1 x2  x3    2

 x1   x2   x3   2 x1  2x2  x3   3

189.

M, N 7 0
x2

M
 

y2

N
 1

M, N 7 0
x2

M
 

y2

N
 1

 3x  4y  18

  2x  3y   7

 2x1   x2    1

 x1  3x2   10

 2x1  5x2  k2

 x1  3x2  k1



39. Given

Find, if defined: (A) LM  2N (B) ML  N

In Problems 40 and 41, solve the system.

40. x2
 3xy  3y2

 1 41. x2
 3xy  y2

  1

xy  1 x2
 xy   0

In Problems 42 and 43, find the determinant.

42. 43.

44. Find all real solutions to two decimal places

x2
 2xy  y2

 1

9x2
 4xy  y2

 15

45.Write without summation notation and find the sum.

46. Write the series using sum-

mation notation with the summation index k starting at

k  1.

47. Find S for the geometric series 108 36  12  4  . . ..

48. Graph the solution region and indicate whether the solution re-

gion is bounded or unbounded. Find the coordinates of each

corner point.

49. Solve the linear programming problem:

Maximize

Subject to

50. Given the system: x1  4x2  2x3  k1

2x1  6x2  3x3  k2

2x1  5x2  2x3  k3

(A) Write the system as a matrix equation of the form AX B.

(B) Find the inverse of the coefficient matrix A.

(C) Use A 1 to solve the system when k1   1, k2  2, and

k3  1.

(D) Use A 1 to solve the system when k1  2, k2  0, and

k3   1.

51. How many four-letter code words are possible using the first

six letters of the alphabet if no letter can be repeated? If letters

can be repeated? If adjacent letters cannot be alike?

52.A basketball team with 12 members has two centers. If 5 play-

ers are selected at random, what is the probability that both

 x, y  0

 2x   y  16

 x  2y  14

 z  4x  9y

 x, y   0

 x  2y   8

 3x  2y  12

2

2!
 

22

3!
 

23

4!
 

24

5!
 

25

6!
 

26

7!

a
5

k   1
 k

k

3 4 5  6

3  2  1

2 4 6

33 1 0 4

2 5  1

3 0  6

3

N  c 2 1

 1 0
dM  £ 1 2

 1 0

1 1

§L  c2  1 0

1 2 1
d

centers are selected? Express the answer in terms of Cn,r or

Pn,r, as appropriate, and evaluate.

53.A single die is rolled 1,000 times with the frequencies of out-

comes shown in the table.

(A) What is the approximate empirical probability that the

number of dots showing is divisible by 3?

(B) What is the theoretical probability that the number of dots

showing is divisible by 3?

Number of

dots facing up 1 2 3 4 5 6

Frequency 160 155 195 180 140 170

54. Let an   100(0.9)n and bn  10  0.03n. Find the least positive

integer n such that an bn by graphing the sequences {an} and

{bn} with a graphing calculator. Check your answer by using a

graphing calculator to display both sequences in table form.

55. Evaluate each of the following:

(A) P25,5 (B) C(25, 5) (C) 

56. Expand using the binomial formula.

57. Find the fifth and the eighth terms in the expansion of (3x y)10.

Prove each statement in Problems 58 and 59 for all positive

integers using mathematical induction.

58. Pn in Problem 28 59. Pn in Problem 29

60. Find the sum of all the odd integers between 50 and 500.

61. Use the formula for the sum of an infinite geometric series to

write as the quotient of two integers.

62. Let for k 0, 1, . . ., 30. Use a

graphing calculator to find the largest term of the sequence {ak}

and the number of terms that are greater than 0.01.

63. Use Cramer’s rule to solve the system for x only:

64. Use Cramer’s rule to solve the system in Problem 63 for y.

65. Use Cramer’s rule to solve the system in Problem 63 for z.

66. How many nine-digit zip codes are possible? How many of

these have no repeated digits?

67. Use mathematical induction to prove that the following state-

ment holds for all positive integers:

68. Three-digit numbers are randomly formed from the digits 1, 2, 3,

4, and 5. What is the probability of forming an even number if

digits cannot be repeated? If digits can be repeated?

  
1

(2n  1)(2n  1)
 

n

2n  1

 Pn: 
1

1 ⴢ 3
 

1

3 ⴢ 5
 

1

5 ⴢ 7
 . . .

  x  2y   1

 x  6y  5z   16

  2x  3z   13

ak  a30

k
b (0.1)30 k(0.9)k

2.45  2.454 545 . . .

(a  1
2b)6

a25

20
b
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69. Discuss the number of solutions for the system corresponding

to the reduced form shown below if

(A) m 0 and n  0 (B) m  0 and n  0

(C) m 0

70. If a square matrix A satisfies the equation A2
 A, find A. As-

sume that A 1 exists.

71.Which of the following augmented matrices are in reduced

form?

Recall that a square matrix is called upper triangular if all

elements below the principal diagonal are zero, and it is called

diagonal if all elements not on the principal diagonal are zero. A

square matrix is called lower triangular if all elements above the

principal diagonal are zero. In Problems 72–77, determine

whether the statement is true or false. If true, explain why. If false,

give a counterexample.

72. The sum of two upper triangular matrices is upper triangular.

73. The product of two lower triangular matrices is lower

triangular.

74. The sum of an upper triangular matrix and a lower triangular

matrix is a diagonal matrix.

75. The product of an upper triangular matrix and a lower triangu-

lar matrix is a diagonal matrix.

76.A matrix that is both upper triangular and lower triangular is a

diagonal matrix.

77. If a diagonal matrix has no zero elements on the principal diag-

onal, then it has an inverse.

78. Use the binomial formula to expand (x 2i)6, where i is the

imaginary unit.

79. Use the definition of a parabola and the distance formula to

find the equation of a parabola with directrix y 3 and focus

(6, 1).

80.An ellipse has vertices ( 4, 0) and foci ( 2, 0). Find the y in-

tercepts.

81.A hyperbola has vertices (2,  3) and foci (2, 5). Find the

length of the conjugate axis.

82. Seven distinct points are selected on the circumference of a cir-

cle. How many triangles can be formed using these seven

points as vertices?

83. Use mathematical induction to prove that 2n
 n! for all

integers n  3.

P  c1 2 0 2

0 0 1 3
 `   2

1
dN  £0 0

1 0

0 1

 †  0

2

 3

§
M  £ 1 0 3

0 1  2

0 0 0

 †  32
0

§L  £1 0 0

0 1 0

0 0 1

 †  2

0

 1

§

£1 0  5

0 1 3

0 0 m

 †  26
n

§

84. Use mathematical induction to show that {an}  {bn}, where

a1  3, an  2an 1 1 for n  1, and bn  2n
 1, n  1.

85. Find an equation of the set of points in the plane each of whose

distance from (1, 4) is three times its distance from the x axis.

Write the equation in the form Ax2
 Cy2

 Dx  Ey

 F  0, and identify the curve.

86.A box of 12 lightbulbs contains 4 defective bulbs. If three bulbs

are selected at random, what is the probability of selecting at

least one defective bulb?

APPLICATIONS

87. ECONOMICS The government, through a subsidy program, dis-

tributes $2,000,000. If we assume that each individual or agency

spends 75% of what it receives, and 75% of this is spent, and so on,

how much total increase in spending results from this government

action?

88. GEOMETRY Find the dimensions of a rectangle with perimeter

24 meters and area 32 square meters.

89. ENGINEERING An automobile headlight contains a parabolic

reflector with a diameter of 8 inches. If the light source is located at

the focus, which is 1 inch from the vertex, how deep is the reflector?

90. ARCHITECTURE A sound whispered at one focus of a whisper-

ing chamber can be easily heard at the other focus. Suppose that a

cross section of this chamber is a semielliptical arch that  is 80 feet

wide and 24 feet high (see the figure). How far is each focus from

the center of the arch? How high is the arch above each focus?

91. FINANCE An investor has $12,000 to invest. If part is invested

at 8% and the rest in a higher-risk investment at 14%, how much

should be invested at each rate to produce the same yield as if all

had been invested at 10%?

92. DIET In an experiment involving mice, a zoologist needs a food

mix that contains, among other things, 23 grams of protein, 6.2

grams of fat, and 16 grams of moisture. She has on hand mixes of the

following compositions: Mix A contains 20% protein, 2% fat, and

15% moisture, mix B contains 10% protein, 6% fat, and 10% mois-

ture; and mix C contains 15% protein, 5% fat, and 5% moisture. How

many grams of each mix should be used to get the desired diet mix?

93. PURCHASING A soft-drink distributor has budgeted $300,000

for the purchase of 12 new delivery trucks. If a model A truck costs

$18,000, a model B truck costs $22,000, and a model C truck costs

$30,000, how many trucks of each model should the distributor pur-

chase to use exactly all the budgeted funds?

24 feet

80 feet
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94. MANUFACTURING A manufacturer makes two types of day

packs, a standard model and a deluxe model. Each standard model

requires 0.5 labor-hour from the fabricating department and 0.3 la-

bor-hour from the sewing department. Each deluxe model requires

0.5 labor-hour from the fabricating department and 0.6 labor-hour

from the sewing department. The maximum number of labor-hours

available per week in the fabricating department and the sewing de-

partment are 300 and 240, respectively.

(A) If the profit on a standard day pack is $8 and the profit on a

deluxe day pack is $12, how many of each type of pack should be

manufactured each day to realize a maximum profit? What is the

maximum profit?

(B) Discuss the effect on the production schedule and the maxi-

mum profit if the profit on a standard day pack decreases by $3 and

the profit on a deluxe day pack increases by $3.

(C) Discuss the effect on the production schedule and the maxi-

mum profit if the profit on a standard day pack increases by $3 and

the profit on a deluxe day pack decreases by $3.

95. AVERAGING TESTS A teacher has given four tests to a class of

five students and stored the results in the following matrix:

Tests

1 2 3 4

G 78 84 81 86

91 65 84 92

95 90 92 91

75 82 87 91

83 88 81 76

W  M

Ann

Bob

Carol

Dan

Eric

Discuss methods of matrix multiplication that the teacher can use to

obtain the indicated information in parts A–C. In each case, state the

matrices to be used and then perform the necessary multiplications.

(A) The average on all four tests for each student, assuming that all

four tests are given equal weight

(B) The average on all four tests for each student, assuming that the

first three tests are given equal weight and the fourth is given twice

this weight

(C) The class average on each of the four tests

96. POLITICAL SCIENCE A random survey of 1,000 residents in a

state produced the following results:

Party Affiliation

Age Democrat Republican Independent Totals

Under 30 130 80 40 250

30–39 120 90 20 230

40–49 70 80 20 170

50–59 50 60 10 120

Over 59 90 110 30 230

Totals 460 420 120 1,000

Find the empirical probability that a person selected at random:

(A) Is under 30 and a Democrat

(B) Is under 40 and a Republican

(C) Is over 59 or is an Independent
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Z Significant Digits

Most calculations involving problems in the real world deal with numbers that are only

approximate. It therefore seems reasonable to assume that a final answer should not be any

more accurate than the least accurate number used in the calculation. This is an important

point, because calculators tend to give the impression that greater accuracy is achieved than

is warranted.

Suppose we want to compute the length of the diagonal of a rectangular field from

measurements of its sides of 237.8 meters and 61.3 meters. Using the Pythagorean theorem

and a calculator, we find

The calculator answer suggests an accuracy that is not justified. What accuracy is justified?

To answer this question, we introduce the idea of significant digits.

Whenever we write a measurement such as 61.3 meters, we assume that the measurement

is accurate to the last digit written. So the measurement 61.3 meters indicates that the meas-

urement was made to the nearest tenth of a meter. That is, the actual width is between 61.25

meters and 61.35 meters. In general, the digits in a number that indicate the accuracy of the

number are called significant digits. If all the digits in a number are nonzero, then they are

all significant. So the measurement 61.3 meters has three significant digits, and the measure-

ment 237.8 meters has four significant digits.

What are the significant digits in the number 7,800? The accuracy of this number is

not clear. It could represent a measurement with any of the following accuracies:

Between 7,750 and 7,850 Correct to the hundreds place

Between 7,795 and 7,805 Correct to the tens place

Between 7,799.5 and 7,800.5 Correct to the units place

To give a precise definition of significant digits that resolves this ambiguity, we use scien-

tific notation.

  245.573 878 . . .

d
61.3 meters

237.8 meters

 d  2237.82
 61.32
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B-1 Scientific Notation and Significant Digits

Z Significant Digits

Z Rounding Convention

Z DEFINITION 1 Significant Digits

If a number x is written in scientific notation as

x  a  10n 1  a  10, n an integer

then the number of significant digits in x is the number of digits in a.



Using this definition,

7.8  103 has two significant digits

7.80  103 has three significant digits

7.800  103 has four significant digits

All three of these measurements have the same decimal representation (7,800), but each

represents a different accuracy.

Definition 1 tells us how to write a number so that the number of significant digits is

clear, but it does not tell us how to interpret the accuracy of a number that is not written

in scientific notation. We will use the following convention for numbers that are written as

decimal fractions:
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Z SIGNIFICANT DIGITS IN DECIMAL FRACTIONS

The number of significant digits in a number with no decimal point is found by

counting the digits from left to right, starting with the first digit and ending with

the last nonzero digit.

The number of significant digits in a number containing a decimal point is

found by counting the digits from left to right, starting with the first nonzero digit

and ending with the last digit.

Applying this rule to the number 7,800, we conclude that this number has two signif-

icant digits. If we want to indicate that it has three or four significant digits, we must use

scientific notation.

EXAMPLE 1 Significant Digits in Decimal Fractions

Underline the significant digits in the following numbers:

(A) 70,007 (B) 82,000 (C) 5.600 (D) 0.0008 (E) 0.000 830

SOLUTIONS (A) 70,007 (B) 82,000 (C) 5.600 (D) 0.0008 (E) 0.000 830 �

MATCHED PROBLEM 1 Underline the significant digits in the following numbers:

(A) 5,009 (B) 12,300 (C) 23.4000 (D) 0.00050 (E) 0.0012

�

Z Rounding Convention

In calculations involving multiplication, division, powers, and roots, we adopt the follow-

ing convention:

Z ROUNDING CALCULATED VALUES

The result of a calculation is rounded to the same number of significant digits

as the number used in the calculation that has the least number of significant

digits.



So, in computing the length of the diagonal of the rectangular field shown earlier, we

write the answer rounded to three significant digits because the width has three significant

digits and the length has four significant digits:

d   246 meters Three significant digits

One Final Note: In rounding a number that is exactly halfway between a larger and a smaller

number, we use the convention of making the final result even.
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EXAMPLE 2 Rounding Numbers

Round each number to three significant digits.

(A) 43.0690 (B) 48.05 (C) 48.15 (D) 8.017 632  10 3

SOLUTIONS (A) 43.1

(B) 48.0

(C) 48.2

(D) 8.02  10 3
�

Use the convention of making the digit before the 5 even

if it is odd, or leaving it alone if it is even.

⎫
⎬
⎭

MATCHED PROBLEM 2 Round each number to three significant digits.

(A) 3.1495 (B) 0.004 135 (C) 32,450 (D) 4.314 764 09   1012

�

ANSWERS TO MATCHED PROBLEMS

1. (A) 5,009 (B) 12,300 (C) 23.4000 (D) 0.00050 (E) 0.0012

2. (A) 3.15 (B) 0.004 14 (C) 32,400 (D) 4.31  1012

19. 2.816 743   103

20. 56.114   104

21. 6.782 045   10 4

22. 5.248 102   10 3

In Problems 23 and 24, find the diagonal of the rectangle with the

indicated side measurements. Round answers to the number of

significant digits appropriate for the given measurements.

23. 25 feet by 20 feet

24. 2,900 yards by 1,570 yards

B-1 Exercises

In Problems 1–12, underline the significant digits in each

number.

1. 123,005 2. 3,400,002 3. 20,040

4. 300,600 5. 6.0 6. 7.00

7. 80.000 8. 900.0000 9. 0.012

10. 0.0015 11. 0.000 960 12. 0.000 700

In Problems 13–22, round each number to three significant

digits.

13. 3.0780 14. 4.0240 15. 924,300

16. 643,820 17. 23.65 18. 23.75
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You have now had considerable experience combining two or more rational expressions into

a single rational expression. For example, problems such as

should seem routine. Frequently in more advanced courses, particularly in calculus, it is

useful to be able to reverse this process—that is, to be able to express a rational expression

as the sum of two or more simpler rational expressions called partial fractions. As is often

the case with reverse processes, the process of decomposing a rational expression into par-

tial fractions is more difficult than combining rational expressions. Basic to the process is

the factoring of polynomials, so many of the topics discussed in Chapter 4 can be put to

effective use. Partial fraction decomposition is usually accomplished by solving a related

system of linear equations. If you are familiar with basic techniques for solving linear sys-

tems discussed earlier in this book, such as Gauss–Jordan elimination, inverse matrix solu-

tions, or Cramer’s rule, you may use these as you see fit. However, all of the linear systems

encountered in this section can also be solved by some special techniques developed here.

Mathematically equivalent to the techniques mentioned, these special techniques are

generally easier to use in partial fraction decomposition problems.

We confine our attention to rational expressions of the form P(x)兾D(x), where P(x) and

D(x) are polynomials with real coefficients. In addition, we assume that the degree of P(x)

is less than the degree of D(x). If the degree of P(x) is greater than or equal to that of D(x),

we have only to divide P(x) by D(x) to obtain

where the degree of R(x) is less than that of D(x). For example,

If the degree of P(x) is less than that of D(x), then P(x)兾D(x) is called a proper fraction.

Z Basic Theorems

Our task now is to establish a systematic way to decompose a proper fraction into the sum

of two or more partial fractions. Theorems 1, 2, and 3 take care of the problem completely.

x4
 3x3

 2x2
 5x  1

x2
 2x  1

 x2
 x  1  

 6x  2

x2
 2x  1

P(x)

D(x)
 Q(x)  

R(x)

D(x)

2

x  5
 

3

x  4
 

2(x  4)  3(x  5)

(x  5)(x  4)
 

5x  7

(x  5)(x  4)

Z THEOREM 1 Equal Polynomials

Two polynomials are equal to each other if and only if the coefficients of terms of

like degree are equal.

B-2 Partial Fractions

Z Basic Theorems

Z Partial Fraction Decomposition



For example, if

Equate the constant terms.

(A  2B)x B  5x  3

Equate the coefficients of x.

then

 A  11

 A  2(ⴚ3)  5

 A  2B  5

 B   3
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⎫⎪⎬⎪⎭

Substitute B ⴝ ⴚ3 into the 

second equation to solve for A.

If

x  5  A(x 1)  B(x 3) (1)

is a polynomial identity (that is, both sides represent the same polynomial), then

equating coefficients produces the system

Equating coefficients of x

Equating constant terms

(A) Solve this system graphically.

(B) For an alternate method of solution, substitute x   3 in equation (1) to find A

and then substitute x    1 in equation (1) to find B. Explain why this method is

valid.

 5  A  3B

 1  A  B

ZZZ EXPLORE-DISCUSS 1

The Linear and Quadratic Factors Theorem from Chapter 4 (page 290) underlies the

technique of decomposing a rational function into partial fractions. We restate the theo-

rem here.

The quadratic formula can be used to determine easily whether a given quadratic

factor ax2
  bx   c, with real coefficients, has imaginary zeros. If b2

 4ac  0,

then ax
2
  bx   c has imaginary zeros. Otherwise its zeros are real. Therefore,

ax
2
 bx   c has imaginary zeros if and only if it cannot be factored as a product of

linear factors with real coefficients.

Z Partial Fraction Decomposition

We are now ready to state Theorem 3, which forms the basis for partial fraction decompo-

sition.

Z THEOREM 2 Linear and Quadratic Factors Theorem

For a polynomial of degree n  0 with real coefficients, there always exists a

factorization involving only linear and/or quadratic factors with real coefficients in

which the quadratic factors have imaginary zeros.



Let’s see how the theorem is used to obtain partial fraction decompositions in several

examples.
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Z THEOREM 3 Partial Fraction Decomposition

Any proper fraction P(x)兾D(x) reduced to lowest terms can be decomposed into

the sum of partial fractions as follows:

1. If D(x) has a nonrepeating linear factor of the form ax   b, then the partial

fraction decomposition of P(x)兾D(x) contains a term of the form

A a constant

2. If D(x) has a k-repeating linear factor of the form (ax   b)k, then the partial

fraction decomposition of P(x)兾D(x) contains k terms of the form

constants

3. If D(x) has a nonrepeating quadratic factor of the form ax2
  bx   c that has

imaginary zeros, then the partial fraction decomposition of P(x)兾D(x) contains

a term of the form

A, B constants

4. If D(x) has a k-repeating quadratic factor of the form (ax2
  bx   c)k, where

ax
2
  bx   c has imaginary zeros, then the partial fraction decomposition of

P(x)兾D(x) contains k terms of the form

constantsA1, . . . , Ak, B1, . . . , Bk

A1x  B1

ax
2
 bx  c

 
A2x  B2

(ax2
 bx  c)2  

. . .  
Ak x  Bk

(ax2
 bx  c)k

Ax  B

ax
2
 bx  c

A1, A2, . . . , Ak
A1

ax  b
 

A2

(ax  b)2
 . . .  

Ak

(ax  b)k

A

ax  b

EXAMPLE 1 Nonrepeating Linear Factors

Decompose into partial fractions: .
5x  7

x
2
 2x  3

SOLUTION We first try to factor the denominator. If it can’t be factored in the real numbers, then we

can’t go any further. In this example, the denominator factors, so we apply part 1 from

Theorem 3:

(2)

To find the constants A and B, we combine the fractions on the right side of equation (2)

to obtain

Because these fractions have the same denominator, their numerators must be equal. So

5x  7  A(x 3)  B(x 1) (3)

5x  7

(x  1)(x  3)
 

A(x  3)  B(x  1)

(x  1)(x  3)

5x  7

(x  1)(x  3)
 

A

x  1
 

B

x  3



We could multiply the right side and find A and B by using Theorem 1, but in this case it

is easier to take advantage of the fact that equation (3) is an identity—that is, it must hold

for all values of x. In particular, we note that if we let x   1, then the second term of the

right side drops out and we can solve for A:

Similarly, if we let x    3, the first term drops out and we find

Now we have the decomposition:

(4)

as can easily be checked by adding the two fractions on the right. �

5x  7

x
2
 2x  3

 
3

x  1
 

2

x  3

 B  2

  8   4B

 A  3

 12  4A

 5 ⴢ 1  7  A(1  3)  B(1  1)
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MATCHED PROBLEM 1 Decompose into partial fractions: .

�

7x  6

x
2
 x  6

Technology Connections

A graphing calculator can also be used to check a partial

fraction decomposition. To check Example 1, we graph the

left and right sides of equation (4) in a graphing calculator

(Fig. 1). Discuss how the TRACE command on the graphing

calculator can be used to check that the graphing calculator

is displaying two identical graphs.

 10

 10

10

10

Z Figure 1

EXAMPLE 2 Repeating Linear Factors

Decompose into partial fractions: .
6x2
 14x  27

(x  2)(x  3)2

SOLUTION Using parts 1 and 2 from Theorem 3, we write

  
A(x  3)2

 B(x  2)(x  3)  C(x  2)

(x  2)(x  3)2

 
6x2
 14x  27

(x  2)(x  3)2
 

A

x  2
 

B

x  3
 

C

(x  3)2



So for all x,

6x2
 14x  27  A(x  3)2

 B(x  2)(x  3)  C(x  2)

If x   3, then If x    2, then

There are no other values of x that will cause terms on the right to drop out. Because any

value of x can be substituted to produce an equation relating A, B, and C, we let x   0 and

obtain

Substitute A ⴝ 1 and C ⴝ ⴚ3.

Therefore,

�

6x2
 14x  27

(x  2)(x  3)2
 

1

x  2
 

5

x  3
 

3

(x  3)2

 B  5

  27  9  6B  6

  27  9A  6B  2C

 A  1 C   3

 25  25A  15  5C
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MATCHED PROBLEM 2 Decompose into partial fractions: .

�

x
2

 11x  15

(x  1)(x  2)2

EXAMPLE 3 Nonrepeating Linear and Quadratic Factors

Decompose into partial fractions: .
5x2

 8x  5

(x  2)(x2
 x  1)

SOLUTION First, we see that the quadratic in the denominator can’t be factored further in the real num-

bers. Then, we use parts 1 and 3 from Theorem 3 to write

So for all x,

5x2
 8x  5  A(x2

 x  1)  (Bx  C)(x  2)

If x   2, then

If x   0, then, using A   3, we have

If x   1, then, using A   3 and C    1, we have

 B  2

 2  3  (B  1)( 1)

 C   1

 5  3  2C

 A  3

 9  3A

  
A(x2

 x  1)  (Bx  C)(x  2)

(x  2)(x2
 x  1)

 
5x2

 8x  5

(x  2)(x2
 x  1)

 
A

x  2
 

Bx  C

x
2

 x  1



Therefore,

�

5x2
 8x  5

(x  2)(x2
 x  1)

 
3

x  2
 

2x  1

x
2

 x  1
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MATCHED PROBLEM 3 Decompose into partial fractions: .

�

7x2
 11x  6

(x  1)(2x2
 3x  2)

EXAMPLE 4 Repeating Quadratic Factors

Decompose into partial fractions: .
x

3
 4x2

 9x  5

(x2
 2x  3)2

SOLUTION Because x2
  2x   3 can’t be factored further in the real numbers, we proceed to use part

4 from Theorem 3 to write

So for all x,

x
3

 4x2
 9x  5  (Ax  B)(x2

 2x  3)  Cx  D

Because the substitution of carefully chosen values of x doesn’t lead to the immediate deter-

mination of A, B, C, or D, we multiply and rearrange the right side to obtain

x
3

 4x2
 9x  5  Ax

3
 (B  2A)x2

 (3A  2B  C )x  (3B  D)

Now we use Theorem 1 to equate coefficients of terms of like degree:

From these equations we easily find that A   1, B    2, C   2, and D   1. Now we can

write

�

x
3

 4x2
 9x  5

(x2
 2x  3)2

 
x  2

x
2

 2x  3
 

2x  1

(x2
 2x  3)2

 3B  D   5

 3A  2B  C  9

 B  2A   4

 A  1

  
(Ax  B)(x2

 2x  3)  Cx  D

(x2
 2x  3)2

 
x

3
 4x2

 9x  5

(x2
 2x  3)2

 
Ax  B

x
2

 2x  3
 

Cx  D

(x2
 2x  3)2

Ax
3 ⴙ (B ⴚ 2A)x2 ⴙ (3A ⴚ 2B ⴙ C )x ⴙ (3B ⴙ D)

ⴚ4x2
ⴙ9x ⴚ51x3

MATCHED PROBLEM 4 Decompose into partial fractions: .

�

3x3
 6x2

 7x  2

(x2
 2x  2)2

ANSWERS TO MATCHED PROBLEMS

1. 2.

3. 4.
3x

x
2

 2x  2
 

x  2

(x2
 2x  2)2

2

x  1
 

3x  2

2x2
 3x  2

3

x  1
 

2

x  2
 

1

(x  2)2

4

x  2
 

3

x  3
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B-3 Parametric Equations

Z Parametric Equations and Plane Curves

Z Projectile Motion

Z Parametric Equations and Plane Curves

Consider the two equations

(1)
x  t  1

y  t 
2
 2t

    6 t 6  

10.

In Problems 11–30, decompose into partial fractions.

11. 12. 13.

14. 15. 16.

17. 18. 19.

20. 21.

22.

23. 24.

25. 26.

27.

28.

29.

30.
6x5

 13x4
 x3

 8x2
 2x

6x4
 7x3

 x2
 x  1

4x5
 12x4

 x3
 7x2

 4x  2

4x4
 4x3

 5x2
 5x  2

 2x3
 12x2

 20x  10

x4
 7x3

 17x2
 21x  18

 x2
 x  7

x4
 5x3

 9x2
 8x  4

5x2
 18x  1

x3
 x2

 8x  12

x2
 16x  18

x3
 2x2

 15x  36

4x2
 8x  1

x3
 x  6

4x2
 5x  9

x3
 6x  9

x3
 x2

 13x  11

x2
 2x  15

x3
 7x2

 17x  17

x2
 5x  6

 5x2
 7x  18

x4
 6x2

 9

2x3
 7x  5

x4
 4x2

 4

6x2
 15x  16

x3
 3x2

 4x

5x2
 3x  6

x3
 2x2

 3x

5x2
 36x  48

x(x  4)2

x2
 12x  18

x3
 6x2

 9x

11x  11

6x2
 7x  3

3x  13

6x2
 x  12

 x  21

x2
 2x  15

 x  22

x2
 2x  8

3x3
 3x2

 10x  4

(x2
 x  3)2

 
Ax  B

x2
 x  3

 
Cx  D

(x2
 x  3)2

B-2 Exercises

In Problems 1–4, find A and B so that the right side is equal to the

left. After cross-multiplying to produce a polynomial equation,

solve each problem two ways (see Explore-Discuss 1). First,

equate the coefficients of both sides to determine a linear system

for A and B and solve this system. Second, solve for A and B by

evaluating both sides for selected values of x.

1.

2.

3.

4.

In Problems 5–10, find A, B, C, and D, so that the right side is

equal to the left.

5.

6.

7.

8.

9.
2x2

 4x  1

(x2
 x  1)2

 
Ax  B

x2
 x  1

 
Cx  D

(x2
 x  1)2

5x2
 9x  19

(x  4)(x2
 5)

 
A

x  4
 

Bx  C

x2
 5

3x2
 x

(x  2)(x2
 3)

 
A

x  2
 

Bx  C

x2
 3

x2
 6x  11

(x  1)(x  2)2
 

A

x  1
 

B

x  2
 

C

(x  2)2

3x2
 7x  1

x(x  1)2
 

A

x
 

B

x  1
 

C

(x  1)2

x  11

(3x  2)(2x  1)
 

A

3x  2
 

B

2x  1

17x  1

(2x  3)(3x  1)
 

A

2x  3
 

B

3x  1

9x  21

(x  5)(x  3)
 

A

x  5
 

B

x  3

7x  14

(x  4)(x  3)
 

A

x  4
 

B

x  3



Each value of t determines a value of x, a value of y, and therefore, an ordered pair (x, y).

To graph the set of ordered pairs (x, y) determined by letting t assume all real values, we

construct Table 1 listing selected values of t and the corresponding values of x and y. Then

we plot the ordered pairs (x, y) and connect them with a continuous curve, as shown in

Figure 1. The variable t is called a parameter and does not appear on the graph. Equations

(1) are called parametric equations because both x and y are expressed in terms of the

parameter t. The graph of the ordered pairs (x, y) is called a plane curve.
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Table 1

t 0 1 2 3 4 ⴚ1 ⴚ2

x 1 2 3 4 5 0  1

y 0  1 0 3 8 3 8

5

10

x

y

Z Figure 1 Graph of x  t  1,

y  t
2

 2t,    t   .

In some cases, it is possible to eliminate the parameter by solving one of the equations

for t and substituting into the other. In the example just considered, solving the first equa-

tion for t in terms of x, we have

t   x   1

Then, substituting the result into the second equation, we obtain

We recognize this as the equation of a parabola, as we would guess from Figure 1.

In other cases, it may not be easy or possible to eliminate the parameter to obtain an

equation in just x and y. For example, for

you will not find it possible to solve either equation for t in terms of functions we have

considered.

x  t  log t

y  t  et
  t 7 0

  x2
 4x  3

 y  (x  1)2
 2(x  1)

Technology Connections

Parametric equations can also be graphed on a graphing

calculator. Figure 2(a) shows the Parametric mode selected

on a Texas Instruments TI-84 calculator. Figure 2(b) shows

the equation editor with the parametric equations in (1) en-

tered as x1T and y1T. In Figure 2(c), notice that there are

three new window variables, Tmin, Tmax, and Tstep, that

must be entered by the user.

Z Figure 2 Graphing parametric equations on a graphing calculator.

 2

 3

10

7

(a) (b) (c) (d)



Is there more than one parametric representation for a plane curve? The answer is yes.

In fact, there is an unlimited number of parametric representations for the same plane curve.

The following are two additional representations of the parabola in Figure 1.

(2)

(3)

The concepts introduced in the preceding discussion are summarized in Definition 1.

 
x  t

y  t2  4t  3
     6 t 6  

 
x  t  3

y  t2  2t
     6 t 6  
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Z DEFINITION 1 Parametric Equations and Plane Curves

A plane curve is the set of points (x, y) determined by the parametric equations

where the parameter t varies over an interval I and the functions f and g are both

defined on the interval I.

 y  g (t)

 x  f (t)

Why are we interested in parametric representations of plane curves? It turns out that

this approach is more general than using equations with two variables as we have been

doing. In addition, the approach generalizes to curves in three- and higher-dimensional

spaces. Other important reasons for using parametric representations of plane curves will

be brought out in the discussion and examples that follow.

EXAMPLE 1 Eliminating the Parameter

Eliminate the parameter and identify the plane curve given parametrically by

(4)
x  1t

y  19  t
  0  t  9

SOLUTION To eliminate the parameter t, we solve each equation (4) for t:

Equating the last two equations, we have

A circle of radius 3 centered at (0, 0)

As the parameter t increases from 0 to 9, x will increase from 0 to 3 and y will decrease

from 3 to 0.

So the graph of the parametric equations in (4) is the quarter of the circle of radius 3

centered at the origin that lies in the first quadrant (Fig. 3). �

 x2
 y2

 9

 x2
 9  y2

 t  9  y2

 x2
 t    y2

 9  t

 x  1t   y  19  t

x

y

 5

5 5

5

Z Figure 3

MATCHED PROBLEM 1 Eliminate the parameter and identify the plane curve given parametrically by 

�

0  t  4.y   1t,

x  14  t,



Z Projectile Motion

Newton’s laws and advanced mathematics can be used to determine the path of a projec-

tile. If v0 is the vertical speed of the projectile, h0 is the horizontal speed, and a0 is the ini-

tial altitude of the projectile (Fig. 4), then, neglecting air resistance, the path of the projec-

tile is given by

(5)
x  h0t

y  a0  v0t  4.9t2  0  t  b
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Z Figure 4 Projectile motion.

y

v0

v0

a0
h0

␣

x

The parameter t represents time in seconds, and x and y are distances measured in meters.

Solving the first equation in equations (5) for t in terms of x, substituting into the second

equation, and simplifying produces the following equation:

(6)

You should verify this by supplying the omitted details.

We recognize equation (6) as a parabola. This equation in x and y describes the path

the projectile follows but tells us little else about its flight. On the other hand, the para-

metric equations (5) not only determine the path of the projectile but also tell us where

it is at any time t. Furthermore, using concepts from physics and calculus, the paramet-

ric equations can be used to determine the velocity and acceleration of the projectile at

any time t. This illustrates another advantage of using parametric representations of plane

curves.

y  a0  
v0

h0

x  
4.9

h2
0

x2

EXAMPLE 2 Projectile Motion

An automobile drives off a 50-meter cliff traveling at 25 meters per second (Fig. 5). When

(to the nearest tenth of a second) will the automobile strike the ground? How far (to the

nearest meter) from the base of the cliff is the point of impact?

50 m

Z Figure 5



S E C T I O N  B – 3 Parametric Equations A-27

SOLUTION At the instant the automobile leaves the cliff, the vertical speed is 0, the horizontal speed is

25 meters per second, and the altitude is 50 meters. Substituting these values in equations

(5), the parametric equations for the path of the automobile are

The automobile strikes the ground when y   0. Using the parametric equation for y, we

have

The distance from the base of the cliff is the same as the value of x. Substituting t  3.2

in the first parametric equation, the distance from the base of the cliff at the point of impact

is x   25(3.2)   80 meters. �

 t  B
 50

 4.9
⬇ 3.2 seconds

  4.9t2   50

 y  50  4.9t2  0

 y  50  4.9t2
 x  25t

MATCHED PROBLEM 2 A gardener is holding a hose in a horizontal position 1.5 meters above the ground. Water is

leaving the hose at a speed of 5 meters per second. What is the distance (to the nearest tenth

of a meter) from the gardener’s feet to the point where the water hits the ground?

�

ANSWERS TO MATCHED PROBLEMS

1. The quarter of the circle of radius 2 centered at the origin that lies in the fourth quadrant.

2. 2.8 meters

In Problems 13–20, obtain an equation in x and y by eliminating

the parameter. Identify the curve.

13. x  t  2, y  4  2t

14. x  t  1, y  2t  2

15.

16.

17.

18.

19.

20.

21. If A ≠ 0, C  0, and E ≠ 0, find parametric equations for

Ax2
 Cy2

 Dx  Ey  F  0. Identify the curve.

22. If A  0, C ≠ 0, and D ≠ 0, find parametric equations for

Ax2
 Cy2

 Dx  Ey  F  0. Identify the curve.

x  12  t, y   14  t, t  2

x   1t  1, y   1t  1, t  1

x   31t, y  125  t, 0  t  25

x  1t, y  2116  t, 0  t  16

x  1t, y  t  1, t  0

x  t  1, y  1t, t  0

B-3 Exercises

1. If x  t2 and y  t2
  2, then y  x  2. Discuss the differences

between the graph of the parametric equations and the graph of

the line y  x   2.

2. If x   t2 and y   t4
  2, then y   x2

  2. Discuss the differ-

ences between the graph of the parametric equations and the

graph of the parabola y   x2
  2.

In Problems 3–12, the interval for the parameter is the whole real

line. For each pair of parametric equations, eliminate the

parameter t and find an equation for the curve in terms of x and y.

Identify and graph the curve.

3. x    t, y 2t  2 4. x  t, y  t  1

5. x    t2, y  2t2
 2 6. x  t2, y  t2

 1

7. x  3t, y    2t 8. x  2t, y  t

9. 10. x  2t, y  t2

11. 12. x  2t2, y  t4x  1
4t 

4, y  t2

x  1
4t 

2, y  t



In Problems 23–28, the interval for the parameter is the entire

real line. Obtain an equation in x and y by eliminating the

parameter and identify the curve.

23.

24.

25.

26.

27.

28.

29. Consider the following two pairs of parametric equations:

1. x1  t, y1  et,    t   

2. x2  et, y2  t,    t   

(A) Graph both pairs of parametric equations in a squared

viewing window and discuss the relationship between the

graphs.

x  
4t

t 
2
 1

, y  
4t 

2

t 
2
 1

x  
8

t 
2
 4

, y  
4t

t 
2
 4

x  
3t

2t 
2
 1

, y  
3

2t 
2
 1

x  
2

2t 
2
 1

, y  
2t

2t 
2
 1

x  2t 
2
 4, y  2t 

2
 1

x  2t 
2
 1, y  2t 

2
 9

A-28 A P P E N D I X  B SPECIAL TOPICS

(B) Eliminate the parameter and express each equation as a

function of x. How are these functions related?

30. Consider the following two pairs of parametric equations:

1. x1  t, y1  log t, t  0

2. x2  log t, y2  t, t  0

(A) Graph both pairs of parametric equations in a squared view-

ing window and discuss the relationship between the graphs.

(B) Eliminate the parameter and express each equation as a

function of x. How are these functions related?

APPLICATIONS

31. PROJECTILE MOTION An airplane flying at an altitude of 1,000

meters is dropping medical supplies to hurricane victims on an is-

land. The path of the plane is horizontal, the speed is 125 meters per

second, and the supplies are dropped at the instant the plane crosses

the shoreline. How far inland (to the nearest meter) will the sup-

plies land?

32. PROJECTILE MOTION One stone is dropped vertically from the

top of a tower 40 meters high. A second stone is thrown horizon-

tally from the top of the tower with a speed of 30 meters per second.

How far apart (to the nearest tenth of a meter) are the stones when

they land?
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Geometric Formulas



Z Similar Triangles

(A) Two triangles are similar if two angles of one triangle have the same measure as two

angles of the other.

(B) If two triangles are similar, their corresponding sides are proportional:

Z Pythagorean Theorem

c
2
⫽ a

2
⫹ b

2

Z Rectangle

A ⫽ ab Area

P ⫽ 2a ⫹ 2b Perimeter

Z Parallelogram

h ⫽ Height

A ⫽ ah ⫽ ab sin  Area

P ⫽ 2a ⫹ 2b Perimeter

Z Triangle

Area

Perimeter

Semiperimeter

Area—Heron’s formula

Z Trapezoid

Base a is parallel to base b.

Area A ⫽
1
2 (a ⫹ b)h

 h ⫽ Height

a

h

b

 A ⫽ 1s(s ⫺ a)(s ⫺ b)(s ⫺ c) a
b

h

c

 s ⫽ 1
2 
(a ⫹ b ⫹ c)

 P ⫽ a ⫹ b ⫹ c

 A ⫽
1
2 
hc

ab
h

c

 h ⫽ Height

a

bh



a

b

b

a
c

a⬘b⬘

c⬘

ab

c

a

a¿

⫽
b

b¿

⫽
c

c¿

A-30 A P P E N D I X  C GEOMETRIC FORMULAS



Z Circle

Area

Circumference

For all circles

Z Rectangular Solid

V ⫽ abc Volume

T ⫽ 2ab ⫹ 2ac ⫹ 2bc Total surface area

Z Right Circular Cylinder

Volume

Lateral surface area

Total surface area

Z Right Circular Cone

Volume

Lateral surface area

Total surface area

Z Sphere

Volume

Surface area S ⫽ 4R
2
⫽ D

2

 V ⫽
4
3 
R

3
⫽

1
6 D

3

 D ⫽ 2R

 D ⫽ Diameter

D R

 R ⫽ Radius

 T ⫽ R(R ⫹ s) ⫽ R(R ⫹ 2R
2
⫹ h

2)

 S ⫽ Rs ⫽ R2R
2
⫹ h

2

 V ⫽
1
3 
R

2
h

 s ⫽ Slant height

 h ⫽ Height

h

R

s

 R ⫽ Radius of base

 T ⫽ 2R(R ⫹ h)

 S ⫽ 2Rh

 V ⫽ R
2
h

 h ⫽ Height

h

R

 R ⫽ Radius of base

a
b

c

  ⬇ 3.141 59

 
C

D
⫽ 

 C ⫽ 2R ⫽ D

 A ⫽ R
2
⫽

1
4 D

2

 D ⫽ 2R

 D ⫽ Diameter
D

R

 R ⫽ Radius
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CHAPTER R Exercises R-1

STUDENT ANSWER APPENDIX

35. (A) (B) (C) (D)

37. (A)

(B) (C) (D)

Exercises R-2

61. 67. 69. 71. 83.

Exercises R-4

59.

CHAPTER 1 Exercises 1-2

5. ⫺8 ⱕ x ⱕ 7 7.

9. x ⱖ ⫺6 11. (⫺2, 6] 13. (⫺7, 8)

15. (⫺⬁, ⫺2] 29. ; 31.

33. ; 35. ; 37. ; 

39. ; 41. ; 43.

45. (2, 4) 47. 49. 51. (1, 5)

53. 55. ; 57. ; 

59. ; 61. 63. ; 

65. 67. ; 69. ; 

77. (A) and (C) a ⬎ 0 and b ⬎ 0, or a ⬍ 0 and b ⬍ 0 (B) and (D) a ⬎ 0 and b ⬍ 0, or a ⬍ 0 and b ⬎ 0

Exercises 1-3

31. y is 3 units from 5; y ⫽ 2, 8 33. y is less than 3 units from 5; 2 ⬍ y ⬍ 8; (2, 8)

35. y is more than 3 units from 5; y ⬍ 2 or y ⬎ 8; (⫺⬁, 2) (8, ⬁) 37. u is 3 units from ⫺8; u ⫽ ⫺11, ⫺5

39. u is no more than 3 units from ⫺8; ⫺11 ⱕ u ⱕ ⫺5; [⫺11, ⫺5]

41. u is at least 3 units from ⫺8; u ⱕ ⫺11 or u ⱖ ⫺5; (⫺⬁, ⫺11] [⫺5, ⬁)

51. or 53. 55. ⫺2 ⬍ x ⬍ 2; (⫺2, 2) 57.

65. The distance from x to 3 is between zero and 0.1; (2.9, 3) (3, 3.1);

67. The distance from x to a is between 0 and 
x( (

1

10
a ⫺

1

10
a ⫹a

aa ⫺
1

10
, ab ´ aa, a ⫹

1

10
b1Ⲑ10;

x( (
2.9 3 3.1

´

[⫺1
3, 1]⫺

1
3 ⱕ t ⱕ 1;(⫺35, ⫺5

9)⫺35 6 C 6 ⫺
5
9;(⫺⬁, ⫺11] 傼 [⫺6, ⬁)u ⱖ ⫺6;u ⱕ ⫺11

⫺11 ⫺5

[[ u´

[ u
⫺11 ⫺5

[

u
⫺11 ⫺5

2 8

(( y
´

y

2 8

( (y
2 8

8

[ x[8, ⬁)x ⱖ 8x(
10

(⫺⬁, 10)x 6 10( x
⫺42 30

[⫺42 ⱕ x 6 30

( x
⫺8 ⫺3

[[⫺8, ⫺3)⫺8 ⱕ x 6 ⫺3( x
6 12

(6 6 x 6 12[ x
⫺20 20

[[⫺20, 20]⫺20 ⱕ x ⱕ 20

4.5

[ x[4.5, ⬁)x ⱖ 4.5q(
⫺14

(⫺⬁, ⫺14)q 6 ⫺14x[
6

(⫺⬁, 6]

( x
1 5

(( x
⫺1 73

[)
(⫺⬁, ⫺1) 傼 [3, 7)x(⫺⬁, ⬁)( x

2 4

(

[ x
⫺5 7

((⫺5, 7][ t
⫺2 3

(
(⫺2, 3]⫺2 6 t ⱕ 3

⫺4

[ B[⫺4, ⬁)B ⱖ ⫺4

3

( m(3, ⬁)m 7 3
2

( t(2, ⬁)t 7 2
(

⫺8

N(⫺⬁, ⫺8)N 6 ⫺8

2

[ y
y ⱖ 2

5

( x(⫺⬁, 5)x 6 5
⫺10 ⫺5 1050

x[

⫺10 ⫺5 1050

x()
⫺10 ⫺5 1050

x[)
⫺10 ⫺5 1050

[ x

⫺10 ⫺5 1050

x[ (
⫺6 ⱕ x 6 6x

⫺10 ⫺5 1050

[ [

⫺x(x ⫹ y)

y

12Ⲑ2 or  121251
3

261
3

5 ⫺ 1
3

25⫺213
n8

m12

1.375; terminating2.236 067 977 p ; nonrepeating and nonterminating0.272 727 p ; repeating; repeated digits: 27

0.888 888 p ; repeating; repeated digit: 8

51365⫺3, ⫺2
3, 0, 1, 95, 114465⫺3, 0, 1, 1144651, 11446



Exercises 1-4

9. (A) (B) (C) 11. (A) 6.5 (B) 2.1i (C) 6.5  2.1i 13. (A) 0 (B)  i (C)   i

15. (A) 4 (B) 0 (C) 4 

Exercises 1-5

19. 25. Two real roots: 27. No real roots: 29. No real roots: 

31. Two real roots: 33. 35. 37. 43.

45.

Exercises 1-6

27. 29. Not of quadratic type 31. 35. 39.

51. 53. 63. (four roots)

Chapter 1 Review Exercises

5.  14 y  4; ( 14,  4) (1-3) 9. or (1-5) 13. (1-5)

19. x   19; [ 19,  ) (1-2) 27. (1-5) 37. (1-5)

CHAPTER 2 Exercises 2-1

15. 17.

19. Points: A (2, 4), B (3,  1), C ( 4, 0), D ( 5, 2)

Reflections: A  ( 2, 4), B  ( 3,  1), C  (4, 0), D  (5, 2)

21. Points: A ( 3,  3), B (0, 4), C  ( 3, 2), D (5,  1)

Reflections: A  (3, 3), B  (0,  4), C  (3,  2), D  ( 5, 1)

23. No symmetry with respect 25. Symmetric with respect 27. Symmetric with respect 29. Symmetric with respect

to x axis, y axis, or origin to the origin to the x axis to the x axis, y axis, and origin

35. (A) (B) (C) (D)

x

y

5

5

 5

 5
x

y

5

 5

5

 5
x

y

5

 5

 5 5
x

y

5

 5

 5

x

y

5

 5

 5 5
x

y

5

 5

 5 5
x

y

5

 5

 5 5
x

y

5

 5

 5

5

x

y

5

 5

 5 5

( 2, 1)

(4,  5)

(0,  2)
( 1,  3)

x

y

5

 5

 5 5

( 4, 2) (4, 4)

(5, 0)

(3,  2)

I  (E  2E 2
 4PR) (2R)x  (1  143) 3] x

 19

m   1
2  (13 2)i 

1
2114x   27

2
( y

 14  4

(

x   B
5  113

6
t   

12

2
,  12y  

1

3
 

i12

3

y   64, 27
8m   13,  i15

10

9
 4u  7u2

 0, u  
1

x2
2u2

 4u  0, u  x 3

x  (3  113) 2

y  (3  15) 2u  ( 2  i111) 2r  ( 5  13) 2x  2  15t  (3  17) 2

t  (3  i17) 2x  1  i12x  1  12z   412 5

 
3

2
 

5

6
i

5

6
i 

3

2
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Student Answer Appendix SA-3

47. Symmetric with respect 49. Symmetric with respect 51. Symmetric with respect 53. Symmetric with respect

to the x axis to the y axis to the x axis, y axis, and origin to the origin

55. Symmetric with respect 57. Symmetric with respect 59. 61.

to the y axis to the y axis

63. 65. 67. Symmetric with respect 69. Symmetric with respect

to the y axis to the origin 

71. No symmetry with respect 73. Symmetric with respect 75. Symmetric with respect to 81.

to the x axis, y axis, or origin to the x axis, y axis, and origin the x axis, y axis, and origin

83. (A) 3,000 cases (B) Demand decreases by 400 cases (C) Demand increases by 600 cases

87. (A)

Exercises 2-2

21. x
2
 y

2
 4 23. (x  1)2

 y
2
 1 25. (x  2)2

 ( y  1)2
 9

x

y

5

 5

 5 5
x

y

5

 5

 5 5
x

y

5

 5

 5 5

x

y

1

21

x

y

5

 5

 5 5
x

y

5

 5

 5 510 10

10

x

y

R

p
50

10

20

30

10

x

y

 5

 5 5
x

y

5

 5

 5 5

 10

 10

10

10

 10

 10

10

10

y   1  2x
2

 4y   23  2x

x

y

5

 5

 5 5
x

y

5

 5

 5 5

x

y

10 10

 10

10

A

C
B

C 

A B 

x

y

10 10

 10

10

A

A 

C 

B 

C

B

x

y

10

 10

 10 10
x

y

5

 5

 5 5
x

y

5

 5

 5 5
x

y

5

 5

 5 5
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33. The set of all points that are two units from the point (0, 2).

x2
 (y  2)2

 4

35. The set of all points that are four units from the point (1, 1).

(x  1)2
 (y  1)2

 16

43. Center: (0,  2); radius: 3 45. Center: ( 4, 2); radius: 47. Center: ( 3, 0); radius: 5 49. Center: (3, 2); radius: 7

51. Center: ( 4, 3); 53. 55.

radius:

73. (A) A  (0, 0), B (0, 13.5), C  (0, 27), D (60, 27), E  (78, 27), F (78, 13.5), G  (78, 0) (B) 62 feet, 79 feet

77. (A) (x  12)2
 ( y  5)2

 262; center: ( 12,  5); radius: 26

(B) 13.5 miles

Exercises 2-3

19. 21. 23. 25.

27. 29. 31.

41. 47. 67.

69. (slope AB )(slope BC )  ( 3
4)(4

3)   1

slope AB   3
4  slope DCy   

2
5 x  2y  

3
2 x  

23
2

x

y

5

 5

 5 5
x

y

5

 5

 5 5

10 10

10

x

y

Slope  0Slope not definedSlope  2

10 10

 10

10

x

y

5 5

 5

5

x

y

x

y

5

 5

 5 5 10

 10

10

x

y

Slope  4
5Slope   2Slope   3

4Slope   3
5

25

 25

 50  25 25

y

x

Town B

(36, 15)( 12,  5)

Town A

 3.1

 4.7

3.1

4.7

 3.1

 4.7

3.1

4.7

x

y

 5

5

117

y   1  22  (x  3)2y   23  x2

10 10

 10

10

x

y

10 10

 10

10

x

y

x

y

5

3

 5

x

y

5

5 5

 5

17
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75. 77. 79.

81. (A)

(B) The boiling point drops 9°F for each 5,000-ft increase in altitude.

87. (A) (B) 68°F, 30°C

Exercises 2-4

5. (A) C  2,147  75x

(B) The rate of change of cost with respect to production is $75.

(C) Increasing production by 1 unit increases cost by $75

7. (A) The rate of change of height with respect to DBH is 4.06 feet per inch.

(B) Increasing DBH by 1 inch increases height by 4.06 feet.

(C) 73 feet

(D) 19 inches

9. (A) Robinson: The rate of change of weight with respect to height is 3.7 pounds per inch. 

Miller: The rate of change of weight with respect to height is 3 pounds per inch.

(B) Robinson: 130.2 pounds; Miller: 135 pounds

(C) Robinson: 5 9 ; Miller: 5 8 

11. s  0.75t  717; speed increases 0.75 mph for each 1°F change in temperature.

15. (A) V  142,000  7,500t

(B) The tractor’s value is decreasing at the rate of $7,500 per year.

(C) $97,000

17. (A) R  1.4C  7

(B) The slope is 1.4; this is the rate of change of retail price with respect to cost.

(C) $137

23. (A)

(B) 0.97 million

(C) 1.3 million

Chapter 2 Review Exercises

1. (2-1) 3. (A) Symmetric with respect to the origin (B) No symmetry with respect to the x axis, y axis, or origin

5 5

 5

5

x

y

5 5

 5

5

x

y

5

A

B
C

 5

 5

5

x

y

x

y

1.0

1.00.5

0.5

F  9
5 C  32

2010

 10

 20

10

x

y

10 10

 10

10

x

y

 10

 10

10

x

y

232  5x  12yx  y  103x  4y  25

x 0 5,000 10,000 15,000 20,000 25,000 30,000

B 212 203 194 185 176 167 158
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(C) Symmetric with respect to the y axis (D) Symmetric with respect to the x axis (2-1)

9. (A) (2-2)

(B)

(C) d(A, C)2
 d(B, C)2

 d(A, B)2; right triangle

(D) Midpoint of side AC  (0, 1), of side BC  (2.5, 3.5), and of side AB  (1.5, 0.5)

11. (2-3) 15. Symmetric with respect to the y axis (2-1)

17. Symmetric with respect to 27. (1-5, 2-2)

the x axis, y axis, and origin (2-1)

29. (A) (2-1) (B) (C) (D)

35. (A) The rate of change of body surface area with respect to weight is 0.3433.

(B) Body surface area increases by 34.33 cm2.

(C) 6,470.5 cm2 (2-4)

37. (A) H  0.7(220  A) (B) H  140 beats per minute (C) A  40 years old (2-4)

5 5

 5

5

x

y

5 5

 5

5

x

y

5 5

 5

5

x

y

5 5

 5

5

x

y

x
6

6

y

(4, 3)

5 5

 5

5

x

y

y   x  7

5 5

 5

5

x

y

x

y

 5 5

5

Slope   3
2

perimeter  16.56d(A, C)  2110, d(B, C)  110, d(A, B)  150,

5

A

B

C

 5

 5

5

x

y

5 5

 5

5

x

y

5 5

 5

5

x

y

CHAPTER 3 Exercises 3-1

39. Not a function; for example, when x  0, y    2 41. A function with domain all real numbers

43. Not a function; for example, when x  0, y    7 45. A function with domain all real numbers

59. 67. Function f multiplies the square of the domain element by 2 then adds 5 to the result.

69. Function z divides the sum of four times the domain element and 5 by the square root of the domain element.

79. (A)  8x  3  4h (B)  4x  4a  3 81. (A) (B)

83. (A) (B) 91. The cost is a flat $17 per month, plus $2.40 for each hour of airtime.
 4

ax

 4

x(x  h)

1

1x  2  1a  2

1

1x  h  2  1x  2

[ 4, 1) 傼 (1,  );  4  x 6 1 or x 7 1



Student Answer Appendix SA-7

93. (A) s(0) 0, s(1) 16, s(2) 64, s(3) 144 (B) 64 16h

(C) Let q(h)  [s(2 h)  s(2)] h

h  1  0.1  0.01  0.001 0.001 0.01 0.1 1

q(h) 48 62.4 63.84 63.984 64.016 64.16 65.6 80

(D) q(h), the average velocity from 2 to 2  h seconds, approaches 64 feet per second

97. F  8x  (250 x)  12; 

Exercises 3-2

9. (A) [ 4, 4) (B) [ 3, 3) (C) 0 (D) 0 (E) [ 4, 4) (F) None (G) None (H) None

11. (A) (  ,  ) (B) [ 4,  ] (C)  3, 1 (D)  3 (E) [ 1,  ) (F) (  ,  1] (G) None (H) None

13. (A) (  , 2) 傼 (2,  ) (B) (C) None (D) 1 (E) None (F) (  ,  2], (2,  )

(G) [ 2, 2) (H) x  2

21. One possible answer: 23. One possible answer:

x

f(x)

5

 5

 5 5
x

5

 5

 5 5

f(x)

(  ,  1) 傼 [1,  )

x 4 5 6 7

F 82.5 78 77.7 79.7

25. One possible answer: 27. Slope  2,  

x intercept   2,

y intercept  4

x

f(x)

5

 5 5

x

f(x)

5

 5

 5 5

29. 31. Slope   2.3, 

x intercept  3.1, 

y intercept  7.1

37. Domain: 39. Domain: x intercept: y intercept: 

41. Domain: x intercept: 0; y intercept: 0 43. Domain: x intercept:  4; y intercept: 

45. Domain: no x intercept; y intercept: 

47. (A) f ( 1) 0, f (0) 1, f (1) 0

(B)

(C) Domain: [ 1, 1]; range: [0, 1]; continuous on its domain

x

y

2.0

0.2

 1 1

(0, 1)

(1, 0)( 1, 0)

 
7

255x ƒ x   5, 56;

16
95x ƒ x   3, 36;5x ƒ x  26;

2
5

2
3;5x ƒ x  5

46;5x ƒ x   26; x intercept: 4; y intercept:  3

x

y

10

 10

 10 10
x

f(x)

5

 5

 5

y intercept   5
3

x intercept   10
3 ,

Slope   1
2, 

49. (A) f ( 2)  2, f ( 1) is not defined, f (2) 4

(B)

(C) Domain: [ 3,  1) 傼 ( 1, 2]; range: { 2, 4}; discontinuous at x   1

x

y

5

 5

 5 5

( 3,  2)

(2, 4)

51. (A) f ( 2) 0, f ( 1) is not defined, f (0)  2 (B) (C) Domain: range: R; 

discontinuous at x   1

(  ,  1) 傼 ( 1,  );

x

y

5

 5

 5 5

(0,  2)

( 2, 0)
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53. (A) f ( 3) 0, f ( 2)  2, f (0)  2, f (3)  2, f (4) 4 55. (A) f ( 2) 1, f (0) 1, f (3) 1, 

(B) (B)

(C) Domain: R; range: [ 2,  ); continuous on its domain (C) Domain: R; range: R; continuous on its domain

57. (A) f (0) is not defined, 63.

f (2) is not defined,

(B)

(C) Domain: range: (  , 4); 

discontinuous at x  0 and x  2

65. 67.

Domain: R; range: Domain: R; range: 

continuous on its domain continuous on its domain

69. (A) One possible answer: 71. (A) One possible answer:

(B) The graph must cross the (B) The graph must cross the x axis at least twice.

x axis exactly once. There is no upper limit on the number of

times it can cross the x axis.

73. Graphs of f and g Graph of m Graph of n

75. Graphs of f and g Graph of m Graph of n

 10

 10

10

10

 10

 10

10

10

 10

 10

10

10

 10

 10

10

10

 10

 10

10

10

 10

 10

10

10

x

f(x)

5

 5

 5 5
x

f(x)

5

 5

5 10

[0,  );[1,  );

x

y

5

 5

 5 5
x

y

5

 5

 5 5

f (x)    x  2  if x 6 2

x  2  if x  2
f (x)   1  x  if x 6 0

1  x  if x  0

(  , 0) 傼 (0, 2) 傼 (2,  );

x

y

5

 5

 5 5

(1,   )
5

2
( 1,    )

10

3

(3,    )
3

2

f (3)   3
2

f (x)   3  if x 6  2

 2 x  2  if  2 6 x 6 1

 1  if x 7 1

f (1)  5
2,f ( 1)  10

3 ,

x

y

5

 5

 5 5

( 2, 1)
(3, 1)

(0, 1)

(4,   )
5

2

( 3,    )
3

2

x

y

5

 5

 5 5

(0,  2)

(3,  2)
( 2,  2)

( 3, 0)

(4, 4)

f (4)  5
2f ( 3)   3

2,
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77. Graphs of f and g Graph of m Graph of n

81. 83.

Discontinuous at 

85. x 4  4 6  6 24 25 247  243  245  246

f (x) 0 0 10  10 20 30 250  240  240  250

89. (A)

(B) No, since at 

91.

24

1,000

x

y

T(x)   0.03x   if 0  x  10,000

0.05x  200  if x 7 10,000

x  1, 2, 3, 4, 5, or 6f (x)  C(x)

x

C(x)

$15

$30

0 61 2 3 4 5

C(x)  f15  0 6 x  1

18 1 6 x  2

21 2 6 x  3

24 3 6 x  4

27 4 6 x  5

30 5 6 x  6

E(x)

x
10,0005,000

500

E(5,750)  $310, E(9,200)  $548

x  8,000

E(x)   200   if 0  x  3,000

80  0.04x  if 3,000 6 x 6 8,000

180  0.04x  if x  8,000

R(x)   32 if 0  x  100

16  0.16x  if x 7 100

 10

 10

10

10

 10

 10

10

10

 10

 10

10

10

; f rounds numbers to the tens place.

93.

T(100,000)  $6,989.60

T(30,000)  $1,776.75

T(10,000)  $535

T(x)   0.0535x 0  x  19,890

0.0705x  338.25  19,890 6 x  65,330

0.0785x  860.41  x 7 65,330

Exercises 3-3

5. Domain: Range: 

11. Domain: range: [0, 4] 13. Domain: range: [1, 3] 15. Domain: [0, 4]; range: 

x

y

2

42

 2
x

y

4

2

 2 2
x

y

2

4

 2 2

[ 2, 2][ 2, 2] ;[ 2, 2] ;

(  , 0][0,  );
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17. Domain: range: 19. Domain: range: 21. Domain: range: 

23. Domain: range: 25. Domain: range: 45.

47. 49. 51.

53. 55. 57.

59. 61.

79. (A) f is a horizontal shrink of by a factor of g is a vertical stretch of by a factor of 2. (B) The graphs are identical.

(C)

81. (A) The graphs are different; order is significant. (B) i. ii.

91. 93.

95. Conclusion: any function can be written as the sum of two other functions, one even and the other odd.

x

5

 5

 5 5

g(x)

x

5

 5

 5 5

f(x)

f (x)   x2
 5f (x)   (x2

 5)

f (x)  1
3

8x  1
3

8 ⴢ 1
3
x  21

3
x

y  1
3
x1 8.y  1

3
x

x

y

5

 5

 5 5
x

y

5

 5

 5 5

x

y

5

 5

 5 5

x

y

10

5

 5 5
x

y

10

5

105

x

y

5

 5

 5 5
x

y

5

 5

 5 5

x

y

10

 5 5

x

y

2

 2

2
x

y

2

2 2

 2
x

y

5

 2 2

[ 2, 2][ 2, 2] ;[ 1, 1][ 1, 1] ;

x

y

2

2 2
x

y

2

 2

2
x

y

2

 2

 2 4

[ 2, 2][ 2, 2] ;[ 2, 2][ 2, 2] ;[ 1, 1][ 4, 0] ;
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97. 99. Each graph is a vertical translation of the graph of 

101. Each graph is a portion of the graph of a horizontal translation followed by a vertical shrink (except for C  8) of the graph of y  t2. Larger values of

C correspond to a smaller opening.

Exercises 3-4

7. Vertex: ( 3,  4); axis: x    3 9. Vertex: axis: 11. Vertex: ( 10, 20); axis: x    10

13. The graph is shifted 2 units right and 1 unit up. 15. The graph is reflected in the x axis, then shifted 1 unit left.

17. The graph is shifted 2 units right and 3 units down.

25. f (x)  (x  2)2
 1; 27. h(x)   (x  1)2

 2; 29. m(x)  2(x  3)2
 4; 

vertex: (2, 1); axis: x  2 vertex: ( 1,  2); axis: x   1 vertex: (3, 4); axis: x  3

31. f(x)  (x  3)2
 8;

vertex: ( 3,  8); axis: x   3

x

y

10

( 3, 8)

 10

 10 10

1

2

x

y

10

(3, 4)

 10

 10 10
x

y

10

 10

 10 10( 1,  2)x

y

10

(2, 1)

 10

 10 10

x

y

 10

 20 5

40

( 10, 20)

    ,  5 2

3

10

y

x

10

 10

 1010

y

x

10

 10

 10

( 3,  4)

x  
3

2
a3

2
, 5b;

t

V

2 4 6 8

70

0

10

10

35

25

y  0.004(x  10)3.

500 1,000

50,000

100,000

$150,000

f(x)

T
o
ta

l 
p

ro
d

u
ct

io
n

 c
o
st

s

Units produced

x
0

33. f (x)  2(x  6)2
 18; 35. Vertex: ( 4,  8); The graph is

vertex: (6, 18); axis: x  6 symmetric about the axis, 

x    4. It decreases until 

reaching a minimum at  

( 4,  8), then increases. 

The range is [ 8,  ).

x

y

10

( 4,  8)
 10

 10 10

x

y

30

(6,18)

 5 10 10
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37. Vertex: The graph is symmetric about the axis, 39. Vertex: The graph is symmetric about the axis, 

It increases until reaching a maximum at then decreases. It decreases until reaching a minimum at then increases. 

The range is The range is 

41. Vertex: The graph is symmetric about the axis, 43. Vertex: axis of symmetry: domain: 

It increases until reaching a maximum at then decreases. range: 

The range is decreasing on increasing on 

45. Vertex: axis of symmetry: domain: 

range: 

decreasing on increasing on 

81. The minimum product is for the numbers 15 and There is no maximum product.

83. 26 employees; $322,800 85. (A) 2003 (B) The domain values should be whole numbers.

97. (B) (C) 56 mph

105. (A) domain: [0, 50,000]; domain: 

(B) x  10,000 and x  35,000

(C) The company makes a profit for those sales levels for which the graph of the revenue function is above the graph of the cost function, that is, if

the sales are between 10,000 and 35,000 gallons. The company suffers a loss for those sales levels for which the graph of the revenue function is

below the graph of the cost function, that is, if the sales are between 0 and 10,000 gallons or between 35,000 and 50,000 gallons.

(D) The maximum profit is $10,937.50 when 22,500 gallons are sold at a price of $1.92 per gallon.

y

50,000

50,000
x

y   R(x)

y   C(x)

[0,  )C(x)  24,500  0.35x,R(x)  3.5x  0.00007x2;

x

y

200

80

 15. 225

x

y

10

 10

 10 10

(2,  9)

x   2

(2,  )(  , 2);

min f (x)  f (2)   9;[ 9,  );

(  ,  );x  2;(2,  9);

x

y

5

 5

 5 5

x    

(   ,     )9

4

3

2

3

2

x

y

100 (5/2, 149/2)

 100

 6 6

( 3
2,  )(  ,  3

2);(  , 149
2 ] .

min f (x)  f ( 3
2)   

9
4;[ 

9
4,  );(5

2, 149
2 ),

(  ,  );x  0;( 3
2,  9

4);x  
5
2.(5

2, 149
2 );

x

y

14

(9/4, 19/4)

 6

 5 5

x

y

20
( 7/2, 65/4)

 20

 10 10

[ 19
4 ,  ).(  , 65

4 ] .

(9
4, 19

4 ),( 7
2, 65

4 ),

x  
9
4.(9

4, 19
4 );x   

7
2.( 7

2, 65
4 );
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Exercises 3-5

7. x  3  2  1 0 1 2 3

3 3 1  1  3  3  3

x

y

5

 5

 5 5

( f  g)(x)

9. x  3  2  1 0 1 2 3

2 0  2  2 0 2 2

x

y

5

 5

 5 5

( fg)(x)

27.

29.

domain f  g, f  g, fg  (  ,  ); domain of f g  (  ,  1) ( 1,  )

31. ( f  g)(x)  3x2
 1; ( f  g)(x)  x2

 1; ( fg)(x)  2x4
 2x2;

domain of each function: (  ,  )

33. ( f  g)(x)  x2
 3x  4; ( f  g)(x)   x2

 3x  6; ( fg)(x)  3x3
 5x2

 3x  5;

domain f  g, f  g, fg: (  ,  ); domain of f g: (  ,  1) ( 1, 1) (1,  )

35.

The domain of the functions f  g, f  g, and fg is [ 3, 2]. The domain of is ( 3, 2].

37.

The domain of f  g, f  g, and fg is [0,  ). Domain of 

39.

The domain of the functions f  g, f  g, and fg is [2, 7]. The domain of is [2, 7).

41. The domain of f  g, f  g, and fg is 

The domain of is 

43.

45.

47.

49.

51.

53.

55.

57.

59.

65. the graphs of f and g are 67. the graphs of f and g are

symmetric with respect to the line y  x. symmetric with respect to the line y  x.

 4

 6

4

6

 4

 6

4

6

( f ° g)(x)  (g ° f )(x)  x;( f ° g)(x)  (g ° f )(x)  x;

(g ° f )(x)  234  x2; domain of g ° f is [ 5, 5] .( f ° g)(x)  216  x2; domain of f ° g is [ 4, 4] ;

(g ° f )(x)  x; domain: (  , 0) 傼 (0,  )( f ° g)(x)  x; domain: (  , 2) 傼 (2,  );

(g ° f )(x)  
x  5

5  x
; domain of g ° f is (  , 0) 傼 (0, 5) 傼 (5,  ).( f ° g)(x)  

6x  10

x
; domain of f ° g is (  , 0) 傼 (0, 2) 傼 (2,  );

(g ° f )(x)  4  x; domain of g ° f is (  , 4] .( f ° g)(x)  24  x2; domain of f ° g is [ 2, 2] ;

(g ° f )(x)  
1

x  2
; domain: (  ,  2) 傼 ( 2,  )( f ° g)(x)  

1

x
 2; domain: (  , 0) 傼 (0,  );

(g ° f )(x)  1x  4; domain: [0,  )( f ° g)(x)  1x  4; domain: [4,  );

(g ° f )(x)  2x  4; domain: (  ,  )( f ° g)(x)  (2x3
 4)1 3; domain: (  ,  );

(g ° f )(x)  2 x  1  3; domain: (  ,  )( f ° g)(x)   2x  4 ; domain: (  ,  );

(g ° f  )(x)  x6
 x3

 1; domain: (  ,  )( f ° g)(x)  (x2
 x  1)3; domain: (  ,  );

(  ,  1) 傼 ( 1, 0) 傼 (0, 1) 傼 (1,  ).
f

g

(  , 0) 傼 (0,  ).( f  g)(x)  2x; ( f  g)(x)  
2

x
; ( fg)(x)  x2

 
1

x2
;  a f

g
b(x)  

x2
 1

x2
 1

f

g
a f

g
b(x)  B

x2
 x  6

7  6x  x2
.

( fg)(x)  2 x4
 5x3

 19x2
 29x  42;( f  g)(x)  2x2

 x  6  27  6x  x2;( f  g)(x)  2x2
 x  6  27  6x  x2;

f

g
 [0, 16) 傼 (16,  ).a f

g
b(x)  

1x  2

1x  4
.

( f  g)(x)  21x  2; ( f  g)(x)  6; ( fg)(x)  x  21x  8;

f

g
a f

g
b(x)  A

2  x

x  3
.

( f  g)(x)  22  x  2x  3; ( fg)(x)  26  x  x2;( f  g)(x)  12  x  1x  3;

傼傼a f

g
b(x)  

3x  5

x2
 1

;

a f

g
b(x)  

2x2

x2
 1

;

傼a f

g
b(x)  

4x

x  1
;

( f  g)(x)  5x  1; ( f  g)(x)  3x  1; ( fg)(x)  4x 
2

 4x;

( f ° g)( 7)  3; ( f ° g)(0)  9; ( f ° g)(4)   10
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69. the graphs of f and g are 71. the graphs of f and g are 
symmetric with respect to the line y  x. symmetric with respect to the line y  x.

73. 75.

77. 79.

85.

The domain of f   g, f   g, and fg is

The domain of is

87.

The domain of f   g, f   g, and fg is 

Domain of is 

Exercises 3-6

7. The original set and the reversed set are both one-to-one functions.
9. The original set is a function. The reversed set is not a function.

11. Neither set is a function.
41. Domain of f  [ 4, 4] 43. Domain of f  [ 5, 3] 45.

range of f  [1, 5] range of f  [ 3, 5] domain of f  (  ,  )
domain of f  1

 [1, 5] domain of f  1
 [ 3, 5] range of f  (  ,  )

range of f  1
 [ 4, 4] range of f  1

 [ 5, 3] domain of f  1
 (  ,  )

range of f  1
 (  ,  )

47. f  1(x)  (x  3) 4 49. f  1(x)  5x  2 51. f  1(x)  (x  3)2, x  3
domain of f  (  ,  ) domain of f  (  ,  ) domain of f  [0,  )
range of f  (  ,  ) range of f  (  ,  ) range of f  [3,  )
domain of f  1

 (  ,  ) domain of f  1
 (  ,  ) domain of f  1

 [3,  )
range of f  1

 (  ,  ) range of f  1
 (  ,  ) range of f  1

 [0,  )

x

y

10

 10

 10 10

y   x

y   f(x)

y   f  1(x)

x

y

10

 

 10

y   x

y   f(x)

y   f 1(x)

x

y

10

 10

 10

y   x

y   f(x)

y   f 1(x)

x

y

10

10

 10 10

y   x

y   f(x)

y   f 1(x)
x

y

5

 5

 5 5

y   x

y   f(x)

y   f  1(x)

x

y

5

 5

 5 5

y   f(x)

y   x y   f  1(x)

f 
 1(x)  

1
3x

(0,  ).
f

g

(  , 0) 傼 (0,  ).

( f  g)(x)  2; ( f  g)(x)  
 2x

|x|
; ( fg)(x)  0; a f

g
b(x)  0

(  ,  1) 傼 ( 1, 0) 傼 (0, 1) 傼 (1,  ).

f

g
(  , 0) 傼 (0,  ).

f

g
(x)  

x2
 1

x2
 1

( f  g)(x)  2x; (f  g)(x)  
2

x
; (fg)(x)  x2

 
1

x2
;

f (x)  x 1 2; g(x)  4x  3; h(x)  (g ° f )(x)f (x)  x 
7; g(x)  3x  5; h(x)  (g ° f )(x)

g(x)  4  2x; f (x)  x1 2; h(x)  ( f ° g)(x)g(x)  2x  7; f (x)  x 
4; h(x)  ( f ° g)(x)

x

y

10

 10

 10 10

y   g(x)

y   x

y  f(x)
x

y

5

 5

 5 5

y   f(x) y   x

y   g(x)

( f ° g)(x)  x, (g ° f )(x)  x;( f ° g)(x)  x, (g ° f )(x)  x;
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53. f 1(x) 16  4x2, x  0 55. 57.

domain of f  (  , 16] domain of f  [1,  ) domain of f  [0,  )

range of f [0,  ) range of f  (  , 3] range of f [5,  )

domain of f 1
 [0,  ) domain of f 1

 (  , 3] domain of f 1
 [5,  )

range of f 1
 (  , 16] range of f 1

 [1,  ) range of f 1
 [0,  )

59. 61. 63.

domain of f  (  , 0] domain of f  [ 4,  ) domain of f  (  , 2]

range of f (  , 4] range of f [ 16,  ) range of f [0,  )

domain of f 1
 (  , 4] domain of f 1

 [ 16,  ) domain of f 1
 [0,  )

range of f 1
 (  , 0] range of f 1

 [ 4,  ) range of f 1
 (  , 2]

65. 67. 69.

domain of f  [1,  ) domain of f  (  ,  1] domain of f  [0, 3]

range of f [2,  ) range of f  [ 3,  ) range of f [ 3, 0]

domain of f 1
 [2,  ) domain of f 1

 [ 3,  ) domain of f 1
 [ 3, 0]

range of f 1
 [1,  ) range of f 1

 (  ,  1] range of f 1
 [0, 3]

71. 73.

domain of f  [ 3, 0] domain of f  [ 1, 0]

range of f [0, 3] range of f [0, 1]

domain of f 1
 [0, 3] domain of f 1

 [0, 1]

range of f 1
 [ 3, 0] range of f 1

 [ 1, 0]

75. 77. 79. 81. 83.

85. The x intercept of f is the y intercept of f 1 and the y intercept of f is the x intercept of f 1.

89. One possible answer:  domain 91. One possible answer:  domain 

95. (A) [200, 1,000] (B) domain: [200, 1,000]; range: [10, 70]

97. (A) r  m(w)  1.25w  3; domain: [0,  ); range: [3,  ) (B) w  m 1(r) 0.8r  2.4; domain: [3,  ); range: [0,  )

99. domain: [20,  ); range: [10,  )s  f  1(L)  10  A
50

3
 (L  20);

d 
 1(q)  

15,000

q
 5;

0  x  2, f 1(x)  2  24  x2x  2, f 1(x)  2  1x

f  1(x)  (4  x)5
 2f  1(x)  

4x  5

3x  2
f  1(x)  

x

2  x
f  1(x)  

2  x

x
f  1(x)  

2

3  x

x

y

2

 2

 2 2

y   x

y   f(x)

y   f 1(x)

x

y

5

 5

 5 5

y   x

y   f(x)

y   f 1(x)

f  1(x)   22x  x2f  1(x)   29  x2

x

y

5

 5

 5 5

y   x

y   f(x)

y   f 1(x)

x

y

10

 10

 10 10

y   x

y   f(x)

y   f 1(x)

x

y

10

 10

 10 10

y   x
y   f(x)

y   f 1(x)

f  1(x)  29  x 
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Chapter 3 Review Exercises

1. (A) Function (B) Function (C) Not a function (3-1)

3. If there is at least one team that has won more than one Super Bowl, then the correspondence is not a function because one input (team) will correspond
with more than one output (year).  There are several teams that have won at least two Super Bowls, so it is not a function. (3-1)

23. x  3  2  1 0 1 2 3 (3-5)

( fg)(x)  12  6  2 0 0 26

31. (3-3) 33. (3-3) 35. (3-3)

39. (A) ( f g)(x)  (x2
 4) (x  3); domain of f g  (  ,  3) ( 3,  ) (B) (g f )(x)  (x  3) (x2

 4); 
domain of (C) domain of 

(D) domain of (3-5)

49. The function f multiplies the square of the domain element by 3, adds 4 times the domain element, and then subtracts 6. (3-1)

51. This equation does not define a function. For example, the ordered pairs (2, 2) and (2,  2) both satisfy the equation. (3-1)

53. Domain: [0,  ); y intercept: 2; no x intercepts (3-1, 3-2) 55. Domain: (  , 3); y intercept: 0; x intercept: 0 (3-1, 3-2)

57. Domain: [0, 16) (16,  ); y intercept: no x intercepts (3-1, 3-2)

61. (A) (B) Domain of domain of (3-5)

67. g(x)  5  3|x  2| (3-3)

69. The graph of is vertically stretched by a factor of 2, reflected through the x axis, shifted 1 unit left and 1 unit down. 
Equation: (3-3)

73. t(x)  0.25x2
 x  3 (3-3) 75. (3-3) 77. (3-3)

79. (3-3) 81. (3-3)
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83. x   2 or x  6; (  ,  2) (6,  ) (3-4)

85. (A) domain  (  , 1] (B) domain  (  , 1) (C) 1  x, domain  (  , 1]

(D) domain  [ 1, 1] (3-5)

87. (A) f  1(x)  x2
 1 (B) Domain of f  [1,  )  Range of f  1 Range of f  [0,  )  Domain of f  1 (3-6)

(C)

89. (A) (B) (3-3)

91. (A)

93. (A) f  f (c)  1.6c (B) $168 (C) c  f  1(r )  0.625r; domain: [16,  ); range: [10,  ) (D) $24.99 (3-6)

95. (A) [1, 3] (B) domain: [1, 3]; range: [1,000, 4,000] (C) R(p)  4,500  500p

(D) R(q)  9q (1  0.002q) (3-6)

97. (A) (B) 0  x  40 (C) x  20, y  15 (3-4)

99.

x $2,000 $4,000 $10,000 $30,000

T(x) $40 $90.00 $370 $1,467.50 (3-2)

T(x)   0.02x  if  0  x  3,000

0.03x  30  if  3,000 6 x  5,000

0.05x  130  if  5,000 6 x  17,000

0.0575x  257.5  if  17,000  x

A(x)  60x  
3
2x

2

q  g 1 (p)  
4,500

p
 500;

E(x)  • 120 if 0  x  2,000

0.1x  80 if 2,000 6 x  5,000

0.1x  170 if x 7 5,000
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CHAPTER 4 Exercises 4-1

37. 39.

63. P(x)S  as xS  and P(x)S   as xS   ; three intercepts and two local extrema

65. P(x)S   as xS  and P(x)S  as xS   ; three intercepts and two local extrema

67. P(x)S  as xS  and as xS   ; four intercepts and three local extrema

77. x intercepts:  12.69,  0.72, 4.41; local maximum: P(2.07) 96.07; local minimum: P( 8.07)  424.07

79. x intercepts:  16.06, 0.50, 15.56; local maximum: P( 9.13) 65.86; local minimum: P(9.13)   55.86

81. x intercepts:  16.15,  2.53, 1.56, 14.12; local minimum: P( 11.68)  1,395.99; local maximum: P( 0.50) 95.72; local minimum: 

P(9.92)  1,140.27

93. (A) 95. (A)

(B) $4,062 billion (B)  3.6 (implausible estimate)

Exercises 4-2

35. (A) Upper bound: 2; lower bound:  2 (B) 1.4 (or  1.4)

Exercises 4-3

9. 0 (multiplicity 3), (multiplicity 2); degree of P(x) is 5

11. 2i (multiplicity 3);  2i (multiplicity 4);  2 (multiplicity 5); 2 (multiplicity 5); degree of P(x) is 17

15. degree 5P(x)  (x  7)3[x  ( 3  12)][x  ( 3  12)] ;
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17. P(x)  [x  (2  3i)][x  (2  3i)](x  4)2; degree 4

87. (A) (B) 3

91. No, because P(x) is not a polynomial with real coefficients (the coefficient of x is the imaginary number 2i ).

Exercises 4-4

15. Domain: all real numbers except 0; x intercept: 3 17. Domain: all real numbers except  2; x intercept:  6

19. Domain: all real numbers; x intercepts:  4, 1 21. Domain: all real numbers except  6; x intercepts: none

23. Vertical asymptote: x    2; horizontal asymptote: y   5 25. Vertical asymptotes: x    4, x   4; horizontal asymptote: y   0

27. Vertical asymptote: x   0; horizontal asymptote: none 29. Vertical asymptotes: x    3, x   0; horizontal asymptote:  

37. The graph of f is the same as the graph of g except that f has a hole at 

39. 41. 43. 45.

47. 49. 51.

53. 55. 73. Vertical asymptote: oblique asymptote: 

77. Vertical asymptote: oblique asymptote: 

79. 81. 83.

Vertical asymptote: x  0 Vertical asymptote: x  2 Vertical asymptote: x  0

Oblique asymptote: y  x Oblique asymptote: Oblique asymptote: 

85. Domain: x  2, or 87. Domain: or 

Vertical asymptote: x  2

Horizontal asymptote: y  0

89. As tS  , NS 50 91. As tS  , NS 5
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93. (A) 95. (A)

(B) 10 yr (B) (0, )

(C) (C) 15 ft by 15 ft

(D)

Chapter 4 Review Exercise

1. Zeros:  1, 3; turning points: ( 1, 0), (1, 2), (3, 0); P(x) as x and P(x) as x (4-1)

9. (4-3)

11. (A) Domain: all real numbers except 5; x intercept: 0 (B) Domain: all real numbers except  4 and 2; x intercept: (4-4)

13. The graph does not increase or decrease without bound as xS  and as xS   (4-1)

29. (4-3)

33. (A) Upper bound: 7; lower bound:  5 (B) Four intervals (C)  4.67, 6.62 (4-2)

47. (A) 3 (B) (4-3) 49. (4-4)

53. 3: None of the candidates for rational zeros ( 1, 2, and  4) are actually zeros. (4-3) 59. (4-5)

63. (A)

(B) 1,915

CHAPTER 5 Exercises 5-1

25. The graph of g is the same as the graph of f stretched 27. The graph of g is the same as the graph of f reflected

vertically by a factor of 3; g is increasing; through the y axis and shrunk vertically by a factor

horizontal asymptote: y  0 of g is decreasing; horizontal asymptote: y 0

29. The graph of g is the same as the graph of f shifted upward 31. The graph of g is the same as the graph of f shifted 2 units

2 units; g is increasing; horizontal asymptote: y 2 to the left; g is increasing; horizontal asymptote: y 0
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53. In every case, y 1. The function is simply the 55. The graph of g is the same as the graph of f reflected through

constant function y 1. the x axis; g is increasing; horizontal asymptote: y 0

57. The graph of g is the same as the graph of f stretched 59. The graph of g is the same as the graph of f stretched

horizontally by a factor of 2 and shifted upward 3 units; vertically by a factor of 500; g is increasing; horizontal

g is decreasing; horizontal asymptote: asymptote: 

61. The graph of g is the same as the graph of f shifted 63. The graph of g is the same as the graph of f shifted

3 units to the right, stretched vertically by a factor of 2, 2 units to the right, reflected through the origin, stretched

and shifted upward 1 unit; g is increasing; horizontal vertically by a factor of 4, and shifted upward 3 units;

asymptote: y  1 g is increasing; horizontal asymptote: y 3

65. 69. No local extrema; no x intercept; y intercept: 2.14; horizontal asymptote: y  2

71. Local maximum: s(0)  1; no x intercepts: y intercept: 1: horizontal asymptote: x axis

73. No local extrema; no x intercept; y intercept: 50; horizontal asymptotes: x axis and y 200

75. Local minimum: f(0)  1; no x intercepts; no horizontal asymptotes

79.

81. 83.

85. As x S  , fn(x) S 0; the line y  0 is a horizontal asymptote.

As x S   , f1(x) S   and f3(x) S   , while f2(x) S  .

As x S   , fn(x) S  if n is even and fn(x) S   if n is odd.

97. Flagstar: $5,488.61; UmbrellaBank.com: $5,470.85; Allied First Bank: $5,463.71

Exercises 5-2

13.

n
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1,000

5 10
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 4
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21.41421
 2.6651; 21.414214

 2.6651; 212
 2.665121.4
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25.

33. q approaches 0.000 9 coulombs, the upper limit for the charge on the capacitor.

35. (C) A approaches 100 deer, the upper limit for the number of deer the island can support.

37. y  14,910(0.8163)x; estimated purchase price: $14,910; estimated value after 10 years: $1,959

39. (A) (B) 2010: 893.3 billion 2020: 903.6 billion

Exercises 5-3

19.

21.

61. b is any positive real number except 1. 79. log x  log y 81. 4 log x  3 log y 83. 85.

91. The graph of g is the same as the graph of f shifted upward 3 units; 93. The graph of g is the same as the graph of f shifted 2 units to the

g is increasing. Domain: (0,  ); vertical asymptote: x   0 right; g is decreasing. Domain: (2,  ); vertical asymptote: x   2

95. The graph of g is the same as the graph of f reflected through  97. The graph of g is the same as the graph of f reflected through the x axis, 

the x axis and shifted downward 1 unit; g is decreasing. stretched vertically by a factor of 3, and shifted upward 5 units; g is 

Domain: (0,  ); vertical asymptote: x   0 decreasing. Domain: (0,  ); vertical asymptote: x   0
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x y  log3x
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103. (A) f  1(x)   2  3x

(B) (C)

107. 109.

Exercises 5-4

25. (A) y  11.9  24.1 ln x; 2008: 73.7%; 2015: 84.1% (B) No; the predicted percentage goes over 100 sometime around 2034.

Exercises 5-5

87. (A)

Chapter 5 Review Exercises

55. The graph of g is the same as the graph of f stretched vertically by a 57. The graph of g is the same as the graph of f stretched

factor of 2 and shifted downward 4 units; g is increasing. vertically by a factor of 2 and shifted upward 1 unit; g is decreasing. 

Domain: all real numbers Domain: (0,  ); 

Horizontal asymptote: y    4 Vertical asymptote: x   0

(5-1) (5-3)

67. Domain f  (0,  )   Range f  1

Range f   (  ,  )   Domain f  1

(5-3)

75. (A)

81. (A) y  43.3(1.09)x; 2010: $574 billion; 2020: $1,360 billion

CHAPTER 6 Exercises 6-1

15. 17. 19. 21.
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23. 45. 47.

57.

Exercises 6-2

15 . Foci: 17. Foci: 19. Foci: 

major axis length 10; major axis length 10; major axis length  6;

minor axis length 4 minor axis length  4 minor axis length 2

25. Foci: F  (0, 4); 27. Foci: 29. Foci: 

major axis length  10; minor axis length major axis length

minor axis length  6 major axis length minor axis length   4

35. 37. 51. 7.94 feet approximately 53. (A) (B) 5.13 feet

Exercises 6-3

15. Foci: 17. Foci: 19. Foci: 

transverse axis length   6; transverse axis length   4; transverse axis length   4;

conjugate axis length  4 conjugate axis length  6 conjugate axis length  8

21. Foci: F  (0, 5); 23. Foci: 25. Foci: 

transverse axis length   8; transverse axis length   4; transverse axis length   4;

conjugate axis length  6 conjugate axis conjugate axis 
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45.

47. (A) Infinitely many; (0  a  1) (B) Infinitely many; (a  1) (C) One; y2
 4x

49. (A)
(B) No intersection points 

The graphs intersect at and for  1   m   1.

51. (A) No intersection points

(B)
The graphs intersect at and for m   2 or m  2.

59. hyperbola

Chapter 6 Review Exercises

1. Foci: F  ( 4, 0), F  (4, 0); 3. Foci: , 5.

major axis length  10; transverse axis length  6;
minor axis length  6 (6-2) conjugate axis length  10 (6-3)

(6-1)

21. ellipse (6-2)

CHAPTER 7 Exercises 7-1

35. {(3s  2, s,  2s  1) | s any real number} 39. {( 2s  5, s, 3s  4) | s any real number} 45.

49. 61. (A) Supply: 143 T-shirts; demand: 611 T-shirts
(B) Supply: 714 T-shirts; demand: 389 T-shirts
(C) Equilibrium price: $6.36; equilibrium quantity: 

480 T-shirts
(D)

71. $35,000 treasury bonds; $7,500 municipal bonds; $27,500 corporate bonds

Exercises 7-2

21. x1   2t  3, x2    t  5, x3  t, t any real number

27. 29. 31. 33. 35.

41. 43. 49. Infinitely many solutions; for any real number s, x2  s, x1  2s  3

73. Either 11 CDs, 1 DVD and 1 book; 6 CDs, 4 DVDs, and 3 books; or 1 CD, 7 DVDs, and 5 books
81. One-person boats: t  80; two-person boats:  2t  420; four-person boats: t, 80  t  210, t an integer
83. No solution; no production schedule will use all the labor-hours in all departments.

£1 0 2

0 1  2

0 0 0

 †   5
3
1
3

0

§£1 0 0

0 1 0

0 0 1

 †   5

4

 2

§
c1  3

2 0
 `  2

 12
dc1  3

0 6
 `  2

 16
dc1  3

8  12
 `  2

 16
dc 4 12

4  6
 `   8

 8
dc 4  6

1  3
 `   8

2
d

p

q
0

10

800400

20

Quantity

P
ri

ce
 (

$
)

Equilibrium
point

(480, 6.36)

Supply
curve

Demand
curve

x  
dh  bk

ad  bc
, y  

ak  ch

ad  bc
, ad  bc  0

5(1
3 
s  

4
3, 23 

s  
8
3, s) ƒ s any real number6

x2

36
 

y2

20
 1;

x

y

10

 10

 10 10

F

F 

x

y

5

 5

 5 5

FF 

x

y

5

 5

 5 5

F   (2, 0)

Directrix
x    2

F  (0, 134);F¿  (0,  134)

x2

4
 

y2

5
 1;

y   m (2m2
 4)x   1 (2m 

2
 4)

( 1 15,  3 15)(1 15, 3 15),

y   m (21  m2)x   1 (21  m 
2)

( 2 13,  1 13)(2 13, 1 13),

x2

a2
 

y2

a2
 1

 1
x2

a2
 

y2

1  a2
 1

y   
13

12
 x

SA-24 Student Answer Appendix



Exercises 7-3

11. 31. 41. 43. 45.

47. 49. 53. 55.

73.

This is the average cost of materials and labor for each product at the two plants.

75. Markup 77. (A) $11.80 (B) $30.30

Basic AM/FM Cruise (C) MN gives the labor costs per boat at each plant.

car Air radio control (D) Plant I Plant II

79. (A)

There is one way to travel from Baltimore to Atlanta with one intermediate connection; there are two ways to travel from Atlanta to Chicago with

one intermediate connection. In general, the elements in A2 indicate the number of different ways to travel from the ith city to the jth city with one

intermediate connection.

(B)

There is one way to travel from Denver to Baltimore with two intermediate connections; there are two ways to travel from Atlanta to El Paso with

two intermediate connections. In general, the elements in A3 indicate the number of different ways to travel from the ith city to the j th city with

two intermediate connections.

(C)

It is possible to travel from any origin to any destination with at most three intermediate connections.

81. (A) $3,550 (B) $6,000 (C) NM gives the total cost per town.

Cost/town

(D)

Telephone House

call call Letter

(E)

Total

(F)

83. (A) (B) (C) where 

(D) Frank, Bart, Aaron and Elvis (tie), Charles, Dan

Exercises 7-4

11. 25. 29. 31. 41. c1  9

0 1
d£ 1  2 1

 1 1 0

2 3 1

§ £ x1

x2

x3

§  £ 1

2

 3

§c 4  3

1 2
d c x1

x2

d  c 2

1
d2x1  x2  3

x1  3x2   2
c 2  3

4 5
d

C  G 1

1

1

1

1

1

WBC  G 9

10

6

4

9

11

WG 0 1 2 3 1 2

1 0 2 3 2 2

1 1 0 2 1 1

1 1 1 0 0 1

1 2 2 2 0 2

2 2 2 3 2 0

WG 0 0 1 1 1 0

1 0 0 1 1 0

0 1 0 1 0 0

0 0 0 0 0 1

0 0 1 1 0 1

1 1 1 0 0 0

W
N £1

1

1

§  c 6,500

10,800
d

contacts

 Berkeley

 Oakland

[1 1]  N  [3,000  1,300  13,000]

NM  c$3,550

$6,000
d  

Berkeley

Oakland

A  A2
 A3

 A4
 G 2 3 2 5 2

1 1 4 2 1

4 1 3 2 4

1 1 4 2 1

1 1 1 3 1

W

A3
 G 2 0 0 0 2

0 1 0 2 0

0 0 3 0 0

0 1 0 2 0

1 0 0 0 1

W

A2
 G 0 0 2 0 0

1 0 0 0 1

0 1 0 2 0

1 0 0 0 1

0 0 1 0 0

W
MN  £$11.80 $13.80

$18.50 $21.60

$26.00 $30.30

§  

One-person boat

Two-person boat

Four-person boat

£$3,330 $77 $42 $27

$2,125 $93 $95 $50

$1,270  $113  $121  $52

§Model A

Model B

Model C

1

2
 (A  B)  c$33 $26

$57 $77
d

£ 26  15  25

 4  18 4

2 43  19

§£ 2 25  15

26  25 45

 2 45  25

§£ 31 16

61  25

 3 77

§£ 0.2 1.2

2.6  0.6

 0.2 2.2

§
£ 5  11 15

4  7 3

0 10 4

§£  3 6 8

 18 12 10

4 6 24

§c 6 7  11

4 18  4
d£ 3  2  4

6  4  8

 9 6 12

§c2 5

4  6
d
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43. 45. 51. 53. 55. 59.

81. (A)

83. 61 22 96 38 115 43 131 47 68 27 110 43 85. BEYONCE KNOWLES

87. 42 43 88 33 101 40 61 62 40 49 40 103 72 56 69 52 81 99 53 101

89. RAIDERS OF THE LOST ARK

91. Concert 1: 6,000 $20 tickets, 4,000 $30 tickets

Concert 2: 5,000 $20 tickets, 5,000 $30 tickets

Concert 3: 3,000 $20 tickets, 7,000 $30 tickets 

Exercises 7-5

19. 21. 23. 25. 27. 29.

47. 49. 51.

53. If and there are an infinite number of solutions. If and there are no solutions. If there is one solution.

71. (A) Since the system either has no solution or infinitely many. Since is a solution, the second case must hold.

(B) Since by Cramer’s rule, is the only solution.

73. (A)

(B)

Chapter 7 Review Exercises

3. Infinitely many solutions [t, (4t 8) 3], for any real number t (7-1)

7. (7-2) 13. (7-3) 17. (7-3)

23. (A) x1  1, x2 3 (B) x1 1, x2 2 (C) x1 8, x2  10 (7-4)

27. x1  2, x2   2; each pair of lines has the same intersection point. (7-1, 7-2)

x1  x2  4

2x1  x2  2

35. (7-3) 37. (7-3)

57. (A) $27 (B) Elements in LH give the total cost of manufacturing each product at each plant.

(C) North South

Carolina Carolina

(7-3)

CHAPTER 8 Exercises 8-1

15. 19. 25. 0.3, 0.33, 0.333, 0.3333, 0.33333 55. 57.

59. 73. (A) 3, 1.83, 1.46, 1.415 (B) Calculator (C) a1  1; 1, 1.5, 1.417, 1.41412  1.4142135. . .4
1  

8
2  

16
3  

32
4

 1.5

0

1.5

20

 0.3

0

1

20

1
10  

1
100  

1
1,000

99
101

Desks

Stands
LH  c $46.35  $41.00

$30.45  $27.00
d

£ 12 24  6

0 0 0

 8  16 4

§£ 7 16  9

28 40  30

 21  8 17

§
 x2   2 x2   2 3x2   6

 x1  2 x1  x2  4 x1  x2  4

5

 5

 5 5
x

1

x
2

(2,  2)

5

 5 5
x

1

x
2

(2,  2)

5

 5 5
x

1

x
2

(2,  2)

5

 5 5
x

1

x
2

(2,  2)

c 3 3

 4 9
dc 4 8

 12 18
dc 3  6

1  4
 `  12

5
d

R  180x  220y  0.3x2
 0.6xy  0.6y2q   0.2x  0.6y  220,p   0.3x  0.4y  180,

R  200p  300q  6p2
 6pq  3q2

x  0, y  0, z  0D  0,

x  0, y  0, z  0D  0,

a  8
3,b  15

4 ,a  3
2b  15

4 ,a  3
2

x  3
2, y   7

6, z  2
3x   9, y   7

3, z  6x  4
3, y   1

3, z  2
3

( 1)2 3 ` 5  1

0  2
`  10( 1)1 1 ` 4 6

 2 8
`  44` 5  1

0  2
`` 4 6

 2 8
`x  2

17, y   20
17x   6

5,  y  3
5

B 1A 1
 c 29  41

 12 17
d

(AB) 1
 c 29  41

 12 17
d , A 1B 1

 c 23  33

 16 23
d ,

£ 9  15 10

4 5  4

 1  1 1

§£ 1 0 1
1
2

1
2 1

2 1 4

§£ 19 9  7

15  7 6

 2 1  1

§£ 0  1  1

 1  1  1

 1  1 0

§c 3  7

 2  5
dc 5

2

 2

1
d

SA-26 Student Answer Appendix



81. (A) 0.625 ft; 0.02 ft (B) 19.98

83. (A) 40,000, 41,600, 43,264, 44,998.56, 46,794.34, 48,666.12 (B) 40,000(1.04)n 1 (C) 265,319.02

Exercises 8-2

11. P1: a5a1
 a5 1; P2: a5a2

 a5(a1a)  (a5a)a  a6a  a7
 a5 2; P3: a5a3

 a5(a2a)  a5(a1a)a  [(a5a)a]a  a8
 a5 3

13. P1: 91
 1  8 is divisible by 4; P2: 92

 1  80 is divisible by 4; P3: 93
 1  728 is divisible by 4

15. Pk: 2  6  10  . . .  (4k  2)  2k2; Pk 1: 2  6  10  . . .  (4k  2)  (4k  2)  2(k  1)2

17. Pk: a
5ak
 a5 k; Pk 1: a5ak 1

 a5 k 1
49.

Exercises 8-3

7. (A) Arithmetic with d   5;  26,  31 (B) Geometric with r   2;  16, 32 (C) Neither (D) Geometric with

Exercises 8-4

39. No repeats: 10 ⴢ 9 ⴢ 8 ⴢ 7 ⴢ 6  30,240; with repeats: 10 ⴢ 10 ⴢ 10 ⴢ 10 ⴢ 10  100,000

43. 26 ⴢ 26 ⴢ 26 ⴢ 10 ⴢ 10 ⴢ 10  17,576,000 possible license plates; no repeats: 26 ⴢ 25 ⴢ 24 ⴢ 10 ⴢ 9 ⴢ 8  11,232,000

49. (B) r  0, 10 (C) Each is the product of r consecutive integers, the largest of which is n for Pn,r and r for r!

55. Two people: 5 ⴢ 4  20; three people: 5 ⴢ 4 ⴢ 3  60; four people: 5 ⴢ 4 ⴢ 3 ⴢ 2  120; five people: 5 ⴢ 4 ⴢ 3 ⴢ 2 ⴢ 1  120

57. (A) P8,5  6,720 (B) C8,5  56 (C) C2,1 ⴢ C6,4  30

59. There are C4,1 ⴢ C48,4  778,320 hands that contain exactly one king, and C39,5  575,757 hands containing no hearts, so the former is more likely.

Exercises 8-5

19. (A) No probability can be negative (B) P(R)  P(G)  P(Y )  P(B) 1 (C) Is an acceptable probability assignment.

31.

53. (A) P(2)  .022, P(3)  .07, P(4)  .088, P(5)  .1, P(6)  .142, P(7)  .178, P(8)  .144, P(9)  .104, P(10)  .072, 

P(11)  .052, P(12)  .028

(B)

(C)

Exercises 8-6

21. m3
 3m2n  3mn2

 n3
23. 8x3

 36x2y  54xy2
 27y3

25. x4
 8x3

 24x2
 32x  16

27. m4
 12m3n  54m2n2

 108mn3
 81n4

29. 32x5
 80x4y  80x3y2

 40x2y3
 10xy4

 y5

31. m6
 12m5n 60m4n2

 160m3n3
 240m2n4

 192mn5
 64n6

51. 3x2
 3xh  h2; approaches 3x2

53. 5x4
 10x3h  10x2h2

 5xh3
 h4; approaches 5x4

Chapter 8 Review Exercises

1. (A) Geometric (B) Arithmetic (C) Arithmetic (D) Neither (E) Geometric (8-1, 8-3)

3. (A) 16, 8, 4, 2 (B) (C) (8-1, 8-3) 9. 21 (8-4)

11. (A) 12 combined outcomes: (B) 6 ⴢ 2  12 (8-5)
H

T

H

T

H

T

H

T

H

T

H

T

1

2

3

4

5

6

(1, T)

(2, H)

(2, T)

(3, H)

(3, T)

(4, H)

(4, T)

(5, H)

(5, T)

(6, H)

(1, H)

(6, T)

S10  3131
32a10  

1
32

Expected Expected

Sum frequency Sum frequency

2 13.9 8 69.4

3 27.8 9 55.6

4 41.7 10 41.7

5 55.6 11 27.8

6 69.4 12 13.9

7 83.3

P(8)  5
36, P(9)  4

36, P(10)  3
36, P(11)  2

36, P(12)  1
36P(2)  1

36, P(3)  2
36, P(4)  3

36, P(5)  4
36, P(6)  5

36, P(7)  6
36,

C16,5

C52,5

 .0017

r  1
3, 1

54, 1
162

1  2  3  . . .  (n  1)  
n(n  1)

2
, n  2

Student Answer Appendix SA-27



17. P1: 5  12
 4 ⴢ 1  5; P2: 5  7  22

 4 ⴢ 2; P3: 5  7  9  32
 4 ⴢ 3 (8-2)

21. Pk: 2  4  8  . . .  2k
 2k 1

 2; Pk 1: 2  4  8  . . .  2k
 2k 1

 2k 2
 2 (8-2)

27. (8-3) 33. (A) (B) (8-5)

APPENDIX A Cumulative Review Exercise: Chapters 1–3

3.  5  x  9 (1-3)

( 5, 9)

13. (A) Function; domain: {1, 2, 3}; range: {1} (B) Not a function (C) Function; domain: { 2,  1, 0, 1, 2}; range: { 1, 0, 2} (3-1)

23. (1-3) 25. (1-2)

[ ]

35. (A) All real numbers (B) { 2} 傼 [1,  ) (C) 1 (D) [ 3,  2] and [2,  ) (E)  2, 2 (3-1, 3-2)

39. Domain: x 0, 3 (3-5)

41. Domain: (  ,  ) (3-2) 45. Center: (3,  1); radius: (2-2)

Range: (  ,  1) [1,  ) 

Discontinuous at x  0

53. (A) Domain g: (B) Domain (C) Domain (3-5)

61.

(3-2)

63. (A) f(1) f(3) 1, f(2) f(4) 0 (B) (3-2)

65. (A) Profit: $5.5  p  $8 or ($5.5, $8) (B) Loss: $0 p  5.5 or p  $8 or [$0, $5.5) 傼 ($8,  ) (3-4)

69. (A) (3-4) (B) domain: [22.5,  ); range: [20,  ) (C) 67 mphs  f  
 1(L)  2  120L  126;

s

L

400

80

f (n)  e1

0
  if n is an odd integer

if n is an even integer

x

C(x)

20

10

60 500300150

C(x) μ 0.06x

0.05x  0.6

0.04x  2.1

0.03x  5.1

  if 0  x  60

if 60 6 x  150

if 150 6 x  300

if 300 6 x

(f ⴰ g): [ 2, 2](f ⴰ g)(x)  4  x2;a f

g
b: ( 2, 2)a f

g
b(x)  

x2

24  x2
;[ 2, 2]

x

f(x)

5

 5

5
(3,  1)

x

y

5

 5

 5 5

´

110

( f ⴰ g)(x)  
x

3  x
;

4

] x
2

m
2

[ [
2

3

[2, 4) ´ (4,  )2
3, 2

x  4x  2,
2
3  m  2

( x
 5 9

(

C13,3 ⴢ C13,2

C52,5

C13,5

C52,5

Sn  a
n

k 1

( 1)k 1

3k
; S  

1

4
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Cumulative Review for Chapters 4 and 5

17. (A) Domain: x  2; x intercept: x   4; y intercept: y   4 (B) Vertical asymptote: x    2; horizontal asymptote: y   2

(C) (4-4)

23. (A)  0.56 (double zero); 2 (simple zero); 3.56 (double zero) (B)  0.56 can be approximated with a maximum routine; 2 can be approximated

with the bisection: 3.56 can be  approximated with a minimum routine (4-2)

51. A reflection through the x axis transforms the graph of y In x into the graph of y  ln x. A reflection through the y axis transforms the graph of 

y  ln x into the graph of y ln ( x). (5-3)

55. Vertical asymptote: x   2; (4–4)

oblique asymptote: y   x   2

Cumulative Review for Chapters 6–8

5. (A) Arithmetic (B) Geometric (C) Neither (D) Geometric (E) Arithmetic (8-3)

7. (A) 2, 5, 8, 11 (B) a8  23 (C) S8  100 (8-3)

11. Foci: F  ( , 0), F  ( , 0); 13.

transverse axis length  12; 

conjugate axis length 10 (6-3)

(6-1)

17. (A) (B) Not defined (C) [3] (D) (E) [ 1, 8] (F) Not defined (7-4)

23. (A) x1  3, x2   4 (B) x1  2t  3, x2  t, t any real number. (C) No solution (7-3)

25. (A) (B) (C) x1  13, x2  5 (D) x1   11, x2   4 (7-5)

31. Pk: k
2
 k  2  2r for some integer r ; Pk 1: (k 1)2

 (k  1)  2  2s for some integer s (8-2)

39. (A) (B) Not defined (7-4) 41. (0, i ), (0,  i), (1, 1), ( 1,  1) (7-6)

69. (A) Infinite number of solutions (B) No solution (C) Unique solution (7-3)

93. 1 model A truck, 6 model B trucks, and 5 model C trucks; or 3 model A trucks, 3 model B trucks, and 6 model C trucks; 

or 5 model A trucks and 7 model C trucks. (7-3)

95. (A) (B)

(C) Class averages

Test 1 Test 2 Test 3 Test 4

(7-4)

APPENDIX B Exercises B-2

13. 15. 17. 19. 23.
2

x  3
 

2x  5

x 
2
 3x  3

2x

x 
2
 2

 
3x  5

(x 
2
 2)2

2

x
 

3x  1

x 
2
 2x  3

2

x
 

1

x  3
 

3

(x  3)2

3

3x  4
 

1

2x  3

[0.2 0.2 0.2 0.2 0.2]M  [84.4  81.8  85  87.2]

M ≥ 0.2

0.2

0.2

0.4

¥  G 83

84.8

91.8

85.2

80.8

W  

Ann

Bob

Carol

Dan

Eric

M ≥ 0.25

0.25

0.25

0.25

¥  G 82.25

83

92

83.75

82

W  

Ann

Bob

Carol

Dan

Eric

c 1 2

2 3
d

A 1
 c 5 3

 2 1
dc 1  3

2  5
d c x1

x2

d  c k1

k2

d
c 1 7

4  7
dc 0  3

3  9
d

x

y

4

2

 2

9

25
y    

F    0,  9

25

Directrix
x

y

10

 10

 10 10

FF 

161161

x

y

 10

 10

10

10

x

y

10

 10

 10 10
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25. 29.

Exercises B-3

3. y   2x  2; straight line 5. y   2x  2, x  0; a ray (part of a straight line) 7. straight line

9. y2
 4x; parabola 11. y2

 4x, y  0; parabola (upper half)

21. 23.

29. (A) The graphs are symmetric about the line 

(B) 1.

2.

Function 2 is the inverse of function 1.

x  ex or y  ln x

y  ex
y  x.

y2
 x2

 8, x  1, y  3; part of a hyperbola  6 t 6  ; parabolay  
At2  Dt  F

 E
,x  t,

x

y

5

 5

 5 5
x

y

5

 5

 5 5

x

y

5

 5

 5 5
x

y

5

 5

 5 5
x

y

5

 5

 5 5

y   
2
3 x;

x  2  
2

x  2
 

1

2x  1
 

x  1

2x 
2
 x  1

2

x  4
 

1

x  3
 

3

(x  3)2
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I-1

SUBJECT INDEX

Abscissa, 110
Absolute value

definitions for, 65
distance and, 66
method to find, 65–66
to solve radical inequalities, 71–72

Absolute value equations
geometric interpretation of, 67–68
method to solve, 66–70, 99–100
verbal statements as, 68–69

Absolute value functions, 188
Absolute value inequalities

geometric interpretation of, 67–68
method to solve, 66–70

Absolute value problems
method to solve, 69–71
solved geometrically, 67–68
with two cases, 71

Acceptable probability assignment, 547
Actual probability, 552
Addition

associative property of, 4, 6
commutative property of, 4, 6
of complex numbers, 76–77
elimination by, 429–434
explanation of, 3–4
of matrices, 457–458
of polynomials, 23
of rational expressions, 34–36
of real numbers, 3–7

Addition properties
of equality, 45
of matrices, 477
of real numbers, 6

Additive identity, 4, 77
Additive inverse, 4, 6
Adiabatic process, 530
Algebra, 1
Algebraic equations. See also Equations

algebraic expressions vs., 49
explanation of, 44

Algebraic expressions
algebraic equations vs., 49
containing radicals, 17
explanation of, 21
factor of, 25

Algorithm, division, 267
Analytic geometry

basic problems studied in, 122
fundamental theorem of, 110

Approximation
by rational numbers, 5
of real zeros, 282–283

Arithmetic sequences
explanation of, 520, 564–565
method to find terms in, 522–523
method to recognize, 521
nth term of, 522

Arithmetic series, 523–524
Associative property

of addition, 4, 6
of multiplication, 4

Asymptote rectangle, 407

Asymptotes
on graphing calculator, 306
horizontal, 303–304
oblique, 308
vertical, 302–304

Augmented matrices
explanation of, 443
Gauss-Jordan elimination and, 447
interpretation of, 445
method to write, 443–444
reduced, 450, 451

Axis
of cone, 386n
conjugate, 407–409
of ellipse, 395
of hyperbola, 405, 407
of parabola, 1111
of symmetry, 205, 387
transverse, 405

Base
of exponent, 11
of exponential functions, 329, 331–333

Bell, Alexander Graham, 365
Binomial coefficients, 22–23, 560
Binomial expansion, 558–559
Binomial formula

explanation of, 559–560, 565
proof of, 562–563
use of, 560–562

Binomials, 22. See also Polynomials
Bisection method, 281–282
Briggsian logarithms. See Common logarithms

Calculators. See Graphing calculators
Carbon-14 decay equation, 343–344
Cardano, Girolamo, 108
Cardano’s formula, 108
Cartesian coordinate system, 110, 157–158
Catenary curve, 374, 391
Center

of circle, 127, 129
of ellipse, 395
of hyperbola, 405, 408

Change-of-base formula, 361–362
Circles

equations of, 126–128
explanation of, 127, 386
formulas for, 599
graphs of, 126–128

Closure property, 6
Coefficient determinant, 492
Coefficient matrix, 443
Coefficients

binomial, 22–23, 560
in linear systems, 424
of polynomial functions, 260–261
real, 290–291

Cofactor of element
explanation of, 489
method to find, 489–490

Column matrices, 442, 461–462



Combinations, 538–541, 565
Combined properties, of matrices, 477
Combined variation, 319
Common difference, 520
Common factors, 26, 33
Common logarithms, 359, 360
Common ratio, 521
Commutative property, 4, 6
Completing the square, 86–87
Complex numbers

addition of, 76–77
division of, 78–79
explanation of, 74–76, 105
historical background of, 74
multiplication of, 77–78
operations with, 76–79
radicals and, 80–81
set of, 75
solving equations involving, 81–82
subtraction of, 76–77
types of, 75
zero of, 77

Composite numbers, 25
Composition

of functions, 226–230, 252
inverse functions and, 240

Compound events, 544
Compound fractions, 36, 37
Compound interest

applications of, 334, 373
continuous, 335–336
explanation of, 333–334

Conditional equations, 45
Conic sections. See also Circles; Ellipses; Hyperbolas; Parabolas

explanation of, 386–387
review of, 418–420

Conjecture, 511–512, 517
Conjugate, of a ⫹ bi, 75
Conjugate axis, 407–409
Conjugate hyperbolas, 410
Consistent systems, 427
Constant

in term of polynomial, 22
of variation, 316–318

Constant functions, 178, 179
Constant matrix, 443
Constant terms, 424
Continuous compound interest, 335–336
Continuous compound interest formula, 336
Continuous graphs, 181
Contraction. See Shrinking
Coordinate, 3, 110
Coordinate axis, 110. See also x axis; y axis
Correspondence, 162, 167
Counterexamples, 511–512
Counting techniques

combinations and, 538–541
explanation of, 531–532
factorial notation and, 534–536
multiplication principle and, 532–534
permutations and, 536–538

Cramer, Gabriel, 491
Cramer’s rule

explanation of, 491–492, 498
to solve three-variable system, 493–494
to solve two-variable system, 492–494
for three equations in three variables, 493

Cube functions, 189

Cube root functions, 189
Cube roots, 14
Cubic equations, 108
Cubic models, 272
Curve fitting, 151
Curves

catenary, 374, 391
explanation of, 151
plane, 592, 593

Data analysis
examples of, 271–273
regression and, 346–349, 369

Decibels, 365, 366
Decimal expansions, 5
Decoding matrix, 482
Decreasing functions, 178, 238
Degenerate conic, 387
Degree, of polynomials, 22, 260
Demand, 93, 435
Denominator

explanation of, 9
least common, 35
rationalizing the, 18–19

Dependent variables, 164
Descartes, René, 11
Determinants

coefficient, 492
explanation of, 487, 498
first-order, 487–488
second-order, 487, 488
to solve systems of equations, 491–494
third-order, 488–491

Diagonal expansion, 495
Difference function, 224–225
Difference of cubes formula, 28, 29
Difference of square formula, 28, 29
Difference quotient, 170
Dimensions, of matrix, 442
Directrix, of parabola, 387
Direct variation, 316
Discriminant, 90–91
Distance

absolute value and, 66
in plane, 123–129, 158
between two points, 123–124

Distance formula
explanation of, 124
use of, 124, 388, 396, 406–407

Divisibility property, 516
Division

of complex numbers, 78
long, 5, 266–267
polynomial, 266–269
of rational expressions, 33–34
of real numbers, 7
synthetic, 268–269

Division algorithm, 267
Division properties, of equality, 45
Divisor, 267
Domain

of exponential functions, 355
of functions, 163, 164, 166–167, 169–170, 176–177, 204, 225, 

229, 230
implied, 166
of rational functions, 299–300
of variables, 44–45
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Double inequalities, 61, 67
Double subscript notation, 442
Double zero, 289
Doubling time, 340
Doubling time growth model, 340, 341

Eccentricity, 417
Element

of matrix, 442
of set, 2

Elimination, by addition, 429–434
Ellipses

applications of, 400–401
equations of, 396–400
explanation of, 386, 395, 418–420
graphs of, 396–400
method to draw, 395–396

Empirical probability
application of, 555–556
approximate, 552–554
explanation of, 552, 553
method to find, 553–554

Empty set, 2
Endpoints, 57
Equality

explanation of, 76
properties of, 45, 477
symbols for, 57

Equallly likely assumptions, 549–550
Equal polynomials, 585–586
Equations. See also Linear equations; Systems of linear 

equations; specific types of equations
of circles, 126–128
conditional, 45
cubic, 108
defining functions by, 164–167
of ellipse, 396–400
equivalent, 45
explanation of, 44, 56
exponential, 372–374, 380
graphs of, 111–112, 118
of hyperbolas, 406–408
as identities, 45
involving complex numbers, 81–82
involving radicals, 97–99
of lines, 132, 133, 137–140, 158
logarithmic, 375–376, 380
matrix, 477–480
of parabola, 209
parametric, 591–595
price-demand, 93
properties of, 69
quadratic, 84–93, 105
of quadratic type, 101–102, 105
solution set of, 44, 111
solutions of, 44, 111
squaring operation on, 98
in two variables, 111

Equilibrium price, 435
Equilibrium quantity, 435
Equivalent equations, 45
Equivalent inequalities, 59–60
Equivalent systems of equations, 429
Euler, Leonhard, 74
Even functions, 196–197
Events

compound, 544

explanation of, 546–547
probability of, 547–551
simple, 544, 547

Expected frequency, 553
Experiments, 543–544
Exponential decay, 350
Exponential equations

explanation of, 372, 380
method to solve, 372–374

Exponential functions
with base e, 331–333
compound interest and, 333–336
domain of, 355
explanation of, 328–329, 379
graphs of, 329–333
inverse of, 329 (See also Logarithmic functions)
properties of, 330–331
transformations of, 330

Exponential growth/decay, 349, 350
Exponential models

application of, 379
data analysis and regression and, 346–349
exponential growth phenomena and, 349–350
on graphing calculator, 347
mathematical, 340–346

Exponents
explanation of, 11, 39
integer, 11–13
rational, 16

Extended principle of mathematical induction, 517
Extraneous solutions, 98, 105
Extrapolation, 153

Face cards, 540
Factorials, 534–536
Factoring

explanation of, 25
by grouping, 26–27
of polynomials, 25–29
to solve quadratic equations, 84–86

Factoring formulas, 28, 29
Factors

of algebraic expression, 25
common, 26
explanation of, 25
of polynomials with real coefficients, 290–291

Factor theorem, 270
Fermat’s last theorem, 517
Fibonacci, Leonardo, 505
Fibonacci sequences, 505
Finite sequences

arithmetic, 523–524
explanation of, 505

Finite series
arithmetic, 523–524
explanation of, 507
geometric, 526–527

Finite sets, arithmetic, 523–524
First-degree equations. See Linear equations
First-degree functions. See Linear functions
First-order determinants, 487–488
Focal chords, 393, 422
Focus

of ellipse, 395–398
of hyperbola, 405
of parabola, 387

Fractional expressions, 32
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Fractions
compound, 36–37
explanation of, 9
fundamental property of, 32
partial, 585–590
proper, 585
properties of, 9
raised to higher terms, 32
reduced to lowest terms, 32
significant digits in decimal, 583
simple, 36
solving inequalities involving, 61

Frequency, 553
Functions. See also specific types of functions

absolute value, 188
applications of, 170–171
composition of, 226–230, 240, 252
constant, 178, 179
cube, 189
cube root, 189
decreasing, 178, 238
defined by equations, 164–166
definition of, 163, 235, 250
difference, 224–225
difference quotient and, 170
domains of, 166–167, 169–170, 176–177, 204, 225, 229, 230
even, 196–197
exponential, 328–336, 379
graphs of, 175–184, 188–199, 250–251
greatest integer, 182, 183
identity, 179, 188
increasing, 178, 238
inverse, 235–246, 252
linear, 178–180
logarithmic, 354–362, 379–380
notation for, 167–168
odd, 196–197
one-to-one, 235–238, 358
operations on, 223–226
overview of, 162
piecewise-defined, 180–181
polynomial, 260–266
product, 224–225
quadratic, 203–211, 251–252
quotient, 224–225
range of, 163, 166, 177
rational, 298–310
set form of definition of, 163
square, 188, 203, 204
square root, 189
sum, 224–225
transformations of, 188–197, 251
vertical line test for, 166

Fundamental counting principle. See Multiplication principle
Fundamental property of fractions, 32
Fundamental sample space, 545
Fundamental theorem of algebra, 288–289
Fundamental theorem of analytic geometry, 110
Fundamental theorem of arithmetic, 25

Gauss, Carl Friedrich, 288, 447
Gauss-Jordan elimination

explanation of, 441, 447
on graphing calculators, 449
to solve linear systems, 447–451, 497
use of, 475

General form, of quadratic function, 204
Geometric sequences

explanation of, 521, 564–565
method to find terms in, 522–523
method to recognize, 521
nth term of, 522

Geometric series
sum formulas for finite, 525
sum formulas for infinite, 526–527

Goldbach’s conjecture, 517
Graphing calculator features

INTERSECT, 361
MATRIX-MATH, 488
maximum and minimum, 209
random number generator, 554
rref on, 449
table, 561
TRACE, 134, 280, 588
viewing window, 127
ZERO command, 280
ZSquare, 127

Graphing calculators
asymptotes on, 306
circles on, 127
cubic models on, 272
domain of functions on, 225
ellipses on, 399
exponential functions on, 328, 331
exponential models on, 347
graphs of equations on, 112, 118, 143
greatest integer functions on, 183
interest rate on, 335
inverse functions on, 246
linear systems on, 425
logarithms on, 359–360, 370
logistic models on, 349
matrices on, 442, 458, 473, 488
parabolas on, 390
parametric equations on, 592
partial fraction decomposition on, 588
polynomial inequalities on, 284
quadratic regression on, 215, 216
quartic model on, 273
rational inequalities on, 311
reduced echelon form on, 449
regression on, 153
scientific notation on, 13–14
sequences on, 505, 507
sum of series on, 526

Graphs/graphing
of circles, 126–128
continuous, 181
of ellipses, 396–400
of equation in two variables, 111
explanation of, 111
of exponential functions, 329–333
of functions, 175–184, 188–199, 250–251
horizontal and vertical shifts in, 189–191
of hyperbolas, 406–412
of inequalities, 58, 59
of intervals, 58, 59
of inverse functions, 244–246
line, 57
of linear functions, 179–180
of lines, 132–133
of logarithmic functions, 354–356, 359–361
multiplicities from, 292
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of parabolas, 111, 389–390
point-by-point plotting on, 111
of polynomial functions, 260–266, 280
of polynomials, 266, 291–292
of quadratic functions, 204–209
of rational functions, 299–301, 304–310
reflections of, 114, 191–193
stretching and shrinking in, 193–196
symmetry as aid in, 113–117
of systems of linear equations, 424–425

Greatest integer, 182
Greatest integer functions, 182, 183

Half-life, 342
Half-life decay model, 342
Horizontal asymptotes, of rational functions, 303–304
Horizontal axis, 110. See also x axis
Horizontal lines, 139, 140
Horizontal line test, 237
Horizontal shifts, 189–191, 195
Horizontal shrinks, 194, 195
Horizontal stretches, 194, 195
Hyperbolas

applications of, 412–414
conjugate, 410
equations of, 406–408
explanation of, 387, 405, 420
graphs of, 406–412
method to draw, 406

Hyperbolic paraboloids, 412
Hyperboloids, 412

Identities, 45
Identity functions, 179
Identity matrix, for multiplication, 470–471
Identity property, 6
Imaginary numbers, 75
Imaginary unit, 74–75
Imaginary zeros, of polynomials, 290, 295
Implied domain, 166
Inconsistent systems, in two variables, 427
Increasing functions, 178, 238
Independent systems, 427
Independent variables, 164, 165
Index, 15
Induction. See Mathematical induction
Inequalities

absolute value, 66–70
applications for, 61–62
double, 61, 67
equivalent, 59
explanation of, 57
graphs of, 58, 59
linear, 56–62, 105
polynomial, 283–284, 322
properties of, 60, 69
quadratic, 211–214, 252
radical, 71–72
rational, 310–311, 322–323
solution set for, 59–60
symbols for, 57

Infinite sequences
explanation of, 505
geometric, 526–527

Infinite series
explanation of, 507
geometric, 526–527

Infinity, symbol for, 57
Integer exponents

explanation of, 11–12
properties of, 12–13

Integers
explanation of, 2, 3
greatest, 182, 183
set of, 2

Intercepts. See also x intercepts; y intercepts
of functions, 176–177
to graph lines, 133
of rational functions, 305

Interest
compound, 333–336, 373
explanation of, 333

Interest rate, 333
Interpolation, 153
Intersections, 59
Intervals

explanation of, 57
graphs of, 58, 59
notation for, 57–58, 177

Inverse
additive, 4, 6
of functions, 238–242, 245–246
method to find, 476
multiplicative, 4, 6, 11, 471–472
to solve linear systems, 478–480, 498
of square matrix, 471–473, 476

Inverse functions
explanation of, 235, 252
graphs of, 244–246
method for finding inverse and, 238–242
modeling with, 242–243
one-to-one, 235–238
properties of, 239

Inverse variation, 316–317
Irrational numbers

explanation of, 2, 5
historical background of, 74

Joint variation, 318

Lagranges’ four square theorem, 517
Leading term, 264
Learning curves, 344–345
Least common denominator (LCD), 35
Least-squares line, 383
Like terms, of polynomials, 23
Limited growth, 350
Linear and quadratic factors theorem, 290, 586
Linear equations. See also Equations; Systems of linear equations

explanation of, 104
with more than one variable, 46–47
in one variable, 45–46

Linear factors theorem, 289
Linear functions. See also Functions

explanation of, 178–179
graphs of, 179–180

Linear inequalities. See also Inequalities
applications for, 61–62
explanation of, 56, 57, 105
graphs of, 59–62
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Linear models, construction of, 149–151
Linear regression

examples of, 152–154
explanation of, 151

Linear systems. See Systems of linear equations
Line graph, 57
Lines

equations of, 132, 133, 137–140, 158
graphs of, 132–133
horizontal, 139, 140
parallel, 141–142
perpendicular, 141–142
regression, 153
slope-intercept form of, 137–138
slope of, 134–136
vertical, 139, 140, 166

Line segment
length of, 66
midpoint of, 124–126

Location theorem, 280–281
Logarithmic equations

explanation of, 372, 380
method to solve, 375–376

Logarithmic-exponential conversions, 356–357
Logarithmic-exponential relationships, 360–361
Logarithmic functions

change-of-base formula and, 361–362
conversions of, 356–357
explanation of, 329, 354, 379–380
graphs of, 354–356
properties of, 358–359, 380

Logarithmic models
applications of, 380
data analysis and regression, 369
logarithmic scales, 365–369

Logarithmic scales, 365–369
Logarithms

common, 359, 360
on graphing calculator, 359–361, 370
natural, 359, 360

Logistic growth, 350
Logistic models, 349
Long division

explanation of, 5
polynomial, 266–267

Lower triangular matrix, 571
Lowest terms, 32–33

Magnitude, 367
Mathematical induction

examples of, 513–517
explanation of, 512–513, 564
extended principle of, 517
principle of, 512

Mathematical models
applications of, 230–231, 242–243
explanation of, 147–148
exponential, 340–350
polynomial, 271–273, 285
quadratic, 210–211, 214–215

Matrices
addition of, 457–458
applications of, 460–462, 464–465
augmented, 443–445, 447
column, 461–462
decoding, 482
explanation of, 442–443, 497
Gauss-Jordan elimination and, 447–451, 475

on graphing calculators, 442, 458, 473, 488
identity, 470–471
inverse methods to solve linear systems, 498
inverse of square, 471–473
lower triangular, 571
multiplication of, 459–466
negative of, 458
principal diagonal of, 442
properties of, 477
reduced, 444–447
row, 442, 461–462
row-equivalent, 444, 474
singular, 472
size of, 442
square, 442
subtraction of, 458–459
upper triangular, 495, 571
zero, 458

Matrix equations
explanation of, 477
method to solve, 477–478
systems of linear equations and, 478–480

Midpoint, of line segment, 124–126
Midpoint formula

explanation of, 124
use of, 125–126

Minor of element, in third-order determinant, 489
Mixture problems, 52–53
Models. See Mathematical models
Monomials, 22. See also Polynomials
Multiplication

associative property of, 4, 6
commutative property of, 4, 6
of complex numbers, 76–78
identity matrix for, 470–471
of matrices, 459–466
of polynomials, 24
of rational expressions, 33–34
of real numbers, 3–7

Multiplication principle
application of, 533–534
explanation of, 532–533, 565

Multiplication properties
of equality, 45
of matrices, 477
of real numbers, 6

Multiplicative identity, 4, 78
Multiplicative inverse, 4, 6, 11, 471–472
Multiplicities

from graphs, 292
of zero, 289, 291, 292

Multiplier doctrine, 527

Napierian logarithms. See Natural logarithms
Nappes, of cone, 386n
Natural logarithms, 359, 360
Natural numbers, 2, 79
Negative growth, 342
Negative real numbers

explanation of, 3
principal square root of, 80
properties of, 7, 8

n factorial, 534–535
Nonrepeating linear factors, 587–588
Nonrigid transformations, 193
Notation/symbols

absolute value, 65
composition of function, 226, 228
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double subscript, 442
empty set, 2
equality and inequality, 57
exponent, 11
factorial, 534–536
function, 167–169, 226, 228
infinity, 57
interval, 57–58, 177
parallel, 141
perpendicular, 141
radical, 15
real number, 2
scientific, 13–14
summation, 507, 508

nth root
explanation of, 14–15
principal, 15–16

nth-term formulas, 522–523
Null set, 2
Number line, real, 3
Numbers. See also Integers

complex, 74–82, 105
composite, 25
imaginary, 75
irrational, 2, 5, 74
natural, 2, 79
pure imaginary, 75
rational, 2, 3–7, 298
real, 2–9, 75

Numerator, 9
Numerical coefficient, 22. See also Coefficients

Oblique asymptotes, 308
Odd functions, 196–197
One-to-one functions

explanation of, 235–236, 258
identification of, 236–238

Ordered pairs
explanation of, 110n, 111
functions as sets of, 163–164

Ordering, 536
Ordinate, 110
Origin

explanation of, 3, 110
reflection through, 114, 192, 193
symmetry and, 114, 115

Parabolas. See also Quadratic functions
applications of, 391–392
coordinate-free definition of, 387
equation of, 209, 388–391
explanation of, 111, 204, 387, 418–419
focal chord of, 393
graphs of, 111, 389–390
method to draw, 387–388
vertex of, 205–208

Paraboloids
explanation of, 391, 392
hyperbolic, 412

Parallel lines, 141–142
Parallelograms, 598
Parameter, 432, 592–593
Parametric equations

application of, 594–595
explanation of, 591–593
on graphing calculator, 592

Partial fraction decomposition, 586–590
Partial fractions, 585
Particular solutions, 432
PASCAL, 559
Pascal’s triangle, 559
Path of projectile, 594
Perfect square formula, 28, 29
Permutations, 536–538, 565
Piecewise-defined functions, 180–181
Plane, distance in, 123–129, 158
Plane curve, 592, 593
Point, coordinate of, 3
Point-by-point plotting, 111
Point-slope form, 138–140
Polynomial functions

explanation of, 260, 321–322
graphs of, 260–266, 280
left and right behavior of, 265

Polynomial inequalities
explanation of, 283, 322
on graphing calculators, 284
method to solve, 283–284

Polynomials
addition of, 23
bisection method and, 281–282
degree of, 22
division of, 266–269
equal, 585–586
evaluation of, 269–270
explanation of, 21–23, 40
factoring, 25–29
factors of, 270, 290–291
factor theorem and, 270
fundamental theorem of algebra and, 288–289
graphs of, 266, 291–292
location theorem and, 280–281
multiplication of, 24
in one variable, 22
prime, 25, 26
rational zeros of, 292–293, 322
with real coefficients, 290–291
real zeros of, 278–279
reduced, 294
remainder theorem and, 269–279
second-degree, 27–28
subtraction of, 24
Taylor, 365
in two variables, 22
zeros of, 266, 271

Positive real numbers, 3, 81
Predictions, 153
Price-demand equation, 93
Prime numbers, 25
Prime polynomials, 25, 26
Principal, 333, 334
Principal diagonal, 442, 488
Principal nth root, 15–16
Principle square root, of negative real number, 80
Probability

actual, 552
empirical, 552–556
of events, 547–551
explanation of, 543
theoretical, 552

Probability function, 547
Problem solving. See Word problems
Product function, 224–225
Proper fractions, 585
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Pure imaginary numbers, 75
Pythagoreans, 74
Pythagorean theorem, 92, 411, 598

Quadrants, 110
Quadratic equations

applications for, 91–93
completing the square to solve, 87–89
explanation of, 84, 105
factoring to solve, 84–86
methods to solve, 100–102
quadratic formula to solve, 89–91
square root property to solve, 86–87

Quadratic factors, 589–590
Quadratic formula

explanation of, 90
to solve quadratic equations, 89–90
use of, 294–295, 586

Quadratic functions
explanation of, 204, 251–252
general form of, 204
graphs of, 204–209
modeling with, 210–211
properties of, 206

Quadratic inequalities
explanation of, 211–212, 252
method to solve, 212–214

Quadratic regression, 214–215
Quadratic solving techniques

applications using, 102
direct solution, 100
example of, 101
substitution method as, 101

Quantity-rate-time formula, 50
Quartic models, 273
Quotient function, 224–225
Quotients

difference, 170
explanation of, 267
of functions, 226

Radical inequalities, 71–72
Radicals

equations involving, 97–99
explanation of, 15, 39–40
properties of, 17, 81
in simplified form, 17–19
use of, 16–17

Radius, of circle, 127, 129
Random experiments, 543–546
Range, of functions, 163, 166, 177
Rate of change, 148–149
Rational exponents

explanation of, 15–16
use of, 16–17

Rational expressions
addition and subtraction of, 34–36
compound fraction, 36–37
explanation of, 32, 40
multiplication and division of, 33–34
reduced to lowest terms, 32–33

Rational functions
domain and x intercepts of, 299
explanation of, 298–299, 322–323
graphs of, 299–301, 304–310
oblique asymptotes of, 308

properties of, 300–301
vertical and horizontal asymptotes of, 302–304

Rational inequalities
explanation of, 310, 322–323
on graphing calculators, 311
method to solve, 310–311

Rationalizing factor, 18
Rationalizing the denominator, 18–19
Rational numbers

addition and multiplication of, 3–7
explanation of, 2, 298

Rational zeros
explanation of, 292–293, 322
method for finding, 293–295

Rational zero theorem, 293
Real number line, 3
Real numbers

addition of, 3–7
division of, 7
explanation of, 2, 39, 75
multiplication of, 3–7
negative, 3, 7, 8, 80
positive, 3
properties of, 6
roots of, 14–15
set of, 2–3, 6, 8, 164
subtraction of, 7

Real root, 84
Real zeros

approximation of, 282–283
explanation of, 278, 322
upper and lower bound for, 278–279

Reciprocals, 78–79
Rectangles, 407, 598
Rectangular coordinate system. See Cartesian coordinate 

system
Rectangular solids, 599
Recursion formulas

explanation of, 505
use of, 515–516

Recursive formula n factorial, 535
Reduced augmented coefficient, 450, 451
Reduced matrices, 444–447
Reduced polynomials, 294
Reduced system, 447
Reflections

explanation of, 114
of graphs of functions, 191–193, 195

Regression
on graphing calculators, 153
linear, 151–154
logarithmic, 369
quadratic, 214–215

Regression analysis, 151
Regression line, 153
Regression models, 383
Relative frequency, 553
Relative growth rate, 341
Remainder, 267
Remainder theorem, 269–270
Replacement set, 44. See also Domain
Residuals, 383
Revenue, 93
Richter scale, 367
Right circular cones, 386n, 599
Right circular cylinders, 599
Rigid transformations, 193
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Rise, 134
Rocket equation, 368
Roots. See also Square roots

cube, 14
of equation, 176
of functions, 261–262
nth, 14–16
real, 84
of real numbers, 14–15

Rounding convention, 583–584
Row-equivalent matrices, 444
Row matrices, 442, 461–462
Row operations, 443
Run, 134

Sample spaces
example of, 546
explanation of, 543–544
fundamental, 545
method to choose, 544–545

Scatter plots, 152
Scientific notation, 13–14
Second-degree polynomial functions. See Quadratic functions
Second-degree polynomials, factoring, 27–28
Second diagonal, 488
Second-order determinants, 487, 488
Sequences

arithmetic, 520, 522–523
explanation of, 504–505, 564
Fibonacci, 505–506
finite, 505
general term of, 506–507
geometric, 521–523
on graphing calculators, 505, 507
infinite, 505
terms of, 504

Series
explanation of, 507, 564
finite, 507
infinite, 507, 526–527
sum formulas for finite arithmetic, 523–524
sum formulas for geometric, 525–527
in summation notation, 508
terms of, 508

Sets
of complex numbers, 75
empty or null, 2
equal, 3
of integers, 2
intersection of, 59
of real numbers, 2–3, 6, 8, 164
replacement, 44
union of, 59

Shrinking, in graphs, 193–196
Significant digits, 582–583
Simple events, 544, 547, 550
Simple fractions, 36
Singular matrix, 472
Slope

explanation of, 134
geometric interpretation of, 135
method to find, 134–136
of parallel lines, 141–142
of perpendicular lines, 141–142
as rate of change, 148–149

Slope-intercept form, 137–138, 140

Solutions
of equations, 44, 111
extraneous, 98, 105
of linear systems, 424, 426–427
particular, 432
unique, 427

Solution set
of equations, 44, 111
of inequalities, 59–60
of linear systems, 424
of quadratic inequalities, 211

Speed, 148. See also Rate of change
Spheres, 599
Square functions, 188, 203, 204
Square matrices

explanation of, 442
inverse of, 471–473, 476
of order n, 470–471

Square root functions, 189
Square root property, 86–87
Square roots, 14, 80
Squaring operation on equations, 98
Standard deck, 540
Standard form

of complex numbers, 80
of equation of circle, 128
of equation of line, 133, 140
of linear equations, 45
of quadratic equations, 84, 100
quadratic inequalities in, 211

Stretching, in graphs, 193–196
Subset, 2
Substitution

to solve equations of quadratic type, 101
to solve linear systems, 427–428, 431, 432

Substitution property, of equality, 45
Subtraction

of complex numbers, 76–77
of matrices, 458–459
of polynomials, 24
of rational expressions, 34–36
of real numbers, 7

Subtraction properties, of equality, 45
Sum formulas

for finite arithmetic series, 523–524
for finite geometric series, 525
for infinite geometric series, 526–527

Sum function, 224–225
Summation formula, proof of, 514–515
Summation notation, 507, 508
Summing index, 507
Sum of cubes formula, 28, 29
Sum of the squares of the residuals (SSR), 383
Supply, 435
Symbols. See Notation/symbols
Symmetry

as aid in graphing, 113–117
axis of, 205
in even and odd functions, 197
tests for, 115–116

Symmetry property, 244–245
Synthetic division, 268–269
Synthetic division table, 279
Systems of linear equations

applications of, 434–437, 452–454
basic terms of, 427
Cramer’s rule to solve, 491–494
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elimination by addition to solve, 429–434
equivalent, 429
explanation of, 496
Gauss-Jordan elimination to solve, 441, 447–453, 497
graphs of, 424–425
matrices and row operations and, 441–447, 498
matrix equations and, 478–480
modeling with, 501–502
substitution method to solve, 427–428, 431, 432
in two variables, 424

Taylor polynomials, 365
Technology Connections. See Graphing calculators
Theorems, 511
Theoretical probability

explanation of, 552
method to find, 553–554

Third-order determinants, 488–491
Transformations

combining graph, 196
even and odd functions and, 196–197
explanation of, 189, 251
of exponential functions, 330
nonrigid, 193
reflections and, 191–193, 195
rigid, 193
stretching and shrinking and, 193–195
vertical and horizontal shifts and, 189–191, 195

Transverse axis, of hyperbola, 405
Trapezoids, 598
Tree diagrams, 532, 544
Triangles

formulas for, 598
Pascal’s, 559
similar, 598

Trinomials, 22. See also Polynomials
Triple zero, 289
Turning points

approximating real zeros at, 282–283
explanation of, 262

Union, of sets, 59
Unique solution, 427
Unlimited growth, 350
Upper and lower bound theorem, 278, 279
Upper triangular matrix, 495, 571

Variables
dependent, 164
domains of, 44–45
independent, 164, 165

Variation
combined, 319
direct, 316
explanation of, 323
inverse, 316–317
joint, 318

Velocity, 148, 368. See also Rate of change

Vertex form, of quadratic functions, 204
Vertical asymptotes, 302–304
Vertical axis, 110. See also y axis
Vertical lines, graphs of, 139, 140, 166
Vertical line test, 166
Vertical shifts, 189–191, 195
Vertical shrinks, 194, 195
Vertical stretches, 194, 195
Vertices

of cone, 386n
of ellipse, 395
of hyperbola, 405
of parabola, 205, 206, 208, 387

Wiles, Andrew, 517
Word problems

method to set up, 48, 91
mixture, 52–53
rate, 50–52
strategies to solve, 47, 104
using diagrams in solution of, 48–49

x axis
reflection through, 114, 192, 193
symmetry and, 114, 115

x coordinate, 110, 176
x intercepts

explanation of, 133
of functions, 176–177
of polynomial functions, 261–262
of rational functions, 299–300

y axis
reflection through, 114, 192, 193
symmetry and, 114, 115

y coordinate, 110, 176
y intercepts

explanation of, 133
of functions, 176–177
on graphing calculator, 134

Zero factorial, 534–535
Zero matrix, 458
Zero product property, 84–85
Zero property, of real numbers, 8
Zeros

complex, 77, 322
double, 289
of functions, 176, 261–262
imaginary, 290, 295
irrational, 294–295
multiplicities of, 289, 291, 292
of polynomials, 266, 271, 278–279
rational, 292–295, 322
real, 278–279, 282–283
triple, 289
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