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PREFACE

Over the past few decades, we have witnessed a remarkable progress in communication systems; both digital 

and analog. In keeping with these evolving technological advances of telecommunications, Communication

Systems aims to make students get acquainted with these changes in a solid and illustrative manner. Although 

the book covers both analog and digital communication systems, greater emphasis has been placed on the 

latter by incorporating the most commonly known wireless digital technologies.

Communication Systems has evolved out of my lecture notes prepared during my time spent teaching 

undergraduate students in the Electronics and Communications Engineering (ECE) branch at Regional 

Engineering College (now National Institute of Technology) Tiruchirapalli, and Vasavi College of Engineering 

affiliated to Osmania University, Hyderabad. One of the goals in bringing out this book has been to present 

the subject in a clear, understandable, and logically organized manner and apply those concepts in solving 

exercise problems. Accordingly, every new concept is accompanied by one or more solved examples in order 

to emphasize the understanding of the concept, and students’ ability to apply it.

The book is primarily intended to provide undergraduate students of ECE branch with a fairly good 

exposure to the basic principles of operation and analysis of digital communication systems along with 

analog communication systems. Utmost care has been taken to ensure that the book adequately covers all the 

topics included in the syllabi prescribed for analog communication and digital communication subjects by 

various Indian universities.

Salient Features

The following few lines talk about both content and pedagogical highlights of the textbook:

 ● Clear explanation of concepts using simple language and style

 ● Adequate in-depth coverage of pre-requisites like Signals and Systems and Probability and Random 

Processes by devoting three chapters for this purpose

 ● Focused and comprehensive coverage of digital baseband and band pass signaling and the noise perfor-

mance of digital communication systems

 ● Relevant MATLAB examples at the end of each chapter

 ● Large number of appropriately selected problems at the end of each chapter, to enable students to apply 

the techniques learnt

 ● Excellent pedagogy to highlight every concept discussed in each chapter:

296 Solved Examples

284 Multiple-Choice Questions

385 Review Questions

220 Problems

546 Diagrams

Scope of the Book

One-semester courses on ‘Signals and Systems’ and ‘Probability and Random Processes’ are essential prereq-

uisites for Analog Communication and Digital Communication courses. In fact, most of the Indian univer-

sities do offer such courses before exposing the student to communication engineering. However, in order 

to cater to the needs of students who might not have an in-depth exposure to the topics in the prerequisite 

courses, three chapters (Chapters 2, 3 and 6) have been devoted in this text to adequately cover the necessary 
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background material. This ensures that such students also will not have any difficulty in following Chapters 

4, 5, 7, and 8 that deal with Analog Communication Systems and Chapters 9 to 15 that deal with Digital 

Communication Systems. The book will therefore be useful for 

 ● all engineering undergraduate students specializing in ECE

 ● engineering undergraduate students of EEE, EI and CSE who have a one-semester introductory course 

on communication systems (Analog and Digital)

 ● students preparing for IETE and AMIE examinations

 ● students preparing for GATE and engineering services examinations

 ● practicing engineers as a reference text

Chapter Organization

Chapter 1 gives a qualitative explanation of the evolution of analog and digital communication systems, and 

discusses their basic components in a heuristic manner. Chapters 2 and 3 deal with signals, their types and 

representation, geometrical aspects of signals, spectral analysis of signals, basics of LTI system theory and 

transmission of signals through systems. Chapter 4 focusses with AM, DSB-SC, SSB-SC, VSB types of 

modulation, methods of generating modulated signals, methods of detection, and transmitters and receivers 

for these types of modulations. Chapter 5 discusses the basic theory of FM and PM signals, their methods of 

generation, detection of FM signals, and FM transmitters and receivers. Probability theory, random processes, 

noise sources their characteristics and noise calculations are discussed in Chapter 6. The effect of noise on 

the performance of various types of AM systems and FM systems is discussed in Chapter 7. Chapter 8 deals 

with low-pass sampling theorem, various types of sampling and reconstruction of a band-limited signal from 

its samples, band pass sampling theorem, quadrature sampling, generation of PAM, PDM and PPM signals 

and their detection. Chapter 9 discusses waveform coding – PCM, DM, DPCM and ADPCM, time domain, 

frequency domain, and model-based speech compression techniques and digital multiplexing. Digital data 

transmission (binary and M-ary, baseband along with band pass) as well as reception are discussed in Chapter

10. In Chapter 11, a mathematical analysis of the performance of different types of digital communication 

systems in the presence of noise is presented. Information measure, entropy of a source, Shannon’s theorem 

pertaining source coding, source coding for DM sources, channels, mutual information and channel capacity, 

Shannon’s channel coding theorem, continuous sources and differential entropy, Shannon’s information 

capacity theorem, and assessing the performance of some practical systems in the light of Shannon’s theory, 

are discussed in Chapter 12. Various error-detecting and correcting codes, their effectiveness (performance) 

and implementation techniques for coding and decoding, are presented in Chapter 13. Spread spectrum 

communication systems, their ability to provide secure and reliable communication, CDMA using spread-

spectrum techniques and generation of good PN codes are discussed in Chapter 14. Finally multipath fading 

and OFDM its usefulness and applications are given in Chapter 15.

How to Use the Book

The book has been so designed that it permits its use as a textbook for a variety of communication systems 

courses meant for UG programmes. Three different ways are indicated below:

 ● For a single-semester course in communication systems (Analog and Digital) meant for ECE students:

Chapters 1, 4, 5, noise part of Chapter 6 and Chapters 7 to 14.

 ● For a two-semester course in communication systems (Analog and Digital) meant for ECE students:

First semester: Chapters 1 to 8

Second semester: Chapters 9 to 15

 ● For a one-semester course in communication systems, meant for non-ECE students :

Chapter 1, selections from Chapters 4 and 5, Chapters 8 (noise performance of Analog Pulse Modulation 

may be omitted), 9 and 10 and selections from Chapter 13.
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Web Supplements

Following web supplements may be accessed at http://www.mhhe.com/rao/cs:

 ● Solution manual

 ● Lecture slides
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INTRODUCTION

1
“Ideas shape the course of history.”

John Maynard Keynes (1883–1946)

British economist

Learning Objectives

After going through this chapter, students will be able to

 ■ become familiar with the history of evolution of modern electrical communications,

 ■ know the basic building blocks of an analog communication system as well as of a digital communi-

cation system, and the basic functions of each of the blocks,

 ■ know how the electromagnetic spectrum is divided into different frequency bands, and the appli-

cation areas of each of these bands,

 ■ understand the characteristics and limitations of various communication channels,

 ■ come to know the way different types of communication channels are modeled,

 ■ know about communication resources and their significance and also understand the effect of noise, 

and the performance indices relevant for analog and digital communications, and

 ■ become aware of the advantages and disadvantages of digital communication as compared to analog 

communication.

Over the last few decades, various forms of modern electrical communications have permeated into every 

aspect of our daily lives. These include not only the telephone, radio, television, and FAX, but also the digital 

and multimedia communications making use of computer networking and cellular phones. By cutting down 

costs and the time required for information transmission, these modern communication systems have so 

radically changed our way of life and thinking and improved the quality of our lives, that we dread to imagine 

what our lives would be like without them.

1.1 HISTORICAL PERSPECTIVE

The era of electrical communication began with the successful commissioning, in 1844, of the first telegraphic 

link between Washington and Baltimore by Samuel Morse. Even though it is not widely known, it is a fact 

that this first electrical communication to be established, viz. telegraphy, is basically a digital communication. 

The telegraph code, invented by Morse and subsequently named after him as the ‘Morse code’, is indeed, 

a remarkable invention and reveals his inventive genius. It is a variable length binary code which used two 

symbols—the dash and the dot. The fact that he had assigned a single dot for representing ‘e’, the most 

frequently occurring letter of the English alphabet, bears testimony to his genius which recognized the need 

for coding efficiency a full century before Shannon talked about it in his information theory. Although binary 
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codes with ‘0’ and ‘1’ as the two symbols were used by Gottfried Wilhelm Leibnitz [8] even in 1705, it was 

only in 1875 that a fixed-length five-digit binary code was designed by Baudot.

The invention of ‘telephone’ by Alexander Graham Bell in 1870 marked the beginning of the era of 

telephone communication. Although it had to be only over short distances in the beginning, subsequently 

the availability of the vacuum triodes for amplification of the telephone signal at regular intervals made it 

possible to have long-distance telephony. While the invention of the electromechanical Strowger switches 

led to the establishment of the ‘Automatic Exchanges’ which did not need any operators for establishing 

connection between the initiator of a call and the called party, the invention of the transistor paved the way for 

replacement of the electromechanical Strowger switches by solid-state switches which are faster and also are 

more reliable as they do not have any moving parts. Digital telephone switching and digital transmission of 

voice signals thus became possible in 1960s. In fact, the first T-1 carrier system of TDM multiplexed digital 

transmission, installed by Bell Telephone Laboratories, became operational in 1962. Approximately a decade 

later, this then paved the way for the Integrated Services Digital Network (ISDN) in which, a broad range of 

services like data, voice, and video are provided by digitizing and then integrating all of them using Time-

Division Multiplexing (TDM) and transmitting in a digital form.

That wireless communication over long distances is possible by using electromagnetic waves became 

evident after Marconi demonstrated in 1901, the transmission of electromagnetic waves over a distance of 

about 2500 km. With the invention of the vacuum triode by De Forest in 1906 and AM superheterodyne 

receiver by Armstrong during World War I, AM Radio broadcasting became firmly established. Subsequently, 

around 1930, Armstrong invented frequency modulation and FM radio broadcasting also was started. Further, 

Zworykin of the United States of America demonstrated the first ‘Television System’ in 1929, and commercial 

TV broadcasting was started a few years later.

Telephone communication witnessed remarkable progress with the advent of wireless communications. 

Also the launching of the first communication satellite, the ‘Early Bird’, in 1965 marked the beginning of 

commercial satellite communications. Availability of communication satellites and optical fibers made it 

possible to transmit an extremely large number of telephone conversations simultaneously over very long 

distances.

The aforementioned developments like digital transmission of voice, ISDN, etc., would not have been 

possible but for the invention of PCM. Alec Reeves [12] invented PCM in 1937 itself. It was used in World 

War II to develop an encryption system for speech signals, and in fact, a 24-channel system was developed 

during the fag-end of the war. Extensive use of PCM, however, had to wait till transistors and VLSI technology 

became available to make the implementation of large-scale PCM-based systems possible and cost-effective. 

This started happening in late 1960s. In fact, it can be said that it was PCM which started the era of real digital 

communication. At this stage, one notable development that helped in the design of better PCM receivers, 

was the ‘Matched Filter’ developed by D.O North [13] in 1943 itself. North, in fact, developed it for optimum 

detection of known signals in the presence of noise – a problem that was of immense importance in the 

detection of targets using radar. Just as in the case of radar, in the case of detection of PCM signals too, the 

waveform of the transmitted signal, the presence or absence of which is to be detected, is known a priori and 

the actual shape of the waveform is not what is desired to be extracted from the received signal – only its 

presence (or absence) is to be correctly detected in the presence of noise. This similarity in the issues related 

to signal detection in the two cases made engineers to adopt the matched filter detection in PCM too, in order 

to optimize the receiver performance.

Attention then turned towards higher rate of transmission and better digital modulation techniques. The 

‘adaptive equalization’ of Lucky [10] proposed in 1965, helped quite a bit in attaining higher transmission 

rates. The need for better digital modulation techniques became acute owing to another development around 

that time. Computers became all pervading especially after the Intel Corporation came out with its micro-
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processors in the early 1970s. Fast transmission of data over long distances with almost zero probability of 

error became a necessity. This goal of fast and reliable transfer of digital data was soon achieved partly by 

the use of adaptive equalization and partly by making use of the pioneering work done by G. Ungerboeck 

[17] in the area of channel coding and modulation. The concept of cellular telephony proposed by AT&T Bell 

Laboratories in 1968 [11] could not be implemented as a practical system till 1983 owing to non-availability 

of required technology. The newer generation cellular mobile communication systems also spurred research 

in better and more efficient modulation techniques. There was a gradual shift in the types of modulation used 

in these systems – from binary to QPSK, M-ary QPSK, etc., and the GMSK, OQPSK, and p/4 QPSK.

Parallel to these developments on the systems side, some very useful theoretical work was done, the 

outcome of which effectively addressed the problem of improvement of reliability of digital communication 

systems, which was mentioned earlier. Claude E. Shannon [16] of the Bell Laboratories, had, through his now 

famous paper of 1948, laid sound theoretical foundation for digital communications. Contrary to the belief 

held by the communication engineering fraternity at that time, he had stated and proved in his paper that it 

is possible to have error-less transmission of information over a channel even in the presence of noise. He 

showed that the condition required to be satisfied for this to be possible, is that the rate of transmission should 

be less than what is known as the channel capacity. This exciting possibility led to an unprecedented research 

activity in the area of error correcting codes during the next two to three decades, resulting in error correcting 

codes by Golay [6] and Hamming [7] around 1950, and the BCH codes [4]. All these codes come under the 

category of block codes. In these codes, a block of k information digits are mapped into n digits forming a 

codeword. This mapping is one-to-one but it cannot be implemented in real-time owing to the long processing 

time required. A totally new class of error-correcting codes, known as convolutional codes, originally invented 

in the 1960s by Forney [5] and later fully developed in 1970s by Forney, Viterbi, Wozencraft et al., could be 

implemented in real-time and were easy to implement. Further, in 1982, Ugerboeck [17] combined channel 

coding using convolution codes with modulation in the form of Trellis – coded modulation. Although use of 

these codes ensured almost error-free communication, they were far behind the optimum codes envisaged by 

Shannon insofar as their bit-energy-to-noise PSD ratio is concerned. The very powerful turbo codes [1,2] of 

Berrou, Glavieux and Thitimajshima proposed in 1993, however, came very close to optimum codes in the 

Shannon sense.

Research in the area of computer communications and computer networks, started in a very modest 

way using low speed transmission on voice-grade channels in the late 1950s, made significant progress 

between 1970 and 1995. One of the very important outcomes of this technique was intensely studied on 

‘ARPANET’, a computer network developed specifically for research in the area of computer communi-

cation. This ARPANET was renamed as INTERNET in 1991 and put into commercial operation in 1994. 

Together with satellite communication, INTERNET has, over the last 16 years, revolutionized data, and voice 

and video communication. The computer has, over the last two decades, emerged as a means of communi-

cation. This convergence of computers and communications has revolutionized the field of communications. 

The inherent reliability and flexibility of digital communications and the availability of hardware at ever. 

decreasing prices, are making realization of even complex digital communication systems not only possible 

but also cost-effective. It is therefore not surprising that digital communications are steadily taking over the 

communications field.

1.2  BASIC BUILDING BLOCKS OF A COMMUNICATION SYSTEM

There are a very large number of different types of communication systems. So, by the term, ‘communi-

cation system’, one may be referring to an audio broadcasting system, a television broadcasting system, or 

a wireless computer network. As we are going to see later, these different communication systems do differ 

from each other in certain details. Nevertheless, there are certain basic functional blocks which one can find 
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in all of them. Our interest, at this stage, is to describe the working of a general communication system in 

terms of these basic functional blocks. Such a block diagram of a general communication system is shown in 

Fig.1.1. An appropriate interpretation of the function of each of the blocks of Fig.1.1 will make it represent 

practically any of the various types of communication systems in existence.

1. Baseband signal: The message to be transmitted originates from the source. This input message may be 

human voice, a still picture, or a video signal. If it is not electrical in nature, an appropriate transducer is 

used to convert it into an electrical signal. For instance, if the source produces human voice, which consists 

of pressure variations, the input transducer to be used is merely a microphone. The output electrical signal of 

this input transducer is called the baseband signal.

2. Transmitter: As it may not be possible to transmit baseband signal over long distances, the transmitter 

modifies the baseband signal so as to make it suitable for transmission over the channel. The transmitter 

consists of several subsystems and these take different forms depending upon the type of communication 

system under consideration. It may consist of baseband amplifiers, RF amplifiers and a modulator, or A/D 

converter, encoder and modulator. 

3. Channel: The output of the transmitter, called the transmitted signal, goes through the channel to the 

receiver. Depending on the nature of the communication systems, the channel may take a variety of forms – it 

may be just a pair of twisted copper wires, a coaxial cable, a radio link, an optical fiber, or even a combination 

of some of these.

The transmitted signal and the received signal will, in general, be different. This is because of the modifi-

cations suffered by the transmitted signal during its passage through the channel. These modifications can be 

identified as the following:

(a) Distortion of the signal

(b) Attenuation of the signal

(c) Addition of noise

Distortion of the signal is due to frequency dependent gain/attenuation of the channel, multipath and Doppler

shift. Such linear distortions can be eliminated, or at least partly removed by using at the receiver, an equalizer 

whose frequency response characteristic is complementary to that of the channel. Non-linear distortion is 

caused by channels whose attenuation is dependent upon the amplitude of the signal passing through them.

Fig. 1.1 Block diagram of a general communication system
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Attenuation of the signal during its passage through the channel may be caused by the ‘power loss’ in the 

case of wire-line channels, and the spreading and absorption that takes place in the case of free space and 

atmosphere. Attenuation increases with the length of the channel.

As the signal passes through the channel, it goes on getting corrupted by random interfering (i.e., undesired) 

signals and other electrical disturbances, all of which together are generally termed as noise. Thus, while the 

signal strength goes on decreasing with distance from the transmitter because of the channel attenuation, 

the noise goes on getting accumulated and hence becomes stronger and stronger. Noise may originate from 

external sources such as lightning discharges, radiation from automobiles ignition or fluorescent tubes or 

radiations from the sun or galactic sources. It may also originate from sources internal to the channel, such 

as the random movement of electrons in a conductor which gives rise to thermal noise, or the randomness 

inherent in the recombination or diffusion or partitioning of charged particles inside electronic devices. By 

proper design, one may reduce or even eliminate externally generated noise but internal noise can only be 

reduced but cannot be eliminated altogether. Noise is, in fact, the most important problem in communication, 

as it impairs the quality and rate of communication.

Communication channels may, as has been already mentioned, take a variety of forms. In certain commu-

nication systems, there may be a physical connection between the transmitter and the receiver, say, using a 

transmission line. In others, no such physical connectivity may exist. Based on this, channels may be broadly 

classified into the following two types.

(a) Wire-line channels: Telephone lines, coaxial cables, waveguides, optical fibers, etc.

(b) Wireless channels: Microwave radio, RF links, underwater acoustic channels, etc.

(a) Telephone lines: Twisted-pair of wires are extensively used for connecting telephone subscribers to the 

local telephone exchange. They provide a modest bandwidth of a few hundred kilohertz (kHz). However, they 

suffer from cross-talk interference and induced additive noise but provide good voice-grade communication 

over the frequency range of 300–3400 Hz, and have a fairly good linear response. Although no particular 

attention is paid to their phase response insofar as speech signals are concerned (since the ear is not sensitive 

to phase delay), in the case of data and image transmission, phase-delay variations do cause problems and 

so a linear phase response over the frequency range of interest, is a must. Hence, equalizers are used, which 

tend to keep a constant overall amplitude response and a linear phase response. Use of efficient modulation 

techniques, combined with adaptive equalization, can make it support data rates of the order of 20 kbps.

(b) Coaxial cables: With an outer hollow conductor and an inner conductor placed at its center, and a 

dielectric filling the intervening space, the coaxial cables are used for carrying signals of frequencies ranging 

from a few hundred kilohertz to about one gigahertz. They can provide a data rate of even 250–300 Mbps. 

The attenuation, of course, depends on the frequency, size and the type of dielectric filling, and a typical 

value may be around 200 db per 100 meters at 1 GHz. Thus, close spacing of repeaters becomes necessary. 

One helpful feature of the coaxial cables is that they are immune to interference and additive induced noise.

(c) Waveguides: Waveguides are typically used at frequencies ranging from about 1 GHz up to several 

hundreds of gigahertz. They can support large bandwidths of the order of a few gigahertz. Attenuation 

depends upon frequency, length, and material used for making the waveguide, and the internal coating used, 

if any. Rectangular copper waveguides of 25.4 mm ¥ 12.7 mm cross section provide a typical attenuation of 

0.11 dB per meter at 10 GHz. They are immune to interference and induced additive noise. However, they are 

quite expensive and are therefore used only for very short distances.

(d) Microwave radio: This is a wireless type of channel. Microwave radio operating in the line-of-sight 

(LOS) propagation mode, and using frequencies in the range of 1–300 GHz can be used for transmission of 

time-division multiplexed (TDM) digital data over long distances. This needs the antennas to be placed at 

considerable heights so as to get a clear line of sight between two successive repeaters. It gives a very large 
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bandwidth and thereby permits high speed data transmission. Multipath fading is common in these terrestrial 

microwave LOS links unless sufficient care is taken while designing the links. Attenuation depends on meteo-

rological conditions and fading can be heavy due to rain, snowfall or the passage of a cloud either along, or 

cutting across the line-of-sight path between two repeaters.

(e) Optical fiber: Optical fiber consists of a central ‘core’ surrounded by another layer, called the cladding.

Both core and cladding are made of silica while the jacket, which in turn surrounds the cladding and protects 

it, is made of plastic. The core carries electromagnetic waves at optical frequencies of the order of 1014 Hz and 

these waves are confined to the core by total internal reflection caused at the core-cladding interface owing 

to the difference in their refractive indices. Optical fibers support extremely large bandwidths – almost 10% 

of the center frequency, amounting to nearly 1013 Hz. Modern optical fibers provide very little attenuation in 

the order of 0.2 dB/km. They have a lot of advantages – immunity to interferences and induced noises, very 

small size and light weight, besides flexibility and ruggedness. Further, since they are made out of pure silica 

glass for which sand is the raw material, they are potentially low-cost wideband transmission lines.

4. Receiver: The main task of the receiver is to extract the baseband signal from the received signal. This 

output signal from the receiver should be as close an approximation as possible to the baseband signal at the 

input to the transmitter. The receiver does this by subjecting the received signal to a process called demodu-

lation, and by removing or reducing the distortions and noise introduced during the passage of the transmitted 

signal through the channel.

The output transducer takes the electrical signal from the receiver, converts it into the same form as the 

input message at the transmitter and passes it on to the destination to which the original message from the 

source was intended.

1.3 ANALOG AND DIGITAL MESSAGES

The message signal to be transmitted, viz. the baseband signal, may be either an analog signal, or a digital 

signal. An analog signal is a continuous-time signal whose amplitude can take a continuum of values, for 

example, the temperature, the atmospheric pressure at a particular place, or the speech signal.

A digital message signal, on the other hand, is an ordered sequence of symbols drawn from a finite set of 

symbols, for example, a Morse-coded message which consists of an ordered sequence of two symbols, the 

dot and the dash. Another example is an ordered sequence of the two symbols, 0 and 1. We may choose to 

represent the symbol ‘0’ by a pulse of zero amplitude or –V volts amplitude, and the symbol ‘1’ by a pulse of 

+V volts amplitude. This is the familiar binary signal whose amplitude can take only one of a possible set of 

two values either 0 volts and +V volts, or –V volts and +V volts. If the finite set (of symbols) has M symbols 

where M is an integer and if we form an ordered sequence of symbols drawn from that set, the digital signal 

so constructed, is called a M-ary signal.

It may be noted that while it is possible to have an infinite number of different analog signals over a given 

finite interval of time, the number of different digital signals over the same interval of time is however, finite.

1.3.1 Analog and Digital Communication Systems

Communication systems may be broadly divided into two types – analog communication systems and digital 

communication systems. In analog communication systems, the baseband message, which is to be trans-

mitted, is in the form of an analog signal. In digital communication systems, the baseband message, which is 

to be transmitted, is in the form of a digital signal. The baseband message signal fed to the transmitter may 

be in digital form either because the source has produced it in that form, or an analog waveform produced by 

the original source might have been sampled, quantized, and encoded to convert it into digital form before 

feeding to the transmitter as the baseband signal.
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It may be noted that in a digital communication system, even though the baseband message signal is in 

digital form, the transmitted signal may still be an analog signal as in the case of a band pass digital commu-

nication system where, in the transmitted signal, we may use a sinusoid of one frequency to represent a 

binary ‘0’ of the baseband digital signal, and a sinusoid of a different frequency to represent a binary ‘1’ of 

the baseband digital signal.

1.4 AN OVERVIEW OF ANALOG COMMUNICATION SYSTEMS

Any analog communication system basically consists of a source, a transmitter, a channel and a receiver as 

shown in Fig. 1.2.

Fig. 1.2 Basic elements of an analog communication system

The information source produces information, which may be in the form of a speech, or music, or images. 

Since the output from the source of information is not an electrical signal, a suitable transducer is to be used 

to convert the information into an electrical signal so that the transmitter can handle it. If the source produces 

speech or music, the required transducer may be simply a microphone. For an image, it may take the form of 

a video camera that scans it and produces an electrical signal.

1. Transmitter: The job of the transmitter is to put the information bearing electrical signal (message) into 

a form suitable for transmission over the channel. Generally, the message signal is made to modulate a high 

frequency sinusoidal signal (generated in the transmitter), called the carrier. Modulation is a process by 

which one of the three characteristic parameters – amplitude, frequency, and phase of the carrier signal, 

is made to vary in accordance with the variations in the amplitude of the message signal. The message is 

thus carried by the carrier wave in the form of variations in its amplitude, frequency, or phase. It therefore 

amounts to translating the low-frequency message signal along the frequency scale. The resulting modulation 

is called amplitude modulation if carrier amplitude is the parameter which is varied; frequency modulation

if the carrier frequency is the parameter which is varied; and phase modulation, if the carrier phase is the 

parameter which is varied. Through the frequency translation resulting from the modulation process, two 

things are achieved. First, since the size of an antenna has to be at least about 0.1l for it to act as an efficient 

radiator of electromagnetic waves, it now becomes possible to have an antenna of reasonable size to radiate 

the modulated signal which has high frequency components only. Second, by using carrier signals of different 

frequencies for different transmitters, it would be possible to transmit several message signals simultane-

ously over the same physical channel, i.e., say, free space, without these signals interfering with each other. 

This process is called multiplexing. The transmitter not only translates the message into an appropriate high 

frequency band, it also sees to it that the power of the modulated signal which is ultimately fed to the antenna, 

is at an appropriate level.

2. Channel: The channel carries the output signal of the transmitter to the receiver. This output signal of 

the transmitter may have frequencies ranging from extremely low frequencies as those used in submarine 

communications to optical frequencies (typically 1015 Hz) as those used in optical communication systems. 

The bandwidths used may range from a few tens of Hertz to several hundreds of mega Hertz. The channel 
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may take a variety of forms depending upon the frequency and the bandwidth of the signal and the appli-

cation. It may be just a pair of twisted copper wires, a coaxial cable, a waveguide, an optical fiber, atmosphere 

and free space, or ocean water (as in the case of underwater communication systems). It may also be a combi-

nation of some of these.

3. Receiver: The primary job of the receiver is to recover the message signal from the transmitted signal 

received by it through the channel. Because of the attenuation caused by the passage through the channel, 

the received signal is generally very weak. So the receiver amplifies the received signal, and in case it is a 

modulated signal, it demodulates it. Because of the distortion suffered by the transmitted signal during its 

passage through the channel and because of the noise and interfering signals that have been added on to it, 

the demodulated signal at the output of the receiver will not be an exact replica of the message signal fed 

to the transmitter. The receiver may also contain circuitry intended to improve the signal-to-noise ratio (by 

filtering) and noise suppression. An appropriate transducer at the receiving end converts the electrical signal 

from the output of the receiver into a form suitable for the user at the destination. If the original message that 

was transmitted was speech or music, this receiving-end transducer would be just a loudspeaker.

1.5 AN OVERVIEW OF DIGITAL COMMUNICATION SYSTEM

In this section, a brief overview of a digital communication system will be given. In essence, the basic 

functions of each one of the elements that constitute a digital communication system making use of a block 

schematic diagram of the system for this purpose will be discussed.

Fig. 1.3 Block diagram of a digital communication system

(i) The source encoder, channel encoder, and digital modulator together constitute the 

transmitter.

(ii) The digital demodulator, channel decoder, and the source decoder together constitute 

the receiver.

(iii) The digital modulator, physical channel, and digital demodulator together constitute 

what is referred to as the ‘Discrete Channel’, as the input as well as the output of it are 

digital data.

Note
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1. Source: The source is where the information to be transmitted originates. This information/message may 

be available in digital form, as for instance, in the case of the output of a teletype system, or it may be 

available in an analog form. In the later case, it is sampled and digitized using an A/D converter to make the 

final source output to be digital in form.

2. Source encoder: Generally, the bit-stream at the source output will have considerable redundancy and so 

it will not be an efficient representation of the message or information given by the source from the point 

of view of the number of digits used. Perhaps, a fewer number of digits might suffice to convey the infor-

mation. The source encoder therefore reduces the redundancy by performing a one-to-one mapping of its 

input bit-stream into another bit-stream at its output but with fewer digits. Thus, in a way, it performs data 

compression.

3. Channel encoder: Basically, the channel encoder is intended to introduce controlled redundancy into 

the bit-stream at its input in order to provide some amount of error-correction capability to the data being 

transmitted. This is needed because the data gets corrupted by the additive noise on the channel and this gives 

rise to the possibility of the channel decoder committing mistakes in the decoding of the data received from 

the channel. Redundancy helps in detecting erroneously decoded bits and makes it possible to correct the 

errors before passing on the data to the source decoder. As a crude example of how redundancy can help in 

error correction, consider the case of a channel encoder triplicating each digit in the binary bit-stream at its 

input. Since the channel noise affects the data randomly, it is very unlikely that all the three triplicated digits 

(corresponding to a particular data digit) would be affected. In fact, the probability of more than one out of 

the three triplicated digit being affected will be extremely low. So, if at all any one of the three triplicated bits 

is affected, by applying the ‘majority rule’, one can correct the affected digit and ensure correct decoding by 

the channel decoder.

From the foregoing, one should not jump to the conclusion that the channel encoder will undo the data 

compression achieved by the source coder and therefore nothing is gained by having the source coder. Which 

is better, removing the redundancy as far as possible before introducing some amount of controlled redun-

dancy or, introducing the controlled redundancy straightaway without initially reducing the redundancy by 

using a source encoder?

4. Digital modulator: In most digital communication systems, the channel coder and the digital modulator 

are two separate entities. But in some cases, they may be combined. Here, for the sake of this overview of 

digital communication systems, we are considering them as two separate entities.

Since the physical channels are basically analog in nature, the digital modulator may take each binary digit 

at its input and map it, in a one-to-one fashion, into a continuous waveform. That is, a binary ‘zero’ at its input 

is mapped into a continuous signal s0(t) and a binary ‘one’ is mapped into another continuous signal, s1(t).

This is called binary modulation. Alternatively, it may, each time, take a block of say ‘b’ binary digits at its 

input and map that block in a one-to-one fashion into one of a set of 2b = M, distinct continuous-time signals, 

si(t), i = 0, 1, 2, …, (N – 1). This is called M-ary digital modulation (M > 2). Here, M distinct continuous-time 

signals are used because when a block of ‘b’ binary digits is considered; there will be 2b distinct blocks, each 

containing ‘b’ binary digits. Normally, the number of binary digits transmitted over the channel per second 

is called the bit-rate and is denoted by R (in bits/sec). When M-ary digital modulation is used, if the channel 

bit rate is R, b/R seconds is the time available to transmit one of the M waveforms. Thus, while in binary 

modulation, the time available for each bit is 1/R sec, in M-ary modulation, the time available for transmitting 

each one of the M waveforms is b times that, i.e., (b/R) sec.

As you might have realized by now, all the operations done till now, the A/D conversion of the source 

output if it was in the analog form, the source coding, the channel coding and the digital modulation, 

are all only signal processing operations performed on the original message signal for achieving various 
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definite objectives. So are the digital demodulation, channel decoding and source decoding operations in the 

receiver.

5. Physical channel: The digitally modulated signal is passed on to the physical channel, which is nothing 

but the physical medium through which the signals are transmitted. It may take a variety of forms – a pair of 

twisted wires, a coaxial cable, a waveguide, a microwave radio, or an optical fiber. A long-distance telephone 

call, for instance, may go through each one of these different forms of physical channels, at different stages of 

its passage from the place of origin to the final destination. During its passage through the channel, the signal 

gets corrupted by noise. This noise may be thermal noise originating from electronic circuits, or atmospheric 

noise, or man-made noise, or, as is generally the case, a combination of most, or all of them. We will discuss 

in some detail about the characteristics of different types of channels and their modelling in Section 1.8 of 

this chapter.

6. Digital demodulator: The digital demodulator of the receiver receives the noise corrupted sequence of 

waveforms from the channel and by inverse mapping, tries to give at its output, an estimate of the sequence 

of the binary (or M-ary) digits that were available at the input of the digital modulator at the transmitting end.

7. Channel decoder: The output sequence of digits from the digital demodulator are fed to the channel 

decoder. Using its knowledge of the type of coding performed by the channel encoder at the transmitting 

end, and using the redundancy introduced by the channel encoder, it produces as its output, the output of the 

source coder of the transmitter with as few errors as possible.

8. Source decoder: Using its knowledge of the type of encoding performed by the source encoder of the 

transmitter, the source decoder of the receiver tries to reproduce at its output, a replica of the output of the 

digital source at the transmitting end. It may not, however, be an exact replica of the source output. There may 

be some errors in the sense that some of the binary 1s produced by the source might be received by the user 

at the destination as 0s and vice versa. In a long sequence of binary digits transmitted, the fractional number 

of times such errors occur on the average, is referred to as the ‘probability of error’. A typical value of the 

probability of error may be, say, 1 in a hundred million, i.e., 10–8.

If the original message signal from the source was in analog form, and if the user at the destination again 

needs it in the same form, a D/A converter is used to convert the binary bit stream at the output of the source 

decoder into an analog form.

1.6  ADVANTAGES AND DISADVANTAGES OF DIGITAL 

COMMUNICATION

Digital communication has several advantages over analog communication, as listed below.

1. Complexity: Digital communication systems are difficult to conceptualize but are simpler and easy 

to build, whereas analog communication systems are easy in conceptual terms but are complex and 

difficult to build.

2. Cost: In the earlier days, digital communication systems were quite expensive and so could not compete 

effectively with analog communication systems. But the costs of digital communication systems are 

coming down year after year because of improvements in VLSI technology and consequent availability 

of ICs at ever decreasing costs.

3. Robustness: Components and subsystems used in digital communication systems are more robust 

since they are inherently insensitive to variations in atmospheric conditions like temperature and 

humidity etc. and are not affected by mechanical vibrations. The problem of ageing of components and 

subsystems does not therefore arise as it does in the case of analog communication systems. Further, 

they do not need frequent adjustments.
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4. Storage and retrieval: Storage and retrieval of voice, data or video at intermediate points (in the trans-

mission path) is easy and is inexpensive in terms of storage space in the case of digital communications.

5. Flexibility: Digital communication offers considerable flexibility.

(i) Data, voice and video can all be multiplexed using TDM and transmitted over the same channel.

(ii) Signal processing and image processing operations like compression of voice and image signals, 

etc. can easily be carried out.

(iii) Digital modulating waveforms, best suited for channels with known characteristics, can be 

chosen so as to make the system more tolerant to channel impairments.

(iv) Adaptive equalization can be implemented.

6. Effect of noise and interference: Error-correction codes used in channel coding ensure fairly good 

protection against noise and interferences in the case of digital communications.

7. Long-haul communication using a number of repeaters: In long distance communication making 

use of a number of repeaters, digital communication scores over analog communication for the 

following reasons.

   In analog communication, at each repeater, the received signal is amplified and retransmitted. These 

amplifiers amplify the signal and noise components equally and also add some more noise. Because 

of this, after each repeater the SNR actually becomes lower and lower. So, when the signal reaches the 

destination after going through a large number of repeaters, it is dominated by noise.

   In digital communications however, if only we ensure that the signal power at the input of a repeater 

is reasonably large so as to ensure a very low probability of error while decoding, whatever may be the 

number of repeaters, the signal reaching the destination can be almost error-free. This is because, we 

make use of ‘regenerative repeaters’ which consist of a receiver and a transmitter connected back to 

back as a package. So, the received signal is decoded to the baseband level at each repeater with practi-

cally no errors and this baseband signal is then used by the transmitter part of the repeater to transmit a 

strong error-free signal at a good power level.

8. PCM, the most popular digital communication, offers an exponential rate of exchange between 

bandwidth and (SNR)D, whereas in FM the (SNR)D increases approximately only as the square of the 

bandwidth.

9. Secrecy of communication: In defense applications, secrecy and reliability of communication are of 

utmost importance. Very powerful encryption and decryption algorithms are available for digital data so 

as to maintain a high level of secrecy of communication. Spread-spectrum techniques of transmission, 

if used, will further enhance the secrecy of communication and protect it against eavesdropping or 

jamming by the enemy.

As against all the above stated advantages, digital communications suffer from the following disadvan-

tages:

1. Digital communication systems generally need more bandwidth than analog communication systems.

2. Digital components generally consume more power as compared to analog components.

The advantages, however, far outweigh the disadvantages. That is why digital communication systems are 

steadily replacing the analog communication systems.

1.7  ELECTROMAGNETIC SPECTRUM, RANGES, AND 

APPLICATION AREAS

The available electromagnetic spectrum may be conveniently divided into 10 ranges. Depending upon the 

available propagation modes and their characteristics for each range of frequencies, any given range of 

frequencies is useful for certain specific types of communication. The ranges, their nomenclature and appli-

cation areas are summarized in Table 1.1
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Table 1.1 Ranges of spectrum, nomenclature, and application areas

S.No. Frequency Range Name Given Areas of Application

1. 30 Hz–300 Hz Extremely Low Frequencies (ELF) Underwater communications

2. 300 Hz–3.0 kHz Voice Frequency (VF) Telephone

3. 3.0 kHz–30 kHz Very Low Frequencies (VLF) Navigation

4. 30 kHz–300 kHz Low Frequency (LF) Radio navigation

5. 300 kHz–3 MHz Medium Frequencies (MF) AM radio broadcasting

6. 3 MHz–30 MHz High Frequencies (HF) AM broadcasting, amateur radio, mobile

7. 30 MHz–300 MHz Very High Frequencies (VHF) T.V, FM broadcasting, and mobile commu-

nications

8. 300 MHz–3 GHz Ultra High Frequencies (UHF) T.V., radar, satellite communications

9. 3 GHz–30 GHz Super High Frequencies (SHF) Satellite communications, terrestrial 

microwave communications

10. 105 GHz–106 GHz Optical Frequencies (OF) Optical communications

1.8 CHANNEL TYPES, CHARACTERISTICS, AND MODELING

1. Channel modeling: In the analysis and design of communication systems, it will be necessary to model the 

channel as a system and incorporate into that model as many details of the electrical behavior of the channel 

as possible, so as to make it represent the actual situation as accurately as possible, subject to the constraints 

imposed by consideration of mathematical tractability, etc. Hence, from the point of view of modeling, it may 

be more convenient and appropriate to classify the channels as linear and non-linear channels, time-invariant 

and time-varying channels, and bandwidth-limited and power-limited channels, as these characteristics can 

easily be incorporated into the system used for modeling the channel.

Viewing the commonly used channels in the light of the above discussion, we find that the telephone 

channel is linear but bandwidth limited (bandwidth limited because, at any given time, it has to be shared by 

a very large number of users); the satellite channel is power limited, the mobile communication channel is 

time-varying and that the optical fiber channel is time-invariant. Thus, most of the commonly used commu-

nication channels can be generally represented by one of the following three models:

(a) Additive Gaussian noise channel: A channel 

model that is most extensively used is the additive 

Gaussian channel which portrays the channel as 

one which, as shown in Fig.1.4, simply attenuates 

the signal by a factor a(0 < a < 1), and intro-

duces ‘additive noise’, which itself is modeled as 

Gaussian

r(t) = as(t) + n(t) (1.1)

The model is extremely simple and can be used to 

represent a large number of physical channels, and hence it is very widely used.

(b) Bandwidth-limited linear channel: As pointed out earlier, certain channels like the telephone channel 

are linear, but bandwidth limited. Such channels may be modeled as shown in Fig.1.5.

Fig. 1.4 Additive Gaussian noise channel
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Fig. 1.5 Bandwidth-limited linear channel Fig. 1.6 Linear time-variant channel

  These channels are time-invariant and so the filter shown in Fig.1.5 is an LTI system with an impulse 

response function, h(t). Thus,
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(c) Linear time-variant channels: Channels like the under-water acoustic channels, some mobile commu-

nication channels and ionospheric scatter channels, in which the transmitted signal reaches the receiver 

through more than one path, and where these path lengths are varying with time, have, what is generally 

termed as ‘time-varying’ multipath propagation. Such channels are modeled using a time-varying 

system as shown in Fig. 1.6

In this model, h(t : t) is the impulse response function of the time-variant linear system and represents the 

output at time t of the system which is at rest, when an impulse of unit strength is applied to it as input at 

time (t – t). Thus,

( ) ( : ) ( ) ( )r t h t s t d n tt t t

-
= - +Ú

`

`

(1.3)

1.9  NOISE, COMMUNICATION RESOURCES AND 

PERFORMANCE INDICES

As has been shown in Table 1.1, electromagnetic waves have frequencies over a wide range. This entire range 

of frequencies over which electromagnetic waves are available, is known as the ‘spectrum’. As indicated in 

that table, each range or band of frequencies is useful for certain applications. Since a very large number of 

users will be there for any specific application using a particular band of frequencies, there will be terrible 

interference caused to all the users and chaotic conditions will prevail, if there is no single controlling authority. 

Hence, allocation of frequencies for specific users is regulated by an international regulatory authority, which 

also specifies an upper limit on the power that can radiated and the bandwidth that can used at the frequency 

that is allocated to a user for a specific purpose. Thus, spectrum is a very precious commodity and must 

be used very sparingly by any system. This implies that communication systems should utilize minimum 

possible bandwidth while providing a certain assured level of quality of service. That is why, bandwidth is 

termed as one of the two communication resources available to the designer of a communication system. The 

other resource available to him is power, and this also has to be used to the minimum possible extent while 

achieving the objectives of a given communication system. All this only means that any system must be so 

designed that it makes efficient use of these two resources. In this connection, it must be noted that sometimes 

one of these two resources may be more important than the other. For example, in a typical telephone channel, 

there is a limitation on the bandwidth (limited to 3 kHz) and so it is at a premium, while there is no problem 

with respect to power. On the other hand, in satellite communication, the power of the transmitter on board 

the satellite is severely limited while the bandwidth is not.
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For assessing the performance of a communication system (analog or digital) and for comparison of 

various systems, certain criteria are used. The most commonly used criteria are:

(a) Fidelity

(b) Bandwidth efficiency

(c) System complexity

The receiver gives, at its output, an estimate of the transmitted message signal and the criterion, ‘fidelity’, 

tells us how accurate that estimate is. Bandwidth efficiency refers to the extent to which the transmission 

bandwidth is utilized efficiently, by the communication system. The criterion, ‘system complexity’, has a 

significant bearing on the cost of the system and to estimate the complexity, an engineering judgment is 

needed that takes into account the level of sophistication of contemporary technology that can be used in 

the implementation of the communication system under consideration. Performance indices for measuring 

fidelity and bandwidth efficiency can be appropriately defined depending upon the type of system.

The function of an analog communication system is to make available, at the output of the demodulator, 

a replica of the baseband signal, i.e., the modulating signal. If there were to be no noise, achieving this 

objective will be an easy task. That is, perfect communication would be possible even with very little trans-

mitted power. This is because, the received signal, although very weak, is not corrupted by noise and we may 

amplify it so as to bring the signal power to the desired level. Since our assumption that noise is totally absent 

makes these amplifiers also noise-free, the amplified message will be an exact replica of the transmitted 

message signal if the system is so designed that it does not produce any distortion. In practise, however, 

noise is always present and it corrupts the transmitted signal making the demodulated signal to be not an 

exact replica of the modulating signal. In fact, the demodulated signal can be shown to be the sum of two 

components – the desired signal and the noise. As mentioned earlier, ‘fidelity’ is the performance criterion 

that assesses the ability of the communication system to produce the desired signal faithfully at the output of 

the demodulator. Although one can think of various ways of measuring ‘fidelity’, the most widely used one, 

especially in cases where the output signal is in the form of the desired signal corrupted by additive noise, is 

the signal-to-noise ratio (SNR) at the output of the demodulator. It is defined as follows.

D
Average power of signal component at output of the demodulator

( )
Average power of noise component at the demodulator output

SNR

As is evident from the above definition, SNR shows how strong the signal component is, in comparison 

with the noise component. SNR is usually expressed in decibels.

= = -dB 10 10 10( ) 10 log ( ) 10 log (Signal power) 10 log (Noise power)SNR SNR

Output SNR serves as a good performance index for analog communication systems in which faithful repro-

duction of the analog baseband modulating signal in the reconstructed waveform at the output of the demodu-

lator is of paramount importance. Thus, other things like the transmitted power, transmission bandwidth and 

channel characteristics remaining the same, the system giving a higher output SNR is generally preferred 

over a system with a lower output SNR. This is because, for any specified output SNR, the former needs less 

transmitted power than the latter and so is able to utilize the communication resource, power, more efficiently. 

Generally, the ratio of the (SNR)d with carrier modulation to the (SNR)b, the SNR with baseband transmission 

(i.e., direct transmission of the baseband signal without any modulation) is used as the performance index and 

is called the Figure of Merit (FOM).

The other performance index, bandwidth efficiency, indicates how well the system is utilizing the commu-

nication resource, bandwidth, and is defined as

¸
D = =˝

˛
—

(for analog communication

Bandwidth Bandwidth of the baseband signal

Efficiency Bandwidth of the transmitted signalT

W

B
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Obviously, the bandwidth efficiency of an analog communication system depends on the type of modulation 

employed. Of all the analog modulation schemes, Wideband FM (WBFM) has the least bandwidth efficiency 

while the single sideband modulation scheme has the highest (100%) bandwidth efficiency.

There is a fundamental difference between the demodulator in the receiver of an analog communication 

system and the source decoders in the receiver of a digital communication system insofar as the design objec-

tives are concerned. The demodulator in an analog system is expected to faithfully extract the waveform of 

the baseband signal from the received signal. But, in the case of a digital communication system, extracting 

the baseband signal wave faithfully is not what is attempted, as it is not important. Instead, the decoder is 

expected to make a correct decision during each time-slot as to whether what was transmitted during that time 

slot was a binary 1 or a binary 0, in the case of binary transmission, and as to which one of the M possible 

symbols has been transmitted, if it were M-ary transmission. If the decoder is able to take correct decision in 

each time slot, the exact baseband message sequence can be generated in the receiver itself. 

From the foregoing, it is evident that the performance index pertaining to the fidelity criterion has got to 

be different in the two cases (Analog and Digital). Clearly, a more useful and relevant performance index for 

fidelity in the case of digital communication systems is the Bit Error Rate (BER), or the Probability of Error, 

Pe.

The objective of a digital communication system is to transmit information at as fast a rate as possible 

while maintaining the probability of error within the limits admissible for the specific application for which 

the system has been designed. Further, it must do this using minimum possible bandwidth and power by 

maintaining a high bandwidth efficiency and power efficiency. Since a high rate of transmission requires a 

large bandwidth, bandwidth efficiency is defined as the bit-rate per unit bandwidth.

\ Bandwidth efficiency 
b

T

R

B
D

(For digital communication)

where Rb is the bit rate in bits per second and BT is the transmission bandwidth utilized in Hertz. It must be 

noted that the transmission bandwidth, BT, has to be appropriately defined, keeping the shape of the power 

spectrum of the digital signal being transmitted. Since probability of error basically depends upon the signal-

to-noise ratio (although it can be reduced by appropriate channel coding too), for a white noise channel, a 

reasonable index of power efficiency may be taken to be the value of the ratio of Eb to N0 required to achieve 

a specified probability of error at a specified bit rate Rb, where Eb is the bit energy and N0 is the one-sided 

power spectral density of the white noise on the channel. Among other things, the type of modulation used 

does influence the bandwidth efficiency as well as the power efficiency. The source coding, by reducing the 

redundancy and therefore the number of bits required to represent the information given by the source, does 

help in improving the bandwidth efficiency of the system for any type of modulation employed. Similarly, 

channel coding, by giving the transmitted bit-stream the power to correct the errors caused in the data by the 

channel noise, helps to improve the power efficiency for any modulation that might be used, by reducing the 

(Eb/N0) required for achieving a specified probability of error at a given rate of transmission.

Prior to the publication of Shannon’s famous channel capacity theorem, it was considered impossible 

to have an absolutely error-free transmission over a noisy channel. In this theorem, Shannon has combined 

the effects of bandwidth and signal-to-noise ratio and related them to a quantity ‘C’, which he called as the 

channel capacity and which represents the maximum rate of transmission of information supported by a 

channel. For a channel of bandwidth B Hertz with additive noise spectral density N0/2 (two-sided), he has 

shown that

Ê ˆ= +Á ˜Ë ¯2
0

log 1 bits/sec.
P

C B
N B
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where P is the average transmitted power. He has shown, contrary to the widely held opinion at that time, that 

it is possible to have error-free transmission over such a noisy channel as long as the rate of transmission Rb,

is less than the channel capacity C. This theorem of Shannon implies that by employing appropriate type of 

channel coding, it is possible to transmit data at the rate of C bits/sec without any error. However, till date, 

no code has been invented that could achieve this. Hence, Shannon’s channel capacity theorem sets a funda-

mental limit on the rate of error-free transmission. This channel capacity equation of Shannon further points 

to the possibility of a ‘Bandwidth-SNR’ trade-off. The equation says that one can achieve a certain value of 

C with a large B and a small P or vice versa.
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SIGNALS, SIGNAL SPACES AND 

FOURIER SERIES

2
“It is not ignorance but knowledge which is the mother of wonder.”

Joseph Wood Krutch (1893–1970)

American writer, critic, and naturalist

Learning Objectives

After going through this chapter, students will be able to

 ■ determine the class to which a given signal belongs,

 ■ mathematically and graphically represent some commonly used signals,

 ■ determine the effect of certain time-domain operations like shifting, compressing and expanding of 

a given signal,

 ■ understand the term, ‘Signal space’, visualize its geometrical structure, and be able to test and check 

whether a given set of signals forms an orthogonal set,

 ■ derive a set of orthogonal signals from a given set of linearly independent signals, using Gram–

Schmidt procedure,

 ■ expand a given periodic signal in terms of its complex exponential/trigonometric Fourier series and 

sketch its magnitude and phase spectra, and

 ■ find the auto-correlation of a given signal, or the cross-correlation and convolution of two given 

signals.

2.1 INTRODUCTION

Communication, in general, involves transfer or transmission of a message/information from a source to a 
destination. This message may take a variety of forms – it may be an acoustic signal as in the case of speech, 
or may be a spatial distribution of brightness, as in the case of a still monochrome picture. Whatever may be 
its original form, it is converted into an electrical signal (a variation of electrical voltage with respect to time) 
by the use of appropriate instrumentation – a microphone in the case of the speech signal and a video camera 
in the case of the picture. We shall therefore assume that our signals are all electrical signals and that they 
are single-valued functions of time. Again, these signals may be either deterministic, or random. We shall 
consider  random signals later; for now, we shall confine our attention to only  deterministic signals.

Joseph Fourier (1768–1830) developed the theory for the study of signals in terms of their sinusoidal 
representation. Named after him as Fourier analysis, it is extensively used in various branches of science 
and engineering, as it offers an insight into the frequency content of a signal. Deterministic signals may be 
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classified as  periodic signals and aperiodic or  non-periodic signals. Fourier series expansion provides infor-
mation on the spectral content of a periodic signal while the Fourier transform provides this information 
in the case of a non-periodic signals. Fourier transform will be discussed in detail in the next chapter but 
 Fourier series will be discussed in this chapter. This chapter will show that the Fourier series expansion of 
a periodic signal is just an  orthogonal expansion of the signal obtained by taking certain specific complete 
sets of  orthonormal signals as the basis sets. For this purpose, the concept of a  signal space making use 
of the analogy between vectors and signals will be developed. This will enable us to talk of the norm of a 
signal, the angle between two signals, orthogonality of signals, component of one signal along another, and 
so on, paving the way for a discussion on  Gram–Schmidt orthogonalization procedure. Once all these basic 
building blocks are in place, the concept of a complete orthonormal set is introduced. It is then shown that 
the complex- exponential Fourier series expansion of a periodic signal results when an orthogonal expansion 
of the signal is obtained using the set of complex-exponential signals as the basis set for the pertinent signal 
space. A useful feature of this approach to the introduction of Fourier series is the fact that in the process, the 
reader becomes familiar with Gram–Schmidt orthogonalization procedure as well as  Schwarz’s inequality, 
both of which are extremely useful in the study of communication engineering.

2.2 SIGNALS

All of us certainly have an intuitive idea of what a signal is, since signals play such an important role in our 
daily lives. When we speak, an acoustic signal, called speech, emanates and it is a function of the single 
independent variable, time. Similarly, when we look at a monochrome still image, the signal that we get from 
it is a variation of brightness or light intensity, I, from point to point. In other words, we have a signal here 
which is a function of two independent variables, i.e., x and y coordinates, since I is a function of x and y.
 Thus, we may generalize the above discussion and say that a signal is a single-valued function of one or 

more independent variables and carries some information.

2.2.1 Types of Signals

Continuous-time signals and discrete-time signals A signal is said to be a  continuous-time 

signal, if its value is defined at all instants of time. Here, we must realize that this definition has nothing to 
do with mathematical continuity of the waveform of a signal. Thus, even a rectangular waveform, which has 
discontinuities at regular intervals, is also a continuous-time signal, if the value of the waveform is defined 
even at all the discontinuities.

Fig. 2.1 Examples of continuous-time signals
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  Discrete-time signals, on the other hand, are defined 
only at a discrete set of points in time. For example, 
if we record the temperature at a particular place every 
day at say 5 a.m., the data so recorded, represents a 
discrete-time signal, which is shown in Fig. 2.2.
 It should be noted that the temperature between 
two successive values of n is not zero; it is not known.
Here, the parameter representing time, namely n, 

takes only integer values, i.e., time is discretized.
It should, however, be noted that the amplitude is not discretized and it can take a continuum of values.

Periodic and non-periodic signals A continuous-time signal, x(t), is said to be periodic in time if

x(t) = x(t + mT) (2.1)

for any t and any integer m. The smallest positive value of the constant T, satisfying the above relation, is 
called the fundamental period of the  periodic signal x(t).
 Any continuous-time signal not satisfying Eq. (2.1) is said to be non-periodic.

Energy and power signals Let x(t) be a current signal. Let this current be flowing through a resistance 
of R ohms. Then the instantaneous power delivered by the signal is x2(t)◊R. If x(t) is a voltage signal, the 
instantaneous power delivered is given by x2(t)/R watts. If we make the value of R equal to 1 ohm, irrespective 
of whether x(t) is a voltage signal or current signal, the instantaneous power is simply x2(t) and this depends 
only on the signal. Hence, we define the power (instantaneous) associated with a signal x(t) as simply x2(t).
In case x(t) is not purely real then the instantaneous power is represented by | x(t) |2.
 Thus, the total energy of a continuous-time signal x(t) whether real valued, or complex valued is given by

2Lt | ( )|
T

T
T

E x t dt
Æ -

= Ú
`

 (2.2)

Similarly the Average Power of x(t) is given by

2
av

1
Lt | ( )|

2

T

T
T

P x t dt
TÆ -

= Ú
`

 (2.3)

Definitions

 (i) A signal whose total energy is finite and non-zero, is called an  energy signal. If E is the energy,
0 < E < `.

 (ii) A signal whose average power is finite and non-zero is called a  power signal. If Pav is the average 

power, 0 < Pav < `.

 (i) Obviously, since the averaging is done over the infinite time interval –` < t < ̀ , and the 

energy of the signal is finite, an energy signal will have an average power which is 

zero.

 (ii) Since the average power is finite and the averaging is done over the infinite time interval 

–` < t < `, a power signal will have infinite energy.

 (iii) Signals with a ‘finite’ or ‘asymptotically finite’ duration in time, such as the ones given 

below, are energy signals.

  (a)  
£Ï

= Ì
Ó

; | |
( )

0;

A t T
x t

otherwise

  (b) x(t) = Ae–a|t|; a > 0

Fig. 2.2 A discrete-time signal

Note
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 (iv) In general, all periodic signals are power signals. (But every power signal need not be 

a periodic signal)

 (v) Every signal need not be either an  energy signal or a  power signal. A signal may be 

neither a power signal nor an energy signal.

  Example: x(t) = 5e–t; –` < t < `

Example 2.1 Check whether 
for 0

( )
0 for 0

t
Ae t

x t
t

-Ï >Ô= Ì
<ÔÓ

 is an 
energy signal or a power signal

2
2

2 2 2 2 –2

20
0 0 –2

t t t AA
E A e dt A e dt e

- -= = = =Ú Ú
` ` `

which is finite. Hence, x(t) is an energy signal.

Example 2.2 Is x(t) = cos 2pf0t an energy signal, or a power signal?

Solution The  average power, Pav for this signal is given by

2
av

2
0 0

0

1
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1 1
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2 4

1 1
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But the second integral is zero and so
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Deterministic signals and random signals A signal whose value at any instant of time, –` < t < ̀ ,
is known apriori, is called a  deterministic signal. For example, x(t) = 10 cos 200 pt is a deterministic signal 
since its value at any instant of time –` < t < `, can be determined.
 As against this, there are some signals, which are random in nature, i.e., their values cannot be determined 
or predicted. Noise signals are examples of such signals. Such signals will be discussed in detail in Chapter 6.

Unit-step and unit-impulse functions

1.  Unit-step function: This is denoted by u(t) and is defined by the following:

1 for 0
( )

0 for 0

t
u t

t

≥Ï
D Ì <Ó

 (2.4)

u(t) is diagrammatically represented as shown in Fig. 2.4. It is obvious that 
any signal x(t), when multiplied by u(t), retains without any change, only 
that part of x(t) pertaining to non-negative values of time and the portion of 
the signal x(t) corresponding to negative values of time, is reduced to zero.

Fig. 2.3 x(t) = Ae–t

Fig. 2.4 A unit-step function
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2.  Unit-impulse function d(t): This is not a function in the usual sense. In fact, it comes under the category 
of ‘generalized functions’, or ‘distributions’, and is defined by the following:

d
== < <ÏÔ= Ì

ÔÓ
Ú
2

1

0 1 2(0) ( ) | if 0
( ) ( )

0; otherwise

t
t

t

x x t t t
x t t dt  (2.5)

where x(t) is any function which is continuous atleast at t = 0.
 Using the above definition, we can derive a number of important properties of the unit impulse function.

Property 1: The area under a unit impulse function is equal to one.

Proof  Let x(t) = 1, this function is continuous at all points including t = 0.
Let t1 = –` and t2 = +`. Then

1 ( ) 1t dtd
+•

-•
◊ =Ú fi the area under d(t) = 1.

Hence, the area under the unit impulse function is equal to one.

Property 2: The width of d(t) along the time axis is zero.

Proof 
0

0

1 ( ) 1t dtd
+Œ

-Œ
◊ =Ú . Now let Œ Æ 0. However small Œ may become, since the range of integration, 

– Œ < t < Œ includes t = 0, the area under the unit-impulse function still continues to be unity’. Hence, d(t) has 
zero width along the time axis, around t = 0.
 We may thus visualize d(t) as being located at t = 0, having an area 
of 1 under it and occupying zero width along the time axis. Because 
of this, in diagrams, it is generally represented as shown in Fig. 2.5. 
The 1 marked at the arrowhead indicates that it is a unit impulse and 
that it has strength (area) of one.
 Since d(t) represents a unit impulse occurring at t = 0, as per the 
usual notation, we represent a unit impulse located at t = t by d(t – t).

Property 3 (Sampling Property): From Eq. (2.5), we may now say that if a function x(t) is continuous 
at t = t, then 

td t t=- = =Ú
2

1

( ) ( ) ( ) | ( )
t

t
t

x t t dt x t x

for any t1 and t2 such that the interval t1 to t2 includes t = t.
But

t d t t d t t- = - =Ú Ú
2 2

1 1

( ) ( ) ( ) ( ) ( )
t t

t t

x t dt x t dt x

Therefore, d t t d t- = -Ú Ú
2 2

1 1

( ) ( ) ( ) ( ) ,
t t

t t

x t t dt x t dt

for any x(t) which is continuous at t = t and for any t1 and t2, provided their interval includes t = t. Thus, we 
conclude

( ) ( ) ( ) ( )x t t x td t t d t- = -  (2.6)

Fig. 2.5 A unit impulse
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From Fig. 2.6 it is clear that when d(t – t) multiplies 
the function x(t) which is continuous at t = t, it just 
takes the sample of x(t) at t = t where the impulse 
is located, and produces an impulse of strength x(t)
located at t = t.
 For this reason, the above property represented by 
Eq. (2.6) is called the ‘ sampling property’ of an impulse function.

Property 4: This property, called the ‘ replication property’ of 
an impulse function, states that if a function x(t) is convolved with 
d(t – t), a unit impulse located at t = t, then the function x(t) gets 
shifted by t sec and we get x(t – t).
 This is discussed in more detail and proved in Section 3.3 under 
properties of convolution.
 Because of properties 1 and 2 above, the unit impulse function, 
d(t), is usually visualized as the limiting case of a rectangular pulse 
xD(t) of amplitude 1/D and time duration D when the parameter D is 
allowed to tend to zero, as shown in Fig. 2.7. Note that the area under 
the rectangle remains equal to 1 even while D Æ 0.

Relation between u(t) and d(t) There is an interesting and useful relationship between the unit-impulse 
function and the unit-step function. Consider

( ) ( )
t

x t dd l l
-•

= Ú

Since the right-hand side of the above represents the area under the unit impulse function from –` up to time 
t, if t < 0, the area will be zero. But if t ≥ 0, the area is equal 1. Hence,

1 for 0
( )

0 for 0

t
x t

t

≥Ï
= Ì <Ó

But this is precisely how we have defined u(t).

\ ( ) ( )
t

u t dd l l
-•

= Ú  (2.7)

and ( ) ( )
d

u t t
dt

d=  (2.8)

Some simple operations on signals Continuous-time signals may be subjected to several types of 
operations. These include addition and subtraction of signals, multiplication of signal by a constant, multipli-
cation of two signals,  convolution of two signals (discussed in Section 2.5),  differentiation and  integration of 
signal, shifting in time, and compressing/expanding a signal in time. Here, we shall briefly discuss only the 
last two – shifting in time and  compression/ expansion in time.

1. Shifting in time: Consider a continuous-time signal x(t). Now consider the signal x(t – t0 ). At t = t1, the 
function x(t) takes the value x(t1). The function x(t – t0 ) too takes that value x(t1) when its argument takes the 
value t1, i.e., when t – t0 = t1, or when t = t0 + t1. Thus, whatever happens to the signal x(t) at t = t1 happens to 
the signal x(t – t0 ) only at t = t0 + t1, i.e., after a delay of t0 sec (if t0 > 0).

Thus, if t0 > 0, x(t – t0) is a time-delayed version of x(t) and x(t + t0 ) is a time advanced version of x(t).

Fig. 2.6 A diagrammatic representation of Eq. (2.6)

Fig. 2.7  Unit impulse as limiting 

case of a rectangular pulse
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Fig. 2.8  (a) x(t), (b) For t1 > 0, x(t – t1) is obtained by shifting x(t) to the right by t1 sec, (c) x(t + t1) is obtained 

by shifting x(t) to the left by t1 sec, if t1 > 0

2. Compressing/expanding a signal in time (time scaling): Advancing the same arguments as above, it can 
be shown that if x(t) is a continuous-time signal, then x(at) represents a time-compressed version of x(t) if ‘a’ 
is a positive number greater than 1 and a time-expanded version of x(t), if ‘a’ is a positive number less than 1.

Fig. 2.9 (a) x(t), (b) x(2t), a compressed version of x(t), (c) x(0.5t), an expanded version of x(t)

Quite often, we will be performing time-shifting as well as time scaling of a signal. For example, consider 
x(t) and x(2t – 3). Then, to obtain x(2t – 3) from x(t), we should note that we have to do time shifting first and

then only do the  time scaling. This is because

( 3) 2( )| ( 3) and ( 3)| (2 3)t t t tx t x t x t x tÆ - Æ= - - = -
whereas

2 ( 3)( )| (2 ) and (2 )| (2 6) (2 3)t t t tx t x t x t x t x tÆ Æ -= = - π -

Fig. 2.10 (a) x(t), (b) x(t – 3), (c) x(2t – 3)

2.3 ANALOGY BETWEEN SIGNALS AND VECTORS

In this section, we will show that various concepts familiar to us in connection with vectors, can be extended 
to signals. Since the  dot product of vectors gives a geometrical structure to the vector spaces by enabling us 
to talk about ‘angle between vectors’, ‘orthogonality of vectors’ and so on, we will define ‘inner product’ 
between signals (which is similar to the dot product between vectors) so as to enable us to talk about the 
‘distance between signals’, ‘orthogonality of signals’, etc., as all these are essential for developing a geomet-
rical structure for  signal spaces. For this purpose, we will begin with a brief review of some of the basic and 
essential concepts in vector spaces in a manner that will make it easier for us to clearly bring out the analogy 
between vectors and signals.
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24 Communication Systems

 As we know, a  vector space V, like for example the ‘ Euclidian Space’ is a set of vectors, whose elements, 
the vectors, satisfy certain conditions. The most important ones among these conditions are given below:
 (a) The sum of any two vectors belonging to V is another vector which also belongs to V.
 (b) There exists in V, a vector, called the zero vector, denoted by O), which is such that A + O = A, for any 

vector A belonging to V.
 (c) For any vector A belonging to V, there exists another 

vector B, also belonging to V and such that A + B = the 
zero vector O.

 (d) If any vector, say A belonging to V is multiplied by a 
scalar (a real number or complex number), the resultant 
vector also belongs to V.

We know that a vector A in the Euclidian space, such as the 
one shown in Fig. 2.11, can be expressed as:

 A = ix1 + jx2 + kx3 (2.9)

Here, i, j and k are unit vectors along the X, Y and Z directions 
respectively. x1, x2 and x3 are real numbers representing what 
we call as the coordinates of the vector A along the X, Y and 
Z directions.

A unit vector along the direction of some vector OB is obtained by dividing OB by its own 

magnitude.

It is customary to represent the vector A as 

1

2

3

x

x

x

È ˘
Í ˙= Í ˙
Í ˙Î ˚

A  (2.10)

in terms of its coordinates along the X, Y and Z directions. Thus, the vector A may be assumed to be repre-
sented by the point A in the Euclidian space, since point A has x1, x2 and x3 as its coordinates.
Using the representation of a vector by Eq. (2.9), we may represent the unit vectors i, j and k as

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= = =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

1 0 0

0 , 1 and 0

0 0 1

i j k  (2.11)

Therefore, we may write the vector A of Eq. (2.1) as

1

2 1 2 3

3

1 0 0

0 1 0

0 0 1

x

x x x x

x

È ˘ È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙ Í ˙= = + +Í ˙ Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚Î ˚

A  (2.12)

Equations (2.9) and (2.12), express A as a linear combination of the three unit vectors, with coordinates of A
along X, Y and Z, viz., x1, x2 and x3 as the weights for the linear combination.

2.3.1 Linearly Independent Vectors

The vectors i, j and k are said to be linearly independent in the sense that none of them can be expressed as a 
linear combination of the rest.

Fig. 2.11 A vector A in the Euclidian space

Note

CS-Rao_02.indd 24CS-Rao_02.indd   24 1/18/2013 11:05:20 AM1/18/2013   11:05:20 AM



Signals, Signal Spaces and Fourier Series 25

Example 2.3 Show that the following three vectors belonging to the Euclidian space are linearly 
independent.

X = (1, 6, 5); Y = (1, 1, 0), and Z = (7, 5, 2)

Solution As we have already seen, if X, Y and Z are  linearly independent, none of them should be a 
linear combination of the rest. In case they are not linearly independent, one of them at least, will be a linear 
combination of the other two. In that case, the determinant of the matrix formed by writing these vectors as 
the rows of a 3 ¥ 3 matrix, will be zero. So, we shall check whether the matrix [A] where

1 6 5

[ ] 1 1 0

7 5 2

È ˘
Í ˙= Í ˙
Í ˙Î ˚

A

is having a determinant of zero or not.

1 6 5

| | 1 1 0 1(2 0) 1(12 25) 7( 5) 2 13 35 20

7 5 2

= = - - - + - = + - = -A

Hence, |A| π 0 and so the given vectors are linearly independent.
 Further, as can be easily seen, any arbitrary vector, say OB, or B, which belongs to the Euclidian space, 
can be expressed as a linear combination of the three unit vectors i, j and k. For example, if B has coordinates 
y1, y2 and y3, then

1

2 1 2 3

3

1 0 0

0 1 0

0 0 1

y

y y y y

y

È ˘ È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙ Í ˙= = + +Í ˙ Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚Î ˚

B

Since any vector belonging to this space can be generated as a linear combination of i, j and k, we say that the 
space (the Euclidian space) is generated by, or is spanned by these three vectors.

2.3.2 Basis Vectors

A set of vectors belonging to a vector space V(like the Euclidian space) which are linearly independent and 
which span (or generate) that space, are said to be forming a basis set for that space.
 Thus, i, j and k form a basis set of vectors for the Euclidian space since they are linearly independent and 
also span the Euclidian space in the sense that any vector belonging to that space can be expressed as a linear 
combination of these three vectors.

A  basis set for a vector space is not unique, since there can be any number of basis sets 

(For example, rotation of the X, Y, Z axes creates a new set of basis vectors).

Orthogonality of vectors The vectors i, j and k are not only linearly independent, they are also 
mutually  orthogonal.

Definition Two vectors are said to be orthogonal to each other if their dot product is zero. A set of vectors 
are said to be an orthogonal set of vectors if any two distinct vectors from the set are orthogonal to each other. 
If, in addition, each one of the vectors of the set has a unit magnitude, the set is said to be an orthonormal set.
 It is an easy matter to show that i, j and k form an orthonormal basis set of vectors for the Euclidian space.

Note
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Dimension The number of vectors in any basis set for a given space will be the same and this number 
is called the dimension of that space. It represents the minimum number of linearly independent vectors 
required to generate that vector space.
 We may generalize the above concepts and visualize an n-dimensional vector space (n > 3) in which 
each vector will be a point in an n-dimensional space and can be represented by a column vector having the 
n-coordinates of that point as the entries. Thus, if a is a vector in an  n-dimensional vector space,

 

1

2

3

1 2 3

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

n

n

x

x

x

x x x x

x

È ˘ È ˘ È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙ Í ˙ Í ˙◊= = + + + º +◊ ◊ ◊ ◊Í ˙ Í ˙ Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙ Í ˙ Í ˙◊ ◊ ◊ ◊ ◊
Í ˙ Í ˙ Í ˙ Í ˙ Í ˙

◊ ◊ ◊ ◊ ◊Í ˙ Í ˙ Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚ Î ˚Î ˚

αα

where, [1, 0, 0, …,0]T, [0, 1, 0, …,0]T, …. [0, 0, 0, …,1]T are the n basis vectors (they are called  standard set 

of basis vectors) for this n-dimensional space.

Example 2.4 Given two vectors, X = (0, 2, 1) and Y = (1, –2, 1), find the magnitude of each and check 
whether they are orthogonal. If they are not orthogonal, find the angle between them.

Solution Since A ◊ B = |A||B| cos f, A ◊ A = |A|2

\     |A| = (A ◊ A)1/2 \ |X| = (0 ¥ 0 + 2 ¥ 2 + 1 ¥ 1)1/2 = 5

     |Y| = [1 ¥ 1 + –2 ¥ –2 + 1 ¥ 1]1/2 = 6

 X ◊ Y = [0 ¥ 1 + 2 ¥ –2 + 1 ¥ 1] = –3. Since X ◊ Y π 0, X and Y are not orthogonal.

 cos
| || |

f
◊

=
A B

A B
  Hence if q is the angle between X and Y then

 

1 1 –3
cos cos

| || | 5 6
q - -◊È ˘ È ˘= =Í ˙ Í ˙¥Î ˚ Î ˚

X Y

X Y

or 1 1–3 3
cos cos

1030
q - - È ˘È ˘= = -Í ˙Í ˙ Î ˚Î ˚

2.3.3 Component of a Vector along Another Vector

Consider n non-zero orthogonal vectors, a1, a2, …an. consider the following  linear combination of these n 
vectors:

 1 1 2 2 3 3 k k n nx x x x x= + + + º + + ºb a a a a ab a a a a a
where x1, x2, …, xn are some real numbers and b is the resultant vector.
 Taking the dot product of both sides with the vector ak, we get

 1 1 2 2 3 3( ) ( ) ( ) ( ) )k k k k k k k n n kx x x x x◊ = ◊ + ◊ + ◊ + º + ◊ + º ◊b a a a a a a a a a a ab a a a a a a a a a a a(

Since ai, i = 1, 2, 3, …, n are  orthogonal vectors, all the products on the RHS are zero, except (ak ◊ ak), which 
we know, is equal to |ak|

2.

\ b ◊ ak = xk|ak|
2
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Hence, xk = coordinate of b along ak = 
2| |

k

k

◊b ab a
a

 (2.13)

and the component of b along ak = 2
; 1

| |

k
k k k

k

x k n
◊Ê ˆ

= £ £Á ˜Ë ¯

b ab a
a aa a

a
 (2.14)

Example 2.5 For the two vectors X and Y of Example 2.4, find the component of Y along X.

Solution (X ◊ Y) = –3 and |X| = 5 , as obtained in the solution for Example 2.4.

\ component Y along X = 
2

3
(0, 2,1) (0, 1.2, 0.6)

5| |

◊ -Ê ˆ Ê ˆ= = - -Á ˜Á ˜ Ë ¯Ë ¯
Y X

X
X

2.3.4 Signal Spaces

In digital communications, in general, one of a set of M (M ≥ 2) possible signals, si(t), i = 1, 2, 3, … , M, is 
transmitted every T sec. These M signals are known a priori to the receiver. What the receiver does not know, 
however, is, which one of the M signals has been transmitted during a given T sec period. The job of the 
receiver is then to correctly identify, during each T sec period, the transmitted signal, in the presence of noise. 
These M signals are continuous-time real-valued signals having a finite energy over a T sec period, i.e., the 
time period for which one of the M signals is transmitted.
 Let us now consider the set S of all possible continuous-time signals having a finite energy over a period 
of T sec. These signals can easily be shown to satisfy all the four important conditions we have stated in the 
beginning, as the conditions required to be satisfied by a set of vectors, if they are to form a vector space. 
Any two signals, if added, will still give us a signal that is again continuous-time and having a finite energy 
over the period [0, T]. So the first condition of closure with respect to addition is satisfied since the sum 
signal again belongs to the set S. There exists a zero signal in S. It is a signal which has zero value over the 
entire interval [0, T] and so is a continuous-time signal with zero energy over that interval. Thus, the second 
condition is satisfied. For energy signal, s(t), over [0, T], there exists in S, another signal –s(t) over the same 
interval, and the sum of these two yields the zero signal. Hence, the third condition is satisfied. Finally, if 
any s(t) belonging to S is multiplied by a real number (or a complex number), the resulting signal is also a 
continuous-time signal with some finite energy over the interval [0, T], and thus belong to S. Thus, the set 
S of all continuous-time signals with finite energy, defined over the interval [0, T], forms what we may call 
as a ‘ signal space’, which is analogous to a ‘ vector space’. It is formed by a set of signals satisfying certain 
conditions, as stated earlier.
 Now that the analogy between vectors and signals has been clearly established, we can extend the concept 
like ‘ linear independence’, ‘basis set’, ‘dimension’, ‘orthogonality’, etc., associated with vectors to the 
signals too.

2.3.5 Linear Independence of Signals

A set of signals is said to be a linearly independent set of signals, provided none of them can be expressed as 
a linear combination of the rest.

Basis set for a signal space A basis set B for a signal space S, is a set of linearly independent signals 
which span (i.e., generate) the signal space S.
 This means that the signals in a basis set should not only be linearly independent but should also be able 
to generate any signal belonging to S through a linear combination of some or all of them (basis signals).
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Dimension of a signal space The  dimension of a signal space S is the number of basis signals in any 

basis set for S.

2.3.6 Orthogonality of Signals

Just as we said that two distinct vectors A and B are orthogonal if their dot product is zero, we now say that 
two distinct signals s1(t) and s2(t) are orthogonal to each other over an interval t1 to t2 if their inner product 
over that interval is zero, where we define their  inner product as:

 
2

1

1 2 1 2( ( ), ( )) ( ) ( )
t

t

s t s t s t s t dt
*D Ú  (2.15)

where 2 ( )s t
*  is the complex conjugate of s2(t). If we are dealing with signal spaces of only real signals, this 

complex conjugation in the RHS of Eq. (2.15) may be ignored.
 Thus, signals s1(t) and s2(t) are said to be orthogonal, if their inner product (s1(t), s2(t)) is equal to zero.

2.3.7 Norm or Length of a Signal

The inner product permits us to give a geometrical structure to the ‘ signal space’, just as the dot product did 
for a vector space. We can now talk not only of the orthogonality of signals but also of their ‘lengths’ and 
‘distance’ between them, and so on. For this purpose, let us take the inner product of a signal with itself. This 
is usually represented by ||si(t)||

2 (read as norm square of si(t))

 

2 2

1 1

2 2( ( ), ( )) ( ) ( ) | ( )| || ( )||
t t

i i i i i i
t t

s t s t s t s t dt s t dt s t
*= = DÚ Ú

 = E = Energy of the signal si(t) over the interval t1 to t2.

\ Norm or length of the finite energy signal si(t) = E  (2.16)

2.3.8 Distance between Two Signals

This is a very useful quantity because if two signals s1(t) and s2(t) that are used for transmission by a trans-
mitter, have a large distance separating them, the receiver is likely to commit less mistakes while performing 
statistical detection of the received signal in the presence of noise.
 The distance between two signals si(t) and sj(t), is defined as the  norm of their difference, i.e.,

 Distance between si(t) and sj(t) = ||{si(t) – sj(t)}||

 

2

1

1/2

1/2 2(( ( ) ( )), ( ( ) ( ))) |[ ( ) ( )]|
t

i j i j i j
t

s t s t s t s t s t s t dt
È ˘

= - - = -Í ˙
Í ˙Î ˚
Ú

 = Positive square-root of the energy of the difference signal over the interval t1 to t2

\ where ( ) ( ( ) ( ))
k

i j

s k i j
s tos
d E s t s t s t= D -  (2.17)

2.3.9 A Set of Orthogonal/Orthonormal Signals

A set S of non-zero signals si(t), i = 1, 2, 3, … is said to be an  orthogonal set over the interval t1 to t2 if

 
2

1

0 for
( ) ( )

a number for

t

i j
t

i j
s t s t dt

k i j

* πÏ
= Ì =Ó

Ú  (2.18)

i.e., the  inner-product of any two distinct signals must be zero.
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In case, k in RHS of Eq. (2.18) is 1, then the signals are said to form an  orthonormal set since every signal in 
the set has a norm, i.e., square-root of energy, equal to one.

Any signal s(t) can be normalized so as to have a unit norm by dividing the signal by its own 

norm.

i.e., 
( )

1
|| ( )||

s t

s t
=  (2.19)

A complete set of orthonormal signals A set S of orthonormal signals, all of which are defined over 
the interval t1 to t2 and having a finite energy over that interval, is said to be a  complete set of orthonormal 

signals, if any signal defined over that interval and having a finite energy in that interval can be expressed, 
without any error as a linear combination of the members of the set S.

Some complete sets of orthogonal functions

1. The set of functions, 
2

( )
j nt

T
nx t e

p

= , n = 0, ±1, ±2, …, forms a complete set of orthogonal functions over 

the interval to
2 2

T T
- + .

2. The set of functions

 

w w

p
w w w

º

º D

0 0

0 0 0

1 2 2
, cos , cos 2 ,

2 2 2
sin , sin 2 , with

t t
T TT

t t
T T T

form a complete set of orthonormal functions over the interval to
2 2

T T
- + .

3. The set of  Legendre Polynomials, Pn(t), n = 0, 1, 2, …, where

 
21

( ) ( 1)
2 !

n
n

n n n

d
P t t

n dt
= D -

forms a complete set of orthogonal functions.

Example 2.6 Show that the signals xn(t) = A cos nw0t, n = 0, 1, 2, …, where, 0

2

T

p
w D , form a 

set of orthogonal functions over the interval [0, T]. Are they orthonormal? If they are not, obtain an 
orthonormal set.

Solution Consider any two distinct members of the given set, say, A cos mw0t and A cos nw0t, where 
m π n. Then their inner product is given by

 

2
0 0 0 0

0

2 2

0 0
0 0

( cos , cos ) cos cos

cos( ) cos( )
2 2

T

T T

A m t A n t A m t n tdt

A A
m n tdt m n tdt

w w w w

w w

= ◊

= + + -

Ú

Ú Ú

Since m π n, m–n π 0 \ let ( )m n k- D , an integer.

Note
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 Since cos(m + n)w0t has a frequency of (m + n)f0 and cos(m – n)w0t has a frequency of (m – n)f0 = kf0, 
and since T is the period of cos w0t, there will be an integer number of cycles of cos(m + n)w0t as well as 
cos(m – n)w0t in the integration interval [0, T]. Hence, both the above integrals are zero. Hence, (A cos mw0t, 
A cos nw0t) = 0 for m π n.
 Therefore, the given set, viz., xn(t) = A cos nw0t, n = 0, 1, 2, … is an orthogonal set of signals.
 If m = n, the first integral is zero but the second integral equals A2T/2, which is the energy, E of the signal 
A cos nw0t for n π 0. For n = 0, the energy is simply A2T = 2E.
 Therefore, to normalize the orthogonal set and obtain an orthonormal set, we divide each member of this 
set by its own norm, i.e., by 2E  for xn(t) with n = 0 and by E  for xn(t) with n π 0.

Thus, the normalized set = 0 0 0

1 2 2 2
( ) , cos , cos 2 , cos 3 ,ny t t t t

T T TT
w w w= º

Example 2.7 Show that f(t) is orthogonal to signals cos t, cos 2t, …, cos nt, … for all non-zero integer 
values of n over the interval 0 to 2p if

 

1; 0
( )

1; 2

t
f t

t

p

p p

£ £Ï
= Ì- £ £Ó

Solution f(t) is plotted in Fig. 2.12.
To show that f(t) and the set of functions cos nt, n an integer 
and n π 0, are orthogonal over the interval 0 to 2p, we show 
that their inner product, given by

2

0

2 2

0 0

2

0

( ( ), cos ) ( ) cos equals zero.

 ( ) cos 1 cos 1 cos

1 1
sin sin 0 for , an integer 0

t

f t nt f t ntdt

f t ntdt ntdt ntdt

nt nt n
n n

p

p p p

p

p p

p=

D

= ◊ + - ◊

= - = π

Ú

Ú Ú Ú

Hence, the set of functions, cos nt for all non-zero integer values of n, will be orthogonal to the given f(t).

Example 2.8 If xe(t) and x0(t) are respectively the even and odd parts of a signal x(t), show that they 
are orthogonal over the interval –T to T for any T.

Solution To show that xe(t) and x0(t) are  orthogonal to each other over –T to T for any T, we have to show 
that their  inner product given by

 
0 0( ( ), ( )) ( ) ( ) equals zero

T

e e
T

x t x t x t x t dt
-

= Ú

Now, xe(t) x0(t) is the product of an  even signal and an  odd signal, and hence it is odd.

\ 0( ) ( ) 0
T

e
T

x t x t dt
-

=Ú  for any T

Hence, xe(t) and x0(t) are orthogonal over (–T, T) for any T.

Expansion of a signal x(t) using a complete set of orthogonal functions, is called the 

 generalized Fourier series represenattion of the signal x(t).

Fig. 2.12 Waveform of f(t) of Example 2.7

Note
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2.3.10 Component of One Signal along Another Signal

Consider n non-zero orthogonal signals, s1(t), s2(t), …, sn(t). Let x(t) be a linear combination of these.

\ 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) … ( )k k n nx t C s t C s t C s t C s t C s t= + + + + + +L

where Ci, i = 1 to n are some real numbers.
 Taking the inner-product of both sides with say sk(t), we get

1 1 2 2( ( ), ( )) ( ( ), ( )) ( ( ), ( )) ( ( ), ( )) … ( ( ), ( ))k k k k k k n n kx t s t C s t s t C s t s t C s t s t C s t s t= + + + +
 Since si(t), i = 1 to n are orthogonal signals, all the inner products on the RHS of the above equation will 
be zero, except (sk(t), sk(t)), which is equal to ||sk(t)||

2 = Energy of sk(t).

\ 2( ( ), ( )) || ( )||k k kx t s t C s t=

Hence Ck = coordinate of x(t) along 
2

( ( ), ( ))
( ) ; 1

|| ( )||

k
k

k

x t s t
s t k n

s t
= £ £  (2.20)

Therefore, the component of x(t) along sk(t) = Ck sk(t)

 Component of x(t) along sk(t) = 
2

( ( ), ( ))
( ); 1

|| ( )||

k
k

k

x t s t
s t k n

s t
£ £  (2.21)

2.4 GRAM–SCHMIDT ORTHOGONALIZATION PROCEDURE

Given n  linearly independent signals xi(t), i = 1, 2, 3, …, n belonging to a signal space S, this procedure 
enables us to derive from them a set of n orthogonal or orthonormal signals si(t), i = 1, 2, … , n, in S.
Procedure We first take s1(t) = x1(t). Then we know that s2(t) should be orthogonal to s1(t). So, from x2(t), we 
subtract that part of it which is along s1(t). We call that s2(t). Hence,

2 1
2 2 12

1

( ( ), ( ))
( ) ( ) ( )

|| ( )||

x t s t
s t x t s t

s t
= - ◊

To obtain s3(t) from x3(t), we subtract from x3(t), its components along s1(t) as well as s2(t). The remaining 
part of x3(t) will therefore be orthogonal to both s1(t) as well as s2(t) and we call it s3(t).

\ 3 1 3 2
3 3 1 22 2

1 2

( ( ), ( )) ( ( ), ( ))
( ) ( ) ( ) ( )

|| ( )|| || ( )||

x t s t x t s t
s t x t s t s t

s t s t

È ˘ È ˘= - ◊ - ◊Í ˙ Í ˙
Î ˚ Î ˚

\
2

3
3 3 2

1

( ( ), ( ))
( ) ( ) ( )

|| ( )||

k
k

k k

x t s t
s t x t s t

s t=

È ˘= - ◊Í ˙
Î ˚

Â

We go on like this till we get sn(t). Hence, in general,

1
1 1 2

1

( ( ), ( ))
( ) ( ) ( ); 1 to ( 1)

|| ( )||

m
m k

m m k
k k

x t s t
s t x t s t m n

s t

+
+ +

=

È ˘
= - ◊ = -Í ˙

Î ˚
Â  (2.22)

Once an orthogonal set of signals si(t), i = 1 to n are obtained, to obtain an orthonormal set, we simply 
normalize each one of the  orthogonal signals si(t), i = 1 to n by dividing each one by its own norm. If we call 
the normalized set as yi(t), i = 1 to n, we have

2

1

1/2

2

( ) ( )
( )

|| ( )||
| ( )|

k k
k

tk

k
t

s t s t
y t

s t
s t dt

= =
È ˘
Í ˙
Í ˙Î ˚
Ú

 (2.23)
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If the given signals xi(t), i = 1 to n are  linearly independent, we will be able to derive again 

n  orthonormal signals from them. If xis are not linearly independent, we can obtain m 

orthonormal signals, m < n, where m is the dimension of the signal space generated by xi(t),

i = 1 to n.

Example 2.9 Given the three signals x1(t), x2(t) and x3(t) as shown in Fig. 2.12, derive an orthonormal 
basis signal set for the signal space generated by them.

Solution We shall make use of  Gram–Schmidt procedure to obtain an  orthonormal set of signals from 
the given three signals.
 First let us define s1(t) = x1(t).

Fig. 2.13 The given signals x1(t), x2(t) and x3(t)

Then,

2 1
2 2 12

1

/2
2 2 2

2 1 2 1 2 1
0 0 /2

2 2 2 2
1 1 1 1

0

( ( ), ( ))
( ) ( ) ( )

|| ( )||

3
( ( ), ( )) ( ( ), ( )) ( ) ( ) 2

2

|| ( )|| || ( )|| ( ( ), ( ))

T T T

T

T

x t s t
s t x t s t

s t

x t s t x t x t x t x t dt A dt A dt A T

s t x t x t x t A dt A T

= - ◊

= = = + =

= = = =

Ú Ú Ú

Ú

\ 2
2 2 1 2 12

3 1 3
( ) ( ) ( ) ( ) ( )

2 2
s t x t A T x t x t x t

A T

Ê ˆ= - ◊ = -Á ˜Ë ¯
The plot of s2(t) is shown in Fig. 2.14.

3 1 3 2
3 3 1 22 2

1 2

/2
2 2 2

3 1 3 1
0 0 /2

/2
2

3 2 3 2
0 0 /2

( ( ), ( )) ( ( ), ( ))
( ) ( ) ( ) ( )

|| ( )|| || ( )||

3
( ( ), ( )) ( ) ( ) 2

2

0.5
( ( ), ( )) ( ) ( ) 2 ( 0.5 ) (0.5 )

2

||

T T T

T

T T T

T

x t x t x t s t
s t x t x t s t

x t s t

x t x t x t x t dt A dt A dt A T

x t s t x t s t dt A A dt A A dt A T

s

= - -

= = + =

= = ¥ - + ¥ = -

Ú Ú Ú

Ú Ú Ú

2/2
2 2

2 2 2
0 /2

0.5
( )|| ( ( ), ( )) ( 0.5 )( 0.5 ) (0.5 )(0.5 ) 0.25

2

T T

T

A T
t s t s t A A dt A A dt A T= = - - + = =Ú Ú

\
2

2
3 3 1 2 3 1 22 2

3 1 0.25 3
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 20.25

A T
s t x t A T x t s t x t x t s t

A T A T

Ê ˆ Ê ˆ= - - ◊ = - -Á ˜ Á ˜Ë ¯ Ë ¯

Note

Fig. 2.14 Signal s2(t)
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A plot of the signal 1 2

3
( ) ( )

2
x t s t

È ˘+Í ˙Î ˚
 is shown in Fig. 2.15. We find that 

it is such that x3(t) minus this signal gives us what is shown in Fig. 2.16. 
We find that it is equal to –2 s2(t), i.e., s3(t) = –2 s2(t). Hence, they are 
not linearly independent (see the note under  Gram–Schmidt procedure). 
This is due to the fact that the three given signals, x1(t), x2(t) and x3(t) are 
themselves not linearly independent. This is obvious from the fact that 
x1(t) can be obtained in terms of x2(t) and x3(t).

Actually, 1 2 3

1
( ) [ ( ) ( )]

3
x t x t x t= +

Hence the  signal space generated by x1(t), x2(t) and x3(t) is not three 
dimensional – it is only two-dimensional and it has the  orthogonal signals 
s1(t) and s2(t) as the  basis signals. That they are orthogonal is clear from 
the fact their inner product, viz.,

 

/2

1 2
0 /2

( ( ), ( )) ( 0.5 ) (0.5 ) 0
T T

T

s t s t A Adt A Adt= - + =Ú Ú

Now to normalize them, we have to find their norms

 

2 2
1 1 1 1

0

2/2
2 2

2 2 2
0 /2

|| ( )|| ( ( ), ( )) ( ) Energy

0.5
|| ( )|| ( ( ), ( )) ( 0.5 )( 0.5 ) (0.5 )(0.5 ) 0.25

2

T

T T

T

s t s t s t s t dt A T E

A T
s t s t s t A A dt A A dt A T

= = = =

= = - - + = =

Ú

Ú Ú

\ if u1(t) and u2(t) are the normalized versions of s1(t) and s2(t),

 

1 2 2 2
1 1 2

2 2
2

( ) ( ) ( ) 2 ( )1
( ) ( ) and ( )

|| ( )|| 0.25

s t s t s t s t
u t s t u t

s tE EA T A T
= = = = =

Fig. 2.17 The orthonormal basis set

Note that the energy of each of these signals is 1, as it should be.

Example 2.10 u1(t) and u2(t) have been obtained as the  orthonormal basis set for the signal space of 
Example 2.9. Express the given signals, x1(t), x2(t) and x3(t) as linear combinations of u1(t) and u2(t), i.e., 
generate x1(t), x2(t) and x3(t) from u1(t) and u2(t), the two basis signals.

Fig. 2.15 Signal x2(t)

Fig. 2.16 Signal s3(t)
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Solution Let x1(t) = a1u1(t) + a2u2(t)
Then a1 is the coordinate of x1(t) along u1(t). Hence, from Eq. (2.20), it is given by the  inner-product of x1(t) 
with u1(t) divided by the norm square of u1(t), which of course, is 1.

\ 1 1 1
0

/2

2 1 2 1 2
0 0 /2

1
( ( ), ( ))

1 1
( ( ), ( )) ( ), ( ) 0

T

T T T

T

A
a x t u t A dt T A T

T T

a x t u t x t u t dt A dt A dt
T T

= = ◊ = ◊ =

Ê ˆ Ê ˆ= = = - + =Á ˜ Á ˜Ë ¯ Ë ¯

Ú

Ú Ú Ú

\ 1 1 2( ) ( ) 0 ( )x t A Tu t u t= + ◊

Now, let x2(t) = b1u1(t) + b2u2(t)

\ 
/2

1 2 1 2 1
0 0 /2

/2

2 2 2 2 2
0 0 /2

1 1 3
( ( ), ( )) ( ), ( ) 2

2

1 1 1
( ( ), ( )) ( ), ( ) 2

2

T T T

T

T T T

T

b x t u t x t u t dt A dt A dt A T
T T

b x t u t x t u t dt A dt A dt A T
T T

= = = ◊ + ◊ =

Ê ˆ= = = - + =Á ˜Ë ¯

Ú Ú Ú

Ú Ú Ú

\ 2 1 2

3 1
( ) ( ) ( )

2 2
x t A Tu t A Tu t= +

Let x3(t) = c1u1(t) + c2u2(t),

 

/2

1 3 1 3 1
0 0 /2

/2

2 3 2 3 2
0 0 /2

1 1 3
( ( ), ( )) ( ), ( ) 2

2

1 1 1
( ( ), ( )) ( ), ( ) 2

2

T T T

T

T T T

T

c x t u t x t u t dt A dt A dt A T
T T

c x t u t x t u t dt A dt A dt A T
T T

= = = ◊ + =

Ê ˆ= = = - + = -Á ˜Ë ¯

Ú Ú Ú

Ú Ú Ú

\ 
3 1 2

3 1
( ) ( ) ( )

2 2
x t A Tu t A Tu t= -

Vector representation of signals/signal space diagrams While discussing the basics of vector 
spaces, we had said that a vector A in the Euclidian space could be represented as [x1, x2, x3]

T where x1, x2 
and x3 are respectively the coordinates of the vector A along the X, Y and Z orthogonal axes of the Euclidian 
space. The vector A itself could be written down as an orthogonal expansion as:

 1 2 3 1 2 3[ , , ]T
x x x x x x= + + =A i j k

where i, j and k are orthonormal basis vectors for the Euclidian space.
 In Example 2.10, we had obtained u1(t) and u2(t) as an orthonormal basis set for the signal space S spanned 
by the three given signals x1(t), x2(t) and x3(t). We have also obtained the representation of the given signals 
in terms of the orthonormal basis signals u1(t) and u2(t) as:

and 

1 1 2

2 1 2

3 1 2

( ) ( ) 0 ( ) [ , 0]

3 1 3 1
( ) ( ) ( ) ,

2 2 2 2

3 1 3 1
( ) ( ) ( ) ,

2 2 2 2

T

T

T

x t A Tu t u t A T

x t A Tu t A Tu t A T A T

x t A Tu t A Tu t A T A T

= + ◊ =

È ˘= + = Í ˙Î ˚

È ˘= - = -Í ˙Î ˚

CS-Rao_02.indd   34CS-Rao_02.indd   34 1/18/2013   11:05:27 AM1/18/2013   11:05:27 AM



Signals, Signal Spaces and Fourier Series 35

Hence, in analogy with the representation of the vector A as a point (in the Euclidian space) with coordinates 
x1, x2 and x3 along i, j and k vectors, the signal x1(t) can be represented as a point P in the signal space S, with 

A T  and 0 as its coordinates respectively along the u1(t) and u2(t) basis signal directions; signal x2(t) as 

a point Q in the signal space S, with coordinates 
3

2
A T  and 

1

2
A T  and the signal x3(t) as a point R with 

coordinates 
3

2
A T  and 

1

2
A T- . It is a geometrical representation or vector representation of signals in the 

signal space, and is generally known as the signal-space diagram of those signals which is shown in Fig. 2.7.

The  orthonormal basis set u1(t) and u2(t) obtained from the given signal set x1(t), x2(t) and 

x3(t) by using  Gram–Schmidt orthogonalization is not unique. This is because, if only we 

had initially set s1(t) = x2(t) or x3(t) instead of x1(t) as we did, while applying Gram–Schmidt 

procedure, i.e., if we had ordered the signals differently, we would have got totally different 

sets of orthonormal basis signals. The representation of each of the signals x1(t), x2(t) and 

x3(t) also would be different when the basis set is different. Hence, the signal-space diagram 

also is not unique.

Fig. 2.18  Signal-space diagram of signals x1(t), x2(t) and x3(t) of Example 2.10

Example 2.11 Determine the distance between the signals x1(t), x2(t) and x3(t) of Example 2.10. If 
during each time slot, any one of these signals is transmitted, which type of error is more likely? (a) x1(t) 
being mistake for x2(t), (b) x1(t) being mistaken for x3(t), or (c) x2(t) being mistaken for x3(t)?

Solution The distance between x1(t) and x2(t) in the signal space diagram is given by

 

1/22 2

1 2

1/2
2 2

3 1
||[ ( ) ( )]||

2 2

1 1 1

4 4 2

x t x t A T A T A T

A T A T A T

È ˘Ê ˆ Ê ˆ- = - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

È ˘= + =Í ˙Î ˚

Remark
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Similarly, 

1/22 2

1 3

1/2
2 2

3 1
||[ ( ) ( )]||

2 2

1 1 1

4 4 2

x t x t A T A T A T

A T A T A T

È ˘Ê ˆ Ê ˆ- = - + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

È ˘= + =Í ˙Î ˚

and 

1/22 2

2 3

2 1/2

3 3 1 1
||[ ( ) ( )]||

2 2 2 2

[ ]

x t x t A T A T A T A T

A T A T

È ˘Ê ˆ Ê ˆ- = - + +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

= =

Hence, x1(t) is equidistant from x2(t) and x3(t), the distance being 
1

2
A T . The distance between x2(t) and 

x3(t) is, however, A T  which is 2  times the distance between x1(t) and either x2(t) or x3(t).
 Therefore, the probability of x2(t) being mistaken for x3(t) or vice versa, is much less than the probability 
of x1(t) being mistaken either as x2(t) or x3(t) (or either x2(t) or x3(t) being wrongly identified as x1(t)).

Example 2.12 A QPSK modulator transmits one of the following four signals during each time slot 
of T sec.

 
0( ) 2 cos (2 1) ; 1, 2, 3, 4

4i sx t P t i i
p

w
È ˘= + - =Í ˙Î ˚

and 2w0T = np where n is an integer. (a) Draw the  signal space diagram using orthonormal coordinates, 
and (b) Determine the maximum distance between any two signals

Solution The given signal may be written as

 
0 0( ) 2 cos (2 1) cos 2 sin (2 1) sin with 1, 2, 3, 4

4 4i s sx t P i t P i t i
p p

w w
È ˘ È ˘= - - - =Í ˙ Í ˙Î ˚ Î ˚

Since each xi(t) has a cos w0t component and a sin w0t component, and since these two are orthogonal over the 
interval [0, T], without going through  Gram–Schmidt orthogonalization procedure, let us straight away take 

the two orthogonal basis signals as, say, 1 0( ) 2 cos ; 0st P t t TwY = £ £  and 2 0( ) 2 sin ; 0 .st P t t TwY = £ £  

These are orthogonal but not orthonormal. To normalize them, we have to divide each by its own norm.

 

2 2 2
1 1 1 1 0

0 0

0 0
0 0

|| ( )|| ( ( ), ( )) ( ) 2 cos

1
2 [1 cos 2 ] since cos 2 0

2

T T

s

T T

s s

t t t t dt P tdt

P t dt P T tdt

w

w w

Y = Y Y = Y =

= + = =

Ú Ú

Ú Ú

  (since 2w0T = np where n is an integer)

\ 1|| ( )|| st TPY =  \ u1(t) = Normalized basis signal = 02 coss

s

P t

TP

w

\ 1 0 2 0

2 2
( ) cos and similarly, ( ) sin .u t t u t t

T T
w w= =
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Now,

 

0 0

1 2

1 1 2 2

( ) 2 cos (2 1) cos 2 sin (2 1) sin
4 4

cos (2 1) ( ) sin (2 1) ( )
4 4

( ) ( ),

i s s

s s

s s

x t P i t P i t

P T i u t P T i u t

P TC u t P TC u t

p p
w w

p p

È ˘ È ˘= - - -Í ˙ Í ˙Î ˚ Î ˚
È ˘ È ˘= - - -Í ˙ Í ˙Î ˚ Î ˚

= -

where 1 2cos (2 1) and sin (2 1)
4 4

C i C i
p p

= - = - -

Now, when

 

1 2

1 2

1 2

1 2

1 1
1, cos ; sin

4 42 2

3 1 3 1
2, cos ; sin

4 42 2

5 1 5 1
3, cos ; sin

4 42 2

7 1 7 1
4, cos ; sin

4 42 2

i C C

i C C

i C C

i C C

p p

p p

p p

p p

-Ê ˆ= = = = - =Á ˜Ë ¯

-Ê ˆ= = = - = - =Á ˜Ë ¯

Ê ˆ Ê ˆ= = = - = - = +Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ Ê ˆ= = = = - = +Á ˜ Á ˜Ë ¯ Ë ¯

The corresponding signal-space diagram is shown in Fig. 2.19.

Fig. 2.19  Signal-space diagram and signal vectors for the four signals of Example 2.12

The maximum distance between any two vectors is equal to the distance between x3(t) and x1(t) or the 
distance between x2(t) and x4(t). This distance is equal to

 
2 2 2

2
s

s

P T
d P T= ¥ ◊ =
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Example 2.13 (a) Show that the three functions given below are pairwise orthogonal over the interval 
[–2, 2], (b) Determine the value of the constant A that makes the set of functions an orthonormal set, and 

(c) Express the waveform 
1 for 0 2

( )
0 otherwise

t
x t

£ £Ï
= Ì

Ó
 in terms of the orthonormal set obtained in part (b).

(University Examination Question)

Fig. 2.20

Solution
(a) To show that the three functions y1(t), y2(t) and y3(t) are pairwise orthogonal, we have to show that 

pairwise, their innerproducts are zero, i.e.,

1 2 2 3 3 1( ( ), ( )) ( ( ), ( )) ( ( ), ( )) 0t t t t t ty y y y y y= = =
  Now,

2 1 0 1 2

1 2 1 2 1 2 1 2 1 2 1 2
2 2 1 0 1

1 0 1 2

2 1 0 1

( ( ), ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( ) 0

t t t t dt t t dt t t dt t t dt t t dt

A A dt A A dt A A dt A A dt

y y y y y y y y y y y y
-

- - -
-

- -

= = + + +

= - - + - + + - =

Ú Ú Ú Ú Ú

Ú Ú Ú Ú

  In a similar way, it can be shown that (y2(t), y3(t)) and (y3(t), y1(t)) are each equal to zero.
  Hence, y1(t), y2(t) and y3(t) are pairwise orthogonal.

(b) If yi(t) is normalized, then ||yi(t)||
2 = 1 = (yi(t), yi(t)), for i = 1, 2 and 3.

  Taking (y1(t), y1(t)) = ||y1(t)||
2, it is equal to

2 1 0 1 2
2 2 2 2 2 2
1 1 1 1 1

2 2 1 0 1

( ) ( ) ( ) ( ) ( ) 4t dt t dt t dt t dt t dt Ay y y y y
-

- - -
= + + + =Ú Ú Ú Ú Ú

  If y1(t) is normalized, this should be unity.

  \ 4A2 = 1 or 
1

2
A = ± . Let us take it as 1/2.

  \  A value of A = 1/2 will normalize y1(t), y2(t) and y3(t), and make them  orthonormal functions.

 (c) 
1 for 0 2

( )
0 otherwise

t
x t

£ £Ï
= Ì

Ó
  Therefore, x(t) is shown below.
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  Since x(t) is to be expressed in terms of y1(t), y2(t) and y3(t), let:

1 1 2 2 3 3( ) ( ) ( ) ( )x t K t K t K ty y y= + +

  where y1(t), y2(t) and y3(t) are normalized functions, i.e., A = 1/2.
  Then from Eq. (2.13),

  and 

2 1 2

1 1 1
2 0 1

2

2 2
0

2

3 3
0

1 1
( ( ), ( )) ( ), ( ) 0

2 2

1
( ( ), ( )) 1 1

2

1
( ( ), ( )) 1 1

2

K x t t x t t dt dt dt

K x t t dt

K x t t dt

y y

y

y

-

Ê ˆ= = = + - =Á ˜Ë ¯

Ê ˆ= = ◊ =Á ˜Ë ¯

Ê ˆ= = - ◊ = -Á ˜Ë ¯

Ú Ú Ú

Ú

Ú

  \ 1 2 3( ) 0 ( ) 1 ( ) ( 1) ( )x t t t ty y y= ◊ + ◊ + -

where y1(t), y2(t) and y3(t) are normalized functions (i.e., A = 1/2).

2.4.1  Schwarz’s Inequality

If A and B are two vectors, we know that their dot product A ◊ B is

A ◊ B = |A||B|cos q (2.24)

\ cos
| || |

q
◊

=
A B

A B
 (2.25)

Since | cos q | £ 1 and the ‘equal to’ sign in Eq. (2.24) holds good only if q = 0, i.e., if A = a B

1;
| || |

◊
£

A B

A B
 ‘equal to’ holding good only if A = a B where a is a constant

i.e.,   | A ◊ B | £ | A ||B |; with ‘equal to’ only if A = a B (2.26)

From the analogy between signals and vectors, which we discussed in detail earlier, the ‘ dot product’ of 
vectors can be replaced by the  inner product of signals and the magnitude of a vector can be replaced by the 
‘ norm’ of a signal. Thus, if we consider two signals s1(t) and s2(t) belonging to some signal space, we may 
write an equation analogous to Eq. (2.26) as

£1 2 1 2|( ( ), ( )) | || ( ) || || ( ) ||;s t s t s t s t  the ‘=’ sign holds good only if s2(t) = c s1(t) (2.27)

But 1 2 1 2( ( ), ( )) ( ) ( )s t s t s t s t dt
•

-•
= Ú

if both the signals are real valued.
Further,

1/2

1/2 2
1 1 1 1

1/2

1/2 2
2 2 2 2

|| ( )|| [( ( ), ( ))] ( )

|| ( )|| [( ( ), ( ))] ( )

s t s t s t s t dt

s t s t s t s t dt

•

-•

•

-•

È ˘
= = Í ˙

Í ˙Î ˚

È ˘
= = Í ˙

Í ˙Î ˚

Ú

Ú
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Substituting these in Eq. (4.24), we get

 

2

2 2
1 2 1 2( ) ( ) ( ) ( )s t s t dt s t dt s t dt

• • •

-• -• -•

È ˘ È ˘
£ Í ˙ Í ˙

Í ˙ Í ˙Î ˚ Î ˚
Ú Ú Ú  (2.28)

where the ‘=’ sign holds true if and only if s2(t) = c s1(t), where c is an arbitrary constant. This is what is 
referred to as ‘ Schwarz’s Inequality’. If the signals are complex valued, it takes the form

 

2

* 2 2
1 2 1 2( ) ( ) | ( )| | ( )|s t s t dt s t dt s t dt

• • •

-• -• -•

È ˘ È ˘
£ Í ˙ Í ˙

Í ˙ Í ˙Î ˚ Î ˚
Ú Ú Ú  (2.29)

where the ‘=’ sign holds true if and only if *
2 1( ) ( )s t cs t= .

 As can easily be seen, Schwarz’s inequality is only a generalization of the well-known relation that the dot 
product of two vectors will have a magnitude that is less than or equal to the product of the magnitudes of the 
individual vectors (Eq. (2.26)).

2.5 COMPLEX-EXPONENTIAL FOURIER SERIES

The expansion of a signal x(t) using the exponential functions

 
2

( ) ,
j nt

T
nx t e

p

=  n = 0, ±1, ±2, …

is called the  complex-exponential Fourier series expansion of x(t).
Before proceeding further, we shall first show that this set of complex-exponential functions, is an orthogonal 

set over the interval to
2 2

T T
- + . For this, referring to Eq. (2.18), we have to show that

 
( )2 2

/2

/2

0 if

constant, if
T T

T
j mt j nt

T

m n
e e dt

a m n

p p *

-

πÏ
◊ = Ì =Ó

Ú

Assume m π n.

 
( )2 2 2

/2 /2
( – )

/2 /2

T T T

T T
j mt j nt j m n t

T T

e e dt e dt
p p p*

- -
◊ =Ú Ú

Since m and n are both integers, and m π n, (m – n) will also be an integer, say k and k π 0.

2 2 2
/2 /2 /2

( – )

/2/2 /2 2

sin
[ ] 0 since is an integer and 0.

2

T T T

T T T
j m n t j kt j kt

T
T T

j k j k

T
e dt e dt e

j k

T k
e e T k k

j k k

p p p

p p

p

p

p p

-- -

-

= =

Ê ˆ= - = = πÁ ˜Ë ¯

Ú Ú

Assume m = n. Then m – n = 0 and hence

 

( )2 2
/2 /2

/2 /2

1 , a constantT T

T T
j mt j nt

T T

e e dt dt T
p p *

- -
◊ = ◊ =Ú Ú

Thus, 
2

( ) T
j nt

nx t e
p

= , n = 0, ±1, ±2, …, form a set of  orthogonal functions and if we normalize them by multi-

plying each of them by 1/ T , the resultant functions will be forming a set of  orthonormal functions over the 

interval to
2 2

T T
- + . It can be shown that these sets are complete sets.
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 Since xn(t), n = 0, ±1, ±2, …, form a  complete set of orthogonal functions over the interval to
2 2

T T
- + ,

it should be possible to express any signal x(t) over the interval to
2 2

T T
- +  as a linear combination of these 

complex-exponential functions. Hence, we may write

2

( ) T
j nt

n
n

x t c e
p•

= -•
= Â

 (n taking only integer values)

02 ; ,
2 2

j nf t
n

n

T T
c e t

p
•

= -•
= - £ £ +Â  (2.30)

where 0

1
.f

T
D

That is, the expansion of x(t) using this complete set of orthogonal functions will be valid only over the 

interval to
2 2

T T
- + .

However, if x(t) is periodic with a period T, the expansion will be valid for all time: Hence, we write

Periodic
with period

02
0

1
   ( ) ;  ;    

n
j nf t

n
n

T

x t c e f t
T

p
= •

= -•
= = -• < < •Â  (2.31)

Now, to determine the constants cn, n = 0, ±1, ±2, …, which are called the complex-exponential Fourier series 
coefficients of x(t), we use Eq. (2.20) and write

0

0

0

/2
2

/2
2/2

/2
2 2 /2

/2

( )
1

( )

| |

T
j nf t

T
j nf tT

n T
j nf t T

T

x t e dt

c x t e dt
T

e dt

p

p

p

-

--

-

-

= =
Ú

Ú
Ú

 (2.32)

We may summarize the foregoing and state that if x(t) is a periodic signal with period T, it can be represented 
by the complex-exponential Fourier series expansion as

0

0

2
0

/2
2

/2

1
( ) ;  ; ,     

where

1
( )

j nf t
n

n

T
j nf t

n
T

x t c e f t
T

c x t e dt
T

p

p

•

= -•

-

-

= D -• < < •

=

Â

Ú

 (2.33)

If x(t) is not periodic, then the above expansion is valid only over the interval to
2 2

T T
- + .

From Eq. (2.33), it is clear that cn’s, are in general, complex numbers. Thus, we may write

| | nj
n nc c e

q=  (2.34)

where |cn| is the magnitude of cn and qn is the angle of cn.

A plot of |cn| vs n or nf0 , is called the  amplitude spectrum of the signal x(t) and a plot of qn vs n or nf0 is 

called the  phase spectrum of x(t). The reason for calling these as amplitude spectrum and phase spectrum 
may be understood from the following discussion.
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 A close look at Eq. (2.33) reveals that the Fourier series expansion of a periodic signal x(t) expresses it 
as a linear combination of an infinite number of complex exponentials with frequencies 0, ± f1, ± f2, ± f3,
etc. Thus, it involves terms representing the D.C. component (zero frequency), the fundamental frequency 
component, the second harmonic frequency component and the other harmonic frequency components. That 
is, it consists of all the frequency components present in x(t) and hence is called its ‘spectrum’ ; and this 

spectrum of the periodic signal, x(t), is a  discrete spectrum, as it contains only certain discrete frequencies 

the zero frequency, the fundamental frequency f0 , and the other  harmonic frequencies.
 In Eq. (2.33), if we substitute for cn using Eq. (2.34), we get

0(2 )
0

1
( ) | | ;  ;nj nf t

n
n

x t c e f t
T

p q
•

+

= -•
= D -• < < •Â  (2.35)

Thus, |cn| represents the magnitude of the complex-exponential having a frequency of nf0, while qn repre-
sents its initial phase (corresponding to t = 0). That is why, a plot of |cn| vs n (or nf0) is called the magnitude 
spectrum of x(t), while a plot of qn vs n (or nf0) is called the phase spectrum of x(t).

Thus, the spectrum of a continuous-time periodic signal is a discrete one.

Example 2.14 Determine the  complex-exponential Fourier series expansion of the periodic signal 
shown in Fig. 2.21.

Fig. 2.21

Solution

sin ; 0
( )

0; 2

A
x

q q p
q

p q p

£ £Ï
= Ì £ £Ó

The complex-exponential Fourier series expansion for the given signal may be written as

( ) ;jn
n

n

x c e
qq q

•

= -•
= -• < < •Â

where –

0

sin
2

jn
n

A
c e d

p
qq q

p
= Ú

Since

– ( – ) ( )

0 0

( ) ( )

sin , we have
2

( )
2 2 4

04 (1 ) (1 )

j j

j j
jn j n j n

n

j n j n

e e

j

A e e A
c e d e e d

j j

A e e

j j n j n

q q

q qp p
q q q q q

q q q q

q

q q
p p

p

p

-

-
- +

- - +

-
=

Ê ˆ-
= = -Á ˜Ë ¯

È ˘
= +Í ˙

- +Î ˚

Ú Ú
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(1 ) (1 )

(1 ) (1 )

(1 ) (1 )

0 04 (1 ) 4 (1 )

4 (1 ) 4 (1 ) 4 (1 ) 4 (1 )

[ 1] [ 1]
4 ( 1) 4 (1 )

j n j n

j n j n

j n j n

A A
e e

n n

A A A A
e e

n n n n

A A
e e

n n

q q

p p

p p

p p

p p

p p p p

p p

- - +

- - +

- - +

- -
= +

- +

-
= + - +

- - + +

= - - -
- +

π
for n odd

n 1 or –1

:  (1 –  n) and (1 + n) will both be even and hence e–jp(1 – n) and e–jp(1 + n) will both be equal to 1.

\
odd

0n
n

c =

For n even: (1 – n) and (1 + n) will both be odd and hence ejp(1 – n) and e–jp(1 + n) will both be equal to –1.

\
p p p

-
= + =

- + - 2
even

2 2

4 ( 1) 4 (1 ) (1 )
n

n

A A A
c

n n n

For n = 0; 0

A
c

p
=

For n = 1 the second term reduces to zero but the first term takes the form of zero divided by zero. Hence 
applying L’Hospital’s rule to the first term, we get

1 4

A
c

j
=

For n = –1; the first term takes the value zero but the second term takes the form of zero by zero. Applying 
L’Hospital’s rule to the second term, we get

–1 4

A
c

j
= -

Hence, the  complex exponential Fourier series expansion of the given waveform is

qq q
p

•

= -•
= -

-
Â 2

even

( ) sin   ]
2 (1 )

jn

n
n

A A
x e

n

Example 2.15 x(t) is a  periodic signal as shown in Fig. 2.22. Find its complex-exponential Fourier 
series expansion and plot its  magnitude and  phase spectra.

Fig. 2.22 Signal of Example 2.15
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Solution 
/2

0
/2

1
( ) 0

T

T

c x t dt
T -

= =Ú

0 0 0

0 0

0 0

/2 0 /2
2 2 2

/2 /2 0

0 /2
2 2

/2 0

2 2

0 0

1 1 1
( ) ( ) ( )

0 /2
[1 ] [1 ]

/2 02 2 2 2

[2
2

T T
j nf t j nf t j nf t

n
T T

T
j nf t j nf t

T

j nf t j nf t
j n j n

c x t e dt A e dt A e dt
T T T

A A
e dt e dt

T T

TA e A e A A
e e

TT j nf T j nf j n j n

A

j n

p p p

p p

p p
p p

p p p p

p

- - -

- -

- -

-
- -

-

= = - +

-
= +

-
= + = - + -

-- -

= -

Ú Ú Ú

Ú Ú

( )] [1 cos ]j n j n A
e e n

j n

p p p
p

-+ = -

But
1 for even

cos
1 for odd

n
n

n
p

Ï
= Ì-Ó

\ p

Ï
Ô= Ì
ÔÓ

2
for odd

0 for even
n

A
n

j nc

n

 For the purpose of plotting the magnitude and phase spectra of x(t), we shall assume A = p. The magnitude 
and phase spectra are plotted in Figs. 2.23 and 2.24 respectively.

Fig 2.23  Magnitude spectrum

Fig. 2.24  Phase spectrum
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2.5.1 Properties of Complex-Exponential Fourier Series Coefficients

We now give a list of important theorems and properties of the complex-exponential Fourier series coeffi-
cients (CEFSCs), cns. The reader is expected to provide the proof.
 1. If x(t) and y(t) are two periodic signals with the same fundamental period, and if their CEFSCs are 

represented respectively by andx y
n nc c , then the signal z(t) = ax(t) + by(t) will have CEFSC’s given by

z x y
n n nc ac bc= +  (2.36)

  This is called the  linearity theorem.
 2. If x(t) is a periodic signal with fundamental frequency f0 and if 0( ) ( )y t x t tD - , then

0 02j nf ty x
n nc e c

p-=  (2.37)

  This is called the  time-shift theorem.
 3. If x(t) is a periodic signal with fundamental frequency f0 and if 02( ) ( )j kf t

y t e x t
p-= ◊ , then

y x
n n kc c -=  (2.38)

  This is called the  frequency-shift theorem.
 4. x(t) and y(t) are periodic signals with the same fundamental period T, and if

0

0

( ) ( ) ( ) ( ) ( )*

t T

t

z t x t y t x t y dt t t
+

= = -Ú , then

z x y
n n nc T c c= ◊ ◊  (2.39)

  This is called the  circular convolution theorem.
 5. If x(t) and y(t) are periodic signals with the same fundamental period T, and if z(t) = x(t) ◊ y(t), then

z x y x y
n n n k n k

k

c c c c c
•

-
= -•

= * = ◊Â  (2.40)

  This is called the  multiplication theorem, or the  modulation theorem.

 6. If x(t) is a periodic signal with fundamental frequency f0 and if ( ) ( )
d

y t x t
dt

= , then

02y x
n nc j nf cp=  (2.41)

  This is known as the  differentiation theorem
 7. If x(t) is a periodic signal with fundamental frequency f0 and if y(t) = x(at) where a is a non-zero real 

number, i.e., if y(t) is a time-scaled version of x(t), then

y x
n nc c=  (2.42)

  This is known as the  scaling theorem. The above result implies that while the spacing between the 
spectral components is changed (i.e., it is now af0 instead of f0), the amplitudes of these spectral compo-
nents remain unchanged.

 8. Let x(t) be a periodic signal with cns as its CEFSCs. Then

/2
2 2

/2

1
Average power of ( ) | ( )| | |

T

n
nT

x t x t dt c
T

•

= -•-
= = ÂÚ  (2.43)

  This is called the  Parseval’s theorem pertaining to the complex-exponential Fourier series. Since the 
average power of 02j nf t

nc e
p  is equal to |cn|

2, Eq. (2.43) merely states that the average power of a 
periodic signal is equal to the sum of the average powers of its orthogonal components.
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 9. If a  periodic signal x(t) is real-valued and its CEFSCs are represented by cns, then

 – , if ( ) is real valuedn nc c x t
*=  (2.44)

  where the * indicates complex-conjugation.
 10. If a periodic signal x(t) with cns, as its CEFSCs is real-valued and even with respect to t, then cns are 

also real and are even with respect to n.

 cns are real c–n = cn, if x(t) is real an even (2.45)

 11. If a periodic signal x(t) with cns, as its CEFSCs, is real-valued and has odd symmetry with respect to t, 
then cns are purely imaginary and have odd symmetry with respect to n.

 cns purely imaginary –n n nc c c
*= = - , if x(t) is real and odd (2.46)

2.6 TRIGONOMETRIC FOURIER SERIES

The expansion of a signal x(t) using the  complete set of orthonormal functions

 

0 0

0 0 0

1 2 2
, cos , cos 2 ,

2 2 2
sin , sin 2 , with ,

t t
T TT

t t
T T T

w w

p
w w w

º

º D

is referred to as the  trigonometric Fourier series expansion of x(t).
Before proceeding further, we shall first show that the above set is an orthonormal set over the interval 

to
2 2

T T
- + . For this, we make use of Eq. (2.18).

 1. First we shall show that all these functions have unit norm, i.e., that they have been normalized.

 

/2 /2 /2
2 0

0
/2 /2 /2

/2 /2

0
/2 /2

1 cos 21 1 2
1; ( 2/ cos )

2

1 1
= 1 cos 2 1 as the second integral is zero

T T T

T T T

T T

T T

n t
dt T n t dt dt

TT T

dt n tdt
T T

w
w

w

- - -

- -

+Ê ˆÊ ˆ◊ = = Á ˜Á ˜ Ë ¯Ë ¯

+ =

Ú Ú Ú

Ú Ú

  Further, 
/2

2
0

/2

( 2/ sin ) 1
T

T

T n t dtw
-

=Ú

  Thus, we find that all these functions have been normalized.
 2. We will now show that any two distinct functions in the above set are orthogonal to each other. For this, 

using Eq. (2.18), we find that

 

/2 /2

0 0 0
/2 /2

1 2 1 2
cos cos cos 0

T T

T T

n t dt m t n t dt
T T TT

w w w
- -

Ê ˆ Ê ˆ Ê ˆ
= =Á ˜ Á ˜Á ˜ Ë ¯ Ë ¯Ë ¯Ú Ú

  Also, m π n

 
/2

0 0
/2

2 2
cos sin 0

T

T

m t n t dt
T T

w w
-

Ê ˆ Ê ˆ
=Á ˜ Á ˜Ë ¯ Ë ¯Ú  for any integer values of m & n.

  and 
/2

0 0
/2

2 2
sin sin 0 if

T

T

m t n t dt m n
T T

w w
-

Ê ˆ Ê ˆ
= πÁ ˜ Á ˜Ë ¯ Ë ¯Ú
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  Thus, the above set of functions is a set of mutually orthogonal functions. Further, since it is a complete 
set, we should be able to express any function x(t) as a linear combination of these orthonormal 
functions. We may therefore write

            0 0 0
1 1

1 2 2
( ) cos sin ;

2 2
n n

n n

T T
x t n t n t t

T T T
a a w b w

• •

= =

Ê ˆ Ê ˆ Ê ˆ
= + + - £ £ +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Â Â

and where 0

2
( )t

T

p
w D  (2.47)

  Making use of Eq. (2.18) and noting that all the functions of the set are normalized

i.e., 
/2

2

/2

| ( )| 1
T

i
T

f t dt
-

=Ú
  We have

 
/2 /2

0
/2 /2

1 1
( ) ( )

T T

T T

x t dt x t dt
T T

a
- -

= =Ú Ú  (2.48)

 
/2

0
/2

2
( ) cos

T

n
T

x t n tdt
T

a w
-

= Ú  (2.49)

and 
/2

0
/2

2
( ) sin

T

n
T

x t n tdt
T

b w
-

= Ú  (2.50)

  If we now define

 
/2

0 0 0
/2

1 1
then ( )

T

T

a a x t dt
TT

a
-

D = Ú  (2.51)

 
/2

0
/2

2 2
, then ( ) cos

T

n n n
T

a a x t n tdt
T T

a w
-

D = Ú  (2.52)

and 
/2

0
/2

2 2
, then ( ) sin

T

n n n
T

b b x t n tdt
T T

b w
-

D = Ú  (2.53)

  Using the above equations, Eq. (2.47) may now be written as

 0 0 0 0
1 1

2
( ) cos sin ; ;

2 2n n
n n

T T
x t a a n t b n t t

T

p
w w w

• •

= =
= + + - £ £ + DÂ Â  (2.54)

  If, however, x(t) is periodic with a period T, then the above expansion of x(t) is valid for all time, so that 
we may write

 0 0 0 0
periodic 1 1

2
( ) cos sin ; – ;n n

n n

x t a a n t b n t t
T

p
w w w

• •

= =
= + + • £ £ • DÂ Â  (2.55)

  where

 

/2

0
/2

/2

0
/2

/2

0
/2

1
( )

2
( ) cos

2
( ) sin

T

T

T

n
T

T

n
T

a x t dt
T

a x t n tdt
T

b x t n tdt
T

w

w

-

-

-

=

=

=

Ú

Ú

Ú

 (2.56)
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2.6.1 Trigonometric and Complex-Exponential Fourier Series

The  trigonometric Fourier series and the  complex-exponential Fourier series are related.
For the CEFS, we had

0 0
0

0

( ) jn t jn t
n n

n n
n

x t c e c c e
w w

• •

= -• = -•
π

= = +Â Â

In the above equation, if we put

0 0 –

1 1
; ( ) and ( ),

2 2n n n n n nc a c a jb c a jb= = - = +  (2.57)

and simplify, we get

0 0 0
1 1

( ) cos sin ,n n
n n

x t a a n t b n tw w
• •

= =
= + +Â Â

where

0

0 0

/2 /2

0 0 0
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1 1
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[ ] ( ) sin
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=
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-
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-

-
-
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È ˘
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Î ˚
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Ú
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2.6.2 Symmetries of x(t) and Computation of Fourier Series

When the periodic signal, x(t), possesses certain symmetries, the computation of its Fourier series coeffi-
cients gets considerably simplified, as stated below.

1. The trigonometric Fourier series of a periodic signal x(t) with  even symmetry will consist only of 
cosinusoids, i.e., bn = 0 for all n.

2. The trigonometric Fourier series of a periodic signal x(t) with  odd symmetry will consist only of 
sinusoids, i.e., an = 0 for all n.

3. A periodic function x(t) with period T is said to be having rotational, or  half-wave symmetry, if

x(t ± T/2) = –x(t) for all t.

All periodic signals with half-wave symmetry will have only odd harmonic components in their Fourier 
series expansion. (Prove this)

2.6.3 DIRICHLET’s Conditions for Existence and Convergence of Fourier Series

From our discussion so far on Fourier series, it might appear that every periodic function can be expanded in 
the form of a Fourier series. However, this is not true.
 We say that for a given x(t), a Fourier series exists provided cn is finite for all n, i.e., |cn| < `.

Since 0

/2

/2

1
( ) ,

T
jn t

n
T

c x t e dt
T

w-

-
= Ú

it follows that for the Fourier series to exist, x(t) must satisfy the condition
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/2

/2

| ( )|
T

T

x t dt
-

< •Ú  (2.58)

The above condition for the existence of Fourier series is called the  Weak Dirichlet’s Condition.
 It should however, be noted that existence of Fourier series does not guarantee their convergence at all 
points and that for  convergence, the following conditions, known as  strong Dirichlet’s conditions must be 
satisfied:

1. x(t) must be finite at all points.
2. x(t) must have only a finite number of maxima and minima in one period.
3. x(t) can have only a finite number of discontinuities and the discontinuities, if any, must be finite 

discontinuities.

Example 2.16 Find the trigonometric and complex-exponential Fourier series of the periodic signal 
shown in Fig 2.25.

Solution Here, x(t) = At; 0 £ t £ 1
 (a) Trigonometric Fourier series

\
1

0
0

1

0

1

0

1 2

2 cos 2 0

2 sin 2

n

n

A A
a tdt

a A t ntdt

A
b A t ntdt

n

p

p
p

= =

= =

-
= =

Ú

Ú

Ú

(b) Complex-exponential Fourier series

1
2

0 0

1

0
0

1 2

1 2

T
j nt

n
n

A jA
c te dt

n

A A
c tdt

p

p

=
-

π
= =

= =

Ú

Ú

Example 2.17 For the periodic signal shown in Fig. 2.26, determine the (a) complex-exponential, and 
(b) trigonometric Fourier series. 

Solution
(a) x(q) = A sin q; 0 £ q £ p

  \ ( ) ;jn
n

n

x c e
qq q

+•

= -•
= -• < < •Â

  and 
0 0

1
sin ( )

2
jn j j jn

n

A A
c e d e e e d

j

p p
q q q qq q q

p p
- - -= = -Ú Ú

  On simplification, this gives

   

2

2
; even

(1 )

0 ; odd
n

A
n

c n

n

p

Ï
Ô= -Ì
ÔÓ

Fig. 2.25

Fig. 2.26
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  \ 0 2
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2 4
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  \
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q q
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=
= -

-
Â

(b) To find the trigonometric Fourier series

0
1 1

( ) cos sinn n
n n

x a a n b nq q q
• •

= =
= + +Â Â

  since x(q) has even symmetry, bn = 0 for all n.

Now, 0
0

0 0

2
sin

2 2
( ) cos sin cosn

A A
a d

A
a x n d n d

p

p p

q q
p p

q q q q q q
p p

= =
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Ú Ú

  Using the identity: 
1

sin cos [sin( ) sin( )]
2

n n nq q q q q q◊ = + + -

  And by simplifying, we get

2

4
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0 ; odd
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A
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a n

n

p
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Ô= -Ì
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MATLAB Example 2.1 In this example, we study  GIBB's phenomenon. For this, we plot the 
continuous-time Fourier series of a square wave and study the effect of truncation of Fourier series coeffi-
cients on the signal that is generated.

T=1; %We start with a square wave of time period 1 second

T=linespace(0, 3, 3000); % We oversample by 1000 with 3 time periods

x = [ones (1, 250), zeros (1, 500) ones (1, 250)]; %The square wave

xp = kron (ones(1, 3), x); %The signal is repeated

subplot (311), plot(t, xp, ‘k’);

axis ([0, 3, -0.1, 1.1]);

title (‘Square wave’); xlabel (‘time, seconds’);

ylabel (‘magnitude’);

%First plot using only 11 Fourier Series Coefficients

xs1=zeros (1, 1000);

for k = -5:5

ek = cos (2*pi*k*t(1:1000)) + sqrt (-1) *sin (2*pi*k*t(1:1000));

xs1 = xs1+0.5*sinc (k/2)*ek;

end
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subplot (312), plot (t, kron (ones (1, 3), real (xs1)), ‘k’);

title (‘Square wave with 11 Series

Coefficients’);xlabel (‘time, seconds’);

ylabel (‘magnitude’);

axis ([0, 3, -0.2, 1.2]);

%Repeat using 21 Fourier Series coefficients

xs1=zeros (1, 1000);

for k=-10 : 10

ek = cos (2*pi*k*t (1:1000)) + sqrt (-1)*sin (2*pi*k*t(1:1000));

xs1 = xs1+0.5*sinc (k/2) *ek;

end

subplot (313), plot (t, kron (ones (1, 3), real (xs1)), ‘k’);

title (‘Square wave with 21 Series

coefficients’);xlabel (‘time, seconds’);

ylabel (‘magnitude’);

axis ([0,3, – 0.2, 1.2]);

The figure shows the effect of  truncation of Fourier Series on a square wave. The square wave (top) is plotted 
using only the coefficients for |k| < 6 (middle) and |k | < 11 (bottom). Note that the  ripples do not decrease in 
magnitude, but only increase in frequency.

Summary 
 ■ A signal is a single-valued function of one or more variables and carries some information.
 ■ A continuous-time signal is one whose value is defined at all instants of time. For example, a sine wave.
 ■ A discrete-time signal is one whose values are defined only at a discrete set of points in time. For example, a 

sequence of numbers representing the temperature at a fixed time, taken on a daily basis.
 ■ A signal x(t) is said to be periodic in time with a period T if x(t + mT) = x(t) for any t and any integer m.
 ■ A signal whose total energy is finite and non-zero, is called an energy signal. For example, a rectangular pulse of 

finite duration: x(t) = Ae–| t |/T
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 ■ A signal whose average power is finite and non-zero, is called a power signal. For example, a sine wave.
 ■ (a)  A unit impulse function is denoted by d(t) and is defined by the following:

 

2

1

1 2(0) if 0
( ) ( )

0 otherwise

t

t

x t t
x t t dtd

< <Ï
= Ì

Ó
Ú

     and where x(t) is any function which is continuous at least at t = 0.
  (b) Properties:
 (i) Area under a unit impulse function is one.
 (ii) Width (along the time axis) of an impulse function is zero.
 (iii) If x(t) is continuous at t = t, then

   x(t)d(t – t) = x(t)d(t – t) (Sampling property)

  and x(t) * d(t – t) = x(t – t) (Replication property)

 ■ ( ) ( ) and ( ) ( )
t

d
u t d u t t

dt
d l l d

-•

= =Ú
 ■ A  vector space is a set of vectors satisfying certain conditions, the most important of which are:

  (a)  When two vectors of the set are added, the resultant vector must again belong to the same set (closure property 
with respect to addition)

  (b)   Zero vector must belong to the set (Existence of zero vector)
  (c)  For every vector belonging to the set, the additive inverse must exist in the set.
  (d)  When any vector belonging to the set is multiplied by a scalar, the resultant vector must again belong to the 

same set.
 ■ A  signal space can be defined exactly on the same lines.
 ■ A set of signals is said to be linearly independent if no signal of the set can be expressed as a linear combination 

of the rest.
 ■ A basis set of signals for a signal space is a set of  linearly independent signals which can, by various linear combi-

nations, generate that signal space, i.e., every signal of the signal space must be capable of being expressed as a 
linear combination of the linearly independent basis signals.

 ■ A basis set is not unique for a given signal space; i.e., for the same signal space there can be a number of basis 
signal sets.

 ■ The number of signals in any basis set of a signal space is referred to as the dimension of that signal space.
 ■ Just as two vectors of the Euclidian space are said to be orthogonal if their dot product is zero, we say that two 

signals are orthogonal if their  inner product is zero.
 ■ For the signal space S of all real-valued continuous-time signals having a finite energy over the interval [0, T], a 

convenient inner product is

 0

( ( ), ( )) ( ) ( )
T

x t y t x t y t dtD Ú

 ■ The inner product of any signal ŒS with itself is called the norm-square of the signal and is equal to the energy of 
the signal over the interval [0, T]. Norm of x(t) is

 || ( )|| Energy of the signalx t =

 ■ A set of signals, si(t), i = 1, 2, …, n are said to be forming an orthonormal set of signals if 
1 for

( ( ), ( ))
0 otherwisei j

j i
s t s t

=Ï
= Ì

Ó
 ■ The component of a signal s1(t) along another signal s2(t), is given by

 
1 2

22
2

( ( ), ( ))
( )

|| ( )||

s t s t
s t

s t

È ˘
Í ˙
Î ˚

 ■ Given m signals,  Gram–Schmidt orthogonalization procedure enables us to derive n orthonormal signals from 
them with n £ m.
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 ■  Schwarz’s inequality
2

* 2 2
1 2 1 2( ) ( ) | ( )| | ( )|s t s t dt s t dt s t dt

• • •

-• -• -•

È ˘ È ˘
£ Í ˙ Í ˙

Í ˙ Í ˙Î ˚ Î ˚
Ú Ú Ú

  where the equality sign holds if and only if
*

2 1( ) ( )s t cs t=
 ■ If x(t) is a periodic signal with a period T = 1/f0, then x(t) can be written as

02( ) ;j nf t
n

n

x t c e t
p

•

= -•
= -• < < •Â

  where cns are called the  complex-exponential Fourier series coefficients and are given by

0

/2
2

/2

1
( )

T
j nf t

n

T

c x t e dt
T

p-

-

= Ú

cns are in general complex numbers, even if x(t) is a real-valued function.

 ■ (a)  If | | nj
n nc c e

q= , a plot of |cn| vs. n(or nf0) is called the magnitude spectrum of x(t) and a plot of qn vs. n (or nf0)
is called the phase spectrum of x(t).

  (b)  The magnitude spectrum as well as the phase spectrum of a periodic continuous-time signal are discrete.
 ■ (a)  If x(t) is periodic in t with a period t = 1/f0, then

0 0 0
1 1

( ) cos sin ;n n
n n

x t a a n t b n t tw w
• •

= =
= + + -• £ £ •Â Â

     where
/2 /2

0 0
/2 /2

1 2
( ) ; ( ) cos

T T

n

T T

a x t dt a x t n tdt
T T

w
- -

= =Ú Ú

     and 
/2

0
/2

2
( ) sin

T

n

T

b x t n tdt
T

w
-

= Ú

   a0, ans and bns are called Trigonometric Fourier series coefficients of x(t).
  (b)  For an x(t) which has  even symmetry, all bns are zero. For an x(t) which has  odd symmetry, all ans are zero. For 

an x(t) which is symmetric about the time axis, a0 = 0.
 ■ (a)   Weak Dirichlet’s condition: For Fourier series to exist, a periodic function with period T must satisfy the 

condition
/2

/2

| ( )|
T

T

x t dt
-

< •Ú

  (b)   Strong Dirichlet’s condition: The following conditions must be satisfied for the Fourier series of a periodic 
function x(t) to converge:

 (i) x(t) must be finite at all points.
 (ii) x(t) must have a finite number of maximum and minimum in one period.
 (iii) x(t) can have only a finite number of discontinuities and the discontinuities, if any, must be finite discon-

tinuities.
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Review Questions 
1. Define and give an example for each of the following

  (a) Continuous-time signals, and (b) Discrete-time signals
2. Define and give an example for each of the following

  (a) Energy signals, and (b) Power signals
3. Determine the values of the following integrals:

  (a) 
3

3

( 4) , and
t

t

t dtd
=

= -

-Ú  (b) d
=

-

= -

-Ú
2

5

2

( 1)
t

t

t

e t dt

4. Define  signal space. Give an example of a signal space.
5. Explain what is meant by a linearly independent set of signals.
6. Define the term ‘basis set’ for a signal space.
7. Define  dimension of signal space.
8. How is orthogonality of two signals defined?
9. Explain the term ‘ norm of a signal’. What is its physical significance?

10. How do you find the distance between the signals x(t) and y(t) belonging to a certain signal space?
11. Explain the basic principle of Gram–Schmidt’s orthogonalization procedure.
12. When do you say that the two signals x(t) and y(t) are orthogonal and/or orthonormal?
13. What is meant by a complete set of orthonormal functions. Give an example of such a set of functions.
14. State and explain Dirichlet’s conditions for convergence of Fourier series.
15. Write down the complex-exponential Fourier series expansion of the signal x(t) = 5 cos 10pt

Problems 
1. Determine whether the following continuous-time signals are periodic or aperiodic. If they are periodic, determine 

their  fundamental period.
 (a) x(t) = cos 3t, (b) 0( ) j t

x t e
w= , (c) x(t) = cos2 10pt

 (d) x(t) = sin2 100pt + sin 200pt, (e) x(t) = cos tu(t), and (f) x(t) = sin 3t + cos pt

2. If x(t) is as shown in Fig. P2.2, sketch and label each of the following signals:
 (a) x(t – 3), (b) x(2t), (c) x(t/2),
 (d) x(–2t), and (e) x(3t – 2)

3. Which of the following signals are  power signals, and which of them 
are  energy signals? Are there any signals which are neither power 
signals nor energy signals? Justify your answer in either case. For 
power/energy signals, find the  average power or the  total energy, 
whichever is appropriate.

 (a) (2 – e–3t)u(t), (b) 0j t
e
w , (c) u(t – 2) – u(t – 4),

 (d) e–2t u(t), (e) e–5t, (f) –| | ( 1)

6
t t

e
+Ê ˆPÁ ˜Ë ¯ , and (g) te–2tu(t – 1)

4. The signal x(t) given by

1
[cos 1];

( ) 2

0 ; otherwise

t t
x t

w p w p
Ï + - £ £Ô= Ì
ÔÓ

  is called the raised cosine pulse, and is sketched in Fig. P2.4. 
Determine the total energy of this signal.

Fig. P2.2

Fig. P2.4
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5. For the signal x(t) shown in Fig P2.5(a), determine the following using

Fig. P2.5(a)                                                       Fig. P2.5(b)

 (a) a representation in terms of shifted versions of u(t).
 (b) a representation in terms of the rectangular pulse y(t) and its scaled and shifted versions

6. Do the following vectors form a basis for R3, the Euclidian space?
X = (1, 1, 0); Y = (3, 0, 1); Z = (5, 2, 1)

7. Show that the vectors X = (1, 1, 0, 0); Y = (0, 0, 1, 1); Z = (1, 0, 0, 4) and W = (0, 0, 0, 2) form a basis for R4. Find 
the coordinates of each of the standard basis vectors of R4 in the ordered basis set (X, Y, Z, W).

8. Signals s1(t), s2(t) and s3(t) are as shown in Fig. P2.8. Using Gram–Schmidt procedure, derive from them an ortho-
normal basis set of signals for the signal space spanned by s1(t) and s2(t) and s3(t).

Fig. P.2.8

9. Signals x1(t), x2(t) and x3(t) are shown in Fig. P2.9.

Fig. P2.9

 (a) Show that the signals x1(t), x2(t) and x3(t) are orthogonal over the interval [–1/2, 1/2]
 (b) If the signal x(t) = 2 sin 2pt is expanded in terms of these functions, find that representation. What is the 

integral squared error of this approximate representation of 2 sin 2pt?
10. x1(t), x2(t), …, xn(t) are n mutually  orthogonal signals defined over the interval (–T, T). If a signal y(t) is defined as

1

( ) ( )
n

i
i

y t x t
=

= Â

  show that the energy of the signal y(t) over (–T, T) is equal to the sum 
of the energies of xi(t)s from i = 1 to n.

11. A signal x(t) is as shown in Fig. P.2.11.
  Show that x(t) is orthogonal to the signals cos t, cos 2t, cos 3t, …, 

cos nt for all integer values of n, n π 0, over the interval (0, 2p). Fig. P2.11
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12. Signal 
; 0 1

( )
0; elsewhere

t t
x t

£ £Ï
= Ì

Ó

  Expand x(t) over the interval (0, 1) by
  (a)  Trigonometric Fourier series, and (b)  Complex exponential Fourier series

13. Expand the periodic function x(q) shown in Fig. P2.13 using trigonometric Fourier series.

Fig. P2.13

14. Expand the periodic waveform x(t) shown in Fig. P2.14 by complex exponential as well as trigonometric Fourier 
series.

Fig. P2.14

15. For the periodic waveform shown in Fig. P2.15, determine the complex exponential and trigonometric Fourier 
series expansions.

Fig. P2.15

16. Express the signal x(t) = 2 + sin w0t + 3 cos(w0t + p/4) + 2 cos 2w0t as the sum of complex exponentials and plot 
its magnitude and phase spectra.

 17. (a) xn(t) = ej2pnt/T, where n takes all integer values from –` to +`. Show that the functions xn(t)s are orthogonal over 
any interval of T sec. Are they also orthonormal?

  (b)  Are the functions sin nw0t and cos mw0t orthogonal over the interval (0, T), where w0 = 2p/T? Are they ortho-
normal? If they are not, normalize them.

18. In Section 2.6, we stated that a periodic signal x(t) having rotational, or  half-wave symmetry will have only odd 
harmonics. Prove that statement. Also prove the converse of it, i.e., if a periodic signal x(t) with period T has only 
odd harmonic components, then it has half-wave symmetry, so that x(t – T/2) = –x(t) for any t.
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Multiple-Choice Questions 
 1. The  fundamental period T, of a periodic continuous-time signal x(t), is
 (a) the smallest positive constant satisfying the relation x(t) = x(t + mT) for every t and any integer m
 (b) the positive constant satisfying the relation x(t) = x(t + mT) for every t and any integer m
 (c) the largest positive constant satisfying the relation x(t) = x(t + mT) for anY t and any integer m
 (d) the smallest positive integer satisfying the relation x(t) = x(t + mT) for any t and any m

 2. The value of 
/4

/4

cos ( )t d
p

p

w d w w
-
Ú  is

 (a) 0 (b) p/2 (c) 2  (d) 1
 3. e–t u(t) is
 (a) an energy signal   (b) a power signal
 (c) neither an energy signal nor a power signal (d) None of the above

 4. 

1 for 5 10

( ) 1 for 10 15

0; otherwise

t

x t t

£ £Ï
Ô= - £ £Ì
Ô
Ó

. Then x(t) can be expressed as

 (a) u(t + 5) – 2u(t + 10) + u(t + 15) (b) u(t – 5) – u(t – 10) + u(t – 15)
 (c) u(t – 5) – 2u(t – 10) + 2u(t – 15) (d) u(t – 5) – 2u(t – 10) + u(t – 15)
 5. A set of signals s1(t), s2(t), …, sn(t) is said to be linearly independent only if
 (a) the zero signal is one of the elements in the set
 (b) the zero signal is not one of the elements in the set
 (c) no linear combination of the signals in that set is equal to the zero signal unless all the coefficients of the 

linear combination are zero
 (d) their linear combination is equal to zero without all the coefficients of the linear combination being equal to 

zero
 6. A basis for a signal space S may be defined as a set of signals in S which
 (a) span the space S   (b) are mutually orthogonal
 (c) are linearly independent   (d) are linearly independent and span the space S
 7. A basis set for an N-dimensional signal space will contain 
 (a) at least N signals   (b) at the most N signals
 (c) N signals   (d) N 2 signals
 8. The angle between the vectors A = (1, 0, 0) and B = (1, 1, 0) is
 (a) 0° (b) 45° (c) 30° (d) 60°
 9. S is the signal space of all  continuous-time signals having a finite energy over the interval [0, T]. The norm of a 

signal x(t) in S is
 (a) square-root of the energy of x(t) over [0, T] (b) energy of the signal x(t) over [0, T]
 (c) square of the energy of x(t) over [0, T] (d) average power of x(t) over the interval [0, T]
 10. Any set S of orthogonal signals is a linearly independent set. This is
 (a) true   (b) false
 (c) true only if S includes the zero signal (d) true only if S does not include the zero signals.
 11. Consider the signal space S of all real-valued continuous-time functions defined over the interval [0, T] and having 

a finite energy in that interval with an inner product defined as

 0

( ( ), ( )) ( ) ( )
T

x t y t x t y t dtD Ú

  In this space, the sequence of signals 1, cos w0 t, cos 2w0t, …, where w0 = 2p/T, form
 (a) a complete orthonormal set (b) an orthonormal set
 (c) an orthogonal set which is complete (d) an orthogonal set
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 12. From a given set of m signals, using  Gram–Schmidt orthogonalization procedure, n orthonormal signals have been 
derived

 (a) n = m (b) n < m (c) n £ m (d) n ≥ m

 13. The average power of the periodic signal 02j nf t
nc e

p  is

 (a) 2
nc  (b) 2| |nc  (c) |cn|

2 (d) 042 j nf t
nc e

p

 14. Parseval’s theorem pertaining to Fourier series states that
 (a) The signal x(t) is equal to the sum of its components along each of the basis functions, 02j nf t

e
p , n = 0, ±1, 

±2, …

 (b) The average power of x(t) is equal to the sum of the average powers of its components along each of the 

basis functions, 02j nf t
e

p , n = 0, ±1, ±2, …

 (c) The energy of the signal x(t) is equal to the sum of the energies of its components along each of the basis 

functions, 02j nf t
e

p , n = 0, ±1, ±2, …

 (d) Energy of the signal may be obtained in the time-domain or from the frequency domain.

 15. If 02
0

1
( ) ; and  j nf t

n
n

x t c e t f
T

p
•

= -•
= -• < < • DÂ  where T is the fundamental period of the periodic signal, x(t),

which is purely real-valued, then

 (a) cn = –c–n (b) cn = c–n (c) *
n nc c- =  (d) *

n nc c= -
 16. A  periodic signal with fundamental period T, is said to possess ‘ Rotational symmetry’, or ‘ Half-wave symmetry’, 

if
 (a) x(t + T/2) = x(t) for any t   (b) x(t ± T/2) = –x(t) for any t
 (c) x(t – T/2) = x(t) for any t   (d) x(t + T/2) = x(t – T/2) for any t
 17. The Fourier series of a periodic signal x(t) with period T will not converge if
 (a) x(t)| is not finite at all values of t (b) x(t) has more than one maxima in one period T
 (c) x(t) is not continuous at all points (d) x(t) is not a band-limited signal
 18. The Fourier series expansion of the periodic signal x(t) = | sin 2pf0t | can have
 (a) only odd harmonics, i.e., components with frequency nf0 where n is odd
 (b) no dc component
 (c) only even harmonics, i.e., components with frequency nf0 where n is even
 (d) both even and odd harmonics of the frequency f0
 19. In the  discrete spectrum of the periodic signal x(t) shown in Fig. M2.19, the harmonic component having zero 

amplitude is

Fig. M2.19

 (a) fifth (b) tenth (c) fiftieth (d) twentieth

Key to Multiple-Choice Questions

 1. (a) 2. (d) 3. (a) 4. (d) 5. (c) 6. (d) 7. (c) 8. (b)
 9. (a) 10. (d) 11. (d) 12. (c) 13. (c) 14. (b) 15. (c) 16. (b)
 17. (a) 18. (c) 19. (c)
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FOURIER TRANSFORM AND 

SIGNAL TRANSMISSION 

THROUGH SYSTEMS

3
“It is always the simple that produces the marvelous.”

Amelia Barr (1831–1919)

British novelist

Learning Objectives

After going through this chapter, students will be able to

 ■ state the physical meaning of the Fourier transform of a signal,

 ■ determine and plot the magnitude and phase spectra of any given Fourier transformable signal,

 ■ determine the energy spectral density of any given energy signal, or the power spectral density of any 

given power signal,

 ■ understand the meaning and significance of the terms: Linearity, Time-Invariance, as applied to 

systems,

 ■ determine the impulse response, transfer function and step response of an LTI system given its 

electrical equivalent circuit and also comment on its stability,

 ■ state the conditions required to be satisfied for distortionless transmission of a signal through an LTI 

system, and

 ■ determine by applying  Paley–Wiener criterion, whether a given transfer function is physically 

realizable or not.

3.1 INTRODUCTION

In the previous chapter we had seen that any periodic signal satisfying  Dirichlet’s conditions could be 
expressed as a  Fourier series and that such an expression is valid for all times. We had also observed that 
the Fourier series coefficients provide information regarding the frequency content of a periodic signal and 
that the spectrum of a periodic signal is a discrete spectrum. The Fourier series, being inherently periodic in 
nature, does not provide an appropriate tool for the representation of an aperiodic signal.
 In this chapter, we will develop an appropriate mathematical tool for determining the spectral content of 
a non-periodic signal and study its properties as well as its applications in the analysis of LTI systems. We 
arrive at this tool, the  Fourier transform, by starting with the complex-exponential Fourier series expansion 
of a  periodic signal with a period T and then allowing T to tend to infinity. When we do this, we find that in 
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the limit, the periodic signal becomes aperiodic and that the Fourier series expansion gives rise to the Fourier 
transform. This Fourier transform is a linear operator that maps a signal x(t) satisfying certain conditions, into 
another function with the continuous variable ‘w’ or ‘f’ as the independent variable. This frequency function 
gives an indication of the spectral content of the aperiodic signal x(t) and gives a  continuous spectrum. This 
transform is invertible and the inverse  Fourier transform provides a representation of the signal x(t) as a 
combination (integral) of weighted complex exponentials of all frequencies. The Fourier transform is an 
extremely useful mathematical tool and is extensively used in the analysis of LTI systems, cryptography, 
signal processing, etc.
  Convolution, an operation on a pair of signals, assumes importance from the fact that an LTI system 
convolves a given input signal with its own  impulse response function and gives the resultant signal as its 
response to the given input signal.  Correlation is another operation on a given pair of signals and it reveals 
the degree of similarity between the two signals. It plays a very important role in the detection of known 
signals in the presence of noise.  Radar, active  sonar, and digital communications use correlation technique 
extensively. The correlation of a signal x(t) with a shifted version of itself, shifted by a time interval t, gives 
the  auto-correlation function of the signal x(t), and is a function of the shift t. Frequency domain represen-
tation of the autocorrelation function, obtained by taking its Fourier transform, is called the  Power Spectral 
 Density (PSD), or the  Energy Spectral Density (ESD) depending on whether x(t) is a power signal or an 
energy signal. It represents how the signal power, or the energy, as the case may be, is distributed with respect 
to frequency.
  Hilbert transform differs from other transforms like the  Laplace transform or the  Fourier transform in the 
sense that Hilbert transforming a signal does not bring about a change in the domain. The Hilbert transform of 
a time signal is also a time signal. Only thing that happens is that all the frequency components of the original 
signal suffer a phase shift of –p /2 radians. This property of the Hilbert transform makes it very useful in the 
representation of bandpass signals and bandpass systems.
 In addition to the Fourier transform and the Hilbert transform, we will be presenting a brief review of the 
theory of linear time-invariant systems, as these play an important role in all communication systems. In the 
discussion on signal transmission through systems, one important topic that merits serious consideration is 
the distortionless transmission of a signal through an LTI system. So, in this chapter we will determine the 
conditions under which distortionless transmission is possible. Another aspect of signal transmission through 
systems that we consider in this chapter is the filtering action of the LTI systems.

3.2 CONTINUOUS-TIME FOURIER TRANSFORM

In the previous chapter, we had developed the  continuous-time Fourier series as an orthogonal expansion and 
found that the complex-exponential Fourier series and the trigonometric Fourier series provide a powerful 
tool for determining the spectra of continuous-time periodic signals. Fourier series expansion, being inher-
ently periodic in nature, does not provide an appropriate tool for the expansion of aperiodic, i.e., non-periodic 
signals. This is because, it gives the true representation of the aperiodic signal only for the interval over which 
the Fourier series expansion of the signal is made; outside this interval, it only repeats, even though the signal 
does not.
 Consider a  periodic signal x(t) with a period T = 1/f0. We know that in the limiting case as T tends 
to infinity, the periodic signal x(t) becomes an aperiodic signal. Also, as the spectral lines in the  discrete 
spectrum of the periodic signal with period T will be f0 Hz apart where f0 = 1/T, as T tends to infinity, while 
the signal itself becomes non-periodic, its spectrum becomes a continuous one. We shall proceed on these 
lines and derive the  continuous-time Fourier transform as a limiting case of the Fourier series.
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 For the periodic signal, x(t), we have the  Fourier series expansion:

0
0

1
( ) ; ;  ,jn t

n
n

x t c e t f
T

w
•

= -•
= -• < < • DÂ  (3.1)

where 0

/2

/2

1
( )  ,

T
jn t

n
T

c x t e dt
T

w-

-
= Ú  (3.2)

Now, as T Æ •, w0 Æ dw, an infinitesimally small quantity so that nw0 becomes a continuous variable, which 
we shall represent by w. Then from the right-hand side of Eq. (3.2), it is clear that cn becomes a function of 
w. Hence, representing cn as cn(w), we may re-write Eq. (3.2) as

( ) ( ) j t
nTc x t e dt

ww
•

-

-•
= Ú  (3.3)

Since the RHS (and therefore the LHS too) of Eq. (3.3) is a function only of w (since we are integrating for 
all values of time), let us write the LHS simply as X(w). Then

( ) ( ) j t
X x t e dt

ww
•

-

-•
D Ú  (3.4)

Further, form Eq. (3.1), it follows that

1
( ) ( ) j t

nx t Tc e
T

w

w

w
•

= -•
= Â  (3.5)

However,

0 01
and as

2 2 2

d
T

T

w w w

p p p
= Æ Æ •

1
( ) ( ) ;

2
j t

x t X e d t
ww w

p

•

-•
= -• < < •Ú  (3.6)

Equation (3.4) is called the  Fourier transform equation and it transforms the time function x(t) into X(w),
a function of the variable w (or f). On the same lines, Eq. (3.6), which enables us to get back the time 
function x(t) from the frequency function X(w), is called the ‘ inverse Fourier transform’ equation. x(t) is 
called the ‘inverse Fourier transform’ of X(w). Together they are said to form a ‘Fourier transform pair’. Their 
relationship is symbolically represented using the following notation:

FT
( ) ( )x t X f¨ææÆ

or ( ) [ ( )]X f x t= F

and   1( ) [ ( )]x t X f
-= F

For convenience, we use the frequency variable ‘f’ instead of w in Eqs. (3.4) and (3.6) and write the Fourier 
and inverse Fourier transforms respectively as follows:

2( ) ( ) j f t
X f x t e dt

p
•

-

-•
= Ú  (3.7)

and

2( ) ( ) j f t
x t X f e df

p
•

-•
= Ú  (3.8)
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There is a unique relationship between the signal x(t) and its Fourier transform, or spectrum 

X(f). For a given x(t) there is one and only one X(f) and for a given X(f), there is one and only 

one x(t).

3.2.1 Existence and Convergence of a Fourier Transform

The Fourier transform X(f) of a time function x(t) is said to exist if X(f) is finite,
i.e., if |X(f)| < •.

Since 2( ) ( ) ,j f t
X f x t e dt

p
•

-

-•
= Ú

we have

2 2| ( )| ( ) | ( ) |j f t j f t
X f x t e dt x t e dt

p p
• •

- -

-• -•
= £Ú Ú

Since 2 2 2| | 1 and | ( ) | | ( )| | |,j f t j f t j f t
e x t e x t e

p p p- - -= =

it follows that

| ( )|x t dt
•

-•
< •Ú  (3.9)

is the condition required to be satisfied for |X(f)| to be finite. Thus, Eq. (3.9) represents the condition to be 
satisfied for the  existence of the Fourier transform of x(t). It may however, be noted that this condition is a 
sufficient condition and not a necessary condition. This is because, as we shall see later, if we are prepared to 
allow ‘ singularity’ functions, then it is possible to derive the Fourier transforms of even functions like the unit 
step, the sinusoid, etc., which are definitely not absolutely integrable (as required, according to Eq. (3.9)).
 The Fourier transform integral given by Eq. (3.7) and the inverse Fourier transform integral given by 
Eq. (3.8) may not converge for all functions x(t) and X(f), respectively. As a detailed analysis of the 
convergence of these integrals is beyond the scope if this book, we simply state here that if a non-periodic 
signal x(t) satisfies the  Dirichlet conditions, then the pointwise convergence of the integral

2( ) j f t
X f e df

p
•

-•
Ú

is guaranteed for all values of t except those corresponding to discontinuities. The Dirichlet conditions are 
the following: 
 1.  x(t) should be absolutely integrable.
 2.  x(t) should have only a finite number of maxima and minima in any finite interval of time.
 3. In any finite interval of time, the number of discontinuities of x(t) should be finite.
 4. Discontinuities of x(t), if any, should be finite discontinuities.
 Most of the signals that we come across satisfy all the above conditions, except possibly the first one. 
However, as mentioned earlier, even if a signal x(t) is not absolutely integrable, we can still Fourier transform 
it by permitting impulse functions. However, Fourier transforms of these signals do not converge.

3.2.2 Simple Properties of Fourier Transform

We will now give, without proof, a list of some simple, but very useful, properties of the Fourier transform. 
The reader is urged to supply the proof using Eqs. (3.7) and (3.8).

Note
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 1. X(0) is equal to the area under x(t). This is because 2( ) ( ) j f t
X f x t e dt

p
•

-

-•
= Ú

(0) ( )X x t dt
•

-•
= Ú  = area under the signal x(t).

 2. The Fourier transform X(f) is, in general, a complex-valued function of frequency, even if the signal 
x(t), is a real-valued one.

 3. If x(t) is real valued, then its Fourier transform X(f), has  Hermitian symmetry. That is

| ( )| | ( )| while ( ) ( )X f X f X f X f- = – - = - –  (3.10)

  This says that if x(t) is real valued, the magnitude of X(f) will have  even symmetry while the phase of 
X(f) will have  odd symmetry.

 4. (a) If the signal x(t) has even symmetry, then its Fourier transform X(f) is given by

0

( ) 2 ( )cosX f x t tdtw
•

= Ú  (3.11)

  (b) If the signal x(t) has odd symmetry, then its Fourier transform X(f) is given by

     
0

( ) 2 ( )sinX f j x t tdtw
•

= - Ú  (3.12)

3.2.3 Magnitude and Phase Spectra of Signals

As pointed out in Property 1 above, X(f), the Fourier spectrum of a signal x(t) is, in general, a complex-valued 
function of frequency. Hence, it will have a magnitude |X(f)| and phase –X(f), both of which are functions of 
frequency. For any signal x(t), a plot of |X(f)| vs. f is called the  magnitude spectrum and a plot of –X(f) vs. f
is called the  phase spectrum. We illustrate these concepts through the following example.

Example 3.1 x(t) is a ‘ GATE’ signal and is described by

;     | /2|
( )

0 ;     otherwise

A t
x t

t£Ï
= Ì

Ó
Determine and plot the magnitude and phase spectra of x(t).

Solution The given signal is a rectangular pulse and its plot is as shown 
in Fig. 3.1.
 This being a commonly used signal, it is given a special symbol.

( ) ( / ) or rect( / )x t A t A tt t= P
A in the above notation indicates that the rectangular pulse has an amplitude A;
t indicates that the rectangular pulse is in time domain and t indicates that the 
rectangular pulse has a total width of t along the time axis.

In this notation, it is always understood that the rectangular pulse is symmetrically situated 

with respect to the time origin, i.e., it extends from to
2 2

t t
- +Note

Fig. 3.1  A rectangular pulse 

( GATE signal)
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Now,

/2
2 2

/2

/2 /2

00

( ) ( ) ( )

2 sin
2 cos sin

j ft j ft
X f x t e x t e dt

A f
A tdt t A

f

t
p p

t

t t p t
w w t

w p t

•
- -

-• -
= =

Ê ˆ
= = = Á ˜Ë ¯

Ú Ú

Ú

If we define 
sin

sinc
pl

l
pl

D

We have

( ) [ ( / )] sincX f A t A ft t t= P =F  (3.13)

Plots of the magnitude and phase spectra of the signal x(t) are shown in the following Figs. 3.2(a) and 3.2(b), 
respectively.

Fig. 3.2 (a)  Magnitude spectrum of AP(t/t), (b)  Phase spectrum of AP(t/t)

In this example, X(f) which is equal to At sinc ft, is a purely real-valued function. However, this function 
changes its sign whenever the frequency ‘f’ equals ±1/t, ±2/t, ±3/t . . . . This change of sign is interpreted 
as a phase shift of 180°. Actually one need not distinguish between +180° phase shift and –180° phase shift. 
But, in Fig. 3.2(a) we have deliberately shown the +180° and –180° separately in order to emphasize the fact 
that X(f) must have  Hermitian symmetry (i.e., magnitude spectrum should have  even symmetry, and phase 
spectrum should have  odd symmetry), since the given x(t) is purely real valued.

3.2.4 Physical Meaning of X(f) in Relation to the Signal x(t)

We shall now explore the physical meaning of the function X(f) in relation to the signal x(t). This we do by an 
appropriate physical interpretation of what the  Parseval’s theorem tells us. So, we shall first state and prove 
this theorem and then attempt to examine the significance of the function X(f).
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Parseval’s theorem This theorem is also known as  Rayleigh’s theorem pertaining to the Fourier 
transform. It states that if signals x(t) and y(t) have Fourier transforms X(f) and Y(f) respectively, then

( ) ( ) ( ) ( )x t y t dt X f Y f df
• •

-• -•
=Ú Ú

where the overbar is used for representing complex conjugate.

Proof Since Y(f) is the Fourier transform of y(t), we have

1 2( ) [ ( )] ( ) j ft
y t Y f Y f e df

p
•

-

-•
= = ÚF

\ 2( ) ( ) j ft
y t Y f e df

p
•

-

-•
= Ú

Hence, 2( ) ( ) ( ) ( ) j ft
x t y t dt x t Y f e df dt

p
• • •

-

-• -• -•

È ˘
= Í ˙

Î ˚
Ú Ú Ú

Interchanging the order of the integrations in the RHS of the above, we get

2( ) ( ) ( ) ( )

( ) ( )

j ft
x t y t dt Y f x t e dt df

Y f X f df

p
• • •

-

-• -• -•

•

-•

È ˘
= Í ˙

Î ˚

= ◊

Ú Ú Ú

Ú

Thus, ( ) ( ) ( ) ( )x t y t dt X f Y f df
• •

-• -•
=Ú Ú  (3.14)

This is the general form of  Parseval’s theorem pertaining to the Fourier transform. A special form of this is 
obtained when y(t) is the same as x(t). In that case, Eq. (3.14) becomes

2 2| ( )| | ( )|x t dt X f df
• •

-• -•
=Ú Ú  (3.15)

In the above equation, we know that the LHS represents the energy ‘E’ of the signal x(t). Hence, Eq. (3.15) 
tells us that the function |X(f)|2 when integrated for all frequencies, equals E. In other words, |X(f)|2 denotes 
the energy density of the signal with respect to the frequency, at the frequency ‘f’. Hence, if we consider a 

specific frequency, f0, and take a unit interval of frequency centered on f0, then |X(f0)|
2 represents the energy 

possessed by the signal in that unit interval frequency band around f0. The function |X(f)|2 thus shows how 
the energy of the signal x(t) is distributed with respect to frequency. Equation (3.15) further tells us that the 
energy of a signal may be calculated either in the time domain or in the frequency domain by using the RHS 
of the equation.

Example 3.2 If the signal x(t) = Ae–t/Tu(t) is given as input to an ideal  low pass filter whose cut-off 
frequency is fc = 1/2pT, what percentage of the energy of x(t) will be available at the output of the filter?
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Solution We have to first find the spectrum of X(f) of the signal x(t). For this, we note

(1 2 )
/ 2

0

2 2
2

2 2 2

( ) ( )

( ) and | ( )|
1 2 1 4

j fT t

t T j ft TX f Ae u t e dt A e dt

AT A T
X f X f

j fT f T

p
p

p p

- +• •
- -

-•
= =

= =
+ +

Ú Ú

Putting 2pfT = tan q in the above and noting that df = (1/2pT)sec2q dq, we have

2 2

2 2 2

2 2/2

/2

Total energy in the signal ( )
1 4

2 2

x

A T
E x t df

f T

A T A T
d

p

p

p

q
p

•

-•

-

= =
+

Ê ˆ
= =Á ˜Ë ¯

Ú

Ú

Now, when the signal x(t) is applied as input to a lowpass filter with fc = 1/2pT, the filter passes on to the 
output side only those frequency components of x(t) which lie from –fc to +fc. Hence, from Eq. (3.15) we 
know that the energy contained in the signal at the output of the filter is given by

2 2(1/2 )

0
(1/2 ) 2 4

f T

f T

A T A T
E d

p

p

q
p

= -

= -

Ê ˆ
= =Á ˜Ë ¯

Ú

Thus, the percentage of the signal energy available at the output of the filter is given by p

where
2

0
2

( /4)
100% 100 50%

( /2)x

E A T
p

E A T
= ¥ = ¥ =

3.2.5 Fourier Transform Theorems

The  Fourier transform theorems which we are going to discuss now will be very useful in finding the Fourier 
transforms of some complicated signals in terms of the Fourier transforms of simpler signals.

1.  Linearity theorem: Fourier Transform is linear in the sense that it obeys the  superposition and  homoge-
neity principles.
 If x(t) and y(t) are continuous-time signals with X(f) and Y(f) respectively as their Fourier Transforms, and 
if a and b are any two arbitrary constants, then

[ ( ) ( )] ( ) ( )x t y t X f Y fa b a b+ = +F  (3.16)

Proof of this theorem is left as an exercise to the reader.

2.  Time-delay theorem: This theorem gives us the Fourier transform of x(t – t), the time-delayed version of 
an x(t) in terms of X(f), the Fourier transform of x(t). It says that

If ¨ææÆ( ) ( )
FT

x t X f  Then, p tt -- ¨ææÆ 2( ) ( )
FT j f

x t X f e

Proof 2( ) ( ) j ft
X f x t e dt

p
•

-

-•
= Ú

\ 2[ ( )] ( ) j ft
x t x t e dt

pt t
•

-

-•
- = -ÚF
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Putting , andt t t t dt dtt t- = = + =¢ ¢ ¢

\ 2 ( )

2 2 2

[ ( )] ( )
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j f t

j ft j f j f

x t x t e dt

x t e dt e X f e
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F

\ p tt -- ¨ææÆ 2( ) ( )
FT j f

x t X f e  (3.17)

Since ( ) ( )j2 f
|X f e | |X f |

p t- = , it follows that shifting of a signal along the time axis changes 

only the  phase spectrum but not the  magnitude spectrum.

3.  Modulation theorem: As mentioned earlier in Chapter 1, a message signal, x(t), is made to modulate 
a high frequency sinusoidal carrier signal of frequency fc in order to facilitate its transmission over long 
distances. One easy way of accomplishing this modulation is by multiplying the carrier signal with x(t).

This theorem states that if ¨ææÆ( ) ( )
FT

x t X f  then, 
p ¨ææÆ -2( ) ( ).c

FTj f t
cx t e X f f

Proof 
2 2 2

2 ( )

[ ( ) ] { ( ) }

( ) ( )

c c

c

j f t j f t j ft

j f f t
c

x t e x t e e dt

x t e dt X f f

p p p

p

•
-

-•

•
- -

-•

=

= = -

Ú

Ú

F

\ 2( ) ( )cj f t
cx t e X f f

p = -  (3.18)

Equation (3.18) tells us that the spectrum of 2( ) cj f t
x t e

p  is just a frequency-shifted version of the spectrum 
of x(t) itself. Suppose x(t) is a low frequency signal having frequency components from 0 to W Hz. Let its 
spectrum be X(f) as shown in Fig. 3.3(a). The actual shape of X(f) assumed here has no particular significance. 
However, since x(t) is a real-valued signal, as per Eq. (3.10), X(f) must have a magnitude which has even 
symmetry. The spectrum of ( ) cj t

x t e
w , as given by Eq. (3.18), is plotted in Fig. 3.3(b).

 In practice, we have to have a carrier signal which is real valued. So, instead of the complex-exponential 
signal, 2( ) cj f t

x t e
p  of frequency fc, let us use cos2 cf tp  which is a real-valued signal.

Fig. 3.3 (a) Spectrum of x(t), (b) Spectrum of 
wcj t

x(t)e

Note
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From Eq. (3.18), we may write

\

w

w-

¨ææÆ -

¨ææÆ +

( ) ( )

( ) ( )

c

c

FTj t
c

FTj t
c

x t e X f f

x t e X f f

Adding these two and invoking the linearity property of the Fourier transform, we get

\ w ¨ææÆ - + +
1

( ) cos [ ( ) ( )]
2

FT
c c cx t t X f f X f f  (3.19)

Hence, the spectrum of x(t) cos wct, the modulated signal, would appear as shown in Fig. 3.4.

Fig. 3.4 Spectrum of x(t) coswct

It may be noted that whereas the spectrum of x(t) cos wct has  even symmetry, that of ( ) cj t
x t e

w  does not have 

even symmetry. This is because, while x(t) cos wct is a real-valued function, ( ) cj t
x t e

w  is not.

4.  Scaling theorem: This theorem deals with the effect on the spectrum of a signal when the signal is 
subjected to time scaling, i.e.,  compression or  expansion in time. In Chapter 2, Section 2.2, while dealing 
with operations on signals, with reference to the time-scaling operation, we had observed that for a constant 
‘a’, the signal x(at) represents a time- compressed version of x(t) if the constant a > 1 and a time-expanded 
version of 0 < a < 1.

This theorem states that if ¨ææÆ( ) ( )
FT

x t X f , then ¨ææÆ
1

( ) ( / )
| |

FT
x at X f a

a

Proof First, Let a > 0:
Putting t ¢ = at, we have, dt ¢ = a dt

\ 2 ( / )1 1
[ ( )] ( ) ( / )j f a t
x at x t e dt X f a

a a

p
•

- ¢

-•
= =¢ ¢ÚF

Now consider the case of a < 0.
Putting t ¢ = at, we have, dt ¢= a dt

   

2 ( / )

2 ( / )

1
[ ( )] ( )

1 1
( ) ( / )

| | | |

j f a t

j f a t

x at x t e dt
a

x t e dt X f a
a a

p

p

-•
- ¢

+•

•
- ¢

-•

= ¢ ¢

= =¢ ¢

Ú

Ú

F

Combining the two cases, we may say

¨ææÆ
1

( ) ( / )
| |

FT
x at X f a

a
 (3.20)
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 (i) For a > 1, x(at) represents a time-compressed version of the signal x(t) but X(f/a) repre-

sents a spectrum that has been expanded in frequency. Hence, compressing a signal in 

time results in an expansion of its spectrum.

 (ii) For 0 < a < 1, x(at) represents a signal that is expanded in time. But X(f/a) represents 

a frequency compressed version of the spectrum. Hence expansion of a signal in time 

results in a compression of its spectrum.

 (iii) Since compression in time leads to expansion in frequency and vice versa, a signal can-

not be compressed/expanded simultaneously in time as well as in frequency.

 (iv) If a < 0, there will be lateral inversion of the spectrum accompanied by compression or 

expansion, depending upon whether |a| is greater than or less than unity.

Most of the readers would have experienced the manifestation of the above result in practice. A male voice 
recorded at some speed, would sound like a female voice if it is played back at a much higher speed. Similarly, 
a female voice recorded at some speed, would sound like a male voice, when played back at a much lower 
speed.

5.  Duality theorem: This theorem enables us to write down the spectra of certain signals just by inspection, 
as illustrated in Example 3.3.
 It states that if X(f) is the Fourier transform of a signal, x(t), the Fourier transform of X(t) is given by x(–f).

Proof  2( ) ( ) j ft
X f x t e dt

p
•

-

-•
= Ú

Interchanging t and f,

2( ) ( ) j ft
X t x f e df

p
•

-

-•
= Ú

Now, putting  f ¢ = –f

p p
-• •

-¢ ¢

+• -•
= - - = - = -¢ ¢ ¢ ¢Ú Ú2 2 1( ) ( ) ( ) [ ( )]j f t j f t

X t x f e df x f e df x fF

\ ¨ææÆ -( ) ( )
FT

X t x f  (3.21)

6.  Convolution theorem: This theorem tells us that the Fourier transform converts a time-domain convo-
lution into a multiplication operation in the frequency domain. As it is much easier to compute a multipli-
cation as compared to a convolution, this theorem enables us to use the Fourier transform to advantage in the 
computation of the output signal of a Linear Time-Invariant (LTI) system, since in these systems, the output 
signal is the convolution of the input signal with the  impulse response, h(t), of the system.

Statement Let ¨ææÆ ¨ææÆ( ) ( ), ( ) ( )
FT FT

x t X f y t Y f  and z(t) = x(t)* y(t), where * denotes convolution 
operation, then this theorem states that

( ) [ ( )] ( ) ( )Z f z t X f Y f= = ◊F

Proof 
2  2  

2

( ) ( ) ( ) ( )

( ) ( )

j f t j f t

j f t

Z f z t e dt x y t d e dt

x y t e dt d

p p

p

l l l

l l l

• • •
- -

-• -• -•

• •
-

-• -•

Ï ¸Ô Ô= = -Ì ˝
Ô ÔÓ ˛

Ï ¸Ô Ô= -Ì ˝
Ô ÔÓ ˛

Ú Ú Ú

Ú Ú

Remark
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2

2

( ) ( ) (by applying time-delay theorem)

( ) ( ) ( ) ( )

j f

j f

x Y f e d

Y f x e d Y f X f

p l

p l

l l

l l

•
-

-•

•
-

-•

=

= = ◊

Ú

Ú

\ ( ) ( ) ( ) if ( ) ( ) ( )Z f Y f X f z t x t y t= ◊ = *  (3.22)

7. Multiplication theorem: This theorem tells us that a time-domain product of two signals will be converted 
by the Fourier transform into the frequency-domain convolution of the Fourier transforms of the two signals.

It states that if ¨ææÆ ¨ææÆ( ) ( ), ( ) ( )
FT FT

x t X f y t Y f  and if z(t) = x(t) × y(t), then ( ) ( ) ( )Z f X f Y f= *

Proof 2( ) [ ( )] ( ) j ft
Z f z t z t e dt

p
•

-

-•
= = ÚF

But ( ) ( ) ( )z t x t y t= ◊

\ 2( ) { ( ) ( )} j f t
Z f x t y t e dt

p
•

-

-•
= ◊Ú

Now, writing y(t) as the inverse  Fourier transform of Y(l), where l is a dummy frequency parameter,

      

2 2

2 2

( ) ( ){ ( ) }

( ) [ ( ) ]

j t j f t

j t j f t

Z f x t Y e d e dt

Y x t e e dt d

p l p

p l p

l l

l l

•
-

-•

• •
-

-• -•

=

Ï ¸Ô Ô= Ì ˝
Ô ÔÓ ˛

Ú

Ú Ú

Now, using the  modulation theorem, we may write

( ) ( ) ( ) ( ) ( )Z f Y X f d X f Y fl l l
•

-•
= - = *Ú

\ ( ) ( ) ( ) if ( ) ( ) ( )Z f X f Y f z t x t y t= * = ◊  (3.23)

Example 3.3 Determine the energy contained in the signal x(t) = 20 sinc 10t.

Solution We shall solve the problem by making use of  Parseval’s theorem. Earlier, we had seen (see Eq. 
(3.13)) that
 AP(t/t) ´ At sinc ft.

Now, At sinc ft is a frequency function and t is a fixed time interval. We may, in order to use the  duality 
theorem, write the corresponding time function as AW sinc Wt, by replacing the fixed time interval t (of At
sinc ft ) by a fixed frequency interval, W, and by replacing the frequency variable f, by the time variable, t.

\  Let 20 sinc 10t = AW sinc Wt

Thus, AW = 20 and W = 10   \ A = 2
We know from the duality theorem that

AW sinc Wt ´ AP(–f/w) = AP(f/w)

Hence, ¨ææÆ P =20 sinc 10 2 ( /10) ( )
FT

t f X f

 This X(f) is a rectangular pulse in frequency domain with an amplitude of 2 and base width of 10.
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\ Applying  Parseval’s theorem,

2 2

5
2

5

| ( )| | ( )|

2 4 10 40 units

xE x t dt X f df

df

• •

-• -•

-

= =

= = ¥ =

Ú Ú

Ú

Example 3.4 Find the Fourier transform of 

1 1
cos ;

( ) 2 2

0 ; otherwise

t t
x t

p
Ï - £ £Ô= Ì
ÔÓ

Solution We can solve it either by using the defining equation of the Fourier transform, or by using the 
convolution theorem.
 (a) By using the defining equation of  Fourier transform

1/2
2

1/2

1/2 1/2

1/2 1/2

( ) ( ) cos [cos 2 sin 2 ]

cos cos 2 cos sin 2

j ft
X f x t e dt t ft j ft dt

t ftdt j t ftdt

p p p p

p p p p

•
-

-• -

- -

= = -

= ◊ - ◊

Ú Ú

Ú Ú

  In the above, the second integral is zero since cos pt is even while sin 2pft is odd.

\
1/2

1/2

1/2

1/2

1/2 1/2

1/2 1/2

( ) cos cos 2

1
{cos (2 1) cos (2 1) }

2

1 sin (2 1) sin (2 1)

2 (2 1) (2 1)

1 1 1
sinc sinc

2 2 2

t t

t t

X f t ftdt

f t f t tdt

f f

f f

f f

p p

p p

p p

p p

-

-

= =

=- =-

= ◊

= + + -

È ˘+ -
= +Í ˙+ -Î ˚

È ˘Ê ˆ Ê ˆ= + + -Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

Ú

Ú

 (b) Using the  convolution theorem of Fourier transform

  The given x(t) is shown in Fig. 3.6. As is clear from the figure, x(t) may be viewed as the product of a 
signal 1( ) cos ;x t t tp= -• < < • and a  window function w(t) = P(t/1) which has a value of 1 for |t| £ ½ 
and zero outside.

\ ( ) cos ( )x t t tp w= ◊
Hence, ( ) [cos ] ( )X f t W fp= *F

But
1 1 1

[cos ]
2 2 2

t f fp d d
È ˘Ê ˆ Ê ˆ= - + +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

F

\ 1 1 1
( ) ( )

2 2 2

1 1 1

2 2 2

X f f f W f

W f W f

d d
È ˘Ê ˆ Ê ˆ= - + + *Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚
È ˘Ê ˆ Ê ˆ= - + +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

(Replication property of an impulse)

Fig. 3.5 Fourier transform of x(t)

Fig. 3.6 Given x(t)
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But ( ) ( /1) ( ) sincw t t W f f= P \ =

\
1 1 1

( ) sinc sinc
2 2 2

X f f f
È ˘Ê ˆ Ê ˆ= - + +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

8.  Differentiation-in-time theorem: This theorem enables us to straight away write down the Fourier 
transform of the derivative of a signal in terms of the Fourier transform of the signal itself. It states that if 

¨ææÆ( ) ( )
FT

x t X f , then ( ) 2  ( )x t j f X fp=&

Proof 1 2( ) [ ( )] ( ) j f t
x t X f X f e df

p
•

-

-•
= = ÚF  (3.24)

\ 2 2( )
( ) { 2 ( )}j f t j f tdx t d

X f e df j f X f e df
dt dt

p pp
• •

-• -•

È ˘
= =Í ˙

Í ˙Î ˚
Ú Ú  (3.25)

Comparing Eqs. (3.24) with (3.25), we have

FT
( ) 2 ( )x t j f X fp¨ææÆ&  (3.26)

n iterations of the above process yields

FT
( ) ( 2 ) ( )

n
n

n

d
x t j f X f

dt
p¨ææÆ ◊  (3.27)

 (i) Here, it must be noted that even if x(t) is of finite energy and so is Fourier transformable, 

there is no guarantee that its derivatives will also be Fourier transformable.

 (ii) The phase spectrum of x(t)&  is obtained by adding 90° to the phase spectrum of x(t) at 

all frequencies.

 (iii) Multiplication of X(f) by 2p f clearly shows that differentiation accentuates high 

frequencies.

 Pertaining to Fourier transforms, an integration theorem also exists. But we can discuss it only a little later.

9.  Differentiation-in-frequency theorem: This theorem can be considered as the dual of the differentiation-
in-time theorem and it states that if X(f) is the Fourier transform of x(t), then the inverse Fourier transform of 

( )
d

X f
df

 is given by –j2pt x(t)

Proof 2

2 2

( ) ( )

( ) ( ) [ ] { ( )( 2 )}

j ft

j ft j ft

X f x t e dt

d d
X f x t e dt x t j t e dt

df df

p

p pp

•
-

-•

• •
- -

-• -•

=

= = -

Ú

Ú Ú\

Comparing the LHSs and RHSs of the above two equations, we may state that

FT
( 2 ) ( ) ( )

d
j t x t X f

df
p- ¨ææÆ  (3.28)

Remark
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3.2.6 Fourier Transforms using Impulses

We shall now derive the Fourier Transforms of certain functions like the sine and cosine, the unit step,  signum 
function, etc., which are not absolutely integrable. This we will do by using impulses.

1. Spectrum of an impulse function: 
2[ ( )] ( ) j ft

t t e dt
pd d

•
-

-•
= ÚF

Here, e–j2p ft is a complex-valued function of time which is continuous. Hence, from Eq. (2.5) of Section 2.2 
(Chapter 2), i.e., the defining equation for a unit-impulse function, we find that

2 2
0( ) 1j ft j ft

te t dt e
p pd

•
- -

=
-•

= =Ú

Hence, [ ( )] 1td =F  (3.29)

Equation (3.29) tells us that the spectrum of a unit impulse function 
d(t) consists of all frequency components from –• < f < • and that it 
has a value of unity at all frequencies, as shown in Fig. 3.7.

2. Fourier transform of x(t) = 1: Applying duality theorem to the transform given by Eq. (3.29), we get

[1] ( ) ( )f fd d= - =F  = Unit impulse in the frequency domain

\ FT
1 ( )fd¨ææÆ  (3.30)

Since
FT

( ) 1,td ¨ææÆ  if we apply the time-delay theorem, we get

FT 2( ) j f
t e

p td t -- ¨ææÆ  (3.31)

3. Transform of 
2p 0j f t

e : From modulation theorem, we know that

0 FT2
0( ) ( )j f t

x t e X f f
p ¨ææÆ -

In the above, if we take x(t) to be equal to 1,

0 FT2
0( )j f t

e f f
p d¨ææÆ -  (3.32)

4. Transform of cos 2p f0t : We have noted that

0

0

2
0

2
0

( ),

( )

j f t

j f t

e f f

e f f

p

p

d

d-

¨æÆ -

¨æÆ +

Combining the two and invoking the linearity theorem,

p d d¨ææÆ - + +È ˘Î ˚
FT

0 0 0

1
cos 2 ( ) ( )

2
f t f f f f  (3.33)

The spectrum of cos 2pf0t, as given Eq. (3.33) is shown in Fig. 3.8.

5. Transform of the signum function: The signum function in time, denoted by sgn(t), is defined as

1 if 0
sgn( )

1 if 0

t
t

t

>Ï
= Ì- <Ó

 (3.34)

We shall derive the Fourier transform of the signum function by making use of the  differentiation theorem.

Fig. 3.7  Spectrum of a unit impulse 

function in time, d(t)
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Fig. 3.8 Spectrum of cos 2pf0t Fig. 3.9  Signum function

From Fig. 3.9, we find that

[sgn( )] 2 ( )
d

t t
dt

d=

Therefore, from the differentiation theorem

sgn( ) 2 2 [sgn( )] 2 ( )
d

t j f t j f S f
dt

p p
È ˘ = = =Í ˙Î ˚

F F

where, we have used S(f) to denote the FT of sgn(t)

\
1

( )S f
j fp

=  (3.35)

 Note that at f = 0 the Fourier transform of sgn(t) appears to become infinitely large and therefore indeter-
minate, as per Eq. (3.35). However, noting that sgn(t) is an odd function of time and that the area under it 
must be zero, and recalling the result (see some simple properties of the Fourier transform) that X(0) must be 
equal to the area under x(t), we remove the indeterminacy at f = 0 by stipulating that S(f) = 0 at f = 0. Thus,

FT

1
;  0

sgn( )     

0 ; 0

f
j ft

f

p

Ï πÔ¨ææÆ Ì
Ô =Ó

 (3.36)

6. Transform of u(t): From Fig. 3.9, it is clear that

i.e.,

1 sgn( ) 2 ( )

1
( ) [1 sgn( )]

2

t u t

u t t

+ =

= +  (3.37)

Now taking Fourier transform on both sides, noting that the F.T of 1 is d(f) and invoking the  linearity theorem 
of the Fourier transform,

FT 1 1
( ) ( ) ( )

2
u t U f f

j f
d

p

È ˘
¨ææÆ = +Í ˙

Î ˚

\
1 1

( ) ( )
2

U f f
j f

d
p

È ˘
= +Í ˙

Î ˚
 (3.38)

7.  Integration theorem of Fourier transform: Now that we have derived the Fourier transform of a unit-step 
function, we are in a position to discuss the integration theorem.
 This theorem states that if

( ) ( ) , then

1 ( )
( ) ( ) ( )

2

t

y t x d

X f
Y f X f f

j f

t t

d
p

-•
=

È ˘
= +Í ˙

Î ˚

Ú
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Proof Consider x(t) * u(t). This is given by

( ) ( ) ( ) ( )x t u t x u t dt t t
•

-•
* = -Ú

But
1 for

( )
0 for

t
u t

t

t
t

t

<Ï
- = Ì >Ó

\ ( ) ( ) ( ) ( )
t

x t u t x d y tt t
-•

* = =Ú

\
1 ( )

( ) ( ) ( ) ( ) ( )
2

X f
Y f X f U f X f f

j f
d

p

È ˘
= ◊ = +Í ˙

Î ˚
 (From Eq. (3.38))

Making use of the  sampling property of the  impulse function, we have

( ) ( ) (0) ( )X f f X fd d=
Hence,

FT 1 ( )
( ) (0) ( )

2

t X f
x d X f

j f
t t d

p-•

È ˘
¨ææÆ +Í ˙

Î ˚
Ú  (3.39)

Example 3.5 Find the Fourier transform of the signal 
x(t) shown in Fig. 3.10(a).

Solution We shall use the  differentiation theorem of 
Fourier transform to find the FT of x(t).
From Fig. 3.10(c), we find that

2

2

( )
( ) ( 2) 2 ( 1) 2 ( 1) ( 2)

d x t
x t t t t t

dt
d d d d= = - + + + - - + -&&

But, from the differentiation theorem of Fourier transform, we 
know that if

¨ææÆFT
( ) ( )x t X f

Then

p p¨ææÆ ¨ææÆ -FT FT 2 2( ) 2 ( ) and ( ) 4 ( )& &&x t j fX f x t f X f

Hence,

d d d d p- + + + - - + - = - 2 2[ ( 2) 2 ( 1) 2 ( 1) ( 2)] 4 ( )t t t t f X fF

But, the LHS of the above is

\ 

4 2 2 4

2 2 4 4 2 2

2 2

4 ( ) ( ) 2( )

2 sin 4 4 sin 2

j f j f j f j f

j f j f j f j f

e e e e

f X f e e e e

j f j f

p p p p

p p p pp

p p

- -

- -

= - + - +

= - - -
= -

\      
2 2

1
( ) [sin 4 2 sin 2 ]

2
X f f f

j f
p p

p

-
= -

Fig. 3.10 (a) x(t), (b), (c) &&x(t)
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Example 3.6 Find the signal f(t) if its Fourier 
transform F(w) is as shown in Figs. 3.11(a) and (b).

Solution We know that

( )( ) | ( )| j
F F e

q ww w=

Here, |F(w)| = p for |w| £ W and 
p w

q w
p w

<Ï
= Ì- >Ó

/2 for 0
( )

/2 for 0

The inverse Fourier transform of F(w), say f(t), is given 
by

21
( ) ( )

2
j ft

f t F e d
pw w

p

+•

-•
= Ú

p w p wp w p w
p

-

-

È ˘
◊ + ◊Í ˙

Í ˙Î ˚
Ú Ú
0

/2 /2

0

1

2

w
j j t j t

w

e e d e e d

On simplification, this gives

1 cos
( )

Wt
f t

t

-È ˘= Í ˙Î ˚

Example 3.7 If ¨ææÆFT
( ) ( ),x t X f  find the Fourier transforms of the following signals in terms of 

X(f):

 (a) x(t – 2)ejt  (b) x(1 – t)  (c) 2
2

t
x

Ê ˆ-Á ˜Ë ¯

Solution

 (a) Let x1(t) = x(t – 2)ejt. Then p-- ¨ææÆFT 4( 2) ( ) j f
x t X f e  and 2 (1/2 )

1( ) ( 2) j t
x t x t e

p p= -

\
1

4
FT 2

1

1
( )

2

j f

x t X f e
p

p

p

Ê ˆ- -Á ˜Ë ¯Ê ˆ¨ææÆ -Á ˜Ë ¯
 (From  modulation theorem)

 (b) Let x2(t) = x(1 – t). Now, 
FT

( ) ( )x t X f¨ææÆ . Hence,

    
FT

( ) ( )x t X f- ¨ææÆ -  and 
FT 2( 1) ( ) j f

x t X f e
p-- + ¨ææÆ -  (Time-delay theorem)

   (From scaling theorem)

 (c) Let 3( ) 2
2

t
x t x

Ê ˆ= -Á ˜Ë ¯
. Since 

FT
( ) ( )x t X f¨ææÆ

  From  time-delay theorem, we have 
FT 4( 2) ( ) j f

x t X f e
p-- ¨ææÆ

  and from  scaling theorem, 
FT 82 2 (2 )

2
j ft

x X f e
p-Ê ˆ- ¨ææÆÁ ˜Ë ¯

Fig. 3.11
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Example 3.8 Find the Fourier transform of 
2

1
( )

1
x t

t

Ê ˆ= Á ˜Ë + ¯
.

Solution We know that   
p

- ¨ææÆ
+

FT| |
2 2

2

1 4

t
e

f

Now, applying  duality theorem

FT | |
2 2

2

1 4

f
e

tp

-¨ææÆ
+

If we let 
2 2

2
( )

1 4
y t

tp
=

+
 and 

2

2
( ) 2 ( )

1
y at x t

t
= =

+

2 2 2 2

2 2
( )

1 4 1
y at

a t tp
= =

+ +

\ 4p2a2 = 1 and 
1

2
a

p
=

\  If -= = =| | 1
( ) , 2 ( ) [ ( )] ( / )f

Y f e X f y at Y f a
a

F

\    2X(f) = 2pY(2pf)    \ X(f) = pe–|w |

Example 3.9 Find the Fourier transform of the  periodic GATE waveform shown in Fig. 3.12.

Fig. 3.12 Periodic GATE signal

Solution The periodic GATE signal is obtained by a periodic repetition of the GATE signal shown in 
Fig. 3.1 at regular intervals of say, Ts seconds where Ts > t. If the GATE signal of Fig. 3.1 is represented by 
p(t), then we may write

( ) ( )s
k

x t p t kT
+ •

= -•
= -Â

Since x(t) is a periodic signal, we can use its  Fourier series expansion and write

2( ) ( ) )sj n f t
s n

k n

x t p t kT c e
p

• •

= -• = -•
= - =Â Â

where
1

s
s

f
T

D  and p-

-
= Ú

/2
2

/2

1
( )

s

s

s

T
j nf t

n
s T

c x t e dt
T
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Since /2
2 sT
t

<  and p(t) = 0 for | t | ≥ t/2, we may write

p p
•

- -

- -•
= = =Ú Ú

/2
2 2

/2

1 1
( ) ( ) ( )

s

s s

s

T
j n f t j n f t

n s s
s sT

c x t e dt p t e dt f P nf
T T

where ( ) ( )| and ( ) [ ( )]
ss f nfP nf P f P f F p t== =

But we know that P(f) = At sinc ft (see Example 3.1)

2 2( ) ( )s sj n f t j nf t
n s s

n n

x t c e f P nf e
p p

• •

= -• = -•
= =Â Â

Taking Fourier transform on both sides, applying linearity theorem and recalling that
p d

t t d

t t d

•

= -•

•

= -•

= -

-

= -

Â

Â

2[ ] ( ), we get

( ) = sinc( ) ( )

sinc ( ) ( )

sj nf t
s

s s s
n

s s s
n

F e f nf

X f Af nf f nf

Af nf f nf

3.3 CONVOLUTION AND CORRELATION

3.3.1 Convolution and Correlation of Signals

Before we proceed further with the various Fourier transform theorems, it is necessary for us to discuss about 
two important operations –  convolution and  correlation of two signals, in detail. A study of convolution 
of two signals is important because we deal mostly with linear time-invariant systems and these systems 
produce an output signal by convolving the input signal with their own impulse response. Similarly, corre-
lation operation assumes importance because the correlation operation performed on a pair of signals, reveals 
the degree of similarity between the two signals. It is an operation which is widely used in communication 
engineering and radars.

Convolution The convolution of two continuous-time signals x(t) and y(t), represented by the notation 
x(t) * y(t) is given by

( ) ( ) ( ) ( ) ( )z t x t y t x y t dt t t
•

-•
= * = -Ú  (3.40)

By a change of variable, the above integral, generally referred to as the convolution integral, may also be 
written as

( ) ( ) ( ) ( ) ( )z t x t y t x t y dt t t
•

-•
= * = -Ú  (3.41)

In Eqs. (3.40) and (3.41), t is a dummy variable; and since the integration is performed for all values of t, the 
result of integration is a function only of ‘t’, and is denoted as z(t).

Properties of convolution

1. Commutative property: ( ) ( ) ( ) ( )x t y t y t x t* = *
2. Associative property: [ ( ) ( )] ( ) ( ) [ ( ) ( )]x t y t z t x t y t z t* * = * *
3. Distributive property: ( ) [ ( ) ( )] ( ) ( ) ( ) ( )x t y t z t x t y t x t z t* + = * + *
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4. Linearity Property: If ( ) ( ) ( ), ( ) ( ) ( )x t y t w t x t z t r t* = * =  and if a and b are any two arbitrary constants, 
then

( ) [ ( ) ( )] ( ) ( )x t ay t bz t aw t br t* + = +

5. ( ) ( ) ( )x t t x td t t* - = -  . . . (Replication property of d(t)):

As we know, d(t – t) is a unit-impulse function located at t = t. This property tells us that when x(t) is 
convolved with a unit impulse located at t = t, the function x(t) is shifted by t sec (to the right, if t >0).

Proof We know that  ( ) ( ) ( ) ( )x t y t x y t dl l l
•

-•
* = -Ú

\ ( ) ( ) ( ) ( )x t t x t dd t l d t l l
•

-•
* - = - -Ú

But we know from the defining equation of a delta function, that the above integral is simply equal to x(t – t)
[see Eq. (3.5)] This is a very useful result and is used quite often.

6. If ( ) ( ) ( ),z t x t y t= *  then ( ) ( ) ( ) ( ) ( )z t x t y t x t y t= * = *& && . This may easily be proved using the ‘differen-
tiation theorem of Fourier transform’, which we are going to discuss a little later.

Example 3.10 Given x(t) = 5 cos t and y(t) = 2e–|t|, find x(t) * y(t).

Solution Let ( ) ( ) ( )z t x t y t= *

\ ( ) ( ) ( )z t x y t dt t t
•

-•
= -Ú

But y(t) = 2e–| t | so that 
| |

( )

2 for
( ) 2

2 for

t
t

t

e t
y t e

e t

t
t

t

t
t

t

-
- -

- -

Ï <Ô- = = Ì
>ÔÓ

\ ( ) ( )( ) (5 cos ) 2 (5 cos ) 2

5{cos sin ] 5[cos sin ] 10 cos ;

t
t t

t

z t e d e d

t t t t t t

t tt t t t
•

- - -

-•
= +

= + + - = • < < •

Ú Ú

 Correlation between two continuous-time energy signals Correlation is an operation between 
two signals and it gives us the degree of similarity between the two signals. In Eq. (2.21) of Chapter 2, we 
had shown that the component of x(t) along the signal y(t), may be written as

2

1

2

1

2

( ) ( )

( )

| ( )|

t

t

t

t

y t x t dt

y t

y t dt

*

◊
Ú

Ú
 (3.42)

In case x(t) and y(t) are real-valued signals, the complex conjugation, represented by the 

symbol ‘*’ in the above equations, may be ignored.

If the two energy signals, x(t) and y(t) are such that

2

1

( ) ( ) 0
t

t

y t x t dt
* =Ú  (3.43)

Note
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we say that the two signals are orthogonal to each other and there is no similarity between them in the 
interval t1 to t2. But, we are generally interested in their similarity over the entire interval from –• to +• and 
therefore, we may think of using the following integral:

( ) ( )x t y t dt
•

*

-•
Ú  (3.44)

 But there is a problem in straight away using the above equation. To understand this problem, consider x(t)
and y(t) shown in Figs. 3.13 and 3.14. The two signals are exactly identical, except that y(t) is a time-delayed 
version of x(t).

Fig. 3.13 Signal x(t) Fig. 3.14 Signal y(t)

 If we straight away apply Eq. (3.44) to them, the integral reduces to zero forcing us to conclude that there 
is no similarity between them! But we know that they are exactly similar, but for the time delay.
 Hence, to overcome the above problem, let us introduce a sliding or lag, parameter t, and modify 
Eq. (3.44) as follows:

( ) ( )x t y t dtt
+•

*

-•
-Ú  (3.45)

Since the integration is performed over the entire range of values of t, the above integral yields a function of 
only t, the lag parameter. Hence, let us write

( ) ( ) ( )xyR x t y t dtt t
+•

*

-•
= -Ú  (3.46)

t has been called the sliding parameter, or lag parameter because, if t > 0, as t increases, y(t) slides along 
the time axis to the right, and if t < 0, as t increases, y(t) slides to the left. Thus, in Eq. (3.46) we are keeping 
x(t) fixed and sliding y(t) and for each value of the sliding parameter t, we are finding out the area under the 
product of x(t) and the shifted y(t). Obviously, Rxy(t) takes a maximum value when the shifted version of y(t)
has maximum overlap with x(t). For the x(t) and y(t) shown in Figs. 3.13 and 3.14, this happens when t = –6.
By putting (t – t) = l, Eq. (3.46) may be rewritten as

( ) ( ) ( )xyR x t y t dtt t
•

*

-•
= +Ú  (3.47)

Here, Rxy(t) is called the  cross-correlation between the signals x(t) and y(t), for a lag of t sec. If x(t) and y(t)
have some similarity as in the case of the signal shown in Figs. 3.13 and 3.14, then Rxy(t) will be non-zero 
at least for some values of lag parameter t. If however Rxy(t) is zero for all values of t, it means that x(t) and 
y(t), have no similarity and we can say that the two signals have no  correlation or that they are un-correlated.

Symmetry properties of cross-correlation From Eq. (3.47), if x(t) and y(t) are complex-valued signals,

   ( ) ( ) ( )xyR x t y t dtt t
•

*

-•
= +Ú  (3.48)

Replacing t by –t in Eq. (3.47), we have

t t

t

•
*

-•
•

*

-•

- = -

= +

Ú

Ú

( ) ( ) ( )

( ) ( )

xyR x t y t dt

x t y t dt  (3.49)
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But ( ) ( ) ( )yxR y t x t dtt t
•

*

-•
= +Ú  (3.50)

Comparing Eq. (3.49) with Eq. (3.50), we find that

( ) ( ) for complex-valued signalsyx xyR Rt t*= -  (3.51)

In case the two signals are real valued, it is clear that

t t= -( ) ( ) for real-valued signalsyx xyR R  (3.52)

 When y(t) is the same as x(t), the correlation is of a signal x(t) with itself and  therefore it is called as ‘auto-
correlation’ and denoted by Rxx(t) or simply Rx(t). Thus,

( ) ( ) ( )

if ( ) is real-valued

( ) ( )

xxR x t x t dt

x t

x t x t dt

t t

t

•

-•

•

-•

¸
= - Ô

Ô
˝
Ô= + Ǫ̂

Ú

Ú

 (3.53)

and

          

( ) ( ) ( )

if ( ) is complex-valued

( ) ( )

xxR x t x t dt

x t

x t x t dt

t t

t

•
*

-•
•

*

-•

¸
= - Ô

Ô
˝
Ô= + Ǫ̂

Ú

Ú
 (3.54)

From the above, we find that

( ) ( ) if ( ) is realxx xxR R x tt t- =  (3.55)

and ( ) ( ) if ( ) is complexxx xxR R x tt t*- =  (3.56)

Thus, if x(t) is real valued, its  auto-correlation function has even symmetry. But if x(t) is complex valued, then 
its auto-correlation function has Hermitian symmetry.
Another important property of the auto-correlation is

(0) | ( )|; 0xx xxR R t t> π  (3.57)

(For a rigorous proof, refer to Ref. 3.)
Equation (3.57) says that the  auto-correlation of a signal x(t) takes the maximum value for zero lag. This 
is obvious, since the overlap between x(t) and x(t + t) is maximum when t = 0. Further in that case, Rxx(0)
represents the energy of the signal x(t).

Correlation between two continuous-time power signals The discussion so far was confined 
to correlation of continuous-time energy signals. But periodic signals of the deterministic type and random 
signals are not energy signals – they are  power signals. Since the energy of these signals over an infinite time 
interval is not finite it would be more appropriate to define the cross-correlation of two power signals, x(t)
and y(t), as

/2

/2

1
( ) Lim ( ) ( )

T

xy
T

T

R x t y t dt
T

t t*

Æ• -
D -Ú  (3.58)
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and auto-correlation of x(t) as

/2

/2

1
( ) Lim ( ) ( )

T

xx
T

T

R x t x t dt
T

t t*

Æ• -
D -Ú  (3.59)

However, in the case of power signals that are periodic deterministic signals, the average over an infinite 
interval and average over one period will be the same. Hence, if x(t) and y(t) are periodic with period T0, we 
may write

0

0

/2

0 /2

1
( ) ( ) ( )

T

xy
T

R x t y t dt
T

t t*

-
= -Ú  (3.60)

0

0

/2

0 /2

1
( ) ( ) ( )

T

xx
T

R x t x t dt
T

t t*

-
= -Ú  (3.61)

Since x(t) and y(t) both have a period T0, the integrands of Eqs. (3.60) and (3.61) are also 

periodic with period T0. Thus, auto-correlation of a periodic signal, and cross-correlation of 

two periodic signals with the same period will be periodic with the same period.

Example 3.11 Find Rxx(t) if x(t) = e–tu(t).

Solution ( )( ) ( ) ( ) ( ) ( )t t
xxR x t x t dt e u t e u t dt

tt t t
• •

- - -

-• -•
= - = -Ú Ú

(a) When t > 0

1 for
( ) ( )

0 for

t
u t u t

t

t
t

t

>Ï
- = Ì <Ó

\ ( ) 2 1
( ) ( )

2
t t t

xxR e e dt e e dt e u
t t t

t t

t t
• •

- - - - -= = =Ú Ú

(b) When t < 0

1 for 0
( ) ( )

0 for 0

t
u t u t

t
t

≥Ï
- = Ì <Ó

\ ( ) 2

0

1
( ) ( )

2
t t t

xxR e e dt e dt e u
t tt t

• •
- - - -

-•
= = = -Ú Ú

  Combining the two results, we may write

| |1
( )

2xxR e
tt -=

Example 3.12 If x(t) = A cos(w0t + q), find Rxx(t).

Solution 
0

0

/2
2

0 0
0 /2

1
( ) cos( )cos[ ( ) ]

T

xx
T

R A t t dt
T

t w q w t q
-

= + - +Ú

Remark
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Put f = w0t + q

\
p q

p q

p q p q

p q p q

t f f w t f w t f
w

w t f f w t f f
p p

w t p q p q w t
p

+

- +

+ +

- + - +

= ◊ +

= + +

= + + - =

Ú

Ú Ú

2

0 0
0 0

2 2

0 0

2 2

0 0

1
( ) cos [cos cos sin sin ]

cos (1 cos 2 ) sin sin 2
4 4

cos [ ] cos
4 2

xx

A
R d

T

A A
d d

A A

Therefore, if x(t) is periodic with a period of 0
0

2
T

p

w

Ê ˆ
= Á ˜Ë ¯

, we find that Rxx(t) is periodic in t with the same 

period T0.

3.3.2 Relationship between Convolution and Correlation

There is a close resemblance between convolution and correlation operations. In view of this, we shall 
examine the relationship between the two. For this purpose, consider two signals, x(t) and y(t).

   Correlation: ( ) ( ) ( )xyR x t y t dtt t
•

-•
= -Ú  (3.62)

   Convolution: ( ) ( ) ( ) ( ) ( )z t x t y t x y t dt t t
•

-•
= * = -Ú  (3.63)

If we now define \ ( ) ( ) ( ) ( ) ( )w t x t y t x y t dt t t
•

-•
D * - = -Ú  (3.64)

Then, replacing the dummy variable t in Eq. (3.64) by u, we have

    ( ) ( ) ( )w t x u y u t du
•

-•
= -Ú  (3.65)

In the  cross-correlation Eq. (3.62), if t is replaced by u

( ) ( ) ( )xyR x u y u dut t
•

-•
= -Ú  (3.66)

A comparison of Eqs. (3.65) and (3.66) reveals that

( ) [ ( ) ( )] |xy tR x t y t tt Æ= * -  (3.67)

and ( ) [ ( ) ( )] |xx tR x t x t tt Æ= * -  (3.68)

 We had earlier seen that the Fourier transform provides a very powerful tool for the computation of 
convolution. From the above equations, it is clear that it can as well be used for the computation of correlation 
too.

Since we are replacing y(t) by y(–t) in the convolution in order to get the cross-correlation, if 

y(t) has  even symmetry with respect to ‘t’, the two operations of convolution and correlation 

become one and the same.
Note
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3.3.3 Energy Spectral Density (ESD)

Consider two energy signals x(t) and y(t). Let ( ) ( ) ( )z t x t y t= *  and let their cross-correlation for a lag t be 

Rxy(t). Then,

   ( ) ( ) ( )z t x t y t= *  (3.69)

( ) ( ) ( )Z f X f Y f= ◊  (3.70)

Then from Eq. (3.67), we know that

[ ( )] [ ( )] [ ( )]xyR x t y tt = ◊ -F F F  (3.71)

i.e., [ ( )] ( ) ( ) ( )xy xyR X f Y f S ft = ◊ - DF  (3.72)

In a similar manner, we have

[ ( )] ( ) ( ) ( )yx yxR S f Y f X ft D = ◊ -F  (3.73)

\ If Rxx(t) is the auto-correlation function of x(t), then
2[ ( )] ( ) ( ) | ( )|xxR X f X f X ft = ◊ - =F  (3.74)

But, from  Parseval’s theorem for Fourier transform, we know that (refer to Eq. (3.15)) |X(f)|2 represents the 
energy density of x(t) with respect to frequency and is called the ‘ Energy Spectral Density’ (ESD). It shows 
how the energy of x(t) is distributed with respect to frequency, and is denoted by Sxx(f).

\ 2[ ( )] ( ) | ( )|xx xxR S f X ft = =F  (3.75)

The above equation tells us that for an energy signal, x(t), its auto-correlation function Rxx(t) and its energy 
spectral density (ESD) denoted by Sxx(f), are a Fourier transform pair.

i.e.,
FT

( ) ( )xx xxR S ft ¨ææÆ  (3.76)

This relationship is generally referred to as the  auto-correlation theorem and may be derived directly as follows.

p t p t

p p t

t t t t t

t t

• • •
- -

-• -• -•
• •

- - -

-• -•

= = -

= ◊ -

Ú Ú Ú

Ú Ú

2 2

2 2 ( )

[ ( )] ( ) [ ( ) ( ) ]

( ) ( )

j f j f
xx xx

j ft j f t

R R e d x t x t dt e d

x t e dt x t e d

F

Putting l = (t – t)

p p lt l t
• •

- - -

-• -•
= ◊

= ◊ - = =

Ú Ú2 2 ( )

2

[ ( )] ( ) ( )

( ) ( ) | ( )| ( )

j ft j f
xx

xx

R x t e dt x e d

X f X f X f S f

F

Since
FT

( ) ( )xx xxR S ft ¨ææÆ , we have

2( ) ( )j f
xx xxS f e df R

p t t
•

-•
=Ú

Putting t = 0 on both sides of the above equation

Rxx(0) = ACF for zero lag = ( )xxS f df
•

-•
Ú

 = Area under the energy spectral density function
 = Energy of x(t).

\ (0) Energy of ( ), an energy signalxxR x t=  (3.77)
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3.3.4 Power Spectral Density (PSD)

In the foregoing, we have considered  energy signals which have a finite amount of energy over –• < t < •,
and we have shown that the Fourier transform of the auto-correlation of such signals gives the energy spectral 
density.
 Now, we shall consider signals that do not have a finite energy over the interval –• < t < •. Periodic 
signals and random signals come under this category. Since we cannot talk about the Fourier transforms of 
such signals, if x(t) is a deterministic  power signal, let us take a segment of it of duration T seconds. This 
segment will have a finite amount of energy. Specifically, let

£Ï
D Ì

Ó

( ); for | | /2
( )

0 ; otherwiseT

x t t T
x t  (3.78)

Thus, xT(t) is a finite energy signal and hence, is Fourier transformable.

Let
FT

( ) ( )T Tx t X f¨ææÆ  (3.79)

We know that |XT(f)|2 represents the ESD of the signal xT(t). Since the duration of the signal xT(t) is T seconds, 
we may define the average power spectral density of xT(t) as

2| ( )|
( )

T T

T
x x

X f
P f

T
=  (3.80)

and the average power spectral density of x(t) as

Æ•

È ˘
= Í ˙

Î ˚

2| ( ) |
( ) Lt T

xx
T

X f
P f

T
 (3.81)

Recalling that the  auto-correlation function of a real-valued power signal has been defined as

/2

/2

1
( ) Lt ( ) ( )

T

xx
T

T

R x t x t dt
T

t t
Æ• -

= -Ú

and taking the Fourier transform of the above on both sides

   

t t

t

t t

Æ• -

•

Æ• -•

+•

Æ• Æ•-•

Æ•

È ˘
= -Í ˙

Î ˚

È ˘Ï ¸Ô ÔÍ ˙= -Ì ˝
Í ˙Ô ÔÓ ˛Î ˚

È ˘Ï ¸Ô ÔÍ ˙= - =Ì ˝
Í ˙Ô ÔÓ ˛Î ˚

È ˘
= =Í ˙

Î ˚

Ú

Ú

Ú

/2

/2

2

1
[ ( )] Lt ( ) ( )

1
Lt ( ) ( )

1 1
Lt ( ) ( ) Lt [ ( )]

| ( )|
Lt ( )

T T

T

xx
T

T

T T
T

T T x x
T T

T
xx

T

R x t x t dt
T

x t x t dt
T

x t x t dt R
T T

X f
P f

T

F F

F

F F

(From Eq. (3.81))

\  Power spectral density of a power signal is the Fourier transform of the  auto-correlation of the signal.

FT
( ) ( )xx xxR P ft ¨ææÆ  (3.82)
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Example 3.13 Find the ACF and ESD of the signal ( ) ( ).t
x t e u t

-=

Solution We know, from Eq. (2.119) that

t
t

Æ
= * -( ) [ ( ) ( )]xx t

R x t x t

\ 2( ) ( ) ( ) | ( )|xxS f X f X f X f= ◊ - =

But (1 )

0

1
( ) [ ( )] ( )

1
j t j t

X f x t x t e dt e dt
j

w w

w

• •
- - +

-•
= = = =

+Ú ÚF

\ 2
2

1
| ( )| ( ),

1
xxX f S f

w
= =

+
 the ESD of x(t).

Thus, 1 1 | |
2

1 1
( ) [ ( )]

21
xx xxR S f e

tt
w

- - -È ˘= = =Í ˙+Î ˚
F F

Example 3.14 Find the ACF and ESD of the signal x(t) = AP(t/2T).

Solution ( ) ( ) ( )xxR x t x t dtt t
•

-•
= -Ú

and
t

t
Æ

= * -( ) [ ( ) ( )]xx t
R x t x t

Since x(t) has even symmetry,

t
t

Æ
= *( ) [ ( ) ( )]xx t

R x t x t

\ = * = =2 2 2 2( ) [ ( ) ( )] | ( ) | 4 sinc (2 )xxS f x t x t X f A T f TF

\ 1 2 2 2 2( ) [4 sinc (2 )] [2 | |]xxR f A T f T A T t
-= = -F

Rxx(t) may however be determined directly as

2 2( ) ( ) ( ) (2 )
T

xx
T

R x t x t dt A dt A T
t

t t
•

-• - +
= * - = = -Ú Ú

However, since x(t) is real valued, Rxx(t) must have  even symmetry with respect to t.

\ 2( ) (2 | |)xxR A Tt t= -
Hence, Rxx(t) is a triangular waveform as shown in Fig. 
3.16.

 Properties of power spectral density
1. Pxx(f) of a signal is always non-negative, since

2| ( )|
( ) Lt T

xx
T

X f
P f

TÆ•

È ˘
= Í ˙Î ˚

2. Pxx(f) is the Fourier transform of Rxx(t)
3. The total area under the PSD curve of a signal equals the average power of the signal

since \ 1 2( ) [ ( )] ( ) j f
xx xx xxR P f P f e df

p tt
•

-

-•
= = ÚF

            \ (0) ( )xx xxR P f df
•

-•
= Ú = area under the PSD curve

Fig. 3.15 x(t) of Example 3.14

Fig. 3.16 Rxx(t) of AP(t/2T)
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But
0

0

/2

0 /2

1
( ) ( ) ( )

T

xx
T

R x t x t dt
T

t t
-

= -Ú

\
0

0

/2
2

0 /2

1
(0) ( )

T

xx
T

R x t dt
T -

= Ú  = Average power of x(t)

\ ( )xxP f df
•

-•
Ú  = Average power Pav of x(t)  (3.83)

4. The  power spectral density of a real-valued power signal x(t) is an  even function of frequency, 
i.e., Pxx(–f) = Pxx(f), if x(t) is real valued.

Proof We know that for a real-valued power signal x(t)

Æ• Æ•

- =

È ˘ È ˘-
- = = =Í ˙ Í ˙

Î ˚ Î ˚

2 2

| ( ) | | ( ) |

| ( ) | | ( ) |
( ) Lt Lt ( )

T T

T T
xx xx

T T

X f X f

X f X f
P f P f

T T

Thus, Pxx(f) is an even function of frequency.

Output ESD and PSD of Linear time-invariant (LTI) systems An LTI system is characterized by its 
 impulse response function, h(t), in the sense that for any given input signal x(t), the output signal y(t) is given 
by

( ) ( ) ( )y t x t h t= *

Taking  Fourier transform on both sides, we have

( ) ( ) ( )Y f X f H f= ◊  (3.84)

 This equation clearly shows that the spectrum of the input signal gets modified during its passage through 
the LTI system. We shall now examine the way the ESD of the output signal is related to the ESD of the input 
signal x(t), when x(t) is an energy signal. We shall also examine how the PSD of the output signal is related 
to the PSD of the input signal when the input signal is a  power signal.

Relationship between input and output ESDs Let x(t) be an energy signal. From Eq. (3.84), we have

2 2 2 2| ( )| | ( ) ( )| | ( )| | ( )|Y f X f H f X f H f= ◊ = ◊

But we know that 2| ( )|Y f  and 2| ( )|X f  represent, respectively, the ESDs of output and input signals.

\
2 2 2 2| ( )| ( ) | ( )| | ( )| ( ) | ( )|yy xxY f S f X f H f S f H f= = ◊ = ◊

Hence,
2( ) | ( )| ( )yy xxS f H f S f= ◊  (3.85)

Relation between input and output PSDs Let us now assume that the input signal x(t), is a power 
signal. Also, let

( ) ( ) ( )Tx t w t x t= ◊  (3.86)

where w(t) is a rectangular window function defined by

1 for | |
( )

0 otherwise

t T
w t

£Ï
= Ì

Ó
 (3.87)
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Then, we know that
2| ( )|

( ) Lt T
xx

T

X f
P f

TÆ•

È ˘
= Í ˙Î ˚

where ( ) [ ( )]T TX f x t= F ,

and that 
2| ( )|

Lt T
yy

T

Y f
P

TÆ•

È ˘
= Í ˙Î ˚

In the above equation, ( ) ( ) ( )T TY f H f X f= ◊
Then, it follows from the above expression for Pxx(f) and Pyy(f), that

2( ) | ( )| ( )yy xxP f H f P f= ◊  (3.88)

Example 3.15 /( ) ( )t
x t e u t

t-=  is applied as input to an L-section high pass RC filter with a time 
constant of t sec. Find the ESD of the output of the filter. Express the output signal energy as a percentage 
of the input signal energy.

Solution Transfer function H(f) of the RC filter is

2
( )

1 2 1

j fRC j
H f

j fRC j

p wt

p wt
= =

+ +  since t = RC

\
2 2

2
2 2

| ( )|
1

H f
w t

w t
=

+

\ If input  energy spectral density is Sxx(f), and output ESD 
is Syy(f), then

2 2

2 2
( ) ( )

1
yy xxS f S f

w t

w t
= ◊

+

But 2( ) | ( )|xxS f X f= , where /( ) ( )
1

t j t
X f e u t e dt

j

t w t

wt

•
- -

-•
= =

+Ú

\
2

2
2 2

| ( )|
1

X f
t

w t
=

+
 and 

t
w

p w t

• •

-• -•
= =

+
Ú Ú

2
2

2 2

1
| ( ) |

2 1
xE X f df d

Putting 2 2 2 21
tan , 1 sec and secd dwt q w t q w q q

t
= + = =

\ Ex = Energy in the input signal 
2 /2

/2

1

2 2
d

p

p

t t
q

p t

+

-
= =Ú

w t

w t
= =

+

2 4
2 2

2 2 2
( ) | ( ) | | ( ) |

(1 )
xxS f X f H f

\ Ey = Total energy at the output of the filter ( )xxS f df
•

-•
Ú

     

2 4

2 2 2

1

2 (1 )
d

w t
w

p w t

•

-•
=

+
Ú

Fig. 3.17 An L-section high pass RC filter
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Substituting tan q for wt and performing the above integration, we get Ey = t/4

\
/4

100% 100 50%
/2

y

x

E

E

t

t
¥ = ¥ =

Example 3.16 The signal 3( ) 10 cos (4 10 )x t tp= ¥
is given as input to an L-section low pass RC filter having 
3 db cut-off frequency of 103 Hz. Determine and sketch 
the output PSD.

Solution First, let us find Pxx(f), i.e., the PSD of the 
input signal. But

( ) [ ( )]xx xxP f R t= F
Now to find Rxx(t)

0

0

/2
2

0 0
0 /2

1
( ) cos ( ) cos [ ( ) ]

T

xx
T

R A t t dt
T

t w q w t q
-

= + - +Ú

Putting f = w0t + q and performing the above integration, we get

2 2
3

0

10
( ) cos cos (4 10 )

2 2xx

A
R tt w p t= = ¥

\ 3
0 0( ) [50 cos (4 10 ) ] 25[ ( ) ( )]xxP f f f f fp t d d= ¥ = - + +F

where 3
0 2 10 Hzf = ¥

Therefore, 2 2
0 0( ) | ( )| ( ) | ( )| 25[ ( ) ( )]yy xxP f H f P f H f f f f fd d= ◊ = ◊ - + +

But

2
2 2 2

1
( )

1

1
| ( )|

1

H f
j RC

H f
R C

w

w

=
+

=
+

Since 3-db frequency for an RC low pass filter 
1

2 RCp
=

3 2 2
2 6

1 1
10

2 4 10
R C

RCp p
= \ =

¥

\
yyP f f f f f

f f f f

d d

w
p

d d

= - + +
Ê ˆ+ Á ˜Ë ¥ ¯

= - + +

0 0
2

2 6

0 0

25
( ) [ ( ) ( )]

1
1

4 10

5[ ( ) ( )]

(From sampling property of delta functions)

where 3
0 2 10 Hzf = ¥

Fig. 3.18 An L-section RC low pass filter

Fig. 3.19 A sketch of Pyy(f)
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90 Communication Systems

3.4 HILBERT TRANSFORM

3.4.1 Definition and Frequency-domain Representation

The  Hilbert transform, ˆ( )x t , of a signal x(t), is defined as the signal obtained by convolving x(t) with 1/(pt).

\
1

ˆ( ) ( )x t x t
tp

D *  (3.89)

i.e.,
( ) ( )

( )– –

–
ˆ( )

–

x x t
x t d d

t

t t
t t

p t pt

• •

• •
= =Ú Ú  (3.90)

(i) This definition of Hilbert transform is applicable to all signals that are Fourier 

transformable.

(ii) Since all applications of Hilbert transform are concerned with real-valued signals, 

we shall henceforth assume that x(t) is real valued.

 The effect on x(t), of Hilbert transforming it, is best understood in the frequency domain. Taking the 
Fourier transform on both sides of Eq. (3.89), and denoting the Fourier transform of ˆ( )x t  as ˆ ( )X f , we have

1ˆ ( ) ( )X f X f
tp

È ˘= ◊ Í ˙Î ˚
F

From Eq. (3.36), we have

FT 1
sgn( )t

j fp
¨ææÆ  (3.91)

Hence, from the  duality theorem of Fourier transforms,

1
sgn( ) sgn( ),f f

j tp
= - = -  since sgn(f) is an odd function of f.

\ j f
tp

¨ææÆ -FT1
sgn( )  (3.92)

Going back to Eq. (3.91), we therefore have

   ˆ ( ) sgn( ) ( )X f j f X f= -  (3.93)

But
1 for 0

sgn( )
1 for 0

f
f

f

>Ï
= Ì- <Ó

\
ˆ for 0( )

( ) for 0

j fX f

X f j f

- >Ï
= Ì <Ó

 (3.94)

 Since ˆ ( )X f  is the spectrum of ˆ( )x t  while X(f) is the spectrum of x(t), it follows from Eq. (3.94) that 
the effect of Hilbert transforming a signal x(t) is merely to give a phase shift of –90° to all of the positive 
frequency components of x(t) and a phase shift of +90° to all of its negative frequency components. Further, 
since
 |–j | = | j | = 1
we have

ˆ| ( )| | ( )|X f X f=  (3.95)

i.e., Hilbert transform does not alter the  magnitude spectrum.

Note
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 From Eq. (3.89), it is clear that we may visualize the  Hilbert transform ˆ( )x t  of a signal x(t) to be the output 
of linear  time-invariant system with an  impulse response function

1
( ) ,h t

tp
=  (3.96)

and whose input signal is x(t). Such an LTI system, called the  Hilbert

transformer, will have a transfer function H(f) given by

ˆ for 0( )
( ) sgn( )

( ) for 0

j fX f
H f j f

X f j f

- >Ï
= = - = Ì <Ó

 (3.97)

Fig 3.21 (a) Magnitude response of a Hilbert transformer, (b) Phase response of a Hilbert transformer

 Properties of Hilbert Transform

1. Hilbert transform does not change the domain of a signal.

2. Hilbert transform does not alter the amplitude spectrum of a signal.

3. If 
HT ˆ( ) ( )x t x t¨ææÆ , then

HT ˆˆ ˆ( ) ( ) ( ).x t x t x t¨ææÆ - =

Proof 
FTˆ( ) ( ) ( ).x t jSgn f X f¨ææÆ -

Hence FTˆ̂( ) { ( )}{ ( )} ( )x t jSgn f jSgn f X f¨ææÆ - -

\ 2ˆ̂[ ( )] sgn ( ) ( ) ( )F x t f X f X f= - ◊ = -

\ ˆ̂( ) ( )x t x t= -  (3.98)

4. A signal and its Hilbert transform are orthogonal to each other.

i.e., ˆ( ) ( ) 0x t x t dt
•

-•
=Ú

Proof of the above property is left as an exercise for the readers.

From the –90° phase-shift property of Hilbert transform, it follows that

 (i) 
HT

0 0sin t cos tw w¨ææÆ -  (3.99)

 (ii)  
HT

0 0cos t sin tw w¨ææÆ  (3.100)

5. If x(t) is a  low pass signal and y(t) is a  high pass signal, and if their spectra are non-overlapping, then

ˆ( ) ( ) ( ) ( )x t y t x t y t= ◊  (3.101)

This property is extremely useful in communication engineering and may be proved as follows:

Fig. 3.20 Hilbert transformer

Remarks
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Proof Let ( ) ( ) ( )z t x t y t= ◊
Taking the Fourier transform of the above on both sides, 

( ) ( ) ( ) ( ) ( )Z f X f Y f X Y f dl l l
•

-•
= * = -Ú

\ Z f z t j f Z f

j X Y f f dl l l
•

-•

= = -

= - -Ú

ˆ ˆ( ) [ ( )] sgn( ) ( )

( ) ( )sgn( )

F

Hence, j ft

j t j f t

z t Z f j X Y f f e d df

j X e Y f e f dfd

p

pl p l

l l l

l l l

• •
-

-• -•
• •

-

-• -•

= = - -

= - ◊

Ú Ú

Ú Ú

1 2

2 2 ( )

ˆˆ( ) [ ( )] ( ) ( )sgn( )

( ) ( – ) sgn( )

F

  (3.102)

Here, x(t) is a low pass signal, band limited to say, W Hz, Hence, the range of values of l for which X(l) is 
non-zero, are |l| £ W. But, y(t), being a high pass signal, the range of values of ‘f’ for which Y(f) is non-zero 
are typically | f | >>W. Hence, in the integral on the RHS of Eq. (3.102), we will be interested in small values 
of the variable l and only very large values of the variable ‘f’. Hence (f – l) in it may be replaced by ‘f’
without any error (as the spectra of x(t) and y(t) are non-overlapping) and we may re-write Eq. (3.102) as

j t j ft

j t j ft

z t X e Y f e j f df d

X e d Y f e j f df

x t y t

pl p

pl p

l l

l l

• •

-• -•
• •

-• -•

= ◊ -

= ◊ -

= ◊

Ú Ú

Ú Ú

2 2

2 2

ˆ( ) ( ) ( ) [ sgn( )] 

( ) ( ) [ sgn( )]  

ˆ( ) ( )

Hence, if x(t) is a low pass signal and y(t) is high pass signal, and if their spectra are non-overlapping, then

ˆ( ) ( ) ( ) ( )x t y t x t y t= ◊

3.4.2 Analytic Signal or Pre-envelope

If x(t) is a real-valued signal, its  analytic signal or  pre-envelope is defined as

ˆ( ) ( ) ( )x t x t jx t+ D +  (3.103)

The analytic signal, or the pre-envelope of x(t) is thus a complex-valued signal, with x(t) itself as its real part 
and the Hilbert transform of x(t), as its imaginary part. It plays an important role in the representation of  band 
pass signals and in the analysis of  band pass systems.
 The importance of the analytic signal stems from the nature of its spectrum. If we take the Fourier transform 
of both sides of Eq. (3.103) and denote the Fourier transform of x+(t) by X+(f), we have

( ) ( ) [ sgn( ) ( )]

( ) ( ); 0

( ) – ( ); 0

X f X f j j f X f

X f X f f

X f X f f

+ = + -

+ >Ï
= Ì <Ó

\
2 ( ) for 0

( )
0 for 0

X f f
X f

f
+

>Ï
= Ì <Ó

 (3.104)

Fig. 3.22  (a) Magnitude spectrum of x(t), (b) Magnitude 

spectrum of x+(t)
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3.4.3 Complex-envelope Representation of Band Pass Signals

A band pass signal is one whose spectrum is non-negligible only in a band of frequencies, occupying a 
width of say 2W Hz around a certain frequency fc called the centre frequency with W << fc. We come across 
band pass signals quite frequently in communication engineering. For example, a typical double sideband 
amplitude modulated audio broadcast signal occupies a bandwidth of about 10 KHz centered on a carrier 
frequency of, say, a few megahertz.

Fig. 3.23  (a) Amplitude spectrum of the band pass signal x(t), (b) Amplitude spectrum of pre-envelope of x(t), 

(c) Amplitude spectrum of complex envelope of x(t)

Consider a real-valued band pass signal with amplitude spectrum as shown in Fig. 3.23(a). The amplitude 
spectrum of the  pre-envelope of x(t) is shown in Fig. 3.23(b). If the pre-envelope of signal x(t) is x+(t), then 
shifting its spectrum to the left along the frequency scale by an amount of fc is equivalent to multiplying x+(t)

by 2 cj f t
e

p-  (from the modulation theorem of FT). That is,

if ( ) ( )cX f X f f+= +%  (3.105)

then 2( ) ( ) cj f t
x t x t e

p-
+=%  (3.106)

Hence, 2( ) ( ) cj f t
x t x t e

p
+ = %  (3.107)

Now, since ˆ( ) ( ) ( )x t x t jx t+ = + , we have

2( ) Re[ ( )] Re[ ( ) ]cj f t
x t x t x t e

p
+= = %  (3.108)

Because of Eq. (3.108), ( )x t% is called the  complex-envelope of the band pass signal x(t). Note that while x(t)

is band pass signal, its complex-envelope ( )x t%  is a complex-valued low pass signal. The reason for calling 

this low pass signal, ( )x t%  as the complex envelope of real-valued band pass signal, x(t) is as follows. Suppose

( ) ( ) cos [ ( )],cx t a t t tw q= +  (3.109)

where a(t) and q(t) are real-valued low pass signals. Then, we may write

( )( ) ( ) cos [ ( )] Re[{ ( ) } ]cj tj t
cx t a t t t a t e e

wqw q= + =  (3.110)
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In Eq. (3.110), {a(t)e jq(t)} is obviously the complex envelope with cj t
e

w  being the complex carrier. A 
comparison of Eqs. (3.108) and (3.110) reveals that

( )( ) ( ) j t
x t a t e

q=%  (3.111)

 The complex-envelope representation of a band pass signal is a very convenient tool that is widely used in 
the representation of  radar and  sonar signals as well as in the analysis of band pass systems.

3.4.4 In-phase and Quadrature Component Representation

Using  complex envelope, we shall now derive the ‘in-phase and quadrature component’ representation of a 
real-valued band pass signal x(t) with center frequency fc. Let ( )x t%  be the complex envelope of x(t). Since 

( )x t%  is complex-valued function, let
( ) ( ) ( )I Qx t x t jx t= +%  (3.112)

Since ( )x t%  is a low pass signal of bandwidth, say, W, xI(t) and xQ(t) are also low pass signals of the same 
bandwidth W, but are real valued. From Eq. (3.108), we have

w w w= = + +%( ) Re[{ ( ) ] Re[{ ( ) ( )}{cos sin }]cj t
I Q c cx t x t e x t jx t t j t

\ ( ) ( ) cos ( ) sinI c Q cx t x t t x t tw w= -  (3.113)

This representation of the band pass signal x(t), is called the canonical representation of x(t). The low pass 
real-valued signal, xI(t) is called the ‘ in-phase’ component of the band pass signal x(t), while the real-valued 
low pass signal, xQ(t), is called the ‘ quadrature’ component of the band pass signal, x(t). This is because, while 
xI(t) multiplies cos wct, xQ(t) multiplies sin wct which is in phase quadrature with the carrier signal cos wct.
 In the foregoing discussion, we have used three different representations of the real-valued band pass 
signal, x(t), with center frequency fc. These different representations are:

( ) ( ) cos[ ( )]cx t a t t tw q= +  (3.114)

( ) Re[ ( ) ] Re[ ( )]cj t
x t x t e x t

w
+= =%  (3.115)

and ( ) ( ) cos ( ) sinI c Q cx t x t t x t tw w= -  (3.116)

The entities used in these three representations are obviously related. By expanding RHS of Eq. (3.114) and 
comparing with RHS of Eq. (3.116), we get

I

Q

x t a t t

x t a t t

q

q

= Ô̧
˝= Ǫ̂

( ) ( ) cos ( )

( ) ( ) sin ( )
 (3.117)

By writing cos[ ( )]ct tw q+  of eqn. (3.114) as { ( )}Re[ ]cj t t
e

w q+  and comparing with RHS of Eq. (3.115), we 
get

( )( ) complex envelope ( ) j t
x t a t e

q= =%  (3.118)

so that ( ) | ( )|a t x t= %  (3.119)

Further, from Eq. (3.107), we have

   2( ) pre-envelope of ( ) ( ) cj f t
x t x t x t e

p
+ = = %

\ | ( )| | ( )| ( )x t x t a t+ = =%  (3.120)

Also from Eq. (3.119) we have
2 2 1/2( ) [ ( ) ( )]I Qa t x t x t= +  (3.121)

and 1 ( )
( ) tan

( )

Q

I

x t
t

x t
q - È ˘

= Í ˙
Î ˚

 (3.122)
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Example 3.17 If x(t) is an  energy signal, show that x(t) and ˆ( )x t  are  orthogonal to each other over the 
interval –• < t < •.

Solution To show that x(t) and ˆ( )x t  are orthogonal over –• < t < • we have to prove that

ˆ( ) ( ) 0x t x t dt
•

-•
=Ú

From the generalized  Parseval’s theorem of Fourier transform (see Eq. (3.14)), we have

( ) ( ) ( ) ( )x t y t dt X f Y f df
• •

-• -•
=Ú Ú

where the overbar indicates complex conjugation.
If x(t) is real valued, ˆ( )x t  is also real valued since it is after all obtained by convolving x(t) with 1/(pt).

\ x t x t dt x t x t dt X f X f df

X f j f X f df j f X f df

• • •

-• -• -•
• •

-• -•

= =

= =

Ú Ú Ú

Ú Ú 2

ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

( ) [ sgn( ) ( )] sgn( ) | ( )|

However, since sgn(f) is an odd function of ‘f’, while |X(f)|2 is an even function of ‘f’, the integrand in the last 
integral is odd and hence the integral is zero.

\ ˆ( ) ( ) 0x t x t dt
•

-•
=Ú

Example 3.18 Find the Hilbert transform of the rectangular pulse ( ) ( / )x t A t t= P .

Fig. 3.24 Convolution of x(t) with 1/(pt) Fig. 3.25 Signal x(t) and its  Hilbert transform

Solution 

/2

/2

1 ( )
ˆ( ) ( )

1t

t

t
x t x t A d

t

A d
t

t

t
l

p pl

l
pl

•

-•

+

-

P -
= * =

=

Ú

Ú

\
/2

ˆ( ) log
/2e

A t
x t

t

t

p t

È ˘+
= Í ˙-Î ˚

Figure 3.24 shows x(t) and its Hilbert transform ˆ( )x t . Note that ˆ( )x t  goes to –• and +• at the two points of 
discontinuity of the signal x(t).
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Example 3.19 Given a signal ( ) ( / ) cos ( ),cx t A t T tw q= P +  find (a)  its analytic signal, (b) spectrum 
of its analytic signal, (c)  complex envelope, and (d) the natural envelope, a(t). Assume that fcT >> 1.

Solution ˆ( ) ( / ) sin( )cx t A t T tw q= P +  (From Eq. (3.101))
 (a) Analytic signal or Pre-envelope of x(t)

( )

ˆ( ) ( ) ( ) ( / ) [cos ( ) sin ( )]

( / ) c

c c

i t

x t x t jx t A t T t j t

A t T e
w q

w q w q+
+

= = + = P + + +

= P

 (b) 
q

+
Ï - >Ô= Ì

<ÔÓ

sinc ( ) ; 0
( )

0; 0

j
cATe f f T f

X f
f

 (c) ( )x t%  = Complex envelope of x(t) = 2( ) cj f t
x t e

p-
+

   ( / ) j
A t T e

q= P
 (d) Natural envelope of x(t), i.e., ( ) | ( )| ( / ).a t x t A t T= = P%

3.5 SIGNAL TRANSMISSION THROUGH SYSTEMS

3.5.1 Review of LTI System Theory

We may define a system as an entity which acts on one or more inputs, or excitations, and produces one or 
more responses, or outputs. We shall, however, confine our attention to single-input, single-output systems 

only.
 A  system is generally represented diagrammatically as shown in Fig. 3.26(a) or (b).

Fig. 3.26 (a) and (b) Diagrammatic representation of a system

Systems may be broadly classified into
 1.  Continuous-time systems
 2.  Discrete-time systems
 Continuous-time systems take a continuous-time signal as input and produce another continuous-signal as 
output. Discrete-time systems, similarly, take a discrete-time signal as input, act upon it and produce another 
discrete-time signal as output. Each of these, in turn, may be further classified into the following types:
 (a) Static (i.e., memory less) or dynamic (with memory)
 (b) Linear or non-linear
 (c) Time varying or time invariant

(a) Static and dynamic systems A system is said to be static, memory less, or instantaneous, if its present 

output is determined entirely by the present input only.
 As an example, we may consider a continuous-time system with input-output relationship given by an 
algebraic equation such as

y(t) = Ax(t) + B
where A and B are constants. Among electrical systems, all purely resistive networks, however complicated 

they may be are ‘static systems’ only.

Definition A system is said to be dynamic, or a ‘system with memory’, if its present output depends for its 

value not only on the present input, but also on some past inputs.
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As an example consider a system represented by the differential equation:

( )
( ) ( )

dy t
RC y t x t

dt
+ =

 The value of y(t) is dependent on the value of x(t) not only at the instant t, but also on the initial conditions.
It is the energy storage element C, the voltage across which cannot change instantaneously, that makes this 
circuit a dynamic system.

As a generalization, we may say that static systems have their input–output relation described 

by algebraic equations while dynamic systems have their input–output relation described 

through differential equations. Also, all purely resistive networks are  static systems whereas 

those with energy storage elements like inductors and capacitors are  dynamic systems.

(b) Linear and non-linear systems

Definition A continuous-time dynamic system is said to be ‘at rest’ or in the ‘ground state’, if all of its 

energy storage elements are devoid of any stored energy.

Definition Let T be a continuous-time system which is at rest. Let an input signal x1(t) given to T result 

in an output signal y1(t); and an input x2(t) result in an output of y2(t). Then the system T is said to be linear, 

if for any pair of arbitrary constants a1 and a2, an input of 1 1 2 2( ) ( )a x t a x t+  given to the system T results in 

an output of 1 1 2 2( ) ( )a y t a y t+ .

 Any continuous-time system not satisfying the above condition is said to be a  non-linear system.

A  linear system should basically satisfy the properties of  superposition and  homogeneity. The 

above definition takes care of both these.

(c) Time varying and  time-invariant systems Time invariance is the property of a system which makes the 
behavior of the system independent of time.

Definition Let y(t) be the response of a continuous time system T to an arbitrary input signal x(t). The 

system T is said to be time invariant or ‘fixed’ if, for any value of the real constant t, it gives a response of 

y(t – t) for an input of x(t – t).
 If this condition is not satisfied, T is said to be a time-varying system.

Example 3.20 A certain continuous-time system, is described by the following input-output relation:

y(t) = x(2t)
Is this system 

 (a) static or dynamic?
 (b) linear or non-linear?
 (c) fixed or time varying?

Justify your answer.

Solution
 (a) Since y(t) = x(2t), the output, at any instant of time t1 depends for its value on the present input for 

t1 = 0, on future values of input for t1 > 0 and on past values of input for t1 < 0. Hence, the system is 
not static.

Remark

Remark
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 (b) ( ) (2 )
T

x t x tææÆ

  \ 1 1 1 2 2 2( ) (2 ) ( ) and ( ) (2 ) ( )
T T

x t x t y t x t x t y tææÆ = ææÆ =

  Then 1 1 2 2 1 1 2 2[ ( ) ( )] [ (2 ) (2 )]
T

a x t a x t a x t a x t+ ææÆ +
   1 1 2 2( ) ( )a y t a y t= +
  \ it is a linear system.

 (c) ( ) (2 ) ( )
T

x t x t y tææÆ =

\ ( ) (2 ) ( ) since
T

x t x t y tt t t- ææÆ - π -
   ( ) (2 2 )y t x tt t- = -
  \ the system is not time invariant.

Example 3.21 Show that an ideal differentiator with input x(t) and output y(t) related by 
( )

( ) ,
dx t

y t
dt

=
is a linear time-invariant system.

Solution We are given that 
( )

( ) ( )
T dx t

x t y t
dt

ææÆ =

Hence, if 1
1 1 1

( )
( ) ( ) then ( )

T dx t
x t y t y t

dt
ææÆ =

and if 2
2 2 2

( )
( ) ( ), then ( )

T dx t
x t y t y t

dt
ææÆ =

Also if 1 1 2 2[ ( ) ( )]a x t a x t+  is given as the input,

1 2
1 1 2 2 1 1 2 2 1 2

( ) ( )
[ ( ) ( )] ( ) [ ( ) ( )]

T dx t dx td
a x t a x t y t a x t a x t a a

dt dt dt
+ ææÆ = + = +

\ 1 1 2 2( ) ( ) ( )y t a y t a y t= +
Hence, the system T, i.e., the ideal differentiator, is a linear system.
To show that it is time invariant, consider

1( ) ( )x t x t t= -

Then 1 1

( )
( ) ( )

T dx t
x t y t

dt

t-
ææÆ =

Put t – t = l

\dt = dl and 
( ) ( )

( ) ( )
dx t dx

y y t
dt d

t l
l t

l

-
= = = -

\ the ideal differentiator is time invariant.

Causality A system is said to be a ‘ causal system’ or a ‘non-anticipatory system’ if its output at any 

instant of time depends for its value only on the input at that instant and the previous instants but not on the 

input at future instants.

 This means that a causal system is one which cannot anticipate what the future values of input would be 
and respond to those inputs now itself.

Thus, all physically realizable real-time systems must be causal.

Henceforth we shall be discussing only about  linear time-invariant systems, i.e., LTI systems. 

Hence, unless otherwise specified, whenever we use the term ‘system’ it should be understood 

that we are referring only to a linear time-invariant (LTI) system.
Note
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Impulse response, h(t), of LTI systems 

Definition  The impulse response, h(t), of an LTI system 
is defined as the response of the system to a unit impulse 
given to it as input, when the system is in ground state.

Impulse response characterization of LTI systems 

Fig 3.28 (a) Signal x(t) and its approximation, (b) Rectangular pulse p(t)

In Fig. 3.28(a), x(t) is some arbitrary continuous-time signal and ( )x t%  is its approximation. It is clear that 
( )x t%  approaches x(t) as D tends to zero. Referring to the above two figures, we may write

( ) ( ) ( )
k

x t x k p t k
•

= -•
= D - D DÂ%  (3.123)

0 0
( ) Lim ( ) Lim ( ) ( )

k

x t x t x k p t k
•

DÆ DÆ = -•

È ˘
= = D - D DÍ ˙

Î ˚
Â%  (3.124)

But

0
Lt ( ) ( )p t td

DÆ
= , a unit impulse located at t = 0.

Further, kD becomes a continuous variable, say t, as D Æ 0. Also, D itself may be represented by dt.

\
0

( ) Lim ( ) ( ) ( )x t x t x t dt d t t
•

DÆ -•
= = -Ú%  (3.125)

 Let us now give this signal x(t) as input to an LTI system T in ground state and with impulse response h(t).
Then, we know that

( ) ( ) [ ( )]
T

x t y t T x tææÆ =

\ ( )  ( ) ( ) ( ) [ ( )]

( ) ( )

y t T x t d x T t d

x h t d

t d t t t d t t

t t t

• •

-• -•

•

-•

È ˘
= - = -Í ˙

Í ˙Î ˚

= -

Ú Ú

Ú

( ) ( ) * ( ) ( ) ( ) ( ) ( )y t x t h t x h t d x t h dt t t t t t
• •

-• -•
= = - = -Ú Ú  (3.126)

The integrals in Eq. (3.126) are called  convolution integrals, or the superposition integrals.
 From Eq. (3.126), we find that the knowledge of h(t), the impulse response of the system T, would enable 
us to calculate the output, y(t), of the system for any given input signal, x(t). Hence, we can say that an LTI 

system is completely characterized by its impulse response function h(t).

Fig. 3.27  Impulse response of a system
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Causality and Impulse Response Let T be 
an LTI system which is in ground state. Let a unit 
impulse function, d(t) be applied to T as input at t = 0.
\ For t < 0, x(t) = 0 and because the system is in 
ground state, the output y(t), which we know, is h(t),
must be zero for all t < 0, since the system, being 
causal, cannot produce an output in anticipation of an 
input which is going to be applied at t = 0. At t = 0, the unit impulse is applied and therefore for t ≥ 0, the 
output, h(t), need not be zero.

\ For a causal LTI system, ( ) = 0 for < 0h t t  (3.127)

 In the light of Eq. (3.127), the convolution integrals, for a causal LTI system, can be written as

0

( ) ( ) ( ) ( ) ( )
t

y t x t h d x h t dt t t t t t
•

-•
= - = -Ú Ú  (3.128)

Step response of LTI systems 
Definition The  step response, g(t), of an LTI system T, is defined as the response of T to a  unit-step function 

applied as input to T at t = 0, with the system T in ground state.
Since d(t) and u(t) are related as

( ) ( )
t

u t dd l l
-•

= Ú

It follows that for a LTI system, the step response and impulse response are related through the following 
equation:

( )
( ) ( ) ( )

t dg t
g t h d h t

dt
l l

-•
= \ =Ú  (3.129)

Example 3.22 An RC low pass filter is shown in Fig. 3.30. 
Find its impulse response and step response.

Solution Since
( )

( ) ,
dy t

i t C
dt

=  we may write the mesh equation as

( )
( ) ( )

dy t
RC y t x t

dt
+ =

Let us first find the impulse response and then make use of Eq. (3.8) to find g(t).
 To find the impulse response h(t), put x(t) = d(t) in the above differential equation and assume the system 
to be in ground state(see definition of h(t)). Then taking the Laplace transform on both sides of the differential 
equation, we get

[ ( ) (0 )] ( ) 1 for 0RC sY s y Y s t
-- + = >

\
1/

( )
1/

RC
Y s

s RC
=

+
Now, taking the inverse Laplace transform of the above

/Response of the system to a unit impulse 1
( ) ( ) ( ).

 when the system in ground state
t RC

y t h t e u t
RCfunction

-Ï ¸
= = = ◊Ì ˝

˛Ó

Fig. 3.29 Impulse response of a  causal system

Fig. 3.30 RC low pass filter
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To find the step response, we note that

/1
( ) ( ) ( )

t t
RC

g t h d e u d
RC

ll l l l-

-• -•
= =Ú Ú

l l- -= -Ú / /

0

1
[1 ] ( )

t
RC t RC

e d e u t
RC

Alternatively, we may determine g(t) by putting x(t)
= u(t) in the differential equation of the system, and 
solving it assuming the initial condition to be zero. 
Once g(t) is obtained, we can differentiate it with 
respect to time to get h(t).
 The impulse response and the step response of the 
given low pass RC filter are plotted in Figs. 3.31(a) 
and (b), respectively.

Example 3.23 A particular LTI system has 2( ) ( )t
h t e u t

-= . Determine its output signal y(t) corre-
sponding to an input signal x(t) = u(t).

Solution 
2

0

( ) ( ) ( ) ( ) ( )t
y t x t h t e u t u t dt t

•
-= * = -Ú

Since ( ) 0u t =  for t < 0 and ( ) 0u t t- =  for t > t

2 2 2

0 0

1 1
( ) (1 )

2 2

tt
t t t

y t e d e e
t

t- - -

=
= = - = -Ú

Example 3.24 If x(t) and y(t) are as shown in 
Figs. 3.32(a) and (b), determine graphically, the signal 

( ) ( ) ( ).z t x t y t= *

Solution

Fig. 3.33

( ) ( ) ( )z t x y t dt t t
•

-•
= -Ú  = Area under the product of x(t) and y(t – t) for ant t.

Fig. 3.31  (a) Impulse response, (b) Step response of an 

RC low pass filter

Fig. 3.32
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From Fig. 3.33(c), the following points are evident:
 1. When t £ 0, the product of x(t) and y(t – t) is zero, as there is no overlap of the two.
 2. As t increases beyond zero, the overlap and hence the area under the product increases linearly with t.

This continues till t = T1; and at this value of t, the area under the product i.e., z(t), takes the maximum 
value equal to ABT1.

 3. As t increases beyond T1, the overlap area and hence z(t) will remain constant till t = T2. When this 
value is reached, the left-side edge of y(t – t) coincides with the y-axis, and any further increase in t
beyond t = T2 will make the overlap area to linearly decrease with time.

 4. When t reaches the value T1 + T2, the left-side edge of y(t – t) coincides with the right-side edge x(t).
Hence the overlap area and hence z(t) becomes zero and remain at the at that value for all t > (T1+ T2).

 5. Signal z(t) will have a trapezoidal shape in this case, the height of the trapezium being ABT1 (since T1

< T2). The total base width of the trapezium = T1 + T2.
 6. In case T1 = T2 = T, z(t) will have a triangular waveform with height equal to ABT and base width equal 

to 2T.

Example 3.25 The input x(t) and the corresponding output y(t) of a causal LTI system T are as shown 
in Figs. 3.34(a) and (b), respectively. Find the impulse response function h(t) of the system.

Solution We know that for an LTI system, if  ( ) ( )
T

x t y nææÆ , then ( ) ( )
T

x t y nææÆ& &

In this problem, ( ) 2 ( 3).x t u t= -  Therefore, ( ) 2 ( 3).x t td= -&

Since the system T is causal and since y(t) is increasing 
linearly with time from t = 3 with a gradient of 1,

( ) ( 3)y t u t= -&

\ 2 ( 3) ( 3)
T

t u td - ææÆ -

or
1

( ) ( )
2

T
t u td ææÆ   (  system is LTI)

\ Impulse-response function h(t) = 
1

( ).
2

u t

Stability One important way of defining  stability of a system is in terms of ‘bounded-input, bounded-

output’ stability criterion or the  BIBO criterion.
 A signal x(t) is said to be a bounded signal, bound to a value M, where M is a finite real positive number, 
provided the magnitude of x(t) never exceeds M, i.e., provided |x(t)| £ M for all ‘t’, –• < t < •.

Criterion The BIBO stability criterion says that a system T is stable if every bounded input given to it 

results in an output signal which is also bounded.
 Using the above criterion, we shall now derive the conditions required to be satisfied by an LTI system 
with impulse response h(t), if it is to be stable in the BIBO sense.

Theorem An  LTI system T with impulse response h(t), is stable in the BIBO sense iff h(t), is absolutely 

integrable.

i.e., iff | ( )|h t dt
•

-•
< •Ú

Proof

1. The forward implication which states that system T is stable if its impulse response function is absolutely 
integrable.

Fig. 3.34 (a) Input x(t), (b) Output y(t)
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 Let x(t) be any arbitrary bounded signal, bound to M, a positive finite real number. Let x(t) be given as 
input to T. Then we know that y(t), the output is given by

\

( ) ( ) ( )

| ( )| ( ) ( ) | ( ) ( )|

y t x t h d

y t x t h d x t h d

t t t

t t t t t t

•

-•

• •

-• -•

= -

= - £ -

Ú

Ú Ú

But | ( ) ( )| | ( )|| ( )|x t h d x t h dt t t t t t
• •

-• -•
- = -Ú Ú

Since the maximum possible value of |x(t – t)| for any t, is M, we may write

| ( )|| ( )| | ( )|x t h d M h dt t t t t
• •

-• -•
- £Ú Ú

\ | ( )| | ( )|y t M h dt t
•

-•
£ Ú

Since M is finite and the integral of the absolute value of h(t) is also given to be finite, it follows that | y(t) | 
is always less than or equal to some finite positive real number. Hence, a bounded signal is obtained as the 
output for any arbitrary bounded input signal. Hence, T is stable in the BIBO sense.

2. The reverse implication states that an LTI system T with impulse response h(t) cannot be stable in the BIBO 
sense if h(t) is not absolutely integrable.
 To prove this, we choose a particular x(t) which is known to be a bounded signal, give it as input to T and 
show that if h(t) is not absolutely integrable, then the resulting output signal y(t) cannot be a bounded signal, 
i.e., that T cannot be a stable system in the BIBO sense.
Consider

1 if ( ) 0

( ) 1 if ( ) 0

0 if ( ) 0

h

x h

h

t

t t

t

- >Ï
Ô= - - <Ì
Ô - =Ó

 (3.130)

Since |x(t)| is either 1 or zero, x(t) is obviously a bounded signal, bound to a value 1. When x(t) is given as 
input to T, the output is given by

\

y t x h t d

y x h d h d

t t t

t t t t t

•

-•
• •

-• -•

= -

= - = -

Ú

Ú Ú

( ) ( ) ( )

(0) ( ) ( ) | ( )|   (From Eq. (3.130))

(0) | ( )| | ( )|y h d h dt t t t
• •

-• -•
= - =Ú Ú

But

| ( )|h dt t
•

-•
Ú  is not finite (given)

y(0) is, thus, not finite. \ y(t) is not a  bounded signal even though x(t) is. Hence, T is not stable.

An LTI system with impulse response ( ) is stable in the BIBO sense iff | ( )|h t h t dt
•

-•
< •Ú
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Example 3.26 Examine the stability of the system shown in Fig. 3.35.

Solution By writing down Kirchhoff’s mesh 
equations for the two loops, and eliminating i1(t) and 
i2(t), we get the differential equation as

d y t L dy t
y t x t

R dtdt
+ + =

2

2

( ) ( )
LC ( ) ( )

In order to examine the BIBO stability, we have 
to first find h(t), of the system. Let us replace x(t)
by d(t) in the above differential equation, take the 
Laplace transform on both sides, and assume zero 
initial conditions.

-2[ ( )LC s Y s sy
- - &(0 ) y

- + -(0 )] ( )
Ls L

Y s
R R

- + =(0 ) ( ) 1y Y s

i.e.,
È ˘+ + =Í ˙Î ˚

2( ) 1 1
L

Y s LC s s
R

\ = = =
+ ++ + + +

-
= +

+ +

2
2 2

1 1 6
( )

1 5 5 61 1
6 6

6 6

3 2

Y s
L s sLC s s s s
R

s s

Now, taking the inverse Laplace transform on both sides,

2 3( ) ( ) 6[ ] ( )t t
y t h t e e u t

- -= = -

\ 2 3 2 3

0 0

| ( )| 6 | | 6 ( ) 1t t t t
h t dt e e dt e e dt

• • •
- - - -

-•
= - = - =Ú Ú Ú

\ | ( )|h t dt
•

-•
Ú  is finite and the given system is stable in the BIBO sense.

Eigensignals of a system Suppose we give a sinusoidal signal of some frequency as input to a linear 
amplifier. The output signal is also a sinusoidal signal of the same frequency but perhaps with an amplitude 
and phase different from those of the input signal. But suppose we now give a rectangular waveform, or 
any non-sinusoidal waveform as the input signal and observe the output waveform. We find that the output 
waveform is not exactly similar in shape to the input waveform – the leading and trailing edges will not be 
vertical and there will be a droop in the tops of the pulses. Why was the output waveform having exactly 
the same shape as the input waveform when the input was a sinusoidal signal, and not when the input was a 
rectangular waveform? The answer is that a sinusoidal signal of any frequency is an ‘eigensignal’ of the linear 
amplifier, while the rectangular waveform signal is not.

Definition An eigensignal of a system T is a signal, which when given as input to the system T, gives rise 

to an output signal which is essentially the same as the input signal except for a change in the amplitude and 

possibly a shift in time.

Fig. 3.35

CS-Rao_03.indd 104CS-Rao_03.indd   104 1/25/2013 8:41:56 AM1/25/2013   8:41:56 AM



Fourier Transform and Signal Transmission through Systems   105

Complex exponentials as Eigensignals of LTI systems  Consider a stable  LTI system T, with an 
impulse response h(t). Since the system is stable, its h(t) is absolutely integrable and, therefore, has a Fourier 
transform. Now, assume that a  complex exponential signal

0( ) ,j t
x t e

w=
where w0 may be any real number, is given as input to the LTI system T. Let the corresponding output signal 
be y(t).

Then, 0 ( )( ) ( ) ( ) ( )j t
y t x t h d e h d

w tt t t t t
• •

-

-• -•
= - =Ú Ú

\ 0 0 0( ) ( ) ( ) ,
o

j t j j t
f fy t e h e d e H f

w w t wt t
•

-
=

-•
= =Ú  (3.131)

where H(f) = F[h(t)] and is called the ‘ transfer function’, or, ‘ frequency response function’ of the system T.
H(f0) which is the value of the complex-valued frequency function H(f) at the frequency f0, the input signal 
frequency, is in general, a complex number.
 Thus, from Eq. (3.131), we find that when the complex exponential of some arbitrary frequency f0 is given 
as input to an LTI system with some h(t), which of course is absolutely integrable so as to make T stable, but 
otherwise arbitrary, the output is equal to a complex number H(f0) times the input signal.

Hence a complex exponential of any frequency is an  eigensignal of any LTI system.

 Once 0j t
e

w  is known to be an eigensignal, it is an easy matter to prove that all sinusoids whatever may be 
their frequency, are eigensignals of all LTI systems.

Transfer function of an LTI system If the input and output signal waveforms are of the same shape, 
but their amplitudes are different, it makes sense to take the ratio of output to input and this ratio, which yields 
a complex number in general, may be called as the complex gain of the system. From Eq. (3.131), we may 
write

0 0( )

( )
( )

( )
j t

x t e

y t
H f

x t
w=

=  (3.132)

H(f0) thus represents the  complex gain of the system at the frequency f0. Thus H(f) is the complex gain as a 
function of frequency and is therefore called the ‘frequency response function’ or ‘transfer function’ of the 
system. Since H(f) is in general, complex, we may write

( )( ) | ( )| j f
H f H f e

q=  (3.133)

In Eq. (3.133), |H(f)| represents the magnitude of the gain of the system as a function of frequency, while q(f)
represents the  phase shift (introduced by the system) as a function of frequency.
 Hence, a plot of |H(f)| vs. f is called the  magnitude response of the system, and a plot of q(f) vs. f is called 
the  phase response of the system.

Example 3.27 For the LTI system described by the  differential equation

( )
6 ( ) ( )

dy t
y t x t

dt
+ =

Determine the impulse response function and plot the magnitude and phase responses

Solution Taking the  Laplace transform on both sides with x(t) equal to d(t) and all initial conditions as 
zero, we get

( ) 6 ( ) ( ) 1sY s Y s X s+ = =

CS-Rao_03.indd 105CS-Rao_03.indd   105 1/25/2013 8:41:56 AM1/25/2013   8:41:56 AM



106 Communication Systems

( )[ 6] 1Y s s + = \
1

( )
6

Y s
s

=
+

6( ) ( ) ( )t
h t y t e u t

-= =    \
1

( )
6 2

H f
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=
+

1 1

2 2

1 2
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6 336 4

f
H f f f
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p p
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The magnitude and phase responses are as shown in Figs. 3.36(a) and (b), respectively.

Fig. 3.36 (a) Magnitude response, (b) Phase response

3.5.2 Signal Transmission through LTI Systems

In this section, we shall discuss two specific aspects of transmission of a signal through an LTI system, i.e., 
undistorted transmission of a signal through an LTI system and filtering action of LTI systems: By undistorted 
transmission, we mean that the signal, during its passage through the system, does not suffer any distortion, 
except possibly a change in its amplitude and a time delay. By filtering we mean changing of the spectrum of 
the input signal in some desired manner by passing the signal through an  LTI system.

1. Distortionless transmission through an LTI system: From our discussion on eigensignals in the previous 
section, it should not be concluded that only an  eigensignal can pass through an LTI system without distortion. 
While an eigensignal can pass through any LTI system without distortion, any signal can pass through an 
LTI system without distortion provided the system satisfies certain conditions. We will now see what those 
conditions are.
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 As stated earlier, in distortionless transmission, the shape of output signal waveform is exactly the same 
as that of the input signal except possibly for a change in its amplitude and some time delay. Hence, for such 
systems

    ( ) ( )y t Ax t t= -  (3.134)

In the above equation, A represents the amplification (or  attenuation) and t represents the time delay. Taking 
the  Fourier transform on both sides of Eq. (3.134), we get

2( ) ( ) j f
Y f AX f e

p t-=  (3.135)

But we know that ( ) ( ) ( )y t x t h t= *

and hence  ( ) ( ) ( )Y f X f H f= ◊

or
( )

( )
( )

Y f
H f

X f
=  =  Transfer function of the system

\ From Eq. (3.135), we have

2( )
( )

( )
j fY f

H f Ae
X f

p t-= =  (3.136)

From Eq. (3.136), it follows that for a distortionless transmission system
 (a) The amplification/attenuation, given by |H(f)|, is a constant, independent of frequency.
 (b) The  phase-shift, or phase-delay, given by ( ) ( ) 2f H f fq p t= – = - , is proportional to frequency.
From the above, it follows that the magnitude response 
and phase response of a distortionless transmission 
system (LTI) can be depicted as shown in Figs. 3.36(a) 
and (b) respectively.
 However, no physical system can have a constant 
gain and a  linear phase response for all frequencies. 
A physical system may, however, fulfill the above two 
requirements, at least approximately, over some range of 
frequencies – the gain may fall and the phase response 
may not be linear, outside this range of frequencies.
 No practical signal can extend in time from minus infinity to plus infinity. All practical signals must have 
only finite duration. This implies that their  spectrum must extend from minus infinity of frequency to plus 
infinity of frequency. Although a signal may have its frequency components extending from –• to +•, fortu-
nately, the amplitude of these frequency components become insignificantly small beyond some frequency. 
In other words, most of the energy of the signal is contained in some finite bandwidth.
 From the foregoing discussion, we realize that gain of a system falling outside some range of frequencies, 
and spectrum of a signal too becoming insignificant beyond some frequency, underscore the need for defining 
terms like ‘ system bandwidth’ and ‘ signal bandwidth’, and then re-interpret the conditions for distortionless 
transmission of a signal through an LTI system in terms of these two.

Signal bandwidth Even if the spectrum of a signal extends theoretically up to infinity, we define its 
bandwidth as the width of only that part of its spectrum which contains some specified percentage (say 95%) 
of the total energy of the signal. Note that even though we generally draw a two-sided spectrum (in which the 
frequency refers to the frequency of a complex exponential and not of a co-sinusoid), the bandwidth is always 
specified in terms of positive frequency only, i.e., frequency of co-sinusoids. These concepts are illustrated 
in Fig. 3.38.

Fig. 3.37  (a) Magnitude response, (b) Phase response 

of a distortionless transmission system
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Thus, for the signal whose magnitude spectrum is shown 
in Fig. 3.38, f0 is called the  signal bandwidth, if

0

0

2

2

| ( )|

0.95

| ( )|

f

f

X f df

X f df

-
•

-•

=
Ú

Ú

System bandwidth As stated earlier, for any 
physical system, the  magnitude response characteristic 
cannot be absolutely flat for all frequencies because of the ever present parasitic capacitances across the 
output terminals, which tend to reduce the gain of the system at very high frequencies. Figure 3.39 shows the 
frequency response of a system. Theoretically, this response extends up to infinite frequency, as the response 
is going down to zero only asymptotically. Note that the gain takes a maximum value and is fairly constant 
over a certain frequency range, and falls off on either side. One way of defining the  system bandwidth in such 
a case is to identify the frequency range over which the frequency response does not fall below 0.707 of the 
maximum value and call it as the system bandwidth. In Fig. 3.39, it is the frequency range from fl to fh. This 
bandwidth (fh – fl), is called the  half-power bandwidth, or the 3-db bandwidth.

Fig. 3.39 Frequency response characteristic of a system and the spectrum of an input signal

In Fig. 3.39, the signal bandwidth f1 to f2 lies within the system bandwidth, fe to fh. Thus, all the significant 
frequency components of the signal experience almost the same gain, as the frequency response character-
istic of the system is fairly flat from f1 to f2. Hence, insofar as this signal is concerned, there will be almost 
 distortionless transmission of it through this system, provided the phase response of the system is linear over 
the range of frequencies of interest, i.e., f1 to f2. Insofar as the linear phase response requirement is concerned 
it can be shown that this imposes a constraint on the system that its h(t) must be symmetrical about t = t, the 
time delay introduced by the system and that h(t) must be maximum at t = t.

Example 3.28 An LTI system is a distortionless transmission system with gain A which is independent 
of frequency and with a constant time delay t. Show that its h(t) must be symmetrical about t = t and that 
it has the maximum value at that point.

Solution Since T is a distortionless transmission system, we know that its transfer function can be written 
down as

2 2( ) | ( )| j f j f
H f H f e Ae

p t p t- -= =

Fig. 3.38  Two-sided spectrum of an arbitrary signal, 

the bandwidth of which is specified as f0 Hz
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Taking the inverse Fourier transform on both sides,

2 2

0
2 ( ) 2 ( ) 2 ( )

0

2 ( ) 2 ( )

0 0 0

( )

2 cos 2 ( )

j f j f t

j f t j f t j f t

j f t j f t

h t Ae e df

A e df A e df A e df

A e df A e df A f t

p t p

p t p t p t

p t p t p t

•
-

-•

• •
- - - - - -

-• -•

• • •
- - -

= ◊

= = +

= + = -

Ú

Ú Ú Ú

Ú Ú Ú

If we put t = t + t1 where, t1 is an arbitrary real number

1 1
0

( )| 2 cos 2t th t A ft dft p
•

= + = Ú

Similarly, 
1– 1

0

( )| 2 cos 2t th t A ft dft p
•

= = Ú

\
1 1( ) ( – )( )| ( )|t t t th t h tt t= + ==

Thus, h(t) has even symmetry about t = t. Also, since

0

( ) 2 cos 2 ( )h t A f t dfp t
•

= -Ú

and since cos 2pf(t – t) = cos 0 = 1 for t = t, h(t) takes the maximum value at t = t.

2. Filtering action of LTI systems: A filter is a system which is specifically designed to modify the spectrum 
of any input signal in some desired manner. A properly designed LTI system can work as a  filter, as may be 
seen from the following.
 Let T be an LTI system with impulse response, h(t). Let x(t) be given as input signal to T and let the corre-
sponding output signal be y(t). Then, we know that

( ) ( ) ( )y t x t h t= *
where * denotes  linear convolution operation. Taking Fourier transform of the above on both sides,

( ) ( ) ( )Y f X f H f= ◊  (3.137)

Thus, the spectrum X(f) of the input signal is modified by the  transfer function H(f) of the system to give us 
the spectrum Y(f), of the output signal y(t). From Eq. (3.137) we may write

( ) ( ) ( )| ( )| | ( )| | ( )|y x H
j f j f j f

Y f e X f e H f e
q q q= ◊  (3.138)

\ | ( )| | ( )| | ( )|Y f X f H f= ◊  (3.139)

and ( ) ( ) ( )y x Hf f fq q q= +  (3.140)

Equations (3.139) and (3.140) show how the transfer function of the system modifies  magnitude spectrum 
and the  phase spectrum of the input signal respectively. It must, however, be noted that |H(f)| and qH(f) of a 
stable, causal LTI system cannot be specified independently, as the real and imaginary parts of H(f) of such a 
system are  Hilbert transforms of each other.

Ideal filters Applications arise, quite often, wherein we will be interested in transmitting not the entire 
 spectrum of a signal, but only certain frequency band/bands in it. We make use of filters for this purpose.
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 The bands of frequencies transmitted through a filter without any appreciable attenuation are called the 
pass bands and the bands of frequencies which are highly attenuated, are called  stop bands of the filter. 
Depending on the type of filter, there may be one or more pass bands and stop bands.
 A filter which transmits, without any  attenuation, all frequencies of the input signal that are less than a 
certain frequency, called the cut-off frequency and rejects all frequencies above it, is called a  low pass filter.
A filter whose stop band is below a certain cut-off frequency and its pass band above that frequency, is called 
a high pass filter. Other types of filters which are 
of interest are the band pass filter, which passes 
a certain specified band of frequencies from say 
fl to f2 and rejects all other frequencies, and the 
band stop or  band rejection filter which eliminates 
all frequencies within a certain specified band and 
passes all other frequencies.

1. Ideal low pass filter: Consider an ideal low 
pass filter with a pass band gain A, pass band 
width B Hz and a  linear phase response with a 
slope of –2pt. Then its transfer function is

2( ) ( /2 ) j f
H f A f B e

p t-= ’  (3.141)

Taking the  inverse Fourier transform, we get its 
 impulse response function as

     h(t) = 2ABsinc 2B(t – t) (3.142)

The magnitude response, phase response and 
impulse response functions of this ideal LPF are 
shown in Fig. 3.39.
2. Ideal high pass filter: Consider an ideal high 
pass filter with pass band gain A, cut-off frequency 
fc and time delay t0 sec. Its transfer function may 
be written as

   ( )( ) | ( )| j f
H f H f e

q=  (3.143)

where | ( )| [1 ( /2 )]cH f A f f= - ’  (3.144)

and    0( ) 2f ftq p= -  (3.145)

 The  magnitude response and  phase response 
of this ideal high pass filter (HPF) are shown in 
Fig. 3.40.

Example 3.29 Find the impulse response hHP(t) of an ideal high pass filter with a pass band gain of 
A, cut-off frequency of fc Hz and a linear phase response with a slope of –2pt0.

Solution The transfer function H(f) of an ideal HPF, we may write as

   ( )( ) | ( )| j f
H f H f e

q=

where | ( )| [1 ( /2 )]cH f A f f= - P

and    0( ) 2f t fq p= -

Fig. 3.40  (a) Magnitude response of an ideal LPF, (b) Phase 

response of an ideal LPF, (c) Impulse response h(t) 

of an ideal LPF

Fig. 3.41 Magnitude and phase response of an ideal HPF
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Since the sinc function extends in time from –• to +•, the ideal HPF is also not a  causal system and hence, 
is not physically realizable.

Fig. 3.42 Impulse response of an ideal HPF of pass band gain A and cut-off frequency fc

3. Ideal band pass filter: Consider an ideal  band pass filter (BPF) with pass band from fl to f2, pass band 
gain A and a time delay t0 sec.

Let (f2 – f1) = B Hz and 2
1 2 0f f f=

Then H(f) of the ideal BPF may be written down as

where

( )

0 0

( ) | ( )|

| ( )| [( )/ ] [( )/ ]

j f
H f H f e

H f A f f B A f f B

q=
= P + + P -  (3.146)

and 0( ) 2f ftq p= -  (3.147)

Taking the inverse Fourier transform of H(f), we get

0 0 0( ) 2 [sinc ( )] cos 2 ( )h t AB B t t f t tp= - -  (3.148)

The magnitude and phase responses of this ideal BPF are shown in Fig. 3.43(a) while its impulse response 
function is shown in Fig. 3.43(b).

 (a) (b)
Fig. 3.43 (a) Magnitude and phase response of an ideal BPF, (b)  Impulse response of an ideal BPF
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Example 3.30 Determine the impulse response function, h(t) of an ideal BPF with pass band gain of 
A and pass band bandwidth of B Hz centered on f0 Hz and having a  linear phase response.

Solution We have f2 – f1 = B Hz and f1 f2 = f0.
We may write
   ( )( ) | ( )| j f

H f H f e
q=

where 0 0| ( )| [( )/ ] [( )/ ]H f A f f B A f f B= P + + P -

and    0( ) 2f ftq p= -
Here, –2pt0 is the gradient of the linear phase response.

\ 0

0 0

0 0

0 0 0

21
0 0

2 21
0 0

2 2
0 0

2 ( ) 2
0 0

( ) {[ {( )/ } {( )/ }] }

[ {( )/ } {( )/ } ]

{( sinc )} ( ) {( sinc )} ( )

{ [ sinc ( )] [ sinc ( )]

j ft

j ft j ft

j ft j ft

j f t t j f

h t A f f B A f f B e

A f f B e A f f B e

A B Bt e t t A B Bt e t t

A B B t t e B B t t e

p

p p

p p

p p

d d

--

- --

-

- -

= P + + P -

= P + + P -

= * - + * -

= - + -

F

F

0( )

0 0 0

}

2 sinc ( )] cos 2 ( )

t t

AB B t t f t tp

-

= - -

Like the ideal LPF and ideal HPF, the ideal BPF too is non-causal and hence not physically realizable.

It may be noted that the impulse response functions of all these ideal filters have sinc functions 

in them. Hence, their h(t)s extend from t = –• to t = +•. Thus, h(t) π 0, for t < 0 for all these 

filters and hence they are non-causal and cannot be physically realized.

3.5.3 Paley–Wiener Criterion for  Physical Realizability

Till now, we have been discussing the question of physical realizability of an LTI system only in terms of its 
impulse-response function, h(t), being equal to zero for all negative values of time, i.e., in the time domain. 
But, we will generally be facing the problem of determining the physical realizability, or otherwise, of an LTI 
system, given its transfer function, as in the case of filters.
  Paley–Wiener criterion can be used to test whether a system, with a given  magnitude response, |H(f)| is 
physically realizable or not. It states that a square integrable magnitude response function |H(f)| is physically 
realizable if

2

|log | ( )||

1

e H f
df

f

•

-•
< •

+
Ú  (3.149)

From this, it is clear that any magnitude response which is equal to zero continuously over a range of 
frequencies, cannot be realized physically since |log | ( )||e H f  becomes infinitely large for such a case. It may 
be noted that every ideal filter, LPF or HPF or BPF or BSF, has its magnitude response staying at zero values 
over a certain continuous range of frequencies, i.e., over the entire stop bands. Hence, they are not physically 
realizable.
 Further, Eq. (3.149) suggests that the magnitude response of a physically realizable system cannot rise or 
fall suddenly, as is the case with all the ideal filters. Suppose, for instance, that

| || ( )| f
H f Ae

-=
 The magnitude response is decreasing here at a rate corresponding to an exponential order. From Eq. 
(3.149), we find that this magnitude response does not violate the Paley–Wiener criterion and so is physically 
realizable. But suppose

2

| ( )| f
H f Ae

-=

Note
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 The rate of change of the response, in this case, is more than the exponential order; and we find that when 
this magnitude response is substituted in Eq. (3.149), it violates the  Paley–Wiener criterion and therefore it is 
not causal, i.e., it is not  physically realizable.
 Thus, this criterion enables us to determine directly, without going into the time domain, whether a given 
magnitude response function is physically realizable or not.

3.5.4 System Bandwidth and Rise Time

Whenever pulses with steep leading and trailing edges are transmitted through, let us say, a cable, or a pair 
of wires, we find that the pulses obtained at the receiving end will have leading and trailing edges with finite 
slopes. The steepness of say, the leading edge, is expressed in terms of what is called the  rise time, which is 
the time taken by the pulse to rise from 10% of its final value to 90% of its final value. Thus, even though the 
input pulses may have zero rise time, the output pulses have a non-zero, finite rise time. This is due to the fact 
that while a pulse with very steep leading and trailing edges has considerable high frequency components, the 
cable or pair of wires used for transmission, has poor magnitude response at those high frequencies; that is, 
the poor bandwidth of the cable or transmission lines, is responsible for the non-zero rise time of the output 
pulses. We shall therefore examine the relationship between bandwidth and rise time. For this purpose, we 
shall model the leading edge of the input pulse by a  unit-step function and the cable or transmission line by 
a low pass filter, say, a first-order RC low pass filter, or an ideal LPF.

Example 3.31 Find the relation between bandwidth and the 
rise time of a pulse in the case of the first-order RC low pass filter 
shown in Fig. 3.44.

Solution The differential equation is

+ =
( )

( ) ( )
dy t

RC y t x t
dt

Taking Fourier transform on both sides, we get

Y f
H f

X f j fp
= =

+
( ) 1

( )
( ) 1 2 RC

 (3.150)

In Example 3.22, we have shown that the unit-step response, g(t) of 
the system, is given by

-= - /( ) (1 ) ( )t RC
g t e u t  (3.151)

The 3-db frequency fc of this filter is such that

1
| ( )|

2cf fH f = =

This gives 
1 1

2 2cf B RC
RC Bp p

= = \ =

Substituting this for RC in Eq. (3.151), we get

2( ) (1 ) ( )Bt
g t e u t

p-= -  (3.152)

Referring to Fig. 3.44,

1

1

2( ) (1 ) 0.9Bt

t t
g t e

p-
= = - =  (3.153)

Fig. 3.44 First-order RC low pass filter

Fig. 3.45  Magnitude response of a first-

order RC low pass filter

Fig. 3.46  Unit-step response of a first-

order RC low pass filter
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   2

2

2( ) (1 ) 0.1Bt

t t
g t e

p-
= = - =  (3.154)

From Eqs. (3.153) and (3.154), we have

     1 22 20.1 and 0.9Bt Bt
e e

p p- -= =

\ 1 22 ( ) 0.9B t t
e

p - =
Taking logarithm to the base e on both sides,

1 2

log 9 0.35
( ) Rise-time

6.28
e

rt t t
B B

- = = = =

Thus,

=
0.35

for a first-order low pass filterrt RC
B

 (3.155)

Rise time with an ideal LPF We will now model the cable or 
transmission line as an ideal LPF with cut-off frequency B Hz. Let the 
magnitude response be as shown in Fig. 3.47.
 Without loss of generality, we shall further assume that the time 
delay t, of the ideal LPF is zero. Then, from Eq. (3.142), we have

( ) 2 sinc 2h t B Bt=  (3.156)

The  step response g(t) is given by

( ) ( ) 2 sinc 2
t t

g t h d B B dl l l l
-• -•

= =Ú Ú  (3.157)

Put t = 2Bl  we get

0 2

– 0

( ) sinc sinc
Bt

g t d dt t t t
•

= +Ú Ú  (3.158)

But
0

– 0

1
sinc sinc

2
d dt t t t

•

•
= =Ú Ú  (3.159)

The other integral in Eq. (3.158) has to be evaluated numerically or by referring to the table of ‘sine integral 
function’, Si(q), where

0

sin
( )

x
Si dx

x

q

q D Ú  (3.160)

Since

sin
sinc ,

pt
t

pt
D

Putting x = pt, we get

/

0 0

sin
( ) sinc

x
Si dx d

x

q q p

q p t tD =Ú Ú  (3.161)

A plot of the above  sinc integral function, Si(q), is given in Fig. 3.48.

Fig. 3.47  Magnitude response of an 

ideal LPF
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Fig. 3.48 Sinc integral function

From Eq. (3.160), we have
/

0

1
( ) sincSi d

q p

q t t
p

= Ú  (3.162)

Now, reverting to Eq. (3.158), and recalling that our interest is in evaluating g(t)

2

0

1 1 1
( ) sinc ( ),

2 2

Bt

g t d Sit t q
p

= + = +Ú  (3.163)

\ putting 2 ,Bt
q

p
=  we have

2
t

B

q

p
=  (3.164)

Using Eqs. (3.163) and (3.164), we plot g(t) vs. t; and this is shown in Fig. 3.49.

Fig. 3.49 Response of an ideal LPF to a unit step

Now, let us find the slope of g(t) at t = 0. From Eq. (3.163)

2

0 0 0

1
( ) sinc 2

2

Bt

t
t

d d
g t d B

dt dt
t t

= =

È ˘
= + =Í ˙

Î ˚
Ú  (3.165)
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Approximating the portion of g(t) between g(t) = 0 to g(t) = 1 to a straight line, we find the slope of this to be 

2B. Hence, the time taken to increase from g(t) = 0 to g(t) =1 is 
1

.
2B

Ê ˆ
Á ˜Ë ¯

Thus, the time required by g(t) to increase from a value of 0.1 to 0.9, which is the rise time tr, is given by

0.8 0.4

2rt
B B

= =% %

\ 0.4
for an ideal LPF of bandwidth Hzrt B

B
=  (3.166)

MATLAB Example 3.1 In this example, we demonstrate how the Fourier transform of a signal can 
be calculated using MATLAB. We use as an example the sum of two sinusoids that are closely spaced in 
frequency—one at 1.2566 rad/s and the other at 2.5133 rad/s.

Ts = 0.02; %A suitable time period that satisfies the aliasing 

condition is used.

t = 0 : Ts : 100 ; %A suitable time interval is defined

f1 = 0.2 ; f2 = 0.4 ; %the two frequencies are defined

x = cos(2*pi*f1*t) + cos(2*pi*0.4*t) ; % The signal is

generated

% We now proceed to estimate the Fourier Transform using the FFT, first

% using small number of points and then using larger number of points

N = 256 ; % Number of FFT points

ws = 2*pi/(N*Ts) ; %Frequency separation obtained

fp = 0 : N/2 ;

y = Ts*fft(x(1 : N)) ; %The fft is the algorithm for fast

computation of the DFT,

% which is used to find the transform of at a finite number

of points.

subplot (211), plot (fp*ws, abs(Y(fp + 1)), ‘K’) ; %The transform

is plotted for N points

axis ([0, 15, 0, 3]) ;

xlabel (‘Frequency, rad. per sec.’) ; ylabel (‘Magnitude’)

title (‘Magnitude of Transform’) ;

% Now estimate the transform using larger number of points

N = 1024 ; % Number FFT points

ws = 2*pi/(N*Ts) ; % Frequency separation obtained

fp = 0 : N/2 ;

y = Ts*fft (x(1 : N)) ;

subplot (212), plot (fp*ws, abs(y(fp + 1)), ‘k’) ; % The transform

is plotted for N = 1024 points

axis ([0, 15, 0, 12]) ;

xlabel (‘Frequency, rad. per sec.’) ; ylabel (‘Magnitude’)

title (‘Magniude of Transform’) ;
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Fig. 3.50

 The plot depicts magnitude of the transform obtained using N = 256 (top) and N = 1024 (bottom) points in 
the evaluation. As the number of points becomes infinite, impulses will be observed at the correct frequencies.

MATLAB Example 3.2 A periodic signal x(t) with period To = 6 is defined by x(t) = P(t/2) for abs t

< = 3. This signal is passed through an LTI system with an impulse response given by 

 h(t) = {e-t/2 for 0# t# 4
= 0 otherwise

Determine the discrete spectrum of the output signal numerically using MATLAB.

Matlab Program
%

% Generation of x(t) signal

%

clc

df = 0.01;
fs = 10;
ts = 1/fs
t = [-8:ts:8];
%

% Generation of periodic signal

%

x = zeros(size(t));
x(11:30) = ones(size(x(11:30)));
x(71:90) = ones(size(x(71:90)));
x(132:151) = ones(size(x(132:151)));
subplot (2,2,1)

plot(t,x)

grid on

xlabel (‘time’);

ylabel (‘amplitude’);

title (‘Periodic Signal’)

ylim ([0,1.25]);

%
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% Generation of impulse response

%

h = zeros(size(t));
h(82:120) = exp(-t(82:120)/2)
subplot (2,2,2)

plot(t,h)

grid on

xlabel(‘time’);

ylabel(‘Amplitude’);

title (‘Impluse Response’);

%

% Transfer function

%

H = fft(h)/fs; % frequency resolution

f = [0:df:fs];
H1 = fftshift(H) % rearrange H

subplot (2,2,3)

stem (t,abs(H1))

xlabel (‘Frequency’)

grid on

y = x.*H1
subplot (2,2,4)

stem (t,abs(y))

grid on

xlabel (‘Frequency’);

title (‘discrete spectrum of output signal’);

Results
Periodic Signal

time

A
m

p
lit

u
d

e

–8 –6 –4 –2 0
0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8

Impulse Response of the System

time

A
m

p
lit

u
d

e

–8 –6 –4 –2 0
0

0.2

0.4

0.6

0.8

1

2 4 6 8

Frequency

–8 –6 –4 –2 0
0

0.5

1

1.5

2

0

0.5

1

1.5

2

2 4 6 8

Discrete Spectrum of Output SignalDiscrete Spectrum of input signal

Frequency

–8 –6 –4 –2 0 2 4 6 8

Fig. 3.51
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MATLAB Examples 3.3 Plot the magnitude spectrum and phase spectrum of the non-periodic 
signal shown in Fig. 3.52.

x(t)

1 20–2 –1 Time

Fig. 3.52

MATLAB Program

clc

df = 0.01;
fs = 10; % sampling frequency

ts = 1/fs % sampling time

t = [-5:ts:5] % time scale

%

% Generation of nonperiodic signal

%

x = zeros(size(t));
x(32:41) = ones(size(x(32:41)));
for i= 1:1:10
x(41+i)=1-0.1*i;
end

for i = 1:1:10
x(51+i) = 0.1*i;
end

x(61:70) = ones(size(x(61:70)));
subplot (3,1,1)

plot(t,x)

ylim([0 1.5]);

grid on

xlabel (‘Time’);

ylabel (‘Amplitude’);

title(‘Given Signal’);

%

% Finding magnitude spectrum and phase spectrum of the nonperiodic signal

%

[X,x1,df1] = fftseq(x,ts,df);
X1 = X/fs;
f = [0:df1:df1*(length(x1)-1)]-fs/2;
subplot (3,1,2)

plot(f,fftshift(abs(X1)));

grid on

xlabel (‘frequency’);

ylabel (‘amplitude’);

title (‘Magnitude Spectrum’);

subplot (3,1,3)

plot(f(412:612),fftshift(angle(X1(412:612))))
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grid on

xlabel (‘frequency’);

ylabel (‘radian’);

title (‘Phase Spectrum’);

Results
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Fig. 3.53

MATLAB Example 3.4 As discussed already, complex sinusoids are eigenfunctions of an LTI filter, 
and real sinusoids are not in general eigenfunctions. In this example, we demonstrate that real sinusoids are 
eigenfunctions of linear time invariant filters when the impulse response of the LTI filter is real and even 
(conjugate symmetric if complex)  when a windowed sinsusoid is the input, the output is plotted.

t=4*pi*[0 : 100] * 0.01; x=sin(t);

h = [0.5 1 0.5];

y = conv(x, h);

ys=y(2 : length (t) + 1);

%This effectively makes the impulse response h(–1) = 0.5, h(0) = 1 and %h(1) = 0.5

%since advancing the output effectively advances the impulse response %by 1.

%Note that this makes the impulse response real and even.

%plot(t, x, t, ys)

z = [x.*, ys. *];

%stem(ti, xi, 'o', ti, xil, 's', ti, xic, 'x');

h=stem(t(26 : 75), z(26 : 75, :), 'k');

set (h(1), 'MarkerFaceColor', 'black')

set (h(2), 'MarkerFaceColor', 'black', "Marker', 'square')

title ('Input and Output of the LTI system');
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Fig. 3.54  The input and the output of an LTI filter with sinusoidal input are compared for the special case when the 

impulse response is real and even

ylabel ('value') ; xlabel ('sample index') ;

legend ('Input ' , 'output')

%It is clear that the output is a scaled version of the input Note % that for 

LTI filters that are not conjugate symmetric, a real sinusoid %will not be an 

eigenfunction, as is readily verified.

MATLAB Example 3.5 In this exmple, we demonstrate the fact that periodic correlation of  a real 
continuous time signal that is bandlimited can be efficiently computed using the Fourier series.

al=0.5+j/sqrt(2);

a0=0.1;

a2=–1/sqrt(2)–0.1*sqrt(–1);

T=1;

t=linspace(0,1,100);

one period of a periodic signal x(t) is calculated

el=cos(2*pi*t/T)+sqrt(–1)*sin(2*pi*t/T);

e2=cos(2*pi*2*t/T)+sqrt(–1)*sin(2*pi*2*t/T);

x1 = a0*ones(1,length(t)) + a1*e1 + a1'*e1'.' + a2*e2 + a2'*e2'.';

We wish to compute the periodic correlation of the periodic signal x(t)
(one period of which is given by % x1) with itself. we do so using the Fourier series.

cor = sum([(abs(a0)^2)*ones(1,length(t)); (abs(a1)^2)*2 *real(e1);

(abs(a2)^2)*2*real(e2)]);
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subplot(211),plot(t,x1,'k')

grid on

xlabel('time, seconds');

ylabel('magnitude');

title('One Time period of the periodic signal');

subplot(212),plot(t,cor,'k')

grid on

xlabel('lag');

ylabel('magnitude');

title('Plot of the correlation');

Notice the symmetry in the correlation. What is this due to?

One Time period of the periodic signal
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Fig. 3.55  The figure depicts one time period of a continuous-time periodic signal (above), and its periodic correlation 

(below)

MATLAB Example 3.6 In this example, we demonstrate that while a Hilbert transformer is difficult 
to build in general, a discrete-time equivalent is easily built, especially so when the range of frequencies 
of the input signals is small. We consider a simple case of length 3.

h = [–4, 0, 4];

It is clear that this is a very poor approximation to a Hilbert tansformer. We will, however, use a sinusoidal 
input, so the magnitude imperfections do not matter.

N=100;

x = cos(2*pi*[0:999]/N);

Observe the output over one time period
y = 4*x(N:2*N-1)–4*x(N+1:2*N);

Note that the impulse response has been assumed to be centered so that
h(–1) =–4, h(0)=0 and h(1)=4
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w = linspace (–pi,pi,100);

resp = 2*4*sqrt(–1)*sin(w);

subplot(211),plot(w,abs(resp),'k',w,angle(resp),'--k')

title('Magnitude and Phase responses');

xlabel('Frequency, randians/sec');

ylabel('Magnitude/angle');

axis([–pi,pi,–9,9])

legend('magnitude','angle');

subplot(212),plot(1:N,x(N+1:2*N),'k',1:N,y,'--k');

title('Output for Sinusoidal Input')

xlabel('sample')

ylabel('value');

legend('input','output')

Notice that the input and the output are Hilbert transform pairs—they are 90° phase shifted versions of each 
other.
It is just that the magnitude scaling is imperfect. For a small band of frequencies around this frequency, the 
magnitude of the output is approximately the same, and the distortion should be insignificant. Use of a filter 
of longer length will help reduce this distortion (make the frequency response of the filter close to the ideal 
Hilbert Transormer).
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Fig. 3.56  Figure depicts the magnitude and phase response of the filter chosen (above). Also plotted are the input and 

output of the filter (below). Note that they are Hilbert Transform pairs, except that the output needs to be scaled
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Summary 

 ■  Fourier transform of x(t) = 2( ) ( ) j f t
X f x t e dt

p
•

-

-•

= Ú

  Inverse Fourier transform of 2( ) ( ) ( ) j f t
X f x t X f e df

p
•

-•

= = Ú

 ■ (a) Condition for the existence of the FT of x(t) : | ( )|x t dt
•

-•

< •Ú
  (b)  Dirichlet’s conditions for convergence of FT and IFT:
 (i) x(t) should be absolutely integrable.
 (ii) x(t) should have only a finite number of maxima and minima in any finite interval of time.
 (iii) In any finite interval of time, the number of discontinuities of x(t) should be finite.
 (iv) Discontinuities of x(t), if any, should be finite discontinuities.

 ■  Properties of Fourier transform:

  (a) If 
FT

( ) ( )x t X f¨ææÆ , then (0) ( )X x t dt
•

-•

= Ú  = Area under x(t).

  (b) X(f) is in general, a complex function of frequency, even if x(t) is a real-valued function.
  (c) If x(t) is real-valued, X(f) will have Hermitian symmetry.

 ■ Magnitude and phase spectra of an x(t): A plot of |X(f)| vs f is called the magnitude spectrum of x(t). A plot of 

( )X f–  vs. f is called the phase spectrum of x(t).
 ■ Fourier transform theorems:

  (a) 2 2| ( )| | ( )| Energy of ( )x t dt X f df x t
• •

-• -•

= =Ú Ú  : Parseval’s theorem

  (b) 
FT

[ ( ) ( )] ( ) ( )x t y t X f Y fa b a b+ ¨ææÆ +  : Linearity theorem

  (c) 
FT 2( ) ( ) j f

x t X f e
p tt -- ¨ææÆ  : Time-delay theorem

  (d) 
FT2( ) ( ).cj f t

cx t e X f f
p ¨ææÆ -  : Modulation theorem

  (e) 
FT 1

( ) ( / )
| |

x at X f a
a

¨ææÆ  : Scaling theorem

  (f) 
FT

( ) ( )X t x f¨ææÆ -  : Duality theorem

  (g) If ( ) ( ) ( ), then ( ) ( ) ( )z t x t y t Z f Y f X f= * = ◊  : Convolution theorem

  (h) If ( ) ( ) ( ), then ( ) ( ) ( )z t x t y t Z f X f Y f= ◊ = *  : Multiplication theorem

  (i) 
FT

( ) 2  ( )x t j f X fp¨ææÆ&  : Differentiation-in-time theorem

  (j) 
FT

2 ( ) ( )
d

j t x t X f
df

p- ¨ææÆ  : Differentiation-in-frequency theorem

  (k) 
FT 1 ( )

( ) (0) ( )
2

t
X f

x d X f
j f

t t d
p-•

È ˘
¨ææÆ +Í ˙

Î ˚
Ú  : Integration theorem

 ■ The  convolution of two continuous-time signals, x(t) and y(t), is given by

( ) ( ) ( ) ( ) ( ) ( ) ( )z t x t y t x y t d x t y dt t t t t t
• •

-• -•

= * = - = -Ú Ú

 ■ The  correlation Rxy(t) between two continuous-time energy signals is given by

( ) ( ) ( ) ( ) ( )xyR x t y t dt x t y t dtt t t
• •

* *

-• -•

= - = +Ú Ú
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 ■ The correlation between two continuous-time power signals is given by

0 0

0 0

/2 /2

0 0/2 /2

1 1
( ) ( ) ( ) ( ) ( )

T T

xy

T T

R x t y t dt x t y t dt
T T

t t t* *

- -

= - = +Ú Ú

 ■ The  auto-correlation of a periodic signal x(t) with period T0 is given by

0

0

/2

0 /2

1
( ) ( ) ( )

T

xx

T

R x t x t dt
T

t t*

-

= -Ú

 ■ Relationship between convolution and correlation:

( ) [ ( ) ( )] |xx tR x t x t tt Æ= * -

 ■ ESD of an energy signal: If x(t) is an energy signal, its energy spectral density (ESD) is given by the FT of its 
 auto-correlation function

FT
( ) ( )xx xxR S ft ¨ææÆ

  and Rxx(0) = Energy of x(t) = ( )xxS f df
•

-•
Ú

 ■ The  power spectral density (PSD) of a power signal, x(t) is the FT of its ACF

/2

/2

1
( ) Lt ( ) ( )

T

xx
T

T

R x t x t dt
T

t t
Æ• -

= -Ú  = ACF of x(t)

  and Pxx(f) = PSD of x(t) = F[Rxx(t)]

 ■  Properties of PSD:
  (a) Pxx(f), the PSD of a signal x(t), is always non-negative.
  (b) Pxx(f) is the Fourier transform of Rxx(t)
  (c) The total area under the PSD curve of a signal equals the average power of the signal.
  (d) PSD of a real-valued power signal, x(t), is an even function of frequency.

 ■ Relationship between input and output spectral densities of an LTI system:

  (a) ESD: 2( ) | ( )| ( )yy xxS f H f S f= ◊

  (b) PSD: 2( ) | ( )| ( )yy xxP f H f P f= ◊

 ■ (a) Hilbert Transform:
FT 1

ˆ( ) ( ) ( )x t x t x t
tp

¨ææÆ = *

  (b)  Properties of Hilbert transform:

 (i) Hilbert transform does not change the domain of a signal.
 (ii) Hilbert transform does not alter the amplitude spectrum of a signal.

 (iii) If 
HT ˆ( ) ( )x t x t¨ææÆ , then

HT ˆˆ ˆ( ) ( ). ( )x t x t x x t¨ææÆ - \ = - .

 (iv) A signal and its Hilbert transform are orthogonal to each other.
 ■ (a) Analytic signal: If x(t) is a real-valued signal, its analytic signal, or pre-envelope is defined as: ˆ( ) ( ) ( )x t x t jx t+ D +

  (b) Spectrum of analytic signal:
2 ( ) for 0

( )
0 for 0

X f f
X f

f
+

>Ï
= Ì <Ó

 ■ Different representations of  band pass signals:

  (a) ( ) ( ) cos [ ( )],cx t a t t tw q= +  where a(t) and q(t) are low pass signals – Envelope and phase representation.

  (b) ( ) ( ) cos ( ) sin :I c Q cx t x t t x t tw w= - xI(t) and xQ(t) are In-phase and Quadrature low pass signals.

     Here, 2 2( ) ( ) ( )I Qa t x t x t= +
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     and   1 ( )
( ) tan

( )

Q

I

x t
t

x t
q - È ˘

= Í ˙
Î ˚

  (c) 2( ) Re[ ( ) ] Re[ ( )]cj f t
x t x t e x t

p
+= =%

   where ( )x t%  =  complex envelope of ( )( ) ( ) j t
x t a t e

q=
 ■ A system may be defined as an entity which acts on one or more inputs (or excitations) and produces one or more 

responses.

 ■ Continuous-time systems: these are defined as those systems which take continuous-time signals as input and 
produce continuous-time signals as output.

 ■ Discrete-time systems: It takes a discrete-time signals as input and produces another discrete-time signal as output.
 ■ Static systems: A system is said to be static or memoryless, or instantaneous, if its present output is determined 

entirely by its present input only. Static systems have their input-output relation described by algebraic equations.
 ■ Dynamic systems: A system is said to be dynamic, or with memory, if its present output depends for its value not 

only on the present input, but also on some past inputs. Dynamic systems have their input-output relation described 
by different equations.

 ■ Linear and non-linear systems: Let T be a continuous-time system which is at rest (i.e., all its energy storage 
elements are devoid of any stored energy). Let an input signal x1(t) given to T result in an output signal y1(t); and an 
input x2(t) result in an output y2(t). Then the system T is said to be linear if for any pair of arbitrary constants a1and
a2, an input of [a1x1(t)+ a2x2(t)] given to the system T results in an output of [a1y1(t)+ a2y2(t)]. A continuous-time 
system not satisfying the above condition is said to be ‘non-linear’.

 ■ Time-invariant and  time-varying systems: Let ( ) ( )
T

x t y tææÆ . Then T is said to be a time-invariant system if for 

any real number t, ( ) ( )
T

x t y tt t- ææÆ - . If this condition is not satisfied, the system is said to be time-varying.
 ■ Causal systems: A system is said to be a ‘causal system’, or a ‘non-anticipatory’ system, if its output at any instant 

of time depends for its value only on the input at that instant and some previous instants, but not on the input at 
future instants.

All physically realizable real-time systems must be causal.

 ■ Impulse response, h(t) of an LTI system: The impulse response, h(t), of an LTI system is the response of the system 
to a unit impulse given to it as input when it (the system) is at rest.

 ■ Complete characterization of an LTI system: The h(t) of an LTI system completely characterizes the system in the 
sense that a knowledge of h(t) enables us to determine the response of the system for any arbitrary specified input.

( ) ( ) ( ) ( ) ( ) ( ) ( )y t x t h t x h t d x t h dt t t t t t
• •

-• -•

= * = - = -Ú Ú

  These integrals are known as convolution integrals.
 ■ h(t) of a causal system: For a causal LTI system, h(t) = 0 for t < 0.

 ■ Relation between  step response and impulse response: If g(t) is  unit step response, then 
( )

( )
dg t

h t
dt

= .

 ■ Bounded signal: A signal, x(t), is said to be a bounded signal, bound to a value M, where M is a positive real 
number, provided the magnitude of x(t) never exceeds M.

 ■ BIBO stability criterion: A system T is stable in the Bounded-input, Bounded-output sense, provided every 
bounded input given to it results in an output signal that also bounded.

 ■ BIBO stability theorem: An LTI system T is stable in the BIBO sense iff its impulse response, h(t) is absolutely 

integrable, i.e., iff | ( )|h t dt
•

-•

< •Ú .

Note
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 ■ Eigen signals of an LTI system: An Eigen signal of a system T is a signal, which, when given as input to the system, 
gives rise to an output signal which is essentially the same as the input signal except for a change in the amplitude 
and possibly a shift in time. For an LTI system, a complex exponential of any frequency is an Eigen signal.

 ■ Transfer function or  frequency response of an LTI system: The transfer function, or the frequency response, H(f) of 
an LTI system is the Fourier transform of its impulses response. It is the ratio of the output to the input of the LTI 
system when the input is the Eigen signal exp(j2pft).

 ■ Magnitude and phase responses of a system:
  A plot of |H(f)| vs. frequency is called the  magnitude response.

  A plot of ( )H f–  vs. frequency is called the  phase response.

 ■ For any real system, magnitude response will have  even symmetry and the phase response will have  odd symmetry.
 ■ Condition for  distortionless transmission: For distortionless transmission through LTI system, the system’s 

magnitude response, |H(f)| should be a constant, independent of frequency and its phase response ( ) ( )f H fq = –
should be proportional to frequency.

 ■ Ideal low pass filter: For an ideal LPF with pass band gain A, pass band bandwidth B and a linear phase response 
with a slope of –2pt, impulse response ( ) 2 sinc 2 ( )h t AB B t t= -  and 2( ) ( /2 ) j f

H f A f B e
p t-= P

 ■ Ideal band pass filter: For an ideal BPF with passband from f1 to f2, pass band gain A and a time delay t0 sec,

   0 0 0( ) [( )/ ] [( )/ ]; ( ) 2H f A f f B A f f B f ftq p= P + + P - = -
  and    p= - -0 0 0( ) 2 [sin c ( )] cos 2 ( )h t AB B t t f t t

 ■ Paley–Wiener criterion: It permits us to determine the physical realizability, or otherwise of an LTI system directly 
from the transfer function H(f) of the system.

  It says that an LTI system with a given |H(f)| which is square integrable, is physically realizable if
•

-•

< •
+Ú 2

|log | ( )||

(1 )
e H f

df
f

 ■ Rise time and  bandwidth:

  (a) For a first-order RC low pass filter, rise time 
0.35

rt
B

=  where B is its half-power bandwidth.

  (b) For an ideal LPF of bandwidth B Hz, the rise time 
0.4

rt
B

=
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Review Questions 
1. If X(f), the Fourier transform of x(t), has Hermitian symmetry, comment on the nature of x(t)?
2. Write down the Fourier transform of 0( ) 5 sin ( )x t tw q= + .
3. If X(f) is the Fourier transform of x(t), what does |x(f)|2 represent in relation to the signal x(t)?
4. Sketch the magnitude and phase spectra of the signal ( ) 20 sin (50 45 )x t tp= + ∞ .
5. Explain the usefulness of the convolution theorem of Fourier transform in determining the convolution of two 

continuous-time signals.
6. Explain, graphically, the difference between convolution and correlation of two continuous-time signals.
7. Show that the ACF of two real-valued continuous-time signals is an even function of t, the lag parameter.
8. Show that the power spectral density of a power signal, x(t), is the Fourier transform of its auto-correlation function.
9. Derive the relation between the output signal and input signal power spectral densities of an LTI system.

10. Sketch the magnitude and phase responses of a Hilbert transformer.
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128 Communication Systems

11. Show that ˆ̂( ) ( )x t x t= -
12. Define the ‘analytic signal’ of a real-valued signal x(t).
13. Define and explain the significance of the ‘Complex Envelope’ of a real-valued band 

pass signal x(t).
14. Define the terms ‘ static system’ and ‘ dynamic system’ and give one example for each 

of these.
15. How do you define ‘linearity property’ of a system?
16. The input-output relationship of a system is as shown in Fig. R3.16.

 (a) Is this system linear? Justify your answer.
 (b) Is this system static or dynamic? Why?

17. The impulse response of a certain system is 
/2

( )
t T

h t A
T

-Ê ˆ= PÁ ˜Ë ¯ . Is this system static or dynamic? Why? What is 
the input-output relationship for the system?

18. Define the ‘time-invariance’ property of a continuous-time system? Give examples of a time-varying system.
19. Define the following terms: 

 (a) Impulse response
 (b)  Causality, as applied to systems

20. What is the relationship between ‘impulse response’ and ‘step response’ of an LTI system?
21. What is the condition on the impulse response of an LTI system for the system to be stable in the BIBO sense?
22. Define the terms ‘ Eigensignal’ and ‘ Transfer Function’ of a stable LTI system.
23. State the two conditions required to be satisfied by an LTI system for an input signal to pass through it without any 

distortion?
24. Why are the ideal LPF, HPF and BPF not physically realizable?

Problems 
1. Find the Fourier transforms of the following signals:

 (a) 3( ) ( 2)t
x t e u t

-= -
 (b) 2| |( ) t

x t e
-=

 (c) 2( ) 2 ( )t
x t te u t

-=
 (d) x(t) shown in Fig. P3.1

 (e) ( ) [exp{ 2 ( 1) ( 1)}] ( 1)x t j t t u tp= - - - -
 2. Find the signal x(t) whose Fourier transform X(f) is given in 

(i) Fig. P3.2(a) and (ii) Fig. P 3.2(b).

Fig. P3.2

Fig. R3.16

Fig. P3.1
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3. Use Parseval’s theorem to calculate the energy in the signal ( ) 4 sinc 40 .x t t=

4. Calculate the energy contained in the signal in problem 3 for 
3

| |
2

f
p

£ . Express it as a percentage of the total 
energy of the signal.

5. Find the convolution of x(t) = 5P(t/4) with y(t) = 5P(t/4).
6. Find the Fourier transform of ( ) 100 ( /8)z t t= L  where 100 ( /8)tL  is a triangular pulse symmetrical about the 

t = 0 axis and having a peak amplitude of 100 and a total base width of 8 sec. (Hint: Use the result of Problem 20 
and the convolution theorem of Fourier transform).

7. Given that X(f) is the Fourier transform of x(t), find the Fourier transforms of the following:

 (a) ( ) 2 (3 2)y t x t= -  (b) 200( ) 1
2

j tt
y t x e

pÊ ˆ= -Á ˜Ë ¯  (c) ( ) (1 2 )y t x t= -

8. Find the Fourier transforms of the signals shown in Figs. P3.8(a) to (e).

Fig. P3.8

 9. Find x(t) if its Fourier transform X(f) is given by

 (a) 
2

2
( )

(1 2 )

j f
X f

j f

p

p
=

+
 (d) 

 (b) 
2

2

2sin
( )X f

w

w
=

 (c) 
sinc 4

( ) 5
(1 2 )

f
X f

j fp

È ˘
= Í ˙+Î ˚

 10. If the signal shown in Figs. P3.3(a), (b) and (d) of Problem 8 are multiplied by cos 50pt, determine and sketch the 
magnitudes of the Fourier transforms of the resulting signals.

11. Determine the Fourier transform of the x(t) shown in Fig. P3.11.
 (a) By applying time-domain differentiation theorem.
 (b) By identifying x(t) as having been obtained by the convolution of 

P(t/T) with itself and scaling down the magnitude by T and then 
applying convolution theorem.

 12. Find Rxy(t) given that x(t) = 3cos w0t and y(t) = 2cos w0t.
 13. Determine the ACF Rxx(t) for the signal x(t) of Fig. P.3.13. Take the FT 

and determine its power spectral density.

Fig. P3.13

Fig. P3.9

Fig. P3.11
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14. Find the cross-correlation Rxy(t) of the periodic signals x(t) and y(t) shown in Figs. P3.13 and P3.14.

Fig. P3.14

 15. Find the ACF Rxx(t) and energy spectral density, Sxx(f) of the rectangular 
pulse shown in Fig. P3.15.

 16. Determine the transfer function of an LTI system T if the system is to give 
as its output the cross-correlation between the input x(t) and the function z(t)
given by

210 for 0
( )

0 for 0

t
e t

z t
t

Ï <Ô= Ì
>ÔÓ

 17. For the signals shown in Fig. P3.17 determine the following:
 (a) ( ) ( )x t y t*  (b) Rxy(t) (c) *( ) ( )x t z t  (d) Rxz(t)

 (e) *( ) ( )x t w t  (f) Rxw(t) (g) *( ) ( )y t z t  (h) Ryz(t)

 (i) *( ) ( )y t w t  (j) Ryw(t) (k) ( ) ( )z t w t*  (l) Rzw(t)

Fig. P3.17

18. Find the power spectral density of x(t) = 10 cos 20pt. What will be the 
power spectral density of 10 sin 20pt?

19. Referring to Fig. P3.19, determine (a) Ryy(t), (b) Ryx(t) in terms of 
Rxx(t).

20. The power spectral density of a certain signal is given by

2 2

4
( )

4 4
xxP f

fp
=

+
  What is the rms value of the signal?
 21. If ( ) (1/ ) sinx t t t= , show that ˆ( ) (1/ ) (1 cos )x t t t= - .
 22. x1(t) and x2(t) are two narrowband signals centered on the same carrier frequency, fc. If 3 1 2( ) ( ) ( )x t x t x t= + , show 

that 3 1 2( ) ( ) ( )x t x t x t= +% % %  where ( )ix t%  is the complex envelope of x1(t)?
 23. Find the Hilbert transforms of the following signals and show in each case that the signal and its transform are 

orthogonal:
 (a) x(t) = sin w0t (b) 4( ) 5 cos 60 cos 6 10x t t tp p= ◊ ¥

Fig. P3.15

Fig. P3.19
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 24. X(f) shown in Fig. P3.24 is the Fourier transform of a signal x(t) and is real. 
Determine and sketch the spectrum of each of the following signals:

 (a) 
1

ˆ( ) [ ( ) ( )]
2

y t x t jx t= +  (b) 2ˆ( ) [ ( ) ( )] cj f t
z t x t jx t e

p= +  where fc >> W

 (c) 2ˆ( ) [ ( ) ( )] cj f t
w t x t jx t e

p-= -  where fc >> W
 25. Sketch the signals
 (a) 4( ) 200 sinc (200 ) cos 2 10x t t tp=
 (b) ˆ( ) [ ( ) ( )]y t x t jx t= +  where x(t) is as given in part (a).
 (c) Determine ( )x t% , the complex envelope of x(t) and sketch its spectrum.
 26. Determine whether the following systems with the given input-output relationship are linear or non-linear, static 

or dynamic, time invariant or time varying and causal or non-causal.
 (a) y(t) = x(t + 5) (b) y(t) = 2x(t) + 3 (c) y(t) = x(t2)

 (d) 

 (e) y(t) = |x(t)| (f) ( ) ( )
t

y t x dl l
-•

= Ú  (g) ( ) ( )
d

y t x t
dt

=  (h) ( ) 5 (2 3)y t x t= +

 (i) ( ) log | ( )|ey t x t=
27. Determine whether the following systems are static or dynamic, linear or non-linear, time invariant or time varying, 

causal or non-causal.

 (a) 
( )

2 4 ( ) 6 3 ( )
dy t

y t x t
dt

+ + =

 (b) + =
( )

2 10 ( ) 2 ( )
dy t

y t x t
dt

 (c) + =
( )

3 ( ) 4 ( )
dy t

ty t x t
dt

 (d) 2( )
5 2 ( ) 3 ( )

dy t
y t x t

dt
+ =

 28. Show that an ideal integrator is an LTI system.
 29. Obtain the impulse response and the transfer 

function H(f) of the system shown in Fig. P3.29. 
Plot its magnitude response:

 30. Find the impulse responses of the systems given in 
Problem 2(a) and (b).

 31. The input x(t) and the corresponding output y(t) of 
a causal LTI system T are as shown in Fig. P3.31. 
Find the impulse response function h(t) of the 
system

 32. An LTI system has an impulse response of cos (100 ) ( )t
e t u tp- . Determine the output of the system for an input 

of ( ) cos (100 ) ( )x t t u tp= .
33. Show that a sinusoid/co-sinusoid of any frequency is an Eigen signal of any LTI system.

34. An LTI system has an impulse response ( ) ( )t
h t e u t

-= . For an input ( ) 10 ( /4)x t t= P , determine the output.

 35. Find the frequency response, H(f), of the system described by 
3 2

3 2

( ) ( ) ( )
0.5 0.75 2 ( ) ( )

d y t d y t dy t
y t x t

dtdt dt
+ + + =

Fig. P3.24

Fig. P3.29

Fig. P3.31
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 36. For the system shown in Fig. P3.36, find the frequency response.

Fig. P3.36

37. The impulse response of a system is 3( ) 10 ( )t
h t e u t

-= . Find and plot the response of the system to an input 
1

( )
2

t
x t

-Ê ˆ= PÁ ˜Ë ¯ .

Multiple-Choice Questions 
 1. Strictly speaking, which one of the following signals is not Fourier transformable?
 (a) e–|t| (b) rect(t/t) (c) tr(t/t) (d) sin w0t

 2. If the signal x(t) is real valued and its Fourier transform is X(f) then
 (a) X(f) is real valued   (b) |X(f)| = |X(–f)|
 (c) X(f) has even symmetry   (d) X(f) has odd symmetry
 3. If x(t) = 10 rect (t/2), the zero-frequency value of its spectrum is given by
 (a) 10 (b) 5 (c) 2 (d) 20
 4. Shifting a time signal along the time axis causes 
 (a) a change in the amplitude spectrum (b) a change in both amplitude and phase spectrum
 (c) a change only in the phase spectrum (d) no change in amplitude as well as phase spectrum
 5. If x(t) = 10 sinc 5t, the energy contained in the signal is
 (a) 100 (b) 50 (c) 10 (d) 20

 6. If ( ) ( ) ( )y t x t td tD * - , Y(f) is given by

 (a) 2( ) j f
X f e

p t+    (b) 2( ) j f
X f e

p t-

 (c) ( ) where 1/c cX f f f t- D   (d) It is not Fourier transformable

 7. The Fourier transform of sinc 10t t  is equal to

 (a) 
1

[ ( /10)]
20

f
j p

P    (c) [ ( /10)]
20

f
f

p
P

 (b) [ ]1
( 5) ( 5)

20
f f

j
d d

p
+ - -  (d) [ ( 5) ( 5)]

20

j
f fd d

p
+ - -

 8. If y(t) = x(2–t), Y(f) is given by

 (a) 4( ) j f
X f e

p--  (b) 4( ) j f
X f e

p-  (c) 4( ) j f
X f e

p-  (d) 4( ) j f
X f e

p

 9. The Fourier transform of eatu(–t) is

 (a) 
1

a jw-
 (b) 

1

a jw- +
 (c) 

1

a jw+
 (d) 

1

a jw

-
-

 10. ( ) 10 sinc 2x t t=  and ( ) cos 200y t tp= . The spectrum z(f) if ( ) ( ) ( )z t x t y tD ◊  is given by

 (a) 10 [sinc 2( 100) sinc 2( 100)]f f- + +  (b) 
( 100) ( 100)

5
2 2

f fÈ ˘+ -Ê ˆ Ê ˆP + PÁ ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

 (c) 
( 200) ( 200)

10
2 2

f fÈ ˘+ -Ê ˆ Ê ˆP + PÁ ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚
 (d) 

( 200) ( 200)
5

2 2

f fÈ ˘+ -Ê ˆ Ê ˆP + PÁ ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚
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 11. It is possible to compute the cross-correlation Rxy(t) between two signals x(t) and y(t) directly from their convo-
lution provided

 (a) x(t) has even symmetry   (b) x(t) has odd symmetry
 (c) y(t) has odd symmetry   (d) y(t) has even symmetry
 12. If ( ) 10 ( /10),x t t= P Sxx(f) is a
 (a) sinc function   (b) triangular function
 (c) sinc-square function   (d) rectangular function

13. ( ) 5 ( /10),x t t= P  the maximum value of Rxx(t) is
 (a) 250 (b) 50 (c) 500 (d) 25
 14. ( ) 10 ( /10),x t t= P  the maximum value of Sxx(0) is
 (a) 100 (b) 1000 (c) 500 (d) 5000
 15. ( ) 10 ( /10)x t t= P . The total area under the Sxx(f) curve is
 (a) 1000 (b) 500 (c) 100 (d) 10000
 16. The signal e–tu(t) is applied as input to an L-section RC low pass filter with time constant equal to 1. The energy 

spectral density at the output of the filter at the 3db cut-off frequency of the filter is
 (a) 1 (b) 0.5 (c) 0.25 (d) 1.5

 17. If 
HT ˆ( ) ( )x t x t¨ææÆ , then their Fourier transforms are related as

 (a) ˆ ( ) sgn( ) ( )X f j f X f=    (b) ˆ ( ) sgn( ) ( )X f j f X f=
 (c) ˆ ( ) sgn( ) ( )X f j f X f= - -   (d) ˆ ( ) sgn( ) ( )X f j f X f= -

 18. If ¨ææÆ =HT ˆˆ ˆ( ) ( ); ( ) [ ( )],x t x t X f x tF  and 
ˆ( )ˆ ˆ( ) | ( )| j f

X f X f e
q=  then

 (a) ˆ| ( )| | ( )|X f X f= -    (b) ˆ ( ) ( )X f X f=
 (c) ˆˆ| ( )| | ( )| and ( ) 90X f X f fq= = ∞  (d) ˆˆ| ( )| | ( )| and ( ) 90X f X f fq= = - ∞

 19.
HT ˆ( ) ( )x t x t¨ææÆ , then ˆ̂( )x t  equals

 (a) –x(t) (b) x(t) (c) ( )x t  (d) x(–t)

 20. cos 20 cos 2000 ( )t t x tp p◊ D . Then ˆ( )x t  is

 (a) sin 20 sin 2000t tp p◊    (b) sin 20 cos 2000t tp p◊
 (c) cos 20 sin 2000t tp p◊    (d) None of these
 21. If x+(t) is the analytic signal corresponding to the real-valued signal x(t), and if + +=( ) [ ( )]X f x tF , then X+(f)u(–f)

is given by
 (a) 0 (b) 2X(f) (c) 2X(–f) (d) None of these

 22. If 
HT ˆ( ) ( )x t x t¨ææÆ  and ˆ( ) ( ) ( )y t x t jx tD - , then Y(f)u(–f) is

 (a) 0 (b) 2X(f) (c) –2X(f) (d) None of these

 23. If ( )x t%  is the complex envelope of a real-valued band pass signal x(t) and if 1 2( ) ( ) ( )x t x t jx t= +%  then x(t) is given 
by

 (a) 1 2( ) sin ( ) cosc cx t t x t tw w-  (b) 1 2( ) cos ( ) sinc cx t t x t tw w+
 (c) w w1 2( ) cos – ( ) sinc cx t t jx t t  (d) 1 2( ) cos – ( ) sinc cx t t x t tw w

 24. If x(t), a real-valued band pass signal is given by ( ) (10 cos 20 ) cos[20000 /4]x t t tp p p= + , then the magnitude of 
its analytic signal x+(t) is

 (a) 10 cos 20 tp  (b) 10  (c) 10 sin 20 tp  (d) 5
 25. (Choose the incorrect answer). A system composed of purely resistive networks is
 (a) dynamic (b) linear (c) time-invariant (d) static
 26. The system with y(t) = x(3t) is
 (a) static (b) linear (c) fixed (d) causal

 27. The LTI system with ( ) ,t
h t e t

-= -• < < • , is
 (a) Causal and stable   (c) non-causal and stable
 (b) Causal and unstable   (d) non-causal and unstable
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 28. An LTI system has h(t) = 5d(t – 2)
 (a) It is unstable   (b) It is delayer
 (c) It amplifies and delays the input signal (d) It samples the input signal.
 29. Two LTI systems with impulse responses h1(t) and h2(t) are connected in series (cascade). 
  the impulse response of the overall system is

 (a) 1 2( ) ( )h t h t+  (b) 1 2

1 2

( ) ( )

( ) ( )

h t h t

h t h t+
 (c) 1 2( ) ( )h t h t*  (d) 1 2( ) ( )h t h t◊

 30. When two LTI systems with impulse responses h1(t) and h2(t) are connected in parallel, the impulse response of 
the overall system is

 (a) 1 2( ) ( )h t h t+  (b) 1 2

1 2

( ) ( )

( ) ( )

h t h t

h t h t+
 (c) 1 2( ) ( )h t h t*  (d) 1 2( ) ( )h t h t◊

 31. 1( ) [ ( ) ( 10)]x t A u t u t= - -  and 2( ) [ ( ) ( 5)]x t B u t u t= - - . 1 2( ) ( )x t x t*  is a

 (a) triangular pulse (b) rectangular pulse (c) trapezoidal pulse (d) sinc pulse

 32. 1( ) [ ( ) ( 5)]x t A u t u t= - -  and 2( ) [ ( ) ( 5)]x t B u t u t= - - . 1 2( ) ( )x t x t*  is a

 (a) triangular pulse (b) rectangular pulse (c) trapezoidal pulse (d) sinc pulse
 33. The transfer function H(f) of the RC low pass filter shown in Fig. M3.33, 

is given by

 (a) 
p+
1

1 2j f RC
 (b) 

p+
1/RC

1 2j f RC

 (c) 
p-
1

1 2j f RC
 (d) p2j f RC

 34. The 3db cut-off frequency for the filter of Question 9 is

 (a) 
1

RC
 (b) RC (c) 

p

1

2 RC
 (d) None of these

 35. Two continuous-time LTI systems, each with an impulse response function 
sin ( )

( )
at

h t
at

= , are connected in 
cascade. Then, the impulse response of the overall system is

 (a) 
sin ( )at

k
at

   (b) 
2

sin ( )at
k

at

È ˘
Í ˙Î ˚

 (c) 
sin bt

bt
, with b not necessarily equal to a (d) None of these 

 36. If * denotes convolution operation and over bar denotes complex conjugation, the relation ( ) ( ) ( )y t x x t dt t t
•

-•

= +Ú
can be expressed as

 (a) ( ) ( )x t x t*  (b) ( ) ( )x t x t* -  (c) ( ) ( )x t x t- * -  (d) None of these 

 37. A signal 2( ) [sin ( )/( )]x t t tp p=  is passed through an LTI system with impulse response ( ) sin (2 )/( )h t t tp p= . The 
output y(t) of the system is

 (a) x(t)   (b) cannot be of the form of x(t)
 (c) of the form of a sinc pulse  (d) None of the above
 38. When the input to an LTI system is a unit step function, the output is a bounded signal. Which of the following 

inferences is correct?
 (a) The system is not necessarily stable (b) The system is not definitely stable
 (c) The system is definitely unstable (d) None of the above
 39. Signal transmission through an LTI system cannot be distortionless unless
 (a) |H(f)| is constant for all frequencies and phase-shift is proportional to frequency.
 (b) |H(f)| remains constant and phase-shift is proportional to frequency at least over the signal bandwidth
 (c) |H(f)| and phase shift are both independent of frequency
 (d) |H(f)| and phase shift are both proportional to frequency

Fig. M3.33
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 40. An LTI system has a gain independent of frequency and produces a time delay of t sec for all frequencies. Which 
of the following statements is true?

 (a) It produces phase distortion
 (b) Its phase-shift vs. frequency relationship is linear
 (c) It produces a constant phase shift for all frequencies
 (d) None of the above
 41. An LTI system with flat magnitude response, is producing a constant time delay of t sec for all frequencies. If h(t)

is the impulse response of the system,
 (a) h(t) takes a maximum value at t = t/2
 (b) h(t) takes a minimum value at t = t/2
 (c) h(t) takes a maximum value at t = t
 (d) h(t) takes a minimum value at t = t
 42. The signal ( ) 10 sinc 20x t t=  is applied as the input signal to an LTI system. The minimum bandwidth over which 

the gain of the system should be constant and the phase response should be linear, for distortionless transmission 
of the signal, is 

 (a) 5 Hz  (b) 10 Hz (c) 20 Hz (d) None of these
 43. The impulse response, h(t) of an ideal LPF having transfer function 2( ) ( /2 ) j f

H f A f B e
p t-= P  is given by

 (a) sinc 2 ( )A B t t-  (b) t-2 sin c ( )AB B t  (c) sinc 2 ( )AB B t t-  (d) sinc 2 ( )B B t t-
 44. For a first-order RC low pass filter with 3-db bandwidth of B Hz, the 10% to 90% rise time is given by

 (a) 
0.35

B
 (b) 

2.5

B
 (c) 

4.5

B
 (d) 

3.5

B

 45. For an ideal LPF of bandwidth B Hz, the 10% to 100% rise time is given approximately by

 (a) 
3.5

B
 (b) 

2.5

B
 (c) 

4.0

B
 (d) 

0.40

B

Key to Multiple-Choice Questions

 1. (d) 2. (b) 3. (d) 4. (c) 5. (d) 6. (b) 7. (d) 8. (a)
 9. (a) 10. (b) 11. (d) 12. (c) 13. (a) 14. (d) 15. (a) 16. (c)
 17. (b) 18. (d) 19. (a) 20. (c) 21. (a) 22. (c) 23. (d) 24. (a)
 25. (a) 26. (b) 27. (d) 28. (c) 29. (c) 30. (a) 31. (c) 32. (a)
 33. (a) 34. (c) 35. (a) 36. (b) 37. (a) 38. (a) 39. (b) 40. (b)
 41. (c) 42. (b) 43. (c) 44. (a) 45. (d)
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AMPLITUDE MODULATION

4
“You are who you are and what you are because of what has gone into your mind. You can 

change who you are and what you are by changing what goes into your mind.”

Zig Ziglar (born 1926 – present)

American author, salesman, and motivational speaker

Learning Objectives

After going through this chapter, students will be able to

 ■ have a clear idea of the meaning of modulation and the need for modulation,

 ■ give the time-domain representation, spectrum and the methods of generation and detection of 

amplitude modulated signals,

 ■ explain the operation of an envelope detector, the types of distortions that can arise and the reason 

behind each type of distortion,

 ■ give the time-domain and frequency-domain representation as well as the methods of generation and 

detection of DSB-SC, SSB-SC and VSB signals,

 ■ list the key specifications for AM audio broadcast transmitters, state the merits and demerits of high-level 

and low-level modulation in AM transmitters, and draw their block diagrams and explain their working,

 ■ explain clearly the problems like image frequency interference and adjacent channel interference as 

well as the effect of the choice of the IF, in the case of AM superheterodyne receivers,

 ■ draw the block diagrams of AM superheterodyne receivers, and SSB-SC transmitters and receivers, and

 ■ explain the principle of frequency division multiplexing (FDM), its implementation and the AT&T 

FDM hierarchy.

4.1 INTRODUCTION

Communication basically involves transmission of information from one point to another. The information 
bearing signals which are to be transmitted, may be in the form of speech, music or image signals. These 
signals cannot be transmitted directly and need some pre-processing. This pre-processing needed for making 
them suitable for transmission is called ‘ modulation’.

4.1.1 What is Modulation?

This modulation process consists of varying from instant to instant, one of the parameters of a high frequency 
sinusoidal signal, called the carrier signal in accordance with the instantaneous amplitude of the information 
bearing message signal. In general, a sinusoidal carrier wave may be represented by

p q= +( ) cos(2  )c cc t A f t  (4.1)
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There are three parameters associated with the carrier signal. These are Ac, the amplitude; fc, the frequency; 
and q, the phase. Depending on which one of these parameters is varied in the modulation process in accor-
dance with the message signal amplitude, the modulation is called ‘ amplitude modulation’, ‘ frequency 
modulation’, or ‘ phase modulation’.

4.1.2 Need for Modulation

1. Antenna Size Long distance communication is invariably by the propagation of electromagnetic waves 
through the atmosphere, or free-space. This requires efficient radiation of electromagnetic waves from an 
 antenna. The information-bearing signals like speech, etc., are basically low frequency signals. For instance, 
a speech signal may typically have frequency components from a few hundred hertz up to a maximum of 10 
kHz. We know that for an antenna to efficiently radiate a signal fed to it, the physical size of the antenna has to 
be at least of the order of 0.1 l where l is the  wavelength of the signal fed to it. Even if we consider the highest 
frequency component of speech, viz. 10 kHz, the minimum length required for the antenna works out to 3 km, 
which is definitely not practicable. Hence, we have to raise the frequency of the information-bearing signal, 
speech, to a level at which an antenna of reasonable size can efficiently radiate it. This process of translating 
a low frequency information-bearing signal to a high frequency slot is achieved by modulation. Modulation 
is necessary not only from the point of view of having an antenna of reasonable size to radiate the modulated 
signal. It is essential because of various other reasons too, as noted below.

2. Selecting the desired signal Consider a high frequency carrier modulated by a low frequency infor-
mation-bearing signal, say, a speech signal, being radiated by a transmitting antenna. The receiving antenna 
may be tuned to that particular carrier frequency so that only the desired speech signal is received and all other 
modulated signals reaching the receiving antenna are rejected. But, if there is no modulation and if we assume 
that several transmitting stations are simultaneously radiating a number of different speech signals, since all 
speech signals occupy the same  spectrum, how are we going to select one particular speech signal in which 
we are interested and reject all the others?

3. Multiplexing  Multiplexing is the technique used for transmitting several information-bearing signals simul-
taneously over the same physical channel. Modulation process makes it possible to multiplex several message 
signals and transmit them simultaneously by using different carrier frequencies for the various message signals.

4.2 AMPLITUDE MODULATION

First, let us clearly state the terminology and the notation that is widely used in literature and adopted here. 
The message signal which is used for modulating the carrier signal, is called the ‘ modulating signal’, or the 
‘ message signal’ and is denoted by x(t). The signal that results after the modulation process, is referred to as 
the modulated signal and is denoted by xc(t). The carrier signal is denoted by c(t).
 Amplitude modulation is the earliest and one of the most widely used type of modulation. Its main virtue 
is the simplicity of its implementation. 

Definition  Amplitude Modulation (AM) is that type of modulation in which, the amplitude of the carrier 
is changed from instant to instant in such a way that at any instant of time, the change in the peak amplitude 
of the carrier from its unmodulated value, is directly proportional to the instantaneous amplitude of the 
modulating signal.

4.2.1 Time-Domain Description

Let x(t) be the modulating signal with a peak amplitude of say Am. We shall, for convenience, assume here 
that x(t) has been so normalized that |x(t)| £ 1. Then, from the above definition and Eq. (4.1), the amplitude 
modulated signal may be expressed as
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138 Communication Systems

w q= +( ) cos( )c cx t A t

where = + ( )c mA A A x t

Here, Ac is the peak amplitude of the unmodulated carrier, Am is the peak amplitude of the modulating signal 

and x(t) is the normalized modulating signal, i.e., £( ) 1x t .

Let D m

c

A
m

A

Then, = + = +( ) [1 ( )]c m cA A A x t A mx t

Hence,

w q= + +( ) [1 ( )]cos( )c c cx t A mx t t

Without loss of generality, we may take q = 0 so that

w= +( ) [1 ( )]cosc c cx t A mx t t  (4.2)

where m is called the ‘ modulation index’ or the ‘ depth of modulation’ and is defined as the ratio of peak 
amplitude of the modulating signal to the peak amplitude of the unmodulated carrier. It is a constant and is 
such that 0 £ m £ 1. Instead of being expressed as a fraction, the depth of modulation may also be expressed 
as a percentage. Since | x(t)| £ 1, if m > 1, then [1 + mx(t)] can become negative near the negative peaks of 
x(t) and it results in a situation called ‘ over modulation’. Over modulation is always to be avoided since, as 
we are going to see later, it leads to a distorted version of the message after the demodulation in the receiver. 
Hence the restriction that the modulation index ‘m’ should always be between 0 and 1.
 In Eq. (4.2), the factor Ac[1 + mx(t)] is the peak amplitude of the modulated carrier wave or, the amplitude 
of the envelope at the instant t. The change from the unmodulated peak value is Acmx(t) which is proportional 
to x(t).

4.2.2 Single-Frequency Message Signal

For simplicity, let us assume for a moment that our message signal, x(t) is a single frequency given by

w w p= =( ) cos ; 2m m mx t t f  (4.3)

Then, from Eq. (4.2), we get the modulated signal as

w w

w w w

= +
= + ◊

( ) [1 cos ]cos

cos cos cos
c c m c

c c c c m

x t A m t t

A t mA t t

w w w w w= + + + -
1 1

( ) cos cos( ) cos( )
2 2c c c c c m c c mx t A t mA t mA t  (4.4)

Thus, when the carrier signal of frequency fc is amplitude modulated by a modulating signal of frequency 
fm, the modulated signal has three frequency components – the carrier frequency component represented in 
Eq. (4.4) by the first term, i.e., wcosc cA t, the  upper side-frequency component having a frequency of (fc + fm)

and represented in Eq. (4.4) by the second term, i.e., w w+
1

cos( )
2 c c mmA t , and the  lower side-frequency 

component having a frequency of (fc – fm) and represented by the third term, i.e., w w-
1

cos( )
2 c c mmA t. They 

are called upper and lower side frequencies because they are on either side of the carrier frequency component 
and displaced from it by the same interval of frequency, i.e., fm.
 Equation (4.4) permits us to draw a phasor diagram for the AM signal when the modulating signal is a 
single tone. This phasor diagram is shown in Fig. 4.2(b).
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Amplitude Modulation 139

 As the carrier component has a frequency of fc, if we consider the phasor corresponding to this component 

as our reference, the  upper side-frequency component having an amplitude of 
2

cm A
 and a frequency of 

(fc + fm) will appear to be rotating at a frequency of fm in the counter-clockwise direction, with respect to 

the carrier phasor. The  lower side-frequency component having an amplitude of 
1

2 cmA  and a frequency of 

(fc – fm) will appear to be rotating in the clockwise direction at a frequency of fm, with respect to the carrier 
phasor.
 From Eq. (4.4), we may also obtain the amount of power in the carrier component and in each of the side-
frequency components. We have

 Power in the carrier component = 21

2 cA  = say Pc

 Power in the upper side-frequency component = 2 21

8 cm A

 Power in the lower side-frequency component = 2 21

8 cm A

Fig. 4.1 Amplitude modulation with different values of m
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\
È ˘

= = +Í ˙
Í ˙Î ˚

2

total power in the AM signal 1
2T c

m
P P  (4.5)

Equation (4.5) tells us that for a single-tone amplitude modulated signal, even with a 

modulation index of m = 1, the maximum possible value, the carrier component constitutes 

two-thirds of the total power in the modulated signal. As the carrier component does not carry 

any information and as the message, or the information-bearing signal x(t), which in this case 

has been assumed to be wmcos t, can be completely recovered from any one of the two side-

frequency components, the carrier power in the AM signal is a waste. The carrier only helps in 

carrying the message, but is ultimately rejected in the receiver after the message is recovered. 

Hence, it is preferable to reduce or even eliminate the power in the carrier component of the 

modulated signal.

 If instead of a single tone, the message signal x(t) consists of several frequency components, say fm1,
fm2, fm3, each one of these will produce a corresponding upper side-frequency component and a lower side-
frequency component. Thus, in addition to the carrier component wcosc cA t , there will be three upper side-
frequency components:

+1 1

1
cos( )

2 c c mm A f f , +2 2

1
cos( )

2 c c mm A f f  and +3 3

1
cos( )

2 c c mm A f f  and three lower side-frequency compo-

nents -1 1

1
cos( )

2 c c mm A f f , -2 2

1
cos( )

2 c c mm A f f  and -3 3

1
cos( )

2 c c mm A f f . Here, m1, m2 and m3 represent 

the modulation indices for the three components and their values depend on the amplitudes of the frequency 

Fig. 4.2 (a) Spectrum of an AM signal with single-tone modulation, 

     (b) Phasor diagram of a single-tone modulated AM signal

Remark
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components with frequencies fm1, fm2 and fm3 relative to the carrier amplitude Ac. The overall modulation 
index m of such an x(t) is then given by (refer to Eq. (4.5))

= + +2 2 2
1 2 3m m m m  (4.6)

Example 4.1 A sinusoidal carrier signal of peak amplitude 5 V and frequency 100 kHz is amplitude 
modulated by a 5 kHz signal of peak amplitude 3 V. What is the modulation index? Draw the two-sided 
spectrum of the modulated signal.

Solution w w w= + = +( ) [1 cos ]cos 5[1 ( )]cosc c m c cx t A m t t mx t t

w w= +5cos 5 ( )cosc ct m x t t

\ Ac = 5 and 5m = 3 since |x(t)| £ 1

\ m = 3/5 = 0.6

The side frequencies are

- - - + - +( ), ( ); ( ) and ( )c m c m c m c mf f f f f f f f

i.e., –105kHz, –95 kHz; 95 kHz and 105 kHz.

The relationship between the message x(t), carrier 
c(t) and the AM signal xc(t), is diagrammatically illustrated in Fig. 4.4. For the purpose of this figure, it is 
assumed that w=( ) sin mx t t . Time-domain as well as frequency-domain representations are given for all the 
signals.

Fig. 4.4 Amplitude modulation: Waveforms and spectra of message, carrier and modulated signal 

Example 4.2 A carrier wave of frequency 10 MHz and peak value of 10 V is amplitude modulated by 
a 5 kHz sine wave of amplitude 6 V. Determine the modulation index and draw the one-sided spectrum of 
the modulated wave. (JNTU, May 2007)

Fig. 4.3 Spectrum of AM signal of Example 4.1
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Solution Peak value of the modulating signal = Am = 6 V
Peak value of the carrier signal = Ac = 10 V

Modulation index = m = = =
6

0.6
10

m

c

A

A

The AM signal may be represented as

w w= +( ) [1 cos ]cosc c m cx t A m t t

where Ac = 10v, m = 0.6, w p p= = ¥ ¥ 32 2 5 10 rad/secm mf  and

w p p= = ¥ ¥ 62 2 10 10 rad/secc cf

( )cx t  may therefore be written in an expanded form as

w w w

w w w w w

= + ◊

= + + + -

( ) cos (cos cos )

1 1
cos cos( ) cos( )

2 2

c c c c c m

c c c c m c c m

x t A t mA t t

A t mA t mA t

Thus, xc(t) is made up of three frequency components – the carrier component having a frequency of 10 
MHz and a peak amplitude Ac of 10 V, an upper side-frequency component having a frequency of (10 
MHz + 5 kHz) and a peak amplitude of 0.3 ¥ 10 = 3 V, and a lower side-frequency component with a 
frequency of (10 MHz–5 kHz) and an amplitude of 3 V. Thus, the one-sided spectrum is as shown in Fig. 4.5.

Fig. 4.5 One-sided spectrum of AM signal of Example 4.2

4.2.3 Frequency-Domain Description

As the next step, if we consider a modulating 
signal x(t) which has its spectrum extending 
from 0 Hz to fm Hz, then instead of side 
frequencies, we have to deal with sidebands 
– an  upper sideband (USB) extending from 
fc to (fc + fm) Hz and a  lower sideband (LSB) 
extending from (fc – fm) Hz to fc Hz. Let the 
message signal, x(t), have an amplitude 
spectrum as shown in Fig. 4.6. 

From Eq. (4.2), we have

w

w w

= +
= +

( ) [1 ( )]cos

cos ( )cos
c c c

c c c c

x t A mx t t

A t mA x t t  (4.7)

Fig. 4.6 Amplitude spectrum of the message signal x(t)
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Since
F.T 1

cos [ ( ) ( )]
2c c ct f f f fw d d¨ææÆ + + - ,

Taking the FT of Eq. (4.7) on both sides

d d= + + - + - + +( ) [ ( ) ( )] [ ( ) ( )]
2 2

c c
c c c c c

A mA
X f f f f f X f f X f f  (4.8)

Here, we have made use of the FT pair

F.T 1
( )cos [ ( ) ( )]

2c c cx t t X f f X f fw ¨ææÆ - + +

A plot of Xc(f), the spectrum of the amplitude modulated signal xc(t) is as shown in Fig. 4.7 [Note that X(f–fc)
is X(f) shifted to the right by fc and X(f + fc) is X(f) shifted to the left by fc].

Fig. 4.7 Amplitude spectrum of an AM signal

Thus, if the maximum frequency component in the message, x(t), is fm, the amplitude modulated signal has 
a bandwidth of 2fm. Transmitters in audio broadcasting radio stations employ AM and they handle audio 
frequencies up to about 5 kHz. Thus, two such stations whose service areas have an overlap, must have a 
separation of at least 10 kHz in their carrier frequencies.

Thus,

   =Bandwidth of AM signal 2W  (4.9)

where W Hz is the highest frequency component in x(t), the message signal.

Example 4.3 A carrier, amplitude modulated to a depth of 50% by a sinusoid, produces side 
frequencies of 5.005 MHz and 4.995 MHz. The amplitude of each side frequency is 40 V. Find the 
frequency and amplitude of the carrier signal.

Solution Upper side frequency = 5005 kHzc mf f+ =

 Lower side frequency = 4995 kHzc mf f- =

Adding these two, 2fc = 10,000 kHz \ fc = 5000 kHz = 5 MHz

If carrier is Ac cos wct, m is the modulation index and fm is the modulating signal frequency, we can write the 
AM signal as

( ) [1 cos ]cos

cos cos( ) cos( )
2 2

c c m c

c c
c c c m c m

x t A m t t

mA mA
A t t t

w w

w w w w w

= +

= + + + -
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\ Side-frequency amplitude = 40
2

cmA
= , \ Ac = 80/m = 80/0.5 = 160 V

Hence, the carrier amplitude is 160 V and its frequency is 5 MHz.

Example 4.4 If all AM broadcasting stations handle audio frequencies of up to 5 kHz, how many AM 
broadcasting stations can be accommodated from 1 MHz to 1.5 MHz of the medium waveband?

Solution We know that the bandwidth occupied by an AM signal is equal to twice the highest audio 
frequency in its modulating signal.

\ bandwidth required for each station = 2 ¥ 5 kHz = 10 kHz

 Bandwidth available = 1.5 MHz – 1.0 MHz = 500 kHz

\ Number of stations that can be accommodated = 500/10 = 50.

4.2.4 Carrier and Sideband Components of Power in an AM Signal

From Eq. (4.2), the average power in an  amplitude-modulated signal, xc(t), is given by

{ }22 21
( ) 1 ( )

2c cx t A mx tÈ ˘= +Í ˙Î ˚
where the symbol <z> is used to represent the average value of z.

\ 2 2 2 2 2 21
( ) 2 ( ) ( )

2c c c cx t A m x t A m A x tÈ ˘= + +Î ˚

Assuming ( ) 0x t = , which is quite justifiable, since the dc component of the x(t) is anyhow blocked by a 
capacitor in the detector stage of the receiver,

2 2 2 2 21
( )  Average Power of ( ) ( )

2c c c cx t x t A m A x tÈ ˘= = +Î ˚  (4.10)

In the above equation, 21

2 cA  represents the carrier component of power and

2 2 21
( )

2 cm A x t  = Average total sideband power (4.11)

Since x(t) is assumed to have been normalized so that |x(t)| £ 1, the maximum average power in x(t), i.e., the 

maximum value of 2 ( )x t , can be unity. The maximum possible sideband power is therefore obtained by 

putting m = 1 and 2( )x t  = 1. This works out to 21

2 cA .

 Thus, the average power of the AM signal under the above conditions of m = 1 and 2( )x t  = 1 is given by

2 2 2 21 1
( ) for 1and ( ) 1

2 2c c cx t A A m x t= + = =  (4.12)

where the first term is the average power of the carrier component and the second term is the maximum 
possible value of the average total power of the two sidebands.
 Thus, even when the sideband average power is maximized, the carrier power constitutes 50% of the total 

average power of an AM signal. If the modulating signal is a single tone, its average power 2( )x t  is only 

½ and in that case, the maximum value of the average power in the sidebands obtained by putting m = 1 in 
R.H.S. of Eq. (4.10) is
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2 2 2 2

single-tone ( )

1 1
( ) for 1and ( ) 1

2 4c c c

x t

x t A A m x t= + = =  (4.12a)

Hence, in this case, as already shown earlier, the carrier component of power constitutes as much as 66.6% 
of the total average power of the AM signal.
 The carrier component does not carry any information. Only the sidebands carry the message information. 
In fact, as mentioned earlier, the message can be recovered from just one sideband. From the foregoing, it is 
clear that amplitude modulation suffers from the following two disadvantages:
 1. At least 50% of the transmitted power is the carrier power and it is a waste since carrier component does 

not carry any information. So it is wasteful in power.
 2. While one sideband with a bandwidth of fm is enough to recover the message, AM transmits the carrier 

plus both the sidebands, occupying a bandwidth of 2fm. Thus, it is wasteful in  bandwidth too.

Example 4.5 When unmodulated carrier alone is transmitted, the antenna current is 9 A. When 
sinusoidal modulation is present, the antenna current is found to be 11 A. What is the  percentage of 
modulation used?

Solution From Eq. (4.5), we have

2

1
2T c

m
P P

È ˘
= +Í ˙

Í ˙Î ˚
We have PT = 112 ¥ r and Pc = 92 ¥ r, where r is the radiation resistance of the antenna.

\
2 2

2

11
1

29
T

C

P m

P
= = +

\ 121 81 80
2 0.994

81 81
m

-Ê ˆ= = =Á ˜Ë ¯

Example 4.6 It is found that a radio  transmitter is radiating a total power of 100 kW when the 
 modulation index is 0.8. What is the carrier power being radiated by the transmitter? What is the sideband 
power?

Solution 3 0.64
100 10 1

2T cP P
È ˘= ¥ = +Í ˙Î ˚

\
3100 10

75.8 kW
1.32cP

¥
= =

\ The carrier power being radiated = 75.8 kW
The total sideband power radiated = (100 – 75.8) kW = 24.2 kW.

Example 4.7 A certain transmitter (AM) is radiating 132 kW when a certain audio sine wave is 
modulating it to a depth of 80% and 150 kW when a second sinusoidal audio wave also modulates it 
simultaneously. What is the  depth of modulation for the second audio wave?

Solution 
1

0.64
1 1.32 132 kW

2T c cP P P
È ˘= + = =Í ˙Î ˚

\ 100 kWcP =
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Let the modulation index of the second sinusoid be m

\
2

2
3 3150 10 100 10 1 0.32

2T

m
P

È ˘
= ¥ = ¥ + +Í ˙

Í ˙Î ˚

\
2

3 350 10 100 10 0.32
2

mÈ ˘
¥ = ¥ +Í ˙

Í ˙Î ˚
\ 3 2 3(50 32) 10 50 10m- ¥ = ¥ ¥

or 2 18
0.36 0.6

50
m m

Ê ˆ= = \ =Á ˜Ë ¯

Example 4.8 Determine the overall percentage of modulation in the above example when both the 
sinusoidal audio signals are simultaneously modulating the carrier.

Solution 2 2
1 2 0.64 0.36 1m m m= + = + =

\     overall percentage of modulation = 100%

Example 4.9 An  AM transmitter of 1 kW power is fully modulated. Calculate the power transmitted, 
if it is transmitted as SSB. (JNTU Sep., 2007)

Solution When fully modulated, the total power of an AM signal is

2 1 3
1 1 1 kW

2 2 2T c c c

m
P P P P

È ˘ È ˘= + = + = =Í ˙ Í ˙Î ˚Í ˙Î ˚
where Pc is the average power of the unmodulated carrier.
\ carrier component of power in the AM signal = Pc = 2/3 kW.

Total sideband power in the AM signal (with 100% modulation) = 
2 1

1 kW kW
3 3

Ê ˆ- =Á ˜Ë ¯
\ power in each sideband = 

1
kW

6

It is this amount of power which will be transmitted if a single sideband is transmitted.

Example 4.10 An AM transmitter has an unmodulated carrier power of 10 kW. It can be modulated 
by a sinusoidal modulating voltage to a maximum depth of 40%, without overloading. If the maximum 
modulation index is reduced to 30%, what is the extent up to which the unmodulated carrier power can be 
increased without overloading?

Solution It is given that the unmodulated carrier power = Pc = 10 kW

Maximum depth of modulation without overloading = 40% \ m1 = 0.4

Total power in the AM signal = 
2

411 10 1.08 10.8 kW
2T C

m
P P

È ˘
= + = ¥ =Í ˙

Í ˙Î ˚
\ To avoid overloading, we have to see that the total power in the AM signal does not exceed 10.8 kW.

When the percentage of modulation is 30%, m2 = 0.3
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Now, let 1
CP  be the max. unmodulated carrier power that would make the total power in the AM signal to 

reach the value 10.8 kW.

\
2

3 1 1(0.3)
10.8 10 1 1.045

2T C CP P P
È ˘

= ¥ = + =Í ˙
Í ˙Î ˚

\
3

1 10.8 10
10.33 kW

1.045CP
¥

= =

Hence, with a modulation index of 0.3, the unmodulated carrier power can be increased up to 10.33 kW 
without overloading.

Example 4.11 Calculate the percentage power saving when the carrier and one of the sidebands are 
suppressed in an AM wave modulated to a depth of (a) 100% (b) 50%. (JNTU, May, 2007)

Solution Since nothing has been mentioned about the modulating signal waveform, let us assume that it 
is sinusoidal. Then if PT is the total power in the AM signal and Pc is the power in the carrier, we know that

2

1
2T c

m
P P

È ˘
= +Í ˙

Í ˙Î ˚
 when the carrier and both the sidebands are transmitted.

If the carrier and one sideband are suppressed, the total power is

2

4T c

m
P P=¢

\ % saving in power = 
100( )T T

T

P P

P

- ¢

2 2 2

2 2

100 1 100 1
2 4 4

1 1
2 2

c c

c

m m m
P P

m m
P

Ï ¸È ˘ È ˘Ô Ô+ - +Ì Í ˙ ˝ Í ˙
Ô ÔÎ ˚ Î ˚Ó ˛= =

È ˘ È ˘
+ +Í ˙ Í ˙

Î ˚ Î ˚

 (a) When m = 1 corresponding to 100% modulation

  % saving in power 
1 1/4

100 83.3%
1 1/2

È ˘+
= =Í ˙+Î ˚

 (b) When m = 0.5 corresponding to 50% modulation

  % saving in power 
( )
( )
1 0.25/4

94.4%
1 0.25/2

+
= =

+

Example 4.12 Determine the maximum power efficiency of an AM modulator.

Solution Power efficiency of an AM modulator is given by

Total power in the information bearing sidebands

Total power in the modulated signal
h =
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We know that for AM, 
2

1
2T c

m
P P

È ˘
= +Í ˙

Í ˙Î ˚
 for single-tone modulation

2 21cP m xÈ ˘= +Í ˙Î ˚
 for a general modulating signal x(t)

\
2 2 2 2

2 2 2 2[1 ] 1

c

c

P m x m x

P m x m x
h = =

+ +
,

where 2
x  is the average power in the message signal and 0 £ m £ 1.

2 2

2 2

2 2

1

11 1

m x

m x

m x

h = =
+ +

 (Since 2 2
m x  = 0 is ruled out.)

\ max

2 2
min

1

1
1

m x

h =
Ê ˆ

+ Á ˜Ë ¯

Now 
2 2

1

m x
 takes minimum value when 2 2

m x  takes the maximum value.

mmax = 1 and 2
maxx  = 1 since ( ) 1x t £

\ max

1
0.5

1 1
h = =

+

4.2.5 Effect of Over Modulation

A diode detector, or an  envelope detector (which is extensively used in all AM broadcast receivers) as we will 
be seeing later, tries to extract the envelope from an amplitude modulated wave. As the envelope follows the 
variations in the amplitude of the modulating signal, when the dc component is subtracted or removed from 
the envelope signal, ideally the modulating signal is obtained (see Fig. 4.1(a) and Eq. (4.2)). All this is true 
only when the envelope of the modulated signal truly follows the variation in amplitude of the modulating 
signal, i.e., as long as the modulation index is between 0 and 1. However, when the modulation index 
exceeds 1, i.e., under over-modulated conditions, as can be seen from Fig. 4.1(c), near the negative peak of 
the modulating signal, the envelope does not follow the variations of the amplitude of the modulating signal. 
Hence, under these conditions, the output of the envelope detector gives a distorted version of the modulating 
signal. Therefore,  over modulation should always be avoided. It may also be noted from the Fig. 4.1(c) that 
when over modulation takes place, the recovered signal from the  detector will be the |e(t)| where e(t) is the 
envelope of the modulated signal.
 We have till now assumed, as we did while drawing Fig. 4.1, that the modulating signal is a single tone. In 
practice, it will never be a tone signal. When it is some complex waveform signal, the amplitude modulated 
signal will be as shown in Fig. 4.8.
 In a case like this, we define two indices of modulation:

 1. The positive peak modulation index 
max

cc

c

A A

A

-
D

 2. The negative peak modulation index 
min

c c

c

A A

A

-
D
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In the above, Ac represents the peak amplitude of the unmodulated carrier wave, Ac max represents the maximum 
value, and Ac min represents the minimum value of the peak amplitude of the carrier wave with modulation.

4.2.6 Measurement of Modulation Index

A straightforward method of measuring the  percentage of modulation is to observe the modulated waveform 
on the screen of an oscilloscope by applying the amplitude modulated signal to the Y-deflection circuit of the 
scope. If it is sinusoidal modulation, a measurement of Ac max and Ac min (see Fig. 4.6) will give us the value 
of percentage of modulation as

 Modulation percentage = max min

max min

100%c c

c c

A A

A A

-
¥

+
However, there is an alternative method, known as the  trapezoid method for determining the modulation 
index. It is a better method as it reveals distortions, if any, in the modulation process and is also applicable for 
complex modulating signals. The method involves connecting the modulated signal to the vertical deflection 
circuit and the modulating signal to the horizontal deflecting circuit. If care is taken to preserve their correct 
phases, we get a trapezoid displayed on the screen of the oscilloscope. Some of the possible shapes of the 
display are shown in Fig. 4.9.

Example 4.13 An AM (Double sideband plus full carrier) signal waveform is as shown in Fig. 4.10. 
(a) Determine the modulation index m.
(b) Write down the expression for the modulated signal. 
(c) Determine the total power, carrier power, and sideband power.

Solution

 (a) [1 ] 100cA m+ = 2 160cA\ =

[1 ] 60cA m- =

\ 100 20m cA A= - = 0.25m

c

A
m

A
\ = =

 (b) ( ) [1 ( )]cos

80[1 0.25cos ]cos
c c c

m c

x t A mx t t

t t

w

w w

= +
= +

 (c) 21 1
6400 3200 W

2 2c cP A= = ¥ =

Fig. 4.8 Modulated signal when the modulating signal is some complex waveform
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 Fig. 4.9  Trapezoidal patterns under different conditions

Fig. 4.10
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\
2

1 3200
3200 1 /2 3200 3300 W

4 32TP
È ˘Ê ˆ= + = + =Í ˙Á ˜Ë ¯Í ˙Î ˚

\ sideband power = 100 W

Example 4.14 A modulating signal 
consists of a symmetrical triangular wave 
having zero dc component and a peak-to-
peak voltage of 12 V. It is used to amplitude 
modulate a carrier of peak voltage 10 V. 
Calculate the modulation index and the 
ratio of the side lengths (L1/L2) of the 
corresponding trapezoidal pattern.

 (JNTU, May, 2007)

Solution A sketch of the modulated 
signal is shown in Fig. 4.11.

Modulation index

max min

max min

16 4 12
0.6

16 4 20

A A
m

A A

- -
= = = =

+ +

1 2( ) 16 2 32c mL A A= + = ¥ =

2 2( ) 2(10 6) 8c mL A A= - = - =

\ 1

2

32
4

8

L

L
= =

4.2.7  Generation of Amplitude Modulated (AM) Signals

There are a variety of methods available for generating amplitude modulated signals. However, amplitude 
modulators may be classified into the following types, depending on the technique used
 1. Modulators using non-linear devices
 2. Modulators using product devices
 3. Modulators using switching devices

4.2.8 Modulators using Non-Linear Devices ( Square Law Modulators)

Let a device have a non-linear relation between its input and output which can be represented by
2

out 0 1 in 2 ine a a e a e= + +  (4.13)

where the constants a0, a1, a2 depend on the shape of the input-output characteristic of the device. Suppose 
we make

in ( ) ( ) cosc ce t x t E tw= +  (4.14)

where x(t) is the modulating signal with |x(t)| £ 1; and cosc cE tw  is the carrier signal.
 Substituting for ein(t) in Eq. (4.13) using Eq. (4.14), we get

2 2
2 2

out 0 1 2 1
1

2
( ) ( ) ( ) cos2 1 ( )   cos

2 2
c c

c c c

E E a
e t a a x t a x t t a E x t t

a
w w

Ê ˆ È ˘Ê ˆ
= + + + + + +Í ˙Á ˜ Á ˜Ë ¯Ë ¯ Í ˙Î ˚

Fig. 4.11 Modulated signal
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In the above, the first term is a dc term which can always be suppressed by using a coupling capacitor. 
The second term 2

1 2( ) ( )a x t a x t+  is a low frequency term having frequency components near those of the 
modulating signal. The third term is a very high frequency term which is at twice the carrier frequency. The 

last term 2
1

1

2
1 ( ) cosc c

a
a E x t t

a
w

È ˘Ê ˆ
+Í ˙Á ˜Ë ¯Í ˙Î ˚

 is the amplitude modulated signal (see Eq. (4.2)) and so is the useful 

term. To separate out this and reject the second and third terms, we need to simply use a band pass filter 
centered on fc and having a bandwidth equal to twice that of the modulating signal x(t).
 A modulator of this type may easily be realized by making use of the non-linear relation between the gate 
voltage and the drain current of an FET as shown in Fig. 4.12.

Fig. 4.12 A square-law amplitude modulator

In the above modulator, the tank circuit connected between the drain and source is tuned to the carrier 
frequency fc and it is ensured that it has a reasonably low Q to give a bandwidth that is twice the modulating 
signal bandwidth. At the same time, the Q will be large enough to satisfactorily reject the modulating signal 
component as well as the components having frequencies that are multiples of the carrier frequency. The 
method of separation of the useful last term of eout from the rest can perhaps be better understood by going 
into the frequency domain. For this, let us take the  Fourier transform of eout(t).

2 2

out 0 1 2

1
2

( ) ( ) ( ) [ ( ) ( )] [ ( 2 ) ( 2 )]
2 4

               [ ( ) ( )] [ ( ) ( )]
4

c c
c c

c
c c c c c

E E
E f a f a X f a X f X f f f f f

a E
f f f f a E X f f X f f

d d d

d d

Ê ˆ
= + + + * + + + -Á ˜

Ë ¯

+ + + - + + + -  (4.15)

A sketch of Eout(f) is shown in Fig. 4.13.

Fig. 4.13 Spectrum of eout(t) of the  square law modulator
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4.2.9 Modulators using Product Devices

These are based on Eq. (4.2) which states that an amplitude modulated signal is given by

( ) [1 ( )]cos

cos ( )cos
c c c

c c c c

x t A mx t t

A t mA x t t

w

w w

= +
= +

The amplitude modulated signal xc(t), can therefore be 
obtained from an arrangement as shown in Fig. 4.14. 

( )mx t  and cosc cA tw  are multiplied in the analog signal 
multiplier and then cosc cA tw  is added to it to obtain xc(t).
The analog signal multiplier, or, the product device used 
here can easily be realized using what is generally referred 
to as the ‘variable transconductance multiplier’, which is 
a differential amplifier in which the gain, which depends 
upon the transconductance of the transistor, is varied in 
accordance with one of the signals to be multiplied, by allowing it to control the total emitter current of the 
differential amplifier. Thus, when the other signal to be multiplied is applied to the  differential amplifier 
input, its differential output will be proportional to the product of the two signals. The other part of Fig. 4.14 
may, of course, be realized using an  op-amp.

4.2.10 Modulators using Switching Devices

These modulators make use of a switch, which may be a diode or a transistor. This switch allows current to 
flow through the load (a tank circuit tuned to the carrier frequency) in the form of truncated sinusoidal pulses 
occurring at regular intervals of (1/fc), where fc is the carrier frequency. If these current pulses are made to 
vary with the amplitude of the modulating signal, it is possible to get an amplitude modulated wave across 
the load.

Switching modulator using a diode

Fig. 4.15 A  switching modulator using a diode

If we assume that
 1. the forward resistance of the diode is extremely small compared to RL, and
 2. |x(t)| £ 1 and Ac >> 1

then we may state that

0

( ) whenever cos 0
( )

0 otherwise ( cos 0)

i c c

c c

v t A t
v t

A t

w

w

>Ï
= Ì <Ó

 (4.16)

Since

( ) ( ) cosi c cv t x t A tw= +  (4.17)

Fig. 4.14 Block diagram of a  product modulator
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it means that

0 ( ) ( ) ( ) [ ( ) cos ] ( )i c cv t v t g t x t A t g tw= = +  (4.18)

where g(t) is a gate waveform with a period T0 = (1/fc) as shown in Fig. 4.17.

Fig. 4.17 The periodic gate waveform g(t)

The  periodic gate waveform of Fig. 4.17 may be expanded using  trigonometric Fourier series.

 Let 0
1 1

( ) cos sinn c n c
n n

g t a a n t b n tw w
• •

= =
= + +Â Â

Fig. 4.16 Working principle of a  diode switching modulator
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Then we know that a0 = ½ since g(t) has an amplitude of 1 with a duty cycle of 0.5. Further, bn = 0 for all n
because of the even symmetry of g(t). Also,

0 0

0

0 0

/2 /2

0 0/2 0

/4 /4

00 00

1

2

2 4
( )cos ( )cos

4 4 1
cos sin

0 if is even
2

sin 22 ( 1)   if is odd

T T

n c c

T

T T

c c
c

n

a x t n tdt x t n tdt
T T

n tdt n t
T T n

n
n

n n
n

w w

w w
w

p

p
p

+

-

-

= =

Ê ˆ
= = Á ˜Ë ¯

Ï
È ˘ ÔÊ ˆ= = ÌÁ ˜Í ˙Ë ¯Î ˚ -Ô

Ó

Ú Ú

Ú

\
1

1 2
( ) sin cos

2 2 c
n

n
g t n t

n

p
w

p

•

=

È ˘Ê ˆ= + Á ˜Í ˙Ë ¯Î ˚
Â

\
1 2 2 2 2

( ) cos cos3 cos5 cos7 ....
2 3 5 7c c c cg t t t t tw w w w

p p p p
= + - + - +  (4.19)

 Substituting in Eq. (4.18) for g(t) using Eq. (4.19) and for vi(t) using Eq. (4.17), and rejecting the constant 
terms and terms involving only the modulating signal frequencies as well as 2fc and above (since the tank 
circuit constituting the load is tuned to fc and has a bandwidth of 2W, where W is the band limiting frequency 
of the modulating signal), we get

0

4
( ) 1 ( ) cos

2
c

c
c

A
v t x t t

A
w

p

È ˘
= +Í ˙

Î ˚
 (4.20)

 From its form, we can easily recognize that v0(t) is an amplitude modulated signal, the carrier component 
being Ac/2, the carrier frequency being fc and the  modulation index being

4

c

m
A p

=  (4.21)

 Equation (4.21) implies that the peak amplitude of the carrier, viz., Ac, must be small in order to have a 
value of m close to unity. However, Ac must be quite large compared to 1 as otherwise the assumptions made 
by us for this analysis will be violated.

 Transistor switching modulator or collector-modulated class-C amplifier A transistor 
switching modulator, or a collector modulated class-C amplifier is shown in Fig. 4.18.

Fig. 4.18 A collector-modulated  class-C amplifier
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 The base bias supply VBB reverse biases the base-emitter junction beyond cut off and the transistor Tr

works under class-C conditions. The input carrier signal level is so adjusted that the conduction angle for the 
collector current is approximately 120° which gives good power efficiency for the class-C amplifier while 
allowing reasonable output power.

Fig. 4.19 Collector current pulses in a class-C collector modulated amplifier

 There will be one current pulse for each RF cycle. These current pulses excite the tank circuit on the 
collector side, which is tuned to a frequency of fc. Thus, across the tank circuit, we get a sinusoidal RF voltage 
at carrier frequency, the peak amplitude of the sinusoid varying in accordance with the modulating signal. 
If the carrier drive is adjusted to be sufficiently large, collector current pulses exist even at the trough of the 
modulating signal voltage. The average value of the current over a modulating signal cycle is marked as IDC

and it is the direct current drawn from the collector supply voltage VCC The average value of these current 
pulses over each RF cycle (i.e., carrier cycle) will, however, be varying from one RF cycle to the next. This 
component of current is marked in Fig. 4.19 as ic(t).
 Let the final stage of the modulating signal amplifier produce a message signal

cosm m me E tw=  (4.22)

in the collector circuit through the modulating transformer, TX, as shown in Fig. 4.14.

If
CC

mE
m

V
D  = modulation index (4.23)

DC( ) (1 cos )c mi t I m t= +  (4.24)

( ) TP t D  Total power input into the collector circuit (averaged over an RF cycle)

CC[1 cos ] ( )m cV m t i tw= +  (4.25)

But DC( ) (1 cos )c mi t I m t= +  (From Eq. (4.24))

Thus,

CC DC( ) [1 cos ] [1 cos ]T m mP t V m t I m tw w= + +  (4.26)

We define

CC DCBP V ID ◊  (4.27)

Then PB represents the dc power supplied by the VCC supply to the collector circuit.

\ 2 2( ) [1 2 cos cos ]  T B m mP t P m t m tw w= + +

\ 2 21 1
( ) 1 cos2 2 cos   

2 2T B m mP t P m t m t mw w
È ˘= + + +Í ˙Î ˚

 (4.28)

When we average PT(t) over a modulating signal cycle, the second and third terms on the RHS of Eq. (4.28) 
vanish.

\
2

av 1
2T B

m
P P

È ˘
= +Í ˙

Í ˙Î ˚
 (4.29)
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PTav represents the total average power supplied to the collector circuit. Of this, CC DCBP V I= ◊  represents 

the power supplied by the VCC supply. The remaining part, viz. 2/2BP m  is supplied by the final stage of the 
modulating amplifier.
 If h denotes the collector circuit efficiency (h is generally about 80 to 90%, i.e., 0.8 to 0.9), then
hPTav = Total average power in the amplitude modulated output signal = P0

2

0 av 2T B B

m
P P P P= h = h + h  (4.30)

BPh  = carrier component of P0 = Pc
2 2

2 2B C

m m
P Ph =  = Total sideband power component of P0.

From the foregoing, it is clear that the carrier component of the output AM signal is generated from the power 

drawn from the VCC supply and the total sideband power of the output AM signal is derived from the power 

supplied by the modulating signal, i.e., from the final stage of the modulating signal amplifier.

Example 4.15 Referring to Fig. 4.8, if Ac max = 75 Ac min = 15, determine the following assuming 
sinusoidal modulating signal (a) m, (b) carrier power and total sideband power, and (c) amplitude and 
phase of the additional carrier to be added in order to have m = (i) 50% , (ii) 90%.

Solution

 (a) max min

max min

75 15 60
66.7%

75 15 90
c c

c c

A A
m

A A

- -
= = = =

+ +

 (b) 
2

1
2T c

m
P P

È ˘
= +Í ˙

Í ˙Î ˚
. Here 

2

2
c

c

A
P =  but Ac =

75 15
15 45

2

-
+ =

\
245 2025

1012.5 W
2 2cP = = =

\ Sideband power (total) = 
2 245 4 1

225 W
2 2 9 2c

m
P ◊ = ¥ ¥ =

 (c) 
2

( ) 45 1 cos cos cos
3

30
(45 ) 1 cos cos

(45 )

c m c c

m c

x t t t A t

A t t
A

w w w

w w

È ˘= + +Í ˙Î ˚
È ˘Ê ˆ

= + +Í ˙Á ˜Ë ¯+Î ˚

 (i) 
30

0.5 60 45 15
45

A A
A

= \ = + \ =
+

\ carrier to be added = 15 0– ∞

 (ii) 
30

0.9 11.67
45

A
A

= \ = -
+

\ carrier to be added = 11.67 180– ∞

Example 4.16 A transistor  class-A amplifier working with an efficiency of 20% is collector-
modulating a transistor  class-C power amplifier working with a collector-circuit efficiency of 60%. The 
class-C power amplifier transistor is dissipating 24 W when the modulation depth is 80%. (a) What is 
the carrier power in the output modulated wave? (b) What will be the class-C power amplifier collector 
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dissipation for 100% modulation? (c) What should be the modulating amplifier transistor rating in watts 
for this depth of modulation? (d) What is the overall efficiency of the circuit (including class-C and 
class-A power amplifiers)?

Solution Let dissipation in the transistor (class-C power amplifier) be Pd

At m = 0.6: [ ]in 0 in in1 0.4 24dP P P P P= - = - h = =

\
in

24
60 W

0.4
P = =

But

2

in

0.6
1 1.18 60

2c cP P P
È ˘

= + = =Í ˙
Í ˙Î ˚

\
60

50.85 W
1.18cP = =

This represents the power required to be supplied to the class-C amplifier in order to produce the carrier 
component in the output amplitude modulated signal.
\ carrier component of output AM signal = 50.85 ¥ 0.6 = 30.5 W.
\ carrier power in the output modulated wave is 30.5 W.
 (a) m = 1

P0 = 30.5(1 + 0.5) = 45.75 W = Total output power with m = 1.
\ the corresponding input power = Pin = 45.75/0.6 = 76.25 W
\ Pd = 76.25 – 45.75 = 30.5 W

(m = 1)
 (b) m = 1 The AF output to give m = 1 is supplied by the power required to generate the output sideband 

power with m = 1. This is given by

 PSB = Pc ¥ 0.5 = 50.85 ¥ 0.5 = 25.425 W

 (c) The class-A power amplifier transistor undergoes maximum dissipation when it is delivering zero 
output power. Under this condition, the dissipation equals the input power to the class-A amplifier.

\ max in

25.425
127.125 W

0.2dP P= = =

 (d) Overall efficiency at m = 0.6

0.6

Total output power with 0.6

Total input power (for the class-C and class-A amplifiers) with 0.6

36 36
0.2

50.85 127.125 180

m

m

m=

=
h =

=

= = =
+

\ the overall efficiency = 20%

Example 4.17 A carrier signal cosc cA tw  and a modulating signal ( ) cos mx t tw=  are applied in series 
to a  diode switching modulator. What should be the carrier amplitude, Ac, if the AM signal at the output is 
to have a modulation index of 85%? Assume that the diode acts as an ideal switch.

Solution From Eq. (4.21), we have

4

4 4
1.498 V

0.85

c

c

m
A

A
m

p

p p

=

= = =
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Example 4.18 A collector-modulated class-C power amplifier is giving an amplitude modulated 
signal of average power 100 W at the output, while operating with a collector-circuit efficiency of 80%. 
Assuming the modulation index to be 0.8, find (a) the power to be supplied by the modulating amplifier, 
and (b) the dissipation in the transistor.

Solution 
2

0

100
1 100 W 75.75 W

2 1.32c c

m
P P P

Ê ˆ
= + = \ = =Á ˜Ë ¯

\ The output sideband power = 100 – 75.75 = 24.25 W.
 (a) Since the power supplied by the modulating amplifier gets converted into the output sideband power 

and since the efficiency of the class-C modulated amplifier is 80%, we have

Power to be supplied by the 1
24.25 30.3 W

0.8modulating amplifier

¸
= ¥ =˝

˛
 (b) Let the dissipation in the transistor be PD with 80% modulation

in 0 0 0 0

1 1 0.2
100 25 W

0.8DP P P P P P
Ê ˆ Ê ˆ- h

= - = - = = ¥ =Á ˜ Á ˜Ë ¯ Ë ¯h h

4.3 DEMODULATION OF AM SIGNALS

In order to send the message signal across to the destination, the transmitter modulates a carrier signal with 
the message signal and transmits the modulated signal through the channel. At the receiving end, the message 
signal is recovered from the modulated signal through a process called ‘demodulation’ or ‘detection’, and 
the carrier signal, which, as we know, does not carry any information, is rejected. Thus,  demodulation is the 

process of recovering the message signal from a modulated signal.
 There are several techniques available in principle, for demodulation of amplitude modulated signals. 
These are:
 1. Coherent/ synchronous detection
 2.  Square law detection
 3.  Envelope detection
Of these three, the simplest and by far the most widely used one is the ‘Envelope Detector’. Hence, after 
discussing the principle of the first two, we shall discuss the third one in detail.

4.3.1 Coherent/Synchronous Detection

The modulated signal which is received is given by 

( ) [1 ( )]cosc c cx t A mx t tw= +  (Refer to Eq. (4.2))

As shown in Fig. 4.20, coherent/synchronous detection consists of:
 1. Generating the carrier signal, 

correct in frequency and phase, 
at the receiver.

 2. Multiplying xc(t), the received 
signal, by this locally generated 
carrier signal.

 3. Low pass filtering the above 
product of the two signals. Fig. 4.20 Block diagram of a  coherent detector for AM signals
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  \ 2 2( )cos cos ( )cos

cos2 ( )[1 cos2 ]
2 2 2

c c c c c c

c c c
c c

x t t A t mA x t t

A A mA
t x t t

w w w

w w

= +

= + + +

If the highest frequency component present in x(t) is W Hz, let the cut-off frequency of the low pass filter be 
W Hz. Then at the output of the low pass filter (LPF), we will have

( ) ( )
2 2

c cA mA
y t x t= +

The dc component represented by 
2

cA
 is blocked by the coupling capacitor, C, and at the output, we get 

( )
2

cA
m x t , which is a scaled version of the message signal.

 It is not an easy thing to generate in the receiver, a carrier signal of the correct frequency and which is in 
phase with the carrier of the received signal. We will be discussing in more detail about this problem when 
we deal with detection of double sideband suppressed carrier (DSB-SC) signal. It should suffice to state here 
that synchronous detection, though theoretically possible, is never used in practice for the detection of AM 
waves because of the above problem, and the availability of simple diode detectors ( envelope detectors).

4.3.2 Square Law Detection

Fig. 4.21  Square law detector

Let the square law device/circuit have an input-output relation given by
2

0 0 1 2i ie a a e a e= + +  (4.31)

where e0 is the output signal and ei is the input signal.

But ( ) [1 ( )]cosi c c ce x t A mx t tw= = +

\ substituting this in Eq. (4.31), we have
2 2 2

0 0 1 2

2
22 2

0 1 1

2 2 2 2 2 2 2 22 2
2 2

[1 ( )]cos [1 ( )] cos

[ ( )]cos cos2
2 2

( ) ( )cos2 ( ) ( )cos2
2 2

c c c c

c
c c c c c

c c c c c c

e a a A mx t t a A mx t t

a A a
a a A ma A x t t A t

a a
a A mx t a A mx t t m A x t m A x t t

w w

w w

w w

= + + + +

Ê ˆ
= + + + +Á ˜

Ë ¯

+ + + +

Since the low pass filter has a cut-off frequency f0 = W Hz which is very small compared to the carrier 
frequency fc, the output of the low pass filter will be

2 2 2 22 2
0 0 2 ( ) ( )

2 2c c c

a a
e a A a A mx t m A y t

Ê ˆ= + + +¢ Á ˜Ë ¯
where y(t) is the signal consisting of all frequency components of x2(t) which have frequencies less than or 

equal to W Hz, the cut-off frequency of the low pass filter. The first-term 22
0 2 c

a
a A

Ê ˆ+Á ˜Ë ¯
 representing the dc 
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component may be blocked by using a coupling capacitor. The next term 2
2 ( )ca A mx t  is the desired signal and 

passes through the LPF. However, since y(t) and x(t) have overlapping spectra, the final output across the load 
will not be the message signal alone; there will be distortion due to the last term. To keep this distortion low 
compared to the desired signal term, viz. the second term, one has to ensure that |mx(t)| is reasonable small 
compared to 1 so that the last term becomes negligible compared to the second.

Example 4.19 A signal ( ) [1 ( )]cos cv t m t tw= +  is detected using a square law detector whose input-

output relationship is 2
0 inv v= . If the Fourier transform of the signal m(t) is constant at the value M0 from 

–fm to + fm, sketch the Fourier transform of the output of the square law detector in the frequency range 
–fm < f < fm. (GATE Exam 1998)

Solution The square law device of the square law detector has an input–output relationship 2
0 inv v=

\ when v(t) is given as input to this square law device,
2 2 2

0

2 2

( ) ( ) [1 ( )] cos

1 1 1 1
( ) ( ) cos2 ( )cos 2 ( )cos 2

2 2 2 2

c

c c c

v t v t m t t

m t m t t m t t m t t

w

w w w

= = +

= + + + + +

In a square law detector, the square law device will be followed by an LPF whose cut-off frequency is the 
highest frequency available in the modulating signal m(t). Since the signal m(t) has its spectrum extending 
from –fm up to +fm, the highest modulating signal frequency and hence the cut-off frequency of the LPF in 
the detector, is fm Hz.
\ when v0(t) is low pass filtered with this LPF, its output is

21 1
( ) ( ) ( )

2 2Dv t m t m t= + +

All the other components are rejected by the LPF.

where 2( )m t  represents that part of m2(t) made up of frequency components from –fm to +fm. This is because 
m2(t) will have components having frequencies from –2fm to +2fm as is going to be evident from what follows. 

Consider 21
( ) ( )

2
F m t m t

È ˘+ +Í ˙Î ˚
. This is

1 1
( ) ( ) [ ( ) ( )]

2 2
f M f F m t m td + + ◊

1 1
( ) ( ) [ ( )* ( )]

2 2
f M f M f M fd= + +

Before sketching vD(f), let us see the shape of [M(f)*M(f)]

Fig. 4.22 Signals for Example 4.19

Note
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Because the LPF has a cut-off frequency of fm, only that part of the 
spectrum of m2(t) which lies between –fm and +fm will have to be 
considered (it is shown shaded in the spectrum of m2(t)).

\
1

( ) ( ) ( )
2DV f f M fd= + +  That part of 2[ ( )]m tF

   which is from –fm to fm

When we sketch this, we get the spectrum as shown in Fig. 4.23.

4.3.3  Envelope Detector

We know that the envelope of an amplitude-modulated signal 
follows the variations in amplitude of the message, or the 
modulating signal, if the modulation is without distortion. The diode detector, or the envelope detector 
tries to extract the envelope of the received 
amplitude-modulated signal, and that is why 
it is called the envelope detector. The envelope 
detector circuit is very simple and inexpensive 
as it consists of a diode and a few resistors 
and capacitors; and if properly designed, gives 
an output that is a very good approximation 
of the message signal. The basic circuit of an 
envelope detector is shown in Fig. 4.24.

Fig. 4.25 Working of an envelope detector

Principle of operation During the positive half-cycle of the RF, the diode is forward biased and it 
conducts, charging the capacitor C. At the peak of an RF cycle, say point A, the capacitor gets charged to 
that peak value. Then onwards, the RF voltage of the AM wave decreases very fast. As the voltage across 
C cannot decrease that fast, the AM wave voltage will be less than the capacitor voltage and so the diode is 
reverse biased and it stops conducting. So the charging of the capacitor stops and it starts discharging through 
the resistor RL. While this process is going on, the RF voltage of the AM wave goes through the portion ADB. 
At point B, the instantaneous voltage across the capacitor and the RF voltage of the AM wave are equal. 
After this instant corresponding to B, while the RF voltage is trying to increase further, the voltage across 
the capacitor is trying to decrease further. Hence the diode is again forward biased and it starts conducting, 

Fig. 4.23  Fourier transform of the output

Fig. 4.24 Basic circuit of an envelope detector
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charging the capacitor. This charging of the capacitor continues till the peak of RF cycle at which the diode 
stops conducting. This cycle of events will go on repeating in all the subsequent RF cycles. The voltage across 
the capacitor therefore follows the variations as shown by the thick line in Fig. 4.21. It is readily seen that 
vc(t), the voltage across the capacitor approximately follows the envelope of xc(t), the AM signal. Low pass 
filtering the vc(t) removes the RF component in it and the message signal can be recovered by blocking the 
DC component using a coupling capacitor.
 In the above explanation, certain conditions, not explicitly mentioned, have been assumed to be satisfied. 
These conditions are:
 1. That the charging of the capacitor takes place almost instantaneously so that the voltage across the 

capacitor can almost follow the portion of the RF cycle from B to E. If the source resistance for xc(t) is 
Rs and the forward resistance of the diode is Rf, the  charging time constant is (Rs + Rf) c ª RsC since Rf

is generally very small compared to Rs. Then for the above condition to be satisfied, it is required that 

1
s

c

R C
f

<<  (4.32)

 2. That the time constant for the discharge of the capacitor, viz. RLC, should be quite large compared the 

period of the RF

i.e.,
1

L
c

R C
f

>>  (4.33)

  unless this condition is satisfied, the capacitor voltage, vc(t), will not able to follow the envelope of the 
AM wave during the rising portion of the envelope.

 3. That the  discharge time constant, although quite large compared to the RF period, (1/fc), it is never-

theless small compared to the period of the modulating signal.

i.e.,
1

L
m

R C
f

Ê ˆ
<< Á ˜Ë ¯

 (4.34)

  where fm is the frequency of the modulating signal. In case the modulating signal is not single tone, fm
should be taken as the frequency of the highest frequency component present in the modulating signal. 
If this condition is not satisfied, then, during the time when the envelope is decreasing, the capacitor 
voltage, vc(t) cannot follow the envelope and we get a severely distorted version of the modulating 
signal as vc(t) the output of the envelope detector. This distortion, referred to as ‘diagonal clipping’, is 
shown in Fig. 4.19.

   All the three conditions stated above may be combined as

1 1
s L

c m

R C R C
f f

<< << <<  (4.35)

How diagonal clipping can be avoided As we will be interested in using the maximum possible 
value of RLC that would still allow us to avoid diagonal 
clipping, we shall now derive such an upper limit for 
RLC for the case of sinusoidal modulation.
 Let fm be the frequency of the highest frequency 
component present in the modulating signal x(t), and 
let it produce a modulation index m. Note that we are 
considering a sort of worst-case condition.
 From Eq. (4.2), we may write the expression for the 
envelope of the AM signal as Fig. 4.26 Amplitude-modulated signal
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( ) [1 cos ]c me t A m tw= +  (4.36)

\ Rate of change of the  envelope at t = t0 is given by

0
0

( )
sinm c m

t t

de t
m A t

dt
w w

=
= -  (4.37)

Magnitude of the envelope at t = t0 is given by

0 0[1 cos ]c me A m tw= +  (4.38)

At any time t (t > t0), the voltage across the capacitor is given by

0( )/
0( ) Lt t R C

ce t e e
- -=

\ Rate of change of the capacitor voltage = 
( )cde t

dt

0( )/0 Lt t R C

L

e
e

R C

- --
=

As the capacitor commences discharging at t = t0, the maximum rate of change of the capacitor voltage occurs 
at t = t0.

\ Maximum rate of change of the capacitor voltage = 
0

0( )c

t t
L

de t e

dt R C=

-
=  (4.39)

To avoid  diagonal clipping, we have to ensure that the maximum rate of fall of capacitor voltage is always 
greater than or equal to the maximum rate of fall of the envelope.

\ 0
0sinc m m

L

e
A m t

R C
w w≥  (4.40)

If we now substitute for e0 in the above equation by using Eq. (4.40), we have

0
0

[1 cos ]
sinc m

c m m
L

A m t
A m t

R C

w
w w

+
≥

or

0

0

1

sin

1 cos

L

m
m

m

R C
m t

m t

w
w

w

£
È ˘
Í ˙+Î ˚

 (4.41)

For the above inequality, the worst-case condition arises when the right-hand side takes a minimum value. 
This happens when t0 is such that

0

0

sin

1 cos
m

m

m t

m t

w

w

È ˘
Í ˙+Î ˚

takes a maximum value. By differentiating the above expression, we find that it takes a maximum value when

0cos mt mw = -
\ corresponding to this worst-case condition,

21 1
L

m

m
R C

mw

È ˘-Í ˙£
Í ˙Î ˚

 (4.42)

Equation (4.42) gives the maximum value of the  discharge time constant that can be used for given values of 
modulation index and the frequency of the maximum frequency component in the modulating signal, without 
causing diagonal clipping.
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Example 4.20 A simple diode detector uses a load resistance of 400 kilo-ohms. Across this resis-
tance, there is a 100 pf capacitor. If the maximum modulation depth of the input amplitude modulated 
signal is 75%, what is the maximum frequency of the modulating signal that can be detected without 
diagonal clipping?

Solution 3 12 5400 10 100 10 4 10 secLR C
- -= ¥ ¥ ¥ = ¥

\ from Eq. (4.42), we have

21 1
L

m

m
R C

mw

È ˘-Í ˙£
Í ˙Î ˚

\
2

5 1 (0.75)1
4 10

6.28 0.75mf

-
È ˘-Í ˙¥ £
Í ˙Î ˚

\
510 0.6614

3510 Hz
4 6.28 0.75mf

È ˘£ =Í ˙¥ Î ˚
\ 3510 Hzmf £ \ maximum frequency = 3510 Hz

4.3.4 Practical Diode Detector

Fig. 4.27 A  practical diode detector

The circuit of a practical diode detector is shown in Fig. 4.27. In this circuit, C1 and C2 are provided for RF 
bypass. Their values are such that their reactances are negligible at the carrier frequency (here, intermediate 
frequency) and extremely high at the audio frequencies. This is to ensure that while they provide good 
filtering of RF, they do not shunt the load resistance of the diode. C3 is a coupling condenser and is meant for 
blocking the dc component while having negligible reactance (as compared to R4) for audio frequencies. R3

and C4 act as a filter for audio frequencies so that almost pure dc voltage is available for AGC.

Negative peak-clipping in a diode detector The conditions based on which the values of the 
capacitors C1, C2, C3 and C4 are chosen, have been stated above. Although these conditions can never be fully 
fulfilled in practice, in our analysis of the diode detector, we shall make the following simplifying assump-
tions:
 1. C1 and C2 act as short circuits for the carrier (intermediate) frequency and as open circuits for dc and 

audio frequencies.
 2. Capacitors C3 and C4 act as perfect short circuits for the entire range of audio frequencies and as open 

circuits for the dc components.
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Keeping in view the above assumptions, if we look at the circuit of Fig. 4.27, we find that the loads presented 
to the diode at dc and at audio frequencies are different. This difference in the loads sets a limit to the 
maximum value of the modulation index, m, of the incoming modulated wave. As we will see, a distortion, 
referred to as ‘ negative peak clipping’, happens if the received AM signal has a modulation index greater than 
a certain limit which is determined by the dc and audio loads. From Fig. 4.27, we find that

The detector load for dc DC 1 2R R RD = +  (4.43)

The detector load for audio frequencies AC 1 2 3 4( || || )R R R R RD = +  (4.44)

where 2 3 4( || || )R R R  denotes parallel combination of R2, R3 and R4.

Since R2 > 2 3 4( || || )R R R , it follows that the ac load (i.e., at audio frequencies) of the detector is always less 
than the dc load.

\ RAC < RD.C (4.45)

Fig. 4.28 Received AM signal

Modulation index of the received AM signal = m

c

A
m

A
= .

Modulation index for the diode current m
d

c

I
m

I
D =

But    
AC

m
m

A
I

R
=  and 

DC

c
c

A
I

R
=

where
Am = Peak of the audio component of the envelope
Ac = Peak of the unmodulated carrier wave

\ AC DC DC

DC AC AC

/

/
m m m

d
c c c

I A R A R R
m m

I A R A R R

Ê ˆ Ê ˆ Ê ˆ
= = = =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

 (4.46)

\ AC
max max

DC
d

R
m m

R

Ê ˆ
= Á ˜Ë ¯

But max 1dm £

\ max
AC

DC

R
m

R

Ê ˆ
= Á ˜Ë ¯

 (4.47)
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and AC

DC

negative peak clipping occurs if
R

m
R

Ê ˆ
> Á ˜Ë ¯

 (4.48)

The above result is only an approximation since the assumptions 1 and 2 at the beginning of this derivation are 
not valid at all audio frequencies. C1 and C2 may act almost like short circuits at the intermediate frequency but 
they will not be acting as perfect open circuits at all audio frequencies. At the higher audio frequencies like say 
10 kHz, these capacitors will have a finite reactance and this shunts the load. Further, the coupling condenser C3

does not provide a reactance that is negligible compared to R4, at the lower audio frequencies. Thus, the detector 
load for audio frequencies is not a pure resistance as has been assumed; instead, it will be an impedance with a 
capacitive reactance component. For an excellent discussion on the performance of a diode detector, the reader 
may refer to Electronics and Radio Engineering by F. E. Terman, McGraw-Hill Inc.

Example 4.21 The output of a diode envelope detector is fed through a dc blocking capacitor to an 
amplifying stage which has an input resistance of 10 kW, determine the maximum depth of sinusoidal 
modulation the detector can handle without negative peak clipping. (JNTU Sep. 2007)

Fig. 4.29 (a) Actual diode current, (b) dc and audio components of current for low value of m,

 (c) dc and audio components of current for high value of m
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Solution The blocking capacitor is meant 
to block the dc voltage present across the 
diode load resistance of 5 kW from reaching 
the input to the amplifier. Its value will be 
such that at even the lowest audio frequencies 
its reactance will be negligible compared 
to the input resistance of the amplifier. So, 
while the dc load for the diode is 5 kW, its 
ac load is the parallel combination of 5 kW
and 10 kW.

i.e., ac

DC

5 10
k 3.3 k

(5 10)

5 k

R

R

¥
= W = W

+
= W

From Eq. (4.46), we know that the maximum value of the  modulation index of the input AM signal which still 
does not cause negative peak clipping, is given by

ac
max

DC

3.3
0.66

5

R
m

R
= = =

Example 4.22 A signal ( ) 5[1 2cos ]cosc m cx t t tw w= +  is to be demodulated. Check whether some 
of the following detectors can be used: (a) An  envelope detector, (b) A  square law detector, and (c) A 
synchronous detector or  coherent detector.

Solution ( ) 5[1 2cos ]cosc m cx t t tw w= +
This is an over-modulated AM signal. Hence, the envelope will be distorted and an envelope detector cannot 
be used.
 Let us check whether a square law detector can be used.

yc(t) = output of the square law device 2 ( )cax t=

( )

2

2

1
25[1 4cos 4cos ] (1 cos2 )

2

25 50 25
50cos 1 cos2 cos2 50cos2 cos 50cos cos2

2 2 2

m m c

m m c c m m c

a t t t

t t t t t t t a

w w w

w w w w w w w

Ï ¸È ˘= + + +Ì ˝Í ˙Î ˚Ó ˛
Ï ¸= + + + + + ◊ + ◊Ì ˝
Ó ˛

If the dc component is blocked by a coupling condenser and the high frequency components are removed by 
using an LPF of cut-off frequency fm after the square law device, the final output will be ( ) 50cos mz t a tw= ◊ ,
which is proportional to the modulating signal.

 Hence, a square law detector can be used.

 Now, let us check whether a synchronous demodulator can be used. Recall that in synchronous demodu-
lation, we first multiply the received modulated signal by the locally generated carrier signal and then pass 
the product through an LPF having a cut-off frequency of W Hz, the bandwidth of the modulating signal.
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Fig. 4.30
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\ The output of the LPF = 
5

( ) 5cos
2

mz t tw
Ê ˆ= +Á ˜Ë ¯

The dc component, i.e., 5/2, can be rejected by using a coupling condenser, and the output will then be only 
the message signal.

Hence, either a square law detector, or a  synchronous detector, may be used, but not the envelope detector.

4.4 AM BROADCAST TRANSMITTERS

These transmitters handle speech, music, etc., and each of them is meant to serve a large number of receivers. 
Hence they use AM with full carrier. They generally handle audio frequencies up to 5 kHz and use carrier 
frequencies in the medium waveband of 550 kHz to 1605 kHz, or in the short waveband of 3 MHz to 30 MHz. 
Transmitters operating in the medium waveband primarily depend on ground wave propagation and because 
of the attenuation inherent in this mode of propagation, they have a limited service area. Those operating 
in the short waveband primarily depend on the sky wave propagation and so cover a very large area. AM 
broadcast transmitters use carrier powers of the order of 1 kW to 100 kW, or more. Since these transmitters 
are meant for voice communication and audio frequencies up to 5 kHz are used, and since AM with both 
sidebands and full carrier is used, the bandwidth required is 10 kHz. Thus, carrier frequencies are allocated 
with 10 kHz separation between adjacent channels. This necessitates very good carrier frequency stability, 
as otherwise the side frequencies of one channel are likely to drift into the adjacent channel and cause 
interference. That is why stringent stability requirements are imposed on the carrier frequencies, making it 
mandatory for the carrier frequency drift to be not more than ±20 parts per million, i.e., less than ±0.02% of 
the assigned carrier frequency.

4.4.1 High-Level and Low-Level Modulation

In a transmitter, modulation of the carrier may be performed either at a low carrier power level or at a high 
carrier power level. In the former case, it is called ‘ low-level modulation’ while in the latter case, it is called 
‘high-level modulation’. As the modulated signal is produced at a low carrier level in the case of low-level 
modulation, the modulated signal so produced will have to be raised to the required power level using a 
chain of power amplifiers. As the modulated signal occupies certain bandwidth, these power amplifiers will 
have to be necessarily either class-A or class-AB tuned power amplifiers; and these will have very low 
efficiencies. In the case of high-level modulation, however, the carrier signal produced by an oscillator is first 
amplified using a series of tuned power amplifiers, which in this case can be class-C power amplifiers (with 
very high power efficiency) since the signal to be amplified is a sine wave. The final stage of this class-C 
power amplifiers chain may be plate modulated, or collector modulated, depending on whether a vacuum 
triode, or a transistor is used as the device. As shown in the analysis of a collector modulated class-C power 
amplifier, the total sideband power in the modulated signal so generated, will be derived from the final stage 
of the amplifier chain used for the power amplification of the modulating signal. Thus, unlike the low-level 
modulation case, the modulating signal power required in this case can be very high. For example, if a trans-
mitter which is to radiate 10 kW of average power of the modulated signal employs high-level modulation 
and if the  modulation index is say 0.8, the total sideband power will be 2424 W; and if the modulated class-C 
amplifier has a power efficiency of 85%, the final stage of the modulating amplifier will have to deliver about 
2.85 kW of modulating signal power.
 AM transmitters are generally categorized into two types – those with high-level modulation and those 
with low-level modulation.

Definition Modulation of the carrier by the message signal may be performed at any point beyond the 
oscillator buffer stage up to and including the final power amplifier. If the modulating message signal is 
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introduced in series with the collector/plate supply voltage of the final power amplifier stage so that it becomes 
a collector/plate modulated class-C amplifier, the modulation is referred to as  high-level modulation. On the 
other hand, if the modulating message signal is introduced beyond the buffer at any point up to and including 
the base of the final power amplifier, the modulation is referred to as  low-level modulation.

Fig. 4.32 AM transmitter with low-level modulation

To summarize, the advantages and disadvantages of these two types of modulation are:

Advantages of low-level modulation
 1. The modulation circuit is relatively simple as the power levels to be handled are low.
 2. The power required to be supplied by the modulating signal amplifier, is very low. Hence, it is especially 

useful when the modulating signal is a video signal, since it is difficult to get large amounts of video 
power, as in the case of TV transmitters.

Disadvantages of low-level modulation Since the modulated signal is generated at a low power 
level, class-A or class-AB tuned power amplifiers will have to be used to raise the power of this signal to the 
required level. These have very low efficiencies.

Fig. 4.31  AM transmitter with high-level modulation
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Advantages of high-level modulation As the modulation is performed at a high power level of the 
carrier, there is no need to use class-A or class-AB tuned power amplifiers. Since class-C power amplifiers 
are used for raising the power level of the carrier, the efficiency is quite high.

Disadvantages of high-level modulation Large amounts of modulating signal power will be needed.

4.4.2 Carrier Frequency Stability

As mentioned earlier in the beginning of this section, in order to avoid causing interference to the adjacent 
channels, it is absolutely necessary that the carrier frequency is extremely stable and the  carrier frequency 
drift, if any, is not more than 20 parts per million. To achieve this level of  carrier frequency stability, only 
crystal oscillators must be used to generate the carrier. Further, it is necessary to
 1. ensure that the oscillator is not loaded and the impedance coming across its output does not change. 

For this purpose, a buffer has to be used as shown in Figs. 4.31 and 4.32. It must have a very high input 
impedance and a low output impedance.

 2. keep the crystal used in the carrier oscillator circuit at a constant temperature, as temperature variations 
can cause frequency drift.

 3. ensure that the dc supply voltages for the crystal oscillator circuit are absolutely steady, since variations 
in these voltages can cause frequency drifts.

Neutralization Apart from carrier frequency stability, another thing that needs special mention in 
connection with transmitter, is the need for  neutralization of the RF amplifiers. Whether it is a vacuum tube, 
or a transistor that is used as the active device for the amplifier, it will have inter-electrode capacitances. 
It is the base-collector (or grid-plate capacitance in the case of vacuum tubes) inter-electrode capacitance 
which causes stability problem for the RF amplifiers, because at these frequencies, even the very small 
inter-electrode capacitance (generally of the order of a few pico-farads) will have small enough reactance to 
provide a good feedback path from collector to base (plate to grid in the case of vacuum tubes). This positive 
feedback can cause parasitic oscillations in the  RF amplifiers. These oscillations will generally be at much 
higher frequencies than the carrier. They will distort the carrier 
signal waveform, and so will have to be avoided. The technique 
adopted is to neutralize the positive feedback by deliberately 
providing a  negative feedback in equal measure – hence the 
name neutralization for all the different methods using this 
approach. Among the various neutralization methods available, 
Hazeltine method and Rice method are worth mentioning.

1. Hazeltine method: We first note that points A and B of the 
collector tank circuit in Fig. 4.33 are 180° out of phase. To 
neutralize the feedback from the collector (point B) to the base 
through the capacitance Ccb, we connect another capacitor CN

between the point A and the base. We then adjust it to a value 
equal to Ccb.

2.  Rice method: The same principle is used in this method too. 
The only difference is that now two points which are 180° out of phase on the base side are used, as shown in 
Fig. 4.34. Because the center tap of the transformer secondary is earthed, points A and B are always 180° out 
of phase. Since the inter-electrode capacitance Ccb is connecting the point C to the base, i.e., point B, point A
which is 180° out of phase with B is connected by us through the neutralizing capacitor CN to the same point 
C and CN is adjusted to be equal to Ccb, so as to neutralize the effect of Ccb.

Fig. 4.33  Hazeltine method of neutralization
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4.4.3 Feedback in Transmitters

 Negative feedback is invariably provided in AM broadcast 
transmitters with a view to improve their performance. The AM 
signal fed to the antenna should ideally have, as its envelope, 
(after removal of the dc component), the message signal as 
available at the output of the audio voltage amplifier. This 
will be the case only if there is no distortion produced in the 
audio power amplifiers, the modulation characteristic of the 
modulator is exactly linear and in case low level modulation 
is employed, if the class-A/AB tuned power amplifiers do not 
cause any distortion of the envelope.
 This negative feedback is provided as shown in Figs. 4.31 
and 4.32. The AM signal to be radiated is picked up at the point 
‘a’, its envelope is extracted and the dc component is removed 
in order to obtain, what in an ideal situation should be the undistorted message signal. This is then added to 
the output of the audio voltage amplifier in such a way that it subtracts from the voltage amplifier output, as 
shown in Figs. 4.31 and 4.32. The loop a-b-c-d-e-f thus acts as the feedback loop. To avoid oscillations which 
will be caused if the feedback turns positive, it should be ensured that the loop gain | Ab | < 1 for all the audio 
frequency components.
 This negative feedback improves the performance of the transmitter as it reduces the distortion of the 
envelope of the radiated signal by making it closely resemble the message signal. It reduces the noise and 
power frequency hum also.

4.5 AM BROADCAST RECEIVERS

Historically, the earliest  AM receivers were crystal, regenerative and super-regenerative receivers. However, 
they were soon superseded by the ‘tuned radio frequency’ (TRF) receivers, which continued to be quite 
popular till about the beginning of the World War II. However, the superheterodyne type of receiver, actually 
invented by Major Armstrong some time during World War I, became popular by about mid-1930s because 
of its far superior performance, and now it forms the standard structure of not only AM broadcast receivers, 
but also FM broadcast receivers, TV receivers and even radar receivers.
 We shall discuss the  TRF receiver first, and then discuss the superheterodyne receiver in some detail.

4.5.1 Tuned Radio Frequency (TRF) Receiver

As shown in Fig. 4.35, a TRF receiver simply consists of a chain of two or three single-tuned RF amplifiers, 
all of them tuned to the same frequency, followed by a detector, an audio voltage amplifier and an audio 
power amplifier that feeds the loudspeaker.

Fig. 4.35 A tuned radio frequency receiver

Fig. 4.34  Rice neutralization
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These  TRF receivers are quite simple and inexpensive. But they suffer from several severe disadvantages, 
chief one among which is poor ‘adjacent channel selectivity’. Because of this, when the receiver is tuned to 
a particular station, say of carrier frequency fc, signals radiated by stations operating on adjacent channels 
having carrier frequencies of fc ± 10 kHz, are also received, although they are attenuated to some extent. This

is called  adjacent channel interference. This problem gets aggravated if the receiver is to be tuned over a 
wide frequency range, as the Qs of the tuned circuits go on changing when the receiver (i.e., the tuned RF 
amplifiers) is tuned to different frequencies. The adjacent channel selectivity is of course lowest when the 
receiver is tuned to the highest end of its frequency range.
 Further, as all the amplification (of the received signal) required for proper operation of the detector, has 
to be at the signal frequency, there exists the possibility of instability of the  RF amplifiers. Also, it has to be 
ensured that the RF amplifiers are all tuned to exactly the same frequency as the receiver is tuned to different 
stations.
 The  superheterodyne receiver, which we are going to discuss next, overcomes all the above problems.

4.5.2 Superheterodyne AM Broadcast Receivers

Principle of superheterodyne receivers Almost all the gain of a TRF receiver is obtained in the RF 
amplifiers, at signal frequency; and this gain varies quite a bit as the receiver is tuned to different stations. In 
a superheterodyne receiver, by a process of mixing, the message bearing received AM signal, whatever may 
be its carrier frequency, is converted into an AM signal carrying the same message signal at a fixed carrier 

frequency called the ‘ intermediate frequency’ (IF), which is lower than the lowest carrier frequency covered 
by the receiver. About 70–75% of the gain of the receiver is obtained through amplification at this fixed 
frequency IF by using a fixed-tuned high gain amplifier, called the  IF amplifier. This signal is then detected 
and the extracted message signal is then amplified and fed to the loudspeaker. This way, the superheterodyne 
receiver overcomes all the disadvantages of the TRF receiver.
 The block diagram of an AM superheterodyne broadcast receiver is shown in Fig. 4.36.

Fig. 4.36 Block diagram of an AM superheterodyne broadcast receiver

We shall now discuss briefly the salient features and the functions of each block in the above block diagram.

1. RF amplifier: It is a tuned voltage amplifier that selects and amplifies the signal induced in the antenna 
having a carrier frequency corresponding to the frequency to which it is tuned. Its bandwidth is 10 kHz. It is 
not designed to give a high gain and its main functions are:
 (a) to ensure that the receiver has a good overall signal-to-noise ratio. If RF amplifier is not used, the mixer, 

which inherently is a noisy stage will be the first stage in the receiver. As the overall noise figure depends 
to a very large extent on the noise figure of the first stage, this will not be a desirable arrangement.

 (b) to give good image frequency rejection and IF rejection capability to the receiver.
 (c) to give some amount of adjacent channel selectivity.
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2. Local oscillator: This is an LC oscillator which produces a sinusoidal signal of frequency f0 which is such 
that f0 – fc = IF, the predetermined fixed frequency called the intermediate frequency, where fc is the frequency 
of the carrier of the station to which the receiver is tuned (this is the frequency to which the RF amplifier is 
tuned). The receiver may be tuned to any frequency from 550 kHz to 1605 kHz. But whatever may be the 
frequency to which the receiver is tuned, the local oscillator frequency tracks it in such a way as to always 
maintain the local oscillator frequency above the signal frequency by an amount of 455 kHz, the usual IF used 
in AM broadcast receivers. This is achieved by using ganged variable capacitors for tuning the tank circuits 
of the RF amplifier and the  local oscillator and also by using appropriate tracking techniques, as discussed 
later. The LO frequency, f0 can be, theoretically speaking, higher or lower than the signal frequency fc by an 
amount of IF. But, for reasons discussed in detail later, it is always kept higher than the  signal frequency.

3. Mixer: The received AM signal with a carrier frequency fc, amplified by the  RF amplifier, is fed as one 
of the inputs to the  mixer, the other input signal being the output of the local oscillator, a sinusoidal signal 
of frequency f0 = fc + fif. Mixing is a non-linear process and it results in generation of the sum and difference 
frequency components in addition to the original frequency components of the two input signals. The output 
circuit of the mixer – a tank circuit tuned to the difference frequency, i.e., the intermediate frequency, rejects 
all other frequency components. Thus, the output of the mixer is an AM signal whose carrier frequency is the 
intermediate frequency fif (455 kHZ) and which is modulated by the original message signal.
 Thus the mixer and local oscillator convert the received AM signal with a carrier frequency fc into another 
AM signal with fif as the carrier frequency. The modulation present on the original carrier is simply trans-
ferred on to the new carrier, which is the intermediate frequency. The mixer output circuit, of course, is 
designed to have a 3 db bandwidth of 10 kHz to accommodate all the side frequencies of the AM signal.

4. IF amplifier(s): One or two stages of  IF amplifiers are generally sued. These are fixed-tuned voltage 
amplifiers of high gain. These IF amplifiers provide a 3 db bandwidth of 10 kHz centered on the intermediate 
frequency. They provide good sensitivity and selectivity to the receiver.

5. Detector: This extracts the modulating signal from the AM signal. In commercial AM broadcast receivers, 
 envelope detectors are used and they require a minimum of at least 1 volt amplitude for proper operation. 
They are designed so as to provide linear operation and avoid distortions – particularly the distortion due to 
 diagonal clipping and  negative peak clipping.
 As shown in Fig. 4.27 the envelope detector can be used to provide a dc voltage of appropriate polarity for 
 automatic gain control, i.e., AGC. As shown in Fig. 4.36, this voltage is used for biasing the preceding stages 
so as to control their gains and thus provide AGC.

6. Automatic gain control (AGC): An arrangement for automatic gain control, or AGC, is necessary in radio 
receivers for the following reasons:
 (a) When the receiver is tuned from one station to another, difference in signal strengths of the two stations 

causes an unpleasantly loud output, if from a weak station, we are moving to a strong one, unless 
we initially keep the volume control very low before changing the tuning from one station to another. 
Changing the volume control every time before attempting to retune the receiver is however, cumbersome.

 (b) Even if we are not retuning to another station, signal strength from the station to which the receiver is 
tuned can go on fluctuating due to signal fading, causing corresponding fluctuations in the audio output 
from the receiver.

The points noted above underscore the need for keeping the audio output power from the receiver somewhat 
constant when the input RF signal level changes because of any one of the two reasons listed above. This 
calls for an arrangement by which the overall gain of the receiver can be made to automatically vary when 
the signal strength changes, in such a manner as to keep the audio output reasonably constant. Such an 
arrangement is called automatic gain control or AGC.
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 In receivers, automatic gain control is achieved by producing an AGC voltage form the detector circuit as 
shown in Fig. 4.27. This AGC voltage will be high for stronger RF input signals and low for weaker signals. 
We therefore apply this as a bias voltage to the RF amplifiers, mixer and the IF amplifier stages in such a way 
that it reduces their gain of these stages by reducing their transconductance.
 This type of arrangement is called ‘simple AGC’. However, there is one serious difficulty with this ‘simple 
AGC’. Even weak RF input signals also produce some AGC voltage, though it may be small. So, while 
reducing the receiver gain for stronger RF signals, it reduces the receiver gain to some extent even for weak 
RF signals. This is undesirable.

7. Delayed AGC: To overcome this disadvantage of a 
simple AGC, what is referred to generally as the ‘delayed 
AGC’, may be used. It allows the AGC action to commence 
only after the input RF signal level reaches a predetermined 
level, as shown in Fig. 4.37, which depicts the AGC charac-
teristics.
  Delayed AGC is generally obtained by having a separate 
diode rectifier circuit for producing the AGC voltage, and 
applying a positive bias of predetermined value to the 
cathode of that diode so that it conducts and produces the 
AGC voltage only after the RF input to the receiver is suffi-
ciently large.

8. Audio Voltage and  Audio Power Amplifiers: The demodulator output is the message signal. But it is very 
weak and cannot be used directly to actuate a loudspeaker. So the audio signal coming out from the detector 
stage is first amplified using a voltage amplifier stage to raise it to a level at which it can drive a class-A audio 
power amplifier which is the next stage. This power amplifier is designed to have minimum distortion and a 
3 db  bandwidth of at least 5 kHz. It is a transformer coupled to a loudspeaker. This output transformer is also 
called the matching transformer since it provides good matching between the high output impedance of the 
power amplifier and the low impedance of the loudspeaker.

9. Choice of local oscillator frequency: It was remarked earlier that, theoretically, the local oscillator 
frequency, f0, can be either greater than, or less than the carrier frequency fc of the received signal and that 
what is required is only that the difference between the two should be equal to the fixed value of the inter-
mediate frequency, fif, of the receiver. We also said that for certain practical reasons, it is chosen to be higher 
than the fc. We shall now examine this question.
 Consider an AM superhet receiver meant for the medium waveband, which we shall take as extending 
from 555 kHz to 1605 kHz. Let us assume that the IF fixed for the receiver is 455 kHz.

 (a) f0 > fc \ 0 ifcf f f= +
  Since fc ranges from 555 kHz to 1605 kHz,

f0 ranges from (555 + 455) kHz to (1605 + 455) kHz.
  i.e., from 1010 kHz to 2060 kHz.

\ f0 max = 2060 kHz and f0 min = 1010 kHz

  Since the frequency of the oscillator is inversely proportional to the square root of the tank circuit 
capacitance, if Cmax and Cmin are the maximum and minimum values of the gang condenser (oscillator 
section) used for tuning the oscillator, we have

2 2
2max 0max

min 0min

2060
(2.04) 4.16

1010

C f

C f

Ê ˆÊ ˆ Ê ˆ= = = =Á ˜Á ˜Á ˜ Ë ¯Ë ¯ Ë ¯

Fig. 4.37  AGC characteristics
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  This ratio is quite practicable.

Even if the vanes on the rotor of the variable air condenser are completely out, the capaci-

tance will not be zero because of the parasitic capacitances, which generally will be of the 

order of a few tens of pico-farads. Hence, Cmin π 0.

 (b) f0 < fc

\ 0 ifcf f f= -
\ In this case,  f0 max = (1605 – 455) kHz = 1150 kHz 

    f0 min = (555 – 455) kHz = 100 kHz

\
2 2

max 0max

min 0min

1150
132.25

100

C f

C f

Ê ˆÊ ˆ Ê ˆ= = =Á ˜Á ˜Á ˜ Ë ¯Ë ¯ Ë ¯
  This is an impractical value since it implies that Cmax should be of the order of a few thousand pico-

farads!
   Thus, this practical difficulty forces us to choose the local oscillator frequency to be higher than the 

signal frequency to which the receiver is tuned.

10. Adjacent channel selectivity: Medium frequency and high frequency bands are used for AM broad-
casting and channel allocation is made using a 10 kHz separation between adjacent channels. Spectrum 
crowding does not permit a larger spacing between channels.
 When a receiver is tuned to a particular 
station,  adjacent channel interference occurs 
due to the inability of the receiver to totally reject 
the signal at the adjacent channel frequency. 
Thus, from the adjacent channel selectivity 
point of view, an ideal situation is one in which 
the RF sections of the receiver have a frequency 
selectivity characteristic of the shape shown in 
Fig. 4.38. However, no practical filter can give 
such a frequency response.
 Further, in the RF sections, uniformly good  adjacent channel selectivity cannot be maintained over the 
entire frequency range covered by the receiver. When the receiver is tuned to a station operating near the lower 
end of the AM band, say, 600 kHz, a signal from another station operating on the adjacent channel, i.e., at a 
frequency of 610 kHz, can be effectively suppressed since 10 kHz is not a very small fraction of 600 kHz. 
However, when the receiver, and hence the RF amplifiers, are tuned to a station at the higher end of the MW 
band, say 1600 kHz, an adjacent channel signal of 1610 kHz will not be very much attenuated. Hence, as we 
move towards the higher end of the receiver’s frequency range, the adjacent channel selectivity provided by the 
RF amplifiers becomes progressively poorer. Such a problem does not arise in the case of IF amplifiers since 
these are fixed tuned and always operate at a center frequency of fif, the intermediate frequency (455 kHz), 
whatever may be the station to which the receiver is tuned – whether it is at the lower end, or the higher end of 
the tuning range of the receiver. That is why almost all the adjacent channel selectivity desired for a superhet-
erodyne receiver, is sought to be obtained from the IF stages. A good receiver is expected to give an adjacent 
channel selectivity of at least 60 to 80 db.
 An ideal selectivity curve for the IF stages is also the same as the one shown in Fig. 4.38, except that fc in 
it has to be replaced by fif, the intermediate frequency. This shape may be approximated by using any of the 
following techniques:

Note

Fig. 4.38  Ideal selectivity curve
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(a) By using 3 or 4 identically tuned IF stages 

with the  inter-stage transformers loosely coupled:

We know that the overall frequency response 
of a number of cascaded amplifier stages is the 
product of the responses of individual stages. The 
skirts become sharper as we multiply and it is so 
arranged that an overall 3 dB bandwidth of 10 
kHz is obtained, as shown in Fig. 4.39.

(b) By using three or more  stagger tuned IF 

stages: Three or more odd number (N) of loosely 
coupled IF stages may be used, to give an overall 
response that is reasonably flat, but has a ripple, 
and has fairly sharply falling skirts, as shown in 
Fig. 4.40. As N increases, the ripple amplitude becomes 
smaller and the skirts become sharper.

(c) By using stages with over-coupled inter-stage trans-

formers: When transformers are over-coupled, we know 
that double hump appears in the frequency response. 
The first stage is loosely coupled while the next two 
inter-stage transformers are tightly coupled. The overall 
response exhibits three humps-one at the center and one 
each on either side of it.
 Nowadays, high frequency op-amp-based single-chip 
IF amplifiers are available.

11. Image frequency rejection and image frequency 

rejection ratio: Suppose the receiver is tuned to a station 
with a carrier frequency fc. Then the tuned circuits in the 
RF stage are tuned to the signal frequency fc and the local oscil-
lator frequency f0 will therefore be (fc + fif). Now, if there is 
another station operating with a carrier frequency of (f0 + fif) = 
(fc + 2fif) and if that signal passes through the RF stage even in a 
slightly attenuated condition, in the mixer, it will also produce 
an output at the  intermediate frequency since it also differs 
from the local oscillator frequency by fif. So, this undesired 
signal also gets amplified in the IF stages along with the desired 
signal and causes interference at the destination. Hence, if a 
receiver is tuned to a desired signal having a carrier frequency 
fc, the signal with a carrier frequency of (fc + 2fif) can cause 

interference and it is called the  image signal for the desired 

signal with carrier frequency fc. This image signal should not 
therefore be allowed to reach the input of the mixer stage. Of course, it is not possible to completely eliminate 
it, but it should be attenuated heavily in the RF stage. To what extent it can be attenuated, will depend on
 (a) the Q of the tuned circuits in the RF stages (higher the values of Q, better is the image frequency 

rejection).
 (b) the value of the IF for the receiver (higher the value of the IF, better is the  image frequency rejection).

Fig. 4.39 Selectivity curves for stages 1, 2, and 5

Fig. 4.40 Selectivity curve for an IF amplifier 

      comprising three stagger-tuned stages

 Fig. 4.41  Using  over-coupled transformers 

in the IF stage
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 (c) whether the desired signal is close to the lower end or the higher end of the tuning range of the receiver. 
For fixed values of Q and IF, image rejection is better when the desired signal is at the lower end of the 
tuning range.

 The extent to which the image frequency signal is rejected by the receiver is generally expressed in terms 
of what is referred to as the ‘ Image Frequency Rejection Ratio (IFRR)’, which is defined as follows:

2

RF
10

RF

( )
IFRR 10 log

( )
c

c

H f

H f
D

¢
 (4.49)

where fc is the desired carrier frequency to which the receiver is tuned, cf ¢ is the corresponding image 
frequency, i.e., 2(IF)c cf f= +¢  and RF ( )H f  is the transfer function of the RF amplifier.
 The dependence of image rejection capability of a receiver on the above quantities follows from the 
off-resonance behavior of a parallel resonant circuit. We shall now examine this briefly.

Fig. 4.42 (a) A parallel resonant circuit, (b) Its equivalent circuit, (c) Its frequency response

Let R be the equivalent parallel resistance which takes care of the small series resistance r associated with the 
coil of inductance L. Then

 Admittance at resonance 
1

cf
Y

R
=

At some frequency cf fπ , the admittance of the circuit is given by

1 1
fY j C

R L
w

w

Ê ˆ= + -Á ˜Ë ¯
 (4.50)

If Q is the figure of merit of the tuned circuit at resonance, and if

1

c

c
f

A
Y

D  and 
1

f

A
Y

D  (4.51)

We may write

1

1

c c

c

c

c

A
jQ j Q

A

jQ

w w

w w

ww

w w

Ê ˆÊ ˆ= - +Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ
= + -Á ˜Ë ¯

 (4.52)

\    

2

2 2 2

2

1 1

1
1

c
c

c

A

A x Q
Q

ww

w w

= =
+Ê ˆ

+ -Á ˜Ë ¯

 (4.53)
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where c

c

x
ww

w w

Ê ˆ
D -Á ˜Ë ¯

 (4.54)

\
2 2

off-resonance response 1

response at resonance 1c

A

A x Q
= =

+
 (4.55)

Equation (4.55) clearly brings out the dependence of the degree of image rejection on the values of Q,

fif and fc. Obviously / cA A  decreases as Q increases. If we consider the image frequency, if2cw w w= + ,

when ifw  is large, value of x will be higher and so / cA A  will decrease for larger values of IF. For a given 

ifw , x increases as wc is decreased and so again the image rejection will be better since 
if2

/
c

cA A
w w w= +

decreases. Note that Eq. (4.55) is for the case of a single stage of RF amplifier. For multistage case, the 

relative responses get multiplied.
 From Eqs. (4.49) and (4.55), it follows that

2 2
10IFRR 20 log 1 x QD + , where c

c

x
ww

w w

Ê ˆ¢
= -Á ˜¢Ë ¯

w ¢  being 2p times the image frequency. (4.56)

Example 4.23 An AM superheterodyne broadcast receiver is tuned to 600 kHZ. If the Q of its single-
stage RF amplifier tank circuit is 60 and the IF (for the receiver) is 455 kHz, determine the image rejection 
of the receiver in dB. In case it has a two-stage RF amplifier with identical tank circuits, what will be the 
image rejection?

Solution

2 2

1
;

1

c

c c

A
x

A x Q

ww

w w

Ê ˆ
= = -Á ˜Ë ¯+

For the image signal, 
3 3

if2 600 10 2 455 10c fw w w= + \ = ¥ + ¥ ¥

\ Image frequency = 1510 ¥ 103 Hz when fc = 600 ¥ 103 Hz

\
1510 600

2.5166 0.3973 2.1193
600 1510

x
Ê ˆ= - = - =Á ˜Ë ¯

\ 2 2 2 2 21 1 4.49 (60) 16.165 1 16,165 127.14x Q x Q+ = + ¥ = \ + = =

\
2 2

1 1

127.141c

A

A x Q
= =

+

\ 10
dB

Image rejection in dB 20 log 127.14 42 dBcA

A
= = =

If a two-stage RF amplifier is used, image rejection = 84 dB.

Example 4.24 When a superheterodyne receiver is tuned to 555 kHz, its local oscillator provides the 
mixer with an input at 1010 kHz. What is the image frequency? The antenna at the receiver is connected 
to the mixer via a tuned circuit whose loaded Q is 40. What will be the rejection ratio for the calculated 
image frequency?

Solution We know that 

Image frequency if2cf f f= +¢  and local oscillator frequency 0 ifcf f f= +
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\ 0 if if1010 kHz 555 kHz kHzcf f f f= + = = +
\ fif = Intermediate frequency = 455 kHz

\ image frequency = 555 kHz 2 455 kHz 1465 kHzf = + ¥ =¢
\ from Eq. (4.55), we have

IFRR ( Image Frequency Rejection Ratio) = 

2

2 2RF
10 10

RF

( )
10 log 20 log 1

( )
cH f

x Q
H f

= +
¢

But
1465 555

2.2608
555 1465

c

c

ff
x

f f

Ê ˆ¢ Ê ˆ= - = - =Á ˜Á ˜ Ë ¯¢Ë ¯
and 2 40 40 1600Q = ¥ =

\ IFRR = 2 2
10 1020 log 1 (2.26.8) 40 20 log 90.5 39.132 dB+ = =

Example 4.25 In a broadcast superheterodyne receiver having no RF amplifier, the loaded Q of the 
antenna coupling circuit is 100. If the IF is 455 kHz, determine (a) the image frequency and its rejection 
ratio for tuning at 1100 kHz, and (b) the image frequency and its rejection ratio for tuning at 25 MHz.

Solution Image frequency if2cf f f= +¢
 (a) Since the receiver is tuned to a frequency of 1100 kHz

fc = 1100 kHz

  It is given that fif, the intermediate frequency is
fif = 455 kHz

\ f ¢, the image frequency = if2 (1100 910) kHz 2010 kHzcf f+ = + =
  From Eq. (4.56), we have

  Image Frequency Rejection Ratio (IFRR) = 

2

RF
10

RF

( )
10 log dB

( )
cH f

H f ¢

2 2
1020 log 1 x Q= +

Here,
2010 1100

(1.8272 0.5472) 1.28
1100 2010

c

c

ff
x

f f

Ê ˆ¢ Ê ˆ= - = - = - =Á ˜Á ˜ Ë ¯¢Ë ¯
and Q2 = 100¥100=104

\ 2 4
10 10IFRR 20 log 1 (1.28) 10 20 log 128 42.14 dB= + = =

 (b) Assuming the same Q for the antenna coupling circuit when the receiver is tuned to 25 MHz, we have, 
in this case 

fc = 25 MHz; fif = 455 kHz

\ f ¢ = Image frequency = if2 25 MHz 910 kHz 25,910 kHzcf f+ = + =

25.910 25
(1.0364 0.9648) 0.0716

25 25.910
c

c

ff
x

f f

Ê ˆ¢ Ê ˆ= - = - = - =Á ˜Á ˜ Ë ¯¢Ë ¯

\ 4 2
10 10IFRR 20 log 1 10 (0.0716) 20 log 52.2656 17.18 dB= + = =

4.5.3  Double Spotting

Suppose the carrier frequency of the desired station is fs1 and the receiver (i.e., the RF amplifiers) are tuned to 
this frequency. For this dial setting, the local oscillator frequency 

01 1 if( )sf f f= + . Now, suppose we go down 
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the tuning range of the receiver. The local oscillator frequency also goes down. At some setting of the receiver 
tuning dial, the local oscillator frequency will take the value 02 1 if( )sf f f= - . Then, with this dial setting 
also, the signal 

1s
f  will be received, although with reduced strength, since f02 and fs1 differ by the IF. This 

phenomenon of a desired signal fs being received at two different dial settings of the receiver, is known as 
‘double spotting’. It must be noted that with the dial setting such that the local oscillator frequency is f02, the 
RF amplifiers are tuned to a signal frequency 2 02 if( )sf f f= -  and that the signal frequency fs1 which is equal 
to 02 if( )f f+  is just the image frequency of fs2. Thus, the cause for the occurrence of double spotting is the 

same as the one for the occurrence of  image interference and the steps to be taken to avoid it are the same – 
improving the Q of the RF amplifiers and choosing the largest possible value for the intermediate frequency.
 Therefore we will now discuss the various factors affecting the choice of the value of the intermediate 
frequency, fif, of the receiver.

4.5.4 Choice of the Value of IF

Following are the factors governing the choice of the IF of a superheterodyne receiver:
 1. The IF should be outside the tuning range of the receiver; except in certain special types of receivers, 

it is generally chosen lower than the lowest frequency covered by its tuning range. Hence, for an AM 
broadcast receiver, it should be less than 550 kHz.

 2. A lower value of IF improves the selectivity of the receiver and reduces the adjacent channel inter-
ference.

 3. A higher value of IF makes the frequency difference between the desired station of frequency fc to 
which the receiver is tuned, and its image frequency (fc + 2fif), larger. Hence, the image frequency 
rejection is improved.

 Because of the conflicting requirements as stated above, the choice of the value of IF is generally a matter 
of compromise. Hence, it is generally chosen to be the highest possible value which is lower than the lowest 
frequency in the tuning range of the receiver.
 Typical values of IF are 455 or 465 kHz for  AM broadcast receivers, 9.7 MHz for the  FM broadcast 
receivers, 26 MHz for the video channel of VHF band  TV receivers and 41 MHz to 46 MHz for the video 
channel of UHF band TV receivers.

4.5.5  Tracking and Alignment

In a superheterodyne receiver, the tuning capacitors of the RF amplifier and the local oscillator are ganged, 
i.e., the rotating plates of both these variable capacitors are mounted on a common shaft so as to have only 
one tuning control for the receiver. But we know that the difference between the local oscillator frequency 
and the frequency to which the RF amplifier is tuned, should be equal to the IF and should be maintained at 
that value irrespective of the station to which the receiver is tuned, i.e., irrespective of the position of the shaft 
of the tuning capacitor. This means that the local oscillator frequency should track the frequency to which 
the receiver is tuned and keep itself always above the latter by an amount equal to the IF. This is achieved as 
follows.
 For single-band receivers, the plates of the variable capacitor of the local oscillator section are made 
smaller than those of the RF amplifier section, in order to make the local oscillator frequency to be above 
the frequency to which the RF amplifier is tuned. In order to keep this difference equal to the fixed IF of the 
receiver for all positions of the rotor shaft of the ganged capacitor, i.e., for proper tracking, the rotor mounted 
plates of the oscillator section are suitably segmented.
 For superheterodyne receivers covering the medium wave as well as the short wavebands, the two sections 
of the  ganged condenser are made exactly identical. The minimum and maximum values of capacitance in 
each section being about 50 pf and 500 pf, respectively. The inductance in the  local oscillator tank circuit 
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is made slightly smaller than the one used in the  RF amplifier tuned circuit so as to keep the local oscillator 
frequency higher than the frequency to which the RF amplifier is tuned. In addition, small variable capacitors, 
a padder (CP) and trimmer (CT), may be used in the local oscillator tuned circuit. Padder is the name given 

to the capacitor connected in series with the variable tuning condenser while  trimmer is the name given to 

the one connected across the tuning condenser. If a padder alone or a trimmer alone is used, it leads to what 
is generally referred to as the two-point tracking, wherein the LO frequency and the frequency to which the 
receiver is tuned, differ exactly by the correct value of the IF of the receiver only at two frequencies in the 
tuning range of the receiver, one located near the lower end of the range and the other near the upper end. In 
between these two points at which tracking is perfect, the difference between the LO frequency and receiver 
tuning frequency will not differ exactly by the IF and we say there is a small ‘ tracking error’. This tracking 
error can be adjusted to be small by means of the padder or the trimmer, as the case may be. Using a padder 
as well as a trimmer will give a  three-point tracking. These various conditions are shown in Figs. 4.43 (a), (b), 
and (c).

Fig. 4.43  Local oscillator tank circuit with padder and trimmer connections. Also shown are tracking curves for 

two-point and three-point tracking
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The local oscillator tank circuit’s inductance is first adjusted to give perfect tracking when the receiver is 
tuned to the middle of the band. The receiver is then tuned to a frequency near the high frequency end of its 
tuning range and the trimmer is adjusted to obtain the correct oscillator frequency that gives exact IF. Next, 
the receiver is tuned to a frequency near the lower end of its tuning range and now the padder is adjusted to get 
the correct oscillator frequency that gives the exact IF. These steps are then repeated approximately three or 
four times to achieve the correct tracking. It may be noted in this connection that to a large extent, the trimmer 
capacitor determines the higher-end crossover point while the padder capacitor determines the lower-end 
crossover point. The mid-range crossover point is determined by the inductance L0.

4.5.6 Double Heterodyne Receivers

It has already been explained earlier that for good image rejection a high value of IF is required and that for

good sensitivity and selectivity, a low value of IF is required. Hence, the choice of IF value is generally based 
on a compromise between these conflicting requirements.
 For the reception of AM signals in the medium wave and short wave band, usage of 455 kHz or 465 kHz 
as the IF does not cause any problems since at these signal frequencies 455 kHz is large enough to give a 
good image rejection and at the same time it is small enough to give a good adjacent channel selectivity even 
though adjacent channels are separated only by 10 kHz. At higher signal frequencies, as are used in FM, an IF 
of 10.7 MHz is large enough to give good image rejection but would have been too large to give a bandwidth 
of say 10 kHz as required for AM. However, since the adjacent channel separation for FM is 200 kHz, it 
is possible to get the required values of Qs using L and C, to get an IF bandwidth of 200 kHz at a center 
frequency of 10.7 MHz.
 But if we consider VHF communication receivers which have high signal frequencies but need an IF 
bandwidth of only 10 kHz, problems arise in the choice of IF. The high signal frequencies require a high 
IF for adequate rejection of image signals. However, a bandwidth of 10 kHz centered on a high value of IF 
would necessitate filters with extremely high values of Q – like those that can be obtained only from crystal 
filters.
 However, this problem posed by high signal frequencies and small adjacent channel separation, may be 
solved by the use of double heterodyne, or double conversion receivers that can give good image rejection as 

well as good selectivity.
 The idea is simple – use a high first IF to get good  image rejection and a low second IF to get good 

gain (sensitivity) and  adjacent channel selectivity, by resorting to double conversion. Sometimes the first 
IF is chosen higher than the signal frequency upper limit and the LO frequency is chosen to be IF – signal 
frequency). In that case, the filter in the output of the first mixer selects the sum frequency. The LO for the 
second mixer is generally a crystal oscillator. Since the second IF is chosen quite low, the second IF amplifier 
is designed to give almost all the required  sensitivity (gain).

Fig. 4.44  Double heterodyne receiver
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4.5.7 Receiver Parameters and Characteristics

When we discuss the performance of a receiver, the most important parameters that need to be considered 
are its sensitivity,  selectivity,  fidelity and  noise figure, although there are many others which also influence its 
performance. We shall now discuss these parameters in some detail.

1. Sensitivity: Whatever may be the transmitted power, because of the losses in the transmission path, the 
signal received by a receiving antenna will generally be exceedingly weak. The signal power at the input 
terminals of the receiver may be of the order of pico-watts (10–12 W) or less (or, the voltage may be a 
few micro-volts or less). However, the loudspeaker needs about 1 W of audio power to be applied to it for 
satisfactory operation. In fact, the envelope detector of the AM broadcast receiver itself requires an AM 
signal voltage of at least 1 V for proper demodulation. Thus, a considerable voltage (RF and IF) amplifi-
cation is needed before the demodulation and again a considerable audio voltage and power amplification is 
needed after detection. This overall gain determines the ‘sensitivity’ of the receiver, since the sensitivity of a 

receiver is expressed as the signal voltage required to be applied to the receiver input to obtain some specified 

standard output power. For AM broadcast receivers, it has been defined as follows.

Definition ‘The sensitivity of an AM broadcast receiver is the amplitude of a carrier wave modulated 
to 30% by a 400 Hz tone, which, when applied to the input of the receiver through a standard artificial 
antenna, produces an output of 0.5 W in a resistance of appropriate value connected in the place of the 
loudspeaker.’

The artificial antenna, comprising an inductance of 20 micro-henries in series with a 200 pf 

capacitor, is used to simulate the standard wire antenna of a broadcast receiver.

 The sensitivity, as defined above, naturally depends on 
the frequency of the applied carrier. Hence it is generally 
given as a curve as shown in Fig. 4.45. Since most of the 
gain of the receiver is obtained in the IF stage, the gain of 
this stage plays a key role in determining the sensitivity 
of the receiver. Since this gain is obtained at a constant 
frequency, the sensitivity of the receiver is, to a large 

extent, independent of the signal frequency.

2. Selectivity: The selectivity of a receiver represents the 
ability of the receiver to distinguish between the desired 
signal to which the receiver is tuned and the other signal 
frequencies.

It is expressed as the ratio of the signal voltage (i.e., a carrier modulated to 30% by a 400 Hz tone)
required at the input to the receiver to produce a standard output when the frequency of the carrier of the 

signal voltage is slightly away from the desired carrier frequency (i.e., the one to which the receiver is tuned), 

to the signal voltage required to be applied as input to produce the same standard output when the signal 

voltage is at the desired carrier frequency. This ratio of the signal voltages is generally expressed in decibels. 
When the input signal voltage is at the desired frequency, the input voltage required to produce the standard 
output takes a minimum value and increases on either side, as we move away from desired frequency to 
which the receiver has been tuned. The selectivity is also expressed by means of a  selectivity curve. Figure 
4.46 shows the typical selectivity curve of a receiver.

Note

Fig. 4.45   Typical  sensitivity curve of a standard 

AM broadcast receiver
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 The 3-dB bandwidth of the selectivity curve tells us whether 
all the side frequencies are getting through or not. If it is less 
than 10 kHz, the high frequency components of the modulating 
signal (which appear at the edges of the sidebands) are getting 
rejected and that the received message is getting distorted. The

selectivity at 10 kHz off resonance on either side represents the 

adjacent channel selectivity.

3. Fidelity: Ideally a receiver should be able to give at its 
output, a signal that is an exact replica of the modulating signal. 
A good receiver therefore, should be able to do this with very 
little distortion.
 The output signal may be a distorted version of the modulating 
signal because of some or all of the following reasons:
 (a) Inter-modulation frequency components may be generated 

when the desired signal mixes with an interfering signal in a non-linear way.
 (b) Inter-modulation frequency components may be produced even by the non-linearities, if any, present in 

the detector stage.
 (c) Distortion due to suppression of the high frequency components of the modulating signal, can take 

place if the IF bandwidth of the receiver is inadequate for the audio bandwidth being handled by the 
transmitter. For instance, if the transmitter is handling audio frequencies up to 5 kHz, the IF bandwidth 
required is 2 ¥ 5 kHz = 10 kHz. But suppose, the IF bandwidth is only 6 kHz, then all the frequency 
components of the modulating signal which are above 3 kHz will be suppressed, causing distortion.

 (d)  Distortion of the message signal can arise also due to the IF amplifier frequency response being not 
constant over its bandwidth of 10 kHz.

 (e) Poor low frequency and/or high frequency response as well as non-flat mid-band gain of the audio 
voltage and power amplifiers will also cause distortion of the message signal.

The term ‘fidelity’ denotes how faithfully the receiver is able to reproduce the modulating or message signal 
at its output; and is generally expressed in the form of a characteristic as shown in Fig. 4.47. For plotting 
this curve, a carrier signal which is 30% modulated by an audio-modulating tone, is applied as input to the 
receiver and its relative response is plotted for various values of the frequency of the modulating tone, taking 
the response for 400 Hz modulating tone as the reference (0 dB).

Fig. 4.47 Typical  fidelity curve of a standard broadcast receiver

Fig. 4.46  Typical  selectivity curve of an AM 

broadcast receiver. ‘0’ on X-axis 

corresponds to desired frequency
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4. Noise figure: The noise figure of a two-port network indicates the amount of noise power internally 
generated in the network. In the case of a receiver, the received signal, given as input, has signal and noise 
components; this noise being the additive noise contributed by the channel. Now, when it passes through the 
receiver, the receiver’s internally generated noise gets added. Hence, the noise figure of a receiver indicates to 
what extent the receiver degrades the received signal’s signal-to-noise ratio, since we have defined the noise 
figure as the ratio of the input signal-to-noise ratio to the output signal-to-noise ratio.

i.e.,
( / ) input

NF
( / ) output

S N

S N
=

AM broadcast receivers generally have noise figures of the order of about 5 to 10 dB.
 The  noise figure of a receiver is an important parameter since it determines the smallest signal power that 
it can receive without making the output signal get drowned in noise.

4.6  DOUBLE SIDEBAND SUPPRESSED CARRIER ( DSB-SC) 

MODULATION

While discussing the carrier and sideband components of power in an AM signal, it was shown in Section 4.2 
that even with m = 1, a large portion (66.67% in the case of tone modulation) of the total average power of 
the AM signal lies in the carrier component. Since the information in the message (i.e., modulating signal) is 
contained only in the sidebands and not in the carrier, and since the carrier is anyhow filtered out and rejected 
in the receiver, the carrier component of power in an AM signal is a waste. Further, the AM signal occupies 
a bandwidth of 2W where the modulating signal is of bandwidth W. In fact, the information contained in the 
message is completely available in any one of the two sidebands and can be recovered in the receiver even 
if just one sideband alone occupying a bandwidth of W is transmitted. Thus, the AM is wasteful in power as 
well as bandwidth.

A modulation process in which the modulated signal contains no carrier component and has only the two 

sidebands, is called ‘Double Sideband Suppressed Carrier Modulation’, or simply, ‘ DSB-SC Modulation’.
Before we discuss how such a signal may be produced, let us see what happens if the carrier component of an 
AM signal is removed. For this, referring to Eq. (4.7), if we ignore the first term which represents the carrier, 
we get

( ) ( )cosc c cx t A x t tw=  (4.57)

(We have absorbed m into the amplitude factor Ac)
From the above equation, it is clear that a DSB-SC signal can be generated easily just by taking the 

product of the carrier and modulating signals.

 Since the carrier component is totally absent in the DSB-SC signal, demodulating it for recovering the 
message signal, x(t), requires complex receiving equipment. Hence, unlike AM, it cannot be used for broad-
casting purposes. Since both the sidebands are present, it requires a bandwidth of 2W, just like the AM. 
Hence, it is not used even in carrier telephony and point-to-point radio communication since SSB-SC, i.e., 
single sideband suppressed carrier is more preferable in such applications because it offers saving of power as 
well as bandwidth. It is in forming the chrominance signal in the NTSC and PAL color television systems that 
the DSB-SC has found its greatest use. This again is mainly because of the quadrature multiplexing (about 
which we will be discussing later) possibility that DSB-SC offers. Further, generation of a DSB-SC signal 
constitutes the first step in the generation of  SSB-SC signal using the filter method. Hence, we shall discuss, 
in some detail, the time-domain and frequency-domain representation, as well as the methods of generation 
of DSB-SC signals. 
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4.6.1 Time-Domain Representation of DSB-SC Signals

From Eq. (4.57), we have 
(DSB-SC)

( ) ( ) cosc c cx t x t A tw=  (4.58)

Since x(t) multiplies the carrier signal cosc cA tw , whenever x(t) changes sign, the DSB-SC modulated signal 
suffers a 180° carrier phase reversal. Such a thing does not happen in AM unless  over-modulation takes place. 
Further, as may be inferred from the waveforms of Fig. 4.48, simple envelope detector using a diode cannot 
be used for recovering the message signal from a DSB-SC signal. 

Fig. 4.48 Waveform of (a) Modulating signal, (b) AM signal (m < 1), (c) the  DSB-SC signal (product of x(t) and c(t))

Power in a DSB-SC signal From Eq. (4.57), we have

( ) ( )cosc c cx t A x t tw=
We know that the average power of xc(t) is given by 
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The second integral is zero since it is the area under a cosine curve. Further,

/2
2

/2

1
Lt ( )

T

x
T

T

x t dt P
TÆ• -

=Ú  = Average power in the modulating signal

\
2

2c

c
x x

A
P P= ◊  (4.59)

4.6.2 Frequency-Domain Representation of DSB-SC Signals

For the sake of this discussion let the magnitude spectrum of the 
message or modulating signal be as shown in Fig. 4.49. Its shape has 
no particular significance except that it should have even symmetry 
since x(t), the modulating signal, is real valued.
 Taking the Fourier transform on both sides of Eq. (4.57), we have

1
( ) [ ( ) cos ] [ ( ) ( )]

2c c c c c cX f x t A t A X f f X f fw= ◊ = - + +F  (4.60)

Figure 4.50 gives a plot of ( )cX f  making use of the X(f) that we have 
assumed earlier.

Fig. 4.50 Amplitude spectrum of a  DSB-SC signal

From the above spectrum of a DSB-SC signal, it is clear that the signal contains both the sidebands and 
therefore needs a bandwidth of 2W, just like the AM signal, but the carrier frequency component is not 
present. Because of this, all the average power of the DSB-SC signal resides in its two sidebands only.

Example 4.26 The modulating signal in an AM-SC system is a multiple-tone signal by 

1 1 2 2 3 3( ) cos cos cosm t A t A t A tw w w= + + . The signal m(t) modulates a carrier cosc cA tw . Plot the 
single-sided spectrum and find the bandwidth of the modulated signal. Assume that 3 2 1w w w> >  and 

1 2 3A A A> > . (JNTU Sept., 2007)

Solution AM-SC system is nothing but DSB-SC system. We know that in DSB-SC modulation, the 
modulated signal is simply the product of the modulating signal m(t) and the carrier. Hence, the modulated 
signal xc(t) is given by

1 1 2 2 3 3

1 1 2 2 3 3

1 1 1 2 2 2

3 3

( ) ( )[ cos ] [ cos cos cos ] cos

cos cos  cos cos  cos cos

1 1
[cos( ) cos( )]  [cos( ) cos( )]

2 2

1
 [cos( ) cos(

2

c c c c c

c c c c c c

c c c c c c

c c

x t m t A t A t A t A t A t

A A t t A A t t A A t t

A A t A A t

A A t

w w w w w

w w w w w w

w w w w w w w w

w w w

= = + +

= + +

= + + - + + + -

+ + + 3 )]c w-

Fig. 4.49  Spectrum of the modulating 

signal
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Noting that 3 2 1 1 2 3; A A Aw w w> > > >  and 1 2 3, andcw w w w>> , we may plot the one-sided spectrum of 
xc(t) as shown below.

Fig. 4.51

Example 4.27 The signal 5( ) sinc(10 )x t t=  is used for DSB-SC modulating a carrier signal having a 
frequency of 10 MHz. Determine the bandwidth of the modulated signal and sketch its spectrum.

Solution We know that if the modulating signal has a bandwidth of W Hz, then the DSB-SC wave has a 
bandwidth 2W Hz.
 To determine W, we take the FT of x(t)

5 5 5 5( ) 10 (10 ) 10 ( /10 )X f f f
- - -= P = P

 A plot of this is shown below in Fig. 4.52.
Hence, the spectrum of the DSB-SC modulated signal is as 
shown in Fig. 4.53.

Fig. 4.53 Spectrum of xc(t)

4.6.3 Generation of  DSB-SC Signals

1.  Balanced modulator: We had seen that an AM signal may be written as

( ) [1 ( )]cosc c cx t A mx t tw= +
Suppose we now consider two AM signals identical in all respects except that the message signals in the two 
cases are 180° out of phase. We may write them as

1
( ) [1 ( )]cosc c cx t A mx t tw= +  (4.61)

and

2
( ) [1 – ( )]cosc c cx t A mx t tw=  (4.62)

Subtracting
2cx  from 

1cx , we have

3 1 2
( ) ( ) ( ) 2 ( )cosc c c c cx t x t x t mA x t tw= - =  (4.63)

Fig. 4.52
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We recognize that 
3
( )cx t , so obtained is a DSB-SC signal. The above analysis suggests that to generate 

a  DSB-SC signal using a carrier signal c(t) and a message signal, x(t), we need to have two identical AM 
generating circuits, to which the carrier c(t) is applied in the same phase but the message signal is fed 180° 
out of phase and we take difference of the output signal of the two amplitude modulators. A simple circuit 
realization of the above is illustrated in Fig. 4.54 in which we have used two identical amplitude modulators 
using the non-linearity of FETs (see Fig. 4.10).

Fig. 4.54 A  balanced modulator using FETs

As can be seen from the above circuit diagram, the carrier signal is applied to the gates G1 and G2 of the two 
identical FETs in the same phase. The modulating signal, however, is applied to G1 and G2 in opposite phase, 
since the modulating signal developed across the two halves of the secondary of the transformer T1 will be 
180° out of phase with respect to each other.
 Suppose the modulating signal is not applied and the carrier alone is applied. Since the carrier signals at 
G1 and G2 are in phase, the carrier components of iD1 and iD2 which flow in opposite directions through the 
primary of the output transformer, do not induce any carrier component of voltage on the secondary side of 
transformer T2. The carrier is thus eliminated. Because of the symmetry of this circuit, it is called a balanced 
modulator.
 To show that the balanced modulator produces an output signal which is a DSB-SC signal, we proceed 
exactly in the same way as we did for the analysis of the circuit of the amplitude modulator of Fig. 4.8.

Let
1 1 1

2
0 1 2D g gi a a e a e= + +

(Non-linear relationship between the gate voltage and the drain current of the FET)

But
1

( ) cosg c ce x t A tw= +

\
1

2
0 1 2

2 2 22 2
0 1 1 2 2

[ ( ) cos ] [ ( ) cos ]

( ) cos ( ) cos2 2 ( ) cos
2 2

D c c c c

c c c c c c c

i a a x t A t a x t A t

a a
a A a x t a A t a x t A t a x t A t

w w

w w w

= + + + +

È ˘
= + + + + + +Í ˙Î ˚

  (4.64)

Since the two FETs are identical and are operating under identical conditions,

Let
2 2 2

2
0 1 2D g gi a a e a e= + +

But
2

( ) cosg c ce x t A tw= - +
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\
2

2 2 22 2
0 1 1 2 2( ) cos ( ) cos2 2 ( ) cos

2 2D c c c c c c c

a a
i a A a x t a A t a x t A t a x t A tw w w

È ˘= + - + + + -Í ˙Î ˚
\

1 2 1 2( ) 2 ( ) 4 ( )cosD D c ci i a x t a A x t tw- = +

The output tank circuit, which is tuned to the carrier frequency, eliminates the first term and a voltage e0(t)
where

0( ) ( )cos ce t kx t tw=  (4.65)

where k is a constant, is induced in the secondary of transformer T2. e0(t), being proportional to the product 
of the modulating signal and the carrier signal, is a DSB-SC signal.
 The two FETs will not, in practise, be exactly identical. The centre taps on the secondary of the trans-
former T1 and the primary of the transformer T2, may not be exact centre taps. The degree of suppression of 
the carrier depends on to what extent these conditions are met.

2. Ring modulator (Balanced modulator using diodes): One popular type of balanced modulator (especially 
in telephone circuits), is the ring modulator shown in Fig. 4.55. It consists of four diodes, all pointing in the 
same direction and forming a ring, because of which it is named as a ring modulator. A square-wave carrier of 
frequency, say, fc, is used for switching these diodes, and is applied between the center taps of the secondary 
of transformer T1 and the center tap of the primary of transformer T2, as shown in the figure. First let us 
assume that modulating signal is absent.

Fig. 4.55 A  ring modulator

During the positive half-cycle of the carrier wave, let us say when ‘a’ is positive with respect to ‘h’, the diodes 
D1 and D2 are forward biased and the diodes D3 and D4 are reverse biased. Carrier component of current flows 
through the paths a-b-c-d-h and a-b-e-f-g-h. During the next half-cycle, i.e., negative half-cycle of the carrier, 
diodes D3 and D4 are forward biased and diodes D1 and D2 are reverse biased. Carrier signal now drives a 
current through the paths h-g-d-e-b-a and h-g-f-c-b-a. If the center taps b and g are true center taps and the 
diodes are identical in their behavior, in both the half-cycles of the carrier, no carrier component of voltage 
is induced either in the primary of T1 or in the secondary of T2 since in each of the half-cycles, equal and 
opposite currents flow through the secondary winding of T1 and the primary winding of T2. Thus, no carrier 
component will be produced in the output.
 It may be noted that just like the case of the DSB-SC modulator of Fig. 4.44, here also, whenever the 
modulating signal induced in one-half of the secondary of T1 adds to the carrier, the modulating signal 
induced in the other half subtracts from the carrier. Thus, DSB-SC signals with carrier frequencies of fc, 3fc,
5fc, 7fc, etc., are produced in the output because the square wave carrier signal (as shown in Example 2.4) has 
only the fundamental and odd harmonics. Thus, if the modulating signal has a spectrum as shown in Fig. 4.56 
with a bandwidth of W Hz, then the spectrum of the ring modulator output would be as shown in Fig. 4.57.
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Fig. 4.56 Spectrum of the modulating signal

Fig. 4.57 Spectrum of the output of the  ring modulator

Since we are interested only in the DSB-SC signal corresponding to the fundamental frequency component 
of the carrier, by using a bandpass filter of center frequency fc and bandwidth 2W, at the output of the ring 
modulator, we can obtain the desired DSB-SC modulated signal.

Example 4.28 For the  balanced ring modulator circuit, the carrier input frequency fc = 500 kHz and 
the modulating input signal frequency ranges from 0 to 5 kHz. Determine the output frequency range and 
the output frequency for a single modulating signal input frequency of 3.4 kHz. (JNTU Sept., 2007)

Solution Referring to Figs. 4.55 and 4.56, and noting that, as mentioned underneath Fig. 4.57, we are 
interested in only the fundamental frequency component of the carrier, at the output of the ring modulator, 
we get only a DSB-SC signal centered on the fundamental carrier frequency component fc = 500 kHz. This is 
because of the bandpass filter with center frequency fc and bandwidth equal to twice the maximum frequency 
(W) of the modulating signal, used at the output of the ring modulator.
 Thus, the output will contain frequency components ranging from (fc – W) to (fc + W), i.e., from 495 kHz 
to 505 kHz. 
 For a single modulating signal of frequency 3.4 kHz, the output of the ring modulator (with the above 
mentioned band pass filter) will have only two frequency components (500 – 3.4) kHz and (500 + 3.4) kHz, 
i.e., 496.6 kHz and 503.4 kHz.

4.6.4 Detection of DSB-SC Signals

In the case of AM, we could use a simple  envelope detector to extract the message signal from the modulated 
signal because the envelope of the modulated signal, in the absence of over-modulation, was found to be a 
replica of the modulating signal. Figure 4.43(c) clearly shows that such a situation does not exist in the case 
of DSB-SC modulated signals. For these signals, we go in for coherent or synchronous detection, the basic 
principle of which we have briefly discussed in Section 4.3. 
 If x(t) is the modulating signal and cosc cA tw  is the carrier signal, we know that the DSB-SC modulated 
signal formed by these two is given by

( ) ( )cosc c cx t A x t tw=
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If this is the signal received by the receiver, let us say we generate a carrier signal (in the receiver) having 
exactly the same frequency and phase as possessed by the suppressed carrier of the received signal. Then, we 
may multiply the received xc(t) by this locally generated carrier to get

c
c c c c c

c c c

t
x t t A x t t A x t

A x t A x t t

w
w w

w

+È ˘= = Í ˙Î ˚

= +

2 1 cos2
( )cos ( )cos ( )

2
1 1

( ) ( )cos2
2 2

 (4.66)

The first term here is a quantity proportional to x(t) and is hence the desired signal, while the second term is 
a very high frequency component which can easily be removed by low pass filtering.  Synchronous detection, 
or coherent detection may therefore be represented by the following block diagram:

Fig. 4.58 A  coherent detector

Effect of phase error of the locally generated carrier Let us now examine the effect of any 
deviation in the phase of the locally generated carrier. So, if the received DSB-SC modulated signal is 

( ) ( )cosc c cx t A x t tw=
let the locally generated carrier be cos( )ctw q+ , where q is the  phase error. With reference to Fig. 4.35, the 
output y(t) of the product device will now be 

\

c c c

c c c

y t A x t t t

y t A x t t A x t

w w q

w q q

= ◊ +

= + +

( ) ( )cos cos( )

1 1
( ) ( )cos(2 ) ( )cos

2 2
 (4.67)

The low pass filter following the product device has a cut-off frequency B Hz, where W £ B £ (2fc – W), W

being the bandwidth of x(t). The first term on the RHS of Eq. (4.67) has frequency components around 2fc
while the second term is proportional to the modulating signal x(t) provided q is constant. Hence, the first 
term gets eliminated by the low pass filter and we have:

1
( ) ( )cos

2 cz t A x t q=  (4.68)

Thus, the signal output of the coherent detector is ( )cos
2
cA

x t q
Ê ˆ
Á ˜Ë ¯

 instead of x(t). This has the following 
consequences:
 1. Even if q remains constant, which of course, is not true in practice, the cos q factor tends to reduce the 

output message signal.
 2. The phase of the received signal goes on varying with time in a random fashion because of the changes 

in the channel conditions. Thus, the phase deviation from the correct value of the locally generated 
carrier, namely q, goes on changing randomly. This random variation of q and consequently of cos q,
has the effect of producing distortion in the recovered message signal.
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The foregoing simple analysis and the subsequent discussion clearly bring out the need to maintain the 
locally generated carrier signal always in frequency and phase synchronism with the frequency and phase of 
the suppressed carrier in the received  DSB-SC signal. We shall now discuss  Costas receiver, or  Costas loop 
and the  squaring loop systems which accomplish this task.

Example 4.29 Consider the wave obtained by adding a non-coherent carrier Ac cos (wct + f) to the 
DSB-SC wave, ( )cos cm t tw , where m(t) is the message waveform. This waveform is applied to an ideal 
envelope detector. Find the resulting detector output. Evaluate the output for (a) 0f = , and (b) 0f π  and 

( ) /2cm t A<<  (JNTU, May, 2007)

Solution The input to the envelope detector is given by

( ) [ cos( ) ( )cos ]

[ cos ( )]cos [ sin ]sin

c c c

c c c c c

y t A t m t t

A m t t A t t

w f w

f w w w

= + +

= + -
 (i)

Hence, y(t) may be put in the polar form y(t) = R(t) cos [wct + q(t)], where R(t) is the envelope and q(t) is the 
phase angle. It is this R(t) which an ideal envelope detector extracts and gives as output.
Thus,

( ) ( )(cos )cos ( ) ( )(sin )sin ( )

[ ( )cos ( )]cos [ ( )sin ( )]sin

c c

c c

y t R t t t R t t t

R t t t R t t t

w q w q

q w q w

= -

= -
 (ii)

Comparing Eqs. (i) and (ii),

and

( )cos ( ) [ cos ( )]

( ) sin ( ) sin

c

c

R t t A m t

R t t A

q f

q f

= +

=

Hence, 2 2 2 2

2 2

( ) ( )cos ( ) ( )sin ( )

[ cos ( )] [ sin ]c c

R t R t t R t t

A m t A

q q

f f

= +

= + +

\ 2 2( ) ( ) 2 ( ) cosc cR t A m t m t A f= + +

and 1 sin
( ) tan

cos ( )
c

c

A
t

A m t

f
q

f
- È ˘

= Í ˙+Î ˚
1. When f = 0

              
2 2 2( ) 2 ( ) ( ) ( ) ( )c c c cR t A A m t m t A m t A m t= + + = + = +È ˘Î ˚

Thus, when f = 0, the output of the envelope detector is ( ) ( )cz t A m t= + , where Ac is a dc component and 
m(t) is the message signal.

2. When f π 0, and << /( ) 2cm t A

In this case,

2 2 2( ) ( ) 2 ( ) cos 2 ( )cosc c c cR t A m t m t A A A m tf f= + + ª +
 (Since m2(t) can be neglected in comparison with Ac)

\ 2 2 ( )
( ) 2 ( )cos 1 cosc c c

c

m t
R t A A m t A

A
f f@ + = +

Now 
2 ( )

2 ( ) cos 1c
c

m t
A m t

A
f>> \ <<
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Now, we know that when x << 1, 1 x+  can be approximated by 
1

1
2

x
Ê ˆ+Á ˜Ë ¯

\ In this case the output of the envelope detector will be 

( )
( ) 1 cos ( )cosc c

c

m t
z t A A m t

A
f f

È ˘
@ + = +Í ˙

Î ˚
Thus the output is again having a dc component of Ac plus the attenuated version (provided f is constant) of 
the message signal m(t) since cosf < 1 (as f π 0). Further, if f varies with time, the message signal m(t) is 
multiplied f(t) and so the message component at the output of the envelope detector will be only a mutilated 
version of the actual message.

4.6.5 Costas Loop

It consists of two coherent detectors. A voltage controlled oscillator initially adjusted to operate at the correct 
suppressed carrier frequency, fc, assumed to be known a priori, supplies the ‘locally generated carrier’ to 
the two coherent detectors – to one of them directly and to the other through a –90° phase shifter. The 
former  coherent detector which is supplied cos ctw  directly as the locally generated carrier, is called the 
‘Inphase channel’ or I-channel, while the one to which sin ctw  is applied as the local carrier, is called the 
‘Quadrature channel’ or the Q-channel. Both the coherent detectors are fed with the same received DSB-SC 
signal ( )cosc cA x t tw .

 Suppose the carrier phase error is zero, i.e., q = 0. Then the output of the I-channel is 
1

( )
2 cA x t  while 

that of the Q-channel is zero. The I-channel output is taken as the demodulated signal. Now, suppose there 

is a carrier phase error of q. Then the I-channel output is 
1

( )cos
2 cA x t q  while that of the Q-channel is 

1
( )sin

2 cA x t q . As shown in Fig. 4.59, both these outputs are fed to the phase discriminator, which consists 

of a product device followed by a low pass filter. For q values that are quite small, we know that cos q ª 1 and 
sin q ª q. Thus, the output of the product device in the  phase discriminator is of the form 2 2( )cA x t q . The low 
pass filter, which has a very low cut-off frequency of the order of a few Hertz, gives a dc voltage proportional 
to q at its output since variations in q will be very slow compared to variations in x2(t).

Fig. 4.59  Costas receiver or  Costas loop
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Thus, we obtain a control dc voltage which has the same polarity (positive or negative) as q and is propor-
tional to it. This changes the VCO output in such a way as to minimize q by locking it to fc. The phase error 
is thus kept very small.
 The  Costas loop thus provides a good practical solution to the ‘phase synchronism’ problem encountered 
in coherent detection. However, it suffers from one major drawback – the 180° phase ambiguity for the 
demodulated signal, i.e., the output of the loop. To understand what is meant by this 180° phase ambiguity, 
suppose that the phase of the modulating signal in the DSB-SC signal is reversed so that the received signal 
is ( )cosc cA x t tw-  instead of ( )cosc cA x t tw . Since the output of the product device in the phase discrimi-
nator is given by 2 2 ( )cA x t q , it is insensitive to the polarity of the modulating signal. Thus, when the loop is 
working and is locked to the carrier frequency, one cannot be sure whether it has got locked in such a way as 
to give a demodulated output of x(t) or –x(t). When the x(t) is an audio signal, one need not bother about this 
180° phase ambiguity as our ear is not sensitive to it. However, if x(t) is polar data that can take positive and 
negative values, the phase ambiguity can cause serious problems, as a binary 1 may be detected as a ‘0’ and 
vice versa. Another disadvantage with Costas loop is that the phase control of the loop ceases if there is no 
modulation. This is not a serious problem as the lockup establishes very fast.

4.6.6 Squaring Loop

Unlike the Costas loop, the squaring loop extracts the carrier signal of correct frequency and phase from the 
received DSB-SC signal itself.

Fig. 4.60  Squaring loop for  carrier recovery

2 2 2 2 2 2

2 2

1
( ) ( ) ( )cos ( )[1 cos2 ]

2

1
( ) ( )cos2

2

c c c c c

c c

y t x t A x t t A x t t

z t A x t t

w w

w

= = = +

=

The variations with respect to time, of the peak amplitude of cos2 ctw , caused by the multiplication by x2(t),
are removed by the limiter to give an output w(t), where

1( ) cos2 cw t k tw=
The frequency divider circuit then gives an output v(t), where

2( ) cos cv t k tw=
This v(t), which represents the missing carrier signal correctly in frequency and phase, is then used for 
coherent detection by multiplying the received  DSB-SC signal with it using a product device (a balanced 
modulator) and then low pass filtering this product using a low pass filter with a cut-off frequency B Hz such 
that (2 )cW B f W< < - , where W Hz is the band limiting frequency of the modulating signal.
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 Just like the  Costas loop, the  squaring loop also suffers from the disadvantage of  180° phase ambiguity 
insofar as the demodulated signal x(t) is concerned.

4.6.7 Quadrature Carrier Multiplexing of DSB-SC Signals ( QAM)

 Quadrature carrier multiplexing (also called Quadrature Amplitude Modulation or QAM), is a technique 
which enables us to transmit simultaneously over the same physical channel, two different message signals 
x1(t) and x2(t) having spectra that occupy the same bandwidth, using a single carrier frequency. The carrier 
signals DSB-SC modulated by the two messages have the same frequency, but differ in phase by 90°. Thus, 
the modulated signals may be represented by

and

1

2

1

2

( ) ( )cos

( ) ( )sin

c c c

c c c

x t A x t t

x t A x t t

w

w

=

=
We may transmit the multiplexed signal:

1 2 1 2( ) ( ) ( ) [ ( )cos ( )sin ]c c c c c cx t x t x t A x t t x t tw w= + = +

over the channel. This signal xc(t) occupies a bandwidth of only W Hz, even though x1(t) and x2(t) individually 
have a bandwidth of W Hz each. This is because the spectra of x1(t) and x2(t) completely overlap. Although 
their spectra completely overlap, signal x1(t) and x2(t) can be recovered from the multiplexed signal xc(t) by 
coherent detection as shown in Fig. 4.61, wherein the balanced modulators act as product devices.

Fig. 4.61 Quadrature carrier multiplexed system

At the receiving end, the message signals x1(t) and x2(t) are recovered in the following manner:

1 2( ) ( )cos ( )sinc c c c cx t A x t t A x t tw w= +

\ 1 2

1 1
( )cos ( )[1 cos2 ] ( )sin2

2 2c c c c c cx t t A x t t A x t tw w w= + +

Subsequent low pass filtering of ( )cosc cx t tw  removes the high frequency component 1

1
( )cos2

2 c cA x t tw  as 

well as 2

1
( )sin2

2 c cA x t tw , leaving a signal 1

1
( )

2 cA x t  which is proportional to x1(t) at the output of the LPF. 

In a similar way, x2(t) is obtained by multiplying xc(t) by sin ctw  and then low pass filtering the product.
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 It is, of course, necessary that the cos ctw  generated in the receiver be in frequency and phase synchronism 
with the missing carrier in the multiplexed signal that is received. For this purpose, a Costas receiver may be 
used, or else, a low-level pilot carrier may be transmitted along with the multiplexed signal.
  Quadrature carrier multiplexing reduces the number of subcarriers used besides reducing the bandwidth 
requirement of the multiplexed signal.

Example 4.30 What is the effect of a frequency error Dw in the angular frequency of the locally 
generated carrier on the coherently demodulated signal in the case of DSB-SC?

Solution Let the received DSB-SC signal be ( ) (cos ) ( )c c cx t A t x tw= .
Let the locally generated carrier be cos( )c tw w+ D . Then, output of the product device is (refer to Fig. 4.52)

( ) ( )cos cos( )

1
( )[cos( ) cos(2 ) ]

2

c c c

c c

y t A x t t t

A x t t t

w w w

w w w

= ◊ + D

= D + + D

and
1

( ) ( )cos( )
2 cz t A x t tw= D  = Demodulated signal.

wD  will generally be quite small compared to wc; but it can be comparable to W, the highest frequency 
component in x(t). Thus, a beat frequency is produced, giving rise to serious distortion.

4.7 SINGLE SIDEBAND MODULATION

In the previous section, we had discussed in detail about  DSB-SC modulation. Because of the absence of any 
carrier component in the modulated signal, the DSB-SC, of course, offers some saving of power. However, 
both the sidebands are present although, as stated earlier, from the point of transmission of information one 
would have sufficed. Thus, it does not offer the maximum possible power saving. Moreover, as both the 
sidebands are present, it requires a bandwidth of 2W, i.e., twice the maximum frequency in the message 
signal, same as in AM.
 So we shall proceed to the next logical step of suppressing not only the carrier, but also one of the sidebands, 
so as to maximize the saving in transmitted power as well as bandwidth required for transmission. This leads 
us to what is called the Single Sideband Suppressed Carrier or  SSB-SC modulation.

4.7.1 Frequency-domain and Time-domain Representation of SSB-SC Signals

In Fig. 4.50, we had sketched the amplitude spectrum of a typical DSB-SC signal. Figure 4.62 shows the 
same with a scaled version of the amplitude spectrum of the message signal itself superimposed on it.

Fig. 4.62 Amplitude spectrum of DSB-SC signal and Amplitude spectrum of the message signal (scaled)

From Fig. 4.62, we may draw the spectra of the  USSB-SC signal, i.e., the SSB-SC signal in which only the 
upper sideband is present, and of the  LSSB-SC signal in which only the lower sideband is present, as shown 
in Fig. 4.63(a) and (b), respectively.
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Fig. 4.63 (a) Spectrum of a  USSB-SC signal, (b) Spectrum of a  LSSB-SC signal

 The message spectrum shown in Fig. 4.63 may be visualized as the sum of + ( )
4
cA

X f  and - ( )
4
cA

X f

where + ( )
4
cA

X f  is the positive frequency part and - ( )
4
cA

X f  is the negative frequency part (From 

Eq. (2.154) of Section 2.8). We know that 

-
+ +

È ˘ =Í ˙Î ˚
1 ( ) ( )

4 4
c cA A

X f X tF  (4.69)

and -
- -

È ˘ =Í ˙Î ˚
1 ( ) ( )

4 4
c cA A

X f X tF  (4.70)

where ˆ( ) ( ) ( )x t x t jx t+ = +  (4.71)

is the pre-envelope of x(t) for positive frequencies,
and

ˆ( ) ( ) ( )x t x t jx t- = -  (4.72)

is the  pre-envelope of x(t) for negative frequencies.
Then, from Fig. 4.62, we may write

If spectrum of the USSB-SC signal ( )u
cX f= ,

then + -= - + +( ) [ ( ) ( )]
4

u c
c c c

A
X f X f f X f f  (4.73)

Taking the inverse  Fourier transform on both sides of the above, we get

{ } { }

( ) USSB-SC signal ( ) ( )
4 4

ˆ ˆ[ ( ) ( )] [ ( ) ( )]
4 4

ˆ( ) ( )
4 4

c c

c c

c c c c

j t j tu c c
c

j t j tc c

j t j t j t j tc c

A A
x t x t e x t e

A A
x t jx t e x t jx t e

A A
x t e e j x t e e

w w

w w

w w w w

-
+ -

- +

- -

= = +

= + + -

È ˘ È ˘= + - -Î ˚ Î ˚

\ ˆ( ) [ ( )cos ( )sin ]
2

u c
c c c

A
x t x t t x t tw w= -  (4.74)
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Equation (4.74) represents the general form of a USSB-SC signal. The corresponding expression for an 
LSSB-SC signal may be derived by proceeding in a similar way and the result is

\ ˆ( ) [ ( )cos ( )sin ]
2

L c
c c c

A
x t x t t x t tw w= +  (4.75)

Example 4.31 A carrier ( ) cosc cc t A tw= is USSB-SC modulated by a modulating signal x(t) = 
cos wmt. Write down the expression for the modulated signal. Sketch its spectrum.

Solution From Eq. (4.73), we have

ˆ( ) [ ( )cos ( )sin ]
2

[cos cos sin sin ]
2

cos( )
2

u c
c c c

c
m c m c

c
c m

A
x t x t t x t t

A
t t t t

A
t

w w

w w w w

w w

= -

= ◊ - ◊

= +

\ ( ) [ { ( )} { ( )}]
4

u c
c c m c m

A
x t f f f f f fd d= - + + + +

Fig. 4.64 Spectrum of the USSB-SC modulated signal of Example 4.31

4.7.2 Methods of Generation of SSB-SC Signals

There are mainly two methods of generation of SSB-SC modulated signals. These are:

1.  Filter method or balanced modulator-filter method: In this method, we first generate a DSB-SC signal 
and then filter out from it the unwanted sideband.

2. Phasing method: This method of generation of SSB-SC signals is based on direct implementation of Eqs. 
4.73 and 4.74 depending on whether a USSB-SC signal or LSSB-SC signal is needed.
 There is also another method, known as the ‘ Third Method’ or the ‘ Weaver’s Method’, which is a variant 
of the  phasing method.

Filter method of generating SSB-SC signals As mentioned earlier, in this method, a DSB-SC signal 
is first generated using a balanced modulator and the unwanted sideband is suppressed using an appropriate 
filter. Though the method may appear very simple and straightforward from the above description, there 
are some practical difficulties one encounters 
while implementing the filtering which will be 
discussed now.
 Suppose the modulating signal x(t) has 
a spectrum as shown in Fig. 4.65. Then the 
DSB-SC signal will have a spectrum as shown 
in Fig. 4.66.

Fig. 4.65 Spectrum of x(t)
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Fig. 4.66 Spectrum of the  DSB-SC signal. The dotted lines show the pass band of the filter for obtaining LSSB-SC signal

To obtain an  LSSB-SC signal from the DSB-SC signal, the pass band of the filter must extend from (fc – W)
to +fc and must suddenly change over to the stop band without any transition band, if the unwanted (USSB) 
sideband is to be fully removed and if the desired (LSSB) sideband is to suffer no distortion. However, we 
know that such a filter cannot be realized in practice. If the above two conditions of removing the unwanted 
sideband fully and causing no distortion to the desired sideband are to be fulfilled using a practical filter with 
a finite transition band, then it is easy to see that the spectrum of the modulating signal should have a gap 
near the zero frequency, i.e., it should have a spectrum X(f) whose shape is somewhat as shown in Fig. 4.67. 

Fig. 4.67 Spectrum of a modulating signal with an energy gap

with a gap between –fL and +fL. With this type of modulating signal, the DSB-SC signal will have a spectrum 
as shown in Fig. 4.68. As may be seen from the figure, it is now possible to make use of a practical narrow 
band pass filter with a finite transition bandwidth for suppressing the unwanted upper sideband of the 
DSB-SC signal.
The filter – a narrow band pass filter, has to have almost constant gain over a bandwidth W covering the lower 
sideband and can have a transition bandwidth from (fc – fL) to (fc + fL), i.e., a bandwidth of 2fL.
 Fortunately, voice signals have practically no energy up to about 300 Hz, i.e., these signals possess a 
spectrum of the type shown in Fig. 4.67, with fL = 300 Hz. However, if fc is say 10 MHz, the transition 
bandwidth of the filter, which is now 2fL = 600 Hz, will be extremely small compared to fc. Hence an 
extremely high value of Q is needed for the filter. To overcome this difficulty, a very low carrier frequency, 
like 100 kHz, is used for generating the DSB-SC signal so that the required Q value of the filter is practically 
attainable at least with  crystal filters. After suppressing the unwanted sideband, the carrier frequency is raised 
to the required level by mixing this SSB-SC signal of a low frequency carrier with a high frequency signal 
generated by a crystal oscillator, as shown in the block diagram of Fig. 4.69.

Fig. 4.68  Spectrum of a DSB-SC signal when the modulating signal has a gap in its spectrum, as shown in Fig. 4.40. 

Filter pass band is shown in dotted lines
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Fig. 4.69 Block diagram of an  SSB-SC transmitter

 With regard to the above block diagram, the following points may be noted.
 1. For changing over from LSSB-SC to USSB-SC signals, the sideband filter is not changed; instead, a 

different crystal is used in the crystal oscillator used for generation of the low frequency carrier.
 2. After raising the carrier frequency to the required level, the signal power is raised to the required level 

by using class-A or class-AB linear power amplifiers.
 3. The sideband filter must attenuate the unwanted sideband at least up to 60 dB relative to the desired 

sideband.
Alternatively, we may use a two-stage SSB-SC modulator in order to overcome the problem with the design 
of the sideband suppression filter. A block diagram showing the essential details of this method is given in 
Fig. 4.70.

Fig. 4.70 A two-stage SSB-SC modulator

The first carrier frequency f1 is chosen to be very low so that the design of the first sideband filter is 
simplified. The SSB-SC signal from the first stage, which is now the baseband signal for the second stage, 
has a gap of approximately 2f1 Hz in its spectrum and so the design of the second filter also does not cause 
any problem.

 Phasing method of generating SSB-SC signals This method is based on direct implementation 
of Eq. 4.74 (or Eq. 4.75) which gives the time-domain representation of  USSB-SC (or LSSB-SC) signal. To 
produce ( )cos cx t tw , we need one balanced modulator to which we have to feed the modulating signal x(t)

and the carrier oscillator output, viz. cos ctw , directly, as shown in Fig. 4.71. To produce ˆ( )sin cx t tw , we 

need to have a second balanced modulator, to which we apply ˆ( )x t  obtained by passing x(t) through a –90° 
phase shifter and sin wct obtained by passing the carrier oscillator output through a –90°  phase shifter.
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Fig. 4.71  Phasing method of generating SSB-SC signal

The carrier being a single frequency signal, the –90° phase shifter for it is a very simple circuit. But the 
modulating signal x(t) will have several frequency components in it and hence the –90° phase shifter used 
for it should produce an exact –90° phase shift for every frequency component and further it should have 
the same gain for all these frequency components, i.e., it should be a Hilbert transformer. This is a complex 
circuit and is generally expensive.

Comparison of  filter method and phasing method

 1. The filter method needs costly sideband suppression filters. Although the phasing method does not 
need these filters, it needs wideband –90° phase shifters which are not easy to realize.

 2. Being stable, the filter method does not need constant attention and adjustment. Phasing method, 
however, needs constant adjustments.

 3. In the filter method, the unwanted sideband is suppressed quite effectively; almost to –60 dB relative 
to the desired sideband. In phasing method suppression of the unwanted sideband is not that effective. 
This is because of the wideband phase shifters not producing exact –90° phase shift for all frequencies. 
A deviation of even 2° in the phase shift from the ideal –90° would cause that particular side frequency 
to be suppressed only to about 20 to 25 dB relative to the corresponding side frequency in the desired 
sideband.

 4. In the filter method, it is not very easy to change from USSB-SC to LSSB-SC and vice versa. In the 
phasing method, however, it is quite easy to change over from USSB-SC to LSSB-SC and vice versa.

 5. Changing the carrier frequency in the case of the filter method is cumbersome as it involves changing 
the sideband suppression filters and crystals in the local oscillators in the mixer stages, and then 
re-tuning all the stages. In the phasing method, it is quite easy to change the carrier frequency.

 6. The filter method can be successfully implemented only for modulating signals having a gap of a few 
hundred hertz near the origin, in their spectra. There is, however, no such restriction in the case of the 
phasing method.
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Weaver’s method This method, a variant of the phasing method, was invented in 1950 by D.K. Weaver. 
It avoids the need for wideband phase shifters, which are difficult to construct and are expensive, and instead, 
uses an AF subcarrier at an audio frequency, say f0.

Fig. 4.72  Weaver’s method of generation of  SSB-SC signals

A: sin mtw

B: 02sin sinmt tw w

C: 0sin( )m tw w-
D: 0sin( ) cosm ct tw w w-

0 0

1
[sin( ) sin( ) ]

2 c m c mt tw w w w w w= - + - + -

E: 02sin sinmt tw w

F: 0cos( )m tw w-
G: 0sin cos( )c mt tw w w-

0 0

1
[sin( ) sin( ) ]

2 c m c mt tw w w w w w= + - + - +

\   D + G: 0sin( )c mw w w- +

 –D + G: 0sin( )c mw w w+ +

Thus, D + G gives USSB-SC signal with (fc – f0) as the carrier frequency; and –D + G gives LSSB-SC signal 
with (fc + f0) as the carrier frequency.

Advantages of Weaver’s Method

 1. No need for any sideband suppression filters.
 2. No need for any wideband phase shifters.
 3. As the phase shifters used are for a single frequency, they are extremely simple and inexpensive.
 4. No need for frequent adjustments.
 5. Easy to change over from USSB-SC to LSSB-SC and vice versa.
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4.7.3 Detection of SSB-SC Signals

SSB-SC signals can be demodulated using coherent detection, as shown in Fig. 4.73.

Fig. 4.73  Coherent detection of SSB-SC signals

Let the SSB-SC signal be xc(t). Then from Eqs. (4.74) and (4.75),

ˆ( ) ( )cos ( )sin cos
2

c
c c c c

A
x t x t t x t t tw w w= ±

\ c c

c c
c c c

c c c
c c

y t x t t

A A
x t t x t t t

A A A
x t t x t t

w

w w w

w w

=

= ±

= + ±

2

( ) ( )cos

ˆ( )cos ( )sin cos
2 2

ˆ( ) cos2 ( )sin2
4 4 4

The second and third terms are high frequency terms and will be rejected by the LPF whose cut-off frequency 
is W Hz, the band-limiting frequency of x(t).

Hence,
1

( ) ( ) ( )
4 cz t A x t k x t= = ◊  (4.76)

The above analysis assumes that the locally generated carrier signal used for feeding to the product device, 
is in phase and frequency synchronism with the missing carrier component of the received SSB-SC signal.
 A frequency-domain interpretation of coherent detection of SSB-SC signals is given in Fig. 4.74(a) and (b).

Fig. 4.74 Frequency-domain interpretation of coherent detection of a  USSB-SC signal

Figure 4.74(a) shows the spectrum of the USSB-SC signal, xc(t).

Now,  ( ) ( ) cos2c cy t x t f tp= ◊

\ c c c

c c c c

Y f X f f f f f

X f f X f f

d d= * - + +

= - + +

1
( ) ( ) [ ( ) ( )]

2
1 1

( ) ( )
2 2

  (4.77)
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1 and 2 of Fig. 4.74(b) represent 
1

( )
2 cX f f-  while 3 and 4 represent 

1
( )

2 cX f f+ . Thus, Fig. 4.74(b) repre-

sents Y(f). The part of this from f = –W to f = +W, which represents the spectrum of the modulating signal, 
x(t), can be separated from the rest of the spectrum Y(f) by using an LPF whose gain is constant in its pass 
band from –W to W. In time domain terms, this amounts to extracting x(t) from y(t).
 As mentioned earlier, the time-domain analysis as well as the frequency-domain analysis of coherent 
detection which show that the message signal, x(t), can be recovered without any distortion, assume that the 
locally generated carrier signal used in the coherent detection process, is in frequency and phase synchronism 
with the missing carrier in the received  SSB-SC signal.

4.7.4 Effect of Phase and Frequency Errors of the Local Carrier

1. When the local carrier has a phase error q:

Fig. 4.75 Effect of phase error of the  local carrier

Let the received SSB-SC signal be represented by

ˆ( ) [ ( )cos ( )sin ]
2

c
c c c

A
x t x t t x t tw w= m

whereas we know, the minus sign applies for  USSB-SC signals and plus sign for the LSSB-SC signals

\ ( ) ( ) cos( )

ˆ ˆ[ ( ){cos(2 ) cos }] [{ ( )sin 2 cos } { ( )1 cos2 sin }]
4 4

c c

c c
c c c

y t x t t

A A
x t t x t t x t t

w q

w q q w q w q

= ◊ +

= + + - -m

So, after low pass filtering

ˆ( ) [cos ( ) (sin ) ( )]
4
cA

z t x t x tq q= ±

Note that in this equation, the plus sign applies for USSB-SC.
Taking Fourier transform on both sides

But

( ) [ ( )cos ( sgn ) ( )sin ]
4

1 for  0
sgn

1 for  0

cA
Z f X f j f X f

f
f

f

q q= ± -

>Ï
= Ì- <Ó

\ on simplification,

( ) ( )
4

jcA
Z f X f e

q±=  (4.78)

where the negative sign applies for USSB.
Equation (4.78) tells us that all frequency components of x(t) suffer a constant phase shift of q irrespective 
of their frequency. Obviously it would lead to  phase distortion. Also, as q varies randomly with time due to 
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channel variations, it means that all frequency components suffer the same phase shift which goes on varying 
randomly with time. This type of severe phase distortion may not be of much concern insofar as audio signals 
are concerned, since the human ear is not sensitive to phase distortion. But if x(t) is a video signal,  phase 
distortion cannot be tolerated at all as our eyes are very sensitive to any phase changes.

2. When the local carrier oscillator has a frequency error: Let the local carrier oscillator have a frequency 
(fc + Df) where fc is the frequency of the missing carrier signal in the SSB-SC signal. Then referring to 
Fig. 4.75, we will have cos2p(fc + Df)t in the place of cos(wc t+ q) shown therein.
In that case,

1
ˆ( ) cos2 ( ) [ ( )cos2 ( )sin ]

2
1 1

ˆ( )[cos2 ( ) cos2 (2 ) ] ( )[sin 2 (2 ) sin 2 ( ) ]
4 4

c c c c

c c c c

y t A f f t x t f t x t t

A x t f t f f t A x t f f t f t

p p w

p p p p

= + D ±

= D + + D - + D - D

Since the LPF has a cut-off frequency W<< fc, we have

1
ˆ( ) [ ( )cos2 ( ) ( )sin 2 ( ) ]

4
cz t A x t f t x t f tp p= D ± D  (4.79)

 (With positive sign for USSB)

This is a very interesting result because we now find from the above equation that z(t) is not x(t) at all. Far 
from being so, it is actually a SSB-SC signal for which x(t) is the modulating signal and (Df) is the carrier 
signal. From Eq. (4.79), it is clear that when (Df) is close to zero, z(t) is approximately proportional to x(t). In 
fact, a frequency error of more than a few Hz results in unacceptable levels of distortion in the output of the 
coherent detector. This places severe constraint on the local oscillator generating the carrier.
 For this reason, sometimes a pilot carrier at low power level is inserted into the SSB-SC signal before it 
is transmitted. At the receiving end, a technique, referred to as ‘Homodyne Detection’, is resorted to. This is 
shown in Fig. 4.76.

Fig. 4.76  Homodyne detection

Equation (4.79) shows that if the transmitted signal is a USSB-SC signal and (Df) is positive, then the detected 
signal is an LSSB-SC signal with x(t) SSB-SC modulating the (Df). Alternatively, if the transmitted signal 
is an LSSB-SC signal and (Df) is negative, then also the detected signal is an LSSB-SC signal. If there is an 
energy gap in the spectrum of the modulating signal x(t), as would be the case if x(t) is a speech signal, then 
the effect of LSSB-SC modulation of (Df) by x(t) is to reduce all frequency components of the speech signal 
x(t) by (Df). The effect of this is to reduce the energy gap in the spectrum of detected signal. On the other 
hand, if the transmitted signal is an LSSB-SC signal and (Df) is positive (or USSB-SC is transmitted and (Df)
is negative), from Eq. (4.79), we find that the demodulated signal is a USSB-SC signal with (Df) as carrier 
and x(t) as the modulating signal. If x(t) is a speech signal, this amounts to increasing the frequency of all 
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frequency components of x(t) by (Df). This manifests as an increase in the energy gap of x(t) obtained as the 
detected signal. For speech signals, this does not cause very severe distortion provided (Df) is less than about 
±10 Hz. In the case of music, translation in frequency of all the frequency components will result in severe 
distortion and therefore even if (Df) is less than ±10 Hz, it will still be unacceptable. In the case of video 
signal there will be no  energy gap at all. Hence the detected signal will be a highly distorted version of the 
original modulating signal x(t) and this cannot be tolerated at all.

Example 4.32 A synchronous detection of SSB signal shows phase and frequency discrepancy. 
Consider that

1

( ) [cos cos( ) sin sin( )]
N

c i i c i i
i

s t t t t tw w f w w f
=

= + - +Â

is an SSB signal. This signal is multiplied by the locally generated carrier cos ctw  and then passed through 
a low pass filter.

 (a) Prove that the modulating signal can be completely recovered if the cut-off frequency of the filter is 

0 2N cf f f< < .
 (b) Determine the recovered signal when the multiply signal is cos[ ]ctw f+ .
 (c) Determine the recovered signal when the multiplying signal is cos[( ) ]c tw w+ D , given if fD << ,

where 2c cfw p=  and 2 fw pD = D  (JNTU, Sept., 2007)

Solution  Synchronous detection is another name for coherent detection. Although it has not been 
explicitly mentioned, this question assumes that 1 2 1....N N Nf f f f- -> > > , where f1 to fN are the frequencies 
of the N single-tone modulating signals, whose sum, viz.,

1

( ) cos( )
N

i i
i

x t tw f
=

= +Â

is the modulating signal for the given SSB-SC signal.

(a) When the local carrier oscillator has no frequency or phase error, i.e., it is cos ctw When we use this for 
coherent detection, s(t) is multiplied by this cos ctw  and then the product is low pass filtered.

2

1

( )cos [cos cos( ) sin cos sin( )]
N

c c i i c c i i
i

s t t t t t t tw w w f w w w f
=

= + - +Â

Replacing 2cos ctw  by 
1

[cos2 1]
2 ctw +  and sin cosc ct tw w  by 

1
[sin2 ]

2 ctw

1

1
( )cos {cos( )[1 cos2 ] sin( )[sin2 ]}

2

N

c i i c i i c
i

s t t t t t tw w f w w f w
=

= + + - +Â

When we low pass filter this using an LPF whose cut-off frequency f0 is greater than the highest modulating 
signal frequency fN but less than 2fc, we get output of the coherent detector 

1

1
( ) cos( ) ( )

2

N

i i
i

z t t x tw f
=

= = + =Â

Since all the other terms represent close to 2fc and are not passed by the LPF.
Thus, the modulating signal can be completely recovered in this case.

(b) When the multiplying signal (i.e.,  local carrier signal) is cos[ ]ctw f+  Proceeding exactly as in the above 
case,

1

1
( )cos [cos( ){cos(2 ) cos } [sin( )]{sin(2 ) sin }]

2

N

c i i c i i c
i

s t t t t t tw w f w f f w f w f f
=

= + + + - + + -Â
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When this is low pass filtered by an LPF whose cut-off frequency f0 is such that 0 2N cf f f< <

z(t) = output of the filter 
1

1
{cos cos( ) sin sin( )}

2

N

i i i i
i

t tf w f f w f
=

= + + +Â

This z(t) can be shown to be x(t) with all its frequency components given a constant phase shift of f. Thus, 
there will be severe phase distortion.

(c) When the multiplying signal is cos[( ) ]c tw w+ D Proceeding exactly as in the above two cases, it can be 
shown that

z(t) = output of the filter 
1

1
[cos( ) cos( ) sin( ) sin( )]

2

N

i i i i
i

t t t tw w f w w f
=

= D + + D +Â

This z(t) is not x(t) at all. It is an SSB-SC signal for which the x(t) is the modulating signal and (Df) is the 

carrier signal. If Dw ª 0, then sin( ) 0twD ª  and cos( ) 1twD ª  and so 
1

( ) ( )
2

z t x tª ; otherwise it represents a 
highly distorted version of x(t).

Example 4.33 What is known as a phase shift SSB-SC demodulator, is shown in Fig. 4.77. Show that 
it demodulates an SSB-SC signal.

Solution Consider the following SSB-SC modulated signal:
ˆ( ) ( )cos ( )sinc c cx t x t t x t tw w= - , which is a USSB signal, where, ˆ( )x t  is the  Hilbert Transform of the 

message signal, x(t).

Fig. 4.77  Phase-shift SSB-SC detector

Signal at A = Signal at A¢ = xc(t)

\ signal at C:
2 1

ˆ( )cos ( )cos ( )sin2
2c c c cx t t x t t x t tw w w= -

\ signal at B: ˆ ˆ( ) ( )sin ( )cosc c cx t x t t x t tw w= + . (Property of H.T)

\ signal at D: 2 1
ˆ ˆ( )sin ( )sin ( )sin2

2c c c cx t t x t t x t tw w w= +

Thus, the output of the phase-shift demodulator = Signal at C + Signal at D
2 2( )[cos sin ] ( )c c cx t t t x tw w= + = =  Message signal

The given system does act as a demodulator for SSB-SC.

4.7.5 Applications of SSB-SC Modulation

From the foregoing discussion, it is clear that SSB-SC modulation cannot be used for transmission of music 
and video signal and that it may be used only for transmission of speech signals since they have an energy 

CS-Rao_04.indd 209CS-Rao_04.indd   209 1/22/2013 10:14:54 AM1/22/2013   10:14:54 AM



210 Communication Systems

gap around the origin, in their spectra. Because it conserves power as well as bandwidth, it is ideally suited 
for simultaneous transmission of a very large number of telephone speech signals by the use of what is called 
‘ Frequency-Division Multiplexing, or simply ‘FDM’. Hence the usefulness of SSB-SC can be summarized 
as follows.

 1. Point-to-Point speech communication but not for audio broadcasting in which millions of receivers 

may be interested in what is being broadcast by a single transmitter. This is because, though SSB-SC 

transmission saves on power as well as bandwidth and thereby reduces the cost of the transmitter, the 

SSB-SC receivers are quite complex and expensive. It just does not make sense to make millions of 

receivers expensive only to save a little on the cost of a transmitter.

 2. Transmission of a very large number of telephone conversations simultaneously over the same physical 

channel by using FDM.

 3. As the carrier and one of the sidebands are suppressed, for the same average transmitted power, 

compared to the AM, SSB-SC gives more signal power at the destination. Further, since it occupies 

only half of the bandwidth required for AM, for the same power spectral density of white noise on the 

channel, the noise power entering an SSB receiver is half of the noise power entering an AM receiver. 

Thus, assuming that the noise added by the internal circuitry of the two receivers is the same, the output 

signal-to-noise ratio for an SSB-SC receiver will be far better compared to that of an AM receiver. We 

will be discussing this aspect in more quantitative terms in Chapter 7.

4.7.6 Frequency Division Multiplexing

Multiplexing refers to the technique used for simultaneous transmission of a number of different message 

signals over the same physical channel. There are mainly two important methods used for multiplexing – 

Frequency Division Multiplexing (FDM) and Time Division Multiplexing (TDM). We will be discussing 

about TDM in detail later. In FDM, we assign specific non-overlapping bandwidth slots for the various 

messages and then transmit the combined signal. The fact that different message signals occupy different 

non-overlapping frequency slots is made use of at the receiving end for separating them and recovering the 

individual messages.

 In telephony, intelligibility being the sole criterion, the bandwidth of a speech signal is limited only to 

3.2 kHz in order to conserve the spectrum. Hence, when telephone messages are FDM-ed, each of the 

messages is assigned a bandwidth of 4 kHz in order to provide for guard bands in the multiplexed signal. 

These guard bands facilitate the recovery of the individual messages by making the specifications for the 

band pass filters used for making them less stringent. SSB-SC modulation is used to translate each message 

signal to the 4 kHz bandwidth slot assigned to it. Thus, if N telephone message signals are to be FDM-ed, 

as shown in Fig. 4.78, N subcarriers, each differing from its adjacent one by 4 kHz, are used. These subcar-

riers are LSSB-SC modulated by the telephone message signals. Before modulation, each telephone message 

is first passed through a low pass filter to ensure that it is strictly band limited to 3.2 kHz. After LSSB-SC 

modulation, the modulated signal is passed through a band pass filter. The ith message channel, having a 

subcarrier frequency of fci, will have a BPF whose pass band extends from (fci – 4 kHz) to fci.

 In Fig. 4.78, the multiplexed signal is fed directly to the channel. For long distance transmission of the 

multiplexed signal, however, a main carrier is modulated by this multiplexed baseband signal before being 

fed to the channel. Correspondingly, at the receiving end of the channel, a carrier demodulator retrieves the 

multiplexed baseband signal which is then fed simultaneously to all the BPFs which separate the various 

SSB-SC subcarrier modulated message signals. These are then coherently demodulated using the various 

subcarriers and the detected message signals are then passed through LPFs and recovered.
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Fig. 4.78 An  FDM system

A practical FDM system will have several stages of multiplexing. In the first stage of multiplexing, 12 
telephone voice messages are multiplexed to form what is generally called as the ‘ Basic Group’. The subcar-
riers used for forming this group have frequencies 64 kHz, 68 kHz, 72 kHz, . . ., 104 kHz. With LSSB-SC 
modulation, the 12 telephone messages are translated into frequency bands (or slots) of 60–64 kHz, 64–68 
kHz, . . . ,104–108 kHz. Thus, the basic group carrying 12 telephone messages, occupies a bandwidth of 48 
kHz. In the second stage of multiplexing, five such Basic Groups are FDM-ed to form what is known as a 
‘ Super Group’, which occupies the frequency range of 312 kHz to 552 kHz which are combined to form 
‘Master Groups’ and these are in turn multiplexed to form ‘ Very Large Groups’. Table 4.1 shows the AT&T 
FDM hierarchy.

Fig. 4.79 Illustrating the formation of groups and super groups
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Table 4.1 AT&T FDM hierarchy

Type of Group Frequency Range Bandwidth Number of telephone 

channels

Group 60 – 108 kHz 48 kHz 12

 Super Group 312 – 552 kHz 240 kHz 60

 Master Group 564 – 3084 kHz 2.52 MHz 600

 Very Large Group 
(Jumbo Group)

0.5 – 17.5 MHz 17 MHz 3600

4.7.7 Independent Sideband Transmission (ISB)

A variant of SSB-SC transmission is the Independent sideband transmission in which two sidebands are 
transmitted with reduced/no carrier. The two sidebands, however, carry different speech signals and hence the 
name – Independent sideband transmission. It thus doubles the capacity of the communication channel and is 
therefore used for point-to-point communication in areas with high traffic density.
 Carrier signal generated by a crystal oscillator is applied as input to two balanced modulators simultane-
ously. To one of these, say balanced modulator-I (BM-I) a speech signal A is applied. To the other balanced 
modulator, speech signal–B is applied. One sideband filter suppresses the lower sideband in the DSB-SC 
signal produced at the output of BM-1 while another sideband filter suppresses the upper sideband of the 
DSB-SC signal at the output of BM-2. Thus at the output of one sideband filter, we have the upper sideband 
while at the output of the other sideband filter we have the lower sideband. These two have the same carrier, 
but they carry different speech signals.

4.8 SINGLE SIDEBAND TRANSMISSION AND RECEPTION

Single sideband transmission has, as mentioned earlier, several advantages over AM. But there are some 
disadvantages too. Because its bandwidth is only half of that of AM, it conserves the spectrum. In addition, 
smaller bandwidth implies less channel noise and less susceptibility to selective fading. However, the receiver 
complexity makes it unsuitable for broadcast purposes.
 SSB transmission may be with no carrier at all, or with a pilot carrier, i.e., a re-inserted carrier with 
reduced power.

4.8.1 SSB-SC Transmitter

Fig. 4.80  SSB-SC transmitter using filter method of generating the SSB-SC signal

As mentioned earlier, it is possible to use the filter method for generation of an SSB signal only if the message 
signal spectrum has a hole near the origin, i.e., if the message has no frequency components from 0 to say, 
about 200 Hz. Fortunately, voice signal satisfies this condition. Further, initially, to generate the SSB-SC 
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signal, a low frequency carrier, usually 100 kHz, is used, in order to ease the stringent requirements on the 
sideband suppression filter which is to attenuate the unwanted sideband at least by 40 dB. With a 200 Hz 
hole on either side of the origin of the two-sided spectrum of the message signal, the output of the  balanced 
modulator will be as shown in Fig. 4.81. 

Fig. 4.81 DSB-SC signal spectrum and the sideband filter response characteristic

If the lower sideband is to be suppressed, the filter response can change over from pass band to stop band over 
the frequency interval 100.2 kHz to 100 kHz, i.e., a transition bandwidth of 200 Hz at a carrier frequency of 
100 kHz. Even now, the Q of the sideband filter will have to be of the order of several thousands – a value 
that ordinary RLC filters cannot provide.

4.8.2  Sideband Filters

The Q-value required for the sideband suppression filter depends on (i) the center frequency (ii) the amount 
of attenuation needed for the unwanted sideband, and (iii) the transition bandwidth available. It is given by

[0.25 ]
( )

cfQ A
f

=
D

 (4.80)

where
fc = center frequency

D f = transition bandwidth permitted

A = 
|Attenuation required in dB|

antilog
20

È ˘
Í ˙Î ˚

As discussed earlier, if 3100 10cf = ¥ Hz, Df = 200 Hz and A = 40 dB, the Q value required works out to be 
12,500. Such high Q values can be attained only by using special filters like mechanical filters,  crystal filters 
or surface acoustic wave, or  SAW filters. The Q-values these filters can provide are: SAW filters – well over 
30,000;  crystal filters – around 20,000; mechanical filters – around 10,000; ceramic filters – around 2500, 
LC filters – up to 500.

4.8.3 Raising the Carrier Frequency and Power

Once the unwanted sideband is removed by the sideband suppression filter, the carrier frequency and power 
will have to be raised to the required levels.
 The frequency of the crystal oscillator (used as the local oscillator for the mixer) is suitably chosen so 
that the frequency at the output of the mixer (say, the difference frequency) is the correct carrier frequency at 
which the  SSB-SC signal is to be finally radiated. But before the signal is fed to the antenna, its power level 
must be raised to the required level. As the modulation has already taken place, the power cannot be raised 
using high efficiency class-C amplifiers. Instead, only class-A amplifiers will have to be used in order to 
avoid distortion of the modulated signal.
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4.8.4 Pilot Carrier SSB Transmitter

The main advantage of SSB-SC is that because of the absence of the carrier and one of the sidebands, all the 
transmitted power is in the message bearing signal and the transmission bandwidth is halved. But the absence 
of the carrier in the received signal makes it necessary to have a complex receiver circuit for recovering 
the message. Hence, in order to reduce the complexity of the receiver to some extent while maintaining, 
to a very large extent the two main advantages of SSB-SC, a pilot carrier SSB is used in which a reduced 
low-frequency carrier signal (10%) is again added to the SSB-SC signal before the mixer stage, where the 
carrier frequency is raised to its final value.

Fig. 4.82 Block diagram of a  pilot-carrier SB transmitter

4.8.5  SSB Receivers

SSB-SC receivers We had seen in Section 4.5 that for the detection of SSB-SC signals, we have to resort 
to coherent detection which involves multiplication of the received SSB-SC by a locally generated carrier 
signal, and that ideally, this signal should be in frequency and phase synchronism with the suppressed carrier 
of the SSB-SC signal. Hence in the receiver we employ a highly stable oscillator, preferably a crystal oscil-
lator and give its output either directly, or after frequency division, as one of the inputs to a product device 
(a balanced modulator), the other input to it being SSB-SC signal derived from the received signal after due 
processing so as to make its suppressed carrier have a frequency exactly equal to that of this stable oscillator 
or a sub-multiple of it.
 Since SSB signals have a very small bandwidth (5 kHz for each sideband) very good adjacent channel 
selectivity is a must for these receivers. Further, since HF band is generally used for point-to-point commu-
nication using SSB modulation, the required adjacent channel selectivity can be obtained only by resorting 
to double conversion (refer to the introduction for the section on double heterodyne receivers, given in this 
chapter). Figure 4.83 shows the block diagram of a communication receiver meant to receive SSB-SC signals 
in the HF range by employing double conversion.
 Since these communication receivers are generally designed to receive either the upper sideband, or the 
lower sideband, or both the sidebands (in the case of ISB transmission), a bandwidth of 10 kHz is provided. 
As the tuning range covered by these HF. communication receivers is from 3 MHz to 30 MHz, the first IF is 
generally 2.2 MHz (slightly below the lower end of the tuning range) to give a good image signal rejection 
and the second IF is 200 kHz, low enough to give good adjacent channel selectivity and making it easy to 
design the second IF amplifier to give a large gain.
 The II IF amplifier output is detected to obtain an  AGC voltage which is applied to the RF and IF ampli-
fiers. It is also used to prompt the squelch circuit to make the audio amplifier inoperative in case the strength 
of the received signal is very weak. This is done in order to avoid annoying sounds being produced by the 
loudspeaker in the absence of a strong desired signal.
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Fig. 4.83 Block diagram of an SSB-SC receiver

SSB-pilot carrier receivers These receivers are of the double-conversion type and they make use of 
the pilot carrier to ensure frequency synchronization with the transmitted carrier.

Fig. 4.84 Block diagram of a  pilot-carrier SSB-receiver

 The mixer-I will produce an output which is a pilot carrier SSB signal with the pilot-carrier at the first IF, 
viz. IF-I. A stable reference oscillator, a crystal oscillator, produces 200 kHz carrier signal. The frequency 
multiplier produces an output signal at f0 = (n ¥ 200) kHz. The SSB signal with pilot carrier at IF-I which is 
the output of the first IF amplifier, is mixed with this signal at a frequency of f0 (coming from the frequency 
multiplier) in mixer-II. The values of IF-I and n are so chosen that at the output of this second mixer, we 
get the SSB signal with its pilot carrier at 200 kHz, i.e., (f0 – IF-I) = 200 kHz. This output of mixer-II is fed 
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simultaneously to IF amplifier-II and a very narrow-band filter and amplifier. The output of this NB filter and 
amplifier is the 200 kHz pilot carrier only, as the narrow band filter has its pass band centered on 200 kHz 
and it is so narrow that the sideband is rejected. This 200 kHz signal from the NB filter and amplifier, is fed 
to the balanced modulator which is the output of IF amplifier-II. So, this product device (which is followed 
by a low pass filter) acts as a coherent detector whose output is the modulating audio signal. After voltage and 
power amplification, this goes to the loudspeaker.

4.8.6 ISB Transmitter

As explained in Section 4.7.7, an ISB transmission is one in which two sidebands are transmitted with either 
a pilot carrier or no carrier. The two sidebands, however, carry different speech signals.
 As shown in Fig. 4.85, a low frequency carrier, of 100 kHz, is applied as input to two balanced modulators 
BM-I and BM-II simultaneously. These balanced modulators give DSB-SC signals. BM-I is given message-I 
while BM-II is given message-II. The crystal filter following BM-I produces a USSB-SC signal while the 
crystal filter following BM-II gives an LSSB-SC filter. These two signals, as well as a reduced carrier signal 
of 100 kHz, are given to an adder whose output is a pilot carrier ISB signal. The carrier frequency is 

Fig. 4.85 Block schematic diagram of a pilot carrier  ISB transmitter

then raised to the desired final carrier frequency value using a mixer and a crystal oscillator with a frequency 
of f0 which is 100 kHz higher than the final carrier frequency desired, i.e., fc. The power is then raised to the 
required level using a few stages of tuned linear class-A power amplifiers before taking it to the transmitting 
antenna.

4.8.7 ISB Receiver

 ISB receivers are double-conversion superheterodyne receivers. The received signal, consisting of the two 
independent sidebands and the pilot carrier, is amplified by an RF stage and then fed to a mixer (mixer-I) 
to which the LO-I output is also given. The first IF amplifier, IF amp-I, amplifies the signal and feeds it to 
Mixer-II to which the output of the second local oscillator, LO-II, is also given. The LO-II frequency is so 
chosen that at the output of Mixer-II, the ISB signal will have a pilot carrier of frequency 100 kHz. As shown 
in Fig. 4.86, the IF amp-II output is simultaneously applied to (i) very narrow band filter which extracts the 
100 kHz carrier signal, (ii) A USB filter which extracts the channel-A SSB signal, and (iii) An LSB filter 
which extracts the channel-B SSB signal.
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Fig. 4.86 Block diagram of a pilot carrier ISB receiver

The 100 kHz carrier from the narrow band carrier filter is amplified and fed simultaneously to the AGC 
circuit, the AFC circuit and the channel-A and channel-B detectors. The AGC voltage (dc) produced by the 
AGC circuit is applied to the RF and IF amplifiers as bias voltage to automatically control the gain. The 
output of the second IF amplifier, comprising the pilot carrier, the upper sideband (containing message of 
channel-A) and the lower sideband (containing message of channel-B), is applied simultaneously to the USB 
filter and the LSB filter. The amplified 100 kHz carrier and the amplified USB signal are fed to the product 
detector, the output of which is amplified by an audio amplifier to get the channel-A message. The channel-B 
message is similarly obtained from the audio amplifier of channel-B. In order to ensure that the carrier 
frequency at the output of mixer-II is always maintained at 100 kHz, an AFC circuit is used. The output of 
the 100 kHz carrier amplifier and the output of a 100 kHz crystal oscillator are both fed to this AFC. Using 
these two, the AFC circuit produces a dc control voltage which adjusts the LO-II frequency in such a way as 
to keep the carrier frequency of the output of mixer-II at 100 kHz.

4.9 COMPATIBLE SINGLE SIDEBAND (CSSB) SYSTEM

Single sideband transmission has several advantages over the conventional amplitude modulation (AM) 
transmission. It needs less average transmitted power and its transmission bandwidth is only half that of AM. 
Smaller bandwidth implies conservation of spectrum as well as less susceptibility to frequency-selective 
fading. The biggest drawback with SSB, however, is the complexity (and hence the cost) of the receiver, and 
this makes it unsuitable for broadcasting. In fact, the only reason for extensive use of the conventional AM for 
broadcasting purposes in the medium and shortwave bands is the extreme simplicity of its receiver.
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 The above considerations have naturally motivated researchers to explore the possibility of generating SSB 
signals that could be received using the existing domestic AM receivers which employ the simple envelope 
detector. Such SSB signals are referred to as compatible SSB signals. It has been found that although an 
exactly  compatible SSB signal in the usual sense is not feasible, an  approximately compatible SSB signal 
can, however, be produced. By approximately compatible, we mean that its envelope may not be an exact 
replica of the modulating signal and its spectrum also may differ slightly from the one we have for the 
conventional SSB signal.
 Kahn has described a modulation technique that produces an approximately compatible SSB signal. It is 
generated by making a modulating signal to modulate not only the amplitude (conventional AM) but also the 
phase of the carrier. The inspiration for this approach to generate a compatible SSB signal appears to have 
come from the fact that when one of the side frequency components of a single-tone modulated AM signal 
is suppressed, the resultant signal is one which is modulated both in amplitude as well as phase. To see why 
it is so, look at the phasor diagram of a single-tone modulated AM signal, given in Fig. 4.2(b). Suppose we 
remove the phasor corresponding to the lower side-frequency component, which is rotating in the clockwise 
direction relative to the carrier at the rate of fm revolutions per second, where, fm is the frequency of the 
single-tone modulating signal. The tip of the resultant phasor lies on the circumference of the circle drawn 
with a radius of mAc/2 and with its center at the tip of the carrier phasor. So the amplitude of the resultant 
varies between Ac(1 – m/2) and Ac(1 + m/2) and its phase varies between tan–1(m/2) and – tan–1(m/2). Thus, 
the SSB signal obtained by the removal of the lower side-frequency component, has amplitude as well as 
phase modulation at the modulating signal frequency fm. Amplitude variation between Ac(1 – m/2) and Ac(1
+ m/2) at the modulating signal frequency will produce an envelope that somewhat resembles the modulating 
signal. (Recall that in conventional AM, the carrier amplitude varies between Ac(1 – m) and Ac(1 + m) at the 
modulating signal frequency). Thus, just as in AM, an envelope detector will be able to extract that envelope.
 However, the modulation technique described by Kahn does not give an SSB signal in the real sense. This 
is because, with a single-tone modulating signal, what is obtained is not a single side-frequency but an infinite 
number of side-frequency components having frequencies fc + fm, fc + 2fm, fc + 3fm, ... . But all these side-
frequency components are only on one side of the carrier frequency. In this sense it resembles an SSB signal. 
A mathematical analysis of this modulation technique is highly complicated because of the non-linearities 
involved. But experimental studies have confirmed the above comments.
 If this approximately compatible SSB system is used for speech or music as AM is, then the low frequency 
fundamental components of the audio modulating signal, along with quite a good number of harmonic 
components, will fall within the allowed spectrum of the SSB signal. The higher harmonics, which fall 
outside the allowed spectrum, may not be able to cause much of adjacent channel interference since the 
energy content in the higher harmonics will be very small. The high frequency fundamental components of 
the audio modulating signal will have very few of their harmonic components within the allowed bandwidth 
of the SSB signal. The other higher harmonic components, which fall outside will not be able to cause much 
of adjacent channel interference because at these higher audio frequencies, even the fundamental component 
will not have much of energy as the energy in an audio signal is heavily concentrated in the lower frequencies. 
 Thus, while there can be some signal distortion owing to the harmonics of the low frequency audio compo-
nents falling within the allowed SSB bandwidth, the adjacent channel interference caused by the higher 
harmonic components is not expected to be a matter of serious concern. In fact, experimental investigations 
of the performance of the compatible SSB system with ordinary domestic AM receivers being used for 
reception, have shown that there is not much of a difference between conventional AM and the approximately 
compatible SSB except in adjacent channel interference, in which the conventional AM was found to be 
superior.
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4.10 COMMUNICATION RECEIVERS

Although these have a basic structure similar to the ones used in our household, they are highly sophisticated 
and versatile and can be operated only by technical people and not by ordinary public. While it can do in a 
much better way what our household receiver does, it can do many other things too. For instance, it can detect 
and display the individual frequency components in an FM signal. In fact, modern  communication receivers 
can receive AM, FM and SSB signals. The large number of special features built into it can make it possible 
for it to give an exceptionally high quality of reception. Some of the special features that it has are:
 1.  Band spreading or fine tuning
 2. Double conversion
 3. Variable sensitivity and selectivity
 4. Built-in  Beat Frequency Oscillator (BFO) action
 5. Tuning calibration facility
 6. Noise limiters
 7.  Squelch or muting
 8. Automatic frequency control
 9. Availability of a built-in meter
The basic block diagram of a communication receiver is shown in Fig. 4.87.
 As can be seen from Fig. 4.87, the basic structure of a communication receiver is the same as that of an 
AM superheterodyne receiver. However, since the communication receiver has to receive SSB signals too, 
there are some additional circuits. To receive FM signals, it is to be provided with broadband IF stages, an 
FM demodulator and an amplitude limiter. These are not shown in the block diagram of Fig. 4.87 and have to 
be switched in when FM reception is desired.
 We will now discuss briefly about the special features of communication receivers, which were listed 
above.

1. Band spreading or fine tuning: Communication receivers will generally have two stages of high sensi-
tivity and low noise RF amplifiers. Fine tuning facility enables the receiver to distinguish between two 
transmitted signals whose carriers are very close. This feature is absolutely essential in a communication 
receiver. In the earlier days, it used to be provided by means of a trimmer capacitor kept in parallel with the 
main tuning capacitor, and it could be varied by means of a separate knob labeled as the fine tuning knob. 
Nowadays, however, fine tuning is performed by frequency synthesis.

2. Double conversion: Communication receivers have to receive signals over a wide frequency range. For 
effective image rejection, a high value of intermediate frequency is required. However, for good sensitivity 
and selectivity, a low value of IF is preferable. Hence, communication receivers employ  double conversion 
technique (see Section 4.5.6 for details) in order to achieve good image rejection as well as good sensitivity 
and selectivity.
 All communication receivers employ delayed AGC (see Section 4.5.2).

3.  Variable selectivity and sensitivity: The range of received signal strengths that a communication receiver 
has to cope up with, can be of the order of 100 dB. No AGC system can effectively function over such a 
wide range of received signal strength. In fact, there exists the risk of the last IF amplifier and the detector 
getting overloaded or even damaged when a strong signal appears while we are in the process of tuning the 
receiver. To prevent such an eventuality, a ‘sensitivity control’ is provided to manually set the bias applied 
to the RF amplifiers and thereby control the upper limit of the receiver sensitivity that the AGC can allow. 
Thus, a  variable sensitivity is achieved in a communication receiver through the use of the sensitivity control 
knob.
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 As has been explained in Section 4.5.2,  adjacent channel selectivity of a receiver depends on the value 
of the IF and the bandwidth of the IF stage. For good adjacent channel selectivity, it is preferable to have a 
low value of IF and an IF bandwidth that is just sufficient to accommodate the bandwidth of the signal being 
received so as to prevent out-of-band noise from entering the detector stage. The signal bandwidth can have 
a large variation since the communication receiver has to receive a variety of signals. For instance, an AM 
signal may need a bandwidth of 10 kHz while a radio telephony signal does not need anything above 300 Hz. 
Hence, in a communication receiver, a provision is made to allow us to choose the bandwidth of the second 
IF stage (which has a low value of IF) to have one of the preset values – 1, 2, 4, 6, 8, 10 or 12 kHz, depending 
on the type of signal to be received. A knob, labeled as the ‘variable selectivity’ knob, allows us to switch 
into the circuit ceramic or crystal filters of appropriate bandwidth from among the seven values mentioned 
earlier. In addition, for further suppression of undesired nearby (frequency-wise) signals, a notch filter, also 
called a wave trap is provided. The notch frequency of this filter can be adjusted to be on one or the other 
side of the second IF pass band. All these features enable the communication receiver to have a very good 
blocking capability, i.e., ability to suppress undesired spurious signals which might be close to the desired 
signal frequency.

4. Built-in  beat frequency oscillator (BFO) action: Transmission of wireless telegraphy is in the form of 
an interrupted carrier wave, i.e., a carrier wave that is transmitted only during the transmission of a dash or a 
dot. However, the ordinary envelope detector does not give any indication of the presence, or the absence, of 
the carrier wave. The so-called BFO available in a communication receiver comes in handy for receiving the 
wireless telegraph signals. What is actually available in a communication receiver is, in fact, not a BFO, but 
only a simple Hartley Oscillator that oscillates at a frequency which is 1 kHz (or 400 Hz) above the second 
IF. When interrupted carrier wave reception is desired, this oscillator is switched into the circuit and the AGC 
is switched off. In the detector stage, the oscillator output beats with the second IF to give an audible 1 kHz 
tone whenever the carrier is present, i.e., whenever a dash or a dot is transmitted.

5. Tuning calibration facility: Communication receivers have provision internally to tuning calibration. 
By throwing a switch, the output of a non-sinusoidal crystal oscillator operating at 500 kHz, is given as 
input to the RF stage. The BFO is switched in. Because the harmonics of the non-sinusoidal oscillator are 
spaced at regular intervals of 500 kHz, whistles will now be heard at 500 kHz spacing in the tuning dial. The 
tuning pointer, or the cursor may be moved appropriately to the correct position using these whistles. This 
calibration process has to be carried out periodically.

6.  Noise limiters: Impulse noise created by lightning and ignition systems of motor vehicles, adds to the 
modulation envelope of an amplitude modulated signal and produces highly annoying impulse noises through 
the loudspeaker. To avoid this, communication receivers have an arrangement which cuts off the detector 
diode and thus silences the receiver for the duration of the impulse. This is achieved by using a diode and 
a differentiating circuit to produce a negative spike voltage whenever the impulse noise makes the received 
signal amplitude to cross a prescribed level. It is necessary to make this circuit inoperative while receiving 
wireless telegraph signals, as otherwise, it will interfere with the reception of these signals.

7. Squelch or muting: In wireless communication systems used by organizations such as Police, Ambulance 
and Coastal rescue services, the receiver must be continuously monitored in order not to miss any SOS calls. 
As these signals are received sporadically, there will be no signal at the receiver input for most part of the 
time. The AGC, therefore, makes the receiver sensitivity very high. Noise will therefore be highly amplified 
and highly annoying sounds will be produced at the output of the receiver. As the receiver has to be continu-
ously monitored, the person doing that work will get tired in no time. So, a  squelch or  mute circuit is provided 
which uses the AGC bias to make the audio amplifiers inoperative in the absence of any input signal to the 
receiver.
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8.  Automatic frequency control (AFC): For SSB signal reception, the local oscillator stability is extremely 
important. Hence, when a communication receiver is used for SSB signal reception, an AFC must be provided 
unless, of course, the communication receiver uses a frequency synthesizer for obtaining the local oscillator 
signals (For details of an AFC circuit, see Section 4.6.2).

9. Availability of a built-in meter: A meter is provided in any communication receiver and the primary 
purpose of it is to indicate the strength of the received signal. For this, it measures the collector current of an 
IF amplifier to which AGC voltage is given. It actually measures the voltage across the resistance-capacitance 
parallel combination in the emitter circuit (of the IF amplifier) which is meant for producing some self bias. 
Since a strong received signal produces a large AGC voltage and thus reduces the collector current of the 
IF amplifier, the meter has its zero on the right extreme. When used like this, the meter is referred to as an 
S-meter (Signal meter).

4.11 VESTIGIAL SIDEBAND MODULATION

In television, two message signals need to be transmitted – video, or the picture signal, and audio or the 
sound signal. TV transmitters employ amplitude modulation for the video signal and frequency modulation 
for the sound signal. The video signal that they handle occupies a bandwidth of 5 MHz. If ordinary AM 
with carrier and both the sidebands, is employed, the modulated signal, i.e., the TV signal which is trans-
mitted, will occupy a huge bandwidth, viz. 10 MHz, which is impractical. However, to reduce this bandwidth 
requirement, it is not possible to employ SSB transmission, for the following reasons:
 1. If we employ SSB-SC, the receiver becomes quite complex and expensive, as we have to use coherent 

detection.
 2. Even if one sideband and the carrier are to be transmitted in order to make the receiver simpler, diffi-

culties arise in the transmitter. The phasing method of generation, as we know, does not give the high 
level of suppression of the unwanted sideband required for commercial TV broadcasting.

 3. The filter method of generation requires, as has already been discussed, a hole in the low frequency part 
of the spectrum from zero hertz up to at least a few hundred Hertz. However, video signals will not have 
such a hole in their spectra. In fact, they are generally quite rich in dc and low frequency components. 
Thus, it is not possible to employ even the filter method.

 4. Further, the phase response of the band pass filters used in the filter method will not be linear near 
the pass band edges. This will make the received video signal to be distorted. Since the eye is quite 
sensitive to phase, this cannot be tolerated.

Since the use of AM (both the sidebands plus the carrier) as well as SSB with  pilot carrier is ruled out because 

of the above reasons, what is known as vestigial sideband modulation is used. In this, in addition to the carrier 

and one sideband, a part, or what may be called the ‘vestige’ of the other sideband is also transmitted. That is 

why it is called ‘ Vestigial Sideband Modulation’, or VSB modulation.

 Consider a video signal x(t). Let its spectrum be as shown in Fig. 4.88(a) when we feed this and a carrier 

signal cos2 cf tp  to a balanced modulator let us say we get a signal ( ) ( ) cos2 cy t x t f tp= ◊ . The spectrum Y(f)

of y(t) is given by

1
( ) [ ( ) ( )]

2 c cY f X f f X f f= + + -  (4.81)

y(t) is a  DSB-SC signal and its spectrum Y(f) is shown in Fig. 4.88(b). This y(t) is say appearing at the 
receiving end as z(t). In order to recover x(t) from z(t) = y(t), we multiply it by the carrier signal (coherent 
detection).
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Fig. 4.88 (a) Spectrum of x(t), (b) Spectrum of y(t)

Fig. 4.89  Coherent reception of y(t)

\ 2 1
( ) ( ) cos2 ( )cos 2 ( )[1 cos4 ]

2c c cw t y t f t x t f t x t f tp p p= ◊ = = +

\ ( ) 0.5 ( ) 0.5 ( )cos4 cw t x t x t f tp= +

\ 0.5
( ) 0.5 ( ) [ ( 2 ) ( 2 )]

2 c cW f X f X f f X f f= + + + -

Fig. 4.90 Spectrum of w(t) and transfer function of the LPF

As shown in Fig. 4.90, the LPF which has a cut-off frequency of w, will reject the high frequency compo-
nents centered around 2fc and will pass only 0.5 x(t), whose spectrum is from –W to W. Hence, we are able to 
recover, at the receiving end a signal r(t) which is a scaled version of x(t).
 For the assumed message signal x(t), we have until now, considered only the DSB-SC transmission and 
reception. As shown in Fig. 4.79(b), the required bandwidth for this is 2W. But this will be too large when 
x(t) is a  video signal. However, as we observed earlier, we cannot use SSB-SC transmission. So, let us now 
consider the vestigial sideband transmission, in which we transmit the carrier and one sideband plus a vestige

of the other sideband as shown in Fig. 4.91(a).

CS-Rao_04.indd 223CS-Rao_04.indd   223 1/22/2013 10:14:56 AM1/22/2013   10:14:56 AM



224 Communication Systems

Fig. 4.91  (a) Full upper sideband plus a portion of LSB transmitted, (b) The demodulated signal resulting from (a), 

(c) USB and LSB suitably shaped to avoid the distortion shown in (b).

Figure 4.91(b) clearly brings out the need to suitably shape the USB and the LSB of the transmitted signal in 
order to recover the message signal x(t) without distortion after the frequency translation that takes place in 
the demodulator. Figure 4.91(c) shows an appropriate way of shaping the USB and LSB of the transmitted 
signal so as to avoid distortion in the demodulated signal. This shaping may be considered to be done by a 
filter, called the vestigial sideband filter, or VSB filter, as shown in Fig. 4.92.

4.11.1 Frequency-Domain Representation of a Vestigial Sideband (VSB) Signal

Fig. 4.92 Generation of  VSB signal and recovery of x(t)

Let the message signal x(t) have a spectrum X(f). Then the spectrum at the input to the  VSB filter is Y(f) given 
by

1
( ) [ ( ) ( )]

2 c cY f X f f X f f= + + -  (4.82)

Since the VSB filter has a transfer function of H(f), the spectrum at the output of the VSB filter, which is the 
frequency-domain representation of the VSB signal, is given by

1
( ) ( ) ( ) ( )[ ( ) ( )]

2 c cZ f H f Y f H f X f f X f f= ◊ = + + -  (4.83)
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4.11.2 Transfer Function of the VSB Filter

The spectrum of w(t) is 

1 1
( ) ( )[ ( ) ( )] [ ( ) ( )]

2 2
1 1

( )[ ( 2 ) ( )] ( )[ ( 2 ) ( )]
4 4

c c c c

c c c c

W f H f X f f X f f f f f f

H f f X f f X f H f f X f f X f

d d= + + - * + + -

= + + + + - - +

since the LPF has a cut-off frequency of W and W << fc, terms like X(f + fc) H(f + fc) and X(f – 2fc) H(f – fc)
vanish because of the low pass filtering. We may therefore write the spectrum R(f) of the demodulated signal 
r(t) as

1
( ) [ ( ) ( )] ( )

4 c cR f H f f H f f X f= + + -

But this demodulated signal must be proportional to 
x(t)

i.e., ( ) ( );R f kX f W f W= - £ £
This means that 

c cH f f H f f W f W+ + - = - £ £( ) ( ) a constant;

The choice of this constant is purely arbitrary and let 
us take it as unity.

\ c cH f f H f f W f W+ + - = - £ £( ) ( ) 1;  (4.84)

Since the shape of the spectrum of y(t), the DSB-SC 
signal, is as shown below in Fig. 4.93(a), it follows 
that the shape of the transfer function H(f) of the  VSB filter should be as shown in Fig. 4.93(b) so that 
[H(f).Y(f)] which is Z(f), will have the desired shape as shown in Fig. 4.93(c).

H(f + fc) is obtained by shifting H(f) to the left along the frequency axis by an amount of fc, while H(f – fc)
is obtained by shifting H(f) to the right by an amount of fc. These are shown in Figs. 4.94(a) and (b).

Fig. 4.94  Sketches of (a) H(f + fc), (b) H(f – fc), (c) H(f + fc) + H(f – fc)

Fig. 4.93 (a) DSB signal y(t), (b) H(f), the transfer function 

of the VSB filter (In (a), the part outlined with 

dark lines is the spectrum of the  VSB signal.)
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4.11.3 Time-Domain Representation of the VSB Signal

An analytical expression for the  VSB signal (i.e., the time-domain representation of the VSB signal), may be 
obtained by taking the inverse Fourier transform of its spectrum

\
VSB

2

( ) ( ) [ ( ){ ( ) ( )}]

( )[ ( ) ( )]

c c c

j ft
c c

z t x t F H f X f f X f f

H f X f f X f f e df
p

•

-•

= = + + -

= + + -Ú

\ 2 2

VSB

( ) ( ) ( ) ( ) ( )j ft j ft
c c cx t H f X f f e df H f X f f e df

p p
• •

-• -•
= + + -Ú Ú  (4.85)

Before proceeding further with determining the inverse  Fourier transform of Z(f), the spectrum of the VSB 
signal, let us define a frequency function Hv(f) as follows:

( ) ( ) ( ) ( ) ( ) forv c c c cH f H f H f f H f f H f W f W= - - = + - - £ £  (4.86)

where
c

c f f
H f H f

=
=( ) ( )

Since
1

( )
2cH f = , we find from Eq. (4.85) and Fig. 4.94(a) that Hv(f) has a shape as shown in Fig. 4.95.

Figure 4.95 clearly brings out the fact that the 
function Hv(f) is an odd function of frequency.

i.e., Hv(–f) = –Hv(f) (4.87)

Now, reverting to Eq. (4.85), and making the 
following substitutions, i.e.,

and

( )

( )

c

c

f f

f f

a

b

= -

= +

we get

              
2 ( ) 2 ( )

VSB

( ) ( ) ( ) ( ) ( )c cj f t j f t
c c cx t H f X e d H f X e d

p a p ba a a b b b
• •

+ -

-• -•
= + + -Ú Ú  (4.88)

But from Eq. (4.86), we find that

and

( ) ( ) ( )

( ) ( ) ( )

c c V

c c V

H f H f H

H f H f H

a a

b b

+ = +

- = -

Substituting these in Eq. (4.88), using the fact that H(fc) = 0.5 and simplifying, we get

VSB

( ) ( )cos2 ( )sin2c c cx t x t f t g t f tp p= -  (4.89)

where

2( ) 2 ( ) ( ) j ft
Vg t j X f H f e df

p
•

-•
D - Ú  (4.90)

As is to be expected, if fV Æ 0,
VSB SSB-SC

( ) ( )c cx t x tÆ

i.e., ˆ( ) ( )g t x tÆ  since ( ) sgn( )VH f fÆ  as 0Vf Æ   (see Fig. 4.86)

Fig. 4.95 The function HV(f) of Eq. (4.85)
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4.11.4 Spectrum of Transmitted TV Signal and Receiver Response

From the above discussion on the frequency-domain and time-domain representation of VSB signals, the 
reader should not conclude that the signal transmitted by a  TV transmitter will have a spectrum as shown by 
the product of Hv(f) and Y(f) in Figs. 4.93(a) and (b).

Fig. 4.96  (a) Spectrum of the transmitted  TV Signal (CCIR-B, Monochrome), (b) Typical response characteristic of the 

 video amplifier in the receiver

In fact, in practice, the transmitted signal will have full carrier, full upper sideband and a part of the lower 
sideband, as shown in Fig. 4.96(a). This type of spectrum for the transmitted signal is obtained by asymmetri-
cally tuning the tank circuits of the linear amplifiers used in the transmitters video channel for raising the 
power level after the modulation process. Because they are tuned asymmetrically, while the upper sideband 
is transmitted in full, only 0.75 MHz width of the lower sideband is transmitted in full and the rest of it trans-
mitted only partly, as shown clearly in Fig. 4.96(a).
 The fully transmitted part of the lower sideband leads to the effect shown in Fig. 4.91(b). This distortion is 
avoided by shaping the response characteristic of the receiver as shown in Fig. 4.96(b), on the lines suggested 
in Fig. 4.91(c). The picture detector in the receiver therefore gets a  VSB signal with full carrier although what 
has been transmitted is not a VSB signal. It must be noted here that while two-sided spectra are shown in Fig. 
4.91, only one-sided spectrum and response are shown in Fig. 4.96(a) and (b), respectively. Also note that 
the partly transmitted part of the LSB which is more than 0.75 MHz away from the picture carrier, is totally 
rejected by the receiver as the receiver response is zero for these frequencies.

4.11.5 Detection of VSB Signals

Although we had, in the analysis leading to the determination of the transfer function HV(f) of the  VSB filter, 
assumed a coherent detector, in actual practice, in TV receivers, it is not possible to have such a detector, as 
it is quite complex and makes the TV receiver quite expensive. So, although it results in some distortion of 
the demodulated signal, the TV receiver uses only a simple envelope detector. It is for this reason that the 
transmitter transmits full carrier in addition to one full sideband and a vestige of the other sideband. We shall 
now briefly analyze the action of the envelope detector and examine how this distortion may be reduced.
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 Since the detector input is the VSB signal, plus the carrier, let us scale the  VSB signal of Eq. (4.89) by a 
factor ‘m’ (0 < m < 1), the modulation index and then add the carrier term cos2 cf tp , to get

( ) [1 ( )]cos2 ( )sin2c cs t mx t f t mg t f tp p= + -  (4.91)

As the envelope detector extracts the envelope of this signal given to it as input, the detector output is 

2 2 1/2( ) {[1 ( )] [ ( )] }a t mx t mg t= + +

1/22
( )

( ) [1 ( )] 1
1 ( )

mg t
a t mx t

mx t

Ï ¸È ˘Ô Ô= + +Ì ˝Í ˙+Î ˚Ô ÔÓ ˛
 (4.92)

[1 + mx(t)] being the correct envelope term, the other one, viz., 

2
( )

1 ( )

mg t

mx t

È ˘
Í ˙+Î ˚

 is the  distortion term.

Hence, to reduce the distortion due to demodulation by an envelope detector, we have to either reduce the 
modulation index ‘m’ or reduce g(t) by increasing the width of the vestige of the LSB. In commercial TV, we 
do both. That is the reason why the width of the vestige of the LSB is as high as 0.75 MHz (see Fig. 4.96(a)).

4.12  COMPARISON OF VARIOUS VARIETIES OF AMPLITUDE 

MODULATION

Table 4.2 Comparison of various varieties of amplitude modulation

System Useful part of 

transmitted

power

BW Carrier 

suppression

Sideband

suppression

Figure of 

merit

Receiver

complexity

Applications

AM +
Both SB

Low 2W Hz No No 2 2

2 21

m x

m x+

Simple Audio 
broadcasting

DSB-SC Good 2W Hz Yes No 1 Complex Quadrature 
multiplexing, 
point-to-point
communication

SSB-SC Very good W Hz Yes Carrier and 
one sideband 
are suppressed

1 Complex Used for 
long-haul
point-to-point
communication

VSB Moderate W < 

B.W. < 

2W

No One sideband 
is fully 
transmitted
while the 
other is 
partially
transmitted

- Simple TV broadcasting
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MATLAB Example 4.1 Determine the spectra of the message signal m(t) and the amplitude-
modulated signal xc(t) (AM with carrier + both side bands) and plot them. Plot also the waveform of the 
message signal. Carrier signal is cos (2*p*250*t) and modulation index m = 0.85. The message signal is 
a sinusoidal signal of 6.67 Hz.

MATLAB program

%

% Amplitude modulation

%

t0 = 0.15; % signal duration

f = 1/0.15;
ts = 0.001; % sampling interval

fc = 250; % carrier frequency

fs = 1/ts; % sampling frequency

t = [0:ts:t0]; % time vector

a = 0.85; % modulation index

df = 0.5; % required frequency resolution

%

% Generation of message signal

%

m1 = sin(2*pi*2*f*t)
figure(1)

subplot (3,1,1)

plot(t,m1)

n = length(m)
grid on

xlabel(‘time’);

ylabel(‘Magnitude’);

title (‘Message signal’);

ylim([-1.1 1.1]);

%

% Generation of carrier signal

%

c = cos(2*pi*fc.*t); % carrier signal
subplot (3,1,2)

plot(t,c);

title (‘Carrier Signal’);

xlabel (‘time’)

%

% Generation of modulated signal and spectrum

%

[M,m,df1] = fftseq(m,ts,df);   % Fourier transform

M = M/fs;       % scaling

f = [0:df1:df1*(length(m)-1)]-fs/2; % frequency vector

u = (1+a*m);
u = u(1:151).*c;      % modulated signal
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subplot (3,1,3)

plot(t,u)

xlabel (‘time’);

title (‘Modulated signal’);

ylim ([-1.2 1.2])

%

% Generation of frequency spectrum of message signal

%

[U,u,df1] = fftseq(u,ts,df); % Fourier transform
U = U/fs     % scaling

% frequency spectrum of message signal

figure (2)

subplot (1,2,1)

plot(f,abs(fftshift(M)));

xlabel (‘Frequency’);

title (‘Spectrum of Message signal’);

subplot (1,2,2)

plot(f,abs(fftshift(U)));

xlabel(‘Frequency’);

title (‘Spectrum of Modulated signal’);

Results
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Fig. 4.97

MATLAB Example 4.2 Using MATLAB 9 generate an amplitude-modulated wave and detect it 
using the simple  envelope detector shown in Fig. 4.98:

D

RLVin VoutC

Fig. 4.98

Show the waveforms of the modulating signal, amplitude-modulated signal and output of the detector for 
carrier signal angular velocity of 50 radians/s and modulating signal angular velocity of 1 radian/s.
 1. RLC = 2p/10 and modulation index alpha = 0.5
 2. RLC = 2p/3 and alpha = 0.9 (in this case diagonal clipping should take place)

MATLAB Program
%
% Envelope.m detects AM waveform

%
% Part 1 of the problem
RL C = 2*pi/10;
alpha = 0.5;
Dt = 2*pi/1000;
W = 50;
global RLC, alpha, W, Dt;
t = 0:2*pi/1000:2*pi;
%
% Allocation of memory for input and output arrays

%
Vin = zeros(1,1001);
Vout = zeros(1,1001);
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%
% Define input array
%
V = 1+alpha*sin(t); % modulating signal
Vin = (1+alpha*sin(t)).*sin(W*t);
%
% First point of output is the initial value of the envelope

%
Vout(1) = 1;
%
% Compute output over all points

%
for i = 2:1001
  if Vin(i) > Vout(i-1)
   Vout(i) = Vin(i)
  else
   Vout(i) = Vout(i-1)*exp(-Dt/RL C);
  end
end
% Plot input then pause

figure (1)
plot(t,Vin);
hold on
plot(t,Vout,‘k’,‘LineWidth’,2);
hold on
plot(t,V,‘g’);
axis ([0 2*pi -1-alpha 1+alpha]);
title (‘Figure 1: Detector output superimposed on the input for \alpha = 0.5, 
RLC = 0.628’);
xlabel(‘time’);
ylabel(‘Amplitude’);
legend (‘Detector output’,‘Input to the detector’,‘Modulating Signal’,0)
%
% Part II of the problem

%
RC = 3*pi/10;
alpha = 0.9;
Dt = 2*pi/1000;
W = 50;
global RLC, alpha, W, Dt;
t = 0:2*pi/1000:2*pi;
%
% Allocation of memory for input and output arrays

%
Vin = zeros(1,1001);
Vout = zeros(1,1001);
%
% Define input array

%
V = (1+alpha*sin(t))   % Modulating signal
Vin = (1+alpha*sin(t)).*sin(W*t);
%
% First point of output is the initial value of the envelope
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%
Vout(1) = 1;
%
% Compute output over all points

%
 for i = 2:1001
 if Vin(i) > Vout(i-1)
  Vout(i) = Vin(i)
 else
  Vout(i) = Vout(i-1)*exp(-Dt/RL C);
 end
end
% Plot input then pause

figure (2)
plot(t,Vin);
hold on
plot(t,Vout,‘k’,‘LineWidth’,2);
axis ([0 2*pi -1-alpha 1+alpha]);
title (‘Figure 2: Detector output superimposed on the input for \alpha = 0.9, 
R_{L}C = 2.09’);
xlabel(‘time’);
ylabel(‘Amplitude’);
legend (‘Detector output’,‘Input to the detector’,‘Modulating Signal’,0)

Results
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Detector Output Superimposed on the Input for a = 0.9, RLC= 2.09
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Fig. 4.99

Summary 
 ■ Modulation is the process of translating a low frequency information bearing signal to a high frequency slot.
 ■ Modulation is necessary for (a) keeping the antenna size small, (b) making it possible for the receiver to select 

the desired message signal, (c) multiplexing and transmitting several information bearing signals simultaneously.
 ■ In continuous-wave modulation, the amplitude, frequency, or the phase of a high frequency sinusoidal signal, 

called the carrier, is changed in accordance with the variations in the amplitude of the message signal.
 ■ Amplitude Modulation or AM (carrier plus both sidebands): It is that type of modulation in which the amplitude 

of the carrier is changed from instant to instant in such a way that at any instant of time, the change in the peak 

amplitude of the carrier from its unmodulated value is directly proportional to the instantaneous amplitude of the 
message/modulating signal.

 ■ Time-domain description of AM: ( ) [1 ( )]cosc c cx t A mx t tw= + , where, x(t) is the message or modulating signal, 
cosc cA tw  is the unmodulated carrier signal and ‘m’ is the modulation index, whose value lies between 0 and 1, 

i.e., 0 £ m £ 1 and |x(t)| £1. For single-tone message signal, ( ) cos mx t tw=  so that

( ) [1 cos ]cos cos cos( ) cos( )
2 2

c c
c c m c c c c m c m

mA mA
x t A m t t A t t tw w w w w w w= + = + + + -

 ■ Frequency-domain description of AM:

( ) [ ( ) ( )] [ ( ) ( )]
2 2

c c
c c c c c

A mA
X f f f f f X f f X f fd d= + + - + - + +

  where for single-tone modulation, 
1

( ) [ ( ) ( )]
2 m mX f f f f fd d= + + -

 ■ Amplitude spectrum of an AM signal:
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 ■ Carrier and sideband power components in AM:

  (a) When a general message signal x(t), with | x(t)| £ 1 is used:

     2 ( )cx t  = Average power in an AM signal 2 2 21
[1 ( )]

2 cA m x t= +

     where 2( )cx t  = Average power of the message signal.
  (b) For single-tone modulation,

     
2 ( )cx t  = Average power in an AM signal 

2
21

1
2 2c

m
A

È ˘
= +Í ˙

Í ˙Î ˚
 ■ Trapezoidal pattern: When 0 £ m £ 1 and there is no distortion,

1 2

1 2
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m

E E
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 ■ Generation of AM:

  (a) By the use of non-linear devices
  (b) By the use of product devices
  (c) By the use of switching devices

 ■ Plate/collector–modulated class-C amplifier: Total average power in the AM output signal = P0 = hPTav

2

;
2B B

m
P P

Ê ˆ
= h + h Á ˜Ë ¯

 where PTav = total average power

  Supplied to the collector/plate circuit: PB = Power supplied by the VCC or Ebb supply; h = plate-circuit efficiency 
of the modulated class-C amplifier and m = modulation index.

\ P0 = carrier power + total sideband power

  Carrier power is supplied by Ebb/Vcc supply and sideband power is supplied by the final stage of the modulating 
amplifier.

 ■ Detection of AM signals: An AM signal may be detected by (a) Coherent detection, (b) Square law detection, or 
(c) Envelope detection.

  (a) Coherent detector: The received signal is multiplied by a locally generated carrier signal and the product is low 
pass filtered using an LPF with a cut-off frequency W Hz, the baseband signal bandwidth.

  (b) Square law detector: The received AM signal is fed to a square law device and then its output is low pass 
filtered using an LPF with a cut-off frequency of W Hz.

  (c) Envelope detector: If there is no distortion in the modulation process, the envelope of an AM signal follows 
the variations in amplitude of the message signal. The diode/envelope detector tries to extract the envelope of 
the received AM signal. The detector consists of a diode in series with a parallel combination of RL and C, to 
which the AM signal is applied. The output is taken across the parallel combination of RL and C. It should be 
seen that 

1 1
s L

c m

R C R C
f f

<< << <<

     where Rs is the source resistance, and fm is the highest modulating signal frequency.
 ■ Distortions in envelope detection

  (a) Diagonal clipping: To avoid this, it must be ensured that

21 1
L

m

m
R C

mw

È ˘-Í ˙£
Í ˙Î ˚
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  (b) Negative-peak clipping: To avoid this, it must be ensured that

AC
max

DC

;
R

m
R

Ê ˆ
£ Á ˜Ë ¯

RAC = AC load res. of the envelope detector

                             RDC = DC load res. of the envelope detector

 ■ Disadvantages of AM: As the information contained in the message is completely available in any one of the two 
sidebands, it can be recovered even if just one sideband alone, occupying a bandwidth of W is transmitted. Thus,

AM is wasteful in power as well as bandwidth.
 ■ DSB-SC: An amplitude modulation process, in which the modulated signal contains no carrier components and has 

only two sidebands, is called double sideband suppressed carrier modulation.

DSB-SC

( ) ( )cosc c cx t A x t tw=

  For x(t) which is single tone: 
DSB-SC

( ) [cos( ) cos( ) ]
2

c
c c m c m

A
x t t tw w w w= + + -

 ■ Generation of DSB-SC: Since a balanced modulator multiplies the two signals given to it, it can be used for gener-
ating DSB-SC signals by giving cosc cA tw , the carrier signal and x(t), the message signal, as the two inputs to it. 
Or else, a ring modulator may be used.

 ■ DSB-SC signals can be detected only by synchronous or coherent detection only.
 ■ The locally generated carrier signal used for coherent detection, has to be in frequency and phase synchronism 

with the carrier in the received sidebands. For this purpose, a ‘Costas Loop’ or a ‘Squaring-loop’ may be used.
 ■  Quadrature carrier multiplexing, or quadrature amplitude modulation, is a technique by which two different 

message signals, x1(t) and x2(t), having spectra occupying the same bandwidth, can be transmitted simultaneously 
over the same physical channel, using the same carrier frequency.

 ■ A transmitter has to generate the carrier, raise its power level, process the message signal and raise its power level, 
and modulate the carrier at an appropriate power level.

 ■ Functions of a receiver: To pick up any desired signal, amplify it, extract the message signal by demodulating the 
picked up signal and amplifying the message signal and operate the output device like a loudspeaker.

 ■ Classification of receivers: They are classified in different ways: (a) According to the type of modulation of the 
received signal, (b) According to the frequency range of operation, and (c) According to the configuration of the 
receiver – TRF, superhet, etc.

 ■ AM broadcast transmitters: Use audio frequencies up to 5 kHz, operate in MW band from 550 kHz to 1650 kHz 
and in SW band from 3 MHz to 30 MHz. MW band transmitters primarily depend upon ground wave propagation, 
while SW band transmitters depend upon skywave propagation. Carrier powers of 1 kW to 100 kW are used. 
Carrier frequency stability of the order of ±0.02% is mandatory. Adjacent carrier separation is 10 kHz since carrier 
and both sidebands are transmitted.

 ■ (a)   High-level modulation: In an AM transmitter, if the modulating message signal is introduced in series with 
the collector/plate supply voltage of the final RF power amplifier, the modulation is referred to as high-level 
modulation.

  (b)   Low-level modulation: In an AM transmitter, if the modulating signal is introduced beyond the buffer at any 
point up to and including the grid/base of the final RF power amplifier, the modulation is referred to as 
low-level modulation.

  (c)  Advantages and disadvantages: High-level modulation permits the use of class-C RF power amplifiers which 
are highly efficient. But it requires very large amounts of message signal power. Low-level modulation compels 
us to use class-A or AB type of RF power amplifiers (which are inefficient) after the modulation stage. But it 
does not need large amounts of message signal powers.

 ■ Neutralization of RF amplifiers: RF stages in a transmitter need to be provided with neutralization circuits to 
prevent them from oscillating. Hazeltine and Rice methods of neutralization are quite common.
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 ■ Negative feedback in AM broadcast transmitters: Negative feedback is generally provided in all AM broadcast 
transmitters. This is done by taking a small portion of the AM signal given to the antenna, envelope detecting it and 
feeding the resulting audio message signal in series with the output of the audio voltage amplifier so as to oppose 
it in order to give negative feedback. This reduces the distortion of the envelope of the radiated AM signal and also 
reduces the noise and power frequency hum.

 ■ TRF receivers: A tuned radio frequency receiver (TRF receiver) consists of RF amplifiers, a detector and audio 
voltage and power amplifiers. It is one of the earliest types of receiver and has very poor adjacent channel selec-
tivity.

 ■ Principle of  superheterodyne receiver: In a superheterodyne receiver, the received RF signal is converted into 
another RF signal carrying the same message signal, but having a fixed carrier frequency called the intermediate 
frequency (IF) which is lower than the lowest carrier frequency covered by the receiver. Most of the gain of the 
receiver is obtained at the IF. This is then detected and the message signal is amplified.

  (a) Superheterodyne broadcast receiver:

 ■ Why local oscillator frequency f0 is kept greater than carrier frequency fc: In a superheterodyne receiver, the 
difference between f0 and fc should be equal to fif of the receiver. Therefore, f0 may be greater than fc or less than fc.
But it is always arranged to be greater than fc as otherwise, the tuning capacitor range required will be far greater 
than what can be obtained in practice.

 ■ Adjacent channel selectivity: When a receiver is tuned to a particular station, adjacent channel signal also will be 
picked up to some extent due to the inability of the receiver to totally reject it. This selectivity depends mostly 
on the shape of the IF amplifier’s response and to some extent on the shape of the RF amplifier’s response. In a 
good receiver, adjacent channel selectivity should be of the order of 60 to 80 dB. For this purpose, the IF amplifier 
response is shaped appropriately by using three or more stagger-tuned stages, or three or more identically tuned IF 
stages with loose coupling of the inter-stage transformers.

 ■ Image frequency: If a receiver with intermediate frequency fif is tuned to a carrier frequency fc, the corresponding 
image frequency is if( 2 )cf f f= +¢

 ■ Image frequency rejection ratio (IFRR):

2

RF
10

RF

( )
IFRR 10 log

( )
cH f

H f
D

¢
. Its value depends upon the value of the 

loaded Q of the tuned circuits of the RF stages, the value of the IF of the receiver (higher the better) and on whether 
fc is close to the lower end or the higher-end of the tuning range of the receiver. It should be at least 40 dB.

 ■ Double spotting: The phenomenon of a desired signal fs being received at two different dial settings of the receiver, 
is known as double spotting. The cause is poor image rejection.

 ■ Choice of IF:

(a) IF should be outside the tuning range of the receiver.
  (b) Lower value of IF reduces adjacent channel interference.
  (c) Higher value of IF improves image rejection.
  Usual values: 455 to 465 kHz for AM receivers and 10.7 MHz for FM receivers.

 ■ Tracking: In a superheterodyne receiver, ideally, the local oscillator frequency should always keep itself above 
the carrier frequency fc to which the receiver is tuned by an amount equal to IF. This is referred to as tracking. In 
practise, perfect tracking cannot be achieved exactly over the entire tuning range of the receiver.
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 ■ Two-point tracking: Perfect tracking is obtained only at two frequencies over the tuning range and at the other 
frequencies the difference between f0 and fc is kept as close as possible to the correct IF. For this purpose, a ‘padder 
capacitor’ in series with the tuning capacitor, or a ‘trimmer capacitor’ in parallel with the tuning capacitor are used. 
These are small variable capacitors.

 ■ Three-point tracking: It is possible to get perfect tracking at three points over the tuning range of the receiver and 
only a small error at all other points, by the use of both a padder and a trimmer.

 ■ Double heterodyne receivers: In VHF communication receivers requiring an IF bandwidth of only 10 kHz, double 
heterodyning is used in order to get good selectivity as well as good image rejection. The first IF is chosen high to 
get good image rejection and the second IF is chosen low to get good adjacent selectivity.

 ■ Receiver parameters

  (a) Sensitivity, (b) Selectivity, (c) Fidelity, and (d) Noise Figure.
 ■ Single sideband suppressed carrier (SSB-SC) modulation: It is an amplitude modulation process in which the 

carrier as well as one of the sidebands is suppressed and only one sideband is transmitted.
 ■ Frequency domain representation of SSB-SC signals:

  (a) USSB-SC signal: ( ) [ ( ) ( )]
2

U c
C c c

A
X f X f f X f f+ -= - + + ;

( ) [ ( )]

ˆ( ) ( ) ( )

X f F x t

x t x t jx t

+ +

+

=

= +

  (b) LSSB-SC signal: ( ) [ ( ) ( )]
2

L c
C c c

A
X f X f f X f f- += - + + ;

( ) [ ( )]

ˆ( ) ( ) ( )

X f F x t

x t x t jx t

- -

-

=

= -

 ■ Time-domain representation of SSB-SC signals:

( )U
Cx t =  USSB-SC signal ˆ[ ( )cos ( )sin ]

2
c

c c

A
x t t x t tw w= -

and ( )L
Cx t =  LSSB-SC signal ˆ[ ( )cos ( )sin ]

2
c

c c

A
x t t x t tw w= +

 ■ Generation of SSB-SC signals: There are three methods:
  (a)   Filter method: In this method, first a DSB-SC signal is generated. From this the unwanted sideband is 

suppressed using a filter. Its advantages are: (i) very stable, and (ii) used in commercial circuits.

  (b)   Phasing method: In this, two balanced modulators, BM1 and BM2 are used. BM1 is fed with cosc cA tw  and 

x(t) and its output is the product of these two. BM2 is fed with sinc cA tw  and ˆ( )x t . Its output is the product 

of these two. Output of BM2 is either added or subtracted from output of BM1. Addition gives LSSB-SC while 
subtraction gives USSB-SC signal. Its advantages are: (i) used by radio amateurs, and (ii) needs frequent 
adjustment.

  (c)   Weaver’s method or Third method: It is a variant of the phasing method and obviates the need for wideband 
90° phase shifters by using 4 BMs.

 ■ Detection of SSB-SC signals:

  (a)  If the locally generated carrier has a phase error q, the detector output will be x(t) with all its frequency compo-
nents shifted by q. Hence severe phase distortion results.

  (b)  If the locally generated carrier has a frequency error (Df), then the detector output will not be x(t). Instead, it 
will be an SSB-SC signal with x(t) as modulating signal and (Df) as the carrier.

 ■ Applications and advantages of SSB-SC transmission:

  (a) Useful for point-to-point communication for speech but not for audio broadcasting.
  (b) Bulk transmission of telephone conversations using FDM.
  (c) Gives better (S/N) at the destination as compared to AM.

 ■ Frequency Division Multiplexing (FDM): A technique used for simultaneous transmission of a number of different 
message signals over the same physical channel. For this, different message signals are, by frequency translation, 
made to occupy different non-overlapping frequency slots and this multiplexed signal is transmitted. At the 
receiving end, the messages are separated by using BPFs, demodulators and lowpass filters.
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 ■ Typical FDM hierarchy

Type of group Frequency range Bandwidth Number of telephone 

channels

Group 60 – 108 kHz 48 kHz 12

 Super group 312 – 552 kHz 240 kHz 60

 Master group 564 – 3084 kHz 2.52 MHz 600

 Very large group 
(Jumbo group)

0.5 – 17.5 MHz 17 MHz 3600

 ■ SSB-SC transmitters: Since a 200 Hz wide hole exists near the origin in the spectrum of an audio signal, filter 
method can be used for generating the SSB-SC signal. Initially, a low carrier frequency of 100 kHz is used to make 
the filter’s requirements less stringent even when 40–60 dB suppression of unwanted sideband is to be achieved. 
High Q filters such as  SAW filters, Crystal filters, mechanical filters and ceramic filters are used for sideband 
suppression. After sideband suppression the carrier frequency is raised to the required level using a crystal oscil-
lator and a mixer.

 ■ SSB-SC receivers: Since HF band is used for point-to-point communication using SSB, and since SSB signal 
bandwidth is only 5 kHz, it is necessary to use double heterodyne receivers. The first IF is generally 2.2 MHz and 
the second IF is 200 kHz.

 ■ Vestigial sideband modulation: Since use of AM as well as SSB is not possible for video transmission, what is 
known as vestigial sideband modulation is used. In this, in addition to the carrier and one sideband, a part, or what 
is generally called as a vestige of the other sideband is also transmitted. It is used for TV transmission. A VSB 
signal may be detected using an envelope detector. The distortion in the detected signal will be small, if the depth 
of modulation is small.
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Review Questions 
1. Define ‘amplitude modulation’.
2. What is modulation index? What happens if it is greater than unity?
3. A carrier signal cosc cA tw  is amplitude modulated by a message signal cosm mA tw , where, m cA A< . (a) Write 

down the expression for the modulated signal; (b) Write down the expression for the carrier component and the 
side-frequency components; (c) Draw the phasor diagram of the modulated signal.
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4. From the expression for the amplitude modulated signal of Question 3 above, write down the expression from the 
RMS value of the modulated signal.

5. Sketch the spectrum of an AM signal assuming sinusoidal modulation with a modulation index of m (m < 1). 
6. A carrier signal is sinusoidally modulated to a depth of m = 0.8. What percentage of the total power of the modulated 

signal is in the two sidebands?
7. State one important advantage and one important disadvantage of AM. Where is AM used?
8. What is diagonal clipping? How can it be avoided?
9. State how a DSB-SC signal may be generated.

10. Assuming sinusoidal modulation, sketch the spectrum of a DSB-SC signal for some m (m < 1).
11. How can a DSB-SC signal be demodulated?
12. Name one practical application in which DSB-SC modulation is put to use.
13. Briefly explain quadrature carrier multiplexing.
14. Define ‘high-level modulation’ and ‘low-level modulation’, and discuss the advantages and disadvantages of each.
15. Draw the block schematic diagram of an AM broadcast transmitter and explain the function of each block.
16. Explain the neutralization techniques adopted in the RF amplifiers of a transmitter.
17. Draw the block schematic diagram of a TRF type of AM broadcast receiver. Explain its functioning and its 

deficiencies.
18. What is the basic principle of a superheterodyne broadcast receiver? How does it overcome the limitations noted 

in the case of a TRF receiver?
19. Draw the block schematic diagram of a superheterodyne AM broadcast receiver and with its help, explain the 

working of the receiver.
20. Taking the case of a medium wave band superheterodyne AM broadcast receiver, explain why the local oscillator 

frequency is arranged to be above and not below the signal frequency.
21. What is meant by an image signal? What are the steps generally taken to minimize image signal interference?
22. With reference to a superheterodyne broadcast receiver, explain what is meant by tracking. How is it ensured?
23. Distinguish between two-point and three-point tracking.
24. Discuss the factors governing the choice of IF for a superheterodyne receiver.
25. Justify the following statements:

 (a) Good image signal suppression requires that the IF be high.
 (b) Good adjacent channel selectivity can be obtained by choosing a low value of IF.

26. Define and explain the terms: ‘Sensitivity’, ‘Selectivity’, and ‘Fidelity’. What are the various factors that influence 
these parameters?

27. Discuss the advantages and disadvantages of SSB-SC transmission.
28. In the filter method of generation of an SSB-SC signal, why do we have to use a low frequency carrier initially?
29. In the filter method of generation of an SSB-SC signal, why is it necessary that the message signal should have a 

hole near the origin in its spectrum?
30. How is an SSB-SC signal demodulated?
31. With reference to SSB-SC signal modulation, discuss the effect of an error in the locally generated carrier signal’s 

(a) frequency, (b) phase.
32. State the applications of SSB transmission.
33. Draw the spectrum of an LSSB-SC signal. Write down an expression for this spectrum in terms of that of the 

message signal.
34. How does the two-stage SSB-SC modulation overcome the problems associated with the design of the sideband 

suppression filter?
35. Critically compare the filter method and the phasing method of generation of SSB-SC signals.
36. With the help of block schematic diagram, clearly explain homodyne detection of an SSB signal transmitted with 

a pilot carrier.
37. Explain briefly the basic principle of FDM.
38. Explain why SSB transmission even with a pilot carrier is not feasible in the case of TV.
39. With the help of a neat block schematic diagram, explain the working of an SSB-SC transmitter.
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40. Clearly explain the need for the following: ‘SSB transmitters use a low-frequency carrier initially’.
41. In SSB-SC transmitters using filter method of generation of the SSB signal, sideband filters have to be used for 

suppression of the unwanted sideband. What type of filters are used and why?
42. Draw the block schematic of a pilot-carrier SSB transmitter.
43. With the help of a neat block schematic diagram, explain the working of an SSB-SC receiver.
44. Draw the block diagram of a pilot-carrier SSB receiver and explain its working.
45. Sketch the typical spectrum of the VSB signal that is given as input to the video detector of a TV receiver.
46. Write down an expression for the time-domain representation of a VSB signal.
47. Sketch the spectrum of typical TV signal.
48. Sketch the typical response characteristic of the video amplifier section of a TV receiver.
49. What are the steps taken in commercial TV broadcasting to ensure that the distortion arising in the detected video 

signal owing the use of an envelope detector is within tolerable limits?

Problems 
1. An AM signal is given by 5( ) [30 9 cos2000 12 cos3000 ] cos 2 10cx t t t tp p p= + + ¥ .

 (a) Sketch the spectrum of the modulated signal.
 (b) Determine the effective modulation index.
 (c) Determine the carrier power and total sideband power.

2. A class-C collector modulated class-C amplifier is producing an AM signal at its output with a carrier component 
of power equal to 50 Watts. The modulating amplifier is a class-A power amplifier. If the class-C amplifier has an 
efficiency of 75% and the class-A amplifier has an efficiency of 40%, determine (a) the total input d.c. power for 
the two amplifiers, and (b) the dissipation in each of the devices used for the class-C and the class-A amplifiers, 
for modulation indices of (i) 40% and (ii) 100%.

3. A square law device has an input-output relation given by 2
0 1 in 2 ine a e a e= + . To this device, we give an input signal 

which is the sum of the message signal, ( ) 0.3 cos2 50 0.4 cos 2 150x t t tp p= +  and a carrier signal of frequency 
5 kHz. The output signal e0(t) is then subjected to band pass filtering. What should be the center frequency and the 
bandwidth of this BPF if the output of the filter is to be an AM signal?

4. The square law device of Problem 3 is now proposed to be used for detection of an AM signal given by 

in ( ) ( ) [1 ( )]cos2c c ce t x t A mx t f tp= = +  (a) determine e0(t), and (b) What are the conditions to be satisfied if the 
message signal x(t) is to be recovered?

5. A carrier signal of frequency, fc, is DSB-SC modulated using the message signal 3( ) 10 sinc 2 10x t t= ¥ . The 
resulting modulated signal is to be demodulated using a coherent detector whose locally generated carrier may be 
assumed to be in perfect synchronism with that of the modulator. Determine the lowest value of fc for which the 
coherent detector output yields x(t).

6. ( ) (cos2 500 2cos2 1000 )x t t tp p= ¥ + ¥  DSB-SC modulates the carrier 5( ) 50cos2 10c t tp= ¥ . Find the expres-
sions for the USSB-SC and LSSB-SC components of the modulated signal, and sketch their spectra.

7. A message signal x(t) is positive for all t. This message DSB-SC modulates a carrier signal. Show that an envelope 
detector can be used to demodulate this DSB-SC signal.

8. A carrier of frequency fc = 100 kHz is DSB-SC modulated by a message signal ( ) cos2000 2cos4000x t t tp p= +
to give a modulated signal 5( ) 50 ( ) cos 2 10cx t x t tp= ¥ .

 (a) Sketch the spectrum of xc(t), the modulated signal.
 (b) Find the average powers of all the frequency components in xc(t).

9. A superheterodyne receiver has an IF of 460 kHz. Its RF amplifier is tuned to an incoming signal of carrier 
frequency 700 kHz. If at this frequency the tuned circuit of the RF amplifier has a Q of 60, determine the image 
frequency rejection in dB.

10. A double conversion receiver is tuned to an incoming signal of 25 MHz at which frequency its tank circuit has a 
Q of 65. The receiver is using a first IF of 1.5 MHz and a second IF of 150 kHz. Calculate (in decibels) the image 
frequency rejection. Make reasonable assumptions, if necessary.
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11. A carrier signal of frequency fc = 105 Hz is LSSB-SC modulated by a message signal given by ( ) cos2000x t tp= +
2cos4000 3cos6000t tp p+ + . Sketch the two-sided spectrum of the modulated signal. If the carrier peak amplitude, 
Ac = 50, what is the average power of the modulated signal? What is its bandwidth?

12. For the carrier signal and the message signal given in Problem 10, determine the time-domain expression for the 
USSB-SC signal by first determining ˆ( )x t  and sketch its two-sided spectrum.

13. A message signal x(t) having a bandwidth of 5 kHz has been normalized so that | x(t)| £ 1 for all t. This normalized 
message, having an average power of 1 W modulates the carrier signal

( ) 20cos2 cc t f tp=
  Determine the average power in the modulated signal if the modulation is
 (a) SSB-SC (b) DSB-SC (c) AM with a modulation index m = 0.8

14. A two-stage SSB-SC modulator is shown in Fig. 4.64. The message signal, x(t), is a voice signal with frequency 
components from 0.3 kHZ to 3.5 kHz. If the carrier frequency f1 is 100 kHz and the high frequency oscillator 
frequency, f2, is 5 MHz, and if the final output signal is to be a USSB-SC signal, specify the details of the two 
sideband filters.

15. Equation (4.74) gives the time-domain representation of a USSB-SC signal in terms of the message signal x(t),
its Hilbert transform ˆ( )x t  and the carrier frequency fc. Using that equation, derive the expression for the message 
signal x(t) in terms of the USSB-SC signal ( )u

cx t , its Hilbert transform and the carrier frequency. This expression 
for x(t) suggests a method of demodulating ( )u

cx t . Draw the block schematic diagram of such a demodulator.
16. A scrambler is a system used for privacy of communication. In the two-stage SSB-SC generator of Fig. 4.60, 

assume that the message signal has an amplitude spectrum as shown in Fig. P4.1; that the first oscillator frequency 
f1>>W, that the first sideband filter passes only the upper sideband, that the second sideband filter is a low pass 
filter with a cutoff frequency of W, and that the second oscillator frequency f2 = f1 + W. Show that the two-stage 
SSB-SC generator now works as a scrambler by determining and sketching the spectrum of its output signal. Show 
that the same set-up may be used for unscrambling this output signal. 

Fig. P4.16

17. An SSB transmitter uses a set-up of the form shown in Fig. P4.17 to generate the SSB signal using filter method.

Fig. P4.17

  For the values given in the figure, determine
 (a) Whether the lower sideband or the upper sideband will be produced.
 (b) The carrier frequency value if the other sideband is to be produced.
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Multiple-Choice Questions 
1. In an amplitude modulated wave obtained by sinusoidal modulation of the carrier, the positive peak amplitude of 

the RF is varying between 12 V and 4 V. The modulation index and the unmodulated carrier amplitude are respec-
tively

 (a) 1/3, 8 V (b) 0.5, 8 V (c) 0.5, 4 V (d) 1/3, 4 V
2. An amplitude modulated wave is given by 

( ) 10cos1200 40cos1400 10cos1600cx t t t tp p p= + +
  The modulating signal frequency and modulation index are
 (a) 200 Hz, 0.5 (b) 400 Hz, 0.25 (c) 200 Hz, 0.25 (d) 400 Hz, 0.5

3. To save transmitted power, the carrier of an AM signal obtained by sinusoidal modulation to a depth of modulation 
equal to 1, has been recovered. The percentage saving in power is

 (a) 33.33 (b) 50 (c) 66.66 (d) 100
4. A collector modulated class-C amplifier is drawing 50 W from the Vcc supply. If an output AM wave with 100% 

modulation is obtained, the average power supplied by the final modulating power amplifier stage is
 (a) 50 W (b) 16.66 W (c) 33.33 (d) 25 W

5. When sinusoidally modulated, the RMS value of the current in the antenna of an AM transmitter increases 15% 
over its unmodulated value. The modulation index is

 (a) 0.6 (b) 0.8 (c) 0.5 (d) 0.707
6. Two sinusoidal signals are simultaneously modulating a carrier, the modulation indices being 0.3 and 0.4. The 

overall modulation index is
 (a) 0.5 (b) 0.1 (c) 0.7 (d) 0.12

7. When the modulation index is halved, it is found that the antenna current (RMS value) is also halved. The type of 
modulation used is

 (a) AM (carrier plus both sidebands) (b) Single sideband plus carrier
 (c) SSB-SC   (d) Vestigial sideband

8. In an AM transmitter employing low-level modulation, the amplifiers following the modulator stage have to be
 (a) frequency multipliers   (b) linear tuned class-A or class-AB amplifiers
 (c) class-C amplifiers   (d) class-B amplifiers

9. The advantages of base modulation over collector modulation of a class-C amplifier is
 (a) better linearity of the modulation characteristic (b) better efficiency of the class-C modulated amplifier
 (c) it requires lower modulating signal power (d) it gives more output power

10. An RF amplifier of a superheterodyne receiver
 (a) helps in image signal suppression (b) improves the adjacent channel selectivity
 (c) makes it easier to align the receiver (d) improves the fidelity of the receiver considerably 

11. In an AM broadcast superheterodyne receiver the local oscillator frequency is arranged to be higher than the 
incoming signal frequency in order to

 (a) provide better image rejection
 (b) make tracking easier
 (c) produce the correct intermediate frequency, since a lower LO frequency will not permit generation of correct IF
 (d) enable us to cover the required tuning range with the practically possible ratio of maximum to minimum 

values of the variable capacitors
12. A low IF will

 (a) improve the image signal rejection capability of the receiver
 (b) improve adjacent channel selectivity
 (c) make it difficult to get good sensitivity for the receiver
 (d) improve the fidelity of the receiver

13. The occurrence of double spotting indicates
 (a) that the IF is too high
 (b) that the selectivity is poor
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 (c) that image rejection capability of the receiver is inadequate
 (d) that the local oscillator frequency is less than that of the incoming signal

14. Double conversion superheterodyne receivers use
 (a) a high first IF and a lower second IF
 (b) a low first IF and a higher second IF
 (c) a low IF for the first as well as the second IF stages
 (d) a high IF for both the first and second IF stages

15. Harmonic generators use
 (a) class-A amplifiers   (b) class-AB amplifiers
 (c) class-B amplifiers   (d) class-C amplifiers

16. The most noisy stage of an AM broadcast receiver is
 (a) the RF stage (b) the mixer stage (c) the IF stage (d) the audio stage

17. The noise figure of a superheterodyne receiver is mostly controlled by
 (a) the RF stage (b) the mixer stage (c) the IF stage (d) the audio stage

18. A superheterodyne AM broadcast receiver has an IF of 455 kHz. If it is tuned to a frequency of 700 kHz, the image 
frequency is

 (a) 1610 kHz (b) 1155 kHz (c) 245 kHz (d) 210 kHz
19. The stage contributing significantly to the sensitivity of a superheterodyne AM broadcast receiver is the

 (a) RF stage (b) mixer stage (c) IF stage (d) detector stage
20. A high value of IF for a superheterodyne receiver

 (a) improves image frequency rejection (b) improves the selectivity
 (c) improves the sensitivity   (d) improves the fidelity

21. For broadcasting, AM is preferred to SSB because
 (a) AM signal is easy to generate (b) AM gives better signal-to-noise ratio
 (c) SSB receivers are complex and expensive (d) AM transmitters do not need expensive filters

22. In filter method of generation of SB-SC, the type of filters that can be used are
 (a) LC filter (b) crystal filters (c) RC filters (d) active filters

23. In the filter method of generation of SSB-SC, in order to make the filter specifications less stringent
 (a) it is ensured that the modulating signal has no high frequency components
 (b) a high frequency carrier is used initially for generating the DSB-SC signal
 (c) only those modulating signals which have a high dc and low frequency content are used
 (d) a low frequency carrier is used initially for generating the DSB-SC signal

24. The ‘third method’, or the Weaver’s method, has the following advantage over the ‘Phasing method’:
 (a) It does not need wideband 90° phase-shifters
 (b) It gives better carrier stability
 (c) It gives much better suppression of the unwanted sideband
 (d) It does not need frequent adjustments

25. SSB-SC modulation is not used for audio broadcasting because
 (a) it is difficult to generate SSB-SC signals
 (b) it makes the receiver circuit quite complex and expensive
 (c) SSB-SC modulation cannot be used for speech signals

26. Vestigial sideband modulation is generally used for
 (a) TV broadcasting   (b) point-to-point communications
 (c) telemetering   (d) stereo broadcasting

27. In a diode detector circuit, if the ac load for the diode is very much smaller than the dc load, it can result in
 (a) poor sensitivity of the receiver (b) poor AGC
 (c) diagonal clipping   (d) negative peak clipping

28. An SSB-SC signal may be demodulated using a 
 (a) diode envelope detector   (b) synchronous detector
 (c) ratio detector   (d) None of these
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Key to Multiple-Choice Questions

 1. (b) 2. (a) 3. (c) 4. (d) 5. (b) 6. (a) 7. (c) 8. (b)
 9. (c) 10. (a) 11. (d) 12. (b) 13. (c) 14. (a) 15. (d) 16. (b)
 17. (a) 18. (a) 19. (c) 20. (a) 21. (c) 22. (b) 23. (d) 24. (a)
 25. (b) 26. (a) 27. (d) 28. (b)
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ANGLE MODULATION

5
“ The only way of finding the limits of the possible is by going beyond them into the 

impossible.”

Arthur C. Clarke (1917–2008)

British science fiction author, inventor, and futurist

Learning Objectives

After going through this chapter, students will be able to

 ■ understand the concept of angle-modulation and the difference between frequency modulation and 

phase modulation,

 ■ derive expressions for frequency modulated and phase modulated waves,

 ■ draw the block diagrams of the direct and indirect methods of generation of WBFM signals and 

explain the operation of various types of FM detectors,

 ■ derive the expression for the spectrum of an angle-modulated wave for a single-tone modulating 

signal and can find the effective bandwidth of the modulated signal,

 ■ recognize the key specifications for an FM audio broadcast transmitter, draw its block diagram and 

explain its working, and

 ■ draw the block diagram of an FM stereo transmitter and receiver and explain their working.

5.1 INTRODUCTION

In Chapter 4, we had considered amplitude modulation, wherein, the carrier signal amplitude is changed in 
accordance with the variation in amplitude of the message signal. As had been stated there, this is only one 
way of modulating the carrier signal. Instead of the amplitude, if the frequency of the carrier is varied in 
accordance with the variations of the amplitude of the modulating signal, we call it ‘ frequency modulation’; 
and if it is the phase of the carrier that is changed as per the variations of the amplitude of the modulating 
signal, we call it ‘ phase modulation’. Since both of these ultimately vary the phase angle of the carrier signal, 
although in different ways, and are closely related, both of these modulations are together referred to as 
‘ Angle Modulation’.
 Amplitude modulation is sometimes referred to as a  linear modulation, although, strictly speaking, it is not 
a linear one. Angle modulation, as we are going to see, is however, highly non-linear. This makes the analysis 
of angle modulation quite involved for a general class of modulating signals, thus forcing us to go in for an 
approximate analysis. Further, an angle modulated signal has theoretically an infinite bandwidth even for 
a single-tone modulating signal, thus compelling us to talk of its “ effective bandwidth”, a finite bandwidth 
within which a large percentage (generally more than 98%) of the average power of the modulated signal lies. 
This effective bandwidth of an angle modulated signal is very much larger than that of an AM signal for the 
same modulating signal bandwidth. Also the complexity of implementation is generally much more for angle 
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modulation as compared to the AM. But, it has two great advantages which make it very attractive for certain 
applications.
 1. As we are going to see in Chapter 7 which discusses the noise performance of amplitude and frequency 

modulation systems, frequency modulation systems have in general, better noise immunity as compared 
to the AM systems. Further FM systems offer a  BW-to-(S/N) trade-off which makes it possible to 
operate an FM transmitter at a relatively low power and still maintain the required (S/N) ratio at the 
destination provided we are prepared to pay the price for it in terms of larger  transmission bandwidth.

 2. Unlike in AM where the transmission bandwidth increases in proportion to the message signal 
bandwidth, in the case of FM, the transmission bandwidth is, by and large, unaffected by the message 
bandwidth.

These advantages make FM extremely useful for high fidelity broadcasting of music and a few other applica-
tions.
 Our discussion in this chapter will be mainly focused on the various modulation and demodulation 
techniques and the theories behind them. While it is true that modulation and demodulation are the most 
important operations taking place at the transmitter and receiver respectively, it is however the various 
processes taking place at the transmitter and at the receiver all of which together make it possible to have 
good communication. Hence, towards the end of this chapter, we will discuss FM transmitters and receivers 
in some detail. Of course, it is neither necessary, nor possible to go into the details at circuit level. We will 
confine the discussion only to the block schematic diagrams level.

5.2 ANGLE MODULATED SIGNALS

Consider a carrier signal 
w=( ) cosc cc t A t  (5.1)

When this carrier is angle modulated, the modulated signal may be represented by

q=( ) cos ( )c cx t A t

\ q w f= +( ) ( )ct t t  (5.2)
w f= +( ) cos[ ( ) ( )]c c cx t A t t  (5.3)

f(t), the change in phase of the modulated signal from its unmodulated value (i.e., wct), is called the  phase 
deviation.

5.2.1 Phase Modulation

In  phase modulation the phase deviation, f(t) is varied in such a way that at any instant of time, t, it is propor-
tional to the instantaneous amplitude of the modulating signal, x(t).

Hence, f =( ) ( )pt k x t  (5.4)

where Dpk   phase deviation constant

It represents the change in phase angle per unit amplitude of the modulating signal x(t) and has the units of 
radians per volt.
 The phase modulated signal may therefore be written as

w= +
.

( ) cos[ ( )]c c c p
P M

x t A t k x t   (5.5)

5.2.2 Frequency Modulation

In understanding ‘ frequency modulation’, the concept of ‘ instantaneous frequency’ plays a very vital role. As 
our concept of frequency itself is that it represents the number of full cycles completed per second, the term, 
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‘instantaneous frequency’ may, at first, sound a little odd. But, when the term, ‘instantaneous speed’ does not 
sound odd even though speed is defined in much the same way as frequency has been, as the distance covered 
in a unit time, why should ‘instantaneous frequency’ sound odd? When speed v, is varying with time and is 
denoted by v(t), a function of time, we know that the distance, s(t) covered in say t seconds, is given by

0

( ) ( )
t

s t v da a= Ú

and = =
( )

( )
ds t

v t
dt

 speed at the instant t

  = rate of change of distance with respect to time.

Exactly in the same way since q(t) = wt and w = 2pf, if the frequency is varying with respect to time, we write

q p a a= Ú
0

( ) 2 ( )
t

t f d  = Phase angle at the instant t

and f(t) = Frequency at the instant t = 
q

p

1 ( )

2

d t

dt

Thus, instantaneous frequency of a signal is defined as 1/2p times the rate of change of its phase angle.

Definition In frequency modulation, the instantaneous frequency of the modulated wave changes in such 
a way that at any instant, the change from the unmodulated carrier frequency is directly proportional to the 
instantaneous amplitude of the modulating signal, x(t).

But q=( ) cos ( )c cx t A t  = modulated signal

Therefore, its instantaneous frequency fi(t) is given by

q
w f f

p p p
= = + = +

1 ( ) 1 1
( ) [ ( )] ( )

2 2 2
i c c

d t d d
f t t t f t

dt dt dt
  (5.6)

From the definition of frequency modulation given above, the change in fi(t) from fc, the unmodulated carrier 
frequency, called the  frequency deviation, should be proportional to the amplitude of x(t).
Thus, from Eq. (5.6), we have

f
p

=
1

( ) ( )
2

f

d
t k x t

dt
  (5.7)

\ = + ( ) ( )i c ff t f k x t   (5.8)

where kf represents the change in instantaneous frequency for a unit amplitude of the modulating signal with 
units of Hertz/volt, and is referred to as the ‘ frequency deviation constant’.

and q p f= +Ú 0
0

( ) 2 ( )
t

it f t dt   (5.9)

where f0 is a constant reference phase, generally taken as zero without any loss of generality.
 Hence, the FM signal may be represented as 

0 0

( ) cos 2 2 ( )
t t

c c c f
FM

x t A f dt k x dp p a a
È ˘

= +Í ˙
Î ˚
Ú Ú

Thus,
0

( ) cos 2 ( )
t

c c c f
FM

x t A t k x dw p a a
È ˘

= +Í ˙
Î ˚

Ú   (5.10)
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From Eqs. (5.5) and (5.10), we find that f(t) of Eq. (5.3) is given by

0

( ) for  PM

( )
2 ( ) for  FM

p

t

f

k x t

t
k x d

f
p a a

Ï
Ô

= Ì
Ô
Ó

Ú
  (5.11)

The above equation clearly brings out the different ways adopted by PM and FM to change q(t) using 
the modulating signal x(t). It also clearly shows that a  phase modulator can indeed be used for producing 
frequency modulation and vice versa. If the message signal, x(t), is integrated and given as the modulating 
signal to a phase modulator, the output modulated signal will be a frequency modulated signal. Conversely, if 
the message signal x(t) is differentiated and then fed as the modulating signal to a frequency modulator, the 
modulated signal that we get would be a  phase modulated signal. 

Fig. 5.1  (a)  Frequency modulation using a phase modulator, (b) Phase modulation using a frequency 

modulator

Example 5.1 An angle-modulated signal is given by

p p= ¥ +7 4( ) 6cos[2 10 0.2sin(10 ) ]cx t t t

 (a) if xc(t) is a phase-modulated signal with kp = 5 rad/volt; and
 (b) if xc(t) is a frequency-modulated signal with kf = 5 ¥ 102 Hz/volt

In each case, determine the modulating signal x(t).

Solution

FM 0

( ) cos 2 ( )
t

c c c fx t A t k x dw p a a
È ˘

= +Í ˙
Î ˚

Ú   (From Eq. (5.10))

PM

( ) cos[ ( )]c c c px t A t k x tw= +   (From Eq. (5.5))

 (a) For PM 

  Compare the above equation for 
PM

( )cx t  with the given equation of the angle modulated signal. If we take 

4( ) sin10mx t A tp= , it means that kp ◊ Am = 0.2
  But kp is given to be 5.  \ 5Am = 0.2 or Am = 0.2/5 = 0.04
  \ the modulating signal x(t) in this case is

4( ) 0.04 sin10x t tp=

 (b) For FM 

  Compare 
FM

( )cx t  as given by Eq. (5.10) with the given xc(t).

Example 5.1 An angle-modulated signal is given by

7 4( ) 6cos[2 10 0.2sin(10 ) ]p p7 4
cx ( ) 6cos[2 10 0.2sin(10 )) 6cos[2 10 0.2sin(10 )p p= ¥¥p 7 4+c

(a) if xc(t) is a phase-modulated signal with kpk  = 5 rad/volt; and
(b) if xc(t) is a frequency-modulated signal with kfk  = 5f ¥ 102 Hz/volt
In each case, determine the modulating signal x(t).
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  Let the modulating signal be p ¥ ¥ 3cos2 5 10mA t .

  \ p pa a p
Ê ˆ

= Á ˜Ë ¯
Ú 4 4

0

2 cos10 sin10
t

f m

f m
m

k A
k A d t

f
, where fm = 5 ¥ 103

  From the expression for xc(t), we therefore have

   

p p=4 4. sin10 0.2sin10
f m

m

k A
t t

f

  \ = 0.2
f m

m

k A

f
. Substituting values of kf and fm, we get

   

¥ ¥
= =

¥

3

2

0.2 5 10
2

5 10
mA

  \ the message signal, in the case of FM is p= ¥ ¥ 3( ) 2cos2 5 10x t t

Example 5.2 The message signal shown in the following figure phase modulates a carrier signal Ac

cos wct, where fc = 1 MHz. If a maximum frequency deviation of 80 kHz is needed, determine the value of 
the phase constant kp to be used by the modulator. With this value of kp, what will be the range of variation 
of the carrier frequency?

Fig. 5.2 Signal for Example 5.2

Solution The modulated signal xc(t) is given by

w= +( ) cos( ( ))c c c px t A t k x t

\ instantaneous frequency, w
p

= +
1

[ ( )]
2i c p

d
f t k x t

dt

\
p

= +
1

( )
2i c p

d
f f k x t

dt

\  (fi – fc) = Maximum frequency deviation

p
=

max

1
( )

2 p

d
k x t

dt

\ -=
¥ 3

max

16
( )

2 10

d
x t

dt
    (From the waveform of x(t))

  = 8000 v/sec

\ maximum  frequency deviation 
p

= ◊ ◊ = ¥ 31
8000 80 10

2 pk

Example 5.2 The message signal shown in the following figure phase modulates a carrier signal Ac

cos wct, where fc = 1 MHz. If a maximum frequency deviation of 80 kHz is needed, determine the value of 
the phase constant kpk  to be used by the modulator. With this value of kpk , what will be the range of variation
of the carrier frequency?

Fig. 5.2 Signal for Example 5.2
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\ p
p

¥ ¥
= =

380 10 2
20

8000pk  rad/volt

From t = 0 to t = 8 m.sec = =( ) 2v/m.sec 2000v/sec
d

x t
dt

\ during this period, frequency deviation 

p
p p

= = ¥ ¥ =
1 1

( ) 20 2000 20
2 2p

d
k x t

dt
 kHz

 Hence, from 0 m.sec to 8 m.sec, the frequency of the modulated signal is 
  1000 kHz + 20 kHz = 1020 kHz
From 8 m.sec to 10 m.sec, the frequency deviation is negative and has a value of 80 kHz. Hence, during this 
period the frequency of the modulated wave is 
  1000 kHz – 80 kHz = 920 kHz
 The frequency of the modulated signal varies between 920 kHz and 1020 kHz.

5.2.3 Angle Modulated Signals for Some Simple Modulating Waveforms

Sinusoidal modulating signal

Fig. 5.3  (a) Carrier signal, (b) Modulating sinusoidal signal, (c)  Phase modulated signal, (d)  Frequency 

modulated signal

Unit-step function
(See Fig. 5.4 on next page)

5.2.4 Modulation Indices for FM and PM

For a single-tone message signal

Let p=( ) cos(2 )m mx t A f t  (5.12)

Then from Eq. (5.11) we have, for PM

f p= =( ) ( ) cos(2 )p p m mt k x t k A f t   (5.13)
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and for FM

f p a a p= =Ú
0

( ) 2 ( ) sin(2 )
t

f m

f m
m

k A
t k x d f t

f
  (5.14)

Hence, from Eqs. (5.5) and (5.10), we may write the modulated signals as

 PM:  p p= +( ) cos[2 cos(2 )]c c c p m mx t A f t k A f t    (5.15)

 FM:  p p
È ˘

= +Í ˙
Î ˚

( ) cos 2 sin(2 )
f m

c c c m
m

k A
x t A f t f t

f
  (5.16)

If we now define
b Dp   Modulation index for PM = kpAm (5.17)

and b Df   Modulation index for FM = m f

m

A k

f
 (5.18)

Then the corresponding modulated signals may be written as

PM

( ) cos[2 cos(2 )]c c c p mx t A f t f tp b p= +   (5.19)

FM

( ) cos[2 sin(2 )]c c c f mx t A f t f tp b p= +   (5.20)

 (i) Since kp, the  phase deviation constant represents, as pointed out earlier (see Eq. (5.4)), 

the phase deviation produced in the carrier per unit amplitude of the modulating signal, 

the parameter bp of Eq. (5.17) represents the maximum phase deviation.

 (ii) From Eq. (5.8), it is clear that kf Am represents the  peak frequency deviation. Referring 

to Eq. (5.18) then bf, the modulation index for FM represents the ratio of the peak 

frequency deviation to the frequency of the modulating single-tone signal. This ratio is 

called the ‘ deviation ratio’.

Fig. 5.4  (a) Carrier signal, (b) Unit-step modulating signal, (c) Phase modulated signal, (d) Frequency 

modulated signal

Note
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For a general modulating signal Having seen the physical meaning of the modulation indices bp

for PM, and bf for FM, in the case of a single-tone modulating signal, we may now extend the concept of 
modulation index to a general modulating signal by defining bp and bf as follows:

b fD = D maxmax[| ( ) |] ( )p pk x t   (5.21)

and b
D

D = max
max[| ( ) |] ( )f

f

k x t f

W W
  (5.22)

where W represents the bandwidth of the modulating signal, (Df)max represents the  peak phase deviation for 
PM and (Df)max, the  peak frequency deviation for FM.

Example 5.3 An FM transmitter has a  frequency deviation constant of 100 Hz/volt. To the modulator 
of this transmitter, a sinusoidal modulating signal of r.m.s. value 2 V and a frequency of 1 kHz, is applied. 
Determine the peak frequency deviation and the deviation ratio.

Solution Peak amplitude of the modulating signal = 2 2  V
Deviation constant kf of the modulator = 100 Hz/volt.

\ peak frequency deviation = ¥ =2 2 100 200 2  Hz

  Deviation ratio 
È ˘

= Í ˙
Î ˚

Peak frequency deviation

modulating signal frequency

= =
200 2 2

1000 5

Example 5.4 A frequency modulated signal is given by

p p= ¥ + ¥8( ) 10cos[2 10 5 sin2 200 ]cx t t t

Determine (a) the carrier frequency, (b) the modulating signal frequency, (c) the peak frequency deviation, 
and (d) the modulation index.

Solution
 (a) fc = 100 MHz = 108 Hz
 (b) fm = 200 Hz

 (c) b = =
Peak  req. deviation

5
modulating signal frequencyf

\ peak frequency deviation = 5 fm = 5 ¥ 200 = 1 kHz
 (d) Modulation index bf = 5 as stated in (c)

Example 5.5 An  FM transmitter is operating with the maximum frequency deviation of 75 kHz. What 
will be the modulation index if a sinusoidal signal is used for modulation and it has a frequency of (a) 100 
Hz, and (b) 20 kHz.

Solution

 (a) b
¥

= = =
3Frequency deviation 75 10

750
Modulating signal frequency 100f

 (b) b
¥

= = =
¥

3

3

Frequency deviation 75 10
3.75

Modulating signal frequency 20 10
f

Example 5.3 An FM transmitter has a frequency deviation constant of 100 Hz/volt. To the modulator
of this transmitter, a sinusoidal modulating signal of r.m.s. value 2 V and a frequency of 1 kHz, is applied.
Determine the peak frequency deviation and the deviation ratio.

Example 5.4 A frequency modulated signal is given by
8( ) 10cos[2 10 5 sin2 200 ]p p8

cx ( ) 10cos[2 10 5 sin2 200) 10cos[2 10 5 sin2 200p p= ¥ + ¥¥ +p p8
c

Determine (a) the carrier frequency, (b) the modulating signal frequency, (c) the peak frequency deviation,
and (d) the modulation index.

Example 5.5 An FM transmitter is operating with the maximum frequency deviation of 75 kHz. What 
will be the modulation index if a sinusoidal signal is used for modulation and it has a frequency of (a) 100 
Hz, and (b) 20 kHz.
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Example 5.6 An FM signal with  single-tone modulation has a frequency deviation of 15 kHz and a 
bandwidth of 50 kHz. Find the frequency of the modulating signal.

Solution From  Carson’s rule, BW b= + = ¥ 32( 1) 50 10f mf

\ b
¥

+ =
350 10

2 2f
mf

, but b
D ¥

= =
315 10

f
m m

f

f f

\ ¥ ¥ ¥
+ =

3 32 15 10 50 10
2

m mf f

Multiplying throughout by fm, we get

= ¥ - ¥ = ¥3 3 32 50 10 30 10 20 10mf

\ = ¥ =310 10 10 kHzmf

Example 5.7 A signal p= ¥ 3( ) 5cos20 10x t t  angle modulates a carrier signal Ac cos wct. Determine 
the modulation index and the bandwidth of the modulated signal for (a) an FM system with kf = 12 kHz/
volt, and (b) a PM system with kp = 1.0 rad/volt.

Solution

 (a) bf = Modulation index 
◊Ê ˆ ¥ ¥

= = =Á ˜Ë ¯

3

4

12 10 5
6

10

f m

m

k A

f

\ bandwidth b= ◊ + = +2( ) 2( 1)T f m m f mB k A f f   (Carson’s rule)

   = ¥ ¥ ¥ =32 7 10 10 140 kHz

 (b) bp = Modulation index = kp.Am = 1 ¥ 5 = 5

\ bandwidth b= ◊ + = +2( 1) 2( 1)T p m m p mB k A f f

   
= ¥ ¥ =42 6 10 120 kHz

Example 5.8 A phase modulator with kp= 4 rad/v is fed with a sine wave modulating signal of 3 
V peak amplitude and 2 kHz frequency. What is the peak frequency deviation produced in the carrier 
frequency?

Solution The phase deviation f(t) produced by the modulating signal

   = p= ¥ ¥ ¥ 3( ) 4 3 sin2 2 10pk x t t

\ f p= ¥ 3( ) 12 sin 4 10t t

If the modulated signal = w j= +( ) cos[ ( )]c c cx t A t t , the  instantaneous frequency fi is given by

w f f
p p

= + = +
1 1

[ ( )] [ ( )]
2 2

i c c

d d
f t t f t

dt dt

p p
p

= + ¥ = + ¥ ¥3 3 31
 [12 sin(4 10 ) ] 24 10 cos(4 10 )

2i c c

d
f f t f t

dt

\ peak frequency deviation of the carrier is

D = ¥ =324 10 24 kHzf

Example 5.6 An FM signal with single-tone modulation has a frequency deviation of 15 kHz and a
bandwidth of 50 kHz. Find the frequency of the modulating signal.

Example 5.7 A signal 3( ) 5 0 0p( ) 5 20 10 t
3

x( ) 5cos20 10p= ¥p angle modulates a carrier signal Ac cos wct. Determine
the modulation index and the bandwidth of the modulated signal for (a) an FM system with kfk  = 12 kHz/f

volt, and (b) a PM system with kpk  = 1.0 rad/volt.

Example 5.8 A phase modulator with kpk = 4 rad/v is fed with a sine wave modulating signal of 3
V peak amplitude and 2 kHz frequency. What is the peak frequency deviation produced in the carrier
frequency?
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Angle Modulation 255

Example 5.9 A modulating signal x(t) with a trape-
zoidal waveform as shown is used for (a) frequency 
modulating a carrier signal of 2 MHz frequency with 
a  frequency deviation constant, kf of 4 kHz/volt, and (b) 
phase modulating a carrier with a phase deviation constant 
kp of 4 rad/V. In each of these cases, find the maximum 
instantaneous frequency of the modulated signal.

Solution
 (a) Instantaneous frequency = + ◊ ( )i c ff f k x t

\ maximum instantaneous frequency = (fi)max

= + ◊ = ¥ + ¥ ¥ =6 3
max[ ( )] 2 10 4 10 20 2.08 MHzc ff k x t

 (b) Instantaneous frequency j
p

= +
1

[ ( )]
2i c

d
f f t

dt
 where f(t) =  phase deviation = kp . x(t)

\
p

È ˘= + Í ˙Î ˚
max

max

( ) ( )
2

p

i c

k d
f f x t

dt

  Now  -= =
¥ 3

20
( ) 20,000

1 10

d
x t

dt
 in the interval 0 to 1 m.sec.

  It is zero from 1 m.sec to 4 m.sec and – 20,000 from 4 m.sec to 5 m.sec. Beyond 5 m.sec, it is always 
zero.

  Hence,

   

È ˘ =Í ˙Î ˚max

( ) 20,000
d

x t
dt

\
p p

È ˘= + = ¥ + ¥ ¥ =Í ˙Î ˚
6 3

max
max

4
( ) ( ) 2 10 20 10 2012.74 kHz

2 2

p

i c

k d
f f x t

dt

   = 2.01274 MHz
  This value is obtained in the interval 0 m.sec to 1 m.sec.

Example 5.10 A particular modulated signal is given by
w p w= + ◊( ) 2cos 0.4cos2 sinc c m cx t t f t t

Comment on the nature/type of modulation.

Solution w p w= + ◊( ) 2cos 0.4cos2 sinc c m cx t t f t t

p w q= + +2 22 (0.4cos2 ) cos[ ( )]m cf t t t

where
p

q p- È ˘= @Í ˙Î ˚
1 0.4 cos2

( ) tan 0.2 cos2
2

m
m

f t
t f t

Here, we have made use of the approximation that q ª q when q is quite small.

Now,  p p+ = +2 2 22 (0.4 cos2 ) 2 1 0.08 cos 2m mf t f t

Example 5.9 A modulating signal x(t) with a trape-
zoidal waveform as shown is used for (a) frequency
modulating a carrier signal of 2 MHz frequency with
a frequency deviation constant, kfk of 4 kHz/volt, and (b)
phase modulating a carrier with a phase deviation constant
kpk of 4 rad/V. In each of these cases, find the maximum
instantaneous frequency of the modulated signal.

Example 5.10 A particular modulated signal is given by
ic c m cx t t f t tw( ) 2cos 0.4cos2 sin) 2cos 0.4cos2= + ◊++w pppc c m cw( ) 2cos 0.4cos2 sin) 2cos 0.4cos2w ppppw ppp

Comment on the nature/type of modulation.

Fig. 5.5 Signal for Example 5.9
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256 Communication Systems

Since p £| cos 2 | 1mf t , p <<20.2 cos 2 1mf t . Hence, we will use the approximation that

Ê ˆ+ ª +Á ˜Ë ¯
1

1 1
2

x x  if x << 1

\ p w p
È ˘= + -Í ˙Î ˚

20.08
( ) 2 1 cos 2 cos[ 0.2 cos2 ]

2c m c mx t f t t f t

{ }p w p
È ˘= + + -Í ˙Î ˚

0.08
2 1 1 cos 4 cos[ 0.2 cos2 ]

2 m c mf t t f t

p w p= + -2[1.02 0.02 cos4 ] cos[ 0.2 cos2 ]m c mf t t f t

while w p-cos[ 0.2 cos2 ]c mt f t  indicates  angle modulation, the peak amplitude of this angle-modulated 

signal, which is p+È ˘Î ˚2 1.02 0.02 cos4 mf t  indicates amplitude modulation.
 Thus, the given xc(t) is having a combination of  amplitude modulation and angle modulation.

5.3 NARROWBAND ANGLE MODULATION

There exists considerable similarity between  narrowband angle modulation and AM. We will be examining 
this aspect in this section.
 Referring to Eq. (5.3), we know that an angle modulated signal could be represented by

w f= + ( ) cos[ ( ) ( )]c c cx t A t t

whereas stated in Eq. (5.11),

f =( ) ( )pt k x t  for PM

and f p a a= Ú
0

( ) 2 ( )
t

ft k x d  for FM

Expanding the above equation for xc(t), we get

w f w f= - ( ) [cos ( ) cos ( ) sin ( )sin ( )]c c c cx t A t t t t   (5.23)

Now, if f(t) is quite small, say f(t) £ 0.2 radians, we may make the following approximations:

f f fª ªcos ( ) 1 and sin ( ) ( )t t t

Substituting these in the expression for xc(t), we get

w f w= - ( ) [cos ( ) ( )sin ( )]c c c cx t A t t t   (5.24)

Let us now consider  single-tone modulation and let

w=( ) cosm mx t A t

5.3.1 Case of Phase Modulation

For this case f =( ) ( )pt k x t

 Hence, referring to Eq. (5.24), we have

\ w f w w w w= - = - ◊( ) [cos ( ) ( )sin ( )] [cos ( ) cos ( ) sin ( )]c c c c c c p m m cx t A t t t A t k A t t

But w w w w w w◊ = + + -
1

cos ( ) sin ( ) [sin( ) sin( ) ]
2m c c m c mt t t t

\ w w w w w= - + + -( ) cos ( ) [sin( ) sin( ) ]
2

c p m

c c c c m c m

A k A
x t A t t t

\ w w w p w w p= + + + + - +
NBPM

 ( ) cos ( ) [cos{( ) /2} cos{( ) /2}]
2

p c m

c c c c m c m

k A A
x t A t t t  (5.25)
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Equation (5.25) shows that the  narrowband phase-modulated 
signal too has three components – the carrier component repre-
sented by the first term, the upper side-frequency component 
represented by the second term, and the lower side-frequency 
component represented by the third term, just like an amplitude 
modulated wave. Further, just like AM, the narrowband angle 
modulated signal also has a bandwidth of 2fm, where fm is 
the highest modulating signal frequency. However, there is a 
difference – the two side-frequency components are shifted in 
phase by 90° relative to the carrier component, as may be seen 
from Eq. (5.25) and the  phasor diagram shown in Fig. 5.6.

5.3.2 Case of Frequency Modulation

For FM, f p a a p w a a= =Ú Ú
0 0

( ) 2 ( ) 2 cos
t t

f f m mt k x d k A d

p
w w

w

Ê ˆ
= = Á ˜Ë ¯

2
sin sin

f m f m

m m
m m

k A k A
t t

f

\ substituting this in Eq. (5.24), we get

w w w
È ˘Ê ˆ

= -Í ˙Á ˜Ë ¯Í ˙Î ˚
 ( ) cos ( ) sin ( )sin ( )

f m

c c c m c
m

k A
x t A t t t

f

w w w w w
Ê ˆ

= + + - -Á ˜Ë ¯
 cos ( ) [cos( ) cos( ) ]

2

f mc
c c c m c m

m

k AA
A t t t

f
 (5.26)

Hence, the components of an  NBFM signal may be represented by the following phasor diagram:

Fig. 5.6  Phasor diagram of a narrowband 

phase modulated signal

Fig. 5.7  Phasor diagram of a narrowband frequency 

modulated signal

Fig. 5.8  Phasor diagram of a single-tone modulated 

AM signal

 It may be instructive to compare the above phasor diagrams with that of a single-tone modulated AM 
signal shown in Fig. 5.8.
 For a single-tone modulated AM signal, 

w w= + ( ) [1 cos ( )]cos ( )c c m cx t A m t t

w w w w w= + + + - cos ( ) [cos( ) cos( ) ]
2

c
c c c m c m

mA
A t t t
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5.3.3 Spectrum of a  Narrowband FM Signal

Making use of Eq. (5.26), we may draw the two-sided spectrum of a narrowband FM signal as shown in 
Fig. 5.9.

Fig. 5.9 Two-sided spectrum of an NBFM signal

Example 5.11 A single-tone signal of 5 kHz frequency modulates a carrier of 90 MHz, and produces 
a frequency deviation of 50 kHz. Find the peak value of the angle of phase advance/retardation produced 
by this signal. Also determine the deviation that would be produced by a signal of equal amplitude and of 
1000 Hz frequency.

Solution From Eq. (5.20), we have

w b p= +
F.M

( ) cos[ sin2 ]c c c f mx t A t f t

\ phase advance/retardation produced at any instant t is given by 

f b p=( ) sin 2f mt f t

Obviously, the maximum value of this is b
Ê ˆD

D Á ˜Ë ¯f
m

f

f

\ in the first case, b
¥

= =
¥1

3

3

50 10
10

5 10
f

 radians

In the second case, Df remains the same as the amplitude of the new modulating signal is the same as that of 
the previously used modulating signal.

\ in the second case, b
¥

= =
¥2

3

3

50 10
50

1 10
f

 radians.

5.3.4 Generation of Narrowband PM/FM

Equation (5.24) tells us that a narrowband angle modulated signal can be represented as

w f w= - ( ) [cos ( ) sin ]c c c cx t A t t

where

0

( ) for  PM

( )
( )  2 for  FM

p

t

f

k x t

t
x d k

f
a a p

Ï
Ô

= È ˘Ì
Í ˙Ô
Î ˚Ó
Ú

Hence, as per this equation, an angle-modulated narrowband signal may be generated by means of an 
arrangement shown in Fig. 5.10.

Example 5.11 A single-tone signal of 5 kHz frequency modulates a carrier of 90 MHz, and produces
a frequency deviation of 50 kHz. Find the peak value of the angle of phase advance/retardation produced
by this signal. Also determine the deviation that would be produced by a signal of equal amplitude and of
1000 Hz frequency.
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Angle Modulation 259

Fig. 5.10 Generation of narrowband angle modulated signal

As we shall be seeing later, one important method of  generation of wideband FM, which in fact, is of much 
interest to us, viz., the Armstrong method, or the indirect method of generation of WBFM, is based on 
 generation of narrowband FM as per the arrangement shown above.

5.4 SPECTRUM OF AN ANGLE-MODULATED SIGNAL

Non-linearities inherently present in angle modulation process make the derivation of the spectrum of an 
angle-modulated signal mathematically intractable except when the modulating signal is a simple one, like a 
sinusoid. We shall therefore derive the spectrum for an angle-modulated signal when the modulating signal is 
a sinusoid and then try to extend this result for the case of slightly more complex modulating signals.

5.4.1 Spectrum for Single-Tone Modulation

We had seen that an angle-modulated wave could be represented as (refer to Eq. (5.3))

w f= + ( ) cos[ ( ) ( )]c c cx t A t t

where

0

( ) for  PM

( )
2 ( ) for  FM

p

t

f

k x t

t
k x d

f
p a a

Ï
Ô

= Ì
Ô
Ó

Ú

1. For FM: As we have assumed single-tone modulating signal, 

Let: w=( ) cosm mx t A t   (5.27)

\ f p w a a w
Ê ˆ

= = Á ˜Ë ¯
Ú
0

( ) 2 cos sin
t

m f

f m m m
m

A k
t k A d t

f
  (5.28)

Let us now define

b D =
Peak frequency deviation

modulating signal frequency

m f

f
m

A k

f
   (5.29)

b D =f fm   modulation index for FM
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2. For PM: For the case of PM let the single-tone modulating signal be represented by 

w=( ) sinm mx t A t   (5.30)

f w= =( ) ( ) sinp p m mt k x t k A t   (5.31)

We now define
b Dp   modulation index for PM D Dp m pk A m  (5.32)

Since kp represents the phase deviation for unit amplitude of the modulating signal and Am represents the peak 
amplitude of the modulating signal, bp obviously denotes the  peak phase deviation.
We thus find that

f b w=( ) sin mt t   (5.33)
wherein for FM

b b= = m f

f
m

A k

f
 and w=( ) cosm mx t A t   (5.34)

and for PM
b b= =p p mk A  and w=( ) sinm mx t A t   (5.35)

So, henceforth, we shall put
f b w=( ) sin mt t

and suitably interpret for PM and FM, so that the analysis becomes common for the two.
We know that

w f w b w= + = + ( ) cos[ ( ) ( )] cos[ ( ) sin ( )]c c c c c mx t A t t A t t

 \ w b w= ◊ sin( ) Re[ ]c mj t j t
c cx t A e e   (5.36)

In the RHS of the above, b wsin mj t
e  is a periodic function of time and its period is

Ê ˆ
= Á ˜Ë ¯

1

m

T
f

  (5.37)

Since the function is periodic, it can be expanded as a  Fourier series and the expansion will be valid for all 
time.

\ let b w w
+•

=-•
= Âsin m mj t jn t

n
n

e c e   (5.38)

where

p w
b w w

p w

w

p

+
-

-
= Ú

/
sin

/2

m

m m

m

j t jn tm
nc e e dt

If we put

w= mx t   (5.39)

Then,
w

Ê ˆ
= Á ˜Ë ¯

1
;

m

dt dx  when / ,mt xp w p= = +

and when 
– / , –mt xp w p= =

\ 
p

b

pp
- -

-
= Ú ( sin )1

2
j nx x

nc e dx   (5.40)
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The above integral is a function of n and b and is known as the ‘ Bessel Function’ of the first kind of order 
n with b as its argument. It is denoted by Jn(b). It cannot be evaluated in closed form. However, it has been 
extensively tabulated for various values of n, the order, and b, the argument.

\ b= ( )n nc J   (5.41)

Substituting this in Eq. (5.38), we have

b w wb
•

=-•
= Âsin ( )m mj t jn t

n
n

e J e   (5.42)

Now, substituting this in the RHS of Eq. (5.36), we get

w wb
+•

=-•

È ˘
= Í ˙

Î ˚
Â( ) Re ( )c mj t jn t

c c n
n

x t A e J e

 \ b w w
+•

=-•
= +Â    ( ) ( )cos( )     c c n c m

n

x t A J n t   (5.43)

Equation (5.43) enables us to expand the angle-modulated signal xc(t) in terms of its carrier and side-frequency 
components. The carrier component is given by b w0 ( )cosc cA J t  corresponding to n = 0. The upper side-

frequency components with frequencies w w w w w w+ + + K( ), ( 2 ), ( 3 ),c m c m c m  are obtained by putting n = 1, 

2, 3, . . . and the lower side-frequency components having frequencies of w w w w w w- - - K( ), ( 2 ), ( 3 ),c m c m c m

are obtained by putting n = –1, –2, –3, . . . . Thus, even for this simple case of single-tone modulating signal, 
the angle-modulated signal actually has an infinite number of side frequency components and an infinite 
bandwidth. However, fortunately it is possible to define what is called an  effective bandwidth which is finite, 
because for any b, Jn(b) tends to zero as n tends to infinity, making the amplitudes of the higher side-
frequency components negligibly small (see Fig. 5.11).

Fig. 5.11 Jn(b) for various values of n

An infinite series expansion of Jn(b) is given by

b

b

+

•

=

Ê ˆ -Á ˜Ë ¯
=

+
Â

2

0

( 1)
2

( )
!( )!

n k
k

n
k

J
k n k

  (5.44)

However, for small values of b, Jn(b) may be approximated by

b

b

Ê ˆ
Á ˜Ë ¯

= 2
( )

!

n

nJ
n

  (5.45)
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Some useful properties of Jn(b) are given in Table 5.1.

Table 5.1 Useful properties of Jn(b)

S. No. Property S. No. Property

1.

2.

3.

4.

J0(0) = 1

Jn(0) = 0, if n is a non-zero integer

Jn(b) = Jn(–b) if n is even

Jn(b) = –Jn(–b) if n is odd

5.

6.

7.

Jn(b) = J–n(b) if n is even

Jn(b) = –J–n(b) if n is odd

Jn(b) Æ 0 as n >> b

Expanding the RHS of Eq. (5.43) term by term, and noting the fact that

J–n(b) = +Jn(b) for n even

and J–n(b) = –Jn(b) for n odd

we get

b w b w w w w

b w w w w

b w w w w

= + + - -

+ + + -

+ + - -

+

0 1

2

3

( ) ( )cos [ ( ){cos( ) cos( ) }

( ){cos( 2 ) cos( 2 ) }

( ){cos( 3 ) cos( 3 ) }

  . . . . . . . .

    (an infinite number of such terms)

c c c c c m c m

c m c m

c m c m

x t A J t A J t t

J t t

J t t  (5.46)

Note that for an angle modulated signal, Ac J0(b) is the amplitude of the carrier, Ac J1(b) is the amplitude of 
the first side-frequency, Ac J2(b) is the amplitude of the second side-frequency, and so on. Figure 5.12 shows 
the amplitude spectra of an FM signal for single-tone modulation for different modulation indices. It may 
be noted that unlike in AM, the amplitude of the carrier component in the modulated signal varies with the 
modulation index. This is because the value of J0(b) goes on changing with the value of b (see Fig. 5.11) and 
may be positive, zero, or even negative. In fact, for values of b like b @ 2.3 for which J0(b) has zero crossings, 
the carrier component completely vanishes in the modulated signal.

Fig. 5.12 Amplitude spectra of an FM signal with single-tone modulation for different modulation indices

For these sketches, fm is decreased while keeping Amkf constant to get larger values of b.Note
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5.4.2 Spectrum of an Angle-Modulated Signal for a Periodic Message Signal

In the foregoing discussion, we have studied the spectrum of an angle-modulated signal when the modulating 
signal was a single-tone signal and found that the spectrum contains an infinite number of side-frequencies. 
We shall now determine the spectrum of an angle-modulated signal when the modulating signal is a periodic 
signal. We know that an angle-modulated signal can be represented as

w f= + ( ) cos[ ( ) ( )]c c cx t A t t   (5.47)

Let us assume that the modulation is  phase modulation and that the modulating signal x(t) is a periodic wave 
with a period T0 = 1/f0.

\ w f w b= + = +( ) cos[ ( ) ( )] cos[ ( ) ( )]c c c c c px t A t t A t x t

bw= ◊ ( )
Re[ ]pc

j x tj t
cA e e   (5.48)

Since x(t) is periodic with a period T0,
b ( )pj x t

e  is also periodic with the same period. Hence, we may expand 
this function as a complex-exponential  Fourier series.

Let
b p

•

=-•
= -• < < •Â 0

( ) 2 ;pj x t j nf t
n

n

e c e t

where
0

0

0

/2
( ) 2

0 /2

1
p

T
j x t j nf t

n

T

c e e dt
T

b p-

-
= ◊Ú   (5.49)

02( ) Re cj t j nf t
c c n

n

x t A e c e
w p

•

=-•

È ˘
= ◊Í ˙

Î ˚
Â

0cos{2 ( ) }c n c n
n

A c f nf t cp
•

=-•
= + + –Â   (5.50)

Example 5.12 Find the spectrum of a phase modulated signal when the modulating signal is a periodic 
square wave as shown in Fig. 5.13.

Fig. 5.13 A square wave modulating signal

Solution Let bp be the modulation index.

Then   ( ) cos[ ( ) ( )] cos[ ( ) ( )]c c c c c px t A t t A t x tw f w b= + = +

\ ( )
( ) Re[ ] pc

j x tj t
c cx t A e e

bw= ◊
Since x(t) is a periodic square wave with a frequency of 0 01/f T= , we may expand 

( )pj x t
e

b
, which is also 

periodic with the same period, using complex-exponential Fourier series.

Example 5.12 Find the spectrum of a phase modulated signal when the modulating signal is a periodic
square wave as shown in Fig. 5.13.

Fig. 5.13 A square wave modulating signal
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Let 0
( ) 2 ;pj x t j nf t

n
n

e c e t
b p

•

=-•
= -• < < •Â

\
0

0

0

/2
( ) 2

0 /2

1
p

T
j x t j nf t

n

T

c e e dt
T

b p-

-
= ◊Ú

Evaluating the integral and simplifying the result, we get

0

   odd

( ) 2

0 for even

2 sin   for odd

2 sin ;p

n

n
p

j x t j nf t
p

n

n
c

n n

e n e t
b p

p b

p b
+•

-

=-•

ÏÔ= Ì
ÔÓ

= -• < < •Â\

\ 0

  odd

0

  odd

  odd

2

( 2 )

0

( ) Re 2 sin

Re 2 sin

2 (sin ) cos( 2 )

c

n

c

n

n

j t j nf t
c c p

n

j t nf t
c p

n

p c c
n

x t A e n e

A ne

A n nf t

w p

w p

p b

p b

p b w p

+•
-

=-•

+•
-

=-•

+•

=-•

È ˘
Í ˙= ◊
Í ˙
Î ˚
È ˘
Í ˙=
Í ˙
Î ˚

È ˘
Í ˙= -
Í ˙
Î ˚

Â

Â

Â

5.5  POWER OF AN ANGLE-MODULATED SIGNAL AND 

EFFECTIVE BANDWIDTH

As we had already seen, an angle-modulated signal may be represented as

  ( ) cos[ ( ) ( )]c c cx t A t tw f= +

Hence, the average power in the angle-modulated signal is

w f

w f

= +

= + +

=

2 2 2

2 2

2 2

( ) cos [ ( )]

1 1
cos[2 2 ( )]

2 2

1
( )

2

c c c

c c c

c c

x t A t t

A A t t

x t A\  (5.51)

Equation (5.51) shows that an angle-modulated wave has a constant average power, since the 

RHS of the equation is a constant, independent of time.

From the analysis in the previous section leading to the spectrum of an angle-modulated signal, it appears as 
though the bandwidth occupied by an angle-modulated signal is infinitely large. Strictly, form a theoretical 
point of view, this is correct. But, as has been pointed out earlier, since the amplitude of the nth side-frequency 
component is AcJn(b) and as

Remark
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( ) 0 asnJ nb Æ Æ •  (Refer to Table 5.1)

most of the power of the angle-modulated signal resides in the carrier component and some finite number of 
side-frequency components. This enables us to define what is called the ‘ effective bandwidth’ of an angle-
modulated signal by considering only those sidebands which have a significant portion of the total power of 
the modulated signal.
 Following the above argument, we define the ‘effective bandwidth’ of an angle-modulated signal as the 
bandwidth occupied by those minimum number of first k side-frequency components, which along with the 
carrier component, have at least 98% of the total power of the modulated signal.

2 2

Now, power in the first  
1

side  frequency components ( )
2

and the carrier

k

c n
n k

k

A J b
=-

¸
Ô =˝
Ô
˛

Â

\

2 2

2 2
0

2 1

1
( )

2
0.98 ( ) 2 ( )

1

2

k

c n k
n k

n
n

c

A J

J J

A

b

b b=-

=
= = +

Â
Â

\ k must be so chosen that it is the smallest integer satisfying

2 2
0

1

( ) 2 ( ) 0.98
k

n
n

J Jb b
=

+ ≥Â   (5.52)

Table 5.2 A short table of Bessel functions (values of Jn(b) for various values of n and b)

n b=0.1 b = 0.2 b = 0.5 b = 1.0 b = 2.0 b = 5.0 b = 8.0 b = 10.0

0 0.997 0.990 0.938 0.765 0.224 –0.178 0.172 –0.246

1 0.050 0.100 0.242 0.440 0.577 –0.328 0.235 0.043

2 0.001 0.005 0.031 0.115 0.353 0.047 –0.113 0.255

3 0.020 0.129 0.365 –0.291 0.058

4 0.002 0.034 0.391 –0.105 –0.220

5 0.007 0.261 0.186 –0.234

6 0.001 0.131 0.338 –0.014

7 0.053 0.321 0.217

8 0.018 0.223 0.318

9 0.006 0.126 0.292

10 0.001 0.061 0.207

11 0.026 0.123

12 0.010 0.063

13 0.003 0.029

14 0.001 0.012

15 0.004

16 0.001

By referring to the  Bessel function tables (see Table 5.2) we find that for any given b, the value of k satisfying
Eq. (5.52) is approximately equal to the integer part of (1+b). For example, for b = 1, n = 2 = (b + 1); for b = 2, 

n = 3 = (b + 1), and so on. Since ( 1)b +Í ˙Î ˚  side-frequency components are to be considered, the transmission 
bandwidth BT for angle-modulated signals with modulation index b, is given by (for single-tone modulation)
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BT = Transmission bandwidth = 2 ( 1) mfb +Í ˙Î ˚   (5.53)

where xÍ ˙Î ˚  is used to denote the nearest integer value of x and fm is the frequency of the single-tone modulating 
signal. The above formula is generally referred to as ‘ Carson’s Rule’.
 It may be noted that in Eq. (5.53), b has to be taken as bp for phase modulation and bf for frequency 
modulation.
Since p p mk Ab = ◊

and ( ) /p f m mk A fb = ◊

where Am denotes the peak amplitude of the single-tone modulating signal, we may rewrite Carson’s Rule as

2( 1)    for  PM

2( )   for  FM

p m m

T
f m m

k A f
B

k A f

◊ +ÏÔ= Ì ◊ +ÔÓ
  (5.54)

where kp is the  phase deviation constant and kf is the  frequency deviation constant.
 When a non-sinusoidal modulating signal is used, as generally is the case, Carson’s rule is extended to this 
case by modifying it as follows.

2( 1)TB Wb= +Í ˙Î ˚   (5.55)

where W is the bandwidth of modulating signal, x(t), and bÍ ˙Î ˚  is the nearest integer value of b which is the 
modulation index defined as

max ( )    for  PM

max ( )
   for  FM

p

f

k x t

k x t

W

b

Ï È ˘Î ˚Ô
= Ì È ˘Î ˚Ô

Ó

  (5.56)

5.5.1  Relationship between PSD of an FM Wave and the PDF of Its 

Modulating Signal

There exists an interesting and useful relationship between the  power spectral density of an FM wave and 
the  amplitude probability density function of its modulating signal and we shall now derive this in a heuristic 
way.
 Let x(t) be the modulating signal, frequency modulating a carrier signal of peak amplitude Ac and frequency 
fc. Let x(t) have an amplitude probability density function (PDF) given by ( )Xf x .
 From Eqs. (5.6) and (5.7), we have the  instantaneous frequency fi of the modulated signal at the instant t,
given by

1
( ) ( )

2i c f cf f k x t f f
p

= + = + D

where fc is the carrier frequency, kf is the  frequency deviation constant and Df is the frequency deviation 
produced by x(t) at the instant t.
 Since ( )Xf x  is the amplitude probability density function of x(t), it follows that

[ ( ) ( )] ( )XP x x t x dx f x dx£ < + =
  = Probability of x(t) lying between x and (x+dx).

But, we know (from the expression for fi) that when x(t) lies between x and (x + dx), fi lies between 
1

2c ff k x
p

+

and
1

( )
2c ff k x dx
p

+ + .
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 Let ( )
cxP f  be the power spectral density of the frequency modulated wave. Then the area under this PSD 

curve is equal to the total average power of the modulated signal, and is equal to 2/2cA . So, the fraction of the 
power of the modulated signal within the frequency interval f = m to f = m + dm, is given by

2

( )

( /2)
cx

c

P d

A

m m

From the equation for the instantaneous frequency we know that when f the frequency of the FM wave lies 
between m and (m + dm), correspondingly, the value of x(t) lies between some x1 and x1 + dx. The fractional 

time for which x(t) lies between x1 and (x1 + dx) is given by 1( )xf x dx ; where 1( )xf x  is the value of ( )Xf x

at x = x1. Now, making the reasonable assumption that the fractional power of the modulated signal between 
frequencies m and (m + dm) is directly proportional to the fractional time for which x(t) lies between x1 and 
(x1 + dx), we have

1 12

( )
( )

( /2)
cx

X

c

P d
K f x dx

A

m m
=

where K1 is a constant of proportionality to dx and Ac is constant, we may write

( ) ( )
cx XP f Kf x= , where K is a constant.

Thus, we have the important result that ( )
cxP f , the PSD of an FM signal is directly proportional to ( )Xf x ,

the amplitude probability density function of its modulating signal x(t).

5.5.2 Effective Bandwidth of a Gaussian Modulated FM Signal

Though not exactly Gaussian, the amplitude density function of many of the signals that we come across 
in practise can be approximated to  Gaussian density. Determining the effective bandwidth of a Gaussian 
modulated signal therefore assumes importance. We shall now proceed with this, making use of the above 
result.
 If x(t), the modulating signal, has a Gaussian probability density function, it follows from the earlier result 
that the  power spectral density ( )

cxP f  also is going to be Gaussian. Since the total area under a PSD curve is 

to be equal to the average power, and since in our case, it is 2/2cA , the two-sided PSD of xc(t) may be written 
as

2 2 2 2
rms rms

2
( ) /2( ) ( ) /2( )

rms

( ) [ ]
4 2 ( )

c c

c

f f f f f fc
x

A
P f e e

fp

- - D - + D= +
D

A sketch of this is shown in Fig. 5.14.

Fig. 5.14 PSD of a  Gaussian modulated FM signal

Defining the  effective bandwidth, B as usual, as that bandwidth, within which 98% of the average power of 
the modulated signal is available, we may write
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2 2
rms

/22 2
( ) /2( )

/2rms

0.98
2 4 2 ( )

c

c

c

f B
f f fc c

f B

A A
e df

fp

+
- - D

-
= ◊

D
Ú

Let   ( )cf fm D - df dm\ = . When , /2
2c

B
f f Bm= - = -  and when , /2

2c

B
f f Bm= + =

\ RHS becomes

2 2 2 2
rms rms

2 2/2 /2
/2( ) /2( )

/2 0rms rms2 2 ( ) 2 ( )

B B
f fc c

B

A A
e d e d

f f

m mm m
p p

- D - D

-
◊ = ◊

D D
Ú Ú

If we now put 
rms rms

,
2( ) 2( )

d
y dy

f f

m m
= =

D D

\ 
rms 2

rms 2

2 2( )2 2
rms

0rms

2 2( )

0 rms

2 2 ( )
0.98

2 2 2 ( )

2

2 2( )

B

f
yc c

B

f
y

A A f
e dy

f

B
e dy erf

f

p

p

p

D
-

D
-

D
= ◊

D

È ˘
= = Í ˙

DÍ ˙Î ˚

Ú

Ú

From error function tables,

rms
rms

1.645 4.6( )
2 2( )

B
B f

f
= \ = D

D

5.5.3 Comparison between FM and PM

 1. Equation (5.54) clearly brings out the difference between phase modulation and frequency modulation. 
On the RHS of this equation, fm just adds to kfAm which is the peak frequency deviation, in the case 
of FM. But in the case of PM, fm multiplies (1 + kpAm). Thus, increase in fm, the modulating signal 
frequency, will have very little effect on the transmission bandwidth in the case of FM, while it will 
have a very significant effect (on the transmission bandwidth) in the case of phase modulation.

 2. Increasing the amplitude of the modulating signal, on the other hand, will have same effect on the 
transmission bandwidth in the case of both PM and FM.

As pointed out in point 1, the bandwidth of an FM signal is practically unaffected by an increase in the 
modulating signal frequency. This property, coupled with the fact that FM signals are relatively unaffected 
by the additive noise on the channel, makes frequency modulation eminently suited for broadcasting of high 
quality music which necessitates handling of audio frequencies up to even 15 kHz. That is why commercial 
FM broadcasting uses audio frequencies up to 15 kHz. (AM broadcasting on the other hand, handles audio 
frequencies up to only 5 kHz). In order to get a good  signal-to-noise ratio at the destination, these FM 
broadcasting stations use modulation indices (i.e., b values) of the order of at least 5 (see Chapter 9). As per 
Carson’s rule, therefore, a transmission bandwidth of at least 180 kHz is needed for FM broadcasting. In 
practise, a bandwidth of 200 kHz is provided.

Example 5.13 Equation (5.54), which gives the transmission bandwidth, BT, of an FM signal as 
2( 1)T f mB fb= +  for single-tone modulation. This equation, known as Carson’s rule, was derived on the 

basis that the ‘ effective bandwidth’, BT, has at least 98% of the total average power of the FM signal. 
Instead of Carson’s rule, sometimes we use the equation (2 1)T f mB fb= +¢ . Determine the percentage of 
average power of an FM signal contained in it, assuming 1fb = .

Example 5.13 Equation (5.54), which gives the transmission bandwidth, BT, of an FM signal as 

T f mB f2( 1)T f m2( 1)b2(2( for single-tone modulation. This equation, known as Carson’s rule, was derived on the
basis that the ‘effective bandwidth’, BT, has at least 98% of the total average power of the FM signal.
Instead of Carson’s rule, sometimes we use the equation T f mB f(2 1)T f m(2 1)b(2(2¢ . Determine the percentage of
average power of an FM signal contained in it, assuming 1fb = .
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Solution
 (a) As per Carson’s rule, 2(1 1) 4T m mB f f= + =
  The average power in a bandwidth up to k side frequencies expressed as a fraction of the total average 

power of the FM signal is given by Eq. (5.52) as

2 2
0

1

( ) 2 ( )
k

n
n

J Jb b
=

+ Â

  For 1fb b= = , k = 4 since BT = 4fm
  From Table 5.2 of Jn(b) for various values of n and b, if we compute, we get 

   
4

2 2
0

1

( ) 2 ( ) 0.999683n
n

J Jb b
=

+ =Â  for k = 4, b = 1.

\ % Power in BT = 99.9683
 (b) If we use the approximate formula (2 1)T f mB fb= +¢ ,

  with 1fb = , we get 3T mB f=¢ \ k = 3 in this case.

  Then 
3

2 2
0

1

( ) 2 ( ) 0.999675n
n

J Jb b
=

+ =Â

\ % Power in BT = 99.9675

Example 5.14 In an FM system, with a modulating signal frequency of 600 Hz and a peak modulating 
voltage of 3.6 V, the  modulation index is 60. Find the  frequency deviation constant and the peak frequency 
deviation. If the modulating signal frequency is reduced to 400 Hz while the modulating voltage is simul-
taneously increased to 4 V, what is the value of the modulation index?

Solution 
4

3.6 60 600
60 10 Hz/V

600 3.6

f m f

f
m

k A k
k

f
b

◊ ¥ ¥
= = = \ = =

\ peak frequency deviation = 3.6 ¥ 104 = 36 kHz

 In the second case, 
44 10 4

100
400 400

fk
b

◊ ¥
= = =

Example 5.15 Compute the bandwidth requirement for the transmission of an FM signal having a 
frequency deviation of 75 kHz and an audio bandwidth of 10 kHz. (JNTU Sept., 2007)

Solution Frequency deviation Df = 75 kHz

Audio bandwidth = 10 kHz \ fb  = modulation index = 75/10 = 7.5
\ maximum audio frequency = fm = 10 kHz = W
\ using  Carson’s Rule, the required bandwidth is given by
 Bandwidth = 2(bf + 1)W = 2(7.5 + 1)10 ¥ 103 = 170 kHz.

Example 5.16 An FM radio link has a frequency deviation of 30 kHz. The modulating frequency is 3 
kHz. Calculate the bandwidth needed for the link. What will be the bandwidth if the deviation is reduced 
to 15 kHz?  (JNTU Sept., 2007)

Example 5.14 In an FM system, with a modulating signal frequency of 600 Hz and a peak modulating 
voltage of 3.6 V, the modulation index is 60. Find the frequency deviation constant and the peak frequency 
deviation. If the modulating signal frequency is reduced to 400 Hz while the modulating voltage is simul-
taneously increased to 4 V, what is the value of the modulation index?

Example 5.15 Compute the bandwidth requirement for the transmission of an FM signal having a 
frequency deviation of 75 kHz and an audio bandwidth of 10 kHz. (JNTU Sept., 2007)

Example 5.16 An FM radio link has a frequency deviation of 30 kHz. The modulating frequency is 3 
kHz. Calculate the bandwidth needed for the link. What will be the bandwidth if the deviation is reduced
to 15 kHz? (JNTU Sept., 2007)
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Solution
In the first instance, 1 30 kHzfD =  and fm = 3 kHz

\
1f

b =  Modulation index 1 30
10

3m

f

f

D
= = =

\ by  Carson’s rule, the required bandwidth is

1

3
1 2( 1) 2(10 1) 3 10 66 kHzf mBW fb= + = + ¥ ¥ =

If now the deviation is reduced to 15 kHz,

\ 
2

2 15
5

3f
m

f

f
b

D
= = =

\ by Carson’s rule, the bandwidth required now is

2

3
2 2( 1) 2(5 1) 3 10 36 kHzf mBW fb= + = + ¥ ¥ =

Example 5.17 A signal x(t), whose  Fourier transform 
X(f) is shown in Fig. 5.15 is normalized so that |x(t)| £ 1. 
This signal is to be transmitted using FM with a frequency 
deviation constant kf = 60 kHz per volt. What will be the 
bandwidth required for transmission?

Solution Here, the bandwidth W of the modulating signal 
is

 W = 104 Hz

kf is given to be 60 kHz/volt and Am = 1 V since |x(t)| £ 1

\
3

3

60 10 1
6

10 10

f m

f

k A

W
b

◊ ¥ ¥
= = =

¥ .

\ 42( 1) 2 7 10 140 kHzT fB Wb= + = ¥ ¥ =

Example 5.18 An angle-modulated signal is of the form
7 3( ) 50cos[2 10 5 sin 2 1.5 10 ]cx t t tp p= ¥ ¥ + ¥ ¥

 (a) If xc(t) is a frequency-modulated signal, find the modulation index and the transmission bandwidth 
required.

 (b) If xc(t) is a phase-modulated signal, find the modulation index and the transmission bandwidth required.
 (c) In part (a), if the frequency of the modulating signal is doubled, what will be the modulation index and 

the transmission bandwidth?
 (d) In part (b), if the frequency of the modulating signal is doubled, what will be the modulation index and 

the transmission bandwidth?

Solution

 (a) 5 and 2(5 1)1500 18 kHz since 5
1500

f m

f T f

k A
Bb b

Ê ˆ
= = + = = =Á ˜Ë ¯

 (b) 5 and 2(5 1)1500 18 kHzp TBb = = + =

 (c) 2.5 and 2(2.5 1)3000 21 kHz since 2.5
3000

f m

f T

k A
Bb

Ê ˆ
= = + = =Á ˜Ë ¯

Example 5.17 A signal x(t), whose Fourier transform
X(f(( ) is shown in Fig. 5.15 is normalized so that |x(t)| £ 1.
This signal is to be transmitted using FM with a frequency
deviation constant kfk  = 60 kHz per volt. What will be the
bandwidth required for transmission?

Example 5.18 An angle-modulated signal is of the form
7 3( ) 50cos[2 10 5 sin 2 1.5 10 ]7 3

cx ( ) 50cos[2 10 5 sin 2 1.5 10) 50cos[2 10 5 sin 2 1.5 107 3
c 0 50 5 s0 5 s10 5 sin 250cos[2 10 5 sin 2 1.550cos[2 10 5 sin 2 1.5710 5 sin 210 5 sin 2107

(a) If xc(t) is a frequency-modulated signal, find the modulation index and the transmission bandwidth
required.

(b) If xc(t) is a phase-modulated signal, find the modulation index and the transmission bandwidth required.
(c) In part (a), if the frequency of the modulating signal is doubled, what will be the modulation index and

the transmission bandwidth?
(d) In part (b), if the frequency of the modulating signal is doubled, what will be the modulation index and

the transmission bandwidth?

Fig. 5.15  Spectrum of the signal of 

Example 5.17
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 (d) 5p p mk Ab = ◊ =  and is not affected by the doubling of fm.

2( 1) 2 6 3000 36000 Hz 36 kHzT p mB fb= + = ¥ ¥ = =

Example 5.19 An angle-modulated signal has the form 

( ) 100cos[2 4sin2000 ]cv t f t tp p= +  where fc = 10 MHz

(a)  Determine the average transmitted power. (b) Determine the peak phase deviation. (c) Determine the 
peak frequency deviation. (d) Is this FM or a PM signal? Explain.   (JNTU, May, 2007)

Solution

 (a) Average transmitted power 
2(100)

500
2

W= =
 (b) Peak phase deviation:
  Since 4 sin 2000 pt represents the phase deviation at any instant ‘t’ and since sin 2000pt has a peak value 

1, the peak phase deviation is equal to 4 radians.
 (c) Peak frequency deviation: The instantaneous frequency is given by

1
( ) [2 4sin2000 ]

2

4
2000 cos2000 4000 cos2000

2

i c

c c

d
f t f t t

dt

f t f

p p
p

p p p p
p

Ï ¸= +Ì ˝
Ó ˛

= + ◊ ◊ = + ◊

\ the frequency deviation at the instant ‘t’ is 4000 cos 2000pt and the peak frequency deviation is 4000 
Hz.

 (d) It can be considered to be PM signal with 4pb = and a modulating signal of sin 2000pt OR it can be 

considered to be an FM signal with 4fb =  and a modulating signal of cos 2000pt.

Example 5.20 An FM wave with modulation index 1b =  is transmitted through an ideal band 
pass filter with mid-band frequency fc and bandwidth 5fm, where fc is the carrier frequency and fm is the 
frequency of the sinusoidal modulating wave. Determine the amplitude spectrum of the filter output.

Solution From Eq. (5.46), the spectrum of an FM wave xc(t), with b as the modulation index, is given by

0 1

2

3

( ) ( )cos [ ( ){cos( ) cos( ) }]

                                     [ ( ){cos( 2 ) cos( 2 ) }]

                                     [ ( ){cos( 3 ) cos( 3 )

c c c c c m c m

c c m c m

c c m c m

x t A J t A J t t

A J t t

A J t t

b w b w w w w

b w w w w

b w w w w

= + + - -

+ + + -

+ + - - }]

                                       .   .   .   .  .+
Even though theoretically the side-frequency components are infinite in number on either side of fc, only 
the carrier component and the first two side-frequency components on the two sides of fc fall within the pass 
band of the BPF. 
 From Table 5.2 which gives the values of ( )nJ b  for some values of b and n = 0, 1, 2, 3, etc., we find that 

0 (1) 0.765J = ,
1(1) 0.44J = ,

2 (1) 0.115J = . Thus, the signal at the output of the filter is given by

( ) [0765cos 0.44{cos( ) cos( ) }

                            0.115{cos( 2 ) cos( 2 ) }]

c c c m c m

c m c m

y t A t t t

t t

w w w w w

w w w w

= + + - -

+ + + -

The spectrum of y(t) is as shown in Fig. 5.16.

Example 5.19 An angle-modulated signal has the form

( ) 100cos[2 4sin2000 ]cv t f t t( ) 100cos[2 4sin2000) 100cos[2 4sin2000c 4sin20004sin2000100cos[2100cos[2 where fc = 10 MHz

(a)  Determine the average transmitted power. (b) Determine the peak phase deviation. (c) Determine the 
peak frequency deviation. (d) Is this FM or a PM signal? Explain.   (JNTU, May, 2007)

Example 5.20 An FM wave with modulation index 1b = is transmitted through an ideal band
pass filter with mid-band frequency fc and bandwidth 5f5 m, where fc is the carrier frequency and fm is the
frequency of the sinusoidal modulating wave. Determine the amplitude spectrum of the filter output.

CS-Rao_05.indd 271CS-Rao_05.indd   271 1/18/2013 11:21:45 AM1/18/2013   11:21:45 AM



272 Communication Systems

Example 5.21 Express the carrier power as a fraction or percentage of the total power in an FM signal 
being transmitted with 2fb =

Solution With 2 2
02, ( ) (0.224) 0.050176f fJb b= = =

Total average power in the FM signal 
21

2 cA= , if Ac is the peak amplitude of the unmodulated carrier (see Eq. 
(5.51))

The average power in the carrier component 2 2
0

1
( )

2 c fA J b=  since the peak amplitude of the carrier component 
in an WBFM signal is given by 

0 ( )c fA J b  (See Eq. (5.46))

\

2 2
0

2
0

2

1
( )Carrier Power 2 ( ) 0.050176

1Total Power

2

c f

f

c

A J

J

A

b
b= = =

As a percentage, it is just 5.0176%

Example 5.22 A carrier signal cosc cA tw  is angle modulated by the sum of two single tones 
(sinusoids) of frequencies f1 and f2 with modulation indices b1 and b2, respectively. The modulated signal 
is

1 1 2 2( ) cos[ sin sin ]c c cx t A t t tw b w b w= + +
Derive an expression for its spectrum.

Solution The given angle-modulated signal may be written as

1 1 2 2sin sin( ) Re[ ]cj t j t j t
c cx t A e e e

w b w b w= ◊ ◊
From Eq. (5.42), we have

1 1 1 2 2 2sin sin
1 2( ) and ( )j t jn t j t jm t

n m
n n

e J e e J e
b w w b w wb b

• •

=-• =-•
= =Â Â

Substituting these in the above equation for xc(t), we have

1 2 1 2( ) ( ) ( ) cos[ ]c c n m c
n m

x t A J J t n t m tb b w w w
• •

=-• =-•
= + +Â Â

Example 5.21 Express the carrier power as a fraction or percentage of the total power in an FM signal
being transmitted with 2fb =

Example 5.22 A carrier signal c cA tcosc ccos is angle modulated by the sum of two single tones 
(sinusoids) of frequencies f1 and f2 with modulation indices b1 and b2, respectively. The modulated signal
is

1 1 2 2( ) cos[ sin sin ]2c c c( ) [ 2x ( ) cos[)c ( ) cos[) b1 1 21 1 21 21 2c b bi iisin sinsinsin sin1 1 21 21 2cos[cos[ sinsinsinsin1 1

Derive an expression for its spectrum.

Fig. 5.16 Amplitiude spectrum for Example 5.20
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Thus the spectrum will have the carrier component, side frequencies of the type 1cos[ ]ct n tw w±  and 

2cos[ ]ct m tw w±  and also of the type 1 2cos[( ) ]ct n m tw w w± ± .

5.6 GENERATION OF WIDEBAND ANGLE-MODULATED SIGNALS

5.6.1 Indirect or  Armstrong Method

An important method for generation of a wideband angle modulated signal is to first generate a narrowband 
angle-modulated signal using the narrowband angle modulator shown in Fig. 5.10 and then convert the 
narrowband signal into a wideband signal. This method is known as the ‘indirect method’ of generation of 
wideband FM and PM signals. It is also known as ‘Armstrong method’.

Fig. 5.17 Armstrong or  indirect method of generation of wideband angle-modulated signals

Figure 5.17 shows the block schematic diagram of the indirect method of generation of wideband angle-
modulated signals. As shown in the figure, the first stage is a narrowband angle modulator of the type shown 
in Fig. 5.10. The modulating signal x(t) and a low frequency carrier signal produced by a crystal oscillator are 
given as input signals and it uses these two signals to produce a narrowband angle-modulated signal with a 
carrier frequency of fc. A low frequency carrier is used for producing the narrowband signal. The next stage 
is a  frequency multiplier used for converting the narrowband signal into a wideband signal and it raises the 
carrier frequency from fc to nfc. The frequency multiplier stage consists of a non-linear device whose output 
is tuned to the desired harmonic of fc. Generally a class-c amplifier whose output circuit is a tank circuit 
tuned to nfc serves as an ‘Xn’ frequency multiplier. The collector current pulses of class-c amplifier have a 
conduction angle of about 100° to 200° and are quite rich in harmonics. Quite often this frequency multiplier 
stage consists of the cascade connection of several  doublers and/or  triplers.
 Although the output signal of the frequency multiplier stage is certainly a wideband angle-modulated 
signal, the carrier frequency, nfc, of this wideband signal will not in general be the correct desired carrier 
frequency at which the wideband signal is to be transmitted. Hence, we use a  mixer to which we connect the 
output of a  local oscillator having an appropriately chosen frequency f0 and if necessary, a chain of frequency 
multipliers, in order to finally get a carrier frequency which is the desired carrier frequency. As the mixer 
produces the sum frequency and the difference frequency, a bandpass filter which has a center frequency 
equal to either the sum frequency, or the difference frequency (whichever is needed) and whose pass band is 
adequate to accommodate the effective bandwidth of the wideband signal, is used.
 If the narrowband angle-modulated signal is represented as

  ( ) cos[ ( ) ( )]c c cx t A t tw f= + ; f(t) is small

then the output of the Xn frequency multiplier will be

  ( ) cos[ ( ) ( )]c cy t A n t n tw f= +
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The frequency multiplier multiplies the instantaneous frequency wi(t) which is given by

i c

d
(t) (t)

dt
w w f= +

If the BPF selects the difference frequency generated by the  mixer,

0  ( ) cos[( ) ( )]c cz t A n t n tw w f= - +   (5.57)

Since we can choose n and f0, by an appropriate choice of these two, we can ensure that the wideband 
 angle-modulated signal z(t) has the desired carrier frequency.

Advantages and disadvantages of indirect method
 1. As crystal oscillators are used for obtaining the carrier frequency, it (the carrier frequency) is very 

stable.
 2. Since the narrowband FM is generated by a phase modulator, a long chain of  frequency multipliers will 

have to be used to bring the  frequency deviation to the required level.

Example 5.23 In a wideband FM generator using the indirect method, the narrowband FM signal 
initially generated has a carrier frequency of 200 kHz and a frequency deviation of 49 Hz. Choose appro-
priate values for the local oscillator frequency for the mixer and the frequency multiplication required 
before and after the mixer if the final WBFM signal is to have a carrier frequency of 91.2 MHz and the 
standard frequency deviation of 75 kHz.

Solution Final carrier frequency = fc4
 = 91.2 ¥ 106 Hz

Initial carrier frequency = fc1
 = 200 ¥ 103 Hz

\
6

3

 Frequency multiplication needed 91.2 10
456

       for the carrier frequency 200 10

¸ ¥
= =˝

¥˛
Initial frequency deviation = 49 Hz = (Df)1

Final  frequency deviation = 75 ¥ 103 Hz = (Df)3

\
3

3

1

 Frequency multiplication needed ( ) 75 10
1530.6

( ) 49        for the carrier frequency

f

f

¸ D ¥
= = =˝ D˛

If we use frequency multiplication of 1530 at one go, the frequency deviation attains the correct value of 75 
kHz but the carrier frequency becomes 200 kHz ¥ 1530 = 306 MHz, which is too high a value.
 Hence, we shall split the frequency multiplication and perform it in two stages – one before the mixer and 
the other after the mixer. The mixer does not change the frequency deviation but can be used for reducing the 

carrier frequency to a value which when subjected to multiplication by the second stage of frequency multi-

pliers, will give the specified final carrier frequency.
 Since  frequency multipliers are generally either  doublers or  triplers, and since 64 ¥ 24 = 1536 ª1530, the 
overall frequency multiplication that we require, let us first subject the NBFM signal to a frequency multipli-
cation of 64.

\
2 1

364 200 10 64 12.8 MHzc cf f= ¥ = ¥ ¥ =

2 1( ) ( ) 64 49 64 3.136 kHzf fD = D ¥ = ¥ =

Example 5.23 In a wideband FM generator using the indirect method, the narrowband FM signal
initially generated has a carrier frequency of 200 kHz and a frequency deviation of 49 Hz. Choose appro-
priate values for the local oscillator frequency for the mixer and the frequency multiplication required
before and after the mixer if the final WBFM signal is to have a carrier frequency of 91.2 MHz and the
standard frequency deviation of 75 kHz.

Note
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 (Df) at the output of the mixer = (Df) at the input to the mixer = (Df)2

 = 3.136 kHz
Final carrier frequency required = 91.2 MHz = 

4cf

\ carrier frequency 
3cf  at the output of the mixer = 

691.2 10
3.8 MHz

24

¥
=

For the mixer, the input carrier frequency = 
2cf  = 12.8 MHz

Hence, the local oscillator frequency of the mixer = (12.8–3.8) MHz = 9 MHz
 Figure 5.18 shows the WBFM generator along with the carrier frequencies and frequency deviation at the 
various stages.

Fig. 5.18  Indirect method of generation of WBFM of Example 5.23

Solution

Fig. 5.19 WBFM generator of Example 5.24

 Since the mixing operation changes the frequency but not the  frequency deviation, and since frequency 
multipliers change both the frequency as well as the deviation, we shall use the frequency multipliers to get 
the required ratio of frequency deviation (from 25 Hz to 75 kHz) and try to get the final carrier frequency of 
102.4 MHz by an appropriate choice of fLO, the frequency of the local oscillator.

\ total frequency multiplication needed = 
3

3
1 2

1

( ) 75 10
3000

( ) 25

f
n n

f

D ¥
= = =

D

Now, 3
2 1 1 3 2 1 2 1

2

orLO LO

f
f f n f f n f n n f

n
= = - = -

Example 5.24 In a WBFM generator of the Armstrong type shown in Fig. 5.15, the initial low 
frequency carrier is of 200 kHz frequency. The maximum frequency deviation range is from 100 Hz to 15
kHz, and if the final maximum frequency deviation, and the carrier frequency are to be 75 kHz and 102.4
MHz, respectively, choose an appropriate multiplier and the mixer oscillator frequency.
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\ 6 3
2102.4 10 3000 200 10LOn f¥ = - ¥ ¥

\ 6
2 (102.4 600) 10 702.4 MHzLOn f = + ¥ =

Now, let us choose n2 = 100 and n1 = 30, so that n1n2 = 3000

\ 
6 6

2

702.4 10 702.4 10
7.024 MHz

100LOf
n

¥ ¥
= = =

Hence,
6 6

2 1 1 1 17.024 10 (7.024 6) 10 HzLOf f n f n f= - = ¥ - = - ¥

\ 2 1.024 MHzf = , and 3 2 2 102.4 MHzf f n= ¥ = , as required.

5.6.2 Direct Method of Generation of WBFM

The basic approach of the  direct method is quite simple. Here, we vary 
the frequency of an LC oscillator in accordance with the variations in the 
amplitude of the message or the modulating signal. This is accomplished by 
placing an additional reactance across the tank circuit of the oscillator and 
making this reactance to vary with the amplitude of the message. There are 
two methods for creating this variable reactance. One is to use a ‘ varicap’, or 
a  varactor diode and the other is to use a  reactance modulator.

Basic principle Let c0 be the tank circuit capacitance in the absence of 
any modulation and let

0

1

2
cf

LCp
=   (5.58)

where fc is the unmodulated carrier frequency. Let ( )Cx tD  be the capacitance produced across the tank 
circuit by the varicap or the reactance modulator.
\ total tank circuit capacitance = C(t) = C0 + ( )Cx tD ; |x(t)| £ 1
The instantaneous frequency of the oscillator at the instant ‘t’ is given by

0
0

1 1
( )

2 ( )
2 1 ( )

if t
LC t C

LC x t
C

p
p

= =
È ˘Ê ˆD

+Í ˙Á ˜Ë ¯Í ˙Î ˚

Then, using Eq. (5.58), we may write fi(t) as

0

1
( )

1 ( )

i cf t f
C

x t
C

=
Ê ˆD

+ Á ˜Ë ¯

  (5.59)

Since |x(t)| £ 1 and 
0

C

C

Ê ˆD
Á ˜Ë ¯

 is generally very small,

 \
0

( ) 1
C

x t
C

Ê ˆD
D Œ<<Á ˜Ë ¯

  (5.60)

If we now make use of the approximation that

Fig. 5.20  Variable capacitor 

across the tank 

circuit
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1 1
1

21

Ê ˆª - ŒÁ ˜Ë ¯+ Œ
  (5.61)

we get

0

0

1
( ) 1 ( )

2
1 ( )

i c c

C
f t f f x t

CC
x t

C

È ˘Ê ˆD
= ª -Í ˙Á ˜Ë ¯Í ˙Ê ˆD Î ˚+ Á ˜Ë ¯

  (5.62)

The approximation of Eq.(5.61) is accurate up to 1% for 
0

C

C

Ê ˆD
Á ˜Ë ¯

£ 0.013

i.e., for 
0

( ) 0.0065
2c c

C
f x t f

C

Ê ˆD
£Á ˜Ë ¯

But
0

( )
2c

C
f x t f

C

Ê ˆD
= D =Á ˜Ë ¯

  Peak frequency deviation (see Eq. (5.62))

This amounts to saying that Eq. (5.62) is accurate up to 1% if

0.0065
c

f

f

Ê ˆD
£Á ˜Ë ¯

  (5.63)

Noting that fc, the unmodulated carrier frequency for FM should be in the VHF range in the 88–108 MHz 
band, let us take fc to be typically 100 MHz. Then Eq. (5.63) means that (Df), the  peak frequency deviation 
that can be obtained has to be limited to 

8( ) 0.0065 10 Hz

( ) 650 kHz

f

f

D £ ¥
D £or    (5.64)

So, it turns out that this is not at all a restriction since the frequency deviation that we need in practise 
(75 kHz) is much smaller than 650 kHz.
 Thus, we can obtain a WBFM signal by producing a variable capacitor that varies according to the amplitude 
variations of the modulating signal. This variable capacitor can be realized either by using a varactor diode 
or by means of a reactance modulator. What is important is that the direct method of generation of WBFM 
needs only simple circuits that do not involve any frequency multipliers, etc. However, the direct method of 
generation uses LC oscillators for the carrier generation and these have poor frequency stability. Hence, in 
order to meet the stringent specifications regarding the carrier frequency stability for transmitters, it becomes 
necessary to use some  Automatic Frequency Control or AFC arrangement in conjunction with these LC oscil-
lators. These are discussed in detail in Chapter 6 which deals with AM and FM transmitters and receivers. 
We shall now discuss briefly, the two methods – one using a varactor diode and the other using a reactance 
modulator, for obtaining the capacitance that varies according to the amplitude variations of the modulating 
signal.

5.6.3 Using a Varactor Diode

The modulating signal x(t) is given in series with the reverse bias for the  varactor diode and the diode itself 
is placed across the tank circuit of an LC oscillator. Figure 5.21 shows a tuned-collector  LC oscillator across 
whose tank circuit, a varactor diode is connected. The RFC (RF choke) together with the bypass capacitor Cb

ensures that the RF from the oscillator does not enter the modulating signal circuit. The coupling condenser, 
Cc, is of such a small value that it works like a perfect open circuit for the modulating signal frequencies 
while offering negligible reactance to the RF signal. It also prevents the dc bias supply of the varactor from 
reaching the oscillator.
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Fig. 5.21 Typical arrangement for putting the  varactor diode across the tank circuit of an LC oscillator

5.6.4 Using a Reactance Modulator

Principle of operation Let the RF voltage generated by the 
LC oscillator be applied across the terminals A-A.
 In the analysis that follows, we shall make the following 
assumptions:

 1. 1 di i<<

 2. cX R>>

The gate voltage  1 ( )g
c

e
e i R R

R jX
= = ◊

-
  (5.65)

The drain current 
( )d m g m

c

e R
i g e g

R jX

◊
= ◊ = ◊

-
  (5.66)

Because of our first assumption that 1 di i<< , we may write the 
impedance seen across the terminals A-A as

( ) 1
1c c c

d m m m

e R jX R jX Xe
z j

i e g R g R g R

- - È ˘= = = = -Í ˙◊ ◊ ◊ Î ˚   (5.67)
But since Xc >> R (second assumption), we may write

c

m

X
z j

R g
ª -

◊
  (5.68)

The above equation shows that the impedance z is a capacitive reactance given by

1 1

2 2
c

eq
m c m c eq

X
X

g R f Cg R f Cp p
= = =

◊
  (5.69)

where fc is the frequency of the oscillator voltage and 

R Ceq mC g= ◊ ◊   (5.70)

Hence, the tank circuit of the oscillator, which is connected across the terminals A-A will effectively find a 
capacitance Ceq across the terminals. Thus, if we want to make this ( )eqC C x t= D ◊  of Fig. 5.20, we should 
make gm to vary according to the variations in the amplitude of the message signal, x(t).

Fig. 5.22  A FET-based  reactance 

modulator
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Recalling that

∂
D

∂
constantds

d
m

g
v

i
g

e   (5.71)

all that needs to be done to make gm proportional to x(t), is to operate the FET in that part of its transfer 
characteristic where 2

d gi Ke=  (so that gma eg) and place the message signal x(t) in series with the gate bias 
voltage.
 Note that although Fig. 5.23 shows a FET based reactance modulator, the foregoing analysis is equally 
applicable to a BJT-based reactance modulator. Figure 5.23 shows a BJT-based reactance modulator used in 
conjunction with a  Colpitt’s oscillator for generating  wideband FM.

Fig. 5.23 Direct method of generation of wideband FM using a reactance modulator

While the  varactor diode can only present a capacitive reactance across the tank circuit of the oscillator, 

a  reactance modulator can offer a capacitive, or an inductive reactance across the oscillator tank circuit. For 
instance, if the positions of R and C are interchanged in the reactance modulator circuit if Fig. 5.22, it can be 
shown that the circuit to the left of terminals A-A will appear as an inductive reactance.
 Reactance modulator offers better stability than the varactor diode circuit. However, it suffers from the 
disadvantage that the input impedance is very small. This is because of the small values of R and Xc of the 
series RC circuit. Further, at very high frequencies of the oscillator, the Xc becomes small (even if we make 
C quite small) and hence R also has to be made small, reducing the input impedance to such low values as to 
make the circuit unworkable. So, to realize the carrier frequencies required for FM, it becomes necessary to 
use frequency multipliers while working the oscillator at a low frequency, typically less than about 5 MHz.

Fig. 5.24 Varactor diode direct method of generation of a WBFM signal
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Fig. 5.25 Reactance-modulator method of generation of WBFM signal

As mentioned earlier at the beginning of this section, both the methods suffer from the disadvantage that the 
carrier frequency is obtained from an LC oscillator and not a crystal oscillator. Hence, the carrier  frequency 
stability will be poor. This makes it necessary to use some automatic frequency control wherein the carrier 
frequency of the WBFM signal is controlled by a crystal oscillator. Details of the AFC circuit are given in 
Chapter 7 in which transmitter details are discussed.

5.6.5 Comparison of Narrowband and Wideband FM

Wideband FM typically has a maximum deviation of 75 kHz and makes use of audio frequencies up to 15 
kHz. Thus, it is eminently suitable for high quality music broadcasting, since FM has considerable immunity 
for additive noise. The bandwidths occupied by these wideband FM signals are, of course, large and are of 
the order of 200 kHz.
 Narrowband FM (strictly speaking, it is not NBFM as defined earlier) on the other hand is used for FM 
mobile communication systems operating in the VHF band and used by the police department, by the taxis 
and for ship-to-shore communication. Unlike music, speech requires only intelligibility but not high quality. 
Hence, audio frequencies in the range of 30 Hz to about 3 kHz or 5 kHz would be quite sufficient. Even 
for these speech (or telephone) quality audio frequency ranges, the bandwidth required for these so-called 
NBFM communication systems may be of the order of 25 to 30 kHz since  frequency deviations of the order 
of 10 to 15 kHz are used in order to get at least some degree of noise immunity, as the NBFM in the strict 
sense, is no better than conventional AM insofar as noise performance is concerned. These point-to-point FM 
 mobile communication systems operating in the VHF band also make use of  pre-emphasis and  de-emphasis 
in order to get good SNR at the destination.

5.7 EFFECTS OF CHANNEL NON-LINEARITIES ON FM SIGNALS

We shall now briefly discuss the effect of passing an FM signal

( ) cos[2 ( )]c c cx t A f t tp f= +   (5.72)

where

0

( ) 2 ( )
t

ft k x df p a a= Ú   (5.73)

through a memoryless channel having a non-linear input-output relation such as

2 3
0 0 1 2 3( ) ( ) ( ) ( )i i ie t a a e t a e t a e t= + + +   (5.74)

where ei(t) and e0(t) represent, respectively, the input and output voltages, while a0, a1, a2 and a3 are constants. 
Replacing ei(t) by xc(t) in Eq. (5.74), expanding the terms on the right-hand side and rearranging the terms, 
we get

2 3
0 0 2 1 3

2 3
2 3

1 3
( ) cos[2 ( )]

2 4

1 1
cos[4 2 ( )] cos[6 3 ( )]

2 4

c c c c

c c c c

e t a a A a A a A f t t

a A f t t a A f t t

p f

p f p f

Ê ˆ Ê ˆ
= + + + +Á ˜ Á ˜Ë ¯ Ë ¯

+ + + +
  (5.75)
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Thus, the channel output, e0(t) consists of a dc component and three FM signals with fc, 2fc and 3fc as 
their carrier frequencies. The FM signal with carrier frequency fc, which is the desired component, can be 
separated out from the rest by using a BPF with center frequency fc and bandwidth equal to 

max
2 ( )fk x t WÈ ˘+Î ˚   (5.76)

where W is the bandwidth of the message signal, x(t). The BPF output is

3
1 3

3
cos[2 ( )]

4c c ca A a A f t tp f
Ê ˆ+ +Á ˜Ë ¯

  (5.77)

Thus, we find that the effect of the  non-linearity of the channel is only to change the amplitude of the FM 
signal, which, of course, does not cause any problem, as it is no distortion. On the other hand, instead of an 

FM signal, if we had passed an AM signal through the same channel, it would have got terribly distorted.
This therefore, indicates the advantage in using FM when the channel includes devices like say, the TWT 
amplifier which generally has a non-linear input-output relation when it is operating at its power limit.
 However, channel non-linearities of a type which produce phase changes with signal amplitude changes, 
will create problems, and it should be ensured that such non-linearities are very small.

Example 5.25 The tank circuit of a 0.5 MHz LC oscillator has an inductance of 1 mH connected 
across a capacitor. The output of this oscillator is frequency modulated by an FET  reactance modulator 
consisting of a series connection of a 1500 W resistor and a 10 pf capacitor, with the capacitor connected 
between the gate and drain of the FET. The message signal varies the mutual conductance of the FET by 
±0.6 mA/volt, find the peak frequency deviation that is produced.

Solution 
3 120.6 10 1500 10 10eq mc g RC

- -= = ¥ ¥ ¥ ¥
  = 9 pf = DC

\  peak frequency deviation = (f.DC)/2C0

6 12

0

0.5 10 9 10

2 C

-¥ ¥ ¥
=

¥
where C0 = tank circuit capacitance

\ since 0 0 2 2
00

1 1
,

42
f C

f LLC pp
= =

¥ ¥

10
0 2 10 3

1
10 F

4 25 10 10
C

p

-
-= =

¥ ¥ ¥
.

\ peak frequency deviation 
6 12

10

0.5 10 9 10
22.5 kHz

2 10

-

-
¥ ¥ ¥

= =
¥

5.8 DETECTION OF FM SIGNALS

Since in FM the carrier frequency is changed in accordance with the amplitude of the modulating signal, FM 
signal demodulation is essentially one of frequency-to-amplitude conversion. There are several  FM demodu-
lators – the slope detector, the phase discriminator of Foster and Seeley, the ratio detector, the FM feedback 
detector, the quadrature FM detector, the zero-crossing detector and the phase-locked loop detector. The 
slope detector, historically the earliest and also the simplest of all, is, of course, no longer in use; but once the 
principle of it is understood, it is easy to understand the phase discriminator and ratio detector. So we shall 
first briefly discuss the principle of the  slope detector.

Example 5.25 The tank circuit of a 0.5 MHz LC oscillator has an inductance of 1 mH connected 
across a capacitor. The output of this oscillator is frequency modulated by an FET reactance modulator
consisting of a series connection of a 1500 W resistor and a 10 pf capacitor, with the capacitor connected
between the gate and drain of the FET. The message signal varies the mutual conductance of the FET by
±0.6 mA/volt, find the peak frequency deviation that is produced.
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5.8.1 Slope Detector

In the  mixer stage of the receiver, the carrier frequency of the received signal is changed to a fixed frequency 
called the intermediate frequency, fif, which has a value of 10.7 MHz in the case of standard  FM broadcast 
receivers. Hence, the FM signal arriving at the input to the  discriminator (from the IF stage) is having a 
carrier frequency of fif. The slope detector simply consists of a resonant circuit tuned to a frequency f0 which 
is slightly more than fif followed by an envelope detector. The f0 is so chosen that fif falls in the middle of the 
range of frequencies over which the response of the resonant circuit is almost linear. This region is from fmin

to fmax as shown in Fig. 5.26. 

Fig. 5.26 Principle of  slope detector

As can be seen from Fig. 5.26, the frequency variations of the input FM signal are converted into corre-
sponding changes in voltage at the output of the detector. This frequency-to-voltage conversion will be linear 
to the extent that the region marked ‘linear region’ is really linear. Thus, the slope detector converts the FM 
signal into an AM signal with carrier frequency of fif = 10.7 MHz and modulating signal the same that the FM 
signal was carrying. The AM signal can be detected and the modulating signal extracted by using a conven-
tional  envelope detector as shown in Fig. 5.27.

Fig. 5.27 Frequency-to-amplitude converter followed by an envelope detector

Although it is simple and inexpensive, the slope detector suffers from one serious disadvantage, viz.,

non-linearity in the frequency-to-amplitude conversion. This non-linearity arises from the fact that the 
response curve of the resonant circuit can be considered to be linear only over a very small region.
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5.8.2 Dual-Slope Detector or Balanced Discriminator

To overcome the problem of non-linearity encountered in the simple slope detector discussed earlier, Foster 
and Seeley proposed the dual-slope detector. This makes use of two resonant circuits with identical responses 
but with slightly different resonant frequencies. The technique used in order to obtain a larger linear range is 
illustrated in Fig. 5.28(b).

Fig. 5.28 (a)  Dual slope detector circuit, (b) Technique for larger linear range

When the incoming signal frequency is equal to the IF, the responses of H1(f) and H2(f) will be equal and 
so the voltages developed across R1 and R2 will be equal. From the way D1 and D2 are connected, terminals 
A and B will be at the same potential with respect to the ground and so E0, the potential difference between 
them is zero. If the incoming signal has a frequency above the IF, the response of H2(f) will be more and that 
of H1(f) will be less (when compared to what it was when incoming signal frequency was IF). Hence, the 
voltage drop across R1 will be greater than the voltage drop across R2. Hence, terminal A will be at a higher 
potential than terminal B with respect to ground and E0 π 0. If the incoming signal has a frequency less than 
the IF, response H1(f) will be more than the response H2(f), causing B to be at a higher potential than A.
Thus, the frequency variations of the incoming FM signal are converted into corresponding variations in the 
amplitude of E0. Therefore E0 will be the modulating signal assuming the overall response (see Fig. 5.28(b)) 
to be perfectly linear between f1 and f2.

5.8.3 Foster–Seeley Discriminator

Originally developed as a subsystem of an automatic frequency control unit, this FM detector is known as 
 Foster–Seeley discriminator,  Phase-shift discriminator and  center-tuned discriminator.
 A tank circuit consisting of a center-tapped inductance L2 and capacitor C2 is inductively coupled to the 
inductance L1 of the tank-circuit of the IF stage. The diodes D1 and D2 and the elements R3, C3 and R4, C4 are 
connected to this secondary side tank circuit as shown in Fig. 5.29. Further, a large RF coupling capacitor C
and a large RF choke are connected as shown in the figure.
 The primary and secondary tank circuits are tuned to the same frequency – the IF, which is the carrier 
frequency for the FM signal being fed to the discriminator. At the RF, the circuit comprising C, L and C4 is 
effectively coming across L1. Since the reactance of the RF choke L far exceeds the reactances of C and C4,
the voltage across the choke L, say VL, is practically equal to the voltage across the primary, i.e., VP.

\ L PV V@   (5.78)

If M is the mutual inductance between the primary and secondary windings, the voltage induced in the 
secondary, viz., Vs, is given by

s pV j MIw= ±   (5.79)
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Fig. 5.29  Foster–Seeley discriminator

The direction of winding of the secondary determines whether the positive or the negative sign is to be used. 
Ip in Eq. (5.79) above, denotes the current flowing through the primary winding L1, and is given by

1

P
P

V
I

j Lw
@  (5.80)

While writing Eq. (5.80), we have assumed that the secondary side load impedance reflected into the primary, 
as well as the resistance of the primary coil is negligible, since the Q-factors of the primary and secondary 

are large and the  mutual inductance M is small.
 Taking the negative sign in RHS of Eq. (5.79) and substituting in it for Ip using Eq. (5.80), we get

1
s p

M
V V

L
= -   (5.81)

This induced voltage Vs produces a voltage drop Vab across the capacitor C2 given by

2

2
2 2 2 1

2 2

(1/ ) 1

(1/ )
1

ps
ab

c

MVV j C
V

R j L j C L
j C R

w

w w w
w

w

È ˘= = Í ˙+ + Ï ¸Ê ˆÔ ÔÍ ˙- -Ì ˝Á ˜Í ˙Ë ¯Ô ÔÍ ˙Ó ˛Î ˚

  (5.82)

Hence, when the frequency f of the incoming FM signal is equal to the IF, i.e., fc, then

1 2 2
ab p

M
V j V

L C Rw

È ˘
= Í ˙

Î ˚
  (5.83)

i.e., Vab leads Vp by 90°.
The voltage Va0 applied to diode D1 is given by

1 1

2 2ao ab L ab PV V V V V= + = +   (5.84)

The voltage Vbo applied to diode D2 is given by

1 1

2 2bo ab L ab PV V V V V= - + = - +   (5.85)

Hence, when f = fc, i.e., when there is no modulation for the incoming signal, the phasor diagram will be as 
shown in Fig. 5.30(a). 
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Fig. 5.30  Phasor diagrams showing voltages across D1 and D2 for (a) f = fc, (b) f > fc,, (c) f < fc

Thus Vao = Vbo. The diode D1 charges capacitor C3 and diode D2 charges capacitor C4. Neglecting the diode 
drops and assuming R3C3 and R4C4 to be large compared to (1/fc), we may say that C3 and C4 will be 
charged to the peak values of the voltage Vao and Vbo respectively. From Fig. 5.30(a), we find that when 

f = fc, ao boV V= . Hence,

do eoV V=
and therefore,

V2 = 0

From Eq. (5.82), we find that the phasor diagrams for f > fc and f < fc will be as shown in Figs. 5.25(b) and 
(c) respectively and that

 1. For f > fc: ao boV V> \ V2 is positive and equal to ao boV V-

 2. For f < fc: ao boV V< \ V2 is negative and equal in magnitude to bo aoV V-
For the  Foster–Seeley discriminator, if we plot the frequency response around fc, we will get the S-shaped 
curve similar to the one shown in Fig. 5.28(b); and the frequency-to-amplitude conversion is fairly linear if 
the discriminator is properly designed. However, this discriminator responds to amplitude variations also, as 
is evident from Eqs. (5.83) and (5.85). Hence, if this discriminator is used, it must be preceded by a  limiter 

stage.

5.8.4 Ratio Detector

The  ratio detector is a modified version of the Foster–Seeley discriminator, the modifications being such as 
to make it unresponsive to the amplitude variations of the incoming FM signal while responding in the same 
way as the Foster–Seeley circuit for the input signal’s frequency variations.
 The circuit of a ratio detector is shown in Fig. 5.31.

Fig. 5.31 Ratio detector
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 It may be noted that the  ratio detector circuit is essentially the same as that of the  Foster–Seeley discrimi-
nator except for the following three modifications:
 1. Diode D2 is reversed in direction.
 2. A large capacitor C5 is connected across the output voltage of the two diodes.
 3. The output voltage of the detector is drawn across 0¢ and 0.

5.8.5 Frequency-to-Amplitude Conversion

In the Foster–Seeley discriminator, we had seen that the output voltage is equal to the difference between 
the output voltages of the two diodes and that it varies in amplitude according to the amount of deviation in 
frequency of the input FM signal from the unmodulated carrier frequency. We shall now show that although 
the output voltage is now taken between the terminals 0¢ and 0, it is still proportional to the difference in the 
diode output voltages.

Output voltage 0 0 0e eV V V¢= -

But since 3 4 0

1
, ( )

2e deR R V V¢= =

\ 0 0 0 0
0 0 02 2 2

de d e d e
e e

V V V V V
V V V

+ -
= - = - =   (5.86)

Vdo is the dc output voltage of diode D1 and Voe is the dc output voltage of diode D2. Thus, just like in the 
Foster–Seeley circuit, here also, the output voltage is proportional to the difference between the diode output 
voltages. The only difference is that whereas it was equal to the difference between the diode output voltages 
for the Foster–Seeley discriminator, in the case of the ratio detector, it is one-half of it. However, here too, 
the output voltage amplitude varies in accordance with the amount of deviation of the input signal frequency 
from the unmodulated carrier frequency – just like the Foster–Seeley discriminator.

5.8.6 Response to Amplitude Variations

We shall now show, in a qualitative manner, how the ratio detector responds to changes in the amplitude of 
the incoming FM signal so as to make its output unaffected by these amplitude variations.
 It is the capacitor C5 that makes the ratio detector’s output to be unaffected by amplitude variations. 
This it does in two ways. Primarily the large time constant associated with it does not permit the voltage 
across it to change quickly. Thus, irrespective of changes in the amplitude of the incoming signal, it tries to 
maintain a constant voltage Vde. That is the sum of the two diode output voltages is kept constant even while 
the difference between them changes as the frequency of the incoming signal changes. Secondly, it helps 
in bringing into play as amplitude-dependent damping of the primary and secondary tank circuits in such a 
way as to offset the effect of any increase or decrease of the amplitude. For example, if the amplitude tries 
to increase suddenly, a larger charging current tends to flow into the capacitor C5. But, as its voltage and 
therefore the load voltage cannot increase suddenly, it amounts to having a low value of load presented to the 
secondary side tank circuit and its Q-factor is lowered. Because of the reflected load, the primary side tank 
circuit also will have its Q-factor lowered. These changes in Q will lower the IF amplifier gain and therefore 
the amplitude of the incoming signal fed to the detector gets reduced automatically. Similarly, when the 
amplitude of incoming signal decreases suddenly, the loading on the tank circuit will decreases their Q-factor 
will increase and the IF amplifier gain will increase, which in turn will tend to increase the amplitude of the 
signal fed to the discriminator.
 Because of the above reasons, the ratio detector does not respond to sudden changes in the amplitude of 
the incoming FM signal such as those caused by the additive noise on the channel.  Slow fading of the signal, 

however, does cause the ratio detector output voltage to change accordingly.
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5.8.7 Quadrature FM Detector

In this, a quadrature signal is first generated from the received FM signal (i.e., output of the IF amplifier or 
the limiter) by passing it through a delay line or a phase-shift network. This delay line/phase-shift network 
is so designed that at carrier frequency it gives a phase shift of 90° while giving a group delay of say some t1
sec. As shown in Fig. 5.32, this quadrature signal is multiplied by the FM signal given as input to the delay 
line/phase-shift network and the product is low pass filtered with an LPF having a cut-off frequency of W Hz, 
which is the message bandwidth.

Fig. 5.32 A  quadrature FM detector

Let the FM signal from the IF amplifier fed to the delay-line and the analog multiplier be represented as

0

( ) cos[ ( )]

where,    ( ) 2 ( )

c c c

t

f

x t A t t

t k x d

w f

f p a a

= + ¸
Ô
˝

= Ô
˛

Ú
  (5.87)

kf being the deviation constant and x(t), the normalized message signal. Then the quadrature signal is

1

1

( ) cos 90 ( )

sin[ ( )]

q c c

c c

x t A t t t

A t t t

w f

w f

= - ∞ + -

= + -   (5.88)

\ output of the analog multiplier is given by

1 ( ) sin[ ( )]cos[ ( )]c cy t t t t t tw f w f= + - +

\ 1 1

2
1 1

2
1 1

( ) [sin cos ( ) cos sin ( )][cos cos ( ) sin sin ( )]

1
sin 2 cos ( )cos ( ) cos cos ( )sin ( )

2
1

sin sin ( )cos ( ) sin 2 sin ( )sin ( )
2

c c c c

c c

c c

y t t t t t t t t t t t

t t t t t t t t

t t t t t t t t

w f w f w f w f

w f f w f f

w f f w f f

= - + - -

= - + ◊ -

= ◊ - - ◊ -

Writing (1 cos2 )/2ctw+  for 
2cos ctw  and (1 cos2 )/2ctw-  for 

2sin ctw , and canceling all high frequency 
terms involving sin 2wct and cos 2wct, we get the output of the low pass filter as

1 1( ) sin[ ( ) ( )]z t K t t tf f= - -   (5.89)
where K1 is a constant.
 If 1[ ( ) ( )]t t tf f- -  is very small, say very much less than p radians (this will be the case, since t1, the group 
delay, will generally be quite small), then we may make the approximation

1 1sin[ ( ) ( )] [ ( ) ( )]t t t t t tf f f f- - @ - -  (5.90)
again,

1

1

[ ( ) ( )]( ) t t td t

dt t

f ff È ˘- -
ª Í ˙

Î ˚
   (meaning of a derivative) (5.91)
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This is true when t1 is quite small, in fact so small that f(t) does not change much between 
(t – t1) and t.

\ 1 1 1 1 2

( ) ( )
( ) [ ( ) ( )]

d t d t
z t K t t t K t K

dt dt

f f
f f= - - = =   (5.92)

where K2 includes t1.

But
( )

2 ( )f

d t
k x t

dt

f
p=  (from Eq. (5.87))  (5.93)

\ 3( ) ( )z t K x t=   (5.94)

where 3 2 2 fK K kp= ◊

\ the output of the LPF is proportional to the message signal. Thus, the set-up of Fig. 5.27 acts as an FM 
detector. In fact, even though several approximations have been made in the above analysis, the  quadrature 
FM detector provides better linearity than the  Foster–Seeley discriminator. Hence, it is used in some of the 
expensive FM receivers as it gives a better audio quality.

5.8.8 Zero-Crossing FM Detector

An FM detector with an excellent linear relation between input frequency and output voltage, is the  zero-
crossing FM detector. In this detector, a hard-limiter first converts the incoming FM signal into a rectangular 
waveform. A mono-stable multivibrator which is designed to get triggered by the rising edges of this rectan-
gular waveform produces rectangular pulses of fixed duration t as shown in Fig. 5.33(d).

Fig. 5.33  Waveforms to illustrate the principle of working of a zero-crossing detector (a) Modulating signal 

(assumed to be singe-tone), (b) FM signal, (c) Hard-limited FM signal, (d) Output of the mono-

stable multivibrator
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If this waveform in (d) is integrated for a period of T seconds such that

1 1

c

T
f W

<< <<

where fc = unmodulated carrier frequency of the FM signal given as input to the detector (i.e., IF)

and W = Bandwidth of the message signal
Then,

1
( )

t

t T

nA
z d

T T

t
l l

-
=Ú   (5.95)

where n is the number of zero-crossings which is proportional to the (instantaneous) frequency. Thus, the 
integrator output is proportional to the frequency. A practical form of a balanced zero crossing detector is 
illustrated in Fig. 5.34.

Hard
Limiter

Mono Stable
Multi-vibrator
Pulse width =

= ( /2) = (1/2 )t T fc c

x t( )
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z t( )

Q

Q
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w( )t
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Integrator
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Differential
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+

–

(a)
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t

(b)

z t( )

w( )t

t = /2Tc

(c) t

_
z t( )

_ _
t t

_
w( )t

(d) t

t = /2Tc t = /2Tc t = /2Tc

Fig. 5.34  Balanced zero-crossing detector (a) Circuit, (b), (c), and (d) Waveforms
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When there is no modulation, y(t) will have 50% duty cycle and hence ( ) ( )t tw w=  so that d(t) = 0. As the 
frequency increases above fc, w(t) increases while ( )tw  decreases. Hence, d(t) is positive and increases with 
frequency deviation above fc. When frequency decreases below fc, d(t) is negative and its amplitude increases 
with frequency deviation below fc. Practical balanced zero-crossing FM detectors can have better than 0.1% 
linearity and they can operate up to even 10 MHz. Higher operating frequencies may be obtained by resorting 
to frequency division after the hard limiter.

5.8.9 Phase-Locked Loop (PLL) Detector

There exists one disadvantage with all the FM demodulation methods described earlier. All these methods 
have the same bandwidth as the bandwidth occupied by the FM signal, which, of course, is very much more 
than the bandwidth of the message signal. Thus, these demodulators pass on all the noise contained in the 
bandwidth of the FM signal.
 Using feedback to reduce this bandwidth and thereby reduce the noise power at the output of the demodu-
lator is one way of tackling the problem. Such an approach leads to what is known as an  FM demodulator 
with feedback (FMFB). A demodulator using this approach is the phase-locked loop (PLL).
 The block diagram of an arrangement that uses a PLL for FM demodulation is shown in Fig. 5.35.

Fig. 5.35 Block diagram of a  phase-locked loop

As can be seen from this figure, it is a feedback system, in fact, a negative feedback system comprising a 
phase comparator and a loop filter with a VCO in the feedback path. The  phase comparator is just a product 
device. The  loop filter has a high gain and a passband from 0 Hz to W Hz. The VCO is a voltage-controlled 
oscillator, whose output is a sine wave, the frequency of which is determined by the control voltage given as 
input to it. In fact, for our purpose here, any system that can generate an FM signal can be used as the VCO.
 For a mathematical analysis of the system, let us assume that the VCO has been initially so adjusted that
 1. it produces a sine wave with a frequency exactly equal to the unmodulated carrier frequency of the 

incoming FM signal, when there is no control voltage applied to it; and 
 2. the sine wave signal that it generates under the condition stated above has a 90° phase difference with 

the carrier signal of the incoming FM signal.
Accordingly, let us assume that the incoming FM signal, xc(t) is given by

( ) sin[2 ( )]c c cx t A f t tp f= +   (5.96)
where

0

( ) 2 ( )
t

ft k x df p a a= Ú

Let the loop filter output be v(t). Since this controls the frequency of the  VCO output signal r(t), the frequency 
of r(t) is given by

( ) ( )r c vf t f k v t= +   (5.97)
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and

( ) cos[2 ( )]r c rr t A f t tp f= +   (5.98)

where

0

( ) 2 ( )
t

r vt k v df p t t= Ú   (5.99)

Since the  phase comparator multiplies the two signals given to it,

( ) ( ) sin[2 ( )]cos[2 ( )]

1
{sin[4 ( ) ( )]sin[ ( ) ( )]}

2

c c r c c r

c r c r r

x t r t A A f t t f t t

A A f t t t t t

p f p f

p f f f f

◊ = + +

= + + -

The filter eliminates the high frequency component at the frequency of 2fc.

\  Output of the loop filter = 
1

( ) sin[ ( ) ( )]
2 c r rv t A A t tf f= -   (5.100)

If the PLL is in the phase-locked condition,

( ) ( ) ( )e rt t tf f fD -   (5.101)

will be very small.
Hence, we may make the approximation sin e ef f@

1
( )

2 c r ev t A A f=   (5.102)

and

0

( ) ( ) 2 ( )
t

e vt t k v df f p t t= - Ú   (From Eqs. (5.99) and (5.101))

\ 
0

( ) 2 ( ) ( ); ( ) ( ) ( )e v e

d d
t k v t t v t t h t d

dt dt
f p f f t t

•
+ = = -Ú   (5.103)

(since v(t) is the output of the LTI filter with h(t) as its 
impulse response)
Because of the approximation we made, that sin e ef f@ ,
we are now getting a linear differential equation relating 

, ef f  and v(t). Using this, we may now draw the linearized 
version of the PLL as shown in Fig. 5.36.
 Taking the  Fourier transform of the differential 
equation, we have

2 ( ) 2 ( ) ( ) 2 ( )

( )
( )

1 ( )

e v e

e
v

j f f k f H f j f f

f
f

k
H f

jf

p p pF + F = F

F
F =

Ê ˆ
+ Á ˜Ë ¯

But ( ) ( ) ( )eV f f H f= F ,  (since ( ) ( ) ( )ev t t h tf= * )

( ) ( )
( )

1 ( )v

H f f
V f

k
H f

jf

◊F
=

Ê ˆ
+ Á ˜Ë ¯

  (5.104)

f( )t +

– fr( )t

fe( )t Loop
Filter

h t( )

v t( )
�

2 ( )p tk v t dv Ú
t

0

Fig. 5.36  Linearized equivalent circuit of the 

PLL
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If the gain of the  loop filter is high enough so that 

( ) 1vk
H f

jf

Ê ˆ
>>Á ˜Ë ¯

 for | f | < W  (5.105)

Then,

2
( ) ( ) ( )

2v v

jf j f
V f f f

k k

p

p

Ê ˆ Ê ˆ
= F = FÁ ˜ Á ˜Ë ¯ Ë ¯

  (5.106)

\
0

1 1
( ) ( ) 2 ( )

2 2

t

f
v v

d d
v t t k x d

k dt dt k
f p a a

p p

È ˘Ê ˆ È ˘
= = ◊Í ˙ Í ˙Á ˜Ë ¯ Î ˚Î ˚

Ú

\ ( ) ( )
f

v

k
v t x t

k

Ê ˆ
= Á ˜Ë ¯

  (5.107)

v(t) is proportional to the modulating signal, x(t), and hence v(t) is the demodulated signal. If X(f) = 0 for 
| f | ≥ W Hz, V(f) also is zero for | f | ≥ W. \ H(f) can be made equal to zero for all f such that | f | ≥ W. That is 
noise at the output of the loop filter will be limited to only the message bandwidth, unlike in the case of the 
demodulators discussed earlier. As we are going to see later in Chapter 9, there is a ‘ threshold effect’ for FM 
in the sense that if the signal-to-noise ratio at the input to an FM detector is less than a certain critical value, 
called the ‘threshold’, the output of the receiver will be only noise. We are going to see in that chapter that a 
PLL may be used as the FM detector to lower the threshold.

Example 5.26 Show that d(t), the output of the balanced zero-crossing detector shown in Fig. 5.29(a) 
is approximately proportional to the amplitude of the normalized modulating signal x(t) of the input FM 
signal, xc(t).

Solution Referring to Fig. 5.29, let the integrating period be T where,

1 1

c

T
f W

<< << , as stated in Eq. (5.94)

Then
1

( ) ( )
t

t T

nA
t z d

T T

t
w l l

-
= =Ú  as per Eq. (5.95)

where ( )tw  is the average value of x(t) over a period T.

( )
( ) [ ( )]

c f

c f

f k x t TAnA
t A f k x t

T T

tt
w t

+Î ˚
= = = +

where [ ( )]c f if k x t f+ =  = instantaneous frequency = n, the number of positive going zero-crossings of y(t).

But
1

( ) [ ( )]
2 2 2 2
c

c f
c c

T A A f
t A f k x t

f f
t w t

Ê ˆD
= = \ = + = + Á ˜Ë ¯

  (5.108)

t  changes with the amplitude of x(t) and is given by

1 1 1 1 1 1 1 1
1 ( )

( ) 2 1 ( / ) ( ) 2 2 2

1
1 ( )

2

f

c f c c c f c c c

f

c c

k
x t

f k x t f f k f x t f f

k
x t

f f

t
È ˘ È ˘ Ê ˆ

= - = - ª - -Í ˙ Í ˙ Á ˜+ + Ë ¯Í ˙ Í ˙Î ˚ Î ˚
Ê ˆÊ ˆ

= -Á ˜Á ˜Ë ¯Ë ¯

Example 5.26 Show that d(t), the output of the balanced zero-crossing detector shown in Fig. 5.29(a)
is approximately proportional to the amplitude of the normalized modulating signal x(t) of the input FM 
signal, xc(t).
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 and x(t) has been normalized such that ( ) 1x t £ ,

( ) ( ) ( ) ( )
f

c c

kf
d t x t d t x t

f f

Ê ˆÊ ˆD
@ = \ μÁ ˜Á ˜Ë ¯ Ë ¯

5.9 FM BROADCASTING

FM radio broadcasting for speech and music makes use of the 88 MHz –108 MHz band. The  peak frequency 
deviation is to be 75 kHz, audio frequencies up to 15 kHz are handled and the bandwidth is 200 kHz, i.e., two 
adjacent carriers are to have a separation of 200 kHz. The transmitters employ pre-emphasis – i.e., boost the 
high frequency components of the message or baseband signal in order to improve the signal to noise ratio 
at the destination. FM broadcast receivers are of the superheterodyne type, the intermediate frequency being 
10.7 MHz.
 Irrespective of the carrier frequency of the signal to which the receiver is tuned, owing to the gang-tuning 
of the RF amplifier and the local oscillator, the carrier frequency at the mixer output is always the interme-
diate frequency of 10.7 MHz. Since it operates at a constant frequency, the IF amplifier is designed to give a 
large gain. Although the transmitted FM signal has constant amplitude, it gets corrupted by the additive noise 
in the channel and the received signal has small random variations in its amplitude. These are removed in 
the receiver by the limiter stage. A  balanced discriminator extracts the message or the baseband signal from 
the FM signal at the output of the limiter. In monophonic receivers, the discriminator output will be just the 
audio. This is amplified, de-emphasized for removing the extra boost given to the higher audio frequencies 
before transmission, low pass filtered for removing the out-of-band noise, if any, and then finally fed to the 
loudspeaker.

Fig. 5.37 Block diagram of superheterodyne  FM broadcast receiver

5.9.1  Capture Effect

Suppose there is an interfering signal having a frequency close to the desired signal to which we have tuned 
the receiver, and that the interfering signal is quite weak compared to the desired signal. If it were to be AM, 
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in the receiver output, we will be getting not only the desired signal but also the interfering one, the latter 
as a sort of weak background noise. But, in the case of FM, the situation will be totally different – only the 
relatively strong desired signal will be received and the weak interfering signal will be suppressed to a very 
large extent. This phenomenon is called ‘ Capture Effect’, since the stronger signal virtually captures the 

receiver.
 This phenomenon may be explained as follows. Let the desired signal have a carrier of peak amplitude 
A and frequency wc. Let the interfering signal have a frequency (wc+Dw) and a peak amplitude B. For our 
analysis here, the modulations of the desired and interfering signals may be totally ignored, as they do not 
play any part. The received signal may be written as

( ) cos cos( )

( cos )cos ( sin )sin
c c

c c

r t A t B t

A B t t B t t

w w w

w w w w

= + + D
= + D - D

Hence, r(t) may be written as 

( ) ( )cos[ ( )]cr t R t t tw q= +

where 2 2 1/2( ) [( cos ) ( sin ) ]R t A B t B tw w= + D + D

and

1 sin
( ) tan

cos

B t
t

A B t

w
q

w
- D

=
+ D

Neglecting B cos Dwt in comparison with A as A >> B,

1 sin
( ) tan

B t
t

A

w
q - D

@

In the case of FM, the amplitude R(t) of the received signal r(t) is of no consequences. q(t), the phase 
deviation of the desired carrier signal, caused by the interfering signal, is however, important, as it produces 
an output in the receiver. But

1( ) tan sin 0 if
B

t t A B
A

q w- È ˘Ê ˆ@ D ª >>Á ˜Í ˙Ë ¯Î ˚
So, the stronger the desired signal, relative to the interfering signal, the better is the suppression of the 
interfering signal. It may be noted here that the interfering signal need not be only an undesired carrier 
or modulated signal. It may be made up of just noise frequency components closed to the desired carrier 
frequency. Thus, capture effect suppresses noise too.

5.10 FM TRANSMITTERS AND RECEIVERS

FM broadcasting has been assigned the 88 MHz–108 MHz frequency band. All transmitting stations are to 
ensure that the unmodulated carrier frequency is within ±2 kHz of the assigned carrier frequency. With a 
maximum frequency deviation of ±75 kHz and a maximum audio frequency of 15 kHz, the signal occupies 
a bandwidth of 180 kHz ( Carson’s rule). Further, a guard band of 20 kHz is provided to ensure interference-
free communication in the service area. Since the FM band of 88 MHz–108 MHz is in the VHF band, it is on 
line-of-sight propagation that FM broadcasting depends. The primary service area is determined largely by (i) 
the effective radiated power, and (ii) the height of the antenna; and may be up to about 80 km.
 FM broadcast transmitters handle audio frequencies up to 15 kHz. Because of this and the relative 
immunity enjoyed by FM with regard to additive noise of the channel, FM broadcast transmitters are particu-
larly useful for transmission of high quality music. These transmitters use carrier frequencies of 88 MHz–108 
MHz in the VHF band, and make use of powers of the order of 100 kW.
 As discussed earlier, a  WBFM signal may be generated either by the  indirect method, or the  direct method.
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5.10.1  FM Transmitter Based on Indirect Method of Generation of 

WBFM (Armstrong Method)

Fig. 5.38  FM transmitter based on the  indirect method

As explained earlier, initially a low frequency carrier is used. A narrowband phase modulator of the type 
shown in Fig. 5.10 is used. The signal is subjected to pre-emphasis, integrated, amplified and used as the 
signal for modulating the low frequency carrier. Frequency multiplier chain and mixer are used to obtain the 
required values of final carrier frequency and peak deviation. A chain of class-C amplifiers is used to raise 
the power of the modulated signal to the required value.

5.10.2 FM Transmitter Based on Direct Method of Generation

Fig. 5.39 Block diagram of an FM transmitter using  direct method of generation of  WBFM

 As mentioned in Section 5.6, the direct method of generation of WBFM has the disadvantage that the 
unmodulated carrier signal is not generated by a crystal oscillator and therefore, is not very stable. Hence, a 
 frequency stabilization circuit is a must. One such arrangement is shown in Fig. 6.26. In this, the modulated 
signal is taken from the output of the buffer and fed to a mixer to which, the output of a crystal oscillator also 
is given. If the transmitter is to operate with a carrier frequency of fc, the crystal oscillator frequency f0 is so 
chosen that 0( )d cf f fD -  is reasonably small. This difference frequency signal from the mixer is applied to 
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a  balanced discriminator which is so adjusted that it gives zero output when its input signal has a frequency 
exactly equal to fd. The low pass filter following this FM discriminator has a very low cutoff frequency and 
removes the modulating signal component. The output of this filter will be zero if the carrier frequency is 
exactly fc and will be a dc voltage of appropriate sign depending on whether the carrier frequency is above 
or below the correct value fc. This dc voltage is used to modify the bias applied to the  reactance modulator in 
such a way as to bring the oscillator unmodulated carrier frequency to the correct value.

5.10.3 FM Receivers

Just like the AM broadcast receivers,  FM broadcast receivers are also superheterodyne receivers. Their tuning 
range, i.e., the standard VHF FM broadcast band, is 88 MHz–108 MHz. The standard value of the interme-
diate frequency for these receivers is 10.7 MHz. Figure 5.40 shows a block schematic diagram of a typical 
mono-aural FM broadcast receiver.
 The tuned circuits of the RF stage and the local oscillator are ganged and so when the RF stage tuning is 
varied from one end to the other, things are so arranged that the local oscillator frequency varies form 98.7 
MHz to 118.7 MHz so that when we take the difference frequency at the output of the mixer, the FM signal 
obtained has always a carrier frequency of 10.7 MHz, i.e., the intermediate frequency, irrespective of the 
frequency of the station to which the receiver is tuned.
 The  RF amplifier stage is generally a double-tuned low noise dual-gate MOSFET cascade amplifier with 
high values of input and output impedances. In FM receivers,  image rejection does not pose a problem. This 
is because, the image signal, which is 2 ¥ IF Hz away from the frequency of the desired signal, is always 
outside the tuning range of the receiver irrespective of whether the receiver is tuned to a station near the 
lower-end, or the upper-end of the tuning range (Note that 88+2 ¥ 10.7 = 109.4 MHz and 108–2 ¥ 10.7 = 86.6 
MHz, both of which are outside the tuning range).

Fig. 5.40 Block diagram of a superheterodyne FM broadcast receiver

 Generally two or three high gain  IF amplifier stages are employed and one of them is used as an  amplitude 
limiter to remove the additive noise which causes amplitude variations. These IF amplifiers are designed to 
have a bandpass characteristic with a flat response in the 180 kHz passband centered on 10.7 MHz.
 Amplitude limiting action too may be obtained in an IF stage either by including back-to-back connected 
diodes in the input tuned circuit of the IF amplifier, or by designing the IF stage to be driven to saturation and 
cut off, depending upon whether low-level or high-level limiting is desired.

CS-Rao_05.indd 296CS-Rao_05.indd   296 1/18/2013 11:21:52 AM1/18/2013   11:21:52 AM



Angle Modulation 297

 The discriminator may be a  dual-slope discriminator or a  ratio detector – its main function being to convert 
frequency variations of its input signal into corresponding amplitude variations, with the output voltage 
remaining at zero volts when the input signal frequency is exactly equal to the IF.
 As stated earlier,  pre-emphasis AND  de-emphasis are used in all FM communication systems in order to 
ensure a good SNR at the destination. The message signal is deliberately distorted at the transmitter before 
using it for modulation, by passing it through a pre-emphasis network, which boosts up the high frequency 
components. The post-detection noise power spectrum increases as the square of the frequency, as we will 
be seeing in Chapter 7 when we discuss the noise performance of FM systems. To remove the distortion 
introduced by the pre-emphasis network, the output of the discriminator in the receiver is passed through 
a de-emphasis network which de-emphasizes the high frequency components so as to restore the original 
relative amplitudes of the various frequency components of the message signal. In that process of de-empha-
sizing, while the message spectrum is restored to its original shape, the high frequency noise components at 
the output of the discriminator get reduced and so the SNR at the destination is improved.
 The audio voltage and power amplifiers then raise the power level of the audio signal so that it can actuate 
the loudspeaker. As FM handles audio up to 15 kHz, and so is mostly used for high quality music broad-
casting, these audio amplifiers should have flat frequency response form very low audio frequencies up to 15 
kHz so as not to introduce any  distortion. The audio power amplifier must, of course, be a class-A amplifier.
 Generally,  AFC is provided to keep the frequency of the local oscillator at the value that produces the 
correct intermediate frequency. If the average value of the intermediate frequency differs from the center 
frequency of the dual-slope discriminator then, a dc voltage will be developed at the output of the discrimi-
nator. The polarity of this dc voltage will depend on the direction of deviation of the IF with respect to the 
center frequency of the discriminator. This dc voltage is extracted from the discriminator and is applied to 
the varactor diode across the tank circuit of the local oscillator in such a way as to change the local oscillator 
frequency in the right direction so that it gives the correct value of  intermediate frequency. It is thus ensured 
that slight frequency drifts of the local oscillator do not cause any deterioration of the performance of the 
receiver.

5.10.4 FM Stereo Broadcasting

In monophonic transmission of music, the output from only one microphone is used. But in  stereophonic 
transmission outputs from two different microphones, kept at different locations on the stage, are used for 
transmission. We call the outputs from the two microphones as message signals xL(t), the left message signal, 
and xR(t), the right message signal, and each of these occupies a bandwidth of 15 kHz. In an  FM stereo trans-
mitter, using the xL(t) and xR(t), we first produce the sum signal [xL(t) + xR(t)] and the difference signal [xL(t)
– xR(t)], as shown in Fig. 5.41. The sum signal is passed through the pre-emphasis network and then without 
any further processing, is taken to an adder where a pilot tone of 19 kHz is added to it. On the other hand, 
the difference signal, after being passed through the pre-emphasis network, is used for DSB-SC modulating 
a 38 kHz carrier obtained by doubling the 19 kHz pilot carrier. The DSB-SC signal so generated is added to 
the sum signal and the pilot carrier. The output of this adder, consisting of the sum signal, the pilot carrier 
and the  DSB-SC signal, is used as the baseband signal for frequency modulating the final carrier used for 
transmission.
 From the foregoing, it is clear that functionally, the receiver should first recover the baseband signal 
(whose spectrum is shown in Fig. 5.42). So up to the discriminator stage, there is no difference between a 
 stereophonic FM receiver and a monophonic FM receiver. The above spectrum clearly indicates the various 
functions that the stereo FM receiver should perform to get xL(t) and xR(t) separately. All these are shown in 
the block diagram of the receiver given in Fig. 5.43.
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Fig. 5.41  FM stereo transmitter

Fig. 5.42 One-sided spectrum of the  baseband signal used for frequency modulating the final carrier

Fig. 5.43  FM stereo receiver after the discriminator stage

The output of the discriminator is the baseband signal whose spectrum is as in Fig. 5.42. This is fed simul-
taneously to a low pass filter, a bandpass filter and a narrowband filter centered on 19 kHz, to separate out 
the three component signals comprising the baseband – the sum signal, the DSB-SC signal containing the 
difference signal and then the pilot tone of 19 kHz frequency. The sum signal, after de-emphasis, serves as 
the audio signal for the monophonic FM receiver whose post-discriminator bandwidth is only 15 kHz. Thus, a 
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monophonic FM receiver also can receive the audio from a stereophonic FM transmitter and this audio signal 
is the sum signal. The  stereophonic receiver, however, makes use of the sum and difference signals to obtain 
xL(t) and xR(t) separately as shown in Fig. 5.43. These are then fed to the (stereo) audio amplifier and they 
finally drive the dual loudspeakers. 

MATLAB Example 5.1 (Frequency Modulation)
Message signal is sin(2*pi*10*t), carrier signal cos (2*pi*200*t).
Type of modulation: FM, Frequency deviation constant kf = 50
Using Matlab, do the following:

 (a) Plot the message signal.
 (b) Plot the modulated signal.
 (c) Determine and plot the spectrum of the message signal.
 (d) Plot the spectrum of the frequency-modulated signal.

MATLAB Program
%
% This program calls the function ‘fftseq’ to solve the problem

%
t0 = 0.15;  % signal duration
ts = 0.001;  % sampling interval
f = 10 hz;
fc = 200;  % carrier frequency
kf = 50;  % modulation index
fs = 1/ts;  % sampling frequency
t = [0:ts:t0]; % Time vector
df = 0.25  % frequency resolution
%
% Message signal

%

m = sin(2*pi*2*f*t)
% plot of the message signal
subplot (2,2,1)
plot(t,m)
grid on
ylim([-1.1 1.1]);
xlabel (‘time’);
ylabel (‘x(t)’);
title (‘Message Signal’);
% integral of m
int_m(1) = 0;
for i = 1:length(t)-1
 int_m(i+1) = int_m(i)+m(i)*ts;
end
%
% Finding the Fourier transform of the m signal

%
[M,m,df1] = fftseq(m,ts,df);   % Fourier Transform
M = M/fs;       % Scaling
f = [0:df1:df1*(length(m)-1)] - fs/2; % Frequency Vector
%
% Generation of modulated signal

MATLAB Example 5.1 (Frequency Modulation)
Message signal is sin(2*pi*10*t), carrier signal cos (2*pi*200*t).
Type of modulation: FM, Frequency deviation constant kf = 50
Using Matlab, do the following:
(a) Plot the message signal.
(b) Plot the modulated signal.
(c) Determine and plot the spectrum of the message signal.
(d) Plot the spectrum of the frequency-modulated signal.
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%
u = cos(2*pi*fc*t+2*pi*kf*int_m)  % modulated signal
subplot (2,2,2)
plot(t,u(1:length(t)));
xlabel (‘time’);
title (‘Modulated Signal’);
%
% Finding the Fourier transform of the modulated signal u

%
[U,u,df1] = fftseq(u,ts,df);   % modulated signal
U = U/fs       % scaling
% Plots of magnitute of message and modulated signal in frequency domain

length(f)
length (M)
length (U)
subplot (2,2,3)
plot(f,abs(fftshift(M)));
xlabel (‘frequency’);
title (‘Spectrum of Message Signal’)
grid on
subplot (2,2,4)
plot (f,abs(fftshift(U)));
xlabel (‘Frequency’);
title (‘Spectrum of Modulated Signal’)
grid on

Results
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Fig. 5.44

CS-Rao_05.indd 300CS-Rao_05.indd   300 1/18/2013 11:21:53 AM1/18/2013   11:21:53 AM



Angle Modulation 301

Summary 
 ■  Frequency modulation and  phase modulation are together known as  angle-modulation.
 ■ FM and PM both change the phase angle, but in different ways.

 ■ PM: ( ) cos[ ( )]c c c px t A t k x tw= +  where kp is called the  phase deviation constant.

 ■ FM:
0

( ) cos 2 ( )
t

c c c fx t A t k x dw p a a
È ˘

= +Í ˙
Í ˙Î ˚

Ú  where kf is called the  frequency deviation constant.

 ■ When x(t), the modulating signal = cos2m mA f tp ,

  (a) 
PM

( ) cos[2 cos2 ]c c c p m mx t A f t k A f tp p= +

  (b) 
FM

( ) cos 2 sin2
f m

c c c m
m

k A
x t A f t f t

f
p p

È ˘Ê ˆ
= +Í ˙Á ˜Ë ¯Í ˙Î ˚

  (c) pb  = Modulation index for PM p mk AD

  (d) fb  =  Modulation index for FM
f m

m

k A

f
D

 ■  Deviation Ratio 
Peak frequency deviation

Modulating signal frequency

È ˘
D Í ˙

Î ˚
 ■ (a) If f(t), the phase deviation is less than or equal to 0.2 radian, it is called  Narrowband Angle Modulation.

  (b) Bandwidth of an NB angle-modulated signal = 2fm.
 ■ (a) If x(t) is integrated and fed as the modulating signal to a phase modulator, an FM signal is obtained.

  (b) If x(t) is differentiated and fed as the modulating signal to a Frequency modulator, a PM signal is obtained.
 ■ (a) An angle modulated signal has, theoretically, an infinite bandwidth, even for a single-tone modulating signal.

  (b)  The bandwidth within which at least 98% of the average power of an angle modulated signal is contained, is 
called the ‘ Effective Bandwidth’ of the angle modulated signal.

 ■ (a) The average power of an angle-modulated signal is 2
av

1

2 cP A=  where Ac is peak amplitude of the carrier.

  (b)  Carson’s Rule for effective bandwidth for single-tone modulation.

2( 1)    for PM

2( 1)     for FM

p m m

T
f m

k A f
B

k A f

+ÏÔ= Ì +ÔÓ

  (c) Carson’s Rule for a general modulating signal:

( )2 1TB Wb= +Í ˙Î ˚ , where 

max ( )     for PM

max ( )
   for FM

p

f

k x t

k x t

W

b

Ï
ÔD Ì
Ô
Ó

 ■ (a) BT of an FM signal is practically unaffected by an increase in the modulating signal frequency.
  (b) BT of a PM signal increases almost linearly with the increase of the modulating signal frequency.

 ■ WBFM may be generated either by the indirect (or Armstrong method), or by the direct method.
 ■ (a)  Indirect method gives a  WBFM signal with good frequency stability, but needs a number of frequency multi-

pliers.
  (b)   Direct method needs  AFC unit for stabilizing the frequency but does not need frequency multipliers.

 ■ An FM signal may be demodulated by using a Foster–Seeley detector, a Ratio detector, a Quadrature detector, a 
Zero-crossing detector, or a Phase-Locked Loop (PLL).

 ■ WBFM is used for high quality music broadcasting in the 88 MHz to 108 MHz band, using a maximum frequency 
deviation of 75 kHz, a bandwidth of about 180 kHz and a carrier separation of 200 kHz. Typical IF for FM is 
10.7 MHz.
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 ■ A superheterodyne receiver for FM has a  limiter stage after the IF amplifier stage to remove the small random 
variations in the amplitude of the FM signal, caused by the additive noise.

 ■ FM broadcast transmitters: Handle audio frequencies up to 15 kHz. Used mostly for high quality speech and 
music. Operate in the VHF frequency band from 88 MHz to 108 MHz. Depend on line-of-sight propagation and 
so service area is limited to about 40–80 km. Carrier frequency stability of ±2 kHz needed. Maximum frequency 
deviation is ±75 kHz. Adjacent carrier separation is 200 kHz. Power of the order of 100 kW are used.

 ■ FM transmitter based on  indirect method: Refer to Fig. 5.38.
 ■ FM transmitter based on  direct method: Refer to Fig. 5.39. Note that it is imperative to make use of a carrier 

frequency stabilization circuit for FM transmitters based on the direct method.
 ■  FM broadcast receiver block diagram:

 ■ Limiting: In an FM receiver, the amplitude variations of the received FM signal, caused by noise, etc., are removed 
by using amplitude limiters. Amplitude limiting action may be obtained in an IF stage by including back-to-back 
connected diodes in the input tuned circuit of the IF amplifier.

 ■ Pre-emphasis and  de-emphasis: All FM communication systems use pre-emphasis at the transmitter and 
de-emphasis at the receiver, to improve SNR at the destination. Pre-emphasis consists of boosting the high 
frequency components of the message signal before modulation and de-emphasis attenuates the high-frequency 
components of the message signal obtained in the receiver at the output of the discriminator, so that the distortion 
of the message signal, introduced by the pre-emphasis, is removed.

References and Suggested Reading 
 1. Haykin, Simon, Communication Systems, John Wiley & Sons, New York, 4th Edition, 2001.
 2. Taub, and Schilling, Principles of Communication Systems, Tata McGraw-Hill, New Delhi, 1995.
 3. Carlson, Bruce et. al., Communication Systems, McGraw-Hill International Edition, 4th Edition, 2002.
 4. Proakis, J.G., and M. Salehi, Communication Systems Engineering, 2nd Edition, Prentice-Hall of India, New 

Delhi, 2006.
 5. Clarke, K.K., and D.T. Hess, Communication Circuits: Analysis and Design, Addison-Wesley, Mass, 1971.
 6. Couch, L.W. II, Digital and Analog Communication Systems, 4th Edition, Macmillan, New York, 1993.
 7. Ziemer, R.E., and W.H, Tranter, Principles of Communications: Systems, Modulation and Noise, Houghton, 

Miffin, Boston, 1990.
 8. Schoenbeck, Robert J., Electronic Communications – Modulation and Transmission, 2nd Edition, Prentice Hall 

Career & Technology, Englewood Cliffs, New Jersey, USA, 1992.
 9. Roddy, Dennis, and John Coolen, Electronic Communications, 3rd Edition (Eastern Economy Edition), Prentice-

Hall of India Pvt. Ltd., New Delhi, 1994.
 10. Kennedy, and Davis, Electronic Communication Systems, 4th Edition, McGraw-Hill International Edition, 1992.

CS-Rao_05.indd 302CS-Rao_05.indd   302 1/18/2013 11:21:53 AM1/18/2013   11:21:53 AM



Angle Modulation 303

Review Questions 
1. Define frequency modulation.
2. Define phase modulation.
3. Derive an expression for the time-domain representation of a frequency modulated signal.
4. Explain how you would use a phase modulator for obtaining a frequency modulated signal.
5. Sketch the waveform of a phase modulated signal assuming /2pk p=  and ( ) ( ).x t u t=
6. Define the term, ‘ modulation index’ for FM in the case of single-tone modulation and for a general modulating 

signal.
7. By deriving the necessary expressions, show that a narrowband angle-modulated signal and an AM signal have 

similar forms. (Assuming single-tone modulation). Draw the phasor diagrams for both the cases.
8. By drawing the block schematic diagram, show how a narrowband angle-modulated signal may be generated.
9. Assuming single-tone modulation, derive an expression for the spectrum of an angle-modulated signal.

10. Making use of the  Bessel function tables, sketch the spectrum of an angle-modulated signal for fm = 5 kHz and 
b = smallest value of b for which the carrier component vanishes. Sketch the two-sided spectrum up to the 3rd 
side-frequency component.

11. Using the expression for the spectrum of an angle-modulated signal for single-tone modulation by a tone of 
frequency fm, show that the transmission bandwidth of the modulated signal is given by 2( 1)T mB fb= + , where b
is the modulation index.

12. Define ‘ Effective Bandwidth’ of an angle-modulated signal.
13. Explain how the transmission bandwidth changes with respect to changes in the modulating signal frequency in the 

case of PM and FM.
14. With the help of a neat block schematic diagram, explain the indirect method of generation of WBFM signals.
15. Explain the  reactance modulator method of generation of WBFM. Why is it necessary to use AFC in this method 

of generation?
16. Explain the working of a  Foster–Seeley detector for FM.
17. How is a phase-locked loop (PLL) useful in detecting FM signals?
18. With a neat block diagram, briefly explain the principle of working of a superheterodyne FM broadcast receiver.
19. Why is a limiter stage used in the superheterodyne FM broadcast receiver? Explain the principle of working of the 

limiter. Sketch the transfer function of a hard limiter.
20. Explain the working of an FM broadcast transmitter employing the  direct method of generation of WBFM by 

drawing the block diagram. In particular, explain how the drift of the carrier is countered.
 21. Explain the working of a FM broadcast transmitter employing the  indirect method of generation of WBFM by 

drawing the block diagram.
22. Draw the block schematic diagram of a  FM broadcast receiver, and explain its working.
23. With the help of block schematic diagrams and sketches of the spectra of appropriate signals, explain the principle 

of stereo FM transmission and reception.

Problems 
1. Sketch the waveforms of the resulting modulated signal when a high frequency sinusoidal carrier signal is 

modulated by the modulating signal shown in Fig. P5.1, if the modulation is (a) frequency modulation, and 
(b) phase modulation.

Fig. P5.1
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2. An FM signal is of the form 
6( ) 75cos[2 5 10 6 sin200 ]cx t t tp p= ¥ ¥ +

 (a) What is the modulating signal frequency?
 (b) What is the carrier frequency?
 (c) Determine the  peak frequency deviation
 (d) Determine the deviation ratio
 (e) Determine the modulation index.
 (f) Determine the average power of this FM signal.
 (g) What is the (effective) bandwidth of this FM signal?

3. A message signal, ( ) 100 sinc2000x t t=  frequency modulates a carrier signal 8( ) 200cos2 10c t tp= ¥ , with a 
modulation index of 5.

 (a) Write down an expression for xc(t), the modulated signal.
 (b) What is the peak frequency deviation?
 (c) What is the average power of the modulated signal?
 (d) What is the bandwidth of this modulated signal?

4. The carrier signal 8( ) 200 cos2 10c t tp= ¥  is phase modulated by the message signal, 3( ) 2cos2 10x t tp= ¥ , the 
 peak phase deviation being p/5.

 (a) What is the bandwidth of this PM signal?
 (b) Sketch the magnitude spectrum of the modulated signal up to frequencies lying within the bandwidth calcu-

lated in (a).
5. x1(t) and x2(t) are two modulating or message signals and x1(t) + x2(t) = x3(t). When x1(t) modulates the carrier c(t),

the modulated signal is x1c(t) × x2c(t) and x3c(t) are similarly defined, using the same carrier.
 (a) When the modulation is AM, show that the modulation is linear in the sense that it obeys superposition 

principle, by proving that 3 1 2( ) ( ) ( )c c cx t x t x t= +
 (b) When the modulation is angle modulation, show that the modulation is not linear, i.e., that in this case, 

3 1 2( ) ( ) ( )c c cx t x t x tπ +
6. An  NBFM signal with a carrier frequency of 200 kHz and peak frequency deviation of 21.3 Hz is to be used to 

produce a  WBFM signal of carrier frequency about 100 MHz and peak frequency deviation of 75 kHz, using 
frequency multipliers, a mixer, etc. as shown in the Fig. P5.6. Determine N1, N2 and fc to achieve the desired result. 
Note that the multipliers should comprise either doublers or triplers, or a combination of these two.

Fig. P5.6

7. An FM signal is represented by

( ) 50cos 2 50 ( )
t

c c

o

x t f t x dp t t
È ˘

= +Í ˙
Í ˙Î ˚

Ú

  where the modulating signal x(t) is as shown in Fig. P5.7.
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 (a) Write down the expression for the  instantaneous 
frequency and sketch it.

 (b) What is the value of the deviation constant?
 (c) What is the peak frequency deviation?

8. An angle-modulated signal is given to be

7 3( ) 75cos[2 10 6sin2 2 10 ]cx t t tp p= ¥ + ¥ ¥

 (a) If it is an FM signal, what are its frequency 
deviation constant, modulation index bf and 
transmission bandwidth?

 (b) If it is a phase-modulated signal, what are its 
 phase deviation constant, modulation index bp

and transmission bandwidth?
 (c) For each of the above cases, determine the pertinent values when fm, the message frequency, is increased to 

4 ¥ 103 Hz.
9. A sinusoidal carrier of 150 MHz frequency and 1 V peak amplitude is frequency modulated by a 2 kHz sinusoidal 

modulating signal, producing a peak frequency deviation of 10 kHz. Using the Bessel function tables, sketch 
the amplitude spectrum of the modulated signal up to ten side frequencies. Using Carlson’s rule, determine the 
bandwidth of the modulated signal.

10. An NBFM signal generated with a carrier frequency of 100 kHz, and a frequency deviation of 30 Hz, is applied to 
a frequency multiplier chain consisting of five doublers and then a frequency multiplier chain consisting of three 
triplers. Assuming the modulating signal to be a 2 kHz tone, determine the frequency deviation and the modulation 
index at the end of the doubler chain and at the end of the tripler chain.

11. Explain how a square law device may be used for increasing the frequency deviation of an FM signal.
12. Figure P5.12 shows an arrangement used frequently as an FM demodulator at microwave frequencies. The delay 

line produces a delay of T sec that corresponds to p/2 radians phase shift at the carrier frequency fc. The FM signal 
xc(t) may be taken to be 

( ) cos[2 sin(2 )]; 1c c c f m fx t A f t f tp b p b= + <

  Assuming 
1

m

T
f

<  so that cos2 1mf Tp ª , show that the output signal is proportional to the modulating signal.

Fig. P5.12

13. An  FM transmitter using the direct method of generation of WBFM, is using a  varactor diode modulator which 
produces a frequency deviation of 2.5 kHz per volt. The maximum deviation produced by the modulator is 360 Hz. 
The modulator is followed by a buffer and a tripler, doubler and tripler for frequency multiplication. 

 (a) Can this transmitter produce a 6 kHz peak deviation at the output?
 (b) If the final carrier frequency is to be 180 MHz, what should be the oscillator frequency?
 (c) What is the audio voltage to be applied to the varactor to obtain the full deviation at the output?

Fig. P5.7
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Multiple-Choice Questions 
 1. For fixed values of the phase deviation constant and the amplitude of the single-tone modulating signal, the 

modulation index for phase modulation 
 (a) increases with modulating signal frequency fm
 (b) decreases with increasing values of fm
 (c) is not dependent on fm
 (d) increases with fm up to a certain value of fm and then decreases.
 2. In frequency modulation by a single-tone modulating signal, the frequency deviation constant and the modulating 

signal frequency are both doubled. The modulation index will be
 (a) quadrupled (b) unchanged (c) doubled (d) 0.25 times the previous value
 3. To produce frequency modulation using a phase modulator 
 (a) the message signal must be integrated and then used for modulation
 (b) the message signal must be differentiated and then used for modulation
 (c) the phase modulated signal must be integrated
 (d) the phase modulated signal must be differentiated
 4. If phase modulation is to be produced using a frequency modulator
 (a) the message signal must be integrated and then used for modulation
 (b) the message signal must be differentiated and then used for modulation
 (c) the frequency modulated signal must be integrated
 (d) the frequency modulated signal must be differentiated
 5. In phase modulation by a single-tone modulating signal, the phase deviation constant is doubled and the modulating 

signal frequency is halved. The modulation index is
 (a) halved (b) quadrupled (c) doubled (d) unchanged
 6. x(t), a message signal, angle-modulates a carrier cosc cA tw . The modulated signal is cos[ ( )]c cA t tw f+ . If it is 

phase modulation, f(t) is

 (a) 
0

2 ( )
t

pk x dp a aÚ  (b) 
2 pk

W

p
 (c) 2 ( )pk x tp  (d) ( )pk x t

kp is phase deviation constant.

 7. For a frequency modulated signal, the modulation index is doubled. The average power of the modulated signal is
 (a) quadrupled  (b) doubled (c) unaltered (d) None of these
 8. For a WBFM signal, when the frequency of the single-tone modulating signal is doubled, the transmission 

bandwidth
 (a) doubles
 (b) does not change
 (c) increases slightly but does not become double
 (d) reduces considerably since the deviation ratio is halved
 9. In commercial FM broadcasting, the audio frequency range handled is only up to
 (a) 15 kHz (b) 5 kHz (c) 3.5 kHz (d) 10.7 kHz
 10. For wideband phase modulation, when the frequency of the single-tone modulating signal is doubled, the trans-

mission bandwidth
 (a) does not change at all     (b) doubles
 (c) increases slightly but does not double  (d) reduces slightly
 11. The transmission bandwidth required for commercial FM broadcasting is
 (a) 75 kHz (b) 10 kHz (c) 200 kHz (d) 220 kHz
 12. The standard intermediate frequency used in the superheterodyne FM receiver is
 (a) 88 MHz (b) 455 MHz (c) 15 MHz  (d) 10.7 MHz

Note
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 13. A narrowband FM signal has a carrier frequency of fc and a frequency deviation of (Df). The signal is passed 
through a frequency doubler. The new carrier frequency and deviation are

 (a) (2 , )cf fD  (b) (2 , 2 )cf fD  (c) (2 ,1/2 )cf fD  (d) ( , 2 )cf fD
 14. An FM signal having a carrier frequency of 12 MHz and a frequency deviation of 3.2 kHz is given to a mixer 

along with a local oscillator signal of frequency 10 MHz. The filter following the mixer allows only the difference 
frequency. The new values of carrier frequency and deviation are

 (a) (2 MHz, 3.2 kHz) (b) (2 MHz, 0.53 kHz)  (c) (2 MHz, 2.67 kHz) (d) (2 MHz, 0.64 kHz)
 15. A narrowband FM signal is generated using a phase modulator. The maximum deviation at the output of a phase 

modulator is about
 (a) ±250 Hz (b) ±1 kHz (c) ± 1 MHz (d) ± 25 Hz
 16. The type of reactance that a reactance modulator presents to the tank circuit of the oscillator can be
 (a) only capacitive   (b) only inductive
 (c) either capacitive or inductive (d) neither capacitive nor inductive
 17. A reactance modulator is presenting capacitive reactance to the oscillator. To make it offer inductive reactance, we 

have to
 (a) interchange the positions of C and R
 (b) replace C by L
 (c) making R >>(1/wc)
 (d) Reactance modulator cannot be made to present an inductive reactance
 18. In a stereo FM transmitter, the difference signal [ ( ) ( )]L Rx t x t-  modulates a 38 kHz tone. The type of modulation 

employed is
 (a) AM (b) DSB-SC (c) SSB-SC (d) FM
 19. The Foster–Seeley discriminator responds to the input FM signal’s
 (a) amplitude variations only  (b) amplitude as well as frequency variations
 (c) frequency variations only  (d) variations neither in amplitude nor in frequency
 20. The ratio detector responds to the input FM signal’s variations in
 (a) amplitude only   (b) frequency only
 (c) both amplitude and frequency (d) neither amplitude nor frequency
 21. The noise figure of a superheterodyne receiver is mostly controlled by
 (a) RF stage (b) the mixer stage (c) IF stage (d) the audio stage

22. In FM broadcasting, the peak frequency deviation and the maximum audio frequency handled, are respectively
 (a) 75 kHz; 10 kHz (b) 75 kHz; 15 kHz (c) 200 kHz; 10 kHz (d) 75 kHz; 5 kHz.

Key to Multiple-Choice Questions

 1. (c) 2. (b) 3. (a) 4. (b) 5. (c) 6. (d) 7. (c) 8. (c)
 9. (a) 10. (b) 11. (c) 12. (d) 13. (b) 14. (a) 15. (d) 16. (c)
 17. (a) 18. (b) 19. (b) 20. (b) 21. (a) 22. (b)

1. (c) 2. (b) 3. (a) 4. (b) 5. (c) 6. (d) 7. (c) 8. (c)
9. (a) 10. (b) 11. (c) 12. (d) 13. (b) 14. (a) 15. (d) 16. (c)

17. (a) 18. (b) 19. (b) 20. (b) 21. (a) 22. (b)
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PROBABILITY, RANDOM 

PROCESSES AND NOISE

6
“I didn't fail 2000 times, I learned 2000 ways how not to make a light bulb.”

Thomas Edison (1847–1931)

American inventor and businessman

Learning Objectives

After going through this chapter, students will be able to

 ■ thoroughly revise all the key concepts in probability and random processes,

 ■ apply the results of probability and random processes part of the chapter to the study of noise as well 

as the study of noise performance of analog and digital communication systems,

 ■ understand how noise degrades the quality of communication,

 ■ list the various sources of noise and describe the characteristics of the noise generated by each of 

those sources,

 ■ determine the thermal noise voltage across a two-terminal network of only resistors, or of resistors 

and reactive elements connected in some manner,

 ■ calculate the noise equivalent bandwidth of a given filter, the equivalent noise resistance of ampli-

fiers/systems, and equivalent noise figure (or noise temperature) of a number of two-port networks 

connected in cascade, and

 ■ calculate the inphase and quadrature components of a band pass noise process given its envelope and 

phase angle representation.

6.1 INTRODUCTION

Probability theory lays the foundation for a study of  random processes and both of them are inextricably 
connected with communication engineering.
 The two most important entities in the study of communication engineering are ‘ noise’ and ‘ signal’. Noise 
is unpredictable in nature and any quantitative study of it requires modeling of it by a random process. Any 
useful signal also is unpredictable, in nature because if it was not so and was absolutely predictable, then the 
receiver could know it a priori and there would have been no need to transmit it.
 When a signal passes through a channel, it suffers several changes. Some of these changes are caused 
by phenomena which are deterministic in nature and can therefore be eliminated. Linear and  non-linear 
distortion and  inter-symbol interference come under this category. On the other hand, phenomena like  fading, 
etc., are essentially non-deterministic and have to be modeled as random processes.
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 It is not proposed, and it is also not possible, to cover these topics of  probability and random processes in 
an exhaustive manner in this chapter. As the reader must have been exposed to these topics earlier, we propose 
to adopt a review-like approach. The review of probability theory will be limited to cover only those areas that 
are essential for understanding  random processes.
 The function of a communication system is to make available, at the destination, a signal originating at 
a distant point. This signal is called the desired signal. But, unfortunately, during its passage through the 
channel and the front-end of the receiver, this desired signal gets corrupted by a number of undesired signals. 
All these undesired signals, put together, constitute what is referred to as the  noise. This noise is mostly 
random (i.e., unpredictable) in nature, but it can, at times have deterministic components as well – like the 
power supply hum and certain oscillations. These deterministic components, however, can be eliminated by 
proper shielding and introduction of  notch filters, etc. Hence, in this chapter, we will be concentrating only 
on the random components constituting the noise – their types, origins, mean-squared values, and spectral 
contents etc.
 In analog communication, the additive channel noise adds directly to the amplitude of the transmitted 
waveforms. As will be seen later in Chapter 7, this modifies, to some extent, even the frequency and phase 
of the waveform transmitted through the channel. Thus, irrespective of the type of modulation used, the 
waveform of the output signal at the  detector of the  receiver is not going to be exactly the same as the 
waveform of the  modulating signal used at the transmitter. In digital communication too, channel noise can 
occasionally induce  decoding errors which make the decoded sequence at the receiving end to be different, 
in some locations, from the  baseband sequence used at the transmitter.
 Thus, channel noise entering the receiver degrades the performance of communication systems. We cannot 
remove this noise by filtering. As the channel noise is often of very large bandwidth – much more than that 
of the transmitted signal, we can at the most prevent the out-of-band noise (i.e., noise outside the signal 
bandwidth) from entering the receiver, but it is not possible to remove the inband noise.
 From the foregoing, it is evident that a study of the origin and the characteristics of various types of noise 
is very essential in order to take all possible steps to reduce its effect.

6.2 BASICS OF PROBABILITY

Modern probability theory is based on the following three  axioms:
 1. P(A) ≥ 0 where A is any  event.
 2. P(S) = 1 where S is the ‘certain’ event.
 3. If events A and B are  mutually exclusive, i.e., if A « B = {f}, where {f} is the null set, then 

( ) ( ) ( )P A B P A P B» = + .
In the above, P(E) is to be read as ‘probability of the event E’. An event itself is defined in terms of the 
outcomes of a random experiment, i.e., an experiment whose outcome cannot be predicted with certainty. 
Tossing a coin, throwing a die, and randomly picking a card out of a deck of playing cards, are all examples 
of random experiments. Each of these experiments has certain possible outcomes, called the  elementary 
outcomes – ‘head’ and ‘tail’ for the tossing of a coin; 1, 2, 3, 4, 5, and 6 for the throwing of a die, and each 
one of the 52 cards in the deck of playing cards. The set of all possible outcomes is referred to as the ‘ sample 
space’ and is denoted by S. Events are the subsets of sample space. For example, for the random experiment 
of ‘throwing a die’, while 1, 2, 3, 4, 5 and 6 are the elementary outcomes, and can be considered as events, 
one may also define ‘events’ using subsets of these elementary outcomes, Thus, we may consider ‘even’ and 
‘odd’ as events – event ‘even’ being associated with the subset {2, 4, 6} and event ‘odd’ being associated with 
the subset {1, 3, 5}. Thus, in general, events are subsets of S and we assign a non-negative number P(E), 0 £
P(E) £ 1, for each event in such a way that axioms 1 to 3 above are satisfied.
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Remark

 A sample space may be ‘discrete’ or ‘non-discrete’. It is said to be discrete if the number of elements in 
it, i.e., the number of elementary outcomes for the experiment are finite, or countably infinite. Otherwise, it 
is called a ‘non-discrete’ sample space. In all the random experiments considered above, the sample space is 
discrete. But, suppose our random experiment is to randomly choose an instant say between 9 a.m. and 10 
a.m. for making a telephone call. For this experiment, the sample space is ‘non-discrete’.
 When we consider an experiment with a non-discrete sample space, we get into problems. It is not possible 
to consider every subset of this sample space as an event and assign probabilities to each of them without 
violating the ‘axioms’. To overcome this problem, we consider as events only those subsets of S which belong 
to what is called the s – field, B, defined on S as follows:
 1. S Œ B

 2. If the event A Œ B then A  also belongs to B. ( A  is complement of A)
 3. If any A and B belong to B, then A B» ŒB
The three entities S, B, and P where P is the probability measure, together constitute what is generally 
referred to as the ‘ probability space’
 From the three axioms listed in the beginning of Section 6.2, it is possible to derive the following basic 
properties of P:

 1. ( ) 1 ( )P A P A= -
 2. ( ) 0P f =
 3. ( ) ( ) ( ) ( )P A B P A P B P A B» = + - «

6.3 CONDITIONAL PROBABILITY

Let A and B be two events defined on the same probability space with individual probabilities P(A) and P(B).
Then P(A | B), i.e., the  conditional probability of A given B, is

Ï π« Ô= = Ì
ÔÓ

( )
; ( ) 0( )

( )( | )
( )

0 ; otherwise

P AB
P BP A B

P BP A B
P B

 (6.1)

 (i) If A and B are mutually exclusive, i.e., if « = =A B 0; P(A|B) 0.

 (ii) If =P(A|B) P(A),  i.e., the occurrence of B does not affect the probability of A, events 

A and B are said to be  statistically independent. In the case,

= = fi = ◊
P(AB)

P(A|B) P(A) P(AB) P(A) P(B).
P(B)

 (6.2)

Example 6.1 A die is thrown and you are told that the outcome is even. Then what is the probability 
that the result is 2?

Solution Let us denote the event ‘even’ by B and the event that the outcome is 2 by A. Then since B is 

said to have occurred if either 2, or 4 or 6 has turned up, 
3 1

( )
6 2

P B = =

Since « = = = = =
( ) ( ) 1/6 1

, ( | )
( ) ( ) 1/2 3

P AB P A
A B A P A B

P B P B

\ P(2 | even) =1/3

Example 6.1 A die is thrown and you are told that the outcome is even. Then what is the probability
that the result is 2?
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Total probability theorem Let the events A1, A2, . . . , An

belong to the same probability space and let them be such that

» » » =1 2 ...b nA A A A S

If B is any arbitrary event, also belonging to the same  proba-
bility space, then

=

= + + º +

= Â
1 1 2 2

1

( ) ( | ) ( ) ( | ) ( ) ( | ) ( )

( | ) ( )

n n
n

i i
i

P B P B A P A P B A P A P B A P A

P B A P A

This is called the  total probability theorem

Bayes’ theorem  Bayes,  Theorem, or Bayes’ rule enables us to find the conditional probability of Ai given 
B, in terms of the conditional probabilities of B given Ai, i = 1 to n.

1

( ) ( | ) ( )
( | )

( )
( | ) ( )

i i i
i n

i i
i

P A B P B A P A
P A B

P B
P B A P A

=

«
= =

Â

\ 

1

( | ) ( )
( | )

( | ) ( )

i i
i n

i i
i

P B A P A
P A B

P B A P A
=

=
Â

(6.3)

This is called Bayes’ theorem.

Statistical independence As stated earlier, two events A and B are said to be  statistically independent if

( ) ( ) ( )P AB P A P B= ◊
The three events A, B and C are said to be statistically independent if the following two conditions are 
satisfied:
 1. ( ) ( ) ( ); ( ) ( ) ( ) and ( ) ( ) ( )P AB P A P B P BC P B P C P AC P A P C= ◊ = ◊ = ◊
 2. ( ) ( ) ( ) ( )P ABC P A P B P C= ◊ ◊
In general, n events, A1, A2, …, An are said to be independent if for every k < n the events A1, A2, …, Ak are 
independent and further, if

= º1 2 1 2( , , ..., ) ( ) ( ) ( )n nP A A A P A P A P A

Solution Since the box has been randomly chosen,

1 2 3 4 5( ) ( ) ( ) ( ) ( ) 1/5 0.2P B P B P B P B P B= = = = = =
\ probability of the picked lamp being defective =

1 1 2 2 3 3 4 4 5 5( ) ( | ) ( ) ( | ) ( ) ( | ) ( ) ( | ) ( ) ( | ) ( )

0.2[0.05 0.2 0.03 0.1 0.14] 0.104

P D P D B P B P D B P B P D B P B P D B P B P D B P B= + + + +

= + + + + =
\ the  probability of the picked up lamp being defective = 0.104

xample 6.2 There are 5 boxes B1, B , B3, B4, and B5 containing compact fluorescent lamps. Each
box contains 1000 lamps. It is known that B1 has 5%, B2 has 20%, B3 has 3%, B4 has 10%, and B5 has
14% defective units. If a box is selected at random and randomly a lamp is picked out of it, what is the
probability of that this lamp so picked, is defective? If the lamp so picked is found to be defective, what is
the probability that it was picked from box B1?

Fig. 6.1 Partitioning of S
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Now, given that the lamp that is picked is defective the probability of its having been taken from box B1 is 
say, 1( | )P B D

1 1 1
1

( ) ( | ) ( )
( | )

( ) ( )

P B D P D B P B
P B D

P D P D

◊
= =

But P(D|B1) = 0.05, P(D) = 0.104 and P(B1) = 0.2

    1

0.05 0.2 0.01
( | ) 0.0961

0.104 0.104
P B D

¥
= = =

6.4 RANDOM VARIABLES

Definition A real random variable is a mapping of the outcomes of a  random experiment to the  real line 
and satisfying the following two conditions:
 1. {X £ x} i.e., {X(x) £ x} is an event for every real number x.

 2. { ( ) } 0 { ( ) }P Px x= + • = = = -•X X

 The mapping referred to in the above definition, is therefore having S, the set of all outcomes as its domain 
and R, the set of real numbers, as its range. If x represents an outcome, X(x) is used to denote the number, the 
random variable, assigned to the outcome x, and X denotes the rule according to which each x is allotted a 
real number. However, for simplicity of notation, we use X instead of X(x) to denote the number assigned to 
x. The ambiguity, if any, caused by this, may be resolved easily from the context.
 For example, in the random experiment of tossing of a coin, we may assign the number 1 for the outcome 
‘heads’ and the number ‘0’ for the outcome ‘tails’. Then

X(heads) = 1 and X(tails) = 1

Suppose x denotes some real number. As x is given various values along the real line, the elements of S that 
constitute the set {X £ x} also change because, after all, {X £ x} represents a subset of S consisting of all the 
outcomes x which are such that X(x) £ x. Thus {X £ x} is a set of outcomes. As mentioned in the definition of 
a random variable, we demand that the mapping be such that this set is an  event for every x.
 A complex random variable Z is given by 

Z = X + jY (6.4)
where X and Y are real random variables.

Definition The  Cumulative Distribution Function (CDF) of a random variable X is denoted by FX(x) and 
is defined by

( ) { }XF x P xD £X (6.5)

To make the notation simpler, we shall use F(x) instead of FX(x). We shall therefore be representing the CDF 
of a random variable Y by F(y).

Example 6.3 For the random experiment of tossing of a coin, if 
we define a random variable X by saying that

X(x = Heads) = 1 and X(x = Tails) = 0

The CDF of the random variable (r.v) X will be as shown in Fig. 6.2, 
since P{Heads} = P{Tails} = 0.5. Since ( ) { }F x P x= £X , when 
x < 0, F(x) = 0. when x ≥ 0, but less than one, F(x) = 0.5 and for 
x ≥ 1, F(x) = 1. Thus, we get a staircase type of CDF.

Example 6.3 For the random experiment of tossing of a coin, if
we define a random variable X by saying that

X(x = Heads) = 1 and X(x = Tails) = 0

The CDF of the random variable (r.v) X will be as shown in Fig. 6.2,X

since P{Heads} = P{Tails} = 0.5. Since ( ) { }F( ) {) {{{ , when
x < 0, F(x) = 0. when x ≥ 0, but less than one, F(x) = 0.5 and for 
x ≥ 1, F(x) = 1. Thus, we get a staircase type of CDF.

Fig. 6.2 Cumulative distribution 

function of X
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 Properties of CDF 
 1. F(x) lies between 0 and 1; i.e., 0 £ F(x) £ 1
 2. F(•) = 1 and F(–•) = 0
 3. F(x) is a non-decreasing function of x.
 4. F(x) is continuous from the right; i.e., 

0
Lim ( ) ( ); 0F x F x
ŒÆ

+ Œ = Œ>
 5. F(b) – F(a) = P[a < X < b]

 6. 
–

1 1 1[ ] ( ) ( )P x F x F x= = -X , where, –
1 1

0
( ) Lim ( ); 0F x F x

ŒÆ
D - Œ Œ>

6.4.1 Types of Random Variables

Random variables are categorized as  discrete random variables,  continuous random variables and  mixed-type 
random variables, based upon the type of CDF.
 A random variable, whose CDF is having a staircase shape is called a discrete random variable. A random 
variable with a CDF which is a continuous function of x is called a continuous random variable. A random 
variable which is neither a discrete random variable nor a continuous random variable is called a mixed

random variable.

Definition The  Probability Density Function (PDF) of a random variable X is defined as the derivative 
with respect to x of its CDF, viz., Fx(x)

\
( )

( ) x
x

dF x
f x

dx
=  (6.6)

If X is a discrete random variable, we know that its FX(x) will be of the staircase type. Hence, as shown in 
Fig. 6.3, its probability density function (PDF) will be zero everywhere except at the points of discontinuity, 
where it will have impulses.

Fig. 6.3  (a) CDF of a discrete random variable , (b) CDF of a continuous random variable, (c) CDF of a mixed random 

variable

Fig. 6.4 (a) CDF of a discrete random variable, (b) PDF of a discrete random variable

The PDF, fX(x) of a continuous random variable X will be a continuous function of x. The PDF of a mixed 
random variable involves  impulses but need not necessarily be zero between any two consecutive impulses.

CS-Rao_06.indd 313CS-Rao_06.indd   313 1/25/2013 8:42:29 AM1/25/2013   8:42:29 AM



314 Communication Systems

 Properties of PDF
 1. Since the CDF is a non-decreasing function of x, its derivative, fX(x), will be non-negative, i.e., fX(x) ≥ 0.

 2. The area under any probability density function will be unity, i.e., ( ) 1Xf x dx
•

-•
=Ú

 3. 
2

1

1 2( ) [ ]
x

X
x

f x dx P x x= < £Ú X

 4. ( ) ( )
x

X XF x f da a
-•

= Ú

In the case of a  discrete random variable, since the derivative of the CDF results in impulses, it is more 
appropriate to talk in terms of probability masses, [ ]i ip P x= £X . In this case, pi ≥ 0 for all i and 1i

i

p =Â

6.4.2 Some Useful Random Variables

In what follows, we give the distributions or  density functions of a number of continuous and discrete random 
variables which are useful in the study of communication engineering (analog and digital)

1. Continuous random variables

(a) Uniform random variable A random variable X is called a  uniform random variable if its probability 
density function fX(x) is given by

1 2 1 2
2 1

1
; ;

( )( )

0 otherwise
X

x x x x x
x xf x

Ï £ £ -• < < < •Ô -= Ì
ÔÓ

 (6.7)

Such a random variable is generally denoted by U(x1, x2). The  cumulative distribution function CDF of this 
random variable is as shown in Fig. 6.5(b) and is given by

2

1
1 2

2 1

1

1 for

( )
( ) for   

( )

0 for

X

x x

x x
F x x x x

x x

x x

Ï ≥
Ô

-Ô= £ £Ì -Ô
Ô <Ó

 (6.8)

The uniform random variable is used to model a 
 continuous random variable, about which we have no 
other knowledge except for the finite range over which 
its values are spread. Such a situation arises in the case 
of a sinusoid whose phase is random. We model its 
phase by a uniformly distributed random variable, its 
range of values being from 0 to 2p.

(b) Gaussian or  normal random variable The random 
variable X is said to be a Gaussian or normal random 
variable with  mean ‘m’ and  variance s2 if its  proba-
bility density function is given by

2 2( ) /2

2

1
( )

2

x m
Xf x e

s

ps

- -=  (6.9)
Fig. 6.5  (a) PDF of a uniformly distributed random 

variable, (b) CDF of a uniformly distributed 

random variable
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This  density function has a shape as shown in Fig. 6.6 
and is symmetric with respect to x = m. If s2 is large, 
the values of X are more spread out around the mean 
value and if it is small, the values are more concen-
trated near the mean value. Since the density function 
is completely determined by the two parameters – the 
mean and the variance, it is generally denoted by N(m,
s2). A  Gaussian random variable with zero mean and 
unit variance, is called the standard normal random 
variable and is denoted by N(0, 1)
  Gaussian distribution function, FX(x) is given by

       

2 2

2

( ) /2

2

/2

1
( ) [ ]

2

1

2

x
y m

X

x m

y

F x P x e dy

e dy

s

s

ps

p

- -

-•

-Ê ˆ
Á ˜Ë ¯

-

-•

= £ =

=

Ú

Ú

X

 (6.10)

The  Gaussian density function is the most extensively used one in communication engineering. This is 
because  thermal noise, which is a major source of noise in communications, is, Gaussian in nature.
 For a N(0, 1) random variable, Eq. (6.10) reduces to 

       
2 /21

( ) [ ]
2

x
y

Xg x e dy P x
p

-

-•
= = £Ú X  (6.11)

In communications engineering, the so-called ‘tail probability’ of a Gaussian random variable is the one, 
which one has to determine frequently while calculating error probabilities. So it is given a special symbol 
Q(x) called the Q-function and is given by

      ( ) 1 ( ) [ ]XQ x g x P X x= - = >  (6.12)

This Q-function, which is extensively tabulated, has the following important properties:

( ) 1 ( )Q x Q x- = -  (6.13)

    
1

(0)
2

Q =  (6.14)

   ( ) 0Q • =  (6.15)

(c)  Rayleigh random variable A random variable X is said to be having  Rayleigh distribution with parameter 
s2 if its density function is

2 2/2
2

; 0
( )   

0; 0

x

X

x
e x

f x

x

s

s

-Ï ≥Ô= Ì
Ô <Ó

 (6.16)

The Rayleigh distributed random variable has a mean value of 
2

p
s  and a variance of 22

2

p
s

Ê ˆ-Á ˜Ë ¯
. The 

shape of  Rayleigh density function is shown in Fig. 6.7(a).

Fig. 6.6  Density function of a Gaussian random 

variable with mean m and variance s2

CS-Rao_06.indd 315CS-Rao_06.indd   315 1/25/2013 8:42:29 AM1/25/2013   8:42:29 AM



316 Communication Systems

Fig. 6.7 (a) Rayleigh density function, (b) Ricean density function

 If a band pass signal has identically distributed Gaussian zero-mean random processes as its inphase 
and quadrature components, it can be shown that its  envelope will have Rayleigh distribution. This density 
function is extensively used in the study of  fading communication channels.
(d) Ricean random variable ( Rice distribution) A random variable X is said to be a  Ricean random variable 
with parameters m and s2, if its probability density function fX(x) is of the form

2 2 2( )/2
02 2

1
( )   x

X

x
f x xe I

m s m

s s

- +È ˘ Ê ˆ= ◊ Á ˜Í ˙ Ë ¯Î ˚
 (6.17)

where cos
0

0

1
( )I e d

p
a qa q

p
D Ú  (6.18)

i.e., I0(a) is the modified  Bessel function of the first kind and zeroth order.
The shape of  Rice density function (see Fig. 6.6(b)) is somewhat similar to that of  Rayleigh density function. 
In fact, as can be seen from Eqs. (6.16) and (6.17), Rice density function simplifies into Rayleigh density 
function when the parameter m = 0.
 If a band pass signal has Gaussian random processes with the same variance but different non-zero mean 
values as its inphase and quadrature components, it can be shown that its envelope will have Ricean distri-
bution. Ricean distribution, just like Rayleigh distribution, is widely used in the study of fading channels. The 
sum of a sinusoid and a narrowband noise can be shown to have Ricean distribution for its envelope.

2.  Discrete random variables

(a) Bernoulli random variable A discrete random variable, X, is said to be a  Bernoulli random variable 
provided it takes the values 1 and 0 with probabilities of P and (1-P). This random variable is quite useful in 
modeling a binary data generator and also in modeling the  error pattern in the received binary data when the 
channel introduces random errors.

(b) Binomial random variable A discrete random variable, X, is said to be a  Binomial random variable with 
parameters n and p if

[ ] ; 0k n kn
P k p q k n

k

-Ê ˆ
= = £ £Á ˜Ë ¯

X  (6.19)

In fact, this gives the number of 1s in a sequence of 1s and 0s generated by n independent  Bernoulli trials. 
Therefore, it may be used to model the total number of erroneous bits in the received data when a sequence 
of n bits is transmitted over a channel having a  bit-error probability of p.

(c)  Poisson random variable  Poisson distribution is used to model phenomena such as ‘shot noise’ in 
electron devices and ‘radio active decay’.
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 The  Poisson random variable represents the number of times a particular event occurs in an interval t0
seconds, given that the probability of its occurrence once in a small interval Dt is l(Dt).
 The Poisson frequency function is given by

   0 0
0

( )
( , )

!

k
t

P k t e
k

lt l- È ˘
= Í ˙

Î ˚
 (6.20)

              = Probability of occurrence of the event k number of times in a time interval of t0 seconds.

When t0 = 1 second, Eq. (6.20) reduces to

( )
( ,1)

!

k

P k e
k

l l- È ˘
= Í ˙Î ˚

 (6.21)

The binomial model becomes approximately the same as the Poisson model when the two parameters n and 
p of the binomial model are such that n is very large, p is very small and np remains constant.

Example 6.4 A fair coin is tossed 5 times. What is the probability of
 (a) ‘Heads’ appearing two times?
 (b) ‘Heads’ appearing atleast once?
 (c) ‘Heads’ appearing twice and ‘Tails’ appearing thrice?
 (d) ‘Tails’ appearing at the most once?

Solution
 (a) From Eq. (6.19), we have

Ê ˆ Ê ˆ= = = ◊ ◊ =Á ˜ Á ˜Ë ¯ Ë ¯2

2 3
1 1 5! 1 1 5

[ 2] 5
2 2 2!3! 4 8 16CP X

 (b) 
Ê ˆ Ê ˆ≥ = - = = - =Á ˜ Á ˜Ë ¯ Ë ¯0

0 5
1 1 31

[ 1] 1 [ 0] 1 5
2 2 32CP P XX

 (c) 
Ê ˆ Ê ˆ= =Á ˜ Á ˜Ë ¯ Ë ¯2

2 3
1 1 5

[ : 2 heads and 3 tails] 5
2 2 16CP X

 (d) 
Ê ˆ Ê ˆ Ê ˆ Ê ˆ> = = + = = + =Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯2 4

5 0 4 1
1 1 1 1 6

[ 1] [ 0] [ 1] 5 5/
2 2 2 2 32C CP P PX X X

Example 6.5 Determine the mean of a  Poisson random variable.

Solution  Mean of

•

=
= = =Â

0

[ ] ( )
x

E xP xX X X

l l

l
l

l

l l

l l
l

l l l
l

• •

= =

-• •

= =

-

= = ◊

= ◊ =
- -

È ˘
= + + + +Í ˙

Î ˚

Â Â

Â Â

L

– –

0 1

– 1
–

1 1

2 3

! !

( 1)! ( 1)!

1
1 2! 3!

x x

x x

x x

x x

e e
x x

x x

e
x e

x x

e

 (Since the term corresponding to x = 0 is zero)
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By expanding the summation in the above step.

2 3

1
1 2! 3!

e
ll l l

+ + + + =L

\ –[ ]E X e e
l ll l= ◊ =

Example 6.6  Gaussian density function is given as

2 2( ) /2

2

1
( )

2

x m
Xf x e

s

ps

- -=

Show that 
2

1

2ps
 is a normalization factor required to make the total area under the density function 

equal to 1.

Solution Let ( )x m z- D \ dx = dz

2 2/2

2

1
( )

2

z
Xf z e dz

s

ps

•
-

-•

È ˘
= Í ˙

Í ˙Î ˚
Ú

Now, let 
2 2/2z

A e dz
s

•
-

-•
D Ú . Then it is enough if we show that

   22A ps=

\ consider 
2 2 22 ( )/2z W

A e dzdw
s

• •
- +

-• -•
= Ú Ú

If we now put z = r cos q and w = r sin q, dzdw = rdrdq and (z2 + w2) = r2. Hence, we get

2 2 2 2
2 2

2 /2 /2

0 0 0 0

r r
A e rdrd d e rdr

p p
s sq q

• •
- -È ˘ È ˘

= = Í ˙ Í ˙
Î ˚ Î ˚

Ú Ú Ú Ú

Now, put 
2

2
.

2

r
v

s
D Then, 2 2

2

2

rdr rdr
dv

s s
= =

\ 2 2 2

0

2 2v
A e dvps ps

•
-= =Ú \ 22A ps=

Hence, the factor 
2

1

2ps
 in fX(x) is a normalization factor.

6.5 FUNCTIONS OF A SINGLE RANDOM VARIABLE

Consider a function g(x) of the real variable x. Let us also consider a random variable X whose range is 
included in the domain of g(x). Then, for every outcome, x, of the  random experiment, X(x) is a real number 
which is in the domain of the function g(x). Thus, we may talk of the function g(X), a function of the random 
variable X. If we can call this as another random variable Y, then

        Y = g(X) (6.22)

We can then talk of the CDF, FY(y) of the  random variable Y.

( ) [ : ( ( )) ]YF y P S g yx x= Œ £X  (6.23)

CS-Rao_06.indd 318CS-Rao_06.indd   318 1/25/2013 8:42:30 AM1/25/2013   8:42:30 AM



Probability, Random Processes and Noise 319

Now, for Y to be a  random variable for every y, the set of values of x such that g(x) £ y must consist of the
unions and intersections of a countable number of intervals. This means that for every y,

Y = g(x)

must have a countable number of solutions. Then only

g(X(x)) £ y

will be an event. If the function g(x) belongs to such a class, and further, if at every xi = g–1(y), a derivative 
exists for the function g(x), and the derivative is not zero, then it can be shown that the  density function of Y
is given by

( )
( )

( )
X i

Y
i i

f x
f y

g x
=

¢
Â  (6.24)

Example 6.7 If Y = X2, find fY(y) in terms of fX(x).

Solution Let us consider the set of values {xi} of x which 
are such that for a given y, g(xi) £ y for all i.
 For y < 0, there does not exist any value of x for which g(x) < y ,

i.e x2 < y. So let us consider only y ≥ 0. For this case x2 £ y is 
true for

    .y x y- £ £

\ ( ) [ ] [ ] [ ]YF y P y y P y P y= - £ £ = £ - £ -X X X

\ ( ) ( ) ( )Y X XF y F y F y= - -   ; y > 0

To get the corresponding density function, fY(y), we have

1
[ ( ) ( )] for 0

2( ) ( )  

0 for < 0

X X

Y Y

f y f y yd
yf y F y

dy
y

Ï + - >Ô= = Ì
Ô
Ó

6.6 MEAN,  VARIANCE, AND  CHARACTERISTIC FUNCTION

6.6.1 Mean

The  mean, or the expected value of a random variable X with the density function fX(x), is defined as

{ } ( )XE xf x dx
•

-•
D ÚX  (6.25)

The  expected value, or mean, will be just a number and it is generally denoted by either mX or hX.
For a  discrete random variable, we had already seen that

( ) ( )X i i
i

f x p x xd= -Â  (6.26)

Substituting this for fX(x) in Eq. (6.25), we get

{ } ,i i
i

E p x= ÂX  where [ ]ip P= =X ix  (6.27)

Fig. 6.8 y = x2
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Example 6.8 A random variable X has a density function fX(x) given by

fX(x) = 2e–2xu(x)

Find the  expected value of this random variable.

Solution 2 2

0

1
2 ( ) 2

2
x x

X x e u x dx xe dx
• •

- -

-•
h = ◊ = =Ú Ú

Example 6.9 A loaded die produces the numbers 1, 2, 3, 4, 5 and 6 with probabilities 0.10, 0.12, 0.12, 
0.14, 0.20 and 0.32, respectively. Find the  mean value.

Solution 
6

1

(1 0.10) 2(0.12) 3(0.12) 4(0.14) 5(0.20) 6(0.32)

4.18

i
i

i ph
=

= ◊ = ¥ + + + + +

=

Â

6.6.2 Variance

The  variance of a random variable X with expected value hX, is defined as

2 22 2 2 2Var[ ] [( ) ] [ ] 2 [ ] [ ]X X XE E E Es h h h h= = - = - + = -XX X X XX

\ 22 2[ ] { [ ]}E Es = -X X  (6.28)

Since 2[( ) ] 0,XE X h- ≥  it follows that

2 2[ ] { [ ]}E E≥X X

Discrete random variable: In this case,

s hD - = =Â2 2( ) where, [ ]i i X i i
i

p x p P xX  (6.29)

The positive square-root of the variance is referred to as the ‘ standard deviation’.

Example 6.10 Find the mean value and the variance of a random variable X which is uniformly 
distributed between x = a to x = b.

Solution 

 (a) Mean 
1

( )
( ) 2

b

X X
a

b a
x f x dx x dx

b a

•

-•

+
h = ◊ = ◊ =

-Ú Ú

 (b) Variance 22 2 2

2 2
2

[ ]  [ ] – { [ ]}

1 ( ) ( )

( ) 4 12

X

b

a

E dx E E

b a b a
x dx

b a

s h
•

-•
= - =

È ˘Ï ¸ + -
= ◊ - =Í ˙Ì ˝-Í ˙Ó ˛Î ˚

Ú

Ú

X X X

\
2

2 ( )

12

b a
s

-
=

Note
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Example 6.11 Find the variance of a  Bernoulli random variable.

Solution A Bernoulli random variable takes the values 1 and 0 with probabilities p and (1 – p)

\ 1 0 (1 )X p p ph = ◊ + ◊ - =

2 2 2[ ] 1 (1 ) 0E p p p= ◊ + - ◊ =X

\ 22 2 2[ ] – { [ ]} (1 )E E p p p ps = = - = -X X

As noted earlier, the positive square-root of the  variance of a random variable X is referred to as its ‘ standard 
deviation’ and is denoted by sx. The standard deviation provides a measure of the spread of the values of the 
random variable X with respect to its mean value hx. Since

s = =2 2 2[ ] { [ ]}x E E XX

 sx = Standard deviation = h- = -2 2 2 2[ ] { [ ]} xE E XX X  (6.30)

where -2 2[ ]X E X

Statement of  Chebyshev’s inequality

Chebyshev is spelt by some authors as  Tchebycheff.

Let X be a continuous random variable with mean hx and standard deviation sx. Let k be any positive 
number. Then Chebyshev’s inequality says that

s- ≥ £
2

1
[| | ]x xP n k

k
X  (6.31)

Physically this means that the probability of a  random variable X taking a value that is more than k standard 
deviations away (on either side) from its  mean value hx, will not be greater than (1/k2).

Proof Let Y D X – hx, and ksx D a

Then

• • •

-• -• -
= ≥ +Ú Ú Ú2 2 2[ ] ( ) ( ) ( )y y y

a

E y f y dy yf y dy y f y dyY
e

 (6.32)

But we know that whenever |X – hx| ≥ ksx, y2 ≥ a2

i.e., whenever a £ |y| < •, y2 • a2. Hence, Eq. (6.32) may be rewritten as

•

•

È ˘
= +Í ˙

Í ˙Î ˚
Ú Ú

– –
2 2

– –

[ ] ( ) ( )
a

y y
a

E a f y dy f y dyY
e

 (6.33)

But

•
= £ -Ú

–

–

( ) [ ]
a

yf y dy P aY

and
•

= ≥Ú
–

( ) [ ]y
a

f y dy P aY
e

Note

CS-Rao_06.indd 321CS-Rao_06.indd   321 1/25/2013 8:42:31 AM1/25/2013   8:42:31 AM



322 Communication Systems

Hence, Eq. (6.33) may be written as

≥ £ - + ≥2
2

1
[ ] [ ] [ ]E P a P a

a
Y Y Y

i.e.,
s

= ≥ ≥
2

2 2

1
[| | ]x P a

a k
Y

i.e.,
2

1
| | [ ]x xP k

k
h s- ≥ £X  (6.34)

Properties of Mean and Variance Let c be a constant and X be a random variable with mean hX.
Then mean will have the following properties:
 1. E[cX] = c E[X] = chX

 2. E[c] = c
 3. E[X + c] = E[X] + c = hX + c

If the random variable X has a variance 2
Xs  and if c is a constant, the following are the properties of variance:

 1. Var[c ◊ X] = c2Var[X] = c2 2
Xs

 2. Var [c] = 0

 3. Var[X + c] = Var[X] = 2
Xs

6.6.3  Characteristic Function of a Random Variable

Definition The characteristic function of a  random variable X is denoted by fX(w) and is defined as

( ) ( ) j x
X Xf x e dx

wf w
•

-•
= Ú  (6.35)

If we now define ( ) ( ) sx
Xs f x e dx

•

-•
F D Ú

So that ( ) ( )Xjw f wF =  of Eq. (6.35)

Taking the first derivative of F(s) with respect to s, we get

(1)( ) ( ) [ ]sx s
Xs xf x e dx E e

•

-•
F = =Ú X

X  (6.36)

If we take the nth derivative with respect to s, we get

( )( ) ( ) ( ) [( ) ]n n sx n s
Xs x f x e dx E e

•

-•
F = =Ú X

X  (6.37)

If we put s = 0 in Eqs. (6.36) and (6.37), we find that

F = F =(1)(0) First derivative of ( ) with respect to at the origin [ ]s s E X  (6.38)

nF = F =( ) th(0) derivative of ( ) with respect to at the origin [ ]n
n s s E X  (6.39)

i.e., derivatives of various orders of the  moment generating function F(s) at the origin give the moments of 
various orders for the random variable X.

Thus, the characteristic function of a random variable X helps us in determining moments of 

various order for X in an easy manner.
Note
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Discrete random variable If X is a  discrete random variable which takes values xi with probabilities 
pi = 1, 2, 3, …, then Eq. (6.28) reduces to

( ) ij x
X i

i

p e
wf w = Â  (6.40)

Example 6.10 Show that the  characteristic function of a  Gaussian random variable X with mean 
value m and variance s 2, is given by

2 2( 0.5 )( ) jm
X e

w s wf w -=

Solution The density function fX(x) is given by

            

2 2( ) /2

2

1
( )

2

x m
Xf x e

s

ps

- -=

Let us transform the random variable X into another random variable Y by putting

    Y = (X – m) / s

Then,
1

[ ] [ ] 0.
m

E E
s s

= - =Y X \ mean of Y is zero

   
2 22

2

( – )
Var[ ]  [ ] – { [ ]} [ ] 1

m
E E E E

s

È ˘= = = =Í ˙Î ˚
X

Y Y Y Y

\ Y = N(0, 1); and its  density function is given by

2/21
( )

2

y
Yf y e dy

p

•
-

-•
= Ú

2 2/2 ( /2)1 1
( )

2 2

y sy sy y
Y s e e dy e dy

p p

• •
- -

-• -•
F = ◊ =Ú Ú

But
2

2 21
/2 ( ) .

2 2

s
sy y y s- = - - \ substituting this in the RHS of the above equation,

2
2

2 2 2

1
( )

2 2 /2 ( ) /2) /21 1
( )

2 2

s
y s

s y s s
Y s e dy e e dy e

p p

È ˘
- - -• •Í ˙

- -Í ˙Î ˚

-• -•

È ˘
F = = =Í ˙

Í ˙Î ˚
Ú Ú  (6.41)

But
m

s

-
=
X

Y  or X = sY + m

( )( ) ( ) ( ) [ ]j y m j m j y j j m
X X Xf x e dx e f x e dx E e e

w s w ws ws ww
• •

+

-• -•
F = = =Ú Ú Y  (6.42)

Since ( ) [ ],j
X E e

wwF = X  we may write [ ] ( )j
yE e

ws
s w= FY

But 22

( )Y e
ww -F = /  from Eq. (6.41)

22 2

( )Y e
s w

s w -F = /

\ from Eq. (6.42), we have
2 2 2 2/2 ( 0.5 )( ) j m j m

X e e e
w s w w s ww - -F = ◊ =
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Example 6.11 Find the  characteristic function of a  Bernoulli random variable.

Solution The Bernoulli random variable takes the values 1 and 0 with probabilities p and (1 – p), respec-
tively

\ 1 0( ) (1 ) 1 [ 1]j j j
X p e p e p e

w w ww ◊ ◊F = ◊ + - ◊ = + -

6.7 FUNCTIONS OF TWO RANDOM VARIABLES

Consider two random variables X and Y defined on the same  probability space. The  cumulative distribution 
functions, FX(x) and FY(y) defined as

FX(x) = P[X £ x] and FY(y) = P[Y £ y]

are called marginal distribution functions and the corresponding density functions are called  marginal density 
functions.
 We may now define joint, or  bivariate distribution function FXY(x, y) or F(x, y) of the two random variables 
X and Y as

( , ) [ , ]F x y P x yD £ £X Y  (6.43)

The  joint density function may be defined as
2 ( , )

( , )
F x y

f x y
x y

∂
D

∂ ∂
 (6.44)

Then, since ( , ) ( , ) 0F x F y-• = -• =  and ( , ) 1F +• +• = , we have

( , ) ( , )
yx

F x y f d da b a b
-• -•

= Ú Ú  (6.45)

The marginal distribution functions and density functions can be obtained from the joint distribution and 
density functions respectively as follows:

( ) ( ) ( , ) and ( ) ( ) ( , )x XY y XYF x F x F x F y F y F y= = • = = •  (6.46)

and   ( ) ( , ) ; ( ) ( , )XY XYf x f x y dy f y f x y dx
• •

-• -•
= =Ú Ú  (6.47)

1. Discrete random variables: If X and Y are two  discrete random variables defined on a certain probability 
pace, and if they take values xi and yk with probabilities pi and qk, respectively and given by

   [ ] and [ ]i kp P q P= = = =X Yi kx y  (6.48)

Then their joint probability pik is given by

[ and ]ik kp P y= = =X Yix  (6.49)

Of course, just like the marginal probabilities, the joint probabilities also add up to a value 1.

i.e., 1ik
i k

p =ÂÂ  (6.50)

Also, andi ik k ik
k i

p p p p= =Â Â  (6.51)

Conditional CDFs and conditional PDFs Let X and Y be two random variables defined on the same proba-
bility space. The conditional CDF of Y given X £ x, a real number, is denoted by FY(y|X £ x) and is defined by

{ } ( , )
( | )

{ } ( )Y
X

P F x y
F y

F x

£ £
£ D =

£
X Y

X
P X

x, y
x

x
 (6.52)
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\
[ ( , )]

( | )
( )Y

X

F x y
y

f y
F x

∂
∂£ =X x  (6.53)

The PDF of Y given X = x, is represented by fy|x(y|x) or, f(y|x) and is given by

( , )
( | )

( )

f x y
f y x

f x
=  (6.54)

Similarly,

( , )
( | )

( )

f x y
f x y

f y
=  (6.55)

If the random variables X and Y are  statistically independent,

( , )
( | ) ( ) ( , ) ( ) ( )

( )

f x y
f y x f y f x y f x f y

f x
= = \ = ◊  (6.56)

2.  Discrete random variables: If X and Y are discrete type of random variables with P[X = xi] = pi and 
P[Y = yk] = qk,

and                      { , }k ikP y p= = =X Yix  with say i = 1 to M and k = 1 to N, then

{ , }
{ | }

{ }
k ik

k
i

P y p
P y

P p

= =
= = = =

=
X Y

Y X
X

i
i

i

x
x

x
 (6.57)

(a) Conditional mean and variance The  conditional mean of the random variable Y given that X = x, is repre-
sented by hy|x and is given by

| [ | ] ( | )y x E x yf y x dy
•

-•
h = = ÚY  (6.58)

The  conditional variance is represented by 2
|y xs  and is given by

2 2 2
| | | |[( ) | ] ( ) ( | )y x y x y x y xE x y f y x dys h h

•

-•
= - = -ÚY  (6.59)

(b) Independence, uncorrelatedness and orthogonality

(i) If two random variables X and Y are  statistically independent,

( | ) ( ); ( | ) ( ) and ( , ) ( ) ( )f y x f y f x y f x f x y f x f y= = = ◊

(ii) The  covariance of the two random variables X and Y is defined as

h h= - -

= -

[( )( )]

[ ] [ ] [ ]

XY X YC E

E E EXY X Y

X Y  (6.60)

The  correlation coefficient rXY of two random variables X and Y is

XY
XY

X Y

C
r

s s
D  (6.61)

The random variables X and Y are said to be  uncorrelated if their covariance is zero, i.e.,

0, i.e., when 0 or [ ] [ ] [ ]XY XYC E E Er= = =XY X Y  (6.62)

(iii) Random variables X and Y are said to be  orthogonal, if

[ ] 0E =XY
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6.8 JOINTLY GAUSSIAN RANDOM VARIABLES

Definition Two random variables X and Y are said to be  jointly Gaussian, if their  joint density function is 
of the form

2 2
1 2 1 2

2 2 22
1 21 21 2

( ) ( ) 2 ( )( )1 1
( , ) exp

2(1 )2 1
XY

x m y m x m y m
f x y

r

s sr s sps s r

È ˘Ï ¸- - - -Ô Ô= - + -Í ˙Ì ˝
- Ô ÔÍ ˙- Ó ˛Î ˚

 (6.63)

Properties 
 1. If X and Y are jointly Gaussian, then (a) they are individually Gaussian, and (b) the conditional densities 

f(x|y) and f(y|x) are also Gaussian.
 2. If X and Y are individually Gaussian, they need not necessarily be jointly Gaussian.
 3. Jointly Gaussian random variables are completely characterized by their mean vector and  covariance 

matrix.
 4. For  jointly Gaussian random variables, uncorrelatedness implies  statistical independence.

6.9 CENTRAL LIMIT THEOREM

The  central limit theorem states that if (X1, X2, . . . , Xn) are  independent random variables with means (m1, m2,

…, mn) and variances 2 2 2 2
1 2 3( , , , , )ns s s sº , then the  cumulative distribution function of the random variable

1

n
i i

i i

m

n s=

Ê ˆ-
Á ˜
Ë ¯

Â
X

converges to that of a Gaussian random variable having a mean of zero and a variance of 1.
 In case, the n random variables are not only independent, but are also identically distributed with mean of 
each = m and variance of each = s2, then, the CDF of their mean converges to the CDF of a Gaussian random 
variable having a mean of m and a variance of (s2/n).

It is as a consequence of central limit theorem that the sum of the noises produced by a very large number 

of  independent sources tends to have  Gaussian distribution.

Example 6.12 Random variable Y = sin X, where X is  uniformly distributed between –p/2 to +p/2.
Find the  density function of Y.

Solution 
sin sin( ) [ ] [ ] ( )j y j x j x

Y XE e E e e f x dx
w w ww

•

-•
F = = = Ú

Since X is uniformly distributed over –p/2 to +p/2, we have

1
;

( ) 2 2

0; otherwise
X

x
f x

p p

p

Ï - £ £Ô= Ì
ÔÓ

\
/2

sin

/2

1
( ) j x

Y e dx
p

w

p

w
p -

F = Ú

Since y = sin x, dy = cos xdx and when x = –p/2, y = –1 and when x = p/2, y = 1

\
1

2
1

1 1
( ) But ( ) [ ] ( )

1

j y j y j y
Y Y Ye dy E e e f y dy

y

w w ww w
p

•

- -•
F = ◊ F = =

-
Ú Ú

\ we find that 
2

1
( )

1
Yf y

yp
=

-
 for |y| £ 1 and zero otherwise.
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Example 6.13 X and Y are two independent zero-mean  Gaussian random variables with variance s2.
We define another pair of random variables r and q in terms of X and Y as follows:

p-= + = <2 2 1; tan ( / ) where | |r X Y Y Xq qq q

Obtain the  joint density function of r and q . Also obtain their marginal densities.

Solution 
2 2 2 2/2 /2

2 2

1 1
( ) and ( )

2 2

x y
X Yf x e f y e

s s

ps ps

- -= =

Since X and Y are given to be  independent random variables, their joint density is

2 2 2( )/2
2

1
( , )

2

x y
XYf x y e

s

ps

- +=

Now, we are given that 2 2
r x y= +  and 1tan ( / )y xq -=

\ one solution is

1 1cos and sinx r y rq q= =

Then the  Jacobian 

1 1

1 1

cos sin
( , )

sin cos

x x

rr
J r r

y y r

r

q qq
q

q q

q

∂ ∂
-∂ ∂= = =

∂ ∂
∂ ∂

\         
2 2/2

, 1 1 2
( , ) ( , ) ; 0 & | |

2

r
r xy

r
f r rf x y e r

s
q q q p

ps

-= = < < • <

This is their joint density function. To obtain the  marginal density function of r we integrate fr,q(r, q) for 
all values of q from –p to +p. Similarly, to get the marginal density of q, we integrate fr,q(r, q) w.r.t. r from 
r = 0 to r = •.

\
2 2/2

, 2
( ) ( , ) ; 0r

r r

r
f r f r d e r

p
s

q
p

q q
s

-

-
= = < < •Ú

,
0

1
( ) ( , ) ; | |

2rf f r drq qq q q p
p

•
= = <Ú

\ r has  Rayleigh density function while q is  uniformly distributed between –p and +p. Also, since 

, ( , ) ( ) ( ),r rf r f r fq qq q= ◊  we find that r and q are  statistically independent.

6.10 RANDOM PROCESSES

Earlier in Section 6.4, we had defined a random variable X as the rule according to which we could assign a 
real number to each outcome, x, of a  random experiment. Thus, we define the  random variable as a function 
of x and denoted it by X(x), or simply, by X. Now, if with every outcome x of a random experiment, we 
associate a time signal instead of a number, we get a family of time signals, each one associated with one 
outcome x and this family of time signals is called a  random process and is shown in Fig. 6.9.
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Fig. 6.9 Random process as family of time signals, one for each x

Thus, the  random process is a function of two variables, time t and outcome x, and is therefore denoted by 
X(t,x). However, for notational simplicity, we generally omit the x and represent a random process simply 
by X(t).
 Now, if t Œ R, the set of all real numbers, the random process is called a  continuous random process and if 
t Œ I, the set of all integers, the process is called a  discrete random process. We shall be discussing continuous 
random processes only. Hence, unless specifically stated otherwise, by a ‘random process’, we mean only a 
continuous random process.
From the foregoing, it is clear that
 1. When x is fixed and t is a variable, X(t, x) represents a single time signal corresponding to that x, or 

what is generally called, a single realization of the process;
 2. When t is fixed and x is a variable, X(t, x) represents a set of real numbers (as shown in Fig. 6.8), one 

for each x and hence X(t, x) in this case, is just a random variable;
 3. When both t and x are fixed, X(t, x) represents a mere number;
 4. When both t and x are variables, X(t, x) represents a family of time signals and is a random process.
A simple example of a random process is perhaps a sinusoid with a  random phase.

6.10.1 First and Second Order Statistics

Since the random process becomes a random variable when t is fixed, we can talk about the distribution and 
density functions of a process in terms of those of a  random variable. For a particular fixed value of t, X(t) is 
a random variable and its distribution is

F (x,t) = P[X(t) £ x] (6.64)

The derivative with respect to x of this  first-order distribution function, F(x,t) of the process X(t),

( , ) [ ( , )]f x t F x t
x

∂
=

∂
 (6.65)

is referred to as the  first-order density function of the process X(t).
On the same lines, we define the  joint distribution function of the random variables X(t1, x) and X(t2, x)
obtained by considering the process at the two fixed instants of time t1 and t2, as the  second-order distribution 
function and it is

     F (x1, x2; t1, t2) = P[X(t1) £ x1, X(t2) £ x2]  (6.66)
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The  second-order density function is
2

1 2 1 2 1 2 1 2
1 2

( , ; , ) [ ( , ; , )]f x x t t F x x t t
x x

∂
=

∂ ∂
 (6.67)

Of course, as usual, we must have the first-order statistics from the second-order statistics; i.e.,

1 1 1 1 2 1 1 1 2 1 2 2( , ) [ ( , ; , )] and ( , ) ( , ; , )f x t F x t t f x t f x x t t dx
•

-•
= • = Ú

Mean Proceeding on the same lines, we define the mean of the random process X(t) as the mean of the 
random variable X(t)

\ ( ) [ ( )] ( , )X t E t x f x t dx
•

-•
h = = ◊ÚX  (6.68)

So, the mean of X(t) is a deterministic function of time and at any instant of time t0, it equals the mean of the 
random variable X(t0).

Auto-correlation The  auto-correlation RX(t1, t2) of a random process X(t) is a deterministic function of 
two variables t1 and t2 and is defined as the  expected value of the product of the random variables X(t1)and
X(t2).

• •

-• -•

=

= Ú Ú

1 2 1 2

1 2 1 2 1 2 1 2

( , ) [ ( ) ( )] if ( ) is a real process

( , ; , )

XR t t E t t t

x x f x x t t dx dx

X X X

  (6.69)

and if X(t) is a complex valued process,
*=1 2 1 2( , ) [ ( ) ( )]XR t t E t tX X  (6.70)

where the * indicates complex-conjugation

Auto-covariance The  auto-covariance of the process X(t) is the  co-variance of the two random variables 
X(t1) and X(t2) and is denoted by CX(t1, t2)

\ h h

h h

= - -

= -
1 2 1 1 2 2

1 2

( , ) {[ ( ) ( )] [ ( ) ( )]} for a real process

( , ) for a real process

X X X

X X Y

C t t E t t t t

R t t

X X

and 1 2 1 1 2 2( , ) {[ ( ) ( )] [ ( ) ( )] } for a complex processX X XC t t E t t t th h *= - -X X

\ *
1 2 1 2 1 2( , ) ( , ) ( ) ( ) for a complex processX X X XC t t R t t t th h= -  (6.71)

 (i) = 2
XR (t , t) E[| (t)| ]X  = Average power in X(t).

 (ii) = -2 2
XC (t ,t) E[| (t)|] {E[ (t)]}X X  =  variance of X(t).

Cross-correlation and cross-covariance If we have two random processes X(t) and Y(t), their 
 cross-correlation is defined as

*= = *
1 2 1 2 2 1( , ) [ ( ) ( )] ( , )XY YXR t t E X t t R t tY  (6.72)

The  cross-covariance of the two processes is defined as

h h

h h

*= - -

= -
1 2 1 1 2 2

*
1 2 1 2

( , ) {[ ( ) ( )] [ ( ) ( )] }

( , ) ( ) ( )

XY X Y

XY X Y

C t t E t t t t

R t t t t

X Y

\  (6.73)

(In Eqs. (6.72) and (6.73), complex conjugation can be ignored if the processes are real-valued).

Note
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6.10.2 Independent Processes

The two processes X(t) and Y(t) are said to be  statistically independent processes if the set of random variables 
{X(t1), X(t2), . . . , X(tn)} and º¢ ¢ ¢1 2{ ( ), ( ), ( )}nt t tY Y Y  are mutually independent for all values of t1, t2, …, tn,

1 2, , nt t tº¢ ¢ ¢  and all integer values of n.

 Uncorrelated processes Two processes X(t) and Y(t) are said to be uncorrelated processes if

CXY(t1, t2) = 0 for all values of t1 and t2  (6.74)

 Orthogonal processes Two processes X(t) and Y(t) are said to be orthogonal processes if

RXY(t1, t2) = 0 for all values of t1 and t2 (6.75)

If two processes are orthogonal and in addition if any one of them, or both have zero mean, 

then the two processes will be uncorrelated.

Example 6.14 ( ) cos ( )t A tw f= +X , where f is a random variable  uniformly distributed between –p
and +p. Determine the  mean and  auto-correlation of X(t).

Solution

 (a) ( ) [ ( )] ( ) ( )

cos ( ) 0
2

X t E t t f d

A
t d

f f f

w f f
p

•

-•
•

-•

h = = ◊

= + =

Ú

Ú

X X

 (b) w w

w w

w w w f

w

= = + + +
= + + +

= - + + +

= -

2
1 2 1 2 1 2

2
1 2

2
1 2 1 2

2
1 2

( , ) [ ( ) ( )] [ cos( ) cos( )]

[cos( ) cos( )]

1
[cos ( ) cos( 2 )]

2
1

cos ( )
2

XR t t E t t E A t t

A E t t

A E t t t t

A t t

X X f ff f
f ff f

Example 6.15 If X(t) = aejwt, determine its auto-correlation.

Solution 1 2

1 2

1 2 1 2
( )2

( , ) [ ( ) ( )] [ . ]

[| | ]

j t j t
X

j t t

R t t E X t X t E e e

E e

w w

w

-* *

-
= =
=

a a

a

6.11 STATIONARITY, AUTO-CORRELATION AND POWER SPECTRUM

As we have seen till now, the statistical properties of a random process – like its mean, auto-correlation, etc., 
are in general dependent upon time. However, there is an important class of random processes, whose statis-
tical properties are independent of time. These processes are called  stationary processes.
 There are different levels of stationarity –  strict-sense stationarity,  kth-order stationarity,  wide-sense 
stationarity, etc.

Definition A strict-sense stationary process X(t) is one whose  density function of any order is independent 
of time; i.e.,

1 2 1 2 1 2 1 2( , , , ; , , , ) ( , , , ; , , , )X n n X n nf x x x t t t f x x x t t tº º = º + Œ + Œ º + Œ  (6.76)

For any integer n and any real number Œ
If Eq. (6.72) is true only up to n £ K, then the process X(t) is said to be K-th order stationary.

Note
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 Strict stationarity is a very restrictive condition and most of the processes are not stationary in the strict 
sense.  Wide-sense stationarity, on the other hand, is a less restrictive one, and is satisfied by many of the 
processes of interest.

Definition A random process X(t) is said to be wide-sense stationary (i.e., WSS), if it satisfies the following 
conditions:
 1. Its mean, hX(t) = E[X(t)] is independent of time.
 2. Its auto-correlation function RX(t1, t2) is a function only of t = (t1 – t2) and not of t1 and t2 individually.

\ 1 2( , ) ( ) [ ( ) ( )]X XR t t R E t tt t *= = +X X

When t = 0, RX(0) = E[|X(t)|2] = average power of X(t), and the power is independent of time.
As we will henceforth be dealing only with  WSS processes, unless specifically stated otherwise, the term 

‘process’ would be assumed to mean a WSS process only.

Properties of auto-correlation function
 1. It is deterministic.
 2. It takes maximum value when t = 0.
 3. RX(0) = average power of the process.
 4. For real, process X(t), RX(–t) = RX(+t), i.e., RX(t) has even symmetry.

 5. For a complex process ( ) ( )X XR Rt t*- =  where * denotes complex conjugation.

Example 6.16 Show that the  random process X(t) ( ) cos ( ),X t A tw f= +  where f is a  random 
variable uniformly distributed over –p to +p, is WSS.

Solution It has already been shown in Example 6.14 that hX(t) = 0 and hence, is independent of time.
It has also been shown that its  auto-correlation RX(t1, t2) is given by

2
1 2 1 2

1
( , ) cos ( )

2XR t t A t tw= -

\ RX(t1, t2) is a function only of t1 – t2 = t and not of the individual values of t1 and t2.
Thus, X(t) satisfies the two conditions required to be satisfied by a process to be WSS.

6.11.1  Ergodicity

We have seen that the mean hX of a random process is given by the ensemble average E[X(t)] of the process. 
Referring to Fig. 6.8, the  ensemble average E[X(t)] is the mean of the values A, B, C and D, i.e., the average 
of the values of X(t, x) at a fixed t and for all possible values of x. Hence, to find the ensemble average of the 
process X(t), we should have all of its realizations available to us. Since the auto-correlation also involves 
ensemble average, its determination also requires all the realizations of X(t) to be available. In fact, determi-

nation of any statistical average of a process requires that all the realizations of it be available.

 However, in practice, whenever we observe a random process, it is only one realization of it which we 
observe. In practice, therefore, it is not possible for us to have all the realizations of the process – i.e., it is 

not possible in practice to determine the ensemble average of a process. The only thing we can possibly do 
is to try to determine the time-average of the  single realization that we observe. Even this single realization 
also we can observe only for a limited period of time, certainly not from minus infinity to plus infinity. 
However, it is pertinent to examine whether we can at least estimate the ensemble averages from the  time 
averages. Random processes, for which the time averages equal the ensemble averages are known as 

‘ ergodic processes’. However, it must be noted that a process may be ergodic for statistics up to a particular 
order only. For instance, the process may be ergodic in mean but may not be ergodic in auto-correlation.
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Example 6.17 Show that the process w q= +0( ) cos ( )ct A tX  where q is uniformly distributed over 
–p to +p, is ergodic in mean and auto-correlation.

Solution We have already seen in Example 6.16 that it is WSS and that

( ) [ ( )]X t E th = X

and that 

21
( ) cos

2X cR At wt=

Now, we shall find the hX and RX(t) by time averaging and show that we get the same result for hX and RX(t).

/2
/2

0 0 /2
0/2

1
Lim cos ( ) Lim sin( ) 0

T
Tc

X c TT T
T

A
A t dt t

T T
w q w

w -Æ• Æ•-

È ˘h = + = + =Î ˚Ú θ

\ it is ergodic in mean

2 /2

0 0
/2

2 2/2 /2
2

/2 /2

2 2/2
2

/2

( ) Lim cos{ ( ) } cos( )

Lim cos cos cos Lim sin 2 sin cos
2

Lim sin 2 cos sin Lim sin sin
2

T
c

X
T

T

T T
c c

T T
T T

T
c c

T T
T T

A
R t t dt

T

A A
dt dt

T T

A A
dt

T T

t w t q w q

q a b q a b

q a b q a

Æ• -

Æ• Æ•- -

Æ• Æ•- -

= + + +

È ˘ È ˘
= -Í ˙ Í ˙

Í ˙ Í ˙Î ˚ Î ˚
È ˘

- +Í ˙
Í ˙Î ˚

Ú

Ú Ú

Ú
/2

/2

sin
T

dtb
È ˘
Í ˙
Í ˙Î ˚

Ú

where 0( )ta w tD +  and b = w0t

Replacing sin2 q of the last term by (1 – cos2 q) and simplifying, all the terms vanish except

2 /2

/2

Lim cos ( )
2

T
c

T
T

A
dt

T
a b

Æ• -
-Ú

But this equals 2
0coscA w t

Hence, the expected value and time average value of [ ( ) ( )]t tt+X X  are same.

\ the given X(t) is ergodic in auto-correlation.

6.11.2 Power Spectral Density of a Random Process

Definition The  power spectral density, or simply, the power spectrum of a random process (real or complex) 
is the  Fourier transform of its  auto-correlation. (This is generally referred to as  Wiener–Khinchin theorem)

2( ) ( ) j f
X XS f R e d

p tt t
•

-

-•
= Ú  (6.77)

\ 2( ) ( ) j f
X XR S f e df

p tt
•

-•
= Ú  (6.78)

Since in general, ( ) ( ), ( ),X X XR R S ft t*- =  the PSD is always a real-valued function of frequency. Further, 
if X(t) is a real process, RX(t) is real and also even with respect to t. Hence, its Fourier transform SX(f) will 
also be real and even.
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 If X(t) and Y(t) are two processes, we define their cross-correlation and  cross-spectral density as follows:

  Cross-correlation = ( ) [ ( ) ( )]XYR E t tt t *D +X Y  (6.79)

We now define the cross-power spectrum, or cross-spectral density SX(f) of X(t) and Y(t) as the Fourier 
transform of RXY(t).

i.e, 2( ) ( ) j f
XY XYS f R e d

p tt t
•

-

-•
= Ú  (6.80)

and 2( ) ( ) j f
XY XYR S f e df

p tt
•

-•
= Ú  (6.81)

Since ( ) ( )XY YXR Rt t*- = , the cross-spectral density is, in general, a complex function of f even if both the 
processes X(t) and Y(t) are real-valued.

Example 6.18 Determine the  power spectrum of the processes

X(t) = Ac cos(w0t + q); q is uniformly distributed over (–p, p).

Solution In Example 6.17, we obtained the ACF of this X(t) as
2

( ) cos
2
c

X

A
R t wt=

\ the power spectrum, which is the  Fourier transform of RX(t) is

2
2

0( ) cos
2

j fc
X

A
S f te d

p tw t
•

-

-•
= Ú

But we know that 0 0 0

1
[cos ] [ ( ) ( )]

2
f f f fw t d d= + + -F

\    
2

0 0( ) [ ( ) ( )]
4
c

X

A
S f f f f fd d= + + -

6.11.3 Gaussian Processes

A random process X(t) is said to be a  Gaussian random process, if the random variables X(t1), X(t2), . . . ., X(tn)
are jointly Gaussian for all n and all t1, t2, . . . , tn.

 Properties of Gaussian processes
 1. A Gaussian process is completely described by its mean and auto-correlation.
 2. If a Gaussian process is wide sense stationary, then it is stationary in the strict sense too.
 3. If a Gaussian process is given as input to an LTI system, the output process also is Gaussian.
 4. If two processes which are jointly Gaussian are uncorrelated, then they are statistically independent.
Gaussian processes are very important in communication engineering. This is mainly because of the fact that 
 thermal noise, which plays a key role in communications, can be closely modeled by a Gaussian process. In 
addition, some of the information sources also can be modeled as Gaussian processes.

White Noise Process

Definition A process X(t) whose power spectral density is 
a constant for all frequencies, is called a white process.
 The PSD of a white process is sketched in Fig. 6.10. 
As shown in the figure, it has a constant value N0/2 for all 
frequencies.

Fig. 6.10  Power spectral density of a white 

process
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 Since the area under any PSD curve is equal to the total average power of the process, a constant PSD makes 
a  white process to have an infinite average power. Thus in practice, there cannot be any source producing a 
perfect white process. Every so-called white process has a power spectral density that tends towards zero at 
some frequency, although it might remain constant (or almost constant) up to that frequency. Although no 
source can produce a white process, the concept of a ‘white process’ is, nevertheless, quite useful. This is 
because, if the PSD is constant up to a very high frequency which is far beyond the frequencies at which any 
practical communication system operates, then, insofar as our communication systems are concerned, we 
can safely assume that the PSD of the process is absolutely constant, i.e., the process is a white process. It is 
in this sense that we say that  thermal noise is white, although we know that its PSD tends to fall off beyond 
approximately 1012 Hz.

Auto-correlation of a white process Since the  auto-correlation is the inverse Fourier transform of 
the power spectral density, a white process with a PSD of N0/2 will have an auto-correlation of

0( ) ( )
2n

N
R t d t=  (6.82)

Since the auto-correlation is an  impulse function, it means that no two samples of a white process will have 
any correlation, however close (in terms) the two samples may be. That is why we call the white process as 
‘white noise’.

6.12 LTI SYSTEMS WITH RANDOM PROCESSES AS INPUTS

In this section, we will be discussing how the  mean and auto-correlation of the output process may be deter-
mined in terms of those of the input process and the  impulse response of the LTI system. Of particular interest 
is the relationship between the PSD of the output process and PSD of the input process. Before we can talk 
about the power spectrum of the output, it is of course necessary to examine whether the output process will 
also be stationary if the input process is.

Definition Two processes X and Y are said to be  jointly stationary if 
they are individually stationary and if their cross-correlation RXY (t1, t2)
is a function only of t = (t1 – t2) and not individually of t1 and t2.
 Let us give a stationary process X(t) as input to an LTI system with 
impulse response, h(t). Let the output process be Y(t). We shall now 
show that the input and output processes are jointly stationary and that

 1. Mean of the output = ( )Y X h t dt
•

-•
h = h Ú   a constant independent of time. (6.83)

 2.  Cross-correlation of input and output processes ( ) ( ) ( )XY XR R ht t t= = * -  (6.84)

 3. Correlation of output process ( ) ( ) ( ) ( )Y XR R h ht t t t= = * * -  (6.85)
 1. We know that 

          
( ) ( ) ( ) ( ) ( )t t h t t u h u du

•

-•
= * = -ÚY X X

  Taking the  expectation on both sides, we have

[ ( )] ( ) ( ) ( )

[ ( )] ( )

YE t t E t u h u du

E t u h u du

h
•

-•

•

-•

È ˘
= = -Í ˙

Í ˙Î ˚

= -

Ú

Ú

Y X

X

Fig. 6.11  An LTI system with a 

 random process as input
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  Since X(t) is stationary,
            [ ( )] [ ( )] a constantXE t u E t= - = = h =X X

\ [ ( )] ( ) a constant independent of .XE t h t dt th
•

-•
= =ÚY

 2. 1 2 1 2( , ) [ ( ) ( )]XYR t t E t tD X Y

\ 1 2 1 2

1 2

( , ) ( ) ( ) ( )

[ ( ) ( )] ( )

XYR t t E t t u h u du

E t t u h u du

•

-•

•

-•

È ˘
= -Í ˙

Í ˙Î ˚

= -

Ú

Ú

X X

X X

  If we now put u = –l,

1 2 2 2( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

XY

X

R t t t t u h u du u h u du

h d R h

t

t l l l t t

• •

-• -•

•

-•

= - + = +

= - = * -

Ú Ú

Ú

X X

X

R R

R

\ 1 2( , ) ( ) ( )XY XR t t R ht t= * -  (6.86)

  \ the cross-correlation is a function only of t = (t1 – t2)
 3. To find the  auto-correlation of the output process

1 2 1 2( , ) [ ( ) ( )]YR t t E t t= Y Y

  But 1 1( ) ( ) ( )t u h t u du
•

-•
= -ÚY X

\ 1 2 1 2

2 1

2 1

( , ) ( ) ( ) ( )

{ ( ) ( )} ( )   

( ) ( )   

Y

XY

R t t E u h t u du t

E u t h t u du

R u t h t u du

•

-•

•

-•

•

-•

È ˘Ï ¸Ô Ô= -Í ˙Ì ˝
Ô ÔÍ ˙Ó ˛Î ˚

= -

= - -

Ú

Ú

Ú

X Y

X Y

  If we put (t1 – u) = l, we get u = t1 – l; = –dl

\ 1 2 1 2( , ) ( ) ( )   Y XYR t t R t t h dl l l
•

-•
= - -Ú

\      ( ) ( ) ( ) ( ) ( )Y XY XYR R h d R ht t l l l t t
•

-•
= - = *Ú  (6.87)

\ RY(t1, t2), the auto-correlation of the output process Y(t) is a function only of t = (t1 – t2), but not individ-
ually of t1 and t2. As we have already shown that its mean is independent of t, it means that the process Y(t)
is stationary (WSS). Further, we have shown that 1 2( , ) ( )XY XYR t t R t= . Hence, it follows that the input and 
output processes are  jointly stationary.
 Substituting for RXY(t) in Eq. (6.87) using Eq. (6.86), we get

( ) ( ) ( ) ( )Y XR R h ht t t t= * * -
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6.12.1 Input and Output Spectra and  Cross-Power Spectrum

Equations (6.83), (6.84) and (6.85) give us the output mean, the output auto-correlation and the input-output 
 cross-correlation respectively in terms of the input quantities and the  impulse response of the LTI system.
 Now, to get the relationships in the frequency domain, let us take the Fourier transforms of these equations.
 1. From Eq. (6.83), we have

   ( )Y X Xh t dt
•

-•
h = h = hÚ   (Area under the impulse response)

  But we know that

2
0 0( ) ( ) ( ) (0)j ft

f fh t dt h t e dt H f H
p

• •
-

= =
-• -•

È ˘
= = =Í ˙

Í ˙Î ˚
Ú Ú

  \ (0)Y X Hh = h  (6.88)

 2. From Eq. (6.84), we have

( ) ( ) ( )XY XR R ht t t= * -

  Taking Fourier transform on both sides and noting that

[ ( )] ( )h H ft *- =F  (6.89)

( ) ( ) ( )XY XS f S f H f
*= ◊  (6.90)

 3. From Eq.(6.85), we have

( ) ( ) ( ) ( )Y XR R h ht t t t= * * -

\ taking Fourier transform of this on both sides

( ) ( ) ( ) ( )Y XS f S f H f H f
*= ◊ ◊

\ 2( ) ( ) | ( )|Y XS f S f H f= ◊  (6.91)

This is a very important result and is used quite frequently in communication engineering.

Example 6.19 An ideal  differentiator is an LTI system. If a  WSS process X(t) of mean hX and auto-
correlation RX(t) is given as input to it, determine the mean and the power spectrum of the output.

Solution From Eq. (6.88), we have hY = hXH(0)
 But H(f) of an ideal differentiator = j2pf

\ H(0) = 0. It then follows that hY = 0
From Eq. (6.91), we have

2

2 2 2

2 2

( ) ( ) | ( )|

| ( )| ( ) ( ) 2 ( 2 ) 4

( ) 4 ( )

Y X

Y X

S f S f H f

H f H f H f j f j f f

S f f S f

p p p

p

*

= ◊

= = ◊ - =

= ◊

Here, ( ) [ ( )]X XS f R t= F

\   2 2 2 2( ) 4 [ { ( )}] 4 ( )y X XS f f R f S fp t p= =F
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6.13  REPRESENTATION OF BAND-LIMITED AND BAND PASS 

PROCESSES

6.13.1  Band-Limited Processes

In the case of a deterministic signal x(t) which is low pass and band limited to say W Hz, i.e., X(f) = 0 for 
| f | ≥ W, we know from the low pass sampling theorem for deterministic signals, that if x(t) is sampled at 

regular intervals of Ts where 
1

,
2sT
W

£  the samples so obtained completely represent the band limited deter-

ministic signal x(t) and that in fact x(t) can be expanded as follows in terms of these samples and an infinite 

set of  sinc functions displaced in time with respect to each other by Ts.

2
( ) ( ) sinc 2 ( ); 1/ ,s s s s

ks

W
x t x kT W t kT f T t

f

+•

= -•
= - = -• < < •Â  (6.92)

In the particular case when 
1

,
2sT
W

=  this equation reduces to

( ) ( /2 ) sinc (2 );
k

x t x k W Wt k t
+•

= -•
= - -• < < •Â  (6.93)

The equality sign in the above equations holds at all instants of time, i.e., it holds point-wise.
 Since the signals as well as noise that we have to deal with in communications are random processes, 
it will be of interest to examine whether a band-limited low pass process also could be represented by its 
samples, or, in short, whether a similar low pass sampling theorem exists in the case of random processes too. 
Fortunately there is a similar theorem applicable to stationary low pass band-limited processes, and it states 
as follows.

Theorem If X(t) is a stationary low pass process which is band-limited to W Hz, i.e., if SX(f) = 0 for 

| f | ≥ W Hz, and if it is sampled at regular intervals of Ts where 
1

2sT
W

= , then

2

( ) ( ) sinc 2 ( ) 0s s
k

E t kT W t kT
+•

= -•

È ˘
Í ˙- - =
Í ˙Î ˚

ÂX X  (6.94)

Equation (6.94) implies that under the conditions stated in the theorem, X(t) is equal, in the  mean-square 

sense, to

( ) sinc 2 ( )s s
k

kT W t kT
+•

= -•
-Â X

Proof To prove Eq. (6.94), let us first expand the LHS of it. Writing down term by term and assuming the 

process X(t) to be real, we get

2

2

( ) ( ) sinc 2 ( ) [ ( )] 2 [ ( ) ( )] sinc 2 ( )s s s s
k k

E t kT W t kT E t E T kT W t kT
+• +•

= -• = -•

È ˘
Í ˙- - = - -
Í ˙Î ˚

Â ÂX X X X X

)[ ( ( )] sinc 2 ( ) sinc 2 ( )s s s s
k l

E kT lT W t kT W t lT+ - -ÂÂ X X

But 2 )[ ( )] (0) and [ ( ( )] ( ).X s s X s sE t R E kT lT R kT lT= = -X X X
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Now, if we put m = l – k, l = m + k and LHS of Eq. (6.94) equal

(0) 2 ( ) sinc 2 ( )X X s s
k

R R t kT W t kT
+•

= -•
- - -Â

( ) sinc 2 ( ) sinc 2 ( )X s s s s
k m

R mT W t kT W t kT mT+ - - - -ÂÂ  (6.95)

But ( ) sinc 2 ( ) sinc 2 ( )X s s s s
k m

R mT W t kT W t kT mT- - - -ÂÂ

sinc 2 ( ) ( ) sinc 2 ( )s X s s s
k m

W t kT R mT W t kT mT= - - - -Â Â  (6.96)

However, since X(t) is a real process, its ACF has  even symmetry

\ ( ) ( )X s X sR mT R mT- =  (6.97)

Further, since X(t) is band limited to W Hz, it means that its ACF, RX(t), which is a deterministic function, has 
a Fourier transform, SX(f), which equals zero for all | f | ≥ W. Hence, as per the low pass sampling theorem for 
band limited deterministic signals, using Eq. (6.93), we may expand RX(t) in terms of its samples, as follows 

          ( ) ( ) sinc 2 ( )X X s s
m

R t R mT W t mT
+•

= -•
= -Â  (6.98)

\ ( ) ( ) sinc 2 ( )X s X s s s
m

R t kT R mT W t kT mT
+•

= -•
- = - -Â  (6.99)

\ using Eqs. (6.97) and (6.99), the RHS of Eq. (6.96) may be written as

    
( ) sinc 2 ( )X s s

k

R t kT W t kT
•

= -•
= - -Â

Hence, Eq. (6.95) may be modified as

               

+• •

=-• =-•
- - - + - -Â Â(0) 2 ( ) sinc 2 ( ) ( ) sinc 2 ( )X X s s X s s

k k

R R t kT W t kT R t kT W t kT

\ LHS of Eq. (6.90) = 
+•

=-•
- - -Â(0) ( ) sinc 2 ( )X X s s

k

R R t kT W t kT  (6.100)

Now, RX(t) is a deterministic signal which is band limited to W Hz since its FT, SX(f) = 0 for | f | ≥ W Hz. But 
we know from the low pass sampling theorem for deterministic signals that

( ) ( ) sinc 2 ( )X X s s
k

R t R kT W t kT
+•

= -•
= -Â  (6.101)

In Eq. (6.101), it is assumed that the sampling at regular intervals of 
1

2sT
W

=  is done in such a manner that 

there is a sample taken at t = 0 sec. Instead, if we have a sample t = t0 and every Ts sec on either side of it, 
Eq. (6.101) gets modified and from that modified equation we may write (by putting t = 0) as

0 0(0) ( ) sinc [2 ( )]X X s s
k

R R t kT W t kT
+•

= -•
= - -Â
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Since t0 can take any value, we may write

(0) ( ) sinc [2 ( )]X X s s
k

R R t kT W t kT
+•

= -•
= - -Â

Substituting this on the RHS of Eq. (6.95), we get

      

2

( ) ( ) sinc [2 ( )] 0s s
k

E x t X t kT W t kT
+•

= -•
- - - =Â

Thus, the theorem is proved.

6.13.2 Band Pass Processes

In Section 2.10.5, we had discussed in detail, the inphase and quadrature component representation of a 
deterministic band pass signal x(t)

i.e., ( ) ( ) cos ( ) sinI c Q cx t x t t x t tw w= -  (6.102)

where XI(t) and XQ(t) are low pass signals.
 Let X(t) be a stationary, zero-mean  band pass process, 
whose  power spectral density is of the form shown in 
Fig. 6.12.
 We encounter such a band pass noise process when say 
white noise is filtered by a band pass filter. Similarly to the 
band pass signal case, we shall now define two low pass 
processes XI(t) and XQ(t), where

ˆ( ) ( ) cos 2 ( ) sin 2I c cX t X t f t X t f tp p= +  (6.103)

and ˆ( ) ( ) cos 2 ( ) sin 2Q c cX t X t f t X t f tp p= -  (6.104)

Here ˆ ( )X t  is the  Hilbert transform of X(t).
From Eqs. (6.103) and (6.104), it is easy to verify that

( ) cos 2 ( ) sin 2 ( )I c Q cX t f t X t f t X tp p- =  (6.105)

When X(t) is a stationary, zero-mean band pass process, the inphase component process XI(t) and the 
quadrature component process XQ(t) have certain very important properties which we state below without 
proof. The proofs can be found from the references given at the end of the chapter.

Properties of XI(t) and XQ(t)
 1. XI(t) and XQ(t) are zero-mean, low pass, jointly stationary processes. If in addition X(t) is Gaussian, 

then XI(t) and XQ(t) will be  jointly Gaussian.
 2. The  inphase and quadrature components XI(t) and XQ(t) have the same average power as the process 

X(t) itself.

i.e., ( )
I QX X X XP P P P f df

•

-•
= = = Ú  (6.106)

 3. XI(t) and XQ(t) have identically the same power spectral density. This is obtained by shifting the positive 
frequency portion of PX(f) to the left by fc, shifting the negative frequency portion of PX(f) to the right 
by fc and then adding these two. Since the total area under a PSD curve gives the average power, from 
this, it is clear that the total average powers are the same for the inphase and quadrature components as 
well as the process X(t) itself.

Fig. 6.12   Power spectral density of a band pass 

process X(t)
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6.13.3 PDF of the Envelope of Narrowband Zero-Mean Gaussian Noise

Consider a narrowband zero-mean Gaussian noise process n(t) centered on frequency fc and having a  variance 
s2. Using Eq. (6.108), we may represent it in terms of the  inphase and quadrature components as

( ) ( ) cos 2 ( ) sin 2I c Q cn t n t f t n t f tp p= -  (6.107)

or, alternatively we may use the envelope and phase representation and write it as

( ) ( ) cos [2 ( )]cn t r t f t tp q= +  (6.108)

where 2 2( ) ( ) ( )I Qr t n t n t= +  and 1 ( )
( ) tan

( )

Q

I

n t
t

n t
q - È ˘

= Í ˙
Î ˚

 (6.109)

We know that in these equations, nI(t), nQ(t), r(t) and q(t) are all low pass processes. The  probability distri-
bution of the envelope r(t) can be obtained from those of nI(t) and nQ(t). For this purpose, let us take a 
snapshot of nI(t) and nQ(t) at some fixed instant of time. nI(t) and nQ(t) are zero-mean  jointly Gaussian 
processes (see the properties of these processes) having the same average power s2. The random variable NI

and NQ obtained by taking the snapshot of nI(t) and nQ(t) respectively, are zero-mean independent  Gaussian 
random variables, each having a variance of s2. Since they are independent, their  joint density function will 
be the product of their individual density functions. So we may write the joint density function as

2 2

2 2

1
( , ) exp

2 2I Q

I Q
N N I Q

n n
f n n

ps s

È ˘+
= Í ˙

Î ˚
 (6.110)

As we are interested in the density function of the envelope, i.e., in fr,q(r, q), we have to transform the 
coordinate system from the rectangular coordinate system used by the inphase and quadrature component 
representation into the circular, i.e., (r, q) coordinate system. For this purpose, let us define

cos and sinI Qn r n rq q= =  (6.111)

Then the  Jacobian of the coordinate system transformation is given by

cos sin
( , )

sin cos

I I

Q Q

n n

rr
J r r

n n r

r

q qq
q

q q

q

∂ ∂
-∂ ∂= = =

∂ ∂

∂ ∂

 (6.112)

Substituting in Eq. (6.110) for nI aad nQ by making use of Eq. (6.111) and using the above Jacobian

q q
ps s

È ˘
= -Í ˙

Î ˚

2

, 2 2
( , ) exp

2 2
r

r r
f r  (6.113)

Since fr,q(r, q) is independent of q, it means that the random variables r and q are  statistically independent. 
It then follows that fq(q) is  uniformly distributed over 0 to 2p and so has a value of (1/2p) in that interval.

\
1

; 0 2
( ) 2

0; otherwise

fq
q p

q p

Ï £ £Ô= Ì
ÔÓ

 (6.114)

Since r and q are independent,

, ( , ) ( ) ( )r rf r f r fq qq q= ◊  (6.115)
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Thus, s s

Ï È ˘
- £ £ •Ô Í ˙= Ì Î ˚

Ô <Ó

2

2 2
exp ; 0

( ) 2

0; 0

r

r r
r

f r

r

 (6.116)

This density function is referred to as the Rayleigh density function and it is sketched in Fig. 6.7(a).
Thus, the envelope of a zero-mean Gaussian narrowband noise process is Rayleigh distributed, and the 

phase is uniformly distributed over 0 to 2p.

6.13.4 Envelope of Sine Wave plus Zero-Mean Gaussian Narrowband Noise
Consider the process x(t) given by

( ) cos 2 ( )cx t A f t n tp= +  (6.117)

where n(t) is a zero-mean Gaussian narrowband noise with  variance s2 and centered on the frequency fc.
Using the inphase and quadrature component representation of n(t),

p p p

p p

p p

= + -
= + -
= -¢

( ) cos 2 ( ) cos 2 ( ) sin 2

[ ( )] cos 2 ( ) sin 2

( ) cos 2 ( ) sin 2

c I c Q c

I c Q c

I c Q c

x t A f t n t f t n t f t

A n t f t n t f t

n t f t n t f t  (6.118)

where ( ) ( )I In t A n tD +¢  (6.119)

Since nI(t) is a zero-mean Gaussian low pass process with a variance of s2, and A is a constant, ( )In t¢  is a 
Gaussian low pass process with a mean of A and a variance of s2. Further, like nI(t), it is also  statistically 
independent of the zero-mean Gaussian low pass process nQ(t).
 x(t) of Eq. (6.120) may be represented in the envelope and phase form as

p y

y -

= +
È ˘

= +¢ Í ˙
Î ˚

2 2 1

( ) ( ) cos [ 2 ( )]

( )
( ) [ ( )] ( ) and ( ) = tan

( )

c

Q

I Q
I

x t r t f t t

n t
r t n t n t t

n t
where

Let a snapshot of the low pass process ( ),In t¢ nQ(t), r(t) and y(t) at a fixed instant of time give us the random 
variables ( ),IN t¢ NQ, R and y, respectively. The Gaussian random variable ( )TN t¢  has a mean of A and is 
independent of the Gaussian zero-mean random variable NQ. So we may write their  joint density function as

1

2 2

2 2

2 2

2 2

( )1
( , ) exp

2 2

(1
exp

2 2

Q

I Q
N N I Q

I Q

n A n
f n n

n n

ps s

ps s

¢

È ˘- +¢
= -¢ Í ˙

Î ˚
È ˘+

= -Í ˙
Î ˚

 (6.120)

In the present case, the  Jacobian for transformation of the coordinate system is

cos sin
( , )

sin cos

I I

Q Q

n n

r r
J r r

n n r

r

y y y
y

y y

y

∂ ∂¢ ¢
∂ ∂ -

= = =
∂ ∂

∂ ∂
\ substituting (r cos y – A) for nI and r sin y for nQ in Eq. (6.120) and using the above Jacobian, we get

      

2 2

, 2 2

2 2

2 2

( cos ) ( sin )
( , ) exp

2 2

2 cos
exp

2 2

r

r r A r
f r

r r A Ar

y

y y
y

ps s

y

ps s

È ˘- +
= -Í ˙

Î ˚
È ˘+ -

= -Í ˙
Î ˚

  (6.121)

CS-Rao_06.indd 341CS-Rao_06.indd   341 1/25/2013 8:42:39 AM1/25/2013   8:42:39 AM



342 Communication Systems

In the above equation, because of the presence of the term 2 Ar cos y, it is not possible to express fr,y(r, y) as 
the product of two functions, one only of r and the other only of y. Hence, in this case the random variables R
and y are not  statistically independent. Hence, in order to get the  marginal density function fR(r) in which we 
are interested, we have to integrate the joint density function fR, y(r, y) with respect to y for all values of y,
i.e.,

p

y

p

p

y

y
y

ps s

y
y

ps s s

=

È ˘+ -
= -Í ˙

Î ˚

È ˘+ È ˘= - -Í ˙ Í ˙Î ˚ Î ˚

Ú

Ú

Ú

2

,
0

2 22

2 2
0

2 2 2

2 2 2
0

( )

2 cos
exp

2 2

cos
exp exp

2 2 2

R Rf r f d

r r A Ar
d

r r A Ar
d  (6.122)

But, we know that
2

0
0

1
exp[ cos ] ( )

2
x d I x

p

y y
p

= =Ú (6.123)

where I0(x) is the modified  Bessel function of the first kind and of order zero. Hence, we may write

2 2

02 2 2
( ) exp

2
R

r r A Ar
f r I

s s s

È ˘+ Ê ˆ= -Í ˙ Á ˜Ë ¯Î ˚
 (6.124)

This density function is, as we know, called the  Rician density function (see Section 6.4.2) and has been 
sketched in Fig. 6.7(b) for two values of A. for A = 0, it reduces to  Rayleigh density function.

Thus, the envelope of a sinusoid plus zero-mean Gaussian narrowband noise will have Rician distri-

bution.

Mobile radio channels exhibit  fading because of  multipath effects (see Chapter 15). These channels are 
modeled either as  Rician fading channels or as  Rayleigh fading channels depending upon respectively the 
presence or absence of fixed scatterers in the multipath environment of the mobile radio.

6.14 NOISE – SOURCES AND CLASSIFICATION

As shown in Fig. 6.13,  noise may be broadly classified, depending on the location of the sources, into two 
types – external noise and  internal noise. Note that these terms, external and internal, are used with reference 
to the receiver. External noise may, in turn, be divided into atmospheric noise, extraterrestrial noise, and 
man-made noise. Internal noise is mainly of two types –  thermal noise and shot noise.

Fig. 6.13 Types of noise
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6.14.1 Atmospheric Noise

Atmospheric noise (also referred to as ‘static’) arises from lightning discharges (cloud-to-cloud, or cloud-to-
earth), caused by thunder storms. Lightnings are heavy electrical current discharges, running into thousands 
of amperes, and are accompanied by intense radiation of  electromagnetic waves over a broad spectrum 
of frequencies. Different frequency bands of these electromagnetic waves propagate via the usual modes 
of propagation like the ground wave and sky wave just like ordinary radio waves and corrupt the desired 
signal. Atmospheric noise has frequency components extending from very low frequencies up to hundreds 
of megahertz and its intensity varies with frequency as well as time of the day. Further, it has been experi-
mentally observed that during the daytime, its intensity decreases with frequency up to about 2 MHz and that 
there exists a relative peak of intensity around 10 MHz. It has a relative dip at around 2 MHz. During night. 
time also its intensity decreases with frequency but has generally higher values (than those obtained during 
daytime) at all frequencies. Its intensity during the night becomes very low or insignificant; beyond about 
10 MHz.
 From the foregoing it is clear that the disturbance caused by atmospheric noise is more severe in the 
 medium wave band as compared to the  short-wave band; and it is very little in the case of VHF and UHF 
bands that are used for television.

6.14.2 Extra-Terrestrial Noise
This has two components:
 1. Solar Noise
 2. Galactic Noise

1.  Solar Noise: Our sun, being a gaseous body with very high surface temperatures (in excess of 6000° C), 
radiates considerable amount of noise, whose intensity has been observed to have a cyclic variation with an 
11-year period, called the 11-year  sun-spot cycle.

2. Galactic Noise: All the stars are also hot gaseous bodies and they too radiate noise. The radiation reaching 
the earth from each individual star may be very small compared to that from our sun, because of their very 
large distance. But they are large in numbers and are spread all over the sky, making their overall contribution 
not insignificant. In addition, the suns of other galaxies and our own ‘ Milky Way’ also radiate noise. This 
noise, called the ‘ galactic noise’, is almost uniformly intense from all parts of the sky but is slightly more 
intense in the direction of our Milky Way.
 The extra-terrestrial radiation has spectral components from a few megahertz to about a few gigahertz. 
However, only those components which have frequencies above 20 MHz pass through the ionosphere and 
reach the earth. Further, those with frequencies above approximately 1.5 GHz are absorbed by hydrogen in 
the interstellar space. Thus,  extra-terrestrial noise can cause disturbance to communications in the frequency 

range of 20 MHz to 1.5 GHz.

6.14.3  Man-made Noise
Automobile ignition, aircraft ignition, fluorescent lamps, sparking at the brushes of electric motors, etc., 
radiate electromagnetic waves that cause disturbance to communications, especially in the range of 1 MHz 
to 500 MHz. Because of the nature of its origin, this noise is more intense in urban areas than in rural areas. 
However, it must be noted that noise emanating from these sources can travel considerable distances.

6.15 THERMAL NOISE

We know that at any temperature above 0° K, the free electrons in a conductor possess kinetic energy and so 
will be in random motion because of collisions with the lattice. This random motion of electrons is equivalent 
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to a random current flow with in the conductor, and this creates a random voltage across the conductor. 
This random voltage across a conductor arising from the random motion of free electrons inside it because 
of thermal agitation, is called thermal noise. It is also known as  Johnson noise. This thermal noise voltage 
fluctuates randomly about a mean value of zero.
 Analyzing the thermal agitation of the free electrons by using quantum mechanics, it has been shown that 
at a temperature of T° K, the  power spectral density of the thermal noise across a conductor having a resis-
tance of R ohms, is given by

( )| |

2 | |
( )

1

h f

kT

Rh f
P f

e

=

-

 volts2/Hertz (6.125)

where
h =  Planck’s constant = 6.6 ¥ 10–34 Joule-sec,
k =  Boltzmann’s constant = 1.38 ¥ 10–23 J/°K

In Eq. (6.125),
| |

1

h f

kTe =  at | f | = 0

and it goes on increasing as | f | increases. Further, its rate of increase will be greater than that of the numerator. 
Thus, P(f), power spectral density of thermal noise, has a maximum value at f = 0 and it goes on decreasing 
as | f | increases. The maximum value of P(f), occurring at f = 0, can be obtained by using  L’Hosptal’s rule 
and is given by

= = 2
0

( ) 2 volts /Hz
f

P f KTR  (6.126)

Although P(f) decreases as | f | increases, the rate of decrease at normal room temperature is so small that it 
may safely be assumed to be remaining constant at the value 2 kTR even up to frequencies of the order of 1012

to 1013 Hz, as its value drops only by 10% from its zero frequency value even at a frequency of 2000 GHz. As 
this frequency is far more than the frequencies and bandwidths used in any of our ordinary communication 
systems, for all practical purposes, we can safely assume that the power spectral density (PSD) of thermal 
noise is constant and independent of frequency and that it has a value given by

2( ) 2 Volt /HzP f kTR=  (6.127)

It must be noted that P(f), as given in Eq. (6.105) represents the two-sided power spectral 

density as shown in Fig. 6.14.

Fig. 6.14 PSD of thermal noise

Since thermal noise has a PSD which is almost a constant, it has all frequency components from minus 
infinity to plus infinity, in equal measure. Such a noise is called  white noise. Since its PSD is constant, its 
ACF (inverse FT of PSD) is an impulse function in time. This indicates that any two samples of white noise, 
however close they may be in time, are  uncorrelated. However, it must be noted that no physical noise source 
can be a white noise source, since white noise implies infinite noise power (area under PSD curve).

Note
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 We may now determine the r.m.s. value of the noise voltage across a resistor of R ohms at a temperature 
of T° K over a bandwidth of Df. From Fig. 6.14, we find that

 Mean-squared value of noise in R = (2Df) 2kTR = 4 kTRDf volts2  (6.128)

¸
= D˝

˛

Hence r.m.s. value of voltage
2 volts

across the resistor 
kTR f

R
 (6.129)

From the foregoing, it is clear that insofar as noise calculations are concerned, we may model a resistor of R
ohms at temperature T° K as follows.

Fig. 6.15 Modeling a noisy resistor

We shall now make use of the noise model of a resistor shown in Fig. 6.15 to obtain the noise equivalent 
circuits of resistances in series and in parallel.

6.15.1 Resistors in Series and in Parallel

Series connection 

Fig. 6.16 Resistors in series

Superposition of PSDs In Fig. 6.16, let resistor R1 produce noise voltage n1(t) and R2 produce noise 
voltage n2(t). Then the total power of the sum process [n1(t) + n2(t)] is given by

2 2 2
12 1 2 1 2 1 2[ ( ) ( )] [ ( )] [ ( )] 2 [ ( ) ( )]P E n t n t E n t E n t E n t n t= + = + +

But since the noise processes produced in R1 and R2 are independent and zero-mean processes,

1 2[ ( ) ( )] 0E n t n t =
Further,

2
1[ ( )]E n t  = P1 = Average power of the noise process n1(t)

and 2
2[ ( )]E n t  = P2 = Average power of the noise process n2(t)

\ 12 1 2P P P= +
Thus, it is their powers (or the mean squared values which get added, and not the voltages. This means that, 

as shown in Fig. 6.16, in the equivalent circuit, it is the  noise power spectral densities to which  superposition 

principle applies – not to the noise voltages produced by the two resistors.
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Parallel connection 

Fig. 6.17 Resistances in parallel

 (i) When two resistors are in series, it is their noise powers, or their  noise power spectral 

densities (PSDs) in volt2/Hz, which can be added, and not their noise voltages.

 (ii) When two resistors are in parallel, it is their noise powers, or their noise PSDs in amp2/

Hz, which can be added – not their individual noise currents.

Thus, in a circuit with multiple noise sources which are independent, the principle of superposition applies 
not to the r.m.s. voltages or currents of the sources, but only to their mean-squared values or power spectra. As 
has been already shown, the justification for the above two statements stems from the fact that the two noise 
sources are  independent and hence  uncorrelated and further the noise has  zero mean.

Example 6.20 Find the r.m.s. value of the thermal noise voltage across a resistor of 1 MW at a 
temperature of 27° C if the measurement is made with an instrument having a bandwidth of 104 Hz.

Solution From Eq. (6.129), we have

r.m.s

23 6 4

11

4 ( ) volts

4 1.38 10 300 10 10

12 1.38 10 12.868 V

e kTR f

-

-

= D

= ¥ ¥ ¥ ¥ ¥

= ¥ ¥ = m

From the above result, the reader may wonder why we should bother about the thermal noise at all, if their 
r.m.s. values are typical a few micro-volts. However, if we see the signal voltage levels at the front-end of a 
receiver, they will also have typically values of the same order. If the resistance considered in the example 
is the input resistance of the front-end of the receiver, it means that we have a situation where the signal and 
noise have approximately the same levels of magnitude at the input of an amplifier – not a desirable situation, 
as the amplifier is likely to add some more noise while amplifying the input signal and noise by the same 
factor.

Note
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Example 6.21 A 10 kW and a 20 kW resistors are both at a room temperature of 27° C. For a 100 kHz 
bandwidth, determine the r.m.s. value of the thermal noise voltage across (a) each one of them, (b) their 
series combination, and (c) their parallel combination.

Solution
 (a) (i) Across the 10 kW resistor
 From Eq. (6.129), we have

23 4 5
r.m.s

r.m.s

4 ( ) 4 1.38 10 300 10 10

4.07 V

e kTR f

e

-= D = ¥ ¥ ¥ ¥ ¥

= m\
 (ii) Across the 20 kW resistor

23 4 5
r.m.s

r.m.s

4 ( ) 4 1.38 10 300 2 10 10

5.75 V

e kTR f

e

-= D = ¥ ¥ ¥ ¥ ¥ ¥

= m\

 (b) With the two resistors in series

23 4 5
r.m.s 4 1.38 10 300 3 10 10 7.04 Ve

-= ¥ ¥ ¥ ¥ ¥ ¥ = m

 It may also be found out as

2 2
r.m.s (4.07) (5.75) 7.04 Ve = + = m

 (c) With the two resistors in parallel

 Resistance of parallel combination 
10 20

6.67 k
(10 20)

¥
= W

+

\ 23 3 5 13
r.m.s 4 1.38 10 300 6.67 10 10 110.4 10e

- -= ¥ ¥ ¥ ¥ ¥ ¥ = ¥

\ r.m.s 3.32 Ve = m

6.15.2 Thermal Noise and Reactive Circuits

Pure reactive circuit elements like inductances and capacitances do not dissipate any power and do not 
produce thermal noise. A lossy reactive element like an inductance which can be represented by pure induc-
tance in series with a resistance, or a lossy capacitor, i.e., a capacitor in which dielectric loss takes place and 
which can be represented by a pure lossless capacitor in shunt with a resistance, do generate thermal noise. 
While calculating the thermal noise in circuits containing reactive elements, we should, however, consider 

the effect of the reactive elements on the shape of the  noise power spectrum.

Example 6.22 A resistor R ohms at a temperature of T° K is 
connected across a pure capacitor of C Farads. Determine the r.m.s. 
value of noise voltage across the capacitor C.

Solution Representing the resistance R by its noise equivalent 
circuit, we have
For the RC low pass filter of Fig. 6.18, the  transfer function is given by

1
( )

1
H f

j CRw
=

+
Fig. 6.18   Noise equivalent circuit of 

Example 6.22
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\ 2
2 2 2 2

1
| ( )|

1 4
H f

f C Rp
=

+

\    
p

¸
= = =˝

+˛
2 2

0 2 2 2 2

PSD of the noise voltage 2
( ) 2 | ( )| V /Hz

across the capacitor 1 4

kTR
P f kTR H f

C f C R

To find the r.m.s. value of the noise voltage across the resistor, we first determine P0, the average noise power 
across the output by integrating the power spectral density of the output noise across the capacitor, i.e., P0(f)
over the entire frequency range from f = –• to f = +•.

\ 0 2 2 2 2

2

1 4

kTR
P df

f C Rp

•

-•

Ê ˆ
= Á ˜Ë + ¯

Ú

Substituting 2pfCR = tan q, and integrating,

2/2

0 2
/2

2 sec

2sec

kTR kT
P d

CR C

p

p

q
q

pq-

Ê ˆÊ ˆ= ◊ =Á ˜ Á ˜Ë ¯ Ë ¯
Ú

\ r.m.s. value of the  noise voltage across the capacitor = r.m.s. volts.
kT

e
C

=

 This result appears a bit surprising because, the r.m.s. value of the output noise voltage is independent of 
R, although the r.m.s. value of the thermal noise voltage across the resistance, over any bandwidth, is propor-

tional to R . Actually, what happens is, as the value of R increases, even though the input noise voltage 
power spectrum increases proportional to R, the bandwidth over which noise is allowed to pass through the 
RC low pass filter goes on decreasing with R as the cut-off frequency is inversely proportional to R. Thus, the 
noise power available at the output, and hence the r.m.s. value of the noise voltage across the output terminals, 
is independent of the value of R.

Example 6.23 The input circuit of an RF amplifier is a tuned circuit comprising a coil having a resis-
tance of r ohms and inductance of L Henries connected across a capacitor of C farads. Determine the r.m.s. 
value of the thermal noise voltage across the input terminals of the amplifier at resonance.

Solution Let the  tuned circuit be at resonance. Consider a small 
bandwidth Df around the resonance frequency. r.m.s. value of the 
thermal noise voltage across the r ohms resistance over a bandwidth 
of (Df) around the resonance frequency is given by erms, where

rms 4 ( )e kTr f= D  (6.130)

\
¸
Ô = D˝
ÔD ˛

2

At resonance, the r.m.s. value

of voltage across the capacitor 4 ( )( )

over a bandwidth of 

C kT Q r f

f

where Q is the magnification factor of the tank circuit at resonance 
and is assumed here to remain constant over a small interval of 
frequency, Df.
But Q2r = Rd, the dynamic resistance of the tank circuit at resonance.

\
At resonance, input noise voltage 

4 ( )
(r.m.s. value) for the r.f amplifier dkTR f

¸
= D˝

˛
 (6.131)

Fig. 6.19  Tuned circuit of Example 

6.23
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 Equation (6.131) represents an interesting result, as it tells us that insofar as thermal noise at resonance 
across the tank circuit is concerned, it is the dynamic resistance Rd of the tank circuit at resonance, which 
appears to be producing the noise.

Example 6.24 A parallel circuit resonates at 90 MHz and its capacitor C is 30 pF. The Q of the tuned 
circuit is 50 and the circuit is at a temperature of 17°C. Calculate the r.m.s. value of the noise voltage in a 
bandwidth of 20 kHz around the resonance frequency?

Solution The equivalent series resistance r of the tuned circuit = r = cX

Q

6 12

1
1.17

2 90 10 30 10 50p -= = W
¥ ¥ ¥ ¥ ¥

where Xc is the reactance of C at resonance
The effective equivalent resistance for the tuned circuit, at resonance

2 2(50) 1.17 2925dR Q r= = = ¥ = W
\ r.m.s. value of the noise voltage across the tuned circuit

23 3

17 8

4 ( ) 4 1.38 10 300 20 10 2925

96876 10 98.42 10 V 0.9842 V

dkTR f
-

- -

= D = ¥ ¥ ¥ ¥ ¥ ¥

= ¥ = ¥ = m

6.15.3 Available Noise Power

Maximum power transfer theorem tells us that maximum power 
will be delivered by the source to the load resistance RL of Fig. 6.20, 
when RL equals R, the source resistance. Under this condition, the 
load is said to be matched to the source and the power delivered to 
RL under matched conditions, is given by

2 2

2 4

V V
R

R R

Ê ˆ ◊ = DÁ ˜Ë ¯
 Available power from the source

Considering a resistor of R ohms as a thermal noise source as 
shown in Fig. 6.21, we have

   Available noise power = 

2
4 ( )

( )
2

kTR f
R kT f

R

Ê ˆD
◊ = DÁ ˜Ë ¯

\ Available noise power ( )kT f= D  (6.132)

Noise temperature of a source  The  noise temperature of 
a source is defined as T where

( )

p
T

k f
D

D
 (6.133)

where p is the available power from the source in a bandwidth (Df) Hz. It may be noted here that the source 
may be a thermal noise source or it may be some other type. If it is thermal type, T will be the temperature of 
that source. If it is not thermal type, T may not have anything to do with the actual temperature of the source.

Fig. 6.20  Maximum power transfer

Fig. 6.21  Maximum noise power transfer 

from a resistor
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6.15.4 White Noise

A noise in which all frequency components from f = –• to f = +• are present in equal measure, i.e., whose 
power spectral density remains constant for all frequencies and is independent of frequency, as shown in 
Fig. 6.22, is called white noise.

Fig. 6.22  PSD of white noise Fig. 6.23  ACF of white noise

Thus, the  auto-correlation function of white noise is given by

1 0 0( ) ( )
2 2WW

N N
R t d t- È ˘= =Í ˙Î ˚

F  (6.134)

The fact that the auto-correlation function is an impulse implies that if we take two samples of white noise, 
however close the two samples may be, they are uncorrelated. Thus, we find that white noise is perfectly 
random.
 We know that the total area under the PSD curve of any signal gives the average power of that signal. Since 
the PSD of white noise remains constant for all frequencies from f = –• to f = +•, the area under its PSD 
curve is infinity. This means that a white noise source must be producing an infinite average power, which 
is of course impossible in practice. Thus, there cannot be any physical source producing exact white noise. 
However, ‘white noise’ is very useful conceptually and is easy to deal with mathematically.

We had stated earlier that ‘ thermal noise’ although not exactly white, can be regarded as white 

for all practical purposes since its PSD remains almost flat even up to 1012 Hz – frequencies 

far beyond those used by any conventional communication system. Further, since by its very 

nature, it is the aggregate of the noise components produced by the independent random 

movements of a very large number of charged carriers in a conductor, from  central limit 

theorem, we conclude that thermal noise is Gaussian and zero mean. Thermal noise is thus a 

zero-mean White (approximately) Gaussian noise.

Example 6.25 White noise with PSD of N0/2 is filtered using an ideal LPF whose cut-off frequency is 
fc Hz. What is the maximum rate at which the output of the LPF can be sampled, if the samples so obtained 
are to be uncorrelated?

Solution
PSD of noise at output of LPF = |H(f)|2 ¥ PSD of white noise = Pn(f)
Hence PSD of noise at the output of LPF, viz., Pn(f) will be as shown in Fig. 6.24(c). The ACF of the noise at 
the output of LPF, viz., Rnn(t) which is the inverse  Fourier transform of  Pn(f), is a sinc function and is shown 
in Fig. 6.24(d).

Note
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Since this auto-correlation function goes through zero 

values at regular intervals of 
1

2 cf

Ê ˆ
Á ˜Ë ¯

 seconds, the 

minimum sampling interval should be 
1

2 cf

Ê ˆ
Á ˜Ë ¯

 for the 

samples to be  uncorrelated. Hence, the sampling of the 
output noise of the LPF should be done at a frequency of 
2fc samples per second for the samples to be uncorrelated.

6.16 SHOT NOISE

In the previous section, we had considered, in some detail, 
‘ thermal noise’, which is one of the important constituents 
of internal noise. Another important source of internal 
noise is what is called the shot noise. This is produced 
in electronic devices such as vacuum and semiconductor 
diodes, photo-diodes, transistor, etc. It is due to the 
random emission of electrons from the cathode in the case 
of vacuum tubes and due to the inherent randomness in the 
diffusion of minority carriers and drift of majority carriers 
across the junction in the case of semiconductor devices. 
 Let us consider the case of simple vacuum diode with 
plane, parallel electrodes. The cathode of this device emits 
electrons due to a process called ‘ thermionic emission’. 
When the cathode is kept at a constant temperature, the 
number of electrons emitted per second, on the average, 
remains the same and if the anode is given a sufficiently 
large positive potential with respect to the cathode, the 
tube operates in what is called the ‘ temperature-limited 

condition’. When the tube is operated in this condition, all the electrons emitted by the cathode ultimately 
reach the anode and the number of electrons reaching the anode per second, is limited only by the rate of 
emission of electrons by the cathode, i.e., limited by the temperature of the cathode and not by the voltage 
applied to the anode. Under this condition, an electron emitted from the cathode surface gets accelerated 
towards the anode and ultimately reaches it after a brief interval, called the ‘ transit-time’, i.e., time taken by 
the electron to travel the distance between the cathode and anode. Under normal  temperature-limited condi-
tions, this transit time will be extremely small, of the order of a micro-microsecond.
 Let us now follow the motion of one such electron emitted by the cathode. Since the initial velocity with 
which it is emitted is extremely small compared to the final velocity it acquires before reaching the anode, 
we will assume that the initial velocity is zero. Then, due to the uniform electric field between the cathode 
and the anode, it gets accelerated and its velocity goes on increasing linearly with time. Since an electron is 
a charged particle, its movement creates current and as its velocity increases uniformly with time, the current 
contributed by the electron also increases linearly with time. Finally, when the electron reaches the anode the 
current drops down to zero. Thus, the waveform of the current created by a single electron will be as shown 
in Fig. 6.25. The maximum value attained by the current must be (2q/t) where q is the charge of an electron 
(1.6 ¥ 10–19  coulomb) and t is the transit-time, since the area of the triangular current pulse must be equal 
to q.

Fig. 6.24  (a) PSD of white noise, (b) Magnitude 

response of the ideal LPF, (c) PSD of 

noise at output of LPF, (d) ACF of output 

noise, Rnn(t)
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 Suppose a steady current of 1 mA is flowing through the diode under 
 temperature-limited condition. A current of 1 mA means that on the 
average 6 ¥ 1015 electrons are reaching the anode per second. We have 
deliberately used the word ‘average’ because 6 ¥ 1015 electrons per second 
does not necessarily mean that exactly 6 ¥ 109 electrons reach the anode 
every micro-second, or that exactly 6 ¥ 103 electrons reach the anode every 
10–12 sec. The actual number may fluctuate about these values because 
the number of electrons emitted per second from the cathode goes on 
varying randomly with a mean value which is a constant and dependent 
upon the temperature of the cathode. Hence, the waveform of the currents 
from individual electrons when a large number of the emitted electrons are 
considered will be as shown in Fig. 6.26, where t1, t2, t3, etc., are random 
instants of time. The average number of such random instants per second 
is however, constant.

Fig. 6.26 Waveforms of currents contributed by randomly emitted electrons

Fig. 6.27 Anode current waveform obtained by summing up the various triangular current pulses of Fig. 6.26

Since the transit time, t, is extremely small, we may approximate each triangular current pulse of area q by an 
impulse of strength q. In Fig. 6.26 then we will have impulses of strength q occurring at random instants t1,
t2, t3, etc. As ie(t), the current pulse due to a single electron,  is a finite energy signal and is therefore Fourier 
transformable, let

( ) ( )
F T

e ei t I f
◊¨ææÆ  (6.135)

But ( ) ( )ei t q tdª
Now, to find PnI(f), the  power spectral density of the diode current component in(t), we note that in(t) is 
a random signal and so is not Fourier transformable. We shall therefore follow the approach adopted in 
Section 2.7 for determining the PSD of deterministic power signals. Accordingly, let us consider a signal 
inT(t) defined as

( ); | |
( )

0; otherwise
n

nT

i t t T
i t

£Ï
D Ì

Ó
 (6.136)

Fig. 6.25  Current waveform 

created by a single 

electron
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inT(t) is thus a segment of in(t) and is of duration 2T. Hence inT(t) is a finite energy signal. Let

( ) ( )
F T

nT nTi t I f
◊¨ææÆ

Following the arguments similar to those of Section 2.7 and recognizing that here inT(t) is a segment of one 
realization of the random signal in(t), we write the expression for the PSD of in(t) as

2| ( )|
( ) Lt ,

2
nT

nI
T

I f
P f E

TÆ•

È ˘
= Í ˙

Î ˚
 (6.137)

where the symbol E is used to indicate the  ensemble average since |InT(f)|2 changes from one realization to 
another.
 Assuming that on the average N electrons arrive at the anode per second, 2TN electrons arrive in 2T

seconds and we may write

2 2
2| ( )| | ( )|

( ) Lt Lt (2 )
2 2

nT e
nI

T T

I f I f
P f E TN E q n

T TÆ• Æ•

È ˘ È ˘
= = @Í ˙ Í ˙

Î ˚ Î ˚

But qN = I0, the dc current in the anode circuit.

\ 2
0( ) amp /HznIP f I q=  (6.138)

Thus, the PSD of the anode current is independent of ‘f ’. This indicates that  shot noise is a  white noise 
process. However, it must be remembered that this is only an approximation, since we have approximated the 
triangular current pulses by impulses of current by considering t the transit time to be negligibly small. If we 
do not make that approximation and use the  Fourier transform of triangular pulse instead of that of an  impulse 
function, and proceed with the derivation, we will find that PnI(f) is not independent of frequency and that it 
falls off slowly with increasing frequencies. However, its rate of decrease with frequency is so low that it is, 
for all practical purposes, constant up to frequencies of the order of a few hundred megahertz.

PnI(f), as given in Eq. (6.138) is a two-sided  power spectrum. Hence, over a bandwidth of 

(Df) Hz, the mean-squared value of the shot noise current is given by

D=2 2
n 0I 2I q( f ) amp  (6.139)

Fig. 6.28 Showing that PnI(f) given by Eq. (6.138) is a two-sided power spectrum

6.16.1 Shot Noise in Space-Charge Limited Diodes

For a vacuum diode operating in the  space-charge limited region of its characteristic, the randomness in the 
number of electrons arriving at the anode is somewhat smoothened out due to the presence of a thick cloud 
of electrons near the cathode surface. Hence, in this case, Eq. (6.138) is modified as

2
0( ) amp /HznIP f I qa=  (6.140)

Note
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In Eq. (6.140), a is a ‘space-charge smoothing factor’ whose value depends on the density of the space-charge 
and may vary from 0.01 to 1. It is given by (Ref. 2)

0

1.28 c dkT g

qI
a =  (6.141)

where k = Boltzmann’s constant = 1.38 ¥ 10–23 J/°K
Tc = cathode temperature in °K
gd = Dynamic conductance of the diode = Rate of change of plate current with plate voltage
q = Charge of an electron = 1.6 ¥ 10–19 coulomb

6.16.2 Shot Noise in Semiconductor Diodes

 Shot noise arises in the case of semiconductor diodes also, because of the random nature of the number of 
minority carriers diffusing across the junction and also of the generation and recombination of holes and 
electrons. An analysis of the shot noise in semiconductor diodes yields a somewhat similar equation

2 2
02( 2 ) ( ) ampnI I I q f= + D  (6.142)

In Eq. (6.142), I is the dc current flowing across the  p-n junction, expressed in amperes and I0 is the reverse 
saturation current in amperes. This equation, however, is applicable only at low frequencies and low injection 
currents.

Partition Noise In multi-electrode devices like the vacuum triodes and pentodes as well as the  bipolar 
junction transistors, one more type of noise, known as ‘ partition noise’, is generated. In triodes and pentodes, 
it arises due to the random distribution of the electrons emitted by the cathode between the grids and the 
anode or plate; and in the case of transistors, due to the random distribution between the base and collector, 
of the charged carriers injected into the base region.

In  supreheterodyne radio receivers, it is this partition noise which makes the  mixer stage the most noisy 

one.

Example 6.26 A vacuum diode operating in the  temperature-limited region and carrying a direct 
current of I0 amperes, with a resistance of R ohms connected across it through a coupling capacitor is used 
as a  noise source.

 (a) Determine the PSD of the output noise neglecting the effect of the coupling condenser.
 (b) Find the ratio of mean-squared value of the thermal noise to the mean-squared value of the total noise 

at the output.

Solution With a direct current of I0 amps flowing through it, the 
mean-squared value of the shot-noise generated by the diode in temper-
ature-limited condition is given by

2 2
02 ( ) ampshI I q f= D  (From Eq. (6.139))

The  thermal noise generated by the resistance of R ohms has a mean-
squared value given by

2 4 ( )
ampth

kT f
I

R

D
=  (From Fig. 6.15)

\ PSD of the total output noise = 2
0

4
2 amp /Hz

kT
I q

R

Ê ˆ+Á ˜Ë ¯

Fig. 6.29
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and

0

0

Mean-squared value of the thermal noise 4 ( )/

4Mean-squared value of total noise
2

4

4 2

kT f R

kT
I q f

R

kT

kT I qR

Ê ˆ D
=Á ˜Ë ¯ Ê ˆ+ DÁ ˜Ë ¯

Ê ˆ
= Á ˜+Ë ¯

6.17 NOISE EQUIVALENT BANDWIDTH OF A FILTER

Definition Let T be an arbitrary filter, with  transfer function H(f). The  noise-equivalent bandwidth of this 

filter T is defined as the bandwidth B of an ideal low pass filter whose pass band gain is == 0| (0)| | ( )|| ,fH H f

such that when a  white noise source of  power spectral density N0 /2 is applied as input, the ideal LPF gives 

the same output power as the filter T under consideration

Fig. 6.30 Transfer functions of T and the ideal LPF of pass band gain H(0) and bandwidth B Hz

 With white noise of PSD equal to N0/2 applied as input:

 (a) Output noise power of the filter = 2 20
0

0

| ( )| | ( )|
2

N
H f df N H f df

• •

-•
=Ú Ú

  (With h(t) real-valued, |H(f)| must have even symmetry.)

 (b) Output noise power of the ideal LPF 
20

2
0

| (0)|
2

| (0)|

B

B

N
H df

N B H

-
=

=

Ú

2 2
0 0

0

| (0)| | ( )|N B H N H f df
•

= Ú

\   B = Noise-equivalent bandwidth of the filter T

2

0
2

| ( )|

| (0)|

H f df

H

•

=
Ú

\   noise equivalent bandwidth 

2

0
2

| ( )|

| (0)|

H f df

B
H

•

=
Ú

, for a filter with transfer function H(f) (6.143)
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Example 6.27 Determine the  noise equivalent bandwidth of the RC low pass filter shown in Fig. 6.31.

Solution For the RC low pass filter,

2
2 2 2 2

1 1
( ) | ( )|

1 1 4
H f H f

j CR f C Rw p
= \ =

+ +

\ when white noise of PSD equal to N0 /2 is applied as input to 
the RC low pass filter, the output noise power is

N
P df N df

f C R f C Rp p

• •

-•
= =

+ +
Ú Ú0

1 02 2 2 2 2 2 2 2
0

1 1

2 1 4 1 4

Put p q p q= \ = 22 tan 2 secfCR CRdf d

\
2/2

0
0 2

0

(1/2 ) sec

4sec
no

NCR
P N d

RC

p p q
q

q
= =Ú

When white noise of PSD equal to N0/2 is applied as input to an ideal LPF of bandwidth B and pass band gain 
= H(0) = 1, the corresponding output noise power is

20
2 02 | (0)|

2

N
P B H N B

Ê ˆ= ◊ =Á ˜Ë ¯

\ = =0
0

1
, i.e.

4 4

N
N B B

RC RC

Example 6.28 If  zero-mean white noise of two-sided PSD h/2 W/Hz is applied as input to the low pass 
RC filter of Fig. 6.31, determine and sketch the PSD and  auto-correlation function of the filtered noise.

Solution The transfer function H(f) of this filter is

1
( )

1
H f

j RCw
=

+

The PSD of the input white noise process is

( ) /2XP f h=

\ from Eq. (6.87), we know

PY(f) = power spectral density of the output noise process

2
2

/2
| ( )| ( )

1 ( )
XH f P f

RC

h

w
= ◊ =

+

Taking the inverse Fourier transform of PY(f), we get

| |

( )
4

RC
YR e

RC

t
h

t

Ê ˆ-Á ˜Ë ¯=

Example 6.29 A parallel resonant circuit resonant at 100 MHz has a capacitance of 20 pF. If the 
Q-factor of the circuit at resonance is 40, and the circuit temperature is 17°C, what is the equivalent noise 
bandwidth of the tuned circuit?

Fig. 6.32  (a) PY(f) of output noise process 

(b) IFT of PY(f)

Fig. 6.31
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Solution Effective or equivalent series resistance r of the tuned circuit = r = cX

Q

                                    
6 12 12

1 1
1.9894

2 100 10 20 10 40 2 8 10p p- -= = = W
¥ ¥ ¥ ¥ ¥ ¥ ¥

\ effective parallel resistance 2 1600 1.9894 3183 dQ r R= ◊ = ¥ = W =

Fig. 6.33  Noise model of the parallel resonant circuit and its approximate equivalent circuit beyond resonance 

frequency

Since this is an RC low pass filter, the noise equivalent bandwidth is given by
12

6

1 10

4 4 3483 20

10

25464

39.27 MHz

N
d

B
R C

= =
¥ ¥

=

=

Example 6.30 Determine the noise equivalent bandwidth of a normalized low pass  Butterworth filter 
of order 2.

Solution The  squared-magnitude response of a Butterworth filter of order n is given by

2
2

1
| ( )|

1 ( / )
n n

H f
f B

=
+

where B is the 3 dB cut-off frequency. Hence, for a normalized second-order Butterworth filter, putting 
n = 2 and B = 1, we get

2
2 4

2 2
2 0 2

1
| ( )|

1

1
| ( )| | 1 | (0)|

1f

H f
f

H f H=

=
+

= = =\

\ the noise equivalent bandwidth of a second-order Butterworth filter is given by (refer to Eq. (6.142)
BN = Noise equivalent bandwidth

      

2
2

0
2 4

02

| ( )|
1

| (0)| 1

H f df

df
H f

•

•
= =

+

Ú
Ú   since |H2(0)| =1

But
1

0

/

sin ( / )1

m

n

x n
dx

m nx

p

p

-•
=

+
Ú  for n > m > 0  (Refer to Appendix A)

\
4

0

1 /4 1

sin( /4) 41 2
df

f

p p

p

•
= = ◊

+
Ú \ B = Noise equivalent bandwidth = 

1

42

p
◊
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6.17.1  Equivalent Noise Resistance

In noise calculations, it is often quite convenient to represent the noise arising from a device or a whole 
system like say a radio receiver, by the  thermal noise generated by a fictitious resistance Req at room temper-

ature connected at the input of the device or system, with the device or the system itself considered as totally 

noiseless. The idea is that Req connected at the input would produce at the output of the noiseless device / 
system, the same mean-squared value of noise as is being produced by the noisy device / system itself.

Example 6.31 For a two-stage amplifier with the following details, calculate the equivalent input 
noise resistance:
First stage: Voltage gain 12: Input resistor 500 W; Equivalent noise resistance 1000 W; Output resistor 30 kW
Second stage: Voltage gain 20: Input resistor 90 kW; Equivalent noise resistance 10 kW; Output resistor 
500 kW

Solution We shall start from the output side of stage 2 and work backwards.

Step 1: A resistance of 500 k at the output of the 2nd stage is equivalent, insofar as noise contribution is 

concerned, to a resistor of 
3

2

500 10
1.25 k

(20)

¥
=  at the input of the 2nd stage.

Step 2: The resistor of the first stage (30 k) and the input resistor of the second stage (90 k) are in parallel 
and this parallel combination is in series with the noise equivalent resistance (10 k) of the second stage and 
the 1.25 kW obtained in step 1.

i.e., 330 90
10 1.25) 10 33.75 k

30 90

Ê ˆ¥
+ + ¥ W = WÁ ˜Ë + ¯

Step 3: The resistance of 33.75 kW obtained at the output of the first stage will be equivalent, insofar as noise 

contribution is concerned, to a resistor of 
3

2

33.75 10
337.5

(10)

¥
= W  connected at the input of the first stage. But 

this stage already has at its input, a 500 W input resistor and a 1000 W noise equivalent resistance of the first 
stage. Hence, the total noise resistance at the input of the first stage amplifier is

Req = 500 + 1000 + 337.5 = 1837.5 W

6.18  NOISE FIGURE AND EQUIVALENT NOISE TEMPERATURE OF 

TWO-PORT NETWORKS

6.18.1  Signal-to-Noise Ratio

As mentioned earlier in the discussion on the result of Example 6.20, in communication engineering the 
values of signal and noise are individually not of much significance. It is their relative strength that matters. 
Hence, we will always be interested in the ratio of signal power to noise power rather than the signal power 
alone or the noise power alone. Thus, we define the Signal-to-Noise Ratio (SNR) as

Signal power

Noise power
SNR D  (6.144)

Note that SNR is a ratio of powers and not of voltages. We may talk about the SNR at the input or the output 
of an amplifier. It is generally more convenient to express the SNR in decibels rather than as just a ratio.

dB 10

Signal power
( ) 10 log

Noise power
SNR

È ˘
= Í ˙

Î ˚
 (6.145)

CS-Rao_06.indd 358CS-Rao_06.indd   358 1/25/2013 8:42:43 AM1/25/2013   8:42:43 AM



Probability, Random Processes and Noise 359

Modification of SNR by an amplifier Consider an amplifier with a  power gain G. Let this amplifier 
have an input SNR of (S/N)i.

Input Signal Power
Input

Input Noise Power
i

ii

SS
SNR

N N

Ê ˆÊ ˆ = =Á ˜ Á ˜Ë ¯ Ë ¯
The amplifier amplifies both the signal power as well as the noise power by the same factor, G. Further, since 
the amplifier contains some noise producing elements like resistors and electron devices, it produces some 
additional noise power, say Na, at the output. Hence, at the output side, we have

 Signal Power = G ◊ Si

 Noise Power = (G ◊ Ni + Na)

 Thus, the SNR at the output = 
0 ( )

i i

i a i

G S SS

N G N N N

◊Ê ˆ = <Á ˜Ë ¯ ◊ +
 (6.146)

Therefore, for any amplifier, or, for that matter, for any two-port network with some noise producing active/
passive elements in it, the SNR at the output will always be less than the SNR at the input, i.e., there is a 
deterioration of the  signal-to-noise ratio. Thus, an amplifier does not improve the signal-to-noise ratio, it 

only degrades it.

Noise figure In Eq. (6.146), if the noise power at the output contributed by the amplifier / linear two-port 
network due to the noise generated within, viz., Na, were to be zero, i.e., if the amplifier was totally noise-
free, then output SNR would have been equal to the input SNR. The measure of how noisy an amplifier is, can 
therefore be obtained from the ratio of the input SNR to the output SNR. This ratio will have a value of 1 if the 
amplifier/two-port linear network is totally noise-free and a value greater than unity otherwise. How large the 
ratio is compared to unity would give us an indication of how noisy the amplifier/two-port linear network is. 
 This ratio is called the ‘ noise figure’ of the amplifier.

0

0

( / )
Noise Figure

( / )
i i a

i i

S N N GN N
F

S N GN GN

+
= D = =  (6.147)

With regard to the ‘noise figure’, there are a few points that need to be noted. These are:
 1. If we consider the ratio of N0 to GNi at a single frequency, then the noise figure so obtained is called 

the Spot Noise Figure. The frequency at which it is valid should also be stated along with the spot noise 
figure, as the value would be different at different frequencies.

 2. If the total noise powers (over the entire bandwidth that is of interest to us) at the output and input are 
considered, then the ratio of N0 to GNi gives what is called the  integrated noise figure.

 3. The integrated noise figure is the one most generally used, firstly because it is more realistic and 
secondly because it can be measured more easily. However, it is the Single frequency noise figure, or 
the Spot noise figure which is most easily computed.

 4.  Power spectral density represents power as a function of frequency. Hence the spot noise figure can be 
obtained as function of frequency by taking the ratio of power spectral densities of N0 and GNi.

 5. We know that the maximum noise power that a two-port network can deliver to a load can be obtained 
only under matched conditions, and since an amplifier amplifies the noise power available at its input 
terminals, the noise figure is defined only in terms of  available noise powers, so that mismatches, if any, 
are automatically taken care of.

Available output and internal noise powers in terms of F 
 1. From Eq. (6.147), we have available output noise power N0 = F ◊ GNi. Now making use of Eq. (6.107) 

for Ni, we have
N0 = Available output noise power

 = FGkT0(Df) (6.148)
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  where T0 is the room temperature. In RHS of Eq. (6.148), GkT0(Df) is the component of the output noise 
power obtained by amplification of the available input noise power kT0(Df). If the amplifier had been 
noise-free, the output noise power would have been only this component, i.e., GkT0 (Df). However, due 
to the noise internally generated in the amplifier, it is increased by a factor F( > 1).

 2. From Eq. (6.148),

0
0 ( )

N
FkT f

G
= D

  This is the total output noise including the internally generated noise, referred to the input. Of this, 
kT0(Df) is the available noise power at the input terminals because of the source. Hence, the internally 
generated noise, referred to the input, is given by

aN ¢  = Internally generated noise referred to input = (F – 1) kT0(Df) (6.149)

Example 6.32 An amplifier has a  noise figure of F = 12 dB. Express the internally generated 
component of the output noise power as a fraction of the available output noise power.

Solution From Eq. (6.149), internally generated noise, referred to the input 0( 1) ( )F kT f= - D
From Eq. (6.148), available output noise power = 0 ( )FGKT fD
Now, internally generated noise referred to the output = 0( 1) ( )G F kT f- D
\ internally generated component of output noise power/available output noise power

0

0

( 1) ( ) ( 1)

( )

F GkT f F

FGkT f F

- D -
= =

D
Here, F is in the form of a ratio of the SNRs and not in  decibels.
\ we should convert the given value of F into a ratio.

For this, we note that 10

( / )
(in dB) 10 log 12

( / )
i

o

S N
F

S N

È ˘
= =Í ˙

Î ˚

\ 1.2( / )
10 15.85

( / )

1 14.85
0.9369

15.85

i

o

S N

S N

F

f

= =

-
= =\

\
Internally generated component of noise power

0.9369
Available ouput noise power

=

Example 6.33 The available output noise power from an amplifier is 80 nW, the available power gain 
of the amplifier being 40 dB and the  equivalent noise bandwidth being 25 MHz. Calculate the noise figure, 
assuming T0 to be 27° C.

Solution From Eq. (6.148), we know that the available output noise power N0 is given by

0 0( )N FGkT f= D
where T0 is the room temperature and given to be 27° C = 300° K.

\
9

0
4 23 6

0

80 10

( ) 10 1.38 10 25 10 300

2318
7.7267

300

N
F

GkT f

-

-
¥

= =
D ¥ ¥ ¥ ¥ ¥

= =

\ 10 1010 log 10 log 7.7267 8.879 dBF = =
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6.18.2 Equivalent Noise Temperature

Although the noise figure F gives a good measure of the degree of noisiness of a device, amplifier, or any 
two-port linear network, there is one disadvantage with it. We know that it is equal to one for a noise-
free network and that the greater the value of F, the noisier the amplifier / network is. Thus, for low-noise 
microwave devices and amplifiers, the value of F is very close to one. It then becomes difficult to compare the 
‘noisiness’ of two  low-noise amplifiers by comparing their noise figures. A good alternative in such cases is 
to use what is called the equivalent noise temperatures of these amplifiers. Since this also tells us how noisy 
a device or circuit is, it must be related to the noise figure F. We shall now define the term  noise equivalent 

temperature and then see how it is related to F.

Definition The equivalent noise temperature of a device or a two-port linear network is a fictitious temper-
ature Te which is such that the available noise power at that temperature, viz., kTe(Df) is equal to the internally 
generated noise power of the device or the two-port network referred to its input.
 From Eq. (6.147), we have

i a

i

GN N
F

GN

+
=

From the above definition, it is clear that Na in the RHS of the above can be replaced by G[kTe(Df)]. Further, 
we know that

0 0( ); Room TempiN kT f T= D =
Hence,

0 0

0 0

( ) ( )

( )
i a e e

i

GN N GkT f GkT f T T
F

GN GkT f T

+ D + D +
= = =

D

\
0

1 eT
F

T

Ê ˆ
= + Á ˜Ë ¯

 (6.150)

or 0( 1)eT F T= -  (6.151)

From Eq. (6.151), it is clear as to why the use of Te is preferable for low noise devices/amplifiers. The small 
difference between F and 1 for these low noise amplifiers is magnified by getting multiplied by T0, the room 
temperature in degrees Kelvin (i.e., nearly 300).

6.18.3 Noise Figure of Amplifiers in Cascade

In communication engineering, quite often we come across a number of amplifiers or  two-port networks 
connected in cascade. It then becomes necessary to determine the overall noise figure of the cascade 
connection in terms of the noise figures of the individual amplifiers or two ports.
 In this connection, let us recapitulate the following
 1. From Eq. (6.125), we have

Actual output noise power

Noise output power if the amplifier is noise-free
i a

i

GN N
F

GN

+
= =  (6.152)

 2. If we have an amplifier with noise figure F, available power gain G, and an available input noise power 
kT0(Df), its output noise power (total) will be FG kT0(Df) since F is defined with reference to available 
noise power. Also, the noise power internally generated by the amplifier, when referred to the input, is 
given by (F–1) kT0(Df) Eq. (6.149).
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Now consider the cascade connection of two amplifiers as shown in Fig. 6.34.

Fig. 6.34 Cascade connection of two amplifiers

Then the  overall noise figure F is given by

1 0 1 2 2 0 2

0 1 2

Actual output noise power

Output noise power assuming the amplifiers to be noise-free

( ) ( 1) ( )

( )

F

F kT f G G F kT f G

kT f G G

=

D + - D
=

D

\ 2
1

1

( 1)F
F F

G

-
= +  (6.153)

This is known as  Frii’s formula. It may be extended to any number of amplifiers connected in cascade.

-- -
= + + + + º32 4

1
1 1 2 1 2 3

( 1)( 1) ( 1)FF F
F F

G G G G G G
 (6.154)

Here, F1, F2, F3, . . . are the noise figures and G1, G2, G3, . . . are the available power gains of the first, second 
and third amplifiers, etc.

6.18.4 Improvement of Overall Noise Figure

1. From Eq. (6.154), it is clear that if the  available power gain G1 of the first amplifier is quite large, the 

overall noise figure F of the cascade connection will be approximately equal to the  noise figure of the first 

system in the cascade connection. 
2. Since our objective is to have a low overall noise figure, it becomes necessary to choose a system with high 

power gain and low noise figure as the first stage in a chain of cascade amplifiers. In a  superheterodyne radio 
receiver, as already mentioned earlier, the mixer stage is the most noisy. That is why it is always preferable 
to precede it with a high gain RF amplifier having a low noise figure, so that the overall noise figure is not 
allowed to be affected by the presence of the noisy mixer stage.

6.18.5 Equivalent Noise Temperature of Cascaded Amplifiers

Let the individual stages have equivalent noise temperatures Te1, Te2, Te3, . . . and available power gains 
G1, G2, G3, . . .. Let the room temperature be T0. If the  equivalent noise temperature of the cascade connection 
is say Te, then from Eqs. (6.131) and (6.128), we have

1 2 3

0 0 1 0 1 2 0

1 1e e e eT T T T

T T G T G G T
+ = + + + + º

\ = + + + º2 3

1 1 2

e e
e e

T T
T T

G G G
 (6.155)
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Example 6.34 A source with an internal resistance of 50 W and an internal emf of 6 mV is supplying 
the signal voltage to an amplifier that has an input resistance of 75 W. The amplifier has an  equivalent 
noise resistance of 1470 W. For a  noise bandwidth of 5 kHz, calculate the output (S/N) ratio in dB at room 
temperature of 290° K.

Solution The signal voltage Vs developed across the input 
resistance of 75 W is the signal voltage actually available at the 
input of the amplifier. Hence, we will use the  Thevenin’s equiv-
alent circuit of this.
Mean-squared value of the noise voltage

-

-

= + D

= ¥ ¥ ¥ ¥ ¥ +

= ¥

0 th eq

23 3

14 2

4 ( )( )

4 1.38 10 290 5 10 (30 1470)

12 10 V

kT R R f

Mean-squared value of the signal voltage 2 12 2

12 2

(3.6) 10 V

12.96 10 V

-

-

= ¥

= ¥

Hence (S/N) ratio = 
12

14

12.96 10
108

12 10

-

-
¥

=
¥

\ 10
dB

10 log 108 20.3 dB
S

N

Ê ˆ = =Á ˜Ë ¯

Example 6.35 Determine (a) the  noise figure F of the amplifier of Example 6.34 in dB. (b) Also 
determine its equivalent noise temperature.

Solution
 (a) We know from Eq. (6.152) that the noise figure F is given by

                            

Actual output noise power

Output noise power assuming the amplifiers to be noise-free
F =

In our case, actual noise output power = 

        
14 2

0 th eq[4 ( )( )] 12 10 voltkT R R f G G
-= + D = ¥ ¥

where Req is the equivalent noise resistance of the amplifier referred to the input, and G is the available 
power gain.
Noise output power assuming the amplifier to be noise free

15
0

14

1015

[4 ( )] 2.4 10

12 10
50 10 log 50 16.9 dB

2.4 10

thkT R f G G

G
F

G

-

-

-

= D = ¥ ¥

¥ ¥
= = = =

¥ ¥
\

As can be seen from the above steps, F is in fact, given by

th eq eq

th th

R R R 1470
F 1 1 1 49 50

R R 30

+
= = + = + = + =

Fig. 6.35  Signal source voltage circuit

Fig. 6.36  Input circuit of the amplifier. 

Noise equivalent resistance of 

the amplifier is included

Note
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 (b) Since 
0

1 eT
F

T
= + , we have = - = ∞(50 1) 290 14,210 KeT

Example 6.36 A  low-noise amplifier of equivalent noise temperature 30° K and 20 dB available 
power gain precedes a microwave receiver which has a  noise figure of 25 dB. What is the  overall noise 
equivalent temperature if the room temperature is 27° C?

Solution 2

1
1

e

e e

T
T T

G
= +   (see Eq. (6.154))

1eT = 30° K, G1 = 20 dB = 100; 

   F2 = Noise figure of the microwave receiver = 25 dB = 102.5 = 316.228

\ Equivalent noise temperature of the microwave receiver = (F2 – 1)T0

       = (315.228) ¥ (273 + 27) = 315.228 ¥ 300 = 945.684° K

\ Overall noise equivalent temperature = 2

1
1

e

e e

T
T T

G
= +

                                                            
316.228

30 33.16228 K
100

= ∞ + = ∞

6.18.6 Equivalent Noise Temperature and Noise Figure of a Lossy Line

Let us consider a lossy transmission line of power 
loss L where L is the ratio of input power to the output 
power. Let it be terminated on both sides by R0 ohms, 
its  characteristic resistance as shown in Fig. 6.37.

For simplicity, let us assume that the line and the 
resistances of R0 ohms each are all at the ambient 
temperature T0° K. The lossy line acts as a thermal 
source and if Te is its equivalent noise temperature, and gL = 1/L is its gain, then from the way Te has been 
defined as the internally generated noise power available at the output referred to the input, we may write

                

Available internally generated 
( )

noise power at the output e LkT g f
¸

= D˝
˛

 But this must be equal to the total noise power available at the output minus the noise power generated in 
the R0 at the input side and made available at the output-end of the line.
 Since the noise power contributed by input side R0 and made available at the output end is given by 
kT0gL(Df), if the total  available noise power at the output is kT0(Df), we may write

0 0( ) ( ) ( )e L LkT g f kT f kT g fD = D - D

\ 0
0 0 ( 1)e

L

T
T T T L

g

Ê ˆ
= - = -Á ˜Ë ¯

\ 0 ( 1)eT T L= -

But we know, from Eq. (6.151) that 0 ( 1)eT T F= -
Hence, combining the above two equations, we get

      
Noise figure of the lossy lineF L= =

Fig. 6.37   Lossy transmission line terminated in its R0
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Example 6.37 In TV receivers, the antenna is often mounted on a tall mast and a long lossy cable is 
used to connect the antenna to the receiver. To overcome the effect of the lossy cable, a  pre-amplifier is 
mounted on the antenna as shown in Fig. 6.38(a).

Fig. 6.38(a) Antenna with pre-amplifier

 (a) Find the overall noise figure of the system.
 (b) Find the overall noise figure of the system if the pre-amplifier is omitted and the gain of the front-end 

is increased by 20 dB. (VTU, March, 2001)

Solution We know, from the derivation given above, that for a lossy cable, the noise figure (ratio) equals 
its power loss. So, in our case,

 Fc = Noise figure of the lossy cable = L (ratio) = 2

 (a) Applying  Frii’s formula for the overall noise figure,

3
1

1 1

( 1) ( 1)C

C

F F
F F

G G G

- -
= + +

◊
where GC = (1/LC) = gain of the cable

\
(2 1) (39.8 1)

3.981
100 (100 1/2)

4.767 6.782 dB

F
- -

= + +
¥

= =
 (b) When the pre-amplifier is omitted and the gain of the front-end is increased by 20 dB, the system 

configuration is as given in Fig. 6.38(b).

Fig. 6.38(b) System configuration for part (b)

\  overall noise-figure F is now given by

3

dB 10

( 1) (39.8 1)
2 79.6

(1/ ) (1/2)

10 log 79.6 19.01 dB

C

F
F F

LC

F

- -
= + = + =

= =\

Example 6.38 A satellite receiving system consists of a  low noise amplifier (LNA) that has a gain of 
47 dB and a noise temperature of 120° K, a cable with a loss of 6.5 dB and the main receiver with a noise 
factor of 7 dB. Calculate the equivalent noise temperature of the overall system referred to the input for 
the following system connections:

 (a) LNA at the input followed by the cable connecting to the main receiver.
 (b) The input direct to the cable, which is then connected to the LNA, which, in turn, is connected to the 

main receiver. (VTU, February, 2002)

0.6

0.3

1.6

6 6

2

6 dB 10 3.981

3 dB 10 2

16 dB 10 39.8

60 dB 10 10

20 dB 10 100

= =

= =

= =

= =

= =

CS-Rao_06.indd 365CS-Rao_06.indd   365 1/25/2013 8:42:44 AM1/25/2013   8:42:44 AM



366 Communication Systems

Solution As the value of the ambient temperature, T0 is not given, let us conveniently assume it as 17° C 
= 290° K.
 (a) For the first case, configuration is as follows

Fig. 6.39(a) First configuration for Example 6.38

G1 = 47 dB = 104.7       LC = loss = 6.5 dB    F3 = 7dB

       = 50118.72            = 4.4668 = 1/Gc        = 100.7 = 5.0118

1
120 KeT = ∞ 4.4668

( 1) 1005.38
c

C

e c

F

T F

\ =

= - =
3 0( 1)

4.0118 290 1163.442

ceT F T= -

= ¥ =
Applying  Frii’s formula for the overall equivalent noise temperature Te (see Eq. (6.154))

3

1
1 1

1005.38 1163.442
120

50118.72 (50118.72/4.4668)

120 0.0200 0.10369 120.12 K

ce e

e e
C

T T
T T

G G G
= + + = + +

◊

= + + = ∞

 (b) For the second case, the configuration is as follows

Fig. 6.39(b) Second configuration for Example 6.38

0.65

0.65

6.5 dB

10 4.4668

10 4.4668

1005.38; 1 /
c

C

C

e C C

L loss

F

T G L

= =

= =

= =

= =
1

4.7
1 47 dB 10

50118.72

120 Ke

G

T

= =

=
= ∞

0.7
3

3 0

7 dB 10 5.0118

( 1)

4.0118 290 1163.442

ce

F

T F T

= = =

= -

= ¥ =

\ applying Frii’s formula for the overall  equivalent noise temperature Te, we have

1 3

1

120 1163.442
1005.38

(1/4.4668) (50118.72/4.4668)

1005.38 536.016 0.10369 1541.499 K

c

e e

e e
C C

T T
T T

G G G
= + + = + +

= + + = ∞

From the definition of the equivalent noise temperature of a two-port, we know that it is the 

temperature Te which is such that the available noise power at that temperature, viz., kTe(Df),

is equal to the internally generated noise power of the two-port, referred to its input.

Example 6.39 A coil having an inductance of 2 H and an internal resistance of 1 ohm is shunted by a 
capacitor of 2 F. Determine the  power density spectrum of the thermal noise the network terminals.

(GATE Exam, 1991)

Solution  Thermal noise is produced in the circuit only by the resistance of the coil. We shall therefore 
draw the equivalent circuit as shown in Fig. 6.40.

Note
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Fig. 6.40 Circuit for Example 6.39

The two-port network shown inside the dotted line box has input  power spectral density of 2kTR V2/Hz.
Hence, its output power spectral density (PSD) will be

 Output PSD = (Input PSD) ¥ |H(f)|2

where H(f) is the  transfer function of the two-port.
Now,

2

2
2 2 2 2 2

1

1
( )

1 (1 )

1
| ( )|

(1 )

j C
H f

LC j RC
R j L

j C

H f
LC R C

w

w w
w

w

w w

= =
Ê ˆ - ++ + Á ˜Ë ¯

=
- +

\

Substituting the values of R, L, and C, we get

2
2 2 2 4 2

1 1
| ( )|

(1 4 ) 4 1 16 4
H f

w w w w
= =

- + + -

\ output PSD = 2kTR|H(f)|2 V2/Hz

4 2

2

(1 16 4 )

kT

w w
=

+ -
 since R = 1W

6.18.7 Measurement of Noise Figure

In Section 6.16, of this chapter, we had shown that a temperature-limited vacuum diode carrying a plate 
current of I0 amperes generates  shot noise current component whose mean-squared value is given by 
Eq. (6.139) as

2 2
02 ( ) ampnI I q f= D

Thus, the temperature-limited vacuum diode can be used as a  noise source. As stated earlier, this noise is 
not exactly white, but has a flat spectral density even up to a few hundred megahertz. Hence, for most of 
our communication systems, for which the carrier frequencies are in the RF, this source can be regarded as 
a white noise source. For microwave communication systems, one may make use of noise generators which 
use a fluorescent tube placed inside a waveguide as a noise source.
 A simple setup for the measurement of the  noise figure F of a two-port network, using a temperature-
limited vacuum diode as the noise source, is shown in Fig. 6.41.
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Fig. 6.41 Measurement of  noise figure

Let us assume that the value of C is such that its effect can be ignored.
 Initially, we make I0 = 0 by opening the switch K and note the power meter reading. Let it be P1. Then P1

is the output noise power with input noise power being only the thermal noise generated by the RS which is 
actually the parallel combination of the output resistance of the source and the input resistance of the 2-port 
network under test. Hence, from Eqs. (6.113) and (6.152), we have

1 4 ( )SP kTR f GF= D  (6.156)

With the switch K now closed and with a diode direct current of I0, let the output noise power be P2. Now, this 
P2 is caused by an input noise power consisting of shot-noise and thermal noise.

\ 2
2 04 ( ) 2 ( )S SP kTR f GF qI R G f= D + D  (6.157)

\
2

0 02

1

2 ( )
1 1

4 ( ) 2
S S

S

qI R G f qI RP

P kTR f GF kTF

D
= + = +

D

In Eq. (6.156), the first term represents the output noise power including the amplified thermal 

noise power given to the input and the noise power at the output due to the internally generated 

noise. Hence, to get the total output noise power when both thermal noise and shot-noise are 

present at the input, we merely add to the first term the output shot noise power which is G 

times the input shot noise power.

 Let us now adjust the cathode temperature of the diode (by adjusting the filament voltage) so that P2 / P1

becomes 2. Let the new plate current under this condition be 0.I ¢  Then

02 1
2

SqI R

kTF

¢
= + , i.e., 0

2
SqI R

F
kT

¢
=

Now, if T = 290° K,

\
19

0
023

0

1.6 10
20

2 1.38 10 290

20

S
S

S

I R
F I R

F I R

-

-
¥ ¢

= = ¢
¥ ¥ ¥

= ¢\

Thus, we will be able to determine the value of the noise figure of the two-port network from the values of 

0I ¢  and RS.

6.19 NARROWBAND NOISE REPRESENTATION

In any communication system, the front-end of the receiver will be designed to have a bandwidth just equal to 
the bandwidth of the transmitted signal. For example, in the case of AM audio broadcasting, 5 kHz being the 
maximum audio frequency handled by the transmitter, the transmitted amplitude modulated signal occupies 

Note
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a bandwidth of 10 kHz, five kilohertz on either side of the carrier. Hence, the front-end of an AM broadcast 
receiver is designed to have a bandwidth of just 10 KHz. While a smaller than the required bandwidth for the 
front-end of the receiver results in distortion of the received signal, a larger than required bandwidth would 
only allow more noise power to enter the receiver without any increase in the signal power.
 If the  channel noise is modeled as a zero-mean white Gaussian Process, and the front-end of the receiver 
is modeled as a narrowband filter with center frequency fc, the received noise will then be a narrowband noise 
process with center frequency fc and its PSD will be somewhat as shown in Fig. 6.42.

Fig. 6.42 PSD of noise entering the receiver

Earlier, in Section 6.13.2, we had shown that it is possible to represent a narrowband signal, x(t), with center 
frequency fc in terms of its inphase and quadrature components as

( ) ( ) cos ( ) sinI c Q cx t x t t x t tw w= -  (Refer to Eq. (6.108))

where the lowpass signal xI(t) and xQ(t) were respectively called the inphase and quadrature components of 
the signal x(t).
 In the present case, we are not dealing with a narrow band deterministic signal x(t); instead, we are dealing 
with a narrowband noise – a narrowband random process n(t). However, we may proceed exactly the same 
way as we did in Chapter 2 for the deterministic signal case and write

 Pre-envelope of ˆ( ) ( ) ( ) ( )n t n t n t jn t+= = +  (6.135)

and complex envelope of ( ) ( ) ( ) exp[ 2 ]cn t n t n t j f tp+= = -%  (6.136)

Let the low pass complex process ( )n t%  be represented as

( ) ( ) ( )I Qn t n t jn t= +%  (6.137)

Since ( )n t%  is a low pass process of bandwidth, say W Hz, nI(t) and nQ(t) are also low pass of the same 
bandwidth.
 From Eq. (6.135), we have

( ) Re[ ( )] Re[ ( ) ]cj t
n t n t n t e

w
+= = %  (From Eq. (6.136))

Now, substituting for ( )n t%  using Eq. (6.137), we get

\ ( ) Re[{ ( ) ( )}{cos sin }]I Q c cn t n t jn t t j tw w= + +

\ ( ) ( ) cos ( ) sinI c Q cn t n t t n t tw w= -  (6.138)

RHS of Eq. (6.138) is called the inphase and  quadrature component representation of the  narrowband noise 
process n(t) centered on fc.
 There are a few extremely useful properties associated with the inphase and quadrature components, viz., 
nI(t) and nQ(t). These are stated and the pertinent proofs are given in the sections on probability and random 
processes.
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MATLAB Example 6.1 Generate a discrete time sequence of N = 2000 independent identically 
distributed (uniformly) random numbers in the interval [-1/2, 1/2]. Compute the autocorrelation Rx of the 
sequence {Xn}. Find the power spectrum of {Xn} by finding the DFT of Rx using FFT. [Note: Rx(k) and 
Sx(f) have to be computed for each value of k and f respectively at least some 10 to 20 times and the average 
of all the values of the Rx(k) for each k and of Sx(f) for each f must be taken.]
 (a) Plot Rx(k) and Sx(f).
 (b) Bandpass filter the white Gaussian noise {Xn} using bandpass filter.
 (c) Determine and plot the autocorrelation and the power spectrum of the output noise.

MATLAB Program

clc

N = 2000;      % Number of samples

M = 50;
Nxav = zeros(1,M+1);
Sxav = zeros(1,M+1);
for i = 1:10 % takes the ensemble average over ten realizations

X = rand(1,N)-(1/2);    % Generate a uniform number sequence on (-1/2,1/2)
  Nx = Nx_est(X,M);   % autocorrelation of x

  Sx = fftshift(abs(fft(Nx))) % power spectrum of x

  Nxav = Nxav+Nx;
  Sxav = Sxav+Sx;
end;

Nxav = Nxav/10;
Sxav = Sxav/10;
figure (1)

subplot (2,1,1)

plot(X)

xlabel(‘Numbers’)

title (‘Independently Identically uniformly distributed random numbers’);

subplot (2,1,2)

plot(Nxav);

title (‘Autocorrelation of random numbers’);

xlabel (‘M’);

figure (2)

subplot (3,1,1)

f = -0.5:1/M:0.5
plot (f,Sxav)

title (‘Power spectrum’);

xlabel (‘Frequency’)

%

% Bandpass filter (BPF) the white Gaussian noise {Xn} using

% a BPF response as given

% generation of white noise

%

for i = 1:2:N
  [X1(i) X1(i+1)] = gengauss;
  [X2(i) X2(i+1)] = gengauss;
end
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A = [1 -0.9];
B = 1;
Xc = filter(B,A,X1);   % in-phase component

Xs = filter(B,A,X2);   % quadratic component

fc = 2000/pi;
for i = 1:N
  band_pass_process(i) = Xc(i)*cos(2*pi*fc*i)-Xs(i)*sin(2*pi*fc*i);
end

%

% Determine the autocorrelation and the spectrum of bandpass process

%

M = 50;
bpp_autocorr= Nx_est(band_pass_process,M);
bpp_spectrum =fftshift(abs(fft(bpp_autocorr)));
subplot (3,1,2)

plot(bpp_autocorr)

title (‘Autocorrelation of Gaussian noise band pass process’);

xlabel(‘M’)

subplot (3,1,3)

plot(f,bpp_spectrum)

title (‘Spectrum of Gaussian noise band pass process’);

xlabel (‘frequency’);

Results
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Summary 
 ■ Modern probability theory is based on the following axioms:

  (a) If A is an event, P(A) ≥ 0
  (b) If S is the certain event, P(S) = 1
  (c) If events A and B are mutually exclusive, then P(A»B) = P(A) + P(B)

 ■  Sample space is the set of all possible outcomes of a random experiment.
 ■ Events are defined in terms of subsets of the sample space forming a  Borel field s.
 ■  Probability is a non-negative number less than or equal to one which is assigned to an event and it has to satisfy 

certain conditions.

 ■  Conditional probability of A given B is 
( )

( | )
( )

P AB
P A B

P B
=  where P(AB) = Probability of joint occurrence of A & 

B and P(B) π 0.

 ■  Bayes’ theorem: 

1

( / ) ( )
( | )

( / ) ( )

i i
i n

i i
i

P B A P A
P A B

P B A P A
=

=

Â

 ■ (a) Events A and B are said to be  independent events if ( ) ( ) ( )P AB P A P B= ◊
  (b)  In general, n events, A1, A2, . . . , An are said to be independent, if for every k < n, the events A1, A2, . . . , Ak are 

independent and further, if

º = º1 2 3 1 2( , , , , ) ( ) ( ) ( )n nP A A A A P A P A P A
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 ■ A real random variable is a mapping of the outcomes of a  random experiment to the  real line and satisfying the 
following two conditions:

  (a) {X £ x}, i.e., {X(x) £ x} is an event for " real number x.
  (b) { ( ) } { ( ) } 0P Px x= + • = = -• =X X

 ■ The  cumulative distribution function, CDF of a random variable X is denoted by FX(x) and is defined as: 

( ) { }XF x P xD £X

 ■ Properties of CDF

  (a) FX(x) lies between 0 and 1
  (b) FX(•) = 1 and FX(–•) = 0
  (c) FX(x) is a non-decreasing function of x
  (d) FX(x) is continuous from the right
  (e) FX(b) – FX(a) = P[a < X £ b]

 ■  Random variables are of three types – continuous, discrete and mixed types. Random variables whose CDF is a 
continuous function is called a continuous random variables. A random variable whose CDF has a staircase shape 
is called a discrete random variable. A random variable which is neither discrete, nor continuous, is called a mixed 
random variable.

 ■ The  probability density function PDF is defined as ( ) [ ( )]X X

d
f x F x

dx
=

 ■ Properties of PDF

  (a) fX(x) ≥ 0

  (b) ( ) 1Xf x dx
•

-•

=Ú

  (c) 
2

1

1 2( ) [ ]
x

X

x

f x dx P x x= < £Ú X  and

  (d) ( ) ( )
x

XF x f da a
-•

= Ú

 ■ (a)  Uniform random variable is one whose PDF is constant over a certain interval or range of x.

\ 1 2
2 1

1
;

( )( )

0 elsewhere
X

x x x
x xf x

Ï £ £Ô -= Ì
ÔÓ

  (b) A  Gaussian random variable is one having a PDF of the form

2 2( ) /2

2

1
( )

2

x m
Xf x e

s

ps

- -=

     where s2 =  variance and m = mean value of the random variable X.
  (c) A  Rayleigh random variable is one which has PDF fX(x) given by

2 2/2
2

 ; 0
( )   

0; 0

x

X

x
e x

f x

x

s

s

-ÏÊ ˆ ≥ÔÁ ˜Ë ¯= Ì
Ô <Ó

  (d) A  Rician random variable is one which has a PDF of the form

2 2 2( )/2
02 2

1
( )  x

X

x
f x xe I

m s m

s s

- +È ˘ Ê ˆ= ◊ Á ˜Í ˙ Ë ¯Î ˚
    where I0(a) is the  modified Bessel function of the first kind and zeroth order.

 ■ A  Bernoulli random variable is a discrete random variable which takes the values 1 and 0 with probabilities of P
and (1 – P).
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 ■ A discrete random variable X is said to be a  binomial random variable with parameters n and p if 

[ ] ; 0k n kn
P k p q k n

k

-Ê ˆ
= = £ £Á ˜Ë ¯

X

 ■ If X is a random variable and if Y = g(X), then 
( )

( )
| ( )|

X i
Y

i i

f x
f y

g x
=

¢Â

 ■ The ‘ mean’ or ‘expected value’ of a r.v. X is { } ( )XE xf x dx
•

-•

= ÚX , if X is continuous.

 ■ If X is  discrete random variable, { } ,i i
i

E p x= ÂX  where [ ]ip P= =X ix

 ■ The  variance of a continuous random variable X with expected value hx is defined as

  Variance of X = s h= = - = -2 2 2 2Var[ ] [( ) ] [ ] { [ ]}X E E EXX X X X

 ■ For a discrete random variable X, 2 2( )X i i X
i

p xs h= -Â  where [ ]ip P= =X ix

 ■ The positive square root of variance is called ‘ Standard Deviation’.
  The  characteristic function of a continuous random variable X is defined as

( ) ( ) j x
X Xf x e dx

wf w
•

-•

D Ú

 ■ The characteristic function of a discrete random variable X which takes values xi, i = 1, 2, … with probabilities pi,
is given by

( ) ij x
X i

i

p e
wf w = Â

 ■ The joint, or  bivariate distribution function FX,Y (x, y) is

, ( , ) [ , ]X YF x y P x yD £ £X Y

 ■ The  joint density function of two random variables X and Y is

2
, ( , )

( , ) X YF x y
f x y

x y

∂
D

∂ ∂

 ■ ,( , ) ( , ) ; ( ) ( , )
yx

X X YF x y f d d F x F xa b a b
-• -•

= = •Ú Ú

,( ) ( , ); ( ) ( , ) and ( ) ( , )Y X Y XY XYF y F y f x f x y dy f y f x y dx
• •

-• -•

= • = =Ú Ú

 ■ (a) if two random variables X and Y are  statistically independent,

( | ) ( ); ( | ) ( ) and ( , ) ( ) ( )f y x f y f x y f x f x y f x f y= = = ◊
  (b) Random variables X and Y are said to be  uncorrelated if their  covariance is zero, i.e., if

Then

h hD - - =

=

[( )( )] 0

[ ] [ ] [ ]

XY X YC E

E E E

X Y

XY X Y

  (c) Two random variables X and Y are said to be  orthogonal if E[XY] = 0
 ■ Two random variables X and Y are said to be  jointly Gaussian if

2 2
1 2 1 2

2 2 22
1 21 21 2

( ) ( ) 2 ( )( )1 1
( , ) exp

2(1 )2 1
XY

x m y m x m y m
f x y

r

s sr s sps s r

È ˘Ï ¸- - - -Ô Ô= - + -Í ˙Ì ˝
- Ô ÔÍ ˙- Ó ˛Î ˚

 ■ The ‘ Central Limit Theorem’ says that the sum of n independent random variables will have a CDF that converges 
to the CDF of a Gaussian random variable.
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 ■ A random process is a function of two variables – time t and outcome x and is denoted by X(t, x).
 ■ The mean of a random process at the instant t = t1 is defined as the expected value (or mean) of the random variable 

X(t1).
 ■ The ACF of a random process is defined as the expected value of the product of X(t1) and X(t2)

• •

-• -•

D ◊ = Ú Ú1 2 1 2 1 2 1 2 1 2 1 2( , ) [ ( ) ( )] ( , ; , )XR t t E t t x x f x x t t dx dxX X

 ■ The auto co-variance of a random process X(t) is

h h= - -1 2 1 1 2 2( , ) [{ ( ) ( )}{ ( ) ( )}]X X XC t t E t t t tX X

 ■ The auto-correlation of a random process X(t) is =1 2 1 2( , ) [ ( ) ( )]XR t t E t tX X

  The average power in X(t) = = 2( , ) [| ( )| ]XR t t E tX

   Variance of X(t) = = -2 2( , ) [ ( )] { [ ( )]}XC t t E t E tX X

 ■ (a)  Cross covariance: 1 2 1 2 1 2 ( , ) ( , ) ( ) ( )XY XY X YC t t R t t t th h= -
  (b)  Cross correlation: =1 2 1 2( , ) [ ( ) ( )]XYR t t E t tX X

 ■ Independent Processes: Two processes X(t) and Y(t) are said to be statistically independent, if the set of random 
variables {X(t1), X(t2), . . . , X(tn)} and º¢ ¢ ¢1 2{ ( ), ( ), ( )}nt t tY YY  are mutually independent for all values of t1, t2, …, 
tn and 1 2, , nt t tº¢ ¢ ¢  and all integer values of n.

 ■ Uncorrelated Processes: X(t) and Y(t) are said to be uncorrelated process if CXY(t1, t2) = 0 for all values of t1 and t2.
 ■ Orthogonal Process: Processes X(t) and Y(t) are said to be orthogonal processes if RX(t1, t2) = 0 for all t1 and t2.
 ■ If X(t) and Y(t) are orthogonal processes and, in addition, if either (or both) of them has zero mean, then they are 

uncorrelated.
 ■ Stationarity: Random processes, whose statistical properties like mean, ACF, etc., are independent of time, are 

called stationary processes.
 ■ WSS: A process X(t) is said to be stationary in the Wide sense, if its mean, i.e., E[X(t)] is independent of time and 

if its ACF RX(t1, t2) is such that it is a function only of (t2 – t1) and not individually, of t1 and t2.
 ■ Ergodicity: Random processes for which the time averages equal the  ensemble averages, are known as Ergodic 

processes.
 ■ Wiener–Khinchine theorem: The PSD of a random process is the Fourier transform of its auto-correlation.
 ■ Gaussian random process: X(t) is a Gaussian random process if the random variables X(t1), X(t2), . . . , X(tn) are 

jointly Gaussian for all values of t1, t2, …, tn and all integer values of n.
 ■ White noise process: A process X(t) whose PSD is a constant for all frequencies, is called a white noise process.
 ■ ACF of a white noise process: For a white noise process with a PSD of N0/2, the ACF is

0( ) ( )
2n

N
R tt d=

 ■ LTI systems with random inputs: If X(t) and Y(t) are respectively the input and output processes for an LTI system, 
then:

  (a) Mean of the output = ( )Y X h t dth h
•

-•

= Ú

  (b) Input and output cross-correlation ( ) ( ) ( )XY XR R ht t t= = * -
  (c) Correlation of output process ( ) ( ) ( ) ( )Y XR R h ht t t t= = * * -
  (d) From (iii), it follows that 2( ) ( ) | ( )|Y XS f S f H f= ◊

 ■ Low pass sampling theorem for random processes: If X(t) is a stationary process which is band limited, i.e., if SX(f)
= 0 for | f | ≥ W Hz and if it is sampled at regular intervals of Ts where Ts = 1/2W, then

+•

=-•

È ˘
Í ˙- - =
Í ˙
Î ˚

Â
2

( ) ( ) sinc 2 ( ) 0s s
k

E t kT W t kTX X
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376 Communication Systems

 ■ Canonical representation of  band pass processes: A stationary band pass process X(t) ( ) cos [ ( )]ct t tw= +R θθ  can 
be represented in the canonical form, or the inphase and quadrature component form as

( ) ( ) cos ( ) sinI c Q ct t t t tw w= -X X X

  where XI(t) is the inphase component and XQ(t) is the quadrature component. Both XI(t) and XQ(t) are low pass 

processes, and 2 2 1 ( )
( ) ( ) ( ); ( ) tan .

( )

Q
I Q

I

X t
R t t t t

X t
q - È ˘

= + = Í ˙
Î ˚

X X  Further, 2 22( ) ( ) ( ).t t t= =I QX X X

 ■ Noise degrades the performance of communication system.
 ■ Noise sources may be internal to the communication system or may be external to it. Atmospheric noise, Extra-

terrestrial noise, and man-made noise are due to external sources while thermal noise, shot noise and partition 
noise are due to internal sources

 ■ Disturbance caused by atmospheric noise is more severe in the medium wave band as compared to the short wave 
band, and it is very little in the VHF and UHF bands that are used for television.

 ■  Extra-terrestrial noise can cause disturbance to communications in the frequency range 20 MHz to 1.5 GHz.
 ■  Man-made noise causes disturbance to communications in the 1 MHz–500 MHz frequency range.
 ■ Random motion of electron in a conductor cause  thermal noise (also known as Johnson noise). It has zero mean 

value and has an almost flat spectral density even up to 200 GHz. Hence, for all practical purposes it can be 
considered as a zero-mean white noise.

 ■ For thermal noise, P(f) = 2KTR V2/Hz; where K is  Boltzmann’s constant, T is absolute temperature in °K and R is 
the resistance in Ohms.

¸
= D˝D ˛

r.m.s. value of noise voltage across a resistor
2 ( ) V.

of  ohms in a bandwdith of  Hz, at T°
KTR f

R f k

 ■ When two resistors are in series, it is their noise power spectral densities in volt2/Hz which can be added but not 
their noise voltages.

 ■ When two resistors are in parallel, it is their noise power spectral densities in amp2/ Hz which can be added, but 
not their noise currents.

 ■ A noise whose PSD is flat and independent of frequency, is called ‘ white’ noise. If (N0/2) is its PSD, then its ACF 
= (N0/2) d (t), an impulse. This means that however closely (in time) we may take two samples of a white noise 
process, the two samples will be un-correlated.

 ■  Shot noise which arises in electron devices, is due to the random emission of electrons from the cathode in the case 
of vacuum tubes and due to the inherent randomness in the diffusion of minority carriers and the drift of majority 
carriers across the junction in the case of semiconductor devices.

 ■ Shot noise is approximately a white noise process with a two-sided power spectral density of I0q amp2/Hz, where 
I0 is the average current through the device and q is the magnitude of the charge of the charged particles in motion. 

Its r.m.s value 02 ( )I q f= D  amp, where (Df) is the bandwidth over which the current is considered.

 ■ In multi-electrode electron devices like triodes, pentodes, BJTs, etc., partition noise is generated due to the random 
distribution of electrons (or charged carriers) between the various electrodes – grid and plate in the case of triodes 
and base and collector in the case of a BJT.

 ■ The  noise equivalent bandwidth of a filter with transfer function H(f) is defined as the bandwidth B of an ideal LPF 
whose pass band gain is H(0) such that when a white noise source of PSD = N0/2 is applied as input, the ideal LPF 
gives the same output noise power as the filter under consideration.

 ■ The  equivalent noise resistance Req of a device or a system is that value of resistance which when connected at the 
input of the device or the system, with the system itself considered noiseless, produces at its output a mean squared 
value of the noise which is the same as what is being produced by the device/system itself.

 ■ SNR =  Signal-to-noise ratio D
Signal Power

Noise Power

dB 10

Signal Power
(SNR) 10 log

Noise power

È ˘
= Í ˙

Î ˚
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 ■ F =  Noise Figure 
SNR at input

SNR at output
D

  For any practical device/system, it is always greater than unity. The closer the value of F is to unity, the better.
 ■ Available output noise power = FGkT0(Df)

0

Internally generated noise of a system referred to 
( 1) ( )

the input of that system 
F kT f

¸
= - D˝

˛
 ■ For low noise amplifiers and devices, it is more convenient to use noise temperature instead of noise figure.

  Definition The  equivalent noise temperature of a device, or a two-port linear network, is a fictitious temperature 
Te which is such that the available noise power at that temperature, viz., kTe(Df) is equal to the internally generated 
noise power of the device or the two-port network, referred to its input.

 ■ Te = (F – 1)T0, where Te is noise equivalent temperature of a device/network whose noise figure is F and T0 is the 
room temperature.

 ■  Frii’s formula for noise figure of amplifiers in cascade

32 4
1

1 1 2 1 2 3

( 1)( 1) ( 1)FF F
F F

G G G G G G

-- -
= + + + + º

  For the overall noise temperature of amplifiers in cascade:

2 3

1 1 2

e e
e e

T T
T T

G G G
= + + + º

 ■ A  band pass noise ( ) ( ) cos [ ( )]c nn t R t t tw q= +  can be represented in the canonical form or the inphase and 
quadrature components form as

      ( ) ( ) cos ( ) sini c q cn t n t t n t tw w= -

  where ni(t) and nq(t), called the inphase and quadrature components respectively, are such that they are low pass 
processes and

2 2 2( ) ( ) ( )i qn t n t n t= =
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Review Questions 
 1. What are the constituents of a probability space?
 2. Explain the need for introducing the s-field as an element of the probability space.
 3. The probability, P, assigned to an event must satisfy certain conditions. What are they?
 4. State Bayes’ theorem for conditional probability.
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 5. When do you say that two events are independent?
 6. Define a random variable. Give an example.
 7. What is meant by the Cumulative Distribution Function (CDF) of a random variable?
 8. State the properties of the CDF and PDF of a random variable.
 9. Distinguish between discrete, continuous, and mixed type of random variables.
 10. If a normal random variable has a mean of m and variance of s2, what is its density function and what is the area 

under its density function curve?
 11. Define the terms ‘mean’ and ‘variance’ of a random variable.
 12. Define ‘characteristic function’ of a random variable X. How is it useful?
 13. Define ‘joint distribution function’ of two random variables.
 14. Explain the meaning of ‘conditional PDF of Y given X’.
 15. When do you say the random variables X and Y are independent? Uncorrelated? Orthogonal?
 16. Define joint Gaussianity of two random variables.
 17. State the properties of jointly Gaussian random variables.
 18. Explain what the ‘central limit theorem’ states and comment on the importance of the theorem.
 19. Define the term ‘random process’.
 20. Interpret what a random process represents when (a) time variable is fixed, and (b) outcome x is fixed.

21. Define ‘first and second-order distribution functions’ of a random process.
22. Explain what you understand by the terms ‘mean’, ‘auto-correlation’, and ‘auto co-variance’, of any random 

process.
23. When do you say two random processes are independent? Is it when it is (a) uncorrelated, or (b) when it is 

orthogonal?
24. Distinguish between strict-sense stationarity and wide-sense stationarity with regard to a random process.
25. State the properties of the auto-correlation function of a stationary process.
26. What is ergodicity?
27. Define the ‘power spectrum’ of a random process and state its properties.
28. What is a Gaussian process? State some of its properties.
29. Sketch the PSD and ACF of a white noise process.
30. What do you understand from the statement: ‘When a stationary random process is applied as input to an LTI 

system, the input and output processes are jointly stationary’?
31. State the ‘Sampling theorem’ for stationary low pass band-limited processes.
32. How are the average powers of the ‘inphase’ and ‘quadrature’ components related to the average power of a band 

pass process?
33. In a communication scenario, what is meant by ‘noise’?
34. Name the important components of external noise and internal noise.
35. In which bands of the electromagnetic spectrum is communication affected by atmospheric noise? Why?
36. What are the sources of ‘galactic noise’? What is the range of frequencies over which this noise has its spectral 

components?
37. What is the origin of thermal noise? Comment on its power spectral density.
38. Explain the meaning of the term ‘available noise power’.
39. What is ‘white noise’? Sketch the PSD and ACF of white noise. Why is it not possible to have a ‘white noise’ 

source in practice?
40. How does ‘shot-noise’ originate? Comment the power spectrum of shot-noise current.
41. What is meant by partition noise?
42. Define and explain the term ‘noise equivalent bandwidth of a filter’.
43. What is meant by ‘equivalent noise resistance’ of an amplifier?
44. The ‘signal-to-noise ratio’ at the output of an amplifier is given to be 200. What is its value in decibels?
45. Define and explain the terms ‘noise figure’ and ‘noise temperature’ of a two-port network? How are they related?
46. Explain clearly, why in a super heterodyne receiver, it is preferable to have an RF amplifier with high gain to be 

the first stage instead of a mixer.
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Problems 
1. Event A = {3 £ x £ 6} and event B = {4 £ x £ 7}. Find A » B, A « B.
2. A box contains 5 red balls numbered 1, 2, 3, 4, 5 and 3 black balls numbered 1, 2, 3. Our random experiment is to 

randomly pick one ball from the box. What are the outcomes involved in the following events?
 (a) A = a ball with an odd number
 (b) B = a black ball with number greater than 1
 (c) C = a ball bearing a number less than 3

3. Given that AB = null set, show that ( ) ( )P A P B£
4. Prove that: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P A B C P A P B P C P AB P AC P BC P ABC+ + = + + - - - +
5. A and B are two disjoint events. What conditions should be fulfilled for them to be independent?
6. Show that ( / ) ( / ) ( / )P AB C P A BC P B C= .
7. A source produces the binary digits 0 and 1 with probabilities 0.4 and 0.6 respectively. The channel over which 

these digits are transmitted has an error probability of 0.3.
 (a) What is the probability of a 1 being obtained at the output of the channel?
 (b) If a 1 has been obtained at the output, what is the probability that it is due to the source giving a 1 to the 

channel?
8. Ram is to make a telephone call at some random instant in the interval (0, 20) in seconds. What is the probability 

of his making the call in the 10 sec to 18 sec interval? What is the probability of his making the call in the 10 to 18 
sec interval given that he did not make the call up to the end of the 8th second?

9. There are three sections – A, B and C of a class. In a test, 25% of the students from A section, 10% of the students 
from the section B and 15% of the students from the C section, failed. Two answer scripts are randomly picked 
from those of a randomly selected section. (a) What is the probability that both the answer scripts belonged to 
failed students? (b) Assuming that both scripts belonged to failed students, what is the probability that these were 
from section A?

10. A Gaussian random variable X has zero mean and a variance of 2. Find the probability P[2 £ x £ 3]. Also, find 
P[2 £ x £ 3 Given X ≥ 1].

11. Find the mean, variance and the density function of random variable Y given that Y = 3X + 6 and that X is Gaussian 
with hX = 2 and 2 3.Xs =

12. Determine the CDF and PDF of Y given that Y = 2X + 3 and that ( ) 2 ( ).x
Xf x e u x

-=
13. X and Y are zero-mean Gaussian random variables with a variance of s2 for each. Assuming them to be independent, 

determine the density function of the random variable Z = X + Y
14. X and Y are zero-mean, identically distributed Gaussian random variables with a variance of s2 for each. Determine 

the probability density function of the random variable 2 2 .= +Z X Y

15. Find whether the function 0( ) sin 2f t f tp=  can be the auto-correlation function of a random process. Irrespective 
of whether your answer is yes or no, give reasons.

16. When X(t) and Y(t) are jointly stationary, we know that RXY(t1, t2) = RXY(t) where t is (t1 – t2). Show that RXY(–t)
= RYX(t). How are SXY(t) and SXY(t) related?

17. If SX(f) is the power spectrum of a stationary random process, X(t), find the PSDs of the following processes:
 (a) X(t – T) where T is a constant
 (b) X(t) – X(t – T)

18. In Section 6.12, we have proved that when the input process to an LTI system is stationary, the output process too 
is stationary. Is the converse of this also true? Why or why not?

19. A white noise process of PSD = N0/2 is the input to an ideal LPF having a cut-off frequency of 2 kHz. If uncor-
related samples are required, at what rate should the output of the filter be sampled?

20. A zero-mean white Gaussian noise with power spectral density N0/2 is passed through an ideal band pass filter of 
center frequency fc and bandwidth 2W. If the output process is n(t), determine:

 (a) the density function of the envelope of n(t).
 (b) the density function of the envelope of the process

0( ) cos 2 ( ),t A f t tp= +X n  where A is a constant.
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21. Thermal noise voltage (r.m.s) across a resistor has been found to be 10 micro-volts at a temperature of 27° C and 
over some bandwidth B Hz. What will be the r.m.s. thermal noise voltage at (a) 77° C with bandwidth B Hz, and 
(b) 77° C with a bandwidth 2B Hz?

22. Determine the mean-squared value of the noise voltage across a resistor of 20 kW at a temperature of 27° C over a 
noise bandwidth of 20 kHz.

23. Three resistors of resistance values 10 k, 20 k and 30 k are at a temperature of 27° C. Determine the r.m.s. value of 
the noise voltage over a bandwidth of 1 MHz when (a) they are all connected in series, and (b) when they are all 
connected in parallel.

24. A parallel tuned circuit has a capacitor of 1500 pF and is tuned to 2 MHz. It has a Q-factor of 90. What is the r.m.s. 
noise voltage across the tuned circuit at a temperature of 27° C if the voltage is measured over a bandwidth of 
10 kHz?

25. If I0 = 10 mA and D is in temperature limited condition, determine the 
r.m.s. noise voltage across the terminals aa/. Assume room temper-
ature of 27° C.

26. An instrument used for measuring noise voltages has an input 
impedance that is effectively equivalent to a resistor of 100 kW in 
parallel with a capacitance of 0.1 mF. What is the noise equivalent 
bandwidth of instrument?

27. A signal source having an internal resistance of 300 W and an internal e.m.f. of 10 mV is connected to the input of 
an amplifier. The amplifier has an input resistance of 1200 W and equivalent noise resistance of 300 W. For a noise 
bandwidth of 2 kHz and a room temperature of 27° C, determine (a) the output (S/N) ratio in db, and (b) the noise 
figure of the amplifier.

28. In Problem 7, what should be the internal e.m.f. of the signal source if an output signal-to-noise ratio of only 20 
dB is required?

29. In a particular superheterodyne radio receiver, the antenna circuit comprising a tank circuit tuned to the incoming 
signal is coupled inductively to the input of the mixer stage. The coupling provides a step-up ratio of 10:1 and also 
provides perfect matching with the 12 kW input resistance of the mixer stage. If this stage has noise equivalent 
resistance of 80 kW, what should be the r.m.s. value of the signal voltage induced in the antenna to give an (S/N)
of 20 dB? Assume a room temperature of 27° C and an effective noise bandwidth of 10 kHz.

30. Consider a receiving system consisting of an antenna with a leading cable having a loss factor L = 1.5 dB = F1, an 
RF pre-amplifier with a noise figure of F2 = 7 dB and a gain of 20 dB, followed by a mixer with a noise figure of 
F3 = 10 dB and a conversion gain of 8 dB, and finally, an integrated-circuit. If amplifier with a noise figure F4 = 6 dB 
and a gain of 60 dB.

 (a) Find the overall noise figure and noise temperature of the system.
 (b) Find the noise figure and noise temperature of the system with pre-amplifier and cable interchanged. 

(VTU August, 2002).

Multiple-Choice Questions 
 1. If A and B are two events, P(A » B) equals
 (a) P(A) + P(B)   (b) P(A) + P(B) + P(A « B)
 (c) P(A) + P(B) – P(A « B)   (d) P(A) + P(B) – P(A | B)
 2. A and B are two events and P(A | B) = 0. Then
 (a) B is a certain event   (b) A is an impossible event
 (c) A and B are independent   (d) A and B are mutually exclusive
 3. Box A contains 4 white balls and six red balls. Box B contains 8 white balls and two red balls. One of the boxes is 

randomly selected and a ball is randomly picked from it. If the ball so picked up is a red ball, the probability that 
it would have been picked up from box A is

 (a) 0.75 (b) 0.6 (c) 0.8 (d) 0.25

Fig. P8.1
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 4. The figure shows the distribution function of a random variable X. The 
probability of the random variable X taking a value between 2.5 and 4.0 
is

 (a) 2/3 (b) 1/2
 (c) 1/3 (d) 2/9
 5. A zero-mean band pass signal has identically distributed Gaussian 

processes as its inphase and quadrature components. The envelope of the 
band pass process has

 (a) Gaussian distribution   (b) Ricean distribution.
 (c) Rayleigh distribution.   (d) Uniform distribution
 6. The variance s2 of a random variable X is given by 
 (a) E[X2] (b) {E[X]}2 (c) E[X2] – {E[X]}2 (d) E[X2] + {E[X]}2

 7. A random variable is uniformly distributed between 3 and 6. Its variance is
 (a) 0.75 (b) 0.25 (c) 0.5 (d) 1
 8. The variance of a Bernoulli random variable is
 (a) p2 (b) (1 – p)2 (c) p(1 – p) (d) (1 + p)2

 9. X is a random variable with variance 2.xs  The variance of (X + a) where a is a constant is

 (a) 2( )x as +  (b) 2
xs  (c) 2 2( )x as +  (d) 2 2( )x as -

 10. The density function fX(x) of a discrete random variable X is given by

( ) 0.2 ( 1) 0.2 ( 2) 0.4 ( 3) 0.15 ( 4) 0.15 ( 5)Xf x x x x x xd d d d d= - + - + - + - + -

  The mean value of X is:
 (a) 2.5 (b) 3.2 (c) 2.8 (d) 3.0
 11. The variance 2

xs  of X in the above question is
 (a) 1.65 (b) 2.6 (c) 1.1 (d) 3.2
 12. The characteristic function of a random variable that takes the values 1 and 0 with probabilities of 0.6 and 0.4 is

 (a) 0.6 ( 1)j
e

w+ -  (b) 0.6 ( 1)j
e

w- -  (c) 1 0.6( 1)j
e

w- -  (d) 1 0.6( 1)j
e

w+ -
 13. If random variables X and Y are statistically independent, then fXY(x, y) is equal to
 (a) ( ) ( )X Yf x f y+  (b) ( ) ( )X Yf x f y◊  (c) ( ) ( )X Yf x f y*  (d) ( ) ( )X Yf x f y-
 14. Random variables X and Y are such that ◊ =[ ] [ ] [ ].E E EX Y X Y  The random variables X and Y are
 (a) statistically independent   (b) orthogonal
 (c) uncorrelated   (d) Nothing can be concluded
 15. When x is fixed, X(t, x) represents
 (a) a random variable   (b) a single realization of the random process
 (c) a real number   (d) a family of time signals
 16. Two random processes X and Y are such that RXY(t1, t2) = 0 for all t1 and t2 and further one of them has zero mean. 

The processes are
 (a) uncorrelated but not orthogonal (b) orthogonal but not uncorrelated
 (c) statistically independent and orthogonal (d) orthogonal and uncorrelated
 17. Auto-correlation function RX(t) of a stationary process X(t) is 
 (a) a deterministic function with maximum value at t = 0
 (b) a deterministic function which is periodic
 (c) a stationary random process
 (d) a periodic stationary process
 18. The power spectrum, SX(f), of a random process X(t) is a 
 (a) real-valued function of frequency with even symmetry
 (b) complex-valued function of ‘f’ with conjugate symmetry
 (c) real-valued function of ‘f’ with even symmetry if X(t) is real valued
 (d) real-valued function of ‘f’ with odd symmetry

Fig. M6.4
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 19. A process is said to be an ergodic process if
 (a) its ensemble averages are different from time averages
 (b) it is not stationary
 (c) ensemble averages are same as time averages
 (d) it is neither continuous, nor discrete
 20. For two Gaussian processes to be statistically independent, it is enough if
 (a) they are orthogonal
 (b) they are uncorrelated
 (c) they are orthogonal and one of them has zero-mean
 (d) they are uncorrelated and both are zero-mean
 21. If a zero-mean Gaussian process is given as input to an LTI system, the output of the LTI system is
 (a) a zero-mean Gaussian process
 (b) a Gaussian process but not necessarily of zero mean
 (c) a zero-mean process but not necessarily Gaussian
 (d) not necessarily zero-mean or Gaussian as it depends on the nature of h(t) of the system
 22. A stationary random process with a mean of 2 is passed through an LTI system with h(t) = 2e–2tu(t). The mean of 

the output process is
 (a) 4 (b) 0.5 (c) 2 (d) 1
 23. A white noise process with power spectral density of N0/2, is given as input to an LTI system with h(t) = 2e–2tu(t).

The PSD of the output process is

 (a) 
0

2

2

4

N

w-
 (b) 

0
2

4

4

N

w+
 (c) 

0
24

N

w+
 (d) 

0
2

2

4

N

w+
 24. The effect of atmospheric noise is most severe in 
 (a) medium wave band (b) shortwave band (c) VHF band (d) microwave region
 25. Extra-terrestrial noise can cause disturbance to communications in the frequency range
 (a) Below 100 kHz   (b) 100 kHz to 10 MHz
 (c) 15 MHz to 1.5 GHz   (d) Above 1.5 GHz
 26. Man-made noise can cause disturbance to communications especially in the frequency range
 (a) below 1 MHz   (b) 1 MHz to 500 MHz
 (c) 500 MHz to 5 GHz   (d) above 5 GHz
 27. The power spectrum of thermal noise is flat almost up to
 (a) 100 kHz (b) a few MHz (c) a few GHz (d) 1012 to 1013 Hz
 28. The two-sided power spectral density of thermal noise is
 (a) kTR volt2/Hz (b) 2kTR volt2/Hz (c) 4kTR volt2/Hz (d) I0 q amp2/Hz
 29. The r.m.s. value of the thermal noise voltage across a resistor of RW at a temperature of T°K measured over a 

bandwidth of (Df) Hz is

 (a) 2 ( )kTR fD  (b) 4 ( )kTR fD  (c) ( )kTR fD  (d) None of the above

 30. The r.m.s. value of the thermal noise voltage across resistors R1 and R2 are 3 micro-volts and 4 micro-volts respec-
tively. The r.m.s. value of the thermal noise across their series combination is

 (a) 10 micro-volts (b) 7 micro-volts (c) 5 micro-volts (d) None of the above
 31. When the temperature (in °K) of a resistor is doubled, the r.m.s. value of the noise voltage across it is
 (a) doubled (b) halved (c) quadrupled (d) 1.414 times its previous value
 32. Given a resistance of R ohms at T ° K, the available noise power from it over a bandwidth of (Df) Hz is
 (a) kT(Df) (b) ½ kT(Df) (c) 4kTR(Df) (d) 2kTR(Df).
 33. White noise is filtered using an ideal LPF of cutoff frequency 1 kHz. The frequency at which the output noise of 

the filter should be sampled in order to get totally uncorrelated samples is
 (a) 1 kHz   (b) 500 Hz
 (c) 2 kHz   (d) Not possible to get uncorrelated samples
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 34. The two-sided PSD of the shot-noise generated by a vacuum diode operating in the temperature-limited region and 
carrying a direct current of I0 amps is

 (a) 2 I0q amp2/Hz (b) I0q amp2/Hz (c) ½ I0q amp2/Hz (d) None of the above
 35. For the same direct current I0 flowing through it as in a temperature-limited vacuum diode, a vacuum diode 

operating in the space-charge limited region
 (a) does not produce any shot noise (b) produces less shot-noise
 (c) produces more shot-noise  (d) produces the same amount of shot-noise
 36. The noise equivalent bandwidth of an L-section RC-low pass filter
 (a) increases with the time-constant RC (b) decreases with the time-constant RC
 (c) does not depend upon the time-constant RC (d) None of the above
 37. Temperature and bandwidth remaining constant, the available noise power from a resistor of R ohms 
 (a) is independent of R   (b) increases with R
 (c) decreases with R   (d) None of the above
 38. An amplifier
 (a) improves the signal-to-noise ratio (b) does not alter the signal-to-noise ratio
 (c) degrades the signal-to-noise ratio (d) None of the above
 39. When a number of amplifiers are connected in cascade, the overall noise figure is approximately equal to
 (a) the noise figure of the most noisy amplifier (b) the noise figure of the least noisy amplifier
 (c) the sum of noise figures of all the amplifiers (d) the noise figure of the first amplifier

Key to Multiple-Choice Questions

 1. (c) 2. (d) 3. (a) 4. (b) 5. (c) 6. (c) 7. (a) 8. (c)
 9. (b) 10. (d) 11. (a) 12. (d) 13. (b) 14. (c) 15. (b) 16. (d)
 17. (a) 18. (c) 19. (c) 20. (b) 21. (a) 22. (d) 23. (d) 24. (a)
 25. (c) 26. (b) 27. (d) 28. (b) 29. (a) 30. (c) 31. (d) 32. (a)
 33. (c) 34. (b) 35. (b) 36. (b) 37. (a) 38. (c) 39. (d)
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NOISE PERFORMANCE OF AM AND 

FM SYSTEMS

7
“Achievement seems to be connected with action. Successful men and women keep moving. 

They make mistakes, but they don’t quit.”

Conrad Hilton (1887–1979)
American hotelier

Learning Objectives

After going through this chapter, students will be able to

 ■ explain the way the channel and the receiver are modeled for a study of the noise performance of the 

system,

 ■ analyze the noise performance of FM and the various types of  AM systems and compare them,

 ■ understand how an FM system offers the possibility of  power bandwidth trade-off and why there is a 

limit for this trade-off,

 ■ understand how and why it is possible to improve the destination SNR for  FM systems by employing 

pre-emphasis and  de-emphasis, and

 ■ explain the ‘threshold effect’ in FM receivers, and the various methods of  threshold extension.

7.1 INTRODUCTION

In Chapter 6, we had discussed the various types of noise, their sources and characteristics, and noted that 
thermal noise and  shot noise are both white insofar as the frequencies and bandwidths used in practical 
communication systems are concerned. In Chapter 4, we had studied the methods of generation and demodu-
lation of various types of amplitude modulated signals like AM, DSB-SC, SSB-SC, etc. Similarly, in Chapter 
5, we studied angle-modulation, and discussed the modulation and de-modulation methods for FM and PM. 
Again in Chapter 6, we reviewed probability and random processes and discussed ‘noise’.
 In the present chapter, we will make use of the material covered in the previous six chapters and examine, 
by deriving the necessary expressions, the noise performance of a continuous wave (CW) communication 
systems. From these results, we will not only be able to compare the various CW communication systems on 
the basis of their noise performance, but also use them for communication system design. For CW commu-
nication systems, a convenient and useful parameter for assessing the noise performance of any modulation-
demodulation scheme, is the  destination signal-to-noise ratio (S/N)D, i.e., the ratio of the average signal power 
to the average noise power at the output of the receiver. For determining this (S/N)D for different modulation 
and de-modulation schemes, we must have the models for the pertinent signals,  channel noise and receiving 
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systems. We already have the mathematical representation of message signals and modulated signals. We will 
model the channel noise as zero mean, white Gaussian noise with a  two-sided power spectral density (PSD) 
of h/2. For each type of modulation and de-modulation that we take up, we shall use an appropriate receiver 
structure and then model it suitably for the purpose of this analysis.
 After studying the noise performance of various types of amplitude modulation systems and frequency 
modulation systems, we shall, towards the end of the chapter, discuss a few related topics like improvement 
in the noise performance of frequency modulation (FM) systems by the use of  pre-emphasis at the transmitter 
and  de-emphasis at the receiver,  threshold effect in FM receivers and the  threshold extension techniques.

7.2 DESTINATION SNR OF A BASEBAND SYSTEM

The  baseband system is one in which the baseband signal is directly sent over the channel without any carrier 
and modulation, The receiver too, does not have any demodulator and is modeled as an ideal low pass filter 
with a cut-off frequency of W Hz, which is the bandwidth of the baseband signal.
 As mentioned earlier, let the  power spectral density of 
the zero-mean white noise on the channel be h/2. Hence, 
the shaded area of Fig. 7.1 represents the average noise 
power lying within the bandwidth of the baseband and 
corrupting the signal.

\ 
W

h
Ï ¸

= = ◊ = hÌ ˝
Ó ˛

Average noise power
2 /2

within the bandwidth 2
N W W

Hence, if we denote the average signal power at the receiver input as SR, since the receiver is modeled as an 
ideal LPF with cut-off frequency equal to W, the  destination signal-to-noise ratio is

R

D

SS

N W
g

Ê ˆ = DÁ ˜Ë ¯ h
(7.1a)

D

S

N

Ê ˆ
Á ˜Ë ¯  of other systems are generally compared with this.

7.3 MODEL FOR LINEAR MODULATION SYSTEMS

Fig. 7.2 Model for  linear modulation systems

xc(t) is the transmitted modulated signal. k is the attenuation factor so that K ◊ xc(t) is the received signal 
assumed to be having a carrier frequency fc = fi ◊ f, the intermediate frequency. nW(t) is the zero-mean white 
Gaussian noise of the channel with a two-sided power spectral density of h/2. It gets added to the received 
signal. HR(f) is an ideal band pass filter which is used for modeling the combined effect of the RF amplifier 
and the IF amplifier. It has a bandwidth BT, the  transmission bandwidth of the modulated signal and is also 
the bandwidth of the front-end of the receiver. This bandwidth BT is 2W for AM and DSB-SC and is W
for SSB-SC. Further, the filter is assumed to have the bandwidth BT centered on fc = fi ◊ f , the intermediate 

Fig. 7.1  Noise power corrupting the  baseband 

signal
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frequency, and the gain of the filter is unity in its pass band. The output of this filter will have a signal 
component Kxc(t) and noise component n(t) where n(t) is Gaussian and zero mean, but not white. It is a band 
pass noise having an average power = (h/2) ◊ (2BT) = hBT. Thus the input to the detector block in the model is

( ) ( ) ( )cy t Kx t n t= +
The  signal-to-noise ratio at the input to the detector is denoted by (S/N)R. The LPF, shown as the last block, 
is an ideal unit-gain LPF with a cut-off frequency of W Hz, which is the bandwidth of the  message signal 
x(t), and is used to model the LPF which follows the analog signal multiplier of a  synchronous detector, or 
the response characteristic of the audio amplifiers following an  envelope detector. The  destination SNR is 
denoted by (S/N)D.

7.3.1 Figure of Merit

To facilitate comparison of the various types of modulation systems, we generally define a ‘ Figure of Merit’ 
of a system as

( / ) (destination signal-to-noise ratio)
Figure of Merit

( / ) channel signal-to-noise ratio
D

C

S N

S N
D =

where the ‘channel signal-to-noise ratio’ is defined as

Average power of the modulated signal
Channel SNR

Average power of noise in the message bandwidth ( )

2 ( /2)

C

R R

S

N W

S S

W W
g

Ê ˆ = DÁ ˜Ë ¯

= = =
h h

\ figure of merit = 
1

D

S

N g

È ˘Ê ˆ ◊Á ˜Í ˙Ë ¯Î ˚
 (7.1b)

Thus, in fact the Figure of Merit of a particular modulation system is the ratio of the destination SNR with 

that modulation, to the destination SNR for  baseband transmission. Higher the figure of merit as compared 

to 1, the better it is.

7.3.2 Pre-detection signal-to-noise ratio

( ) Detector input ( ) ( )cy t Kx t n t= = +  (7.2)

where n(t) is a band pass noise with an average power of hBT where BT = 2W or W, depending on the type 
of modulation

SR = Average signal power at the input to the detector

     2 2 ( )cK x t=  (7.3)

where the overbar on 2 ( )cx t  denotes its average value.

NR = Average noise power at the input to the detector

       2( ) ( /2)(2 )T Tn t B B= = h = h  (7.4)

\     pre-detection signal-to-noise ratio R R

R R T

S SS

N N B

Ê ˆ= = =Á ˜Ë ¯ h
 (7.5)

But, we have already seen that in the case of baseband transmission, the destination SNR is given by

RS

W
g =

h
(7.6)
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Hence, we may express the pre-detection SNR, viz., (S/N)R as

R R

R T T T

S SS W W

N B W B B
g

Ê ˆ Ê ˆ Ê ˆ= = =Á ˜ Á ˜ Á ˜Ë ¯ h h Ë ¯ Ë ¯
 (7.7)

With this, we are now ready to proceed with the determination of the destination signal-to-noise ratios for 
various  linear modulation schemes.

7.4 (S/N)D FOR SSB-SC SYSTEMS

For SSB-SC systems, the detector is a  synchronous detector and the transmitted signal is given by

1
ˆ( ) [ ( )cos ( )sin ]

2c c c cx t A x t t x t tw w= m   (refer to Eqs. (4.73) and (4.74)) (7.8)

with negative sign for the USSB and positive sign for the LSSB.

But      w w w wÈ ˘= = +Î ˚

Ê ˆ= + Á ˜Ë ¯

m
2 2 2 2 2 2 2 2

2 2 2 2 2 2

1
ˆ ˆ( ) ( )cos 2 ( ) ( )sin cos ( )sin

4

1 1 1 1
ˆ( ) ( )

2 4 2 4

R c c c c c c

c c

S K x t K A x t t x t x t t t x t t

K A x t K A x t

But 2 2ˆ( ) ( )x t x t=  since the  Hilbert transform does not alter the power.

\ 2 21
( )

4R RS A x t=  (7.9)

where R cA KA=
Now, input to the synchronous detector is given by

( ) ( ) ( )cy t Kx t n t= +  (7.10)

If we assume that it is a USSB system and substitute for xc(t) using Eq. (7.8), and further, if we substitute for 
the band pass noise n(t) in Eq. (7.10) by its  inphase and quadrature component representation, we get

1 1
ˆ( ) ( )cos ( )sin ( )cos ( )sin

2 2R c R c i c q cy t A x t t A x t t n t t n t tw w w w= - + -  (7.11)

In the synchronous detector, y(t) is multiplied by cos wct and low pass filtered to give w(t) (see Fig. 7.2)

\ 2 21 1 1
ˆ( ) ( )cos ( )cos ( )sin 2 ( )cos ( )sin 2

2 4 2c R c R c i c q cz t y t t A x t t A x t t n t t n t tw w w w w= = - + -

When this z(t) is low pass filtered using an ideal LPF with a cut-off frequency of W Hz, all high frequency 
components are rejected.

     
1 1

( ) ( ) ( )
4 2R iw t A x t n t= +  (7.12)

In the above, the first term is the signal term and the second term is the noise term.

2 2 2 2 2

2

(1/4) ( ) (1/4) ( )

(1/4) ( )
(Since for SSB)

R R R R

D T Ti

T

A x t A x t S SS

N B B Wn t

B W

g
h h h

Ê ˆ = = = = =Á ˜Ë ¯

=

 (7.13)

In the above, we have made use of the properties of the inphase and quadrature components of a  zero-mean 

band pass process, that 2 2 2( ) ( ) ( )i qn t n t n t= =  and that 2 ( ) Tn t Bh=  from Eq. (7.4). Since it is an SSB-SC 

system, BT = W and so 2 ( )in t Wh= .
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\       g
Ê ˆ =Á ˜Ë ¯
SSB-SC

D

S

N
 (7.14a)

Thus, the ‘ Figure of Merit’ for an SSB-SC system is (From Eqs. (7.14) and (7.7)

SSB-SC

( / )
Figure of Merit

( / )
D

C

S N

S N
=

\ figure of merit for SSB-SC = 1
g

g

Ê ˆ =Á ˜Ë ¯
 (7.14b)

7.5 DSB-SC SYSTEMS

For a  DSB-SC system a coherent or synchronous demodulator will be used and the modulated signal is given 
by

( ) ( )cosc c cx t A x t tw=  (7.15)

\ received signal = Kxc(t)

and ( ) ( )cos ( )cosc c c R cKx t KA x t t A x t tw w= =  (7.16)

\     SR = Received signal power = 2 2 2 21
( ) ( )

2c RK x t x t A= ◊  (7.17)

Also,    BT = 2W (7.18)

    Input to the detector = ( ) ( )cos ( )R cy t A x t t n tw= +  (7.19)

But ( ) ( )cos ( )sini c q cn t n t t n t tw w= -

\ ( ) [ ( ) ( )]cos ( )sinR i c q cy t A x t n t t n t tw w= + -  (7.20)

The  synchronous detector multiplies y(t) by cos wct

\   z(t) = output of the multiplier in the detector

    

2[ ( ) ( )]cos ( )sin cos

1 1 1
[ ( ) ( )] [ ( ) ( )]cos 2 ( )sin 2

2 2 2

R i c q c c

R i R i c q c

A x t n t t n t t t

A x t n t A x t n t t n t t

w w w

w w

= + -

= + + + -

\ w(t), the output of the low pass filter is given by

1
( ) [ ( ) ( )]

2 R iw t A x t n t= +  (7.21)

In this, the message signal component is 
1

( )
2 RA x t  and the noise component is 

1
( )

2 in t .

\
2 2

2

( )

( )

R

D
i

A x tS

N n t

Ê ˆ =Á ˜Ë ¯  (7.22)

But 2 21
( )

2 RA x t  = received signal power = SR (from Eq. (7.17) for a DSB-SC signal)

and   2 2( ) ( ) 2i Tn t n t B Wh h= = =
(Since n(t) is zero mean, ni(t) and n(t) will have the same  variance.)
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\ substituting these values in Eq. (7.22), we get

2

2
R R

D

S SS

N W W
g

h h

Ê ˆ = = =Á ˜Ë ¯

\

DSB-SC
D

S

N
g

Ê ˆ =Á ˜Ë ¯  (7.23)

Thus, the ‘ Figure of Merit’ for a DSB-SC system is (from Eqs. (7.7) and (7.23)

(DSB-SC)

( / )
Figure of Merit 1

( / )
D

C

S N

S N

g

g
= = =  (7.23a)

Example 7.1 A DSB-SC signal is transmitted over a noisy channel, with the  power spectral density 
of the noise being as shown in Fig. 7.3(a). The message bandwidth is 4 kHz, and the carrier frequency is 
200 kHz. Assuming that the average power of the modulated wave is 10 W, find the output signal-to-noise 
ratio of the receiver.

Solution Here, the additive noise on the channel 
is not white. It has a triangular-shaped two-sided 
power spectral density as shown in Fig. 7.3(b). 
The DSB-SC signal has a bandwidth of 8 kHz 
since the message signal bandwidth is given to be 
4 kHz. Hence, the receiver front-end bandwidth is 
also 8 kHz and is centered on 200 kHz, the carrier 
frequency. Thus, the two-sided power spectrum of 
the band pass noise entering the receiver is as shown 
by the shaded area in Fig. 7.3(b).
 The value of the noise PSD at 200 kHz, i.e., the 
height at 200 kHz is equal to 0.5 ¥ 10–6 W/Hz (from 
similar triangles). Hence, we may compute the area 
of each of the trapezoidal shaded portion as the area 
of a rectangle of width 8 kHz and height 0.5 ¥ 10–6

W/Hz.
\  average power of the band pass noise entering 

the receiver = 2 ( )n t

 = Total area of the shaded portion 

 = - -¥ ¥ ¥ ¥ = ¥6 3 31
2 10 8 10 8 10

2
W

But from the properties of  band pass noise, we know 
that

\ -

=

= ¥

2 2

2 3

( ) ( )

( ) 8 10

i

i

n t n t

n t W

Average power of the received DSB-SC signal 2 21
( )

2 RA x t=  (From Eq. (7.17)

\   SR =  Received signal power 2 21
( ) 10 W

2 RA x t= =

Fig. 7.3  (a)  Noise PSD for Example 7.1, (b)  Two-sided 

noise power spectrum for Example 7.1
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But from Eq. (7.22), we know that

-
Ê ˆ = = = = ¥Á ˜Ë ¯ ¥

Ê ˆ Ê ˆ= ¥ = ¥ =Á ˜ Á ˜Ë ¯ Ë ¯

2 2
3

32

3 3
10

( ) 20
Destination SNR 2.5 10

8 10( )

2.5 10 or in dB 10 log 2.5 10 33.97 dB

R

D i

D D

A x tS

N n t

S S

N N

7.6 AM SYSTEMS

In the case of AM systems, the carrier as well as both the sidebands are transmitted, and so the  transmission 
bandwidth BT is

BT = 2W (7.24)

where, of course, W is the bandwidth of x(t), the message signal. The transmitted signal, xc(t) is given by

( ) [1 ( )]cosc c cx t A mx t tw= +  (7.25)

where m, 0 £ m £ 1, is the  modulation index and x(t) is the normalized message signal assumed to be zero 

mean and normalized so that | ( )| 1x t £ . An AM signal can be detected using a  synchronous detector or an 
 envelope detector. In practice, however, only an envelope detector is used for AM. For arriving at the (S/N)D

of an AM system, we shall first assume a synchronous demodulator and then derive the expression assuming 
an envelope detector.

7.6.1 AM System with a Synchronous Detector

  The received signal = ( ) [1 ( )]cosc c cKx t KA mx t tw= +
             [1 ( )]cosR cA mx t tw= +  (7.26)

\     SR = Average received signal power = 2 2 ( )cK x t

\    2 2 2[1 ( )] cosR R cS A mx t tw= +
Since x(t) is zero mean, the above expression reduces to

    È ˘= +Î ˚
2 2 21

1 ( )
2R RS A m x t  (7.27)

y(t), the input to the synchronous detector is given by

( ) [1 ( )]cos ( )R cy t A mx t t n tw= + +  (7.28)

Replacing n(t) in the above by its  inphase and quadrature component representation, we get

( ) { [1 ( )] ( )}cos ( )sinR i c q cy t A mx t n t t n t tw w= + + -  (7.29)

The synchronous detector multiplies this by the carrier, i.e., cos wct.

\ 2 1
( ) { [1 ( )] ( )}cos ( )sin 2

2R i c q cz t A mx t n t t n t tw w= + + -  (7.30)

The low pass filter removes all the high frequency components as its cut-off frequency is W. Hence, replacing 
2cos ctw  by 

1
(1 cos 2 )

2 ctw+  and then rejecting all the terms representing high frequency components, we 

get

1
( ) { [1 ( )] ( )}

2 R iw t A mx t n t= + +  (7.31)
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In the above equation, 
1

2 RA  represents a dc component, 
1

( )
2 RA mx t  represents the message signal component 

and
1

( )
2 in t  represents the noise component. In the receiver, anyhow, the dc component at the output of the 

detector will be blocked by using a blocking capacitor. So, we ignore the dc component of w(t). Then

2 2 2

2

( )

( )

R D

D Di

A m x t SS

N Nn t

Ê ˆ = =Á ˜Ë ¯  (7.32)

But 2 2 2i T Dn n B W Nh h= = = =  (7.33)

(Since n(t) is of zero mean, variances of ni(t) and n(t) will be equal.)

Also, È ˘= +Î ˚
2 2 21

1 ( )
2R RS A m x t  (From Eq. (7.27))

\ we may write

\

( )

( )

h

g
h

g

Ê ˆ = = ◊Á ˜Ë ¯ È ˘+Î ˚

È ˘
Í ˙= ◊ = ◊

È ˘Í ˙++ Î ˚Î ˚
È ˘Ê ˆ Í ˙=Á ˜Ë ¯ Í ˙+Î ˚

2 2 2

2
2 2

2 2 2 2

2 22 2

2 2

2 2

AM
Sync-det

( )

2
1 ( )

2

( ) ( )

1 ( )1 ( )

( )

1 ( )

D R R R

D R D R

R

D

S S A m x t SS

N S N WA
m x t

Sm x t m x t

W m x tm x t

S m x t

N m x t
 (7.34)

7.6.2 AM System with Envelope Detector

An  envelope detector ideally extracts the envelope of the signal given to it as input. If there were to be no 
channel noise the input signal to the detector block in Fig. 7.2 would be

( ) ( ) [1 ( )]cosc c cy t Kx t KA mx t tw= = +

and the output of the detector would be its envelope.

i.e., ( ) [1 ( )], where .R R cz t A mx t A KA= + D

However, with the channel noise, the detector input is

( ) [1 ( )]cos ( )c cy t KA mx t t n tw= + +  (7.35)

where n(t) is  band pass noise centered on fc and having a bandwidth of 2W. This noise changes the envelope. 
To see how it affects the envelope of the AM signal, let us replace n(t) by its  inphase and quadrature compo-
nents.

\ ( ) [1 ( )]cos ( )cos ( )sin

{ [1 ( )] ( )}cos ( )sin

R c i c q c

R i c q c

y t A mx t t n t t n t t

A mx t n t t n t t

w w w

w w

= + + -

= + + -  (7.36)

\ Ry(t) = Envelope of y(t)
2 2 1/2[{ [1 ( )] ( )} ( )]R i qA mx t n t n t= + + +  (7.37)

CS-Rao_07.indd 391CS-Rao_07.indd   391 1/18/2013 11:23:35 AM1/18/2013   11:23:35 AM



392 Communication Systems

and the phase angle qy(t) is

1
( )

( ) tan
[1 ( )] ( )

q

y
R i

n t
t

A mx t n t
q - È ˘

= Í ˙+ +Î ˚
 (7.38)

Since an envelope detector is totally insensitive to the 
phase variations of its input signal, we can totally ignore 
qy(t).
 Generally, for satisfactory intelligibility of the message 
signal output from an envelope detector, the signal-to-
noise ratio at the input to the detector must be at least 
around 8 to 10 dB. So, we can safely assume that the 
carrier-to-noise power ratio is quite high at the input to the 
envelope detector. So, we assume that

2 2 ( )RA n t>>  (7.39)

as this will enable us to write the output of the detector, viz., the envelope of y(t) as the sum of a signal 
component and a noise component. This will allow us to write down the expression for the  destination SNR 
immediately.
 From Fig. 7.4, in view of the assumption of Eq. (7.39), we may say that

[ {1 ( )} ( )]R qP A mx t n t+ >>  is almost equal to unity.

\   ( ) [1 ( )] ( )y R iR t A mx t n tª + +  (7.40)

The dc component AR in this envelope will be blocked by the coupling capacitor at the output of the detector. 
(Note that AR is the mean because both x(t) and ni(t) are  zero-mean processes.) Hence, the signal at the output 
of the receiver is

( ) ( ) ( )R iw t A mx t n t= +  (7.41)

Since ( )RA mx t  represents the signal component and ni(t), the noise component of this output signal, we have

2 2

2

( )

( )

R

D
i

A m x tS

N n t

Ê ˆ =Á ˜Ë ¯  (7.42)

But
2 2( ) ( ) 2i Tn t n t B Wh h= = =  (7.43)

(Since n(t) is of zero mean, the variances of ni(t) and n(t) will be the same.)

Hence, we may write Eq. (7.42) as

2 2 2 2 2 2

2

( ) ( )

( )

R R R

D R Ti

A m x t A m x t SS

N S Bn t h

Ê ˆ = = ◊Á ˜Ë ¯

But È ˘= +Î ˚
2 2 21

1 ( )
2R RS A m x t  (see Eq. (7.27))

\
h

h

Ê ˆÊ ˆ = ◊Á ˜ Á ˜Ë ¯ Ë ¯È ˘+Î ˚

Ê ˆ= =Á ˜Ë ¯È ˘+Î ˚

2 2 2

2 2 2

2 2

2 2

( )

1
1 ( )

2

( )
since 2

1 ( )

R R

D T
R

R
T

A m x t SS

N B
A m x t

Sm x t
B W

Wm x t

Fig. 7.4   Phasor diagram of the components of y(t), 

the input to the detector. 
2 2
RA n>>  is 

assumed
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\ g
È ˘Ê ˆ Í ˙= ◊Á ˜Ë ¯ È ˘Í ˙+Î ˚Î ˚

2 2

2 2

AM-Env.det

( )

1 ( )D

S m x t

N m x t
 (7.44a)

Comparing Eqs. (7.34) and (7.44a), we find they are exactly the same. However, it must be noted that Eq. 

(7.44) gives the  destination SNR for AM with an envelope detector only if the  carrier-to-noise ratio at the 

input to the detector is large and provided m, the  modulation index, is not more than one. It must also be noted 

that there are no such conditions in the case of AM with coherent or  synchronous detector, for Eq. (7.34) to 

be valid.
 The figure of merit for AM is therefore obtained from Eqs. (7.7) and (7.44a).

2 2

2 2(AM)

2 2

2 2

( / ) 1
Figure of Merit

( / ) 1

1

D

C

S N m x

S N m x

m x

m x

g

g
= = ◊

+

=
+

 (7.44b)

Example 7.2 Find the figure of merit of an AM system when the depth of modulation is (a) 100 %, 
(b) 50 %, and (c) 30 %. (Bangalore University, April, 1997)

Solution Figure of merit (FOM) of an AM system = 
2 2

2 21

m x

m x+
 (From Eq. (7.42a))

 (a) m = 1, i.e., 100% modulation

  FOM = 
2

21

x

x+
. Since nothing has been mentioned about the average power of the modulating signal, 

if a single tone is assumed, 2 1/2x =

1

1/2 1 2 1
FOM

1 1/2 2 3 3m =
= = ¥ =

+
(b) m = 0.5, i.e., 50%

2 2 2

2 2 2

(0.5) 0.25
FOM

1 (0.5) 1 0.25

x x

x x
= =

+ +

  For an x(t) which is a single tone, 2 1/2x =

\
0.5

0.25 0.5 0.125
FOM 0.111

1 0.25 0.5 1 0.125m =

¥
= = =

+ ¥ +

 (c) m = 0.3, i.e., 30% modulation

2

2

0.09
FOM

1 0.09

x

x
=

+
  For an x(t) which is a single tone,

0.3

0.09 0.5 0.045
FOM 0.04306

1 0.09 0.5 1 0.045m =

¥
= = =

+ ¥ +
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Example 7.3 Prove that the  figure of merit of an AM system for single-tone modulation with 100% 
modulation is 1/3.

Solution 
2 2 2 2

2 2 2 2of an AM system

( / ) 1
Figure of Merit

( / ) 1 1

D

C

S N m x m x

S N m x m x
g

g
= = ◊ =

+ +
Since 2

x  represents the mean-squared value of the  normalized message signal, normalized such that | ( )| 1x t £ ,
for the case of a single-tone message signal (i.e., sinusoidal message signal), it means that its peak value is 1. 

Hence, its RMS value is 
1

2
 and the mean-squared value 2

x  is 1/2. Further, for 100% modulation, m = 1

\
2 2

2 2

Figure of merit for AM
1/2

with 1and single-tone 1/3
3/21modulating signal

m x
m

m x

¸
Ô= = = =˝

+Ǫ̂

7.6.3 Threshold Effect for AM with Envelope Detector

In case the  Signal-to-Noise Ratio (SNR) at the input to the  envelope detector becomes very much less than 
unity, noise completely dominates over the signal and the behavior of the envelope detector would be entirely 
different. It can be shown that in such a situation, there will be no separate term in the output of the detector, 
which can be identified as the message signal; the message signal and noise become intermingled.
 Referring to Eq. (7.37), we may write the expression for the envelope of the detector input as

2 2

2 2 2 2

( ) { [1 ( )] ( )} ( )

(1 ( )) ( ) ( ) 2 ( )[1 ( )]

y R i q

R i q R i

R t A mx t n t n t

A mx t n t n t A n t mx t

= + + +

= + + + + +

Since the SNR at the input to the detector is much smaller than 1, 2 2(1 ( ))RA mx t+  can be neglected in 
comparison with the rest of the terms under the square-root sign in the above expression. Hence, Ry(t) may 
be written as

È ˘È ˘= + + +Í ˙Î ˚ È ˘+Í ˙Î ˚Î ˚

2 2

2 2

2 ( )
( ) ( ) ( ) 1 [1 ( )]

( ) ( )

R i
y i q

i q

A n t
R t n t n t mx t

n t n t
 (7.45)

Under the assumption of a small SNR at the input to the detector, the following will be true:

Ï ¸Ô Ô+ <<Ì ˝È ˘+Ô ÔÎ ˚Ó ˛
2 2

2 ( )
[1 ( )] 1

( ) ( )

R i

i q

A n t
mx t

n t n t

If we represent the above expression by Œ, then in Eq. (7.45), we may make use of the approximation that 
when Œ << 1

1 1
2

ŒÊ ˆ+ Œ ª +Á ˜Ë ¯

\ 2 2
2 2

( )[1 ( )]
( ) ( ) ( ) 1

( ) ( )

R i
y i q

i q

A n t mx t
R t n t n t

n t n t

+È ˘= + +Í ˙+Î ˚
 (7.46)

(Compare this with the Ry(t) given by Eq. (7.40) for the case 2 2 ( )RA n t>> .)
Thus, at the output of the envelope detector, the message signal term mx(t) gets multiplied by the noise terms 
and cannot therefore be distinguished from noise. This is called the  ‘threshold effect’ in envelope detection 
of AM.
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Example 7.4 An AM receiver, operating with a sinusoidal modulating wave and 80% modulation has 
an output signal-to-noise ratio of 30 dB. What is the corresponding  carrier-to-noise ratio?

(VTU, March 2001)

Solution For an AM system with modulation index, m, the output SNR is given by

2 2 2

2

( )

( )

R

D
i

A m x tS

N n t

Ê ˆ =Á ˜Ë ¯  (See Eq. (7.32))

This is given to be 30 dB = 103; m = 0.8 and 2 1
( )

2
x t =  (single tone)

\
2 2

2 2

0.64 1/2 1000
1000. .

0.32( ) ( )

R R

i i

A A

n t n t

¥ ¥
= \ =

But we know that 2 2( ) ( )in t n t=  and that the carrier-to-noise ratio (CNR) is defined as

       

2

2

/2 1000
1562.5

0.64( )

RA
CNR CNR

n t
= \ = =

or dB 10( ) 10 log 1562.5 31.9 dBCNR = =

Example 7.5 A message signal x(t) of 5 kHz bandwidth and having an  amplitude probability density 
as shown in Fig. 7.5, amplitude modulates a carrier to a depth of 80%. The AM signal so obtained trans-
mitted over a channel with additive  noise power spectral density of h -= ¥ 122 10 /HzW  (one sided). The 
received signal is demodulated using an envelope detector.

 (a) If a 40 dB
D

S

N

Ê ˆ ≥Á ˜Ë ¯  is desired, what should be the minimum value of Ac, the peak amplitude of the 

carrier?
 (b) Assuming (S/N)th for envelope detection to be 10 dB, determine the threshold value of Ac?

Solution
 (a) For AM systems, the  destination SNR is given by

2 2

2 21D

S m x

N m x
g

Ê ˆÊ ˆ = ◊Á ˜ Á ˜Ë ¯ Ë + ¯
 Here, m = 0.8

  So let us first find 2
x , the average power of the 

message, using the given amplitude probability 
density function of x(t).

  We know  2 2 ( )Xx x f x dx
•

-•
= Ú .

\    
1

2 2

0

1
2 (1 )

6
x x x dx= - =Ú

\
2 2

2 2
40 dB

1

m x

m x
g

Ê ˆ
◊ ≥Á ˜

Ë + ¯

Fig. 7.5 PDF of signal for Example 7.5
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  Since 40 dB = a ratio of 104, substituting for m and 2
x , we get

2
4

4

2

1
(0.8)

10 (1 0.1066)6 10
1 0.1066

1 (0.8)
6

g g

Ê ˆÊ ˆ
Á ˜Á ˜Ë ¯ ¥ +

◊ ≥ \ ≥Á ˜Ê ˆÁ ˜+ Á ˜Ë ¯Ë ¯

  \ 103808.63g ≥ \ minimum value of 103808.63g =
  \ if the AM signal is ( ) [1 ( )]cosc c cx t A mx t tw= +
  We know that SR =  Received signal power

2
2 2 2( ) [1 ( )]

2
c

c

A
x t m x t= = +

  Here, we have used the fact that ( )x t  = Average value of x(t) = 0. This is because

1 0 1

1 1 0

( ) ( ) ( 1) (1 ) 0Xx t xf x dx x x dx x x dx
- -

= = + + - =Ú Ú Ú

\    
2 21

1 0.64 (1.1066)
2 6 2
c c

R

A A
S

È ˘Ê ˆ= + ¥ =Á ˜Í ˙Ë ¯Î ˚

Since
2

min 12 3

1.1066
103808.63

2 2 10 5 10

cR AS

W
g

h -
¥

= = =
¥ ¥ ¥ ¥

\

min

min

min

9
2 8

8 4

103808.63 20 10
187617.26 10

1.1066

187617.26 10 433 10 43.3 mV

43.3 mV

c

c

c

A

A

A

-
-

- -

¥ ¥
= = ¥

= ¥ = ¥ =

=\

 (b) We are given that 
th

10 dB 10 (ratio)
i

S

N

Ê ˆ = =Á ˜Ë ¯

For AM, 

2
2 2

2 2 2(1 ) (1 )2
( /2 ) 2

c

cR

i R T

A
m x

A m xSS

N N B Wh h

+ +Ê ˆ = = =Á ˜Ë ¯

2
2

12 3 8

1
1 0.64

1.10666

2 2 10 5 10 2 10

c
c

A
A

- -

È ˘Ê ˆ+ ¥ Á ˜Í ˙Ë ¯Î ˚ =
¥ ¥ ¥ ¥ ¥

\ at threshold, 10R

R

S

N
=

\
2 7

2 8
8

1.1066 2 10
10 or, 0.18073 10

1.10662 10

c
c

A
A

-
-

-
¥

= = = ¥
¥

\ -= ¥
th

40.425 10 V or 0.0425 MVcA

CS-Rao_07.indd 396CS-Rao_07.indd   396 1/18/2013 11:23:37 AM1/18/2013   11:23:37 AM



Noise Performance of AM and FM Systems 397

Example 7.6 An AM system employing an envelope detector in the receiver, is operating at threshold. 

Determine the increase in transmitter power (in dB) needed if an 
D

S

N

Ê ˆ
Á ˜Ë ¯  of 40 dB is desired. Assume 

m = 1 and tone modulation.

Solution In the first case, when the system is operating at threshold, let the received average signal power 
be

1RS . If NR is the average noise power that has entered the receiver, we have

1 1 1

1
10 20; or 20 W

2

R R R

R
T

S S S
S

B W W
h

h h h
= = \ = =

where W is the bandwidth of the modulating signal, i.e., the frequency of the modulating signal, since it is 
given as tone modulation. Let 

2RS  be the received signal power required to obtain (S/N)D of 40 dB.

Then,
2

2 2
4

2 2

AM

10 10,000
1

R

D

SS m x

N Wm x h

Ê ˆ Ê ˆÊ ˆ = ◊ = =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯Ë + ¯
 (since 40 dB = 104)

Since m = 1 and it is tone modulation,
2 2

2 2

1 (1/2) 1

1 1 (1/2) 31

m x

m x

◊Ê ˆ= =Á ˜Ë + ◊ ¯+

\ 2

2

AM

1
10,000 30,000 W

3

R

R
D

SS
S

N W
h

h

Ê ˆÊ ˆ = ◊ = =Á ˜ Á ˜Ë ¯ Ë ¯

\ h

h

Ê ˆ Ê ˆ= =Á ˜ Á ˜Ë ¯Ë ¯
2

1

30000
1500

20

R

R

S W

S W

\ 10

Increase in transmitter power (in decibels)
10 log 1500 31.76 dB

required to have a destination SNR of 40 dB

¸
= =˝

˛

7.6.4 Comparison of Noise Performance of AM, DSB-SC and SSB-SC

We find that SSB-SC and DSB-SC have the same destination signal-to-noise ratio, as is evident from Eqs. 
(7.14) and (7.23), and that it is g. In this connection, it must be noted that this is on the basis of the average 
power in each sideband being the same in the two cases. This is because, SR, the received signal power is 

2 21
( )

4 RA x t
Ê ˆ
Á ˜Ë ¯  for SSB-SC and 2 21

( )
2 RA x t

Ê ˆ
Á ˜Ë ¯  for DSB-SC. So, if the same message signal, x(t) is considered 

in the two cases, DSB-SC gives twice as much signal power at the input to the detector as compared to 
SSB-SC. However, the  transmission bandwidth,  BT, of DSB-SC being twice that of SSB-SC, the noise power 
that it brings in at the detector input is also twice as much when compared to SSB-SC. That is why their noise 
performances are the same.
 From Eq. (7.27) it is clear that the total sideband power in the AM is 

2 2 21
( )

2 RA m x t
Ê ˆ
Á ˜Ë ¯ , where m is the 

 modulation index. This means that if we make m = 1, we will be able to compare the noise performance of 
AM with the noise performance of DSB-SC and SSB-SC on the basis of equal average signal power per 

sideband, i.e., the same basis on which we compared the noise performance of DSB-SC and SSB-SC. So, 
assuming that m = 1, the destination SNR for AM is

g

=

Ê ˆ
= ◊Á ˜

Ë + ¯

2

2
AM

1

( )
( / )

1 ( )
D

m

x t
S N

x t
 (7.47)
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2
x (t)  is always less than or equal to 1 since x(t) is the normalized signal, normalized so that 

|x(t)| £ 1.

 Since 2 ( )x t  has got to be non-negative, this means that whatever may be the message signal x(t), the desti-
nation SNR for AM is always less than g, i.e., it is always inferior to DSB-SC and SSB-SC. This, of course, 
can be attributed to the fact that in the case of AM, the carrier power is rejected after demodulation and does 
not contribute to signal power at the destination.
 The RHS of Eq. (7.47) makes it clear that the value of 2 ( )x t  determines how small the value of the  desti-
nation SNR with m = 1 would be as compared to g.

 1. For tone modulation:
2 ( )x t  = 1/2

AM
1

1/2
( / ) /3

1 1/ 2D

m

S N g g

=

Ê ˆ= ◊ =Á ˜Ë + ¯

  So, in the case of  tone modulation, even with m = 1, the performance of AM is about 5 dB poorer 

compared to DSB-SC or SSB-SC.

2. If
2 ( )x t  takes its maximum possible value of 1 (as it would, for example, when x(t) is a square wave), 

and with m = 1

2 2
AM

( ) 1

1
( / ) /2

1 1D

m x t

S N g g

=

Ê ˆ= ◊ =Á ˜Ë + ¯

So, even in this case, AM is still 3 dB poorer compared to DSB-SC and SSB-SC.

In the above two cases, we have assumed that m = 1 and 2( )x t  was 0.5 in the case of tone modulation and 1 
in the other case. But in actual practice, we have speech signal as the message signal. For this signal, m can 
hardly reach a value of 0.2 for most of the time since a speech signal has occasional large peaks and a very 

small amplitude in between. Further, this makes 2 ( )x t  also very small. Because of these reasons, with speech 
as the modulating signal, the destination SNR of AM will be very much smaller than g making its perfor-
mance poorer than that of DSB-SC or SSB-SC by as much as 10 dB. However,  peak limiting and  volume 
compression of the audio, used in all broadcast transmitters will ensure a fairly good value of m for most of 
the time and this will help in improving the noise performance of AM to some extent.

Example 7.7 A message signal has a bandwidth of 15 kHz. This signal is to be transmitted over a 
channel whose attenuation is 80 dB and the two-sided noise PSD is 10–12 W/Hz. If it is desired to have a 
 destination signal-to-noise ratio of 40 dB, what will be transmitter power (average) needed and what will 
be the transmission bandwidth, if the modulation is (a) SSB-SC, and (b) DSB-SC.

Solution

 (a) 
8

12 3

10

32 10 15 10
R R RS S S

W
g

h -= = =
¥ ¥ ¥

  Channel attenuation = 80 dB \ 1010 log ( / ) 80T RS S =
  where ST is the average transmitted power and SR is the average received power.

  \ 8 810 or 10 .T R R TS S S S
-= =

  \   
8 8

410 10
40 dB 10

3 3
T TS S

g
-¥ ¥

= = = =

  \ 43 10 30 kWTS = ¥ = . Since it is SSB-SC, BT = W = 15 kHz.

Note
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 (b) For DSB-SC, 
8

810
( / ) and 10

3
R

D R T

S
S N S Sg -= = =

  \ 410 or 30 kW
3
T

T

S
S= =

Since both the sidebands are transmitted in DSB-SC, the bandwidth BT required is 2W = 30 kHz.

Example 7.8 A message signal with maximum amplitude of ±5 V is uniformly distributed and has a 
bandwidth of 15 kHz. Using AM with a  modulation index of 0.6, it is transmitted over a channel whose 
attenuation is 60 dB and whose  noise power spectral density (two sided) is 10–11 W/Hz. Determine the 
average power of the transmitter and the transmission bandwidth required, if a  post-detection signal-to-
noise ratio of 40 dB is desired.

Solution 

7

11 3

10

32 10 15 10
R R RS S S

W
g

h -
¥

= = =
¥ ¥ ¥

Average power in the message signal (before normalization) = 

5
2

5

1 25

10 3
x dx

-
=Ú

2 ( )x t  = Average power in the message signal after normalization so that | ( )| 1x t £

2

25 1 1

3 35
= ¥ =

\
2 2

2 2

2 2

1 ( ) 0.12
( ) 0.36 0.12

3 1.121 ( )

m x t
m x t

m x t
= ¥ = \ =

+
Since channel attenuation = 60 dB = 1010 log ( / )T RS S

\ 6
10log 6 10T

R T
R

S
S S

S

-Ê ˆ = \ =Á ˜Ë ¯

\
6 72 2

2 2

10 10 0.04( ) 0.12

3 1.12 1.121 ( )

T T

D

S Sm x t S

Nm x t
g

-È ˘ ◊Ê ˆÍ ˙ ◊ = = ◊ =Á ˜Ë ¯Í ˙+Î ˚

But

AM
D

S

N

Ê ˆ
Á ˜Ë ¯  has to be 40 dB (= 104)

\
4

40.04 10 1.12
10 or 280 kW; 2 15 kHz 30 kHz.

1.12 0.04
T

T T

S
S B

¥
= = = = ¥ =

Example 7.9 A transmitter, transmitting an unmodulated carrier power of 20 kW is amplitude 
modulated to a depth of 0.8, by a message signal x(t) of 15 kHz bandwidth, which has an average power 
of 0.78 W when normalized so that | ( )| 1x t £ . The modulated signal is transmitted over a channel whose 
attenuation is 60 dB and has an additive white noise with two-sided PSD of 10–12 W/Hz. Determine the 
pre-detection and post-detection SNRs at the receiver.

Solution Pc = unmodulated carrier power = 20 ¥ 103 W

m = 0.8

= £2 ( ) 0.78 when | ( )| 1x t W x t

\ average total power of the modulated signal = PT

where = + = ¥ + ¥ = ¥2 2 3 3[1 ] 20 10 [1 0.64 0.78] 30 10T cP P m x W
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\ ST = transmitted power = 30 ¥ 103 W

Attenuation of the channel = 60 dB (= a ratio of 10–6)

\ -¥
= = \ = ¥

3
6 330 10

10 30 10T
R

R R

S
S W

S S

h - -= ¥ ¥ ¥ ¥ = ¥12 3 8(2 10 ) (2 15 10 ) 6 10TB W

\ noise power at the input to the detector = NR = 6 ¥ 10–8 W

\  pre-detection SNR = 
3

5 6
8

30 10 1
5 10 10

26 10
R

R T

SS

N Bh

-

-
¥Ê ˆ = = = ¥ = ¥Á ˜Ë ¯ ¥

5

2 2

2 2

10 10
( /2)

( ) 0.64 0.78 0.5 1 2 1

1 0.64 0.78 1 0.5 2 3 31 ( )

R R

T

S S

W B

m x t

m x t

g
h h

= = = ¥

¥
= = = ¥ =

+ ¥ ++

\ post-detection SNR = 
2 2

6

2 2

( ) 1
10

31 ( )

m x t

m x t
g

È ˘
Í ˙ = ¥
Í ˙+Î ˚

Example 7.10 An AM transmitter is to transmit a message signal having a bandwidth of 20 kHz and 
an average power (when normalized such that | ( )| 1x t £ ) of 1, over a transmission channel characterized 
by an additive white noise of two-sided PSD of 0.5 ¥ 10–15 W/Hz and a total  transmission loss of 100 dB. 
If the  modulation index m = 1, determine the average transmitted power if destination SNR is to be 104.

Solution 

For AM:
2 2

2 2

1
( / ) 0.5

1 11
D

m x
S N

m x

g
g g

Ê ˆ ◊
= = =Á ˜

+Ë + ¯

15 3 1110 20 10 2 10
R R RS S S

W
g

h - -= = =
¥ ¥ ¥

\ 11 4
11

0.5
0.25 10 10

2 10
R

R
D

SS
S

N -
Ê ˆ = = ¥ =Á ˜Ë ¯ ¥

\ -= ¥ = =7 104 10 . 100 dB 10RS W L

\ 7 104 10 10 4 kWTS
-= ¥ ¥ =

Example 7.11 A message signal of bandwidth 5 kHz is to be transmitted using SSB-SC over a trans-
mission channel characterized by an additive white noise of two-sided PSD 15/2 0.5 10 W/Hzh -= ¥  and 
a transmission loss of 100 dB. If a  destination SNR of 40 dB is required, determine the average transmitter 
power required.

Solution 
4

SSB

10R

D

SS

N W
g

h

Ê ˆ = = =Á ˜Ë ¯

\ - -= ¥ ¥ ¥ =15 3 4 810 5 10 10 10RS W . Also, 100 dB = a ratio of 1010

\
- -= = \ = ¥ = =8 10 8 10 210 . But 10 10 10 10 100T

R T
R

S
S W S W

S
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7.7 NOISE PERFORMANCE OF FREQUENCY MODULATED SYSTEMS

Fig. 7.6 Block diagram of a FM broadcast  superheterodyne receiver

 The block diagram of an FM broadcast superheterodyne receiver is shown in Fig. 7.6. For the purpose of 
noise performance evaluation, we model the receiver as shown in Fig. 7.7.

Fig. 7.7 Receiver model for noise performance evaluation

 Additive noise of the channel is modeled as zero-mean white Gaussian noise of a two-sided  power spectral 
density h/2 ◊ K represents the channel attenuation. The modulated signal in this case, is given by

( ) cos[ ( )], of the receiverc c c c i fx t A t t f fw f ◊= + =  (7.48)

where

0

( ) 2 ( )
t

ft k x df p a a= Ú  (7.49)

In Eq. (7.49), kf is the  frequency deviation constant if the message signal x(t), is not normalized. 

If x(t) is normalized, kf denotes the  peak frequency deviation.

 The ideal BPF whose response characteristic is shown in Fig. 7.8, is used to represent the combined effect 
of the RF and IF amplifiers.

Fig. 7.8 Response characteristic of the BPF

Note
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402 Communication Systems

The bandwidth of this BPF is the transmission bandwidth BT of the modulated signal, xc(t), and is also 
the bandwidth of the front-end of the receiver. The signal at the input to the filter is Kxc(t) + nw(t), i.e., the 
modulated signal and the additive white noise. Its output, however is Kxc(t) + n(t), where n(t) is band pass 
noise centered on fc and obtained by filtering the white noise using the BPF of bandwidth BT, with center 
frequency c i ff f ◊= , the intermediate frequency of the superheterodyne receiver. The  FM detector, called the 
discriminator produces an output voltage which at any instant, is proportional to the deviation of the instan-
taneous frequency of the input signal from the carrier (i.e., in this case the IF) frequency.
 The input signal for the  discriminator is Kxc(t) + n(t) where xc(t) is the FM signal and n(t) is  band pass noise 
centered on fc. In the case of amplitude modulation, the additive noise would simply add to the amplitude 
modulated signal xc(t) and thus change its envelope which the  envelope detector would extract. So, in the 
case of AM, the additive noise directly affects that parameter of the input signal (envelope) which the detector 
tries to extract. So the effect of the additive noise is considerable in the case of AM. But in the case of FM, 
the discriminator extracts the frequency deviation of the carrier of the input signal each instant, and produces 
an output voltage proportional to the instantaneous  frequency deviation. The additive noise does not directly

affect the frequency deviation of the incoming FM signal. It affects it only indirectly, as we will be see in 
the following paragraphs. Thus, in a qualitative way, we may say that FM will not be affected by the channel 
noise to the same extent as AM.
 Since the bandwidth of the BPF is BT and the two-sided PSD of the additive  white noise in the channel is 
h/2, the noise power entering the receiver is

2 ( ) 2
2 T T Rn t B B N
h

h= ¥ = D  (7.50)

The received signal power is equal to the average power of the component Kxc(t) of y(t), the input to the 
discriminator. This is denoted by SR and is given by

2 2( )

2 2
c R

R

KA A
S = =  (7.51)

\ the  pre-detection SNR is given by
2 21

2 2
R R R

R R T T

S A AS

N N B Bh h

Ê ˆ = = ◊ =Á ˜Ë ¯  (7.52)

As mentioned earlier, n(t) is band pass noise centered on fc and we may represent it by its  inphase and 
quadrature components as

( ) ( )cos ( )sini c q cn t n t t n t tw w= -  (7.53)

Alternatively, we may use the envelope and phase angle representation (see Section 2.8 Eq. (2.164)) and write 
as

( ) ( )cos[ ( )]n c nn t R t t tw f= +  (7.54)

where Rn(t), the envelope is related to ni(t) and nq(t) by

2 2( ) ( ) ( )n i qR t n t n t= +  (7.55)

and is Rayleigh distributed. The phase angle, fn(t) is given by

1
( )

( ) tan
( )

q

n
i

n t
t

n t
f - È ˘

= Í ˙
Î ˚

 (7.56)

As it is more convenient in the present analysis to use the envelope and phase representation, we shall write 
y(t), the input to the discriminator as

( ) cos [ ( )] ( )

cos [ ( )] ( )cos [ ( )]

R c

R c n c n

y t A t t n t

A t t R t t t

w f

w f w f

= + +

= + + +  (7.57)
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We shall make use of Eq. (7.57) to examine 
how the noise term n(t) affects the angle 
f(t) of the FM signal and thus changes its 
 frequency deviation. However, this is going 
to be quite involved. So, we shall proceed 
by making the simplifying and reasonable 
assumption that the SNR at the input to the 
discriminator is high.

i.e., 1
R

S

N

Ê ˆ >>Á ˜Ë ¯  (7.58)

If under this assumption, we draw the 
phasor diagram for Eq. (7.57), it will appear 
as shown in Fig. 7.9.
 For the band pass signal y(t), if Ry(t) is the envelope and fy(t), the phase angle, we may write

( ) ( )cos [ ( )]y c yy t R t t tw f= +  (7.59)

Since y(t) is the input to the  discriminator, what the discriminator does is, it produces an output z(t) which at 
any instant, is proportional to the instantaneous frequency deviation given by

1
( ) [ ( )]

2i y

d
f t t

dt
f

p
=  (7.60)

So let
1

( ) [ ( )]
2 y

d
z t t

dt
f

p
=  (7.61)

The phasor diagram of Fig. 7.9 shows how the additive noise component n(t) affects the phase angle f and 
thereby the frequency deviation, of the incoming FM signal. f(t) is the phase angle of the received FM signal, 
fn(t) is the phase angle of the band pass noise component n(t). The sum of the phasors AR and Rn gives Ry, the 
envelope of y(t), the phase angle of which is fy(t). Note that because of our assumption that the pre-detection 
SNR is very much greater than 1,

[ ( ) ] is almost equal to 1.n RP R t A<<  (7.62)
But from Fig. 7.7

sin ( ) [ ( )sin ( )] / ( )n yt R t t R tq a=  (7.63)

However, from Eq. (7.62), it follows that the following small-angle approximation can be made so that

sin ( ) ( )t tq q@
and hence, Eq. (7.63) may be rewritten as

( )sin ( )
( )

( )
n

y

R t t
t

R t

a
q =  (7.64)

Thus, since

( ) ( ) ( )y t t tf f q= +  (7.65)

we have
( )sin ( )

( ) ( )
( )

n
y

y

R t t
t t

R t

a
f f= +  (7.66)

But because of Eq. (7.62), we may make the following approximation:

( )y RR t A@  (7.67)
Hence, from Eqs. (7.61) and (7.65), we have

z(t) = discriminator output signal

1 1 1
[ ( )] ( ) ( ) ( ) ( )

2 2 2y f d

d d d
t t t k x t n t

dt dt dt
f f q

p p p
= = + = +  (7.68)

Fig. 7.9  Phasor diagram of Eq. (7.54) when (S/N)R >> 1
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Since f(t) is the phase angle caused due to frequency modulating the carrier by the message signal x(t), from 
Eqs. (7.48) and (7.49), the first term in Eq. (7.68) clearly represents the message signal component in the 
output of the discriminator. Since q(t) is the additional phase caused by noise, the second term of Eq. (7.68) 
represents the noise term in the output of the discriminator and is denoted by nd(t).
 To see how much of this noise goes past the low pass filter and reaches the destination, we have to examine 
the spectrum of the noise term in Eq. (7.68). For this purpose, let us rewrite it as follows:

( )sin ( )1 1
( )

2 2
n

R

R t td d
t

dt dt A

a
q

p p

È ˘= Í ˙
Î ˚

  (From Eqs. (7.64) and (7.67)) (7.69)

From the phasor diagram of Fig. 7.7, we find that

( ) ( ) ( )nt t ta f f= -  (7.70)

This seems to indicate that the post-detection noise, nd(t), is dependent on the modulation angle f(t). Now, 
fn(t) is the phase angle of the band pass noise in its envelope – phase angle representation. But, we know 
that in such a representation, the envelope is Rayleigh distributed while the phase angle fn(t) is uniformly

distributed over –p to +p (see Example 7.13). If we can 
assume that a(t), which is [ ( ) ( )]n t tf f- , is itself uniformly 
distributed over –p to +p, then this coupling between the 
post-detection noise and the modulation angle will be 
removed and nd(t) will be independent of modulation. Rice 
has shown that such an assumption is justified provided the 
carrier-to-noise ratio is large. In that case, we may, for a 
moment, assume that there is no modulation and that only 
an unmodulated carrier is transmitted. In such a case, the 
phasor diagram, will appear as shown in Fig. 7.10 (since 
f(t) = 0 when there is no modulation).
 Since f(t) = 0, a(t) = fn(t) and so

( )sin ( )sin ( ) ( )n n n qR t t R t t n ta f= =  (7.71)

Hence, Eq. (7.69) may be rewritten as

\

( ) sin1 1
( )

2 2

1 1
( ) [ ( )]

2

n

R

d q
R

R t td d
t

dt dt A

d
n t n t

A dt

a
q

p p

p

◊È ˘= Í ˙
Î ˚

=  (7.72)

Therefore, to determine how much power 
of this  post-detection noise goes past the 
low pass filter with a cut-off frequency of 
W Hz, we have to determine the power 
spectrum of nd(t). To do this, we first note 
that nq(t) is the low pass equivalent of the 
 band pass noise, n(t), that has entered the 
receiver. Since the BPF at the front-end of 
the receiver has a  transfer function of HR(f), its output, n(t), will have a  power spectrum of

2 2( ) ( )| ( )| | ( )|
2wn n R RS f S f H f H f
h

= =  (7.73)

  Fig. 7.10  Phasor diagram with no modulation 

(S/N)R >> 1

Fig. 7.11 Power spectral density of n(t)
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The PSD of the band pass noise, n(t), is shown in Fig. 7.11, and 
that of its low pass equivalent, nq(t), is shown in Fig. 7.12.

\
( ) ( / )nq TS f f Bh= P

 (7.74)

The  power spectrum of 
1 1

( )
2 q

R

n t
A p

◊  is then given by

2 2

1 1
( )

(2 )
nq

R

S f
Ap

◊ ◊  (7.75)

To find the power spectrum of the  post-detection noise nd(t), in 
view of Eq. (7.72), we proceed as in Fig. 7.13.

Fig. 7.13 Deriving the spectrum of post-detection noise

Substituting for Snq(f) in the expression for the Snd(f) and simplifying, we get

2

2

2

( )

2

dn
TR

R T

f f
S f

BA

f f

S B

h

h

Ê ˆ Ê ˆ= PÁ ˜ Á ˜Ë ¯Ë ¯

Ê ˆ Ê ˆ= PÁ ˜ Á ˜Ë ¯ Ë ¯
 (7.76)

A sketch of the post-detection noise spectrum 
is given in Fig. 7.14. While the message has a 
bandwidth of only W Hz, this noise process has 
a bandwidth of BT/2, which is much greater than 
W. Hence, there is considerable noise outside the 
message bandwidth. This out-of-band noise has to 
be removed using a low pass filter having a cut-off 
frequency of W Hz.
 The average power of the noise at the output of the low pass filter = ND = Destination noise power = Area 
of the shaded region

2

2 3

2

2 3

W

R TW

W

R RW

f f
df

S B

f W
df

S S

h

h h

-

-

Ê ˆ Ê ˆ= PÁ ˜ Á ˜Ë ¯ Ë ¯

= =

Ú

Ú

\
3

3D
R

W
N

S

h
=  (7.77)

The message signal component at the output of the  discriminator has been found (refer to Eq. (7.68)) to be 
kf x(t). Since this has a bandwidth of W, all of it passes through the low pass filter. Hence, the destination 
signal power is given by

Fig. 7.12 Power spectral density of nq(t),

   low pass equivalent of n(t)

Fig. 7.14 Power spectral density of post-detection noise
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2 2 ( )D fS k x t=  (7.78)

\  destination signal-to-noise ratio is given by
2 2

3

2

2

( )

( /3 )

3 ( )

fD

D D R

f R

k x tSS

N N W S

k S
x t

W W

h

h

Ê ˆÊ ˆ = =Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ Ê ˆ= Á ˜ Á ˜Ë ¯ Ë ¯
But, we know that when x(t) is the  normalized message signal, kf denotes the  peak frequency deviation (refer 
to the note under Eq. (7.49)). Since we have kf over W as a factor in the above expression for the destination 
SNR, let us replace that factor by the deviation ratio denoted by D.

\ 2 2

FM

3 ( )
D

S
D x t

N
g

Ê ˆ =Á ˜Ë ¯  (7.79a)

Hence, from Eqs. (7.79a) and (7.7), the figure of merit for FM systems may be written as

2 2
2 2

(FM)

( / ) 3
Figure of Merit 3

( / )
D

C

S N D x
D x

S N

g

g
= = =  (7.79b)

Example 7.12 For tone modulation, show that the  Figure of Merit of an FM system is given by 23

2 fb ,
where bf is the  modulation index.

Solution D =  Deviation ratio = 
f mk A

W

Ê ˆ
Á ˜Ë ¯ , where Am is the peak amplitude and W = fm, is the frequency of 

the single-tone modulating signal. Because | ( )| 1, 1mx t A£ =  and so 2 1/2x = , substitution in Eq. (7.79b) gives

 Figure of Merit = 
23 3

2 2

f m

f
m

k A

f
b

Ê ˆ
=Á ˜Ë ¯

 (see Eq. (5.18))

(i) Although derived under certain assumptions, the result represented by Eq. (7.79) is indeed 

a very significant one. This is because, it says that as long as the assumptions under which 

it is derived are not violated, the destination signal-to-noise ratio can be increased just by 

increasing the deviation ratio without having to increase the average transmitted power. 

When the deviation ratio D is increased, we know that the  transmission bandwidth, BT,

increases, because 2( 1)TB D W= + . So, Eq. (7.79) tells us that the destination SNR can 

be increased by increasing the transmission bandwidth without increasing the transmitter 

power. This means there is a  ‘power-bandwidth’ trade-off possible in the case of FM. This 

is something which is not possible in the case of AM, where the bandwidth is fixed and 

does not depend on the value of the modulation index, m.

 (ii) This ‘power-bandwidth’ trade-off is, however, not without a limit. We must realize that as 

the transmission bandwidth BT is increased to get better destination signal-to-noise ratio, 

the average noise power entering the receiver also increases, since it is equal to hBT;

but the received signal power does not, because it is equal to 
2

2
RA

. Thus, along with 

the bandwidth the received noise power increases, making (S/N)R smaller and smaller. 

Hence, a situation will arise at some value of the BT, in which the assumption that (S/N)R

is large, which we made use of while deriving Eq. (7.79), will no longer be valid.

Remark

CS-Rao_07.indd 406CS-Rao_07.indd   406 1/18/2013 11:23:40 AM1/18/2013   11:23:40 AM
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 (iii) The relative immunity that it enjoys with regard to the additive noise on the channel, its 

ability to handle message bandwidths up to even 15 to 20 kHz (with very little increase 

in transmission bandwidth) which makes it extremely useful for transmission of high 

quality music, and the flexibility that it offers through the  ‘power-bandwidth’ trade-off, 

make FM a really attractive proposition.

Example 7.13 A single-tone modulating signal ( ) cosm mf t E tw=  phase modulates a carrier signal 

cosc cA tw . Show that the figure of merit for PM = 21

2 fm

where mf is the  modulation index for FM.

Solution We know that in the case of phase modulation,

( ) ( ) cosp p m mt k x t k E tf w= =
\ peak frequency deviation produced by this phase modulation

PM
max

( ) say( )p m m

d
t k E

dt
f w w

È ˘
= = = DÍ ˙

Î ˚
If mf is the modulation index for FM,

( )
f p m

m m

f
m k E

f

w

w

D D
= = =

In the case of PM, the figure of merit is given by

\

= = ◊ =

=

2
2 2 2

PM

2
PM

(FOM) ( ) ; But
2

1
(FOM)

2

m
p p p m f

f

E
k x t k k E m

m

Example 7.14 Show that  narrowband FM does not offer any better  destination signal-to-noise ratio 
than AM.

Solution 

For AM:

2 2

2 2

( )

1 ( )D

S m x t

N m x t
g

Ê ˆÊ ˆ = ◊Á ˜ Á ˜Ë ¯ Ë + ¯
The maximum value of this occurs when 2 2( ) 1m x t = , i.e., m = 1 and 2( ) 1x t = .

Then
1

2D

S

N
g

Ê ˆ = ◊Á ˜Ë ¯

For FM: 
2 23 ( )f

D

S
x t

N
b g

Ê ˆ =Á ˜Ë ¯

Assuming 2( ) 1x t =  for this case also,

23 f
D

S

N
b g

Ê ˆ =Á ˜Ë ¯

\ if this is to be better than the 
D

S

N

Ê ˆ
Á ˜Ë ¯  for AM,

2 21 1
3 or 0.408

2 6f f fb g g b b= = \ >

i.e., for FM to be better than AM, bf should be greater than 0.408. But for NBFM, bf < 0.2.
\ NBFM is no better than AM.
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7.8 PRE-EMPHASIS AND DE-EMPHASIS

In the last section, we found that the  power spectral density of the  post-detection noise varies as the square 
of the frequency. This means that within the  message bandwidth –W £ f £ W, the high frequency components 
of the message signal will, after detection, encounter a much higher noise power than the low frequency 
components. This tends to make the  destination signal-to-noise ratio poor for the high frequency components 
of the message. Unfortunately, there exists another factor, associated with the power spectral density of the 
message itself, which too tends to make the destination SNR worse for the high frequency components of 
the message. Audio message signals in general, and speech message signals in particular, generally have a 
power spectral density that tends to fall rather sharply beyond about 800 Hz to 1 kHz. Thus, compared to 
the low frequency components, the high frequency components are much weaker and produce much smaller 
 frequency deviation. Hence, at the output of the discriminator in the receiver, the high frequency message 
signal components at these frequencies will be quite weak; but the noise frequency components at these 
frequencies will be quite strong. Thus, the SNR for high frequency components of the message will be poor. 
This will reduce the overall destination SNR of the receiver.
 ‘Pre-emphasis and de-emphasis’ is a technique quite often used in all FM systems in order to overcome the 
problem stated above, and improve the destination SNR. The ‘ pre-emphasis’ part of the process, performed 
at the transmitting end, consists of boosting-up of the high frequency components of the message signal 
before using it for modulation, so as to make the PSD of the message more uniform within its bandwidth 
of –W £ f £ +W. Because of pre-emphasis, the signal at the output of the discriminator will be a distorted 
version of the original message. Hence, the output of the discriminator (signal plus noise) is subjected to 
the  de-emphasis process so as to restore the original relative amplitude values of the various frequency 
components of the message signal. The de-emphasis process consists of appropriately attenuating the high 
frequency components of the output of the discriminator, to compensate for the ‘boosting-up’ or pre-emphasis 
done at the transmitting end. In this process of de-emphasis therefore, while the message spectrum is restored 
to its original form, amplitudes of the high frequency components of the noise at the output of the discrimi-
nator are also reduced, thereby improving the SNR at the destination. This method is effective because the 

boosting-up of the high frequency components is done at the transmitter before channel noise enters and 

attenuating of the high frequency components is done in the receiver at the output of the discriminator so 

that high frequency components of both the message signal and the post-detection noise, are attenuated. For 
introducing pre-emphasis and de-emphasis, a pre-emphasis filter Hpe(f) is included in the transmitter and a 
 de-emphasis filter Hde(f) is included in the receiver after the discriminator stage, as shown in Fig. 7.15.

Fig. 7.15 Pre-emphasis and de-emphasis in an FM system

 The de-emphasis filter should come after the discriminator stage and may be placed either before, or after 
the LPF. This is because, both the LPF and Hde(f) being  linear time-invariant systems, the order in which they 
are placed is immaterial.
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 Ideally, the transfer functions of the pre-emphasis and 
de-emphasis filters should be inverses of each other, at 
least over the message bandwidth, W.

1
( ) ; | |

( )de
pe

H f f W
H f

= £  (7.80)

Since the pre-emphasis filter should boost up the high 
frequency components of the message signal and leave 
the low frequency components practically unaffected, the 
following simple transfer function is generally used for it:

0

( ) 1pe

f
H f j

f

Ê ˆ= +Á ˜Ë ¯
 (7.81)

In this, f0 is a fixed frequency. The corresponding Hde(f) is

0

1
( )

1
deH f

f
j

f

=
Ê ˆ+Á ˜Ë ¯

 (7.82)

Figures 7.16 and 7.17 show the typical magnitude 
responses of the pre-emphasis and the de-emphasis filters. 
As long as f << f0, the magnitude responses of both the 
filters remain practically constant. At f = f0, the response 
of the pre-emphasis filters is +3 dB, while that of the 
de-emphasis filter is –3 dB.

Hpe(f), which is essentially the response of a  differen-
tiator, can be closely realized by a simple RC filter shown 
in Fig. 7.18(a) and Hde(f), which is essentially the response 
of an  integrator, can be closely realized by the simple RC 
filter shown in Fig. 7.18(b).
 For commercial FM broadcasting, for which W = 15 
kHz, the value of the time constant rc is set equal to 75 ms
so that f0, the 3-dB frequency is equal to 2122 Hz.
 Since the response of the pre-emphasis filter is almost 
constant for low message frequencies, and that of a differ-
entiator for high message frequencies, and noting that the 
message signal passes through this filter before being used 
for frequency modulating the carrier, we may say that 
the pre-emphasis filter makes the low frequency compo-

 Fig. 7.16  Magnitude responses (a) Pre-emphasis 

and (b) de-emphasis filters (linear 

frequency scale)

 Fig. 7.17  Magnitude responses (in decibels) of 

pre-emphasis and de-emphasis. Filters 

plotted using logarithmic scale for 

frequency

Fig. 7.18 (a) Pre-emphasis filter, (b) De-emphasis filter

CS-Rao_07.indd 409CS-Rao_07.indd   409 1/18/2013 11:23:41 AM1/18/2013   11:23:41 AM



410 Communication Systems

nents of the message to frequency modulate the carrier while making the high frequency components of the 
message signal to phase modulate it. Similarly, the discriminator together with the de-emphasis filter may be 
considered to be working as a frequency demodulator for low message frequencies and as a phase demodu-
lator for high message frequencies.

7.8.1 Improvement in Destination SNR due to Pre-emphasis and De-emphasis

To make a quantitative evaluation of the improvement in (S/N)D caused by the ‘pre-emphasis, de-emphasis’ 
technique, we first note that SD, the signal power at the destination is unaffected by the presence or absence 
of the  pre-emphasis filter at the transmitter and de-emphasis filter in the receiver. It is only the destination 
noise power that is getting reduced and this reduction is caused only by the  de-emphasis filter in the receiver. 
Hence, a good quantitative measure of the  destination SNR improvement due to the use of pre-emphasis and 
de-emphasis is given by the following ratio:

Noise power output at the destination without de-emphasis

Noise power output at the destination with de-emphasis
I

Ê ˆD Á ˜Ë ¯
 (7.83)

Earlier, we found (see Eq. (7.76)) that the PSD of the noise at the output of the  discriminator is given by
2

( )
2nd

R T

f f
S f

S B

hÊ ˆ Ê ˆ= PÁ ˜ Á ˜Ë ¯ Ë ¯
So, this is the PSD of the noise at the input to the ‘de-emphasis filter – baseband low pass filter’ combination.
 To find how the combination of these two filters will modify this  post-detection noise spectrum, let us say 
Hc(f) is the overall transfer function of the cascade connection of these two filters.

Then
( ) ( ) ( )c de LH f H f H f= ◊  (7.84)

and ( ) ( /2 )LH f f W= P  (7.85)

since the baseband filter has been modeled as an ideal LPF with a cut-off frequency of W Hz.
 Hence, noise PSD at the destination is given by

2( ) ( ) | ( )|D ndS f S f H f= ◊  (7.86)

\ average noise power at the destination, i.e., at the output of the receiver with pre-emphasis and de-emphasis 
is given by

2

2
2

2
2 2 2

2

( ) ( ) | ( )|

( / ) ( /2 )| ( )|
2

| ( )| | ( )|
2

W W

D D nd c
W W

W

T de
W R

W W

de de
W R WR

N S f df S f H f df

f
f B f W H f df

S

f
H f df f H f df

S A

h

h h

- -

-

- -

= =

= ◊ P P

= =

Ú Ú

Ú

Ú Ú  (7.87)

Average noise power at the output of the receiver without the pre-emphasis and de-emphasis, is given by

2

0

3
2

2 2

( )
2

2

3

W W

nd
RW W

W

WR R

f
N S f df df

S

W
f df

A A

h

h h

- -

-

= =

= =

Ú Ú

Ú  (7.88)
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The limits for the integral are –W and +W because of the  baseband filter HL(f).

Substituting these in Eq. (7.83), we have

3
0

W
2 2D

de
W

N 2W
I

N
3 f |H ( f )| df

-

= =

Ú
 (7.89)

For the type of de-emphasis filter used in FM broadcast receivers, the destination SNR 

improvement due to the use of pre-emphasis and de-emphasis works out to about 13 dB, which 

represents a substantial improvement.

Example 7.15 Show that the improvement in (S/N)D due to the use of de-emphasis filter in a broadcast 
FM receiver is of the order of 13 dB.

Solution From Eq. (7.82), we have
2

2 0
2 2

0

| ( )|de

f
H f

f f

Ê ˆ
= Á ˜+Ë ¯

\ from Eq. (7.89), we get

Improvement in 
3

2 2

33
0

12
0 02 0

2 2
0

2

3 | ( )|

( / )2 1

3 ( / ) tan ( / )
3

W
D

de
W

W

W

S W
I

N
f H f df

W fW

W f W ff
f df

f f

-

-

-

Ê ˆ = =Á ˜Ë ¯

È ˘
= = Í ˙

È ˘ -Í ˙Î ˚Í ˙
+Í ˙Î ˚

Ú

Ú

In a commercial FM broadcast receiver, W = 15 kHz and f0 = 2122 Hz. Substituting these values in the above

         I ª 22  \ improvements of (S/N)D in dB = 10 log10 22 ª 13 dB.

Example 7.16 The ratio of (S/N)D to g is referred to as the  figure of merit of a system. Assuming 
that the normalized message signal has a bandwidth of W Hz and an average power of 0.5, determine the 
Figures of Merit for an FM system (without pre-emphasis, de-emphasis) and an AM system.

Solution 

For FM: 
2 23 ( )

D

S
x t

N
b g

Ê ˆ =Á ˜Ë ¯

with 2( ) 0.5x t = , the figure of merit for an FM system is

23
[( / ) / ]

2DF S N g b= =

For AM:

2 2

2 21D

S m x

N m x
g

È ˘Ê ˆ Í ˙=Á ˜Ë ¯ Í ˙+Î ˚
\

2 2

2
2

( /2)

1 21
2

m m
F

mm

È ˘
= = Í ˙

+Î ˚+

Note
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7.9 THRESHOLD EFFECT IN FM

For  wideband FM, we have seen that (refer to Eq. (7.79)) the  destination SNR is given by

2 2

WBFM

3
D

S
D x

N
g

Ê ˆ =Á ˜Ë ¯  (7.90)

As has already been observed in point ii. of Remarks below Example 7.12, it then follows that just by 
increasing the deviation ratio, D, it is possible to increase the destination signal-to-noise ratio without 
increasing the transmitted power. In other words, it means that it is possible to exchange transmitter power 
for the bandwidth of the transmitted signal.
 However, as explained in that remark, this exchange is not without a limit. As we increase the bandwidth, 
BT, by increasing the deviation ratio D at the transmitter while keeping the average transmitted power 2( /2)cA

constant, the destination signal-to-noise ratio at the output of the receiver will, of course, increase initially. 
But, as BT is increased, the average noise power entering the receiver, given by hBT, will also be increasing. 
However, since 2( /2)cA , the average transmitted power is held constant, the signal power entering the receiver, 
given by 2 2 2( /2) ( /2)c RK A A= , is also constant, while the average noise power entering the receiver increases. 
So, the receiver input signal-to-noise ratio, ( / ) ( / )R R R TS N S Bh=  goes on decreasing. Thus, as we go on 
increasing D to get better (S/N)D, a stage will be reached at some value of D and BT, at which, the input SNR 
for the receiver will be so low that the basis on which we had derived Eq. (7.79), viz., that the (S/N)R is quite 
high, will be violated, making the application of Eq. (7.79) no longer appropriate.
 This fact, that Eq. (7.79) is not applicable below a certain value of input SNR, is clearly brought out by 
a plot of (S/N)D vs. (SR /NR) for a fixed D. For the purpose of plotting this curve, let us assume  single-tone 
modulation so that

( ) cos mx t tw=  (7.91)

since x(t) has been normalized in such a way that | ( )| 1x t £ .
\ from Eq. (7.91), we have

2 1
( )

2
x t =  (7.92)

Further, since x(t) is single tone, and has been normalized,
D = b (7.93)

From the above, Eq. (7.90) may therefore be written as

2

WBFM

3

2D

S

N
b g

Ê ˆ =Á ˜Ë ¯  (7.94)

or

2
10 10

;dB

3
10 log 10 log

2D

S

N
b g

Ê ˆ Ê ˆ= +Á ˜Á ˜ Ë ¯Ë ¯

\ 2
10 dB

;dB

3
10 log

2D

S

N
b g

Ê ˆ Ê ˆ= +Á ˜Á ˜ Ë ¯Ë ¯  (7.95)

Relationship between r and g

R R

T

S S
whereas

B W
r D g D

h h

\ T
T

B
but B 2W(1 )

W
g r b

Ê ˆ= = +Á ˜Ë ¯
\ 2 (1 )g r b= +
\ 10 10 10 1010 log 10 log 2 10 log 10 log (1 )g r b= + + +

Note
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For  linear modulation schemes DSB-SC and 
SSB-SC, we had seen that output SNR is equal to 
g. The output SNR for baseband transmission. So 
for these modulation schemes, the output SNR vs. 
input SNR plots give a straight line passing through 
the origin as shown in Fig. 7.19. For WBFM too, as 
per Eq. (7.95), the plot of ;dB( / )DS N  vs. gdB for a 
given b yields a straight line. So, for large values of 
gdB for which Eq. (7.79) is valid, for WBFM also we 
get straight lines; but they will not pass through the 
origin. For different values of b like b1 and b2, etc., 
we get parallel lines as shown provided gdB values 
are in the range for which Eq. (7.79) and therefore 
Eq. (7.95) will be valid. As gdB is reduced, we find 
that (S/N)D; dB comes down rapidly below a certain 
value of gdB, thus exhibiting the phenomenon of 
threshold in WBFM. For larger values of b, we find 
that the threshold input (SNR) value is also higher (i.e., 

2 1th thg g>  if b2 > b1). The threshold input SNR for any 

given value of b, is arbitrarily defined as that input SNR for which the (S/N)D falls by 1 dB with respect to the 

straight line portion or its extension. For b = b2, as shown in Fig. 7.19, this happens at point A on the charac-
teristic, since at A, the output SNR has fallen by 1 dB with respect to the value it would have had for (S/N)D

at that input (S/N) corresponding to the point A, if it had not deviated from the straight line characteristic. 
Similarly, it happens at point B on the characteristic corresponding to a value of b = b1. The corresponding 
input (SNR) values at A and B are the threshold values for b = b2 and b = b1, respectively. One interesting 
point which should be observed is that if we are operating at point P on the straight line portion (i.e., above 
the threshold) of the b = b1 curve and if we increase the modulation index b to a higher value b2, the output 
SNR increases. On the other hand, if we are operating below the threshold, an increase in b value actually 
produces a deterioration in the output SNR, as may be seen from points B and C. Another interesting obser-
vation is that gth depends on b. It is approximately 13 dB for most of the FM receivers, since rth is about 10 
dB (see the note in the box below Eq. (7.95)).
 One may wonder why the output SNR falls steeply when the input SNR is reduced below some value. This 
leads us to a discussion on the physical phenomenon that causes this.

7.9.1 Causes for Threshold Effect

In an FM receiver, the noise at the output, as heard through the loudspeaker, appears ‘soft’ and ‘smooth’ when 
it is operated above the threshold and ‘spiky’ and coming out like ‘bursts’, when the receiver is operated 
below the threshold. That is, the nature of the output noise changes as we go below the threshold value of the 
input SNR.
 For a discussion on the mechanism responsible for this change in the nature of the output noise, let us, for 
the sake of simplicity, assume without loss of generality, that there is no modulation and that only the carrier 
is being received along with the channel noise. Let the noise entering the receiver be represented as in Eq. 
(7.54).
\ ( ) ( )cos [ ( )]n c nn t R t t tw f= +  (7.96)

where 1
( )

tan
( )

q

n
i

n t

n t
f - Ê ˆ

= Á ˜Ë ¯
 (7.97)

 Fig. 7.19  Plots of output SNR to input SNR for WBFM 

and DSB-SC or SSB-SC
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\ the input to the discriminator is (see Fig. 7.5)

( ) cos ( ) cos ( )c c R cy t K A t n t A t n tw w= ◊ + = +  (7.98)

Combining Eqs. (7.96) and (7.98), we may write y(t) as

( ) ( ) cos [ ( )]y cy t R t t tw x= +  (7.99)

When the receiver is operated well above the threshold, 
the input SNR is high and so n RR A<< . Hence, under 
this condition the phasor diagram will be as shown in 
Fig. 7.20.

 Since 1, n R
R

S
R A

N

Ê ˆ >> <<Á ˜Ë ¯  with a high probability 
and so

1tan
q

R

n

A
x - Ê ˆ

ª Á ˜Ë ¯
 (7.100)

Further, since 1
q

R

n

A

Ê ˆ
<<Á ˜Ë ¯

 for most of the time, we may write

q

R

n

A
x

Ê ˆ
ª Á ˜Ë ¯

 (7.101)

Now, Rn(t) and x(t) vary randomly with time, with Rn having Rayleigh density and x having uniform distri-

bution. Since the 1, n R
R

S
R A

N

Ê ˆ << <<Á ˜Ë ¯  for most of the time. Further, because fn(t) is also randomly varying, 

point P in the phasor diagram moves randomly around the tip 

of the phasor AR and may take paths such as the one shown 
by the dotted line. However, since Rn is quite small compared 
to AR, for most of the time, point P while moving along such 
random paths will be closed to the tip of the phasor AR. But, 
of course, occasionally, Rn may take large values, i.e., values 
larger than AR and the random path traversed by point P may 
enclose point ‘O’ as shown in Fig. 7.19. Whenever such a 
thing happens, x changes by 2p radians. However, we know 
that the discriminator produces an output proportional to the 
rate of change of the phase angle of its input signal, y(t). So, 
when x(t) suddenly changes by 2p radians as shown in Fig. 
7.22(a) the discriminator output z(t) which is given by

( ) ( )
d

z t t
dt

x=  (7.102)

suddenly takes a large value causing a spike in the voltage z(t) and a loud click to be produced by the 
loudspeaker (refer to Fig. 7.22(b)). However, since R nA R>>  for most of the time, this phenomenon occurs 
very rarely. But when the receiver is operated at a low input (S/N)R, the probability of Rn becoming larger 
than AR will be high and so, the occurrence of spikes, at the output of the discriminator, will become more 
frequent. Since a large amount of energy is associated with each  spike, the average noise power at the output 
of the receiver increases considerably with the onset of the occurrence of spikes and so the output signal-to-
noise ratio falls rather steeply, causing a ‘ threshold phenomenon’ insofar as the input SNR is concerned, in 
the case of a  FM receiver.

Fig. 7.20  Phasor diagram when (S/N)R >>1

 Fig. 7.21  Phasor diagram when (S/N)R << 1 

showing one possible path traversed 

by P
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Fig. 7.22 (a) x(t) vs. t, (b) (t)x&  vs t showing spikes in the discriminator output, z(t)

Example 7.17 It is required to transmit, using WBFM, a normalized message signal with 2 1x =  and 
W = 15 kHz, over a channel whose bandwidth is 200 kHz.  Additive white noise on the channel has 

810 W/Hzh -= . The  destination signal-to-noise ratio should be at least 40 dB. If the signal attenuation 
during its passage through the channel is 40 dB, find the minimum transmitter power required.

Solution As stated in Section 7.9, the value of b to be used may be restricted either by power consider-
ations, or bandwidth considerations. We shall first examine this.

2 ( 1)
and 2 ( 1)R R T

T

S S B W

W B W W

b
g r g r r r b

h h

+Ê ˆ= = \ = ◊ = = +Á ˜Ë ¯

\ th th2 ( 1)g r b= +
But

th th10 dB 10 20( 1)r g b= = \ = +
But

b g b g

b b

Ê ˆ Ê ˆ= \ =Á ˜ Á ˜Ë ¯ Ë ¯
= +

2 2 2 2
th

, th
2 2

3 3

3 20( 1)
D D

S S
x x

N N

x

\ 2 2

,th

60 (1 )
D

S
x

N
b b

Ê ˆ = +Á ˜Ë ¯

\
4

4 2 21 10
10 60 (1 ) (1 ) 333

2 30
b b b b= + ◊ \ + = =

\ 3 2 333 0 6.6 from power considerationsb b b+ - = \ ª
Now, if we look at it from bandwidth point of view:

W = 15 kHz, 32( 1) 30 10 ( 1) 200 kHzTB Wb b= + = ¥ ¥ + =
\ 1 6.6 and 5.6b b+ = \ =  from bandwidth point of view.

We find that the maximum value of b is restricted by the channel bandwidth and not by power. We shall 
therefore choose 

5.6b =
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With this b, and an (S/N)D of 104, the value of g is

4 4

2

10 10
212.76

1 47
3 (5.6)

2

g = = =
¥ ¥

But
8 3 5

212.76
10 10 15 15 10

R R RS S S

W
g

h - -= = = =
¥ ¥ ¥

\ 5 43191.5 10 0.031915 But 10T
R

R

S
S

S

- Ê ˆ= ¥ = =Á ˜Ë ¯

\ 5 4 13191.5 10 10 3191.5 10

317.15 W

TS
- -= ¥ ¥ = ¥

=

Example 7.18 A message signal normalized so that | ( )| 1x t £  and having an average power of 1 W 
and a bandwidth of 15 kHz, is to be transmitted using WBFM with b = 5, over a channel with additive 
noise of  two-sided PSD = h -= ¥ 13/2 0.5 10  /HzW  and a total transmission loss of 100 dB. If a  destination 
 SNR of 40 dB is required, what should be the average transmitted power? Check whether the system is 
above the threshold.

Solution 
2 2 4

3 13
3 3 25 1 10

15 10 10
R

D

SS
x

N
b g -

Ê ˆ = = ¥ ¥ ¥ =Á ˜Ë ¯ ¥ ¥

\ -= ¥ 72 10RS W

But
10 7 1010 2 10 10 2 kWT

T
R

S
S

S

-Ê ˆ = \ = ¥ ¥ =Á ˜Ë ¯

\
7

13 3

2 2

,th

th

10 2 400
21.3 dB

310 15 10

60 ( 1) 60 25(5 1) 1 60 150 9000

3 25 1

R

D

S

W

S
x

N

g
h

b b

g

-

-
¥

= = = =
¥ ¥

Ê ˆ = + = ¥ + ¥ = ¥ =Á ˜Ë ¯

= ¥ ¥ ¥

\     
th 10

9000 3000
120 and 10 log 120 20.8 dB

3 25 25
g = = = =

¥
\ the system is operating above the  threshold since g  > gth.

7.9.2  Threshold Extension

As we have stated earlier, for most WBFM receivers, gth is about 13 dB. This corresponds to a value of 10 
dB for rth, the actual input SNR to the discriminator. So, for satisfactory operation of the receiver, we have 
to ensure that the input SNR is always kept above 10 dB. While this may not be a problem in the case of FM 
broadcast systems, in the case of wideband  satellite communications and  space communications, such a large 
value of threshold does pose problems. The reason for this is easy to see. Since

R

T

S

B
r

h
=

if we desire to operate above rth, we have to either increase the transmitter power, or decrease the trans-
mission bandwidth. But both these options are not feasible in the case of satellite to earth or space communi-
cations, where power is at a premium and wide bandwidth is a must.
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Noise Performance of AM and FM Systems 417

 This underscores the need to have some methods for reduction of the threshold rth below the 10-dB value. 
These methods are called ‘ threshold extension techniques’, and they permit the receiver to operate satisfac-
torily even when the input SNR is very low.

7.9.3 Threshold Extension Techniques

Basically there are two threshold extension techniques that are available. These are as follows:
 1.  Frequency Modulation Feedback (FMFB) technique
 2.  Phase Lock Loop (PLL) technique
Actually these two techniques work on similar lines and are equally effective in lowering the threshold. 
However, the PLL method is simpler and is therefore generally preferred. In practice, they reduce the 
threshold rth by about 5 to 7 dB, i.e., when either of these techniques is used, the value of the threshold rth

effectively has a value of 3 to 5 dB.

FMFB technique As we have already discussed, the onset of threshold conditions occurs when the input 
signal-to-noise ratio (SR/NR), of the discriminator falls below some critical value. We know that

and

2

2
R

R

R

A
S

N Bh

=

=
where B = Bandwidth of the noise at the input of the  discriminator.

In a normal FM broadcast superheterodyne receiver, B is equal to the bandwidth of the incoming FM signal, 
which is being denoted by us as BT, the transmission bandwidth, and the IF amplifier bandwidth is designed to 
be equal to BT. So, in a normal FM broadcast receiver, by not employing any threshold extension techniques, 
the bandwidth of the noise at the input to the receiver’s discriminator is BT.
 Hence, by keeping SR, the input signal power the same, if we can reduce NR by reducing the noise 
bandwidth below BT, we can improve the SNR at the input to the discriminator and thus achieve threshold 
extension. Basically, this is precisely what the FMFB technique for threshold extension tries to do.

Fig. 7.23 FMFB method for threshold extension

Referring to Fig. 7.23, the normal local oscillator of the receiver is replaced by a Voltage Controlled Oscil-
lator (VCO), which may as well be considered as a frequency modulator. The VCO is adjusted, in the absence 
of the control voltage, to oscillate at a frequency f0 which is fif hertz below the carrier frequency, fc, to which 
the receiver is tuned. The control voltage applied to it is the output audio signal of the receiver, which is an 
approximation to the message signal x(t) of the FM signal being received. The output of the VCO is thus 
a frequency modulated signal with a carrier frequency f0 and x(t) as the modulating signal. The product 
modulator multiplies the incoming FM signal having a carrier frequency fc with the output of the VCO. In the 
output of the product modulator, only the difference frequency component is passed on to the IF amplifier. 
The input to the IF amplifier is therefore an FM signal with (fc – f0) = fif as the carrier frequency and x(t) as 
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the modulating signal. However, its peak deviation will be less than that of the incoming FM signal, since it is 
the difference frequency component coming out of the product modulator. Because of the smaller deviation, 
its bandwidth will be less than BT, the  transmission bandwidth of the incoming FM signal. Since the IF stage 
bandwidth is much less than BT, say B, the noise power at the input to the discriminator is only hB instead of 
hBT. Thus, the input (S/N) ratio for the discriminator is increased and consequently the onset of threshold is 
made to occur at a much smaller value of (S/N)R than the 
value at which it would have occurred in the absence of 
the feedback.

PLL technique Earlier, in Section 5.8, we had seen 
how a PLL could be used as an FM demodulator.
 For convenience, Fig. 5.36 showing the linearized 
equivalent circuit of the PLL has been reproduced here as 
Fig. 7.24. This circuit was analyzed in Section 5.8. It was 
shown there that

( )
( )

1 ( )
e

v

f
f

k
H f

jf

F
F =

Ê ˆ+ Á ˜Ë ¯

 (7.103)

and that

( ) ( )
( )

1 ( )v

H f f
V f

k
H f

jf

◊ F
=

Ê ˆ+ Á ˜Ë ¯

 (7.104)

As pointed out there, if the gain of the  loop filter is high enough, so that

( ) 1 for | |vk
H f f W

jf

Ê ˆ >> <Á ˜Ë ¯

then v(t), the output of the PLL is given by

( ) ( )
f

v

k
v t x t

k

Ê ˆ
= Á ˜Ë ¯

where x(t) is the modulating signal of the incoming FM wave. Hence, for good tracking, i.e., for fc(f) to be 
very small, the loop filter’s gain must be adjusted to be high.
 Now, since v(t) is proportional to the modulating signal, x(t), if x(t) is band limited to W Hz, i.e., X(f) = 0 
for | f | ≥ W, then V(f) will also be zero for | f | ≥ W. Since v(t) is the output of the loop filter, and since it is band 
limited to W Hz, we need to provide a bandwidth of only W Hz to the loop filter. As in the case of the  FMFB, 
this implies that the threshold is 
lowered and that the receiver can 
operate satisfactorily with even 
smaller values of input SNRs.
 Generally a second-order filter of 
the ‘ proportional plus integral type’, 
shown in Fig. 7.25, is used as the 
loop filter.

Fig. 7.24 Linearized equivalent circuit of the PLL

Fig. 7.25 Loop filter for a  second-order PLL
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7.9.4 Comparison between AM and FM

Table 7.1

S. No. Amplitude Modulation Frequency Modulation

1. It is the amplitude parameter of the carrier which 
is varied.

It is the frequency parameter of the carrier which is varied.

2. Average power of the modulated signal changes 
with the depth of modulation.

Average power of the modulated signal does not change 
with modulation index.

3. Depth of modulation depends only on the 
amplitude of the modulating signal.

Modulation index, b, depends both on the amplitude as 
well as the frequency of the modulating signal.

4. For a single-tone modulating signal, the modulated 
signal has only two side frequencies besides the 
carrier, BT = 2fm.

Even for a single-tone modulating signal, the modulated 
signal theoretically contains an infinite number of side-
frequencies besides the carrier. Theoretically, BT is infinite.

5. The carrier component in the modulated signal 
has fixed amplitude and it does not change with 
the modulation index.

The carrier component in the modulated signal varies with 
the modulation index and it becomes zero for some values 
of the modulation index.

6. Bandwidth is constant and equal to 2W

irrespective of the depth of modulation. BT = 10 
kHz for commercial AM broadcasting.

Effective bandwidth changes with modulation index b.
BT = 2W(b + 1) ª 180 kHz for commercial FM broad-
casting.

7. Bandwidth increases in direct proportion to the 
frequency of the modulating signal.

Effective bandwidth increases only slightly with the 
frequency of the modulating signal. 

8. The maximum audio frequency handled by an 
AM broadcast transmitter is generally limited to 
5 kHZ.

The maximum audio frequency handled by an FM 
broadcast transmitter is generally 15 kHZ.

9. Additive noise on the channel directly affects an 
amplitude modulated signal.

Additive noise on the channel can affect the FM signal 
only indirectly by producing a change in its phase. Thus, 
compared to AM, FM enjoys some immunity against 
channel noise.

10. AM systems do not permit any trade-off between 
transmission bandwidth and the average trans-
mitted power.

Trade-off is possible between transmission bandwidth and 
the average transmitted power.

11. When the channel includes devices like  TWT 
amplifier which generally has a non-linear 
input-output relation, an AM signal gets terribly 
distorted (see Section 5.7).

Input-output non-linearity of the channel does not cause 
any distortion. It only changes the amplitude of the FM 
signal.

12. Even weak interfering signals close to the 
frequency of desired signal can cause some inter-
ference.

Interfering signals which are weak compared to the desired 
signal do not cause interference due to  capture effect.

Summary 
 ■ For a baseband transmission system, i.e., when the baseband or message signal is transmitted without any 

modulation,

R

D

SS

N W
g

h

Ê ˆ = DÁ ˜Ë ¯ , where SR = Received signal power

h/2 = PSD of white noise on the channel
W = Bandwidth of baseband signal
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 ■ Model used for linear modulation systems:

 ■  Pre-detection SNR
R T

S W

N B
g

Ê ˆ Ê ˆ= =Á ˜ Á ˜Ë ¯ Ë ¯
, where BT is the bandwidth of the transmitted signal.

 ■ (a)

SSB-SC DSB-SC
D D

S S

N N
g

Ê ˆ Ê ˆ= =Á ˜ Á ˜Ë ¯ Ë ¯

  (b) 
2 2

2 2

AM AM, 1
tone mod

( )
;

31 ( )D D
m

S m x t S

N Nm x t

g
g

=

È ˘Ê ˆ Ê ˆ Ê ˆÍ ˙= =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙+Î ˚
, i.e., 5 dB less than 

D

S

N

Ê ˆ
Á ˜Ë ¯  of SSB-SC and DSB-SC.

 ■ There is a  threshold effect for AM with an envelope detector. That is, when the SNR at the input to the envelope 
detector is small compared to unity, the message signal and noise become intermingled at the output of the detector.

 ■ Model used for FM systems:

 ■ The PSD of the noise at the output of the discriminator in the FM receiver varies as the square of the frequency.

 ■
2 2

FM

3 ( ) provided 1.
D R

S S
D x t

N N
g

Ê ˆ Ê ˆ= >>Á ˜ Á ˜Ë ¯ Ë ¯

 ■ There is a  power-bandwidth trade-off possible in WBFM as shown by 
D

S

N

Ê ˆ
Á ˜Ë ¯  for FM.

 ■ (a)  Pre-emphasis consists of boosting up the higher message frequencies before modulation at the FM transmitter.
  (b)   De-emphasis consists of de-emphasizing the higher message frequencies back to their original level after the 

discriminator stage in an FM receiver.
  (c) Pre-emphasis, de-emphasis technique is used to improve the  destination SNR in an FM system.

 ■ There is a threshold effect in FM reception, i.e., if the input SNR for an FM receiver falls below a certain threshold 
value, the output of the receiver will be only noise.

 ■ For WBFM receivers, the threshold value of the input SNR is approximately 10 dB.
 ■  Threshold extension technique like FMFB and PLL methods reduce the threshold input SNR to about 3 to 5 Db, 

i.e., they reduce the threshold by 5 to 7 dB.
 ■  Figure of Merit (FOM) of a communication system is defined as

(SNR at the destination)
FOM

(SNR at the input to the detector but with the noise considered 

only over message bandwidth)

( / ) 1
since

( / )
D R

DR

S N SS

S W N W
g

h g h

D

È ˘ Ê ˆÊ ˆ= = =Á ˜Í ˙ Á ˜Ë ¯ Ë ¯Î ˚
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 ■ FOM Values: SSB-SC : 1; DSB-SC : 1, AM : 
2 2

2 2

( )

1 ( )

m x t

m x t

È ˘
Í ˙
Í ˙+Î ˚

WBFM: 2 2 2

(tonemod)

3
3 ( ) and :

2
D x t WBFM b
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Review Questions 
 1. Draw the block diagram of the model used for the channel and the receiver to study the noise performance of 

various modulation systems.
2. Derive an expression for the destination SNR of a baseband system. How is the receiver modeled for this case?
3. What is the model used for a synchronous detector?
4. Derive an expression for the destination SNR in the case of an AM system employing synchronous detection.
5. What is the model used for an envelope detector?
6. Derive an expression for the destination SNR of a DSB-SC system in terms of that of a baseband system.
7. Show that an SSB-SC system gives the same destination SNR as a baseband system.
8. Critically compare the noise performance of AM, DSB-SC, and SSB-SC systems.
9. Discuss the effect of channel noise on the phase angle and frequency of an FM signal.

10. Derive an expression for the PSD of noise at the output of the discriminator of an FM receiver.
11. Explain the meaning of the following statement: 

  ‘FM systems permit a trade-off between bandwidth and power’.
12. Explain the need for pre-emphasis and de-emphasis in the case of FM systems. How is it implemented?
13. Draw the circuit diagram of the filters used for pre-emphasis and de-emphasis. Write down the expressions for 

their transfer functions and sketch their frequency response.
14. Derive an expression for the improvement in the destination SNR obtained by the use of pre-emphasis and 

de-emphasis in an FM system.
15. What is meant by the ‘threshold effect’ in FM receivers?
16. Clearly explain the physical processes that lead to the occurrence of threshold in a FM receiver.
17. Clearly explain the basic principle of extension of threshold using the FMFB technique.
18. How can a PLL be used for threshold extension?

Problems 
 1. An AM transmitter is used to send a message signal with 2 0.5x =  and a bandwidth of 5 MHz over a channel which 

introduces additive white noise with a power spectral density of 10–12 W/Hz. The modulation index is equal to 1. If 
the channel introduces a loss of 100 dB, and if the average transmitted power is 200 W, find the destination signal-
to-noise ratio that can be obtained.

2. Determine the post-detection SNR to pre-detection SNR ratio for the following types of communication systems:
 (a) AM with a modulation index of m (b) SSB-SC
 (c) DSB-SC   (d) FM with modulation index bf
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3. A DSB-SC signal is transmitted over a channel with additive white noise of two-sided PSD of h =( /2)
120.5 10 /HzW

-¥ . If the received signal power is SR = 20 ¥ 10–9 W and the message bandwidth W = 5 ¥ 106 Hz, 
find the destination SNR.

4. It is proposed to transmit a message signal whose amplitude is uniformly distributed over [–1, 1] and whose 
bandwidth is 1.5 MHz over a channel with an additive white noise two-sided PSD of 0.5 ¥ 10–13 W/Hz and intro-
ducing a loss of 80 dB between the transmitter and receiver. If destination SNR of 40 dB is desired, for each of the 
following cases, determine the transmitter power that will be required:

 (a) SSB-SC modulation
 (b) AM with a modulation index of m = 0.6
 (c) DSB-SC modulation

5. A message signal, band limited to 2 kHz, is uniformly distributed in the interval [–1, 1]. It is used for amplitude 
modulating (AM) a sinusoidal carrier of peak amplitude 5 V and frequency fc Hz, the modulation index being 0.5. 
The modulated signal is transmitted over a channel with additive white noise of PSD (two sided) 0.5 ¥ 10–12 W/Hz
and the channel introduces an attenuation of 80 dB. The received signal is first filtered using a BPF centered on fc
and having a transfer function H(f) as shown in Fig. P7.5.

Fig. P7.5 Transfer function of the front-end BPF

  Then it is demodulated using a synchronous detector consisting of a product device (to which the locally generated 
carrier and the filtered received signal are applied) followed by an ideal LPF with a cut-off frequency of 2 kHz. 
Determine the pre-detection and destination SNRs.

6. A transmitter is producing an average transmitted power of 20 kW. The channel with an additive white noise of 
PSD (two sided) 0.5 ¥ 10–10 W/Hz introduces an attenuation of 70 dB. The message signal has a bandwidth of 10 
kHz and a normalized average power of 0.2 W.

 (a) Find the pre-detection SNR
 (b) Find the destination SNR if
 (i) the modulation is AM with a modulation index of m = 0.8
 (ii) the modulation is DSB-SC
 (iii) the modulation is SSB-SC

7. While deriving the destination SNR for a WBFM system, we had assumed that the baseband filter in the receiver 
is an ideal LPF with a cut-off frequency of W Hz. Derive the expression for the (S/N)D assuming that the baseband 
filter is a Butterworth filter of order n with a 3-dB cut-off frequency of W Hz.

8. A message signal, x(t), normalized so that |x(t)| £ 1, has a bandwidth of 4 kHz and an average power of 0.2 W. It is 
used for modulating a carrier and the modulated signal is transmitted over a channel of bandwidth 100 kHz. Find 
the ratio of the destination SNRs obtained for the following two cases:

 (a) The message frequency modulates the carrier and the modulated signal fully utilizes the full bandwidth of 
the channel.

 (b) The message amplitude modulates (AM) the carrier to a depth of 0.5.
9. A message signal, x(t), with a bandwidth of 500 kHz and an average power of 0.33 W, frequency modulates a 

carrier having a peak amplitude of 22.36 V, producing a peak frequency deviation of 2 MHz. This modulated 
signal is transmitted over a channel with additive white noise of two-sided PSD equal to 0.5 ¥ 10–15 W/Hz and a 
transmission loss of 80 dB. If the receiver uses a post-detection de-emphasis filter having a transfer function,

2

1
( ) where 5 kHz

1 ( / )
deH f B

f B
= =

+
  followed by an ideal LPF of 500 kHz cut-off frequency, determine the destination SNR.
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10. A message signal with a bandwidth of 6 kHz and an average power of 0.5 W, is transmitted using FM, over a 
channel characterized by a bandwidth of 60 kHz and additive white noise of two-sided PSD equal to 10–11 W/Hz.

 (a) If a destination SNR of 60 dB is desired without pre-emphasis and de-emphasis, what should be the trans-
mitted power?

 (b) If a destination (SNR) of 60 dB is desired using pre-emphasis and de-emphasis filters of time constant 75 
micro-sec., what should be the transmitted power?

11. A communication system makes use of a message signal with an average power of 0.5 W and a bandwidth W = 
10 kHz. The modulated signal is transmitted over a channel with additive white noise having a two-sided PSD of 
0.5 ¥ 10–14 W/Hz, and a transmission loss of 80 dB. A destination SNR of 40 dB is needed. Determine the trans-
mitter power required if

 (a) AM with m = 0.5 is used
 (b) SSB-SC is used
 (c) WBFM with D = 5 is used (No pre-emphasis and de-emphasis)
 (d) WBFM with D = 5 is used and pre-emphasis and de-emphasis filters of 75 ms time constant are used.

12. An FM receiver employing FMFB for threshold extension is shown in Fig. P7.12.

Fig. P7.12

  Assume that the received FM signal is noise-free and that it has a carrier frequency of fc. The VCO produces a 
signal given by

0
0

2 cos ( ) 2 ( )
t

LO c IFx t K x dw w p t t
È ˘

= - +Í ˙
Í ˙Î ˚

Ú

  Show that the deviation ratio of the FM signal with fif as the carrier, is D/(1 + K), where D is the deviation ratio of 
the received FM signal with carrier frequency fc. How is BIF related to BT?

Multiple-Choice Questions 
 1. The channel noise has a two-sided PSD of h/2 W/Hz and the incoming FM signal has a bandwidth of BT Hz. The 

peak amplitude of the FM signal at the input to the discriminator is AR volts. The pre-detection SNR is

 (a) 
2
R

T

A

Bh
 (b) 

21

2
R

T

A

Bh

Ê ˆ
Á ˜Ë ¯

 (c) 
22 R

T

A

Bh
 (d) 2

2 T

R

B

A

h

2. In the receiver model used for discussing the noise performance of different modulation schemes, the pre-detection 
and post-detection stages of the receiver are modeled respectively as

 (a) band pass filter and low pass filter (b) high pass filter and low pass filter
 (c) low pass filter and low pass filter (d) band pass filter and high pass filter

3. If g denotes the destination SNR for a baseband transmission system, that of a DSB-SC system with carrier peak 
amplitude of AR is given by

 (a) g /2 (b) g (c) 2g (d) g /4
4. For AM, the destination SNR is given by

 (a) 
2 2

2 21

m x

m x
g

Ê ˆ
Á ˜

+Ë ¯
 (b) 
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m x

m x
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Ê ˆ
Á ˜

+Ë ¯
 (c) 
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g

Ê ˆ
Á ˜+Ë ¯

 (d) 
1
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g

Ê ˆ
Á ˜+Ë ¯
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5. In an AM system transmitting a single tone message at 100% modulation, the destination SNR is given by
 (a) g (b) (1/2) g (c) (1/3) g (d) 2g

6. At the output of the discriminator in an FM receiver, the PSD of the noise
 (a) increases linearly with frequency (b) decreases as the square of the frequency
 (c) increases as the square of the frequency (d) decreases linearly with frequency

7. The average signal power at the input to the detector in the case of an AM system is given by

 (a) ( )21 mx+  (b) 
2

21
2
RA

mxÈ ˘+Î ˚  (c) ( )2 21 m x+  (d) ( )2
2 21

2
RA

m x+

8. For the same average power transmitted and with tone modulation,
 (a) (S/N)D will be the same for AM and SSB-SC
 (b) (S/N)D for AM is greater than (S/N)D for SSB-SC by 5 dB
 (c) (S/N)D for AM is less than (S/N)D for SSB-SC by 5 dB
 (d) (S/N)D for AM is less than (S/N)D for SSB-SC by 10 dB

9. Pre-emphasis is
 (a) boosting up of the high frequency components of the message signal after detection in the receiver
 (b) boosting up of the high frequency components of the message signal at the transmitter before modulation
 (c) boosting up of the low frequency components of the message signal after detection in the receiver
 (d) boosting up of the low frequency components of the message signal at the transmitter before modulation

10. In standard FM broadcasting systems, the time constants of the pre-emphasis and de-emphasis filters are respec-
tively

 (a) 75 ms and 100 ms (b) 75 ms and 75 ms (c) 100 ms and 75 ms (d) 100 ms and 100 ms
11. For standard FM broadcast receivers, the threshold input SNR, i.e., rth is approximately

 (a) 10 dB (b) 13 dB (c) 5 dB (d) 7 dB
12. Use of some type of threshold extension technique is absolutely necessary in the case of

 (a) FM broadcast receivers
 (b) wideband FM communication from the earth station to a satellite
 (c) wideband FM communication from a satellite to the earth station
 (d) None of the above

Key to Multiple-Choice Questions

 1. (b) 2. (a) 3. (b) 4. (a) 5. (c) 6. (c) 7. (d) 8. (c)
 9. (b) 10. (b) 11. (a) 12. (c)
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SAMPLING AND ANALOG PULSE 

MODULATION

8
“Everyone thinks of changing the world, but no one thinks of changing himself.”

Leo Nikolaevich Tolstoy (1828–1910)

Russian writer

Learning Objectives

After going through this chapter, students will be able to

 ■ clearly understand the meaning of terms like: ‘Band-limited Signals’, Nyquist rate, Aliasing, etc., 

derive the low pass sampling theorem and explain its implication,

 ■ appreciate the usefulness and limitations of various methods of sampling, and explain the way a 

band-limited low pass signal may be reconstructed from its samples,

 ■ explain the basic concept of time-division-multiplexing,

 ■ understand the way the amplitude of each sample of a continuous-time band-limited signal, is repre-

sented in PAM, PDM and PPM,

 ■ understand that bandwidth deficiency of the channel causes cross-talk in PAM, PDM and PPM signals, 

and

 ■ mathematically analyze the noise performance of PAM, PDM and PPM systems and compare their 

noise performance.

8.1 INTRODUCTION

In this chapter, we will be first discussing the low pass  sampling theorem. In essence, this theorem tells us that 
a low pass signal x(t), band limited to W Hz, i.e., one which does not have any frequency components at or 
above W Hz, can be completely recovered for all time from its samples taken at regular intervals Ts, provided 

1

2sT
W

£  sec. As we are going to see, the process of reconstructing, or recovering, x(t) from its samples, is 

extremely simple. All that we need to do is to pass the samples through a low pass filter having an appropriate 
cut-off frequency.
 In all the continuous-wave modulation techniques – AM, FM or PM, information about the message 
signal is transmitted continuously in terms of corresponding variations of the amplitude, frequency, or the 
phase of the carrier wave as the case may be. In this context, what the low pass sampling theorem states, 
has tremendous practical implication. It makes it clear that if a message is band limited, it is not necessary 
to transmit it continuously; it is enough if we transmit its samples, since the receiver can reconstruct the 
message from these samples.
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426 Communication Systems

 There are different methods that one can adopt for representing the sample values and transmit them to the 
receiver. These different methods of representing the sample values give rise to the different pulse modulation 
schemes. Some of them like  pulse amplitude modulation (PAM),  pulse duration modulation (PDM or PWM) 
and pulse position modulation (PPM) are analog pulse modulation techniques, while  pulse code modulation 
(PCM), etc., are digital pulse modulation techniques. We will, of course, confine our discussion to only 
analog pulse modulation systems in this chapter.
 Information about the sample value at a sampling instant is carried by the amplitude of a pulse occurring 
at that instant in the case of PAM, by the width of the pulse occurring at that sampling instant in the case of 
PDM and by the shift in its position with respect the sampling instant, in the case of PPM. Since the width of 
the pulse, t, is very small compared to the interval between consecutive pulses, the average power in a pulse 
modulated signal is very low compared to that in a continuous wave modulation system. Of course, in the 
course of this chapter, we will be discussing this and other advantages and disadvantages of pulse communi-
cation systems, but for the present, we will simply list them as follows.
 1. The average transmitted power is very low. This is especially useful when the energy to be radiated is 

obtained from devices like magnetron or a laser, which can give large pulsed powers but only a very 
small average power.

 2. It is possible to have  Time Division Multiplexing (TDM) for transmission of several message signals 
simultaneously over the same physical channel by making the pulses pertaining to different message 
signals to share the available time Ts between two consecutive samples of the same message signal.

 3. Pulse modulation has the disadvantage of requiring large transmission bandwidths.
 Since the pulses contain considerable dc content and low frequency components in addition to the high 
frequency components, they cannot be radiated directly. So, when transmission over long distances is desired, 
these pulses must be made to modulate a high frequency carrier. For short distances, however, they can be 
transmitted over a cable, or a pair of wires.
 Pulse modulation systems are mostly used for time division multiplexing of several message signals as in 
the case of data telemetry and in instrumentation systems.

8.2 SAMPLING OF BAND LIMITED LOW PASS SIGNALS

If x(t) is an analog signal, the process of sampling it should result 
in the set of samples, {x(nT)}, where T is the sampling interval and 
x(nT) is the value of x(t) at t = nT, the nth sampling instant.
 An easy way of visualizing the sampling process, and perhaps a 
simple way of implementing it may be through a switch, as shown 
in Fig. 8.1. Although a mechanical switch is shown in Fig. 8.1, in 
actual practice, an electronic switch, making use of a diode bridge 
clamper, a diode bridge linear gate or a shunt transistor gate, may be used.
 Let the switch make contact with A once every T sec. Then xs(t) consists of samples of x(t) taken every 
T sec, provided the switch makes contact with A instantaneously. However, in practice, the contact will be 
made for a finite amount of time, say, t sec.
 Then the sampled version is as shown in Fig. 8.2. This consists of strips of x(t) of width t occurring at 
regular intervals of T sec; and may be visualized as the waveform that results when x(t) is multiplied by a 
‘ sampling function’ shown in Fig. 8.3.
 This sampling function may be expanded using Fourier series, as it is a periodic function with period T.

02 1
( ) ; sampling periodj f nt

n
n s

s t c e T
f

p
•

=-•
= = =Â  (8.1)

Fig. 8.1 A switch used for sampling
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where

0

/2
2

/2

1
( ) 

T
j nf t

n

T

c s t e dt
T

p-

-
= Ú  (8.2)

However, over the interval –T/2 to T/2,
( ) ( / )s t t t= P , since t << T

Hence, we may write Eq. (8.2) as

0

/2
2

/2

( / ) j nf t
n sc f t e dt

t
p

t

t -

-
= PÚ  (8.3)

As P(t/t) = 0 outside the limits of integration, we may write

2 ( )( / ) [ { ( / )}]s

s

j nf t
n s s

f nf
c f t e dt f t

pt t
•

-

=-•
= P = PÚ F

since [ ( / )] sinc t ft t tP =F

sincn s sc f nft t=  (8.4)

\ 2

1

( ) sinc 2 sinc ( )cos2sj nf t
s s s s s s

n n

s t f nf e f nf nf t f
pt t t t p t

• •
+

=-• =

È ˘
= = +Í ˙

Î ˚
Â Â  (8.5)

Since
1

andsf
T T

t
=  = duty ratio of the sample function = a ,

( ) 2 sinc( )cos2 2 sinc(2 )cos2 2 2 sinc(3 )cos2 3 . . . s s ss t f t f t f ta a a p a a p a a p= + + + +  (8.6)

\ ( ) ( ) ( ) ( ) 2 [ ( )sinc cos ( )sinc(2 ) cos ...]s s sx t x t s t x t x t t x t ta a a w a w= ◊ = + ◊ + ◊ +  (8.7)

Taking Fourier transform on both sides, we get

1 2( ) ( ) [ ( ) ( )] [ ( 2 ) ( 2 )] ...s s s s sX f X f c X f f X f f c X f f X f fa= + - + + + - + + +  (8.8)

where  sinc kc ka a=  (8.9)

If the signal x(t) has a spectrum as shown in Fig. 8.4, the spectrum of Xs(f), the sampled version of x(t), will 
be as shown in Fig. 8.5.

Fig. 8.2 Sampling waveform xs(t)

Fig. 8.3  Sampling function
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428 Communication Systems

 This figure showing Xs(f) has been drawn assuming that (fs – W) > 
W, or fs > 2W. It is interesting to note from this figure that the spectrum 
of x(t), viz., X(f) appears in it without any distortion. It is only scaled 
by the factor a, the duty cycle of the sampling function. If we can, by 
some means, separate out this part of the spectrum from Xs(f), say, by 
using a low pass filter with a cut-off frequency of B Hz, where B is 
such that W < B < (fs – W) and whose gain is constant at least up to 
W Hz, then, in time domain, it means that we are able to get back our 
x(t) without any distortion, from its sampled version. If fs = 2W, then 

W = (fs – W) and so there will not be any guard band. So, to recover x(t) from xs(t), one has to use an ideal 
LPF with a cut-off frequency equal to W.
 In case fs is less than 2W, the spectrum Xs(f), of the sampled version of x(t), viz., xs(t), will be as shown in 
Fig. 8.6. In this case, we find that there is no  guard band.

Fig. 8.6 Spectrum of xs(t) when fs < 2W

 In fact, the spectra overlap and it is impossible to retrieve x(t) from xs(t) without distortion. Thus, we find that, 
in general, there are two basic conditions to be satisfied if x(t) is to be recovered from its samples. These are:
 1. x(t) should be band limited to some frequency, W.
 2. The sampling frequency should be at least twice the band limiting frequency.
If W is the band limiting frequency, fs – 2W is called the  Nyquist rate of sampling and represents the theoretical

minimum sampling frequency that can be used if the signal is to be recovered without any distortion from its 
samples. It is the ‘theoretical minimum’ because when the Nyquist rate of sampling is used, only an ideal LPF 
can be used to extract X(f) from Xs(f), i.e., to recover x(t) from xs(t). However, if fs > 2W, any practical LPF 
with constant gain over the frequency range –W to W and a phase shift that is proportional to the frequency, 
will be able to recover x(t), without any distortion from xs(t).
 With the above background, we shall now proceed to the low pass sampling theorem – an extremely 
important theorem that forms the basis for all modern digital communications. It summarizes the results 
obtained in the foregoing and guarantees that it is possible to recover the continuous-time signal, x(t), for all 
time, from its samples taken at regular intervals, if the signal x(t) is band limited and if the sampling is done 
at or above the Nyquist rate.

Fig. 8.4 Spectrum of x(t)

Fig. 8.5 Spectrum of xs(t) when fs > 2W
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8.3 LOW PASS SAMPLING THEOREM

Statement Let x(t) be a band-limited low pass signal, band limited to W Hz, i.e., X(f) = 0 for | f | ≥ W. Then 
it is possible to recover x(t) completely, without any distortion whatsoever from its samples, if the sampling 
interval, Ts, is such that Ts £ 1/2W. Specifically, x(t) can be expressed in 
terms of its samples, x(kTs) as follows:

( ) 2 ( )sinc2 ( )s s s
k

x t BT x kT B t kT
•

=-•
= -Â  (8.10)

where B is any frequency such that W £ B £ (fs – W)

Proof Let x(t) have a spectrum X(f) as shown in Fig. 8.7.

 Consider ( )X f%  shown in Fig. 8.8, which is a periodic repetition of X(f)
at regular intervals of frequency equal to fs, where fs > 2W.

Fig. 8.8 Spectrum of xs(t)

Since fs > 2W, dividing by 2 on both sides, fs/2 > W.
Hence, fs/2 – W > 0. Now, adding fs/2 on both sides, we get fs – W > fs/2. Hence, we have

( )
2
s

s

f
W f W< < -  (8.11)

i.e., fs/2 lies between W and (fs – W).

Since ( )X f%  is periodic in frequency with a period of fs, we can expand it as a Fourier series. Let us say

2 1
( ) ;sj nT f

n s
n s

X f c e T
f

p
•

=-•
= =Â%  (8.12)

where

/2
2

/2

1
( )

s

s

s

f
j nfT

n
s f

c X f e df
f

p-

-
= Ú %  (8.13)

Since

( ) ( ) for | | and ( ) 0 for | |
2
sfX f X f f X f f W= £ = ≥%

Equation (8.13) may be written as

2( ) sj nfT
n sc T X f e df

p
•

-

-•
= Ú  (8.14)

But { }2 1( ) [ ( )]s

s

j nfT

t nT
X f e df X f

p
•

+ -

=--•
=Ú F

Hence, Eq. (8.14) may be written as

( ) ( )
s

n s s s
t nT

c T x t T x nT
=-

= = -

Fig. 8.7 Spectrum of x(t)
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Substituting this in Eq. (8.12), we have
2( ) ( ) sj nfT

s s
n

X f T x nT e
p

•

=-•
= -Â%

If we put k = –n
2( ) ( ) sj f kT

s s
k

X f T x kT e
p

•
-

=-•
= Â%  (8.15)

If we now define a gate pulse W2B(f) of width 2B Hz in the frequency domain, i.e., if

2 ( )
2B

f
W f

B

Ê ˆD PÁ ˜Ë ¯
 (8.16)

then 2 ( ) ( )BW X f X f=%  (8.17)

\ 2
2( ) ( ) ( )sj f kT

s s B
k

X f T x kT e W f
p

•
-

=-•
= ◊Â  (8.18)

But 21 1
2( ) [ ( )] ( ) ( )sj f kT

s s B
k

x t X f T x kT e W f
p

•
-- -

=-•

È ˘
= = ◊Í ˙

Î ˚
ÂF  F

21
2

21 1
2

( )[ { ( )}]

( ){ [ ]}*{ [ ( )]}

s

s

j f kT
s s B

k

j f kT
s s B

k

T x kT e W f

T x kT e W f

p

p

•
--

=-•
•

-- -

=-•

= ◊

=

Â

Â

F

F F  (8.19)

In Eg. 8.19 we made use of the convolution theorem of Fourier transform now, noting that

21[ ] ( )sj f kT
se t kT

p d-- = -F  (8.20)

and 1 1
2[ ( )] [ ( /2 )] 2 sinc2BW f f B B Bt

- -= P =F F , (8.21)

we have ( ) 2 ( )[ ( )*sinc2 ]s s s
k

x t BT x kT t kT Btd
•

=-•
= -Â

Using the replication property of an impluse, we have,

\ ( ) 2 ( )sinc2 ( )s s s
k

x t BT x kT B t kT
•

=-•
= -Â  (8.22)

 Equation (8.22) tells us how we may reconstruct the signal x(t) from its samples, x(kTs). It says that x(t)
is the weighted sum of an infinite number of the interpolating functions sinc 2B(t – kTs) with x(kTs) as the 
weightage given to the sinc function delayed by an amount of time kTs. Since 2B sinc 2Bt is the impulse 
response of an ideal low pass filter whose cut-off frequency is B Hz and whose pass band gain is 1, Eq. (8.22), 
in fact, gives us the clue as to how we may reconstruct x(t) from its samples – obtain a sequence of impulses at 
regular intervals of Ts, with the impulse at t = kTs having a strength equal to x(kTs), the value of the kth sample 
of x(t), and then give this sequence of impulses as input to an ideal LPF whose cutoff frequency is B Hz. The 
output of the ideal LPF will then be proportional to x(t).
 To get a better appreciation of the foregoing, let us first consider what is generally called ‘ Ideal Sampling’, 
‘Impulse Sampling’ or ‘Instantaneous Sampling’.

8.4 IDEAL OR  IMPULSE SAMPLING

Earlier, in Section 8.2, we had considered sampling of a continuous-time waveform using periodic rectan-
gular pulses of width t.
 Ideally, sampling should be done instantaneously so that the kth element of the sequence obtained by 
sampling represents the value of x(t) at t = kTs. However, for obtaining this  instantaneous sampling, if we try 
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to reduce t, the pulse width in the sampling function, to zero, the duty ratio a will be zero and hence, xs(t)
will be zero, as may be seen from Eq. (8.7).

Fig. 8.9 (a) x(t), (b) s(t), (c) xd(t)

To overcome this difficulty, we will consider a  sampling function that is a sequence of unit impulses as shown 
in Fig. 8.9(b) instead of a sequence of unit amplitude pulses of zero width. This s(t) may be expressed as

( ) ( )s
n

s t t nTd
•

=-•
= -Â  (8.23)

If we again model the sampling process as multiplication of x(t) by the sampling function s(t), we have the 
sampled version xs(t), or, in this case, xd(t), given by

( ) ( ) ( )x t x t s td = ◊  (8.24)
or

( ) ( )* ( )X f X f S fd =  (8.25)

To find S(f), let us make use of the fact that s(t) is a periodic function with a period of Ts. Hence, we may write 
its Fourier series expansion as

2 1
( ) ; ;sj nf t

n s
n s

s t c e f t
T

p
•

=-•
= = - • < < •Â  (8.26)

where   
/2

2

/2

1
( )

s

s

s

T
j nf t

n
s T

c s t e dt
T

p-

-
= Ú  (8.27)
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However, for , ( ) ( )
2 2
s sT T

t s t td- £ £ = , as may be seen from Fig. 8.9(b).

Hence,
/2

2 2

0
/2

1 1
( ) 1

s

s s

s

T
j nf t j nf t

n s s
t

s sT

c t e dt e f f
T T

p pd - -

=-
= = = ◊ =Ú  (8.28)

Since cn = fs for all values of n, substituting this in Eq. (8.26), we get

2( ) sj nf t
s
n

s t f e
p

•

=-•
= Â

Taking  Fourier Transform on both sides,

2 2( ) [ ]

( )

s sj nf t j nf t
s s

n n

s s
n

S f f e f e

f f nf

p p

d

• •

=-• =-•

•

=-•

È ˘
= =Í ˙

Î ˚

= -

Â Â

Â

F F

\ ( ) ( )s s
n

S f f f nfd
•

=-•
= -Â  (8.29)

Substituting this in Eq. (8.25) and realizing that

( )* ( ) ( )s sX f f nf X f nfd - = -
and invoking the linearity theorem of FT, we have

    ( ) ( )s s
n

X f f X f nfd

•

=-•
= -Â  (8.30)

Equation (8.30) tells us that the spectrum of the ideally sampled version of x(t), viz., Xd(f) is nothing but a 
periodic repetition of X(f), the spectrum of x(t), with a period of repetition fs and is scaled by the factor fs.
Hence, if x(t) is a low pass signal band limited to W, with a spectrum as shown in Fig. 8.10(a), then Xd (f)
would be as shown in Fig. 8.10(b).

Fig. 8.10 (a) shows X(f) and (b) shows Xd(f)
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For the sake of drawing Fig. 8.10(b), it has been assumed that fs > 2W, i.e., the sampling is done above the 

 Nyquist rate. Hence fs – W > W and a guard band appears in the spectrum of xd(t). Because of the presence of 
the guard band, as shown in the figure, it is possible to recover X(f) from Xd(f), i.e., x(t) from xd(t) without any 
distortion using any practical low pass filter whose pass band gain is constant over the range of frequencies 0 
Hz to W Hz within which all the frequency components present in the signal x(t) are contained.
 If fs is equal to 2W, i.e., if the sampling is done exactly at the Nyquist rate, fs – W = W and therefore the 
spectrum of xd(t) would appear as shown in Fig. 8.11.

Fig. 8.11 Spectrum of xd(t) when fs = 2W

 As before, a low pass filter may be employed to separate out X(f) from the rest of the spectrum of xd(t).
However, as the pass band gain of this filter has to be constant at least from –W to +W for obtaining x(t)
without any distortion and as there is no guard band in the present case, only an ideal low pass filter with a 
cut-off frequency of W will have to be used, as shown in dotted lines in Fig. 8.11.
 If the sampling is done at less than the Nyquist rate, i.e., if fs < 2W, then fs – W < W and therefore the 
spectrum of xd(t) would appear as shown in Fig. 8.12.

Fig. 8.12 Spectrum of xd(t) when fs < 2W

In this case, we find that the spectra overlap and hence it is not possible to separate X(f) from Xd(f), i.e., it is 
not possible to recover x(t) from xd(t) even if we were to use an ideal LPF. As may be seen from Fig. 8.12, 
because of this overlapping, the high frequency components of x(t) reappear as low frequency components. 
This phenomenon is therefore appropriately referred to as ‘ Aliasing’. It is also called ‘ Frequency Folding 

Effect’.
 We may summarize the foregoing discussion on the effect of sampling rate as follows.
 1. Xd(f) is a repetitive version of X(f), with X(f) repeating itself at regular intervals of fs, the sampling 

frequency.
 2. If fs > 2W, then there is a guard band and it is easy to separate out X(f) from Xd(f), i.e., easy to recover 

x(t) from xd(t) using a practical LP filter.
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 3. If fs = 2W, i.e.,  Nyquist rate, no guard band exists and an ideal LPF is needed to recover x(t) from xd(t).
 4. If fs < 2W, aliasing takes place and it is not possible to recover x(t) from xd(t) without distortion.
 5. To avoid aliasing, it should be ensured that
 (a) x(t) is strictly band limited

 (b) fs is greater than 2W

We have all along been assuming that 
x(t) is band limited to W. But, it must be 
realized that in practice, signals are time 
limited, i.e., no practical signal exists from 
–• of time to +• of time. This means that 
no signal will, in practice, be strictly band 
limited. For example, if the spectrum of 
a signal x(t) is as shown in Fig. 8.13, it is 
necessary to first band limit x(t) to some 
appropriate frequency W such that most 
part of the energy is retained.
 We then choose a  sampling frequency fs such that it is more than 2W. The choice of W depends on the 
application. For example, speech signals can have frequencies up to even 15 kHz if it is a female voice. But, 
for digital telephony it is band limited to 3.4 kHz and sampled at 8 kHz. This is because, for this application, 
intelligibility is the criterion governing the choice of W. The minimum possible value of W is chosen for the 
sake of reducing the required bit rate, consistent with the requirement that the speech should be intelligible at 
the destination. A value of W equal to 3.4 kHz has been found to satisfy the requirement. This filter, an LPF, 
used for band limiting a signal before sampling, is generally referred to as an anti-aliasing filter since it is used 
primarily for preventing aliasing. Incidentally, this anti-aliasing filter helps in cutting off the out-of-band noise, 
if any, present along with the signal. This noise would otherwise alias into the useful band 0 Hz to W Hz after 
sampling. Similarly, for high fidelity music, a minimum bandwidth (W) of 20 kHz is needed. That is why, in 
CD music systems, a sampling frequency of 44.1 kHz, which is slightly more than the Nyquist rate, is used.

Example 8.1 The signal ( ) 10 cos 150x t tp=  is ideally sampled at a frequency fs = 200 samples per 
second. Sketch the spectrum of xd(t).

Solution ( ) [ ( )] [10 cos 150 ]

5[ ( 75) ( 75)]

X f x t t

f f

p

d d

= =
= - + +

F F

Since the spectrum Xd(f) of xd(t) is given by

( ) ( )s s
n

X f f X f nfd

•

=-•
= -Â ,

the sketch of it is as follows:

Fig. 8.15 Sketch of Xd (f) with fs = 200 samples per second

Fig. 8.13 Spectrum of an x(t)

Fig. 8.14 Sketch of X(f)
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Example 8.2 For the x(t) of Example 8.1, sketch xd(t), the spectrum of xd(t), the ideally sampled 
version of x(t), if the sampling is done at a frequency fs = 100 sps.

Solution 

Fig. 8.16 Sketch of Xd(f) of Example 8.2 with fs = 100 samples per second

 Note the presence of the 25 Hz component in the spectrum of xd(t) even though x(t) contains only the 
75 Hz component. This is because the sampling frequency in this example is 100 samples per second while 
the frequency of the signal is 75 Hz. Thus, the sampling rate of 100 samples per second is less than the 
Nyquist rate of sampling which is equal to 150 Hz. Hence, aliasing takes place and we should recognize the 
fact that the 75 Hz component of x(t) is itself reappearing as a low frequency component at 25 Hz because of 
aliasing.

Example 8.3 What is the minimum number of samples required to exactly describe the following 
signal?

( ) 10 cos(6 ) 4 sin (8 )x t t tp p= +

Solution If x(t) is periodic then it can be described exactly by a finite number of samples – corresponding 
to those in one period of x(t). So, let us first check whether x(t) is periodic

T1 = period of 
2 1

10cos6
6 3

t
p

p
p

= =

T2 = period of 
2 1

4sin8
8 4

t
p

p
p

= =

\ 1

2

1 4 4

3 1 3

T

T
= ¥ = , which is a rational number.

Hence, x(t) is periodic. Now, to determine its period T,

1 2

1 1
LCM , 1 3 4

3 4
T T T T

Ê ˆ= = \ = =Á ˜Ë ¯
The maximum frequency present in x(t) is 4 Hz, which is the frequency of the sin(8pt) component.
\ the minimum sampling frequency required = 8 samples per second.
\ the number of samples in one period of x(t) is equal to 8 since T = 1 sec and the sampling frequency is 8 
samples per second.

Example 8.4 Determine the minimum  sampling frequency to be used to sample the signal
2( ) 100 sinc 100x t t=

if the signal x(t) is to be recovered from the samples without any distortion.

Solution 2( ) 100 sinc 100 (10 sinc 100 ) (10 sinc 100 )x t t t t= = ◊

We know that 
FT

10 sinc100 0.1 ( /100)t f¨ææÆ P
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\ [ ]2[100 sinc 100 ] 0.1 ( /100) 0.1 ( /100)t f f= P * PF

Referring to Section 2.5, of Chapter 2, we find that convolution of two 
identical rectangular pulses results in a triangular pulse whose base 
width is twice that of each rectangular pulse.

\

2[100 sinc 100 ] [0.1 ( /100)] [0.1 ( /100)]

0.01 100 ( /200)

t f f

f

= P * P
= ¥ L

F

where ( /200)fL  denotes a triangular pulse as shown.

Thus, the signal 
2( ) 100 sinc 100x t t=  is a low pass signal band 

limited to 100 Hz.
Hence the  Nyquist rate for it is 200 samples per second.

8.5 RECONSTRUCTION

As already mentioned earlier, ‘recovering X(f) from Xd (f)’ and ‘reconstructing x(t) from xd (t)’ are one and the 
same; the only difference being that in the former case, it is looked upon as a frequency-domain operation, 
while in the latter, it is looked upon as a time-domain operation.
 We shall now briefly analyze and see how the signal x(t) is recovered in each case. First we shall consider 
the frequency-domain operation.
 Then, as shown in Fig. 8.11, let us assume fs = 2W and that an ideal LPF is used to recover X(f) form Xd(f).
Let the ideal LPF have a gain of Ts in the pass band and let it introduce t sec time delay. Then, we can write 
down its transfer function H(f) as

( ) ( / ) j
s sH f T f f e

wt-= P  (8.31)

Hence, the spectrum of the output of the filter is

( ) ( ) ( ) ( ) j
s sY f X f H f T f X f e

wt
d

-= ◊ =

\ ( ) ( ) j
Y f X f e

wt-=  (8.32)

or taking the inverse Fourier transform on both sides,

( ) ( )y t x t t= -  (8.33)

Thus, the output of the LPF is a time-shifted version of the signal x(t).
We now consider the reconstruction operation in the time domain.
xd(t) is a sequence of weighted impulses given by

( ) ( ) ( )s s
n

x t x nT t nTd d
•

=-•
= -Â  (8.34)

This weighted sequence, when given as the input to the ideal LPF with 
impulse response h(t), gives an output signal y(t) given by

( ) ( ) ( )s s
n

y t x nT h t nT
•

=-•
= -Â  (8.35)

where h(t), the  impulse response of the ideal LPF is given by
1 1( ) [ ( )] [ ( /2 ) ]

2 sinc2 ( )

j
s

s

h t H f T f W e

BT B t

wt

t

- - -= = P
= -

F F

 (8.36)

In our case, the cut-off frequency B of the LPF = W = fs/2.

\ ( ) 2 sinc2 ( )
2

sinc2 ( )

s
s

f
h t T B t

B t

t

t

= -

= -  (8.37)

Fig. 8.17  Triangular spectrum of x(t) 

= 100 sinc2 100t

Fig. 8.18  Recovering x(t) from xd(t),

the sampled version
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Taking the time delay t introduced by the LPF equal to zero, and substituting for h(t) in Eq. (8.35) using 
Eq. (8.37), we have

( ) ( ) sinc2 ( )s s
n

y t x nT B t nT
•

=-•
= -Â

 (8.38)

But from Eq. (8.22), we realize that RHS of Eq. (8.38) is nothing but x(t), since 
1

2 2
s

s

f
B

T
= =  in this case.

\ ( ) ( ) sinc2 ( )s s
n

x t x nT B t nT
•

=-•
= -Â  (8.39)

As explained earlier in Section 8.3 in connection with the 
low pass  sampling theorem and Eq. (8.22), when xd(t), a 
sequence of weighted impulses, is given as input to an 
ideal LPF, the output will be a sequence of weighted sinc 
pulses (since sinc pulse is the impulse response of an 
LPF) as shown in Fig. 8.19. When these are all added, 
together with their precursors and post-cursors, Eq. (8.39) 
tells us that we get x(t). Hence, when the sampled version 
xd(t) is fed as input to the LPF, x(t) appears at the output. 
Since the LPF reconstructs the original signal x(t) from its 
sampled version, it is generally referred to as the ‘Reconstruction Filter’.

8.6  SAMPLING USING 

A SEQUENCE OF 

PULSES –  NATURAL 

SAMPLING

Instead of a sequence of unit impulses 
as the sampling function s(t), one may 
use a sequence of pulses p(t) of width t
along the time axis occurring at regular 
intervals of Ts = 1/fs such that t << Ts.
The actual shape of the pulse p(t) is not 
important, although for the sake of illus-
tration it is shown as a rectangular pulse 
in Fig. 8.20(b). Again, modeling the 
sampling process as multiplication of x(t)
by s(t), we have

( ) ( ) ( )sx t x t s t= ◊  (8.40)

where

( ) ( )s
k

s t p t kT
+•

=-•
= -Â  (8.41)

As s(t) is a periodic pulse train, let us write its  Fourier series expansion

2( ) ( ) sj nf t
s n

k n

s t p t kT c e
p

+• •

=-• =-•
= - =Â Â  (8.42)

 Fig. 8.19  Reconstruction of x(t) from its samples 

(A sketch of RHS of Eq. (8.39))

Fig. 8.20  (a) Signal x(t), (b)  Sampling function s(t), (c) Sampled 

version of x(t), i.e., xs(t)

CS-Rao_08.indd 437CS-Rao_08.indd   437 1/22/2013 10:15:38 AM1/22/2013   10:15:38 AM



438 Communication Systems

where
/2

2

/2

1
( )

s

s

s

T
j nf t

n
s T

c s t e dt
T

p-

-
= Ú

Since t, the width of p(t) is very much less than Ts and p(t) = 0 for |t| ≥ t /2,
we may write

/2
2 2

/2

1 1
( ) ( )

( )

s

s s

s

T
j nf t j nf t

n
s sT

n s s

c s t e dt p t e dt
T T

c f P nf

p p
•

- -

- -•
= =

=

Ú Ú

 (8.43)

where

( ) [ ( )]
s

s
f nf

P nf p t
=

= F  (8.44)

\ 2( ) ( ) sj nf t
s s

n

s t f P nf e
p

•

=-•
= Â  (8.45)

and

2( ) [ ( )] ( ) ( )

( ) ( )* ( )

sj nf t
s s s s

n

s s s
n

X f x t f P nf x t e

f P nf X f f nf

p

d

•

=-•
•

=-•

È ˘
= = Í ˙

Î ˚

= -

Â

Â

F F

Since 2[ ] ( )sj nf t
se f nf

p d= -F

Hence,

( ) ( ) ( )s s s s
n

X f f P nf X f nf
•

=-•
= -Â  (8.46)

 If x(t) has a spectrum as shown in Fig. 8.10(a), Xs(f), the spectrum of the sampled version of x(t) will 
appear as shown in Fig. 8.22.

Fig. 8.22 Spectrum of the sampled version of x(t)

From the figure, it is clear that X(f) can be recovered from Xs(f), i.e., x(t) can be recovered from xs(t), if fs > 2W

by using a low pass filter whose pass band gain is constant at least up to W Hz and whose cut-off frequency 
B is such that W < B < fs – W, as shown. This is true whatever may be the pulse shape, as mentioned earlier.

Example 8.5 The signal x(t) = 2 cos 200pt + 6 cos 180pt is ideally sampled at a frequency of 150 
samples per sec. The sampled version xd(t) is passed through a unit gain ideal LPF with a cut-off frequency 
of 110 Hz. What frequency components will be present in the output of the LPF. Write down an expression 
for its output signal.

Fig. 8.21 Pulse p(t)
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Solution ( ) 2cos200 6cos180

2cos2 (100) 6cos2 (90)

x t t t

t t

p p

p p

= +
= +

Hence, taking FT on both sides,

( ) [ ( 100) ( 100)] 3[ ( 90) ( 90)]X f f f f fd d d d= + + - + + + -
This is depicted in Fig. 8.23.
 The spectrum of xd(t), the ideally sampled version of x(t) is a 
periodic repetition of X(f) at regular intervals of fs, i.e., 150 Hz; 
and will be as shown in Fig. 8.24.

Fig. 8.24 Spectrum of sampled version of x(t)

From Fig. 8.24, it is clear that the output of the LPF contains frequency components at 50 Hz, 60 Hz, 90 Hz 
and 100 Hz, although the original analog signal contains only 90 Hz and 100 Hz components. As x(t) is 
under sampled,  aliasing is taking place. 50 Hz component is the alias of the 100 Hz component and 60 Hz 
component is the alias of the 90 Hz component.
 The expression for the output of the LPF is given by

( ) 2[cos2(50) cos2 (100) ] 6[cos2 (60) cos2 (90) ]x t t t t tp p p p= + + +

Example 8.6 The signal 2( ) 12cos(800 )cos (1800 )x t t tp p=  is ideally sampled at 4600 samples per 
second. What is the minimum allowable  sampling frequency? What is the range of permissible cut-off 
frequencies for the ideal low pass filter to be used for reconstructing the signal?

Solution 
1

( ) 12cos(800 ) {1 cos3600 }
2

6cos800 6cos800 cos3600

6cos800 3cos4400 3cos2800

x t t t

t t t

t t t

p p

p p p

p p p

È ˘= +Í ˙Î ˚
= + ◊
= + +

Hence, the maximum frequency component present in x(t) has a frequency of 2200 Hz. So, the minimum 
allowable sampling frequency, i.e., the  Nyquist rate is 4400 samples per second.

Fig. 8.25 Spectrum of ideally sampled version of x(t) (only one-sided spectrum drawn)

Fig. 8.23 Spectrum of x(t)
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From Fig. 8.25, it is clear that in order to recover the three frequency components at 400 Hz, 1400 Hz and 
2200 Hz which are present in x(t) and avoid other frequencies, the cut-off frequency of the ideal LPF should 
be above 2200 Hz but less than 2400 Hz.

8.7 PRACTICAL SAMPLING

In practice, sampling is done using what is generally referred to as the 
‘Sample – and – Hold’ circuit which produces ‘flat – top sampling’ 
unlike in the previous case wherein the sampled version consisted 
of pulses whose top followed the contour of x(t). The schematic of 
a ‘ Sample – and – Hold’ (S/H) circuit is shown in Fig. 8.26 and a 
typical output waveform from a S/H circuit is shown in Fig. 8.27.

Fig. 8.27 Signal x(t) and output of S/H circuit

 The S/H circuit essentially consists of two switches k1 and k2 and a capacitor C, connected as shown in 
Fig. 8.26. With k2 open, k1 is closed for a very brief period at each sampling instant. The capacitor C then gets 
charged to a voltage equal to the value of the input signal x(t) at the sampling instant and holds it for a period 
t at the end of which, k2 is closed to allow the capacitor to discharge. This sequence of operations is repeated 
at the next and all subsequent sampling instants. The switches k1 and k2 are generally FET switches and are 
operated by giving appropriate pulses to their gates. An actual S/H circuit uses one or two op–amps also. The 
voltage across C appears as xs(t) and is sketched in Fig. 8.27.
 It may be observed that the amplitude of each pulse in Fig. 8.27 is equal to the amplitude of the sample 
of x(t) at that sampling instant. Hence, the output of S/H circuit is a Pulse Amplitude Modulated or a  PAM 
signal. In Fig. 8.27, the pulses shown are all of single polarity because the x(t) is positive throughout. In case 
x(t) takes negative values also, the  PAM signal obtained will be of double polarity.
 From the figure, it is obvious that the sampled version, xs(t) consists of a sequence of rectangular pulses, 
the leading edge of the kth pulse being at t = kTs and the amplitude of the pulse being the value of x(t) at 
t = kTs, i.e., x(kTs). Hence, we may write

( ) ( ) ( )s s s
k

x t x kT p t kT
•

=-•
= -Â  (8.47)

where
/2

( )  
t

p t
t

t

-Ê ˆD PÁ ˜Ë ¯
 (8.48)

and is as shown in Fig. 8.28.

Since ( ) ( )* ( )s sp t kT p t t kTd- = - ,

Fig. 8.26 Schematic of an S/H circuit

Fig. 8.28 Pulse p(t)
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we may write Eq. (8.47) as

( ) ( )* ( ) ( )s s s
k

x t p t x kT t kTd
•

=-•
= -Â  (8.49)

Now, taking Fourier transform on both sides,

\

( ) [ ( )] [ ( )] ( ) ( )

( ) ( ) ( )

s s s s
k

s

X f x t p t x kT t kT

X f p f X fd

d
•

=-•

È ˘
= = ◊ -Í ˙

Î ˚
= ◊

ÂF F F

 (8.50)

where Xd(f) is the Fourier transform of xd(t) the ideally sampled version of x(t).

Note that 

2 /2

( ) [ ( )]

sin
( sinc ) j f j f

P f p t

f
f e e

f

p t p tp t
t t t

p t
- -

=

Ê ˆ
= = Á ˜Ë ¯

F

  (8.51)

 We shall now assume that x(t) has a spectrum as shown in Fig. 8.29 
(This shape of X(f ) is deliberately chosen for this illustration, as it helps in 
clearly bringing out the ‘ Aperture Effect’, to be discussed later).
 Since p(t) is a rectangular pulse of width t, its  Fourier transform P(f),
which is a  sinc function, will have an ‘inverted bowl’ shape as shown in 
Fig. 8.30(a) and will have its first zero values only at f = –1/t and +1/t.
Since t << Ts, these zero values of |P(f)| which occur at ±1/t, will be far 
away from fs and – fs. Since Xs(f ) = P(f ) ◊ Xd( f ), its plot will be as shown in Fig. 8.30(b).

Fig. 8.30 (a) Plot of P(f) and Xd (f); (b) Plot of Xs(f) = P(f) ◊ Xd (f)

 As before, if we pass the sampled version xs(t) through the reconstruction filter (an LPF), what we get at 
the output of the filter will not be exactly x(t). It will be a distorted version of x(t) – distorted because, the 
magnitudes of the high frequency components are relatively reduced, as compared to the magnitudes of the 
low frequency components, as can be seen in Fig. 8.30(b), because of the multiplication of Xd( f ) by P(f). This

distortion of x(t), wherein the amplitudes of the high frequency components are reduced relative to the ampli-

tudes of the low frequency components, in the reconstructed signal x(t) obtained from the  flat–top sampled 

version of the signal, is referred to as the ‘aperture effect’.

Fig. 8.29 Assumed shape of X(f)
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P(f ), which is in the form of an invented bowl as shown in Fig. 8.30(a), will have a relatively flat shape 
in the message frequency band –W to W if it reaches its zero value at a frequency far greater than W, i.e., if 
1/t >> W. This will reduce the ‘ aperture effect’. Hence, the time t for which the ‘ sample – and – hold’ circuit 
holds the sample value, should be made as small as possible, in order to reduce the aperture effect. But this 
makes the average power in xs(t) and hence in the reconstructed message, very low. So, we keep the pulse 
width t  reasonably large and try to reduce the distortion within the message frequency band arising out of 
the aperture effect by using an  equalizer with transfer function He(f ) in cascade with the reconstruction filter 
and adjusting He(f ) so that

1
( ) ; | |

( )eH f f W
P f

= £  (8.52)

Example 8.7 Figure 8.31(a) shows the spectrum of a 
particular message signal x(t). If this x(t) is sampled at a rate 
of 1 kHz using flat-top pulses, each of 0.5 m/sec duration 
and unit amplitude, determine and sketch the spectrum of the 
PAM signal that results.

Solution From Eq. (8.50), we know that the spectrum of the flat-top sampled version of x(t), viz., Xs(f)
is given by

( ) ( ) ( )sX f P f X fd=

where Xd(f) is the spectrum of the ideally sampled version of x(t), which, we know, is a periodic repetition of 
X(f) at regular frequency intervals of fs. P(f) is the spectrum of the sampling pulse p(t) and is given by

sin
( ) sinc j f j ff

P f f e e
f

p t p tp t
t t t

p t
- -Ê ˆ

= = Á ˜Ë ¯
 (See Eq. (8.51))

Here, t is the width of the pulse and is given to be 10–4 sec.
 Since it is the attenuation of the high frequency components of x(t) relative to the low frequency compo-
nents that causes the distortion, the constant factor t and the phase factor j f

e
p t-  can be ignored and attention 

can be focused only on [(sin )/( )]f fp t p t  to see how it varies with f, the frequency, over the frequency range 
of interest, i.e., from 0 Hz to 450 Hz.

We know that 
sin

1
f

f

p t

p t

Ê ˆ
=Á ˜Ë ¯

 for f = 0 Hz.

f

|X(f)|
0

1

100

0.7777

200

0.5555

300

0.3333

400

0.1111

450

0

sin
1

f

f

p t

p t

Ê ˆ
=Á ˜Ë ¯

1 0.96639 0.9836 0.9629 0.93547 0.91878

|X(f)|P(f)| = |Xs(f)| 1 0.7749 0.54638 0.3209 0.10393 0

Fig. 8.31(a)
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Fig. 8.31(b) Spectrum of the PAM signal

8.8 ANTI – ALIASING AND RECONSTRUCTION FILTERS

From the low pass sampling theorem, we know that an analog signal x(t) can be recovered without any 
distortion from its uniformly sampled version, provided the sampling frequency, fs, is, at least, twice the 
highest frequency component present in x(t). If fs is less than twice the highest frequency component, x(t)
cannot be recovered from the sampled version because of the distortion caused by aliasing.
 However, in practice, no signal will be strictly band limited, as every practical signal has to be time 
limited. Hence, prior to sampling, we have to band limit the signal to some frequency W, keeping in view the 
frequency band of interest in the spectrum of the signal. For this purpose, we use, what is generally called an 
‘ anti–aliasing filter’ just before the sampler. Such a filter will be helpful in removing ‘out of band frequency 
components’, or out of band noise, if any, in the original analog signal x(t).
 An ideal LPF with a brick wall type of transfer function and a cut-off frequency W, less than fs/2 would 
be best suited for use as an anti-aliasing filter. However, since such a filter cannot be realized in practice, and 
since practical filters will have a transition frequency band, the attenuation of the filter should slowly increase 
from zero at the pass band edge fp to some desired value at the stop band edge fst, where

2
s

p st

f
f f< £  (8.53)

 If the signal were to be band limited to W, we will obviously choose fp = W. In this case, since the gain 
of the filter is designed to remain almost constant within the pass band, the filter will not distort the signal 
much, especially if it has a linear phase response too. However, since the signal is not going to be strictly band 
limited, we have to choose an appropriate portion of the spectrum of x(t), keeping in view the application, 
and fix the pass band edge, fp, accordingly. But, since the filter response of the non-ideal filter also is slowly 
decreasing from fp onwards, the spectrum of the output of the filter may extend even beyond fs/2. When this 
happens, the sampling of the output of the filter will create severe aliasing problems. In this connection, it 
must be realized that it is the frequency components in the band (fs – fp) to fs that alias into the pass band 0 to 
fp Hz, which is the useful part of the baseband, as shown in Fig. 8.32.
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To keep the amplitude of these aliased 
components low, the anti-aliasing filter 
must be so designed that its response 
falls adequately for frequencies 
beyond (fs – fp). So, if all these aliased 
components are to be, at least, say, 60 
dB below the corresponding ones in 
the pass band, the filter has to be so 
designed that it has 60 dB attenuation 
at a frequency of (fs – fp). Noting that 
the frequency (fs – fp) aliases and appears as a frequency component at a frequency of fp in the pass band, the 
other frequency components between (fs – fp) and fs which reappear in the pass band between fp and 0 Hz, will 
suffer more than 60 dB attenuation.
 Butterworth, Chebyshev, Elliptic or Bessel type of analog low pass filters of appropriate order, may be 
used as anti-aliasing filters. Butterworth filters give reasonably good magnitude as well as phase response. 
However, if linear phase response is more important, one may go in for  Bessel filters – but they give slightly 
poorer magnitude response. If better magnitude response rather than linear phase response is important, then 
elliptic or  Chebyshev filters may be used.
 In applications where distortion due to aliasing has to be kept very low, fs, the sampling frequency is 
chosen to be high compared to fp, the pass band edge, typically about four times. But where it is not critical, 
fs is chosen to be a little more than the  Nyquist rate, as in the case of digital telephony for which fp is chosen 
as 3.6 KHz while fs is chosen as 8.0 KHz.
 As the reader must have realized by now, achieving low aliasing distortion with an fs that is not much 
greater than the Nyquist rate, would necessitate the use of a very sharp cut-off low pass filter. So it will be an 
analog filter of high order and will be quite complex. Sometimes in such cases, to ease the stringent roll-off 
requirements of the anti-aliasing filter, deliberately an extremely high value of fs is used for the analog 
signal, and decimation circuits are used to bring down the sampling frequency of the digital signal at a later 
stage. Such a deliberate over sampling and a  down sampling at a later stage are resorted to in the case of 
VLSI realization of Digital Signal Processing of analog signals. In compact disk encoding of audio signals, 
sampling frequencies as high as 3175.2 KHz are used.

8.8.1  Reconstruction Filter

Reconstruction filter is a system that is used to reconstruct the analog signal x(t) from its samples. That 
is, if the sampled version of x(t) is given as input to the system, ideally it should give x(t) as the output. In 
frequency domain terms, it means that the transfer function of the reconstruction filter should, as shown in 
Fig. 8.33, separate out the baseband, i.e., the spectrum of x(t), from the spectrum of xs(t), which, as we know, 
consists of periodic repetitions of X(f ) at regular intervals of fs.

Fig. 8.33 Action of the reconstruction filter in the frequency domain

  Fig. 8.32   Anti-aliasing filter response and frequency components 

aliasing into the baseband
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In principle, an ideal LPF with a cut-off frequency of W as shown in Fig. 8.33 would be best suited for being 
used as a  reconstruction filter. However, an ideal LPF is not physically realizable, as its impulse response 
function, which is the inverse  Fourier transform of its transfer function, is a  sinc function that extends from 
minus infinity to plus infinity of time. Hence, any practical low pass filter with a flat amplitude response up 
to W Hz and whose gain reduces to zero before (fs – W) may be used.
 The action of the reconstruction filter when viewed in the time 
domain is shown in Fig. 8.34. Since the input to the filter is the sequence 
of samples of x(t), the job of the reconstruction filter is one of interpo-
lating between successive samples. The best interpolator is the ideal 
LPF. However, in practice, we invariably employ a  zero – order – hold 
(ZOH) for this purpose. Figure 8.35(a) shows the block schematic of a ZOH while Fig. 8.35(b) shows its 
interpolating action.

Fig. 8.35 (a) A Zero-Order-Hold Circuit (ZOH) (b) Interpolation using a ZOH

It is easy to find the impulse response of a zero–order–Hold as can be seen from the following example:

Example 8.8 Determine the  impulse response h(t) and the transfer function H(f), for a ZOH.

Solution If a unit impulse, d (t), is given as input to the system,

\

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

s

s

y t t t T

z t y t dt u t u t T p t

d d= - -

= = - - =Ú  (8.54)

where p(t) = Impulse response h(t) and is as shown in Fig. 8.36.

The transfer function H(f) is therefore given by

( ) [ ( )] sinc( ) sj fT
s sH f h t T f T e

p-= =F  (8.55)

Hence, the output of the ZOH for an input of

( ) ( ) ( )s s
k

x t x kT t kTd d
•

=-•
= -Â

Fig. 8.34  Action of reconstruction 

filter in the time domain

Fig. 8.36  Impulse response 

of ZOH
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is a staircase waveform as shown in Fig. 8.35(b). This contains several high frequency components outside 
the baseband. Hence, the  ZOH is generally followed by an LPF with a cut-off frequency of W. To compensate 
for the aperture effect, an amplitude equalizer of appropriate transfer function, as discussed earlier, will also 
be added in tandem with the ZOH and LPF.
 From Eq. (8.55) which gives the transfer function of the ZOH, two things are quite clear:
 1. ZOH gives a linear phase shift corresponding to a time delay of Ts /2.
 2. Since the spectrum of the reconstructed signal is equal to Xd( f ) ◊ H(f) for | f | £ W, and since H(f ) is a 

sinc function while Xd( f ) = X(f) for | f | £ W when fs ≥ 2W, it follows that the reconstructed signal is a 
distorted version of x(t). As mentioned earlier, we make use of an amplitude equalizer to reduce this 
distortion.

Example 8.9 An L-section RC low pass filter with a 30 dB cut-off frequency fc is used for band-
limiting a signal which is to be sampled at a frequency fs, what is the minimum value of fs if the response to 
the aliased component at the edge of the pass band, i.e., at fc is to be at least 30 dB below the response at fc?

Solution For L-section RC low pass filter, the transfer function is

1
( )

1 ( / )c

H f
j f f

=
+

where fc = 3 dB cut-off frequency = 
1

2 RCp

 (Response at fc) = 
1 1

( )
1 2cf f

H f
j =

\ =
+

Now, referring to Fig. 8.32, in which fp is now fc, response at (fs – fc) which appears as a frequency fc because 
of aliasing, is given by

( )

1 1
( )

1 ( 1)
1

s cf f f
s c

c

H f
j xf f

j
f

= -
= =

+ -Ê ˆ-
+ Á ˜Ë ¯

where s

c

f
x

f

Ê ˆ
D Á ˜Ë ¯

\
( )

2

1
( )

2

( ) 1

1 ( 1)

c

s c

f f

f f f

H f

H f

x

=

= -

Ê ˆ
Á ˜
Á ˜

= Á ˜
Ê ˆÁ ˜
Á ˜Á ˜Á ˜+ -Ë ¯Ë ¯

\
2

3
10

2

1
1 ( 1)210 log 30 or 10

21

1 ( 1)

x

x

Ê ˆ
Á ˜ + -Á ˜ ≥ ≥
Á ˜Ê ˆ
Á ˜Á ˜Ë ¯+ -Ë ¯

i.e., [ 2000 1 1] 45.2x ≥ - + =

\ 45.2s cf f≥
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8.8.2 Sampling of Band Pass Signals

When we discussed the low pass sampling theorem, we had seen that a signal band limited to W Hz has to 
be sampled, at least, at 2W samples per second if the analog signal is to be reconstructed, without distortion, 
from its samples, i.e., if no aliasing is to occur. This however, is true only for low pass signals, i.e., signals 
for which X(f) = 0 for all frequencies such that | f | ≥ W, where W is some finite frequency. There are signals 
for which this rule does not apply, for instance, in the case of band pass signals, i.e., signals for which X(f) = 
0 for all frequencies outside the range f1 £ f £ f2 where f1 π 0. For this class of signals, while there will be no 
aliasing if fs > 2f2, there might be no aliasing even if fs < 2f2, provided fs satisfies certain conditions. These 
conditions are well spelt out in what is called 
the ‘ Band Pass Sampling Theorem’, which we 
state below.

Band pass sampling theorem Let a 
band pass signal, x(t), have a spectrum as shown 
in Fig. 8.37.
 Then x(t) can be recovered without any error 
whatsoever from its samples x(kTs) taken at 
regular intervals of Ts if the sampling rate fs is 
such that

221
s

s

f
f

T m
= =  (8.56)

where m is the largest integer not exceeding f2/B.
 It must be noted that sampling frequencies higher than what is given in Eq. (8.56) may not always permit 
recovery of x(t) without distortion (i.e., they may not be able to avoid aliasing) unless fs > 2f2. If x(t) is ideally 
sampled, i.e., using impulses, the signal x(t) can be recovered from its samples by an ideal band pass filter 
with transfer function H(f) given by

1 21 for  | |
( )

0 otherwise

f f f
H f

< <Ï
= Ì

Ó
 (8.57)

 In fact, as stated in the sampling theorem, the required sampling rate for a band pass signal depends upon 
‘m’, i.e., on (f2/B). This relationship is depicted in Fig. 8.38.

Fig. 8.38 Relationship between (f2 /B) and the minimum  sampling frequency

Fig. 8.37 Spectrum of the band pass signal x(t)
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As (f2/B) increases indefinitely, the minimum sampling frequency approaches 2B. Further it can be shown 
that if fs > 2f2, there will not be any aliasing and perfect reconstruction is possible. Also, if f2 = kB where k is 
an integer, a sampling rate fs = 2B would suffice and will not produce any aliasing.

Example 8.10 A band pass signal has a spectrum as depicted in Fig. 8.39. What is the minimum 
sampling frequency that can be used? By sketching the Xd(f), show that no aliasing takes place when this 
sampling frequency is used.

Solution Here, f2, the highest frequency 
component is 25 kHz. If we use the low pass 
sampling theorem, a minimum sampling frequency 
of 50 kHz would be needed.
 However, it is not necessary to use such a high 
sampling frequency. Since it is a band pass signal, a 
sampling frequency equal to fs would suffice, where

22
s

f
f

m

¥
=

where m is the largest integer less than 25/10 = 2.5

Thus, m = 2 
2 25 kHz

25 kHz
2sf

¥
= =

Fig. 8.40 Spectrum of the sampled version of x(t) with fs = 25 kHz

8.8.3  Quadrature Sampling of Band Pass Signals

In the previous section, we had seen that a band pass signal centered on fc for which X(f) = 0 for all frequencies 
outside the range f1 £ f £ f2 can be directly sampled at a frequency fs > 2f2 without aliasing, although aliasing 
may not occur for fs < 2f2 also provided fs satisfies certain conditions. These conditions were, of course, spelt 
out by the band pass sampling theorem.
 Recall that a band pass signal x(t) centered on fc may be represented by the ‘Inphase’ and ‘Quadrature’ 
component representation (see Section 3.4.5) as follows.

( ) ( ) cos ( ) sinI c Q cx t x t t x t tw w= -  (8.58)

 It was shown in Section 3.4.5 that if the band pass signal x(t) has a bandwidth of 2W centered on fc, the 
 inphase component xI(t) and the  quadrature component xQ(t) are low pass signals with a bandwidth of W for 
each. Since they are low pass signals band limited to W Hz, we may sample each of these without aliasing, 
by using a sampling frequency fs > 2W. For this purpose, we shall first see how we can obtain xI(t) and xQ(t)
from a given band pass signal, x(t). Consider multiplying x(t) by cos ctw . From Eq. (8.56), we get

Fig. 8.39 Spectrum of the band pass signal x(t)
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2( ) cos ( ) cos ( ) sin cos

1 1 1
( ) ( ) cos2 sin 2

2 2 2

c I c Q c c

I I c c

x t t x t t x t t t

x t x t t t

w w w w

w w

◊ = - ◊

= + -

Hence, low pass filtering of 

( ) cos cx t tw◊  will yield 
1

( )
2 Ix t .

Similarly, low pass filtering of 

( ) sin cx t tw◊  will yield 
1

( )
2 Qx t .

Thus, the inphase and quadrature 
components can be obtained, 

except for a scaling factor, by the 

arrangement shown in Fig. 8.41. 

Sampling these low pass signals at 

an fs ≥ 2W will yield the inphase and 
quadrature component samples and 
there will be no aliasing.
 This method of obtaining the 
inphase and quadrature component 
samples is referred to as ‘ quadrature 
sampling’ The band pass signal x(t),
may be reconstructed from these 
samples as shown in Fig. 8.42.

8.9 PAM AND TIME DIVISION MULTIPLEXING

 PAM signals may be generated straight away by  flat-top sampling discussed in Section 8.7 (see Figs. 8.26 
and 8.27).
 The PAM signal of Fig. 8.43 is unipolar because the continuous-time signal x(t), from which it is derived 
by flat-top sampling, is positive throughout. If that was not the case, there would have been zero amplitude 
pulses, or missing pulses in the PAM signal. Missing pulses cause synchronization problems in time division 
multiplexing and so have to be avoided. Since PAM is invariably used only for time division multiplexing, 
we shall consider only unipolar PAM.
 A unipolar flat-top PAM signal may be analytically represented as

0
PAM

( ) [1 ( )] ( )s s s
k

x t A mx kT p t kT= + -Â  (8.59)

where p(t) is a unit-amplitude flat-top pulse of width t << Ts and having its leading edge at t = 0 as shown 

in Fig. 8.44; m is the modulation index and is such that 0 < m < 1, ( ) 1x t £  and A0 is the unmodulated pulse 
amplitude. From this, it is clear that

1 ( )smx kT+  > 0 (8.60)

for all k and that therefore it is ensured that xs(t) is a unipolar PAM signal.
 If x(t) has a spectrum as shown in Fig. 8.29, the spectrum of the unipolar PAM signal of Eq. (8.59) will 
be similar to what has been shown in Fig. 8.30 except that there will be impulses in the spectrum at f = 0, 

   Fig. 8.42  Reconstruction of a band pass signal from the 

inphase and quadrature samples

Fig. 8.41 Quadrature sampling
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±fs, ±2fs, …. As shown in Fig. 8.30 we may use a low pass filter for recovering x(t); but now, to block the dc 
component (represented by the impulse at f = 0 in the spectrum) we have to use a blocking condenser too, and 
also an equalizer to reduce the  aperture effect.

8.9.1  Time Division Multiplexing (TDM)

The low pass  sampling theorem forms the basis for TDM. This theorem tells us that a band limited continuous-
time signal can be completely recovered without any distortion, from its samples taken at regular intervals 
provided the sampling frequency is, at least, equal to the Nyquist rate. This means that we need not transmit 
the band limited continuous-time signal which engages the transmission channel all the time. Instead, we can 
transmit only the samples and reconstruct the continuous-time signal from the received samples. In this case, 
as the samples are separated in time by the sampling interval, the transmission channel is not engaged all the 
time; it is engaged only whenever a sample occurs. It is this fact that gives scope for the use of TDM. The 
interval between two successive samples of one message signal during which time the transmission channel 
is free, may be utilized to transmit the samples of each of the other message signals, i.e., we may interleave 
the samples of various message signals as shown, so that samples of different messages occupy different 
non-overlapping time slots.

Fig. 8.43 A PAM/TDM system

messages x1(t), x2(t), …, xN(t) which are all to be time division multiplexed, are first band-limited using low 
pass filters. These band-limited signals are then sequentially sampled by the arm of the commutator at the 
sending-end. This commutator arm therefore carries samples of messages as shown, where, x11 is the first 
sample of the first message, x21 is the first sample of the second message, and so on. x12 is the second sample 
of the first message. These samples are fed to a pulse modulator and then transmitted over the channel. If the 
arms of the sending-end and receiving-end commutators are synchronized (neglecting the propagation delay 
caused by the transmission over the channel) xi1, xi2, xi3, … which are all samples of xi(t), are fed to LPFi at 
the receiving-end which reconstructs the continuous-time signal and gives % ( ),ix t  an approximation to xi(t).
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8.9.2 Bandwidth of TDM-ed Baseband PAM Signals

Assumed that messages x1(t), x2(t), …, xN(t), each bandlimited to W Hz, have been flat-top sampled by narrow 
pulses (which can be approximated by impulses). Assume that this base-band TDM-ed signal is transmitted 
over a channel with finite bandwidth. For convenience, let us model the channel by an ideal LPF with a 
cut-off frequency of fc Hz, where fc > W.
 When an impulse of strength I is fed as input at t = 0 to the channel, its output is a sinc pulse extending 
from t = –• to t = +•, but having its peak at t = 0. Now the baseband TDM signal is a sequence of impulses 
regularly spaced at intervals of Ts /N and having strengths proportional to the sample values at the respective 
sampling instants.
 Therefore, if (Ts /N) = (1/2 fc) and if the arm of the de-commutator samples the successive sinc pulses 
exactly at the time instants marked as A, B, C, etc., in Fig. 8.44, then each sample so collected is directly 
proportional to a sample value of only one of the messages and so there will not be any cross-talk.

Fig. 8.44 Response of the channel (ideal LPF) to successive samples (impulses) fed to it at t = 0, 1/2fc, 1/fc, etc.
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=

Hence,
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2

c

N
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W

≥ =
Ê ˆ◊Á ˜Ë ¯

\ cf NW≥  (8.61)
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 (i) Therefore, the minimum bandwidth required for the baseband signal consisting of 

the TDM-ed samples of N identically band-limited messages is NW, where W is the 

bandwidth of each message.

 (ii) Note that we would have got the same minimum bandwidth even if we had multiplexed 

these N message signals using  Frequency Division Multiplexing (FDM), by making use 

of SSB  subcarrier modulation (with no guard bands).

Example 8.11 24 different message signals, each band limited to 4 kHz are to be multiplexed and 
transmitted. What is the minimum bandwidth required for each of the following methods of multiplexing 
and modulation?

 (a) FDM with SSB modulation, and (b) TDM with pulse amplitude modulation.

Solution 
 (a) FDM with SSB modulation: With SSB, each message channel occupies 4 kHz and the 24 messages can 

be accommodated in 24 non-overlapping frequency slots, each of width 4 kHz. Hence, total bandwidth 
required for the Frequency Division Multiplexed signal, is 24 ¥ 4 = 96 kHz. It is assumed here that no 
guard bands have been provided. Since we are required to find the minimum bandwidth.

 (b) TDM with pulse amplitude modulation: Equation (8.61) tells us that for TDM-PAM of N different 
messages, each of W Hz bandwidth, the minimum bandwidth required is NW Hz = 96 kHz.

Example 8.12 Signals x1(t), x2(t) and x3(t) are to be TDM-ed. x1(t) and x2(t) have a bandwidth of 10 
kHz and x3(t) has a bandwidth of 15 kHz. Determine a commutator switching system so that all the three 
signals are sampled at their respective Nyquist rates.

Solution Since x1(t) and x2(t) have bandwidths of 
10 kHz each, the Nyquist rate of sampling for them is 
20 kilo samples per second. The Nyquist rate of sampling for 
x3(t) with 15 kHz bandwidth is 30 kilo samples/sec. So the 
commutator arrangement shown satisfies the requirement.

8.9.3  Cross-Talk in PAM

As shown in Fig. 8.43, when we send a number of messages 
using PAM/TDM, we interleave the samples of the various 
messages. In such a situation, cross-talk can take place 
unless the communication circuit is carefully designed. 
We say that cross-talk is taking place if a sample of one 
message signal, say, xi(t) can influence the received sample 
value of a sample pertaining to some other message signal, 
say, xj(t), where, j π i. Cross-talk should be avoided, since 
it results in distortion of the message reconstructed from 
received samples.

Cross-talk can occur due to the following reasons:

 1. High-frequency limitation of the channel
 2. Low-frequency limitation of the channel

Remark

Fig. 8.45
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8.9.4 Cross-Talk in PAM/TDM due to Frequency Limitations of the Channel

As mentioned earlier, in PAM/TDM, the samples of various messages are interleaved. A sample is represented 
by a narrow pulse whose width t is very small compared to the sampling interval Ts and whose amplitude is 
proportional to the value of the sample. Samples of various channels (or messages) occur in non-overlapping 
time slots. Actually a time slot is an interval of time that can accommodate a pulse of width t and also a guard 
time tg. Thus, each pulse of width t is separated from its preceding pulse as well as the next pulse by guard 
times of tg on each side.
 When a pulse is transmitted over a channel, it is affected 
in three ways. First, it is attenuated. Second, it is corrupted 
by noise. And third, it suffers some distortion because of the 
high-frequency and low-frequency deficiencies of the channel. 
Insofar as our interest is on cross-talk, the first two are of no 
consequence. We will, of course, be discussing the effect of 
noise separately later. The low and high frequency deficiencies 
of the channel cause a pulse to get distorted and also spill out 
into the guard time and some times even into the adjacent time 
slot. When that happens, it affects the value of the sample in 
the next time slot and thus causes cross-talk. We shall now see 
how these bandwidth deficiencies of the channel can result in 
cross-talk.

 Cross-talk due to high frequency 
deficiency To study this, let us model 
our channel as a lowpass R-C filter with a 
time constant RC = tc << t.
 Figure 8.47(a) shows the waveform of 
the input pulse and Fig. 8.47(b) shows the 
waveform at the output of the channel. 
Since ct t<< , the pulse rises almost to 
the full value V (attenuation caused by 
the channel is ignored) within the time 
t and from t = t, begins to fall exponen-
tially towards zero as shown, again with 
a time constant of tc. It is obvious from 
Fig. 8.47(b) that cross-talk would be 
considerably reduced if tc is very small 
compared to even tg. From this figure, it 
is clear that a sample of message-1, trans-
mitted in time slot-1 will, at the receiving-
end, appear partly in time slot-2 also, thus 
causing cross-talk. The degree of cross-
talk is generally specified by a ‘cross-talk factor’, denoted by K and defined as

12

2

A
K

A
D  (8.62)

where A12 = shaded area in Fig. 8.47(b).
and A2 = Area under the pulse transmitted in time slot-2.

Fig. 8.46 A lowpass RC filter

Fig. 8.47  (a) Waveform of the transmitted pulse, 

(b) Waveform of the received pulse
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Assuming that the sample values in time slots-1 and 2 are equal,

12

1

A
K

A
=  (8.63)

But
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and
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t
-ª  (8.64)

Substituting this for A12 in Eq. (8.63), we get
/

/12

1

g c

g cc cV eA
K e

A V

t t
t tt t

t t

-
-Ê ˆ= = = Á ˜Ë ¯

\ /g ccK e
t tt

t

-Ê ˆ= Á ˜Ë ¯
 (8.65)

From this equation, we find that
 1. When , 0g c Kt t>> @  and there is no cross-talk.

 2. If it is specified that the  cross-talk factor K should not exceed some 
particular value, we can determine ( / )g ct t  for given values of t and 
either tc or tg.

 Cross-talk due to low frequency deficiency We shall now 
investigate how the low-frequency limitation of the channel can cause 
cross-talk. For this purpose, to simplify matters, we shall once again 
model the channel as an RC filter, but of the high pass type, as shown in 
Fig. 8.48.
As in the previous case, here too

1 ( )A V Vtª D <<Q  (8.66)

The low frequency deficiency of the channel causes a ‘tilt’, or ‘droop’ denoted here by D and the received 
pulse waveform will be as shown in Fig. 8.49(b). Because the time constant tc is quite large compared to t,
the undershoot dies down rather slowly. Because of this, we may consider the shaded region to be a rectangle 
of area Dt.
Now,

/ /

2

2

[ ]

1 ...

c ct

t

c cc

V Ve V Ve

V
V V

t t t

t

t t t

t tt

- -

=
D = - = -

È ˘
= - - + - @Í ˙

Í ˙Î ˚

Fig. 8.48  RC high pass filter used 

for modeling the channel
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It may be noted that the  cross-talk resulting 
from high frequency limitation of the channel 
might at the most affect the immediately 
adjacent channel only, because of the low 
time constant of the channel. But, because of 
the large time constant, the cross-talk arising 
from low-frequency deficiency will affect 
not just the immediately adjacent channel 
but even up to a few adjacent channels.

Example 8.13 12 speech signals, each band limited to 3.5 kHz, and sampled at a rate of 8 kHz, are 
to be transmitted as PAM signals over a certain channel using time division multiplexing. Assuming a 
guard time of half the pulse width, calculate the minimum bandwidth of the channel if the cross-talk factor 
(arising from high frequency limitation of the channel) between adjacent channels is less than 10–3.

Solution fs = sampling rate = 8000 samples/sec

\ Ts, the sampling period = 
1 1

125 s
8000sf

= = m

Since there are 12 message signals to be TDM-ed, the duration of the time slot for each, i.e., t is given by

125
micro-seconds 10.41 micro-sec

12
t = =

Since time slot includes pulse width and guard time, and since guard time is given to be half of the pulse 
width,

 Pulse width = t = 
2

10.41 6.94
3

¥ =  micro-sec

\ guard time = 10.41 6.94 3.47gt = - =  micro-sec

We know that 
/g ccK e

t tt

t

-Ê ˆ= Á ˜Ë ¯

In the above, we know K, t and tg.
\ solving for tc, we get tc = 0.75 micro-sec = RC

\ upper 3-dB cut-off frequency of the channel = 
61 10

212.314 kHz
2 2 0.75RCp p

= =
¥

\ the minimum bandwidth of the channel = 212.314 kHz.

Fig. 8.49  (a) Waveform of the transmitted pulse, 

(b) Waveform of the received pulse
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8.10  PULSE TIME MODULATION SYSTEMS

We had seen that in pulse amplitude modulation, information regarding the sample value at any particular 
sampling instant is carried by the amplitude of a flat-top pulse located at that sampling instant. In the case 
of pulse time modulation, the information regarding the sample value at any particular sampling instant is 
carried not by the amplitude, but an ‘interval of time’ associated with a flat-top pulse. In the case of  Pulse 
Width Modulation (PWM), the ‘interval of time’, is the width of the flat-top pulse located at that sampling 
instant; and in the case of  Pulse Position Modulation (PPM), the ‘time interval’ is the displacement in time, 
given to the position of the flat-top pulse, relative to the sampling instant under consideration. Since PWM 
and PPM are closely related, they are generally clubbed together under the common name, ‘Pulse Time 
Modulation’.

Fig. 8.50 (a) Message signal x(t), (b) PDM signal, (c) PPM signal

Assuming that x(t) has been normalized so that ( ) 1,x t £  the width of the pulse at kth sampling instant, i.e., 
at t = kTs in the PDM waveform shown in Fig. 8.50(b), is given by

0[1 ( )]k smx kTt t= +  (8.68)

where t0 is the unmodulated pulse width, m is the modulation index and is such that 0 < m < 1. Again in this 
case too,

1 ( ) 0smx kT+ >
which ensures that there will not be any missing pulses. Of course, t0 must be so chosen that tk is always less 
that Ts. To ensure this, we choose

0 2
sT

t <  (8.69)

Under certain simplifying assumptions, it can be shown that a  PDM signal contains a dc component, the 
message signal, x(t), and groups of phase modulated waves with the sampling frequency fs and its harmonics 
as the carrier frequencies, and that as long as t0 is chosen as indicated in Eq. (8.69), the side frequencies of 
these phase modulated waves do not overlap much in the message signal bandwidth especially if fs >> W, so 
that x(t) can be recovered without much distortion from the PDM signal with a low pass filter followed by a 
blocking capacitor to reject the dc component.
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 Just as the pulse width in the case of PDM, as indicated in Eq. (8.68), contains a dc or constant pulse width 
plus a pulse width component that is directly proportional to the pertinent sample value x(kTs), in the case of 
PPM also, the delay in the occurrence of the pulse relative to the sampling instant also has two components, 
the dc component shown as td in Fig. 8.50 and another component directly proportional to the pertinent 
sample value. Hence, we may write the expression for the instant tk at which the leading edge of the pulse 
appears, as

0 ( )k s d skT t x kTt t= + +  (8.70)

where t0 is a proportionality constant having units of seconds per volt.

8.10.1 Generation of PTM Signals

We shall now discuss briefly, a few methods for the 
generation of PTM signals.
 One way of generating PDM and  PPM signals 
by first generating PAM signal, is illustrated in Fig. 
8.51. In this method, the PAM signal and an inverse 
ramp signal are generated synchronously, as shown. 
These two are then added and fed to a comparator 
whose triggering level is so adjusted that it is in the 
sloping portion of the sum waveform. The second 
crossing of the comparator trigger level with the sum 
waveform coincides with the trailing edge of the 
PDM wave and the leading edge of the PPM pulse. 
All these PPM pulses are of constant width.
 For the generation of PDM and PPM signal, 
it is not necessary that one should first produce 
PAM, although the above method is based on such 
a procedure. We now give two more methods of 
generation of PDM and PPM and these methods do 
not need the generation of PAM first – they generate 
PDM and PPM directly from the message signal.
 In the first of these two methods, as illustrated 
in Fig. 8.52, a periodic inverse ramp signal with a 
period Ts is added to the message signal and the sum 
signal is fed to a comparator whose triggering level 
is set to fall in the ramp portion of the sum signal. 
The leading edge of the PDM signal coincides with 
the first intersection of the comparator trigger and 
the vertical side of the inverse ramp. The trailing 
edge occurs at the instant at which the second inter-
section occurs. The leading edge of each PPM pulse 
coincides with the trailing edge of the corresponding 
PDM pulse, and these PPM pulses will be of the 
same amplitude and width.
 The circuit diagram given in Fig. 8.53 gives yet 
another direct method of generation of PDM and 
PPM signals.

Fig. 8.51  (a) PPM, (b) RAMP, (c) PPM + RAMP, 

(d) PDM, (e) PPM
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 This circuit is an emitter-coupled one-shot 
or mono-stable multivibrator. In its stable state, 
transistor T1 is in cut-off condition and T2 is in 
conducting state. However, when a trigger pulse of 
sufficient amplitude is applied to its base, T1 suddenly 
goes into conduction and T2 is temporarily cut off. 
We know that the duration t of the pulse that results 
at the collector of T2 is linearly related to the bias 
applied to the base of T1. This bias is, as may be seen 
from the figure, the sum of a fixed dc component, 
and the message signal. Thus, t is linearly related 
to the amplitude of the message signal at the instant 
at which the trigger pulse is applied and since the 
trigger pulses are applied at regular intervals of Ts,
we get PDM/PWM signal at the collector of T2.
By differentiating this PDM signal, and using the 
negative trigger pulses occurring at the location of 
the variable edge (of the PDM signal) for triggering 
another mono-stable multivibrator with a fixed bias 
for its normally cut-off transistor, one can obtain a 
PPM signal.

8.10.2 Detection of PTM Signals

Earlier, while discussing the frequency components 
that make up a PDM signal, we have pointed out that 
recovery of the message signal from the PDM signal 
by directly low pass filtering is possible but it results 
in some distortion.
 Apart from direct low pass filtering, there is 
another approach possible for recovery of the 
message signal from a PDM signal. This approach 
consists of first converting the  PDM signal into a 
 PAM signal from which the message signal may 
be recovered with very little distortion by low pass 
filtering and equalization. Actually, if the pulse width 
in this PAM signal is quite small, equalization may 
not be necessary at all; simple low pass filtering will suffice. This approach is applicable to the detection of 
PPM signals also. This method is illustrated in Fig. 8.54.
 The PDM signal is first integrated and the value of the output of the integrator at the end of each PDM 
pulse is held till the next sampling instant, at which time the capacitor of the integrator is discharged suddenly 
and the integrator of the next pulse is allowed to start. We get the waveform shown in Fig. 8.54(b). To this we 
add locally generated constant amplitude pulse sequence having a period of Ts in such a way that the pulses 
sit over the pedestal portion. This waveform is then subjected to clipping with the clipper level so adjusted 
that it is above the level of the highest pedestal. The clipper output, shown in Fig. 8.54(d) is a PAM repre-
sentation of the original PDM signal. For converting a  PPM signal into a PAM signal we may first convert it 
into a PDM signal by generating pulses with their leading edges at the sampling instants and trailing edges at 

Fig. 8.52  (a) Message signal, (b) Inverse ramp sequence, 

(c) x(t) + ramp, (d) PDM, (e) PPM
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the leading edges of the PPM pulses. Once the PAM signal is obtained, it can be low pass filtered to recover 
the original signal. If the locally generated pulse sequence has very narrow pulses, the resulting PAM signal 
also will have only narrow pulses. In that case, the distortion due to aperture effect will be negligible and no 
equalizer need be used after low pass filtering of the  PAM signal.

8.10.3 Cross-Talk in PTM

Cross-talk can occur in PTM time division multiplexed systems too, just as it occurs in TDM-ed PAM systems 
because of the low frequency and high frequency deficiencies of the channel. However, one basic difference 
between the two should always be borne in mind. Pulse transmitted in one time slot extends at the receiving 
end into the following time slot (or time slots) because of the low frequency, or high frequency deficiency 
of the channel in both the cases (PAM and PTM). In PAM, cross-talk results from such an extension into the 
following time slot because of its effect on the amplitude of the pulse in that time slot. But in the case of PTM, 
such an extension causes cross-talk by influencing the width of the pulse in the following time slot in the case 
of PDM and the position of the pulse in the following time slot in the case of PPM.

 Cross-talk due to high frequency limitation of the channel In Fig. 8.55, the transmitted pulses 
in the Nth and (N + 1)th time slots are shown by the solid line. t1 represents the instant at which the trailing 

edge of the unmodulated transmitted pulse occurs, if it is PDM. If it is PPM, it represents the instant at which 
the leading edge of the unmodulated pulse occurs. t2 represents the instant at which the trailing edge of the 
transmitted pulse occurs when pulse duration modulation is present. If the modulation is PPM, t2 represents 
the position of the leading edge of the transmitted pulse with modulation. Figure 8.55(b) represents the 
received pulses in the two time slots when there is no modulation. Note that owing to the high frequency 
deficiency of the channel, there is distortion. However, there is no cross-talk. Figure 8.55(c) shows the two 
received pulses when modulation is present in channel-1. It is, of course, assumed for the purpose of drawing 
this figure, that there is no modulation in channel-2. Note that the cross-talk has caused a timing error Dt in 
the time slot-2. Since time translates into amplitude at the time of detection of PDM and PPM signals, this 
timing error creates distortion of the received signal in channel-2.

Cross-talk due to low frequency deficiency In Fig. 8.56(b), we find that if the high frequency 
response of the channel is very good, the low frequency deficiency of the channel does not lead to any timing 
error because the rising and falling edges of the received pulses will also be absolutely vertical. Hence, in 
such a case, the low frequency deficiency does not cause any cross-talk.

Fig. 8.53 A circuit for generating PDM (PWM) signals
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 However, if the high frequency 
response of the channel is not very good, 
its low frequency deficiency can cause 
timing error and  cross-talk. This is due to 
both the tilt in the top of the received pulse 
owing to the low frequency deficiency and 
also the finite rise time and fall time of the 
received pulse owing to the ‘not-so-good’ 
high frequency response.

8.10.4   Synchronization in 

TDM-ed PAM and 

PTM

In a TDM system, arrangements must be 
made for proper synchronization of the 
commutator at the transmitting end and 
the de-commutator at the receiving-end. 
During each time slot, at the transmitting-
end, the channel must be connected to the 
particular message channel the sample 
value of which must be transmitted during 
that time slot. This is accomplished by the 
use of a clock signal (at the transmitter) 
from which the necessary gate signals 
are derived. Similarly, at the receiving-
end, the channel must be connected to the 
baseband recovery circuits of the various 
message channels in a sequential manner. 
Again, this also is accomplished with the 
help of a clock signal generated at the 
receiving-end. For proper functioning of 
the TDM system, it is necessary that these 
two clocks, one at the transmitting-end 
and the other at the receiving-end, work 
in synchronism.
 For this purpose, a special pulse called 
synchronization pulse distinguishable 
from the normal signal pulses is transmitted along with the signal pulses, but in a separate time slot, at regular 
intervals. Hence, if there are N message signals TDM-ed, in addition to the N time slots required per frame, an 
extra time slot is provided to accommodate the synchronization pulse. A frame is said to be completed when 
one sample of each one of all the messages is sent in a sequential manner. In case the frame time is too long 
because the number of messages to be TDM-ed is very large, more than one synchronization pulse will have 
to be included per frame, in order to ensure that the receiving-end clock does not go out of synchronization.
 In the case of PAM, the synchronization pulse is made to have much larger amplitude than any of the 
signal pulses. Since the time of arrival of the synch pulse is important, rather than its amplitude, the instant at 
which the received synch pulse crosses the set level of a comparator, is used for synchronizing.

Fig. 8.54  (a) PDM/PWM signal, (b) PDM signal integrated and 

held up to next sampling instant, (c) Locally generated 

constant amplitude pulses added on the pedestal, (d) 

Output of the clipper, (e) PPM signal
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 For PDM, the synch pulse is made to have a much larger width than any of the signal pulses.
 The pulses shown in Fig. 8.57(a) are inverted and as shown in Fig. 8.58, applied to the base of a transistor 
which acts as a switch. In the absence of any external input, the transistor conducts heavily passing saturation 
current. Hence, the capacitor C connected across it will have no voltage across it. But when these pulses are 
inverted and applied, for each pulse duration, the transistor goes into the cut-off state and so the capacitor 

Fig. 8.55  (a) Transmitted PTM signal without modulation, (b) Received signal without modulation, (c) Received 

signal when modulation is present

Fig. 8.56  (a) Transmitted pulses (dashed line shows change due to modulation), (b) Received pulses (assuming 

excellent high frequency response for channel)
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charges from Vcc through the collector load 
resistance RL. When a pulse ceases to exist, the 
transistor conducts heavily and the capacitor 
discharges quickly. Thus, we get a number of 
saw-tooth pulses, as shown in Fig. 8.57(b). The 
synch pulses have a very large width and so the 
corresponding saw-tooth pulses will have very 
large amplitudes compared to the amplitudes 
of the saw-tooth pulses produced by the signal 
pulses. A comparator, whose reference level is 
adjusted to be far above the smaller saw-tooth 
pulses, produces an output trigger pulse 
whenever the large saw-tooth pulse produced 
by a frame  synchronization pulse crosses the reference level. This trigger is used for synchronization of the 
clock that controls the operations at the de-commutator.

8.10.5 Comparison between TDM and FDM

 1. TDM hardware is much simpler than that required for FDM, as there is no need for subcarrier 
modulators, band pass filters, etc.

 2. In  FDM cross-talk occurs mainly due to non-linear cross-modulation and imperfect band pass filtering. 
In TDM, cross-talk is mainly due to inadequate transmission bandwidth of the channel.

 3. It is much easier to time division multiplex baseband signals having widely different bandwidths, 
whereas it is not that easy in the case of FDM.

 4.  Short-term fading of the transmission channel affects all the message channels in the case of FDM. 
However, in the case of  TDM, only a few sample pulses transmitted during the occurrence of the fading 
will be affected, causing slight distortion only in the few affected channels.

Example 8.14 Five low pass message signals, each of bandwidth 2 kHz are to be sampled at 5 kHz 
and PAM/TDM-ed using pulses of width 20 ms. What is the guard time available?

Solution Since fs = Sampling frequency = 5 ¥103 samples/sec,

3

1 1
sec 0.2 m.sec

5 10
s

s

T
f

= = =
¥

Fig. 8.57 (a) TDM-ed PDM pulses along with one synch pulse per frame, (b) Output of an integrator circuit

Fig. 8.58  Saw-tooth waveform generating circuit
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Hence, the interval between successive samples of a particular message signal is 0.2 m-sec. If five such 
message signals are to be TDM-ed, it means that five pulses, each of width 20 ms (as specified) are to be 
interleaved in the interval between two successive samples of any one message signal, as shown in Fig. 8.59.

Fig. 8.59

Therefore, as can be seen from the figure, the guard time between adjacent pulses in the PAM/TDM-ed signal 
is 20 ms.

Example 8.15 A TDM signal is shown in Fig. 8.60. Show that it is possible to detect it using a time-
averaging low pass filter.

Solution 

Fig. 8.60

A time-averaging filter takes the average value over each period T.
\ output of the filter at t = T is given by

0
0

1 1
( ) 0

D

D

T T
D

T

AT
V t Adt dt

T T T
= + =Ú Ú

\ V0(T) is proportional to TD, the width of the pulse. Hence, a time-averaging filter can be employed to detect 
a TDM signal.

8.11  NOISE PERFORMANCE OF ANALOG PULSE MODULATION 

SYSTEMS

Before we proceed to a study of the noise performance of  PAM and  PTM, it would be proper to have a brief 
discussion on certain aspects of baseband pulse transmission.
 We know that a rectangular pulse of width t seconds will, in general, have a spectrum extending from dc 
up to very high frequencies. Smaller the value of t, the width of the pulse, more will be the high frequency 
content in the spectrum. Therefore, one question that immediately arises in one’s mind, is: ‘How much trans-
mission bandwidth is to be provided for pulse transmission’? The answer to this question depends upon what 
our requirement is. If we would like the pulse to be reproduced at the receiving-end of the channel with very 
little distortion, i.e., if our requirement is to preserve the pulse shape; the channel should produce a phase shift 
that is proportional to frequency and should have a bandwidth, BT, which is very large. In this case

1
TB

t
>>  (8.71)

CS-Rao_08.indd 463CS-Rao_08.indd   463 1/22/2013 10:15:44 AM1/22/2013   10:15:44 AM



464 Communication Systems

On the other hand, if our interest is only to detect the presence of a pulse, or measure the amplitude of the 
received pulse, a bandwidth BT given by

min

1

2TB
t

≥ , (8.72)

would be sufficient, where tmin is the smallest output pulse duration.
 Yet another type of scenario in which we will be interested is one wherein two closely spaced rectangular 
pulses which have been transmitted over a channel may have to be resolved, or identified as two separate 
pulses when they arrive at the receiving-end. We will be interested in knowing what minimum bandwidth the 
channel should have for a given separation tmin between the two pulses, each of which is of width t sec. It 
has been found that the minimum spacing is to be at least equal to t and that the bandwidth required with that 
spacing is

1

2TB
t

=  (8.73)

For this bandwidth, if the spacing is reduced below t, or for the spacing of t if the bandwidth of the channel 
is less than the value specified by Eq. (8.73), there will be considerable overlap between the two output pulses 
and it will be difficult to recognize them as two separate pulses.
 In case we are interested in measuring the time of occurrence (i.e., the position) of an output pulse relative 
to some reference instant, the rise time and/or fall time of the output pulse become important. We then fall 
back on the well-known relationship between the rise time of the output pulse and the channel bandwidth, 
and write

min

1

2T
r

B
t

≥  (8.74)

when
minrt  is the minimum rise time of the output pulse.

 We are now ready to study the noise performance of PAM and PTM. In connection with this study, the 
following remarks are very pertinent, as they put the derivations in the proper perspective, and so are to be 
borne in mind.
 1. The pulse-modulated signals (PAM and PTM) that we consider are  baseband signals and have no high 

frequency carrier.
 2. Because there is no carrier modulation, the noise entering the receiving system is low pass noise and 

not band pass noise as was the case when we considered the noise performance of continuous-wave 
modulations like AM and FM.

 3. Whereas in CW modulation systems we were interested in receiving the transmitted message waveform 
without much distortion, in the pulse modulation case, our interest is limited to measuring the amplitude, 
or the time of arrival, of the received pulse rather than ensuring that the received pulses are replicas of 
the corresponding transmitted pulses.

 4. We may, at the receiving-end, know the shape of the transmitted pulse in advance.
A continuous-time signal x(t), band limited to W Hz is the modulating signal which has been sampled at 

regular intervals of 
1

2sT
W

=  and the sample values are represented by a PAM, PDM, or a PPM signal and 

this baseband pulse-modulated signal is transmitted to the receiver through a channel characterized ideally 
by additive white noise of two-sided PSD equal to h/2 W/Hz. So, whatever may be the actual method adopted 
by the receiver for de-modulation, the demodulation process may ideally be visualized as one of converting 
back the pulse modulated signal ( PAM,  PDM or  PPM) plus the additive noise into a sequence of weighted 
impulses (corresponding to ideal sampling). The original message plus noise will be obtained when this 
impulse train is passed through an ideal LPF which acts as the reconstruction filter. Thus, we shall use the 
model shown in Fig. 8.61 for studying the noise performance of analog pulse modulated systems.
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Fig. 8.61 Model for an analog pulse modulation receiver

We shall now derive the expression for destination signal-to-noise ratios for PAM, PDM and PPM systems 
by making use of the above model.

8.11.1  Pulse Amplitude Modulation

Pulse amplitude modulated signal plus white noise tries to enter the receiver. The noise limiting low pass 

filter has a cut-off frequency 
1

2NB
t

≥ , where t is the pulse width of the PAM signal. Its output therefore is

( ) ( ) ( )pv t x t n t= +  (8.75)

Fig. 8.62 Received pulse plus low pass filtered noise pulse

Because of the finite rise time and fall time, the pulse amplitude is generally measured near the middle of the 
time slot at some instant such as t0. So the measured value is

0
0 0 0( ) ( ) ( )

t t
v t v t A n t A= = = + = + Œ  (8.76)

where Œ0 represents the amplitude error. This error has a  variance equal to the average power in n(t), the 
filtered (white) noise. Therefore, it is given by

2 2
0 Nn Bs = = h  (8.77)

The output of the converter, y(t), which is a train of weighted impulses spaced Ts sec apart may therefore be 
written as

( ) [ ( ) ] ( )c s k s
k

y t A mx kT t kTd= + Œ -Â  (8.78)

where m is the modulation index and Œk is the error in the measurement of the amplitude of the kth received 
pulse because of noise. The  reconstruction filter, assumed to be an ideal LPF with a cut-off frequency of fs/2,
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a pass band gain of Ts (this is purely arbitrarily chosen, just for convenience) and zero delay, will given an 
output z(t) which may be written as

( ) [ ( ) ]sinc[ ( )]

( )sinc[ ( )] sinc[ ( )]

c s k s s
k

c s s s k s s
k k

z t A mx kT f t kT

A mx kT f t kT f t kT

= + Œ -

= - + Œ -

Â

Â Â  (8.79)

The first term in the RHS of the above equation gives the output signal component and the second term gives 
the output noise component. Hence, we may write

0 0( ) ( ) ( )z t A mx t n t= +  (8.80)

As shown in Fig. 8.55, 
1

2NB
t

≥ . Since t << Ts, it follows that

1
N

s

B
T

>  (8.81)

Hence, the values of the error, i.e., Œk‘s can be considered to be uncorrelated. Further, since the channel noise 
has been assumed to be zero mean and since the noise limiting filter is an LTI system, n(t) is also zero mean. 
Hence, Œks have a zero mean and are uncorrelated. Thus, the average noise power at the destination, viz., ND

is given by
2 2( )D D kN n t= = Œ  (8.82)

But, we have already shown that the variance of the measurement error (see Eq. (8.77)) is equal to the average 
noise power at the output of the noise limiting filter and that this is given by NBh .

\ D NN B= h  (8.83)

Now, to determine the average signal power at destination, we proceed as follows.

2 2
0

Average energy per pulse in
[1 ( )]

the PAM signal s pA mx kT Et
¸

= + =˝
˛

 (8.84)

Number of pulses per second in the  PAM signal = fs (8.85)

\ received average signal power 2 2
0[1 ( )]R s sS A mx kT ft= = + ◊  (8.86)

But, 2 2 2[1 ( )] 1 ( )smx kT m x t+ = +  (8.87)

since x(t) is assumed to be of zero mean so that

( ) 0smx kT =  (8.88)

\ we may rewrite Eq. (8.86) as follows:

\ 2 2 2
0 1R sS A f m xt È ˘= +Î ˚  (8.89)

From Eq. (8.80), average signal power at the destination is given by

2 2 2
0 ( )DS A m x t=  (8.90)

\ using Eqs. (8.83) and (8.90), we may write

2 2 2
0( )

ND

m x t AS

N B

◊Ê ˆ =Á ˜Ë ¯ h

But
1

2NB
t

≥

\ the minimum value of 
1

2NB
t

=  and this gives the maximum  destination SNR for a given  modulation index, 
m.
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2 2 2
0

;max

2 ( )

D

A m x tS

N

t◊Ê ˆ =Á ˜Ë ¯ h
 (8.91)

But, as per Eq. (8.89), t is given by

2 2 2
0 1 ( )

R

s

S

A f m x t
t =

È ˘+Í ˙Î ˚
Substituting this for t in Eq. (8.91),

2 2 2 2 2
0

2 22 2 2
;max

0
PAM

( ) 2( / ) ( ) 2

1 ( )1 ( )

R

sD
s

WA m x t S WS m x t W

N fm x tA f m x t

g
È ˘ Ê ˆ◊ hÊ ˆ Í ˙= =Á ˜ Á ˜Ë ¯ È ˘ Ë ¯Í ˙++ Î ˚Î ˚

 (8.92)

This can be further maximized by choosing m = 1. Then

2

2
;max

PAM

2

1 sD

S x W

N fx
g

È ˘ Ê ˆÊ ˆ Í ˙=Á ˜ Á ˜Ë ¯ Ë ¯Í ˙+Î ˚
 (8.93)

Since 2
x  can at the most be 1 (since ( ) 1x t £ ) and since 2sf W≥ , it follows that (S/N)D is less than or equal to 

(g /2). It is therefore at least 3 dB inferior to baseband transmission. However, this has not much significance, 
since  PAM, when used, is not for its good noise performance but only for its simplicity and for time division 
multiplexing.

8.11.2 Noise Performance of  PDM and  PPM

In the case of PDM/PWM, information regarding the kth sample value of the message signal is incorporated 
into the width tk of the kth pulse.

0[1 ( )]k smx kTt t= +
Here, t0 is the width of the unmodulated pulse. The amplitude of the pulse is constant and equal to A.
 In the case of PPM, information about the value of the kth sample is incorporated into the delay tk, in the 
arrival of the leading edge of the kth pulse.

0 ( )k s d st kT t x kTt= + +
where td represents the delay when the 
sample value kTs is zero. So, a PDM 
receiver has to measure the pulse duration 
time while a PPM receiver has to measure 
the pulse arrival time. Since the leading 
and trailing edges of the received pulse 
will be having finite slopes and are super-
imposed by additive noise, the exact 
instant at which the pulse begins or ends 
will not be easy to identify. Hence, the 
instant t0 at which the pulse attains say 
50% of its final value, i.e., a value of A/2,
is generally identified. An error Œ is caused by the noise in this measurement, as shown in Fig. 8.63.
Triangles PQR and P¢Q¢R¢ are similar

\ 0 0( / ( )) ( / ) ( )r
r

t
n t t A n t

A

Ê ˆŒ = \Œ= ◊Á ˜Ë ¯  (8.94)

Fig. 8.63 Received pulse and position error Œ
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and
2 2

2 2 2r r
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A A
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Ê ˆ Ê ˆ= Œ = = ◊hÁ ˜ Á ˜Ë ¯ Ë ¯
 (8.95)

But
1

2r
N

t
B

@  and 
2
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pE
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t
=  for PDM and 

2

pE

t
 for PPM

where

2
0

2
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Average energy per pulse  

for PPM
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and t0 = unmodulated pulse width for PDM

t = Pulse width for PPM
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 (8.96)

2
0

2

for PDM

for PPM

s

R p s

s

A f
S E f

A f

t

t

ÏÔ= ◊ = Ì
ÔÓ

 (8.97)

2 2 2
0 0

2 2 2
0 0

  for PDM; where  is unmodulated pulse width

  for PPM; where  is the proportionality constant for conversion  

                        form amplitude to time in sec/volt

D

m x

S m t x t

t tÏ
Ô
Ô= Ì
Ô
ÔÓ

2
DN s=  and is as given by Eq. (8.96)

For  PDM:
2 2 2 2 2 2 2

0 0
2
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D D

m x m x B AS S
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t t
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\ 2 2
04 T
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m B x
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 (8.98)

To maximize 
D

S

N

Ê ˆ
Á ˜Ë ¯ , we note that

max
min 0max max

min

1 1
2 ; and 1

2 2 4

s

s
s

T
f W m

f W
t= = = = =

\ 21

2
T

D

BS
x

N W
g

Ê ˆÊ ˆ £Á ˜ Á ˜Ë ¯ Ë ¯
 (8.99)

For  PPM:

2 2 2 2 2 2 2
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D D
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Ê ˆ = = =Á ˜Ë ¯ h
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\
2 2 2

04 T R

sD

m x B t SS

N ft

Ê ˆ =Á ˜Ë ¯ h
 (8.100)

Note that min 0 0max

1
2 ; so that

2 2 4
s s

s

T T
f W t t

W
= £ = =

Also, the pulse width, min

1
2 1/r T

T

t B
B

t t≥ = \ =

Substituting the above in Eq. (8.100) in order to maximize (S/N)D, we get
2

2 2

; max

1

8
T

D

BS
m x

N W
g

Ê ˆÊ ˆ =Á ˜ Á ˜Ë ¯ Ë ¯
 (8.101)

i.e.,

2
2 21

8
T

D

BS
m x

N W
g

Ê ˆÊ ˆ £Á ˜ Á ˜Ë ¯ Ë ¯  (8.102)

Thus, just like in CW wideband FM, for PPM also the destination SNR varies as the square of the  trans-
mission bandwidth. In practice, however, the (S/N)D for PPM will be less than the maximum value given by 

Eq. (8.102) by about 10 dB. Nevertheless,  PPM has the advantage of low average power requirement for the 
transmitter and so is used in situations where average transmitter power is at a premium.
 It may be noted that as suggested by Eqs. (8.99) and (8.102), both PDM and PPM offer a  trade-off between 
transmission bandwidth and average transmitter power. However, since the destination SNR of PPM varies 
as the square of BT, while that of  PDM varies proportional to BT only, the PPM offers a better trade-off than 
PDM.

Example 8.16 A message signal has 2 0.1x =  and is band limited to 100 Hz. It is sampled at a rate of 
250 samples/sec and converted into a PDM signal with m = 0.2 and an unmodulated pulse width of 80 ms,
which is then transmitted over a channel of bandwidth 3 kHz. If the two-sided PSD of the additive noise 
on the channel is 120.5 10 W/Hz,-¥  find the value of the received average signal power, SR given that the 
(S/N)D is to be at least 40 dB.

Solution From Eq. (8.99), we have

2 2 2 6
0

100
4 4 (0.2) 80 10 0.1

250T
sD

S W
m B x

N f
t g g-Ê ˆÊ ˆ Ê ˆ= = ¥ ¥ ¥ ¥Á ˜ Á ˜Á ˜Ë ¯ Ë ¯Ë ¯

\
6 6250 10 250 10

1953125 .
4 0.04 80 0.1 100 128D D D

S S S

N N N
g

¥ ¥Ê ˆ Ê ˆ Ê ˆ= ◊ = ◊ =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯¥ ¥ ¥ ¥

But
D

S

N

Ê ˆ
Á ˜Ë ¯  should be at least 40 dB, i.e., 104.   \ 410

D

S

N

Ê ˆ ≥Á ˜Ë ¯

\ 41953125 10 . But R
R

S
S W

W
g g g≥ ¥ = \ = h

h
\ 4 12 61953125 10 10 100 1953125 10RS

- -≥ ¥ ¥ ¥ = ¥ W

\ 1.953125RS W≥

8.11.3 Comparison between  FDM and  TDM

Both FDM and TDM achieve the same objective – that of transmitting several message signals simultane-
ously over the same physical channel; only, the techniques used are different and so each one has its own 
advantages. However, TDM has a definite edge over FDM because of its simplicity.
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Table 8.1

S. No FDM TDM

1 Individual message channels are allocated different 
non-overlapping frequency slots.

Individual message channels are allocated distinct, 
non-overlapping time slots.

2 Requires  subcarrier modulator, bandpass filter and 
de-modulator for each message channel.

Uses inexpensive digital VLSI circuitry for switching 
operations at the  commutator and the de-commutator.

3 Synchronization required for the carrier generated at 
the receiving-end, in the case of  SSB-SC modulation.

Synchronization of the commutator and the  de-commu-
tator is essential and is more elaborate.

4 Short-term fading of the channel affects all the 
message channels.

Short-term fading affects at the most only a few 
channels

5 Slow, narrow-band fading of the channel may affect 
at the most one or two  FDM channels only.

Slow, narrow-band fading of the channel affects all the 
message channels of  TDM.

6 Multiplexing message channels of widely different 
bandwidths is not easy.

Multiplexing message channels of widely different 
pulse rates (bandwidths) is not difficult.

7  Cross-talk in FDM is caused by non-linear cross-
modulation and imperfect bandpass filtering.

Cross-talk in TDM is caused by high frequency and 
low-frequency deficiencies and dispersion, if any, in 
the channel.

MATLAB Example 8.1 Sampling of bandlimited signal and its recovery from the samples

The three samples are x1(t) = 1/3 Sin 2p5t, x2(t) =1/3 * Sin 2p10t, x3(t) = 1/3*Sin 2p15t. Form a signal 
x(t) bandlimited to 15 Hz as follows:

 x(t) = 1 + [x1(t) + x2(t) + x3(t)]

MATLAB Program
% This program calls the following functions

% 1. fftseq 

%

% Natural sampling using rectangular pulses

%

clc

clear

% Displaying one rectangular pulse of unit amplitude and 5 mS duration

df = 0.1;

T = 10*10^-3 % Sampling period

ts = 1/10000;

fs = 1/ts;

tn = 0:ts:T

N = size(tn)

s = zeros(N)

s(1:50) = ones(size(s(1:50)))

figure (1)

subplot(2,1,1)

plot(tn,s,’r’)

xlabel(‘Time in Seconds’)

ylabel(‘Amplitude’);

title(‘Rectangular Pulse’);

ylim([0 1.2]);

xlim([0 0.015])

%

% Spectrum of the rectangular pulse
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%

subplot(2,1,2)

K = 256;

s1 = abs(fft(s,K))

s1 = fftshift(s1);

f = [–K/2:K/2–1]/K;

plot(100*f,s1),

grid on

xlabel(‘frequency / f s’)

ylabel(‘Amplitude’);

title(‘Spectrum of Rectangular Pulse’);

%

% Combination of three sinusoidal signals

%

ts = 1/fs;

df = 0.1

tn = 0:ts:0.6

x= 1+1/3*(sin(2*pi*5*tn)+sin(2*pi*10*tn)+sin(2*pi*15*tn));

figure (2)

subplot(2,1,1)

plot(tn,x);

xlabel(‘time’)

ylabel(‘Amplitude’)

title(‘Orginal signal’)

grid on

[X,x1,df] = fftseq(x,ts,df);

X = X/fs;

n = length(fftshift(abs(X)))

f = fs*[-n/2:n/2-1]/n;

subplot(2,1,2)

plot(f,fftshift(abs(X)));

xlabel(‘Frequency’);

ylabel(‘Amplitude’)

title(‘Frequency Spectrum of Orginal Signal’)

grid on

xlim([-20 20]);

%

% Making 100 pulses

%

N = length(tn)

s(1:N) = 0;

 n = 0

  for i = 1:60:N-1

   s(i+n:i+n+30) = 1;

   n = n+1;

 end

%

% Plotting of the pulses

%
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figure (3)

subplot(2,1,1)

plot(tn,s(1:length(tn)))

ylim([0 1.2])

grid on

xlabel(‘Time’);

ylabel(‘Amplitude’)

title(‘Plot of 100 pulses’)

%

% Sampled analog signal

%

length(x)

y = x.*s(1:length(tn));

subplot(2,1,2)

plot(tn,y)

grid on

xlabel(‘Time’);

ylabel(‘Amplitude’)

title(‘Sampled analog signal’)

%

% Spectrum of the sampled signal

%

[X,x1,df] = fftseq(y,ts,df);

X = X/fs;

n = length(fftshift(abs(X)))

f = fs*[-n/2:n/2-1]/n;

figure(4)

subplot(2,1,1)

plot(f,fftshift(abs(X)));

xlabel(‘Frequency’);

ylabel(‘Amplitude’)

title(‘Spectrum of Sampled Signal’);

grid on

xlim([-20 20]);

%

% Lowpass filter implementation

%

y1 = lpf(50,0.1,y);

subplot(2,1,2)

plot(y1)

xlabel(‘Frequency’);

ylabel(‘Amplitude’)

title(‘Lowpass filtered output of sampled signal’)

%

% Getting the envelop of the sampled analog signal

%

N = length(y1)

 for i = 1:N-1

  if y1(i) <=0 

   y1(i) = 0;
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  end

 end

 n = 1

 yi(1) = y1(1)

 for i = 15:60:N-1

  n = n+1;

   yi(n) = max(y1(i-14:i+15));

  end

  newn = n;

subplot(2,1,1)

figure (4)

t = 0:n-1;

t = t*0.006

plot(t,yi)

disp(‘the value of n is’)

xlabel(‘time’);

ylabel(‘Amplitude’)

title(‘Recovered sIgnal’);

grid on

%

% Frequency spectrum of the filtered output

%

[X,x1,df] = fftseq(yi,ts/60,df);

fs = fs/60;

X = X/fs;

n = length(fftshift(abs(X)))

f = fs*[-n/2:n/2-1]/n;

subplot(2,1,2)

plot(f,fftshift(abs(X)));

xlabel(‘Frequency’);

 ylabel(‘Amplitude’)

 title(‘Recovered Signal Spectrum’)

grid on

xlim([-20 20]);

figure (5)

subplot(2,1,1)

plot(tn,x);

xlabel(‘time’);

ylabel(‘Amplitude’);

title(‘Original signal’);

t = 0:newn-1;

t = t*0.006;

subplot(2,1,2)

plot(t,yi);

xlabel(‘time’);

ylabel(‘Amplitude’);

title(‘Recovered sIgnal’);
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function [M,m,df] = fftseq(m,ts,df)
% [M,m,df] = fftseq(m,ts,df)

% [M,m,df] = fftseq(m,ts,df)

% FFTSEQ generates M, the FFT of the sequence m.

% The sequence is zero padded to meet the required frequency resolution df.

% ts is the sampling interval. The output df is the final frequency.

% Resolution. Output m is the zero padded version of input m. M is the FFT.

%

fs = 1/ts;

if nargin == 2 

n1 = 0;

else

n1 = fs/df;

end

n2 = length(m)

n = 2^(max(nextpow2(n1),nextpow2(n2)));

M = fft(m,n);

m = [m,zeros(1,n-n2)];

df = fs/n;

return

Results
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MATLAB Example 8.2 In this example, we compare linear and  cubic interpolation strategies. We 
compare the  interpolations for a sine wave. Such interpolations are often used in practice in applica-
tions where sinusoids of different  frequencies need to be generated using one cycle of a sinusoid that 
is stored.

t = pi * [ 0 : 10] * 0.4 ; x = sin (t) ; %generate the basic signal

ti = pi * [0 : 40] * 0.1 ; xi = sin (ti) ; %generates closely spaced samples of 

the actual signal

xic = interp1 (t, x, ti. ‘spline’) ; xil = interpl (t, x, ti, ‘linear’);

%generates the cubic spline and the linear interpolated versions 

Y = [xil.’ ,xic.’ ,xi.’];

h = stem (ti (11 : 30) , y (11 : 30, :), ‘k’);

set (h(1), ‘MarkerFaceColor’ , ‘black’)

set (h(2), ‘MarkerFaceColor’ , ‘black’ , ‘Marker’ , ‘square’)

set (h(3), ‘MarkerFaceColor’ , ‘black’, ‘Marker’ , ‘diamond’)

title(‘Linear and Cubic Interpolations’);

ylabel (‘value’); xlabel (‘sample index’);

legend(‘Linear’, ‘Cubic’ , ‘Actual’)

%It is clear from the figure that while linear interpolation leads to

%large errors, cubic interolations will work better.
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Fig. 8.65 The linear and the cubic spline interpolated version of a sinusoid
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MATLAB Example 8.3 (Pulse Width Modulation and Pulse Position Modulation)
Modulating (message) signal is a sinusoidal signal with f = 100, and sampling frequency is 4000 samples/s.
Pulse carrier will be as shown in Fig. 8.66:

Unmodulated pulse width

Ts = 2 ms

1 ms

–4 –3 21 4

Time in ms

Fig. 8.66

At the peak of the modulating sinusoidal signal, the pulse carrier width should increase from the un-
modulated value. Generate the Pulse Width Modulated (PWM) signal. Then do the following:
 (a) Display the PWM signal obtained (for I full cycle of modulating signal).
 (b) Display its spectrum.
 (c) Demonstrate the PWM signal and display two cycles of the recovered message signal.
 (d) Replace PWM in your program by PPM and repeat the above three steps.

MATLAB Program
clc

Fc = 100; % modulating signal frequency

Fs = 4000; % sampling frequency
ts = 1/Fs % sampling time 0.0025 (0.25 milli seconds)

t = [0:ts:1/Fc]; % a total 4500 samples for 9 milli seconds (500 samples per 

millisecond)

size(t)

%

% Generation of message wave

%

figure (1)

subplot (2,1,1)

x = 0.5+0.4*sin(2*pi*Fc*t); % message or modulating signal
plot(t,x)

grid on

ylabel (‘amplitude’);

xlabel (‘time(in secs)’)

title (‘modulating/message signal’);

%

% Generation of pulse carrier

%

tt = (-4/1000:(ts/10):6/1000)
m = zeros(size(tt));
m(1:40) = ones(size(m(1:40)));
m(81:120) = ones(size(m(81:120)));
m(161:200) = ones(size(m(161:200)));
m(241:280) = ones(size(m(241:280)));
m(321:360) = ones(size(m(321:360)));
subplot (2,1,2)
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plot(tt,m)

ylim ([0 1.2])

ylabel (‘amplitude’);

xlabel (‘time(in milli secs)’)

title (‘Pulse carrier signal’);

%

% Generation of PULSE WIDTH MODULATION

%

y = modulate(x,Fc,Fs,‘pwm’,‘centered’);
k = 1:1:length(y)
k = k/(length(y)*100);
figure (2)

subplot (2,2,2)

plot(k,y)

title(‘Modulated Signal’);

ylim ([0 1.2])

subplot (2,2,1)

plot(t,x)

grid on

ylabel (‘amplitude’);

xlabel (‘time(in secs)’)

title (‘modulating/message signal’);

% Demodulated signal of modulated signal

%

m1 = demod(y,Fc,Fs,‘pwm’,‘centered’);
subplot(2,2,3)

plot (t,m1);

title (‘PWM Demodulated Signal’);

grid on

%

Sx = fftshift(abs(fft(y))) % power spectrum of PWM
f = -length(Sx)/2:1:(length(Sx-1)/2)-1
subplot (2,2,4)

plot (f,Sx);

grid;

title(‘Magnitude Spectrum of x(n)’);

xlabel(‘Frequency, Hz’);

ylabel(‘Magnitude, dB’);

%

% Generation of PULSE POSITION MODULATION

%

k = 1:1:length(Sx)
k = k/(length(Sx)*100);
y1=modulate(x,Fc,Fs,‘ppm’);
figure (3)

subplot (2,2,2)

plot (k,y1)

title(‘Pulse position Modulated Signal’);

ylim ([0 1.2])

subplot (2,2,1)

CS-Rao_08.indd 479CS-Rao_08.indd   479 1/22/2013 10:15:47 AM1/22/2013   10:15:47 AM



480 Communication Systems

plot(t,x)

grid on

ylabel (‘amplitude’);

xlabel (‘time(in secs)’)

title (‘modulating/message signal’);

%

% Demodulated signal of PPM

%

m2 = demod(y1,Fc,Fs,‘ppm’);
subplot (2,2,3)

plot (t,m2);

grid on

ylabel (‘amplitude’);

xlabel (‘time(in secs)’)

title (‘PPM Demodulated signal’);%

% Spectrum of the pulse position modulated signal

%

Sx1 = fftshift(abs(fft(y1))) % power spectrum of PPM;
f = -length(Sx1)/2:1:(length(Sx1-1)/2)-1
subplot (2,2,4)

plot (f,Sx1)

grid on;

title(‘Magnitude Spectrum of x(n)’);

xlabel(‘Frequency, Hz’);

ylabel(‘Magnitude, dB’);

Results
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Summary 
 ■ Statement of  low pass sampling theorem: if x(t) is a low pass signal, band limited to W Hz, i.e., if X(f) = 0 for all | f |

≥ W, it is possible to recover x(t) completely, without any distortion whatsoever, from its samples taken at intervals 
Ts £ 1/2W. x(t) can be expressed in terms of its samples as

( ) 2 ( ) sinc 2 ( )s s s
k

x t BT x kT B t kT
•

=-•
= -Â

 ■ The low pass sampling theorem provides the basis for all analog pulse modulation systems as well as all digital 
communication systems.

 ■ fs = 2W represents the minimum sampling rate that can be used, for sampling a low pass signal band limited to W
Hz, if the signal is to be recovered from its samples. This minimum sampling rate is called ‘ Nyquist Rate’.

 ■ There are basically three types of sampling – impulse or ideal sampling, natural sampling using pulses of finite 
width, and  flat-top sampling using finite-width pulses.

 ■ It is possible to recover x(t), without any distortion, from its samples in the case of ideal sampling as well as natural 
sampling.

 ■ In the case of flat-top sampling, which is the most commonly used sampling method in practice, it is not possible 
to recover x(t) without any distortion because of ‘ aperture effect’. However, this distortion can be reduced using an 
amplitude equalizer with an appropriate transfer function.

 ■ ‘ Aliasing’, or ‘folding-over effect’ occurs because of under-sampling, i.e., sampling below the ‘Nyquist rate’, and 
manifests itself as some of the high frequency components of x(t) reappearing as low frequency components in the 
spectrum of the sampled signal.

 ■ Aperture effect is a distortion that appears in the message signal recovered from its samples taken using flat-top 
sampling. Because of this effect, high frequency components of the recovered message signal x(t), suffer relatively 
higher attenuation compared to its low frequency components.

 ■ A  zero-order-hold (ZOH) may be used to reconstruct the message from its samples – it gives a staircase approxi-
mation of the message.

 ■  PAM, PDM and PPM are, strictly speaking, not modulation techniques at all, as there is no frequency translation 
and these signals cannot be radiated directly. They are actually signal processing methods – methods used for 
representing a sample value in terms of the amplitude of a pulse in the case of PAM the width of a pulse in the case 
of PDM/PWM and the shift/delay in the position of a pulse in the case of PPM.

 ■ A  PPM signal may be obtained by directly flat-top sampling an analog signal. It can be detected by making use of 
a low pass filter, followed by, if necessary, an equalizer.

 ■ A  PDM signal may be generated either from a PAM signal, using a ramp signal and a comparator, or directly from 
the analog signal by using a mono-stable multivibrator.

 ■ The spectrum of a PDM signal consists of a dc component, the message signal and groups of phase-modulated 
waves with sampling frequency fs and its harmonics as the carrier frequencies.

 ■ A PDM signal may be detected either by first converting into a PAM signal and low pass filtering this PAM signal, 
or by directly low pass filtering the PDM signal itself.

 ■ A PPM signal may be generated by first generating a PAM signal and converting it into a PDM and then using a 
trigger pulse produced by the trailing edge of the PDM when it is differentiated, to generate a rectangular pulse 
from a pulse generator so that the leading edge of the resultant PPM pulse coincides with the trailing edge of the 
PDM pulse.

 ■  Cross-talk occurs in PAM, PDM as well as PPM transmission if the channel bandwidth is inadequate. In PAM, it 
causes an amplitude error while in PDM and PPM it causes a timing error.

 ■ In TDM-ed transmission of PAM, PPM, or PDM, synchronization of the commutators at the two ends is necessary.
 ■ In comparison with  FDM, the  TDM hardware is much simpler. It has several other advantages over FDM, such 

as its ability to easily handle baseband signals having widely different bandwidths and its relative robustness with 
regard to short-term fading.

 ■ As far as noise performance is concerned, PAM is at least 3 dB inferior direct baseband analog message signal 
transmission.
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 ■ The destination SNR of PDM is proportional to (BT/W) while that of PPM is proportional to the square of (BT /W).
Hence, power to bandwidth trade-off is possible in both, with PPM offering a better trade-off. However PPM is 
inferior to WBFM by about 10 dB.
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Review Questions 
1. What is aliasing? How can it be reduced or avoided?
2. What is meant by aperture effect? How can it be reduced?
3. What is a Zero-Order-Hold? How can it be used as a reconstruction filter?
4. State the low pass sampling theorem and briefly explain its significance.
5. Discuss the advantages and disadvantages of analog pulse modulation as compared to continuous-wave modulation.
6. Explain how a PAM signal may be generated. How can it be demodulated?
7. Describe with the help of neat sketches of waveforms, any two methods of generation of PDM/PWM and PPM.
8. How do you de-modulate a PDM signal?
9. Explain how a PPM signal may be converted into a PAM signal.

10. What is Time Division Multiplexing?
11. If N voice signals, each of bandwidth W Hz, are TDM-ed, show that the TDM-ed signal needs a minimum trans-

mission bandwidth of NW Hertz.
12. What is meant by cross-talk with reference to TDM-ed signals?
13. Explain how the low frequency deficiency of a channel causes cross-talk consider PAM signal and model the 

channel as a high pass RC filter.
14. By considering a PAM signal and using a low pass RC filter as the model for the channel, show how high frequency 

deficiency of a channel can cause cross-talk.
15. Derive an expression for the destination signal-to-noise ratio of a PAM system, and show that it cannot exceed g /2.
16. With the help of a neat sketch, show how additive noise on the channel can cause an error in the measurement of 

the arrival time of a pulse.
17. Show that in the case of PPM, the (S/N)D takes a maximum value which is proportional to the square of the ratio 

of transmission bandwidth BT to the message bandwidth W.
18. Critically compare FDM and TDM.

Problems 
1. Determine the Nyquist rate of sampling for the following signals:

 (a) ( ) 10 sinc 100x t t=    (b) 2( ) 10 cos (100 )x t tp=
 (c) 2( ) 10 sinc (100 )x t t=

2. For each of the signals listed below, identify the minimum sampling frequency needed to ensure that no aliasing 
takes place,

 (a) ( ) 5sinc(10 ) cos (100 )x t t tp=  (b) 2( ) 10 cos 100x t tp=
 (c) 2 2( ) 4 ( /10 )cos (10 )x t t tp-= P
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 3. A unipolar rectangular wave of unit amplitude, 0.3 duty cycle and a period of T sec is used as the sampling function 
for sampling a signal x(t) with a maximum frequency component 1 kHz. What is the largest value of T for which 
reconstruction of x(t) from the samples would be possible? Determine a suitable system for reconstruction of x(t)
from the samples.

4. To completely describe a periodic band-limited signal, it is enough if we have the samples from one period. How 
many samples are needed to exactly describe the following band-limited periodic signals?

 (a) ( ) 5cos (300 ) 15sin (200 )x t t tp p= +  (b) ( ) 16cos (5 ) 6sin (8 )x t t tp p= +
5. The signal ( ) 12 cos 40x t tp=  is ideally sampled at fs = 50 samples/sec. Plot the spectrum of the sampled version 

up to a frequency of ±180 Hz.
6. The schematic diagram of a bipolar chopper is shown in Fig. P8.6(a).

 (a) Sketch the waveform of the sampling function s(t), assuming switch k starts at A at t = 0 and makes contact 
alternately at A and B staying at each stud for Ts /2 sec.

 (b) If the spectrum of x(t) is as shown in Fig. P8.6(b).
 (i) Sketch the spectrum of the sampling function s(t)
 (ii) Sketch the spectrum of the sampled signal xs(t) assuming fs > 2W.
 (c) Comment on the filter to be used for reconstruction of x(t) from xs(t).

Fig. P8.6(a)

7. For the low pass sampling theorem of Section 8.2, there is a dual. It says that if x(t) is time-limited, i.e., if x(t) = 
0 for | t | ≥ T, then the frequency-domain representation of x(t), namely, X(f), can be determined without any error 
from its samples taken at regular frequency intervals of f0 £ 1/2T. Prove this.

8. A PAM is represented by

0( ) [1 ( )] ( )p s s
k

x t A mx kT p t kT= + -Â
 (a) Show that its spectrum is given by

0( ) ( ) { ( ) ( )}p s s s
k

X f A f P f f nf mx f nfd= - + -È ˘
Í ˙Î ˚
Â

 (b) Sketch Xp(f) when p(t) is a rectangular pulse of amplitude 1 and base width equal to half the sampling 
period; m = 1 and x(t) = cos 2p ¥ 200t when fs = 500 Hz. Take A0 = 1.

9. What is the transmission bandwidth needed for a PDM signal for which the sampling frequency is 8 kHz, m = 0.8 
and |x(t)| £ 1 and unmodulated pulse width t0 = Ts /5. It is desired that the rise time tr should not be greater than a 
quarter of the minimum pulse width in the PDM signal.

10. 15 voice signals, each band limited to 4 kHz, are sampled at a rate that allows us to provide a guard band of 1.5 
kHz to facilitate reconstruction. The samples are transmitted using PAM with AM of a continuous wave, i.e., PAM/
AM, the duty cycle being 0.25. Calculate the required transmission bandwidth.

11. 10 message signals, each band limited to 2 kHz are sampled at a frequency fs that permits a 1 kHz guard band. 
The multiplexed samples are transmitted by (a) PAM/AM with 25% duty cycle, and (b) PAM/FM with baseband 
filtering and a peak frequency deviation of ±75 kHz.

Fig. P8.6(b)
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Multiple-Choice Questions 
1. A band limited low pass signal is sampled at twice its Nyquist rate with fs = 2000 samples/sec. The signal is band 

limited to
 (a) 250 Hz (b) 1000 Hz (c) 500 Hz (d) 2000 Hz
 2. A certain low pass signal x(t) is sampled and the spectrum of the sampled version has guard band from 1500 Hz to 

1900 Hz. The sampling frequency used is
 (a) 1500 samples/sec (b) 1900 samples/sec (c) 1700 samples/sec (d) 3400 samples/sec

3. A low pass signal band limited to 1200 Hz was sampled and it was found that the 1000 Hz frequency component 
was reappearing in the recovered signal, because of aliasing, as 400 Hz component. The sampling frequency used 
is

 (a) 1400 samples/sec (b) 1600 samples/sec (c) 2200 samples/sec (d) 800 samples/sec
 4. x(t) = 3 cos2 250 pt. This signal is sampled at regular intervals of T sec. The maximum value of T for which x(t)

may be recovered from the sampled version without any distortion is equal to
 (a) 1 m.sec (b) 2 m.sec (c) 4 m.sec (d) 0.5 m.sec

5. A cosinusoidal signal x(t) = 5 cos 240 pt was sampled at a frequency fs. The signal recovered from the samples was, 
however, found to be 3 cos 110 pt. The sampling frequency fs is equal to

 (a) 175 samples/sec (b) 350 samples/sec (c) 130 samples/sec (d) 65 samples/sec
6. Aperture effect

 (a) amplifies the high frequency components (b) attenuates the low frequency components
 (c) amplifies the low frequency components (d) attenuates the high frequency components

7. A continuous-time signal x(t) is ideally sampled using a unit impulse train with a sampling interval of T sec. The 
sampled version is

 (a) a sequence of samples of x(t), the kth sample being equal to x(kT) and located at t = kT

 (b) a periodic version of x(t) with period of T sec.
 (c) a sequence of impulses, the kth impulse having a strength of x(kT) and located at t = kT

 (d) None of the above
8. The most commonly used sampling method is

 (a) ideal or impulse sampling  (b) natural sampling using rectangular pulses
 (c) sample-and-hold method   (d) None of the above

9. The distortion in the signal arising from aperture effect, can be reduced by
 (a) reducing the width of the pulses used for flat-top sampling
 (b) reducing the sampling frequency
 (c) properly band limiting the signal before sampling it
 (d) using flat-top sampling

10. The impulse response function, h(t), of a zero-order-hold circuit is
 (a) an impulse (b) a rectangular pulse (c) a triangular pulse (d) None of these

11. A PAM signal may be generated using
 (a) impulse sampling   (b) a sample-and-hold circuit
 (c) natural sampling   (d) a clipper circuit

12. A PAM signal may be demodulated using
 (a) a low pass filter   (b) a differentiator followed by a low pass filter
 (c) an integrator   (d) a low pass filter followed by an equalizer

13. Cross-talk occurs in PAM/TDM-ed system because of
 (a) only low frequency deficiency of the channel
 (b) only high frequency deficiency of the channel
 (c) either low frequency deficiency or high frequency deficiency, or both
 (d) non-linear cross-modulation
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14. In general, cross-talk decreases with increasing bandwidth.
 (a) It reduces more rapidly in PPM than in PAM
 (b) It reduces more rapidly in PAM than in PPM
 (c) It reduces at the same rate in PAM and PPM
 (d) None of the above

15. Noise performance of PAM is
 (a) better than that of direct base-band transmission
 (b) better than CW amplitude modulation
 (c) poorer than that of direct base-band transmission
 (d) better than that of PDM

16. (S/N)D of PDM is
 (a) proportional to the transmission bandwidth
 (b) proportional to the square of the transmission bandwidth
 (c) proportional to the square-root of the transmission bandwidth
 (d) independent of the transmission bandwidth

17. (S/N)D of PPM is
 (a) proportional to the transmission bandwidth
 (b) proportional to the square of the transmission bandwidth
 (c) proportional to the square-root of the transmission bandwidth
 (d) independent of the transmission bandwidth

18. Short-term fading of the channel
 (a) affects only a few message channels of an FDM system
 (b) affects all the message channels of a TDM system
 (c) affects all the message channels of an FDM system
 (d) does not have much effect on both TDM and FDM systems

Key to Multiple-Choice Questions

 1. (c) 2. (d) 3. (a) 4. (b) 5. (a) 6. (d) 7. (c) 8. (c)
 9. (a) 10. (b) 11. (b) 12. (d) 13. (c) 14. (a) 15. (c) 16. (a)
 17. (b) 18. (c)
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DIGITAL CODING OF ANALOG 

SIGNALS (PCM AND DM)

9
“If your actions inspire others to dream more, learn more, do more and become more, you 

are a leader.”

John Quincy Adams (1767–1848)
Sixth President of the United States (1825–1829)

Learning Objectives

After going through this chapter, students will be able to

 ■ understand the need for and the effect of  quantization, different types of  quantizers, and the need for 

companding of speech signals in PCM systems,

 ■ explain the relationship between Q , the number of quantization levels; n, the bits per  codeword; r, the 

bit-rate and BT, the  transmission bandwidth of a pulse-code modulated signal,

 ■ draw the block diagrams of the transmitter and receiver of a baseband  PCM system and explain the 

function of each block,

 ■ determine the  signal-to-quantization noise ratio as well as signal-to-noise ratio for PCM systems,

 ■ explain the SNR-BW trade-off in PCM systems,

 ■ explain the operation of  DM,  ADM,  DPCM,  ADPCM systems using the block diagrams of their trans-

mitters and receivers,

 ■ explain the different methods used for  speech compression and the principle of  linear predictive 

vocoders, and also get familiar with the speech compression standards, and

 ■ understand the principle of  TDM, and become familiar with various details like bit and word inter-

leaving,  frame synchronization methods,  T-carrier system formats and  TDM hierarchy.

9.1 INTRODUCTION

There are three steps in the process of digital coding of analog signals. These are  sampling,  quantization 
and  coding. Different methods of sampling, issues involved in each of them and the reconstruction of a 
band limited low pass analog signal from its samples, have already been discussed in detail in Chapter 
8. A sampled signal is only a discrete-time signal and not a digital signal. Quantization is the process of 
discretizing the sampled version in its amplitude also. We will show that quantization of the samples results 
in quantization noise and study its dependence on the number of quantization levels. Signals like the speech 
signal, which have low amplitudes for most part of the time, but have large peaks occurring occasionally, 
will have poor  SNR if  uniform quantization is used, i.e., if the quantization levels are equally spaced over the 
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dynamic range of the signal, unless the levels are very closely spaced. As close spacing of the levels increases 
the bandwidth required for the signal, we resort to  non-uniform quantization. When these quantized sample 
values are encoded using a suitable code, like the binary code, it results in a digital signal.
 The most basic form of digital communication is by the use of the  Pulse Code Modulation (PCM), which 
results when a binary code is used in encoding the quantized samples. Channel noise, which causes severe 
problems in long-haul analog communication using a number of repeaters, can be made irrelevant in properly 
designed long-haul PCM transmission systems using  regenerative repeaters.
 Variants of PCM like delta modulation, adaptive delta modulation, and differential pulse code modulation, 
their principles, advantages and disadvantages, and fields of application, are discussed in detail, along with 
Time Division Multiplexing (TDM), its principle, signaling and synchronization details, and TDM hierarchy.
 The different time-domain and frequency-domain techniques used for compression of speech, and the 
present-day standards for compression of these signals are also discussed in this chapter.

9.2 QUANTIZATION

 Sampling of an analog signal merely converts it into a  discrete-time signal, i.e., a signal which is discretized 
in time but not in its amplitude. A  quantizer discretizes the discrete-time signal in its amplitude also. There 
are two types of quantization –  uniform and non-uniform. Both of these produce what is called ‘quantization 
noise’. As we are going to see, from the ‘signal-to-quantization noise ratio’ point of view, uniform quanti-
zation is suitable for signals whose  amplitude probability distribution is uniform over their dynamic range 
and the non-uniform quantization is more suitable for signals with low amplitude but occasional large peaks, 
such as the speech signals.

9.2.1 Uniform Quantization

A continuous-time signal is defined for all values of time and its amplitude can have any value within the 
limits set by its dynamic range. When we sample it, what we get is only a discrete-time signal and not a digital 
signal. Sampling, as we have seen, discretizes the continuous-time signal only in time but not in amplitude. 
The samples obtained by the sampling process can have a continuum of values – they are not restricted to 
any finite set of prescribed values. So, the next step in the digitization of an analog signal is the discretization 
of the amplitudes of these samples obtained through the sampling process. For this, let us say we divide the 
dynamic range of the analog signal into a certain finite number of equal segments, as shown in Fig. 9.1. We 
round-off a sample value falling within a particular segment to the value represented by the ‘prescribed level’ 
passing through the middle of that segment. This process of rounding-off is called quantization.
  Quantization certainly introduces errors into the values of the samples. This in turn may be viewed as delib-
erately distorting the original message signal. However, we now have samples whose values are restricted to 
a certain finite set of prescribed values. This means that we have discretized the amplitudes of the samples. 
Thus, the original message signal has been discretized in time by the sampling process and in amplitude by 
the quantization process. Since the permitted, or prescribed levels are equidistant, this quantization is called 
‘ uniform quantization’. It must be noted that the quantization process which we are adopting is such that 
it is instantaneous or memory-less in the sense that the way the rounding-off of a sample is done is solely 
dependent upon its actual value only and is not in any way influenced by the values of the other samples 
preceding it or succeeding it. Before proceeding to the quantizers, their types and characteristics, let us define 
‘quantization’.

Definition of quantization It is the process of assigning to each one of the sample values of the 
message signal, a discrete value from a prescribed set of a finite number of such discrete values, called the 
‘ quantized values’.
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 We note that for any given dynamic range of the analog signal, if the number of the ‘prescribed levels’, or 
the ‘quantized levels’, is increased, the interval between two successive levels, called the ‘step size’, becomes 
smaller and so the error due to quantization, which can be at the most ±0.5 (step size), also becomes smaller. 
This will certainly give a better approximation to the original analog message. However, in order to get a 
better approximation by increasing the quantization levels, we have to pay a price in the form of increased 
bandwidth, as we will see later.

9.2.2 Quantizers

Quantization can be performed by feeding the samples of the analog signal to a ‘ quantizer’, which transforms 
each of the samples fed to it into a ‘quantized sample’ having an amplitude corresponding to the ‘prescribed 
level’ used for representing any sample value falling within the pertinent interval (step) into which that analog 
signal sample falls. This is shown diagrammatically in Figs. 9.2(a) and (b).

Fig. 9.2 (a) and (b) Action of a quantizer

Sample Number S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Actual values of the samples 1.7 4.4 7.2 7.4 7.3 7.0 2.4 0.4 3.4 5.3 4.3 3.2

Rounded-off values 2 4 7 7 7 7 2 0 3 5 4 3

Binary code for rounded value 010 100 111 111 111 111 010 000 011 101 100 011

Fig. 9.1 Illustrating the quantization process
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 As shown in the above figures, any sample value x falling in the interval xm to xm + 1, i.e., in the interval (or 
step) Dm, will be mapped by the quantizer into the prescribed value 

mqx  corresponding to that interval.
 As stated earlier, a quantization process in which the quantization levels are uniformly spaced is called 
‘ uniform quantization’, and a quantizer which performs uniform quantization is called a ‘uniform quantizer’. 
A quantization process in which the quantization levels are not uniformly spaced, is called a  non-uniform 
quantization and the quantizer performing the non-uniform quantization, is called a ‘non-uniform quantizer’. 
We shall presently discuss only the uniform quantizers.

Uniform quantizers These are of two types depending on the shape of the input-output characteristic:
 1. Mid-tread type
 2. Mid-rise type

Fig. 9.3 Quantization characteristic: (a)  Mid-tread quantizer, (b)  Mid-rise quantizer

 As shown in these figures, the quantizer characteristics have a staircase shape irrespective of whether it is 
a mid-tread type or a mid-rise type. The only difference is that in the mid-tread characteristic, the origin is in 
the ‘tread’ portion and that is why it is called mid-tread; whereas for the other one, the origin is in the ‘rise’ 
portion of the staircase type of characteristic and so it is known as the mid-rise type of quantizer. Note that in 
the mid-tread type, any input value between –0.5 and +0.5 is mapped to an output value of ‘zero’; any input 
value between 0.5 and 1.5 is mapped to an output value of 1, and so on. In the mid-rise quantizer, on the other 
hand, any input value between 0 and 1 is mapped to an output value of 0.5; any input value between 1 and 2 
is mapped to an output value of 1.5, and so on.

Example 9.1 The temperature at a particular place varies between 14°C and 34°C. For the purpose 
of transmitting the temperature record of that place using  PCM, the record is sampled at an appropriate 
sampling rate and the samples are quantized. If the error in representation of the samples due to quanti-
zation is not to exceed ±1% of the dynamic range, what is the minimum number of quantization levels 
that can be used?

Solution If Q is the number of levels and D is the step size,

(34 14)

Q

-
D =  Quantization error 

2

D
= ±  in the representation of any sample

Example 9.1 The temperature at a particular place varies between 14°C and 34°C. For the purpose
of transmitting the temperature record of that place using PCM, the record is sampled at an appropriate
sampling rate and the samples are quantized. If the error in representation of the samples due to quanti-
zation is not to exceed ±1% of the dynamic range, what is the minimum number of quantization levels 
that can be used?
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\
/2 1 2

100 1 or °C
20 2 5 5

D DÊ ˆ¥ = = \D =Á ˜Ë ¯

\
20 20 5

50
2

Q
¥

= = =
D

\ the minimum number of prescribed levels, or quantization levels that can be used is 50.

9.2.3 Quantization Noise

Let the message signal x(t) be a zero-mean random process. Then its sample, x, is a zero-mean random 
variable. If this sample, x, is fed to a quantizer, and if xq is the prescribed quantization level to which x is 
approximated, the quantization error eq is given by

q qe x x= -
Now, since in a quantizer, the levels xqs are symmetrically located on either side of zero level, and since x is 
a zero-mean random variable, the random variable eq must also be zero mean. Since xq is at the center of the 
interval of sample amplitudes into which, the sample, x, has fallen, we also know that

2 2qe
D D

- < <  (9.1)

where D is the ‘interval’ of amplitudes, or the ‘ step size’. That 

is, the error may take any value from 
2

D
-  to 

2

D
+ . However, 

the way the error random variable, eq, is distributed over this 
range of values is not known. But, if the step size, D, is small, 
i.e., if the number of prescribed quantization levels, Q is large, 
it is quite reasonable to assume that the random variable, eq,

is uniformly distributed over the interval 
2

D
-  to 

2

D
+ . So, we 

shall assume that eq has a  PDF as shown in Fig. 9.4.
 These random errors caused by quantization in the successive samples, appear as noise, called the  quanti-

zation noise. The mean-squared value of this noise can be evaluated, using the probabilistic model we have 
developed for the quantization-error random variable, eq.
 Mean-squared value of the error = Average power in the quantization noise

2 2 ( )q q e q qe e f e de
+•

-•
= Ú

But fe(eq), the  probability density function of eq, is

1/ ;
( ) 2 2

0; otherwise

q
e q

e
f e

D DÏ D - £ £Ô= Ì
ÔÓ

\

/23/2
2 2 2

/2
/2

1 1
( )

3

q

q q e q q q q

e
e e f e de e de

D
• D

-• - D - D

È ˘
Í ˙= = = Í ˙D D
Í ˙Î ˚

Ú Ú

\
2

2

12qe
D

=  (9.2)

Fig. 9.4  PDF of the  quantization error 

random variable
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 The step size, of course, depends upon the dynamic range of the message signal x(t) and the number 
of prescribed quantization levels Q. So, let us normalize the message signal x(t) so that |x(t)| £ 1. Then the 
dynamic range of values of x(t) is –1 to +1. So, we may write

2
(since 1)Q

Q
D = >>  (9.3)

Substituting this for D in the expression for 2
qe , we get

2
2

1
Average power in quantization noise = =

3(| ( )| 1)
qe

Qx t £
 (9.4)

9.2.4 Non-Uniform Quantization ( Companding)

Consider a uniform quantization with characteristic as shown in Fig. 9.3 for which an input of, say 8 V peak 
to peak constitutes full load. Let us first consider the case where it is given full 8 V peak-to-peak sinusoidal 
signal as input. Then the signal power is

24
8 W

2
S

Ê ˆ
= =Á ˜Ë ¯

and the noise power is

2 1
W

12 12qN
D

= =  (See Eq. (9.2))

Hence, the ( ) 96 19.8 dBq
q

S
SNR

N

Ê ˆ= = =Á ˜Ë ¯
But suppose, to the same quantizer whose full load input is 8 V peak to peak, we give a 2 V peak-to-peak 
sinusoidal signal as input. Then the signal power is 0.5 W but quantization noise power, which, as per 
Eq. (9.2) depends only on D, the step size, remains at the same value of (1/12) watt. Thus, the (SNR)q now is 
6, which is equal to 7.78 dB.
 Thus, we find that a uniform quantizer gives good (SNR)q for large amplitude signals but a poor (SNR)q

for low amplitude signals. This is not desirable. A quantizer which gives almost the same (SNR)q for signals 
whose powers vary over a wide range, is called a  robust quantizer. As we will be seeing presently, employing 
a  non-uniform quantization is the way to realize robust quantizer.
 Thus, uniform quantization is quite suitable for message signals which have an amplitude probability 
distribution which is uniform over their dynamic range. But, unfortunately, in the case of speech, which is 
perhaps the most important message signal in communication engineering, the amplitude probability distri-
bution is not at all uniform. Since the ratio of intensities corresponding to a loud shout and a whisper can be 
as high as 1000:1, the dynamic range of a speech signal is quite large. However, a typical speech signal is 
characterized by low amplitude for most part of the time, corresponding to normal speech, with occasional 
peaks of large amplitude but short duration, corresponding to shouts. Thus, while its dynamic range is large, 
its average power is quite small. So, for speech signals, if we wish to use only uniform quantization, we are 
left with two alternatives, both of which are unattractive:
 1. Keep the quantization error and quantization noise low by using a large number of quantization levels, 

i.e., have a large Q. As mentioned earlier, and as would be seen later when we discuss  PCM in detail, if 
Q is large, the transmission bandwidth would be correspondingly large.

 2. Keep the bandwidth requirement low by using a small number of prescribed quantization levels, i.e., a 
low Q, in which case, the  quantization noise will be high.
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 Non-uniform quantization provides a good solution for the above problem, as it allows us to keep the quanti-
zation noise low even when Q is small, i.e., even when we use a small number of prescribed quantization 
levels.
 As noted earlier, the mean-squared value of  quantization noise is proportional to the square of the step 
size. Further, for speech signals, the signal amplitude is low for most part of the time and large peaks occur 
only very rarely and they are of very short duration. Hence, in the case of speech signals, in order to obtain a 
good signal-to-noise ratio, it makes sense to provide smaller step size in the low amplitude region, and a large 
step size in the large amplitude region of the dynamic range of the signal. This means that we need to employ 
non-uniform quantization, wherein the prescribed quantization levels are not uniformly spaced.
 Non-uniform quantization is equivalent to first subjecting the samples of the message speech signal to 
amplitude compression by passing them through a compressor and then applying uniform quantization to 
these compressed samples. Compression of the input samples is accomplished according to a specific law 
governing the relationship between amplitudes of the input and output samples. There are two different 
 compression laws in vogue and they are:
 1. m-law
 2. A-law
Both these laws provide a near linear relation between the output amplitude and the input amplitude for small 
amplitudes of the input samples, and a somewhat logarithmic relation for the larger amplitude input samples.

1. m-law: If x and y are the normalized input and 
output values, respectively, this compression law 
is defined by the following input-output relation:

log[1 | |]
| |

log[1 ]

x
y

m

m

+
=

+
 (9.5)

where m is a positive constant. The typical input-
output characteristics of a m-law compressor are 
given in Fig. 9.5 for three different values of the 
constant m. It may be noted that when m = 0, it 
corresponds to uniform quantization and that 
compression of the larger sample values is higher 
for larger values of m.

2.  A-law: The other compression law in vogue 
is the A-law which is defined by the following 
input-output relation:

| | 1
; 0 | |

1 log
| |

1 log[ | |] 1
; | | 1

1 log

A x
x

A A
y

A x
x

A A

Ï £ £Ô +Ô= Ì +Ô £ £
Ô +Ó

 (9.6)

where A is a constant. Figure 9.6 shows the input-output relation for an A-law compressor. Clearly, A = 1 
corresponds to uniform quantization. Larger the value of the constant A, more is the compression.
 In both m-law as well as in A-law, as m or A increases, the compression for the larger amplitudes also 
increases and so the dynamic range increases. Again, in both the cases, the signal-to-quantization noise ratio 
becomes poorer and poorer for larger amplitudes (because of larger step size) as the m or A increases. Hence, 
the choice of the value of m or A is a matter of compromise and in practice m = 255 and A = 87.6 are generally 
used.

Fig. 9.5 m-law characteristic
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494 Communication Systems

 Since the message signal is compressed at the transmitter, in the receiver it has to be expanded to remove 
the distortion. For this purpose, an expander having an input-output characteristic which is the exact inverse 
of that of the compressor at the transmitter, will have to be used. This process of compressing message signals 

like speech, at the transmitter and expanding them at the receiver is called ‘ companding’. Companding is a 
word coined by combining the words, ‘compressing’ and ‘expanding’. Figure 9.7 shows the compressor and 
expander characteristics together, for both positive as well as negative values of input samples.

It must be noted that in m-law as well as  A-law, the input represented by x is the normalized 

input. Correspondingly the output represented by y, is also the normalized output.

 Earlier we had stated that non-uniform quantization of the message x may be considered equivalent to 
compressing x and then subjecting the compressed signal, y, to uniform quantization. This can easily be 
understood from Fig. 9.5 which shows the m-law compressor characteristic. x is the message input to the 
compressor and y is the compressor output. In that figure, the compressor output is subjected to uniform 
quantization, the dotted lines passing through y1, y2, … , y8 being the uniformly spaced quantization levels. 
Insofar as the input, x, is concerned, these quantization levels passing through y1, y2, … , y8 are equivalent to 
input side quantization levels passing through x1, x2, … , x8. Clearly, these prescribed quantization levels of 
the input are closer for smaller values and farther apart for larger input values, making the step size smaller 
for smaller values of the input and large for larger values of input.

Example 9.2 A message signal Am cos wmt, sampled and applied to a quantizer with Q permitted 
quantization levels, fully loads it. Find the signal-to-quantization noise ratio at the output of the quantizer.

Solution Since the signal fully loads the  quantizer, it means that the Q levels cover the full range of –Am

to +Am of the signal.

Example 9.2 A message signal Am cos wmt, sampled and applied to a quantizer with Q permitted
quantization levels, fully loads it. Find the signal-to-quantization noise ratio at the output of the quantizer.

Fig. 9.6 A-law characteristics

Fig. 9.7  Compressor and  expander characteristics for 

both positive and negative values of input

Note
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Hence, step size 
2 mA

Q
D =

\ quantization noise mean-squared value = 
2

12 qN
D

=

2 2

2 2

4

12 3

m mA A

Q Q
= =

S = Average signal power = 
2

2
mA

\
2 2

2
2

3 3

2 2
m

q m

AS Q
Q

N A

Ê ˆ = ¥ =Á ˜Ë ¯

Example 9.3 A message signal with a dynamic range of –8 V to +8 V is non-uniformly quantized 
using a m-law compressor with m = 255 and 64 quantization levels. Determine the smallest and largest step 
sizes obtained. Assume that the quantizer is fully loaded.

Solution We know that non-uniform quantization of the message signal is obtained by giving the message 
signal as input to the compressor and subjecting the output of the compressor to uniform quantization (see 
Fig. 9.5). Since the compressor output is subjected to uniform quantization, and since 64 levels will give 63 
steps, for the output of the compressor, the step size is

0

16

63
D =

We know that on the input side of the compressor, the smallest step size occurs near the origin and the largest 
step size occurs farthest from the origin. For obtaining the smallest step size, we put y = y1 (see Fig. 9.5)

1 1
1 1

log[1 | |] log[1 255| |]16 3.088

63 log(1 ) log 256 255

x x
y x

m

m

+ +
= = = \ =

+

\ The smallest step size = 1

8 3.088
8 0.0969 V

255
x

¥
¥ = =

(Since xl used in the m-law is the normalized value.)
The largest step-size is obtained by taking the farthest step on the y side.

log[1 | |]16
1

63 log(1 )
lxm

m

+Ê ˆ- =Á ˜Ë ¯ +
 Putting m = 255 and solving for x1, we get

xl = 0.2415 V. Hence on the input side, the last step (normalized) = (1 – xl)
\ the largest step size = 8 (1 ) 6.068 voltslx¥ - =

9.3 PULSE CODE MODULATION (PCM)

In PCM, the message signal, x(t), is first sampled, using a sampling frequency fs that is greater than twice 
the maximum frequency present in x(t), i.e., at fs = 2W. Then the samples are quantized using an appropriate 
number of quantization levels, Q. This Q is generally chosen to be an integer power of 2, i.e., Q = 2n where n
is a positive integer, and such that this Q is equal to or greater than the number of quantization levels needed 
for a specified minimum accuracy in the representation of the sample values after quantization (see Example 
8). We know that in the process of quantization, every sample value is rounded off to the nearest prescribed 
quantization level. Hence any quantized sample will have a value that corresponds to one of the Q quanti-
zation levels. Therefore, transmitting a quantized sample value is equivalent to transmitting the number of the 
corresponding quantization level. Since there are Q quantization levels, where

Example 9.3 A message signal with a dynamic range of –8 V to +8 V is non-uniformly quantized
using a m-law compressor with m = 255 and 64 quantization levels. Determine the smallest and largest stepm
sizes obtained. Assume that the quantizer is fully loaded.
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2n
Q =  (9.7)

we know that any quantization level may be uniquely represented by an n-digit binary number where

2logn Q=  (9.8)

Hence, corresponding to each sample value, the PCM transmitter transmits just a sequence of n binary digits, 
i.e., a binary number that represents the number of the quantization level to which the quantized value of the 
sample corresponds (see Fig. 9.1).
 At this stage, in order not to lose sight of the logic behind all these processes, let us recall that the lowpass 
sampling theorem tells us that a continuous-time signal, band limited to W Hz can be completely recovered 
without any error, for all instants of time, from the samples of it taken at regular intervals not exceeding 
(1/2W) sec. This implies that we need not transmit a band-limited continuous-time (CT) signal at all instants 
of time – enough if we send its samples so that the receiver reconstructs the CT message. Since the samples 
have a continuum of values, in order to discretize the signal in amplitude also, we adopted quantization. Now, 
instead of transmitting the actual sample values, we have to transmit the quantized sample values. However, 
since any quantized sample value corresponds to one of the Q quantization levels, we do not transmit even the 
quantized sample value – instead, we transmit the number of the quantization level to which it corresponds. 
Since Q = 2n and any quantization level can be uniquely represented by an n-digit binary number, we transmit 
that binary number each time a sample is taken, i.e., once in Ts sec, we transmit an n-digit binary number 
called the code word, where Ts is the sampling interval.
 Although we have, in the above discussion, assumed a binary code for representing the quantization level 
numbers, any suitable code like the ternary code may be used that gives a unique representation of the level 
numbers. However, binary code is almost universally used because of its simplicity, ease of regeneration and 

ability of binary symbols to withstand high levels of noise. A PCM system using a binary code for repre-
senting the quantization level numbers is referred to as  binary PCM.
 We know that an n-digit binary code word consists of a string of n binary digits, each one of which is either 
a ‘zero’ or a ‘one’. There are a variety of ways of electrically representing this string of zeros and ones. These 
are called ‘ line codes’ and we shall discuss these in detail, later in Chapter 10. For the time being, we shall 
represent a binary ‘one’ by a positive rectangular pulse and a binary ‘zero’ by either a negative rectangular 
pulse of the same duration and amplitude, or a zero voltage for the same duration, as shown in the figure.
 If in a PCM system, an n-bit binary code word is used to represent 
each quantized sample value, then it is referred to as an n-bit binary 

PCM system. Since each sample value must be transmitted before the 

next sample is taken and since the sampling interval is 
1

,s
s

T
f

=  an 

n-bit code word must be accommodated in Ts sec., or the maximum 
time available for each bit is (Ts /n) sec. We always make full use of 
the available time Ts for transmitting the codeword because, if we 
use less time, the pulse width will be smaller and the transmission 
bandwidth will be more. The time interval available for each bit (1 or 
0), is called one ‘ time-slot’, and is of T sec. duration where

 Time slot = T = (Ts /n) sec. (9.9)

 These binary PCM signals of the type shown in Fig. 9.8(a) or (b), 
consisting of a string of 1s and 0s, may either be transmitted over 
a suitable channel directly, or may be used for modulating a high 
frequency carrier signal before transmission. In the former case, it 

Fig. 9.8  Representation of binary 

digits using electrical voltage: 

(a) Unipolar non-return to 

zero (NRZ) binary PCM 

signal, (b) Polar binary NRZ 

PCM signal
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is called baseband PCM system and in the latter case where a high frequency carrier is used, it is called a 
bandpass PCM system.
 Earlier, while discussing  quantization and  quantization noise, we had shown that if D is the step size, the 
mean-squared value of the quantization noise is given by

2
2

12qe
D

=

Also, by assuming a normalized message signal, x(t), normalized so that |x(t)| £ 1, we approximated the step 
size to

2

Q
D =

We then obtained, by combining the above two equations
2

2
2 2

4 1 1

12 12 3
qe

Q Q

D
= = ◊ =  (9.10)

\ if S is the average power of the message signal,

2
2

1
( ) 3

3
qSNR S Q S

Q

Ê ˆ= =Á ˜Ë ¯
But Q = 2n for an n-bit binary PCM.
\ for an n-bit binary PCM, the  signal-to-quantization noise ratio is given by

2 2 2

Binary PCM

( ) 3 3 (2 ) 3 (2 ); if | ( )| 1n n
qSNR S Q S S x t= ◊ = ◊ = £  (9.11)

where S is the average message signal power.
Hence, for a sinusoidal message signal with peak amplitude Am, the (SNR)q of an n-bit binary PCM system is

2
Binary PCM

( )q

q

S
SNR

e
=

where

2 22
2

2

2 1

12 12 3

m m
q

A A
e

Q Q

D Ê ˆ
= = ◊ =Á ˜Ë ¯

but Q = 2n for binary b-bit PCM.

\
2

2 2
2 2 2 2

( /2) 3 3
( ) 2

2 2( /3 ) 3

nm
q

m m

AS
SNR Q

A Q A Q
= = = =

◊
(It has been assumed here that the quantization has not changed the message signal’s average power.)
\ for an n-bit binary PCM with a sinusoidal message signal, the signal-to-quantization noise is given by

23
( ) 2

2
n

qSNR =  (9.12)

If this (SNR)q is to be expressed in decibels,

2
10 10 10

3
( ) in dB 10 log 2 10 log 1.5 2 log 2

2
n

qSNR n= = +

\ ( ) in dB 1.8 6qSNR n= +  (9.13)

Equation (9.13) shows that for each additional bit in the codeword transmitted by a binary PCM system, the 
output (SNR)q increases by 6 dB when the message signal is sinusoidal.
 Table 9.1 shows how the signal-to-quantization noise ratio (expressed in dB) varies with n, the number of 
bits/sample, for an n-bit binary PCM with a sinusoidal message signal.
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Table 9.1

N (bits/sample) Q = 2n Number of Quantization levels (SNR)q in decibels

4 16 25.8

5 32 31.8

6 64 37.8

7 128 43.8

8 256 49.8

Example 9.4 A PCM system uses a uniform quantizer followed by a 7-bit binary encoder. The bit 
rate of the system is equal to 50 ¥ 106 bits/sec.

 (a) What is the maximum message signal bandwidth for which the system operates satisfactorily?
 (b) Calculate the output signal-to-quantization noise ratio when a full-load sinusoidal modulating wave of 

frequency 1 MHz is applied to the input (UP Tech., 2002–03)

Solution 
 (a) 7-bit binary encoder is used \ n = 7
  i.e., each sample is represented by a 7-bit code word.
  Now ‘bit rate’ of a PCM system = (Number of samples/sec.) ¥ (Number of bits used to represent each 

sample)
\ sr f n= ¥  = Bit rate of the PCM system

  This is given to be 50 ¥ 106 bits/sec

\ 67 50 10s sf n f¥ = = ¥

\ 650
10

7sf = ¥  samples/sec.

  We know that in order to avoid aliasing, fs has to be at least 2W, where W is the message bandwidth.

\ fs ≥ 2W \ 61 50
10 3.57 MHz

2 2 7
sfW

È ˘£ = ¥ =Í ˙Î ˚

\
Maximum message signal bandwidth 

3.57 MHz
for which the system operates satisfactorily

¸
=˝

˛
 (b) We know from Eq. (9.13) that for a uniform quantizer with a full-load sinusoidal modulating/message 

signal, the output signal-to-quantization noise ratio (in dB) is given by
   ( ) (1.8 6 )dBqSNR n= +
  Since n = 7, ( ) (1.8 6 7)dB 43.8 dBqSNR = + ¥ =

Example 9.5 A signal having a bandwidth equal to 3.5 kHz is sampled, quantized and coded by 
a PCM system. The coded signal is then transmitted over a transmission channel that supports a trans-
mission rate of 50 ¥ 103 bits/sec. Determine the maximum signal-to-noise ratio that can be obtained by this 
system. The input signal has a peak-to-peak value of 4 V and an RMS value of 0.2 V.
 (Pune University, 1998)

Solution Since the message signal has a peak value of 2 V and an RMS value of only 0.2 V, it is not a 
sinusoidal signal. So Eq. (9.13), which gives the (SNR)q when the message signal is sinusoidal, cannot be 
used. We will use the more general expression of Eq. (9.11) which is applicable to any message signal. This 
says that

Example 9.4 A PCM system uses a uniform quantizer followed by a 7-bit binary encoder. The bit 
rate of the system is equal to 50 ¥ 106 bits/sec.
(a) What is the maximum message signal bandwidth for which the system operates satisfactorily?
(b) Calculate the output signal-to-quantization noise ratio when a full-load sinusoidal modulating wave of

frequency 1 MHz is applied to the input (UP Tech., 2002–03)

Example 9.5 A signal having a bandwidth equal to 3.5 kHz is sampled, quantized and coded by
a PCM system. The coded signal is then transmitted over a transmission channel that supports a trans-
mission rate of 50 ¥ 103 bits/sec. Determine the maximum signal-to-noise ratio that can be obtained by this
system. The input signal has a peak-to-peak value of 4 V and an RMS value of 0.2 V.

(Pune University, 1998)
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2

Binary PCM

( ) 3 (2 ); | ( )| 1n
qSNR S x t= £

where S is the average power of the normalized message signal and n is the number of bits used for repre-
senting each sample value. In the above expression for SNR, S, the average power of the normalized signal is 
a constant and has been given to be having an RMS value of 0.2, i.e., an average power of 0.04 W. Since our 
message signal is not normalized so that |x(t)| £ 1, its average power after normalization will be

2

{Average power of the given ( )} 0.04 0.04
0.01

4{Square of the peak value of ( )} (2)

x t
S

x t

=
= = =

=
\ since S in the expression for (SNR)q is constant, the maximum value of (SNR)q is obtained corresponding 
to the largest possible value of n that can be used.

3
max

max
( ) 50 10sr f n= ◊ = ¥

To maximize n (in order to obtain maximum SNR), let us take the minimum value of 37 10 Hz,sf = ¥  which 
is the Nyquist rate for the 3.5 kHz bandwidth signal.

\ 3 3
max max7 10 50 10n r¥ ¥ = = ¥

\
3

max 3

50 10 50
7.14

77 10
n

¥
= = =

¥

Since nmax = 7.14 and n has to be an integer, we have to take n = 7 and not 8. If we take 8, we 

will have a transmission rate r = 8 ¥ 7 ¥ 103 = 50 ¥ 103 bits/sec which the channel will not 

support.

 Hence, choosing n = 7, and substituting this in the expression for (SNR)q, we get the max 

value of (SNR)q.

2 7
q max[(SNR) ] 3 0.01 2 491.52

¥= ¥ ¥ =
\ q max 10[(SNR) ] in dB 10 log 49.52 26.9154= =

Example 9.6 A message signal, band limited to 4 kHz is to be transmitted using a PCM system. If 
the quantization error of any sample is to be at the most ±1% of the dynamic range of the message signal, 
determine the minimum value of n, the minimum sampling rate and the corresponding bit rate of trans-
mission.

Solution Let the dynamic range of the message signal be from –V to +V volts. Let Q be the number of 
quantization levels. We know that step size

Dynamic range 2
V

No. of quantization levels 

V

Q
D = =

Also, we know that quantization error in any sample is

max( ) V
2q

V
e

Q

D
= ± = ±

This maximum error is given to be 1% of the dynamic range

\ 0.01 2 50
V

V Q
Q

£ ¥ \ ≥

Example 9.6 A message signal, band limited to 4 kHz is to be transmitted using a PCM system. If
the quantization error of any sample is to be at the most ±1% of the dynamic range of the message signal,
determine the minimum value of n, the minimum sampling rate and the corresponding bit rate of trans-
mission.

Note
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\ Minimum value of Q to be used = 64, as Q has to be a power of 2.

\ Let 2 64n ≥
\ n ≥ 6, or the min value of n = 6.

\ nmin = 6

Since W = Band-limiting frequency of the message signals is

min

34 10 Hz, Min.sW f= ¥ =  sampling rate = 8 ¥ 103 samples per second

\ The corresponding transmission rate = rmin

where
min

3
min min 6 8 10 bits/sec.sr n f= ¥ = ¥ ¥

\ r = 48 kilo bits/sec.

 Till now, we have discussed in detail, how the message signal is sampled, quantized and encoded so 
that the continuous-time message signal is converted into a digital signal. Because of the binary encoding 
employed, during each time slot, the digital signal can have one of two possible values, a ‘one’ or, a ‘zero’. A 
binary ‘one’ is represented by a rectangular pulse of say, V volts in the time slot and a binary zero by, say, the 
absence of any pulse during the time slot as shown in Fig. 9.8(a). Alternatively, it may also be represented by 
a rectangular pulse of –V volts in the time slot as shown in Fig. 9.8(b). For the present, for convenience, we 
shall assume that the encoded signal is as shown in Fig. 9.8(a). Let this PCM signal be transmitted without 
any further high frequency carrier modulation, through an appropriate channel.
 During transmission through the channel, the PCM signal will be
 1. Attenuated
 2. Distorted due to the finite bandwidth of the channel
 3. Corrupted by the additive noise introduced in the channel
Hence, the signal received at the output of 
the channel, which is the signal given as 
input to the receiver will appear somewhat 
as shown in Fig. 9.9, assuming that the code 
word shown in Fig. 9.8(a) is transmitted.
 What the receiver does, on receiving the 
signal, is to make a considered decision, 
during each time slot, as to whether what 
has been received during that time slot is a 
‘1’ or a ‘0’, i.e., a ‘pulse’, or ‘no pulse’. If 
there were to be no noise, it would be quite 
easy to make this decision without committing an error. A simple though not an elegant way of taking this 
decision may be to take a sample of the received signal during each time slot, preferably at the center of the 
time slot, compare the sample amplitude with a fixed pre-set threshold and declare it as a ‘1’ if it exceeds the 
threshold and declare it as a ‘0’ during that time slot, if it is less than the threshold. The threshold may be set 
at 50% of the maximum amplitude attained by the received pulse. More sophisticated and practically used 
methods of decision making and choosing an appropriate threshold value in order to minimize the probability 
of committing an error, called optimum detection techniques are discussed in Chapter 11.
 Once it is decided that it is a 1 in a time slot, a local pulse generator in the receiver is triggered and it 
gives a clean, noise-free rectangular pulse. Thus, although the received pulses were distorted and corrupted 
by additive noise, in their place, through this process of detection of the presence of a pulse and generating 
a clean pulse locally in the receiver, a process which is known as ‘ regeneration’, we are able to get rid of 

Fig. 9.9 Received signal
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the additive noise of the channel completely, provided of course, there are no errors in the decision making 
process. The possibility of errors being committed in the decision making process will be negligibly small, 
provided the received signal (pulse) amplitude is large enough compared to noise.
 This sequence of clean ‘pulses’ and no-pulses’, obtained through the process of regeneration, are then fed 
to a  decoder which converts each  codeword into the corresponding  quantized sample value. This quantized 
sample value will be the correct one (i.e., the same quantized sample value that was encoded and transmitted) 
provided no errors have been committed in all the decisions pertaining to the n digits in that code word. These 
quantized samples obtained at the output of the decoder (i.e., the D/A converter), are then passed through a 
low pass  reconstruction filter, which reconstructs an analog signal from these samples. This analog signal will 
be an approximation to the original analog message signal that was sought to be transmitted. The difference 
between the two is the result of the errors introduced, deliberately, in the sample values due to the quanti-
zation process at the transmitting end and can be reduced by employing a larger Q, i.e., larger number of bits/
sample. Of course, in all this, we have assumed that sufficient care has been taken to ensure that there are no 
decision-making errors. Such errors, if caused in any codeword, will result in large deviation in the quantized 
sample values (obtained at the output of the decoder) from the correct values and cause severe distortion of 
the reconstructed analog signal at the output of the receiver.
 From the foregoing, it is clear that unlike analog modulation systems, the PCM system, because of the 
digital modulation, can be made almost immune to channel noise, if it is ensured that signal power input to 
the receiver is sufficiently large so as not to cause any decision-making errors. Only quantization noise will 
be present at the output but that can be made small by using a larger value of n.

9.3.1 PCM Transmitter and Receiver

Since we have discussed in some detail, the basic principle of a PCM system, we will now get into a few more 
details of its working through a study of the block diagrams of the transmitter and receiver of a PCM system.

Fig. 9.10 Transmitter and receiver of a  baseband PCM system

 The low pass sampling theorem tells us that for the message signal to be reconstructed from its samples, 
the sampling frequency, fs, must be greater than or equal to the Nyquist rate which is equal to 2W, where W
is the bandwidth of the message signal. However, message signals, in practice, can never be strictly band 
limited. They may have very little energy beyond some frequency say W Hz. Hence, in order to ensure that 
 aliasing does not take place, we have to ensure that they are almost strictly band limited to some known 
frequency, W Hz, so that we can choose an fs that is convenient and is greater than 2W. For this purpose, we 
use an analog low pass filter of high order with a cut-off frequency of W Hz and pass the original message 
signal through this filter before it is sampled. Since, this filter is meant to avoid aliasing, it is known as ‘ anti-

aliasing filter’. The samples are then quantized using a convenient number of uniformly spaced quantization 
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levels, Q, keeping in view the transmission bandwidth constraint and the output SNR desired. The quantized 
samples are then encoded using a binary encoder to obtain a binary PCM signal, which is given as input to 
the channel over which it is to be transmitted.

In case the message signal is, say, a speech signal, and ‘companding’ has to be used in order 

to get a good signal-to-quantization noise ratio without unduly increasing the required trans-

mission bandwidth, we place a compressor between the sampler and the quantizer.

 As shown in Fig. 9.10(b), the output of the channel, which is the PCM signal plus noise, is fed to the 
‘regeneration circuit’, which consists of a decision-making circuit followed by a pulse generator. The output 
of this regeneration circuit will be a PCM signal devoid of any additive noise, but may have some occasional 
errors (some of the 1s in the transmitted PCM signal may appear in this as 0s and vice versa). The decoder 
of the receiver (in fact a D/A converter), converts this digital (PCM) signal into a sequence of samples, i.e., 
quantized samples. But the output of this decoder, viz; ( ),qx t¢  the sequence of quantized samples, may not be 
an exact replica of xq(t), the sequence of quantized samples at the output of the quantizer in the transmitter. 
The output of the reconstruction filter will not be an exact replica of the band limited message signal, x(t)
because of quantization performed at the transmitter and also due to occasional decision-making errors if any, 
at the receiver.

In case a compressor is used in the transmitter, we place an expander, whose input-output 

characteristic is the inverse of the input-output characteristic of the compressor used at the 

transmitting end, between the decoder and the reconstruction filter of the receiver.

9.3.2 Bandwidth of a PCM Signal

We know that when a sequence of pulses is transmitted through a channel, adequate time-domain resolution 
of the pulses at the output of the channel would require that the channel bandwidth BT be such that

1

2TB
t

≥  (9.14)

where t is the pulse width.
 For an n-bit binary PCM, if fs is the sampling frequency employed, n time slots are to be provided in one 
sampling interval Ts. Thus, in our case

1s

s

T

n nf
t = =  (9.15)

\ substituting for t in Eq. (9.14) using Eq. (9.15)

1
( )

2T sB nf≥
But
 Signaling rate r = nfs (9.16)
 (in bits/sec.)

\
2T

r
B ≥  (9.17)

Hence, the minimum bandwidth of an n-bit PCM signal is

2

1 1

2 2 s
T s f W

B r nf nW
=

= = =  (9.18)

where W is the message signal bandwidth.

Note

Note
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Example 9.7 Using n-bit binary PCM, a message signal which is uniformly distributed between 
–xmax and +xmax, is transmitted. Show that the signal-to-quantization ratio that is obtained is 6n dB.

Solution The mean-squared value of a random variable X which is uniformly distributed between –xmax

and +xmax is

max

max

2 2 ( )
x

X
x

X x f x dx

+

-
= Ú

Hence for the process x(t), i.e., the message signal, which 
is given to be uniformly distributed between –xmax and 
+ xmax

max

max

2
2 2 max

max

1
( )

2 3

x

x

x
x t x dx

x-

Ê ˆ= ◊ =Á ˜Ë ¯Ú

If x(t) is normalized so that |x(t)| £ 1, then this normalized 
x(t) will have an average power S given by

2
max

2
max

1 1

3 3( )

x
S

x
= ◊ =

But Eq. (9.11)

2( ) 3 ; If | ( )| 1qSNR SQ x t= £

where 2( )S x tD
\ Substituting for S in Eq. (9.11), we get

2 21
( ) 3

3qSNR Q Q
Ê ˆ= ◊ ◊ =Á ˜Ë ¯

But Q = 2n \  (SNR)q = 22n (9.19)

\ 2
10( ) in dB 10 log 2 6 dBn

qSNR n= =

Example 9.8 If a TV signal of 4.5 MHz bandwidth is transmitted using 8-bit binary PCM, determine
 (a) the maximum signal-to-quantization noise ratio
 (b) the minimum bit rate
 (c) the minimum transmission bandwidth needed.

Solution

 (a) We know that 2( ) 3qSNR SQ=  (See Eq. (9.11))
  where

2( ) and | ( )| 1S x t x t= £
  In this case, we do not know how the x(t), viz. the TV signal, is distributed. So it is not possible to 

determine 2( )x t . Since we have been asked to determine only the maximum (SNR)q, and since as per 
Eq. (9.11) (SNR)q is proportional to S for a fixed Q (or n), let us assume S = 1, the maximum possible 
value it can have under the constraint, |x(t)| £ 1.

  Then 
max

2 2 2( ) 3 1 3 1 (2 ) 3 2n n
qSNR Q= ¥ ¥ = ¥ ¥ = ¥

\
max

2
10( ) in dB 10 log [3 2 ] (4.8 6 )dBn

qSNR n= ¥ = +

Example 9.7 Using n-bit binary PCM, a message signal which is uniformly distributed between 
–x– max and +xmax, is transmitted. Show that the signal-to-quantization ratio that is obtained is 6n dB.

Example 9.8 If a TV signal of 4.5 MHz bandwidth is transmitted using 8-bit binary PCM, determine
(a) the maximum signal-to-quantization noise ratio
(b) the minimum bit rate
(c) the minimum transmission bandwidth needed.

Fig. 9.11 Message signal for Example 9.7
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  In our case, n is given to be 8.
\

max
( ) in dB (4.8 6 8) 52.8 dBqSNR = + ¥ =

 (b) We know that bit-rate r = nfs
  where fs is the sampling frequency

\ minimum bit-rate = min ,min 2 2 8 4.5sr nf nW= = = ¥ ¥
\ min 72.0 Mbpsr =

 (c) min min

1 1
36.0 MHz

2 2T TB r B r= \ = =

9.3.3 Noise in PCM Systems

As has already been discussed, there are two distinct and independent sources of noise in a PCM system. 
These are: 
 1. The  quantization noise introduced deliberately at the transmitter by rounding off the actual values of 

the samples of the message signal to the nearest quantization levels so as to discretize the message 
signal in amplitude also. This noise which originates at the quantizer stage of the transmitter, travels 
along with the signal all the way through the channel and the receiver right up to the destination. It is 
message-dependent for its existence and ceases to exist once the message signal is switched off.

 2. The  channel noise, which is not message dependent, and is always present. It is partly contributed by 
the electronics of the transmitter and receiver and partly by noises from external agencies entering into 
the channel.

 These two types of noise exist simultaneously in a PCM system. However, the way they affect the perfor-
mance of the PCM system is different.
 Quantization noise, originating in the quantizer of the transmitter in the form of quantization errors, finally 
manifests as noise at the output of the  reconstruction filter of the receiver. Additive random noise of the 
channel, on the other hand, can cause error in the decision making process at the receiver. Noise peaks 
occurring during a particular time slot, can force the decision-making circuit to wrongly interpret a 1 as a 0 
and a 0 as a 1 in that time slot. Either way, when such a thing happens, an ‘error’ is said to have occurred in 
that time-slot and the bit transmitted during that time slot, is received erroneously. In that sense, a bit-error is 
said to have occurred in the code word to which that particular bit belongs. Since peaks of channel noise of 
sufficient magnitude that can cause decoding errors occur randomly in time, bit-errors also occur randomly in 
the bit sequence that is transmitted. When we consider a very long sequence of transmitted bits, the average 
rate at which bit errors occur, is referred to as the ‘ bit-error rate’. A typical bit-error rate may be 1 in 108 bits. 
Correspondingly, the probability of a bit being in error, called the  bit-error probability, Pe, is 10–8.
 When one or more bits of a code word are erroneously received, a decoding error occurs in the sense that 
the particular code word, when decoded by the decoder, will result in a totally different quantization level 
than what was actually intended to be conveyed by the original code word. Depending upon which bits of 
the code word were erroneously received, there can be a drastic change in the decoded value of the quantized 
sample. When the analog signal is reconstructed from these decoded quantized samples, the decoding error 
manifests as noise in the output of the reconstruction filter. Since Pe is kept quite small in any practical system 
and is of the order of 10–8, i.e., on the average, only one in a hundred million bits is affected by noise, and 
since n, the number of bits in a code word, is only of the order of 6 to 14, it is only very rarely that one of the 
bits in any code word is affected.
 Now consider an n-bit code word. The bit-error probability being Pe, the probability of error for each one 
of the bits is Pe and so the probability that any one of the n bits of the code word is erroneous, is nPe. Since 
this in itself is quite small, the probability that two or more bits of that same code word are erroneous would 
be extremely small. So such an event is almost an impossible event and can be ignored.
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 Let us now estimate the mean-squared value of the noise generated by one of the bits in a code word 
being erroneous. The change or error caused in the amplitude of the quantized sample that results from 
decoding this erroneous codeword, would depend upon the position of the affected bit in the code word. This 
is because, each digit in a binary number, has a weight that depends on its position, as shown below, where 
bks are either 0 or 1 for k =1 to n

Weight 2n – 1 2n – 2 L 21 20

Binary number bn bn – 1 L b2 b1

As the above binary number represents an n-bit  codeword, let us consider it as one of the code words trans-
mitted. Assuming that this codeword is affected by the  channel noise and that one of its bits is changed from 
0 to 1 or 1 to 0 in the decision-making process, if the bit bn – 1 is the one which is erroneously interpreted, the 
error caused in the value of the codeword is 2n – 2. Since all the n-bits of the affected codeword have equal 
probability of being affected, this probability is (1/n). Hence, the mean-squared value of the error caused in 
the value of the codeword is

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 22 1 2 1 0

2 2 2 21 1 1 0

1 1 1 1
2 2 2 2

1
2 2 2 2

n n

n n

n n n n

n

- -

- -

Œ = ◊ + ◊ + º + +

È ˘= + + º + +Î ˚ (9.20)

Now, we know that each code word represents one of the Q  quantization levels. If x(t), the message signal, 
has been normalized so that |x(t)| £ 1, as we have always been assuming, then the dynamic range of the 
normalized message signal is 2. Hence, with Q quantization levels, the step size D = 2/Q. thus, since the 
codeword transmitted represents a quantization level number, when the codeword 1 2 1( )n nb b b b- º  is trans-

mitted, it means that the quantized sample value corresponds to the th
1 2 1( , , , )n nb b b b- º  quantization level, 

and this quantization level corresponds to a sample value of 1 2 1

2
( )n nb b b b

Q
-

Ê ˆ
º ¥ Á ˜Ë ¯

 for the normalized 

message signal. Hence, when a codeword is affected by noise, the sample value represented by that code 
word has a mean-squared error given by

2 2 2 2
2 1 2 1 0

2 21
2

2 2 2 2
0

1 2 1 2 1 2 1 2
2 2 2 2

4 4 2 1 4 ( 1) 4
2 since generally 1.

3 3(2 1)

n n

nn
k

k

n Q n Q n Q n Q

Q
Q

nnQ nQ nQ

- -

-

=

È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ
Œ = ◊ + ◊ ◊ + º + ◊ + ◊Í ˙Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚

È ˘- -
= = = ª >>Í ˙

-Î ˚
Â

 (Sum of n terms of a geometric progression with common ratio r equal to 22.)

\  2 4

3n
n

Ê ˆŒ = Á ˜Ë ¯
This is the mean-squared error in the sample value represented by a codeword, if that codeword is erroneous,
i.e., affected by channel noise.
 But as we have already stated, the probability that any one of the bits of an n-bit codeword would be 
affected, i.e., that the codeword would be erroneous in nPe, where Pe is the  bit-error probability.
 Hence mean-squared value of the noise caused by the random noise of the channel is given by

2 4 4

3 3n e enP P
n

Ê ˆŒ = =Á ˜Ë ¯  (9.21)
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 Since the mean-squared value of the quantization noise for Q levels and |x(t)| £ 1, is given by

2
2

1

3
qe

Q
=  (Refer to Eq. (9.9))

and since the two noise process are independent, the mean-squared value of the total noise is given by the sum 
of their individual mean-squared values.

\ ND = mean-squared value of the total noise at destination

2 2
2

1 4

33
q n ee P

Q
= + Œ = +

\
2

2

1 4

3

e
D

Q P
N

Q

+
=  (9.22)

Hence, if 2
x  represents the mean-squared value of the normalized message signal

2 2

2

Binary PCM

3
Destination

1 4D e

S Q x
SNR

N Q P

Ê ˆ = =Á ˜Ë ¯ +
 (9.23)

The above expression for (S/N)D takes into account both  quantization noise as well as  channel 

noise.

From Eq. (9.23), it follows that

 (i) When 4Q2 Pe << 1, i.e., when e 2

1
P ,

4Q
<<  the (SNR)D is given by

2 2

D

S
3Q x

N

Ê ˆ =Á ˜Ë ¯
 (9.24)

  This means that when e 2

1
P ,

4Q
<<  the quantization noise dominates and (S/N)D is 

decided only by this noise.

(ii) When 4Q2 Pe >> 1, i.e., when e 2

1
P ,

4Q
>>  the (S/N)D is given by

2

eD

S 3x

N 4P

Ê ˆ =Á ˜Ë ¯  (9.25)

This means that when e 2

1
P ,

4Q
>>  the channel noise dominates and the (S/N)D is decided only 

by this noise.

In the first case, when the quantization noise dominates as per Eq. (9.24) we find that (S/N)D is independent 
of the probability of the error Pe. However, as we will be deriving later, Pe is related to the input SNR, i.e., 
(S/N)R of the receiver and is given by

for bipolar signals (9.26a)( / )

for unipolar signals (9.26b)1/2 ( / )

R

e

R

Q S N
P

Q S N

Ï È ˘Ô Î ˚= Ì
È ˘Ô Î ˚Ó

assuming the channel noise to be Gaussian and white.

Note

Remarks
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Q[x] denotes  Q-function with argument x. (See Appendix B)

(We will be deriving the result of Eq. (9.26) in Chapter 10.)

 Further, when 
2

1

4
eP

Q

Ê ˆ
>> Á ˜Ë ¯

 and the channel noise dominates, from Eq. (9.25) we find that (S/N)D

decreases as Pe increases. However, from Eq. (9.26), we find that Pe increases when (S/N)R decreases, since 
the Q-function Q[x] is a monotonically decreasing function of its argument, x. Using these relationships, we 
shall now plot the (S/N)D vs. (S/N)R for a binary PCM system employing bipolar signaling, assuming that 
the message signal x(t) is a sinusoidal signal 
normalized so that |x(t)| £ 1 (This means that 

2 1/2x = ). The channel noise is assumed to 
be white Gaussian. The curves have been 
plotted for four values of Q. We find that 
there is a sharp decline in the destination 
SNR as the input SNR is decreased, indicating 
a threshold effect. The  threshold effect

manifests in the form of increased decoding 
errors as the input (SNR) is decreased below 
a certain value called the ‘threshold’, whose 
value depends upon the value of Q. When 
the  probability of error,  Pe becomes very 
much larger than 1/4Q2 — and this happens 
when (S/N)R is lower than the threshold 
value, decoding errors occur very frequently 
making the reconstructed message signal at 
the output of the receiver totally different 
from the transmitted message signal.
 There is no unique way of defining ‘threshold’. Since the onset of threshold is accompanied by a rapid 
increase in the probability of error, Pe and a consequent rapid fall in the (S/N)D, either of these two parameters 
may be used to define threshold. In both the cases, the definition is rather arbitrary. The following are the 
two ways it is defined:

Definition 1 The threshold value of the (S/N)R is that value of (S/N)R at which the decoding noise reduces 
the (S/N)D by 1 dB compared to the value it has for large values of (S/N)R, when quantization noise dominates.

Definition 2 The threshold is that value of (S/N)R for which the bit-error probability Pe is greater than 10–5.
 The first definition is more widely used, but it is difficult to use it in analysis. The second one is easier to 
use in mathematical analysis.

Example 9.9 A binary PCM system, employing bipolar signaling, uses 256 quantization levels. 
Calculate the bit-error probability, Pe at the threshold for this system. Use Definition 1. Also find the 
corresponding (S/N)R at threshold.

Solution From Eq. (9.23), we have

2 2

2

3

1 4D e

S Q x

N P Q

Ê ˆ =Á ˜Ë ¯ +
, where Q is the number of levels used.

Example 9.9 A binary PCM system, employing bipolar signaling, uses 256 quantization levels.
Calculate the bit-error probability, PeP at the threshold for this system. Use Definition 1. Also find the
corresponding (S/SS N// )R at threshold.

Note

Fig. 9.12 Noise performance of binary PCM
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As per definition 1, the threshold is reached when (S/N)D drops by 1 dB from the constant value it has for 
high values of (S/N)R. We know that the value of (S/N)D when the quantization noise dominates, is given by

2 23
D

S
Q x

N

Ê ˆ =Á ˜Ë ¯
If threshold condition is reached when (S/N)D falls by 1 dB relation to 2 23 ,Q x , it means that if we take the 
expression for (S/N)D given by Eq. (9.23) which takes both the noises into account, the dominator (1 + 4PeQ

2)
becomes equal to 1 dB at threshold.

\ 2
1010 log (1 4 ) 1 dB at threshold,eP Q+ =

\ if Pe th is the bit-error probability at threshold
2 2 0.1

10 th10 log (1 4 ) 1 or (1 4 ) 10 1.2589e ethP Q P Q+ = + = =

Since Q2 = (256)2, we have 2
th1 4(256) 1.2589eP+ =

\ 7
th 2

0.2589
9.876 10

4 (256)
eP

-= = ¥
¥

To find the corresponding (S/N)R th, we use Eq. (9.26a)

\ 7
thth ( / ) 9.876 10Re S NP Q

-È ˘= = ¥Î ˚

\ 
th

24
R

S

N

Ê ˆ =Á ˜Ë ¯
  or  13 dB (i.e., 10 log10 24)

Example 9.10 A message signal of bandwidth 4 kHz is sampled at twice the Nyquist rate and the 
samples are transmitted by unipolar n-bit binary PCM. If an output SNR of 47 dB is required, determine (a) 
n, the number of digits per codeword, (b) the minimum value of (SR/h) required to maintain the operation 
of the system above the threshold. Assume that the message signal is normalized so that | ( )| 1x t £  and that 
it is uniformly distributed.

Solution 
 (a) Since the system will be operated well above the threshold so that only the quantization noise needs to 

be considered

   2 2 23
3 47 dB 501187 (ratio)

3D

S
Q x Q

N

Ê ˆ = = = =Á ˜Ë ¯

  (Note that 2
x  is taken as 1/3 since x(t) is uniformly distributed and | ( )| 1x t £ .)

\ Q = 707.9
  Since Q has to be an integer and a power of two in the case of binary PCM, let us choose
   Q = 1024 = 210

\ the required value of n is 10. This will infact give better than 47 dB output SNR.

 (b) At threshold, 2
10 th10 log (1 4 ) 1 dBeP Q+ =

\ 2 0.1(1 4 ) 10 1.2589eP Q+ = =

\ 8
th 2

0.2589
6.1726 10

4 (1024)
eP

-= = ¥
¥

  But thth 1/2( / )Re S NP Q È ˘= Î ˚  (See Eq. (9.26b))

  From the Q-function graph, for a 8
th 6.1726 10eP

-= ¥  the value of th[ 1/2( / ) ] 5.3RQ S N =

Example 9.10 A message signal of bandwidth 4 kHz is sampled at twice the Nyquist rate and the 
samples are transmitted by unipolar n-bit binary PCM. If an output SNR of 47 dB is required, determine (a)
n, the number of digits per codeword, (b) the minimum value of (SRS /h) required to maintain the operation
of the system above the threshold. Assume that the message signal is normalized so that | ( )| 1(( and that
it is uniformly distributed.
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\
, th

56.18
R

S

N

Ê ˆ =Á ˜Ë ¯

  But 2
2R T TN B B
h

h= ¥ = , where BT = transmission bandwidth

  But BT = nW \ 310 4 10RN nWh h= = ¥ ¥ ¥

\
3

,th

56.18
40 10

R

R

SS

N h

Ê ˆÊ ˆ = =Á ˜ Á ˜Ë ¯ Ë ¥ ¥ ¯

\ 62.2472 10RS

h

Ê ˆ
= ¥Á ˜Ë ¯

9.3.4 Bandwidth-Power Trade-Off in PCM Systems

We have seen (refer to Eq. (9.18)) that the minimum bandwidth required for an n-bit baseband PCM signal 
is given by

       TB nW=  (9.27)

where W is the bandwidth of the message signal. Hence, the transmission bandwidth is directly proportional 
to n, the number of bits used per codeword.
 The destination SNR, viz. (S/N)D, for binary PCM, assuming operation of the system well above the 

 threshold, so that we can ignore decoding or  channel noise, is given by

2 23 3 2 n

D

S
SQ S

N

Ê ˆ = =Á ˜Ë ¯
where S is the average power of the normalized message signal, normalized so that | ( )| 1.x t £  If this signal is 
uniformly distributed, we know that S = 1/3 (refer to Example 9.7). Therefore, in that case

2
2 22 2 2

TB

n W

D

S

N

Ê ˆ
Á ˜Ë ¯Ê ˆ = = =Á ˜Ë ¯

B  (9.28)

where ( / )TB WDB

More than the exact expression, what is important to us right now, is the fact that the output SNR of PCM is 
exponentially related to n.
 From Eq. (9.28) it is clear that as n increases, (S/N)D increases rapidly (exponentially). But at the same time, 
the required transmission bandwidth BT also increases, but only linearly with n. Thus, without increasing the 
transmitter power (in order to increase (S/N)D), we can just increase n and get an improved destination SNR – 
but at a price. The price is the consequent increase in required transmission bandwidth as n is increased. Thus, 
we can save power at the cost of bandwidth and vice versa or in other words, there is a  power-bandwidth 

trade-off possible in PCM.
 This trade-off, however, is not without a limit. It is not possible to maintain a certain destination SNR if we 
go on reducing the transmitter power and try to compensate for it by increasing n, and thereby the bandwidth. 
This is because, as the bandwidth increases, the channel noise power entering the receiver, which is equal to

2
2R TN B
hÊ ˆ= Á ˜Ë ¯

also goes on increasing and soon a stage will be reached when the bit-error probability Pe becomes quite high 
(due to increased decoding errors caused by large NR) and our assumption that only quantization noise need 
be considered and channel noise can be ignored, used in deriving Eq. (9.28), is violated. Then the trade-off 
is not possible.
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 However, as long as we are operating the system well above the  threshold, the trade-off is possible. It may 
be noted in this context, that the terms of the trade-off are much better in the case of PCM as compared to 
either wideband FM or PPM. This is because (S/N)D increases exponentially with bandwidth in the case of 
PCM while it increases approximately as only the square of the bandwidth in the case of WBFM and PPM.

9.3.5 Regenerative Repeaters and Long-Haul Transmission of PCM Signals

The term, ‘long-haul’ transmission, refers to a situation wherein the transmitter and the final destination, 
i.e., the receiver, are separated by very long distance. In such a situation, the signal has to be amplified and 
retransmitted, by what are called  repeaters, at a number of intermediate points so as to take care of the attenu-
ation that the signal suffers. In such a long-haul transmission, PCM, by virtue of its being a digital modulation 
which permits the use of  regenerative repeaters, has a definite edge over any analog modulation. In what 
follows, we shall discuss this aspect in some detail.
 First, let us examine as to what happens when we use analog modulation for long-haul transmission. The 
repeater receives the signal from the transmitter, or may be the preceding repeater, amplifies the received 
signal and re-transmits it. When the received signal is amplified, the signal as well as the noise which has 
contaminated it during the course of its travel through the channel are both amplified to the same extent. In 
fact, the amplifier adds some more noise – its internally generated noise, with the result that the SNR at the 
output of any repeater will always be poorer than the SNR at its input. So, when there are a large number of 
repeaters, as required in a long-haul transmission, the SNR at the destination will be so low that the signal 
is likely to be completely drowned in noise. This is because of the fact that noise goes on accumulating and 
increases at each repeater.
 On the other hand, suppose we use pulse-code modulation. If, in the design of the system, it is ensured 
that the input SNR at each repeater is large enough and if regenerative repeaters are used, the effect of channel 
noise can be made negligibly small even when a large number of repeaters are used. A regenerative repeater 
receives the PCM signal from the preceding repeater and decodes it. Depending upon the decision made 
by the decision-making section of the decoder during each time slot, whenever the decision is that a 1 has 
been received, the pulse generator section of the decoder produces a clean rectangular pulse. If there are no 
decision-making errors in the decoding at a repeater, its output pulse sequence will be an exact replica of the 
pulse sequence transmitted by the transmitter. Thus, the effect of channel noise may be almost completely 
eliminated. The problem then boils down to one of ensuring that there are no decoding errors at the repeaters.
 Since the Q-function, Q(x), is a monotonically decreasing function of its argument, x, from Eqs. (9.26a) 
and (9.26b), we find that it is possible to make the bit-error probability, Pe, at the output of each regenerative 
repeater extremely small by making the input SNR for the decoder of a repeater adequately high. A high input 
SNR for a repeater can be ensured either by increasing the transmitted power of the previous repeater, or by 
decreasing the distance between consecutive repeaters, or by a combination of both.
 Thus, we find that the use of PCM together with regenerative repeaters helps us to almost eliminate the 
effect of  channel noise in long-haul circuits.

9.3.6 Power-Bandwidth Trade-Off and a Comparison of PCM and WBFM

From Eq. (9.28), we found that a power-bandwidth trade-off, or exchange, is possible in the case of PCM. In 
analog modulation too, in the case of WBFM we found that such an exchange is possible. So, a comparison 
of PCM with these analog modulation schemes which also offer this power-bandwidth exchange will be 
interesting.
 In the case of WBFM, the (S/N)D increases as the square of the modulation index. Since the effective 
bandwidth of WBFM is almost directly proportional to the modulation index, bf (refer to Carson’s rule), it 
means that the destination SNR of  WBFM increases as the square of the bandwidth. However, in the case 
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of PCM, the destination SNR increases exponentially with the bandwidth, i.e., (SNR)D of PCM increases 
at a much faster rate with bandwidth, than the (SNR) of WBFM. Thus, PCM offers a much better power-
bandwidth exchange, than WBFM.

Advantages of PCM
 1. It offers a very efficient power-bandwidth exchange.
 2. It is very robust since it is almost immune to channel noise and interference.
 3. Because of the possibility of the use of  regenerative repeaters, it is extremely useful in long-haul 

communication.
 4. It makes it possible to integrate baseband signals of different types, like audio, video, etc., into a 

common format for easy  multiplexing using  TDM.
 5. Because of its digital nature, coding techniques are available for PCM signals for efficient  compression, 

 encryption and  error-correction.
 6. In a TDM system, it is relatively easy to either add or drop any message signal and PCM signals can 

easily be TDMed.

Disadvantages of PCM
 1. PCM signal generation and reception involve complex processes and require the use of somewhat 

complex systems. This, however, does not constitute a real problem nowadays because of the avail-
ability of VLSI chips for performing these various operations.

 2. For the same message bandwidth, PCM requires a much larger transmission bandwidth than some of 
the analog modulation schemes like AM. For instance, if message bandwidth, W is 3.4 kHz as in the 
case telephone quality voice channel, AM requires a bandwidth of only 6.8 kHz; whereas PCM with 
standard 8 kHz sampling frequency and 8-bits per codeword, requires 64 kbps bit rate, or a 32 kHz 
transmission bandwidth. This is nearly five times the bandwidth required for AM.

 However, this is not a serious problem with the availability of very efficient  data compression techniques 
as well as wideband satellite channels and fiber-optic channels which can support high data rates.

9.4 DELTA MODULATION (DM)

Whenever we sample a voice, or video signal a little above the  Nyquist rate, the adjacent samples are corre-
lated, indicating that there is redundancy. Transmitting these samples using conventional PCM as discussed 
in the previous section, may not therefore be the most efficient way of transmitting information. Suppose 
we use a much higher sampling frequency than the Nyquist rate, i.e., we over-sample the message signal. 
Adjacent samples will now be highly correlated. Thus, the sequence representing the difference between 

adjacent samples will have a much smaller  variance than the variance of the original sequence of samples. 
Therefore, it has a much smaller dynamic range and needs a much smaller number of bits for a reasonably 
accurate representation of its sample values. This, in general, is the basic principle of differential pulse-code 
modulation, or DPCM. As an extreme case, if we use a single-bit representation for the sample values in the 
difference sequence, it is called  Delta Modulation (DM).
 A delta modulator simply consists of a comparator, a  single-bit quantizer (which is nothing but a hard 
limiter) and an accumulator, connected together as shown in Fig. 9.14. Thus, in delta modulation, we 
compare the present sample x(n) of the message signal x(t) with an approximation to the previous sample, 
viz. ( 1) ( 1)qx n x n- = -% , and the difference between x(n) and xq(n – 1), i.e., e(n) is applied to the single-bit 
quantizer, or the hard limiter. So, if the output of the comparator is positive, whatever may be its actual 
magnitude, the hard limiter gives an output of +D and if the comparator output is negative, irrespective of its 
actual amplitude, the  hard-limiter output will be –D. This output of the hard limiter which we shall call as 
eq(n) goes to the encoder and through it, to the channel. eq(n) is also used for generating xq(n – 1), i.e., the 
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Fig. 9.13 Illustrating the working of a Delta modulator

Fig. 9.14 Delta modulation system
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approximation to the previous sample x(n – 1) of x(t), by giving it as input to the accumulator, as shown in 
Fig. 9.14.
 As shown in Fig. 9.13(a), initially the ‘approximate signal’ starts building up from zero to catch-up with 

the message signal. As shown there, x(Ts) = x(1) is greater than xq(0) = D. So, (1) (0)(1) qx xe -Í ˙= Î ˚  and eq(1)
= +D. In the accumulator, this adds to xq(0) and gives xq(1) which is equal to (0) (1) (0)q q qx e x+ = + D , as 
shown in the figure. Thus, the Delta modulator produces a staircase approximation to the message signal by 
trying to track the message signal as per the following defining equations:

( ) ( ) ( 1)

( ) sgn[ ( )]

( ) ( 1) ( )

q

q

q q q

e n x n x n

e n e n

x n x n e n

¸= - -
ÔÔ= D ◊ ˝
Ô= - + Ǫ̂

(9.29)

where sgn(z) is called the signum function and is defined by

1 if 0
sgn( )

1 if < 0

z
z

z

>Ï
= Ì-Ó

When ( )qe n = + D , it is a binary ‘one’ and whenever eq(n) is –D, it is a binary ‘zero’. This sequence of eq(n)’s 
is encoded by the encoder whose output waveform is shown in Fig. 9.13(b). This is the binary waveform 
transmitted over the channel.
 When this waveform travels through the channel, it will be distorted and also corrupted by additive noise. 
So, in the receiver, a regeneration circuit, consisting of a decision-making part and a pulse generator part, 
will first decide, during each time slot, whether a positive pulse, or a negative pulse is received during that 
time slot and accordingly produces clean rectangular positive or negative pulse during that time slot. These 
are then decoded by the decoder which gives at its output a +D volts or a –D volts at each sampling instant. 
This sequence is then fed to an accumulator in the receiver. Recall that eq(n)s, i.e., a sequence of eq(n) or –
eq(n) fed to the  accumulator in the transmitter resulted in the generation of xq(n)s by the addition of xq(n – 1) 
to eq(n). Similarly, the receiver accumulator output gives the staircase approximation signal. The low pass 
filter, having a cut-off frequency of W Hz (frequency to which message signal, x(t) is band limited), removes 
the high frequency out of band noise components present in the  staircase waveform and gives at its output, a 
waveform that closely approximates x(t).

9.4.1 Slope Overload Noise and Step Size

As can be seen from Fig. 9.13(a), when the  delta modulator tracks the message signal, the xq(t) waveform 
(i.e., the approximation waveform) increases or decreases linearly with time since the  step size is constant. 
For this reason, this type of delta modulator using a fixed step size, is sometimes referred to as a  linear delta 

modulator.
 Although it has been shown in that figure that the delta modulator is perfectly tracking the message 
signal, x(t), it may not always do so. The average rate of increase or decrease of xq(t), the staircase approxi-
mation, is given by (D/Ts). If this is smaller than the maximum rate of change of x(t), the message, the Linear 
Delta Modulator (LDM) will not be able to track the x(t) properly and the approximation, i.e., the staircase 
waveform will be very much different from the message signal, x(t), as shown in Fig. 9.15. This inability 
of the LDM to correctly track the message signal, x(t) when x(t) has steep changes, is referred to as ‘ slope 
overload’ condition. This leads to severe distortion of the reconstructed message signal and appears as noise 
at the destination. Therefore it is to be avoided. Thus, ‘slope overload’ in an LDM system can be avoided by 
ensuring that
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max

( )

s

dx t

T dt

D
>

 (9.30)

where D is the fixed  step size and Ts = 1/fs is the sampling interval. Therefore, with a fixed sampling frequency, 
the step size has to be large in order to avoid ‘slope overload’.
 But, consider the situation when the message signal is relatively flat. As may be seen from Fig. 9.16, the 
granular noise, arising from the ‘hunting’ that takes place when the signal is not changing much, will increase 
as the stepsize D is increased. This granular noise is similar to the quantization noise of PCM.
 Thus, we find two conflicting requirements – a large step size in order to avoid slope-overload noise, and 
a small step size to reduce the  granular noise. A solution for this problem would be to use an adaptive system, 
in which the step size automatically varies with the rate of change of x(t), the message signal, giving a large 

step size when 
( )dx t

dt
 is large and a small step size when it is small. But, before we discuss the adaptive 

delta-modulation system, let us examine the noise performance of a linear delta modulation system.

Destination SNR for linear Delta modulation (only granular noise)
We shall now determine the destination signal-to-granular noise ratio for a linear delta modulation system, 
assuming a sinusoidal message signal. It is assumed that for the step size and sampling frequency of the 
system the peak-amplitude and frequency of the assumed sinusoidal message signal are such that there is no 
slope-overload noise.
 Referring to Fig. 9.17(b), it is clear that the value of  quantization error is limited to ± D, where D is the step 
size. But we do not know how this error is distributed within these limits. If the sampling frequency is high, 

Fig. 9.15 Illustrating the phenomenon of  slope overload in linear Delta modulation

Fig. 9.16 Granular noise
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as is always the case with  delta modulation, it is quite 
reasonable to assume that the error, eq is uniformly 
distributed between –D and +D. Further, it has been 
experimentally established that the two-sided power 
spectrum of this periodic error waveform (it will be 
periodic if T, the period of the message signal is an 
integer multiple of the sampling interval Ts) is white 
(i.e., constant) and extends from –fs to +fs.
 Since eq, the error is uniformly distributed between 
– D and + D, its mean-square value is given by

2
2 2 2 1

( )
2 3q q eq q q q qe e f e de e de

D D

- D - D

DÊ ˆ= = =Á ˜Ë ¯DÚ Ú
 (9.31)

Since the  power spectral density of this  quantization 
noise is white and from –fs to +fs and since the total 
area under any PSD curve of a signal must be equal to 
the average power of the signal, the PSD is given by

\ 

2

2

total power /3 since PSD curve
is a rectangle2 2

( ) PSD ;
6

s s

s s
s

PSD
f f

P f f f f
f

Ê ˆD
= = Á ˜Ë ¯

D
= = - £ £

 (9.32)

As there is a low pass reconstruction filter as the last stage of the DM receiver, and since its cut-off frequency 
is W Hz, the bandwidth of the message signal, and since fs >> W, the full quantization noise power equal 

to 2
qe  which has been shown to be given by (D2/3), does not pass through this low pass filter and reach the 

destination

\ ND = Destination noise power = 
2 22

3 2 3s s

W W

f f

Ê ˆD DÊ ˆ Ê ˆ◊ = ◊Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
 (9.33)

Now, let us determine the destination signal power. Let the sinusoidal message signal be represented by

( ) sin mx t A tw=
The maximum rate of change of this signal is

max
max

( ) | cos |m m m

d
x t A t A

dt
w w w= =  (9.34)

Since we have assumed that there is no  slope overload noise, as per Eq. (9.30)

m
s

A
T

w
D

<  (9.35)

Since the maximum rate of change of the sinusoidal message signal depends on the product of its peak 
amplitude and its frequency, and since this product has got to be less than (D/Ts), let us choose the worst case 
scenario by assuming fm = W, the highest frequency in the passband of the baseband low pass filter of the 
receiver, and then determine A, the peak-amplitude of the sinusoidal message signal as the maximum permis-
sible peak amplitude for that sinusoid of frequency W Hz under the ‘no slope overload’ constraint.

Fig. 9.17  (a) Staircase approximation for an assumed 

sinusoidal message signal, (b) Waveform 

granular or quantization noise, eq(t)
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\ Putting fm = W in Eq. (9.35) and evaluating A, we get

2
sfA
Wp

DÊ ˆ< Á ˜Ë ¯
 (9.36)

Therefore we shall assume that A is chosen so as to have the highest possible value. In that case,

( ) sin 2
2

sfx t Wt
W

p
p

DÊ ˆ= Á ˜Ë ¯
 (9.37)

The signal power at the destination is therefore given by

2 22

2 22 2 4

s
D

fA
S

W p

D
= £  (9.38)

The destination SNR is therefore equal to

2 2

2 2 2

3

2 4

s sD

D D

f fS S

N N W Wp

DÊ ˆ= £Á ˜Ë ¯ ¥ D

\ 3
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3
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s

D

fS

N Wp

Ê ˆÊ ˆ Ê ˆ£Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
 (9.39)

Example 9.11 A DM transmitter with a fixed step of 0.5 V, is given a sinusoidal message signal. If the 
sampling frequency is twenty times the Nyquist rate, determine (a) the maximum permissible amplitude 
of the message signal, if slope overload is to be avoided, and (b) the maximum destination SNR under the 
above condition.

Solution
 (a) Let A be the maximum permissible peak amplitude of the sinusoidal message signal for avoiding slope 

overload. Then

    
2

sfA
Wp

D Ê ˆ< Á ˜Ë ¯
 (See Eq. (9.36))

  Since Nyquist rate is 2W samples per second for a signal of frequency W Hz, and since the sampling 
frequency fs is given to be 20 times the Nyquist rate, fs is given by

    20 2 40 40s
s

f
f W W

W

Ê ˆ= ¥ = \ =Á ˜Ë ¯
\ the maximum permissible value of A is

    max

0.5 40 10
40 3.18 volts

2 2
A

p p p

D ¥
= ¥ = = =

 (b) From Eq. (9.39), we have

    

3

2

3

8

s

D

fS

N Wp

Ê ˆÊ ˆ Ê ˆ£Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

The ‘equal to’ sign holds when A is chosen as the maximum value according to Eq. (9.36).

\ the maximum destination SNR is given by

    3
2 2

max

3 3 64000
(40) 2432

8 8D,

S

N p p

¥Ê ˆ Ê ˆ= = =Á ˜ Á ˜Ë ¯ Ë ¯

Example 9.11 A DM transmitter with a fixed step of 0.5 V, is given a sinusoidal message signal. If the
sampling frequency is twenty times the Nyquist rate, determine (a) the maximum permissible amplitude
of the message signal, if slope overload is to be avoided, and (b) the maximum destination SNR under the
above condition.

Note
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\ 10
max

in dB 10 2432 33.85 dB
D,

S
log

N

Ê ˆ = =Á ˜Ë ¯

Example 9.12 The pulse rate in a DM system is 56,000 per sec. The input signal is 
5 cos (2 1000 ) 2 cos (2 2000 )t tp p+  volts, with t in seconds. Find the minimum value of  step-size which 
will avoid slope overload distortion. What would be the disadvantages of choosing a value larger than the 
minimum? (GATE Examination, 1998)

Solution We have to find the maximum slope, not individually of each component of the message signal

x(t), but that of x(t) itself and then find the minimum value of step size that can avoid slope overload even 
when this maximum slope of x(t) is encountered.

( ) 5 cos 2000 2 cos 4000x t t tp p= +
Putting 1 2000 ,w p=  we have

1 1( ) 5 cos 2 cos 2x t t tw p w p= +

1 1 1 1 max
max

1 1 1 1 max

5 sin 2 2 sin 2( )

5 sin 4 sin 2

d
t tx t

dt

t t

w w w w

w w w w

- - ¥=

+=

To find the maximum value of 1 1 1 15 sin 4 sin 2 ( )t t y tw w w w+ D , differentiate it with respect to t and equate 
the derivative to zero.

2 2
1 1 1 1

( )
5 cos 8 cos 2 0

dy t
t t

dt
w w w w= + =

Putting this w1t as q for convenience

2 2
1 1

cos 2 5
5 cos 8 cos 2 0 0.625

cos 8

q
w q w q

q
+ = \ = - = -

Solving the above transcendental equation for q, we get q = 55.4°
\ x(t) has maximum absolute value of slope when w1t = 55.4°; and this maximum value is given by

max

( ) 5 2000 sin 55.4 2 4000 sin 110.8 26080.689
d

x t
dt

p p= ¥ ∞ + ¥ ∞ =

If D is the minimum step size required to avoid slope overload noise, we know from Eq. (9.30) that

min
max

( ) 26080.689
0.4657 V

56000s

dx t
f

dt
D = ∏ = =

Granular noise will increase unnecessarily, if we use a step size larger than this required minimum value.

Advantages and disadvantages of DM
 1. DM transmitter and receiver require very simple and inexpensive hardware. Although a higher sampling 

rate is used in DM, since only one bit is used to represent the error which is actually transmitted, the bit 
rate is, however, not too high; but will generally be higher than the bit rate of PCM.

 2. If the input message waveform has steep gradients, severe  slope overload distortion results, since the 
step size is fixed.

 3. e(n), which is given as input to the  single-bit quantizer, or hard limiter, in the DM transmitter, is 
the difference between the present sample and an estimate of the previous sample. This operation of 
taking the difference amounts to discrete-time differentiation of the input. Because of this, transmission 
channel noise can cause accumulation of errors in the receiver.

Example 9.12 The pulse rate in a DM system is 56,000 per sec. The input signal is 
5 cos (2 1000 ) 2 cos (2 2000 )) 2 cos (2 2000) 2 cos (2 20001000 ) 2 cos (21000 ) 2 cos (2) 2 cos (2  volts, with t in seconds. Find the minimum value of t step-size which
will avoid slope overload distortion. What would be the disadvantages of choosing a value larger than the
minimum? (GATE Examination, 1998)
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9.4.2 Delta-Sigma Modulation System

The last drawback of DM mentioned earlier, can be overcome by the use of a  Sigma–Delta modulation 
system, which is more commonly known as the  Delta–Sigma modulation system although in fact, the ‘sigma 
operation’ or ‘integration’ precedes the Delta modulator in this system.
 Integration of the message signal prior to its Delta modulation gives the following advantages:
 1. Integration de-emphasizes sudden changes, i.e., high frequency content and emphasizes the low 

frequency content contributed by slow changes. Since the variation from one sample to the next is thus 
reduced, the error  variance is reduced. This permits the Delta modulator to perform well even with 
slightly lower sampling frequencies than those used in the LDM system.

 2. The receiver becomes extremely simple – just an LPF.

Fig. 9.18 A Delta–Sigma modulation system

 Figure 9.18 shows the block diagram of a Delta–Sigma modulation system. As the message is subjected 
to integration before Delta modulation (at the transmitter), an inverse operation, viz. differentiation needs to 
be done in the receiver. As the DM receiver anyhow has an integrator (accumulator), these two cancel and so 
the receiver will be just only the baseband filter, which is an LPF.
 The transmitter part of the Delta–Sigma modulation system of Fig. 9.18 can be further simplified. As 
integration is a linear operation, we can combine the two integrators as shown in Fig. 9.19.

Fig. 9.19 Simplified form of the Delta–Sigma modulation system

Applications of Delta–Sigma modulation system A Sigma–Delta modulator is also known as a 
 Sigma–Delta A/D converter, or an  over-sampling A/D converter in DSP literature. The design of the analog 
low pass anti-aliasing filter that precedes the sampler in any A/D converter becomes difficult and its imple-
mentation becomes expensive because of the extremely sharp cut-off characteristics needed if the sampling 
frequency is close to the Nyquist frequency. This is because it needs to be of high order, needs precision 
analog components for implementation and VLSI technology cannot be used. So, to simplify the design and 
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implementation of this  anti-aliasing filter, the signal is over-sampled using an fs that is many times more than 
the  Nyquist rate and then converted using a  Sigma–Delta A/D converter. The output of this is later decimated 
to bring down the sampling rate nearer to the Nyquist rate.
 Because high  over-sampling is employed in Sigma–Delta A/D converters, they are most useful in low 
frequency applications such as digital telephony, digital audio (compact-disc encoders) and in digital spectrum 
analyzers.

9.4.3 Adaptive Delta Modulation (ADM)

While discussing ‘ slope overload’, we had stated that while a large value of step size is needed to avoid slope 
overload when the signal is changing steeply, the large step size would produce too much of granular noise 
when the signal is either constant, or is changing rather slowly. Thus, the overall noise can be reduced and 
the destination SNR can be improved considerably, if we make the step size to vary depending upon the way 
the signal itself changes with time – having a large value when the signal is changing steeply with time and a 
small value when the signal is relatively constant or changing very slowly. This is what is done in an  adaptive 
delta modulator.
 In an adaptive delta modulator, the step size may be made to vary with steepness of variation of the 
message signal either continuously, or in a discrete manner. In both the types, the sensing of the steepness of 
the message signal is done in the same way. As shown in Fig. 9.13, except during the stat-up time, whenever 
the signal is changing steeply, the binary output from the modulator continues to be the same – a series of 1s 
if signal is steeply rising and a series of 0s if the signal is steeply decreasing. On the other hand, when the 
signal is changing very slowly, or is constant the binary output from the Delta modulator is alternate 1s and 
0s. This fact is utilized to change the step size. Figure 9.20 shows an adaptive Delta modulator in which the 
step size changes in a continuous manner ( CVSDM).

Fig. 9.20 An adaptive Delta modulator with continuously variable step size

 The pulse generator produces narrow pulses of fixed amplitude at a rate equal to the desired sampling 
rate. The modulator consists of a hard limiter followed by a product device, or a multiplier. Whatever may 
be the actual value of e(t), the hard limiter output will be +1 if e(t) is positive and –1 if e(t) is negative. So 
the polarity of the pulse p0(t) depends on the sign of e(t). The subsystems within the dotted-line box are 
for ‘adaptation’. For a moment, assume this part is not there and point marked (A) is directly connected to 
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the input of the integrator. Let us approximate the narrow pulses in the pulse train p0(t) by impulses. Since 
integration of an impulse gives a step, integration of the train of impulses occurring at regular intervals of 
Ts = 1/fs will result in a staircase signal approximation of the message signal x(t). The step size D in this 
staircase approximation depends only on the amplitude of the pulses in p0(t) and the gain of the integrator. So 
we get a staircase approximation with a fixed step size.
 Now, assume that the ‘adaptation’ circuit shown in the dotted-line box is connected. The pulses in the 
pulse train p0(t) try to charge the capacitor C through the resistance R. However, if for a short segment of 
time, the pulses are alternatively positive and negative – and this happens when the message signal is either 
not changing at all, or is changing very slowly, there will not be any charge accumulation on the capacitor and 
the voltage across it will be zero, or negligible. So the gain control voltage is almost zero or is zero and there 
will not be any change in the amplitude of the pulses at the output of the variable-gain amplifier. As the gain 
of this amplifier is adjusted initially to be low when the gain-control voltage level is zero, the amplitude of the 
pulses fed as input to the integrator and so, the step size of ( )x t% , the staircase approximation, will be small. 
We have thus ensured that the step size is small when x(t) is almost constant, or is changing very slowly. Now, 
if the x(t) is steeply rising or falling for some time, the consecutive pulses in the pulse train p0(t) will be either 
all positive or all negative over that segment of time. So the capacitor will be charged. Irrespective of whether 
it is charged positively or negatively, the square law device output which is the gain-control voltage, will be 
positive and its value will depend upon the length of time for which the polarity of the gain of the amplifier 
and consequently the step size, will go on increasing till the rate of change of x(t) becomes less. Once rate of 
change of x(t) becomes less, the gain of the amplifier and the step size will reduce automatically to suit the 
new conditions.
 In the absence of any adaptation, the receiver just consists of a decoder (a decision device followed by 
a pulse generator) and an integrator followed by a low pass filter with cut-off frequency, W Hz, the band 
limiting frequency of x(t). In the absence of any decoding errors due to channel noise, the output pulse train 
from the pulse generator part of the decoder will be an exact replica of the transmitted pulse train p0(t). These 
impulse-like narrow pulses, when fed to the integrator, produce a staircase approximation of x(t) and the LPF, 
the last stage, removes the out-of-band frequency components from this staircase approximation to give an 
estimate of x(t). When we consider an ADM system, the receiver will have a structure as shown in Fig. 9.21.

Fig. 9.21 Receiver for an ADM (CVSDM) system with continuously variable step size

 Just as in the transmitter, here too, the gain of the variable gain amplifier is controlled by the voltage 
developed across the capacitor. This will be large when the polarity of output pulses from the decoder 
continues to be the same – corresponding to steeply rising portion of x(t), and will be almost zero when 
decoder output pulses are alternatively positive and negative – corresponding to a flat segment of x(t). When 
the gain changes the step size also changes correspondingly, thus giving a variable step size. The LPF output 
will be devoid of the out-of-band frequency components of the variable step size staircase approximation 
produced by the integrator.
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9.4.4 ADM System with Discrete Set of Values for Step Size

ADM system in which the step size can take a discrete set of values make use of a logic circuit in the trans-
mitter as well as the receiver to control the step size. The logic circuit in the transmitter senses the steepness 
of variations in x(t) by observing the binary output-sequence from the modulator and accordingly either 
increases, or reduces the step size values in discrete steps. The step size, D, is permitted to vary in discrete 
steps within a certain range of values: Dmin to Dmax. Figure 9.22 shows the block diagram of such an  adaptive 
delta modulation system.

Fig. 9.22 An ADM system with a discrete set of values for the step size: (a) Transmitter, (b) Receiver

The step size will initially be Dmin. If D(nTs) is the step size at the nth sampling instant, it is so arranged that

( ) if ( ) ( )
( )

(1/ ) ( ) if ( ) ( )

s s s s s

s
s s s s s

K nT T b nT b nT T
nT

K nT T b nT b nT T

D - = -Ï
D = Ì D - π -Ó

 (9.40)

where b(nTs) is the binary pulse at t = nTs. Hence, if two consecutive binary pulses in the output binary pulse 
sequence p0(t) are alike, which indicates that x(t) is steeply changing, the step size is increased by a factor K
compared to its previous value. K is generally taken as 1.5 for speech and image signals. On the other hand, 
if two consecutive binary pulses of p0(t) are not alike, which indicates that x(t) is varying slowly, the step size 
is decreased by the factor K. It has been reported by Jayant and Knoll (See Reference) that for a wide range 
of bit-rate values like 20 kbps to 60 kbps, a value of K = 1.5 is quite satisfactory and that this type of ADM 
system with K = 1.5 gives about 10 dB better (SNR)D as compared to an LDM system for which the step size 
is fixed. Figure 9.23 shows the waveforms of the approximation signal ˆ( ),x t  obtained in the case of ADM 
and LDM.
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Fig. 9.23 Waveforms of ˆ( )x t  for LDM and ADM

9.4.5 Comparison of PCM and DM

In PCM, we sample the message signal slightly above the Nyquist rate, quantize each sample and represent 
each quantized sample value using n bits. Since one sample is produced at each sampling instant, and n bits 
are used for representing each sample, the bit-rate is nfs bits/sec. for an n-bit binary PCM with a sampling 
frequency of fs. In delta modulation, on the other hand, we use a much higher sampling frequency in order to 
reduce the difference between adjacent samples so that the difference could be represented with a reasonably 
good accuracy by just one bit. If the sampling frequency for delta modulation is denoted by fsD, the bit rate 
of the binary stream produced by delta modulation is given by 1 s sf fD D¥ =  bits/sec. Although the bit rate is 
generally higher for DM, it would depend on the nature of the message signal as well as the quality specifica-
tions for any specific application.
 For example, for a speech signal with 3.5 kHz as the band-limiting frequency, as will be the case in 
telephone signal transmission, with the standard 8 kHz sampling rate and 8-bit binary PCM, the transmission 
bit-rate is 64 kbps. To achieve the same quality of received signal with a DM system, we need to use a 
sampling frequency of approximately 100 kHz. This implies that DM needs a bit rate of 100 kbps. But if 
some compromise on the quality front is permitted, Delta modulation will score over PCM. Further, DM 
system is quite simple and inexpensive while a PCM system is generally more complex and expensive.

9.4.6  Differential Pulse Code Modulator (DPCM)

When an audio or a video message signal is sampled slightly above the Nyquist rate, as is generally done 
in PCM, adjacent samples have a good degree of correlation. This implies that by directly encoding these 
sample values (of course, after quantization), we are permitting a good degree of redundancy in the PCM 
signal, i.e., we are using a higher bit rate than what is actually needed. In fact, correlation between adjacent 
samples suggests that it should be possible to predict, with a fair degree of accuracy, the present value of 
the message signal from a knowledge of its immediate past behavior. The DPCM system, in fact, employs 
a predictor, which predicts the present sample value making use of a few immediate past sample values by 
taking the linear combination of those past samples. How exactly the coefficients or the weights of this linear 
combination are chosen, we will be discussing in detail later. What is done in the  DPCM system is that this 
predicted value of the present sample is compared to the actual value of the present sample and the difference 
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between the two is pulse-code modulated. The advantage in this lies in the fact that if the prediction is 
reasonably good, the difference between the actual value and the predicted value, called the error, will have a 
much smaller dynamic range than the original message itself and therefore needs far fewer bits per each error 
sample than what would have been needed for the original samples themselves.

Fig. 9.24 A  differential pulse code modulation system

 Figure 9.24 shows a DPCM system. In the transmitter, the current sample, x(nTs) is compared to the 
predicted value ˆ( )sx nT  and the difference is quantized using an appropriate number of quantization levels, 
and then encoded and transmitted in the form of a stream of binary pulses. If the predictor utilizes ‘p’ previous 
samples to predict the present sample, it is said to be a pth-order predictor. As the order of the predictor is 
increased, initially, the prediction error, given by 

ˆ( ) ( ) ( )s s se nT x nT x nT= -
decreases but after a certain value of predictor order, it just changes very little and there is no point in 
increasing the order any further since it only increases the complexity of the predictor, without in any way 
increasing the prediction accuracy.
 The quantized error sample eq(nTs) goes into the feedback loop, gets added to ˆ( )sx nT  to give xq(nTs)
which is then used by the  predictor along with xq[(n – 1)Ts] and a few more, i.e., (p – 1) past estimates of the 
quantized sample values, to produce at its output, the predicted value of the next sample, i.e., ˆ[( 1) ]sx n T+ ,
which is compared with the next message sample x[(n + 1)Ts] to produce e[(n + 1)Ts]. This is then quantized 
to give eq[(n + 1)Ts] and this again goes to the encoder as well as the adder in the transmitter feedback loop. 
The process continues like that.
 In the receiver, the decoder decodes the received bit stream. Neglecting the errors that might be caused in 
the decoding process owing to channel noise, the decoder output will be eq(nTs) since the decoding operation 
is the inverse of the encoding operation. Just like in the transmitter feedback loop, here too, eq(nTs) adds to 
ˆ( )sx nT , the predictor output, to give xq(nTs) sequence which is the output sequence of the receiver. In case an 

analog output is desired, this xq(nTs) sequence can be low pass filtered by an LPF with a cut-off frequency of 
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W Hz (the band-limiting frequency of the original message), to get ( )x t%  (which is an approximation to x(t)),
together with some inband quantization noise.

9.4.7 Linear Prediction and Predictors

When adjacent samples of a message have good correlation, as in the case of audio and video message 
samples encoded using PCM, it is possible to predict the value of a future sample by making use of the 
present and some previous samples. Suppose, we want to predict x(nTs), the nth sample. For this purpose, we 

may make use of ‘p’ previous samples, ( 1 ), ( 2 ), , ( )s s sx n T x n T x n p T- - º - . One way of using them is, to 
take their linear combination ˆ( )sx nT  to give an estimate of x(nTs). Let us say

1 2ˆ( ) ( 1 ) ( 2 ) (  )s s s p sx nT h x n T h x n T h x n p T= - + - + º + -  (9.41)

where h1, h2, … , hp are some real numbers, called the weights used in the linear combination and ˆ( )sx nT

is called the predicted value. Since a linear combination of the previous sample values is used for obtaining 
the predicted value, the prediction process is called ‘ Linear Prediction’; and since p previous sample values 
have been used for prediction, the predictor is said to be of pth order. How these weights, or coefficients of the 
linear combination, are to be chosen, or determined, we shall discuss a little later. Since only a simple linear 
combination of the ‘p’ previous samples is needed, we can implement the predictor as a simple FIR digital 
filter, generally called a  transversal filter as shown in Fig. 9.25.

Fig. 9.25 A pth order  prediction filter and prediction error

In the receiver, the predictor is used for the reverse operation, i.e., obtaining x(nTs) from the e(nTs) which 
is given as the output of the decoder. Here, the predictor feedback loop is configured as shown in Fig. 9.26.
 The predictor weights or coefficients must be so chosen that the ‘ prediction error’ is minimized in some 
sense. Usually the error is minimized in the ‘mean-square’ sense, i.e., the mean-squared value of the error 
is minimized by an appropriate choice of the ‘p’ weights, or coefficients of the linear combination. For the 
purpose of obtaining an optimum set of weights in this sense, let us assume that our message signal x(t) is a 
zero-mean stationary random process. (Strictly speaking, speech is not a stationary process.) Now,

ˆError = ( ) ( ) ( )s s se nT x nT x nT= -  (9.42)
We have to minimize

2 2[ ( )] ,ˆ{ ( ) ( )}s s s
E e nT E x nT x nTÈ ˘= -Î ˚

where the symbol E[◊] is used for representing the ‘ ensemble average’.

CS-Rao_09.indd 524CS-Rao_09.indd   524 1/18/2013 11:25:29 AM1/18/2013   11:25:29 AM



Digital Coding of Analog Signals (PCM and DM) 525

But ˆ( )sx nT  = Output of the FIR filter of order ‘p’

1

( ) ( )
p

s s s
k

h kT x nT kT
=

= -Â  (9.43)

For the sake of convenience, let us drop Ts from the above. Then, we have to minimize J, where
2

2

1

[ ( )] ( ) ( ) ( )
p

k

J E e n E x n h k x n k
=

È ˘
D = - -Í ˙

Î ˚
Â  (9.44)

With respect to the weights h(k)s, k = 1 to p.

\ 2

1 1 1

( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( )
p p p

k l k

J E x n h k x n x n k h l h k x n l x n k
= = =

È ˘
= - - + - -Í ˙

Î ˚
Â Â Â  (9.45)

Taking expectation on the RHS term by term and noting that

2

1 1

[ ( )] (0); 2 ( ) { ( ) ( )} 2 ( ) ( );
p p

X X
k k

E x n R h k E x n x n k h k R k
= =

= - - = -Â Â
and

1 1 1 1

( ) ( ) { ( ) ( )} ( ) ( ) ( )
p p p p

X
l k l k

h l h k E x n l x n k h l h k R k l
= = = =

- - = -Â Â Â Â
we get

1 1 1

(0) 2 ( ) ( ) ( ) ( ) ( )
p p p

X X X
k l k

J R h k R k h l h k R k l
= = =

= - + -Â Â Â  (9.46)

Fig. 9.26 Prediction feedback loop of the receiver
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To minimize J with respect to the coefficients or weights, let us take the partial derivatives of J with respect 
to each weight and equate it to zero.

\
1

2 ( ) 2 ( ) ( ) 0
( )

p

X X
l

J
R k h l R k l

h k =

∂
= - + - =

∂
Â  (9.47)

From Eq. (9.47), we therefore have the following p equations:

1

( ) ( ) 2 ( ) ( ); 1, 2, 3, ,
p

X X X
l

R k R k h l R k l k p
=

= - = - = ºÂ  (9.48)

Writing this set of p equations in expanded form:

(1) ( 1) (1) (0) (2) ( 1) (3) ( 2) ( ) (1 )

(2) ( 2) (1) (1) (2) (0) (3) ( 1) ( ) (2 )

(3) ( 3) (1) (2) (2) (1) (3) (0) ( ) (3 )

( ) ( ) (1) ( 1)

X X X X X X

X X X X X X

X X X X X X

X X X

R R h R h R h R h p R p

R R h R h R h R h p R p

R R h R h R h R h p R p

R p R p h R p

= - = + - + - + º + -

= - = + + - + º + -

= - = + + + º + -

= - = - +
M M M M

(2) ( 2) (3) ( 3) ( ) (0)X X Xh R p h R p h p R- + - + º +
This set of equations may be written in matrix form as

(1) (0) ( 1) (2) . . . ( 1) (1)

(2) (1) (0) ( 1) . . . ( 2) (2)

(3) (2) (1) (0) . . . ( 3) (3)

. . . . . .

. . . . . .

. . . . .

( ) ( 1) ( 2) ( 3) . . . (0)

X X X X X

X X X X X

X X X X X

X X X X X

R R R R R p h

R R R R R p h

R R R R R p h

R p R p R p R p R

- -È ˘ È ˘
Í ˙ Í ˙- -Í ˙ Í ˙
Í ˙ Í ˙-
Í ˙ Í ˙

=Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙- - -Î ˚ Î ˚

.

( )h p

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

 (9.49)

Equation (9.49) may be written in a compact form as

[ ]XR r=
X

h  (9.50)

where [RX] is the p ¥ p  auto-correlation matrix figuring in Eq. (9.49), h is the column vector of weights 
defined by

h = [ h1 h2 h3 … hp]
T,

and rX is the column vector of auto-correlation for different lags and defined by

rX = [ RX(1) RX(2) RX(3) … RX(p)]T

The set of equations defined by Eqs. (9.48), (9.49), and (9.50) are called ‘ Wiener–Hopf Equations’ for linear 
prediction.
 It may be noted that the p ¥ p auto-correlation matrix [RX] is a Toeplitz matrix since all the elements of not 
only the main diagonal, but even the other diagonals parallel to the main one, are also equal.
 From Eq. (9.50), we have the weights vector given by

1
XR
-=

X
h r  (9.51)

[RX], being the auto-correlation matrix whose main diagonal elements are equal to RX(0), is non-singular. 
So, the optimum weights that minimize the error in the mean-squared sense can be obtained by solving 
the matrix Eq. (9.51). The auto-correlation matrix [RX] is known uniquely once the auto-correlation values 
RX(0) … RX(p – 1) are known and the auto-correlation vector rX is known once the auto-correlation values 
RX(1) … RX(p) are determined. Further, very efficient algorithms are available for the inversion of a Toeplitz 
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matrix. Hence, the optimum weights can be determined uniquely, once the message auto-correlation values 
are known for lags 0, 1, 2, … , p when a pth-order predictor is used.

 Since 2(0)X XR s= =  average power (variance) of the zero-mean message process, the  minimum mean 
square prediction error is given by

2 1
min [ ]X XJ Rs -= -

X X
r r
T  (9.52)

Further, since the quadratic term
1[ ]XR

-
X

X
r r
ΤΤ  (9.53)

is always positive, Eq. (9.52) tells us that the minimum mean-square error is always less than the  variance of 
the message signal samples x(nTs).

From the above discussion on DPCM and a comparison of Fig. 9.24 which shows a DPCM 

system, with Fig. 9.13 which shows a DM system, it is clear that basically there is consid-

erable similarity between the two systems. However, there are two conspicuous differences 

between them. These are:

 (i) Whereas a DPCM employs a predictor to produce an approximation to the present 

message sample x(nTs), a DM system, on the other hand, employs just a unit delayer 

whose output is the quantized version of the previous sample, and uses it as an approxi-

mation for x(nTs).

 (ii) Whereas the DPCM employs an n-bit quantizer for pulse code modulating the error 

samples, the DM employs a  one-bit quantizer to encode the error samples.

From point (ii)., we may view that a DM system as a ‘one-bit version’ of a DPCM system. Further, just like 
the DM, the DPCM system also has the  quantization noise, as well as the  slope-over load problems.

9.4.8 Processing Gain of DPCM and Comparison with PCM

In PCM, the samples are directly quantized, encoded and transmitted. In DPCM, however, we quantize and 
encode not the original message samples, but only the error samples obtained by subtracting the predicted

value of each message sample from the actual value of that message sample. Does this give us any benefit 
in terms of an improvement of the output (SNR)Q? If it does, to what extent is the (SNR)Q improved? What 
determines the extent of improvement, if there is any? We shall now examine these aspects.
 For a DPCM system, we define the output  signal-to-quantization noise ratio in the usual way, as

2

2
,

variance of message

variance of quantization error  
X

D Q Q

S

N

s

s

=Ê ˆ =Á ˜Ë ¯ =
 (9.54)

As stated earlier, we are assuming the message to be a  zero-mean stationary process.

 Now, let 2
ps  denote the variance of the  prediction error in the DPCM system. Then, we shall rewrite Eq. 

(9.54) as
22 2

2 2 2
,    

pX X

D Q Q p Q

S

N

ss s

s s s

Ê ˆ Ê ˆÊ ˆ = = Á ˜ Á ˜Á ˜Ë ¯ Ë ¯ Ë ¯
 (9.55)

Since 2
ps  is the variance of the prediction error and since the prediction error is the one which is PCM-ed in 

a DPCM system, the ratio 2 2( / )p Qs s  may be taken as the usual signal-to-quantization noise ratio of PCM. If 
we now define a factor, called the  processing gain, denoted by Gp, as

2

2
X

p

p

G
s

s

Ê ˆ
D Á ˜

Ë ¯
 (9.56)

Remarks
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then this processing gain is obtained because of the ‘ differential quantization’, i.e., because we are quantizing 
the  prediction error.
 Now, the quantity Gp, the  processing gain, may be greater than one, or less than one, depending upon 
how good the prediction is, which in turn depends upon our selection of the weights of the predictor. If we 
minimize the prediction error (in the mean-square sense) as detailed earlier by an optimum choice of the 

weights, then the variance of prediction error, 2
ps , is minimized. Since the message variance 2

Xs  is fixed for 
a given message, it follows from Eq. (9.56) that the processing gain Gp will be maximized. Thus, for a given 
order of the predictor, optimum selection of weights maximizes Gp, the processing gain, by minimizing the 
prediction error for that order of the predictor. So, further improvement in Gp can be obtained by increasing 
the order of the  prediction filter, and using optimum weights for each value of the  predictor order. However, 
as stated earlier, as the predictor order is increased from an initial value of zero (which implies no prediction) 
to first order, second order, and so on, it is only an increase from zero order to first order that produces 
about 4 to 5 dB of processing gain and further increases of order results in only small increments in Gp.
With a prediction filter order of 5, it is found that DPCM gives about 11 dB improvement in the (SNR)D,Q as 
compared to PCM.
 Till now, we have seen DPCM and PCM from the point of view of their output signal-to-quantization noise 
ratios. We may look at them for a specified (SNR)D,Q. For a sampling rate of 8 kHz, DPCM may give a saving 
in bit rate to the extent of 1 to 2 bits/sample, i.e., about 8 to 16 kbps, as compared to PCM.

9.4.9  Adaptive Differential Pulse Code Modulation (ADPCM)

As we have already seen, determination of the optimum coefficient set for the predictor requires a knowledge 
of the  auto-correlation coefficients of the message signal for lags of 0, Ts, 2Ts, … , pTs. The problem is these 
auto-correlation coefficients are not usually known. Further, the message signal may not be a stationary 
process, in which case, its auto-correlation values and all other statistical parameters will be varying with 
time. Both the above situations underscore the need for adaptively adjusting the predictor coefficients.
 In addition, there is also one more problem. As was stated earlier, just like DM, the DPCM also has the 
slope-overload problem and the quantization noise, or granular noise problem. As in the case of DM, here 
too, in the case of speech communication, changes in the levels of speech signal are quite common and these 
again call for adaptively changing the step size in order to have good signal-to-quantization noise ratio at the 
destination besides avoiding slope-overload noise.
 Thus, in DPCM, prediction as well as quantization need to be adaptively controlled, depending respec-
tively upon the spectrum and the changing levels of the message signal. Insofar as the step size is concerned, 
it may be controlled adaptively just in the same manner as was done in the case of DM. For obtaining adaptive 
prediction, an iterative algorithm, called the ‘Least Mean Square’, or LMS algorithm, may be used in order 
to adjust the predictor weights to their optimum values so as to obtain error in the mean-square sense. This 
arrangement is illustrated in Fig. 9.27.

Fig. 9.27 Illustrating  adaptive linear prediction
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Example 9.13 A first-order predictor gives the predicted sample value as a constant times the previous 
sample values, i.e., 

ˆ( ) ( )s s sx nT wx nT T= - )

where x(nTs) is a sample of a zero-mean stationary process, Ts is the sampling period and w is the weight. 
Determine the following:

 (a) 2
Es , the variance of the prediction error.

 (b) Optimum value of the weight w for obtaining minimum mean-square error.
 (c) The minimum value of the prediction-error variance.

Solution
(a) Prediction error = ˆ( ) [ ( ) ( )]s s se nT x nT x nT= -

\ mean-squared value of the prediction error 2

2

2 2

( )

ˆ{ ( ) ( )}

ˆ ˆ( ) 2 ( ) ( ) ( )

s

s s

s s s s

E e nT

E x nT x nT

E x nT x nT x nT x nT

È ˘= Î ˚
È ˘= -Î ˚
È ˘= - +Î ˚

  Substituting ( )s swx nT T-  for ˆ( )sx nT  and taking the expectation of the quantity in the rectangular 
brackets term by term, we get

[ ] 22 2 2( ) ( )2( )] [ ( ) ( )s s ss s s s
x nT x nT TJ E wE w Ee nT E x nT x nT TÈ ˘ È ˘-= - += -Î ˚ Î ˚

  Now, since x(t) is given to be a zero-mean stationary process, we may write

   
22 ( ) EE e n sÈ ˘ =Î ˚  variance of the predictor error

   
22 ( ) Xs

E x nT sÈ ˘ =Î ˚  = variance of the message signal

   = Average power of the message signal

   
22 ( ) Xs s

E x nT T sÈ ˘ =-Î ˚  since x(t) is a stationary process

   [ ]( ) ( ) ( )s s s X sx nT x nT TE R T- =

\ 2 2 2 22 ( )E X X s XJ wR T ws s s= = - +

\ 2 2 2
2

( )
1 2 X s

E X

X

R T
w ws s

s

È ˘= + -Í ˙
Î ˚

(b) Now, 20 2 ( ) 2X s X

J
R T ws

w

∂
= - +

∂
\ equating the above to zero for minimizing J, we have

   opt 2

( )X s

X

R T
w

s

È ˘= Í ˙
Î ˚

(c) The minimum value of the variance of the predictor error is obtained by substituting the value of wopt

for w in the expression for 2
Es

  Thus,  
2

2 2 2 2
4 2 2

min

( ) ( ) ( )
2X s X s X s

E X X X

X X X

R T R T R T
s s s s

s s s
= + - ◊

\
2

2 2
2

( )
min X s

E X

X

R T
s s

s

È ˘
= - Í ˙

Í ˙Î ˚

Example 9.13 A first-order predictor gives the predicted sample value as a constant times the previous
sample values, i.e.,

ˆ( ) ( )s s s) () (x̂( ) () () () ((((( )

where x(nTs) is a sample of a zero-mean stationary process, Ts is the sampling period and w is the weight.w
Determine the following:

(a) 2
Es , the variance of the prediction error.

(b) Optimum value of the weight w for obtaining minimum mean-square error.
(c) The minimum value of the prediction-error variance.
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Example 9.14 A zero-mean stationary process with a variance of 2
x  is given as the message signal 

to a DPCM system using a second-order predictor. The auto-correlations of the message signal for lags of 

Ts and 2Ts are 0.8 2
x  and 0.5 2

x  respectively. Determine 
 (a) the optimum predictor weights which will give the minimum mean square prediction error.
 (b) the minimum variance of the prediction error.
 (c) the processing gain of the system.

Solution

We can conveniently put 2 1x =  and Ts = 1 sec.

From the given data: 2(1) 0.8 0.8XR x= =
2(2) 0.5 0.5XR x= =

Further, since 2(0) ,XR x= (0) 1XR =

\ [ ]
2 2

2 2

0.8 1 0.8

0.8 10.8
X

x x
R

x x

È ˘ È ˘Í ˙= = Í ˙Í ˙ Î ˚Î ˚

(a) \ from Eq. (9.49), we have 
(1) 0.8 1 0.8 (1)

(2) 0.5 0.8 1 (2)

X

X

R h

R h

È ˘ È ˘ È ˘ È ˘
= =Í ˙ Í ˙ Í ˙ Í ˙

Î ˚ Î ˚ Î ˚Î ˚

\
1

(1) 1 0.8 0.8 2.77 2.22 0.8 1.111

(2) 0.8 1 0.5 0.52.22 2.27 3.388

h

h

- ◊ ◊ ◊

◊ ◊ ◊

È ˘ È ˘-È ˘ È ˘ È ˘ È ˘
= = =Í ˙ Í ˙Í ˙ Í ˙ Í ˙ Í ˙

- -Î ˚ Î ˚ Î ˚ Î ˚Í ˙ Í ˙Î ˚ Î ˚

\ (1) 1.111 and (2) 0.388 .h h
◊ ◊= = - These are the optimum filter coefficients.

(b) Processing gain = 
2

2
X

p

G
s

s
D  (Refer to Eq. (9.56))

  where 2
Xs  is the variance of the message signal = RX(0) since it is zero mean, and 2

ps  is the variance 
of the prediction error when optimum filter weights are used.

  But we know that 2 2 1
min [ ]p X XJ Rs s -= = - T

X X
r r  (Refer to Eq. (9.52))

\ [ ]2 2.77 2.22 0.8
1 0.8 0.5

0.52.22 2.77
ps

◊ ◊

◊ ◊

È ˘- È ˘
= - Í ˙ Í ˙

- Î ˚Í ˙Î ˚

[ ] 21.111
1 0.8 0.5 1 0.694 0.306 0.306

0.388 ps
È ˘

- = - = \ =Í ˙-Î ˚

 (c)
1

Processing gain 3.26
0.306

\ = =

9.4.10 Speech Compression/Low Bit Rate Coding of Speech

Normally speech signal, band-limited to 3.2 kHz is used for obtaining ‘telephone quality’ of speech. It is 
PCM encoded by sampling at 8000 samples per second and using an 8-bit representation for each sample. 
The bit rate therefore works out to 64 kbps. This bit rate does not, of course, pose any problem in normal 
telephone channel transmission. However, in the case of certain wireless channels used for secure communi-

Example 9.14 A zero-mean stationary process with a variance of 2
x is given as the message signal

to a DPCM system using a second-order predictor. The auto-correlations of the message signal for lags of

Ts and 2Ts are 0.8 2
x and 0.5 2

x respectively. Determine
(a) the optimum predictor weights which will give the minimum mean square prediction error.
(b) the minimum variance of the prediction error.
(c) the processing gain of the system.
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cation, which can support only narrow bandwidths, or, low bit rates, speech transmission at 64 kbps does pose 
severe problems. This makes it necessary to resort to  low bit-rate coding of speech. Systems used for voice 
coding at low bit rates are called voice coders, or  VOCODERS.
 Ideally, we would like to achieve the low bit-rate coding, or compression of speech in such a manner 
that no information is lost in the process, by removing only just the redundancy. This is called ‘ lossless 
compression’. However, almost any method of  speech coding involves some amount of loss of information. 
Hence, what is sought is a low bit-rate coding which maintains certain acceptable standards with regard to 
the quality of reproduced speech. There are three distinct approaches to low bit-rate coding of speech. These 
are:
 1. Use of time-domain techniques
 2. Use of frequency/transform domain techniques
 3. Use of certain model-based techniques
Now, we shall discuss each of these approaches in some detail.

1. Time-domain techniques:

(a) DPCM As we have already seen, DPCM achieves some compression compared to PCM, as it pulse-
code modulates not the original samples of the message, but only the difference between the original samples 
and their predicted values. The dynamic range of this difference being much smaller than that of the original 
samples, less number of bits are needed to represent each difference sample and therefore the bit rate required 
is less. For the same quality of reproduced speech, as given by PCM, an ADPCM system cuts down the bit 
rate by a factor of 2, i.e., at 32 kbps, ADPCM gives the same speech quality as PCM at 64 kbps.

(b)  Sub-band coding In this, the speech signal is divided into a number of non-overlapping sub-bands – 
say, 400 Hz to 800 Hz, 800 Hz to 1600 Hz, and 1600 Hz to 3200 Hz, by using a bank of what are called, 
 Quadrature Mirror Filters (QMF). The output signal from each of these filters, representing the time-domain 
signal having frequency components in a particular band, is then encoded in the time-domain using PCM or 
DPCM. Signals representing the low frequency bands like 0 to 400 Hz and 400 to 800 Hz are alloted more 
number of bits/sample, compared to the number of bits per sample assigned to the high frequency bands. This 
is done because of the following reasons:
 (i) Most of the energy of a speech signal segment lies in the low frequency sub-bands and therefore 

samples of the signals representing these sub-bands need to be represented more accurately.
 (ii)  Quantization noise is more easily sensed by the human ear in the low frequency sub-bands.
Actually, the coding is made highly adaptive and dynamic. The  pitch frequency, estimated from the speech 
samples, is used to improve prediction. Further, the  formant frequencies, i.e., the resonant frequencies of the 
 vocal tract of the speaker are also estimated and use is made of the ‘noise-masking phenomenon’ to assign 
very few bits to samples near these formant frequencies.
 Thus, by giving very few bits to the high frequency sub-bands and by adopting adaptive assignment of bits 
to the samples, as described above, we are able to save considerably in terms of the overall bit rate. Adaptively 
sub-band coded speech at 16 kbps sounds as good as the 64 kbps PCM encoded speech, in its quality.

2. Frequency/Transform domain techniques: The speech samples stream is divided into frames of conve-
nient length say, N samples. These frames are then transformed into  spectral coefficients using a suitable 
 discrete transform. The spectral coefficients, so obtained, are then quantized and encoded, assigning larger 
number of bits for the significant spectral coefficients and very few bits to represent each of the rest, by 
using an appropriate adaptive algorithm. It is these encoded spectral coefficients that are transmitted. At the 
receiver, these are first decoded, and then the resulting spectral coefficients are transformed back into time-
domain samples, using an inverse discrete transform. These time-domain samples are then passed through a 
reconstruction filter, which is an LPF with a cut-off frequency of W Hz, the band-limiting frequency of the 
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original message signal, x(t). A time-domain analog signal ( )x t%  closely approximating x(t), is thus obtained 
at the output of the receiver.
 A number of discrete transforms are available for this purpose. Of all these, the  Karhunen–Loeve 
Transform (KLT) is the best among them, theoretically so to speak. This is because it gives spectral coeffi-
cients that are totally uncorrelated. Thus, the redundancy existing in the time domain is absent in the spectral 
domain, if KLT is used. Hence, from the  data compression point of view, it is the ideal transform and gives 
optimum results. However, since the KLT uses the N-length  eigenvectors of the N ¥ N  co-variance matrix of 
the time-domain samples, it is a data (message) dependent transform and is computationally time consuming 
and expensive. Hence, it is used only as a benchmark for comparing the compression efficacy of the other 
discrete transforms. Generally, in practice, the  Discrete Cosine Transform (DCT) which is the next best, 
or the  Discrete Fourier Transform (DFT), are used although they give only sub-optimal results. Both these 
transforms have fast algorithms, the FCT and the FFT. Using adaptive coding with DFT or DCT, speech can 
be compressed to a bit rate of 9.6 kbps which can still be of the same quality as the usual 64 kbps telephone 
quality speech.  Adaptive Transform coding, described above, is made use of in speech encoders of  MP3 
standard.

3. Model-based compression – Linear Predictive coding (VOCODER):  Linear Predictive Coding (LPC) 
is a model-based method for low bit rate encoding of speech. It uses speech analysis and synthesis techniques 
and can give speech at very low bit rates like 2.4 kbps to 4.8 kbps. However, when encoded using this method, 
the reproduced speech sounds a little synthetic.
 Speech sounds are categorized as ‘voiced’ and ‘unvoiced’.  Voiced speech is produced when the air in 
the lungs is pushed out through the trachea, the pharynx cavity and finally through the mouth and the nasal 
cavities with the vocal cords tensed. These vocal cords vibrate thereby modulating the air into discrete pulses. 
The  vocal cords are tensed when voiced sounds like vowels are spoken. Thus, voiced speech is quasi-periodic 
and repeats at the ‘pitch frequency’. On the other hand, in the case of sounds like ‘s’, ‘c’, and ‘f’, etc., air 
gushes out from the lungs through a constriction created by the lips or the tongue, with the vocal cords 
playing no role at all. They produce a sort of ‘hissing sound’ and are called  unvoiced sounds.
  Vocal tract is that part of human body extending from the glottis to the lips, and it plays a key role in 
speech production. Speech is not a stationary process, since the shape and size of this vocal tract goes on 
changing as we speak. Since it takes approximately 20–30 ms for the vocal tract to change its shape and size, 
speech segments of 20–30 ms duration can be considered to be stationary. In speech analysis, there exist 
techniques for detecting voiced/ unvoiced speech and algorithms for determination of  pitch period of voiced 
speech.
 The vocal tract is generally modeled as a linear, time-varying auto-regressive (i.e., all-pole) discrete-time 
filter of some order ‘p’ (generally about 10), with a system function H(z) given by

1

( )

1
p

k
k

k

G
H z

a z
-

=

=
È ˘

-Í ˙
Î ˚

Â
 (9.57)

where G represents the gain of the  all-pole filter. Hence, speech may be considered as the response of this 
filter to an input. The sound produced at its output will, of course, depend not only on the type of excitation 
given to it, but also on the values of the filter coefficients, aks, k = 1 to ‘p’. Since voiced speech is produced 
due to periodic pressure variations at the pitch frequency caused by the vibrating vocal cords, we try to 
simulate voiced speech by the response of this all-pole filter when the excitation (input) to it is a train of 
impulses occurring at a regular interval equal to the pitch period. Similarly, the unvoiced speech can be 
simulated by the response of this filter to a ‘ white-noise’ input, as shown in Fig. 9.28 which gives the block 
diagram of a  speech synthesizer.
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Fig. 9.28 A  speech synthesizer

The unit in the speech analyzer which detects whether the speech is voiced or unvoiced, actuates the voiced/
unvoiced switch in the synthesizer. The pitch frequency which is estimated in the analyzer is fed to the 
impulse generator so as to control the period of the impulse sequence generated by it. The speech analyzer 
estimates the optimum filter coefficients which will minimize the difference between the actual speech and 
the synthesized speech in the minimum mean-square sense. These filter coefficients and gain, so estimated, 
are fed to the all-pole filter and the multiplier unit (respectively) of the synthesizer.
 The LPC transmitter therefore need not transmit the speech or its samples. Instead, it simply transmits (i) 
the binary encoded version of e(n), samples of the difference between the actual speech and the synthesized 
version of it, (ii) information about whether the speech is voiced/unvoiced, (iii) the gain parameter, G, (iv) 
the ‘p’ coefficients of the pth order all-pole filter, and (v) the  pitch frequency/period. Information pertaining 
to (ii), (iii), (iv) and (v) above, is updated every 20–30 milliseconds, as speech is not a stationary process and 
its statistics change whenever the vocal tract size and or shape change. Figure 9.29 shows the arrangement 
used at the transmitter. 

Fig. 9.29  LPC transmitter

The  all-pole digital filter used in the synthesizer is generally of 10th order. The filter coefficients must be 

transmitted to a high degree of accuracy, since even small inaccuracies can sometimes make the receiver 

all-pole filter unstable. So, often, about 8 to 10 bits are used to transmit the value of each filter coefficient. 
About five bits are used for the gain parameter, six for pitch period and one bit for information regarding 
voiced/unvoiced speech. Since these are updated every 20 ms to 30 ms, the bit rate required works out to 
approximately 5 to 6 kbps.
 The receiver reconstructs the speech signal from the information transmitted by the LPC transmitter, by 
using a speech synthesizer in an arrangement as shown in Fig. 9.30.
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Fig. 9.30  LPC receiver

 There are several LPC-based Vocoders more sophisticated than the one described above. These are (i) the 
Residual Excited LPC ( RELP), (ii) the Multi-Pulse LPC (MPLP), (iii) the Code-Excited LPC ( CELP), and 
(iv) Vector-Sum Excited LPC ( VSELP). Among these, the last two, viz. the CELP and VSELP give toll grade 
quality speech at 4.8 kbps and are used in cellular mobile communications.

Comparison of compression techniques 

Table 9.2

1. PCM without companding and 8 bits/sample and 8 kHz sampling rate 64 kbps

2. PCM with companding, 7–8 bits/sample and 8 kHz sampling rate 56–64 kbps

3. Delta Modulation (DM) 32–64 kbps

4. Differential PCM with 4–6 bits/error sample ª32 kbps

5. Adaptive DPCM with 3–4 bits/error sample 24–32 kbps

6. Adaptive Delta Modulation (ADM) 16–32 kbps

7. Sub-band Coding ª16 kbps

8. Adaptive Transform-Domain Techniques ª9.6 kbps

9. Linear Predictive Coding (LPC) 2.4–4.8 kbps

9.5  DIGITAL MULTIPLEXING

9.5.1 Time Division Multiplexing (TDM) Principle

Definition  Time Division Multiplexing or TDM is the time interleaving of samples from several sources 
in order to transmit information from all these sources serially over a single communication channel.
 The low pass sampling theorem forms the basis for TDM. It tells us that we need not transmit a band-
limited continuous-time signal which engages the transmission channel continuously as long as the signal is 
transmitted. Instead, we can transmit only its samples taken at regular intervals at a rate above the Nyquist 
rate so that the receiver can reconstruct the analog signal from the received samples. As the samples are 
separated in time by the sampling interval, the transmission channel is not engaged all the time; it is engaged 
only whenever a sample occurs. Therefore, the interval between two successive samples of one message 
signal during which the transmission channel is free, may be utilized to transmit the samples of each of the 
other message signals. That is, we may interleave the samples from various message signals. A typical PAM/
TDM system is shown in Fig. 9.31.
 Suppose we now extend this concept of time division multiplexing to N number of n-bit binary PCM-ed 
message channels which are identically band limited. Then, since the sampling interval has to accommodate 
N codewords of n-bits each, the pulse width of the PCM/TDM signal is (Ts /N ◊ n). Just as we interleaved the 
samples in the PAM/TDM system, here let us interleave the codewords as shown in Fig. 9.32.
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Fig. 9.31 Time division multiplexing of analog signals

Fig. 9.32 Illustration of the concept of a  frame

when one codeword, say the kth codeword, from each one of the N-message channels is transmitted sequen-
tially, we say one TDM ‘frame’ is transmitted; and the time taken for transmitting one frame is called the 
‘ frame time’. In this case, the frame time is equal to the sampling interval of any one message channel and 
so is equal to Ts.
 Although we have considered in the above example N message channels all of which are analog and are 
identically band limited, we need not have to restrict ourselves like that. Once an analog message signal is 
sampled, quantized and encoded, i.e., once it is digitized, it can be regarded as data which is to be multiplexed 
with other data coming from other sources like computers which are digital data sources. Since any digital 
signal is just a sequence of symbols, we may regard multiplexing of digital signals simply as interleaving of 
these symbols. We thus free ourselves of the rather rigid constraints like periodic sampling and waveform 
preservation associated with TDM. Thus, multiplexing of digital signals, or ‘ digital multiplexing’ as we will 
be referring to it hereafter, is similar to TDM except that it is more flexible because of the freedom from the 
constraints stated above. Digital multiplexing is therefore based on ‘interleaving of symbols’ from two or 
more digital signals.

9.5.2 Functions Performed by a Binary  Digital Multiplexer (MUX)

The interleaving of the symbols, or the digital multiplexing, is done by a selector switch which sequentially 
takes symbols from each incoming line and delivers them to a common high-speed line to form what is 
known as the  multiplexed signal. This multiplexed signal consists of binary digits from various input sources 
interleaved either bit by bit, or word by word. At the receiving-end, a de-multiplexer separates the low-speed 
components (from the different individual sources) and delivers them to their respective destinations. This 
concept of a ‘multiplexing’ and ‘ de-multiplexing’ is illustrated in Fig. 9.33.
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Fig. 9.33 Illustration of the use of  multiplexers and  de-multiplexers

To enable proper de-multiplexing at the receiving end, it is necessary that the multiplexed signal be constructed 
with a constant bit rate. This necessitates the use of signaling (for frame identification, etc.) and  synchroni-
zation information also to be embedded into the multiplexed signal. The broad functional responsibilities of 
digital multiplexers may therefore be identified as
 1. constructing a ‘frame’ as the smallest unit that contains at least one bit from each input.
 2. assigning within each frame an appropriate number of time slots for each input.
 3. inserting  control bits for frame identification and synchronization.
 4. providing for any small variations in the bit rates of the data from the various inputs.
Besides slight variations about a specified nominal value, which always occur when the input sources are 
independent and are not centrally controlled, some sources may be active only occasionally and not continu-
ously. In that case, the time-slots allotted to them in each frame will not be having any bits when these sources 
are not active. Even when a source is active, it may not be giving data at a constant bit rate at its output, as 
happens when the data is obtained from a computer keyboard. Because of all these factors, different types 
of digital multiplexers are available, to cater to different types of situations. Multiplexers may therefore be 
broadly classified into three different categories:

1.  Synchronous multiplexers: In this case, all the sources are controlled by a central master clock so as to 
eliminate the possibility of bit-rate variations. If, for some time any of the sources do not output any data, it is 
taken care of by ‘ stuffing’ dummy pulses in the time slots allotted to those sources. Synchronous multiplexing 
gives maximum throughput efficiency. But it needs very elaborate arrangements for distributing the master 
clock signal.

2.  Asynchronous multiplexers: These are used when the data sources are such that they produce bursts 
of characters with variable interval between the bursts, as in the case of keyboard terminals. In this type of 
scenario, the timing is precise only for the bits within a character or word.  Start–Stop signaling is used and 
each character consists of a ‘ start bit’ that starts the receiver clock and ends with one or two ‘stop bits’ which 
terminate the receiver clock. Hence synchronizing the receiver clock with a master clock is not necessary. The 
frequency of the receiver clock is accurate enough to ensure correct bit timing within each character or word. 
Because of the nature of these sources (operating in bursts of characters), only characters are interleaved and 
not bits. It is, of course, possible to merge these sources into a synchronous multiplexed bit stream by using 
buffers and character  interleaving.

3.  Quasi-synchronous multiplexers: When the bit rates of the input sources have the same nominal value 
but vary around that value within certain specified limits, quasi-synchronous multiplexers are used. As the 
individual clocks of the various input sources are not exactly synchronized in frequency, the data from 
different sources are likely to have slightly different bit rates. Hence, when a new input bit is not available 
at the multiplexer clocking time, ‘stuff bits’, which are dummy bits, are inserted to fill such time slots. 
These multiplexers are used for combining different sources into a high speed digital TDM signal, and when 
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arranged in a hierarchy of increasing bit rates, provide the common carriers such as the T-1, T-2, T-3 digital 
lines which are the basic building blocks of interconnected digital communications systems.

9.5.3 Advantages of Digital Multiplexing 

 Digital multiplexing and transmission has several advantages over analog multiplexing and transmission. 
First, the hardware cost is low because of the use of digital ICs. Second, we can use  regenerative repeaters 
and keep the bit-error rate low even in long-haul transmission. Third, it has much greater flexibility and can 
be used for multiplexing digital signals originating from a variety of sources such as voice signals, TV, digital 
data, videophone, etc., as shown in Fig. 9.34.

Fig. 9.34 Multiplexing different types of signals

In the above figure, what is shown as a channel bank consists of the following. Each voice channel has an 
anti-aliasing LPF followed by a sample-and-hold unit. The outputs of all these S/H units are added up in 
a summer. Since the S/H units are made to take the samples of the various analog sources in a sequential 
manner, the output of the adder will be in the form of sequence of frames, where the first  frame will have the 
first samples of all the analog sources in the sequential order, the second frame will have the second samples 
of all the sources in the sequential order and so on. Each of these samples is quantized and encoded by the 
encoder to which these samples from the adder are fed, as shown in Fig. 9.35. The output of the encoder is 
a TDM-ed PCM signal with appropriate line coding. Finally, the processor adds or appends the control and 
signaling bits and produces a T-1 digital signal at its output.
 The anti-aliasing filters band limit the analog voice signals to 3.2 kHz and the sampling is done at the rate 
of 8000 samples/sec. An 8-bit PCM encoding is done so that each sample is represented by eight binary bits. 
Since there are 24 message channels and each frame has one sample of each of these message channels, we 
may calculate the transmission speed of  T-1 carrier as follows:

24 channels 8 bits
192 bits/frame

frame channel
¥ =

and
192 bits 8000 frames

1.536 Mbps
frame second

¥ =
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In practice, a ‘ framing bit’ is added in each frame. This is used in the receiver to maintain frame and sample 
 synchronization between the transmitter and receiver. Hence, instead of 192, there are actually 193 bits per 
frame and so the transmission rate becomes:

 Transmission rate = 
193 bits 8000 frames

1.544 Mbps
frame second

¥ =

Channel banks In the initial stages, channel banks for  T-1 carrier used only a 7-bit PCM code which 
represented only the sample magnitude. These channel banks, called the D-1 channel banks used analog 
companding with m = 100. Over the years, these channel banks have undergone several modifications and 
versions D-2, D-3, D-4, D-5 and D-6 have appeared. Of these, the last three, namely D-4, D-5 and D-6 use 
8-bit sign-magnitude digitally compressed PCM codes with m = 255. In the earlier versions, out of the 8-bit 
sign-magnitude PCM codes one bit used to be allotted for signaling so that effectively the magnitude used 
to be represented by only six bits. In addition to reducing the resolution for magnitude, this was found to 
be creating another problem. One signaling bit per channel produced an 8 kbps signaling rate and this was 
excessive on the standard telephone voice circuits. Hence at present, a signaling bit is inserted in the position 
of the least significant bit (of the 8-bit PCM code), that too not in every frame, but only once in every six 
frames. This method of inserting signaling bits is called ‘ bit-robbing’. The signaling rate on each channel now 

reduces to 1.333 kbps and the average number of bits per sample increases to 
5

7 .
6

 Thus, the frame structure is 

as shown in Fig. 9.36. Thus, in T-1 carrier system, instead of using a separate channel for signaling purposes, 
the LSB slots normally used for voice information, are themselves used once in six frames, for the purpose of 
signaling. This arrangement is therefore referred to as ‘channel associated signaling’.

* In this LSB slot, a signaling bit is inserted in every sixth frame only.

Fig. 9.36 Frame structure showing frame bit and signaling bits

Fig. 9.35 Details of the channel bank shown in Fig. 9.34
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9.5.4  Frame Synchronization

As already noted earlier, synchronization between the multiplexer and the de-multiplexer is essential for 
proper working of a digital communication system. Only when there is proper synchronization between 
the two, will the de-multiplexer be able to send the received data from each channel correctly to the corre-
sponding channel at its output. Since data from various channels is interleaved sequentially, identifying the 
first channel data will enable the de-multiplexer to properly separate the data of all the channels of the 
received frame. So, the de-multiplexer must somehow be able to correctly identify the commencement of 
each frame. For this purpose, as shown in Fig. 9.37, one  frame bit is included at the beginning of every frame. 
The pattern formed by 12 such frame bits occurring in 12 successive frames gives a 12-bit code called the 
frame sync word, which is known a priori to the receiver, and used by it for synchronization. This 12-bit code 
is repeatedly transmitted once every 12 frames. 

Fig. 9.37 Frame details of a T1 carrier

 In the receiver, the received data stream is passed through a shift register of length equal to the length of 
the sync word, and an associated logic circuit decodes the sync word. If this sync word so decoded, exactly 
matches with the stored sync word, a synchronization pulse is generated and this is used by the receiver 
for frame synchronization. In an arrangement like this, there is a possibility that data bits, one from each 
successive frame and located exactly a frame length apart from each other, may by chance, exactly coincide 
with the frame synchronization word. This phenomenon is referred to as ‘ false synchronization’ and results 
in the receiver identifying the frame boundary at a wrong location. The probability of occurrence of false 
synchronization is obviously

(0.5)N
FSP =  (9.58)

where N is the number of bits in the frame sync word.
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 Further, since any bit in a frame may be affected by channel noise, there exists a possibility of one or more 
of the frame synchronization bits being decoded wrongly. When this happens,  frame synchronization fails, 
as the receiver fails to decode the sync word. If the bit error probability is Pe, the probability of all the N bits 
of the sync code word being received correctly is (1–Pe)

N. Since there will be failure of detection of the sync 
code word if one or more of its bits are wrongly decoded in the receiver, the probability of frame sync code 
word detection failure is given by

1 (1 )N
DF e eP P NP= - - @  (9.59)

Example 9.15 What is the bit duration and what is the minimum bandwidth required for the T-1 
carrier?

Solution We had already found that the bit-rate for a T-1 carrier is 1.544 Mbps.

Hence, minimum bandwidth required = 
1

(Bit-rate) 772 kHz
2

=

The frame duration is (1/8000) sec = 125 ms since the sampling frequency is 8000 sps. Since 193 bits are 
included in each frame,

 Bit duration = 
6125 10

0.64766 s
193

-¥
= m

9.5.5 Digital Multiplexing Hierarchy

The very basic digital signal is the PCM-ed voice signal. Since the voice signal is sampled at the rate of 8000 
sps and since each sample is represented by an 8-bit codeword, the bit-rate of the standard PCM-ed voice 
signal is 8 ¥ 8000 = 64 kbps. This is generally referred to as the DS-0 signal or Digital Signal of level zero. 
Several such DS-0 signals are multiplexed together to form a higher level digital signal and this process is 
continued to get a very high bit-rate digital signal that represents the multiplexed version of several thousands 
of the basic PCM-ed voice signal. The several stages of multiplexing, using which, the high speed digital 
signal is formed, is what is generally referred to as the ‘ multiplexing hierarchy’.
 There are two different hierarchies in vogue. One is the ‘North American Hierarchy’, or the AT&T 
hierarchy, which is followed by the North American countries and with some minor changes, by Japan. The 
other is the CCITT hierarchy, recommended by the ITU, which is mostly followed in the European countries.
1.  North American hierarchy: The bit rates and the capacities (in terms of number of voice frequency 
channels) of these DS lines, also called the T-carriers are given in Table 9.3. The T-1 carriers carry binary 
digital signals which are represented using a Bipolar RZ line code (see line codes discussed in Section 10.2).

Table 9.3 Bit-rates and capacities of T-carriers

DS number and 

T-carrier No.

Bit rate in Mbps No. of 64 kbps PCM 

VF Voice Channels

Transmission Media Used

DS-0 0.064 1 Twisted wire pairs

DS-1 T-1 1.544 24 Twisted wire pairs

DS-2 T-2 6.312 96 Twisted wire pairs / Fiber

DS-3 T-3 44.736 672 Coaxial cable / Radio / Fiber

DS-4 T-4 274.176 4032 Coaxial cable / Fiber

DS-5 T-5 560.160 8064 Coaxial cable / Fiber

Example 9.15 What is the bit duration and what is the minimum bandwidth required for the T-1 
carrier?
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Fig. 9.38 North American hierarchy

2. CCITT digital multiplexing hierarchy: In this hierarchy, the first level of multiplexing involves 30 
numbers of 64 kbps PCM-ed voice channels. This gives a 2.048 Mbps digital signal. Four such signals are 
multiplexed in the second level multiplexing to obtain a 8.448 Mbps digital signal. The third, also involves 
only four inputs to give a 34.368 Mbps multiplexed signal. Four such signals are multiplexed in the fourth-
level multiplexer to obtain a 139.264 Mbps digital signal. Again four such signals are multiplexed in the 5th 
level to get a 565.148 Mbps signal. 

Fig. 9.39 CCITT digital multiplexing hierarchy

Bandwidth efficiency of a multiplexing system The bandwidth efficiency of a multiplexing 
system is defined as the ratio of the total bandwidth of all the message signals that have been multiplexed to 
the bandwidth of the multiplexed signal.

\ 
No. of voice signals BW of each voice signal

Bandwidth efficiency
Bandwidth of the multiplexed signal

¥
=

Solution From Fig 9.38, the bit rate of the DS-5 signal is equal to 560.16 Mbps.

The minimum transmission bandwidth = 
1

2
(bit-rate) = 6560.16

10
2

¥

The DS-5 signal carries 8064 voice frequency signals, each of say 4 kHz.

\       bandwidth efficiency = 
3

6

8064 (4 10 )
0.11516

280.08 10

¥ ¥
=

¥
\  % bandwidth efficiency = 0.11516 ¥ 100 = 11.516%

Example 9.16 Determine the minimum transmission bandwidth needed for a DS-5 signal in North
American (or AT&T) hierarchy. Also, determine the bandwidth efficiency of this level of multiplexing.
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MATLAB Example 9.1 In this problem, we wish to demonstrate the effect of step size, D, on the 
output of a delta modulation encoder. For this purpose, we take a sinusoidal signal of peak amplitude 
A = 5 and frequency f = 0.01 Hz as the signal to be encoded. We sample this signal at the rate of 1 sample 
per second; i.e., 100 samples per cycle of the sinusoidal signal. We study the effect of the step size by 
encoding the sinusoidal signal at three different values of D.

MATLAB Program 
function [y] = Delta_Modulation (del, A)

 5 del = step size
 % A = amplitude of signal 
 % y = output binary sequence
 t = 0:2* pi/100:2* pi;
 x = A* sin (t);
 stem (x)
 hold on
 y = [0];
 xr = 0;
 for i = 1: length (x)-1
 if xr(i) < = x(i)
 d = 1;
 xr (i + 1) = xr (i) + del;
 else 
 d = 0;
 xr (i + 1) = xr (i)-del;
 end 
 y = [y];
 end 
 stairs (xr)
 hold off
 end

Results
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 Fig. 9.39 (Contd.)

MATLAB Example 9.1 In this problem, we wish to demonstrate the effect of step size, D, on the
output of a delta modulation encoder. For this purpose, we take a sinusoidal signal of peak amplitude
A = 5 and frequency f = 0.01 Hz as the signal to be encoded. We sample this signal at the rate of 1 samplef

per second; i.e., 100 samples per cycle of the sinusoidal signal. We study the effect of the step size by
encoding the sinusoidal signal at three different values of D.
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At D = 0.4, the staircase approximation generated by the encoder tracks the sinusoid fairly well without 

slope overload and with very little granular noise as can be seen in the figure 

Staircase approximation with D = 0.24

 At D = 0.24, there is considerable slope overload and negligible granular noise. 

6

4

2

0

–2

–4

–6
0 20 40 60 80 100 120

Delta modulation D = 0.7, Sinusoid freq. = 0.01, fs = 1, Peak amplitude = 5

Granualar noise due to large step sizer

x nT( )S

x tq( )

Æ
A

m
p

lit
u

d
e

Æ Time (Seconds)

Staircase approximation with D = 0.7

At D = 0.7, there is no  slope overload but there is considerable  granular noise near the peaks of the 

sinusoid.
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Fig. 9.39

Summary 
 ■ The steps involved in converting an analog x(t) signal into a digital signal are (a) Band limiting x(t) to W Hz, (b) 

Sampling at fs > 2W, (c) Quantizing the samples, and (d) Encoding the quantized samples.
 ■ In  uniform quantization, the quantization levels are uniformly spaced.
 ■ For signals like speech signal which have a large dynamic range but very low average power, compression is done 

for the samples before quantization at the transmitter and the decoded samples are subjected to expansion before 
being fed to the reconstruction filter in the receiver. This improves the SNR.

 ■ If uniform quantization is used and D is the step size, 2
qe  is the mean-square value of quantization error, then by 

assuming that eq is uniformly distributed between –D/2 and + D/2, it can be shown that
2

2 2 2and ( ) 3 2 if | ( )| 1
12

n
q qe SNR x x t

D
= = £

 ■ For  n-bit binary PCM with sinusoidal message signal,

( ) in dB 1.8 6qSNR n= +

 ■ For an n-bit binary PCM signal, the minimum transmission bandwidth is BT = nW, where W Hz is the message 
bandwidth.

 ■

2 2

2(channel noise & Quantization noise)Binary PCM

3
( ) Destination 

1 4
D

e

Q x
SNR SNR

Q P
= =

+
 ■ PCM with regenerative repeaters is best suited for long-haul signal transmission using a number of repeater 

stations.
 ■ (SNR)q of PCM increases exponentially with the bandwidth provided the input SNR for the receiver is maintained 

above the  threshold.
 ■ In DM, the message sample, x(n) is compared with xq(n – 1), the quantized value of the previous message sample, 

and the difference between these two is subjected to single-bit quantization and binary encoding before being 
transmitted.

 ■ DM suffers from quantization noise as well as  slope overload noise. Slope overload noise can be eliminated by 

making
( )

s

dx t

T dt

D È ˘> Í ˙Î ˚
.

 ■ Segments of x(t) with steep gradients require a large value of step size D in order to avoid slope overload distortion. 
But segments of x(t) in which rate of change is low require a small step size in order to have low granular noise.

 ■ The destination SNR for DM is given by 
3

2

3

8
s

D

fS

N Wp

Ê ˆÊ ˆ Ê ˆ£Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
.

 ■  DM requires high sampling rate and consequently the transmission bit-rate and bandwidth are also high. But its 
implementation is simple and inexpensive.

 ■ In adaptive DM, the step size D is varied automatically depending upon the rate of change of x(t). The D may be 
varied either continuously, or it may take a discrete set of values.

 ■ In  DPCM, a predictor is used to predict the present sample making use of a few past samples. The difference 
between the actual sample value and the predicted value is PCM-ed and transmitted.

 ■ The linear predictor used in DPCM takes the linear combination of a few past samples to predict the present 
sample. The predictor coefficients are selected so to minimize the prediction error in the mean-square sense.

 ■
1[ ] ,opt X XR

-=h r  where 1 2[ ]T
ph h h= º =h  weights vector, and [ (1) (2) ( )]T

X X X XR R R pD ºr , where RX(k) is the 
auto-correlation of x(t) for a lag of k.

 ■ Processing gain of DPCM = 
2

2
,X

p

p

G
s

s

Ê ˆ
D Á ˜

Ë ¯
 where 2

Xs  and 2
ps  are the variances of x(t) and the prediction error, 

respectively.
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 ■ Just like DM, DPCM too has the  granular noise and slope overload problems. That is why in  ADPCM, both the 
step size D as well as the prediction coefficients are adaptively adjusted.

 ■ Systems used for voice coding at low bit-rates are called  VOCODERS.
 ■ With a sampling rate of 8000 samples per second and 8-bit PCM, telephone quality speech needs a bit-rate of 64 

kbps.
 ■ There are three main approaches to compression of speech signals.

  (a)  Time-domain techniques like DPCM, ADPCM, Sub-band coding. DPCM and ADPCM give telephone quality 
speech at 24 kbps to 32 kbps. Sub-band coding gives telephone quality speech at 16 kbps.

  (b) Adaptive transform-domain techniques can give telephone quality speech at 9.6 kbps.
  (c)  Model-based techniques:  Linear predictive coding, a model-based technique gives telephone quality speech at 

as low a rate as 2.4 kbps to 4.8 kbps.
 ■ Digital multiplexing is similar to TDM except that it is more flexible because of the freedom from constraints like 

periodic sampling and waveform preservation.
 ■ A ‘ frame’ is the smallest unit in the digital stream that contains at least one bit from each input.
 ■ Digital multiplexers are basically of three types:

  (a) Synchronous multiplexers
  (b) Asynchronous multiplexers
  (c) Quasi-synchronous multiplexers

 ■ Advantages of digital multiplexing over analog multiplexing are:
  (a) Low cost because of use of digital ICs for hardware
  (b)  Regenerative repeaters can be used for long-haul transmission
  (c) It offers greater flexibility

 ■ In the North American (or AT&T) digital multiplexing hierarchy, 24 PCM-ed voice channels, each of 64 kbps bit 
rate, are multiplexed into a DS-1 signal (or T-1) of 1.544 Mbps in the first level multiplexing. In the second level 
MUX, four DS-1 signals are multiplexed into a 6.312 Mbps DS-2. Then 7 DS-2 signals are multiplexed into a 
44.736 Mbps DS-3 signal. Then 6 such DS-3 signals are multiplexed into a 274.176 Mbps DS-4 signal.

 ■ In the CCITT hierarchy, the first stage has 30 inputs, each of 64 kbps. The second stage has 4 inputs, each of 2.048 
Mbps; the third stage has 4 inputs, each of 8.448 Mbps; the fourth stage has 4 inputs each of 34.368 Mbps; and the 
fifth stage has 4 inputs each of 139.264 Mbps to give output multiplexed signal of 565.148 Mbps; which carries 
7680 VF channels.

 ■ In both AT&T as well as CCITT hierarchies, word interleaving only is used. Each frame of AT&T system has 193 
bits including the ‘frame synchronization bit’.

 ■ Bandwidth efficiency of a digital multiplexing system is defined as:

No. of voice signals BW of each voice signal
Bandwidth efficiency

Bandwidth of the multiplexed signal

¥
=
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Review Questions 
1. What is meant by quantization and quantization noise?
2. Sketch the quantization characteristics of (a) a mid-tread quantizer, and (b) a mid-rise quantizer.
3. What is companding? Sketch the characteristics (input–output) of a compressor and an expander.
4. Briefly explain the principle of pulse-code modulation.
5. A PCM system uses a step size of D. Assuming that the quantization error is uniformly distributed, determine the 

mean-square value of the quantization error.
6. With the help of block schematic diagrams of the transmitter and the receiver, explain the working of binary PCM 

system.
7. In case companding is used, how will you modify the above block diagrams of the PCM transmitter and receiver?
8. If the message bandwidth is W Hz, show that the minimum possible bandwidth required for an n-bit PCM system 

is nW.
9. Define ‘bit-error probability’.

10. When quantization noise as well as channel noise are considered, derive an expression for the destination (SNR) 
of a binary PCM system.

11. Sketch a typical input (SNR)dB vs. output (SNR)dB for a binary PCM system for n = 4, 6 and 8.
12. With reference to a PCM system, what is ‘threshold effect’? How do you define the threshold (SNR)input?
13. Explain the terms of the ‘power-bandwidth trade-off’ possible in a binary PCM system. Compare it with the 

trade-off possible in WBFM.
14. Discuss why PCM with regenerative repeaters, is considered the best option for long-haul signal transmission 

requiring the use of a large number of repeaters.
15. Discuss the advantages and disadvantages of PCM.
16. By drawing the block schematic diagrams of the transmitter and receiver and with the help of relevant waveforms, 

explain the working of a DM system.
17. What is meant by slope-overload distortion in a DM system? How can it be avoided?
18. Assuming a sinusoidal message signal and no slope overload, derive an expression for the maximum value of the 

destination signal-to-quantization noise ratio.
19. What are the advantages and disadvantages of DM?
20. What is a Delta–Sigma modulator? Where is it used?
21. With the help of relevant block diagrams explain the working of a continuously variable step-size adaptive Delta 

modulation system.
22. Compare PCM and DM.
23. With the help of block diagrams of the transmitter and receiver, explain the working of an ADM system with a 

discrete set of values for the step size.
24. Explain the basic principle of DPCM.
25. What is a linear predictor? On what basis are the predictor coefficients determined?
26. What is the need for adaptive DPCM?
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27. State the different approaches for low bit-rate coding of speech.
28. Briefly explain how sub-band coding achieves low bit rate coding of speech.
29. Describe the transform domain approach for compression of speech.
30. List the various features/parameters of speech that are determined through speech analysis for the purpose of being 

used in speech synthesis?
31. Compare the efficacy of the various time-domain, frequency/transform-domain and model-based methods available 

for speech compression.
32. What is multiplexing?
33. What is TDM and what is the difference between analog TDM and digital multiplexing?
34. Describe the working of a typical channel bank.
35. Describe the North American digital multiplexing hierarchy.
36. What is the need for ‘frame synchronization’? How is it achieved?
37. Describe the CCITT digital multiplexing hierarchy.
38. What is a frame? With the help of a neat sketch describe the frame structure in the AT&T system.
39. What is meant by bandwidth efficiency of a digital multiplexing system?
40. What is channel associated signaling?
41. What is meant by bit-robbing?

Problems 
 1. Consider a non-uniform quantizer with Dk as the kth step size. If the probability of the message signal amplitude 

falling in the kth interval is pk, and if Dk is small compared to the peak-to-peak amplitude of the message signal, 
show that the mean-square value of the quantization error is approximately given by

2 21

12q k k
k

e p= DÂ
 2. A m-law compressor is used to compress a message signal having a dynamic range of –40 V to +40 V, employing 

256 quantization levels. Assuming m = 255, determine
  (a) the interval between two consecutive levels if no compression is used.
  (b) the minimum interval and the maximum interval between consecutive levels, if compression is used.
 3. Repeat the above problem for A-law compressor for A = 81.6 and 

for the same dynamic range of the message signal as in the previous 
problem. The number of quantization levels are also the same, i.e., 
256.

 4. A message signal, x(t) has an amplitude probability density function 
as shown in Fig. P9.4. Determine the locations of the eight quanti-
zation levels such that the probability of the message signal x(t) taking 
a value between any two consecutive levels, or between the extreme 
levels and the edge voltages +1 V and –1 V is the same.

 5. An analog waveform with an amplitude range from –10 V to +10 V 
and a bandwidth of 200 Hz is to be PCM-ed and transmitted with an accuracy of ± 0.2% of the dynamic range of 
the signal. Determine the following:

  (a) The minimum sampling rate needed.
  (b) The number of bits/codeword.
  (c) The minimum bit-rate needed.
  (d) The minimum transmission bandwidth needed.
 6. Channel noise is causing a bit-error rate of 1 in 104 in a certain binary PCM system employing polar NRZ 

signaling. If the system is to give a destination signal-to-noise ratio of at least 30 dB, determine (a) the number of 
bits/codeword and (b) the minimum transmission bandwidth needed if the analog message signal has a bandwidth 
of 3.2 kHz.

 7. A sinusoidal message signal of 20 V peak to peak, is to be transmitted using n-bit binary PCM with n = 10 bits. 

Fig. P9.4
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Determine the values of Q, D and its destination (SNR)q.
 8. Determine the minimum memory size required to store sampled and quantized voice for 15 minutes, if the signal-

to-quantization noise is to be at least 30 dB and the sampling rate is 8000 samples/sec.
 9. A PCM system uses a uniform quantizer followed by an 8-bit binary encoder. If the bit rate of the system is 56 ¥

106 bits/sec., determine
  (a) the maximum message bandwidth for which the system operates satisfactorily.
  (b)  the output (S/N)q when a full load sinusoidal message signal of frequency 2 MHz is applied to the quantizer of 

the system.

 10. When the bit-error probability in a PCM system is 21
2 ,

15
n

eP
-Ê ˆ@ Á ˜Ë ¯

 the (S/N)D decreases by 1 dB, i.e., threshold 

conditions are reached. Determine the th
th

RS

W
g

h

Ê ˆ
= Á ˜Ë ¯

 for values of Q = 16,256 and 1024. Assume SR = 1 and plot 
(S/N)D in dB against gth in dB.

 11. In a binary PCM system, the output signal-to-quantizing noise ratio is to be held to a minimum value of 40 dB. 
Determine the number of required levels and find the corresponding output signal-to-quantizing noise ratio.

(GATE Examinations, 1997)
 12. Consider an audio signal with spectral components limited to the frequency band of 300 Hz to 3300 Hz. A PCM 

signal is generated with a sampling rate of 8000 samples/sec. The required output signal-to-quantizing noise ratio 
is 30 dB.

  (a)  What is the minimum number of uniform quantizing levels needed, and what is the minimum number of bits 
per sample needed?

  (b) Calculate the minimum system bandwidth needed?
  (c) Repeat parts (a) and (b) when a m-law compander is used with m = 255.

(Karnataka University, 1997)
 13. A DPCM system has a processing gain of 6 dB. Show that a codeword of this DPCM system needs one bit less 

than that required for a binary PCM system, all other factors remaining the same.
 14. A long-haul binary PCM communication system has nine regenerative repeaters. So, including the final decision 

at the receiver, there are a total of 10 sequential decisions taken on the transmitted binary PCM signal. If a binary 
1 or 0 transmitted through the system has an independent probability p of being inverted in any repeater, determine 
the probability that a binary symbol finally received by the receiver is erroneous.

 15. A DM system can handle message signals of bandwidth up to 5 kHz and has a sampling rate of 50 kHz. A 
sinusoidal signal of peak amplitude 1.5 V and frequency 2 kHz is applied to the system. Determine 

  (a) the step-size D required to avoid slope overload.
  (b) the (S/N)q from the system for the given sinusoidal signal.
 16. An LDM system operates with a sampling frequency of 30 kHz. If a sinusoidal signal x(t), normalized so that |x(t)|

£ 1 whose frequency is 3 kHz, is applied, what value of D minimizes the slope overload?
 17. Determine the processing gain of a DPCM system with a first order predictor, if the message signal has a normalized 

auto-correlation function of 0.8 for a lag of one sampling period, assuming that the predictor is designed to 
minimize the mean-square value of the prediction error.

 18. A message signal x(t) has a variance of 2
x  and a bandwidth of 3.2 kHz. It is known that (1) 0.82 (0)X XR R=  and 

(2) 0.56 (0)X XR R= . A DPCM system employing a second-order linear predictor is to be designed for transmission 
of the signal, x(t), so that its destination (SNR)q is at least 30 dB. What will be the bit rate of this DPCM system?

 19. A sinusoidal signal of frequency f0 Hz is sampled at 15 f0 Hz and the samples are given to a first-order linear 
predictor. Determine the weight w1 of this predictor that would minimize the prediction error variance. Also 
determine the minimum prediction error.

 20. A certain stationary random process has auto-correlation coefficients given by

( ) 1 0.2 | | ; | | 3XR k k k= - £

  Determine the weights of an optimum linear predictor of order three and calculate the variance of its prediction 
error when these weights are used.
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 21. A PCM-TDM system multiplexes 24 voice channels, each of 0 Hz to 4 kHz bandwidth. If 7-bit PCM is used and 
a framing bit is added to each frame, what is the minimum line speed in bits/sec. and the corresponding minimum 
bandwidth needed?

 22. A number of high fidelity audio channels, each band limited to 15 kHz, are to be transmitted using 12-bit binary 
PCM. Calculate how many of these PCM signals can be accommodated by the first level multiplexer of the AT&T 
multiplexing hierarchy. Also calculate the corresponding bandwidth efficiency.

Multiple-Choice Questions 
 1. Quantization is done in order to
 (a) improve the quality of the signal
 (b) improve the SNR at high frequencies
 (c) discretize the signal in the amplitude domain also
 (d) improve the SNR at low frequencies
 2. Companding is used in the case of signals
 (a) having uniform amplitude distribution
 (b) having large peak-to-peak amplitude but small average power
 (c) having a large peak at high amplitude levels in their amplitude probability density function
 (d) with large average powers
 3. Companding is used in PCM in order to
 (a) keep the quantization noise low for low-amplitude segments of a signal
 (b) avoid quantization noise
 (c) reduce the effect of impulse, or channel noise
 (d) reduce the complexity of the PCM system
 4. In the mid-tread type of quantizer, any input value lying between –0.5 to +0.5 is mapped into an output value of
 (a) 0.5 (b) 1 (c) –0.5 (d) 0
 5. In the mid-rise type of quantizer, any input value lying between 0 to 0.5 units is mapped into an output of 
 (a) 0 (b) 0.25 (c) 1 (d) 0.5
 6. In uniform quantization, as the step size is decreased the mean-square value of the quantization error will
 (a) decrease (b) increase (c) not change (d) None of these
 7. A sinusoidal message signal is being transmitted by an 8-bit binary PCM. If the bits/codeword is reduced by a 

factor of 2, the output signal-to-quantization noise ratio will
 (a) reduce by 3 dB (b) reduce by 12 dB (c) reduce by 6 dB (d) reduce by 24 dB
 8. A message signal with its amplitude uniformly distributed between –2 V and +2 V is transmitted by a 4-bit binary 

PCM system. The (SNR)q is equal to
 (a) 256 (b) 1024 (c) 512 (d) 768
 9. A binary PCM system with 256 quantizing levels has a sampling frequency of 7 kHz. The bit rate of the system is 
 (a) 56 kbps (b) 28 kbps (c) 1792 kbps (d) 896 kbps
 10. Channel noise dominates the (S/N)D is decided only by this noise when

 (a) 
2

1

4
eP

Q
<<  (b) 

2

1
eP

Q
<  (c) 

2

1

4
eP

Q
>>  (d) 24eP Q>>

 11. In binary PCM, the (SNR)D

 (a) increases linearly with the number of bits/codeword
 (b) increases as the square of the number of bits/codeword
 (c) does not depend upon the number of bits/codeword
 (d) increases exponentially with the number of bits/codeword
 12. In a linear DM system
 (a) only granular noise will be present
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 (b) only slope overload noise will be present
 (c) both granular noise as well as slope overload noise can be eliminated
 (d) granular noise will be present but slope overload noise can be avoided by proper design
 13. In an LDM system, a large step size will
 (a) increase the slope overload noise, and reduce the granular noise
 (b) reduce the slope overload noise but will increases the granular noise
 (c) reduce the slope overload noise as well as the granular noise
 (d) increase both the overload noise and the granular noise
 14. For an LDM system with a sinusoidal signal, a peak amplitude A and frequency f0 have been found to just avoid 

slope overload condition. Now if the frequency is doubled, slope overload can be just avoided by
 (a) halving the peak amplitude of the sinusoid (b) doubling the peak amplitude of the sinusoid
 (c) making the peak amplitude to be (A/4) (d) making the peak amplitude to be 4A

 15. An LDM system with a sinusoidal message signal of peak amplitude A and frequency f0, employs a sampling 
frequency which is 20f0. It is found that a peak amplitude of A1 and frequency f0 of the message signal just avoid 
slope overload condition. If now the peak amplitude is made 2A1, to just avoid slope overload,

 (a) the sampling should be done at 10f0 (b) the sampling should be done at 5f0
 (c) the sampling should be done at 40f0 (d) the sampling should be done at 80f0
 16. The greatest advantage of LDM is
 (a) it requires very low sampling rates
 (b) it does not produce quantization noise
 (c) it uses only one-bit representation of each error sample and so the bit rate is quite low
 (d) its transmitter and receiver require very simple and inexpensive hardware
 17. The linear predictor in a DP|CM system is generally implemented as
 (a) a transversal digital filter  (b) a recursive digital filter
 (c) an analog R-C filter   (d) None of the above
 18. Generally the linear predictor’s weights are so chosen that
 (a) the absolute value of the prediction error is minimized
 (b) the mean-square value of the prediction error is minimized
 (c) the maximum value of the prediction error is minimized
 (d) None of the above
 19. The number of bits per frame and the bit-rate of a T-1 carrier signal are respectively
 (a) 192, 1.544 Mbps (b) 193, 1.536 Mbps (c) 192, 1.536 Mbps (d) 193, 1.544 Mbps
 20. The number of input lines for the first, second, third, fourth and fifth level digital multiplexers in the North 

American hierarchy are respectively
 (a) 24, 4, 6, 7, 2 (b) 24, 4, 7, 6, 2 (c) 24, 6, 4, 7, 2 (d) 30, 4, 4, 4, 4
 21. The bandwidth efficiency of the first level multiplexing in the CCITT hierarchy, assuming 4 kHz bandwidth for 

each audio channel is
 (a) 11.72% (b) 12.46% (c) 10.23% (d) 1

Answers for Multiple-Choice Questions

 1. (c) 2. (b) 3. (a) 4. (d) 5. (d) 6. (a) 7. (d) 8. (b)
 9. (a) 10. (c) 11. (d) 12. (d) 13. (b) 14. (a) 15. (c) 16. (d)
 17. (a) 18. (b) 19. (d) 20. (b) 21. (a)

 1. (c) 2. (b) 3. (a) 4. (d) 5. (d) 6. (a) 7. (d) 8. (b)
 9. (a) 10. (c) 11. (d) 12. (d) 13. (b) 14. (a) 15. (c) 16. (d)
 17. (a) 18. (b) 19. (d) 20. (b) 21. (a)
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DIGITAL DATA TRANSMISSION 
TECHNIQUES—BASEBAND AND 

BAND PASS

10
“The best and safest thing is to keep a balance in your life, acknowledge the great powers 

around us and in us. If you can do that, and live that way, you are really a wise man.”

Euripides (c. 480–406 BC)

Greek writer

Learning Objectives

After going through this chapter, students will be able to

 ■ understand the difference between ‘ binary signaling’ and ‘ multilevel signaling’, and their relative 

merits,

 ■ become familiar with NRZ, RZ, Polar, Bipolar and Manchester  line codes, their properties and areas 

of application,

 ■ understand the causes for the occurrence of ‘  inter-symbol interference’ and how techniques such as 

‘ pulse shaping’ and  correlative coding’ are helpful,

 ■ understand the need for equalization and the techniques to be adapted for equalization of a dispersive 

digital base band channel,

 ■ understand the usefulness of an ‘ eye pattern’ and draw interferences on the performance of a data 

transmission system from its eye pattern,

 ■ understand the different basic digital band pass modulation schemes like binary ASK, FSK and PSK; 

the quadrature modulation schemes such as QPSK, OQPSK, p/4-shifted QPSK and QAM; and the M-ary 

modulation schemes like M-ary QAM, M-ary FSK and M-ary PSK,

 ■ determine the power spectra and the bandwidth of ASK, FSK, QPSK, and MSK signals, draw the signal 

space diagrams and sketch the  signal constellations, and

 ■ understand the need and the techniques adopted for symbol-level and word-level synchronization in 

all digital communication systems and the need and the techniques adopted for carrier recovery in 

the case of coherent bandpass digital communication systems.

10.1 INTRODUCTION

In Chapter 9, we had discussed the various waveform coding methods like PCM, DM and DPCM for 
generation of digital signals. We had also discussed methods for multiplexing digital data from different 
sources.
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 Having studied the methods of generation and multiplexing of digital signals, in the present chapter, we 
will be looking at the problem of transmission of digital data. Transmission of digital data without sinusoidal 
carrier modulation is known as  baseband transmission. These baseband signals possess considerable low 
frequency content and therefore cannot be transmitted over a radio link channel. Hence, they are transmitted 
over a pair of wires, a coaxial cable, or an optical fiber. If the digital data modulates a sinusoidal carrier and 
the modulated band pass signal is transmitted, it is called band pass transmission. These modulated digital 
signals can be transmitted either on terrestrial radio links, or on satellite radio links. In this chapter, therefore, 
we will discuss both baseband transmission as well as band pass transmission.
 Generally, the digital baseband channels are dispersive and the pulses are not confined to their respective 
time slots when they arrive at the receiver. Each pulse is influenced by its adjacent pulses, causing what is 
referred to as ‘ intersymbol interference’, or, ISI. This can lead to wrong decisions by the decoder of the 
receiver which has to decide during each time slot whether what was transmitted during that  time slot was a 
1 or a 0. Hence, we will be examining certain methods like ‘ pulse shaping’,  duo-binary signaling and equal-
ization techniques to combat the effect of ISI.
 There are three basic types of modulation schemes, viz., Amplitude-Shift Keying (ASK), Frequency-Shift 
Keying (FSK), and Phase-Shift Keying (PSK). These are somewhat analogous to their counter part analog 
modulation schemes—Amplitude Modulation (AM), Frequency Modulation (FM), and Phase Modulation 
(PM), respectively. As in the case of FM and PM, their counterparts FSK and PSK also have the constant 
envelope feature, which makes them best suited for transmission over non-linear band pass channels such as 
those encountered in microwave terrestrial and satellite links in which the traveling-wave tube (TWT) ampli-
fiers work near their maximum power handling capacity by going beyond the linear region of their operation. 
There are some digital modulation schemes which may be viewed as hybrid type. A typical example of such 
a hybrid modulation scheme is the Quadriphase Amplitude Modulation. As we will be seeing later, this has 
some very attractive features.
 Baseband transmission as well as band pass transmission can either be binary or M-ary. Baseband trans-
mission in which a symbol, a bit, can take one of two possible values, like A and 0 (unipolar), or A and –A

(polar), is called binary baseband transmission. In M-ary baseband transmission, on the other hand, a symbol 
can take M possible values. In M-ary band pass signaling, in a symbol period of t seconds which is equal to 
nT seconds where T is the bit interval, any one of a set of M = 2n possible signals, s1(t), s2(t), … sM(t) may be 
transmitted. In  M-ary baseband signaling, these M signals, s1(t), s2(t), … sM(t), will be rectangular pulses, but 
of M distinct amplitudes. In M-ary ASK, these M possible signals will have M distinct carrier levels. In M-ary 
FSK, they will all have the same amplitude but M different carrier frequencies. In M-ary PSK, they will have 
the same amplitude and frequency but M different phase angles. In Chapter 2, we made use of the analogy 
between signals and vectors and developed the concept of a signal space.  Signal constellation is the set of 
message points in a signal space corresponding to the set of all the transmitted signals.
 In the study of digital band pass signaling, it is useful to examine the power spectra of the modulated 
signals, as such spectra provide an insight into the bandwidth of the modulated signal and also the possibility 
of interference with adjacent channels when multiplexing is used. However, we do not derive the spectra of 
the modulated signals. Instead, we make use of the fact that the spectrum of a band pass signal is known, once 
the spectrum of its complex envelope, or its low pass equivalent, is known. Hence, it is enough if we examine 
the PSD of the baseband signal.
 Irrespective of whether it is baseband signaling or band pass signaling and whether it is binary or M-ary, 
one more aspect of digital transmission that deserves our attention and which we have discussed to some extent 
in connection with baseband signaling, is the ‘ bandwidth efficiency’, or ‘ spectral efficiency’. This is defined 
as the ratio (R/BT), i.e., the ratio of ‘ signaling rate’ to the ‘bandwidth required’. The bandwidth efficiency is 
important because it tells us how fast we can signal for a given bandwidth, be it baseband or band pass  signaling. 
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 In the case of baseband systems, it depends on pulse-shaping and on whether it is binary or M-ary 
signaling. As we have already seen, M-ary signaling gives better  bandwidth efficiency. With a pulse shape 
corresponding to a ”, it depends on the  roll-off factor, r, and decreases with increasing value of r (between 
0 and 1). In band pass systems, the bandwidth efficiency depends on the type of modulation and for a given 
modulation scheme, on whether it is binary or M-ary signaling. For a specified rate of transmission, as M
increases, the required bandwidth decreases and so the spectral efficiency improves.
 However, whether it is baseband signaling or band pass signaling, the value of M cannot be increased 
indefinitely, as the power requirement goes up if a specified probability of error is to be maintained.

10.2 LINE CODES FOR BINARY SIGNALS

Earlier, while discussing PCM, we had seen that each of the 2n  quantization levels could be uniquely identified 
by an n-digit binary number. This made it possible to state the value of a quantized sample by the binary code 
number associated with the corresponding quantization level. Then we stated that these binary code words 
could be transmitted to the receiver, where, by passing the quantized samples through a reconstruction filter, 
the message signal could be reconstructed.

 To transmit the code words over the channel, we must devise a method to electrically represent the 

binary digits ‘0’ and ‘1’. While introducing  PCM, for simplicity, we had stated that we could conveniently 

represent a binary 1 by a positive pulse of V volts 

amplitude and a binary ‘0’ by a ‘no-pulse’, i.e., a 

zero volts pulse or alternatively a –V volts pulse. 

In addition to these two, there are several other 

ways of representing the binary digits electri-

cally. These electrical representations of binary 

codes are called ‘ line codes’. We shall now 

briefly discuss five popular line codes including 

the two stated earlier. Any binary data stream is a 

random sequence of the binary digits ‘0’ and ‘1’. 

Hence, the  power spectral density (PSD) of such 

a random binary sequence would depend upon 

the line code used to represent the binary digits. 

The shapes of the PSDs of the line codes are 

useful because they give the spectral content of a 

bit stream for any particular line code that is used. 

Figure 10.1 gives the waveform representing the 

 codeword 01100101 when each of the line codes 

is used, and Fig. 10.2 gives the sketches of their 

PSDs under the following assumptions: (i) that 

binary 0s and 1s are equally probable; (ii) that 

frequency is normalized with respect to 1/T,

where T is the bit-slot time. (iii) that the average 

powers of the electrical waveforms obtained 

with different line codes is normalized to a value 

of 1. We shall first describe these five line codes 

illustrated in Fig. 10.1.

Fig. 10.1  Line codes for binary data: (a) Unipolar NRZ 

signaling, (b) Polar NRZ signaling, (c) Unipolar RZ 

signaling, (d) Bipolar RZ signaling (also called AMI 

signaling), (e) Split-phase, or Manchester code
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10.2.1  Unipolar Non-Return to Zero (NRZ) Code

In this line code, a binary 1 is represented by a positive pulse of some amplitude, say, A, for the duration of 
the time slot; and a ‘0’ is represented by a ‘no-pulse’, i.e., absence of any pulse for the full duration of its time 
slot. This is shown in Fig. 10.1(a). This code suffers from the disadvantage of a large dc component which 
results in wastage of transmitted power. This dc component appears as a delta function of strength A/2 in 
its PSD, as shown in Fig. 10.2(a). Further, the spectrum has a fairly large value near and at zero frequency, 
indicating large low-frequency content.

10.2.2  Polar Non-Return-to-Zero (NRZ) Code

In this code, a binary ‘1’ is represented by a positive pulse occupying the full duration of the a time slot, and 
a binary ‘0’ is represented by a negative rectangular pulse of equal amplitude, for the full duration of the time 
slot, T, as shown in Fig.10.1(b). Although easy to generate, this code suffers from the disadvantage of its PSD 
having a very large value at and near zero frequency, indicating a very large low frequency content. But, of 
course, it does not have a dc component.

10.2.3  Unipolar Return-to-Zero Code

In this code, a binary ‘1’ is represented by a rectangular positive pulse of amplitude say, A, but of duration 
equal to only half the duration of the time slot; and a binary ‘0’ is represented by a no-pulse for the entire 
duration of the time slot T, as shown in Fig.10.1(c). As may be seen from Fig. 10.2(c), its PSD has delta 
functions at f = 0, as well as ±(1/T). This delta function at f = ±1/T means that there is a frequency component 
at that frequency in the data transmitted using this  line code. This can conveniently be used for clock (bit 
timing) recovery at the receiving-end. However, it has two disadvantages: (i) it has a D.C. component and 
a fairly large low frequency content; and (ii) it requires 3 dB more power compared to polar return-to-zero 
signaling for the same probability of error.

10.2.4  Bipolar Return-to-Zero (BRZ) Code

Half slot-width duration positive and negative rectangular pulses of amplitude A are used for representing 
alternate binary 1s and a no-pulse’ is used for representing the binary ‘0’. It is also known as  Alternate Mark 

Inversion (AMI) code. The main advantage of this code is that the PSD of the bit stream will not have any 
dc component and further, it has negligible low-frequency content, when binary 1s and 0s occur with equal 
probability, as assumed earlier.

10.2.5  Split Phase or Manchester Code

In this code, as shown in Fig. 10.1(e), binary 1 is represented by a positive rectangular pulse of amplitude 
A followed by a negative rectangular pulse of the same amplitude, both these pulses having widths of half 
the time slot T. Binary ‘0’ is represented again by two half-width pulses of the same amplitude and opposite 
signs, but occurring in the reverse order compared to the way they occur in the representation of a binary ‘1’. 
That is, for binary ‘0’, the negative half-width pulse comes first and is followed by the positive half-width 
pulse. When this line code is used, irrespective of whether a ‘1’ and a ‘0’ have the same probability of occur-
rence, or not, the PSD of the bit stream will have no dc component.

 (i) Frequency has been normalized with respect to (1/T).

 (ii) Average power has been normalized to unity (That is why different values have been 

given to A).
Note
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Fig. 10.2  Power spectra of various line codes: (a) Unipolar NRZ, (b) Polar NRZ, (c) Unipolar RZ, (d) Bipolar RZ (AMI), 

(e) Split-phase (Manchester) code

Some desirable properties of  line codes 
 1. It would be possible to have an ac coupling to the channel if the spectrum of the line-code has negligible 

low-frequency components and no dc component.
 2. If the line code has in-built timing information (as in the case of unipolar RZ code), it would be easy 

for the receiver to extract the  clock signal.
 3. The line code should have a sufficiently small bandwidth so that the channel bandwidth is adequate for 

transmission of digital data (using this line code) without ISI causing any problem.
 4. Channel encoding for incorporating error-detecting capabilities should be easy.

10.3 ISI AND NYQUIST CRITERION

In a baseband digital transmission system, the two main sources of error are the ISI and the additive channel 
noise. We will discuss  ISI and the various ways of combating its effect in this chapter. Methods of tackling 
the effect of channel noise will be discussed in Chapter 11 in which the detection of baseband as well as band 
pass digital signals is proposed to be discussed in detail.
 A digital data signal, as we have seen, consists of a sequence of pulses, where each pulse is confined to 
its own time slot. However, when this signal is transmitted over a channel that is dispersive, the pulses are no 
longer confined to their respective time slots by the time the signal arrives at the receiving-end. Instead, the 
pulses spill over to the adjacent time slots, influencing the amplitudes of the pulses in those adjacent time 
slots. This is referred to as ‘ inter-symbol interference’, or ISI. This can lead to the decision-making device 
making wrong decisions with regard to the symbols that were transmitted in those affected time slots, thus 
causing errors.
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 Since  inter-symbol interference anyhow does take place in a  dispersive channel, we shall adopt the 
following approach to overcome the ISI problem. We would like to examine whether there is any particular 
class of received pulse shapes which would allow us to correctly determine the amplitude of the received 
pulse pertaining only to a particular time slot even in the presence of ISI, so that we can avoid the effects of 
ISI. Once we identify any such desirable received pulse shape, we can use appropriately designed filters at 
the transmitting and receiving ends of the channel so that after passage through the  transmit filter, the channel 
and the  receive filter, the received pulse at the input to the sampler in the decision circuit has that desired 
pulse shape. This, of course, assumes that the transfer function of the channel is known a priori.

Fig. 10.3 Binary baseband system

 A  binary baseband system is shown in Fig. 10.3. Binary sequence {bk}, bk = 0 or 1, is fed to a narrow-
width pulse generator which produces a sequence of very narrow-width pulses of amplitude ak, where,

1 if 1

1 if 0
k

k
k

b
a

b

=Ï
= Ì- =Ó

 (10.1)

These pulses are so narrow that they can be approximated as impulses. The transmit filter which is excited by 
these impulses of strength ak, produces a sequence of weighted impulse responses. Let the impulse response 
be represented for convenience, as pT(t), i.e., pT(t) = hT(t) Hence, we may write

( ) ( / )k T
k

x t a p t k r
•

= -•
= -Â  (10.2)

Let pT(0) be assumed to have been normalized to a value 1. If the bit rate of the data is r bits/sec and if we 
define

1

b

T
R

D  (10.3)

Then,

( ) ( ); (0) 1k T T
k

x t a p t kT p
•

= -•
= - =Â  (10.4)

When this signal x(t) passes through the channel and the receive filter,
 1. the pulses pT(t)s will get distorted because of the finite and inadequate bandwidth.
 2. Noise will get added to the signal. This noise is assumed to be additive zero-mean white Gaussian noise.
 3. A certain time-delay td will be introduced.
We shall assume, without loss of generality, that td = 0. If the pulse at the output of the receive filter is desig-
nated as p(t), (a distorted version of pT(t)), then the signal y(t) at the output of the receive filter may be written 
down as
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( ) ( / ) ( )k b
k

y t A p t k R n t
•

= -•

È ˘
= - +Í ˙

Î ˚
Â  (10.5)

where
Ak = attenuated version of ak

n(t) = noise component in y(t). This noise will be Gaussian and zero mean, but will not be white.
p(◊) = distorted form of the pulse pT(t). It is assumed that this pulse is normalized so that p(0) = 1.

The sampler, shown as a switch in Fig.10.3, samples y(t) at some pre-set optimum instant tm during each time 
slot of duration T sec. The sample of y(t) at t = tm, viz, y(tm), is a  random variable, and it forms the ‘observed 
variable’, based on the value of which the next section, i.e., the decision device decides (by comparing y(tm)
with the  threshold, say l), whether what was transmitted during that time slot, was a binary 1 or a binary 0. 
In fact, if

y(tm) > l , the receiver decides it was a binary 1

and if y(tm) < l, the receiver decides it was a binary 0

When we sample y(t) at t = tm = m/Rb, Eq. (10.5) may be written as

( ) ( )

( ) ( )

m k m
k

k m
k

m k
y t A p n t

r

A p mT kT n t

•

= -•

•

= -•

È ˘-Ê ˆ= +Á ˜Í ˙Ë ¯Î ˚
È ˘

= - +Í ˙
Î ˚

Â

Â

\ ( ) ( ) ( )m m k m
k
k m

y t A A p mT kT n t
•

= -•
π

= + - +Â  (10.6)

In the above equation, the first term Am represents the correct, or the desired output from the sampler. Ideally, 
we would have got only this term in the absence of ISI and noise. The second term, viz.,

         ( )k
k
k m

A p mT kT
•

= -•
π

-Â  (10.7)

is the  ISI term because it represents the output of the sampler contributed by all the past and future digits – all 
except the correct one, i.e., the digit corresponding to the time slot in which the sample has been taken. The 
last term represents the noise component in the sample.
 The pulse Akp(t) occurring in Eq. (10.5) is obtained, as shown in Fig. 10.4 by feeding the impulse response 
of the  transmit filter to the channel and then feeding the channel output to the input of the  receive filter.

Fig. 10.4 Generation of the pulse p(t)

\ ( ) ( ) ( ) ( )k T C RA p t h t h t h t= * *  (10.8)

By taking the  Fourier transform on both sides of the above equation, we get

( ) ( ) ( ) ( )K T C RA P f H f H f H f= ◊ ◊  (10.9)

Since both ISI and noise cause the decoding errors, the method adopted in the design of HT(f) and HR(f) for 
a given, or known HC(f), is one that is aimed at reducing the effect of both these on the  probability of error. 
Now, we shall first examine how the shape of the pulse p(t) might be selected so as to eliminate ISI, and then 
how the filters might be designed, for obtaining the particular shape of p(t) at the output of the receive filter.
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Nyquist criterion for distortionless baseband transmission As stated earlier, it is the random 
variable y(tm), the sample of the receive filter output corresponding to the mth time slot, that is used by the 
decision device for making decision about that time slot. So, Eq. (10.6) says that if y(tm) is to be simply equal 
to Am so that in the absence of noise, there is no error, the effect of the ISI term should be equal to zero. This 
means, we should ensure that

1 if
( )

0 if

k m
p mT kT

k m

=Ï
- = Ì πÓ

 (10.10)

So, the shape of the pulse p(t) at the receive filter output should be such that the above conditions are satisfied. 
When these conditions are satisfied, insofar as the observed variable y(tm) is concerned, ISI does not have any 
component in it and so it cannot play any role in the decision making. Thus, the effect of  ISI is completely 
eliminated even though ISI itself is not.
 Since both m and k in Eq. (10.10) are integers, the conditions for zero ISI implied in that equation may be 
restated as

    
isan integer

1 if 0
( )

0 if 0l

l
p lT

k

=Ï
= Ì πÓ

 (10.11)

Equation (10.11) states that p(0) should be equal to 1 and that p(t) should be equal to 0 for t = lT where l = 
±1, ±2, ±3, … for zero ISI. Equation (10.11) thus defines a class of signals that make it possible to have zero 
ISI. The reader would have already guessed that a sinc function satisfies the two conditions of Eq. (10.11) and 
that it therefore belongs to that class of signals.
 Equation (10.11) states in the time domain, the two conditions that the received pulse shape p(t) should 
satisfy for zero ISI. A frequency domain version of this equation throws some more light on this class of 
signals. For this purpose, imagine that p(t) is ideally sampled at regular intervals of T, by taking the product 
of p(t) with a unit-strength impulse train with impulses located at t = 0, ±T, ±2T, …. Since p(t) is such that 
p(0) = 1 and p(lT) = 0 for l = ±1, ±2, … , it follows that the product of p(t) with the impulse train yields p(0)
d(t) = d(t) only, since d(t – kTs) for k = ±1, ±2, … face zero values of p(t). Hence,

( ) ( )p t td d=  (10.12)

Taking the Fourier transform of ( )p td , we have

s s
n

p t P f p f nf t f
T T

d d d
•

= -•

È ˘ Ê ˆ= = - = = DÁ ˜Í ˙ Ë ¯Î ˚
Â

1 1
[ ( )] ( ) ( ) [ ( )] 1 whereF F

\ 1
( ) 1

( )

s
n

s
n

P f nf
T

P f nf T

•

= -•

•

= -•

- =

- =

Â

Âor (10.13)

Hence, the pulse p(t) should have a spectrum P(f) that satisfies Eq. (10.13) if it is to have zero ISI, since we 
have made use of both the conditions implied in Eq. (10.11) in order to arrive at Eq. (10.13). Figure 10.5 
illustrates the implication of Eq. (10.13). This equation is referred to as  Nyquist criterion for distortionless 

 baseband transmission of digital data in the absence of noise. We may summarize this by saying that 
the time function p(t) that satisfies the conditions laid down in Eq. (10.11), or the frequency function P(f)
satisfying Eq. (10.13) eliminates ISI for samples taken at regular intervals of T. It may be noted that P(f) is 
dependent upon HT(f), HC(f) and HR(f), as stipulated in Eq. (10.9).
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Fig. 10.5  (a) A  sinc pulse that satisfies  Nyquist criterion. Note that p(0) = 1 and p(t) = 0 for t = ±T, ±2T, etc., (b) 

Spectrum of the pulse p(t). Note that it satisfies Eq. (10.13), (c) A sequence of sinc pulses at regular intervals 

of T sec (All assumed positive). Note that sampling at t = 0, T, 2T, etc., avoids ISI

Ideal Nyquist channel The  ideal Nyquist channel is the one in which the output pulses p(t)s from the 
receive filter have the shape of a sinc function. Correspondingly, these output pulses have a spectrum that 
has the shape of the magnitude response of an ideal LPF, as shown in Fig. 10.5(b). As can be seen from 
Fig. 10.5(a), (b) and (c), these pulses satisfy the conditions for zero ISI. Analytically, we may describe p(t)
and P(f) of an ideal Nyquist channel as follows:

1
;

( ) 2

0; | |

W fW
P f W

f W

Ï - <Ô= Ì
Ô >Ó

 (10.14)

i.e.,
1

( ) ( /2 )
2

P f f W
W

= P  (10.15)
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where the overall system bandwidth W is defined by

1

2 2
bR

W
T

= =  (10.16)

Also,

(sin 2 )
( ) sinc(2 )

(2 )

Wt
p t Wt

Wt

p

p
= =  (10.17)

As shown in Fig.10.5(c), the sinc pulses are coming out from the  receive filter at the rate of one pulse 
for every T sec, i.e., the bit rate is R = 1/T = 2W. But, the bandwidth needed for the channel is simply the 
bandwidth occupied by the sinc pulse, i.e., the bandwidth of P(f), which is equal to Rb /2 = W. Hence, in the 

 ideal Nyquist channel, it is (theoretically) possible to transmit at a bit rate of R = 2W even with a channel of 

bandwidth W. This bit rate of Rb = 2W is called the Nyquist rate and W, the minimum bandwidth required 

for this rate without  ISI is called the  Nyquist bandwidth. Also, the channel itself is called the  Nyquist channel.

Disadvantages Even though it appears that it is possible to transmit without ISI at a rate that is twice the 
minimum bandwidth by using the Nyquist channel, there are several difficulties involved. These are:
 1. The magnitude response of the Nyquist channel, which is equal to | ( )|P f , is as shown in Fig. 10.5(b), 

which, we know, is not physically realizable because of the sudden transitions.
 2. As shown in Fig.10.5(c), ISI can be avoided in this channel only if the output sinc pulses from the receive 

filter are sampled exactly at t = 0, T, 2T, etc., and even a slight sampling jitter will introduce the ISI.
 3. The rate of decrease of the sinc pulse p(t) is only 1/| t | even at large values of t. So the side-lobe ampli-

tudes do not decrease fast. This results in considerable ISI even for small errors in sampling time.

 Raised cosine spectrum There are shapes of the received pulses, other than the sinc pulse used in the 
Nyquist channel, which can be practically realized and which also offer the possibility of zero ISI. Let p(t) be 
the pulse and P(f) its spectrum. Consider

1

1
1 1

1

1

1
; | |

2

(| |1
( ) 1 cos ; | | 2

4 2 2

0; | | 2

f f
W

f f
P f f f W f

W W f

f W f

p

Ï <Ô
ÔÔ Ï ¸-È ˘Ì= + < < -Ì ˝Í ˙Ô -Î ˚Ó ˛Ô

> -ÔÓ

 (10.18)

A plot of P(f) is given in Fig.10.6(a).

 (i) From Eq. (10.18), we find that f1 is the maximum frequency up to which the spectrum 

P(f) has a value (1/2W), i.e., up to which 2W P(f) is equal to 1.

 (ii) We define a roll-off factor r as

    1f1
W

r
È ˘= -Í ˙Î ˚

 (10.19)

 Roll-off factor is, in general, defined as the ratio of the excess bandwidth to the theoretical 

minimum bandwidth. It can be seen that the way r has been defined in Eq. (10.19) is in 

conformity with this.

(iii) From Fig. 10.6(a), it is clear that the transmission bandwidth BT is given by

T 1B 2W f= -  (10.20)

(iv) f1 depends on the roll-off factor and

1

1

f W for 0

and f 0 for 1

r

r

= = ¸
˝= = ˛

 (10.21)

Note
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Fig. 10.6 (a) Spectrum P(f) of the pulse, (b) Pulse p(t) for different roll-off factors

The inverse Fourier transform of P(f) given in Eq. (10.18) is

2 2 2

cos 2
( ) sinc(2 )

1 16

Wt
p t Wt

W t

pr

r

È ˘= Í ˙-Î ˚
 (10.22)

 1. For r = 0, p(t) = sinc(2Wt), the pulse that we had for the Nyquist channel.

 2. For r = 1, p(t) simplifies to:  
2 2

sinc(4 )
( )

1 16

Wt
p t

W t
=

-
 (10.23)

 (i) The pulse function p(t) given in Eq. (10.22) has two distinct factors; the first factor 

sinc 2Wt, associated with ideal  Nyquist channel, and the second factor is shown inside 

the rectangular brackets, which decreases as 1/|t|2 for large values of |t|. While the first 

one, being a sinc function, ensures that there are zero-crossings at regular intervals, 

so that they can be used for sampling (to avoid ISI), the second factor ensures that the 

tails of the pulse decay faster than what we had for the pure sinc pulse used in the ideal 

Nyquist channel.

Remark
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 (ii) Whereas the ideal Nyquist filter is not realizable at all, this filter called the ‘ raised

cosine filter’, with a value of r = 1, can easily be approximated by giving an adequate 

amount of time-delay.

 (iii) Since the tails of p(t) reduce very fast when r = 1, timing jitter of the sampler in the 

receiver does not produce much of  inter symbol interference (ISI).

 (iv) However, to avoid ISI with this raised cosine channel (r = 1), the minimum transmission 

bandwidth required is 2W, i.e., twice that required for the ideal Nyquist channel, for the 

same pulse rate.

 (v) (a)  the pulse p(t) corresponding to r = 1, i.e., p(t) for the raised cosine filter takes a 

value of 0.5 at t = ±T/2 = ±1/4 W. This means that the pulse width, measured at half 

the maximum amplitude (of 1), is exactly equal to the time-slot duration T.

  (b)  For the pulse p(t) of the raised cosine filter with r = 1, there are two zero-crossing 

points at t = ±1.5T and ±2.5T in addition to the usual zero-crossings at t = ±1, ±2, 

±3, …

Properties 5(a) and 5(b) are very useful since they enable the receiver to extract the timing 

signals required for  synchronization.

Example 10.1 Binary data is transmitted at the rate of 56 kbps using a baseband binary PAM system 
designed to have a raised cosine spectrum. What is the transmission bandwidth required if the roll-off 
factor r = 0.25, 0.5?

Solution 11
f

W
r

È ˘= -Í ˙Î ˚
 (Refer to Eq. (10.19))

56 kbps
28 kbps

2 2
bR

W = = =  (Refer to Eq. (10.16))

 (a) when r = 0.25

     

31 1
13

1 0.25 1 21 10 Hz
28 10

f f
f

W
r

È ˘ È ˘= - = = - \ = ¥Í ˙ Í ˙Î ˚ ¥Î ˚
  From Eq. (10.20), we have

   3 3 3
12 (56 10 21 10 ) 35 10 HzTB W f= - = ¥ - ¥ = ¥

 (b) When r = 0. 5

     

31 1
13

1 0.5 1 14 10 Hz
28 10

f f
f

W
r

È ˘ È ˘= - = = - \ = ¥Í ˙ Í ˙Î ˚ ¥Î ˚
  But, 3 3

1Transmission bandwidth 2 (56 10 14 10 )HzTB W f= = - = ¥ - ¥
  \ 42 kHzTB =

10.3.1 Correlative Coding

Till now, we have been looking upon inter-symbol interference (ISI) as nuisance, or something which is 
undesirable and is to be avoided as it produces decoding errors and thereby degrades the system performance. 
We have seen that it is possible to transmit binary data at a speed of 2W even on a channel of bandwidth 
W, avoiding ISI. In this section, we will discuss some schemes like the correlative level or  partial response 
signaling schemes, in which  ISI is deliberately introduced in a controlled manner in order to achieve a data 
speed of 2W on a channel of bandwidth W. The underlying principle behind all these schemes is that since 
ISI is introduced in a controlled manner and is known, the receiver can take care of it.

Note
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Duo-binary signaling This is a specific case that belongs to the general class of  correlative-level 
coding schemes. The general arrangement for  duo-binary signaling scheme is shown in Fig. 10.7.

Fig. 10.7 Duo-binary signaling scheme

Since an ideal delay element producing a delay of T sec has a transfer function of exp[ 2 ]j fTp- , the delay 
line filter has a transfer function of [1 exp( 2 )]j fTp+ - . This delay line filter is in cascade with the  ideal 
Nyquist channel, whose transfer function is denoted by HC(f). Thus, the overall transfer function of the 
 duo-binary conversion filter is given by

( ) ( )[1 exp( 2 )]

( )[ ]

C

j fT j fT j fT
C

H f H f j fT

H f e e e
p p p

p

- -

= + -

= +

 (10.24)

\ ( ) [2 ( ) cos ] j fT
CH f H f fT e

pp -=  (10.25)

We know that an ideal Nyquist channel is an ideal LPF with a bandwidth of W Hz and that

1

2
W

T
=    (Refer to Eq. (10.16))

Hence,

1
1; | |

( ) 2

0; otherwise
C

f
H f T

Ï £Ô= Ì
ÔÓ

Thus, the overall frequency response is

1
2 cos exp( ); | |

( ) ( ) ( ) 2

0; otherwise
C

fT j fT f
H f H f H f T

p p
Ï - £Ô◊ = = Ì
ÔÓ

 (10.26)

\
1

2 cos ; | |
| ( )| 2

0 ; otherwise

fT f
H f T

p
Ï £Ô= Ì
ÔÓ

 (10.27)

Making use of Eq. (10.26), the magnitude and phase responses of the duo-binary signaling scheme are drawn 
in Fig. 10.9.
 This response of the duo-binary signaling scheme can easily be approximated as it is a smooth cosine 
pulse. This can also be seen from the impulse response of the duo-binary filter plotted in Fig. 10.10. The 
impulse response is not zero for negative values of time. But it can easily be approximated by truncating it 
for some negative value and then introducing enough time delay.

Fig. 10.8  Transfer function of an ideal Nyquist 

channel
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Fig. 10.9  Transfer function of the  duo-binary conversion filter as well as the overall frequency response: (a) Magnitude 

response, (b) Phase response

Impulse response of the duo-binary filter From Eq. (10.24), by taking its inverse Fourier transform 
on both sides, we get the impulse response h(t) of the duo-binary conversion filter as

2

sin( / ) sin[ ( )/ ]
( )

( / ) [ ( )/ ]

sin( / ) sin( / )

( / ) ( )/

sin( / )

( )

t T t T T
h t

t T t T T

t T t T

t T t T T

T t T

t T t

p p

p p

p p

p p

p

p

-
= +

-

= +
-

=
-

 (10.28)

This  impulse response is shown in Fig. 10.10.

Fig. 10.10 Impulse response of the duo-binary conversion filter

If the binary symbols 1 and 0 are represented at the input to the system shown in Fig.10.7 by a narrow positive 
pulse of amplitude 1 for bk = 1 and a narrow negative pulse of amplitude one for bk = –1, the impulse response 
h(t) shown in Fig. 10.10 actually will be the pulse p(t) received at the output of the channel.
 If we now consider p(nT), the pulse received during the nth time slot, then referring to Fig. 10.10,

1 for 0 and 1
( )

0 for any other value of

n
p nT

n

=Ï
= Ì

Ó
 (10.29)
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Since we are using  polar signaling, corresponding to bk = 1, a pulse p(t) and corresponding to bk = –1, a pulse 
– p(t), will be received at the input to the sampler. The sampler samples the received pulses at t = nT. As may 
be seen from Fig. 10.10, the samples will all be zero except the ones taken at t = 0 (i.e., n = 0) and t = T (i.e., 
n = 1). Thus pulse p(t) will produce  ISI only with the next pulse marked as p(t – T) in the figure and not with 
any other pulse. Although both p(t) and p(t – T) have been shown for convenience to be positive, it is possible 
that they may have opposite polarities. If they are both of the same polarity, the sample taken at t = T will be 
+2 or –2. But if these adjacent pulses are of opposite sign, the sample at t = T will be zero. Thus, even though 
the input pulses are having only two levels, i.e., +1 and –1, the samples of the received pulses can have any of 
the three possible values, viz., +2, –2 and 0. Hence, the following decision strategy may be adopted.
 1. If the sample taken in the present time-slot is positive and the previous bit was identified as a 1, then in 

this time-slot is also 1.
 2. If the sample taken in the present time-slot is negative and the previous bit was identified as a –1(i.e., 

bk = 0), then the present bit in this time-slot is also a – 1.
 3. If the sample value in the present time-slot is zero, then the present bit is the complement of the 

previous bit.
This scheme of detection is illustrated in the following table.

Table 10.1 Duo-binary scheme of detection

Transmitted sequence

{bk}. Starting bit = 1 1 1 0  0  0 1 1 0 1 1 1 0 1

Samples of the received signal {ck} 2 2 0 –2 –2 0 2 0 0 2 2 0 0

Detected binary sequence { }ˆ
kb 1 1 0  0  0 1 1 0 1 1 1 0 1

From the above discussion we find that the pulses are transmitted at a rate of (1/T). Also, from Fig. 10.9(a), 
we find that the bandwidth of the duo-binary filter is (1/2T). Hence, we are able to achieve a transmission rate 
that is twice the bandwidth even while avoiding the effects of ISI.

Decision feedback and error propagation It is clear from the above detection strategy that decision 
on the bit during the present-time slot is based on the knowledge of the previous detected bit which has been 
stored. This technique is referred to as ‘ decision feedback’. A serious drawback with decision feedback is 
that if an error is made in the decision making in any time slot, the error tends to propagate. A technique used 
for avoiding the error propagation is called ‘pre-coding’. We shall now see how pre-coding is done and how 
it avoids  error propagation.

Pre-coding for avoiding error propagation A pre-coded duo-binary scheme is shown in Fig. 
10.11. The input binary sequence {bk} is now given not directly to the duo-binary encoder, but through a 
‘pre-coder’ and a level shifter. The pre-coder produces a new binary sequence {dk} through the following 
operation:

1k k kd b d -= ≈  (10.30)

where ≈ denotes modulo-2 addition of the binary digits. Since modulo-2 addition is nothing but ‘Exclusive-
OR’ operation,

11 if either or is a 1, but not both

0 otherwise

k k

k

b d
d

-ÏÔ= Ì
ÔÓ

 (10.31)
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Fig. 10.11 A pre-coded duo-binary scheme

The pulse amplitude modulator, or level-shifter converts this sequence {dk} of 1s and 0s into a new sequence 
{ak}, where, ak = +1 or –1. This sequence is now fed to the duo-binary encoder. So, referring to Fig. 10.7, 
aks now play the role of bks shown in the figure. At the output of the sampler, therefore, we get a sequence 
{ck}, where

1k k kc a a -= +  (10.32)

Hence, from Eqs. (10.31) and (10.32), we have

0 if 1

2 if 0
k

k
k

b
c

b

=Ï
= Ì± =Ó

 (10.33)

From Eq. (10.33), it is clear that

and

ˆ 1 if | | 1

ˆ 0 if | | 1

k k

k k

b c

b c

¸= < Ô
˝

= > Ǫ̂  (10.34)

Hence, the decision device is given a reference, or threshold voltage of 1 volt as shown in Fig. 10.11. The 
probability of |ck| being exactly equal to 1 is zero and so we have ignored that possibility.
 The scheme of detection when a  pre-coder is used is illustrated in Table 10.2.

Table 10.2 Scheme of detection with a pre-coder

Binary Sequence

{bk} 1 1 0 0 0 1 1 0 1 1 1 0 1

The sequence {dk}

start-up bit =1 0 1 1 1 1 0 1 1 0 1 0 0 1

The sequence {ak}

start-up bit =1 –1 1 1 1 1 –1 1 1 –1 1 –1 –1 1

The sequence {ck} 0 0 2 2 2 0 0 2 0 0 0 –2 0

Detected binary sequence ˆ 1kb == if

| | 1kc << ; ˆ 0kb == if | | 1kc >> 1 1 0 0 0 1 1 0 1 1 1 0 1

10.3.2 Modified Duo-Binary Signaling

The magnitude response |H(f)| shown in Fig. 10.9(a) clearly indicates that the PSD of the transmitted pulse 
p(t) is not zero at f = 0 since |H(f)| is non-zero at f = 0. This is not desirable in certain applications that 
make use of communication channels which cannot carry a dc component. This deficiency of the duo-binary 
signaling is overcome by incorporating some modifications in it which make |H(f)| = 0 at f = 0. This  modified 
duo-binary signaling scheme is shown in Fig. 10.12.
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Fig. 10.12  Modified duo-binary signaling scheme

 As may be seen from Fig. 10.12, we now have the following relations:

2

2

2

1 if either or is a 1 but not both

0 otherwise

1 or –1

2, 0, or – 2

k k k

k k

k

k

k k k

k

d b d

b d
d

a

c a a

c

-

-

-

= ≈

ÏÔ= Ì
ÔÓ

=

= -

= +

The transfer function HM(f) of the modified duo-binary filter may be written down in the same way as Eq. 
(10.24), except for the difference that in the present case, the delay is 2T and not T. Hence,

( ) ( )[1 exp( 4 )]

2 ( )sin 2 exp( 2 )

M C

C

H f H f j fT

jH f fT j fT

p

p p

= - -

= -  (10.35)

where HC(f) is the transfer function of the ideal Nyquist filter. Since 

    ( ) 1 ( /2 )cH f f W= ◊ P  (10.36)

as shown in Fig. 10.8 and W = 1/2T, it follows that the overall transfer function of the modified duo-binary 
filter as

M

j fT j fT f T
H f

p p- £Ï
= Ì

Ó

2 sin 2 exp( 2 ) for | | (1/2 )
( )

0 otherwise
 (10.37)

From Eq. (10.35), since HM(f) is

( ) ( )[1 exp( 4 )]M CH f H f j fTp= - -

and since HC(f) is a rectangular function as shown in Fig. 10.8, when we take the inverse  Fourier transform 
of HM(f), we get two sinc pulses that are displaced in time by 2T sec. Thus, the  impulse response hM(t) of this 
 modified duo-binary filter is

    

2

sin( / ) sin[ ( 2 )/ ]
( )

( / ) [ ( 2 )/ ]

sin( / ) sin( / )

( / ) ( 2 )/

2 sin( / )

(2 )

M

t T t T T
h t

t T t T T

t T t T

t T t T T

T t T

t T t

p p

p p

p p

p p

p

p

-
= -

-

= -
-

=
-  (10.38)
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From Eq. (10.37), the magnitude response and the phase response of the modified duo-binary filter are 
plotted in Figs. 10.13(a) and (b), respectively.

Fig. 10.13 Transfer function of the modified duo-binary filter: (a) Magnitude response, (b) Phase response

As can be seen from Fig. 10.13(a), the magnitude of HM(f) is zero at f = 0 indicating that the modified 
duo-binary coder has no dc component at its output – a feature we desired to have.
 The denominator of the expression for hM(t), given in Eq. (10.38) clearly shows that the impulse response, 
and hence the pulse p(t) has tails that decay as 1/| t |2. Further, the plot of hM(t), given in Fig. 10.14 shows that 
there are three distinct levels at the sampling instants, these levels being 1, 0 and –1.

Fig. 10.14 Impulse response function of the modified duo-binary conversion filter

Detection strategy From Fig. 10.12, we have

2

2binary 1 if either or (but not both) is a 1

binary 0 otherwise

k k k

k k

d b d

b d

-

-

= ≈

ÏÔ= Ì
ÔÓ

 (10.39)

Since the level-shifter converts the unipolar {1, 0} sequence {dk} into a polar {1, –1} sequence {ak}, the 
output digit ck can take any of the three values –2, 0, or 2. This can easily be seen by following bk, dk and ak.

Case 1: Let bk = 1 and dk – 2 be 0. Then dk is 1. Hence ak = 1. Since dk – 2 has been assumed to be zero, the 
corresponding ak – 2 would have been –1. Hence ck will be +2.

Case 2: Let bk = 1 and dk – 2 be 1. Then dk is 0. Hence ak = –1. Since dk – 2 has been assumed to be 1, the 
corresponding ak – 2 = 1 \ ck = –2 in this case.

Case 3: Let bk = 0 and dk – 2 be 0. Then dk = 0, and ak = –1. Since dk – 2 has been assumed to be 0, the corre-
sponding ak – 2 = –1. Hence ck = 0 in this case.

Case 4: Let bk = 0 and dk – 2 be 1. Then dk = 1. \ak =1. Since dk – 2 has been assumed to be 1, correspondingly 
ak – 2 = 1 \ ck = 0.
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Thus, the detection strategy adopted is
 1. If | | 1,kc >  ask the receiver to say bk = 1
 2. If | | 1,kc <  ask the receiver to say bk = 0 (10.40)

 (i) The magnitude response of the modified duo-binary filter in Fig. 10.13(a) clearly shows 

that the bandwidth is W = 1/2T = Rb /2. Hence, signaling at a rate that is twice the 

bandwidth is possible.

(ii) There is no dc component in the communication channel.

Generalized correlative coding ( Partial-response signaling) Referring to Fig. 10.7, we find 
that the duo-binary conversion filter is given a two-level input sequence {1, –1} and that it correlates the input 
signal with a delayed signal, delayed by T sec. The modified duo-binary conversion filter of Fig. 10.12 too 
has a two-level input sequence {1, –1} but it correlates the input signal with a delayed signal, delayed by 2T

sec. Both of them enable binary baseband data transmission at a rate that is twice the channel bandwidth. But, 
the modified  duo-binary conversion filter has better frequency response (no dc component)
 This idea used in the modified duo-binary conversion filter can easily be generalized so as to have a filter 
in which the input signal is correlated by a number of delayed signals delayed by 0 sec, T sec, 2T sec … , 
(N – 1)T sec, with appropriate weights given to each delayed signal. Signaling using such filters is referred 
to as ‘correlative-level coding’, or ‘partial response signaling’. An arrangement for such a generalized 
correlative coding scheme, is shown in Fig. 10.15.

Fig. 10.15 A  generalized correlative coding scheme

Note
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By using different tap weights wi, i = 0, 1, … , (N – 1), it is possible to create a variety of spectral shapes for 
the overall channel. As in the case of the  duo-binary conversion filter and the  modified duo-binary conversion 
filter, with the generalized correlative coding scheme too data rates close to the  Nyquist rate can be achieved 
while avoiding ISI.
 In the presence of channel noise, however, Pe may be a little higher.

Example 10.2 A binary PAM wave with bit duration of 10 ms is to be transmitted over a channel with 
a maximum bandwidth of 75 kHz. Determine a suitable raised cosine spectrum for this purpose.

Solution From Eq. (10.18), we know that a raised cosine spectrum is completely known once the two 
parameters W and f1 are known.
 Since T is given to be 10 ms = 10–5 sec, the transmission rate

51
10 bits/sec 100 kbpsbR

T
= = =

\ W = Minimum bandwidth required when ideal Nyquist filter is used, is given by

3100 10
50 kHz

2 2
bR

W
¥

= = =

BT = Transmission bandwidth of the channel is given to be 75 kHz.
But, when a raised cosine filter is used,

3 3
1 12 75 10 2 50 10TB W f f= - \ ¥ = ¥ ¥ -

\ 3 3
1 100 10 75 10 25 kHzf = ¥ - ¥ =

\ Roll-off factor 
3

1
3

25 10
1 1 0.5

50 10

f

W
r

¥
= - = - =

¥

Determining the  raised cosine filter means specifying transfer function. This can be obtained by substituting 
the value of W and f1 in Eq. (10.18).

Example 10.3 The binary data stream 001 101 101 is applied to the input of a duo-binary system. If 
no pre-coder is used, determine the duo-binary coder output and the resulting receiver output.

Solution We know that in a duo-binary system, the coder output in any particular time slot will be +2 if 
the pulses in the present-time slot and the previous-time slot are both positive; –2 if both are negative and 0 if 
they are of opposite polarity. Since the previous pulse is needed, we take a starting bit bk = 1.

{bk} starting bit =1 0  0 1 1 0 1 1 0 1

Samples of the received signal 

(duo-binary coder output)
0 –2 0 2 0 0 2 0 0

Received output { }ˆ
kb 0  0 1 1 0 1 1 0 1

The receiver output sequence { }ˆ
kb  is estimated using the detection strategy outlined just before Table 10.1.
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Example 10.4 Repeat Example 10.3 when a pre-coder is used.

Solution 

Binary Sequence {bk} 0 0 1 1 0 1 1 0 1

Sequence {dk}

start-up bit =1 1 1 0 1 1 0 1 1 0

Sequence {ak}; start-up bit = 1

ak = 1 if dk = 1; ak = –1 if dk = 0 1 1 –1 1 1 –1 1 1 –1

Sequence {ck} 2 2 0 0 2 0 0 2 0

Detected binary sequence ˆ 1kb =  if 
ˆ| | 1; 0k kc b< =  if | | 1kc > 0 0 1 1 0 1 1 0 1

k k 1

k

k k k 1

1 if either b or d is a 1, but not both
d

0 otherwise

c a a

-

-

ÏÔ= Ì
ÔÓ

= +

10.4 M-ARY BASEBAND SIGNALING

Till now we have discussed  binary baseband transmission, in which a symbol could take one of two possible 
values – like A and 0 (unipolar) or A and –A (polar). We have been representing the symbol duration by 
T sec. Since a binary choice was involved during each T sec period, with the two values A and 0 or A and –A

equi-probable, each symbol carried 1 bit of information and the information rate could be expressed as (1/T)
= R bits/sec.
 In  M-ary baseband transmission, on the other hand, a symbol can take M possible values. If we assume 
that all the M values are equally probable, during each symbol duration of say, t sec, an information of 

2log M  bits is transmitted and therefore the information rate is

2

1
log bits/secMR M

t
=  (10.41)

A simple example of M-ary baseband signaling is provided by the ‘ quarternary coding’ of binary data. We 
will use this to illustrate M-ary baseband signaling. Let us say we would like to transmit the following binary 
data of eight binary digits in a total time of 8 milli-seconds.

 {bk} = 0 0 0 1 1 0 1 1

In quartenary coding, we take two successive binary digits, group them and give one level to it. Let us say we 
encode the four possible groups as follows:

Group Level

01 –3

symbols 00 –1

10 1

11 3

Ï
Ô
ÔÔ
Ì
Ô
Ô
ÔÓ

Note
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Then the given binary digit sequence may be represented by the following waveform, using this quarternary 
coding:

Fig. 10.16 Waveform of the quarternary coded binary sequence

Here, two binary symbols are grouped together and since there are four such distinct groups possible, the 
number of levels is also four; i.e., M = 4. In general, if n binary digits are grouped together, there will be 2n

such groups and so

or, 

n
M

n M

¸= Ô
˝

= Ǫ̂2

2

log  (10.42)

If T is the time duration of each binary digit, since a symbol consists of n binary digits, the symbol duration is 

nTt =  (10.43)

In Fig. 10.16, since M = 4, n = 2 and 2Tt = . Since one binary digit is transmitted in T sec. in baseband 
binary transmission, the transmission rate is Rb (suffix b is added to indicate binary transmission) where,

1
bits/secbR

T
=  (10.44)

For  baseband M-ary transmission, each symbol has a duration of nTt =  sec. Hence, the rate of symbol

transmission is

2

1

log
b

M

R
R

nT M
= =  (10.45)

10.4.1 Baud and Bit Rate

‘ Baud’ is a term used to indicate symbol rate. As such, it is not necessary to say ‘baud rate’, as the idea of 
rate is already there in ‘baud’ itself.
  Bit rate, on the other hand, indicates the rate of transmission of information ‘bits’. If we are talking of 
transmission of binary symbols, ‘baud’ and bit rate will be the same, as each binary symbol carries one bit 
of information. But, if we are talking of transmission of some other symbols, since each such symbol may 
carry several bits of information, the symbol rate, baud and the bit rate, will be different. For example, in the 
transmission of quarternary coded symbols which we considered, the symbol rate is

          
2

1
baud

log
b

M

R
R

nT M
= =  (10.46)
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But since each of these symbols carries 2log M  bits of information, the bit rate is

2log bits/sec.M bR M R◊ =  (10.47)

Since the binary symbol carries the least possible information, viz., 1 bit per symbol, in general, for any 

 M-ary baseband transmission, (M > 2), the symbol rate will be less than the bit-rate.

10.4.2 Bandwidth for M-ary Baseband Transmission

For a given bit-rate of Rb bits/sec, using binary baseband transmission, we know that the absolute minimum 
transmission bandwidth is the Nyquist bandwidth which is given by

Hz
2
b

b

R
W =  (10.48)

The same bit-rate can, however, be achieved at a transmission bandwidth that is lower than the  ideal Nyquist 
bandwidth if we use M-ary baseband signaling. This is because the bandwidth required depends only on the 
pulse rate (the shape of the received pulse having been fixed as a sinc function) and in the case of M-ary 
baseband signaling, the pulses are wider by a factor of 2log M  compared to the binary case, making the pulse

rate in M-ary baseband signaling smaller by that factor. However, the bit-rate will be the same since each 
M-ary pulse carries 2log M  bits whereas each binary pulse carries only one bit. Thus, the absolute minimum 
transmission bandwidth required for achieving a bit-rate of Rb bits/sec using M-ary baseband transmission, is

2
2

1
/(log )

2 log
b

m b

R
W W M

M
= ◊ =  (10.49)

It should be noted, however, that there is a price to be paid to achieve this while maintaining the same 
 probability of error as in the binary case. This is because the probability of error primarily depends upon 
the spacing between the amplitude levels, irrespective of whether it is binary or  M-ary signaling. When the 
same spacing (as in the binary case) between adjacent amplitude levels is maintained, the M-ary signal will 
have much larger power. Thus, binary signaling which has just two amplitude levels only, gives the best 
noise immunity for a given SNR. M-ary signaling on the other hand, needs more SNR but less bandwidth for 
the same bit-rate. M-ary signaling is therefore better suited for digital voice channels which have limited 

bandwidth but a large  signal-to-noise ratio.

Example 10.5 A computer is generating binary words, each consisting of 16 bits, at the rate of 15,00 
words per second. (a) Find the bandwidth required to transmit its output as a binary PAM signal. (b) Find M
so that the output could be transmitted as an M-ary signal on a channel whose bandwidth is limited to 30 kHz.

Solution Bit rate required = 16 ¥ 15000 = 240,000 bits/sec = Rb

(a) If we use ideal Nyquist channel, the bandwidth required = 120 kHz
2
bR

W= =

   On the other hand, if we use a channel with raised cosine spectrum and a roll-off factor r = 1, the trans-
mission bandwidth required will be

2 240 kHzTB W= =
(b) When we use M-ary signaling, as per Eq. (10.49),

       

3
3

2 2

1 120 10 1
30 10

2 log 2 log
b

M

R
W

M M

¥
= ◊ = ◊ = ¥

\
3

2 3

120 10 1
log 2

2 30 10
M

¥
= ◊ =

¥
\         22 4M = =
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10.4.3 Equalization

An  equalizer, as we already know, is a system which is designed to have a frequency response that is the 
inverse of the frequency response of the channel, so that when it is kept in cascade with the channel, the 
overall frequency response will be flat and the signal distortion caused by the channel is eliminated. Unlike 
in the case of analog communication, where signal waveform preservation is of paramount importance, in the 
case of digital communications, what is important is that during each time slot, the receiver should be able to 
decide correctly whether what was transmitted during that time-slot was a binary 1 or a binary 0.

Zero-forcing equalizer In this approach to the optimization of the receiver, the channel noise is totally 
ignored and the receiver is viewed as a ‘ zero-forcing equalizer’ followed by the decision-making device. The 
equalizer, in this approach, is used to force the  inter-symbol interference to be zero at all sampling instants 
t = kT at which the channel output taken through the equalizer is sampled, except for k = 0 for which the 
distorted, but desired pulse occurs. A transversal (tapped delay) equalizer with (2N + 1) taps is used and the 
samples of the equalizer output peq(t) are taken at regular intervals of T. The tap gains, or the weights of the 
equalizer, ci, i = –N to +N, are so chosen that

1 for 0
( )

0 for 1, 2, 3,…,eq k

k
p t

k N

=Ï
= Ì = ± ± ± ±Ó

 (10.50)

This means that we are forcing N-zero values to exist on each side of the peak of peq(t), where peq(t) is the 
output pulse from the equalizer and peq(tk) is the kth sample of peq(t), taken at t = kT. It should be noted that 
it is required that peq(t), the output pulse satisfies the Nyquist criterion or, the controlled  ISI criterion as the 
case may be.
 If, as shown in Fig. 10.17, pr(t) is the output pulse from the channel which is given as input to the zero-
forcing equalizer, then, since the equalizer output pulse is the sum of all the delayed pulses from the outputs 
of the various delay elements of the equalizer, we have

( ) ( )
N

eq n r
n N

p t c p t nT NT
= -

= - -Â  (10.51)

The –NT term in the argument of pr(◊) in Eq. (10.51), represents a constant time delay which we may ignore 
during the analysis and re-introduce at the end.

\ ( ) ( )
N

eq n r
n N

p t c p t nT
= -

= -Â  (10.52)

Fig. 10.17 Zero-forcing equalizer
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Fig. 10.18 The input pulse pr(t) and the output pulse peq(t)

Now, this peq(t) is sampled at t = kT, k = 0, ±1, ±2, …. Hence, at t = kT, we have

   ( ) ( ); 0, 1, 2,… 
N

eq n r
n N

p kT c p kT nT k
= -

= - = ± ±Â  (10.53)

For convenience in notation, let us drop T for the time being, so that

( ) ( ); 0, 1, 2,… 
N

eq n r
n N

p k c p k n k
= -

= - = ± ±Â  (10.54)

Equation (10.54) represents a set of an infinite number of simultaneous equations with only (2N + 1) variables, 
viz., cns, n = –N to N, which we have to determine with the constraint that

1 if 0
( )

0 if 1, 2, 3,…,eq

k
p k

k N

=Ï
= Ì = ± ± ± ±Ó

 (10.55)

It is not possible to solve this set of an infinite number of equations. However, since peq(t) satisfies the 
Nyquist criterion, or the controlled ISI criterion, the pre-cursor and post-cursor amplitudes of peq(t) decay 
rather rapidly. So we can as well modify the constraint (Eq. (10.55)) and limit the number of samples on 
either side of k = 0, to N values only. Thus, we are implicitly assuming that the ISI is limited only to N
preceding and N succeeding values – an assumption that is quite justifiable if N > 2. Thus, we rewrite the 
constraint equation in Eq. (10.55) as

1 if 0
( )

0 if 1, 2,…,eq

k
p k

k N

=Ï
= Ì = ± ± ±Ó

 (10.56)

Once this modified constraint condition is imposed on the samples of peq(t), as shown in Eq. (10.54), we get 
only (2N + 1) simultaneous linear equations involving (2N + 1) variables, viz., the cns. We can write these 
(2N + 1) equations in matrix form as follows.
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(0) ( 1) ( 2 )

(1) (0) ( 2 1)

( 1) ( 2) ( 1)

( ) ( 1) ( )

( 1) ( ) ( 1)

(2 1) (2 2) (1)

(2 ) (2 1) (0)

r r r

r r r

r r r

r r r

r r r

r r r

r r r

p p p N

p p p N

p N p N p N

p N p N p N

p N p N p N

p N p N p

p N p N p

- ◊ ◊ ◊ -È
Í ◊ ◊ ◊ - +Í
Í
Í

- - ◊ ◊ ◊ - -Í
Í - ◊ ◊ ◊ -
Í

+ ◊ ◊ ◊ - +Í

- - ◊ ◊ ◊
- ◊ ◊ ◊Î

LLLL LLLLLL L L L LLL

LLLL LLLLLL L L L LLL

1

1

0

1

1

0

0

0

1

0

0

0

N

N

N

N

c

c

c

c

c

c

c

-

- +

-

-

È ˘˘ È ˘
Í ˙˙ Í ˙Í ˙˙ Í ˙Í ˙˙ Í ˙Í ˙˙ Í ˙Í ˙˙ Í ˙Í ˙˙ Í ˙=Í ˙˙ Í ˙Í ˙˙ Í ˙Í ˙Í ˙ Í ˙Í ˙Í ˙ Í ˙Í ˙Í ˙ Í ˙Í ˙Í ˙ Í ˙Í ˙ Î ˚˚ Î ˚

LL LL

LLLL

 (10.57)

The zero-forcing equalizer’s tap gains, or weights are obtained by solving this matrix equation for cns.

 (i) The constant time delay, NT, in Eq. (10.51) which was ignored in the rest of the analysis 

has been re-introduced for drawing Fig.10.18(b).

 (ii) As stated earlier, the zero-forcing approach totally ignores the channel noise. This, in 

fact, leads to an overall performance degradation owing to ‘noise enhancement’.

 (iii) Determination of zero-forcing tap-gains, i.e., cns using Eq. (10.57) requires that we 

know the pr(◊) values in the (2N + 1) ¥ (2N + 1) square matrix. In the case of changes 

in channel characteristics, as happens in switched telephone links and slowly changing 

radio links, an a priori knowledge of pr(◊) values is not possible. In such cases, the 

tap gains are directly adjusted on-line by using a training sequence that is transmitted 

before the actual message sequence is transmitted.

Example 10.6 A  zero-forcing equalizer is to be designed using 3 taps. Assume that the input pulse 
pr(t) to the equalizer is as shown in Fig. 10.18(a) in which pr(–2T) = 0.08, pr(–T) = –0.25, pr(0) = 1, 
pr(T) = –0.20 and pr(2T) = 0.10

Solution Here, 2N + 1 = 3 \N = 1. Substituting the given values of pr(kT) in Eq. (10.57), we get

(0) ( 1) ( 2) 1 0.25 0.08

(1) (0) ( 1) 0.20 1 0.25

(2) (1) (0) 0.10 0.20 1

r r r

r r r

r r r

p p p

p p p

p p p

- - -È ˘ È ˘
Í ˙ Í ˙- = - -Í ˙ Í ˙
Í ˙ Í ˙-Î ˚Î ˚

Hence, for ‘zero forcing’, the tap-gains cns must satisfy the following equation (Eq. (10.57)):

1

0

1

1 0.25 0.08 0

0.20 1 0.25 1

0.10 0.20 1 0

c

c

c

-È ˘-È ˘ È ˘
Í ˙Í ˙ Í ˙- - =Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

Solving the above set of three linear equations for c–1, c0 and c1, we get

1 0 10.90825; 3.4386; 0.6075c c c- = = = -

 Adaptive equalizer In all our discussions on  ISI, till now, we have been assuming the channel charac-
teristics (i.e., hc(t), its impulse response, or Hc(f), its transfer function) to be known to us a priori. In practice, 
however, these channel characteristics are not only not known, in addition, they change with time. As already 

Remarks
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stated in point iii. of remarks under Eq. (10.57), a fixed  tapped-delay equalizer will not therefore be able to 
give satisfactory performance. The tap gains of the equalizer will have to be automatically adjusted, taking 
into account the changes in the channel characteristics. Such an equalizer which automatically adapts itself 
to the channel is called an ‘ adaptive equalizer’. 
 The general arrangement in an adaptive equalizer is shown in Fig. 10.19. As shown there, an error sequence 
is generated by comparing the actual output of the equalizer with the ‘desired output sequence’ and this error 
sequence is used to appropriately change the tap-gains of the equalizer so as to minimize the error in some 
sense – usually, in the mean-square sense.

Fig. 10.19 Adaptive equalizer block diagram

Ideally, the desired output sequence from a receiver is nothing but the transmitted sequence itself. Hence, the 
question naturally arises: ‘How can the desired output sequence (i.e., the correct transmitted sequence) be 
available at the receiving-end’? As has been mentioned earlier, what is done in practice is, a certain known 
sequence, called the ‘ training sequence’, is transmitted from the transmitting-end before commencing the 
transmission of the actual data. A replica of this training sequence, which is already stored at the receiving-
end, is applied as the desired signal (see Fig.10.19) after a time delay equal to the estimated / measured 
time delay of the channel. The error sequence now created is used to appropriately adjust the tap gains of 
the equalizer. This time used for initial adjustment of the tap gains using the training sequence, is called the 
‘training period’.
 Since the equalizer tap gains have converged to their optimum values by the end of the training period, 
the sequence at the output of the decision device and the pulse generator that follows it, will be sufficiently 
reliable, so that it may be used for continuing the tap-gain adjustment process. Hence, after the training 
period, the training sequence is switched off and normal data transmission is started at the transmitter. At the 
receiving-end too, the desired sequence will be supplied by the output of the pulse generator that follows the 
decision device, instead of the stored version of the  training sequence, which is switched off after the trans-
mitted training sequence is completely received. Since the output of the receiver decision device is used as 
the reference, or desired signal for adoption purpose, such a strategy is called ‘ decision-directed adaptation’.
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10.4.4 Scrambling

 Scrambling is basically a process of randomizing the binary message bit stream at the transmitting end. It has 
the following beneficial effects:
 1. It eliminates long strings of zeros or ones which might affect the receiver  synchronization.
 2. It makes it difficult to have unauthorized access to the data being transmitted.
It is, of course, necessary to undo, at the receiving end, the scrambling done at the transmitter to restore the 
original bit sequence of the bit stream as it existed before the scrambling.
 As shown in Fig.10.20, the scrambler consists of a feedback shift register while the unscrambler consists 
of a feed-forward shift register.

Fig. 10.20 (a) Scrambler, (b) Unscrambler

 We know that as a bit passes through one stage of the  shift register, there will be a unit delay, D, which is 
equal to the clock period. At the tick of the clock, the bit gets shifted from one stage of the shift register to the 
next. Hence, for the scrambler, we may write the following equation that relates its input sequence, X, with 
its output sequence, Y:

    3 4
Y D Y D Y X= ≈ ≈  (10.58)

Performing modulo-2 addition of 3 4( )D Y D Y≈  to both sides of the above equation, and noting that modulo-2 
addition of any binary sequence to itself yields a zero sequence, we get

3 4(1 )X D D Y= ≈ ≈  (10.59)

Since the  unscrambler has to retrieve X from Y, it simply implements the above equation, as may be readily 
seen from Fig. 10.20(b).
 There is, however, one serious problem with this arrangement –  error propagation at the unscrambler. Any 
erroneous bit in the input Y gives to the unscrambler will cause several output bits to be in error. The error 
propagation will stop only when all the bits in the unscrambler shift register are correct.

Example 10.7 Assuming the initial contents of all the shift registers of the scrambler of Fig.10.20(a) 
to be zeros, find the output sequence Y for an input sequence X given by X = 1 0 1 0 1 0 1 1 1 1 1 1.

Solution As the shift register contents are all zero initially, when we apply X, the output Y will be initially 
equal to X. Then as X enters the shift registers, it returns as 3 4( )D D X≈  where D is the unit delay operator.
 If we represent 3 4( )D D≈  by W, then the output sequence Y is given by

2 3
Y X WX W X W X= ≈ ≈ ≈ º
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But, 3 4 2 6 8 3 9 10 11 12( ) ;W D D W D D W D D D DD ≈ \ = ≈ \ = ≈ ≈ ≈
Substituting for W in the expression for Y and simplifying, we get

3 4 6 8 9 10 11 12
Y X D X D X D X D X D X D X D X D X= ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ º

We now write all these terms (up to only D12X only since the rest of the terms involving higher powers of the 
delay operator D will not affect the first 12 digits, as our input sequence X has been given only up to the first 
12 digits) and perform the modulo-2 addition to get Y.
 X = 1 0 1 0 1 0 1 1 1 1 1 1
 D3X = 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 
 D4X = 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1
 D6X = 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1
 D8X = 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1
 D9X = 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1
 D10X = 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1
 D11X = 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1
 D12X = 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1
\ Y = 1 0 1 1 0 1 1 0 0 1 0 1

Note that even though X, the input to the scrambler contains some periodicities and a long string of ones, the 
output Y of the scrambler is devoid of these undesirable patterns in the input bit stream.

10.4.5 Eye Pattern
The  eye pattern is an experimental tool that can be used in the field for evaluating the combined effect of  ISI 
and channel noise in the case of digital transmission systems. The only equipment needed to observe the eye 
pattern is an oscilloscope with a high persistence screen. To generate the eye diagram, the received baseband 
signal at the output of the channel which is given by

( ) ( / ( )k b
k

y t A P t k R n t= - +È ˘
Î ˚
Â  (10.60)

is applied the input to the Y-plates of the oscilloscope. The time base is triggered at the pulse rate (1/T) so 
that a pattern of duration T seconds is produced. This pattern, displayed on the screen of the oscilloscope, is 
actually a synchronized superposition of the pulses in successive time slots (or symbol intervals if it is M-ary 
baseband signaling). It is called an eye pattern, or an  eye diagram because it resembles the human eye for 
a binary baseband signal applied to the scope. Figure 10.21a shows the sketch of the output of the channel 
when polar NRZ pulse train is transmitted. Figure 10.21b illustrates the formation of an eye pattern or the 
screen of the oscilloscope.

Fig. 10.21  (a) Polar NRZ binary signal distorted by transmission through the channel (Noise is not shown), 

(b) Corresponding eye pattern
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 Figure 10.22(a) shows a computer generated (using MATLAB) eye diagram of a polar NRZ signaling 
system using a  raised cosine pulse with a  roll-off factor of 0.5 without channel noise. Figure 10.22(b) shows 
the eye diagram for the same transmitted signal but with channel noise (AWGN) added so as to produce an 
SNR of 20 dB. Note the decrease in the eye opening and the increase in the zero-crossing jitter.

Fig. 10.22 (a) Eye pattern with r = 0.5 and no noise; (b) Eye pattern with r = 0.5 and SNR = 20 dB
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Quite a lot of useful information is provided by the eye pattern as to how the baseband transmission system 
is performing. One can, by observing the pattern, draw inferences regarding the extent of  ISI, the extent of 
zero-crossing jitter, the noise margin available, etc. The interpretation of the various features of an eye pattern 
are all marked on the generalized binary eye pattern shown in Fig. 10.23 and these will be helpful in drawing 
inferences on the performance of a system by observing the eye pattern.

Fig. 10.23 Generalized binary eye pattern and its interpretations

 (i) The optimum sampling time corresponds to maximum eye opening as this gives maximum 

noise margin. Sampling at any other instant results in the noise margin getting reduced 

– that is tolerance to noise is reduced. In such a situation, if a pulse encounters a noise 

peak of opposite polarity with an amplitude greater than this reduced noise margin, then 

the polarity of the pulse will change and an error will creep in.

 (ii) ISI at the sampling instant partially closes the eye and thus reduces the noise margin. 

The noise margin is maximum at the optimum  sampling time.

 (iii) The width of the eye opening shows the time interval over which the received signal can 

be sampled.

 (iv) For  M-ary baseband signaling, the pattern that we get on the screen of the oscilloscope 

would be (M – 1) ‘eyes’ stacked vertically.

10.5 BAND PASS DIGITAL TRANSMISSION

In this chapter, till now we have considered transmission of digital baseband signals. As we have seen, 
these signals have considerable low frequency content. So they cannot be directly radiated using antennas of 
practicable size. So, in order to transmit these digital baseband signals over long distances using terrestrial 
radio links or satellite links, we have to shift them to a higher frequency by making them to modulate a high 
frequency carrier. Recall that this is exactly what we did with analog baseband signals like speech. In the case 
of digital baseband signals too, modulating a high frequency carrier not only makes it possible to radiate them 
using practical antennas, but also makes it possible to transmit several signals simultaneously over the same 

Remarks
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physical channel, which is termed as ‘ multiplexing’. For one way communication, we need a modulator at the 
transmitting-end, and a demodulator at the receiving end. For two-way or duplex communication, we need a 
modulator as well as demodulator at both the ends. So, these two are usually packaged into a single unit and 
this unit goes by the name ‘ modem’

Binary digital modulation schemes There are basically three types of digital modulation schemes. 
These are:
 1. Amplitude Shift Keying (ASK) or, On-off Keying (OOK)
 2. Frequency Shift Keying (FSK)
 3. Phase Shift Keying (PSK)
These are analogous respectively to Amplitude Modulation (AM), Frequency Modulation (FM) and Phase 
Modulation (PM) in analog continuous-wave modulation schemes. The following table gives details of these 
digital modulation schemes.

Table 10.3 Basic  digital modulation schemes

S. No. Type of modulation

Baseband binary digit

bk = 0 bk = 1

s1(t) s2(t)

0 £ t £ T 0 £ t £ T

1

 Amplitude Shift Keying (ASK)
or

 ON-OFF Keying (OOK)

0 A cos wct

or
A sin wct

2  Frequency Shift Keying (FSK) A cos(wc – wd)
Or

A sin (wc – wd)t

A cos(wc + wd)t
or

A sin(wc + wd)t

3  Phase Shift Keying (PSK) –A cos wct

or
–A sin wct

A cos wct

or
A sin wct

Note fc and fd are suitably chosen in relation to T, as explained later.

For each type of modulation, corresponding to binary digit bk = 0 a signal s1(t) of duration T seconds 
and corresponding to binary digit bk = 1, a signal s2(t) of duration T seconds, are produced as shown in 
Table 10.3. The waveforms of s1(t) and s2(t) for the three basic digital modulation schemes are shown in 
Fig. 10.24.

To ensure that each bit interval of T sec contains an integer number of cycles of the carrier 

wave, the carrier frequency fc is chosen to be n/T, where n is a suitable fixed integer.

10.5.1 Methods of Generation

Amplitude shift keying (ASK) As Fig. 10.24(b) suggests, binary ASK signal is generated by simply 
switching on the carrier oscillator for bk = 1 and switching it off for bk = 0. This may be implemented by 
multiplying the carrier signal with a unipolar NRZ coded bit stream, making use of a product device as shown 
in Fig. 10.25.

Note
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Fig. 10.24 Waveforms of digitally modulated binary signals: (a) Binary digits, (b)  ASK, (c)  FSK, (d)  PSK

Fig. 10.25 Generation of binary ASK signal

Frequency shift keying (FSK) One easy method of generation of a BFSK signal is to have two 
oscillators, one of frequency (fc – fd) and the other of frequency (fc + fd) and switching in the former whenever 
bk = 0 and the latter whenever bk = 1. This can be achieved by making the switch to be operated by the binary 
baseband signal.

Fig. 10.26 Generation of BFSK (discontinuous phase) signal

Though simple to implement, this method of generation of a BFSK signal has one serious disadvantage. 
Because of the switching, the modulated signal is discontinuous at each switching instant. The spectrum of 
the resultant BFSK signal will contain large side-lobes which do not carry any information and only waste 
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the bandwidth. To avoid these discontinuities, we may go in for what is referred to as the ‘ continuous-phase 
FSK’ (CPFSK) which can be obtained by having only one oscillator and frequency modulating it using the 
binary baseband bit stream as the modulating signal.

Fig. 10.27 Generation of BFSK (continuous phase) signal

Binary phase shift keying (PSK) Since s1(t) and s2(t), the two signals produced corresponding respec-
tively to bk = 0 and bk = 1 are such that s1(t) = –s2(t) in the case of BPSK, a simple arrangement as shown in 
Fig. 10.28 may be used for generating a BPSK signal.

Fig. 10.28 Generation of BPSK signals

10.5.2 Power Spectra of Binary ASK, FSK and PSK Signals

Binary ASK From Fig. 10.24, we find that a binary ASK signal is generated by multiplying a unipolar 
NRZ-coded binary baseband bit stream with the carrier signal of frequency fc. Hence, the power spectrum 
of binary ASK signal is simply the frequency-shifted version of the power spectrum of a unipolar NRZ line 
code given earlier in Fig. 10.25(a). Hence, the PSD of a binary ASK signal is as shown below in Fig. 10.29.

Fig. 10.29 PSD of a binary ASK signal

This PSD, being a sinc2 function, has a roll-off proportional to 2| |cf f-  as we move away from the carrier 
frequency fc. Since (1/T) equals R, the bit rate, the null-to-null bandwidth is 2R as shown. Also, the trans-
mission bandwidth of the binary ASK signal is BT = 2B, where B is the baseband transmission bandwidth, 
since ASK is nothing but an AM type of modulation. Since the minimum baseband transmission bandwidth = 
Rb /2 the minimum transmission bandwidth BT for ASK is R, where Rb is the binary  bit rate = 1/T.
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Binary FSK As shown in Table 10.3 and Fig. 10.24(c), in  binary FSK, the two signals s1(t) and s2(t) trans-
mitted corresponding to bk = 0 and bk = 1 differ only in frequency. Of the different types of BFSK signals, as 
stated in the discussion on the method of generation of BFSK, we shall consider here the continuous phase 
type called Sunde’s FSK. For BFSK, we know

1

2

2
cos 2 ( ) ; 0

0 : ( )

0 ; otherwise

2
cos 2 ( ) ; 0

1: ( )

0 ; otherwise

b
c d

k

b
c d

k

E
f f t t T

b s t T

E
f f t t T

b s t T

p

p

Ï
- £ £Ô= = Ì

Ô
Ó
Ï

+ £ £Ô= = Ì
Ô
Ó

 (10.61)

and  (10.62)

Here, Eb is the bit energy and T is the bit duration. The peak amplitude of the cosine function in s1(t) and s2(t)
is taken as 2 /bE T  so as to normalize and ensure that each signal has an energy of Eb. The frequency offset 
is fd. This fd is taken as (1/2T) in  Sunde’s FSK. Hence, we shall write

1

2

2
cos 2 ( 1/2 ) ; 0

( )

0 ; otherwise

2
cos 2 ( 1/2 ) ; 0

( )

0 ; otherwise

b
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f T t t T

s t T

E
f T t t T

s t T
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Ô
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Ï
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Ô
Ó

 (10.63)

and  (10.64)

We may conveniently club these two equations and write

2
cos 2 ; 0

( )

0 ; otherwise

b
c

E
f t t T

s t T T

p
p

Ï Ê ˆ £ £Ô Á ˜Ë ¯= Ì
Ô
Ó

m
 (10.65)

where s(t) = s1(t) when the minus sign is taken and s (t) = s2(t) when the plus sign is taken.
 Now, for finding the PSD of Sunde’s BFSK, we need to concentrate on s(t) over the interval 0 t T£ £ .

2
( ) cos 2 ; 0

2 2
cos cos 2 sin sin 2

2 2
cos cos 2 sin sin 2

b
c

b b
c c

b b
c c

E
s t f t t T

T T

E Et t
f t f t

T T T T

E Et t
f t f t

T T T T

p
p

p p
p p

p p
p p

Ê ˆ= £ £Á ˜Ë ¯

Ê ˆ Ê ˆ= -Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ Ê ˆ= ±Á ˜ Á ˜Ë ¯ Ë ¯

m

m m

 (10.66)

  (10.67)

In the RHS of the above equation, the first term is the  inphase component and the second term is the 
 quadrature component. The plus sign corresponds to bk = 0 and the minus sign corresponds to bk = 1. As per 
our practice, we shall assume that the 0s and 1s occur with equal probability and that they are emitted by the 
source independently.
 We find that the first term, i.e., the inphase component of s(t) is independent of which symbol is trans-
mitted while the second term, i.e., quadrature component is dependent on whether bk = 0 or 1. Thus, the two 
components are not only  orthogonal, they are  statistically independent. So we can find the  PSD of each of 
these components and add their PSDs to get the PSD of s(t).
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 The  inphase component is independent of bk and so is deterministic and its value is 2 / cos( / )bE T t Tp
for all time. Hence its PSD works out to

  PSD of inphase component 
1 1

2 2 2
bE

f f
T T T

d d
È ˘Ê ˆ Ê ˆ= - + +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

 (10.68)

i.e., it consists of two delta functions each of strength Eb /2T and located at 
1

2
f

T
= - .

 The quadrature component value, on the other hand, is random and is given by

2
sin ; 0 , if 1

2
sin ; 0 , if 0

0; outside the interval 0

b
k

b
k

E t
t T b

T T

E t
t T b

T T

t T

p

p

Ï Ê ˆ £ £ =Á ˜Ô Ë ¯ÔÔ
Ì Ê ˆ- £ £ =Á ˜Ô Ë ¯
Ô

£ £ÔÓ
Being of finite duration, it is an energy signal and its power spectral density is given by its energy spectral 
density divided by its duration, T.

 PSD of quadrature component 
2

2 2 2 2

8 cos ( )

(4 1)

bE fT

f T

p

p
=

-
 (10.69)

Hence SB(f), the baseband PSD of Sunde’s BFSK signal works out to be the sum of the PSDs of the inphase 
and quadrature components (which are independent)

\
2

2 2 2 2

8 cos ( )1 1
( )

2 2 2 (4 1)

b b
B

E E fT
S f f f

T T T f T

p
d d

p

È ˘Ê ˆ Ê ˆ= - + + =Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚ -
 (10.70)

Noting that carrier modulation simply translates this baseband power spectrum along the frequency axis by 
fc, the PSD of Sunde’s BFSK signal is plotted in Fig. 10.30.

Fig. 10.30 Power spectrum of  Sunde’s BFSK signal

 (i) Since d

1
f

2T
=  in Sunde’s FSK, from Fig. 10.30, we find that the impulses located at 

c

1
f

2T

Ê ˆ-Á ˜Ë ¯  and c

1
f

2T

Ê ˆ+Á ˜Ë ¯  correspond to the keyed frequencies c d( f f )-  and c d( f f )+ .

 (ii) The spectrum has a fourth-order roll off.

Remark
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 (iii) Because of the rapid roll off, the spectrum has very small values beyond c

1
| f f | ,

T
- >

i.e., for c b| f f | R- > . Hence, the transmission bandwidth BT is generally taken as BT = Rb.

 (iv) The two frequency impulses located at c

1
f

2T

Ê ˆ-Á ˜Ë ¯  and c

1
f

2T

Ê ˆ+Á ˜Ë ¯  are helpful in 

arranging synchronization of the receiver with the transmitter.

Binary PSK From Fig. 10.28, we find that we may write s1(t) and s2(t) in the case of BPSK as:

and

1

2

( ) cos ; 0

( ) cos ; 0

c

c

s t A t t T

s t A t t T

w

w

= - £ £

= £ £
Since we are representing the bit energy as Eb, we will replace A by 2 /bE T  and write s1(t) and s2(t) as

and
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As usual, we shall assume that a binary 0 and a binary 1 are equally likely and that the symbols in adjacent 
time slots are statistically independent. The BPSK modulated signal will therefore have a corresponding 
baseband binary sequence which will be a random polar binary wave with amplitudes of either 2 /bE T  or 

2 /bE T-  with equal probability.
Since the signal

2
; 0

0; otherwise

bE
t T

T

¸
£ £ Ô

˝
Ǫ̂

 (10.72)

is Fourier transformable, we may find the  energy spectral density of the above random signal and divide it by 
the symbol duration T to get the baseband PSD for a BPSK signal. The energy spectral density itself is the 
squared magnitude of the  Fourier transform of the signal in Eq. (10.72). Thus, the baseband  PSD of BPSK 
signal is obtained as

2
2

2

2 sin ( )
( ) 2 sinc ( )

(  )

b
B b

E fT
S f E fT

fT

p

p
= =  (10.73)

Since the carrier simply shifts the baseband spectrum by a frequency of fc, we obtain the PSD of a BPSK 
signal as shown in Fig. 10.31.

Fig. 10.31 PSD of a BPSK signal
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 (i) The spectrum has a second-order roll off.

 (ii) The transmission bandwidth T b

1
B R

T
@ = .

10.5.3 Detection of Binary ASK, FSK and PSK Signals

As mentioned earlier in the introduction to this chapter, band pass digital signals may be detected coher-
ently or non-coherently, with the exception of PSK which can be detected only coherently. Although 
coherent reception requires elaborate  carrier recovery arrangements, it gives optimum performance which 
the non-coherent receivers will not be able to give. We shall now discuss  coherent detection of binary ASK, 
FSK and PSK and  non-coherent detection of binary ASK and FSK. Coherent reception implies the usage of a 
locally generated carrier signal by the receiver. This locally generated carrier must be in frequency and phase 
synchronization with the carrier signal at the transmitter. This, in turn, requires the usage of carrier recovery 
arrangements in the receiver, which recover the carrier signal from the received band pass digital signal 
itself. In addition, irrespective of whether it is coherent, or non-coherent reception,  synchronization of the 
receiver with the transmitter is absolutely necessary for proper operation of the system, as it is necessary for 
the receiver to know precisely when the new symbol starts, so that the sampling is done at the correct instant 
during each symbol period. This necessitates symbol-timing recovery, or  clock recovery. Methods of carrier 
recovery and clock recovery are discussed in Section 10.9 of this chapter.
 At this stage, we propose to discuss only the principle of detection of each of the modulation schemes 
without bothering about the effect of channel noise. A detailed analysis of the noise performance of each of 
these modulation schemes is reserved for the next chapter.

Coherent detection of binary ASK signals If we denote the modulated signal by xc(t), for a  binary 
ASK signal, we have

2
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( ) cos for 0 if 1
( )

( ) 0 for 0 if 0
c k

c
k

s t A t t T b
x t

s t t T b

w= £ £ =Ï
= Ì = £ £ =Ó

 (10.74)

whereas discussed earlier, T denotes the binary symbol period and bk denotes the binary symbol.

Fig. 10.32  Coherent detection of an ASK signal
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 Low pass filtering removes the high frequency component, viz., 2( /2)cos 2 cA tw . Hence, VM equals (A2/2)
if bk = 1 and 0 if bk = 0. In the absence of channel noise, VR, the reference voltage, can as well as set at zero 
volts. As will be discussed in the next chapter, in the presence of channel noise, VR is set at an optimum value, 
which of course, will not be zero.

Remarks
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Non-coherent detection of binary ASK signals As in the case of AM, an ASK signal can be 
detected non-coherently also. From the waveform of an ASK signal shown in Fig. 10.24(a), it is clear that as 
in the case of AM, for ASK too we may make use of envelope detection. Since the envelope detector extracts 
the envelope of the input signal, the detector output will be almost equal to the peak value of the received 
sinusoidal signal for binary baseband symbol ‘0’. Hence, an arrangement shown in Fig. 10.33 can be used.

Fig. 10.33  Non-coherent detection of a binary ASK signal

 Coherent detection requires a complex arrangement while non-coherent detection of ASK needs only a 
simple and relatively inexpensive arrangement. The received signal at the output of the channel will not be 
just xc(t), the ASK signal plus additive white noise. A part of the noise, falling within the pass band of the BPF 
reaches the input of the envelope detector. Hence, for reasonably high values of received SNRs, non-coherent 
detection is used for ASK. In fact, if one is prepared to go in for coherent detection, PSK is a better option 
than the ASK, the only attractive feature of which is its simplicity. That is why coherent detection of ASK is 
seldom used.

Coherent detection of binary FSK signals For binary FSK, during each time slots, one of the two 
signals s1(t) and s2(t) will be transmitted, where

and
1
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( ) cos( ) ; 0 for 0

( ) cos( ) ; 0 for 1
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Fig. 10.34  Coherent detection of binary FSK

Signals 1( )s t¢  and 2 ( )s t¢  which are in frequency and phase synchronism with s(t), are generated in the receiver 
and used for being correlated with the s(t) to be detected. If s(t) is equal to s1(t) during a given time slot, 1( )s t¢
correlates well with it while 2 ( )s t¢  does not. So, during that time slot, when the switches k1 and k2 are closed, 
V1 > V2 and the s(t) being detected is declared to be s1(t) during that time-slot. On the other hand, if s(t) were 
to be s2(t) during a time slot, V2 > V1 and this fact is used to declare that s(t) = s2(t) during the time slot.
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Non-coherent  detection of binary FSK Since s1(t) and s2(t) differ only in frequency, we may make 
use of the following arrangement shown in Fig. 10.35 for non-coherent detection of binary FSK.

Fig. 10.35 Non-coherent detection of binary FSK

 Suppose s(t) = s1(t) during a particular time slot of T seconds. Then ideally the output of the top narrowband 
filter with center frequency at f1 will be equal to s1(t) and that of the other narrowband filter will be zero. 
Since an envelope detector extracts the envelope of the signal given as input to it, the output of the top 
envelope detector would be almost equal to the peak value of the signal s1(t) while the output of the lower arm 
envelope detector would be zero. Hence, V1 > V2 and the decision would be that bk = 0 during that time slot. A 
similar thing happens if s(t) were to be equal to s2(t) during a given time slot. Then V2 > V1 and the receiver’s 
decision would be that bk = 1 during that time slot.

 Detection of binary PSK Since the information regarding whether bk = 0 or 1 during a given time slot 
is contained in the phase of the binary PSK signal, coherent detection alone is possible in this case. Hence, 
the following arrangement, shown in Fig. 10.36, may be used for detection. For PSK,

Fig. 10.36 Detection of binary PSK signals

If bk = 1:
2

2( )2 cos ( )2 cos 2 cos (1 cos 2 )c c c cs t t s t t A t A tw w w w= = = +
The LPF removes the cos 2 ctw  term making Vs = A.
If bk = 0:

     
2

1( )2 cos ( )2 cos 2 cos (1 cos 2 )c c c cs t t s t t A t A tw w w w= = - = - +

Since the LPF rejects the cos 2 ctw  term, Vs = –A.
Thus, if Vs > 0, the decision would be that bk = 1 and if Vs < 0, it would be that bk = 0.

10.6  DIFFERENTIAL PHASE SHIFT KEYING (DPSK)

In ordinary binary phase shift keying, a signal, 2 ( ) cos cs t A tw=  is transmitted in a given time-slot, if the 
corresponding baseband binary digit in that time slot is a 1 and a signal 1( ) cos cos( )c cs t A t A tw w p= - = +
is transmitted if the binary baseband digit is a 0.
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 However, BPSK requires  coherent detection, which, at the receiving-end, involves the use of a carrier 
signal that is in frequency and phase synchronism with the carrier at the transmitter. A technique, known as 
‘ Differential Phase Shift Keying’, or  DPSK, obviates the need for a coherent detector, but is sub-optimum 
in its performance. In this method, the waveform transmitted during a given time slot is cos cA tw  if the 
baseband binary digits, in that time slot and the preceding one, are alike, i.e., both are either 1s or 0s; and the 
waveform transmitted is – cos cA tw  if they are not alike. Thus, at the transmitter, the two major operations 
are differentially encoding the binary baseband data stream (which is to be transmitted) and then  phase shift 
keying of the encoded bit stream.
 The receiver therefore makes use of the signal received in the preceding time slot itself for the reference 
phase. This, it does, by correlating the signal received during the present time slot with that received in the 
previous time slot. The receiver, therefore, must have storage facility. If the two signals are correlated, it 
decides that the message bit in the present time slot is a 1, and if they are anti-correlated, it decides that the 
present message bit is a 0. Instead of using a clean carrier waveform for phase reference, this method utilizes 
the noisy received signal of the preceding time slot, so it is a sub-optimum method.

10.6.1  Differential Encoding and Phase Shift Keying

Since differential encoding entails comparison of the present bit with the previous bit of the input bit stream, 
there is a need to have a ‘reference’, or ‘start-up digit’. This is always taken as 1. The encoding process is 
illustrated in Table 10.4.

Table 10.4 Differential encoding and decoding

Message sequence 1 1 0 0 1 1 0 0

Encoded sequence; Reference digit 1 1 1 0 1 1 1 0 1

Transmitted phase                             0 0 0 p 0 0 0 p 0

Decoded sequence 1 1 0 0 1 1 0 0

Figure 10.37 shows the block diagram of a  DPSK transmitter wherein the differential encoding and phase 
shift keying are done.

Fig. 10.37 Block diagram of a DPSK transmitter

The logic gate, called the equivalence gate, has to output a 1 if the present digit and the immediate previous 
digit of the message bit-stream are alike; and a 0 as output if they are not alike. Hence, the truth table of the 
equivalence gate is as shown in Table 10.5.
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Table 10.5 Truth table of the equivalence gate

X1 X2 Y

0 0 1

0 1 0

1 0 0

1 1 1

A look at the truth table of the  equivalence gate reveals that the operation it performs is just the complement 
of that of an Exclusive – OR gate. The sequence of 0s and 1s at the output of the equivalence gate is converted 
by the level shifter into a sequence of –1s and 1s, i.e., the level shifter converts the non-polar sequence into a 
 polar NRZ sequence. This polar sequence is now used to modulate the carrier signal cos cA tw  by a process 
of multiplication, in order to get the DPSK signal.

Fig. 10.38 Block diagram of a  DPSK receiver

Let the received signal during the kth time slot be

( ) cos ; ( 1)k cr t A t k T t kTw= - £ £  (10.75)

The received signal in the previous time slot may be either cos or – cosc cA t A tw w . Taking it as cA twcos ,

we have

1( ) cos ; ( 2) ( 1)k cr t A t k T t k Tw- = - £ £ -  (10.76)

Then,

               2 2 2
0

0

1
( ) cos , since

2 2

T

c
c

n
r T A t dt A T T

f
w= = =Ú  (10.77)

But, if
    1( ) cos ; ( 2) ( 1)k cr t A t k T t k Tw- = - - £ £ -  (10.78)

Then,

2 2 2
0

0

1
( ) cos

2

T

cr T A t dt A Tw= - = -Ú  (10.79)

Similarly, if 1( ) cos  k cr t A tw- = -  and rk(t) is also – cos cA tw , then also r0(T) will be equal to 21
,

2
A T+

while it will be equal to 21

2
A T-  if rk – 1(t) and rk(t) are of opposite sign.

 Thus, if r0(T) > 0, the receiver decides that the present bit is 1 and if r0(T) < 0, the receiver decides that the 
present bit is a 0.

10.6.2 Differentially Encoded Phase Shift Keying ( DEPSK)

DEPSK differs from DPSK only in the manner in which the receiver operates. There is no difference insofar 
as the transmitters are concerned. But the receiver configurations are different.
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  DPSK receiver makes use of a delay of T at the carrier frequency. Of course the  DPSK transmitter also 
requires a delay of T sec, but that delay is at baseband level, not at carrier frequency. The DPSK system 
obviates the use of a T sec delay element at the carrier frequency by  coherent detection of the DPSK signal to 
recover the encoded sequence of digits. From the encoded sequence, the message sequence is then recovered 
by making use of a baseband decoder shown in Fig.10.39.

Fig. 10.39 A baseband decoder to recover message bit stream from the differentially encoded bit stream

Advantage It avoids the use of delay at carrier frequency.

Disadvantage Needs coherent detection to recover the differentially encoded bit stream.

10.6.3 Coherent  Quadriphase-Shift Keying (QPSK)

Although it is a special case of M-ary PSK discussed in Section 10.8.8, we are discussing it separately 
here because of its importance. Quadriphase-shift keying (QPSK), is a bandwidth efficient band pass digital 
modulation scheme that makes use of quadrature multiplexing. Just like in BPSK, in QPSK too, the message 
information is carried in the phase of the transmitted signal. In QPSK, any one of the four possible signals, 
which have four equally spaced values, p/4, 3p/4, 5p/4 and 7p/4 for the carrier phase, is transmitted during 
the given symbol period of t seconds. The QPSK signal set may be represented as

2
cos 2 (2 1) ; 0

( ) 4

0 ; otherwise

c
i

E
f t i t

s t

p
p t

t

Ï È ˘+ - £ £Ô Í ˙= Î ˚Ì
Ô
Ó

 (10.80)

Hence, i = 1, 2, 3, 4 and E is the signal energy in t sec, the symbol duration. As usual, the carrier frequency 
fc is so chosen that an integer number of carrier cycles are completed in the symbol period t by making 

fc = ,
n

t
where n is a fixed integer.

 In the baseband binary bit-stream consisting of 1s and 0s, two adjacent digits will have one of the four 
possible ways of ordering of the digits. Each such pair of bits is called a ‘dibit’. These four ‘dibits’ may be 
ordered as per the ‘ Gray Code’ in which two consecutive dibits will differ in one binary digit only, as shown 
in Table 10.6. The four phase values of the QPSK signal are represented by these Gray-encoded dibits.

Table 10.6 Dibits, QPSK phase, and signal coordinates

Signal Gray Encoded

 Dibits

Phase of Qpsk

Signal in Radians

Signal Coordinates

along f1(T) and f2(T)

s1(t) 1 1  p/4   /2, /2E E

s1(t) 0 1 3p/4 – /2, /2E E

s1(t) 0 0 5p/4 – /2, – /2E E

s1(t) 1 0 7p/4   /2, – /2E E
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10.6.4 Signal Space and QPSK Signal Constellation

The signal set of Eq. (10.80) may conveniently be rewritten as

1,2,3,4

2 2
cos 2 cos(2 1) sin 2 sin(2 1) ; 0

( ) 4 4

0 ; otherwise

c c
i

i

E E
f t i f t i t

s t

p p
p p t

t t
=

Ï
- - - £ £Ô= Ì

Ô
Ó

 (10.81)

For the  signal space containing this signal set, we may conveniently choose the following as  basis signals.
Being cosine and sine functions, they are obviously  orthogonal and therefore form an orthogonal basis set. 
The corresponding orthonormal basis signals are 

c

c

t t

t t

f w
t

f w
t

¸
= ÔÔ

˝
Ô= - Ǫ̂

1

2

2
( ) cos

2
( ) sin

 (10.82)

and

Now,

   1

2 2
( ) cos 2 cos sin 2 sin

4 4c c

E E
s t f t f t

p p
p p

t t
= -

The coordinates of this s1(t) along f1(t) and f2(t) are:

and

1 1 1 1 1
0

1 2 1 2 2
0

( ( ), ( )) ( ) ( ) along ( )
2

( ( ), ( )) ( ) ( ) along ( )
2

E
s t t s t t dt t

E
s t t s t t dt t

t

t

f f f

f f f

= =

= =

Ú

Ú

The coordinates of s2(t), s3(t) and s4(t) along f1(t) and f2(t) can also be found in a similar way. These are all 
listed in the last column of Table 10.6. Figure 10.40 shows the location of these signals s1(t), s2(t), s3(t) and 
s4(t) in the signal space spanned by the basis signals f1(t) and f2(t).

Fig. 10.40 Signal space and  signal constellation for QPSK

 We find that the points representing the signals s1(t) in the signal space is lying in the first quadrant, the 
one representing s2(t) is in the second quadrant, the one representing s3(t) is in the third quadrant and the 
one representing s4(t) is in the fourth quadrant. Thus, our signal space is two dimensional and the decision 
boundaries are the quadrant boundaries themselves. We therefore mark the quadrant in which signal si(t) is 
laying as zone –i, i = 1, 2, 3, 4.
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10.6.5 Generation and Detection of QPSK Signals

Methods used for generation and  detection of QPSK signals are directly based on the equivalence of a QPSK 
system to two BPSK systems – the inphase channel and the quadrature channel, operating in parallel, as 
discussed earlier.

Fig. 10.41  QPSK transmitter

 The message binary bit stream of 1s and 0s is encoded into a polar non-return-to-zero bit stream of 1s and 
–1s. The demultiplexer segregates the odd and even indexed polar binary digits, routing all odd-indexed bits 
through the upper inphase channel where they modulate the inphase carrier f1(t). The demultiplexer routes all 
even-indexed polar binary digits through the lower quadrature channel where, by a process of multiplication, 
they modulate the inphase carrier f2(t). The inphase carrier BPSK signal produced in the upper arm and the 
quadrature carrier BPSK signal produced in the lower arm are fed to an adder and we get the QPSK signal 
from its output.

Fig. 10.42 A  coherent QPSK receiver

The inphase and quadrature channels of the QPSK coherent receiver are typical BPSK coherent receivers. 
Locally generated carrier signals f1(t) and f2(t) are supplied to the correlators of the inphase and quadrature 
channels respectively. Although the received QPSK signal is applied to both the channels of the receiver, the 
inphase channel correlator produces zero output for all bits with quadrature carrier modulation. Similarly, 
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the quadrature channel correlator produces zero output for all bits with inphase carrier modulation. r01(t)
is the output of the inphase channel correlator for an inphase carrier modulated bit. Similarly, r02(t) is the 
output of the quadrature channel correlator for a quadrature carrier-modulated bit. If r01(t) > 0 the inphase 
channel decision device decides it is a 1 and if r01(t) < 0, it decides, it is a binary 0 and it outputs a binary 
digit accordingly. Similarly, if r02(t) > 0 the quadrature channel’s decision device decides that it is a binary 1 
and if r02(t) < 0, it decides that it is a binary 0 and outputs a binary 0. These binary digits from the outputs of 
the decision devices in the two channels are then multiplexed to obtain an estimate of the transmitted binary 
message sequence with minimum possible  probability of error (for  AWGN) since it is correlation reception.

10.6.6  Power Spectrum of QPSK Signal 

We shall derive the PSD of a QPSK signal under the following assumptions:
 1. In the message binary sequence, the binary digits 0 and 1 are equally probable.
 2. Adjacent transmitted symbols are statistically independent.
Referring to Eq. (10.81), since 

cos (2 1) 1/ 2 for 1, 2, 3, 4
4

i i
pÈ ˘- = ± =Í ˙Î ˚

the equivalent low pass (or baseband) signal corresponding to either the inphase component, or the quadrature 
component of the QPSK signal will be a random binary sequence

      
; 0

( )

0 ; otherwise

E
t

g t
t

t

Ï
± £ £Ô= Ì

Ô
Ó

 (10.83)

where E is the symbol energy and t is the symbol duration. As usual, we shall find the PSD of the low pass 
signal g(t) and use it for sketching the PSD of the band pass QPSK signal by appropriate frequency transla-
tions. First we note that

   
/2

( )
E t

g t
t

t t

-Ê ˆ= ± PÁ ˜Ë ¯
The PSD of this  random binary sequence may be written as

2[ of ( )]
( )

E F T g t
G f

t

◊ ◊
=  (10.84)

where E stands for ‘ expectation’.

\

E
f

G f

E f

t t
t

t

t

È ˘
◊ ◊Í ˙

Î ˚=

=

2

2

sinc

( )

sinc  (10.85)

This is the PSD of the low pass equivalent of either the inphase component, or, the quadrature component of 
the QPSK signal. However, since the inphase and quadrature components are  statistically independent, the 
power spectrum P(f) of the low pass equivalent of the QPSK signal will be the sum of the PSDs of the low 
pass equivalents of the two components. Thus,

2

2

( ) 2 sinc ( )

4 sinc (2 )b

P f E f

E fT

t=

=  (10.86)

where Eb is the bit energy and T is the bit duration.
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Fig. 10.43  Power spectrum of a QPSK signal

10.6.7  Non-coherent QPSK

A non-coherent QPSK is possible that makes use of differential encoding at the transmitter and phase-
comparison method of detection at the receiver, just like in DPSK. However, a differentially encoded QPSK 
(DQPSK) requires about 2.3 dB more signal energy than the coherent QPSK for any specified probability of 
error.

10.6.8  Offset QPSK (OQPSK)

This is a variant of QPSK in which the bit-stream for the quadrature component is delayed by half a symbol 
duration with respect to the inphase component bit-stream. Thus the two orthonormal basis signals for the 
OQPSK are:

1

2

2
( ) cos 2 ; 0

2
( ) sin 2 ; /2 3 /2

c

c

t f t t

t f t t

f p t
t

f p t t
t

= £ £

= £ £  (10.87)

The need for this T/2 offset arises from the fact that in the  QPSK, sign changes of the inphase and quadrature 
components cause sudden carrier phase changes. These phase changes of the carrier may be by ±90°, or 
sometimes even by ±180°, depending upon whether the sign change occurs only for one of the two compo-
nents, or for both. As can be seen from the  signal constellation of QPSK, whenever adjacent dibits in the 
binary message sequence differ only in one of the digits (like 1, 1 and 0, 1), the transition from the message 
point corresponding to the first  dibit to the message point corresponding to the next dibit of the message 
sequence involves a change of carrier phase by only ±90°. On the other hand, if the adjacent dibits of the 
message sequence differ in both the binary digits (like 0, 0 and 1, 1 or 1 0 and 0 1) the transition from the 
message point corresponding to the first dibit to the message point corresponding to the next dibit of the 
message sequence will involve a change of carrier phase by ±180°.
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Fig. 10.44 (a) Possible transitions in QPSK, (b) Possible transitions in offset QPSK

Such sudden phase changes in the carrier can result in reduction of the amplitude of the QPSK signal when 
it is filtered. So, if the QPSK signal, during the course of its transmission, is passed through a filter before 
the signal is detected, the resulting amplitude reduction of the signal can lead to errors in detection. Carrier 
phase changes by ±180° in particular, cause considerable reduction in the envelope amplitude and so are to 
be avoided.
 In OQPSK, because of the offset, carrier phase changes are confined to ±90° only and so the extent of 
amplitude changes is reduced, thus reducing the probability of occurrence of symbol errors in the detection 
process.
 Theoretically, the average probability of symbol error is exactly the same for QPSK and OQPSK for 
coherent detection.

10.6.9  p/4-Shifted QPSK

As pointed out in our discussion on offset QPSK, the sudden carrier phase changes of ±90° and ±180° that 
can take place in ordinary QPSK lead to sudden reduction in the amplitude of the envelope of the carrier and 
these can cause decoding errors.  Offset QPSK, as we have seen already, tries to reduce the occurrence of such 
decoding errors by not allowing ±180° phase changes of the carrier due to transition from one message point 
to another. However, ±90° phase changes do occur in the offset QPSK.

p/4-shifted QPSK is yet another variant of QPSK and it goes one step further compared to offset QPSK 
by not allowing even ±90° carrier phase changes to occur. The phase transition from one message point to 
the next in the case of p/4 shifted QPSK are restricted only to ±p/4 and ±3p/4 radians. This it does by the 
following method:

Fig. 10.45 Two  QPSK constellations
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Two commonly used  QPSK constellations are shown in (a) 
and (b) of Fig. 10.45. The carrier phase transmitted corre-
sponding to the first dibit of the binary baseband message 
sequence is say as at message point m1 in the first constel-
lation. For the next dibit of the message sequence, the carrier 
phase transmitted will be as per the second constellation – it 
may correspond to m1, m2, m3 or m4 in that constellation, and 
depends on the message dibit. The third dibit will be trans-
mitted as per the first constellation like this, the carrier phase 
is chosen alternatively from one constellation and then the 
other. Thus in p/4 QPSK, there will be eight possible phase-
states, as shown in Fig. 10.46.
 1. Note that from each state there are only four possible 

transitions, and all of them involve a phase change of 
±p/4, or ±3p/4 radians and not ±p/2 or ±p.

 2.  p/4-shifted QPSK signals, unlike  offset QPSK signals, 
lend themselves to non-coherent detection. Also, they 
can be differentially encoded, like the QPSK signals.

Example 10.8 Given the input binary sequence 1100100010, sketch the waveforms of the inphase 
and quadrature components of the modulated wave as well as the modulated wave obtained by QPSK, 
based on the signal set shown in Fig. 10.40.

Solution

Fig. 10.47 (a) Given sequence, (b) Inphase component waveform, (c) Quadrature component waveform, (d)  QPSK signal

10.7 COHERENT  MINIMUM SHIFT KEYING (MSK)

Minimum shift keying (MSK) is a type of  continuous phase FSK that produces  orthogonal signaling and is 
bandwidth efficient. It gives a probability of error that is as good as that of binary PSK and QPSK. A variant of this,
called  Gaussian Minimum Shift Keying (GMSK) is extensively used in  GSM cellular mobile communications.

Fig. 10.46  Possible phase-states and transitions 

for p/4-shifted QPSK
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  Coherent BFSK receivers use the phase information contained in the received signal only for  synchroni-
zation but not for improved detection. In  MSK, the phase information of the received signal is made use of in 
the detection process to improve the noise performance. In Section 10.5.1, under the methods of generation 
of BFSK signals, it was pointed out that the method making use of switching in of oscillators of frequencies 
(fc + fd) and (fc – fd) corresponding to baseband message digits 1 and 0 respectively, will result in a BFSK 
signal with discontinuities at the switching instants. To avoid these discontinuities and the resultant wastage 
of bandwidth, it was suggested that frequency modulating a single carrier oscillator using the baseband polar 
binary data stream could be resorted to. Let us now examine the effect of such a  frequency modulation on the 
phase of the signal. For this purpose, let us represent the frequency modulated signal as:

2
( ) cos[2 ( ) (0)]b

c

E
s t f t t

T
p f f= + +  (10.88)

where, Eb is the energy of the signal in one bit-duration T, f(0) is the initial phase of the signal at t = 0 and 
f(t) is the phase contributed by the modulation and is given by:

0

( ) 2 ( )
t

ft k x d
l

f p l l
=

= Ú  (10.89)

In the above equation, x(t) is the modulating signal. In our case the modulating signal is the baseband binary 
(polar) sequence in which

if 1
( ) for 0

if 0
k

k

A b
x t t T

A b

+ =Ï
= £ £Ì- =Ó

 (10.90)

\
0

( ) 2 2 ; 0
t

f ft k Ad k At t T
l

f p l p
=

= ± = ± £ £Ú  (10.91)

where, kf is the  frequency deviation constant.
\ f(t) increases (or decreases) linearly with time t during the bit duration, commencing from a value of zero.
 The  instantaneous frequency fi(t) at the instant t, is given, as usual by

1
( ) [2 ( ) (0)]

2

; 0

i c

c f

d
f t f t t

dt

f k A t T

p f f
p

= + +

= ± ◊ £ £  (10.92)

 (using Eq. 10.91 and noting that f(0) is a constant)

Hence 1 ; 0c f kf f k A b= - =  i.e., s1(t) is transmitted

and 2 ; 1c f kf f k A b= + =  i.e; s2(t) is transmitted (10.93)

\ 2 1( ) 2 ff f k A- = ◊  (10.94)

Let us for convenience introduce a parameter h which we shall define later, and which is such that

2 1( ) 2 f

h
f f k A

T
- = ◊ =  (10.95)

Since 2kf A represents frequency deviation,

2 1 2 12 (2 ) / ( ) ( ) /f f b bh k AT k A R f f T f f R= ◊ = ◊ = - = -  (10.96)

Represents the  normalized frequency deviation, normalized with respect to the bit-rate, and is therefore called 
the deviation ratio. So, the dimensionless parameter, h, represents (f2 – f1) normalized with respect to the 

 bit-rate.
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 If s1(t) and s2(t) are the signals transmitted corresponding to binary baseband symbols 0 and 1 respectively, 
then

and

1 1

2 2

2
( ) cos[2 (0)]; 0

2
( ) cos[2 (0)]; 0

b

b

E
s t f t t T

T

E
s t f t t T

T

p f

p f

= + £ £

= + £ £  (10.97)

where,

1 2c f c

h
f f k A f

T
= - ◊ = -  (from Eq.10.95)

and 2 2c f c

h
f f k A f

T
= + ◊ = +  (10.98)

Now, in Eq. (10.88), if we put
( ) ( ) (0)t tq f f= +  (10.99)

Then using Eqs. (10.91) and (10.95) we may write

( ) (0) ( ) 2

sign for 1
;

sign for 0

f

k

k

t t k At

bh
t

bT

q f f p

p

- = = ±

+ = ¸
= ± ◊ ˝- = ˛

 (10.100)

10.7.1 Phase Tree or  Phase Trellis

 From Eq. (10.100), at t = T, we may write:

if 1
( ) (0)

if 0
k

k

h b
T

h b

p
q f

p

+ =Ï
- = Ì- =Ó

 (10.101)

Equation (10.101) tells us that the phase of a  CPFSK signal advances by ph radians when a binary 1 is trans-
mitted and retards by ph radians when a binary 0 is transmitted. Thus, [ ( ) (0)]tq f-  when plotted against t
for a given baseband binary sequence, will trace out a particular path made up of a sequence of straight lines 
with positive and negative slopes. When we plot all such possible paths (corresponding to different binary 
baseband sequences), we get a tree-like structure as shown in Fig. 10.48. This is generally referred to as the 
phase tree or ‘phase trellis’. Fig. 10.48 shows a phase trellis.
 Earlier, while discussing  BFSK, we had talked of one type of continuous phase BFSK called  Sunde’s 
BFSK, in which f1 and f2 were given by (refer to Eqs. (10.63) and (10.64))

1

2

1

2

1

2

c

c

f f
T

f f
T

¸= - ÔÔ
˝
Ô= + Ǫ̂

 (10.102)

and

And in which the two signals, s1(t) with frequency f1
and s2(t) with frequency f2, are  orthogonal over [0, T].
 Comparing RHS of Eq. (10.98) with the RHS of 
Eq. (10.102), we find that Sunde’s BFSK signals are 
indeed only a special case of CPBFSK signals that 
we are discussing and that h = 1 for them. But, as 
one can see from Eq. (10.101), when the frequency 
deviation ratio, h, is equal to unity, the phase change Fig. 10.48 A phase trellis
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at the end of each bit duration T will be either +p or –p depending on whether bk = 1 or 0, respectively. Since 
there is no difference between +p and –p, it amounts to there being no memory for  Sunde’s FSK in the sense 
that a knowledge of what phase change has occurred in the previous bit interval will not be of any use in the 
present bit interval. However, if we take h = 1/2, corresponding to

c

c

f f
T

f f
T

¸= - Ô
˝
Ô= + Ǫ̂

1

2

1

4
1

4

 (10.103)

and

then not only will the two  CPBFSK signal s1(t) and s2(t) be orthogonal, the phase change in each bit-interval 
will also be either +p/2 or –p/2 (refer to Eq. (10.101)), which are clearly distinguishable. Further, h = 1/2 

represents the minimum frequency deviation ratio for which the two signals, s1(t) and s2(t) will be orthogonal. 

It is for this reason that the CPBFSK with h = 1/2 is called the  Minimum Shift Keying’ or,  MSK.

Fig. 10.49 Phase path of the sequence 110010001111 with h = 1/2

10.7.2  Signal Space of MSK

We have noted that with h = 1/2, the phase of the signal s(t), the MSK signal, changes by ±p/2 during each 
period T in a linear fashion depending on whether the baseband digit transmitted during that bit interval T is 
a 1 or a 0. Since the phase changes by ±p/2 for each T, and since there is no difference between +p and –p,

the phase can be either 0 or p radians for even multiples of T and ±p/2 for odd multiples of T.
 Denoting [ ( ) (0)]tf f+  by q(t) as indicated in Eq. (10.99), we may rewrite Eq. (10.88) as:

b b
c c

b
c c

E E
s t f t t f t t

T T

E
t f t t f t

T

p f f p q

q p q p

= + + = +

= ◊ - ◊

2 2
( ) cos[2 ( ) (0)] cos[2 ( )]

2
[cos ( ) cos 2 sin ( ) sin 2 ]  (10.104)

The first term in the RHS of the above equation is the inphase term and the second one is the quadrature term. 
First, let us examine the inphase component given by

2
( ) cos ( )b

I

E
s t t

T
q=  (10.105)

In this,
cos ( ) cos[ ( ) (0)]t tq f f= +

But from Eq. (10.100)

k

k

bh
t t t T
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t t T
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p
q f

p
f

+ =ÏÊ ˆ= ± £ £Á ˜ ÌË ¯ - =Ó
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sign for 1
( ) (0) ; 0 with

sign for 0
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 (10.106)
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Now, it can easily be shown that throughout the time interval T t T- £ £ , the polarity of cos ( )tq  depends 
only on the value of f(0) and is independent of the binary sequence transmitted both prior to t = 0 and after 
t = 0. This may be demonstrated as follows.
 Since f(0) = 0 or p, let us consider both the cases.

1. f(0) = 0: f(t) varies from 0 to ±p/2 in a linear way in the interval 0 to T. Throughout this interval, q(t),
which is f(t) + f(0), varies between 0 and ±p/2 (positive sign for bk = 1 and negative sign for bk = 0). 
But, when q varies between 0 to +p/2 or 0 to –p/2, cos q(t) will be non-negative throughout.

2. f(0) = p: Since f(t) varies from 0 to ±p/2, and since q(t) = f(t) + f(0), q(t) will vary from p to 3p/2 or 
p to p/2. In both the cases, cosq(t) will be non-positive throughout.

 Thus, the sign of cos q(t) in the interval 0 to T depends only on the value of f(0) but not on whether what 
was transmitted in that bit-interval was a binary 1 or a binary 0. By arguing out in a similar way, it can be 
shown that the sign of cos q(t) in the interval –T to 0 also, is independent of the binary digit transmitted in 
that bit-interval and that it depends only on the value of f(0).
From Eq. (10.106), we have

cos ( ) cos (0)
2

cos (0) cos sin (0) sin
2 2

t t
T

t t
T T

p
q f

p p
f f

È ˘Ê ˆ= ± Á ˜Í ˙Ë ¯Î ˚
Ê ˆ Ê ˆ= Á ˜ Á ˜Ë ¯ Ë ¯m

Since (0) 0 or , sin (0) 0f p f= =

\ cos ( ) cos (0) cos cos
2 2

t t t
T T

p p
q f

Ê ˆ Ê ˆ= = ±Á ˜ Á ˜Ë ¯ Ë ¯

\ the inphase component, SI(t) is given by (refer Eq. (10.105))

2
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2
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E
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T T

p
f

Ê ˆ= Á ˜Ë ¯

\
2

( ) cos ;
2

b
I

E
s t t T t T

T T

pÊ ˆ= ± - £ £Á ˜Ë ¯  (10.107)

The above equation is valid over the interval T t T- £ £  because, as we had discussed earlier, over the entire 
interval , cos ( )T t T tq- £ £  depends only on the value of f(0). In Eq. (10.107), the plus sign corresponds to 

the 0 value for f(0) and the minus sign corresponds to the value p for f(0). Also, we find that the signal sI(t)
is just a single cosine pulse, i.e., a half-cycle cosine pulse.
 In a similar manner, we can show that the quadrature component of s(t), viz., sQ(t) is given by

2
( ) sin (0) sin

2

2
sin ; 0 2

2

b
Q

b

E t
s t

T T

E
t t T

T T

p
f

p

Ê ˆ= Á ˜Ë ¯

Ê ˆ= ± £ £Á ˜Ë ¯  (10.108)

where the plus sign has to be taken if ( ) /2Tf p=  and the minus sign if ( ) – /2.Tf p=  Note that the quadrature 
component of s(t) is a single sinusoidal pulse, i.e., a half-cycle sinusoidal pulse. Also, just as the sign of 
cos q(t), over the interval T t T- £ £  is dependent solely on the value of f(0), the value of sin ( )tq  over 
the interval 0 2 ,t T£ £  is dependent solely on the value of f(T). Thus, the following four possibilities arise:
 1. (0) 0 and ( ) /2Tf f p= =  (corresponding to transmission of bk = 1 in the interval 0 t T£ £
 2. (0) and ( ) /2,Tf p f p= =  which corresponds to transmission of bk = 0 in the interval 0 ,t T£ £  as the 

phase got reduced from p at t = 0 to p/2 at t = T.
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 3. (0) and ( ) /2,Tf p f p= = -  which corresponds to transmission of bk = 1 in the interval 0 ,t T£ £  since 
3

2 2

p p
- = , i.e., phase has increased from p at t = 0 to 

3

2

p
 at t = T.

 4. (0) 0 and ( ) /2,Tf f p= = -  which corresponds to the transmission of binary 0 over 0 t T£ £ .

Thus, s(t), the  MSK signal itself can take any one of four possible forms corresponding to the four possible 
phase state combinations. This, again, means that the signal space of the MSK signal is going to be two 
dimensional. We may, for the sake of drawing the signal constellation, take the following two  orthonormal 
signals as the basis set for this two-dimensional signal space.

1

2

2
( ) cos cos 2 , 0

2

2
( ) sin sin 2 , 0

2

c

c

g t t f t t T
T T

g t t f t t T
T T

p
p

p
p

Ê ˆ= ◊ £ £Á ˜Ë ¯

Ê ˆ= ◊ £ £Á ˜Ë ¯

 (10.109)

  (10.110)

Note that the interval 0 t T£ £  is the common interval over which the expression given by Eq. (10.107) for 
sI(t) and Eq. (10.108) for sQ(t) are both valid.
 We can now express s(t), the MSK signal, as a linear combination of the two orthonormal basis signals 
g1(t) and g2(t) and write

1 1 2 2( ) ( ) ( )s t s g t s g t= +  (10.111)

where s1 and s2 are constants representing the coordinates of s(t) along g1(t) and g2(t) respectively. Hence, s1

and s2 can be found by taking the inner products of s(t) with f1(t) and f2(t) respectively.
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2 2
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\ 1 cos (0);bs E T t Tf= - £ £  (10.112)
Similarly,
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E T t Tf

= = ◊
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 (10.113)

The  signal constellation of the MSK signal is shown in Fig. 10.50.
 Although there is a similarity between the signal constellation of the  QPSK system and the MSK system, 
one important difference exists and it must be taken note of. This is that in QPSK, each message point corre-
sponded to one of the four  dibits and hence, one of the four messages. In MSK, there are only two possible 

messages. However, two message points are shown for each of the possible messages. But only one of these 

two message points is used to represent the transmitted symbol or transmitted message at any one time, 

depending on the value of f(0).
 The labeling bk = 0 or bk = 1 in each of the quadrants refers to the binary symbol transmitted during the bit 
interval 0 ,t T£ £  corresponding to the message point in that quadrant. Message point m1 corresponds to the 
phase states (0) 0f =  and ( ) /2Tf p= - . Since the phase has reduced by p/2 radians, the transmitted bit in 
that interval is a 0. Similarly, message point m2 corresponds to the phase states (0)f p=  and ( ) /2Tf p= - .

Since –p/2 is the same as 
3

,
2

p
+  it means the phase has increased from p to 

3

2

p
 over the interval 0 to T.

Hence the transmitted bit in 0 t T£ £  is a 1.
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Fig. 10.50  Signal space diagram of MSK showing the  signal constellation

10.7.3 Waveforms of the Inphase and Quadrature Components

Fig. 10.51  (a) Phase path for the message sequence 1000111010001, (b) Inphase component sI(t), (c) Quadrature 

component sQ(t)

10.7.4 Generation and  Detection of MSK Signals

A method of generating MSK signals is shown in Fig. 10.52(a). It is directly based on Eq. (10.111). As shown 
in the figure, g1(t) and g2(t), the orthogonal basis signals given by Eqs. (10.109) and (10.110) are generated 
as follows:
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Fig. 10.52 (a)  MSK transmitter, (b)  MSK receiver

First, we multiply two cosinusoidal signals, one of frequency fc and the other of frequency (1/4T) where T is 
the bit duration.
 This multiplication gives rise to two phase coherent signals, one with the sum frequency, i.e., 
cos 2 ( 1/4 ) ,cf T tp +  and the other with the difference frequency, i.e., cos 2 ( 1/4 )cf T tp - . These two signals 
are then separated by applying the output of the product device simultaneously to two very narrow band 
band pass filters, one centered on the difference frequency which is equal to f1 (see Eq.10.102), and the 
other centered on the sum frequency which is equal to f2 (see Eq. (10.102)). Then these two signals, one at a 
frequency f1 and the other at a frequency f2, are linearly combined as shown in the figure, to obtain g1(t) and 
g2(t). This is because,

and

1

2

1 1 1 1
cos 2 cos 2 cos 2 cos 2

2 4 4 4

( )

1 1 1 1
cos 2 cos 2 sin 2 sin 2

2 4 4 4
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c c c
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f t f t f t t
T T T

g t

f t f t f t t
T T T

g t

p p p p

p p p p

È ˘Ê ˆ Ê ˆ Ê ˆ- + + = ◊Á ˜ Á ˜ Á ˜Í ˙Ë ¯ Ë ¯ Ë ¯Î ˚
=

È ˘Ê ˆ Ê ˆ Ê ˆ- - + = ◊Á ˜ Á ˜ Á ˜Í ˙Ë ¯ Ë ¯ Ë ¯Î ˚
=

Now, as per Eq. (10.111), we must multiply g1(t) by s1 and g2(t) by s2 where s1 and s2 are as given in Eqs. 
(10.112) and (10.113). Note that

\ 1 cos (0);bs E T t Tf= - £ £

where f(0) is either 0 or p and correspondingly cosf(0) is either 1 or –1 depending on the phase state at 
t = 0, 2T, 4T, …, which, as shown in Fig. 10.51(a), in turn, depends on the message sequence. So, to generate 
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the sequence of values that s1 takes at t = 0, 2T, 4T, …, the phase values f(0), f(2T), f(4T), … are extracted 
from the given message sequence. Since these phase values can only be either 0 or p radians, correspondingly 
s1 will be either orb bE E+ - . Thus, the sequence of s1 values will be in the form of a polar NRZ binary 
wave denoted, by a(t) in Fig. 10.52(a), with a bit rate of (1/2T). Also, b(t) denotes the sequence of s2 values. 
As per Eq. (10.111), the MSK signal s(t) is then obtained by adding s1g1(t) and s2g2(t).
 The block diagram of an MSK receiver is shown in Fig. 10.52(b). The orthonormal basis signals g1(t) and 
g2(t) are locally generated and are used for correlating the received signal with g1(t) in the inphase channel 
and with g2(t) in the quadrature channel to obtain r1 and r2 the observed random variables in the inphase and 
quadrature channels respectively. These are compared with the reference voltages, which are zero volts in the 
two channels, to obtain the phase estimates ˆ ˆ(0) and ( )Tf f  which are then used by the logic circuit to produce 
the output binary baseband sequence with minimum Pe.

10.7.5  Power Spectra of MSK Signals

For determining the power spectrum, we shall assume, as we have always been doing, that the message band 
binary sequence is a random binary wave with equal probability of occurrence for 1s and 0s and that each 
symbol is statistically independent of those preceding it.
 As we have already seen, the  MSK signal is given by

1 1 2 2( ) ( ) ( )s t s g t s g t= +
The low-frequency equivalent of the inphase component s1g1(t) is given by

and
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 (10.114)

Similarly, the low frequency equivalent of the quadrature component is given by
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 (10.115)

Since the PSD of the inphase component (low frequency equivalent) is equal to the energy spectral density 
over a period of 2T divided by 2T, it is given by
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 (10.116)
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The PSD of the low-frequency equivalent of the quadrature component also is the same as that of the inphase 
component. But since the inphase and quadrature components are statistically independent, the PSD of their 
sum is equal to the sum of their individual PSDs. Thus, the baseband PSD of the MSK signal is given by

 2

2 2 2
MSK

32 cos(2 )
( ) 2 ( )

16 1

b
I

E fT
P f P f

f T

p

p

È ˘= = Í ˙-Î ˚
 (10.117)

Fig. 10.53 Power spectrum of an MSK signal

As can be seen from the expression for the power spectrum, the  PSD of MSK signal falls off as the inverse 
fourth power of frequency. It may be recalled that in the case of QPSK, the PSD is proportional to sinc2(fT)
and therefore falls of as the inverse square of the frequency. Thus, the interference caused outside the signal 

band of interest is less in the case of MSK as compared to QPSK.

10.7.6  Gaussian MSK (GMSK)

Although the power spectral density of MSK falls off as the fourth power of the frequency, it is still not good 
enough for multiuser wireless communication applications, which require very stringent standards to be 
maintained with regard to adjacent channel interference.
 To meet those stringent requirements, the PSD of an MSK signal is modified by passing the NRZ binary 
data stream through a pulse-shaping low pass filter before carrier modulation. While having a narrow 
bandwidth together with sharp cut-off characteristic, this LPF has to have negligible overshoot in its impulse 
response. Further, it should permit the final modulated signal in that it has a carrier phase of 0 or p radians at 
even multiplies of T and +p/2 or –p/2 radians at odd multiplies of T.
 All the above stated requirements are met by an LPF whose frequency response is having the shape of a 
Gaussian function. Because of the use of such a Gaussian filter, the modified MSK generated by using this 
filter, is called as ‘Gaussian-filtered MSK’, or Gaussian MSK (GMSK).
 As mentioned earlier, the Gaussian filter operates at baseband level. So, if we take the 3-dB baseband 
bandwidth of this filter to be W Hz, its transfer function is given by

2
log 2

( ) exp
2

f
H f

W

È ˘Ê ˆ= -Í ˙Á ˜Ë ¯Î ˚
 (10.118)

and the corresponding impulse response, h(t) is given by

     
2

2 22 2
( ) exp

log 2 log 2
h t W W t

p pÈ ˘
= -Í ˙

Î ˚
 (10.119)
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Since this pulse-shaping Gaussian filter acts on the input binary data which has been encoded in the form of 
polar NRZ waveforms, let us consider its response to a unit amplitude rectangular pulse of duration T sec 
centered on the origin. This response works out to

1 2 1 2 1
( )

2 log 2 2 log 2 2

t t
g t erfc WT erfc WT

T T
p p

È ˘Ï ¸ Ï ¸Ô Ô Ô ÔÊ ˆ Ê ˆ= - - +Í ˙Ì ˝ Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ô Ô Ô ÔÍ ˙Ó ˛ Ó ˛Î ˚
 (10.120)

Thus, the time-bandwidth product WT plays an important role in the shape of the response of the pulse-
shaping filter. Since the output of this filter to the rectangular polar NRZ pulses, is used for frequency-shift 
keying, the g(t) given above is the ‘frequency-shaping pulse’. Its shape for different values of WT, the time-
bandwidth product, is plotted in Fig. 10.54.

Fig. 10.54 Causal approximation ĝ(t),  for three different values of WT

As g(t) is given in Eq. (10.120) is non-causal, it has to be truncated for some negative value of time and then 
shifted in time to the right (delayed) so as to get ˆ( )g t  which is causal and is as good an approximation as 
possible with tolerable delay.

Fig. 10.55 Power spectra of MSK and GMSK with WT = 0.25

 The  PSD of a GMSK signal with WT = 0.25 is shown along with PSD of an  MSK signal, in Fig. 10.55. 
With a small value of WT like 0.25, we find that most of the signal energy is packed much closer to the carrier 
frequency in the case of GMSK.
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 The  probability of error for GMSK is approximately given by the empirical formula

1

2 2
b

e

E
P erfc

a

h

È ˘
= Í ˙

Î ˚
 (10.121)

where Eb is the signal energy per bit and a is a constant that depends on WT.

10.7.7 Advantages and Disadvantages of  GMSK

Advantages GMSK has the advantage of good spectral compactness and so needs less bandwidth than 
 MSK (see Fig. 10.55)

Disadvantages
 1. Filtering of the message binary NRZ bit stream introduces some ISI. This increases as WT is decreased, 

as can be seen from Fig. 10.54.
 2. As a value of WT ª 0.25 to 0.3 is generally used (because of 1 above), and as the complementary error 

function is a monotonically decreasing function, from Eq. (10.121), we find that there will be a degra-
dation of performance as compared to MSK.

Because of its spectral compactness, and preservation of the essential good features of MSK, Gaussian-
filtered MSK is widely used in  GSM cellular mobile communications.

Example 10.9 Given the input binary sequence 100010110, sketch the waveforms of the inphase and 
quadrature components of an MSK signal. Sketch the MSK signal also.

Solution

Fig. 10.56 Phase, sI(t) and sQ(t) for Example 10.9
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1. Phase: The first message digit being 1, the phase increases from zero at t = 0 to p/2 at t = T. The next 3 
digits being 0s, the phase decreases p/2 radians during each bit interval and is –p at 4T. Since the fifth digit 
is a 1 and the sixth is a 0, the phase increases from –p to –p/2 (at 5T) but again decreases to –p at 6T. Since 
the seventh and eighth digits are 1s, the phase increases from –p at 6T to 0 at 8T. But since the 9th digit is a 
0, it again decreases to –p/2 at 9T.

2. sI(t): If at any even multiple of T, including 0T, if the phase is 0, then sI(t) will be a single half cosine 
pulse of width 2T centered on that even multiple of T (including zero). But if the phase is p or –p at any even 
multiple of T, sI(t) will be a negative half cosine pulse of 2T and centered on that even multiple of T. At t = 
0, 2T and 8T the phase is 0. Hence, we get half-cosine pulses centered on 0, 2T and 8T. At t = 4T and 6T,
however, the phase is –p. So we get negative half-cosine pulses at these points.

3. sQ(t): At any odd multiple of T if the phase is p/2, sQ(t) will be a half-sine pulse of width 2T centered on 
that odd multiple of T. If the phase is –p/2, sQ(t) will be a negative half sine pulse of width 2T centered on that 
odd multiple of T. At t = T the phase is +p/2 while at t = 3T, 5T, 7T and 9T, it is –p/2. So the sQ(t) is drawn 
accordingly.

10.8  M-ARY BAND PASS SIGNALING

In  M-ary signaling, any one of M possible signals is transmitted during each time slot, where M = 2n and n
is an integer. In baseband signaling, it was the M different pulse amplitudes that distinguished the M signals. 
In band pass M-ary signaling, the M signals can differ in their amplitudes, as in the case of  M-ary ASK, or 
in their frequencies, as in the case of  M-ary FSK or in their phases, as in the case of  M-ary PSK. It is also 
possible to have some hybrid forms of M-ary signaling, notable among them being M-ary QAM, which has 
some useful features.
 The discussion and analysis pertaining to baseband M-ary signaling, i.e., M-ary PAM given in section 
10.4, apply equally well to band pass M-ary ASK too. As pointed there, if we wish to maintain some specified 
minimum  probability of error, the difference between adjacent levels will have to be maintained the same 
even while increasing M in order to achieve a higher rate of transmission in bits/sec. Thus, the average 
transmitted power will increase with M if the probability of error is to remain the same. This means that in 
M-ary PAM, the average transmitted power sets a limit to the transmission rate that can be achieved while 
maintaining a specified probability of error. This applies equally well to M-ary ASK also.
 In BPSK,  QPSK and M-ary PSK, all the signals transmitted during a time slot have the same amplitude. 
They differ only in their phase and so all the message points pertaining to each of these systems will lie on 
the circumference of a circle in the signal space, with the origin as the center and a radius whose value is 
dependent on the symbol energy. As detection error in the presence of noise depends on the distance between 
any two adjacent message points, it is obviously advantageous to have not only phase difference but also 
amplitude difference between the M possible signals of an M-ary system. This leads to a hybrid type of M-ary 
band pass modulation scheme, known as  M-ary QAM (also called  M-ary QASK), i.e., M-ary quadrature 
amplitude modulation, which is a hybrid amplitude and phase modulation.

10.8.1 Basic  QAM Signal

In QAM, two carrier signals of the same frequency but in phase quadrature, are independently amplitude 
modulated by discrete amplitudes, aks and bks so that the kth transmitted signal may be written as

p p
t t

= -

= ± ± º

0 02 2
( ) cos 2 sin 2

                                                 0, 1, 2,

k k c k c

E E
s t a f t b f t

k

 (10.122)
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where E0 is the energy of the signal with the smallest amplitude among all the M different signals that can 
possibly be transmitted. We will now choose two orthogonal basis signals f1(t) and f2(t) for the signal space 
in which the sk(t)s lie, and define them as

and

f p t
t

f p t
t

¸
= £ £ ÔÔ

˝
Ô= £ £ Ǫ̂

1

2

2
( ) cos 2 ; 0

2
( ) sin 2 ; 0

c

c

t f t t

t f t t

(10.123)

10.8.2 Signal Constellation of QAM

Then sk(t) of Eq. (10.122) may be expressed as a linear combination of f1(t) and f2(t) as follows:

f f= -0 1 0 2( ) ( ) ( )k k ks t a E t b E t  (10.124)

Hence, the coordinates of sk(t) along f1(t) and f2(t) are respectively -0 0andk ka E b E  respectively. Thus, 
2 2andk ka b  represent the normalized energies of the inphase and quadrature components of sk(t) normalized 

with respect to E0.
Now, let

where is a positive integer

M L

L

¸= Ô
˝
Ǫ̂

 (10.125)

Then we may view the M message points in the signal constellation of QAM as having been generated by 
the  Cartesian product of the two coordinate sets of the message points of an L-ary ASK with f1(t) as the 
carrier and another L-ary ASK with f2(t) as the carrier. The Cartesian product of two sets of coordinates each 
one representing coordinates in a one-dimensional space like the one in Fig. 10.57, is the set of all possible 
ordered pairs of coordinates with the first coordinate of each ordered pair drawn from the first set and the 
second coordinate (of the ordered pair) drawn from the second set. For instance, if M = 16 so that L = 4, the 
one-dimensional signal constellation of the 4-ary ASK with f1(t) as the carrier will be as shown in Fig. 10.57.

Fig. 10.57 One-dimensional  signal constellation of the 4-ary ASK with f1(t) as the carrier

An exactly identical one-dimensional signal constellation of the 4-ary ASK with f2(t) as the carrier, may 
also be drawn. Then the two-dimensional constellation of the 4-ary QAM with M = 16 will have a signal 
constellation comprising 16 message points with their coordinates obtained by taking the Cartesian product 
of the coordinate set pertaining to the one-dimensional space f1(t) and the coordinate set pertaining to the 
one-dimensional space f2(t), in that order. The signal constellation of the 16-ary QAM is shown in Fig. 10.57. 
In this, for convenience, 0 ,E  is represented by ‘a’.

10.8.3  M-ary QAM Generation and Detection

The generation is based directly on Eq. (10.122) and is shown in Fig. 10.59. Let p(t) be an appropriately 
shaped baseband pulse. Then two baseband binary digital signals, m1(t) and m2(t) are produced such that 
m1(t) = ak p(t) and m2(t) = bk p(t). These are then used to modulate the two carriers which are in phase 
quadrature as shown in Fig. 10.59.
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Fig. 10.58  Signal constellation of 16-ary QAM

Fig. 10.59 (a) M-ary QAM signal generation, (b) M-ary QAM receiver structure

The receiver has two  correlator units — one for the inphase carrier and the other for the quadrature carrier. 
The correlator outputs are sampled every t seconds and fed to the threshold devices and logic circuits for 
taking decisions on which ak and bk have been used at the transmitter and then decide on which of the M
possible signals has been transmitted during that symbol interval t.
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10.8.4 Bandwidth Efficiency of QAM

We know from the principle of quadrature carrier multiplexing that quadrature carrier ASK (binary) will have 
a  bandwidth efficiency that is twice that of ordinary binary ASK. Since ordinary binary ASK has a bandwidth 
efficiency of 1, quadrature carrier ASK will have a bandwidth efficiency of 2. Since M-ary QAM is composed 
of two L-ary ASK systems on quadrature carriers, and since an L-ary ASK system will have a bandwidth 
efficiency that is log2 L times that of a binary ASK, it follows that the bandwidth efficiency of M-ary QAM 

is = =2 2 22 log 2 log logL M M

\ Ê ˆ =Á ˜Ë ¯ 2for M-ary QAM logb

T

R
M

B

M-ary FSK In  M-ary FSK, during each interval of t seconds, one of a set of M signals having different 
frequencies, will be transmitted. The individual signal frequencies are separated by (1/2t) hertz so that the 
M signal from an orthogonal set. That the signals will be orthogonal over t sec when their frequencies are 
separated by (1/2t), has already been demonstrated when we discussed BFSK. In addition, as usual, the 
carrier frequency fc is so chosen that

t
= ; , a fixed integer

2c

n
f n  (10.126)

Such a set of M signals may be represented mathematically as

p
t

t

È ˘= + £ £Í ˙Î ˚
=

2
( ) cos ( ) ; 0

                                      1, 2, 3,…

k

E
s t n k t t

t

k M

 (10.127)

where E is the energy of each signal during a time-slot and the amplitude 2 /E T  is chosen so as to make 

t =Ï
= Ì

Ó
Ú
0

if
( ) ( )

0 otherwisek m

E m k
s t s t dt  (10.128)

Since E is the norm square of each signal, to normalize the set of signals we can divide each signal by its 
norm, i.e., E  and obtain an orthonormal set of basis signals given by

f t= £ £

=

1
( ) ( ); 0

1, 2,…,

k kt s t t
E

k M

 (10.129)

Since the signals, sk(t)s, are M  orthogonal signals, and hence are 
linearly independent, the signal space of sk(t)s is an M-dimen-
sional one and we can use fk(t)s, which are orthonormal and M in 
number, as the basis functions.

10.8.5  Signal Space and  Signal Constellation

Since it is not possible to diagrammatically represent an M-dimen-
sional space for M > 3, in Fig. 10.60, we have shown the signal 
space and constellation for M = 3. Obviously, it is just an extension 
of the signal space diagram for BFSK.
 As is clear from the signal space diagram, the distance between 

any two signals is 2E .

Fig. 10.60  Signal space and constellation 

for M-ary FSK with M = 3
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10.8.6 Receiver Configuration

A  coherent receiver for M-ary FSK simply consists of a bank of M correlators or  matched filters. To the kth

correlator, £ £1 k M , the signal fk(t) is supplied. At the end of each t sec the receiver compares the outputs 
of all the M correlators or matched filters and selects the largest among them as per the maximum likelihood 
decision making strategy and decides on the baseband symbol accordingly.

Fig. 10.61 Coherent reception of  M-ary FSK

An exact expression for  probability of symbol error is rather involved and difficult to derive. However, an 
upper-bound for the symbol error is given by

(M-ary FSK)

1
( 1)

2 2e

E
P M erfc

h

Ê ˆ
£ - Á ˜Ë ¯

 (10.130)

This upper bound is approached as (E/h) is increased and is almost reached when (E/h) is large enough to 
make -£ 310eP . In the case M = 2, i.e., for BFSK (coherent), the equality sign holds and RHS of Eq. (10.130) 
reduces exactly to that obtained by us for  coherent BFSK.

10.8.7 Bandwidth and Bandwidth Efficiency
Determination of the bandwidth by deriving the spectra of  M-ary FSK is rather complicated and so we will 
try to get an approximate expression by using the fact that there are M possible signals separated from each 
other in frequency by 1/2T hertz. Hence, the transmission bandwidth BT may be taken as

b
T

MRR
B M W

T M
≥ ¥ = =

2

/21

2 2 log

where R is the  symbol rate and Rb is the  bit rate. The  bandwidth efficiency, which is the ratio of the bit rate 
to the bandwidth, is given by

r = Bandwidth efficiency of M-ary FSK

Ê ˆ= Á ˜Ë ¯
22 log M

M
 (10.131)

 (i) Equation (10.131) clearly indicates that as M is increased the bandwidth efficiency 

of M-ary FSK decreases. In fact, while it is equal to 1 for M = 2, it is only 0.5 for 

M = 16. This is just the opposite of what happens in the case of M-ary PSK, for which r
increases with M, as we will be seeing later.

 (ii) Further, M-ary FSK requires considerably more bandwidth in comparison with  M-ary 

PSK.

Remarks
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10.8.8 M-ary PSK

Signal In  M-ary PSK, the phase of the carrier can take one of the M possible values

q p= - = º( ) 2 ( 1)/ ; 1, 2,k k M k M  (10.132)

Hence, the M possible signals, one of which is transmitted during each signaling interval of T sec, are given 
by

p
p

t

È ˘= + -Í ˙Î ˚
=

2 2
( ) cos 2 ( 1)

                                      1, 2, 3, …

k c

E
s t f t k

M

k M

 (10.133)

 Signal space, signal constellation and Pe We may expand the RHS of the above equation and write

p p
p p

t t
= ◊ - - ◊ - ◊

=

2 2 2 2
( ) cos 2 cos ( 1) sin ( 1) sin 2

                                                                1, 2, 3, …

k c c

E E
s t f t k k f t

M M

k M

 (10.134)

Since the first and second terms of the RHS of the above equation are orthogonal to each other (one being 
the inphase component and the other being the quadrature component), just as in the case of BPSK, here too, 
we may choose the following two  orthogonal signals as the basis signals for the signal space of M-ary PSK.

and

f p t
t

f p t
t

¸
= £ £ ÔÔ

˝
Ô= £ £ Ǫ̂

1

2

2
( ) cos 2 ; 0

2
( ) sin 2 ; 0

c

c

t f t t

t f t t

 (10.135)

Thus, the signal space of M-ary PSK is two dimensional and for any k, 1 ,k M£ £ sk(t) can be expressed as 
a linear combination of these two basis signals. f f1 2( ) and ( )t t . Since all the M signals of M-ary PSK have 
the same amplitude, their energies over the symbol interval, t sec, is the same, viz., E. Hence, all the message 
signal points lie on the circumference of a circle of radius E  which is the coordinate of sk(t) along f1(t) for 
k =1. The signal space diagram,  signal constellation and the  decision boundaries for detection, are shown in 
Fig. 10.62 for M = 8.
 Suppose the signal s1(t), corresponding to k = 1 
and represented in the signal space as message point 
m1, is transmitted. Then, unless the ratio E/h is too 
small, the probability of signal s1(t) being mistaken 
by the receiver for any sk(t) other than s2(t) or s8(t),
the nearest neighbors of m1, is very little. Thus, for 
reasonably large values of E/h, we have to consider 
only the probability of m1 being mistaken for either 
m2 or m8 because of the presence of noise. Proceeding 
on these lines, it can be shown for M ≥ 4 that

(symbol error)

M-ary PSK: sine

E
P erfc

M

p

h

È ˘Ê ˆª Á ˜Í ˙Ë ¯Î ˚
 (10.136)

When M = 4, Pe as given by Eq. (10.136) reduces exactly to the expression for  QPSK derived 

in Chapter 11.

Fig. 10.62  Signal space and signal constellation of 

8-ary PSK

Remark
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10.8.9 Bandwidth and Bandwidth Efficiency of M-ary PSK

The method to be adopted for determining the  PSD of M-ary PSK signals is similar to the one we had 
employed for the PSK and  QPSK signals. The PSD of the low frequency equivalent of an  M-ary PSK signal 
can be shown to be given in terms of symbol energy E, as

t= 2( ) 2 sinc ( )P f E f  (10.137)

But, the symbol duration t is given by

t = 2logT M  (10.138)

\ =

=

2
2

2
2 2

( ) 2 sinc [ log ]

2 log sinc [ log ]b

P f E fT M

E M fT M  (10.139)

where Eb is the bit energy.
A plot of P(f), normalized with respect to 2Eb, is shown in Fig. 10.63.

Fig. 10.63 Power spectra of M-ary PSK for M = 8, 4 and 2

The null-to-null, or the main-lobe  bandwidth of M-ary PSK signals may be taken to be 2/t. But the 3-dB 
bandwidth is

t
=

1
TB  (10.140)

where t is the symbol duration, which is related to the bit duration Tb through the relation given in Eq. 
(10.138).

= =
2 2

1

log log
b

T

R
B

T M M
 (10.141)

where Rb is the bit rate.
Since bandwidth efficiency, r is the ratio of the  bit rate to the bandwidth,

r = = 2logb

T

R
M

B
 (10.142)

Equation (10.142) tells us that as M increases, the  bandwidth efficiency of an M-ary PSK system improves. 
However, as M increases, the distance between message signal points on the circumference of the circle, will 
decrease and so the probability of error increases. This can be countered, of course, by increasing the radius 

of the circle, i.e., by increasing the transmitted power, since the radius is equal to E .
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Example 10.10 An M-ary PSK system is to operate with 2n symbols over a 100 kHz channel. The bit 
rate is required to be at least 750 kilobits/sec. What minimum CNR is required if the bit-error probability 
should be equal to or better than -= 610bP ? Assume ISI free conditions.

Solution The maximum symbol rate under ISI-free conditions is

t
= =

1
Bandwidths TR B  (Eq. (10.140))

Since channel Bandwidth is limited to 100 kHz,

3100 10 symbols/secsR £ ¥

Minimum value of Rb required = 750 ¥ 103 bits/symbol

Minimum number of bits/symbol = 
¥

=
¥

3

3

750 10
7.5

100 10
 bits/symbol

\ for the M-ary PSK, ≥ 7.52M

Since M must be an integer power of 2, let us take = 82M

\ = =82 256M

When Gray coding of bits is used obtain PSK symbols,

 Probability of symbol error = -= ◊ = ◊6
2 2log 10 log 256e bP P M

\ -= ¥ 6

(symbol error)

8 10eP

But from Eq. (10.136), we know that for M-ary PSK with ≥ 4M ,

(symbol error)

sine

E
P erfc

M

p

h

È ˘Ê ˆª Á ˜Í ˙Ë ¯Î ˚
 where E is the symbol energy

\
p

h
-È ˘Ê ˆ = ¥Á ˜Í ˙Ë ¯Î ˚

6erfc sin 8 10
E

M
. From  error-function tables, we get

p

h

È ˘Ê ˆ =Á ˜Í ˙Ë ¯Î ˚
sin 3.2

8

E

\
h

= 69.924
E

Now, 
¥

= = = ¥
3

3

2

750 10
93.75 10 symbols/sec.

log 8
b

s

R
R

M

\ E = Symbol duration ¥ Average carrier power

\
h h h

◊ = = ◊

= ¥ ¥ = ¥3 3

1 Average carrier power

69.924 93.75 10 6555.375 10

s

E E
R

T

\ = =min 10( ) 10 log (6555375) 68.166 dBCNR
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10.9 SYNCHRONIZATION

In both  baseband signaling as well as  band pass signaling, it was noted that the receiver has to observe the 
received signal (corrupted by channel noise) and must decide whether what was transmitted during the time 
slot under question, was a binary 1 or a binary 0 in the case of binary signaling. In the case of  M-ary signaling, 
the receiver has to decide which signal, out of the M possible signals, was transmitted during each symbol 
duration. For proper operation of the system it is therefore necessary for the receiver to know exactly, when 
a bit is starting and when it is ending. Similarly, it must know the time of commencement and time of ending 
of a word (or a frame). If it is band pass signaling and a coherent system is used, then the receiver must have, 
available to it, a carrier signal that is having exactly the same frequency and phase as the carrier signal at the 
transmitter. All these requirements underscore the need for what is called ‘synchronization’ of the transmitter 
and receiver.  Synchronization is the name given to the process of ensuring that the two clocks, one at the 
transmitter, and the other at the receiver, tick together, giving of course due allowance to the propagation/ 
transmission delay.
 From the foregoing it is clear that all digital communication systems, irrespective of whether they are 
baseband or band pass systems, need the following two levels of synchronization.
 1.  Bit synchronization
 2.  Word synchronization
In addition to the above two, in the case of band pass systems of the coherent type, there is a need for
 3.  Carrier synchronization, or carrier recovery.
Techniques adopted for each of the above may be broadly classified as
 (a)  Data-aided synchronization
 (b)  Non-data-aided synchronization

10.9.1 Data-Aided Synchronization Systems

In these systems, a preamble containing information about the carrier and symbol/bit timing is transmitted 
periodically along with the data carrying signal in a time-multiplexed manner. The receiver extracts the infor-
mation contained in the preamble and utilizes it for synchronization.

Advantage Time required for synchronization is small.

Disadvantages 
 1. Data throughput is somewhat reduced as a part of each frame is used for sending synchronization infor-

mation.
 2. Power efficiency is also somewhat reduced as a part of the power is diverted for transmission of 

synchronization information.

10.9.2 Nondata-Aided Synchronization Systems

These are also called self-synchronizing systems. In these systems, no preamble is transmitted, instead, the 
receiver has to extract the required bit, word and carrier synchronization information from the transmitted 
data-bearing signal itself.

Advantages
 1. Better data throughput 
 2. Better power efficiency

10.9.3 Bit Synchronization

The complexity of the methods for bit synchronization depends on the line code used at the transmitter for 
representing the binary sequence. If it uses  unipolar RZ code, the bit-synchronization problem becomes 
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almost trivial since the PSD of this line code has a delta function at the bit rate as shown in Fig. 10.2(a). 
Therefore, narrowband filtering of the received unipolar RZ signal using a filter tuned to a frequency equal to 
the bit rate will yield the necessary clock signal. Alternatively, a PPL locked to the frequency 1/Tb can be used 
to extract the synchronizing signal. On the other hand, if a polar NRZ line code is used, the noise-corrupted 
received NRZ waveform is first filtered and then fed to a square-law device to convert into a unipolar RZ 
signal. Since this unipolar RZ signal will have a Delta function in its PSD, a PLL or a narrowband filter 
can be used to extract the clock signal. The problem with this method is that since it relies heavily on the 
zero crossings of the received signal (baseband) it works well when the zero crossings are spaced at integer 
multiples of the bit duration. Also, if there is, at any time, a long string of either 1s or 0s, since there will be 
no zero crossing during that period, synchronism may be lost. To overcome this problem, data scramblers are 
used at the transmitter and descramblers are used at the receiver.
 A totally different approach that does not depend on  zero crossing is what is called the ‘ early-late bit 

synchronization technique’. This technique makes use of the fact (as may be seen from the eye pattern of 
a polar NRZ data stream) that a properly filtered digital signal has peaks at the ideal or optimum sampling 
instants, and is fairly symmetric on either side of the peak. Hence, if D < /2bT  and if t0 is synchronized

- D ª + D <0 0 0| ( )| | ( )| ( )y t y t y t  (10.143)

A delayed (or late) synchronization signal will result in making

- D > + D0 0| ( )| | ( )|y t y t

whereas an early synchronization will result in making

- D < + D0 0| ( )| | ( )|y t y t

Fig. 10.64  (a)  Eye-diagram wave form showing optimum sampling time, (b) Block diagram of early-late synchronizer 

for  bit synchronization

CS-Rao_10.indd 620CS-Rao_10.indd   620 1/22/2013 10:16:24 AM1/22/2013   10:16:24 AM



Digital Data Transmission Techniques—Baseband and Band Pass 621

The ‘early-late synchronizer’ shown in Fig. 10.63(b) makes use of the above-mentioned features and produces 
a control voltage for the VCC. In case the control signal, x(t), which is equal to - D - + D0 0| ( )| | ( )|y t y t  is 
positive, it makes the clock to run faster. On the other hand, if x(t) is negative it makes the voltage controlled 
clock to run slower. In this way it tries to keep D very small.

10.9.4  Carrier Synchronization

As word frame synchronization has already been discussed in Chapter 9, we will proceed now with carrier 
synchronization.
 If the spectrum of the modulated signal has a carrier component present in it, achieving carrier coherence 
is a very simple matter. One has to simply lock on to the carrier component using a PLL. In case a carrier 
component is not present in the modulated signal spectrum, the same techniques that are used for  carrier 
recovery in the coherent reception of  DSB-SC signals, may be employed. These are the costas loop and the 
squaring loop. These have been discussed in detail earlier.

Fig. 10.65  M-th power loop for carrier recovery

 For carrier recovery in the case of  M-ary PSK, etc., what is generally referred to as the ‘M-th power loop’ 
consisting of an M-th power law device, a BPF, a  PLL and a frequency divider by M, all connected in cascade, 
may be used, as shown in Fig. 10.65.

Matlab Example 10.1 In this problem, we will study the effect of channel noise and bandwidth 
limitation of the channel on the eye diagram for a binary rectangular polar baseband pulse transmission 
system using raised cosine pulse shaping with roll-off factors a = 0.5 and a = 1.0 and a constant Nyquist 

bandwidth, W, of 0.5 that is equal to 
1

2T
, where T is the bit duration. First we plot the impulse response 

of the raised cosine filter for these two values of a. Then we plot the eye diagrams obtained under the 
following four conditions, using the above parameters.

 1. Impulse response of the raised cosine filter 
 2. Eye diagram without channel noise and without a bandlimiting filter
 3. Eye diagram with channel noise but without the bandlimiting filter
 4. Eye diagram without channel noise but with the bandlimiting filter
 5. Eye diagram with channel noise as well as the bandlimiting filter

1.  Impulse Response of the  Raised Cosine Filter 

MATLAB Program

CS-Rao_10.indd 621CS-Rao_10.indd   621 1/22/2013 10:16:24 AM1/22/2013   10:16:24 AM



622 Communication Systems

1.2

1

0.8

0.6

0.4

0.2

0

— 0.2
— 3 — 2 — 1 0 1 2 3

Time

a = 0.5a = 1

Impulse response of raised cosine filter for = 1 and = o.5aa

M
ag

n
it

ud
e

Note: The bandlimiting filter is an RC lowpass filter with RC = 1.67 seconds 
Fig. 10.66
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2. Without Channel Noise and Without a Bandlimiting Filter

MATLAB Program
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Eye diagram with alpha = 0.5 without noise and without band limiting filter

Eye diagram with alpha = 1.0 without noise and without band limiting filter

Fig. 10.67

 In this case as there is no noise and no bandlimiting filter, it can be seen from the above  eye diagrams that 
the eye is fully open both in the horizontal and vertical directions. 
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3. With Channel Noise but Without Bandlimiting Filter

MATLAB Program
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Note that by changing the value of a to 0.5 in the above program, we obtain the following results.
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Eye diagram with alpha = 0.5, SNR = 15 , and without bandlimiting filterdB

Fig. 10.69

 In this case because of the channel noise, the eye opening in the vertical direction is reduced while the 
opening in the horizontal direction is unaltered. Note the reduction in the vertical eye opening when the SNR 
is reduced to 15 dB.

4. Without Channel Noise but With Bandlimiting Filter

MATLAB Program
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Fig. 10.70

 In this case owing to the absence of the channel noise, the vertical opening of the eye is unaltered while 
the opening in the horizontal direction is reduced due to the band limiting filter. 

5. With Channel Noise and also the Bandlimiting Filter

MATLAB Program
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Fig. 10.71

 Note that by changing the value of a from 0.5 to 1.0 in the above program, we get the following results.
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 In this case since channel noise as well as the bandlimiting filter are present, the eye opening is reduced 
in both the directions. It may also be noted that for SNR of 15 dB the eye opening in the vertical direction is 
very much reduced compared to SNR of 20 dB.         

Summary 
 ■ Line codes These are used for electrical representation of a binary data stream. Popular line codes are: (a) Unipolar 

NRZ, (b) Polar NRZ, (C) Unipolar RZ, (d) bipolar RZ, and (e) Split-phase, or Manchester code.
 ■ Desirable properties of line codes

  (a) Absence/suppression of dc component 
  (b) Possibility of timing recovery 
  (c) Possibility of error detection.

 ■ Probability of error It is the average fractional number of erroneously received symbols when a very large number 
of received symbols are considered.

 ■ ISI When a digital signal is transmitted through a dispersive channel, the pulses are no longer confined to their 
respective time slots when they arrive at the receiver. They spill over into adjacent time slots causing inter-symbol 
interference (ISI).

 ■ Nyquist Criterion
•

= -•
- =Â ( )z

n

P f nf T

 ■ This equation is referred to as Nyquist criterion for distortionless baseband transmission of digital data.
 ■ A pulse of sinc shape satisfies Nyquist criterion.
 ■ Ideal Nyquist channel An ideal Nyquist channel is one in which the output pulses from the receive filter have the 

shape of a sinc function.
 ■ Bandwidth and pulse rate of ideal Nyquist channel

      R = bit rate = 1/T; W = Bandwidth of Nyquist channel = R/2 = 1/2T

  \ R = 2W bits/sec.
 ■ Disadvantages of the ideal Nyquist channel

  (a) Not physically realizable
  (b) Even slight sampling jitter causes ISI.
  (c) Rate of decrease of sinc pulse is only 1/| t |.

 ■ Raised cosine spectrum A pulse p(t) which has a raised cosine spectrum also satisfies Nyquist criterion and gives 
zero ISI.
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  and   
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r

È ˘= Í ˙-Î ˚
2 2 2

cos 2
( ) sinc 2

1 16

Wt
p t Wt

W t

  where r D  roll-off factor and r£ £0 1 .

 ■ Correlative coding It is technique by which a transmission speed of 2W is achieved on a channel of bandwidth W
by introducing controlled  ISI.

 ■ Duo-binary signaling It is a particular form of correlative coding. It gives Nyquist speed of transmission but suffers 
from the following disadvantages:

  (a) Non-zero PSD at f = 0, (b) Error propagation
 ■ Pre-coding It is a technique used for avoiding error propagation in a duo-binary signaling system.
 ■ Modified duo-binary system It is a signaling system that gives the Nyquist speed of signaling but without the 

disadvantages of the duo-binary scheme. It uses a pre-coder with a delay of 2T instead of T along with a modified 
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version of the duo-binary filter which too uses a delay of 2T instead of T. There is no error propagation, PSD = 0 
at f = 0 and further, the tails decay at the rate of 21/| |t .

 ■ M-ary baseband signaling The baseband pulse will have M-levels (where M is a power of 2) instead of only 2 
levels as in binary case.

RM = Tr. Rate with M-ary signaling = =
2

1

log
bR

nT M

  where n = (symbol duration / time-slot duration).

  (a) Bandwidth for M-ary: = 2( /log )m bW W M

  (b)  Probability of error Pe:
s

Ê ˆ Ê ˆ= -Á ˜ Á ˜Ë ¯ Ë ¯
(Polar M-ary
Baseband)

1
2 1

2e

A
P Q

M

 ■ Eye pattern The eye pattern is an experimental tool that can be used for evaluating the combined effect of channel 
noise and ISI on a baseband data transmission system under operational conditions. It gives information on zero-
crossing jitter, noise margin, timing sensitivity and time interval available for sampling.

 ■ The three basic binary digital communication schemes are:
  (a) Amplitude Shift Keying (ASK) or ON-OFF Keying (OOK)
  (b) Frequency Shift Keying (FSK)
  (c) Phase Shift Keying 

 ■ ASK w= = = =1 2( ) 0 for 0 and ( ) cos for 1k c ks t b s t A t b

   FSK w w w w= - = = + =1 2( ) cos( ) for 0; ( ) cos( ) for 1c d k c d ks t A t b s t A t b

   PSK w w= - = = =1 2( ) cos for 0; ( ) cos for 1c k c ks t A t b s t A t b

 ■ Spectra ASK Main lobe width = 2/T and @ =
1

T bB R
T

    2Roll off 1/( – )cf f

FSK Main lobe width = 3/T; Impulses at 
1

2cf f
T

= ±

    
= = 41

; Roll off 1/( – )T b cB R f f
T

PSK Main lobe width = 2/T; @ =
1

;T bB R
T

 Roll off 21/( – )cf f

 ■ DPSK principle In DPSK, the waveform transmitted in a given time slot is wcos cA t  if the baseband binary 
digits in that time slot and the preceding one are alike; and the waveform transmitted is w- cos cA t  if they are 
not alike.
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 ■ DEPSK ( Differentially Encoded PSK)

  (a) Transmitters of DPSK and DEPSK are the same
  (b)  In DEPSK receiver, the one-bit delay element is used at the baseband level rather than at the carrier frequency 

level.
 ■ QPSK QPSK is a bandwidth efficient band pass digital modulation scheme that makes use of quadrature multi-

plexing.

p p t
t

Ï
+ - £ £ =Ô= Ì

Ô
Ó

2
cos[2 (2 1) /4]; 0 ; 1, 2, 3, 4,

( )

0; otherwise

c
i

E
f t i t i

s t

 ■ QPSK signal space It is two dimensional. The signal constellation is shown in Fig. 10.38. 1( ) 2/ cos ,ct tf t w=

2( ) 2/ sin ct tf t w= -
 ■ Bandwidth and  bandwidth efficiency of QPSK

  3-dB bandwidth of QPSK = BT = 
1

2T
\ bandwidth efficiency = 2

 ■ Offset QPSK This is a variant of QPSK in which the bit-stream for the quadrature component is delayed by half 
a symbol duration w.r.t, the inphase component bit stream. In this the carrier phase changes are confined to ±90°.

 ■ p/4 shifted QPSK In this, the carrier phase changes are restricted to ±45° only. Thus, sudden changes in the 
amplitude of the envelope will have small magnitude.

 ■ MSK (Minimum Shift Keying) It is a type of CPFSK that produces orthogonal signaling and is bandwidth efficient

q p q p= -
(MSK)

2
( ) [cos ( )cos 2 sin ( )sin 2 ]b

c c

E
s t t f t t f t

T

  where 
p

q f
Ê ˆ= ± £ £ + = =Á ˜Ë ¯( ) (0) ; 0 ; sign for 1, –sign for 0

2
k kt t t T b b

T

                f(0) being the initial phase of the carrier.
 ■ Bandwidth efficiency and Pe of MSK

  (a) = =
(3-dB)

1

2 2
b

T

R
B

T
\ bandwidth efficiency, = 2b

T

R

B

  (b) MSK signal’s PSD falls off as the fourth power of -|( )|cf f

  (c) 
(MSK)

1
,

2
b

e

E
P erfc

h

È ˘
= Í ˙

Î ˚
 same as that of QPSK and BPSK.

 ■ Gaussian MSK (GMSK) This makes the power spectrum of MSK more compact and thus reduces the BT. For 
this purpose, the NRZ binary data stream is passed through a pulse-shaping LPF whose frequency response is a 
Gaussian function of frequency. It is extensively used in GSM cellular mobile communications.

 ■ M-ary band pass signaling

  (a)  If the bit energy is Eb and symbol energy is E, if Rb is binary bit rate and RM the M-ary symbol rate, and if n = 
log2M, then

= =;b
M b

R E
R E

n n

 ■ QAM (Quadrature Amplitude Modulation) In this, two carriers in phase quadrature are independently amplitude 
modulated by discrete amplitudes aks and bks.

av

(M-ary QAM)

31
2 1    

2( 1)e

E
P erfc

MM h

Ê ˆÊ ˆ= - Á ˜Á ˜Ë ¯ -Ë ¯

  Bandwidth efficiency: = 2logb

T

R
M

B

   Signal space is two dimensional.
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 ■ M-ary FSK
1

( 1)    
2 2e

E
P M erfc

h

Ê ˆ
£ - Á ˜Ë ¯

   Bandwidth efficiency = 
Ê ˆ
Á ˜Ë ¯

22 log M
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 ■ M-ary PSK
2 2

( ) cos ( 1)

                                1, 2, 3,…,

k c
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s t t k

M

k M

p
w

t

È ˘= + -Í ˙Î ˚
=

 ■ Signal space is 2-dimensional and all the M message signal points lie on the circumference of a circle with center 
at the origin and radius equal to E  where E is symbol energy.

 ■

(M-ary PSK)

sin ;e

E
P erfc

n

p

h

Ê ˆÊ ˆ@ Á ˜Á ˜Ë ¯Ë ¯
r = Bandwidth efficiency = log2 M

 ■  Synchronization For coherent band pass signaling systems, three levels of synchronization are needed – (a) Bit 
synchronization, (b) Word synchronization, and (c) Carrier synchronization. For non-coherent systems, the last 
one is not necessary.

 ■   (i) An  early-late synchronizer may be used for  bit synchronization.
   (ii)  A preamble is sent along with the information sequence in a time-multiplexed way periodically, for word/ frame 

synchronization.
  (iii) An  M-th power loop may be used for carrier recovery.
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Review Questions 
1. What are ‘line codes’? Name some popular line codes.
2. State the desirable properties of line codes.
3. Sketch the power spectra of (a) Polar NRZ, and (b) bipolar RZ signals.
4. Compare the various line codes, listing the merits and demerits of each.
5. With the help of a block schematic diagram, explain the basic structure of a binary baseband receiver.
6. Explain the meaning of the term: Probability of error.
7. Draw the block diagram of a coherent binary baseband receiver.
8. What is ISI and what is it that causes ISI?
9. Explain how even though ISI is present, its effect on Pe is avoided.

10. Write down the expression for, and sketch the spectrum and the waveform of the received pulse in the case of an 
ideal Nyquist channel.

11. What are the drawbacks of the ideal Nyquist channel?
12. What is a ‘raised cosine spectrum’? How does it help us to avoid ISI?
13. Discuss the advantages and disadvantages of the ideal Nyquist channel and the channel with a raised cosine 

spectrum for the received pulse?
14. What is a correlative level coding? Draw the block schematic diagram of a duo-binary signaling scheme.
15. Draw sketches of (a) the magnitude response, (b) the phase response, and (c) the impulse response of a duo-binary 

conversion filter.
16. With reference to duo-binary signaling, explain how error propagation occurs.
17. What is ‘pre-coding’ and how does it help in avoiding error propagation that occurs in duo-binary signaling?
18. What is ‘modified duo-binary signaling scheme’? Draw the block diagram of this signaling scheme. What are its 

advantages and disadvantages, as compared to the ordinary duo-binary signaling scheme without pre-coding?
19. Draw the sketches of (a) the magnitude response, (b) the phase response, and (c) the impulse response of a modified 

duo-binary conversion filter.
20. Distinguish between ‘baud’ and bit rate.
21. What are the advantages and disadvantages of M-ary signaling over binary signaling insofar as baseband data 

transmission is concerned?
22. What is a  zero-forcing equalizer? Explain the basic principle of it.
23. What is the need for adaptive equalization?
24. What is the  LMS algorithm? What are the various steps in using the LMS algorithm for adaptation of an equalizer?
25. What is meant by ‘decision-directed adaptation’?
26. What is an eye pattern?
27. Draw a generalized eye pattern and label the various interpretations possible.
28. Name the three basic digital modulation schemes. Explain the way the carrier is changed in each case.
29. Given unipolar NRZ binary data stream, how do you generate ASK signals?
30. What is continuous phase FSK? How is a CPFSK signal generated? What is the advantage of CPFSK?
31. Distinguish between coherent and non-coherent reception.
32. With the help of a block schematic diagram, explain the operation of a non-coherent BFSK receiver.
33. With the help of a block schematic diagram, explain the operation of a coherent BPSK receiver.
34. What is Sunde’s FSK? Show that Sunde’s BFSK signals are orthogonal.
35. Explain the principle of DPSK encoding.
36. With the of neat block schematic diagram, explain the working of a DPSK transmitter and receiver.
37. Explain the difference between DPSK and DEPSK.
38. What is QPSK? Write down an expression for the signal set. Draw the signal space diagram and show the signal 

constellation.
39. Explain how a QPSK signal can be generated.
40. What is MSK? What are its advantages over ordinary binary FSK?
41. Draw the signal space diagram and show the signal constellation for an MSK signal.
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42. Distinguish between signal constellations of QPSK and MSK systems.
43. What OQPSK? What are its advantages and disadvantages? Compare it with MSK.
44. What is p /4 – shifted QPSK? How is it an improvement over ordinary QPSK?
45. With reference to MSK, what does the dimensionless parameter, h, represent? For MSK, what is its value? What 

is the reason for choosing that particular value for h?
46. Draw the block diagram of an MSK transmitter and explain its operation.
47. Draw the block diagram of an MSK receiver and explain its operation.
48. Derive an expression for the power spectrum of an MSK signal, clearly stating all the assumptions made in the 

derivation.
49. What is GMSK? Sketch and compare the power spectra of an MSK signal and a GMSK signal.
50. What are the advantages and disadvantages of M-ary band pass signaling as compared to binary band pass signaling?
51. Write down the expression for the transmitted signal of an M-ary QAM signal. What is the dimension of its signal 

space? Choose some suitable orthonormal basis signals for this signal space.
52. Show the signal space diagram of 8-ary PSK. What is its dimension? Sketch the signal constellation.
53. Explain the principle of working of an ‘early-late bit synchronizer’.
54. Explain any method of ‘carrier recovery’ for a coherent band pass signaling system.

Problems 
1. For the 9-bit binary bit stream 111001001, draw the signal waveforms, if the line-code used is (a) unipolar NRZ, 

(b) Polar NRZ, (c) bipolar RZ, and (d) Manchester coding.
2. Binary words, each consisting of 16 bits are being generated at the rate of 15,000 words/second. Find the bandwidth 

required to transmit the data so generated as (a) a binary PAM signal, and (b) as an M-ary signal with M = 4.
3. A computer outputs binary data at the rate of 64 kbps. The binary digits of its output are encoded into 4-level 

PAM signal by coding each set of two successive bits into one of four possible levels. The resulting signal is trans-
mitted using a 4-level PAM system having a raised cosine spectrum with a roll-off factor r = 0.5. Determine the 
bandwidth required.

4. An analog signal band-limited to 6 kHz, is sampled at a rate of 20 ¥ 103 samples/sec. The samples are then 
quantized into 256 levels and coded into M-ary amplitude pulses that satisfy Nyquist’s criterion with a roll-off 
factor r = 0.2. If these multi-amplitude pulses are to be transmitted over an available channel that has a bandwidth 
of 32 kHz, determine the minimum acceptable value of M.

5. The binary data stream 110010110 is applied to the input of a duo-binary system. Determine the duo-binary coder 
output and the corresponding receiver output.

6. Using Nyquist criterion pulses, binary data at a rate of 8 kbps is to be transmitted over a channel of bandwidth 6 
kHz. What is the maximum value of the roll-off factor r that can be used?

7. Binary data is transmitted over a channel of bandwidth 5 kHz. Determine the maximum possible rate of trans-
mission if (a) Polar signal with rectangular full-width pulses are used. (b) Polar signal using Nyquist criterion 
pulses with r = 0.2 are used.

8. The binary data stream 100011011 is applied to the input of a modified duo-binary system. Determine the output 
of the modified duo-binary coder and the corresponding receiver output (a) without a pre-coder, and (b) with a 
pre-coder.

9. In a binary data transmission using duo-binary conversion filter without a pre-coder, the received sample values 
{ck} were found to be:

  2 2 0 –2 –2 0 2 –2 0 2 2 0
  The starting bk was 1.
 (a) Do you feel there is an error in these values?
 (b) If there is an error, can you guess the correct {bk} sequence? Is this unique?
 (c) If the obtained {bk} sequence is not unique, write down all the possible correct {bk} sequences.

More than one error in {ck} sequence is extremely unlikely.Note
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10. Design a 3-tap zero-forcing equalizer if the received pulse pr(t), in a particular binary communication system using 
Nyquist criterion pulses, has the following values at the sampling instants:

= = = -

- = - = -

(0) 1; ( ) 0.1; (2 ) 0.03

( ) 0.25; ( 2 ) 0.06

r r r

r r

p p T p T

p T p T

11. Binary non-coherent FSK with a frequency shift of 170 Hz is commonly used in the amateur radio bands. What is 
the maximum data rate such systems can support?

12. The discontinuous phase binary FSK signal obtained by switching between two unsynchronized carrier oscillators 
one of frequency f1 and the other of frequency f2, can be considered to be the one obtained by interleaving two 
binary ASK signals. Using this approach, find the PSD of discontinuous phase BFSK signal.

13. In a BPSK system for a band limited channel with BT = 4 kHz, the spectral envelope must be at least 30 dB below 
the maximum at frequencies outside the channel bandwidth. What is the maximum data rate Rb up to which this 
condition is satisfied?

14. For the input binary sequence 1100110011, sketch the waveforms of the inphase and quadrature components of a 
QPSK signal based on the signal set of Fig.10.40. Also sketch the QPSK signal waveform itself.

15. A random binary sequence of 1s and 0s occurring with equal probability and represented by polar NRZ modulates 
a carrier using offset QPSK modulation. Assuming that symbols in different time slots are statistically independent 
and identically distributed, determine the PSD of the modulated wave.

16. The Mth power loop shown in the Fig.10.65 has a phase ambiguity problem. Show that it exhibits M phase ambigu-
ities in the interval [0, 2p]. How does the ambiguity problem arises and how can we overcome it?

Multiple-Choice Questions 
 1. The line code which suppresses the dc component is
 (a) bipolar return-to-zero code (b) Manchester code
 (c) polar non-return-to-zero code (d) unipolar non-return-to-zero code
 2. The line code which has an inbuilt error-detecting capability against sign inversion of transmitted pulse due to 

channel noise, is
 (a) bipolar return-to-zero code (b) Manchester code
 (c) polar non-return-to-zero code (d) unipolar return-to-zero code
 3. The line code which permits bit-timing recovery at the receiver, is
 (a) bipolar return-to-zero code (b) Manchester code
 (c) polar non-return-to-zero code (d) unipolar return-to-zero code
 4. Using an ideal Nyquist channel, with an overall system bandwidth of W, we can transmit without ISI affecting the 

Pe, at a maximum rate of

 (a) 
1

2
W  (b) W (c) 2W (d) 

3

2
W

 5. The rate of decrease of a sinc pulse p(t) is

 (a) 
1

t
 (b) 

1

| |t
 (c) 

2

1

| |t
 (d) None of these

 6. A raised cosine filter with a roll-off factor r = 1 gives a transmission bandwidth BT equal to
 (a) 2W (b) 0.5 W (c) W (d) 1.5W

 7. A roll-off factor value for the raised cosine spectrum that enables the receiver to extract the timing signals required 
for synchronization, is

 (a) 0 (b) 1.5 (c) 0.5 (d) 1
 8. For the same transmission bandwidth W, the maximum transmission speeds attainable by the ideal Nyquist channel 

and the duo-binary conversion filter, are respectively
 (a) (2W, 2W) (b) (2W, W) (c) (W, 2W) (d) (W, W)
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 9. In a duo-binary system without pre-coder, the sample of the received signal in a particular time slot, was ck = 0. 
Then the binary digit in that time slot is

 (a) zero
 (b) ‘zero’, provided the detected bit in the previous time slot was a ‘one’
 (c) ‘zero’, provided the detected bit in the previous time slot was also a ‘zero’
 (d) ‘one’, provided the detected bit in the previous time slot was also a ‘one’
 10. A duo-binary system with pre-coding has which of the following drawback?
 (a) For a given bandwidth W, it can support a maximum transmission speed of W bits/sec.
 (b) Error propagation
 (c) The PSD of the transmitted pulse p(t) is not zero at f = 0.
 (d) None of the above
 11. In quaternary baseband transmission, the ratio of transmission speeds in bits/sec and bauds is
 (a) 2 (b) 4 (c) 0.5 (d) 0.25
 12. The extent of maximum eye opening in the vertical direction indicates
 (a) ISI (b) Timing sensitivity (c) Zero-crossing jitter (d) Noise margin
 13. Which one of the following band pass digital modulation schemes is not suitable for transmission over non-linear 

band pass channels?
 (a) FSK (b) ASK (c) PSK (d) QFSK
 14. Which one of the following digital band pass modulation schemes cannot be detected non-coherently?
 (a) FSK (b) ASK (c) PSK (d) Sunde’s BFSK
 15. Which one of the following digital band pass modulation schemes is a hybrid type?
 (a) QAM (b) QPSK (c) MSK (d) Sunde’s BFSK

16. Sunde’s BFSK has a power spectrum with a rolloff factor inversely proportional to

 (a) -( )cf f  (b) - 3( )cf f  (c) - 2( )cf f  (d) - 4( )cf f

17. In Sunde’s BFSK, the difference in frequency between the two possible signal, is equal to

 (a) 
1

T
 (b) 

2

T
 (c) 

1

2T
 (d) 

1

3T

18. The envelope of band pass noise is
 (a) uniformly distributed   (b) Rayleigh distributed
 (c) Ricean distributed   (d) Gaussian distributed

19. The envelope of a sinusoid pulse band pass noise has
 (a) normal distribution   (b) uniform distribution
 (c) Ricean distribution   (d) Rayleigh distribution

20. In a 16-ary QAM system, the energy of the signal with the smallest amplitude is E0. The distance between any two 
adjacent message points in the signal space, is

 (a) 02 E  (b) 0E  (c) 2E0 (d) E0

21. For any 4-ary FSK, the signal set is given by

pÈ ˘= + £ £Í ˙Î ˚
=

2
( ) cos ( ) ; 0

4

1, 2, 3, 4

k

E
s t n k t t T

T

k

the dimension of its signal space is
 (a) 1 (b) 2 (c) 3 (d) 4

22. For the signal set of MCQ 24, the distance between any two message signal points in the signal space is

 (a) 2E (b) 2 E  (c) 2E  (d) There is no specific answer
23. If r1 and r2 represent the bandwidth efficiencies of M-ary PSK and M-ary FSK respectively, as M is increased, r1

and r2 will (in that order)
 (a) (increase, increase)   (b) (increase, decrease)
 (c) (decrease, increase)   (d) (decrease, decrease)
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24. The signal set for a 4-ary PSK system is given by

p
w

È ˘= + - £ £Í ˙Î ˚
=

2
( ) cos ( 1) ; 0

2

1, 2, 3, 4

k c

E
s t t k t T

T

k

  The distance between adjacent message signal points in its signal space is given by

 (a) 2E (b) 2 E  (c) E  (d) 2E

 25. Which one of the following digital modulation scheme is not preferred when the channel is non-linear?
 (a) QAM (b) BFSK (c) BPSK (d) MSK

Key to Multiple-Choice Questions

 1. (b) 2. (a) 3. (d) 4. (c) 5. (b) 6. (a) 7. (d) 8. (a)
 9. (b) 10. (c) 11. (a) 12. (d) 13. (b) 14. (c) 15. (a) 16. (d)
 17. (a) 18. (b) 19. (c) 20. (a) 21. (d) 22. (c) 23. (b) 24. (d)
 25. (a)
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NOISE PERFORMANCE OF DIGITAL 

COMMUNICATION SYSTEMS

11
“In learning to know other things, and other minds, we become more intimately acquainted 

with ourselves, and are to ourselves better worth knowing.”

Philip Gilbert Hamilton

American author

Learning Objectives

After going through this chapter, students will be able to

 ■ understand that probability of error, Pe, is an appropriate index for the noise performance of digital 

communication systems,

 ■ apply statistical hypothesis testing techniques for determining probability of error of a digital 

communication system in the presence of Additive White Gaussian Noise (AWGN),

 ■ realize that matched filter is the optimum filter for detection of known signals in the presence of 

AWGN,

 ■ determine the matched filters for some simple signals,

 ■ understand the equivalence of matched filtering and correlation, and can draw the correlation 

receiver structure for detection of a known signal in the presence of noise,

 ■ draw the signal-space diagrams, sketch the signal constellations, identify the decision boundaries and 

can calculate the probabilities of error for various digital band pass modulation schemes like ASK, 

FSK, PSK, QAM, QPSK and MSK, and

 ■ compare the various digital band pass modulation schemes with reference to their probabilities of 

error and their bandwidth efficiencies.

11.1 INTRODUCTION

In this chapter, our focus will be on evaluation of the performance of digital communication systems. 
Naturally, any performance evaluation must be based on certain appropriate performance indices. Earlier 
in Section 1.8 of Chapter 1, we had mentioned that  fidelity and ‘ bandwidth efficiency’ constitute the two 
important performance indices of a communication system, whether it is an analog or a digital commu-
nication system. Fidelity, in the case of an analog communication system refers to the extent to which the 
baseband analog modulating signal waveform is faithfully reproduced at the output of the demodulator. As 
was stated earlier, the  destination signal-to-noise ratio (SNR) serves as a good parameter that can be used for 
quantifying ‘fidelity’. In the case of digital communication systems, the degree of faithful reproduction, at 
the decoder output, of the baseband digital sequence used at the transmitter, is dependent on how correctly 
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642 Communication Systems

the decoder is able to decide, during each time slot, whether what was transmitted during that  time slot was 
a binary 1 or 0. Hence, in this case, the  probability of error,  Pe, which gives the average rate of occurrence of 
decoding errors, is the appropriate parameter for quantifying the ‘ fidelity’ of a system. Of course, Pe again
depends upon the SNR at the input of the decoder. For a given channel, since the signal power at the input 
to the decoder depends upon the average transmitted power, the system that gives the smallest probability of 
error for a given average transmitted power is utilizing the communication resource, power, more efficiently, 
and so it is to be preferred. This again prompts us to examine the question of optimizing the receiver structure 
so as to minimize the probability of error.
  Bandwidth efficiency, which indicates how efficiently the communication system is utilizing the other 
 communication resource – the bandwidth, is defined in the case of digital communication systems as follows.

Bandwidth efficiency b

T

R

B
D

where Rb denotes the transmission rate in bits per second and BT is the transmission bandwidth utilized, in 
Hertz.
 Hence, our study of the performance of digital communication systems will involve the analysis of 
baseband as well as various digital modulation systems with a view to determine their error probabilities and 
bandwidth efficiencies. In short, we would like to compare the systems on the basis of their probabilities of 
error for a fixed average transmitted power and bit rate, and their bandwidth efficiencies for a given bit rate 
and at a fixed probability of error, Pe.

11.2 BASEBAND RECEPTION AND PROBABILITY OF ERROR

Earlier in Chapter 9, we had studied the structure of a  baseband PCM receiver (see Fig. 9.10). Now that we 
are concerned with the baseband reception of digital data in general, we do not need the D/A conversion 
and the reconstruction filter, which were required there for the recovery of the continuous wave message 
signal. The basic objective in baseband reception of digital data is one of recovering the original digital data 
(that was transmitted) with minimum possible errors although the transmitted digital signal suffers distortion 
due to bandwidth limitations of the channel, and gets corrupted by the noise added to it. Distortion of the 
digital signal leads to the phenomenon of  inter-symbol interference (ISI) that causes Pe to increase. Various 
techniques for combating ISI have already been discussed in detail in Chapter 10. Hence, for the present, we 
shall consider only the additive noise of the channel and its effect on the portability of error. Hence, the basic 
structure of the baseband receiver for digital data will be as shown in Fig. 11.1.

Fig. 11.1 Basic structure of a baseband receiver

 Let us assume that the digital data is being transmitted using unipolar NRZ line code. Then during each 
time slot of say T seconds, g(t) in the above figure takes a value of either +A V or 0 V. Let w(t), which repre-
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sents channel noise, be a  zero-mean white Gaussian noise. The sampling switch shown in the figure takes a 
sample of r(t), the output of the filter, during each  time slot. It is assumed that some arrangement has been 
made to ensure that the value of s(t) in any time slot is not in any way affected by its value in the adjacent 
time slots. The sample of r(t), namely r is just a voltage with a signal component and a noise component. The 
comparator compares this voltage r with the reference voltage V. If r > V, the comparator outputs a 1 that 
triggers the pulse generator to produce a clean positive rectangular pulse of amplitude A occupying a width 
T equal to the time-slot duration. If r < V, then the comparator outputs a ‘zero’ and the pulse generator does 
not produce any pulse. The case of r being exactly equals to V will have zero probability of occurrence and 
so need not be considered.
 Thus, the ‘ observed variable’ for decision making is the random variable r, a real number. The total range 
of values that the observed variable can possibly take, constitutes what is called the ‘ Observation space’. In 
this case, it is one dimensional, and is the real line, R. The observation space has thus been divided into two 
regions: (i) Region R0 defined by r < V and (ii) Region R1 defined by r > V. In any time-slot, if the observed 
variable r falls in the region R0, the receiver decides that what was transmitted during that time slot was a 
binary ‘0’, and if the observed random variable falls in the region R1, it decides that what was transmitted 
during that time slot was a binary ‘1’. The choice of V, the reference voltage, or the ‘threshold’, thus has a 
considerable bearing on the decision-making process. The question therefore arises – how can we choose V
so that the wrong decisions are minimized? Further, since the decision is solely based on the value of the 
‘observed variable’, r, and since it has a signal component, ‘s’, and a noise component, ‘n’, is there anything 
we can do to make the decision more reliable by enhancing the signal component and reducing the noise 
component in r? The analysis that follows will provide answers for all these questions.
 Since unipolar NRZ line code is assumed to have been used for transmission of the binary data, and since 
it is assumed that distortion of the signal during transmission through the channel will not be considered now, 
we have

( ) ( ) ( ); 0 Duration of time-slotr t s t n t t T= + £ £ =  (11.1)
where

1

0

If Hypothesis is true
( )

0 if Hypothesis is true

A H
s t

H

Ï
= Ì

Ó
 (11.2)

 (i) Hypothesis H1 assumes that a binary ‘1’ was transmitted and hypothesis H0 assumes 

that a binary ‘0’ was transmitted during that time slot 0 £ t £ T.

 (ii) Since the channel noise w(t) has been assumed to be zero-mean white Gaussian noise 

and the filter is an LTI system, n(t) is also zero mean and Gaussian but not white.

 (iii) A represents the amplitude of the pulse at the output of the filter. The filter, which is 

intended to reject the out-of-band noise, is assumed to have sufficient bandwidth to pass 

the pulse without distortion.

During each  time slot, the sampler takes a sample of r(t). Let it take the sample at t = T0 in the time slot under 
consideration, i.e., 0 £ t £ T. Then,

0 0 0 0 0( )| ( ) ( ) ( ) ; 0t Tr t r T s T n T T T= = = + £ £  (11.3)

Since n(t) is a zero-mean Gaussian random process, its sample n(T0) is a zero-mean Gaussian random variable. 

Let us represent its variance by 
0

2
( )n Ts . Then the probability density function 

0( ) 0( ( ))n Tp n T  is given by

2 2
0 ( )0

0

0

( )/2

( ) 0
2
( )

1
( ( ))

2

n Tn T

n T

n T

p n T e
s

ps

-=  (11.4)

Remarks
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Now, we may rewrite Eq. (11.3) as follows

0 1
0

0 0

( )         if  is true
( )

0 ( )          if  is true

A n T H
r T

n T H

+Ï
= Ì +Ó

 (11.5)

Since n(T0) is a  zero-mean Gaussian random variable with variance 
0

2
( )n Ts  and A is a constant, r(T0) is a 

Gaussian random variable with the same variance as 
0

2
( )n Ts  but of mean A if H1 is true and of mean zero if H0

is true. Thus, the density function of r(T0) conditioned on H1 being true is

2 2
0 ( )0

1

0

( ( ) ) /2

| 0 1
2
( )

1
( ( )| )

2

n Tr T A

r H

n T

p r T H e
s

ps

- -=  (11.6)

Similarly, the density function of r(T0) conditioned on H0 being true is

2 2
0 ( )0

0

0

( )/2

| 0 0
2
( )

1
( ( )| )

2

n Tr T

r H

n T

p r T H e
s

ps

-=  (11.7)

A plot of the  density function of n(T0) given by Eq. 
(11.4) is shown in Fig. 11.2 and the  conditional density 
functions given by Eqs. (11.6) and (11.7) are shown in 
Fig. 11.3.
 As stated earlier, we have arranged matters in such a 
way that when r(T0), the observed random variable, is 
greater than V, the receiver decides that a binary ‘1’ was 
transmitted and when r(T0) is less than V, the receiver decides that a binary ‘0’ was transmitted. However, 

the shaded area 
0eP  under 

0| 0 0( ( ) | )r Hp r T H  indicates that there is a non-zero probability (equal to 
0eP ) that 

the observed variable r(T0) might take a value greater than V even when H0 is true, i.e., there is a probability 

eP
0

 of the receiver saying that a binary 1 was transmitted, even-though, in fact, a binary 0 was transmitted. 

Similarly, the area marked 
1eP  shows that there is a probability 

1eP  of the receiver saying that a binary 0 was 

transmitted, even though, in fact, a binary 1 was transmitted.

Fig. 11.3 Conditional density functions,  threshold V and the decision regions R0 and R1

 If P1 denotes the probability of transmission of a binary 1 and P0 the probability of transmission of a 
binary 0, the average probability of error, Pe may be written as
Pe = (probability of transmission of a 1) × (probability of the receiver misinterpreting the 1 as 0) + (proba-
bility of transmission of a 0) × (probability of the receiver misinterpreting the 0 as 1).

\
1 01 0e e eP P P P P= +  (11.8)

Fig. 11.2 PDF of the random variable n(T0)
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Referring to Fig. 11.3, we may write the expressions for 
0eP  and 

1eP  as

0 00 0 | 0 0[ ( ) | ] ( ( )| )e r H
V

P P r T V H p r T H dr
•

= > = Ú  (11.9)

and
1 10 1 | 0 1[ ( ) | ] ( ( )| )

V

e r HP P r T V H p r T H dr
-•

= < = Ú  (11.10)

From Fig. 11.3, it is clear that if V, the reference voltage, or the threshold voltage, is decreased, 
0eP  increases 

while
1eP  decreases and when V is increased, 

0eP  decreases while 
1eP  increases. That is, as V is changed, 

while one type of errors decrease, the other type of errors increase. Since we are interested in minimizing the 
average  probability of error Pe by an appropriate choice of the reference voltage, V, let Vopt be the value of V
for which Pe takes a minimum value.

i.e., 0edP

dV
=  when V = Vopt i.e., when r(T0) = Vopt (11.11)

\ differentiating both sides of Eq. (11.8) with respect to V, we get

0 1

0 1

0 1

0 | 0 0 1 | 0 1( ( )| ) ( ( )| )

e ee

V

r H r H
V

dP dPdP
P P

dV dV dV

d d
P p r T H dr P p r T H dr

dV dV

•

-•

= +

È ˘È ˘
= + Í ˙Í ˙

Í ˙Î ˚ Î ˚
Ú Ú

Hence, from Eq. (11.11)

0 1 0 opt

opt

0 | 0 0 1 | 0 1 ( )[ ( ( ) | ) ( ( ) | )] | 0e
r H r H r T V

V V

dP
P p r T H P p r T H

dV
=

=

= - + =

i.e.,
0 0 opt 1 0 opt0 | 0 0 ( ) 1 | 0 1 ( )( ( )| )| ( ( )| )|r H r T V r H r T VP p r T H P p r T H= ==

i.e., 0

1
0 opt

| 0 01

0 | 0 1
( )

( ( )| )

( ( )| )

r H

r H
r T V

p r T HP

P p r T H
=

=  (11.12)

If P1 = P0 = 0.5, as is generally the case in a communication scenario, Eq. (11.12) tells us that Vopt is that 
value of r(T0) for which 

0 1| 0 0 | 0 1( ( )| ) ( ( )| )r H r Hp r T H p r T H= . That is, if P1 = P0 = 0.5, Vopt is that value of r(T0)

which corresponds to the intersection of the two conditional density curves. From the symmetry of the two 
curves in Fig. 11.3, it means that

Vopt = A/2 for unipolar NRZ case (11.13)

When P1 π P0, we have to use Eq. (11.12) to find Vopt

Now, 
0 0

0

( ) 0 0
( )

( ( )) ( )e n T
n TV

V
P p n T dn T Q

s

• È ˘= = Í ˙
Î ˚

Ú  (11.14)

(where Q(◊) is the Q-function. Refer to Appendix E)

and
1 0

0

( ) 0 0
( )

( ( ) ) ( )e n T
n TV

A V
P p n T A dn T Q

s

• -È ˘= - = Í ˙
Î ˚

Ú  (11.15)

CS-Rao_11.indd 645CS-Rao_11.indd   645 1/25/2013 8:43:10 AM1/25/2013   8:43:10 AM



646 Communication Systems

Thus, when P0 = P1, since Vopt = A/2 and 
0eP  = 

1
,eP

0 1 0 1

0( )

0.5 0.5
2e e e e e

n T

A
P P P P P Q

s

È ˘= + = = = Í ˙
Î ˚

 (11.16)

With P0 = P1 = 0.5, for a unipolar case, the average signal power at the input to the decision-making circuit

2 2 2
0 1(0) 0.5RS P P A A= = ◊ + =

0

2
( )

The average noise power at the

input to the decision-making circuit R n TN s
¸

= =˝
˛

 …(since n(t) is of zero mean)

\
0

2

2
( )2R n T

S A

N s

Ê ˆ =Á ˜Ë ¯  (11.17)

\ from Eqs. (11.16) and (11.17), we may write

(unipolar) ( )

Average probability of 1 1

2error for unipolar NRZ case 2
e

n T R

A S
P Q Q

Ns

È ˘È ˘ Ê ˆ= = = Í ˙Á ˜Í ˙ Ë ¯Í ˙Î ˚ Î ˚
 (11.18)

Proceeding on similar lines, for the polar signaling case, it can be shown that

(polar)
e

R

S
P Q

N

È ˘Ê ˆ= Í ˙Á ˜Ë ¯Í ˙Î ˚
 (11.19)

Since Q(x) is a monotonically decreasing function of x, the value of Q(x) decreases as x increases and vice 
versa. Thus we conclude that
 1. For polar as well as  unipolar signaling, the probability of error, Pe, decreases as the (S/N) at the input to 

the decision-making circuit (i.e., at the output of the filter) increases.
 2. Other things remaining the same,  polar signaling gives a smaller value of Pe than unipolar signaling.
 3. If time-slot duration is T, the signaling rate r = (1/T). But we know that to support a signaling rate of 

r pulses/sec, the low pass noise-limiting filter must have a cut-off bandwidth B ≥ r/2. This means, NR

which is equal to (h/2)(2B) = hB, is given by 

( /2)RN B rh h= ≥  (11.20)

This shows that rapid signaling needs more signal power to get any specified Pe.

11.2.1 ML and MAP Detection Strategies

When the a priori probabilities P0 and P1 are equal, the value of the observed random variable r(T0) corre-
sponding to the point of intersection of the two conditional density functions pr(r(T0)|H1) and pr(r(T0)|H0),
i.e., r(T0) = A/2 in Fig.11.3, is taken as the optimum threshold. Then whenever the value r1 of the observed 
random variable r(T0) is greater than A/2,

1 1 1 0( | ) ( | )r rp r H p r H>
and so in such a case, we ask the receiver to decide in favor of H1. So, whenever r1< A/2, we have

1 0 1 1( | ) ( | )r rp r H p r H>
So, in this case, we ask the receiver to decide in favor of H0. The logic behind this decision-making strategy 
is that whenever r1 > A/2, the observed value of the random variable r(T0), it is more likely that a binary 1
was transmitted (i.e., H1 being true). Detection based on this decision-making strategy is referred to as the 
‘Maximum Likelihood Detection’ or ML detection. If r1 is the value of the observed random variable r(T0),
this ML detection strategy is
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and
r r

r r

H p r H p r H

H p r H p r H

> ¸
˝> ˛

1 1 1 1 0

0 1 0 1 1

Say if : ( | ) ( | )

Say if : ( | ) ( | )
(11.21)

But suppose the a priori probabilities P0 and P1 are known and are unequal. In that case, as we have already 
seen, the value of r(T0) for which the two conditional probabilities are equal, i.e., the value of r(T0) corre-
sponding to the point of intersection of the conditional probability curves, will not be the optimum threshold 
value that gives the least probability of error. It is some other value Vopt as defined by Eq. (11.12). So, now, if 
the value r1 of the observed random variable r(T0) is greater than Vopt, the receiver decides in favor of H1 and 
if r1 is less than Vopt, the receiver decides in favor of H0. When r1 is greater than Vopt,

1 1 1 0 1 0( | ) ( | )r rP p r H P p r H>

This inequality tells us that when r1 > Vopt, the probability of this being caused by a binary 1 having been 
transmitted is more than the probability of its being caused by a zero having been transmitted. Hence, in this 
case, the decision in favor of H1 or H0 is based on the probabilities of the binary symbols 1 and 0. Hence, 
detection based on this decision-making strategy, is called ‘ Maximum a posteriori detection’, or simply, 
MAP detection. In MAP detection therefore, the decision rule is

01 1
1

1 0 1

1 0 1
0

1 1 0

( | )
Say if :

( | )

( | )
Say if :

( | )

r

r

r

r

Pp r H
H

p r H P

p r H P
H

p r H P

¸> ÔÔ
˝
Ô>
Ǫ̂

(11.22)

where r1 is the value of the observed random variable r(T0). It is obvious from Eq. (11.22) that when P0

equals P1,  MAP detection reduces to  ML detection.

11.2.2 ML Detection with Zero-Mean AWGN

If A0 and A1 are transmitted corresponding to H0 and H1 respectively

2
0 0

0 0 22

{ ( ) }1
( ( )| ) exp

22
r

nn

r T A
p r T H

sps

È ˘-
= -Í ˙

Í ˙Î ˚

and
2

0 1
0 1 22

{ ( ) }1
( ( )| ) exp

22
r

nn

r T A
p r T H

sps

È ˘-
= -Í ˙

Í ˙Î ˚

\ if r1 is the value of the observed random variable r(T0), and if, 1 1 1 0( | ) ( | )r rp r H p r H> , we say it is H1 in 
ML detection.

i.e., if 
22

1 01 1
2 22 2

{ }{ }1 1
exp exp

2 22 2n nn n

r Ar A

s sps ps

È ˘È ˘ --
- > -Í ˙Í ˙

Í ˙ Í ˙Î ˚ Î ˚
 : say H1

when simplified, this reduces to the following decision rule:

Say H1 if: 
0 1

1 2

A A
r

+
>

and similarly, if 1 0 1 1( | ) ( | )r rp r H p r H> , receiver says H0. When the Gaussian conditional densities are substi-

tuted, on simplification, this leads to the decision rule for ML detection in  zero-mean AWGN as

Say H0 if: 0 1
1 ,

2

A A
r

+
<
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We can take the logarithms on both sides and write like this because: (i) the density functions 

are always non-negative, and (ii) the logarithm is a monotonically increasing function of its 

argument.

 Thus, for  ML detection, with zero-mean additive white Gaussian channel noise and A0 and A1 being the 
values received corresponding to binary ‘0’ and binary ‘1’, the decision rule of Eq. (11.21) reduces to

and

0 1
1 1

0 1
1 0

( )
if : , say

2

( )
if : , say

2

A A
r H

A A
r H

+ ¸> ÔÔ
˝+ Ô< Ǫ̂

(11.23)

where r1 is the value of the observed random variable.
Similarly in the case of  MAP detection, if r1 is the value of the observed random variable, the decision rule 
of Eq. (11.22) reduces to

and

s

s

s

s

¸È ˘Ï ¸ -
Ô> +Í ˙Ì ˝- ÔÓ ˛Í ˙Î ˚ Ô
˝

È ˘ ÔÏ ¸ -Í ˙< +Ì ˝ Ô- Í ˙Ó ˛ ÔÎ ˚ ˛

0

0

0

0

2 2 2
0 1 0

1 e 2 11 0 1

2 2 2
0 1 0 0

1 e 2
1 0 1

if : log , say( ) 2

sayif :   log ,
( ) 2

n

n

n

n

P A A
r

HA A P

P A A Hr
A A P

(11.24)

Example 11.1 A polar NRZ waveform, taking the values +1 V for binary 1 and –1V for binary ‘0’, 
corrupted by additive zero-mean white Gaussian noise whose variance is 0.2 V2, is received by an MAP 
receiver. Determine the optimum threshold voltage for the receiver for each of the following a priori

probabilities of transmission of a binary 1. (a) P1 = 0.5, and (b) P1 = 0.3.

Solution
 (a) When P1 = P0 = 0.5, the  MAP detector reduces to an ML detector and so

 Vopt = Threshold voltage = 
+ -

=
1 ( 1)

0 V
2

 (b) When P1 = 0.3, P0 = 0.7. Since, the threshold voltage for an MAP detector is given by (see Eq. (11.24))

0

0

2 2 2
0 1 0

opt e 2
1 0 1

log ,
( ) 2

n

n

P A A
V

A A P

s

s

È ˘Ï ¸ -Í ˙= +Ì ˝- Í ˙Ó ˛Î ˚
  Substituting the given values in this

V
È ˘Ï ¸= + = ¥ =Ì ˝Í ˙

Ó ˛Î ˚
opt e

0.2 0.7
log 0 0.1 0.8473 0.08473 V

2 0.3

Example 11.2 A received binary baseband  polar NRZ signal is either +1 V or –1 V. If P(1) = 0.75, 
assuming that zero-mean white Gaussian noise of variance 0.2 V2 is corrupting the signal. (a) Find the 
threshold voltage to keep Pe to a minimum value. (b) Find the corresponding minimum Pe.

Solution
(a) To find the threshold voltage, let us apply Eq. (11.24)

Note
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n

n

P A A
V

A A P

s

s

È ˘Ï ¸ -
= +Í ˙Ì ˝- Í Ó ˛ ˙Î ˚

È ˘Ï ¸= + = - ¥ = -Ì ˝Í ˙
Ó ˛Î ˚

0

0

2 2 2
0 1 0

opt e 2
1 0 1

e

log
( ) 2

0.2 0.25
log 0 (0.1 0.477) 0.0477 V

2 0.75

(b) To find the corresponding minimum Pe

Fig. 11.4 Conditional density functions for Example 11.2

min 0 1

opt

0 1

opt

0 1

| 0 | 10.25 ( | ) 0.75 ( | )

1 1.0477
0.25 0.75

0.2 0.2

0.25 [2.236] 0.75 [2.342]

0.25 2.236 0.75 2.342

2 22 2

0.125 1

e e e

V

r H r H
V

P P P P P

p r H dr p r H dr

Q Q

Q Q

erfc erfc

e

•

-•

= ◊ + ◊

È ˘ È ˘
Í ˙ Í ˙= +
Í ˙ Í ˙Î ˚Î ˚

È ˘ È ˘= +Í ˙ Í ˙
Î ˚ Î ˚

= +

È ˘È ˘= + Í ˙Í ˙Î ˚ Î ˚

= -

Ú Ú

{ }2.236 2.342
0.375 1

1.414 1.414
rf erf

È ˘È ˘ Ï ¸+ - Ì ˝Í ˙Í ˙
Ó ˛Î ˚ Î ˚

By referring to the error function tables, and simplifying:

min

20.01 10eP
-= =

11.2.3  Optimum Filter

In our discussion on the basic structure of a  baseband receiver, it was shown that (refer to Eqs. (11.18) 
and (11.19)) the  probability of error decreases monotonically as the signal-to-noise ratio at the input to the 
comparator (decision device) is increased. So, we now turn our attention to the problem of increasing the 
(S/N) at the input to the decision device, i.e., at the output of the filter. Although we had originally introduced 
this filter for the purpose of not allowing the out-of-band noise from entering the receiver, in the light of our 
above requirement, we would like to look at this filter from the point of view of obtaining the maximum 
possible (S/N) at its output so that the decision device takes decisions under the best possible condition, i.e., 
when the signal-to-noise ratio at its input is maximum. In order to make our analysis a little more general, 
we shall assume that the channel noise is only zero-mean Gaussian and not  zero-mean white Gaussian noise. 
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650 Communication Systems

A filter, whose transfer function is such that it maximizes the signal-to-noise ratio at its output under these 
conditions, is referred to as an ‘ optimum filter’. Further, in order to make the analysis applicable to both 
binary baseband reception as well as binary band pass reception we shall assume that corresponding to a 
binary 1, a signal s2(t) will be transmitted and that corresponding to a binary ‘0’, a signal s1(t) will be trans-
mitted. So, when baseband signaling is being considered,

2 ( )s t A= +

and s t
A

Ï
= Ì

Ó
1

0  for unipolar signaling
( )

–  for polar signaling

On the other hand, when  band pass signaling is being considered we interpret s2(t) and s1(t) appropriately 
depending upon whether it is ASK, FSK or PSK.
 Now, we shall determine the transfer function, Hopt(f), of the optimum filter for binary signaling. But, 
before we proceed with that, we need to discuss  Schwarz’s inequality, an inequality that we will be using in 
the derivation of Hopt(f).

11.2.4 Transfer Function of Optimum Filter

For the purpose of determining the transfer function of an optimum filter, let us slightly modify Fig. 11.1 and 
consider a receiver structure shown below in Fig. 11.5.

Fig. 11.5 Receiver structure considered for determination of Hopt(f)

The input to the filter is either s1(t) + n(t) or s2(t) + n(t) depending on whether hypothesis H1 is true or 
hypothesis H2 is true in the  time slot being considered. Since the filter is LTI, at its output also the signal and 
noise components will be separate and the output is

+ £ £Ï
= Ì + £ £Ó

01 0 1
0

02 0 2

( ) ( ) if is true; 0
( )

( ) ( ) if is true; 0

s t n t H t T
r t

s t n t H t T
 (11.25)

The sampler samples the filter output, taking one sample every T seconds, where T is the time-slot duration, 
i.e., the duration of a binary ‘0’ or a binary ‘1’. The sampler output, which is the input to the decision device, 
may therefore be written as

01 0 1
0

02 0 2

( ) ( ) if is true
( )

( ) ( ) if is true

s T n T H
r T

s T n T H

+Ï
= Ì +Ó

 (11.26)

Since n(t), the  channel noise is zero-mean Gaussian and since the filter is LTI, the noise component at the 
filter output, viz., n0(t) is also a zero-mean Gaussian process. Further, s01(t) is the filter output corresponding 
to s1(t), the signal component at its input if H1 is true; and s02(t) is the filter output corresponding to s2(t), the 
signal component at its input if H2 is true. s01(T) and s02(T) are constants (whose values depend on the filter’s 
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H(f), the sampling instant T and on s1(t) and s2(t) respectively) and n0(T) is a zero-mean  Gaussian random 

variable with  variance 
0

2
ns , the same as that of n0(T). A sketch of the  conditional densities 

0 0 1( ( )| )rp r T H  and 

0 0 2( ( )| )rp r T H  is shown in Fig.11.6. It is assumed that 02 01( ) ( )s T s T> .

  If 0 opt( )r T V> , receiver says s2(t) was transmitted

     0 opt( )r T V< , receiver says s1(t) was transmitted

Fig. 11.6 Conditional densities 
0r 0 1p (r (T )|H )  and 

0r 0 2p (r (T )|H )

Since it has been assumed that P0 = P1 = 0.5, as pointed out earlier, the value of r0(T) for which we get the 
intersection of the two conditional densities, gives us the optimum value of the  threshold or reference voltage. 
If H1 is true,

r0(T) = s01(T) + n0(T) (11.27)

So, an error will occur if n0(T) is large enough to make

r0(T) > Vopt (11.28)

But opt 01 02

1
[ ( ) ( )]

2
V s T s T= +  (11.29)

\ an error will occur, if

0 01 0 opt 01 02

1
( ) [ ( ) ( )] [ ( ) ( )]

2
r T s T n T V s T s T= + > = +

i.e., if 02 01
0

( ) ( )
( )

2

s T s T
n T

-
>  (11.30)

The probability of occurrence of this = shaded area A1.
\ Pe0 = Probability of the receiver misinterpreting a transmitted zero as a 1.
 = Shaded area A1

Similarly, therefore, Pe1 = Probability of the receiver misinterpreting a transmitted 1 as a 0.
 = Shaded area A2

\ average probability of error = Pe = P0 ◊ A1 + P1 ◊ A2 = Area A1

(Since P0 = P1 = 0.5 and also A1 = A2.)

\
2 2

0 01 0

01 02
0opt

[ ( ) ( )] /2

1 0
2

( ) ( )

2

1
Area ( )

2

nr T s T

e
s T s T

nV

P A e dr T
s

ps

•
- -

+È ˘= Í ˙Î ˚

= = Ú  (11.31)

Putting
0

0 01( ) ( )

n

r T s T
z

s

-
= , we have 

00 ( ) ,ndr T dzs= ◊  and 
00 01( ) ( )nr T z s Ts= +
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when
0

01 02 02 01
0 opt

( ) ( ) ( ) ( )
( ) ,

2 2 n

s T s T s T s T
r T V z

s

+ -
= = =

Hence, Eq. (11.31) may be rewritten as

\
2

02 01 0

0

/2 02 01

( ) ( )

2

( ) ( )1

2 22

n

z
e

s T s T n

s T s T d
P e dz Q Q

s

sp

•
-

-

-È ˘ È ˘= = =Í ˙ Í ˙Î ˚Î ˚
Ú  (11.32)

where
0

02 01( ) ( )

n

s T s T
d

s

-È ˘D Í ˙
Î ˚

For the purpose of drawing Fig. 11.6 and for this derivation, we have assumed that 02 01( ) ( )s T s T> , since the 

values of these constants depend, as mentioned earlier, on the nature of the signals 01( )s t  and 02 ( )s t , and the 
value of T. So, in general

0

02 01| ( ) ( )|

n

s T s T
d

s

-È ˘= Í ˙
Î ˚

 (11.33)

Since
2e

d
P Q

È ˘= Í ˙Î ˚
 from Eq. (11.32), and since the  Q-function is a monotonically decreasing function of its 

argument, it follows that

max
min 2e

d
P Q

È ˘= Í ˙Î ˚
 (11.34)

i.e., to minimize the  probability of error, we have to maximize ‘d’. Hence, we have to choose H(f) in such a 
way that it maximizes d or d 2.
Now, suppose we define a signal p(t) as:

2 1[ ( ) ( )] ; 0
( )

0                   ; otherwise

s t s t t T
p t

- £ £Ï
D Ì

Ó
 (11.35)

If h(t) is the impulse response of the filter, we have

0 02 01 2 1
0

( ) [ ( ) ( )] [ ( ) ( )] ( )
T

p T s T s T s s h T dt t t t= - = - -Ú  (11.36)

Since p(t) = 0 for t < 0 as well as for t > T, and since h(T – t) = 0 for t > T in the case of a physically realizable 
(causal) filter, we may change the limits of integration in the RHS of Eq. (11.36) and write

0 02 01( ) [ ( ) ( )] ( ) ( )p T s T s T p h T dt t t
•

-•
= - = -Ú  (11.37)

Further, if ( ) [ ( )]P f p tD F , then

0

1 2
0 0

( ) ( ) ( )

( ) { [ ( )]}| { ( ) ( )} j fT
t T

P f P f H f

p T P f P f H f e df
p

•
-

=
-•

=

= = ÚF\  (11.38)

\     

0

2
2 02 01

2

| ( ) ( )|

n

s T s T
d

s

-
D  (11.39)
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But

0

2
ns  = Noise variance at the output of the filter

 = Noise power at the output of the filter
     (since the noise is zero-mean)

2

{PSD of the noise at the output of the filter}

( ) | ( )|n

df

S f H f df

•

-•

•

-•

=

=

Ú

Ú   (11.40)

\
0

2

2

2
2 0

2
2

{ ( ) ( )}
( )

( )| ( )|

j fT

n
n

P f H f e df
p T

d

S f H f df

p

s

•

-•
•

-•

È ˘
= = Í ˙

Í ˙Î ˚

Ú

Ú
 (11.41)

In order to minimize Pe, we have to maximize d 2. For this, we shall make use of ‘ Schwarz’s Inequality’ which 
can be stated for frequency domain functions as

2

2 2( ) ( ) | ( )| | ( )|U f V f df U f df V f df
• • •

*

-• -• -•

È ˘ È ˘
£ Í ˙ Í ˙

Í ˙ Í ˙Î ˚ Î ˚
Ú Ú Ú

or alternatively as
2

2

2

( ) ( )

| ( )|

| ( )|

U f V f df

V f df

U f df

•
*

•
-•

•
-•

-•

£
Ú

Ú
Ú

 (11.42)

where the equality sign holds if and only if

( ) ( )U f k V f= ◊ , where k is a constant (11.43)

To apply Schwarz’s inequality to Eq. (11.41), let us put

( ) ( ) ( )nU f k H f S f= ◊ ◊  (11.44)

and
2( )

( )
( )

j fT

n

P f e
V f k

S f

p* -

=  (11.45)

where k is a constant.
Then the maximum value of d 2 is obtained (corresponding to the condition for the equality sign to hold good, 
as stated in Eq. (11.43) when

2( )
( ) ( )

( )

j fT

n

n

P f e
H f S f k

S f

p* -

=

i.e., when 
2

opt

( )
( )

( )

j fT

n

P f e
H f k

S f

p* -È ˘
= Í ˙

Î ˚
 (11.46)

where k is a constant.
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Note that opt| ( )|H f  is directly proportional to |P(f)| and inversely proportional to Sn(f), the noise PSD. Thus,

the  optimum filter emphasizes frequencies where the signal spectrum is large and de-emphasizes those 

frequencies where the noise spectrum has large amplitudes. Thus, it improves the  signal-to-noise ratio.
 Now, to find the probability of error, Pe when the optimum filter is used, we note that d 2 takes the maximum 
value when H(f) = Hopt(f) in Eq. (11.41). Hence, substituting Hopt(f) for H(f) in Eq. (11.41) and using Eq. 
(11.46) for Hopt(f), we get

0

2
2

2 2
20
max2 2

max

| ( )|

( )( ) | ( )|

( )| ( )|

( )

n

nn

n

P f
df

S fp T P f
d df

S fP f
df

S f

s

•

•
-•

•
-•

-•

È ˘
= = =Í ˙

Í ˙Î ˚

Ú
Ú

Ú
 (11.47)

\
min

max ,
2e

d
P Q=  where dmax is as given in Eq. (11.47)

min

max1

2 2 2
e

d
P erfc

È ˘
= Í ˙

Î ˚
 (11.48)

11.2.5 Matched Filter

We have derived the transfer function Hopt(f) of the optimum filter assuming the channel noise to have a PSD 
equal to Sn(f), i.e., we have derived it for a general case. However, in case the channel noise is white and has 
a PSD (two-sided) of say (h/2), as is generally assumed, then the Hopt(f) is called a ‘ matched filter’. Hence, 
from Eq. (11.46), we have

j fT
j fTP f e

H f k P f e
p

pa
* -

* -È ˘
= =Í ˙hÎ ˚

2
2( )

( ) ( )
( /2)

 (11.49)

Since h/2 is a constant and the constant of proportionality, k, is arbitrary, we combine them and represent by 
a scaling factor a.
 Thus, the transfer function H(f) of the matched filter depends only on the signal 2 1( ) [ ( ) ( )]p t s t s t= -  and 

that is why it is called a ‘matched filter’, indicating that the filter is matched to the signal to give minimum 

 probability of error. Taking the inverse  Fourier transform on both sides of Eq. (11.49), we get the  impulse 
response h(t) of the matched filter as:

( ) ( ) ; 0h t p T t t Ta= - £ £  (11.50)

2 1[ ( ) ( )]s T t s T ta= - - -  (11.51)

Equation (11.50) shows that the impulse response, h(t), of the matched filter is obtained by reversing p(t)
in time and then shifting it by T sec to the right along the time axis. For example, if p(t) is as shown in 
Fig. 11.7(a), the waveform of the impulse response of its matched filter is as shown in Fig. 11.7(c) waveform 
of time reversed p(t) is shown in Fig. 11.7(b).

Probability of error with matched filter Substituting in Eq. (11.47) h/2 for Sn(f), the two-sided 
 power spectral density of the channel noise, we get

2 2
max

2
| ( )|d P f df

h

•

-•
= Ú

where P f p t=( ) [ ( )]F  and 2 1( ) [ ( ) ( )]p t s t s t= -
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We know from  Parseval’s theorem (also known 
as  Rayleigh’s theorem), that Ep the energy of the 
finite energy signal p(t) is given by

2 2| ( )| | ( )|pE p t dt P f df
• •

-• -•
= =Ú Ú

\ pd E=
h

2
max

2
 (11.52)

 1. For the unipolar case: Binary 1 repre-
sented by a positive rectangular pulse of A
V over 0 to T sec and binary 0 represented 
by a no pulse, i.e., 0 V over 0 to T sec. That 
is s2(t) = A ; 0 £ t £ T and s1(t) = 0 ; 0 £ t £ T.

\ ( ) ( 0) ; 0p t A t T= - £ £

and 2
pE A T=

\ p

A T
d E= =

h h

2
2
max

2 2

\
A T

d =
h

2

max

2

and
d A T

=
h

2
max 1

2 2
 (11.53)

Assuming that the a priori probabilities of a 1 and a 0 are equal, since the pulses of amplitude A occur 

only for 50% of time, the average energy per time slot is 
2

2

A TÊ ˆ
Á ˜Ë ¯ . Representing the average energy per 

time slot by Eb, we have

max

matched filter
unipolar

2
b

e

d E
P Q Q

h

È ˘È ˘= = Í ˙Í ˙Î ˚ Î ˚
 (11.54)

where
2

2b

A T
E =  as stated earlier.

 2. For the polar case: s2(t) = A and s1(t) = –A

\ In this case, 2 1( ) ( ) ( ) 2p t s t s t A= - =

\ 2 2

0

( ) 4
T

pE p t dt A T= =Ú

Hence, p

A T
d E= =

h h

2
2
max

2 8
 and  

A T
d =

h

2

max

2
2

Fig. 11.7 (a) Signal p(t), (b) Signal p(–t), (c) Signal p(T – t)
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But in the polar case, Eb, the average energy per time slot is given by A2T since a pulse of amplitude 
either +A or –A exists in every time slot.
\ Eb = Average energy/time-slot = A2T

\ bE
d =

hmax

2
2

Hence, b
e

d E
P Q Q

È ˘È ˘= = Í ˙Í ˙Î ˚ hÍ ˙Î ˚
max 2

2

\ b
e

E
P Q

È ˘
= Í ˙

hÍ ˙Î ˚matched filter
polar case

2
 (11.55)

where Eb = Average energy per time slot = A2T.

Matched filter for a rectangular pulse signal We will show that the matched filter for a rectan-
gular pulse signal is what is called the ‘ integrate and dump’ circuit. The integrate-and-dump receiver assumes 
importance because, for unipolar as well as polar signaling, 2 1( ) [ ( ) ( )]p t s t s t= -  will be a rectangular pulse

of width T, the duration of a time slot.
 So, let p(t) be a rectangular pulse of duration T sec, i.e.,

; 0
( )

0 ; elsewhere

A t T
p t

£ £Ï
= Ì

Ó
 (11.56)

Then, we know, from Eq. (11.46) that the impulse response of the matched 
filter for this signal, is given by

; 0
( ) ( ) ( )

0 ; elsewhere

A t T
h t p T t p ta a

£ £Ï
= - = = Ì

Ó
 (11.57)

This is because, when a rectangular pulse of duration T sec extending from t = 0 to T is reversed in time and 

then translated in time to the right by T sec, we again get only the same rectangular pulse we started with. 

Thus, waveform of h(t) is the same as p(t), shown in Fig. 11.8.

 Now, consider an ideal integrator. If we give a unit impulse as input to it, we know that we get u(t).

 So, if we allow the d(t) to be integrated by the ideal integrator from t = 0 to T and suddenly bring the output 

of the integrator to zero, we get a rectangular pulse of duration T sec, extending from t = 0 to t = T. Thus, the 

impulse response of the matched filter for a ‘rectangular pulse’ also has exactly the same waveform as the 

output waveform of an ‘integrate-and-dump’ circuit.

 Hence, we may conclude that the matched filter for a rectangular pulse extending from 0 to T sec is just an 

integrator operating from 0 to T sec whose output is dumped at t = T sec.

 Since the integration is only from 0 to T sec and the integrator should start afresh in the next time slot, 

we have to ensure that the energy storage devices in the integrator are all discharged at the end of each T sec 

duration, i.e., at the end of each time slot. That is why this matched filter configuration is called ‘integrate-

and-dump’ circuit. A binary  baseband receiver using an ‘integrate-and-dump’ implementation of the  matched 

filter is shown in Fig. 11.9.

Fig. 11.8 Rectangular pulse 

signal
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Fig. 11.9 An ‘integrate-and-dump’ type of binary  baseband receiver

 Before we conclude our discussion on the integrate-and-dump type of receiver, it is instructive to examine 
how this matched filter maximizes the signal-to-noise ratio of the observed random variable r0(T). Since 

0 0 0( ) ( ) ( )r t s t n t= + ,

0 0 0

0 0

01 0 1

02 0 2

( ) ( ) ( )

( ) ( )

( ) ( ); if ( ) is transmitted

( ) ( ); if ( ) is transmitted

T T

r T s T n T

s t dt w t dt

s T n T s t

s T n T s t

= +

= +

+Ï
= Ì +Ó

Ú Ú

  (11.58)

Fig. 11.10  Illustrating the effect of integration of the rectangular signal and the zero-mean white Gaussian noise: 

(a) Rectangular signal, (b) Triangular pulse with peak value at t = T, (c) Zero-mean noise, (d) Noise after 

integration

As can be seen from Fig. 11.10(b), the signal component at the output of the  matched filter (here, an 
integrator) goes on increasing with time up to t = T, the instant at which the input pulse ceases to exist. If 
the integration process is allowed to continue beyond t = T and if s(t) = 0 from t = T to 2T (i.e., the next time 
slot) the integrator output would remain constant at the value kAT which it has attained at t = T (as shown by 
the dotted line). But, we dump the output when the next time slot starts. Thus, the signal component of r0(t)
is maximized at t = T.
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 The noise, being random, and of zero mean, when integrated over 0 to T, would however, be almost zero at 
the output of the filter. As the time of integration, T, cannot be extremely large, n0(T) will not be zero. It may 
have some small value. In fact, what is important is, that when the noise is integrated, the noise n0(t) at the 
output of the integrator will have a variance that goes on decreasing with the time for which the integration is 
carried out (see Example 11.3). Thus, while the power of the signal component s0(T) increases with time of 
integration, T, the variance of the noise component n0(T) goes on decreasing. Thus the  signal-to-noise ratio 
of the random variable r0(T), by observing which, the  decision device takes its decision, is maximized.

Example 11.3  Zero-mean white-noise of two-sided power spectral density h/2 is integrated by an 
ideal integrator. A sample of the output noise of the integrator is taken at t = T. Show that the  variance of 
the noise sample so taken, is inversely proportional to T.

Solution Let the zero-mean white noise be represented by w(t) and let the noise at the output of the 
integrator be represented by n0(t). So, the sample of n0(t) at t = T is

0 0( )| ( )t Tn t n T= =
Then n0(T) is a zero-mean random variable since w(t) is zero-mean and integration is a linear operation.

Variance of 2 2
0 0 0

2
0 0 0

( ) [ ( )] [ { ( )}]

[ ( )] as { ( )} 0 since ( ) is a zero-mean noise

n T E n T E n T

E n T E n T n t

= -

= =

But 0
0

1
( ) ( )

T

n T w t dt
T

Ï ¸
= Ì ˝

Ó ˛
Ú

\

{ }

2
0

0 0

2
0 0

1 1
[ ( )] ( ) ( )

1
( ) ( )

T T

T T

E n T E w t dt w u du
T T

E w t w u dtdu
T

È ˘Ï ¸ Ï ¸
= Í ˙Ì ˝ Ì ˝

Í ˙Ó ˛ Ó ˛Î ˚

=

Ú Ú

Ú Ú

But wE w t w u R t u t ud
h

= - = -{ ( ) ( )} ( ) ( )
2

\
T T

E n T t u dtdu
T

d
hÊ ˆ= -Á ˜Ë ¯Ú Ú2

0 2
0 0

1
[ ( )] ( )

2

But                            
T

t u dtd
h hÊ ˆ - =Á ˜Ë ¯Ú

0

( )
2 2

 from the defining equation of an impulse

\
T

n T E n T du
TT

s
h h

= = ◊ =Ú0

2 2
( ) 0 2

0

1
[ ( )]

2 2

Thus, the variance of n0(T) is inversely proportional to T.

Example 11.4 A baseband binary system transmits the signal s1(t) for binary 1 and the signal s2(t) for 
binary 0, where s1(t) and s2(t) are given by 

1 2

for 0 /2 /2 for 0 /2

( ) /2 for /2 and ( ) /2 for /2

0 elsewhere 0 elsewhere

A t T A t T

s t A T t T s t A T t T

£ £ £ £Ï Ï
Ô Ô= < £ = - < £Ì Ì
Ô Ô
Ó Ó
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The channel may be assumed to be  AWGN with noise  PSD of N0/2 and the symbols are equi-probable. Find 
the energy of the two transmitted signals s1(t) and s2(t) and hence find the average energy per bit, Eb. Also 
find the probability of bit error, Pe, in terms of Eb /N0. (University Examination Question)

Solution Energy of the signal 2
1 1 1( ) ( )s t E s t dt

•

-•
= = Ú

2 2 2/2
2 2

0 /2

5
( /2)

2 8 8

T T

T

A T A T A
A dt A dt= + = + =Ú Ú

Energy of the signal 2
2 2 2

2 2 2/2
2 2

0 /2

( ) ( )

( /2) ( /2)
8 8 4

T T

T

s t E s t dt

A T A T A T
A dt A dt

•

-•
= =

= + - = + =

Ú

Ú Ú

\ bit energy (average) = 1 1 2 2bE P E P E= +
where P1 = Probability of s1(t) and P2 = Probability of s2(t)
But it is given that the binary symbols 1 and 0 are equi-probable.

\ P1 = P2 = 0.5

and 2
1 2

7
( )0.5

16bE E E A T= + =

Now, from Eq. (11.52), 2
max

0

2
pd E

N
= \ max

02 2

pEd

N
=

Now Ep = Energy in 1 2[ ( ) ( )]s t s t-  = Energy in p(t)
From the given s1(t) and s2(t), we have

1 2

/2 for 0 /2

( ( ) ( )) ( ) for /2

0 elsewhere

A t T

s t s t p t A T t T

£ £Ï
Ô- = = < £Ì
Ô
Ó

\
2 2/2

2 2 2 2

0 /2

5
( ) /4

8 2 8

T T

p
T

A T A T
p t E A dt A dt A T

•

-•
= = + = + =Ú Ú Ú

Since 27

16bE A T=  and 25

8pE A T= , we have 
10

7p bE E=

We know that max

0

0 0

2 2

(10/7) 5

2 7

p

e

b b

Ed
P Q Q

N

E E
Q Q

N N

È ˘È ˘ Í ˙= =Í ˙Î ˚ Í ˙Î ˚
È ˘ È ˘

= =Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

\
0

5

7
b

e

E
P Q

N

È ˘
= Í ˙

Í ˙Î ˚
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660 Communication Systems

11.2.6 Properties of a Matched Filter

Property 1: For signals corrupted by additive  white Gaussian noise, a filter matched to the signal, i.e., a 
 matched filter, maximizes the  signal-to-noise ratio at its output.
Recall that as per Eq. (11.41), d2 represents the signal-to-noise ratio at the output of the filter. By applying 
‘ Schwarz’s inequality’ and imposing the conditions required for the equality sign to hold good, we have indeed 
maximized d2, i.e., we have derived the H(f) of the filter that maximizes the output signal-to-noise ratio. Thus, 
this property is indeed the very basis on which the matched filter transfer function was determined.

Property 2: The signal and the matched filter impulse response are mirror images of each other.
 A look at Figs. 11.7(a) and (c) shows that this is indeed true. Figure 11.7(a) shows the signal and 
Fig. 11.7(c) shows the magnitude of the impulse response of the matched filter matched to the signal in 
Fig. 11.7(a). Except for a lateral inversion, they are exactly the same – a basic property of a mirror image.

Property 3: The  impulse response hopt(t) of the matched filter matched to a signal p(t), has the same 
magnitude spectrum as the signal itself, except for a scaling factor.
 As given in Eq. (11.49), the transfer function, Hopt(f) of a matched filter, matched to the signal p(t) is

2
opt ( ) ( ) j fT

H f P f e
pa * -=

So, if hopt(t) is the impulse response of this matched filter,

j fT
h t P f e

pa * -= 2
opt[ ( )] ( )F

\   j fT
h t h t P f e P f P f

pa a a* -= = = =2
opt opt| [ ( )]| Magnitude spectrum of ( ) | ( ) | | ( )| | | | ( )|F

where P(f) is the  magnitude spectrum of the signal.
Thus, except for a scaling factor, hopt(t) and p(t) have the same magnitude spectrum.

Property 4: If the signal is of duration T sec, the filter matched to it has to have a delay of at least T sec in 
order to be physically realizable.
 An LTI filter is physically realizable iff it is  causal; and the impulse response of any causal LTI system 
must be identically equal to zero for all negative values of time, i.e., h(t) = 0 for t < 0.
 From Fig. 11.7(b), it is clear that unless there is a delay of T sec, which is the duration of the signal, the 
impulse response of the matched filter will have non-zero values for its impulse response for negative values 
of time.
 Thus, a minimum delay of T sec. is needed in order to make the matched filter physically realizable.

Example 11.5 If a signal ( ) ( 1),x t t= L -  determine the transfer function of the filter matched to this 
signal.

Solution Since ( ) ( 1),x t t= L -  we have

2 2( ) sinc ( ) j f
X f f e

p-=

From Eq. (11.47) we then have the matched filter transfer function given by

( ) ( ) j T
H f X f e

w* -=

From the given x(t), we know that T = 2.

\ 2 2 4

2 2

( ) sinc ( )

sinc ( )

j f j f

j f

H f f e e

f e

p p

p

+ -

-

=

=
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Example 11.6 x(t) is a triangular pulse of width 1 m-sec and height 10–2 V. Assuming the channel 
noise to be white with a PSD of h = 10–8 W/Hz, determine the  signal-to-noise ratio at the output of the 
 matched filter.

Solution The energy Eb of the triangular pulses is
30.5 10/2

2 2

0 0

7 2

2 ( ) 2 (20 )

0.33 10 volt sec

T

bE x t dt t dt

-¥

-

= =

= ¥ ◊

Ú Ú

From Eq. (11.55) we then find the SNR at the output of the matched filter is

bES

N

-

-
¥ ¥

= = =
h

7

8

2 2 0.33 10
6.67

10

\ 10
dB

10 log 6.67 8.2 dB
S

N

Ê ˆ = =Á ˜Ë ¯

Example 11.7 In Fig.11.13, show that in the absence of any channel noise,

1 2 1 2

2
01 02 1 2

0

[ ( ) ( )] 2 [ ( ) ( )]
T

s s s sr T r T E E E E s t s t dtr- = + - ◊ = -Ú

where r01(T) and r02(T) are the inputs to the decision device when s1(t) alone, and s2(t) alone are respectively 
given as inputs to the correlation receiver, r is defined by

1 2

1 2
0

1
( ) ( )

T

s s

s t s t dt
E E

r D ◊
◊

Ú

and sE
1

 and sE
2
 are respectively the energies in the two signals s1(t) and s2(t), each of which is zero outside 

the slot duration 0 to T sec.

Solution From Fig. 11.13, we find that

1 1 2

2
01 1 1 2 1 1 2

0 0 0

( ) ( )[ ( ) ( )] ( ) ( ) ( )
T T T

s s s

r T s t s t s t dt s t dt s t s t dt

E E Er

= - = -

= - ◊

Ú Ú Ú

Similarly,

2 1 2

2
02 2 1 2 2 1 2

0 0 0

( ) ( )[ ( ) ( )] ( ) ( ) ( )
T T T

s s s

r T s t s t s t dt s t dt s t s t dt

E E Er

= - = - +

= - + ◊

Ú Ú Ú

\
1 2 1 201 02( ) ( ) 2s s s sr T r T E E E Er- = + - ◊

Now consider

1 2 1 2

2 2 2
1 2 1 2 1 2

0 0 0 0

[ ( ) ( )] ( ) ( ) 2 ( ) ( )

2

T T T T

s s s s

s t s t dt s t dt s t dt s t s t dt

E E E Er

- = + -

= + - ◊

Ú Ú Ú Ú
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Hence,

1 2 1 2

2
01 02 1 2

0

[ ( ) ( )] 2 [ ( ) ( )]
T

s s s sr T r T E E E E s t s t dtr- = + - ◊ = -Ú

Example 11.8 During each time slot of 1 m-sec, a baseband binary communication system transmits 
either a rectangular pulse of amplitude V volts, or a triangular pulse of amplitude –V volts. If V = 10 mV 
and the white noise on the channel has a PSD (two-sided) of 5 ¥ 10–9 W/Hz, find the  bit-error probability, 
assuming  matched filter reception.

Solution

s

s

t
T

t

E V T

E

t
t dt

-

- - -

= ¥

=

- -

= = ¥ ¥ ¥ =

=

= - ◊ = ¥

= ¥ ¥ = ¥

Ú

1

2

3

2 3 2 3 7 2

0.5 103/2
2

0 0

9 7 2

(10 10 ) 1 10 10 V

Energy of the triangular pulse

2 ( 20 ) 2 400
3

800
0.125 10 0.333 10 V sec

3

\ s sE E
- -

-

◊ = ¥ ¥ ¥

= ¥

1 2

7 7

7 2

1 10 0.33 10

0.57445624 10 V sec

1 2

3

1 2
0

0.5 107 8 7
3

0

1
( ) ( )

10 5 10 10
2 10 10 ( 20 )

0.57445624 0.57445624

0.5
0.87

0.57445624

T

s s

s t s t dt
E E

t dt

r

-¥ -
-

= ◊
◊

Ê ˆ - ¥ ¥
= ¥ ¥ ¥ - =Á ˜Ë ¯

-
= = -

Ú

Ú

Since the receive filter is matched to 1 2( ) [ ( ) ( )]p t s t s t= - , we know from Eq. (11.48) that

max
min

1

2 2 2
e

d
P erfc

È ˘
= Í ˙

Î ˚

where

pd E=
h

2
max

2

and

1 2 1 2

2 2
1 2 01 02

0 0

( ) [ ( ) ( )] ( ) ( )

2

T T

p

s s s s

E p t dt s t s t dt r T r T

E E E Er

= = - = -

= + - ◊

Ú Ú .

Fig. 11.11 s1(t) and s2(t) of Example 11.8
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\ s s s sd E E E Er

- - -
-

= + - ◊
h

= + ¥ - - ¥ ¥
¥

=

1 2 1 2

2
max

7 7 7

9

2
[ 2 ]

2
[10 10 0.33 2( 0.87) 0.57445624 10 ]

10 10

46.5

\ max
max 46.5 6.82 and 2.41

2 2

d
d = = =

\ max
min

4

1 1
(2.41)

2 22 2

[ 2 2.41] [3.40774] 3 10

e

d
P erfc erfc

Q Q
-

È ˘
= =Í ˙

Î ˚

= ◊ = @ ¥

Example 11.9 An  optimum receiver receives polar NRZ equi-probable binary baseband data. The 
received signal takes the values +6 mv and –6 mv corresponding respectively to binary 1 and binary 0. The 
channel noise is white with a two-sided PSD of 10–9 W/Hz. Optimum  decision threshold is used. If the data 
rate is 9600 bits/sec, find (a) Pe, (b) Pe when the data rate is 12 kbps, and (c) if Pe is to remain the same at 
12 kbps data rate as it was at 9600 bits/sec data rate, what should be the voltage levels corresponding to 
binary 1 and binary 0?

Solution

 (a) From Eq. (11.55) we have 
2 1

2
b b

e

E E
P Q erfc

È ˘ È ˘
= =Í ˙ Í ˙

h hÍ ˙ Í ˙Î ˚ Î ˚
  where Eb = A2T where T is the duration of each pulse = Time-slot duration
  A = 6 mv and (h/2) = 10–9 W/Hz
  To determine T: It is the inverse of the data rate 

\
310

ms 0.104 ms
9600

T = =

\ 

2 3 3

9 9

(6 10 ) 0.104 10

36 0.104 10 3.744 10

3.744
1.3682

2

b

b

E A T W

W

E

- -

- -

= = ¥ ¥ ¥

= ¥ ¥ = ¥

= =
h

\ from  error-function table, erf(1.3862) @ 0.95

\ (1.3862) 0.05erfc @ \ 31
(1.3862) 25 10

2
eP erfc

-= = ¥

 (b) When the data rate is 12 kbps, 
3

1
0.083 m.s

12 10
T = =

¥

\            2 6 3 936 10 0.083 10 3 10bE A T W
- - -= = ¥ ¥ ¥ = ¥

\ bE
= =

h
3

1.2247
2
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\ 31
(1.2247) 0.917 (1.2247) = = 41.5 10

2
eerf erfc P

-@ \ ¥

 (c) If Pe is to remain the same at the higher bit rate of transmission of the signal, Eb must be maintained the 
same.

\ 9 2 33.744 10 0.083 10bE A
- -= ¥ = ¥ ¥

\ 9 3

6

(3.744 10 )/(0.083 10 )

45.1 10 6.716 mv

A
- -

-

= ¥ ¥

= ¥ =

Example 11.10 For an NRZ polar binary data, the received signal is either +3 V or –3 V during a time 
slot. The signal is corrupted by white noise of PSD h equal to 10–4 V2/Hz. If an integrate-and-dump type 
of receiver is used, what should be the minimum duration of the time slot, if Pe is not to exceed 10–5?

Solution Polar data is received. Hence, b
e

E
P

È ˘
= Í ˙

hÍ ˙Î ˚

1
erfc .

2
 Let the time-slot duration be T sec. Then

2 29 V -sec.bE A T T= =

It is given that Pe can have a maximum value of 10–5 corresponding value of bE

h
 should be (by referring to 

the  error-function tables, or curves) 3.

\ b bE E T
T-= = = = ¥

h h
4

4

9
3 or 9 9 10

10

\ T = 10–4 sec = 0.1 m-sec. This is the maximum time slot duration.

Example 11.11 Repeat Example 11.10 assuming  NRZ unipolar signal with binary 1 and binary 0 
represented by +3 V and 0 V respectively.

Solution Now, 
1

2
b b

e

E E
P Q erfc

È ˘ È ˘
= =Í ˙ Í ˙

h hÍ ˙ Í ˙Î ˚ Î ˚
where 2 /2bE A T=  (see Eq. (11.50))

If Pe is to be 10–5, as we have seen in the last example, the error function should have an argument of 3.

\ b
b

E
E

-= = ¥
h

43 or 9 10

But 2 /2bE A T=  in this case.

\
4 4

2 4 4
2

2 9 10 2 9 10
2 9 10 or 2 10

9
A T T

A

- -
- -¥ ¥ ¥ ¥

= ¥ ¥ = = = ¥

Hence the minimum time slot duration 42 10 sec.-= ¥

Example 11.12 An  integrate-and-dump type of receiver is used to receive a binary baseband  polar 
NRZ signal which takes the values of +A or –A during any time slot (of duration T sec) with probabil-
ities of P1 and P0 respectively. The signal is corrupted by zero-mean white Gaussian noise of two-sided 
power spectral density (h/2) watts/Hz. (a) Find the optimum threshold for the receiver. (b) Write down an 
expression for Pe with the threshold as determined in (a).
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Solution Refer to Fig. 11.9 of a baseband binary receiver of the integrate-and-dump type. Now, the obser-
vation variable is r0(T) and not r(T). We find from Eq. (11.58) that r0(T) is given by

01 0 1
0

00 0 0

( ) ( ) if is true i.e., if a 1 is sent
( )

( ) ( ) if is true i.e., if a 0 is sent

s T n T H
r T

s T n T H

+Ï
= Ì +Ó

Fig. 11.12 Conditional densities and threshold for Example 11.12

Since the integrator is an LTI system and the input noise to it is  Gaussian zero-mean white noise, the output 
noise component n0(t), and hence n0(T) are also Gaussian and zero mean.

01 1
0 0

00 0
0 0

( ) ( )

( ) ( )

T T

T T

s T s t dt Adt AT

s T s t dt Adt AT

= = =

= = - = -

Ú Ú

Ú Ú

Since n0(T) is a zero-mean Gaussian random variable, we may write the conditional densities of r0(T) as

and

0 1

00

0 0

00

2
0

1 01 0 0 | 0 1 22
( )( )

2
0

0 00 0 0 | 0 0 22
( )( )

( )1
: ( ) ( ) ( ) and ( ( )| ) exp

22

( )1
: ( ) ( ) ( ) and ( ( )| ) exp

22

T
r H

n Tn T

T
r H

n Tn T

r AT
H s T n T AT n T p r T H

r AT
H s T n T AT n T p r T H

sps

sps

È ˘- -
+ = + = Í ˙

Í ˙Î ˚

È ˘- +
+ = - + = Í ˙

Í ˙Î ˚

If P1 and P0 are the a priori probabilities of occurrence of a binary ‘1’ and a binary ‘0’ respectively, we may 
make use of Eq. (11.24) to determine the optimum threshold for this case. We note in this connection that 

0

2
ns , A1 and A0 of Eq. (11.24) are now

 1. n n T Ts sÆ = h
0 0

2 2
( ) ( /2 )  from Example 11.3

 2. 1A ATÆ

 3. 0A ATÆ -
\ the optimum threshold Vopt for this case is given by

0 0

2 2
( ) ( )0 0

opt
1

log 0 log
[ ( )] 2

n T n T

e e
e

P P
V

AT AT P AT P

s sÈ ˘È ˘Ï ¸ È ˘Í ˙= + =Ì ˝Í ˙ Í ˙- - Î ˚Ó ˛ Î ˚Î ˚

If Pe is the probability of error with this  optimum threshold value, with 
0eP  and 

1eP  as shown in Fig. 11.11, 
we have
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1 01 0e e eP P P P P= +  (Refer to Eq. (11.8))

But
2 2

0 ( )0

0

opt
0

[ ( ) ] /2 opt
0 opt

2
( )

1 1
( ) [ ]

2 22

n Tr T AT

e
V

n T

V
P e dr T Q V erfc

s

ps

•
- + È ˘

= = = Í ˙
Î ˚

Ú

and
opt 2 2

0 ( )0

1

00

[ ( ) ] /2 opt
0

2
( )( )

( )1 1
( )

2 22

n T

V
r T AT

e

n Tn T

AT V
P e dr T erfc

s

sps

- -

-•

-È ˘
= = Í ˙

Í ˙Î ˚
Ú

n T

AT V T
T s

È ˘-
Í ˙= h

hÍ ˙Î ˚
0

opt
( )

( )1
erfc by substituting /2 for

2

\
1 0

opt opt01
1 0

( )

2 2 2
e e e

AT V T VPP
P P P P P erfc erfc

È ˘- È ˘
Í ˙= + = + Í ˙

hÍ ˙ Î ˚Î ˚
where

e
e

P
V

PAT

h È ˘È ˘= Í ˙Í ˙Î ˚ Î ˚
0

opt 2
log

4

11.2.7 Correlation Receivers

We have seen that matched filtering provides a way of achieving minimum  probability of error for the 
reception of a given pair of signals s1(t) and s2(t) in the presence of additive  zero-mean white Gaussian noise. 

For a signal 2 1( ) [ ( ) ( )], 0 ,p t s t s t t T= - £ £  it was shown that the transfer function of the matched filter is

2
opt ( ) ( ) j fT

H f P f e
pa * -=

and that the corresponding  impulse response is

opt ( ) ( ); 0h t p T t t Ta= - £ £

Hence, one way of implementing an  optimum receiver for receiving binary baseband signals in the presence 
of additive zero-mean white Gaussian noise is to synthesize a filter with a transfer function of Hopt(f) and use 
the receiver configuration shown in Fig. 11.5 with H(f) equal to Hopt(f) and Sn(f), the two-sided PSD of the 
noise corrupting the signal taken as (h/2) since the noise is white. So, in this method of implementation of an 
optimum receiver, the received signal ( ) ( ) ( ),wr t s t n t= +  where s(t), which is either s2(t) or s1(t) (depending 

on whether a binary 1 or a binary 0 was transmitted), is convolved with the impulse response, Hopt(f) of the 
matched filter to give r0(t).
 There is, however, another interesting way of implementing an optimum receiver when the signal 
is corrupted by zero-mean additive white Gaussian noise. It is called a  correlation receiver since it uses 
correlation instead of convolution. It correlates the received signal r(t) with 2 1( ) [ ( ) ( )]p t s t s t= -  in order to 
generate the  observed variable which is used for decision making.
 In fact, matched filtering and correlation can be shown to be equivalent operations, and performance-

wise there is no difference between the two. We shall first establish the equivalence between the two.

Equivalence of matched filtering and correlation The received signal,

1 0

2 1

( ) ( ) if is true
( )

( ) ( ) if is true
w

w

s t n t H
r t

s t n t H

+Ï
= Ì +Ó
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Since the two possible signals, s1(t) and s2(t) are known a priori to the receiver, it stores a copy of 

2 1( ) [ ( ) ( )]p t s t s t= -  and correlates the received signal r(t) with p(t).

i.e., it finds 0
0

( ) ( ) ( )
t

r t r p dl l lD Ú  (11.59)

 Matched filter, on the other hand, convolves the received signal, r(t) with its own  impulse response function, 
hopt(t) and produces an output z(t) given by

 z(t) = Matched filter output = opt
0

 ( ) ( )
t

r h T dl l l-Ú

But opt ( ) ( ); 0h t p T t t T= - £ £

opt ( ) ( ); 0h T p Tl l l- = £ £

\ opt
0 0

( ) ( ) ( ) ( ) ( )
t t

z t r h T d r p dl l l l l l= - =Ú Ú

 = correlation between p(t) and 0( ) ( )r t r tD  as per Eq. (11.59)

Thus, matched filtering of the received signal r(t), i.e., convolving it with the impulse response of the matched 
filter, and correlating r(t) with p(t), the known signal, lead to the same result and are thus equivalent.

Implementation of the  correlation receiver We may implement the correlation receiver as shown 
in Fig. 11.13.

Fig. 11.13 A correlation receiver

Note that the above implementation is the same as the implementation shown in Fig. 11.14.

Fig. 11.14 An equivalent configuration for the correlation receiver
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As already stated earlier, performance-wise there is no difference between a  matched filter 

receiver and a  correlation receiver, and their probabilities of error will be the same.

Probability of error in a PCM receiver For a polar signal, with an optimum receiver, the probability 
of error Pe is given by

1

2
b

e

E
P erfc

È ˘
= Í ˙

hÍ ˙Î ˚
 (11.60)

We know that the  complementary error 
function has an upper bound given by

2

( )
x

e
erfc x

xp

-

<  (11.61)

Using Eq. (11.58), we may write the upper 
bound for Pe as

bE

e

b

e
P

Ep

- h

<
h

/

2 /
 (11.62)

We thus find that in a PCM receiver, the 
probability of error decreases exponentially with increase of the ratio (Eb /h). This is shown in Fig. 11.15.

Example 11.13 A binary baseband data transmission system transmits waveforms 1( ) 0; 0s t t T= £ £

corresponding to binary zero and waveform 2

2 / ; 0

( ) 2
( ); 0

t T t T

s t
T t t T

T

£ £Ï
Ô= Ì

- £ £ÔÓ

 corresponding to binary 1. 

Assume that T = 20 ms and that the additive zero-mean white Gaussian has a PSD (two sided) (h/2) = 10–7

W/Hz. Find Pe for the optimum receiver assuming a priori probabilities of occurrence of a binary 1 and 0 
to be 0.75 and 0.25 respectively.

Solution The waveform of s2(t) is as shown in Fig. 11.16.

2 1 1( ) [ ( ) ( )] ( )p t s t s t s t= - =

\ when s2(t) is received, the output at t = T of the correlator will be s02(t)
given by

2/2
2

02 2 2 1 2 2
0 0 0

/2
2

2
0

4
( ) ( )[ ( ) ( )] ( ) 2

8

3

T T T

T

t
s T s t s t s t dt s t dt dt

T

T
t dt

T

= - = =

= =

Ú Ú Ú

Ú

\ 02 ( )
3

T
s T =

Since 1 01( ) 0, ( ) 0.s t s T= =

Note

Fig. 11.15  Probability of error vs. Eb/h

Fig. 11.16 Waveform of s2(t)

CS-Rao_11.indd 668CS-Rao_11.indd   668 1/25/2013 8:43:18 AM1/25/2013   8:43:18 AM



Noise Performance of Digital Communication Systems 669

Fig. 11.17 Plot of conditional density functions for Example 11.13

From Eq. (11.24), the  optimum threshold is given by

0

0

2 2
( ) 0

opt 2
1 ( )

/9
log

/3 2

n T

e

n T

P T
V

T P

s

s

È ˘
Í ˙= +
Í ˙Î ˚

But
0

2
( )

7 7 5

2

2

10 10 10

22 10

n T
T

W
T

s

- - -

-

h
=

= = =
¥

 (From Example 11.3)

and
0.25

log 0.477
0.75e

Ê ˆ = -Á ˜Ë ¯

\ substituting these in the expression for Vopt, we get

V
- -

-
- -

È ˘¥ ¥
= ¥ - + = ¥Í ˙

¥ ¥Í ˙Î ˚

5 3
3

opt 3 5

10 3 (20 10 ) 2
0.477 2.975 10 V

2 20 10 18 10

and

0 1

3

02

20 10
( ) 6.6 mv

3 2

0.5 0.75e e e

T
s T

P P P

-¥
= = =

= +

But
0 0

opt

opt

1 0

3
opt

( ) 0 0 0 opt

3
( ) 0 1 0 02 opt

1 1 2.973 10
( ( ) | ) ( ) [ ]

2 22 2

1 1
( ( ) | ) ( ) [ ( ) ] 3.691 10

2 2

e r T
V

V

e r T

V
P p r T H dr T Q V erfc erfc

P p r T H dr T Q s T V erfc

-•

-

-•

È ˘È ˘ ¥
= = = = Í ˙Í ˙

Î ˚Î ˚

È ˘
= = - = ◊ ¥Í ˙

Î ˚

Ú

Ú

\
2

0.125 [0.00210] 0.375 [0.00261]

3.9 10

eP erfc erfc

-

= +

@ ¥

11.2.8 M-ary Baseband Signaling and  Probability of Error

In Section 10.1, we had discussed the basic principles of  baseband M-ary signaling while in Section 10.4.2, 
we had shown that

Hz
2
b

b

R
W =  (11.63)
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is the  Nyquist bandwidth for binary baseband transmission at a rate of Rb bits per second, then the absolute 
minimum transmission bandwidth required for achieving a bit rate of Rb bits per second using M-ary baseband 
transmission is

2 2

1

2 log log
b b

b

R W
W

M M
= ◊ =  (11.64)

 The above result clearly shows that for a given fixed transmission rate in bits per second,  M-ary baseband 
transmission cuts down the transmission bandwidth requirements by a factor of log2M as compared to 
the bandwidth requirement of baseband binary transmission. Thus, M-ary baseband transmission saves 
bandwidth. But it must be noted that this saving in bandwidth is obtained at a cost, since the multilevel 
pulse amplitude requires more average transmitter power to maintain a specified probability of error, Pe, as 
compared to binary transmission, as will be evident from the following analysis that gives us the probability 
of error for  M-ary baseband signaling.
 For calculating the Pe for M-ary baseband signaling, we shall assume that
 1. polar M-ary signaling is used, where M is even.
 2. the noise at the input to the decision device is zero-mean Gaussian.
 3. the signaling levels aks are equispaced.
 4. all the levels are equally likely to occur.
Hence, let the signaling levels, viz., aks be

/2, 3 /2, 5 /2, , ( 1) /2ka A A A M A= ± ± ± º ± -  (11.65)

For the purpose of drawing the conditional density functions, let us take M = 4. Then these conditional PDFs 
will be as shown in Fig. 11.18.

Fig. 11.18 Conditional PDFs with M = 4 and Gaussian noise

For reasonably large SNR, i.e., 2 2( / )A s , where s2 is the noise variance, it is clear from Fig. 11.18 that the 
decision-making device may mistake one level from its immediately adjacent level but not one which is 
farther away. For example, it may wrongly detect level A/2 as either –A/2 or 3A/2 but not as –3A/2. Further, 
since all the levels are equally likely, the values –A, 0 and +A, etc., which are the values of the observation 
variable r0(T) corresponding to the intersection points, are the optimum threshold values that define the 
decision boundaries of the various decision region like R0, R1, R2 and R3 shown in Fig. 11.18.
 From the figure, we find that
 1. Probability of level –3A/2 being mistaken for level –A/2 is area u.
 2. Probability of level –A/2 being mistaken for level –3A/2 is area V.
 3. Probability of level –A/2 being mistaken for level A/2 is area W.
 4. Probability of level A/2 being mistaken for level –A/2 is area X.
 5. Probability of level A/2 being mistaken for level 3A/2 is area Y.
 6. Probability of level 3A/2 being mistaken for level A/2 is area Z.
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Each of these areas is given by Q(A/2s). Since all the levels have been assumed to be equally probable, the a
priori probability of each of the M levels, is equal to 1/M. We find from the above discussion that while the 
extreme two levels, the Oth level, i.e., the –(M – 1)A/2 level and the (M – 1)th level, i.e., the +(M – 1)A/2 level, 
contribute only one error area (probability) the remaining (M – 2) contribute two error areas (probabilities).
 Hence, the average error probability, Pe, is given by
Pe = (Probability of transmission of level –(M – 1)A/2) ¥ (Probability of level –(M – 1)A/2 being mistaken 
as –(M – 2)A/2 level) + (Probability of transmission of level –(M – 2)A/2) ¥ (Probability of level –(M – 2)
A/2 being mistaken as either level –(M – 2)A/2 or (M – 3)A/2) + … + (Probability of transmission of level 
(M – 2)A/2) ¥ (Probability of level (M – 2)A/2 being mistaken as either level (M – 3)A/2 or level (M – 1)A/2)
+ (Probability of transmission of level (M – 1)A/2) ¥ (Probability of level (M – 1)A/2 being mistaken as level 
(M – 2)A/2).

1
[2 ( /2 ) ( 2) 2 ( /2 )]

2 2 1
( /2 ) 2 1 ( /2 )

Q A M Q A
M

M
Q A Q A

M M

s s

s s

= ¥ + - ¥

-Ê ˆ Ê ˆ= = -Á ˜ Á ˜Ë ¯ Ë ¯

\
(polar M-ary baseband)

1
2 1 ( /2 )eP Q A

M
s

Ê ˆ= -Á ˜Ë ¯
 (11.66)

 (i) For binary baseband polar transmission with the two levels at A/2 and –A/2, we know 

eP Q(A/ 2 )s=  when P0 = P1 = 0.5 and the optimum threshold is used. Eq. (11.66) also 

reduces to Q(A/ 2 )s  when M = 2.

 (ii) When M is very large so that 1/M << 1, Eq. (11.66) reduces to

eP 2Q(A/ 2 )s=

 (iii) We find that e

Q(A/ 2 ) when M 2
P

2Q(A/ 2 ) when M is very large

s

s

=Ï
= Ì

Ó

 For constant pulse amplitude A, we find that as M is increased, Pe also increases, becoming two times its 
value for binary signaling, when M is made very large. In other words, as M is increased, A too has to be 
increased in order to keep Pe fixed at a specified value. (This is because the Q-function is a monotonically 
decreasing function of its argument). But increasing the value of A amounts to increasing the average trans-
mitted power. Hence, for a specified Pe M-ary baseband signaling needs more transmitter power than binary 
baseband signaling.
 In Eq. (11.66), the  probability of error is given in terms of a  Q-function whose argument is ( /2 )A s . In 
certain situations, it will be useful if it is in terms of a Q-function whose argument is related directly to the 
signal-to-noise ratio or signal-to-noise spectral density ratio. Hence, we now relate ( /2 )A s  to the signal 
power and noise density, h/2.

The average energy of an M-ary digit 2  ,M kE a t= =
where t is the width of the M-ary pulse as shown in Fig. 10.16.
If the M amplitude levels are equally likely, as has been assumed by us earlier, then

2/2
2 2 2 2

1

1 ( 1)
2 (2 1) ( /2)

12

M

k
i

M
a i A A

M =

-
= ¥ - = ◊Â  (11.67)

Remarks
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If RM is the M-ary pulse rate,

2 2
2 21 1

12 12R M M M

M M
S R E A R At

Ê ˆ Ê ˆ- -
= ◊ = ◊ ◊ =Á ˜ Á ˜Ë ¯ Ë ¯

\ 2
2 2

12
12

( 1) ( 1)
R

R

S
A S

M M

Ê ˆ= ◊ = Á ˜- Ë - ¯
 (11.68)

and 2
RNs =

\
2

2 2 2

12 3

44 ( 1) ( 1)
R R

R R

S SA

N NM Ms

Ê ˆ Ê ˆ Ê ˆ= = ◊Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯- -
 (11.69)

But R T TN B B
hÊ ˆ= = hÁ ˜Ë ¯

2 .
2

 But 
2
M

T

R
B =

\ R

M

SA

RMs

Ê ˆ Ê ˆ
=Á ˜ Á ˜Ë ¯ Ë ¯h-

2

2 2

6 1

4 ( 1)
 (11.70)

Equation (11.69) expresses ( /2 )A s  in terms of (SR /NR) while Eq. (11.70) expresses ( /2 )A s  in terms of 
(SR/h).

Example 11.14 A binary baseband transmission system is to have a  bit rate of Rb = 500 kbps and a 
 probability of error not exceeding 10–4. The channel noise is zero-mean white Gaussian with a two-sided 
PSD of h/2 = 0.5¥10–17 W/Hz. Find the minimum value of SR, the received signal power, when (a) M = 2 
and (b) M = 8, assuming that Gray coding is used.

Solution
 (a) When M = 2, RM = Rb = 5 ¥ 105 bits/sec.

From the Q-function tables, we find that when Pe = 10–4, (A/2s) is approximately equal to 3.8, as 
( /2 ).eP Q A s=

\
2

2(3.8) 14.44
2

A

s

Ê ˆ ≥ =Á ˜Ë ¯

But
R R

R M

S SA

N RMs

Ê ˆ Ê ˆÊ ˆ Ê ˆ Ê ˆ= =Á ˜ Á ˜Á ˜Á ˜ Á ˜Ë ¯ Ë ¯hË ¯Ë - ¯ Ë - ¯

2

2 2

3 6 1

2 2 1 1

\ R M

A M
S R

s

-- ¥ ¥ ¥ ¥Ê ˆ= ◊ ◊ h ◊ =Á ˜Ë ¯

2 2 5 17( 1) 14.44 5 10 10 3

2 6 6

\ 1236.1 10RS W
-≥ ¥

(b) When M = 8 and  Gray code is used to fix the levels

Again                  3.8
2

A

s

Ê ˆ ≥Á ˜Ë ¯

2

14.44
2

A

s

Ê ˆ\ ≥Á ˜Ë ¯

But                    R

M

SA

RMs

Ê ˆ = ◊ ◊Á ˜Ë ¯ h-

2

2

6 1

2 1
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\                  M
R

M RA
S

s
-- h ◊ - ¥Ê ˆ= ≥ ¥ ¥Á ˜Ë ¯

2 2 5
17

2

( 1) (64 1) 5 10
14.44 10

2 6 6 log 8

Since in this case 
2log
b

M

R
R

M
=

\ RS
- -¥

≥ ¥ ¥ = ¥
5

17 1763 5 10
14.44 10 252.7 10 W

6 3

\ 152.527 10 wattRS
-≥ ¥

Example 11.15 In a baseband  M-ary PAM system using M equally likely amplitude levels, the average 
probability of error Pe is to be less than 10–6. Show that the minimum value of received  signal-to-noise 
ratio for the system is approximately equal to

2

,min

7.8( 1)
R

S
M

N

Ê ˆ @ -Á ˜Ë ¯

Solution From Eq. (11.66), we have the  probability of error given by

61
2 1 ( /2 ) 10eP Q A

M
s -Ê ˆ= - £Á ˜Ë ¯

\
610

( /2 )
1

2 1

Q A

M

s
-

£
Ê ˆ-Á ˜Ë ¯

When M >>1, 
1

1 1
M

Ê ˆ- ªÁ ˜Ë ¯
\ 6( /2 ) 0.5 10Q A s -£ ¥

By referring to the Q-function tables or graphs,

4.83
2

A

s
≥  to keep Pe less than 10–6

2
2 2 2

2
(4.83) or 93.6

4

A
A s

s
≥ ≥

But from Eq. (11.69), we have

                       R R

R R

S S
A M

N NM

s s

s

Ê ˆ Ê ˆ
◊ \ ≥ -Á ˜ Á ˜Ë ¯ Ë ¯-

2 2
2 2

2 2

12 93.6
( 1)

( 1) 12

or 27.8( 1) approximatelyR

R

S
M

N

Ê ˆ ≥ -Á ˜Ë ¯

Example 11.16 A  symbol probability of error of 10–4 is to be maintained by a 4-ary polar baseband 
signaling system using NRZ rectangular pulses. If the attenuation in the channel is 20 dB and the noise 
power at the 50W input of the detector is 10–5 W, determine the average signal power which must be trans-
mitted.
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Solution From Eq. (11.66), we have

41 1
2 1 ( /2 ) 2 1 ( /2 ) 10

4eP Q A Q A
M

s s -Ê ˆ Ê ˆ= - = - =Á ˜ Á ˜Ë ¯ Ë ¯

\ 42 1
( /2 ) 10

3 2 2 2

A
Q A erfcs

s

- Ê ˆ= ¥ = Á ˜Ë ¯

Hence, from the Q-function tables, or the  error function tables, we get

3.8
2

A

s

Ê ˆ =Á ˜Ë ¯

The noise power across 50W input resistance of the detector is given to be 10–5 W.
Since the noise is given to be of zero mean, its  variance is equal to its average power and so its  standard 
deviation s is equal to its r.m.s. value.
If r.m.s. value of noise voltage at the input to the detector = s, then

2

R

s
 = average power = 10–5 W

\ 5 210 50 2.236 10 Vs - -= ¥ = ¥

Since ( /2 )A s  has already been determined to be 3.8,

2 22 2.236 10 3.8 16.9936 10 0.17 VA
- -= ¥ ¥ ¥ = ¥ =

and
0.17

0.0855 V = 85.5 mV
2 2

A
= =

As per Eq. (11.65), the signaling levels, viz., aks are

i.e., /2 and 3 /2ka A A= ± ±  for 4-ary signaling.
\ the signaling levels are ± 85.5 mV and ± 256 mV
Then, since the four amplitude levels are equally likely, from Eq. (11.67), the average received signal power 

= 2,ka  where
2

2 2

2
2 2

1

12

4 1 5
(0.17) 0.0289 0.36125 W

12 4

k

R k

M
a A

S a

Ê ˆ-
= Á ˜Ë ¯

Ê ˆ-
= = = ¥ =Á ˜Ë ¯

Since the channel attenuation = 20 dB = a ratio of 100, the transmitted power ST is given by

100 0.036125 100 3.6125 WT RS S= ¥ = ¥ =

11.3 COMBINED EFFECT OF CHANNEL NOISE AND ISI

In Section 11.2.5, we had discussed about the optimum receiver and arrived at the matched filter receiver 
taking into account only the  channel noise and completely ignoring the  ISI caused by the dispersive nature 
of the channel.
 Then, in Section 10.3, we discussed about the receiver only from the point of view of eliminating ISI and 
found that appropriately shaping the received pulse provided the solution, but here, the effect of channel noise 
was ignored.
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 In reality, however, the channel noise and ISI act together to cause errors. Hence, any attempt to optimize 

the baseband receiver must take their combined effect into account. There are two approaches adopted for this 

purpose. One is to use what is called a ‘ zero-forcing equalizer’ before the sampler of the decision device. The 

other, and a more refined approach, uses the ‘ mean-square error criterion’ for minimizing the effects of both 

the channel noise and also the  ISI on the  probability of error. In the following sections, we will discuss these 

two approaches very briefly. We shall take up the mean square error criterion approach first. The equalizer 

required for this, as well as the zero-forcing type of equalizer will be taken up in the next section which deals 

with  equalization.

 Optimum receiver using minimum mean-square error criterion Referring to the binary baseband 

transmission system shown in Fig. 10.3 we note that the output of the receive filter, HR(f) is obtained by 

convolving the channel output with the impulse response, hR(t), of the filter. Let q(t) be the convolution of 

the impulse response, hT(t) of the transmit filter with the impulse response, hC(t) of the channel. Then the 

channel output is
( ) ( ) ( )k

k

x t a q t kT w t= - +Â

where ak is the symbol transmitted at time t = kT, and w(t) is the channel noise. Since x(t) consists of a signal 

component and a noise component, and since the receive filter is a linear one, which convolves its own 

impulse response with this channel output, the receive filter output also will have a signal component and 

a noise component. When this is sampled at t = iT, the ith sampling instant, let us say we get y(iT). In fact, 

ideally, we should get only ai as this sample. But what we get as y(iT) is a random variable which is the sum of 

a signal component (which too, will not be equal to ai because of  ISI) and a noise component. The difference 

between y(iT) and ai is the error and is given by

( )i ie y iT a= -

The mean-square error is, say J, given by
2[ ]iJ E e=

where E denotes the ‘expectation’.

In order to get a  receive filter that is optimum in the ‘minimum mean-square error’ sense, we differentiate 

J with respect to hR(t), the impulse response of the receive filter and equate the result to zero. The optimum 

hR(t) so obtained, is called the ‘ minimum mean-square equalizer’ and is given by

q

Q f
H f

S f

*

=
+ hopt

(MMSE)

( )
( )

( ) ( /2)
 (11.71)

where Q f q t=( ) [ ( )],F Sq(f) is the  PSD of the pulse q(t) and h/2 is the two-sided PSD of the zero-mean white 
noise on the channel.

 The  MMSE optimum filter, whose transfer function is given in Eq. (11.70), can be realized as the cascade 

connection of a  matched filter with impulse response q(–t), where q(t) is equal to the convolution of hT(t) and 

hC(t), and a transversal or  tapped delay-line equalizer whose transfer function is the inverse of qS f
hÊ ˆ+Á ˜Ë ¯

( ) .
2

This equalizer, which is theoretically of infinite length, is generally approximated by a finite length trans-

versal filter with 2N weights, whose delay elements produce exactly T sec delay each. A block diagram of the 

MMSE linear receiver is shown in Fig. 11.19.
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Fig. 11.19  Optimum (MMSE) linear receiver

11.4  DETECTION OF BAND PASS DIGITAL SIGNALS AND 

PROBABILITY OF ERROR

Recall our discussion of optimum baseband binary detection presented in Sections 11.2.5 and 11.3. There we 
adopted a notation that makes the analysis applicable to baseband as well as band pass binary reception by an 
appropriate interpretation of s1(t) and s2(t). In the case of  baseband binary reception s1(t) and s2(t) represented 
two different levels –0 and 1 or, –1 and 1. But, in the case of band pass binary reception, s1(t) and s2(t) will 
be used to represent two different waveforms, as listed out in Table 10.1. Hence, in what follows, we will be 
making use of the results obtained in Section 11.2.3 with this interpretation.

11.4.1  Coherent Binary ASK Reception

Here s1(t) = 0 and 2( ) cos cs t A tw=  (11.72)

\ 01 1
0 0

( ) ( ) ( ) 0 0
T T

s t s t h T t dt dt= - = ◊ =Ú Ú  (11.73)

and \ 02 2 2 2 2 1
0 0 0

2
2 2
2

0 0 0

2 2

0 0

( ) ( ) ( ) ( ) ( ) ( )[ ( ) ( )]

( ) cos (1 cos )
2

1 cos 2
2 2

T T T

T T T

c c

T T

c

s t s t h T t dt s t p t dt s t s t s t dt

A
s t dt A tdt t dt

A A
dt t dt

w w

w

= - = = -

= = = +

= ◊ +

Ú Ú Ú

Ú Ú Ú

Ú Ú

But as stated earlier, T contains an integer number of the carrier wave cycles. Hence, the second integral is 
zero.

\
2

02 ( )
2

A T
s T =  (11.74)

Further, the  optimum threshold (with P0 = P1 as we have always been assuming), is given by

2
01 02

opt

( ) ( )

2 4

s T s T A T
V

+
= =  (11.75)
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Also,
TP f

d df p t dt
•

-•
= =

h hÚ Ú
2

2 2
max

0

| ( )| 2
( )

( /2)
 (Parseval’s theorem)

\
T

c

A T
d A tdtw= =

h hÚ
2

2 2 2
max

0

2
cos  (11.76)

\
2 2

max
min

1

2 4 2 8
e

d A T A T
P Q Q erfc

È ˘ È ˘È ˘ Í ˙ Í ˙= = =Í ˙Î ˚ h hÍ ˙ Í ˙Î ˚ Î ˚
 (11.77)

Since bit energy for bk = 1 is 
2

2
2

0

( )
2

T A T
s t dt =Ú  and bit energy for bk = 0 is equal to zero for  ASK, with P0 = 

P1, the average bit energy is
2

av 4

A T
E =  (11.78)

Substituting this in Eq. (11.77), we get

av av
min

1

2 2
e

E E
P Q erfc

È ˘ È ˘
= =Í ˙ Í ˙

h hÍ ˙ Í ˙Î ˚ Î ˚

\ av
min

coherent ASK

1

2 2
e

E
P erfc

È ˘
= Í ˙

hÍ ˙Î ˚
 (11.79)

11.4.2  Non-Coherent Binary ASK Reception

In binary ASK, for bk = 1, the signal cos cA tw  is transmitted and for bk = 0, nothing is transmitted. Hence, 
if the  channel noise is assumed to be zero-mean AWGN, the received signal r(t), under the two conditions, 
is given by

bk = 0 ; H1 : ( ) 0 ( ); 0Wr t n t t T= + £ £

bk = 1 ; H2 : ( ) cos ( ); 0c Wr t A t n t t Tw= + £ £  (11.80)

where nW(t) represents  zero-mean white Gaussian noise.
 The detection process consists of simply determining during each bit period of T sec, whether bk = 0 or 
1, i.e., whether hypothesis H1 is true or hypothesis H2 is true. From the nature of the received signal as given 
above under the two conditions, the following receiver structure may be used:

Fig. 11.20 Non-coherent Binary ASK receiver

The band pass filter centered on fc is the matched filter for the signal ( ) cos cAp t tw  where p(t) is a rectangular 

pulse of amplitude 1 and duration T sec. The output of the BPF is r0(t). Then
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H1 : r t n t t T= + £ £0 ( ) 0 ( ); 0

H2 : cr t A t n t t Tw= + £ £0 ( ) cos ( ); 0  (11.81)

where n(t) is zero-mean Gaussian band pass noise centered on fc.
 We know that the envelope detector extracts the envelope of the input given to it, which is r0(t) in the 
present case. Under hypothesis H1, r0(t) is simply zero mean Gaussian band pass noise n(t), whose variance 
is s2 = hB and mean is zero, where h/2 is the two-sided PSD of the white noise on the channel and B is the 
bandwidth of the band pass filter. This band pass noise n(t) centered on fc may be represented by its inphase 
and  quadrature components as:

( ) ( ) cos ( ) sini c q cn t n t t n t tw w= -  (11.82)

\ envelope Rn(t) of this band pass noise is given by

2 2( ) ( ) ( )n i qR t n t n t= +  (11.83)

and 1
( )

( ) tan
( )

q

i

n t
t

n t
q - È ˘

= Í ˙
Î ˚

 (11.84)

Since n(t) is zero-mean Gaussian process, ni(t) and nq(t) are also  zero-mean Gaussian processes which are 
 statistically independent and they have the same variance since

2 2 2 2( ) ( ) ( )i qn t n t n t s= = =  (11.85)

Hence, it follows that Rn(t), i.e., the envelope of n(t) will have Rayleigh density. Thus, under hypothesis H1,
the sample y of this envelope will be a random variable with  Rayleigh density function. Thus,

y
Y

y
H f y e y

s

s

-= ≥
2 2/2

1 2
: ( ) ; 0  (11.86)

where s2 is the variance of the band pass noise.

Fig. 11.21 Rayleigh density function

 Under hypothesis H2, i.e., for bk = 1, the output of the band pass filter is

2 0: ( ) cos ( ) ; 0cH r t A t n t t Tw= + £ £
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Hence, in this case, the output of the  envelope detector 
will be the envelope of a cosine signal with frequency 
fc plus band pass noise (zero-mean Gaussian) centered 
on fc. We know (see Section 6.4.2) that this envelope 
y(t) will have  Ricean distribution. Its sample y (under 
hypothesis H2) will be a  Ricean random variable with 
density function given by

2

2

( )

2
2 2

( | ) ; 0
2

y A

Y

y
f y H e y

A

s

p s

-
-

@ ≥  (11.87)

Thus, a plot of the two  conditional density functions will 
appear as shown in Fig. 11.23.

Fig. 11.23 Conditional density functions and threshold VR for P0 = P1

 Assuming the probabilities of transmission of a baseband 1 and 0 to be equal, i.e., P0 = P1, the optimum 
threshold is the value of y corresponding to the intersection of the two conditional density functions. This is 
marked as VR. Substituting VR for y in the two density functions, equating them and solving for VR, we get

2

2

8
1

2R

A
V

A

s
ª +  (11.88)

when the signal-to-noise ratio is large, i.e., when 2 2( / ) 1A s >> , the term 2 2(8 / )As  can be neglected in 
comparison with 1 so that

2R

A
V ª  (11.89)

Let Pe(1|0) = Probability of the receiver saying 1 even though a 0 was transmitted.
and Pe(0|1) = Probability of the receiver saying 0 even though a 1 was transmitted.
These two probabilities are given by the areas marked in Fig. 11.23.
The overall average probability of error, Pe, is then given by

0 1(1|0) (0 |1)

0.5 (1|0) 0.5 (0 |1)

e e e

e e

P P P P P

P P

= +

= +  (11.90)

From Fig. 11.23, we may write Pe(1 | 0) and Pe(1 | 0) as
2 2

2 2 2
/2

(1|0) exp exp
2 8

R

e
y V A

y y A
P dy

s s s

•

= =

È ˘ È ˘
= - = -Í ˙ Í ˙

Î ˚ Î ˚
Ú  (11.91)

Fig. 11.22 Ricean density function
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and
/2 2

22

1 ( )
(0 |1) exp

22

y A

e

y A
P dy

sps

=

-•

È ˘-
@ -Í ˙

Î ˚
Ú

 Ricean density has been approximated by  Gaussian density.

2

A
Q

s

È ˘= Í ˙Î ˚
 (11.92)

If we now use the approximation
2/2[ ] ( )/ 2x

Q x e x p-ª  (11.93)

which is quite valid for large values of the argument, x, we may write Pe(0 | 1) as

2 2

2 2

4
(0 |1) exp

2 2
e

A
P

A

s

p s

È ˘
@ -Í ˙

Î ˚
 (11.94)

\ substituting for Pe(1 | 0) and Pe(0 | 1) in Eq. (11.90)

2 2 2 2
2

/8 /8
2

1 4 1
1

2 22

A A
eP e e

A

s ss

p

- -
È ˘
Í ˙ª + ª
Í ˙Î ˚

 (11.95)

But TBs = h2 , where BT is  transmission bandwidth. However, BT = 1/T

\ A T
eT P es - h= h \ =

22 /81
/

2
 (From Eq. (11.95))

But b b

A T
E E= =

2

av4

\ b
e

E
P

È ˘@ -Í ˙hÎ ˚        ASK
(non-coherent)

1
exp

2 2
 (11.96)

Example 11.17 Determine the transmitted power needed to transmit binary data at a rate of 1 Mbps 
over a channel with  zero-mean AWGN of two-sided PSD equal to 10–12 W/Hz and a total transmission 
loss of 40 dB if the system used is (a)  non-coherent ASK, and (b)  coherent ASK. In all the cases, Pe should 
not exceed 10–4.

Solution
 (a) Non-coherent ASK

bE

eP e
-

-h= = 421
10

2

\ bE h =( /2 ) 8.517  since - -h = h = ¥12 12/2 10 , 2 10 W/Hz

Hence, 128.517 4 10 . watt-sec = Average bit energybE
-= ¥ ¥

Since rb, the transmission rate = 106 bits/sec, average transmitted power is given by

12 6 6
av 8.517 4 10 10 34.068 10b bP E r W

- -= ◊ = ¥ ¥ ¥ = ¥

Note
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Since the transmission loss L, of the channel is 40 dB,

1010 log 40L = \ 410L =

\ transmitted average power = 6 434.068 10 10 0.34068 W-¥ ¥ =
 (b)  Coherent ASK

For coherent ASK,  probability of error, av1

2 2
e

E
P erfc

È ˘
= Í ˙

hÍ ˙Î ˚

\ 4av1
10

2 2

E
erfc

-=
h

\
E Ê ˆÊ ˆ = Á ˜Á ˜ Ë ¯Ë ¯h

av 3.7

2 2
\ 12

av 13.69 2 10 Watt-secE
-= ¥ ¥

\ average received power = av bE R¥  (where Rb is transmission rate in bits/sec)

\ 12 6 6
av (received) 13.69 2 10 10 27.38 10 WattP

- -= ¥ ¥ ¥ = ¥

But transmission loss = 104 (i.e., 40 dB)

\ average transmitted power = 6 427.38 10 10 0.2738 W
-¥ ¥ =

Example 11.18 A binary transmission system with a transmitted power of 200 mW uses a channel 
with zero-mean AWGN of two-sided PSD equal to 10–15 W/Hz and a total transmission loss of 90 dB. 
If the probability of error, Pe is not to exceed 10–4, what is the maximum allowable bit rate using (a) 
non-coherent ASK, and (b) coherent ASK?

Solution Transmitted average power = 200 mW
Transmission loss = 90 dB = a ratio of 109.

\ received average power = 3 9 10200 10 10 2 10 W- - -¥ ¥ = ¥

 (a)  Non-coherent ASK

bE

eP e
-

- h= =4 21
10

2
\ bE

=
h

8.517
2

Since - -h = h = ¥15 15/2 10 W/Hz, 2 10 W/Hz

\ bE
- -= ¥ h = ¥ ¥ = ¥

=

15 158.517 2 8.517 4 10 34.068 10 Watt-sec

Average bit energy

\ if rb is the transmission rate in bits/sec, the average power is

15
av 34.068 10b b bP E r r

-= ◊ = ¥ ¥

 = Average received power 102 10 W-= ¥

\
10 3

15

2 10 200 10
6 kbps

34.06834.068 10
br

-

-
¥ ¥

= = @
¥

 (b) Coherent ASK

av1

2 2
e

E
P erfc=

h
\ 15

av 27.38 10 Watt-sec.E
-= ¥
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\ if Rb is the transmission rate in bits/sec, the average received power is

15 10
av av 27.38 10 2 10b bP E R R

- -= ◊ = ¥ ¥ = ¥

\
10 5

15

2 10 2 10
7.3046 kbps

27.3827.38 10
bR

-

-
¥ ¥

= = =
¥

11.4.3 Coherent Reception of  Sunde’s Binary FSK

For binary FSK, the two signals s1(t) and s2(t) that are transmitted, are given by

and

1

2

( ) cos( ) ; 0 ; corresponding to 0

( ) cos( ) ; 0 ; corresponding to 1

c d k

c d k

s t A t t T b

s t A t t T b

w w

w w

= - £ £ =

= + £ £ =

As we are considering Sunde’s continuous phase binary FSK, as stated earlier in our discussion on power 
spectrum of BFSK, we have

1

2df
T

=

\ c k

c k

s t A T t t T b

s t A T t t T b

w p

w p

= - £ £ = ¸
˝= + £ £ = ˛

1

2

( ) cos( / ) ; 0 for 0

( ) cos( / ) ; 0 for 1

 (11.97)

and

Refer to the derivation of the transfer function of an optimum filter in Section 11.2.4, which we made very 
general so as to be applicable to baseband as well as band pass signaling.
 For convenience, we reproduce here Fig. 11.13 of a  correlation receiver.

Fig. 11.24 A  correlation receiver for binary signals

Let r0(T) = Output of the sampler at t = T be denoted by s01(T) when r(t) = s1(t) alone.

Then
2

01 1 1 1
0 0

2 2 2

0 0

2 2

0

( ) ( ) ( ) ( )

1 cos 2( / )
cos ( / )

2

cos 2 (2 1/ )
2 2

T T

T T
c

c

T

c

s T s t s t dt s t dt

T t
A T tdt A dt

A T A
f T tdt

w p
w p

p

= - ◊ = -

+ -È ˘= - - = - Í ˙Î ˚

= - - -

Ú Ú

Ú Ú

Ú
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But, as already stated earlier, matters are always so arranged that there will be an integer number of carrier 
cycles say, n, in the bit duration T.

\
c

n
T

f
=

So cos 2 (2 1/ )cf T tp -  is a cosine signal which will complete (2n – 1) full cycles of the carrier frequency fc
in the integration period T. Thus, the integral is zero.

\
2

01( )
2

A T
s T = -  (11.98)

Similarly, if s02(T) denotes the value of r0(T), the output of the sampler at t = T when 2( ) ( )r t s t=  alone,

2
2

02 2
0

( ) ( )
2

T A T
s T s t dt= =Ú  (11.99)

Assuming, as usual, that the probabilities of transmission of s1(t) and s2(t) are equal, the  optimum threshold, 
i.e., lopt will be given by

01 02
opt opt

( ) ( )
0

2

s T s T
Vl

+
= = =  (11.100)

Further, from Eq. (11.100),

2 2
max [| ( )| / ( )]nd P f S f df

•

-•
= Ú  (11.101)

where in this case, P f s t s t= -2 1( ) [ ( ) ( )]F  and nS f = h( ) /2.

\
T

d P f df p t dt
•

-•
= =

h hÚ Ú2 2 2
max

0

2 2
| ( )| ( )  (From  Parseval’s theorem of FT) (11.102)

where 2 1( ) [ ( ) ( )]p t s t s t= -

\
T

d s t s t dt

p t

= -
h

=
h

Ú2 2
max 2 1

0

2
[ ( ) ( )]

2
(Energy of ( )) (11.103)

Now, before finding the energy of p(t), we will show that signals s1(t) and s2(t) are  orthogonal over the 
interval 0 to T.

i.e., 1 2
0

( ) ( ) 0
T

s t s t dt =Ú

To prove this, let us substitute for s1(t) and s2(t) using Eq. (11.97)
\ (s1(t), s2(t)) =  Inner product of s1(t) and s2(t)

2

0

2

0

{cos( / ) cos( / ) }

{cos 2 cos(2 / )}
2

T

c c

T

c

A T t T t dt

A
t t T dt

w p w p

w p

= - ◊ +

= +

Ú

Ú
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Since there will be 2n full cycles of the cosine signal cos 2 ctw  in the integration period, the first integral is 
zero.

\
2 2

1 2
0 0

2

2 2
( ( ), ( )) cos sin

2 2 2

(sin 2 sin 0) 0
4

T
T

t

A A T
s t s t tdt t

T T

A T

p p

p

p
p

=

Ê ˆ Ê ˆ= =Á ˜ Á ˜Ë ¯ Ë ¯

= - =

Ú

  (11.104)

Hence, the two signals s1(t) and s2(t) of Eq. (11.97) are  orthogonal to each other.
Now, reverting to Eq. (11.103), we have

T

T T T

d s t s t s t s t dt

s t dt s t dt s t s t dt

= - = -
h h

= + -
h h h

Ú

Ú Ú Ú

2 2
max 2 1 2 1

0

2 2
2 1 1 2

0 0 0

2 2
 [Energy of { ( ) ( )}] [ ( ) ( )]

2 2 4
( ) ( ) [ ( ) ( )]

since s1(t) and s2(t) are orthogonal, the last integral is zero.
Hence,

A T A T A T
d

È ˘
= + =Í ˙h Î ˚ h

2 2 2
2
max

2 2

2 2
, (11.105)

since energy of each of the signals is equal to A2T/2.
Then, from Eq. (11.48), we know that Pe is given by

min

max

2e

d
P Q

È ˘= Í ˙Î ˚

If the  bit energy is denoted by Eb,
2

2b

A T
E =

\ bE
d

¥
=

h
2
max

2 2
\ bE

d =
hmax 2

\
min

max

2

1

2 2

b
e

b

d E
P Q Q

E
erfc

È ˘È ˘
= = Í ˙Í ˙Î ˚ hÍ ˙Î ˚

È ˘
= Í ˙

hÍ ˙Î ˚

min

(CPBFSK)
coherent

1

2 2
b b

e

E E
P Q erfc

È ˘ È ˘
= =Í ˙ Í ˙

h hÍ ˙ Í ˙Î ˚ Î ˚
 (11.106)

In obtaining Eq. (11.106), we have made use of the results obtained during the course of the derivation of the 
 probability of error for an optimum filter. However, the same result may be obtained making use of signal 
space approach, identifying the boundary of the decision regions and then calculating the probability of 
error. This latter approach, though somewhat similar to the previous approach, gives a better insight into the 
problem and so will be outlined in what follows.
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11.4.4  Probability of Error for Sunde’s Continuous-Phase Binary FSK Using 

Signal-Space Concepts

Let the two waveforms transmitted be s1(t) and s2(t) given by

b
c

k

E
f T t t T

b s t T
p

Ï
- £ £Ô= = Ì

Ô
Ó

1

2
cos 2 ( 1/2 ) ; 0

0 : ( )

0 ; elsewhere

 (11.107)

and
b

c
k

E
f T t t T

b s t T
p

Ï
+ £ £Ô= = Ì

Ô
Ó

2

2
cos 2 ( 1/2 ) ; 0

1: ( )

0 ; elsewhere

 (11.108)

Let the channel noise be zero-mean additive white Gaussian noise with a two-sided  PSD of h/2, and let the 
a priori probability of transmission of s1(t) be the same as that of s2(t). We have already proved that Sunde’s 
BFSK signals represented by Eqs. (11.107) and (11.108) are  orthogonal over the time interval [0, T] (see Eq. 
(11.104)). They are not normalized since

1 2|| ( )|| || ( )|| bs t s t E= =  (11.109)

Dividing s1(t) and s2(t) of Eqs. (11.107) and (11.108) by the norm of each, viz., ,bE  we get the normalized 
signal pair f1(t) and f2(t) which are orthonormal.

cf T t t T
t T

p
f

Ï
- £ £Ô= Ì

Ô
Ó

1

2
 cos 2 ( 1/2 ) ; 0

( )

0 ; elsewhere

 (11.110)

and

cf T t t T
t T

p
f

Ï
+ £ £Ô= Ì

Ô
Ó

2

2
 cos 2 ( 1/2 ) ; 0

( )

0 ; elsewhere

 (11.111)

Since these two are orthonormal, they can be conveniently used as the basis set for the two-dimensional 
 signal space in which s1(t) and s2(t) are located.
 The coordinate of s1(t) along f1(t) basis signal is given by their inner product:

1 1
0

0

2 2
( ( ), ( )) cos 2 ( 1/2 ) cos 2 ( 1/2 )

1 2
[1 cos 4 ( 1/2 ) ]

2

T
b

c c

T

b c

b

E
s t t f T t f T tdt

T T

E f T t dt
T

E

f p p

p

= - ◊ -

= + -

=

Ú

Ú

 (11.112)

Since s1(t) is orthogonal to f2(t), its components along f2(t) = 0. Hence, in the signal space spanned by f1(t)
and f2(t), the signal s1(t) is represented by the vector

1
0

bE
s

È ˘
= Í ˙

Î ˚
 (11.113)
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Similarly, s2(t) has a coordinate of 0 along f1(t) since it is  orthogonal to f1(t) but has a coordinate of bE

along f2(t). Hence, we may represent the signal s2(t) by the vector

2

0

b

s
E

È ˘
= Í ˙

Í ˙Î ˚
 (11.114)

Figure 11.25 shows the signal space spanned by f1(t) and f2(t) and the representation of signals s1(t) and s2(t)
in this space as points m1 and m2 respectively.

Fig. 11.25  Signal space of  CPBFSK system. Point m1 represents s1(t) and point m2 represents s2(t).  Decision regions are 

on either side of the decision boundary (only a limited portion of each region is shown shaded).

 If the received signal is r(t), we know that

( ) ( ) ( )wr t s t n t= +  (11.115)

where s(t) may be either s1(t) or s2(t) and nw(t) is one realization of a zero-mean white noise process with 
two-sided PSD of h/2. The problem is to observe r(t) and correctly decide whether s(t) equals s1(t) or s2(t).

As shown in the diagram, point m1 with coordinates ( ), 0bE  represents signal s1(t) and point m2 with 

coordinates ( )0, bE  represents signal s2(t) in the signal space. The  observation space is now divided into 

two regions H1 and H2 as shown, by the decision boundary running through the origin and the mid-point of 
the line joining m1 and m2.
 Since r(t), the received signal has a noise component, it will not entirely belong to this signal space 
spanned by f1(t) and f2(t), i.e., it may have a component orthogonal to this signal space S, spanned by f1(t)
and f2(t). So, to determine whether r(t) is closer to s1(t) or s2(t) we take its coordinates along f1(t) and f2(t).
Let these coordinates be r1 and r2 respectively. Then we know that

r1 = coordinate of r(t) along f1(t)

1 1
0

( ( ), ( )) ( ) ( )
T

r t t r t t dtf f= Ú  (11.116)

Similarly,

2 2 2
0

( ( ), ( )) ( ) ( )
T

r r t t r t t dtf f= = Ú  (11.117)
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Now, the decision-making strategy is

 if 1 2( )z r rD -  is greater than zero, receiver should say bk = 0

 if 1 2( )r r-  is less than zero, receiver should say bk = 1

Note that being the sum of a deterministic signal s(t) (which is either s1(t), or s2(t)) and a realization of white 
noise process, r(t) is also a random process and so r1 and r2 are the sample values of  random variables R1

and R2.
Now, 

T T T

bE R H E r t H t dt E r t H t dt s t t dt Ef f f
È ˘

= = = =Í ˙
Î ˚
Ú Ú Ú1 1 1 1 1 1 1 1
0 0 0

[ | ] { ( )| } ( ) { ( )| } ( ) ( ) ( )

Similarly, 2 1 1 2 1 2
0 0

[ | ] { ( )| } ( ) ( ) ( ) 0
T T

E R H E r t H t dt s t t dtf f= = =Ú Ú

\ 1[ | ] bE z H E=  (11.118)

2 1 2 2 2

2 1 2 1
0 0

2 1 2 2
0 0

2 1 1 2 2 2
0 0 0

[ | ] [ | ] [ | ]

{ ( )| } ( ) { ( )| } ( )

{ ( ) ( )} ( ) { ( ) ( )} ( )

{ ( ) ( )} { ( ) ( )} { ( ) ( )} { ( ) ( )}

T T

T T

w w

T T T

w w

E z H E r H E r H

E r t H t dt E r t H t dt

E s t n t t dt E s t n t t dt

E s t t dt E n t t dt E s t t dt E n t t

f f

f f

f f f f

= -

È ˘ È ˘
= -Í ˙ Í ˙

Î ˚ Î ˚

= + - +

= + - -

Ú Ú

Ú Ú

Ú Ú Ú
0

T

dtÚ

The first integral is zero since s2(t) and f1(t) are  orthogonal. The second integral is zero since f1(t) is deter-

ministic and nw(t) is of zero-mean. The third integral equals .bE  The last integral is zero since nw(t) is of 
zero mean.

Fig. 11.26  Signal space S,  decision regions and the received signal r(t)
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Thus,

2[ | ] bE z H E= -  (11.119)

Since 1[ | ] bE z H E=  while 2[ | ] ,bE z H E= -  the variance of z is not dependent on whether H1 is true or 

H2 is true. Also, it can be shown that the random variables R1 and R2 are  statistically independent and that 
each has a variance of h/2. Hence, the variance of z equals the sum of the variances of R1 and R2, which is h.

\ var [z] = h (11.120)

Since z is the observed random variable and since its mean but not its  variance depends on whether H1 or H2

is true, let us examine the  conditional density function

bz E
f z H

p

È ˘+
= -Í ˙

hh Î ˚

2

1

( )1
( | ) exp

22
 (11.121)

We have asked the receiver to say H1 if z > 0.
Also

bz E
f z H

p

È ˘-
= -Í ˙

hh Î ˚

2

2

( )1
( | ) exp

22
 (11.122)

and we have asked the receiver to say H2 if z < 0.

Fig. 11.27 Conditional density function of z

P(1 | 0) = Probability of the receiver saying 1 even though a 0 was sent

 = P( z > 0 | 0 was sent)

b
z

z E
f z H dz dz

p

• • È ˘+
= = -Í ˙

hh Î ˚
Ú Ú

2

1
0 0

( )1
( | ) exp

22

On simplification, this gives

1
(1 | 0)

2 2
bE

P erfc
È ˘

= Í ˙
hÍ ˙Î ˚

 (11.123)

Similarly, 
1

(0 |1)
2 2

bE
P erfc

È ˘
= Í ˙

hÍ ˙Î ˚
 (11.124)

\ .5 (1 | 0) 0.5 (0 |1)eP P P= +

CS-Rao_11.indd 688CS-Rao_11.indd   688 1/25/2013 8:43:25 AM1/25/2013   8:43:25 AM



Noise Performance of Digital Communication Systems 689

\
CPBFSK
coherent

1

2 2
b

e

E
P erfc

È ˘
= Í ˙

hÍ ˙Î ˚
 (11.125)

Example 11.19 A BFSK system operating with an unmodulated carrier frequency of fc, transmits 
rectangular pulses of cosinusoids of frequency 1 ( /2)c df f f= +  and 2 ( /2)c df f f= -  corresponding to 

binary symbols 1 and 0 respectively, where fd = f1 – f2 = 1/T where T is the duration of a binary 0 or 1. At 
the input to the receiver, the transmitter can create a maximum of 100 mW of power. Noise (one-sided) 
PSD at the input to the receiver is 10–10 W/Hz. What is the maximum bit rate which the system can 
support if the bit-error probability is to be 10–6? What is the nominal bandwidth of the  BFSK signal, if 
f2 = 85 MHz?

Solution The BFSK system of this example is clearly a Sunde’s continuous phase BFSK system for 
which as per Eq. (11.125),

61
10

2 2
b

e

E
P erfc

-= =
h

 (Given)

From the error-function tables, we find that the above equation gives

bE
=

h
22.6 \ bE

- -= ¥ h = ¥ = ¥10 922.6 22.6 10 2.26 10 J

Since Eb is the bit energy, it is equal to the average received signal power multiplied by the bit duration T.

\ 9 32.26 10 100 10bE T
- -= ¥ = ¥ ¥

\
9

8

3

2.26 10
2.26 10 sec

100 10
T

-
-

-

¥
= = ¥

¥

The bit rate 8
8

1 1
0.4424 10 44.24 Mbps

2.26 10
bR

T -= = = ¥ =
¥

\ the maximum bit rate that can be supported = 44.24 Mbps
 For  Sunde’s BFSK, the transmission bandwidth is equal to the bit rate since

 B.W. = 1 2

1
( ) ( /2) ( /2)c d c d df f f f f f f

T
- = + - - = =

\ if f2 = 85 MHz, 1 2

1
(85 44.24) MHz

= 129.24 MHz

f f
T

= + = +

The transmission bandwidth, when f2 = 85 MHz, is given by

BT = 85 MHz to 129.24 MHz.

11.4.5  Probability of Error for Non-Coherent Reception of Binary FSK

In binary FSK, the signal transmitted during any time slot will be either s1(t) with a frequency of (fc – fd),

or s2(t) with a frequency of (fc + fd). Hence, a non-coherent FSK receiver will have a structure as shown in 

Fig. 11.28.
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Fig. 11.28  Non-coherent BFSK receiver structure

Let the  channel noise be zero-mean additive white Gaussian noise. As usual, let 1 0 0.5.P P= =
r(t) = received signal = s(t) + nw(t), (11.126)

where

1

2

2
( ) cos 2 ( ) if 0

( )
2

( ) cos 2 ( ) if 1

b
c d k

b
c d k

E
s t f f t b

T
s t

E
s t f f t b

T

p

p

Ï
= - =ÔÔ= Ì

Ô = + =ÔÓ

 (11.127)

For convenience let 
2 bE

A
T

=

Let us suppose s1(t) has been transmitted. Then R2(t) will be the envelope of only band pass noise and so will 
have  Rayleigh density, while R1(t) will be the envelope of a sinusoid (i.e., s1(t)) plus  band pass noise and so 
will have a  Ricean density.

\

2 2
1

2

1

1 1 2
( ) 1 1 0 12 2

( ( )| ) ; 0

R A

R t

R AR
f R t H I e Rs

s s

Ê ˆ+
-Á ˜Ë ¯È ˘= ≥Í ˙Î ˚

 (11.128)

where A is the peak amplitude of s1(t) and

2 bE
A

T
=  (11.129)

and

TBs = h2

where BT is the bandwidth of the BPF = Transmission bandwidth (which is approximately equal to 2/T).
 Since s1(t) has been transmitted, the BPF in the top branch responds only to noise and so its envelope will 
have Rayleigh density function. This is given by

2
2
2

2

2 2
( ) 2 1 22

( ( )| ) ; 0

R

R t

R
f R t H e Rs

s

-
Ê ˆ= ≥Á ˜Ë ¯

 (11.130)

Also, since s1(t) has been transmitted, R1(T) should be larger than R2(T), i.e., R(t) < 0. Hence, when s1(t) has 
been transmitted, if R(T) turns out to be positive, we say that an error has occurred. From the symmetry of 
the problem, it is clear that the probability of a transmitted s1(t) being mistaken by the receiver as s2(t), is the 
same as the probability of a transmitted s2(t) being mistaken as an s1(t).

i.e.,

1 0

0 1

(1 | 0) (0 |1)

0.5

(1 | 0) (0 |1) 0.5 (1 | 0) 0.5 (0 |1)

(1 | 0) (0 |1)

e e

e e e e e

e e

P P

P P

P P P P P P P

P P

=

= =

= + = +

= =

 (11.131)

Also,  (11.132)

and

  (11.133)
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Fig. 11.29 (a)  Rayleigh density function, (b)  Ricean density function

But 2 1 2 1(1 | 0) [ ( ) | ( )] [ ( ) ( )]e eP P s t s t P R T R T= = >  (11.134)

and
1 1 2 1

1

2 1 | ( ) 1 | ( ) 2 2 1
0

[ ( ) ( )] ( ) ( )R s t R s t
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P R T R T f R f R dR dR
• •È ˘

> = Í ˙
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Ú Ú  (11.135)
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Put
2
2 2 2 2

22 2 2
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2 2
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s s s
- = \ = - = -
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Putting 1 12 ,
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x R dR= =

\
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2 22
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/ 42
02 2

0

1

22

x A
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e
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ss
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Ú  (11.137)

But

2 2
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( / 2 )

2
02 2

0

 1
2

x A
x Ax

I e dxs

s s

Ê ˆ+• -Á ˜Ë ¯Ê ˆ =Á ˜Ë ¯Ú  (Since the integrand is a Ricean density function)
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2 2 2

1
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But TB Ts = h ◊ = h2 /  since BT (for FSK) = 
1

T
\ Ts = h2

\
bE

eP e

-
h= 2

BFSK
(Non-coherent)

1

2
 (11.138)

11.4.6  Probability of Error for  Binary Phase-Shift Keying

In the case of binary phase-shift keying, the two signals, s1(t) corresponding to bk = 0 and s2(t) corresponding 
to bk = 1, are given by

1 1

2 2

: 0 : ( ) cos ; 0

: 1: ( ) cos ; 0
k c

k c

H b s t A t t T

H b s t A t t T

w

w

= = - £ £ ¸
˝= = £ £ ˛

 (11.139)

where 2 /bA E T=  and / cT n f=  so that there are an integer number of carrier cycles in a time slot T. We 

find that, except for a 180° phase shift there is no other difference between the two possible transmitted 
signals. Such signals are referred to as ‘Antipodal Signals’. Since the only thing that distinguishes the two 
signals is the phase, only coherent detection is possible, as non-coherent detection ignores phase information.
 As usual we shall assume channel noise to be AWGN with zero mean and a two-sided power spectral 
density of h/2. We shall also assume equiprobable symbols, i.e., 0 1 0.5P P= = . The received signal may 
therefore be written as

1

2

: ( ) cos ( ); 0

: ( ) cos ( ); 0
c w

c w

H r t A t n t t T

H r t A t n t t T

w

w

= - + £ £ ¸
˝= + £ £ ˛

 (11.140)

If s01(T) and s02(T) are respectively the outputs of the integrator when s1(t) alone, and s2(t) alone are fed to 
the receiver, then

Fig. 11.30 Receiver structure for (coherent) PSK

01 1 2 1
0

2

0

( ) ( )[ ( ) ( )]

( cos )(2 cos )

T

T

c c

s T s t s t s t dt

A t A t dt A Tw w

= -

= - = -

Ú

Ú  (11.141)

02 2 2 1
0

2

0

( ) ( )[ ( ) ( )]

( cos )(2 cos )

T

T

c c

s T s t s t s t dt

A t A t dt A Tw w

= -

= =

Ú

Ú  (11.142)

\ 01 02
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( ) ( )
threshold 0

2

s T s T
V

+
= = =  (11.143)
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Further, from Eq. (11.47), we have

T

n

T

c

P f
d df P f df p t dt

S f

A T
A t dt A Tw

• •

-• -• -
= = =

h h

= = ¥ =
h h h

Ú Ú Ú

Ú

2
2 2 2
max

0

2
2 2

0

| ( )| 2 2
| ( )| ( )

( )

2 2 4
(2 cos ) 2

\ from Eq. (11.48) we get

2 2
max

min

1

2 2 2
e

d A T A T
P Q Q erfc

È ˘ È ˘È ˘ Í ˙ Í ˙= = =Í ˙Î ˚ h hÍ ˙ Í ˙Î ˚ Î ˚

However,
2

bit energy
2 b

A T
E= =

\ min
(PSK)

2 1

2
b b

e

E E
P Q erfc

È ˘ È ˘
= =Í ˙ Í ˙

h hÍ ˙ Í ˙Î ˚ Î ˚
 (11.144)

11.4.7 Pe min for BPSK from Signal-Space Concepts

Equation (11.144), which gives the  probability of error for PSK, has been derived using the results obtained 

earlier for optimum receivers. We shall now derive the expression for probability of error for BPSK using the 

 signal space concepts by determining the  signal constellation and identifying the  decision boundaries, just the 

same way as we did in the case of binary FSK.

 We shall assume that the two antipodal signals of the binary PSK are represented by s1(t) for binary 0 and 

s2(t) for binary 1 and are given by

1 1

2 2

2
: 0 : ( ) cos ; 0

2
: 1: ( ) cos ; 0

b
k c

b
k c

E
H b s t t t T

T

E
H b s t t t T

T

w

w

¸
= = - £ £ ÔÔ

˝
Ô= = + £ £ Ǫ̂

 (11.145)

whereas usual, Eb represents the bit energy. As in the previous case, we shall assume that the channel noise is 
zero-mean additive white Gaussian with a two-sided PSD of h/2. In order to have an integer number of cycles 
of the carrier in one time slot of duration T sec, fc, the carrier frequency and T are so chosen that ( / ),cT n f=
where n is an integer. Further, we assume 0 1 0.5.P P= =
 From Eq. (11.145), we find that the two possible signals to be transmitted are just 180° apart. So the signal 

space is one–dimensional in this case. We may conveniently take, as the basis function, the following signal: 

2
( ) cos ; 0ct t t T

T
f w= £ £  (11.146)

Figure 11.31 shows the signal space, which is a straight line as it is one-dimensional, and the signal constel-

lation comprising the two message points m1 and m2 used for representing the two  antipodal signals s1(t) and 

s2(t) in that signal space.
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Fig. 11.31  Signal space and  signal constellation for binary PSK

Coordinate of s1(t) along 1( ) ( ( ), ( ))t s t tf f=

0

2 2
cos cos

T
b

c c b

E
t t dt E

T T
w w= - ◊ = -Ú  (11.147)

Coordinate of s2(t) along 2( ) ( ( ), ( ))t s t tf f=

0

2 2
cos cos

T
b

c c b

E
t t dt E

T T
w w= ◊ =Ú  (11.148)

Hence, message point m1 representing signal s1(t) is located at bE-  on the line representing the basis 

signal f(t), and the message point m2 representing the signal s2(t) is located at bE+  on the same line. Thus 

m1 and m2 are located at equal distances but on opposite sides on the line f(t). That is why s1(t) and s2(t) are 
called  antipodal signals. So, we now fix the boundary by drawing a line perpendicular to f(t) line and passing 
through 0. The portion of the signal space, i.e., the line f(t), which is to the left of this decision boundary 
constitutes the region Z1 and the portion to the right constitutes the region Z2.
 Since the received signal r(t) is given by

( ) ( ) ( ) ; 0wr t s t n t t T= + £ £

where s(t) may be either s1(t) or s2(t) and nw(t) is zero-mean white Gaussian noise, r(t) may not completely 
be within the signal space of s1(t) and s2(t). So, let us consider r, its coordinate along the basis signal f(t).
This is given by

0

( ) ( )
T

r r t t dtf= Ú  (11.149)

Now, if this observed random variable r falls in the region Z1, we will ask the receiver to say that s1(t) has 
been transmitted and if it falls in the region Z2, we will ask the receiver to say that s2(t) has been transmitted 
during that time slot.
 If s1(t) corresponding to bk = 0 has been transmitted, but due to the influence of the channel noise, the 
coordinate of the received signal along f(t), viz., r falls in the region Z2, the receiver will say that an s2(t),
corresponding to bk = 1 has been transmitted; and an error occurs. Let the probability of occurrence of such 
an error be denoted by P(1 | 0), i.e., the probability of the receiver saying 1 even though a 0 was transmitted. 
Let P(0 | 1) be the probability of the receiver saying 0 when in fact, a 1 was transmitted. From the symmetry 
of the signal constellation with respect to the  decision boundary, however, it is clear that (1 | 0) (0 |1).P P=
To determine these probabilities of the two types of errors, let us consider the conditional density functions of 
r conditioned on s1(t) and s2(t). These two conditional density functions, 

1| ( ) 1( | ( ))r s tf r s t  and 
2| ( ) 2( | ( ))r s tf r s t

have the same  variance but have different means.
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b
r s t

r E
f r s t

p

È ˘+
= -Í ˙

hh Î ˚1

2

| ( ) 1

( )1
( | ( )) exp  (11.150)

and b
r s t

r E
f r s t

p

È ˘-
= -Í ˙

hh Î ˚2

2

| ( ) 2

( )1
( | ( )) exp  (11.151)

It is left to the reader as an exercise, to show that 1 bE[ r|s ( t )] E= - , 2 bE[ r|s ( t )] E= +
and that

1 2Var [ r|s ( t )] Var [ r|s ( t )] / 2h= =

Fig. 11.32  Conditional densities of the observed random variable

From Fig. 11.32, we have

br E

r s tP f r s t dr e dr
p

+• • -
h= =

h
Ú Ú

2

1

( )

| ( ) 1
0 0

1
(1|0) ( | ( ))  (11.152)

Putting br E z+ D
h

1
( ) ,  we get

2

/

1 1
(1 | 0) erfc

2
b

z b

E

E
P e dz

p

•
-

h

È ˘
= = Í ˙

hÍ ˙Î ˚
Ú  (11.153)

Also, 0 1(1 | 0) (0 |1)eP P P P P= +

0.5 (1 | 0) 0.5 (0 |1)P P= +  (11.154)

However, from the symmetry of the conditional density functions (refer to Fig. 11.31), we find that

P(1 | 0) = P(0 | 1) (11.155)

\ from Eqs. (11.154) and (11.155), we have

(1 | 0)eP P=

\ from Eq. (11.153)

Binary PSK

1

2
b

e

E
P erfc

È ˘
= Í ˙

hÍ ˙Î ˚
 (11.156)

Note
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11.4.8 Comparison of the Performance of Binary  ASK,  FSK and  PSK

 1. ASK and FSK lend themselves to coherent as well as non-coherent detection; but PSK lends itself 
only to coherent reception. There is no non-coherent PSK system, although a sub-optimal PSK scheme 
called  DPSK, or differential PSK can be detected non-coherently.

 2. Since FSK and PSK signals have a constant envelope, they are immune to amplitude non-linearities 
which arise in microwave and radio channels. Hence, FSK and PSK signals are preferred to ASK in 
band pass data transmission over these channels.

 3. For a given bit energy, PSK gives the lowest probability of error. This can be guessed from the fact 
that the PSK signals, being antipodal, have maximum separation for a given bit energy. Larger signal 
separation means less likelihood of the noise making the receiver commit a mistake in identifying 
which signal has been transmitted.

Table 11.1 Comparison of binary ASK, FSK and PSK

Binary digital modulation Type of detection Bit rate/bandwidth Probability of error

Binary
ASK/OOK

Non-coherent 1 bEÈ ˘-Í ˙hÎ ˚

*
1

exp
2 2

Coherent 1

*
1

2 2
bE

erfc
È ˘
Í ˙

hÍ ˙Î ˚

BFSK

Non-coherent 1
bEÈ ˘-Í ˙hÎ ˚

1
exp

2 2

Coherent 1
1

2 2
bE

erfc
È ˘
Í ˙

hÍ ˙Î ˚

BPSK Coherent 1
1

2
bE

erfc
È ˘
Í ˙

hÍ ˙Î ˚

* Eb = Eav = A2T/4.

(bit rate/BT) will be equal to 0.5 if BT is taken as the full main lobe width in the power spectrum 

of the modulated signal.

 4. From the above table, it is evident that PSK, coherent or non-coherent ASK and FSK, all have the same 
bandwidth efficiency, but their bit-error rates are different.

 5. The bit-error rates of the various basic binary digital modulation schemes are plotted against (Eb /h) in 
Fig. 11.32. From the figure, it is clear that

 (a) Coherent ASK and coherent FSK have the same P
e
.

 (b) From probability of error point of view, starting from the best, viz., the  PSK, they may be ranked 

in the following order:

 (i) PSK

 (ii)  Coherent FSK and  coherent ASK

 (iii)  Non-coherent FSK

 (iv)  Non-coherent ASK

Note
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Noise Performance of Digital Communication Systems 697

 6.  Non-coherent ASK and  non-coherent FSK give 
essentially the same performance. However, in 
practice, FSK is preferred over ASK because 
it has a fixed optimum threshold while ASK 
has a threshold that depends on the signal-to-
noise ratio and is therefore susceptible to  signal 
fading (refer to Eq. (11.88)).

 7. Comparison of Pe of  BPSK with that of 
coherent ASK or coherent FSK reveals that for 
achieving the same  probability of error, ASK 
requires twice the pulse energy as compared to 
PSK, i.e., ASK requires 3 dB more power than 
PSK. Hence, if coherent detection is to be used, 
ASK and FSK are not considered.

However, for non-coherent reception, FSK is useful 
because of its simplicity and its superior performance 
over ASK for reasons stated in point 6 above.

Example 11.20 (a) Draw the signal constel-
lation for a binary phase-shift keyed signal set if the 
two signals are

and

1

2

2
( ) cos ( /4) ; 0

2
( ) cos ( /4) ; 0

b
c

b
c

E
s t t t T

T

E
s t t t T

T

w p

w p

= - £ £

= + £ £

(b) Also determine and sketch the low pass 
  equivalent spectrum of these PSK signals.

Solution

(a) 1

2
( ) cos( /4)

2
cos cos sin sin where

4 4

[cos sin ]
2

b
c

b
c c

c c

E
s t t

T

E
A t t A

T

A
t t

w p

p p
w w

w w

= -

È ˘= ◊ + ◊ =Í ˙Î ˚

= +

In a similar way 2( ) [cos sin ]
2

c c

A
s t t tw w= -

Let 1 cos ctf w=  and 2 sin ctf w= . These two  orthogonal signals can be used as the  basis signal set for 

the  signal space to which s1(t) and s2(t) belong.

\ 1 1 2( ) ( ) ( )
2 2

A A
s t t tf f= +

Fig. 11.33  Pe vs. (Eb/h) for: (a) Binary PSK, (b) Coherent 

BFSK and ASK, (c) Non-coherent FSK, 

(d) Non-coherent ASK, (e)  DPSK
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and 2 1 2( ) ( ) ( )
2 2

A A
s t t tf f= -

\   1 2( ) , and ( ) ,
2 2 2 2

A A A A
s t s t

Ê ˆ Ê ˆ
= = -Á ˜ Á ˜Ë ¯ Ë ¯

s1(t) is represented by point m1 and s2(t) is repre-
sented by point m2, in the  signal space spanned by 
f1 and f2.

 (b) The low pass equivalent of s1(t) or s2(t) is given by

2
( ) ( / )

2
( ) [ ( )] sinc( )

b

b

E
p t t T

T

E
P f F p t T f T

T

= P

= =

\  power spectral density 
2

2| ( )|
2 sinc ( )b

P f
E f T

T
= =

This PSD has already been sketched in Fig. 10.31 in Chapter 10.

Example 11.21 A microwave link is used for transmitting binary data at the rate of 1 Mbps. Assuming 
the PSD (two sided) of the noise at the input of the receiver to be 10–10 W/Hz, find the transmission 
bandwidth and the average carrier power required to be maintained if the  probability of error, Pe is not to 
exceed 10–4, when (a) coherent BPSK, and (b) coherent BFSK are used.

Solution
 (a) For coherent  BPSK

\

4

4

1
10

2

2
2 10 2

b
e

b b

E
P erfc

E E
erfc Q

-

-

È ˘
= =Í ˙

hÍ ˙Î ˚
È ˘ È ˘

= ¥ =Í ˙ Í ˙
h hÍ ˙ Í ˙Î ˚ Î ˚

From the Q-function graph, we find that bEÈ ˘
=Í ˙

hÎ ˚

2
3.7

b
b

E
E

- -= = ¥ ¥ = ¥
h

2
10 103.7 (3.7)

and 2 10 13.69 10 W-sec.
22

Since  bit rate (= 1/T) is given to be 106 Mbps
10

10 6

Average power 13.69 10 bit rate

13.69 10 10 1.369 mW

-

-

= ¥ ¥

= ¥ ¥ =

 (b)  Coherent BFSK

41
10

2 2
b

e

E
P erfc

-È ˘
= =Í ˙

hÍ ˙Î ˚

Fig. 11.34  Signal constellation
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Proceeding as in the previous case, from the Q-function graph,

bE
=

h
3.7

2 2
\ 102 13.69 10 W-sec.bE

-= ¥ ¥

\ Pav = Average power = Eb ¥ bit rate = 2 ¥ 13.69 ¥ 10–10 ¥ 106

\ Pav = 2.738 mW
In both the cases, the transmission bandwidth BT = 1 MHz.

Example 11.22 In a BPSK system, the  correlator in the receiver, to which the received PSK signal 
is applied, supplied with a carrier signal whose phase is q radians away from the exact carrier phase. 
Determine the effect of this  phase error q on the  probability of error of the system.

Solution For convenience, the structure of a correlation receiver for BPSK signals is shown in Fig. 11.35 
with the local carrier q radians away from the correct phase.

Fig. 11.35  Correlation receiver for BPSK signals in which the local carrier is q radians away from correct phase

( ) [ ( ) ( )] [2 cos ( )]

2 ( ) cos ( ) 2 ( ) cos( )

W c

c W c

x t s t n t A t

As t t An t t

w q

w q w q

= + +

= + + +

\ if 
01 1

0
02 2

( ) when ( ) ( ) and
( )

( ) when ( ) ( ),

s T s t s t
s T

s T s t s t

=Ï
= Ì =Ó

then

2
01 1

0 0

2

0

( ) [ ( )| ( )] 2 cos cos( )

1
2 {cos(2 ) cos }

2

T T

c c

T

c

s T x t s t dt A t t dt

A t dt

w w q

w q q

= = - ◊ +

-
= + +

Ú Ú

Ú

But
0

cos(2 ) 0
T

ct dtw q+ =Ú . Since the carrier cosine function is arranged to have an integer number of full 

cycles in the period 0 to T sec.

\ 2 2
01

0

( ) cos cos
T

s T A dt A Tq q= - = -Ú

Similarly, 2
02 ( ) coss T A T q=
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n0(T) = noise component of r0(T)

0

2 ( ) cos( )
T

W cAn t t dtw q= +Ú

\ n0(T) is independent of which signal has been transmitted.
Now,

0
0

[ ( )] 2 [ ( )]cos ( ) 0
T

W cE n T AE n t t dtw q= + =Ú

Since [ ( )] 0WE n t =

\
0

2 2 2 2
( ) 0 0 0[ ( )] { [ ( )]} [ ( )]n T E n T E n T E n Ts = - =

2

0 0

4 { ( ) ( )}cos( ) cos( )
T T

W W c cA E n n d da b w a q w b q a b= + +Ú Ú

Now,

W WE n n
b a

a b
h =Ï

= Ì
Ó

/2, if
{ ( ) ( )}

0 otherwise

\ When b = a,

[ ]
T T

n T c c

A
A d ds w a q a w a q a

h hÊ ˆ= + = + +Á ˜Ë ¯Ú Ú0

2
2 2 2

( )
0 0

2
4 cos ( ) 1 cos 2( )

2 2

\ n T A Ts = h
0

2 2
( )  (11.157)

Since 0 0 0( ) ( ) ( ),r T s T n T= +

where n0(T) is a zero-mean  Gaussian random variable, r0(T) is also a Gaussian random variable with  variance 

0

2
( )n Ts  and a mean that is equal to 2 cosA T q-  when s1(t) is transmitted and A2T cos q when s2(t) is trans-

mitted. The  conditional densities of r0(T) may be written as

and

0

00

0

00

2 2
0

( ) 0 1 22
( )( )

2 2
0

( ) 0 2 22
( )( )

( ( ) cos )1
( ( )| ( )) exp

22

( ( ) cos )1
( ( )| ( )) exp

22

r T

n Tn T

r T

n Tn T

r T A T
f r T s t

r T A T
f r T s t

q

sps

q

sps

È ˘+
= -Í ˙

Í ˙Î ˚

È ˘-
= -Í ˙

Í ˙Î ˚

Assuming the a priori probabilities of transmission of s1(t) and s2(t) to be equal, i.e., P0 = P1 = 0.5, the 
 optimum threshold or reference voltage is zero, as shown in Fig. 11.36.

0.5 (0 |1) 0.5 (1 | 0) (1 | 0)eP P P P= + =¢  since (0 |1) (1 | 0)P P=  (From the symmetry)

Now,

00

2 2
0

022
0 ( )( )

( ( ) cos )1
(1 | 0) exp ( )

22
e

n Tn T

r T A T
P P dr T

q

sps

• È ˘+
= = -¢ Í ˙

Í ˙Î ˚
Ú
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Put
0

2
0

( )

( ) cos

n T

r T A T
z

q

s

È ˘+
= Í ˙

Í ˙Î ˚
\ when 

0

2

0
( )

cos
( ) 0,

n T

A T
r T z

q

s
= =

and
0

0
( )

1
( )

n T

dz dr T
s

Ê ˆ= Á ˜Ë ¯

\ substituting the above in the expression for eP¢ , we get

2
0

2
0

0

( )0

2 2
( ) /2

2
( )cos ( )

2

cos cos

2

2
cos cos cos

n T

n T z
e

n TA T n T

b

A T A T
P e dz Q Q

A T

ET A T
Q A Q Q

q

s

s q q

sps

q q q

•
-

È ˘ È ˘
= = =¢ Í ˙ Í ˙

hÍ ˙ Í ˙Î ˚Î ˚

È ˘ È ˘È ˘
Í ˙= = = Í ˙Í ˙

h h hÍ ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚

Ú (From Eq. (11.156))

Since
2

2b

A
E T

Ê ˆ
= ◊Á ˜Ë ¯

\
1

cos
2

b
e

E
P erfc q

È ˘
=¢ Í ˙

hÍ ˙Î ˚

Without the  phase error for the local carrier, ideally

1

2
b

e

E
P erfc

È ˘
= Í ˙

hÍ ˙Î ˚

While with a  phase offset of q radians, it is

    (BPSK)
Phaseoffset

1
cos

2
b

e

E
P erfc

q

q
È ˘

=¢ Í ˙
hÍ ˙Î ˚

 (11.158)

Since complementary  error function is a monotonically decreasing function of its argument, and since cos q

£ 1, for small but non-zero value of , e eP Pq >¢ . Hence the effect of phase offset is to increase the  probability 
of error.

Fig. 11.36  Conditional densities of the observed random variable r0(T)
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Example 11.23 If the frequency offset fd in a binary FSK system satisfies the relation dW T np=  show 
that s1(t) and s2(t) are orthogonal.

Solution dW T np= 2 or
2d d

n
f T n f

T
p p\ = =

\ 1

2

( ) cos ; 0

( ) cos ; 0

c

c

n
s t A t t T

T

n
s t A t T

T

p
w

p
w

Ê ˆ= - £ £Á ˜Ë ¯

Ê ˆ= + £ £Á ˜Ë ¯and

To show that they are  orthogonal over the interval [0, T], we have to show that their  inner product, defined as

1 2 1 2
0

( ( ), ( )) ( ) ( ) 0
T

s t s t s t s t dtD =Ú

Substituting for s1(t) and s2(t) in the above inner product, we get

2
1 2

0

2 2

0 0

( ( ), ( )) cos cos

2
cos 2 cos

2 2

T

c c

T T

c

n n
s t s t A t t dt

T T

A A n
t dt t dt

T

p p
w w

p
w

Ê ˆ Ê ˆ= - ◊ +Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ= + Á ˜Ë ¯

Ú

Ú Ú

In the above, the first integral is zero since fc is so chosen that there will be an integer number of full cycles 
of the carrier wave in one T.

\
2 2

1 2
0 0

2 2
( ( ), ( )) cos sin 0

2 2 2

T
T

t

A n A T n
s t s t t dt t

T n T

p p

p
=

Ê ˆ Ê ˆ= ◊ = =Á ˜ Á ˜Ë ¯ Ë ¯Ú

Since their inner product is zero, the two signals s1(t) and s2(t) are orthogonal to each other.

Example 11.24 We have derived an expression for Pe applicable to continuous phase binary FSK. 
Derive an expression for discontinuous type binary FSK.

Solution 1( ) cos( )c ds t A tw w= -
and     2 ( ) cos( )c ds t A tw w= +
The correlation receiver structure is as shown in 
Fig. 11.37.
                    s01(T) = output of the correlator at t = T

when s1(t) alone is given as input to it.

                          

1 2 1
0

2 2

0 0

2 2

0 0

( )[ ( ) ( )]

[ cos( ) ] [ cos( ) ] cos ( )

(cos 2 cos 2 ) [1 cos 2( ) ]
2 2

T

T T

c d c d c d

T T

c d c d

s t s t s t dt

A t A t dt A tdt

A A
t t dt t dt

w w w w w w

w w w w

= -

= - + - -

= + - + -

Ú

Ú Ú

Ú Ú

Fig. 11.37  Correlation receiver of Example 11.24
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If
1

,
2( )c d

T
f f

>>
-

2 2 2 2

01

0

sin 21
( ) sin 2

2 2 2 2 2 2

T

d
d

d d

TA A T A T A T
s T t

T

w
w

w w

È ˘ Ê ˆ
= - = - +Í ˙ Á ˜Ë ¯Î ˚

Similarly,

s02(T) =  correlator output when s2(t) alone is given as input

2 2 sin 2

2 2 2
d

d

TA T A T

T

w

w

Ê ˆ
= + Á ˜Ë ¯

\ d

d

T

T

c d c d

T T T

c d c d c d c d

s T s T T
V A T

T

d s t s t dt

A
t t dt

A
t dt t dt t t dt

A
T

w

w

w w w w

w w w w w w w w

Ê ˆ+
= = = Á ˜Ë ¯

= -
h

= + - -
h

È ˘
= + + - - + ◊ -Í ˙h Î ˚

= -
h

Ú

Ú

Ú Ú Ú

201 02
opt

2 2
max 2 1

0

2
2

0

2
2 2

0 0 0

2

( ) ( ) sin 2
Threshold

2 2

2
[ ( ) ( )]

2
[cos( ) cos( ) ]

2
cos ( ) cos ( ) 2 cos( ) cos( )

sin 22 d d

d d

T TA T

T T

w w

w w

È ˘È ˘
= -Í ˙Í ˙ hÎ ˚ Î ˚

2 sin 22
1

2 2

  (see Eq.11.52)

This quantity, 2
maxd  attains its largest value when 

3

4dT
p

w @ , i.e., when

3

4d
T

p
w ª

Therefore, if the offset frequency, fd, is so chosen that 
3

,
4d
T

p
w =  then 2

maxd  will be given by

d

d

d T

TA T
d

T

A T A T

w p

w

w
=

È ˘Ê ˆ= -Í ˙Á ˜h Ë ¯Í ˙Î ˚

= + =
h h

2
2
max

3 /4

2 2

sin 22
1

2

2 2.42
[1 0.21]

But

2
max

min

2

0.605
2

1
0.6

2 2

e

d A T
P Q Q

A T
erfc

È ˘È ˘ Í ˙= =Í ˙Î ˚ hÍ ˙Î ˚
È ˘
Í ˙=

hÍ ˙Î ˚
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But
2

bit energy
2 b

A T
E= =

\ min
BFSK-coherent
(discontinuous phase)

1
0.6

2
b

e

E
P erfc

È ˘
= Í ˙

hÍ ˙Î ˚
 (11.159)

Example 11.25 A binary band pass system transmits binary data at the rate of 2.5 ¥ 106 bits/sec. 
During the course of transmission, zero-mean  AWGN of two-sided  PSD equal to 10–14 W/Hz is added 
to the signal. In the absence of noise, the amplitude of the received sinusoidal wave for digit 1 or 0 
is 1 mV. Find the average probability of symbol error, for the following systems: (a) Coherent BFSK, 
(b) Non-coherent BFSK, and (c) BPSK (coherent).

Solution
 (a)  Coherent BFSK

For coherent BFSK,    
1

2 2
b

e

E
P erfc

È ˘
= Í ˙

hÍ ˙Î ˚

where
2

2b

A T
E =

Now, 6
6

1 1
0.4 10 sec

2.5 10b

T
r

-= = = ¥
¥

A = 1 mV \
2 6 6

121 10 0.4 10
0.2 10

2 2b

A T
E

- -
-¥ ¥ ¥

= = = ¥

bE -

-
¥

= =
h ¥ ¥

12

14

0.2 10
2.236

2 2 2 10

From error-function tables,

31
erfc2.236 1.27 10

2eP
-= = ¥

 (b)  Non-coherent BFSK

b
e

E
P

È ˘= -Í ˙hÎ ˚

1
exp

2 2

\
12

5 3
14

1 0.2 10 1
exp 0.003369 3.369 10

2 22 2 10
eP e

-
- -

-

È ˘¥
= - = = = ¥Í ˙

¥ ¥Î ˚
 (c)  BPSK

12

14

1 1 0.2 10

2 2 2 10

1 1
10 (3.1622) 0.0000055

2 2

b
e

E
P erfc erfc

erfc erfc

-

-

¥
= =

h ¥

= = =

\ 65.5 10eP
-= ¥
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11.4.9  Probability of Error for  DPSK

In Section 10.6.1 of Chapter 10, we had discussed the basic principle of operation and the methods of gener-
ation and reception of DPSK signals. We shall now derive an expression for the probability of error of a 
DPSK system.
 As can be seen from Table 10.4, differential encoding basically consists of the encoder giving an output of 
1 if the present and the preceding message bits are alike and giving an output of 0 in case they are not alike. A 
similar thing is done in the decoding of the received signals at the receiver. Whenever the signal in the present 
time slot and the preceding one have the same phase (either both 0 or p), we decode the present bit as 1 and 
if they do not have the same phase, we decode the present bit as 0.
 Let s1(t) be used to represent the signal transmitted over two consecutive time slots when they both have 

0 phase.

\ 1

cos 2 ; 0
( )

cos2 ; 2
c

c

A f t t T
s t

A f t T t T

p

p

£ £Ï
D Ì £ £Ó

 (11.160)

Similarly, let

\          2

cos 2 ; 0
( )

cos(2 ); 2
c

c

A f t t T
s t

A f t T t T

p

p p

£ £Ï
D Ì + £ £Ó

 (11.161)

It is easy to show that the inner product of s1(t) and s2(t) is equal to zero.

i.e.,
2

1 2 1 2
0

( ( ), ( )) ( ) ( ) 0
T

s t s t s t s t dtD =Ú  (11.162)

Hence, s1(t) and s2(t) are orthogonal over the internal 0 2 .t T£ £ Thus a DSPK signal may be regarded as 

a special case of non-coherent  orthogonal modulation, but with a time-slot of 2T instead of T. Hence, if 
s1(t) and s2(t) are normalized so that

2
bE

A
T

=

Then the energy of s1(t) or s2(t) over the interval 0 to 2T is equal to 2Eb.
 We have already discussed non-coherent binary FSK , where the signals were of continuous phase (Sunde’s 
Continuous phase FSK) type and we had shown that the transmitted signals corresponding to a message bit 
0 and a message bit 1 are orthogonal. So non-coherent binary FSK of Sunde’s type, is also a case of non– 

coherent binary orthogonal modulation. The probability of error was derived for it and it was shown to be 

b
e

E
P

È ˘= -Í ˙hÎ ˚(Sunde's non-coherent
     binary FSK)

1
exp

2 2

DPSK, as a special case of binary non-coherent orthogonal modulation (Orthogonality of the signals being 
over a period 0 to 2T instead of 0 to T and the energy being 2Eb over that period), will have a probability of 
error given by 

b
e

E
P

È ˘= -Í ˙hÎ ˚(DPSK)

1
exp

2
 (11.163)

A plot of Pe vs. (Eb/h) for DPSK is shown in Fig.11.33(e).
For  BPSK, we had (refer to Eq. (11.156))

(BPSK)

1

2
b

e

E
P erfc=

h
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But we know that for large values of the argument x, erfc x can be approximated by
2

(for large )

[ ]/( )x

x

erfc x e xp-ª  (11.164)

Hence, for large values of  SNR, Pe for  BPSK can be written as

bE

e

b

e
P

Ep

- hh
ª

/

(BPSK; large SNR) 2
 (11.165)

For large SNRs, i.e., for Pe £ 10–4, the difference in value between the SNR for DPSK and SNR for BPSK, is 
only of the order of 1 dB, that of  DPSK being lower. Thus, DPSK can be viewed as an attractive alternative 
to PSK. However, it suffers from the following two disadvantages:
 1. Since DPSK needs one–bit delay units in its transmitter as well as receiver, the transmission rate for the 

system is fixed.
 2. Since the previous decoded bit is used for decoding the present bit, errors tend to occur in pairs.

The bit energy for non-coherent FSK (CP type) is Eb over a period T. In the case of DPSK, it 

is 2Eb but over a period of 2T. So bit energy over slot time is same. Hence, comparison of Eqs. 

(11.138) and (11.163) reveals that DPSK is 3dB superior to non-coherent FSK.

Example 11.26 A binary DPSK system is to have an average probability of error, 410eP
-£ . If the 

average transmitted power is 150 mW, the channel attenuation is 80 dB and the additive zero-mean white 

Gaussian noise on the channel is having a two-sided  PSD of -h = 15/2 0.5(10 ) W/Hz, find the maximum 
allowable bit rate for transmission.

Solution bE
eP e

- h -= £/ 4

(DPSK)

1
10

2

\ bE
e

h -≥ ¥ =/ 41
10 5000.

2
  Thus, bE

≥
h

8.517

\ 158.517 10 W-secbE
-≥ ¥

Now, average power of the received signal b bE R= ◊
where Rb is the bit rate of transmission of the data.

\ average received power = SR = 158.517 10 bR
-¥ ¥

Since attenuation in the channel = 80 dB = 108 (ratio)

T

R b

S

S R

¥
= = =

¥ ¥

–3
8

–15

Average transmitted power 150 10
10

Average received power 8.517 10

\
3 15 4

4
8

150 10 10 150 10
17.61 10

8.5178.517 10
bR

-¥ ¥ ¥
= = = ¥

¥
 bits/sec

or 4bit-rate 17.61 10 bits/secbR = = ¥

Example 11.27 A binary transmission system with phase modulation is to have Pe £ 10–4. If it is a 
BPSK system with a phase offset of q, find the maximum value of q which will still make the BPSK to 
require less signal energy than DPSK.

Remark
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Solution Pe for BPSK with phase offset q is 
1

cos
2

bE
erfc q

È ˘
Í ˙

hÍ ˙Î ˚
 (Refer to Example 11.22)

/

(DPSK)

/ 4

/ 4

1

2

1 1
cos 10

2 2

1
10 gives / log 5000 8.517

2

8.517 2.918 let cos

b

b

b

E
e

E b

E
b e

b b

P e

E
e erfc

e E

E E
y

q

q

- h

- h

- h -

=

È ˘
= =Í ˙

hÍ ˙Î ˚

= h = =

= = ◊ D
h h

 (Refer to Eq. (11.163))

\

\

Now, 4 41
 10 2 [ 2 ] 2 10

2
erfc y Q y

- -= fi = ¥

\ from the Q-function graph, we get
y = 2.65

Since \ bE
=

h
2.918  and bE

yq◊ = =
h

cos 2.65,

2.65
cos 0.908

2.918
q = = \ 1cos 0.908q -=

Thus, 24.76q = ∞
This is the maximum value of the  phase offset in the BPSK system which will still make BPSK to require less 

signal energy than what is required for DPSK while keeping 410eP
-£ .

11.5  PROBABILITY OF ERROR FOR QPSK

The basic principle, signal space and  signal constellation as well as the methods of generation and detection 
of QPSK signals were all discussed in detail in Section 10.6.3. As mentioned there, in  QPSK, any one of the 
four possible signals which have four equally spaced values p/4, 3p/4, 5p/4, and 7p/4 for the carrier phase, is 
transmitted during each symbol period of t seconds.
 Let r(t) be the received signal. This is one of the four QPSK signals, s1(t), s2(t), s3(t) and s4(t), of course, 
corrupted by zero-mean additive white Gaussian noise having a two-sided power spectral density of h/2. The 
task before the receiver is to correctly identify which one it is

( ) ( ) ( ) ; 0 and 1, 2, 3, 4i wr t s t n t t it= + £ £ =  (11.166)

 Referring to Fig. 10.40, because of the noise component, r(t) will not lie entirely in the signal space 
spanned by f1(t) and f2(t). So, we would like to know in which quadrant of our signal space the orthogonal 
projection of r(t) falls. We ask the receiver to say that the signal transmitted during that symbol time was s1(t)
if the projection of r(t) falls in zone-1, or that it was s2(t) if the projection of r(t) falls in zone-2, and so on.
 So, to determine the zone in which the orthogonal projection of r(t) falls, we determine the coordinates of 
r(t) along f1(t) and f2(t), the basis signals of our signal space.

i w

r r t t r t t r t t dt

s t n t t dt

t

t

t f f f

f

= = =

= +

Ú

Ú

01 1 1 1
0

1
0

( ) coordinate of ( ) along ( ) ( ( ), ( )) ( ) ( )

[ ( ) ( )] ( )
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1cos (2 1)

4
E i w

pÈ ˘- +Í ˙Î ˚

12

E
w= ± +  (11.167)

Similarly coordinates of r(t) along f2(t) 2 02( ( ), ( )) ( )r t t rf t= =

2 2
0 0

2

( ) ( ) [ ( ) ( )] ( )

2

i wr t t dt s t n t t dt

E
w

t t

f f= = +

= +

Ú Ú

m  (11.168)

In Eqs. (11.167) and (11.168), w1 and w2 are zero-mean orthogonal Gaussian random variables and so they 
are uncorrelated and independent. The mean values of random variables 01( )r t  and 02 ( )r t  are therefore 

2

E
±  and 

2

E
m  respectively and they have the same variance, viz. h/2. The ± and m  signs used in the two 

equations should be interpreted according to the coordinate values given for each si(t) along f1(t) and f2(t)
respectively in the last column of Table 10.6.
 Since the receiver is asked to say si(t) if the projection of r(t) falls in zone-1, an error will occur if the 
transmitted signal is si(t) with i = say 1, but the projection of r(t) with coordinates as given by Eqs. (11.167) 
and (11.168) falls in some other zone, other than zone-1 (where it would have fallen but for the noise).
 A look at the QPSK  signal constellation given in Fig. 10.40 and a comparison of it with the BPSK signal 
constellation given in Fig. 11.31 suggests that the QPSK system can be considered to be equivalent to two 
 BPSK systems operating in parallel and having carrier signals which are of the same frequency but inphase 

quadrature. Just as bE  and ,bE-  where Eb is the bit energy of the BPSK system (of Fig. 11.31) were the 

coordinates of the two antipodal signals s2(t) and s1(t) of that system along the carrier of that system, now, in 

Fig.10.40, the /2bE  and /2bE-  along f1(t) axis, can be considered to be the coordinates along f1(t) of 

the antipodal BPSK signal pair generated with the inphase carrier. Similarly, the /2bE  and /2bE-  along 

f2(t) in Fig. 10.40 may be regarded as the coordinates along f2(t) of the antipodal BPSK signal pair generated 
with the quadrature carrier.
 Thus, with reference to the  QPSK signals represented uniquely by the four dibits, the first digit in each 
dibit is related to f1(t) and hence the inphase carrier BPSK system, while the second digit in each dibit is 
related to f2(t), and hence the quadrature carrier BPSK system (see Fig. 10.40).
 From the foregoing, it is clear that the inphase carrier BPSK system as well as the quadrature carrier BPSK 
system have (E/2) as the signal energy per bit. The noise PSD, of course, is the same for each of these BPSK 
systems as it is for the QPSK system and it is h/2. Hence, using the expression for Pe for a BPSK system (Eq. 
(11.156)), the average probability of bit error in each of the two BPSK systems (the inphase and quadrature 
channels of the QPSK system) is

1 /2 1

2 2 2

E E
P erfc erfc

È ˘ È ˘= =¢ Í ˙ Í ˙h hÎ ˚Î ˚
 (11.169)

Since the first digit in any  dibit pertains to the inphase channel and the second to the quadrature channel, 
decoding errors in the two digits are independent. A dibit is therefore correctly decoded only when both the 
inphase and quadrature channels of the receiver decode their respective digits of the dibit correctly. Since 
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the decoding error in the two channels are statistically independent, the average probability of a dibit being 
correctly decoded is

2

2

2

(1 )

1
1

2 2

1
1

2 4 2

CP P

E
erfc

E E
erfc erfc

= - ¢

È ˘È ˘
= -Í ˙Í ˙

hÍ ˙Í ˙Î ˚Î ˚
Ê ˆ Ê ˆ

= - +Á ˜ Á ˜h hË ¯ Ë ¯

Thus, the average  probability of error in a  QPSK system is

2

(1 )

1

2 4 2

e CP P

E E
erfc erfc

= -

Ê ˆ Ê ˆ
= -Á ˜ Á ˜h hË ¯ Ë ¯

For usual values of 
1

,
2 2 2

E E
erfc

Ê ˆ
Á ˜h hË ¯

 itself is very small and so its second power can be ignored to get a 

reasonable approximation for Pe of a QPSK system as

        QPSK
(symbol error rate)

2
e

E
P erfc

Ê ˆ
ª Á ˜hË ¯

 (11.170)

In the above equation, E denotes the symbol energy, which is twice the bit energy Eb. Hence, we may write

        QPSK
(symbolerror rate)

b
e

E
P erfc

Ê ˆ
= Á ˜hË ¯

 (11.171)

or
        QPSK
(Bit-error rate)

1

2
b

e

E
P erfc

Ê ˆ
= Á ˜hË ¯

 (11.172)

Equation (11.172) for QPSK bit-error rate is exactly the same as that for the  bit-error rate of BPSK. So, QPSK 
gives the same bit-error rate (for the same value of Eb /h and same bit rate) as BPSK, but requires only half 
the bandwidth required for BPSK since the symbol duration for QPSK is twice the bit duration of BPSK. That 
is why it is a bandwidth efficient system compared to BPSK. Put in a different way, we can say that for the 
same (Eb /h) and the same bandwidth as BPSK, we can transmit at twice the bit rate using QPSK. It is this 
aspect that has made it so popular and a preferred option over BPSK.

11.6 PROBABILITY OF ERROR FOR  MSK

As usual, we shall assume the channel noise to be zero-mean additive white Gaussian with a two-sided power 
spectral density of h/2. The received signal will be the transmitted MSK signal s(t) plus this noise. Let the 
received signal be r(t). Then

( ) ( ) ( )wr t s t n t= +

where nw(t) is one realization of the white noise on the channel.
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 Now, referring to Fig. 10.50 which shows the  signal space diagram of  MSK and its  signal constellation, 
what the receiver does is, it finds the inphase and quadrature coordinates of this r(t). For this purpose, we take 
the inner product of r(t) with g1(t) and g2(t), the inphase and quadrature basis signals used for drawing the 
signal constellation.

\ 1 1 1

1 1

1 1

( ( ), ( )) ( ) ( )

( ) ( ) ( ) ( )

;

T

T

T T

w
T T

r r t g t r t g t dt

s t g t dt n t g t dt

s n T t T

-

- -

D =

= +

= + - £ £

Ú

Ú Ú

  (11.173)

where s1 is the  inner product of g1(t) with s(t) and as already shown in Eq. (10.112), it is given by

1 cos (0);bs E T t Tf= - £ £  (11.174)

In Eq. (11.173), n, is a zero-mean  Gaussian random variable with a variance which is the same as that of 
nw(t), i.e., h/2.
 In a similar way, the quadrature coordinate of r(t) is

2

2 2 2
0

2 2

2 2
0 0

2 2

( ( ), ( )) ( ) ( )

( ) ( ) ( ) ( )

; 0 2

T

T T

w

r r t g t r t g t dt

s t g t dt n t g t dt

s n t T

D =

= +

= + £ £

Ú

Ú Ú

 (11.175)

where s2 is given by Eq. (11.172) as sin ( ); 0 2bE T t Tf- £ £ , and n2 is a zero-mean Gaussian random 

variable with variance h/2 and is independent of n1.
 If we look at the signal space and the signal constellation of MSK depicted in Fig. 10.49, we find that 
message points m1 and m4 are both having one feature in common, i.e., for both of them f(0) = 0. Similarly 
message points m2 and m3 have a common feature and that is that f(0) = p for both of them. This suggests 
that if the projection of r(t) on the signal space falls in the right half of the two-dimensional signal space of 

the MSK signal, then it means that the receiver chooses the estimate ˆ(0) 0f =  and if it falls in the left half it 

chooses ˆ(0) .f p=  Hence, the receiver’s decision on ˆ(0)f  is as follows
ˆ(0) 0

1

ˆ(0)

0r

f

f p

=

=

>
<

 (11.176)

In a similar way, the Fig. 10.50 tells us that ( ) /2Tf p= -  is the common feature of message points m1 and 

m2; and that ( ) /2Tf p= +  is the common feature of message points m3 and m4. So, if the projection of the 

received signal r(t) on the signal space falls in the upper half of the signal space, i.e., if r2 > 0 then the receiver 

chooses the estimate ˆ( ) /2Tf p= - . On the other hand, if the projection of r(t) onto the signal space falls in 

the lower half of the signal space, i.e., if r2 < 0, then the receiver decides in favor of the estimate ˆ( ) /2.Tf p=

\

ˆ( ) /2

2

ˆ( ) /2

0

T

T

r

f p

f p

= -

=

>
<

 (11.177)
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Hence, the decision regarding the baseband binary digit that is transmitted during 0 t T£ £  is made on the 
following basis:

 (i) If the receiver chooses the estimates ˆ(0) 0f =  and ˆ( ) /2Tf p= - , or alternatively chooses the estimates 
ˆ(0)f p=  and ˆ( ) /2,Tf p=  then it decides that a binary digit 0 was transmitted in the time interval 

0 t T£ £ .

 (ii) If the receiver chooses the estimates ˆ(0)f p=  and ˆ( ) /2,Tf p= -  or alternatively chooses the estimates 
ˆ(0) 0f =  and ˆ( ) /2Tf p= , then it decides that a binary 1 was transmitted during 0 .t T£ £

From the above statements and the  signal-space diagram of Fig. 10.49, it follows that the receiver has to 
decide between the message points m1 and m3 for symbol 1. As shown in the receiver block diagram of Fig. 

10.51, decision regarding the phase estimate ˆ(0),f  i.e., whether it is 0 radians or p radians, is made in the 

I-channel (i.e., the inphase channel), while the decision regarding ˆ( ),Tf  i.e., whether it is /2p+  or /2p- ,

is made in the Q-channel (i.e., the quadrature channel); and these decisions are made alternatively in the two 
channels. An error will be committed by the receiver if it commits a mistake in the decision making either in 
the I-channel or in the Q-channel.
From Eq. (11.173), we have

1 1 1;r s n T t T= + - £ £

where 1 cos (0)bs E f=  and n1 is a zero-mean Gaussian random variable with a variance of h/2. Hence, r1

is a  Gaussian random variable with mean = s1 and variance h/2. Now, the value of s1 depends on whether 

(0) 0 or .f p=  If (0) 0,f = s1 equals bE

and if (0) ,f p= s1 equals .bE-

\
2 2

2 2

( ) /2
1

( ) /2
1

1
( | (0) )

2

1
( | (0) 0)

2

b

b

x E

x E

p r e

p r e

s

s

f p
ps

f
ps

- +

- -

= =

= =

where s = h2 /2.  These conditional probability density functions are shown in Fig. 11.38.

Fig. 11.38 Conditional PDFs of the random variable r1

1eP   = Probability of receiver deciding in favor of (0)f p=  even though r1 > 0.

2eP  = Probability of receiver deciding in favor of (0) 0f =  even though r1 < 0.

But from symmetry, 
1 2e eP P=

2 2
1

1

( ) /2
1

0

1
.

2
br E

eP e dr
s

ps

•
- += Ú
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Putting 1
1

1
,

2  2

br E
y dy dr

s s

+
= =

\
2

1 2
/ 2

1 1 1

2 22
b

y b b
e

E

E E
P e dy erfc erfc

s sp

•
-= = =

hÚ

Assuming [ (0) 0] [ (0) ] 0.5P Pf f p= = = = ,

eP¢  = Probability of erroneous decision in the Q-channel = 1 2 10.5 0.5e e eP P P+ =

1

2
bE

erfc=
h

Proceeding similarly, the probability of an erroneous decision in the Q-channel can also be shown to be the 
same. Now, decision in the two channels are independent. So, probability of an error in either of the channels is

(symbol)

b
e

E
P erfc=

h

Hence  bit-error probability of  MSK is

1

2
b

e

E
P erfc=

h
 (11.178)

This is the same as what we got for  QPSK and binary  PSK.

11.7 PROBABILITY OF ERROR FOR M-ARY BAND PASS SYSTEMS

11.7.1 Pe for M-ary Band Pass Signaling Schemes

Pe for M-ary QAM In Sections 10.8.1 and 10.8.2, we had discussed the basic structure of a  QAM signal. 
There, we had observed that it is made up of two carrier signals of the same carrier frequency, fc , but in phase 
quadrature, which are independently amplitude modulated by discrete amplitudes aks and bks so that the kth
QAM signal, sk(t), could be represented as

0 1 0 2( ) ( ) ( ); 0, 1, 2,…k k ks t a E t b E t kf f= - = ± ±  (11.179)
where

1

2

2
( ) cos 2 ; 0

2
( ) sin 2 ; 0

c

c

t f t t

t f t t

f p t
t

f p t
t

= £ £

= £ £

and E0 is the energy of the signal with the smallest amplitude among all the different signals that can possibly 
be transmitted.
 We know that the M signals appear as M distinct points in the signal space and that these M points constitute 

the signal constellation. For M = 16, this  signal constellation is as shown in Fig. 10.58. If 2 ,M L=  where L is 
a positive integer, this constellation may be viewed as having been generated by taking the Cartesian product 
of the constellation points of the two L-ary  ASK signals, one with F1(t) as the carrier and the other with F2(t)
as the carrier. We will now use this concept that the M-ary QAM system may be viewed as being made up of 
two L-ary ASK systems and derive the probability of error of the  M-ary QAM system by making use of the 
expression for Pe of an L-ary ASK which is the same as that of an L-ary baseband system, and is given by Eq. 
(11.66).
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Noise Performance of Digital Communication Systems 713

 Let ( )LP e  be the probability of error of an L-ary ASK system. Then, ( )LP e  is given by Eq. (11.66) as

1
( ) 2 1

2L

A
P e Q

L s

Ê ˆ Ê ˆ= -Á ˜ Á ˜Ë ¯ Ë ¯

where A is the difference between adjacent levels. But in our case, this is equal to 02 E \ 0/2A E=

Since
1

( ) ,
2 2

x
Q x erfc

Ê ˆ= Á ˜Ë ¯
 we may write

01 1
( ) 2 1 1

2 2
L

EA
P e erfc erfc

L Ms

Ê ˆÊ ˆ Ê ˆ Ê ˆ= - = - Á ˜Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ hË ¯
 (11.180)

since
E EA E

ss s
= = =

h
0 0

222 2 2

We may now write the probability of correct detection in an  M-ary QAM as
2[1 ( )]c LP P e= -  (11.181)

The  probability of symbol error for an M-ary QAM is then given by
2(1 ) 1 [1 ( )]e c LP P P e= - = - -  (11.182)

As PL(e) itself will be small compared to 1, 2 ( )LP e  can comfortably be ignored in comparison with 1. So, we 
may write

01
2 ( ) 2 1e L

E
P P e erfc

M

Ê ˆÊ ˆ= = - Á ˜Á ˜Ë ¯ hË ¯
 (11.183)

All the M signals of an M-ary QAM will not have the same amplitude and so their energies will also be 
different. So, let us find their average energy, Eav, in terms of E0 which we have defined as the energy of the 
QAM signal with the smallest amplitude. This will enable us to conveniently express Pe, the  probability of 
error of QAM in terms of this average energy, Eav. Now, the L amplitudes of the L-ary ASK system with f1(t)
as the carrier, may be written as

0 0 0 01 , 3 ,…, ( 1)ka E E E L E= ± ◊ ± ◊ ± - ◊  (11.184)

Assuming that these L levels are equally likely,

2
0ka E  = Average energy of the L signals of the L-ary ASK system with f1(t) as the carrier

/2 /2
2 2 20

0
1 1

21
2 (2 1) ( ) (2 1)

L L

i i

E
i E i

L L= =

È ˘
= - = -Í ˙

Î ˚
Â Â  (11.185)

Similarly,

2
0kb E  = Average energy of the L signals of the L-ary ASK system with f2(t) as the carrier

/2
20

1

2/2
20 0

av
1

2
(2 1)

2 2( 1)
2 (2 1)

3

L

i

L

i

E
i

L

E L E
E i

L

=

=

= -

È ˘ -
= - =Í ˙

Î ˚

Â

Â

 (11.186)

\

\ 0
av

2( 1)

3

M E
E

-
=  (11.187)
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714 Communication Systems

Using Eq. (11.187) and substituting for E0 in terms of Eav the expression for Pe given in Eq. (11.183),

(M-aryQAM)

31
2 1

2( 1)
av

e

E
P erfc

MM

Ê ˆÊ ˆ= - Á ˜Á ˜Ë ¯ - hË ¯
 (11.188)

For M = 4, Eq. (11.188) reduces to the same expression that we had obtained for  QPSK 

symbol error rate given in Eq. (11.170).

Pe for M-ary FSK M-ary FSK was discussed in detail in Section 10.8.4 of Chapter 10 and it was stated 
there that the upper bound for the symbol error is given by

(symbolerror
M-ary FSK)

1
( 1)

2 2
e

E
P M erfc£ -

h
 (11.189)

where E is the energy of each one of the M-possible signals any one of which may be transmitted during a 
symbol period of t seconds and (h/2) is the two-sided PSD of the white noise on the channel.
 As has been stated there, this upper bound is approached as (E/h) is increased and is almost reached when 
(E/h) is large enough to make Pe £ 10–3. In the case of M = 2, that is for  coherent BFSK, the equality sign 
holds and the RHS of the above equation reduces exactly to that obtained by us for coherent BFSK.

Pe for M-ary PSK  M-ary PSK was discussed in detail earlier in Section 10.8.8 of Chapter 10 and as stated 
there, the  probability of symbol error for M-ary PSK with M ≥ 4 is approximately given by

(symbolerror
M-ary FSK)

sin
2

e

E
P erfc

M

pÈ ˘Ê ˆª Í ˙Á ˜Ë ¯hÍ ˙Î ˚
 (11.190)

where M = 4, the symbol error given by the above expression reduces exactly to the expression for symbol 
error for  QPSK.

E = Symbol Energy = 2Eb where Eb is the bit energy, in the case of QPSK.

Example 11.28 An M-ary PSK system is to operate with 2n symbols over a 100 kHz channel. The bit 
rate is required to be at least 750 kilobits/sec. What minimum CNR is required if the  bit-error probability 
should be equal to or better than Pb = 10–6? Assume ISI free conditions.

Solution The maximum symbol rate under  ISI-free conditions, is

1
MR

t
=  Bandwidth BT

Since channel bandwidth is limited to 100 kHz,
3100 10MR £ ¥  symbols/sec

Minimum value of Rb required = 750 ¥ 103 bits/symbol

Minimum number of bits/symbol = 
3

3

750 10
7.5 bits/symbol

100 10

¥
=

¥

\ for the M-ary PSK, 7.52M ≥

Remark

Note
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Since M must be an integer power of 2, let us take 82M =

\ 82 256M = =
When  Gray coding of bits is used obtain PSK symbols,

 Probability of symbol error = 6
2 2log 10 log 256e bP P M

-= ◊ = ◊

\ 6

(symbolerror)

8 10eP
-= ¥

But, from Eq. (10.136), we know that for  M-ary PSK with 4,M ≥

(symbolerror)

sine

E
P erfc

M

pÈ ˘Ê ˆª Í ˙Á ˜Ë ¯hÍ ˙Î ˚
 where E is the symbol energy

\ 6sin 8 10
E

erfc
M

p -È ˘Ê ˆ = ¥Í ˙Á ˜Ë ¯hÍ ˙Î ˚
. From  error-function tables, we get

E pÈ ˘Ê ˆ =Í ˙Á ˜Ë ¯hÍ ˙Î ˚
sin 3.2

8

\
E

=
h

69.924

Now, 
3

3

2

750 10
93.75 10 symbols/sec

log 8
b

M

R
R

M

¥
= = = ¥

\ E = Symbol duration ¥ Average carrier power

\ s

E E
R

T
◊ = = ◊

h h h

= ¥ ¥ = ¥3 3

1 Average carrier power

69.924 93.75 10 6555.375 10

\ min 10( ) 10 log (6555375) 68.166 dBCNR = =

11.8 COMPARISON OF M-ARY DIGITAL MODULATION SCHEMES

Let the information come from a binary source at a bit rate of Rb bits/sec. Let the M-ary transmission rate be 
RM and the symbol energy be E. Let the bit energy of the signal be Eb. Also let the bits per M-ary symbol be 
represented by n. Then we know that

2logn M=  (11.191)

2log
b b

M

R R
R

n M
= =  (11.192)

2logb

E E
E

n M
= =  (11.193)

Further, if the bit energy to white noise one-sided PSD be

b bEg D h/  (11.194)
then

b

E

n
g =

h
 (11.195)
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In Table 11.2, we compare the various M-ary digital modulation schemes in terms of bandwidth efficiency 

Rb/BT and the Eb/h for a specified Pe, viz., 410eP
-=  which is generally taken as the standard for comparison 

of various digital modulation schemes. Binary modulation schemes are also included therein to enable 
comparison of M-ary and binary systems.

Table 11.2 Comparison of various digital modulation schemes

Bit-error rate Pe is fixed at 
410eP

-=

Type of modulation Type of detection Rb /BT g b in dB

BASK, or BFSK (with fd = Rb/2 for BFSK) Envelope Detection 1 12.3

Binary DPSK Phase comparison with previous bit 1 9.3

BPSK Coherent detection 1 8.4

MSK, QAM (M = 4), QPSK Coherent quadrature detection 2 8.4

M-ary PSK with M = 8 Coherent quadrature detection 3 11.8

M-ary PSK with M = 16 Coherent quadrature detection 4 16.2

M-ary QAM with M = 16 Coherent quadrature detection 4 12.2

 (i) In general, quadrature carrier systems like MSK and QPSK as well as all the M-ary 

band pass systems increase the  bit rate of transmission and the  bandwidth efficiency, 

but they do so at the expense of bit-error probability if transmitter power is fixed, or at 

the expense of transmitter power if Pe is fixed.

 (ii) From Table 11.6, we find that  QPSK,  MSK and  QAM (M = 4) offer the best trade-off 

between bandwidth efficiency and power.

 (iii) Among the  M-ary PSK systems, from the point of view of best trade-off between 

bandwidth efficiency and power, QPSK appears to be the best. It is for this reason that 

it is so popular.

 (iv) M-ary PSK systems with M > 8 require excessively large average powers and so are not 

generally used.

 (v) Insofar as bandwidth efficiency is concerned, M-ary PSK and  M-ary QAM have similar 

performance. However, for M > 4, M-ary QAM requires less average power than M-ary 

PSK for the specified Pe. The reason for this is that for M > 4, they have different signal 

constellations. While the M-ary PSK has a circular constellation, M-ary QAM has a 

rectangular constellation. As M increases, for a circular constellation, the adjacent 

message signal points become nearer to each other for a given radius of the circle 

(which is equal to E ); but in the case of M-ary QAM, for the same average symbol 

energy they need not be that close because of the rectangular shape of the constellation. 

This is an important advantage of M-ary QAM. However, M-ary QAM, just like ASK, 

cannot generally be used in channels with non-linearities.

Remarks
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MATLAB Example 11.1 QAM Simulation   Perform a Monte Carlo simulation of an M = 16-QAM 
communication system. Assume a rectangular signal constellation. Plot the symbol error probability vs 
Eb/No(in dB).

MATLAB Program

%

 % Assumed 16-QAM signal constellation for Monte Carlo simulation is as given 

 % (–3*d 3d) (–d 3*d) (d 3*d) (3*d 3*d)

 % (–3*d d) (–d d) (d d) (3*d d)

 % (–3*d -d) (–d –d) (d –d) (3*d –d)

 % (–3*d - 3*d) (–d –3*d) (d –3*d) (3*d –3*d)

 % Monte Carlo simulations are done for transmission of 10,000 symbols at different 

values of SNR 

 % parameter Eb/No where Eb = Es/4 is the bit energy. 

 % The program calls two functions named P = SM(snr) and Q

 % Assumed SNR range 0-20 in steps of 1 and 0.1

 SNR1 = 0:1:20

 SNR2 = 0:0.1:20;

 M = 16;

 N = 10000

 k = log2(M);

 d = 1;

 % 16-QAM signal constellation for Monte Carlo simulation

 mpg = [–3*d 3*d; 

  – d 3*d;

  d 3*d; 

  3*d 3*d;

  –3*d d; 

  –d d; 

  d d; 

  3*d d; 

  –3*d –d;

  –d –d;

  d –d; 

  3*d –d; 

  –3*d –3*d; 

  –d –3*d; 

  d –3*d; 

  3*d –3*d];

 %

 % Calculation of simulated error rate

 %

 d = 1; % minimum distance between the symbols

 for i = 1:length(SNR1)

  sm_err_prb(i) = SM4(SNR1(i),N,d,M,mpg);

 end;
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718 Communication Systems

 %

 % signal to noise ratio

 %

 for i = 1: length(SNR2);

  snr = exp(SNR2(i)*log(10)/10);

  % Calculation of theoretical error rate

  theory_error_prb(i) = 4*qfunc(sqrt(3*k*snr/(M-1)));

 end

 %

 semilogy(SNR1, sm_err_prb,’*’,SNR2,theory_error_prb’,’b’);

 h = legend(‘Simulation error’,’Theory error’,3)

 xlabel(‘S/N in dB’);

 ylabel(‘Pe Error’);

 title(‘Pe Performance of M=16-QAM system ( Monte Carlo Simulation)’);

 xlim([0 15]);

 ylim([10^-6 1]);

function [p] = SM(Snr,N,d,M,mpg)

% [p] = SM(Snr, N, d)

 % This function finds the probability of error for a given value of snr in

 % dB. Other arguments of the function are N number of symbols, d minimum

 % distance between the symbols; % M is QAM Communication system; % energy % per symbol

 %

 % This function calls another function—gengauss

 %

 Eng_per_syb = 10*d^2; 

 % signal to noise per bit

 snpb = 10^(Snr/10);

 % noise variance

 sigma = sqrt(Eng_per_syb/(8*snpb));

 %

 % Generation of data source

 %

 for i = 1:N;

  temp = rand;  % a uniform RV between 0 and 1

  source(i) = 1+floor(M*temp); % a number between 1 and 16 uniform

 end;

 mapping = mpg;

 for i = 1:N

  qam_sig(i,:) = mapping(source(i),:);

 end

 % received signal

 for i = 1:N

  [n(1) n(2)]= gengauss(sigma);

   r(i,:) = qam_sig(i,:)+n;

 end

 % Error probalility calculation and detection

 Noerrs = 0;
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 for i=1:N

  for j = 1:M

   metrics(j) = (r(i,1) -mapping(j,1))^2+ (r(i,2)-mapping(j,2))^2;

  end;

  [min_metric decis] = min(metrics);

  if (decis~= source(i))

   Noerrs = Noerrs+1;

  end

 end

 p = Noerrs/(N);

function [gv1 gv2] = gengauss(m,sgma)

% [gv1,grv2] = gengauss(m,sgma)

% [gv1,grv2] = gengauss(sgma)

% [v1,gsrv2] = gengauss 

% ‘gengauss’ generates two independent Gaussian random variables with

% mean ‘m’ and standard deviation ‘sgma’. If one of the input arguments is 

% missing it takes the mean as 0. If neither the mean nor the variance is given, it % 

generates two standard Gaussian random variables. 

if nargin == 0

 m = 0; sgma = 1;

elseif nargin == 1

 sgma =m; m=0;

end

u = rand; % uniform random varioable in (0,1)

z = sgma*(sqrt(2*log(1/(1-u)))); % a Rayleigh distributed random variable

u = rand;

gv1 = m+z*cos(2*pi*u);

gv2 = m+z*sin(2*pi*u);

Results

SNR1 = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N =10000

Performance of M = 16-QAM system (Monte carlo simulation)

Simulation result
Theoretical result
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Fig. 11.39
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720 Communication Systems

MATLAB Example 11.2 Simulation of 8-ary PSK system

In this problem, we will study the variation of bit-error rate (BER) with Eb/No for an 8-ary PSK system with 
an  AWGN channel.

Eb is the bit energy and No / 2 is the two-sided  PSD of the AWGN of the channel. 
 Using the BER tool provided in the MATLAB Communication toolbox, we perform  Monte Carlo 
simulation of the system and compare the result with the theoretically calculated one by plotting the two 
together. 

S3

S2

S8

S7

S6

S5

S4

Signal constellation for 8-ary PSK

S1

10
0

10
– 1

10
2–

10
3–

10
4–

10
5–

10
6–

10
7–

10
8–

0 2 4 6 8 10 12 14 16 18

E N
b
/ (dB)0

Eb/N0 vs BER for 8-ary PSK system with AWGN channel

Simulation
Theoretical

B
E

R

Fig. 11.40
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Summary 
 ■ Probability of error: It is the average fractional number of erroneously received symbols when a very large number 

of received symbols are considered.
 ■ Matched filter: It is a filter which is matched to a known signal of duration T sec, and which, when fed with this 

signal corrupted by additive white Gaussian noise, maximizes the output SNR at time t = T.
 ■ H(f) and h(t) of a matched filter:

(matched filter)

(matched filter)

( ) ( )exp( 2 )

( ) ( )

H f kP f j f T

h t kP T t

p*= -

= -

 ■ Integrate-and-dump circuit: Integrate-and-dump type of circuit is the matched filter for a rectangular pulse.

  (a) For Unipolar NRZ
2e

A
P Q

s

È ˘= Í ˙Î ˚

  (b) For polar NRZ e

A
P Q

s

È ˘= Í ˙Î ˚
 ■ ML ( Maximum likelihood) detection rule:

  (a) Decide H1 if 0 1 0 0( | ) ( | )r rp r H p r H>

  (b) Decide H0 if 0 0 0 1( | ) ( | )r rp r H p r H>

     where r0 is the observed random variable.
 ■ MAP ( Maximum a posteriori probability) detection rule:

  (a) Decide in favor of H1 if 
01 1

1 0 1

( | )

( | )
r

r

Pp r H

p r H P
>

  (b) Decide in favor of H0 if 
1 0 1

1 1 0

( | )

( | )
r

r

p r H P

p r H P
>

     where r1 is the value of the observed random variable r(T0).
 ■ Schwarz’s inequality:

2

* 2 2
1 2 1 2( ) ( ) | ( )| | ( )|s t s t dt s t dt s t dt

• • •

-• -• -•

È ˘ È ˘
£ Í ˙ Í ˙

Í ˙ Í ˙Î ˚ Î ˚
Ú Ú Ú

  where the equality sign holds if and only if
*

2 1( ) ( )s t cs t=
 ■ Transfer function of the  optimum filter:

2

opt

( )
( )

( )

j fT

n

P f e
H f k

S f

p* -È ˘
= Í ˙

Î ˚
 ■ Probability of error with matched filter:

  (a) Unipolar signal b
e b

E A T
P Q E

È ˘
= =Í ˙

hÍ ˙Î ˚

2

;
2

  (b) Polar signal b
e b

E
P Q E A T

È ˘
= =Í ˙

hÍ ˙Î ˚

22
;

 ■ Matched filter reception and correlation are equivalent: Performance-wise, there is no difference between the two.
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 ■ M-ary baseband signaling: The baseband pulse will have M-levels (where M is a power of 2) instead of only two 
levels as in binary case.

RM = Transmission rate with M-ary signaling = 
2

1

log
bR

nT M
=

  where n = (symbol duration/time-slot duration).

(a) Bandwidth for M-ary 2( / log )m bW W M=

  (b) Probability of error Pe
(Polar M-ary
Baseband)

1
2 1

2e

A
P Q

M s

Ê ˆ Ê ˆ= -Á ˜ Á ˜Ë ¯ Ë ¯

 ■ Optimum receiver using  MMSE criterion: This is a receiver optimized by using the minimum mean-square error 
criterion and takes care of both channel noise as well as ISI. If q(t) is the pulse at the input to the receiver, Q(f) its 
Fourier transform and if Sq(f) is the PSD of q(t), then the MMSE optimum filter is given by

q

Q f
H f

S f

*

=
+ hopt

(MMSE)

( )
( )

( ) ( /2)

 ■ Noise performance of  ASK,  FSK and  PSK:

(a) ASK av
min

(Coherent ASK)

1

2 2
e

E
P erfc

È ˘
= Í ˙

hÍ ˙Î ˚
; b

e

E
P

È ˘
@ -Í ˙hÎ ˚Non-Coherent

1
exp

2 2

(b) FSK min
(Coherent CPBFSK)

1

2 2
b

e

E
P erfc

È ˘
= Í ˙

hÍ ˙Î ˚
;

b bE E

A T
eP e e e

s s

Ê ˆ
- -Á ˜Ë ¯- h= = =

2 2 2

1

2/4 2

(Non-coherent)

1 1 1

2 2 2

(c) PSK min
(PSK)

1

2
b

e

E
P erfc

È ˘
= Í ˙

hÍ ˙Î ˚
 ■ Comparison of binary ASK, FSK and PSK:

Binary digital

modulation
Type of detection Rb/BT Pb(e)

ASK or
OOK

Non-coherent 1
bEÈ ˘- *Í ˙hÎ ˚

1
exp

2 2

Coherent 1
1

*
2 2

bE
erfc

È ˘
Í ˙

hÍ ˙Î ˚

BFSK

Non-coherent 1 bEÈ ˘
-Í ˙hÎ ˚

1
exp

2 2

Coherent 1
1

2 2
bE

erfc
È ˘
Í ˙

hÍ ˙Î ˚

BPSK Coherent 1
1

2
bE

erfc
È ˘
Í ˙

hÍ ˙Î ˚

  *For these two, 2
av /4bE E A T= =

  (a) For a given bit energy, PSK gives the lowest probability of error.
  (b) Non-coherent ASK and non-coherent FSK give essentially the same performance.
  (c)  For achieving a specified probability of error, ASK requires twice the pulse energy as compared to PSK, i.e., 

it requires 3 dB more power than PSK.
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 ■ Phase offset in a BPSK system:

(BPSK)

1

2
b

e

E
P erfc

È ˘
= Í ˙

hÍ ˙Î ˚
 when there is no phase offset.

(BPSK)

1
cos

2
b

e

E
P erfc q

È ˘
= Í ˙

hÍ ˙Î ˚
 when a phase offset of q is present.

 ■ Discontinuous phase BFSK:

 min
   (BFSK-coherent)
(discontinuous phase)

1
0.6

2
b

e

E
P erfc

È ˘
= Í ˙

hÍ ˙Î ˚

 ■ Pe for  DPSK: b
e

E
P

È ˘= -Í ˙hÎ ˚(DPSK)

1
exp

2

 ■ Pe for  QPSK: 
     (QPSK)
(bit-error rate)

1

2
b

e

E
P erfc

È ˘
= Í ˙

hÍ ˙Î ˚

 ■ Bandwidth and  bandwidth efficiency of QPSK:

3-dB bandwidth of QPSK = BT = 
1

2T
\ bandwidth efficiency = 2

 ■ Bandwidth efficiency and Pe of MSK:

  (a) 
(3-dB)

1

2 2
b

T

R
B

T
= = \ bandwidth efficiency, 2b

T

R

B
=

  (b)  MSK signal’s PSD falls off as the fourth power of |( )|cf f-

  (c) 
(MSK)

1

2
b

e

E
P erfc

È ˘
= Í ˙

hÍ ˙Î ˚
, same as that of QPSK and  BPSK.

 ■ QAM (Quadrature Amplitude Modulation): In this, two carriers in phase quadrature are independently amplitude 
modulated by discrete amplitudes aks and bks.

av

(M-ary QAM)

31
2 1

2( 1)
e

E
P erfc

MM

Ê ˆÊ ˆ
= - Á ˜Á ˜Ë ¯ - hË ¯

  Bandwidth efficiency 2logb

T

R
M

B
=

   Signal space is two-dimensional.

 ■ M-ary FSK:
1

( 1)
2 2

e

E
P M erfc

Ê ˆ
£ - Á ˜hË ¯

  Bandwidth efficiency = 22 log M

M

Ê ˆ
Á ˜Ë ¯

 ■ M-ary PSK:
2 2

( ) cos ( 1)

                                  1, 2, 3, ... ,

k c

E
s t t k

M

k M

p
w

t

È ˘= + -Í ˙Î ˚
=

  Signal space is two-dimensional and all the M message signal points lie on the circumference of a circle with 

center at the origin and radius equal to E  where E is symbol energy.

(M-ary PSK)

sine

E
P erfc

n

pÊ ˆÊ ˆ@ Á ˜Á ˜Ë ¯hË ¯
; r = Bandwidth efficiency = log2 M
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 ■ Comparison of digital band pass signaling schemes:

Type of modulation Type of detection Rb/BT gb in dB

BASK, or  BFSK (with fd = Rb/2 for BFSK) Envelope detection 1 12.3

Binary  DPSK Phase comparison with previous bit 1 9.3

 BPSK Coherent detection 1 8.4

 MSK,  QAM (M = 4),  QPSK Coherent quadrature detection 2 8.4

M-ary PSK with M = 8 Coherent quadrature detection 3 11.8

 M-ary PSK with M = 16 Coherent quadrature detection 4 16.2

 M-ary QAM with M = 16 Coherent quadrature detection 4 12.2
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Review Questions 
1. What is a matched filter?
2. Write down the expressions for the transfer function and the impulse response, of a matched filter for the signal 

p(t) which is of duration T sec.
3. What is an ‘integrate-and-dump’ circuit? Show that it is the matched filter for rectangular pulse of duration T sec.
4. Show that a matched filter receiver and a correlation receiver are equivalents of each other.
5. The received signal (for binary baseband receiver) is r(t) = s(t) + n(t)

  where 
1

0

; 0 if is true
( )

; 0 if is true

A t T H
s t

A t T H

£ £Ï
= Ì- £ £Ó

  and n(t) is zero-mean Gaussian noise of variance 2
ns

 (a) Write down expressions for 
1 0| 1 | 0( | ) and ( | )r H r Hp r H p r H

  where r is the sample of r(t).
 (b) Sketch the two conditional density functions and show the optimum threshold value assuming P1 = P0.
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6. With reference to baseband binary transmission what is an ‘Optimum Linear Receiver’?
7. Draw the block diagram of an optimum linear receiver for binary baseband signaling?
8. Compare the noise performance of BASK, BFSK and BPSK for fixed average transmitted power and identical 

noise environment.
9. For a fixed bit-error probability, Pe, comment on the bandwidth efficiencies and the average transmitted power 

requirements of (a) BPSK, (b) QPSK, (c) 8-ary PSK, and (d) 8-ary QAM.
10. Qualitatively explain why M-ary QAM gives better noise performance than M-ary PSK for M > 8.

Problems 
1. A binary data stream, with polar NRZ line code uses +V volts for binary 1 and –V volts for binary 0. Assuming 

that P(1) = 0.6 and P(0) = 0.4, and that channel noise is AWGN with two-sided spectral density of h/2, determine 
(a) the optimum threshold voltage, and (b) Pe, if an integrate-and-dump type of receiver is used.

2. A signal which takes the values +A, 0 and –A volts for T seconds with equal probability, is transmitted over a 
channel with additive white Gaussian noise of two-sided PSD equal to h/2. An integrate-and-dump type of receiver 
is used. What threshold voltages should be used if the probability of the receiver committing an error is to be 
independent of which signal is transmitted?

3. An integrate-and-dump type of receiver, using an RC-integrator with a 3-dB cut-off frequency of fc, is to detect 
the received signal r(t) = s(t) + nw(t), where s(t) = ± A for an interval of T sec and nw(t) is additive white Gaussian 
noise of two-sided PSD equal to h/2. What should be the value of fc if at the sampling instant, the SNR is to be 
maximum? How does this SNR compare with what would have been obtained if an ideal integrator was sued?

4. Determine the matched filter for the following signal:

/2; 0 /2
( )

/2; /2

A t T
s t

A T t T

+ £ £Ï
= Ì- £ £Ó

  Sketch the matched filter output as a function of time.
5. A baseband binary communication system uses two signals s1(t) and s2(t) corresponding to binary 1 and binary 0 

respectively. s1(t) is same as the s(t) of problem 5 above and s2(t) is given by

2

; 0
( )

0; otherwise

A t T
s t

£ £Ï
= Ì

Ó
  Assuming that s1(t) and s2(t) are equally likely, and that the signals are corrupted by AWGN during transmission 

and further that the receiver uses two matched filters, one matched to s1(t) and the other matched to s2(t), determine 
the probability of error of this communication system.

6. A baseband binary transmission system uses Manchester code for representing binary symbols 1 and 0. If a 1 is 
represented by s(t) and a 0 by –s(t) where

0; 0 /2

( ) 1; /2

0; otherwise

t T

s t T t T

£ £Ï
Ô= - £ £Ì
Ô
Ó

  and if P(1) = P(0) = 0.5, find the probability of error if a maximum likelihood receiver is used. Assume that an 
AWGN channel is employed.

7. A binary baseband long-haul transmission system using polar NRZ signals has 20 repeaters. If the input SNR at 
each repeater is 22 dB, find the probability of error assuming the repeaters to be regenerative. What will be the Pe

if the repeaters are non-regenerative?

8. A pulse 
/2

( )
t T

p t A
T

-Ê ˆ= PÁ ˜Ë ¯  is to be detected in the presence of AWGN. Instead of using a matched filter for 

maximizing the peak signal-to-noise ratio, if we use an ideal LPF of bandwidth B, what is the optimum value of 
B for which the LPF is the best approximation to the matched filter insofar as maximizing the peak SNR? By how 
many decibels is this approximation inferior to the matched filter?
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9. A PCM system with NRZ polar signaling and operating above the threshold, has a probability of error, Pe = 10–6.
If the signaling rate is doubled, what will be new Pe?

10. A baseband binary transmission system transmits the symbols s1(t) and s2(t) at a rate of 10 kbps. If

1

for 0 /2
( )

0 for /2

A t T
s t

T t T

£ £Ï
= Ì £ £Ó

  and 2( ) 0 ; 0s t t T= £ £
  Given that the channel noise at the input to the receiver has an r.m.s. value of 1 mV and that the channel attenuation 

is 35 dB, determine the minimum average signal power that must be transmitted to ensure that 610 .eP
-£

11. FSK need not necessarily use orthogonal signals. Find the frequency shift fd between the two BFSK signal that will 
minimize the bit-error rate for a coherent BFSK system.

12. An optimum receiver for Sunde’s BFSK is implemented in the form of two parallel matched filters, one matched 
to s1(t) and the other to s2(t). A sample of the difference between the outputs of these two matched filters, taken 
at the end of each time slot, is used for decision making. Sketch the amplitude response characteristics of the two 
filters.

13. A channel has 80-dB transmission loss and white noise with two-sided PSD of 0.5 ¥ 10–10 W/Hz. Binary data is 
to be transmitted over this channel at a bit rate of 105 bits/sec. The bit-error rate is not to exceed 10–4. Find the 
transmitted power needed for each of the following types of modulation:

 (a) Non-coherent FSK 
 (b) DPSK
 (c) Coherent BPSK

14. Over a radio channel having a bandwidth of 200 kHz, binary data is to be transmitted at a bit-rate of 600 kbps.
 (a) Which modulation method needs minimum signal energy?

(b) For that modulation method, calculate (Eb / h) for obtaining a bit-error rate of 10–5.
15. By what factor must the symbol energy be changed to keep the probability of error unchanged for the following 

cases.
 (a) For converting a 16-ary QAM into DPSK.
 (b) For converting a 16-ary PSK system into a 16-ary QAM system.

16. Determine the reduction in the transmission bandwidth and the average signal energy of 64 QAM and 16 QAM for 
the same probability of error to be obtained for both.

Multiple-Choice Questions 
 1. The transfer function of the matched filter for a triangular pulse that is symmetrical about t = T/2 is
 (a) a sinc function
 (b) a sine function
 (c) a sinc square function
 (d) a rectangular function
 2. For the same white noise corrupting the two signals shown in Fig. 11.M2, if the maximum SNRs at the outputs of 

the respective matched filters of p(t) and q(t) are to be equal, K should be equal to

 (a) K = 2A (b) 3K A=  (c) 1.5K A=  (d) 2K A=

Fig. M11.2
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 3. For the same signaling speed and with the same white noise corrupting both the signals and with P(0) = P(1), if a 
polar NRZ signal with amplitude A1 and a unipolar NRZ signal with amplitude A2 are to give the same Pe under 
matched filter conditions, A1 and A2 should be related as

 (a) 2 12A A=  (b) 2 12A A=  (c) 2 1A A=  (d) 1 22A A=

 4. Consider polar quarternary baseband transmission with adjacent levels separated by A V and binary unipolar NRZ 
transmission with a binary 1 represented by a pulse of amplitude A and a binary 0 by zero volts. If the probability 
of error in the former case is PeM and in the latter case is PeB, under the same noise conditions for both, the ratio 

( / )eM eBP P  is equal to

 (a) 3/4 (b) 3/2 (c) 3/2 2  (d) 3/8

5. A certain non-coherent BFSK system is giving a bit error probability Pe1. When the average transmitted power is 
increased by n dB, keeping all other things unaltered, the bit-error probability is Pe2. If (Pe2/Pe1) = 2 Pe1, n equal

 (a) 2 dB (b) 3 dB (c) 4 dB (d) 6 dB
6. For a specified average transmitted power, the system that gives the lowest probability of error among the following, 

is
 (a) Non-coherent FSK system  (b) Coherent FSK system
 (c) PSK system   (d) Coherent ASK system

7. The probability of error for a BPSK system is

 (a) 
1

2
bE

erfc
h

 (b) 
21

2
bE

erfc
h

 (c) 
2

bE
erfc

h
 (d) 

1

2 2
bE

erfc
h

  where Eb is the bit energy and h/2 is the two-sided PSD of the white noise on the channel.

8. If there is a phase error of q in a coherent BPSK system, the Pe is

 (a) 
1

cos
2

bE
erfc q

È ˘
Í ˙

hÍ ˙Î ˚
 (b) 

21
cos

2
bE

erfc q
h

 (c) cos
2

bE
erfc q

h
 (d) cos

2
bE

erfc q
h

9. Pe for a DPSK system is

 (a) bEÈ ˘-Í ˙hÎ ˚
exp  (b) bEÈ ˘

-Í ˙
hÎ ˚

exp  (c) bEÈ ˘-Í ˙hÎ ˚

1
exp

2
 (d) bEÈ ˘

Í ˙hÎ ˚

1
exp

2

10. The signal space of a QPSK system has a dimension of
 (a) 1 (b) 3 (c) 4 (d) 2

11. For the same bit-error and channel noise, the Pe of QPSK is the same as that of
 (a) BPSK (b) BFSK Coherent (c) BFSK Non-coherent (d) DPSK

12. In a QPSK signal, the carrier phase can sometimes change by as much as

 (a) 
4

p
±  (b) 

2

p
±  (c) ±p (d) 

3

2

p
±

13. In MSK, the frequency difference between the two signals that can possible be transmitted is

 (a) 
1

4T
 (b) 

1

2T
 (c) 

1

T
 (d) 

2

T

14. In MSK, the phase change in each bit interval is

 (a) or
2 2

p p
+ -  (b) 0 or p (c) or

4 4

p p
+ -  (d) +p or –p

15. The dimension of the signal space of MSK signal is
 (a) 1 (b) 2 (c) M (d) 3

16. In MSK, during the interval –T £ t £ T, the inphase component is
 (a) a full-cycle cosine pulse   (b) a half-cycle sinusoidal pulse
 (c) a half-cycle cosinusoidal pulse (d) a full-cycle sinusoidal pulse
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17. The symbol-error probability of MSK is

 (a) 
1

2
bE

erfc
h

 (b) 
1

2
bE

erfc
h

 (c) 
21

2
bE

erfc
h

 (d) bE
erfc

h

18. The PSD of MSK falls off as the nth power of | f – fc | where n is
 (a) 1 (b) 2 (c) 3 (d) 4

19. In a 16-ary PSK, the symbol rate is 10 kbps. The bit rate is
 (a) 160 kbps (b) 40 kbps (c) 2.5 kbps (d) (10/16) kbps

20. For M-ary PSK systems the best trade-off between bandwidth efficiency and transmitted power is given for a value 
of M equal to

 (a) 2 (b) 4 (c) 8 (d) 16

Key to Multiple-Choice Questions

 1. (c) 2. (b) 3. (a) 4. (b) 5. (b) 6. (c) 7. (a) 8. (b)
 9. (c) 10. (d) 11. (a) 12. (c) 13. (b) 14. (a) 15. (b) 16. (c)
 17. (d) 18. (d) 19. (b) 20. (b)
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INFORMATION THEORY AND 

SOURCE CODING

12
"You see things; and you say “Why?” But I dream things that never were; and I say “Why 

not?”

George Bernard Shaw (1856–1950)
Irish playwright

Communication systems are basically meant to transfer information from one location to another. The broad 
objective of this chapter is therefore to look at communication systems from this perspective.

Learning Objectives

After going through this chapter, students will be able to

 ■ view information as removal of uncertainty, is familiar with the ‘measure’ of information and can 

determine the average rate at which a  Discrete Memory Source (DMS) is giving information,

 ■ understand the need for ‘ source coding’ and can encode the output from a discrete memoryless source 

using  Fano coding,  Huffman coding or  Lempel Ziv coding,

 ■ understand the importance and the implications of Shannon’s  source coding theorem,

 ■ understand the need for  channel coding and the importance and implications of  Shannon’s channel 

coding theorem, and

 ■ relate the concept of ‘ Mutual information’ of a channel to information transfer through the channel 

and understands that Shannon’s  Information capacity theorem sets a fundamental limit on the rate at 

which error-free transmission can be achieved over power-limited,  band-limited Gaussian channels.

12.1 INTRODUCTION

The ultimate goal of any communication system is to transmit, over a channel, the information originating 
from a source in one location, to the destination in another location; and to do this as speedily and as reliably 
as possible. The transmitter connects the source to the channel and the receiver connects the channel to the 
destination. Any given channel has an inherent limitation with regard to the speed of transmission of infor-
mation through it. Further, it introduces noise, which tends to limit the reliability of the transmitted infor-
mation.
 When we ponder over the problem of achieving the ultimate goal of a communication system, as stated 
earlier, several questions of a fundamental nature arise, like what is information? Can we measure it? To 
what extent can we compress it so that it can still be retrieved with very little, or no loss? Are speed and 
reliability of transmission inter-related? If so, what is the maximum rate at which information can be trans-
mitted reliably?
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 Although some work in this direction was done earlier by  Hartley,  Nyquist, etc., it was the pioneering 
work of  Claude E. Shannon of Bell Laboratories in 1948 that could bring all the concepts concerning infor-
mation, its representation and transmission within a rigorous mathematical framework and provide satis-
factory answers to all questions such as those posed earlier. In short, it revealed the fundamental limits 
of communication. His work, and that of a host of researchers all over the world who were spurred by his 
famous papers published in the Bell System Technical Journal (BSTJ) in 1948, ushered in a new branch of 
science, called the ‘ Information Theory’ that provided satisfactory answers to all the questions raised earlier. 
Information theory has found interesting applications in such diverse fields as linguistics, computer science, 
genetics, statistical physics, and communication engineering. Shannon’s famous  source coding theorem 
provides the answer for the question concerning the limit on compression of information while his equally 
famous noisy channel coding theorem provides the answer for the question on the maximum rate at which 
information can be transmitted reliably.
 Information theory deals with communication sources and systems in an abstract way using their mathe-
matical models developed specifically from the point of information generation and its reliable transmission 
rather than in terms of systems, subsystems and their working principles, etc. It has developed a measure of 
information based on probability and models for sources which depict them as generating  discrete random 
processes with finite alphabet and having some well-defined statistical properties.

12.2 INFORMATION MEASURE AND ENTROPY

In this section, we will first briefly discuss what we mean by information and then proceed to define a 
measure for the amount of information. This, we will do in a heuristic manner but our definition of an ‘ infor-
mation measure’ will satisfy all the properties that we intuitively associate with information. Building upon 
these ideas, we will determine the entropy, or the ‘average information’ of a message or a source. But, before 
proceeding further, it is appropriate and useful to distinguish between ‘the amount’ of information and the 
‘value’, or ‘usefulness’ of that information. The ‘amount’ of information is determined by measurements 
carried out according to some well-defined scientific principles whereas, the ‘usefulness’ of that information 
is purely subjective and varies from person to person and is, therefore, out of our purview.
 Information theory proceeds on the premise that removing  uncertainty on any matter is equivalent to 
giving information on that matter. It therefore measures the ‘amount of information’ given by the occurrence 
of an  event in terms of the ‘amount of uncertainty’ removed by its occurrence. Everyone knows that the sun 
rises in the East and there is absolutely no uncertainty about. So, if a message ‘The sun will rise in the East 
tomorrow’ is received, the message has not removed any uncertainty since there was not any, and hence the 
amount of information obtained from it is zero. Now, the ‘amount of uncertainty’ regarding the occurrence of 
an event is related to the ‘probability’ of its occurrence and is in fact, inversely proportional to the probability. 
Smaller the probability of occurrence of an event, larger is the uncertainty associated with its occurrence 
and therefore, larger is the amount of information associated with the occurrence of that event. Also, if the 
probability of occurrence is 1, i.e., if it is a sure, or certain event, like the sun rising in the East, such an event 
has zero information associated with it.
 Thus, we find that the probability of occurrence of an event can be used to measure the information 
associated with the occurrence of that event. But then, we are faced with the question: ‘What function of 
probability’? Can we use (1/p) itself, where p is the probability of that event?’ Let us examine and see whether 
it satisfies the properties that we intuitively associate with information.
 Suppose we make two independent tossings of a coin and both the times the ‘head’ shows up. If p is the 
probability of a ‘head’ showing up in the tossing, the probability of getting head in both the tossings is p2.
The information associated with a ‘head’ showing up, is (1/p). Since the two tossings are independent, we 
intuitively feel that the total information from the two tossings must be equal to the sum of the amount of 
information obtained from each tossing and so it should be (2/p). But since the result of the combined exper-
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iment has a probability of p2, according to our measure of information, the amount of information given by 
the combined experiment is (1/p2). But then 2/p is not in general equal to (1/p2). Thus, (1/p) cannot be used 
as a measure of information.
 What we used in the above argument is not the only property that we intuitively associate with information. 
Let p be the probability of occurrence of an event ‘a’ and I(a) be a function of p that is used as a measure 
of information. As stated earlier, since the value or the usefulness of the information is not our concern, the 
information measure I(a) should depend only on p and not on the nature or usefulness of the event whose 
probability of occurrence, is p. I(a) must satisfy the following conditions also:
 1. I(a) must be a continuous function of p.
 2. I(a) must be a decreasing function of p.
 3. If p = p1 p2 where p1 is the  probability of occurrence of an  event a1 and p2 is the probability of occur-

rence of the event a2 and p is the probability of occurrence of a1 and a2 (i.e., a1 and a2 are  statistically 
independent events), then I(a) must be equal to +1 2[ ( ) ( )]I a I a .

 4. I(a) must be non-negative for 0 £ p £ 1.
 It can be shown that a logarithmic function, log (1/p) is a suitable function to be used as a measure of 
information. This can seen from the fact that since p can take only positive values, the logarithm of (1/p) is a 
continuous function of p and obviously a decreasing function of p. The third condition is also satisfied since

Ê ˆ Ê ˆ Ê ˆ◊ = +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯1 2 1 2

1 1 1 1
log log log

p p p p

The fourth condition, that I(a) must be non-negative is also satisfied by this logarithmic measure, since 
log(1/p) ≥ 0 for 0 £ p £ 1.
 So, we shall hereafter associate an amount of information equal to log (1/p) with the occurrence of an 
event whose probability of occurrence is p.
 Whenever we measure something, there has to be some unit for measurement – like inches, or centimeters 
for length. The unit in which the amount of information is measured, depends on the base used for the 
logarithm. If the base is 2, the units are called ‘ bits’ – a contraction of binary digits, if the base is e, then the 
units are ‘ nits’, and if the base is 10, the units are called  Hartley’s. As a matter of rule, we will always use 
only a base of 2, i.e., units of bits.
 Let us now see what ‘1 bit’ of information represents. Consider the tossing of a fair coin. The probability 
of ‘heads’ is equal to the probability of ‘tails’ and each is 0.5. The information associated with the event of 
‘H’ showing up, i.e., the information associated with a single tossing of a fair coin is

Ê ˆ= =Á ˜Ë ¯2

1
( ) log 1 bit

0.5
I H

In general, ‘one bit’ of information is associated with any binary decision like the above where the probability 
of either result is the same. So, one bit of information is given whenever a choice is made between two equi-

probable events.
 Thus, the information obtained from the occurrence of an event ak with probability of occurrence of pk, is 
given by

Ê ˆ= = -Á ˜Ë ¯2 2

1
( ) log bits log ( ) bitsk k

k

I a p
p

 (12.1)

Example 12.1 Of the two units of information – bit and nit, which is bigger? How are they related?

Solution If p is the probability of occurrence of an event, information associated with the occurrence of 
the event is

- -2log bits or log nitsep p

Example 12.1 Of the two units of information – bit and nit, which is bigger? How are they related?
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But = 2 2log log /loge p p e

\ - = -2 2 2[ log ]bits [ log ]/log nitsp p e

Since >2log 1,e  obviously the nit is a bigger unit and they are related as follows:

= 21 nit log bitse

Example 12.2 Find the information associated with the throwing of a fair die once.

Solution The die has six faces marked 1, 2, …, 5, 6. For a fair die, the probability pi = 1/6 for i = 1, 2, … 6.
\ The information associated with the single throw of a die is

Ê ˆ= - = + =Á ˜Ë ¯

= = =

2 2 2

10 10

1
( ) log ( ) log log 6

1/6

0.77815
(log 6)/(log 2) 2.5852 bits

0.3010

i iI a p

Example 12.3 A book contains 400 pages with 450 words per page. Each word contains on the 
average, 6 symbols chosen at random from an alphabet of size 37 (26 letters, 10 digits from 0 to 9 and a 
blank space). Estimate the storage space in bits needed to store the information contained in the book on 
a compact disk. Assume that there is no statistical correlation between the symbols (including letters) and 
that all the symbols occur with equal probability.

Solution The choice of any one symbol from the alphabet set, when all the symbols occur with equal 
probability gives an amount of information

Ê ˆ= = = = =Á ˜Ë ¯
10

2 2
10

log 371 1.5682
( ) log log 37 5.21

(1/37) log 2 0.3010kI a  bits

The total number of symbols chosen = 400 ¥ 450 ¥ 6 = 1080 k bits
\ the total amount of information contained in the book = 1080 ¥ 103 ¥ 5.21 = 5.6 ¥ 106 bits
Hence, an amount of storage space needed = 5.6 ¥ 106 bits

12.2.1 Sources

Before attempting to define the term entropy and finding an expression for the entropy of a given source, 
let us first see how a source may be conveniently represented or modeled. A source produces signals and as 
signals may be basically continuous time, or discrete time in nature, so are the sources too. The continuous-
time signals like speech signals or video signals are, however, essentially band-limited though not exactly

band limited. This is because the spectra of speech signals have very little power beyond about 4 kHz and 
similarly the spectra of video signals are mostly confined to about 6 MHz. Thus, these signals are, for all 
practical purposes, band limited and so can be recovered from their samples taken at the  Nyquist rate, or 
above that. These information-bearing signals, being band limited, can as well be modeled by the samples of 
band limited random processes, i.e., as  discrete random variables. Since the samples may have a continuum 
of values, we shall restrict our sources to emit discrete random variables Xi which take only a discrete set of 
values, are  statistically independent and are identically distributed. Such sources are generally referred to as 
Discrete Memoryless Sources (DMS), in the sense that they emit discrete-time random processes that take 
only discrete amplitudes, in which all Xis are generated 
independently and with the same distribution. Hence, 
we shall hereafter consider our information sources 
to be Discrete Memoryless Sources (DMS), unless 
otherwise stated.

Example 12.2 Find the information associated with the throwing of a fair die once.

Example 12.3 A book contains 400 pages with 450 words per page. Each word contains on the
average, 6 symbols chosen at random from an alphabet of size 37 (26 letters, 10 digits from 0 to 9 and a
blank space). Estimate the storage space in bits needed to store the information contained in the book on 
a compact disk. Assume that there is no statistical correlation between the symbols (including letters) and
that all the symbols occur with equal probability.

Fig. 12.1 An  information source S
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12.2.2  Entropy

Let us consider an arbitrary signaling interval. Let the source emit the symbol (discrete value) xk with a 
probability pk , k = 0, 1, 2, … , (M – 1), where

-

=
=Â

1

0

1
M

k
k

p  (12.2)

Thus, I(xk), the information produced by the source during that signaling interval, is itself a random variable 
which can take on the finite set of values I(x0), I(x1), …, I(xM – 1) with probabilities p0, p1, p2, …, pM – 1. Since 
there are M discrete values or symbols in the alphabet S of the sources, the  average information given by the 
source per signaling interval, or per symbol is

- -

= =

=

= = -Â Â
1 1

2
0 0

( ) [ ( )]

( ) log

k

M M

k k k k
k k

H S E I x

p I x p p

\
-

=
= - Â

1

2
0

( ) log
M

k k
k

H S p p  (12.3)

This quantity, H(S), which represents the average information per symbol emitted by the DMS with a source 
alphabet S of size M, is called the ‘entropy’ of the source.

H(S) as used here is just a matter of notation and it does not represent a function of S. It should 

be read as ‘entropy of the source S’.

Example 12.4 A binary memoryless source produces the binary symbols 0 and 1 with probabilities p
and (1 – p) respectively. Determine the entropy of this source and sketch the variation of the entropy with 
the value of p.

Solution 
=

= - = - -Â
1

2 0 2 0 1 2 1
0

( ) log log logk k
k

H S p p p p p p

where = = = =0 1( 0) and ( 1)p P X p P X

since = = = = = - = -0 1( 0) , and since ( 1) (1 ), (1 )P X p p p P X p p p

\ = - - = - - - -0 2 0 1 2 1 2 2( ) log log log (1 )log (1 )H S p p p p p p p p

\ = - + - -2 2( ) [ log (1 )log (1 )] bits per symbolH S p p p p  (12.3a)

Example 12.4 A binary memoryless source produces the binary symbols 0 and 1 with probabilities p
and (1 – p) respectively. Determine the entropy of this source and sketch the variation of the entropy with 
the value of p.

Note

Fig. 12.2 H(S) vs. p for a binary memoryless source
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Example 12.5 A source emits one of four symbols with probabilities P0 = 0.4, P1 = 0.3, P2 = 0.2 and 
P3 = 0.1. Find the amount of information gained by observing the source emitting each of these symbols.

(JNTU-K, Nov., 2010)

Solution Let the four symbols be x0 with probability P0, x1 with  probability P1, x2 with probability P2 and 
x3 with probability P3. Then
Information gained by observing the source emitting x0 =

= - = - = = =10
0 2 0 2 2

10

log 2.5
( ) log log 0.4 log 2.5 1.32205 bits

log 2
I x P

Information gained by observing the source emitting x1 =

Ê ˆ= - = =Á ˜Ë ¯1 2 2

1
( ) log 0.3 log 1.73713 bits

0.3
I x

Similarly,

Ê ˆ= - = = =Á ˜Ë ¯2 2 2 2

1
( ) log 0.2 log log 5 2.32215 bits

0.2
I x

and = - = =3 2 2( ) log 0.1 log 10 3.32226 bitsI x

Assuming the symbols to be  statistically independent, the average information gained per symbol 

 = 0.4 ¥ 1.32205 + 0.3 ¥ 1.73713 + 0.2 ¥ 2.32215 + 0.1 ¥ 3.32226

\ H(S) = 1.84661 bits/symbol

Properties of entropy The  entropy H(S) of a  discrete memoryless source is bounded as follows:

20 ( ) logH S M£ £
where M is the size of the alphabet set.

Proof

1. The lower bound says that H(S) is non-negative.

This follows immediately from the fact that
1 1

2 2
0 0

( ) log log (1/ )
M M

k k k k
k k

H S p p p p
- -

= =
= - =Â Â

Since pk is a probability, it is always non-negative, and since pk is less than 1, (1/pk) is greater than 1 and 
therefore log2(1/pk) will be non-negative. Since both pk as well as log2(1/pk) are non-negative for all k, it 
follows that

1

2
0

( ) log (1/ ) 0
M

k k
k

H S p p
-

=
= ≥Â  (12.4)

where the equality sign obviously holds good if and only if either pk = 0 or 1. If pk = 1 for some value of the 
index k, then pk = 0 for all other values of k.

2. H(S) £ log2 M implies that the highest value of the entropy of a  DMS with an alphabet of size M is 

equal to log2 M bits/symbol.

We shall prove this and also find out under what condition H(S) takes this maximum value.
 Let us try to find out for what values of pks the entropy H(S) takes a maximum value. This is a constrained 
optimization problem, since H(S) has to be maximized under the constraint that

1

0

1
M

k
k

p
-

=
=Â  (12.5)

This constrained optimization can be carried out using  Lagrange multiplier method that maximizes the 
expression (Refer to Appendix F)

Example 12.5 A source emits one of four symbols with probabilities P0 = 0.4, P1 = 0.3, P2 = 0.2 and 
P3 = 0.1. Find the amount of information gained by observing the source emitting each of these symbols.

(JNTU-K, Nov., 2010)
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1 1

2
0 0

log 1
M M

k k k
k k

J p p pl
- -

= =

È ˘Ï ¸
= - -Í ˙Ì ˝

Ô ÔÍ ˙Ó ˛Î ˚
Â Â  (12.6)

where l is the Lagrange multiplier, an undetermined constant.
Differentiating J with respect to pj and equating the result to zero, we get the following M equations:

log (1/ln 2) 0j
j

J
p

p
l

∂
= - - - =

∂
 (12.7)

j = 0, 1, 2, …, (M – 1)

Equation (12.7) implies that –log pj and hence pj is a constant for all values of j, i.e., j = 0, 1, 2, . . . , (M – 1). 
If pj = c for all j, then from Eq. (12.5), the constraint equation, it follows that

1
for 0,1, 2, , ( – 1)jp j M

M
= = º  (12.8)

Thus, the maximum value of H(S) is obtained when all the symbols are equally probable. Obviously, this 
maximum value is

1 1

2 2
max 0 0

1/

1

2 2
0

( ) log (1/ ) log (1/ )

1
log log

j

M M

j j
j j

p M

M

j

H S p p M M

M M
M

- -

= ==

-

=

È ˘
= - = -Í ˙

Î ˚

Ê ˆ= + =Á ˜Ë ¯

Â Â

Â

\ the maximum value of H(S) is log2M bits/symbol and this occurs when all the M symbols are equally 
probable.
\ 20 ( ) logH S M£ £  (12.9)

12.2.3 Extended Sources

Suppose a DMS, S, has an alphabet of size M. Instead of individual symbols given out by the source, suppose 
we consider blocks of such symbols, each block consisting of n symbols. Then, we may consider that a new 
source, called the extended source, is emitting such blocks as its symbols. Obviously, the alphabet size for 
the extended source is Mn since there will be that many distinct blocks that can be formed from the alphabet 
of the original source. Since the original source is a discrete memoryless source, its symbols (M in number) 
are statistically independent. If we denote the extended source by Sn, each of its symbols, consisting of n
symbols of the original source, will have a probability that is the product of the probabilities of the n symbols 
of the original source constituting it. The entropy of the source Sn can therefore be expressed to be n times 
the entropy of S.

i.e., n
H S nH S=( ) ( )  (12.10)

Example 12.6 A discrete memoryless source S, has an alphabet {s0, s1} with probabilities P[s0] = p0

= 1/4   and P[s1] = p1 = ¾. Find the entropies of the source S and the extended source S3.

Solution 
 (a) Entropy of the source S

H S p p p p
È ˘= - - = - -Í ˙Î ˚

È ˘
= + = ¥ + Í ˙

Î ˚

0 2 0 1 2 1 2 2

10
2 2

10

1 3
( ) [ log log ] log (1/4) log (3/4)

4 4

log (4/3)1 3 1 3
log 4 log (4/3) 2

4 4 4 4 log 2

Example 12.6 A discrete memoryless source S, has an alphabet {s0, s1} with probabilities P[s0] = p0

= 1/4   and P[s1] = p1 = ¾. Find the entropies of the source S and the extended sourceS S3.
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È ˘= + = +Í ˙Î ˚
1 3 0.12492 1 3

[0.415042] = 0.8112 bits/symbol
2 4 0.3010 2 4

 (b) S3 will have 23 = 8 distinct symbols. If we denote these 8 symbols as x0, x1, x2, x3, …, x7 then

Symbol S3 Composition Probability p[xi] Symbol S3 Composition Probability p[xi]

x0 s0, s0, s0 1/64 x4 s1, s0, s0 3/64

x1 s0, s0, s1 3/64 x5 s1, s1, s0 9/64

x2 s0, s1, s1 9/64 x6 s0, s1, s0 3/64

x3 s1, s1, s1 27/64 x7 s1, s0, s1 9/64

\ entropy of the extended source 
7

3
2

0

[ ] log [ ]i i
i

S P x P x
=

= - Â

2 2 2 2

2 2 2 2

1 1 3 3 9 9 27 27
log log log log

64 64 64 64 64 64 64 64

3 3 9 9 3 3 9 9
log log log log

64 64 64 64 64 64 64 64

2.433 bits/symbol

È Ê ˆ Ê ˆ Ê ˆ Ê ˆ= - + + +Á ˜ Á ˜ Á ˜ Á ˜Í Ë ¯ Ë ¯ Ë ¯ Ë ¯Î
˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ+ + + +Á ˜ Á ˜ Á ˜ Á ˜ ˙Ë ¯ Ë ¯ Ë ¯ Ë ¯ ˚

=
This is exactly three times the entropy of S.

12.3 JOINT AND CONDITIONAL ENTROPIES

1.  Joint entropy: In the last section, we had modeled a  discrete memoryless source as one that emits an 
independent discrete random variable X during each signaling interval, where each of these random variables 
can take a finite set of discrete values x0, x1, x2, …, xM–1 with probabilities p0, p1, p2, …, pM–1, respectively. 
We then defined the entropy of such a source as the average information given by each such  discrete random 
variable, X on the basis of the uncertainty associated with it, since X may take any one of the values x0, x1, x2,
… , xM–1 with the specified probability pi for each xi, i = 0, 1, …, M – 1.
 We shall now extend this concept of entropy to a situation wherein we have more than one random variable. 
Let us consider two random variables X and Y, where, X can take any one of the M possible values x0, x1, x2,
…, xM–1 with probabilities pi, i = 0, 1, …, M – 1 respectively and Y can take any one of the L possible values 
y0, y1, y2, …, yL–1, with probabilities pj, j = 0, 1, 2, …, L – 1, respectively. X and Y may be visualized as being 
produced by two separate sources, which are not necessarily independent. For example, X may be the random 
variable at the input of a noisy channel, while Y may be that at the output of the same channel. Now, let

,( , ) andi j i j i jp x y P x y pD Î = = ˚ =X Y  (12.11)

with i = 0, 1, 2, …, (M – 1)   and j = 0, 1, 2, …, (L – 1)
Thus, with X taking any one of M possible values and Y taking any one of L possible values, our random 
experiment, with the pairs of observed values of X and Y as the outcomes will have a total of ML possible
outcomes. Since the probability of the joint occurrence of the outcomes xi and yj is p(xi, yj), we should have

1 1

0 0

( , ) 1
M L

i j
i j

p x y
- -

= =
=Â Â  (12.12)

Further, the amount of information associated with this joint event of X taking the value xi and Y taking the 
value yj, is

2( , ) ( , ) log ( , )i j i j i jI x y p x y p x y= = = -X Y  (12.13)

Therefore, we may define the joint entropy of these two random variables X and Y as
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1 1

2
0 0

( , ) ( , ) log ( , )
M L

i j i j
i j

H p x y p x y
- -

= =
= - Â ÂX Y  (12.14)

Although only two random variables, X and Y have been considered in the above discussion, we may gener-
alize Eq. (12.14) to the case of N random variables, X1, X2, …, XN and say that their joint entropy is

1 2

1

1 1 1 2 2 1 2
, , ,

( , , , ) ( , , , ) log ( , , , )
N

M

N N N
x x x

H p x x x p x x x
-

º
º = - º ºÂX X X  (12.15a)

From Eq. (12.14), it is clear that ( , ) ( , )H H=X Y Y X  (12.15b)

2.  Conditional entropy: With the random variables X and Y used in our discussion above on joint entropy, 
we shall now define the conditional uncertainty of Y given that X = xi as:

1

2
0

( ) ( | ) log ( | )
L

i j i j i
j

H x p y x p y x
-

=
= = - ÂY |X  (12.16)

where ( | )j ip y x  is the conditional probability of Y taking the value yj given that X has taken the value xi. For 
example, suppose X is a random variable at the input of a noisy channel and can take either of the values x0

= 0 or x1 = 1; and Y is the random variable that corresponds to the output of the channel and can either of 
the values y0 = 0 or y1 = 1. In such a situation, we will be interested in knowing P[Y = 1 when X = x0 = 0], 
i.e., the probability of channel output being a 1 even though its input was a 0, i.e., 1 0( | )p y x . Of course, the 
conditional probability ( | )j ip y x  must satisfy the condition

1

0

( | ) 1
L

j i
j

p y x
-

=
=Â  (12.17)

The average of H(Y|X = xi) given in Eq. (12.16), will therefore give us the conditional entropy of Y given X,
i.e.,

1

0

1 1

2
0 0

( ) ( ) ( )

( ) ( | ) log ( | )

M

i i
i

M L

i j i j i
i j

H p x H x

p x p y x p y x

-

=

- -

= =

D =

È ˘
- Í ˙

Î ˚

Â

Â Â

Y |X Y |X

(12.18)

Making use of the result that the joint probability of xi and yj is

( , ) ( ) ( | )i j i j ip x y p x p y x=  (12.19)
we get

1 1

2
0 0

( ) ( , ) log ( | )
M L

i j j i
i j

H p x y p y x
- -

= =
= Â ÂY |X  (12.20)

where ( )H Y |X  represents the conditional entropy of Y given X.
 We are now in a position to derive an important and useful result that relates the  joint entropy of two 
random variables X and Y with their individual entropies and conditional entropies. This result says

( ) ( ) ( )

( ) ( )

H H H

H H

= +
= +

Y, X X Y |X

Y X |Y

Proof 
M L

i j i j
i j

M L

i j i j i
i j

H , p x y p x y

p x y p x p y x

- -

= =

- -

= =

= -

= -

Â Â

Â Â

1 1

2
0 0

1 1

0 0

( ) ( , ) log ( , )

( , )[log ( ) ( | )]

X Y
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M L M L

i j i i j j i
i j i j

M

i i
i

p x y p x p x y p y x

p x p x H

- - - -

= = = =

-

=

= - -

= - +

Â Â Â Â

Â

1 1 1 1

0 0 0 0

1

0

( , ) log ( ) ( , ) log ( | )

( ) log ( ) ( | )Y X

where ( )H Y |X  is used to represent the conditional entropy and is given by

1 1

0 0

( | ) ( , ) log ( | )
M L

i j j i
i j

H p x y p y x
- -

= =
= - Â ÂY X  (12.21)

\ ( ) ( ) ( )H H H= +X,Y X Y |X

Similarly
H H H

H H H

= + ¸
˝= + ˛

( ) ( ) ( )

( ) ( ) ( )

X,Y X Y | X

X,Y Y X |Y
 (12.22)

If X and Y are statistically independent random variables the above equations reduce to

( ) ( ) ( )H H H= +X,Y X Y  (12.23)

The above equation is fully in tune with what we feel intuitively, viz., that when two sources are totally 
independent, the joint entropy of the two must be equal to the sum of their marginal (or individual) entropies.

Example 12.7 Determine the average information content in bits associated with the tossing of a pair 
dice. Assume that a given pair of numbers is regarded as a distinct symbol regardless of which die shows 
up which number.

Solution As there are 6 faces for each die, there are 36 pairs possible altogether. Each of these can occur 
in two ways if we do not bother about which die has shown up which number.

\ probability of any given pair of numbers = 
1 1 1

2
6 6 18

¥ ¥ =

\ information obtained whenever any pair of numbers shows up = 2 2

1
log log 18

18
- =

Average information = 2

1
18 log 18 bits 4.1703

18
¥ =  bits/ pair of numbers

Example 12.8 A source produces three symbols, A, B and C with the following marginal and condi-
tional probabilities:

j

i p(i) p(j | i) A B C

A 1/4 i A 1/8 1/4 5/8

B 1/4 B 1/2 1/8 3/8

C 1/2 C 3/8 5/8 0

 (a) Assuming that there is no inter-symbol influence, calculate the entropy of the source.
 (b) If index i refers to X and index j refers to Y, determine the conditional entropy ( )H Y |X

Solution 
 (a) When the symbols are emitted independent of each other, i.e., when there is no  inter-symbol influence,

2 2 2

1 1 1 1 1 1
( ) log 4 log 4 log 2 1.5 bits/symbol

4 4 2 2 2 2
H = + + = + + =X

Example 12.7 Determine the average information content in bits associated with the tossing of a pair 
dice. Assume that a given pair of numbers is regarded as a distinct symbol regardless of which die shows
up which number.

Example 12.8 A source produces three symbols, A, B and C with the following marginal and condi-
tional probabilities:

j

i p(i) p(j | i(( ) A B C

A 1/4 i A 1/8 1/4 5/8

B 1/4 B 1/2 1/8 3/8

C 1/2 C 3/8 5/8 0

(a) Assuming that there is no inter-symbol influence, calculate the entropy of the source.
(b) If index i refers to X and indexX j refers to Y, determine the conditional entropy ( )H Y |X
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 (b) When  inter-symbol influence exists with the  conditional probabilities as given in the table on the right-
hand side:

  We know from Eq. (12.21) that the conditional entropy is

   
2 2

2
0 0

( ) ( , ) log ( | )i j j i
i j

H p x y p y x
= =

= - Â ÂY |X

  using the marginal probabilities given in the table on the left-hand side and the conditional probabilities 
in the second table, we have to first calculate the joint probabilities p(xi, yj)s for i = 0, 1, 2,   and j = 0, 
1, 2 using the relation:

   ( , ) ( | ) ( )i j j i ip x y p y x p x=

   p x y p x y p x y

p x y p x y p x y

p x y p x y p x y

= = =

= = =

= = =

0 0 0 1 0 2

1 0 1 1 1 2

2 0 2 1 2 2

1 1 5
( , ) ; ( , ) ; ( , )

32 16 32

1 1 3
( , ) ; ( , ) ; ( , )

8 32 32

3 5
( , ) ; ( , ) ; ( , ) 0

16 16

  \ 2 2 2 2 2

2 2 2

1 1 3 1 1
( | ) log 8 log 2 log 8/3 log 4 log 8

32 8 16 16 32

5 5 3
                   log 8/5 log 8/5 log 8/3 0

16 32 32

H = + + + +

+ + + +

Y X

  \ ( | ) 1.1534 bits/symbolH =Y X

  Alternatively, one may calculate ( )H X,Y  using the joint probabilities and then subtract H(X) from it 
so as to get ( )H Y |X .

  \ 2 2 2 2 2

2 2 2

1 1 5 1 1
( ) log 32 log 16 log 32/5 log 8 log 32

32 16 32 8 32

3 3 5
                   log 32/3 log 16/3 log 16/5 0

32 16 16

H = + + + +

+ + + +

X,Y

  \ ( ) 2.6538H =X,Y . Hence ( | ) ( , ) ( ) 1.1533H H H= - =Y X X Y X  bits/symbol

12.4 SOURCE CODING AND SHANNON’S THEOREM

A discrete source produces symbols. These symbols may have to be represented in such a way that it would 
be possible to transmit them over a given channel. For example, if the channel is a  binary channel, i.e., one 
that accepts binary symbols 0 and 1, the source output, which is in the form of a sequence of source symbols, 
must be converted into a sequence of what are called the ‘ code elements’, which in this case are the binary 
symbols. This process is called ‘encoding’ and the device, or system which performs this encoding is called 
an encoder. The encoder assigns a unique sequence of code elements, called a ‘ codeword’, for representing 
each source symbol.
 The objective of source coding is to remove or reduce the  redundancy in the source output so as to give an 
efficient representation of the message information given by the source by using less number of bits.
 The encoder must do its job efficiently; otherwise, it will be wasting the precious communication resources 
– bandwidth and power. For it to be efficient, it must have prior knowledge of the probability of occurrence 
of each source symbol. It must give the shortest (in terms of the number of code elements used) codeword for 
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Fig. 12.3 Encoding process

the most frequently occurring source symbol and the longest codeword for the least frequent source symbol. 
Even in the early 1830s, long before Shannon’s  information theory came into existence, the genius of  Samuel 
Morse, the inventor of telegraphy, realized the importance of this feature of source coding and had, in his 
famous telegraph code, allotted the shortest symbol, a mere ‘dot’ for the most frequent letter, E, of the English 
alphabet, and the longest symbol, ‘dash dash dot dot’ for the least frequent letter Q. The encoder must also 
ensure that the encoded version is uniquely decipherable so that it will be possible to get back the original 
version (source symbol sequence) unambiguously. Thus, the two basic requirements to be met by any source 
encoder are:
 1. Minimum average length of a codeword for a given set of source alphabet {X} and the source symbol 

probability set {p(xi)}.
 2. Unique decipherability of the encoded sequence.

Definition Codes having the two properties stated above, are called ‘ Optimal codes’.
Before proceeding further we shall examine the meaning of the two requirements stated above in a little more 
detail.

Average length of a code For fast transmission of any message from the source to the destination, it is 
necessary that the average length of a code is as small as possible. The average length n  of a code is defined 
as

1

0

( )
M

i i
i

n n p x
-

=
D Â  (12.24)

where ni is the length of the codeword corresponding to the symbol xi, which occurs with a probability p(xi).

12.4.1 Unique Decipherability of a Coded Sequence

Even though each  codeword may be distinct, sequences of codewords coming out from the encoder may not 
have this property. As an example, let us examine the two codes given in Table 12.1.

Table 12.1

Source Symbols Code A Code B Code C Code D

x0 0 0 0 0 0 

x1 0 1 0 1 0 1 1 0

x2 1 0 0 1 0 0 1 1 1 1 0

x3 1 1 1 1 0 0 1 1 1 1 1 1

Codes A and B both have distinct codewords for the four source symbols. Code A is a simple binary coding 
with all the codewords having equal length. When this code is used, unique  decipherability of a coded 
sequence is guaranteed since the codeword boundaries are fixed and the codewords themselves are distinct. 
However, if the probabilities of occurrence of the four source symbols are not equal, then it may be preferable 
to use a code with codewords of unequal length, the shortest codeword being assigned to the most probable 
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source symbol and the longest  codeword to the least probable source symbol. Code B is such a code. However, 
it does not lead to unique  decipherability since a code sequence like 0 1 0 can be decoded either as x2 or as 
x1 x0.
 It is not difficult to find the reason for the ambiguity arising in the decoding of the encoded sequence. 
The problem is caused because the codeword 0 1 for the source symbol x1 happens to be a ‘ prefix’ for the 
codeword 0 1 0 assigned to the source symbol x2. So, we should avoid a situation wherein one codeword is 
a prefix to another codeword. It may be noted, however, that this is not a necessary condition, as can be seen 
from the fact that code C of the table is uniquely decipherable, although many of the codewords are prefixes 
of other codewords. Unique deciphering of the encoded sequences (using this code) is possible by subdi-
viding the sequence of 0s and 1s to the left of every 0. Thus, the first element of every codeword, viz., ‘0’, 
acts as a sort of a ‘comma’ between one codeword and another. Such codes are referred to as ‘ comma codes’.

Definition Codes in which no codeword is a prefix to another codeword, are called ‘ instantaneous codes’,
or ‘ prefix-free codes’.
Code D of the table is an example of an instantaneous or prefix-free code.
 Since we are interested in codes with minimum average codeword length and having unique decipher-
ability property, i.e., in  optimal codes, we now give, without proof, a useful theorem by  McMillan and 
 Karush.

Theorem 12.1 If for a given source S, a code is optimal among the instantaneous codes, then it is optimal 
among all uniquely decipherable codes.
 From the above theorem, it is clear that we can limit our search for optimal codes only to the set of instan-
taneous codes.

12.4.2 Kraft’s Inequality (also known as  Kraft–McMillan Inequality)

For a code with codewords of unequal lengths, the requirement of unique decipherability places certain 
constraints on its structure, i.e., on its codeword lengths and the number of codewords.  Kraft’s inequality 
spells out this constraint. It states that a necessary and sufficient condition for the existence of an instanta-
neous code having word lengths of n0, n1, n2, …, nM–1 is given by

1

0

1i

M
n

i

D
-

-

=
£Â  (12.25)

where D is the size of the encoder’s alphabet, i.e., the number of symbols comprising the code alphabet 
(usually 2 since binary symbols 0 and 1 are generally used as code elements).
 Conversely, if integers n0, n1, n2, …, nM –1 satisfy the condition in Eq. (12.25), a prefix-free or instanta-
neous code can be found, whose word lengths are given by n0, n1, n2, …, nM – 1.
 We shall now discuss two theorems which fix the lower and upper bounds for the length of the codeword 
of a code in terms of the entropy of the source and the size of the code alphabet.

Theorem 12.2 Given a source with alphabet x0, x1, x2, …, xM– 1 with probabilities p(x0), p(x1), …, p(xM – 1),
the average length of a uniquely decipherable code with alphabet size D satisfies the inequality:

( )

log

H S
n

D
≥  (12.26)

where H(S) is the entropy of the source (information/symbol) D is the size of the code alphabet (generally 2) 
and the base of the logarithm is arbitrary, but generally taken as 2 since information units used are generally 
bits. If D = 2 and the base for the logarithm is taken as 2, 2log 1D = .
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Proof 

1 1

0 0

1 1

0 0

( ) log

( ) log ( ) ( ) log

( ) log ( ) 1
( ) ( )

(since log ( 1)

i i

M M

i i i i
i i

n nM M

i i
i ii i

H S n D

p x p x p x n D

D D
p x p x

p x p x

y y

- -

= =

- -- -

= =

-

= - -

È ˘ È ˘
= £ -Í ˙ Í ˙

Î ˚ Î ˚
£ -

Â Â

Â Â (12.27)

\
1 1 1

0 0 0

( ) log ( ) 1i i

M M M
n n

i
i i i

H S n D D p x D
- - -

- -

= = =

Ï ¸È ˘ È ˘Ô Ô- £ - = -Ì ˝Í ˙ Í ˙
Ô ÔÎ ˚ Î ˚Ó ˛

Â Â Â  (12.28)

Since the code is uniquely  decipherable,  Kraft–McMillan inequality must be satisfied. That is
1

0

1i

M
n

i

D
-

-

=
£Â

\ from Eq. (12.28), we have

( ) log 0H S n D- £  (12.29)
This implies that

( )

log

H S
n

D
≥  (12.30)

 (i) Since log y ( y 1)= -  if and only if y = 1, from Eq. (12.27), it follows that in Eq. 

(12.30), the equality n H(S )/ log D=  holds good, if and only if, in
ip( x ) D

-=  for all i, 

i.e., D iiff log p(x )-  is an integer for all i.

 (ii) Theorem 12.2 tells us that one can have

n D H(S ) Entropy of the source= =log  (12.30a)
  iff

in
ip( x ) D for i 0,1, 2, , (M – 1)

-= = º (12.30b)

Suppose, for convenience, we choose D = 2, i.e., our  prefix-free code uses binary alphabet 0 and 1. Also, 
since we always use ‘ bits’ as units of information, let the base for the logarithm be 2. Then 2log 1D =  and 
so we get from Eq. (12.30a) that

Average number of binary Entropy of the source
( )

digits in a codeword in bits per symbol
n H S

¸ Ï
= = =˝ Ì

˛ Ó
This implies perfect matching between the source and the prefix-free code. Thus, Theorem 12.2 says that it is 

possible to construct a prefix-free code that perfectly matches with the source if and only if ( ) in
ip x D

-=  for 
all i. Noting that p(xi) depends on the nature of the source, the question arises: If an arbitrary source is given 
for which 2– log ( )ip x  is not an integer for all i, (i.e., if condition (12.30b) is not satisfied), how do we match 
the prefix-free code to such a source?
 As we shall see Theorem 12.3, provides an answer to this question.

Theorem 12.3 For a source with alphabet { x0, x1, x2, …, xM– 1} having probabilities { p(x0), p(x1), …, 
p(xM– 1)}, it is possible to construct an  instantaneous code using a code alphabet of size D in such a way that

( )
1

log

H S
n

D
< +  (12.31)

Remarks
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Proof For the source symbol xi, let us choose a codeword of length ni given by

log ( )i D in p x= È- ˘  (12.32)

where zÈ ˘  denotes the smallest integer greater than or equal to z.

But log ( ) implies that

log ( ) ( )i

i D i

n
i D i i

n p x

n p x D p x
-

= È- ˘

≥ - fi £

\
1 1

0 0

( ) 1i

M M
n

i
i i

D p x
- -

-

= =
£ =Â Â  (12.33)

Equation (12.33) means that the code under consideration satisfies  Kraft–McMillan’s inequality (see Eq. 
(12.25)). Hence a prefix-free, or  instantaneous code can be found with its  codewords having lengths n0, n1,
n2, …, nM– 1.
Further,

log ( ) log ( ) 1i D i i D in p x n p x= È- ˘ fi < - +

\
1 1 1

0 0 0

( ) ( ) log ( ) ( )
M M M

i i i D i i
i i i

p x n p x p x p x
- - -

= = =
< - +Â Â Â

i.e.,

( )
1

log

H S
n

D
< +  (12.34)

This specifies the upper bound for ,n  the average length of the codeword while Eq. (12.30) specifies the 
lower bound. Let us now see how we may approach this lower bound for n .
 Till now, we have been considering that each individual symbol of the source S is encoded separately. But 
suppose that we encode each block of N symbols generated by an N th order extension of the original source 
S. Then this  extended source will have an entropy of NH(S) where H(S) is the entropy of the original source S
(see Eq. (12.10)). Further, the average codeword length will now be N n . Therefore, applying Theorems 12.2 
and 12.3 to this N th order extension of the original source,

( ) ( )
1

log log

NH S NH S
N n

D D
£ < +  (12.35)

i.e.,
( ) ( ) 1

log log

H S H S
n

D D N
£ < +  (12.36)

Thus, by increasing N, the block length, i.e., the order of extension, logn D  can be made arbitrarily close to 
H(s), the entropy of the source.

 (i) By making N larger and larger, we are not changing the lower bound on n . We are only 

approaching it more and more closely.

 (ii) Increasing N increases the encoder complexity as well as the size of the buffer required 

for storing the xis.

 (iii) Since D represents the number of code symbols in the code alphabet, log2 D represents 

the number of bits per code symbol, and 2n log D  represents the number of bits of infor-

mation in a codeword of length n ,  the average length of a codeword.

 (iv) If the size of code alphabet, i.e., D = 2 (as in the case of binary codes) and if the base of 

the logarithm, which is arbitrarily, chosen to be 2, then 2log D 1=  and so we may write 

Eq. (12.36) as

H(S ) n H(S )£ < + Œ
  where, Œ = 1/N, can be made arbitrarily small by choosing N very large.

Remarks
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Hence,  Shannon’s source coding theorem is generally stated as follows:

12.4.3 Shannon’s Source Coding Theorem

For a discrete memoryless source with entropy H(S), the minimum value of ,n  the average length of a 
codeword of a perfectly  decipherable code, is bounded by

( ) ( )H S n H S£ < + Œ (12.37)

where Œ can be made arbitrarily small by appropriate coding. 
 In the introduction to source coding, we had stated that the aim of source coding is to represent the infor-
mation from the source in the most economical manner possible, i.e., by using the smallest number of code

elements per source symbol. Shannon’s source coding theorem states that the maximum extent to which 
the source data can be compressed using a code, is limited by the fact that the average length (in bits) of a 

codeword cannot be less than the average information in bits per source symbol, i.e., the entropy H(s) of the 
source. The theorem merely states this bound, but does not tell us how we may design a code that permits us 
to attain that bound. To what extent a given code is able to reach the bound, will therefore tell us how efficient 
the code is.
 The efficiency of a  source code is therefore defined by

min( )
Coding efficiency

Actual of the code

H S n

n

=
D  (12.38)

12.5 SOURCE CODING FOR DISCRETE MEMORYLESS SOURCES

The output of a physical source, in its original form, generally contains lot of redundancy and directly trans-
mitting it as it is, will result in wastage if time, bandwidth and power. The objective of source coding is to 
remove that redundancy and make the data more compact. The ultimate limit for data compaction without 
loss of any information is set, as we have already seen from Shannon’s source coding theorems, by the 
entropy of the source.
 In the following sections, we will discuss a few prefix-free coding schemes for discrete memoryless 
sources, called compact coding schemes, which are suboptimum, in the sense that, they give, on the average, 
longer codewords than the optimum value which is H(S), the entropy of the source. So these codes will be 
uniquely decipherable, but not necessarily optimal.

12.5.1 Shannon–Fano Coding Scheme

This code may be constructed as per the following algorithm:
 1. Write down the message or source symbols in the order of decreasing probabilities.
 2. Draw a line after say the k th symbol such that the total probability of the symbols above the line and 

below the line are approximately equal, i.e., divide the source symbols into two groups of almost equal 
probability. To each symbol above the line, assign a ‘0’ and to each symbol below the line, assign a ‘1’.

 3. Apply step 2 to each of the groups formed and continue the process till all the subgroups have only one 
symbol. When that stage is reached, the coding is complete.

We now illustrate the  Shannon-Fano coding scheme by a few examples.

Example 12.9 A source is producing sequences of independent symbols A, B, C and D with the 
following probabilities: A = 0.5, B = 0.25, C = 0.125 and D = 0.125.

 (a) Devise an unambiguous binary code for the output of this source.
 (b) Compute the coding efficiency of your code.

Example 12.9 A source is producing sequences of independent symbols A, B, C and D with the
following probabilities: A = 0.5, B = 0.25, C = 0.125 and C D = 0.125.
(a) Devise an unambiguous binary code for the output of this source.
(b) Compute the coding efficiency of your code.
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Solution 
 (a) Devising an unambiguous code.

Symbol

xi

Probability

p(xi)

Steps
Symbol code

1 2 3

A 0.5 0 0

B 0.25 1 0 1 0

C 0.125 1 1 0 1 1 0

D 0.125 1 1 1 1 1 1 

 (b)  Source entropy 2 2 2 2( ) 0.5 log 2 0.25 log 4 0.125 log 8 0.125 log 8H S= = + + +
\ ( ) 1.750 bits/symbolH S =

  Average value of codeword length = 
3

0

( )i i
i

n p x n
=

= Â

0.5 1 0.25 2 0.125 3 0.125 3 1.750 bits/symbol= ¥ + ¥ + ¥ + ¥ =

\
1.750

coding efficiency 100 100%
1.750

= ¥ =

One may wonder how this suboptimum coding scheme could give a code with a coding efficiency 

of 100%. The given p(xi)s are such that in
ip( x ) D

-=  for each i. Hence, as stated in point i. 

Remarks under Eq. (12.30), the equality sign holds in Eq. (12.30) and 
H(s)

n H(s)
log D

= =  for 

binary code.

Example 12.10 A source is producing sequences of independent symbols A, B, C, D and E, with the 
following probabilities:

A = 1/2, B = 1/6, C = 1/12, D = 1/6, E = 1/12
 (a) Devise an unambiguous binary code for these symbols.
 (b) Compute the coding efficiency of your code.

Solution 
 (a) 

Symbol

xi

Probability

p(xi)

Steps Symbol

code1 2 3 4

A 1/2 0 0

B 1/6 1 0 1 0

D 1/6 1 1 0 1 1 0

C 1/12 1 1 1 0 1 1 1 0

E 1/12 1 1 1 1 1 1 1 1

 (b) 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1
( ) log log log log log

2 2 6 6 12 12 6 6 12 12

1.9591 bits/symbol

H S
È ˘= - + + + +Í ˙Î ˚

=

Example 12.10 A source is producing sequences of independent symbols A, B, C, D and E, with the
following probabilities:

A = 1/2, B = 1/6, C = 1/12, C D = 1/6, E = 1/12E

(a) Devise an unambiguous binary code for these symbols.
(b) Compute the coding efficiency of your code.

Remark
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1

0

Average length of codeword ( )

1 1 1 1 1
1 2 3 4 4

2 6 6 12 12

1.999 bits/symbol

M

i i
i

n p x n
-

=
= =

= ¥ + ¥ + ¥ + ¥ + ¥

=

Â

  \
( ) 1.9591

coding efficiency 0.9800 98.00%
1.999

H S

n
= = = =

12.5.2 Huffman Coding Scheme

This is yet another compact coding scheme that is suboptimal. The following steps describe this coding 
algorithm:
Step 1: Rearrange the source symbols in the order of decreasing probability.
Step 2: Assign 0 and 1 to the two symbols of lowest probability. This forms stage 1.
Step 3: Combine the last two symbols into one new symbol with probability equal to the sum of the proba-
bilities of the two original symbols. List the probabilities of the original symbols (except the last two) and 
the new symbol in decreasing order.
Step 4: This process adopted in step 3 is to be repeated till we are left with only two symbol statistics (i.e., 
probabilities) to which a 0 and a 1 are assigned. This forms the last stage.
 The code for each original source symbol is then obtained by tracing out the sequence of 0s and 1s which 
we have to go through when we work backwards to arrive at the original source symbol.
 The following examples clearly illustrate the procedure that is to be followed.

Example 12.11 A  discrete memoryless source produces symbols xi, i = 0 to 5 with the following 
probabilities: p(x0) = 0.1; p(x1) = 0.2; p(x2) = 0.15; p(x3) = 0.09; p(x4) = 0.20; p(x5) = 0.26.
Design a Huffman code for the above source. Find the coding efficiency of your code.

Solution 
 (a) We first arrange the source symbols in decreasing order of probability as shown in the following table.
 (b) We club the probabilities of the last two symbols and put their sum 0.19 at the appropriate level in the 

decreasing order of pis in stage 2. Assign 0 to probability 0.1 and 1 to the probability 0.09 in stage 1.
 (c) The two lowest probabilities 0.19 and 0.15 are assigned 0 and 1 respectively and their sum, viz., 0.34 

is taken to the top in stage 3, where it is the highest probability. The rest of the probabilities of stage 2 
are arranged at appropriate places in stage 3.

This process of assigning 0 and 1 to the lowest two probabilities, clubbing them and taking their sum to an 
appropriate level in the next stage, is continued. When we come to stage 5, there are only two probabilities 
and their sum, as is to be expected, is 1. So, these two are assigned 0 and 1 as shown. The process ends there.

Example 12.11 A discrete memoryless source produces symbols xi, i = 0 to 5 with the following
probabilities: p(x0) = 0.1; p(x1) = 0.2; p(x2) = 0.15; p(x3) = 0.09; p(x4) = 0.20; p(x5) = 0.26.
Design a Huffman code for the above source. Find the coding efficiency of your code.
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Now, to find the  codeword for each source symbol, we illustrate for the source symbol x3 which has a proba-
bility of 0.09. Starting at 0.09, trace the path from one stage to the next, till the last stage is reached, noting 
down the 0s and 1s in its path. It runs as 1 – 0 – 0 – 0. Now, reverse this to get the codeword for x3 as 0 0 0 1. 
Proceeding in a similar way, we have

Source Symbol Codeword

x0 0 0 0 0

x1 1 1

x2 0 0 1

x3 0 0 0 1

x4 1 0

x5 0 1

From the given probabilities for the source symbols, the  entropy of the source is

2 2 2 2

2 2

10 10 10 10

10 10 10

1 1 1 1
( ) 0.1 log 0.2 log 0.15 log 0.09 log

0.1 0.2 0.15 0.09

1 1
0.2 log 0.26 log

0.2 0.26

log 10 log 5 log 6.6 log 11
0.1 0.2 0.15 0.09

log 2 log 2 log 2

H S
Ê ˆ Ê ˆ Ê ˆ Ê ˆ= + + +Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ Ê ˆ Ê ˆ
= + + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ 10

10 10

10 10

.1

log 2

log 5 log 3.846
0.2 0.26

log 2 log 2

Ê ˆ
Á ˜Ë ¯

Ê ˆ Ê ˆ
+ +Á ˜ Á ˜Ë ¯ Ë ¯

\ H(S) = 2.4895  bits/symbol

    
5

0

( ) 0.1 4 0.2 2 0.15 3 0.09 4 0.2 2 0.26 2i i
i

n p x n
=

= = ¥ + ¥ + ¥ + ¥ + ¥ + ¥Â

\    2.53 bits/symboln =

\
H S

n
¥ ¥

( ) 2.4895
coding efficiency = 100 = 100 = 98.4%

2.53

Example 12.12 A  discrete memoryless source has the alphabet A, B, C, D, E, F and G with corre-
sponding probabilities {0.08, 0.2, 0.12, 0.15, 0.03, 0.02, 0.4}.

 (a) Devise a  Huffman code for the above source and determine the average length of the codeword.
 (b) Determine the coding efficiency of the Huffman code designed.

Solution 
 (a) The codewords are listed below:

 A – 0 1 0 0;  B – 0 0 0;  C – 0 1 1;  D – 0 0 1;   E – 0 1 0 1 0;  F – 0 1 0 1 1;  G – 1 

  Hence, the average length of a codeword is

       
1

0

( ) 0.08 4 0.2 3 0.12 3 0.15 3 0.03 5 0.02 5 0.4 1 2.38
M

i i
i

n p x n
-

=
= = ¥ + ¥ + ¥ + ¥ + ¥ + ¥ + ¥ =Â

  \ 2.38 bits/symboln =

Example 12.12 A discrete memoryless source has the alphabet A, B, C, D, E, F and G with corre-
sponding probabilities {0.08, 0.2, 0.12, 0.15, 0.03, 0.02, 0.4}.
(a) Devise a Huffman code for the above source and determine the average length of the codeword.
(b) Determine the coding efficiency of the Huffman code designed.
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 (b) H(S) = Entropy of the source 
1

2
0

( ) log ( )
M

i i
i

p x p x
-

=
= - Â

+ + +

+ + +

2 2 2 2

2 2 2

1 1 1 1
= 0.08 log 0.2 log 0.12 log 0.15 log

0.08 0.2 0.12 0.15

1 1 1
          0.03 log 0.02 log 0.4 log

0.03 0.02 0.4
      = 2.31 bits/symbol

  \ coding efficiency 
2.31

100 97.135%
2.38

= ¥ =

Example 12.13 A discrete memoryless source is described by the alphabet { x1, x2, x3, x4, x5, x6} with 
probabilities {1/32, 1/8, 1/2, 1/16, 1/32, 1/4} respectively.

 (a) Design a  Huffman code for the above source and find the average length of the codeword.
 (b) Can you improve the Huffman code designed in part (a) by encoding the second-order extension of the 

source? Give reason(s) for your answer.

Solution
 (a) 

  The codewords are listed below:
 x1: 1 1 1 1 0; x2: 1 1 0; x3: 0; x4: 1 1 1 0; x5: 1 1 1 1 1; x6: 1 0

  Average length of the codeword = 
6

0

( )i i
i

p x n
=
Â

Example 12.13 A discrete memoryless source is described by the alphabet { x1, x2, x3, x4, x5, x6} with
probabilities {1/32, 1/8, 1/2, 1/16, 1/32, 1/4} respectively.
(a) Design a Huffman code for the above source and find the average length of the codeword.
(b) Can you improve the Huffman code designed in part (a) by encoding the second-order extension of the 

source? Give reason(s) for your answer.
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1 4 16 2 1 8
5 3 1 4 5 2

32 32 32 32 32 32
= ¥ + ¥ + ¥ + ¥ + ¥ + ¥

  \ 1.9375 bits/symboln =
 (b) From the given probability values for the various symbols, we find that ( ) 2 , 1, 2, , 6in

ip x i
-= = º

where nis are all integers. From Eq. (12.30), we find that min( )n H S n= = .
As per Shannon’s theorem, it is not possible to reduce the value of n  below the value of the entropy of the 
source. Hence, encoding the second order source, or for that matter, any other method too, cannot reduce n

any further.

Example 12.14 A  discrete memoryless source S, produces the symbols A, B and C with probabilities 
0.4, 0.25 and 0.35, respectively.

 (a) Can the output of this source be compressed so that the average codeword length is 2 bits? Give 
reason(s) for your answer. Devise a  Huffman code for this source and determine its coding efficiency.

 (b) Devise a Huffman code for the second-order extension of this source and find the average length of the 
codeword for this code. What is the coding efficiency?

Solution  Entropy of the source S = 
1

2
0

( ) ( ) log ( )
M

i i
i

H S p x p x
-

=
= - Â

2 2 2

1 1 1
0.4 log 0.25 log 0.35 log 1.55

0.4 0.25 0.35

Ê ˆ Ê ˆ Ê ˆ= + + =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

\ H(S) = 1.55  bits/symbol
 (a) Since H(S) = 1.55 bits/symbol the average number of bits used for representing a symbol cannot be less 

than 1.55. So, it is possible to have 2n <  bits; but it cannot be less than 1.55.

Symbol Stage 1 Stage 2 Symbol Codeword

A 0.4         0.6      0 A 1

C 0.35 0      0.4      1 B 0 1

B 0.25 1 C 0 0

\ average length of the codeword 1 0.4 2 0.35 2 0.25= ¥ + ¥ + ¥
  \ 1.6 bits/codewordn =

1.55
Coding efficiency 96.875%

1.60
= =

 (b) The second-order extension source S2, will have the following alphabet with probabilities as shown 
below.

Symbol Probability Symbol Probability

AA = x1 0.16 AC = x5 0.140

BB = x2 0.0625 BC = x6 0.0825

CC = x3 0.1225 BA = x7 0.100

AB = x4 0.100 CB = x8 0.0875

CA = x9 0.140

Example 12.14 A discrete memoryless source S, produces the symbols A, B and C with probabilities
0.4, 0.25 and 0.35, respectively.
(a) Can the output of this source be compressed so that the average codeword length is 2 bits? Give

reason(s) for your answer. Devise a Huffman code for this source and determine its coding efficiency.
(b) Devise a Huffman code for the second-order extension of this source and find the average length of the

codeword for this code. What is the coding efficiency?
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   Entropy of the second-order source = 2 ¥ Entropy of original source

  \ 2( ) 2 ( ) 2 1.55 3.10 bits/symbolH S H S= = ¥ =

Symbol (xi) Codeword Length (ni)

x1 0 0 0 3

x2 0 0 1 1 4

x3 1 0 0 3

x4 1 0 1 3

x5 0 1 0 3

x6 1 1 1 3

x7 1 1 0 3

x8 0 0 1 0 4

x9 0 1 1 3

Average length of the  codeword = 
9

1

( )i i
i

p x n n
=

=Â

      

3 0.16 4 0.0625 3 0.1225 3 0.100 3 0.14

3 0.0875 3 0.100 4 0.0875 3 0.14

3.15

= ¥ + ¥ + ¥ + ¥ + ¥
+ ¥ + ¥ + ¥ + ¥
=

   3.15n =  bits/codeword (for new symbols)

Since each new symbol is composed of two symbols of the original source, the average length of the new 
codeword is actually 3.15/2 = 1.57 bits ª H(s) per original symbol. Thus, by encoding a second-order source, 
we are almost able to reach the Shannon bound.

3.10
Coding efficiency 0.984 98.4%

3.15
= = =

 Although  Huffman code is an optimal code in the sense that it gives the minimum average codeword 
length for a discrete memoryless source with a given source statistics, it suffers from the following two disad-
vantages in practical applications:
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 1. As it depends heavily on source statistics, an a priori knowledge of the probabilities of occurrence of 
the source symbols is a must.

 2. As most of the sources that we come across in practice are not memoryless, (i.e., the probability of 
occurrence of a symbol is not independent of which symbols have preceded it) and since  Huffman 
coding takes into account only the individual symbol probabilities, use of this coding in practical appli-
cations does not yield good compression.

12.5.3 Lempel–Ziv Source Coding Algorithm

This belongs to a class of coding schemes called the ‘Universal Coding Schemes’, which are not dependent 
upon the source statistics and so is quite popular in practical applications like coding a text. As we are 
aware, in English language there is considerable interdependence of the letters. For example, the conditional 
probability of the letter ‘u’ being the next letter, is very high given that the letter ‘q’ has occurred. Even though 
determination of the probability of occurrence of the letters of English alphabet can be done on the basis of 
relative frequency of their occurrence in a long string of words, determination of their interdependence is not 
that easy. It is in this context that universal coding schemes come in handy.
 The  Lempel–Ziv source coding algorithm proposed in the 1970s by two Israeli scientists,  Abraham Lempel 
and  Jacob Ziv, is, unlike the Huffman and Fano codes, a variable-to-fixed length code and is quite simple and 
widely used in practice for compressing computer files. In this scheme, a sequence of symbols from a source 
are passed into what are called ‘unique phrases’ which are of unequal length and these are then represented 
by  codewords of fixed length. The encoding proceeds as follows.
 The parser maintains a codebook. A 0 and 1 are initially stored, in that order, in this codebook. The parser 
then observes the output sequence from the source, parses it into segments which are shortest possible ‘ subse-

quences’ that have not been observed earlier. These subsequences are stored in the codebook after the initially 
stored 0 and 1, in the order of their occurrence, and a numerical position is assigned to each of these. For 
instance, if the source sequence is given as

0  1  1  0  0  0  1  0  0  1  1  1  1  1  0  1  0 … 

Then the  codebook entries and the progress made in parsing may be shown as

subsequences stored in
0,1

the codebook

¸
˝
˛

 Data yet to be parsed: 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 1 0 
Now the parser encounters a ‘0’ in the data. As a ‘0’ is already stored in the codebook, the parser goes to 
the next digit in the data and finds that the subsequence 0 1 which it has come across is not available in the 
codebook and so enters it there. At this stage, the codebook entries and the data yet to be parsed may be 
shown as

subsequences stored in
0,1, 01

the codebook

¸
˝
˛

 Data yet to be parsed:  1 0 0 0 1 0 0 1 1 1 1 1 0 1 0  0 1 . . .
The parser continues this process till the source sequence is completely parsed. As mentioned earlier, for each 
entry in the codebook, a distinct numerical position is assigned. The codebook entries other than the initially 
stored 0 and 1 are now given compact numerical representation in terms of the numerical position assigned 
to the previously entered subsequences in the following manner:

Numerical position 1 2 3 4 5 6 7 8 9

subsequences stored in
0 1 01 10 00 100 11 111 010

the codebook

¸
˝
˛

CS-Rao_12.indd 751CS-Rao_12.indd   751 1/22/2013 10:20:16 AM1/22/2013   10:20:16 AM



752 Communication Systems

Numeriacl representation of
12 21 11 41 22 72 31

the codebook entries

Binary encoding of the
0011 0100 0010 1000 0101 1111 0110

numerical representation

¸
˝
˛
¸
˝
˛

The numerical representation of the subsequence 0 1 is 12 because 0 1 is a  concatenation of codebook entry 
0 with numerical position 1 and codebook entry 1 with numerical position 2. Similarly 1 0 is the concat-
enation of codebook entry 1 with numerical position 2 and codebook entry 0 with numerical position 1 and so 
subsequence 1 0 is given the numerical representation of 21. Subsequence with three digits, like say 1 0 0 are 
always taken as concatenation of a subsequence with 2 digits (here 1 0) and a subsequence with single digit 
number (here 0). Since the numerical position of subsequence 1 0 is 4 and that of the subsequence 0 is 1, the 
numerical representation of the subsequence 1 0 0 is 41. Similarly, if a subsequence in the codebook is having 
four digits, it is considered as a concatenation of 3-digit subsequence and a single digit subsequence. Thus, 
the last digit of any subsequence has a special significance in that, if we append it to any subsequence other 
than the initially stored 0 and 1, the resulting subsequence is different from any of the previous subsequences. 
It is therefore given a special name, ‘ innovation symbol’. These numerical representations of the various 
codebook entries are then binary encoded in a particular way. Since the first digit of the numerical represen-
tation is going up to 7 in our illustration, we use a three bit binary coding to get a unique representation for the 
first digit of the numerical representation. The second digit of the numerical representation is always a 1 or a 
2 corresponding respectively to the initially stored 0 or 1. Thus, for instance, the numerical representation 41 
is binary encoded as 1 0 0:0; while 72 is binary encoded as 111 : 1. Thus, in this illustration in which the final 
encoded blocks are of four-digit length, the last digit, is the innovation bit while the rest, called the pointer, 
represent what is generally referred to as the ‘root subsequence’. With  Lempel–Ziv coding, the decoding 
process is extremely simple. First, the pointer of each block of the encoded sequence is used for identifying 
the root subsequence. Then the innovation bit, i.e., the last bit of each code block, is appended to it.

Advantages of Lempel–Ziv coding
 1. It uses fixed length coding and is therefore quite well suited for synchronous transmission.
 2. Unlike  Huffman coding, it takes care of even inter-character redundancy and therefore can give better 

compaction of given data. For instance, it has been reported that for a text in English language, the level 
of compaction that can be achieved with Lempel–Ziv algorithm is as much as 55% while with Huffman 
coding it is only about 43%.

Because of these advantages, Lempel–Ziv coding is almost invariably being used nowadays in the place of 
Huffman coding for data compaction.

Example 12.15 Encode the following binary sequence using Lempel–Ziv coding scheme.

 1 1 1 0 1 0 0 1 1 0 0 0 1 0 1 …
Assume that binary symbols 0 and 1 are already there in the codebook.

Solution 

Numerical Position 1 2 3 4 5 6 7 8

 Subsequences in the 
codebook 0 1 11 10 100 110 00 101

Numerical representation
of codebook entries 22 21 41 31 11 42

Binary encoding of the 
numerical representation 0101 0100 1000 0110 0010 1001

Example 12.15 Encode the following binary sequence using Lempel–Ziv coding scheme.

1 1 1 0 1 0 0 1 1 0 0 0 1 0 1 …
Assume that binary symbols 0 and 1 are already there in the codebook.
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12.6 DISCRETE MEMORYLESS CHANNELS (DMCs)

In the earlier sections, we had discussed about  discrete memoryless sources (DMS) and the methods used 
for source coding. There, we had observed that source coding was only for an efficient/economical repre-
sentation of the source output in order to save time, bandwidth and power required in transmitting it over a 
channel. In this section, we will focus our attention on another important aspect of digital data transmission, 
viz., reliability. For this purpose, we shall consider a simple, yet very useful statistical model of a channel, 
called the  Discrete Memoryless Channel (DMC). A DMC is one which has discrete random variables, X and 
Y as its input and output respectively. Random variable X may take any one of the M possible values xi, i = 0, 
1, …, (M – 1) and the random variable Y may take any one of the L possible values, yj, j = 0, 1, 2, …,(L – 1). 
In other words, the input may be any symbol from an alphabet {x0, x1, …, xM–1} and the output may be any 
symbol from an alphabet {y0, y1, …, yL –1}. It is called a Discrete Memoryless Channel because the input and 
output are discrete random variables with a finite set of alphabet for each, and it is memoryless because its 
present output symbol depends only on the present input symbol but not on any of the previous input symbols. 
A diagrammatic representation of a discrete memoryless channel is shown in Fig. 12.4. When the channel is 
given a certain input xi, it emits an output, say yj, with a certain 
probability ( | )j ip y x . Hence, a complete description of a discrete 
memoryless channel comprises specification of its input alphabet 
{x0, x1, …, xM-1}, its output alphabet {y0, y1, …, yL–1} and a set of 
what are called the transitional probabilities ( | ),j ip y x j = 0, 1, …, 
(L-1) and i = 0, 1, …, (M–1). These transitional probabilities, ML

in number, are generally given in the form of an M by L matrix as 
shown. Note that M and L need not be equal. If channel coding is 
done then M < L, but if two input symbols lead to the same output 
symbol (see  binary erasure channel) then M > L. If the channel 
were to be ideal, M = L and yj = xj for every j.

Fig. 12.5 Matrix of transitional probabilities

In the matrix of  transitional probabilities, p(yj|xi) represents the probability of the random variable Y taking 
the value yj given that random variable X has taken the value xi, i.e., the probability of receiving symbol yj

when the symbol xi is transmitted (because of noise in the channel).

i.e., ( | ) | ; 0,1,…, ( 1);  0,1,…, ( – 1)j i j ip y x P y x i M j L= Î = = ˚ = - =Y X  (12.39)

Fig. 12.4  Diagrammatic representation of 

a discrete memoryless channel
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12.6.1 Properties of Transition Matrix/ Channel Matrix

 1. Each row of the  transition matrix corresponds to a particular fixed input symbol to the channel.
 2. Each column of the transition matrix corresponds to a certain fixed channel output symbol.
 3. The sum of the probabilities along any particular row of the transition matrix is equal to one.

i.e.,
1

0

( | ) 1 for all
L

j i
j

p y x i
-

=
=Â  (12.40)

If the input symbol probabilities are known, i.e., if p(xi), i = 0, 1, …, (M – 1) are known, the joint distribution 
p(xi, yj) i = 0, 1, …, (M – 1) and j = 0, 1, …, (L – 1), as well as the marginal distribution p(yj), j = 0, 1, …, 
(L – 1) can be determined as follows:

( , ) ( | ) ( )i j j i ip x y p y x p x=  (12.41)

and
1

0

( ) ( | ) ( ); 0,1,…, ( – 1)
M

j j i i
i

p y p y x p x j L
-

=
= =Â  (12.42)

12.6.2 Binary Symmetric Channel (BMC)

The input as well as the output alphabet size for a binary 
symmetric channel is two. Hence, M = L = 2. It is usually 
represented as shown in Fig. 12.6, when p is used to 
represent the transition probability. Since the channel is 
symmetric, the probability of a transmitted 0 being received 
as a 1 and a transmitted 1 being received as a 0 are equal.
 The transition or channel matrix of a binary symmetric 
channel (BSC) may be written down as

 Transition matrix 
(1 )

(1 )

p p

p p

-È ˘
= Í ˙-Î ˚

P  (12.43)

12.6.3 Binary Erasure Channel (BEC)

The binary erasure channel has an input alphabet 
size of 2 and an output alphabet size of 3. Hence, 
for this channel, M = 2 and L = 3. Sometimes, 
due to noise, it may not be possible to identify 
the output symbol as one or the other of the input 
symbols. In that case, it is erased, i.e., ignored and 
a request is sent to the transmitter to retransmit. 
That is why it is called a binary erasure channel. 
It is generally represented as shown in Fig. 12.7.
The transition, or channel matrix for a BEC is readily seen to be

(1 ) 0

0 (1 )

p p

p p

-È ˘
= Í ˙-Î ˚

P  (12.44)

Example 12.16 A  binary symmetric channel has an error probability p = 0.2. The a priori probabil-
ities of a 0 and 1 at the input are 0.4 and 0.6, respectively. What is the probability of receiving a 1 at the 
receiving end?

Example 12.16 A binary symmetric channel has an error probability p = 0.2. The a priori probabil-
ities of a 0 and 1 at the input are 0.4 and 0.6, respectively. What is the probability of receiving a 1 at the
receiving end?

Fig. 12.6 A  binary symmetric channel

Fig. 12.7 A  binary erasure channel
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Solution 

From Eq. (12.42), we have

1

1
0

1

1 0 0 1 1 1

( ) ( 1) ( | ) ( )

( | ) ( ) ( | ) ( )

j i i
i

j

p y p p y x p x

p y x p x p y x p x

= =

È ˘
= = = Í ˙

Î ˚

= +

ÂY

(12.45)

\ (1) 0.2 0.4 0.8 0.6 0.08 0.48 0.56Yp = ¥ + ¥ = + =
In fact, we could have written down this straight away. A 1 may be observed at the output either when a 1 is 
transmitted, or even when a 0 is transmitted.
\ pY (1) = (Probability of a 1 at the input) ¥ (Probability of this 1 being received as a 1) + (Probability of a 0 
at the input) ¥ (Probability of a 0 being received as a 1)

Equation (12.45) is precisely this only.

YP (1) P(1) P(1|1) P(0) P(1| 0)

0.6 0.8 0.4 0.2 0.56

= ¥ + ¥

= ¥ + ¥ =

12.7 MUTUAL INFORMATION AND CHANNEL CAPACITY

 As usual, let the source have an alphabet of size 
M, i.e., the  random variable X can take one of the M
values {x0, x1, …, xM –1}. Also, let the channel output 
have an alphabet size L, i.e., the random variable Y

can take one of the L possible values {y0, y1, …, yL –1}.
Of course, if the channel were to be ideal, L would be 
equal to M and yj would be equal to xj for all j.
 When the source symbol xi is transmitted, let us say the channel output is the symbol yj. Then there are 
two probabilities with which we are concerned: (i) The  a priori probability p(xi) of xi being transmitted, and 
(ii) The  a posteriori probability ( | )i jp x y . This is the probability of xi having been transmitted, given that 
yj has been received. p(xi) is related to our ‘state of knowledge’ at the destination, before xi is transmitted, 
regarding which symbol from the source alphabet would be transmitted. However, once xi is transmitted and 
yj is received at the destination, our ‘state of knowledge’ at the destination regarding which symbol from 
the alphabet of the source has been transmitted, is represented by the a posteriori probability ( | )i jp x y  of 
xi having been transmitted given that yj has been received. If ( | )i jp x y  is equal to 1 for a particular xi and 
zero for all the other xi, as it should be under ideal conditions, once we observe yj, the uncertainty at the 
destination regarding which source symbol has been transmitted, would be completely removed. But unfor-
tunately, owing to the presence of noise and other channel imperfections, ( | )i jp x y  will not be one for one xi

and zero for the rest. Instead, it will be large (but not equal to one) for some xi and small but not exactly zero 
for the rest. Because of this, the uncertainty at the destination regarding which xi was actually transmitted will 
not be completely removed even after the channel output yj is observed. So, the situation may be described by 

Note

Fig. 12.8  Information transfer from source to 

destination
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saying: There was some  uncertainty at the destination regarding which source symbol would be transmitted 
before the symbol yj was received; but even after receiving it, there is still some uncertainty regarding which 
symbol was transmitted. Of course the uncertainty persisting after receiving yj would be less compared to 
what it was before it was received, indicating that some amount of information has been transferred from the 
source to the destination.
 Now, the amount of information at the destination after receiving the output of the channel, is given by

    2

1
log

( | )i j

I
p x y

È ˘= Í ˙
Î ˚

 (12.46)

and the amount of information at the destination before receiving the symbol yj is given by

     1

1
log

( )i
I

p x

È ˘= Í ˙
Î ˚

Therefore the amount of information transferred when yj is observed is given by

1 2

1 1
log log

( ) ( | )i i j

I I
p x p x y

È ˘ È ˘- = -Í ˙ Í ˙
Î ˚ Î ˚

or
( | )

( , ) log
( )

i j

i j
i

p x y
I x y

p x

È ˘
= Í ˙

Î ˚
 (12.47)

This ( , )i jI x y  represents the difference in the amount of information at the destination after and before the 

reception of the symbol yj consequent to the transmission of the symbol xi, and it is called ‘ Mutual Infor-

mation’ of the channel, between the transmitted symbol xi and the received symbol yj.
 But since the transmitted symbol can be any xi and the received symbol also can be any yj, it is more appro-
priate to talk about the average mutual information, which is the difference between the average information 
given by the source, i.e., its entropy H(X) and the average information at the destination after receiving the 
output. The latter, is given by H(X | Y) using Eq. (12.20) we may write

1 1

0 0

( | ) ( , ) log ( | )
M L

i j i j
i j

H p x y p x y
- -

= =
= - Â ÂX Y

\
1 1

0 0

( | ) ( ){ ( | ) log ( | )}
L M

j i j i j
j i

H p y p x y p x y
- -

= =
= - Â ÂX Y  (12.48)

Note that the RHS of Eq. (12.48) is the average value of I2 (of Eq. (12.46)) when all xis and yjs are considered.
\ average mutual information of the channel is given by

( ; ) ( ) ( | ) in bits/symbolI H H= -X Y X X Y  (12.49)

I(X; Y), the mutual information of the channel represents the average amount of information transferred 
through the channel in bits/symbol.
Similar to Eq. (12.49), we may write

( ; ) ( ) ( | )I H H= -Y X Y Y X  (12.50)

where H(Y) is the  entropy of the channel output and ( | )H Y X  is the  conditional entropy of the channel output 
given the channel input.

12.7.1 Properties of Mutual Information

Property 12.1 The mutual information of a channel is symmetric, i.e.,

( ; ) ( ; )I I=X Y Y X  (12.51a)
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Proof From Eq. (12.22), we have

( , ) ( ) ( | )

( ) ( | )

H H H

H H

= +
= +

X Y Y X Y

X Y X

From the above, it follows that

i.e.,

[ ( ) ( | )] [ ( ) ( | )] 0

( ) ( | ) ( ) ( | )

H H H H

H H H H

- - - =
- = -

X X Y Y Y X

X X Y Y Y X

From Eqs. (12.49) and (12.50), it then follows that

( ; ) ( ; )I I=X Y Y X

Property 12.2 The  mutual information is non-negative, i.e., I(X, Y) ≥ 0

Proof We know I(X; Y) = H(X) – H(X | Y) (from Eq. (12.49))

But
1

2
0

( ) ( ) log ( )
M

i i
i

H p x p x
-

=
= - ÂX

and
1 1

2
0 0

( ) ( , ) log ( | )
M L

i j i j
i j

H p x y p x y
- -

= =
= - Â ÂX |Y

\
1 1 1

2 2
0 0 0

1 1 1 1

2 2
0 0 0 0

( ; ) ( ) log ( ) ( , ) log ( | )

( ) log ( ) ( | ) ( , ) log ( | )

M M L

i i i j i j
i i j

M L M L

i i j i i j i j
i j i j

I p x p x p x y p x y

p x p x p y x p x y p x y

- - -

= = =

- - - -

= = = =

= - +

È ˘
= - +Í ˙

Î ˚

Â Â Â

Â Â Â Â

X Y

That
1

0

( | ) 1
L

j i
j

p y x
-

=
=Â  has been made use of in the above expression.

\
1 1 1 1

2 2
0 0 0 0

( ; ) ( ) ( | ) log ( ) ( , ) log ( | )
M L M L

i j i i i j i j
i j i j

I p x p y x p x p x y p x y
- - - -

= = = =
- = -Â Â Â ÂX Y

Combining the two double summations using the fact that ( ) ( | ) ( , ),i j i i jp x p y x p x y= we get

1 1

2
0 0

1 1

2
0 0

1 1

2
0 0

( )
( ; ) ( , ) log

( | )

( ) ( )
( , ) log

( | ) ( )

( ) ( )
( , ) log

( , )

M L
i

i j
i j i j

M L
i j

i j
i j i j j

M L
i j

i j
i j i j

p x
I p x y

p x y

p x p y
p x y

p x y p y

p x p y
p x y

p x y

- -

= =

- -

= =

- -

= =

È ˘
- = Í ˙

Î ˚
È ˘

= Í ˙
Í ˙Î ˚
È ˘

= Í ˙
Í ˙Î ˚

Â Â

Â Â

Â Â

X Y  (12.51b)

\
1 1

0 0

( ) ( )1
( ; ) ( , ) log

log 2 ( , )

M L
i j

i j e
i je i j

p x p y
I p x y

p x y

- -

= =

Ï ¸È ˘Ô Ô- = Í ˙Ì ˝
Í ˙Ô ÔÎ ˚Ó ˛

Â ÂX Y

 (12.52)

But we know that loge x £ (x – 1)

\
1 1

0 0

( ) ( )1
( ; ) ( , ) 1

log 2 ( , )

M L
i j

i j
i je i j

p x p y
I p x y

p x y

- -

= =

È ˘
- £ -Í ˙

Í ˙Î ˚
Â ÂX Y
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or
1 1

0 0

1
( ; ) { ( ) ( ) ( , )}

log 2

M L

i j i j
i je

I p x p y p x y
- -

= =

È ˘
- £ -Í ˙

Î ˚
Â ÂX Y

But
1 1 1 1

0 0 0 0

( ) ( ) 1 ( , )
M L M L

i j i j
i j i j

p x p y p x y
- - - -

= = = =
= =Â Â Â Â

\ ( ; ) 0I- £X Y

or \ ( ; ) 0I ≥X Y  (12.53)

This implies that even on a noisy channel, by observing the output of the channel, on the average we cannot 
lose any information. At the most, the mutual information may be zero, i.e., we do not gain any information 
by observing the output, and this happens when the input and output symbols of the channel are  statistically 
independent.

Property 12.3 The  mutual information I(X; Y) of a channel is related to the  marginal entropies H(X) and 
H(Y) of the input and output and their joint entropy H(X, Y) as per the following relationship:

I(X; Y) = H(X) + H(Y) – H(X, Y)

Proof We know that

1 1

2
0 0

1 1 1 1

2 2
0 0 0 0

1
( ) ( , ) log

( , )

( ) ( ) 1
( , ) log ( , ) log

( , ) ( ) ( )

M L

i j
i j i j

M L M L
i j

i j i j
i j i ji j i j

H p x y
p x y

p x p y
p x y p x y

p x y p x p y

- -

= =

- - - -

= = = =

È ˘= Í ˙
Î ˚
È ˘ È ˘= +Í ˙ Í ˙
Í ˙Î ˚ Î ˚

Â Â

Â Â Â Â

,X Y

But from Eq. (12.52), the first term is –I(X; Y)

\
1 1

2
0 0

1
( , ) ( ; ) ( , ) log

( ) ( )

M L

i j
i j i j

H I p x y
p x p y

- -

= =

È ˘= - + Í ˙
Î ˚

Â ÂX Y X Y  (12.54)

The second term on the RHS may be rewritten in the following manner:

1 1 1 1 1 1

2 2 2
0 0 0 0 0 0

1 1 1

2 2
0 0 0

1 1 1
( , ) log ( , ) log ( , ) log

( ) ( ) ( ) ( )

1 1
log ( , ) log ( ,

( ) ( )

M L M L M L

i j i j i j
i j i j i ji j i j

M L M

i j i
i j ii j

p x y p x y p x y
p x p y p x p y

p x y p x y
p x p y

- - - - - -

= = = = = =

- - -

= = =

È ˘ È ˘ È ˘= +Í ˙ Í ˙ Í ˙
Î ˚Î ˚ Î ˚

Ï ¸È ˘ È ˘Ô Ô= +Ì ˝Í ˙ Í ˙Ô ÔÎ ˚Ó ˛ Î ˚

Â Â Â Â Â Â

Â Â Â
1

0

)
L

j
j

-

=

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛

Â

But
1 1

0 0

( , ) ( ) and ( , ) ( )
L M

i j i i j j
j i

p x y p x p x y p y
- -

= =
= =Â Â

\ the second term on the RHS of Eq. (12.54) is equal to

1 1

2 2
0 0

1 1
( ) log ( ) log ( ) ( )

( ) ( )

M L

i j
i ji j

p x p y H H
p x p y

- -

= =

È ˘ È ˘+ = +Í ˙ Í ˙
Î ˚ Î ˚

Â Â X Y

\ ( , ) ( ; ) ( ) ( )H I H H= - + +X Y X Y X Y

or ( ; ) ( ) ( ) ( , )I H H H= + -X Y X Y X Y  (12.55)
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The relationship between the various channel entropies is 
diagrammatically depicted in Fig. 12.9. Entropy of the channel 
input, H(X), is shown as the circle on the left, channel output 
entropy, H(Y) is shown as the circle on the right. The common 
area is I(X;Y), the  mutual information.

Example 12.17 Find the mutual information of a  binary 
symmetric channel with a  transition probability of p and an 
a priori probability of occurrence of a binary ‘0’ equal to a.

Solution 
From Eq. (12.52), we have

1 1

2
0 0

( ) ( )
( ; ) ( , ) log

( , )

M L
i j

i j
i j i j

p x p y
I p x y

p x y

- -

= =

È ˘
- = Í ˙

Í ˙Î ˚
Â ÂX Y

      0 0 0 1
0 0 2 0 1 2

0 0 0 1

1 1 1 0
1 1 2 1 0 2

1 1 1 0

( ) ( ) ( ) ( )
( , ) log ( , ) log

( , ) ( , )

( ) ( ) ( ) ( )
( , ) log ( , ) log

( , ) ( , )

p x p y p x p y
p x y p x y

p x y p x y

p x p y p x p y
p x y p x y

p x y p x y

È ˘ È ˘= +Í ˙ Í ˙
Î ˚ Î ˚

È ˘ È ˘+ +Í ˙ Í ˙
Î ˚ Î ˚

(12.56)

Now, from Fig. 12.10, we may determine the various probabilities involved in Eq. (12.56) as follows:

0 0 0 0 0 1 1 1 1 1

0 1 1 0 0 1 0 0 1 1

( , ) ( | ) ( ) (1 ) ; ( , ) ( | ) ( ) (1 )(1 )

( , ) ( | ) ( ) ; ( , ) ( | ) ( ) (1 )

p x y p y x p x p p x y p y x p x p

p x y p y x p x p p x y p y x p x p

a a

a a

= = - = = - -

= = = = -

Further,

0 0 0 0 1 0 1

1 0 1 0 1 1 1

( ) ( ) ( | ) ( ) ( | ) (1 ) (1 )

( ) ( ) ( | ) ( ) ( | ) (1 )(1 )

p y p x p y x p x p y x p p

p y p x p y x p x p y x p p

a a

a a

= + = - + -

= + = + - -
Then, ( ; )I- X Y  is obtained by substituting all the above probabilities into Eq. (12.56).

Example 12.17 Find the mutual information of a binary
symmetric channel with a transition probability of p and an
a priori probability of occurrence of a binary ‘0’ equal to a.

Fig. 12.9 Relationship between H(X), H(Y)

and I(X;Y)

Fig. 12.10

Example 12.18 Given a channel as shown in 
Fig. 12.11, determine 

 (a)  Channel matrix
 (b) P(y1) and P(y2)
 (c) P(x1, y2) and P(x2, y1)

Example 12.18 Given a channel as shown in
Fig. 12.11, determine 
(a) Channel matrix
(b) P(y1) and P(y2)
(c) P(x1, y2) and P(x2, y1)

Fig. 12.11
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Solution 
 (a) The  transition matrix may be written down as

Y

P(yj|xi) y1 y2

X x1 (1 – p) p

x2 q (1 – q)

 \ [P] =  Channel matrix = 
(1 )

(1 )

p p

q q

-È ˘
Í ˙-Î ˚

 (b) 1 1 1 1 2 1 2( ) ( ) ( | ) ( ) ( | )

[ (1 ) (1 ) ]

P y p x p y x p x p y x

p qa a

= +

= - + -

2 1 2 1 2 2 2( ) ( ) ( | ) ( ) ( | )

[ (1 )(1 )]

P y p x p y x p x p y x

p qa a

= +

= + - -

 (c) 1 2 2 1 1

2 1 1 2 2

( , ) ( | ) ( )

( , ) ( | ) ( ) (1 )

P x y p y x p x p

P x y p y x p x q

a

a

= =

= = -

Example 12.19 Show that the  conditional entropy H(X | Y) = 0 for a lossless channel.

A  lossless channel is one which has only one non-zero element in each column of the channel 

matrix.

Solution From Eq. (12.48), we know that

1 1

2
0 0

( ) ( ) ( | ) log ( | )
L M

j i j i j
j i

H p y p x y p x y
- -

= =
= - Â ÂX Y|

From the properties of a channel matrix, we know that the sum of all the elements in each row must be equal 
to one. Also, since there will be only one non-zero element in each column of a lossless channel, and since 
each column in a channel matrix corresponds to one particular output symbol, it follows that each input 
symbol will be giving one distinct output symbol. Thus, each of the  conditional probabilities appearing in the 
expression for H(X | Y) will be either 1 or 0.
 This means that H(X | Y) will be zero for a lossless channel.

Example 12.20 Find the overall channel matrix if two channels are connected in cascade. Assume 
each channel to be the one given in Example 12.18.

Solution 

Fig. 12.12

Example 12.19 Show that the conditional entropy H(X |X Y) = 0 for a lossless channel.

Example 12.20 Find the overall channel matrix if two channels are connected in cascade. Assume
each channel to be the one given in Example 12.18.

Note
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The transition matrix, or the channel (1 )
[ ] [ ( | )]

matrix of the single channel (1 )

p p
P P

q q

-¸ È ˘
= = =˝ Í ˙-Î ˚˛

Y X

\ 0 1 0 1

(1 )
[ ( )] [ ( ) ( )] [ ( ) ( )] 

(1 )

p p
P p y p y p x p x

q q

-È ˘
= = Í ˙-Î ˚

Y

But
p p

P p z p z p y p y
q q

-È ˘
= = Í ˙-Î ˚

0 1 0 1

(1 )
[ ( )] [ ( )    ( )] [ ( )    ( )]  

(1 )
Z

Combining the two equations, we get

0 1 0 1

(1 ) (1 )
[ ( ) ( )] [ ( ) ( )]

(1 ) (1 )

p p p p
p z p z p x p x

q q q q

- -È ˘ È ˘
= Í ˙ Í ˙- -Î ˚ Î ˚

\
2

0 1 0 1 2

(1 ) (1 ) (1 )
[ ( ) ( )] [ ( ) ( )]

(1 ) (1 ) (1 )

p pq p p p q
p z p z p x p x

q p q q pq q

È ˘- + - + -
= Í ˙

- + - + -Í ˙Î ˚
Hence, [P(Z | X)] =  Transition matrix of the overall channel

2 2

2 2

(1 2 ) (2 )

(2 ) (1 2 )

p p pq p p pq

q q pq q q pq

È ˘+ - + - -
= Í ˙

- - + - +Í ˙Î ˚
12.7.2 Channel Capacity

From Eq. (12.51a), we have

   
1 1

2
0 0

( | )
( ) ( , ) log

( )

M L
i j

i j
i j i

p x y
I p x y

p x

- -

= =

È ˘
= Í ˙

Î ˚
Â ÂX Y;

But ( , ) ( | ) ( ) ( | ) ( )i j j i i i j jp x y p y x p x p x y p y= =

\
( | ) ( | )

( ) ( )

i j j i

i j

p x y p y x

p x p y
=

\   
1 1

2
0 0

( | )
( ) ( , ) log

( )

M L
j i

i j
i j j

p y x
I p x y

p y

- -

= =

È ˘
= Í ˙

Í ˙Î ˚
Â ÂX Y;

But ( , ) ( | ) ( )i j j i ip x y p y x p x=

and     
1 1

0 0

( ) ( , ) ( | ) ( )
M M

j i j j i i
i i

p y p x y p y x p x
- -

= =
= =Â Â

\   
1 1

2 1
0 0

0

( | )
( ) ( | ) ( ) log

( | ) ( )

M L
j i

j i i M
i j

j i i
i

p y x
I p y x p x

p y x p x

- -

-
= =

=

È ˘
= Í ˙

Í ˙
Í ˙Î ˚

Â Â
Â

X Y;

From the above equation, it is clear that in order to determine the  mutual information, one has to know the 
 transition probabilities ( | )j ip y x  for all i and j and also the p(xi)s for all i – the probability distribution of the 
input symbols. For a given channel, the transition probabilities are all fixed. Hence, for a given channel, if we 
want to maximize the mutual information, i.e., maximize the information per symbol, on the average, trans-
ferred from the input to output of the channel, we need to maximize I(X; Y ) with respect to the probability 
distribution for the input symbols. The maximum value so obtained, of the  mutual information of a given 
channel is called the capacity of the channel. Thus,  channel capacity is defined as
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Channel Capacity = Cs = 
{ ( )}
max ( )

ip x
I X Y;  in bits/symbol (12.57)

and it represents the maximum average information that can be transferred per symbol over the channel.
 Although the mutual information, I(X; Y) depends on the input symbol probability distribution, i.e., p(xi)s,
as well as the transition probabilities which define the channel, the channel capacity Cs, however, depends 
only on the channel (i.e., the transition probabilities) and is independent of the probability distribution of the 
input symbols.
 Since the maximization is with respect to all possible input symbol probability distributions, and since 
p(xi)s must always satisfy the following two conditions whatever may be the distribution, determination of 
the channel capacity involves a constrained optimization, the two constraints being 

p(xi) ≥ 0 for all i

and ( ) 1i
i

p x =Â

Thus, except in certain very simple cases, determination of the channel capacity of a given channel is not an 
easy task.

Channel Capacity in bits/second = C = 
i

s
{p(x )}

R max I( )◊ X;Y  (12.58)

where Rs is the transmission rate in symbols/sec.

Example 12.21 Determine I(X ;Y), the mutual infor-
mation of a binary symmetric channel assuming p(x0) = p(x1)
= 0.5.

Solution  In a binary symmetric channel, p = q = 0.5 as 
shown in Fig. 12.13.
Refer to Example 12.17. Substituting p = q = 0.5 and a = 0.5 in 
the results obtained therein, we have

0 0 0 1 1 0 1 1( , ) ( , ) ( , ) ( , ) 0.25p x y p x y p x y p x y= = = =

Also,     0 1( ) ( ) 0.5p y p y= =
1 1

2
0 0

0 0 0 1
0 0 2 0 1 2

0 0 0 1

1 1 1 0
1 1 2 1 0 2

1 1 1

( ) ( )
( ; ) ( , ) log

( , )

( ) ( ) ( ) ( )
( , ) log ( , ) log

( , ) ( , )

( ) ( ) ( ) ( )
( , ) log ( , ) log

( , ) ( ,

M L
i j

i j
i j i j

p x p y
I p x y

p x y

p x p y p x p y
p x y p x y

p x y p x y

p x p y p x p y
p x y p x y

p x y p x y

- -

= =

È ˘
- = Í ˙

Í ˙Î ˚
È ˘ È ˘

= +Í ˙ Í ˙
Î ˚ Î ˚
È ˘

+ +Í ˙
Î ˚

Â ÂX Y

0)

È ˘
Í ˙
Î ˚

Substituting for ( ), ( ) and ( , )i j i jp x p y p x y  in the above, we find that

2 2 2 2( ; ) 0.25 log 1 0.25 log 1 0.25 log 1 0.25 log 1 0I- = + + + =X Y

\ ( ; ) 0I =X Y

This result is to be expected since in this case,

0 0 1 0 0 1 1 1( | ) ( | ) 0.5 and ( | ) ( | ) 0.5p y x p y x p y x p y x= = = =
This means that irrespective of which symbol is transmitted, the probability of receiving y0 and y1 are same, 
each equal to 0.5.

Example 12.21 Determine I(X ;Y), the mutual infor-
mation of a binary symmetric channel assuming p(x0) = p(x1)
= 0.5.

Note

Fig. 12.13 A  binary symmetric channel
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In such a situation, transmission of symbols through the channel is absolutely of no use, since the output 
symbol can as well be determined each time by flipping a coin.

Example 12.22 For a binary symmetric channel, show that

2 2( ; ) ( ) log (1 ) log (1 )I H p p p p= + + - -X Y Y

Solution  We know that ( ; ) ( ) ( )I H H= -X Y Y Y X|  so it 
would suffice if we show that in the case of a BSC,

2 2( ) [ log (1 ) log (1 )]H p p p p= - + - -Y X|

We know that

1 1

2
0 0

– ( ) ( , ) log [ ( | )]
M L

i j j i
i j

H p x y p y x
- -

= =
= Â ÂX Y|

Setting M = L = 2 and expanding, we get

0 0 2 0 0 0 1 2 0 1

1 0 2 1 0 1 1 2 1 1

0 0 0 2 0 0 1 0 1 2 0 1

0 1 0 2 1 0 1 1 1 2 1 1

– ( ) ( , ) log ( | ) ( , ) log ( | )

( , ) log ( | ) ( , ) log ( | )

( ) ( | ) log ( | ) ( ) ( | ) log ( | )

( ) ( | ) log ( | ) ( ) ( | ) log ( | )

H p y x p y x p y x p y x

p y x p y x p y x p y x

p x p y x p y x p x p y x p y x

p x p y x p y x p x p y x p y x

= +

+ +

= +

+ +

Y X|

From Fig. 12.14, we find that

0 0 0 1 1 0 1 1( | ) (1 ); ( | ) ; ( | ) ; ( | ) (1 )p y x p p y x p p y x p p y x p= - = = = -
Substituting these values and simplifying,

0 1 2 0 1 2( | ) [ ( ) ( )][(1 ) log (1 )] [ ( ) ( )][ log ]H p x p x p p p x p x p p- = + - - + +Y X

But 0 1( ) ( ) 1p x p x+ =

\ 2 2– ( ) (1 ) log (1 ) logH p p p p= - - +Y X|

\ 2 2( ) ( ) ( ) ( ) (1 ) log (1 ) logI H H H p p p p= - = + - - +X Y Y Y X Y| |  (12.59)

Example 12.23 Find the  channel capacity of a binary symmetric channel. Sketch Cs vs. p, the 
transition probability.

Solution In the previous example, we had shown that for a  BSC, the  mutual information is given by

2 2( ; ) ( ) (1 ) log (1 ) logI H p p p p= + - - +X Y Y

To find the channel capacity Cs, we have to maximize I(X; Y) with respect to the probability distribution of 
the input random variable X which can take any of the two values, x0 and x1. This amounts to saying that we 
have to maximize the H(Y) on the RHS of that equation, since 2 2[ log (1 ) log (1 )]p p p p+ - -  is independent 
of the probability distribution of the input random variable. From 
the symmetry of a BSC, we know that H(Y), like H(X), attains the 
maximum value when x0 and x1 are equi-probable, i.e., when

p(x0) = p(x1) = 0.5

From Fig.12.15, we find that 

0 0 0 0 1 0 1

0 1

( ) ( ) ( | ) ( ) ( | )

( )(1 ) ( )

p y p x p y x p x p y x

p x p p x p

= +

= - +

Example 12.22 For a binary symmetric channel, show that

2 2( ; ) ( ) log (1 ) log (1 )2 2I ( ; ) ( ) log (1 ) log (1log (1 ) log (12 2) log (1 ) log (1log (1log (1 ) log (12 2) () (; ) (; ) ((

Example 12.23 Find the channel capacity of a binary symmetric channel. Sketch Cs vs. p, the
transition probability.

Fig. 12.14 A  binary symmetric channel

Fig. 12.15 A binary symmetric channel
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\ when p(x0) = p(x1) = 0.5,

0( ) 0.5(1 ) 0.5 0.5p y p p= - + =
Hence, p(y1) = 0.5

But 0 2 0 1 2 1( ) ( ) log ( ) ( ) log ( )H p y p y p y p y= - -Y

\ when 0 1( ) ( ) 0.5,p y p y= = H(Y) takes a maximum value given by

2 2
(max)

( ) 0.5 log 2 0.5 log 2 1H = + =Y

\ 2 2
(max)

( ; ) 1 log (1 ) log (1 )I p p p p= + + - -X Y

\ 2 2
(max)(BSC)

( ; ) 1 log (1 ) log (1 )sC I p p p p= = + + - -X Y  (12.60)

Recall that (refer Eq, (12.3a) of Example 12.4) the  entropy, H(S) of a binary  DMS is given by

2 2( ) [ log (1 ) log (1 )]H S a a a a= - + - -
where a is the probability of one of the two possible 
source symbols.
 So, we may write the  channel capacity of a  binary 
symmetric channel as

(max)(BSC)

( ; ) [1 ( )] bits/symbolsC I H p= = -X Y

where H(◊) is the familiar entropy function. In Fig.12.2, we 
had plotted variation of H(S) with p. It takes a maximum 
value of 1 when p = 0.5 and is in the form of an inverted 
bowl, taking zero value at p = 0 as well as p = 1.
 Hence, variation of Cs of a BSC will be as shown in 
Fig.12.16, with respect to the transition probability p of 
the BSC.

 (i) If p = 0, corresponding to noise-free conditions on the channel, Cs = 1 bit per symbol, 

the maximum possible value.

 (ii) If p = 1/2 owing to channel noise, the channel capacity takes the maximum value of 

zero bits per symbol. This corresponds to the case of 0 0 1 0p( y |x ) p( y |x ) 0.5= =
and 1 1 0 1p( y |x ) p( y |x ) 0.5= = . So, whenever a symbol is transmitted, it is likely to 

be received either as that symbol, or the other symbol with equal probability. Thus, 

receiving a symbol does not remove any uncertainty, rendering the transmission over 

the channel useless (refer to Example 12.21).

Example 12.24 Determine the channel capacity of the 
 binary erasure channel shown in Fig. 12.17.

Solution  We know that ( ; ) ( ) ( )I H H= -X Y Y Y X|

But

0 2 0 2 1 2 1( ) ( ) log ( ) ( ) log ( ) ( ) log ( )H p y p y p E p E p y p y- = + +Y

Example 12.24 Determine the channel capacity of the
binary erasure channel shown in Fig. 12.17.

Fig. 12.16  Channel capacity variation with 

 transition probability, p

Remarks

Fig. 12.17 Binary erasure channel

CS-Rao_12.indd 764CS-Rao_12.indd   764 1/22/2013 10:20:21 AM1/22/2013   10:20:21 AM



Information Theory and Source Coding 765

Also, 0 0 0 0

1 1 1 1

0 0 1 1

( ) ( | ) ( ) (1 )

( ) ( | ) ( ) (1 )(1 )

( ) ( | ) ( ) ( | ) ( ) (1 )

p y p y x p x p

p y p y x p x p

p E p E x p x p E x p x p p p

a

a

a a

= = -

= = - -

= + = + - =

Substituting these in the above expression for –H(Y), we have

2 2 2( ) (1 ) log [(1 ) ] log (1 )(1 ) log [(1 )(1 )]H p p p p p pa a a a- = - - + + - - - -Y

Also,

0 0 0 2 0 0 0 0 2 0

1 1 2 1 1 1 1 2 1 1

– ( ) ( | ) ( ) log ( | ) ( | ) ( ) log ( | )

( | ) ( ) log ( | ) ( | ) ( ) log ( | )

H p y x p x p y x p E x p x p E x

p E x p x p E x p y x p x p y x

= +

+ +

Y X|

2 2 2 2

2 2

– ( ) (1 ) log (1 ) log (1 ) log (1 )(1 ) log (1 )

(1 ) log (1 ) log

H p p p p p p p p

p p p p

a a a a

a

= - - + + - + - - -

= + - - +

Y X|

To maximize ( ; ),I X Y  put (1 ) 0.5a a= - =  because from the symmetry of the  BEC, the output entropy will 
be maximized if the input entropy is maximized.

\ 2 2 2
( 0.5)

2 2 2

( ) 0.5(1 ) log [(1 )/2] log 0.5(1 ) log [(1 )/2]

(1 ) log (1 ) (1 ) log 2 log

H p p p p p p

p p p p p

a =
- = - - + + - -

= - - - - +

Y

and 2 2 2
( 0.5)

( ) 0.5(1 ) log (1 ) log 0.5(1 ) log (1 )H p p p p p p
a =

- = - - + + - -Y X|

\ max( ; ) [ ( ) ( )] (1 )I H H p= - = -X Y Y Y X|

12.8  CHANNEL CODING THEOREM

The average probability of error, Pe, of a digital communication system indicates how reliable the communi-
cation system is. Obviously higher the value of Pe, less reliable is the system. For a fixed average transmitted 
power, the value of Pe depends upon how noisy the channel is. What degree of reliability is needed, i.e., what 
maximum value of Pe is considered as acceptable, of course depends on the application. In practical systems, 
it may range anywhere from about 10–5 to 10–8.
 To achieve such small values of Pe even when the channel is noisy, it is necessary to make the data trans-
mitted over the channel resistant to the tendency of the channel noise to cause decoding errors.  Channel 
coding is the technique adopted for achieving this goal.

Fig. 12.18 Block diagram of a digital communication system

 As shown in Fig.12.18, in the transmitter there is a  channel encoder inserted between the  source encoder 
and the carrier modulator. Correspondingly, there is a channel decoder in the receiver inserted between the 
carrier demodulator and the source decoder. The channel encoder introduces controlled  redundancy into 
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the data stream coming from the source encoder in order to make the data transmitted through the channel 
resistant to the effect of  channel noise. The goal, of course, is to ensure that the data stream at the output of 
the channel decoder in the receiver is exactly identical to the one at the output of the source coder at the trans-
mitting end. Thus, while the source coder attempts to remove the redundancy in the source output in order to 
improve the  transmission efficiency, the channel encoder deliberately introduces some controlled redundancy 
in order to improve  reliability.
  Channel codes are broadly of two types –  block codes and  convolutional codes. Detailed discussion of 
channel coding is reserved for Chapter 7. As our objective here is only to briefly describe how channel coding 
introduces redundancy, block codes are most convenient for this purpose. When block codes are used, the 
channel encoder takes a block of k bits of the data stream at a time from the output of the source encoder 
and maps this block of k bits into a block of n bits (n > k) according to some pre-determined rule, thereby 
producing data at a higher rate. The (n – k) additional bits, called the  parity-check bits, constitute the  redun-
dancy introduced by the channel encoder in each block. At the source encoder output, if each bit occupies Ts

seconds, then at the output of the channel encoder, each bit occupies only Tc seconds, where

c s

k
T T

n

Ê ˆ= Á ˜Ë ¯  (12.61)

The ratio of the number of message bits to the total number of bits in a block, viz. k/n, is called the code rate.

code rate
k

r
n

= =  (12.62)

 Of course, r is less than one, and for a given k, it goes on decreasing as the redundancy per block is 
increased. In fact, smaller the value of Pe to be achieved, larger will be the value of n, and smaller will be 
the value of the code rate r. But, a small code rate implies inefficient transmission. So, the question naturally 
arises, ‘Is it possible to have a code that enables one to achieve an arbitrarily small error rate which is 
prescribed, without making r, the code rate too low?  Shannon’s channel coding theorem, considered by many 
as his most valuable contribution, assures us that it is certainly possible to have such a code, but only under 
certain conditions.
 If the channel has a capacity of Cs bits/symbol, we know from the way the  channel capacity has been 
defined, that on the average, the maximum information that each symbol transmitted through the channel can 
carry, is Cs bits. If the symbols are transmitted through the channel at the rate of (1/Tc), then the maximum 
rate of flow of information through the channel is (Cs /Tc) bits/second. Now, if the source encoder output has 
an entropy of H(S) bits per output symbol of the source encoder, and if (1/Ts) is the rate at which the source 
encoder is giving its output symbols, then the average rate at which information is being supplied by the 
source encoder is H(S)/Ts bits per second.

12.8.1 Statement of Shannon’s Channel Coding Theorem
Given a  discrete memoryless source with an entropy of H(S) bits per symbol emitting symbols at the rate of 
(1/Ts) symbols per second, and given a discrete memoryless channel with a capacity of Cs bits per symbol and 
through which the symbols are transmitted at the rate of (1/Tc) symbols per second, it is possible to construct 
a channel code which would make it possible to transmit the source symbols through the channel and be 
reconstructed with arbitrarily small probability of error, if and only if

( ) s

s c

CH s

T T
£  (12.63)

Note that Shannon’s theorem merely states that codes do exist that enable us to transmit information over a 
given channel with arbitrarily small  probability of error as long as the rate of transmission (in bits/sec) is less 
than the channel capacity (in bits/sec) of the channel. It does not tell us anything about how such codes may 

be constructed.
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12.8.2 Implications for a Binary Symmetric Channel

When  Shannon’s channel coding theorem is applied to a  Binary Symmetric Channel (BSC), the condition 
for the existence of a channel code capable of achieving an arbitrarily low probability of error, reduces to the 
simple form

sr C£  (12.64)

where r is the  code rate of the channel code (in bits/symbol) and Cs is the  channel capacity of the BSC in bits 
per symbol. This may be shown as follows:
 Suppose a DMS is emitting binary symbols, 0 and 1 with equal probability once every Ts seconds. Then 
the source entropy is 1 bit/symbol and the information rate equals (1/Ts) bits/second. Let the channel encoder 
to which this source is connected, have a code rate of r and let it produce an encoded symbol every Tc seconds 
for transmission over a binary symmetric channel with a channel capacity of Cs bits/symbol. Since one 
encoded symbol passes through the channel every Tc seconds, the channel capacity may also be written as 
(Cs/Tc) bits per second. Now, applying Eq. (12.63) to this case, the condition for existence of a  channel code 
that is capable of giving an arbitrarily small probability of error is

1
i.e.,s c

s
s c s

C T
C

T T T
£ £

But (Tc/Ts) = r = code rate

\ sr C£  (12.65)

12.9 CONTINUOUS SOURCES AND DIFFERENTIAL ENTROPY

Till now, the sources that we considered were producing ensembles of  discrete random variables which could 
take any one of a finite number of discrete amplitudes. We had discussed the entropy of two discrete random 
variables X and Y. Finally, we developed the concept of ‘ Mutual Information’, I(X; Y) of two discrete random 
variables. In this section, we shall try to extend all those concepts to the case of continuous sources, using 
appropriate modifications wherever necessary. Recall that we have defined the entropy of a discrete source 
producing a sequence of discrete random variables Xi, where each Xi can take any of the possible discrete 
amplitudes xk, k = 0 to (M – 1) with probabilities p(xk), k = 0 to (M – 1) respectively, as

1

2
0

1
( ) ( ) log

( )

M

k
k k

H X p x
p x

-

=

È ˘D Í ˙
Î ˚

Â  (12.66)

A continuous source produces a set of continuous-time signals. The set of all such possible signals is assumed 
to be forming an ensemble of waveforms generated by an ergodic random process which is band limited, 
so that any realization x(t) of this process is completely characterized by the samples taken at or above the 
 Nyquist rate. Thus, at any sampling instant, the set of all possible sample values constitutes a continuous 
random variable X with a certain probability density function fX(x).
 Consider now such a  continuous random variable X with a  probability density function fX(x).
From Fig. 12.19, it is clear that we may represent p(xk) of the discrete case by fX(xk) . Dx which 
represents the probability of the continuous random variable X taking any value between 

1 1
to

2 2k kx x x x
Ê ˆ Ê ˆ- D + DÁ ˜ Á ˜Ë ¯ Ë ¯ . In essence, we are 

only trying to represent a continuous random 
variable as the limiting case of a discrete random 
variable that takes discrete values xks separated by 
Dx, as Dx tends to zero. Thus, we may write the 
 entropy of a continuous random variable X as Fig. 12.19  Approximating a continuous random variable by 

a discrete random variable
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2
0

2 2
0

2 2
0

1
( ) Lim ( ) log

( )

1
Lim ( ) log log ( )

( )

1
( ) log Lim log ( )

( )

X k
x k X k

X k X k
x k kX k

X X
x

X

H f x x
f x x

f x x x f x x
f x

f x dx x f x dx
f x

•

D Æ = -•

• •

D Æ = -• = -•

• •

D Æ-• -•

È ˘= D Í ˙DÎ ˚
È ˘È ˘= D - D DÍ ˙Í ˙

Î ˚Î ˚

È ˘= - DÍ ˙
Î ˚

Â

Â Â

Ú Ú

X

But,        ( ) 1Xf x dx
•

-•
=Ú

\ 2 2
0

1
( ) ( ) log Lim log

( )X
x

X

H f x dx x
f x

•

D Æ-•

Ê ˆ= - DÁ ˜Ë ¯ÚX  (12.67)

In analogy with Eq. (12.66), if we define the entropy of a continuous random variable X, as

2

1
( ) ( ) log

( )X
X

h f x dx
f x

•

-•

Ê ˆ= Á ˜Ë ¯ÚX  (12.68)

Then we find that it differs from the value given in Eq. (12.67) by an amount equal to

2
0

Lim log
x

x
D Æ

D

This tends to infinity as Dx Æ 0. Thus, the true or absolute entropy of a continuous random variable is 
infinitely large. Intuitively also this is what we expect since the continuous random variable takes a continuum 
of values and the probability of the event of its taking any particular value will be infinitesimally small, 
making the corresponding information of such an event infinitely large. Therefore, to avoid this problem, we 
call h(X) as given by Eq. (12.68) as ‘differential entropy’. This name is quite justified because the information 
transmitted over a channel is actually the difference between two absolute entropies. So, if we consider H(X)
as given by Eq. (12.67) as the absolute entropy of a continuous ransom variable, with the second term, viz., 

2
0

Lim log ,
x

x
D Æ

D  as a sort of common reference value, then the difference between two absolute entropies will 

be the same as the difference between the corresponding differential entropies. Hence, hereafter we shall use 
h(X) as given by Eq. (12.68) as the differential entropy of the continuous random variable X.

Example 12.25 A continuous random variable X is uniformly distributed over the interval –a/2 to 
+a/2 so that

1
;

( ) 2 2

0; otherwise
X

a a
x

f x a

Ï - < <Ô= Ì
ÔÓ

Find the differential entropy of the random variable X.

Solution 2

1
( ) ( ) log

( )X
X

h f x dx
f x

•

-•

Ê ˆ= Á ˜Ë ¯ÚX

But,

1
for

( ) 2 2

0 otherwise
X

a a
x

f x a

Ï - < <Ô= Ì
ÔÓ

Example 12.25 A continuous random variable X is uniformly distributed over the interval –a/2 to 
+a/2 so that

1
;

) 2 2

0; otherwise
X

a a
x

f x(X a

Ï - < <xÔ
ÏÏ

= Ì
ÔÔ

Ô
ÌÌ
ÓÔÔ

Find the differential entropy of the random variable X.
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\
/2

2 2
/2

1 1
( ) log log

(1/ )

a

a

h dx a
a a-

Ê ˆ= =Á ˜Ë ¯ÚX

Since log2 x will be negative for x < 1, this simple example shows that unlike in the case of 

H(X) of discrete sources, h(X) of a continuous source can be negative.

Example 12.26 Show that the differential entropy of a continuous random variable having Gaussian 
distribution is given by

2
2

1
( ) log (2 )

2
h ep s=X

where s2 is the variance of X.

Solution Let X have a probability density function given by

2

22

1 ( )
( ) exp

22
X

x a
f x

sps

È ˘-
= -Í ˙

Î ˚Then,

2( ) ( )[log ( )]X Xh f x f x dx
•

-•
= - ÚX

But

( )

2 2

2 2

( ) /2
2

2

2 2

2
2 22 22

log ( ) log [log ( )]

1
log log

2

1 ( ) ( )
log log log log 2

2 22

X e X

x a
e

e e

f x e f x

e e

x a x a
e e

s

ps

ps
s sps

- -

=

È ˘Ï ¸= Í Ì ˝˙
Ó ˛Î ˚

È ˘ È ˘- -Ê ˆ= - = - +Í ˙ Í ˙Á ˜ Î ˚Ë ¯Í ˙Î ˚

\
2

2
2 2 2

2 2
2 22

( )
( ) ( ) log log 2 log ( )

2

1
log 2 ( ) log ( ) ( )

2

X e X

X X

x a
h f x e dx e f x dx

f x dx e x a f x dx

ps
s

ps
s

• •

-• -•

• •

-• -•

Ï ¸-
= ◊ ◊ + ◊Ì ˝

Ó ˛

= + -

Ú Ú

Ú Ú

X

But ( ) 1Xf x dx
•

-•
=Ú  and by a change of variable, 2( ) ( )Xx a f x dx

•

-•
-Ú  can be shown to be equal to s2

\ 2
2 2

2 2
2 2 2

1
( ) log 2 log

2

1 1 1
log (2 ) log log (2 )

2 2 2

h e

e e

ps

ps p s

= +

= + =

X

(i) h(X) will be negative if (2pes2) < 1.

(ii) The differential entropy of a Gaussian continuous random variable X is completely 

determined by its variance s2.

(iii) It can be shown (see Example 12.27) that of all random variables with the same variance, 

a Gaussian random variable has maximum differential entropy.

Example 12.26 Show that the differential entropy of a continuous random variable having Gaussian
distribution is given by

2
2

1
( ) log (2 )2

22
h( ) log (22

1

where s2 is the variance of X.

Remark

Remarks
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Example 12.27 Show that the  differential entropy h(X) of a  continuous random variable X is maximum 

when it has a Gaussian distribution and that this maximum value is 2
2

1
log [2 ]

2
ep s

Solution Let s2 be the variance and A be the mean of the random variable X. Then we know that

( ) 1Xf x dx
•

-•
=Ú  (i)

and
2 2( ) ( )Xx A f x dx s

•

-•
- =Ú  (ii)

where fX(x) is the  density function of the  random variable X.
From Eq. (12.68), we know that the differential entropy of X is

2

1
( ) ( ) log

( )X
X

h f x dx
f x

•

-•

Ê ˆ= Á ˜Ë ¯ÚX  (iii)

we have to maximize this differential entropy with respect to the probability density function fX(x) under the 
two constraints given by Eqs. (i) and (ii) above. For this purpose, let us make use of ‘ Lagrange multipliers’ 
method. As detailed in Annexure D, we proceed as follows.

2 2
1 2 1 2[ ( ), , ] ( ) ( ) 1 ( ) ( )X X Xg f x h X f x dx x A f x dxl l l l s

• •

-• -•

È ˘ È ˘
= + - + - -Í ˙ Í ˙

Í ˙ Í ˙Î ˚ Î ˚
Ú Ú

where l1 and l2 are the Lagrange undetermined multipliers. For maximizing g(.), we take the partial derivation 
of g(.) with respect to fX(x) and equate it to zero after substituting for h(X) using Eq. (iii).

i.e., 21 2
2 2 1 2

[ ( ), , ]
log ( ) log ( ) 0

( )
X

X
X

g f x
f x e x A

f x

l l
l l

∂
= - - + + - =

∂
Solving the above for fX(x), we get

         
2

1 2

2 2

( )
( ) exp 1

log logX

x A
f x

e e

l lÈ ˘-
= - + +Í ˙

Î ˚
 (iv)

In the above expression, unless l2 is negative, when we substitute the above expression for fX(x) in Eqs. (i) 
and (ii) the integrals will not converge.
If we represent

2

exp 1 by
log e

l
a

È ˘- +Í ˙
Î ˚

and 22

2

by ,
log e

l
b-

Equation (iv) may be represented as
2 2( )( ) x A

Xf x e
ba - -=  (v)

Substituting for fX(x) in (i) using Eq. (v), we have

2 2( ) 1x A
e dx

ba
•

- -

-•
= =Ú

Evaluating the left-hand side integral by putting (x – A)b = y,

Example 12.27 Show that the differential entropy h(X) of a continuous random variable X is maximumX

when it has a Gaussian distribution and that this maximum value is 2
2

1
log [2 ]2

22
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2

1

1y

dx dy dx dy

e dx

b
b

a a
p

b b

•
-

-•

= \ =

Ê ˆ= = =Á ˜Ë ¯ Ú

\
1a

b p

Ê ˆ =Á ˜Ë ¯
 (vi)

Substituting for fX(x) in Eq. (ii) using Eq. (v), we get

or

2 2( ) 2

2

3

( )

2

x A
x A e dx

ba s

a s

b p

•
- -

-•
- =

Ê ˆ =Á ˜Ë ¯

Ú  (vii)

From Eqs. (vi) and (vii), dividing one by the other

2
2

1 1

2 2
b b

s s
= \ =

Substituting for b in Eq. (vi), we get 
1

2
a

ps
=

Now, substituting the values of a and b in Eq. (v),

2 2( ) / 21
( )

2

x A
Xf x e

s

ps

- -=

This is a  Gaussian density function. Hence, h(X), the  differential entropy of the  random variable X, has a 
maximum value when X is Gaussian.
 It has already been shown in Example 12.26 that for a given  variance s2 for X which is Gaussian, the value 
of h(X) is equal to

2
2

1
( ) log 2

2
h X ep s=

12.9.1 Mutual Information

Analogous to the way we had defined the  mutual information between two discrete random variables X and 
Y (see Eq. (12.51a)), we now define the mutual information between a pair of continuous random variables 
X and Y as

, 2

( | )
( ; ) ( , ) log

( )
X

X Y
X

f x y
I f x y dxdy

f x

• •

-• -•

È ˘= Í ˙
Î ˚

Ú ÚX Y  (12.69)

where ( | )Xf x y  represents the  conditional density function of X given that Y = y and , ( , )X Yf x y  is the joint 
probability density function. While the mutual information I(X; Y) in the case of a discrete memoryless 
channel represents the average information in bits transferred over the channel for each received symbol, in 
the case of continuous channels, it represents the average information in bits transferred over the channel per 
each sample value of the signal received at the channel output.
 Now, analogous to the expression for the  conditional entropy of Y given X (where Y and X are discrete 
random variables) as given in Eq. (12.20), we write down the expression for the  conditional differential 
entropy of a  continuous random variable Y given the continuous random variable X, as
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, 2

1
( ) ( , ) log

( )X Y
Y

H f x y dxdy
f

• •

-• -•

È ˘= Í ˙
Î ˚

Ú ÚY X
Y X

|
|

 (12.70)

We now state the properties of the  mutual information between continuous random variables X and Y. They 
are exactly similar to the properties of mutual information between two  discrete-time random variables X and 
Y, which we had stated in Eqs. (12.51), (12.53) (12.49) and (12.50), respectively.

Properties
 1. ( ; ) ( ; )I I=X Y Y X  (12.71)

 2. ( ; ) 0I ≥X Y (12.72)

 3. ( ; ) ( ) ( | )

( ) ( | )

I h h

h h

= -
= -

X Y X X Y

Y Y X (12.73)

12.9.2  Shannon’s Third Theorem —  Information Capacity Theorem

 Shannon’s Information Capacity Theorem is also known as Shannon’s Third Theorem, or sometimes as 
 Shannon–Hartley Theorem. It deals with the channel capacity of a band limited and power limited continuous 
channel which is corrupted by additive white Gaussian noise of zero mean. It is one of the important results of 
information theory as it shows the relationship between the channel capacity and the three key parameters—
channel bandwidth, average transmitted power and the power spectral density of the white noise on the 
channel. We will be discussing about the importance of this theorem and its implications after first deriving it.
 The input to the channel is in the form of a sequence of the samples of a zero-mean Gaussian distributed 
stationary random process x(t) band limited to B Hz. These samples are taken uniformly exactly at the  Nyquist 
rate of 2B samples per second. If they are taken more frequently than the Nyquist rate, they do not contain 
any additional information. These samples enable us to reconstruct the input signal without any distortion in 
the absence of noise. It is assumed that the average signal power is constrained to be S. Since the channel is 
band limited to B Hz, the received signal as well as noise are also band limited to B Hz. If the input sample is 
a continuous zero-mean Gaussian random variable, X, the corresponding output sample is a  Gaussian random 
variable Y given by

Y = X + N (12.74)

where N is a sample of one realization of a zero-mean Gaussian noise process which is bandlimited to B Hz. 
Since the signal and noise are  statistically independent, their average powers add to give the average power 
of Y.

\ E[Y2] = E[X2] + E[N2] (12.75)

Further, Y is also a Gaussian random variable with a mean that is zero and a  variance that is equal to the sum 
of the variances of X and N, i.e., E[Y2].
As per Eq. (12.73), the mutual information of the channel is given by

( ; ) ( ) ( | ) bits/sampleI h h= -X Y Y Y X

The channel capacity C is the maximum value of this mutual information under the constraint that the average 
signal power has to be equal to S, the maximization being with respect to the  probability density function of 
X.

i.e., 2
max

( )

[ ( ; ): ( ) ] bits/sample
Xf x

C I I E S= =X Y X  (12.76)

Before discussing further about this constrained maximization, we shall first determine the  conditional differ-
ential entropy, h(Y | X). By analogy with Eq. (12.48), we may write
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,

1
( | ) ( , ) log

( | )

1
( ) ( | ) log

( | )

1
( ) ( | ) log

( | )

X Y
Y

X Y
Y

X Y
Y

h f x y dxdy
f y x

f x f y x dxdy
f y x

f x dx f y x dy
f y x

• •

-• -•

• •

-• -•

• •

-• -•

È ˘= Í ˙
Î ˚

È ˘= Í ˙
Î ˚

È ˘= Í ˙
Î ˚

Ú Ú

Ú Ú

Ú Ú

Y X

\ 1
( | ) ( | ) log , since ( ) 1

( | )
Y X

Y

h f y x dy f x dx
f y x

• •

-• -•

È ˘= =Í ˙
Î ˚

Ú ÚY X  (12.77)

Now, from Eq. (12.74), we have

y = x + n

So, given X = x, the output sample random variable Y will have a distribution that is the same as that of N. If 
fN(n) denotes the  probability density function of the noise sample N, then we have:

( | ) ( )Y Nf y x f y x= -

\
1

( | ) ( ) log
( )N

N

h f y x dy
f y x

•

-•

È ˘= - Í ˙-Î ˚
ÚY X    (From Eq.(12.77))

If we denote (y – x) by say z,

1
( | ) ( ) log ( )

( )N
N

h f z dy h
f z

•

-•

È ˘= =Í ˙
Î ˚

ÚY X N  (12.78)

\ ( ; ) ( ) ( | ) ( ) ( ) bits/sampleI h h h h= - = -X Y Y Y X Y N

i.e., ( ; ) [ ( ) ( )] bits/sampleI h h= -X Y Y N  (12.79)

Since h(N), the  differential entropy of the channel noise sample is independent of fX(x), maximization of the 
 mutual information I(X; Y) with respect to fX(x), as required by Eq. (12.76), to determine the  channel capacity 
of this  Gaussian channel which is band limited and power limited, can be achieved by maximizing h(Y) with 
respect to fX(x). We had observed in remark iii under Example 12.26 that h(Y) will be maximum, for a given 
variance of Y, only when Y is Gaussian distributed, But Y can be a Gaussian distributed  random variable if 
and only if X, the input random variable is Gaussian. That is why we have assumed in the beginning that the 
input signal x(t) is a zero-mean Gaussian distributed stationary  random process with an average power of S.
So, I(X; Y) is maximized.
 Since X and Y are  statistically independent, as stated in Eq. (12.75), the total average power of Y is

2 2 2[ ] [ ] [ ]E E E S N= + = +Y X N  (12.80)

where we have used N to denote E[N2]. Hence, the maximum value of the differential entropy h(Y) of Y is

2
max

1
( ) log [2 ( )]

2
h e S Np= +Y  (As shown in Example 12.26)

But max max( ; ) ( ) ( )I h h= -X Y Y N
 (as per Eq. 12.79)

\ max

1
( ; ) log[2 ( )] ( )

2
I e S N hp= + -X Y N  (12.81)

But, since the  channel noise is Gaussian, h(N) is given by (see Example 12.26)
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1
( ) log 2

2
h eNp=N

\ max 2 2

2 2

1 1
( ; ) log 2 ( ) log 2

2 2

1 2 ( ) 1
log log 1 bits/sample

2 2 2

I e S N eN

e S N S

eN N

p p

p

p

= + -

+È ˘ Ê ˆ= = +Á ˜Í ˙ Ë ¯Î ˚

X Y

Since 2B samples are transmitted per second over the channel, assuming these samples of x(t) taken at 
Nyquist rate to be statistically independent, we may write

max 22 ( ; ) log 1 bits/second
S

C BI B
N

Ê ˆ= = +Á ˜Ë ¯X Y

Hence, the channel capacity of the band limited and power limited Gaussian channel with input power 
constrained to S, is given in bits per second as

2log (1 / ) bits/secondC B S N= +  (12.82)

This is called Shannon–Hartley law, or Shannon’s information capacity theorem.
 Recall that we have assumed in the course of this derivation that the input samples are statistically 
independent. This will be possible if and only if the power spectrum of the input process X(t) is constant, i.e., 

if and only if the input signal is not only Gaussian but is also white. Then and only then, can the maximum 
rate of information transfer as given by Eq. (12.82) be possible.

 (i) In Eq. (12.82), N, the average noise power = 2B ¥ h/2 = hB.

 (ii) While the channel capacity is linearly related to the bandwidth B, it is logarithmically 

related to the signal to noise ratio (S/N).

 (iii) Because of point (ii) above, it is easier to increase the capacity of a given communi-

cation channel by increasing its bandwidth rather than by increasing the transmitted 

power.

 (iv) Combining Shannon’s channel coding theorem with Shannon–Hartley law, we find that 

for a given average transmitted power and bandwidth B, it would be possible to transmit 

information over the Gaussian channel at a rate of C bits/sec as given by Eq. (12.82) 

with arbitrarily small probability of error and that it is not possible to transmit at a rate 

greater than C given by this equation.

 (v) Shannon’s third theorem, or the information capacity theorem clearly sets a funda-

mental limit on the rate at which error-free transmission can be achieved using a power 

limited, band limited Gaussian channel.

 (vi) As mentioned earlier, the channel capacity, as given by Eq. (12.82) can be approached 

only if the input signal is not only Gaussian, but also white.

Example 12.28 An analog signal having 4 kHz bandwidth is sampled at 1.25 times the Nyquist rate 
and each sample is quantized into one of 256 equally likely levels. Assume that the successive samples are 
statistically independent

 (a) What is the information rate of this source?
 (b) Can the output of this source be transmitted without error over an AWGN channel with a bandwidth of 

10 kHz and an (S/N) ratio of 20 dB?
 (c) Find the S/N ratio required for error-free transmission for part (a)
 (d) Find the bandwidth required for an AWGN channel for error-free transmission of the output of this 

source if the S/N ratio is 20 dB? (UPSC, IES Examination, 1999)

Example 12.28 An analog signal having 4 kHz bandwidth is sampled at 1.25 times the Nyquist rate
and each sample is quantized into one of 256 equally likely levels. Assume that the successive samples are
statistically independent
(a) What is the information rate of this source?
(b) Can the output of this source be transmitted without error over an AWGN channel with a bandwidth of

10 kHz and an (S/SS N// ) ratio of 20 dB?
(c) Find the S/SS N//  ratio required for error-free transmission for part (a)N

(d) Find the bandwidth required for an AWGN channel for error-free transmission of the output of this
source if the S/SS N// ratio is 20 dB? (N UPSC, IES Examination, 1999)

Remarks
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Solution 
 (a) Nyquist rate = 2 ¥ fm = 2 ¥ 4 ¥ 103 = 8 kHz

\ sampling rate = 31.25 8 10 10 ksps sf¥ ¥ = =

2( ) ( ) log ( ) bits/symboli i
i

H S p x p x= -Â

  Since there are 256 equally likely levels, the probability of any particular level = (1/256) = p(xi).

2 2

1
log log 256 8 bits/sample

256

Ê ˆ- = =Á ˜Ë ¯

\
bits /sample

1
( ) 256 8 8 bits/sample

256
H S = ¥ ¥ =

  Since the sampling rate is 10 kilo samples/second, and the entropy is 8 bits/sample, the information rate 
from the source is given by

4

bits /sec bits /sample

( ) ( ) 10 8 80 kb/secsH S f H S= ¥ = ¥ =

  \ information rate from the source = 80 k bits/sec.
 (b) The output of this source can be transmitted over the given  AWGN channel without error only if the 

source information rate, i.e., 80 k bits/sec is less than the  channel capacity of the given channel. So first 
let us find the channel capacity C. For this, we use Shannon–Hartley law.

   
2log 1 bits/sec

S
C B

N

Ê ˆ= +Á ˜Ë ¯
    B = 104 and (S/N) = 20 dB = 100 (ratio)

\ 4 4 4 410
2 2

10

log 101
10 log (1 100) 10 log 101 10 6.6588 10

log 2
C

Ê ˆ
= + = = = ¥Á ˜Ë ¯

\ 66.6 k bits/secC =
  \ since the source rate is higher than the channel capacity, it is not possible to transmit the source 

output over this channel without error.
 (c) For transmitting the source output over the channel, the channel capacity should be above 80 kb/sec.

\ 3 4
2

min

80 10 10 log 1 bits/sec
S

N

Ê ˆÊ ˆ¥ = + Á ˜Á ˜Ë ¯Ë ¯

\ 8

min min

2 1 256 1 255 (ratio)
S S

N N

Ê ˆ Ê ˆ= + \ = - =Á ˜ Á ˜Ë ¯ Ë ¯

\ 210 log 255 dB 24.065 dB
S

N

Ê ˆ ≥ =Á ˜Ë ¯

 (d) 3
280 10 log 1

S
B

N

Ê ˆ¥ = +Á ˜Ë ¯  but S/N = 20 dB = 100 (ratio)

   
3 3

2

80 10 80 10
12.01 kHz

log 101 6.659
B

È ˘¥ ¥
= = =Í ˙

Î ˚

Example 12.29 A Gaussian channel has 1.5 MHz bandwidth. If the signal power-to-noise power 
 spectral density ratio is (S/h) = 104 Hz, determine the channel capacity C.
Example 12.29 A Gaussian channel has 1.5 MHz bandwidth. If the signal power-to-noise power
spectral density ratio is (S/SS h/ ) = 104 Hz, determine the channel capacity C.
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Solution 
2 2

4
6

2 6

log 1 log 1

10
1.5 10 log 1 14.38 k bits/sec

1.5 10

S S
C B B

N Bh

Ê ˆ Ê ˆ= + = +Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ
= ¥ + =Á ˜Ë ¥ ¯

Example 12.30 Using 4 ¥ 105 pixels per frame, with each pixel taking any one of the 10 different 
brightness levels with equal probability, a black and white TV transmitter transmits 25 frames per second. 
If the signal to noise ratio is 30 dB, determine the minimum bandwidth required to transmit the video 
signal.

Solution  Number of pixels transmitted per second = 4 ¥ 105 ¥ 25 = 107 pixels/sec.
There are 10 different brightness levels.

( ) (1/10) 0.1ip x = =  (Since they are all equally likely)

\     information per pixel = 2 2

1
log 0.1 log 10 3.322 bits

0.3010
- = = =

Assuming all the pixels to be statistically independent, the amount of information transmitted per second

710 3.322 bitsI = ¥
Applying Shannon–Hartley law, and noting that 30 dB = 103 as a ratio

7 3
210 3.322 log (1 10 ) 9.96822B B¥ = + = ¥

\
710 3.322

3332591 kHz 3.332591 MHz
9.96822

B
¥

= = =

12.9.3 Ideal System and Shannon Limit

We will now define an ideal system, the objective being to use it for assessing the performance of practical 
systems by determining how close they come to the ideal one. 

Definition An ideal system is defined as one that transmits data at a bit rate that is equal to the channel 
capacity C, in bits per second.
 Suppose the energy per bit is Eb. Then the average power transmitted is

bS E C= ◊  (12.83)
We know that if B is the bandwidth,

( /2)(2 )
b bE C E CS

N B Bh h

◊ ◊
= =  (12.84)

where h/2 W/Hz is the two-sided PSD of the white noise on the channel. Substituting for (S/N) in Shannon–
Hartley law using Eq. (12.84), we get

2log 1 bits/secbE C
C B

Bh

Ê ˆ= + ◊Á ˜Ë ¯
 (12.85)

\
/

/2 1
(2 1)

/

C B
C BbE B

C B Ch

-
= = -  (12.86)

This expression is useful in establishing the performance of the ideal system defined earlier.

 When B >> C, ( / ) log 2/2 eC BC B
e=  (12.87)

Using the approximation ex ª 1 + x when x << 1, we get

Example 12.30 Using 4 ¥ 105 pixels per frame, with each pixel taking any one of the 10 different
brightness levels with equal probability, a black and white TV transmitter transmits 25 frames per second.
If the signal to noise ratio is 30 dB, determine the minimum bandwidth required to transmit the video 
signal.
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/ ( / ) ln 22 1 ln 2C B C B C
e

B

Ê ˆ= @ + Á ˜Ë ¯  (12.88)

Substituting for 2C/B in Eq. (12.86) by making use of Eq. (12.88),

1 ln 2 1
ln 2 1.6 dBb

C

E B

C

B

h

Ê ˆ+ -Á ˜Ë ¯
@ = = -

Ê ˆ
Á ˜Ë ¯

 (12.89)

This is called the  Shannon Limit for an  AWGN channel.
 Using Eq. (12.86) with Rb replacing C, we may plot the relation between (Eb /h) and (Rb /B). This plot is 
shown in Fig.12.20. When Rb = C, we get the  ideal system. Observe that the curve corresponding to Rb = C,
(i.e., the ideal system) is the boundary between two distinct regions. The region, marked Rb < C is the one 
in which it is possible to make the  probability of error arbitrarily small and is the one which is of interest in 
practice. The other region, marked Rb > C is the one in which it is not possible to achieve arbitrarily small 
probabilities of error.

Fig. 12.20 Relationship between (Eb /h) and (Rb /B) for an AWGN channel

 From the figure, it is evident that when (Rb /B) is large, a very large value of (Eb /h) is needed to keep 
Rb < C; i.e., a large average power is needed. But, suppose the bit-rate Rb is fixed and the channel bandwidth 
is increased, so that B >> Rb. In this case, operation in the region Rb < C requires only that Eb /h be only 
slightly greater than the Shannon limit, i.e., –1.6 dB. The corresponding signal power required is

log 2b eS R hª  W (12.90)

This represents the minimum signal power required for operation in the Rb < C region. For  power-limited 

operation, therefore, the bandwidth should be very large compared to the bit rate so that only minimum signal 
power represented in Eq. (12.90) is required.
 But, suppose the system has to operate with Rb >> B. Then, from the figure, it is clear that (Eb /h) necessary 
for operation in the Rb < C region, is quite large. Then the system is said to be operating in the  bandwidth-

limited condition.

12.9.4 Information Capacity Theorem and Some Practical Systems

Hartley–Shannon law, or the information capacity theorem tells us how trade-off is possible between SNR

and bandwidth in an ideal system. It would therefore be interesting to see how some of the practical systems 
behave in this respect and compare them with the ideal system.
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1. PCM: Let us first take up an  M-ary PCM and compare its performance with that of the ideal system. With 
M = 2, we can deduce the result for binary PCM.
 Let us say the message signal is quantized into L levels and each quantized sample is encoded into logM L

number of M-ary pulses. Assuming the message signal to be band limited to B Hz, we sample it at  Nyquist 
rate of 2B samples/sec. Since logM L M-ary pulses are used for representing each sample and 2B samples are 
produced per second, the number of M-ary pulses produced per second is

2 logM MR B L= ◊  (12.91)

Therefore the transmission bandwidth may be taken to be

BT = Half of logM MR B L=  (12.92)

In Eq. (4.120), we had shown that if the levels aks are as

, 3 , 5 ,…, ( 1)
2 2 2 2k

A A A A
a M= ± ± ± ± -

with the basic level at A/2, and if the M-levels are equally likely, their mean-square value 2
ka  is

22 2
2 2( 1) ( 1)

12 3 2k

M M A
a A

- - Ê ˆ= ◊ = ◊ Á ˜Ë ¯   (From Eq. (4.120))

If Ep denotes the energy of the pulse with basic level A/2, we know that

2 2
1

2 2p M
M

A A
E T

R

Ê ˆ Ê ˆ= ◊ = ◊Á ˜ Á ˜Ë ¯ Ë ¯  (12.93)

\ average input power 
2

2 ( 1)

3k R p M

M
a S E R

-
= = ◊ ◊  (12.94)

Also, input noise power NR is given by

2
2R T TN B B
h

h
Ê ˆ= =Á ˜Ë ¯

where BT is the  transmission bandwidth.
But from Eq. (12.92),

2
M

T

R
B =

\
2
M

R

R
N h= ◊  (12.95)

As shown in Eq. (12.91), we are transmitting 2 logMB L  pulses (M-ary pulses) per second and each of these 
pulses is carrying an information of log2 M bits. Hence, the rate of transmission of information is equal to Rb

bits/sec where,

2

2
2 2

(2 log )(log )

2 log log bits/sec

b M

T T

R B L M

B M B M

=

= =  (12.96)

Now, from Eq. (12.94), we have

2 3
1 ,R

p M

S
M

E R

Ê ˆ= +Á ˜◊Ë ¯
and from Eq. (12.95), we have

2 R
R

N
N

h

Ê ˆ= Á ˜Ë ¯
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\ 2 3
1

2
R

p R

S
M

E N

hÊ ˆ= +Á ˜◊Ë ¯
Substituting this expression for M2 in Eq. (12.96), we get

2

3
log 1 bits/sec

2
R

b T
p R

S
R B

E N

hÈ ˘= +Í ˙
Î ˚

 (12.97)

Now, from Eq. (4.119)

1
2 1 2

2 2e

A A
P Q Q

M s s

Ê ˆ Ê ˆ Ê ˆ= - ªÁ ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯  when M >> 1. (12.98)

But, from Eq.(4.122)
2

2 2

6

4
R

M

SA

RM hs

Ê ˆ Ê ˆÊ ˆ@ ◊Á ˜Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯
But,

2
M

R

R
N

h
=  (From Eq. (12.95))

\
2 2

2 2 2

3 3

34

p MR

R R

E RSA M

N NM Ms

Ê ˆ Ê ˆÊ ˆ@ ◊ = ◊Á ˜Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯
 (From Eq. (12.94))

2pM
p

R

ER
E

N h

◊
◊ =  (From Eq. (12.95))

\ substituting this in Eq. (12.98), we get

2
2 when 1

p

e

E
P Q M

h

Ê ˆ
= >>Á ˜

Ë ¯
 (12.99)

If 610 ,eP
-£  we can consider the reception to be almost error-free.

But 6
2 2

2 10 24

(from -function table)

p p

e

E E
P Q

Q

h h
-

Ê ˆ
= = fi @Á ˜

Ë ¯
 (12.100)

\ substituting 24 for 
2 pE

h
 in Eq. (12.97), we get

2

1
log 1 bits/sec

8
R

b T
R

S
R B

N

È ˘Ê ˆ= +Í ˙Á ˜Ë ¯Î ˚
 (12.101)

Thus, we find that for M >> 1, an  M-ary PCM can transmit information at the rate of Rb over a channel of 
bandwidth BT. However, as per the  information capacity theorem, over the same channel bandwidth of BT and 
with the same (SR/NR), an  ideal system can transmit at the rate of

2log 1 bits/secR
T

R

S
C B

N

È ˘= +Í ˙
Î ˚

 (12.102)

Equations (12.101) and (12.102) clearly indicate that while operating slightly above the  threshold, M-ary 
PCM requires eight times as much power as the ideal system to provide the same rate of transmission of 
information. This means that M-ary PCM (M >> 1) even when operating slightly above the threshold, is 
9 dB inferior to the ideal system. A plot of (Rb/BT) vs (SR/NR) is shown in Fig. 12.21 for different values of 
M alongside the curve for an ideal system.
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Fig. 12.21 Comparison of performance of a PCM system with that of an ideal system

Thus, in the case of  M-ary PCM, as M is increased the bandwidth efficiency as well as the (SR / NR)

required for operation above the  threshold, also increase.

2.  M-ary PSK: We now compare the bandwidth-power trade-off possible using M-ary PSK with that 
obtained for an ideal system. For this purpose, we consider a coherent M-ary PSK system that makes use of 
M non-orthogonal phase-shifted signals. We know that each of these M signals represents a particular symbol 
which contains an information of log2 M bits. From Eq. (5.196), the  bandwidth efficiency of M-ary PSK is 
given by

2logb

T

R
M

B
r = =  (12.103)

We defined the bandwidth as 3-dB width of the main lobe. If we define it as full main-lobe 

width, then 20.5 log Mr = .

The probability of  symbol error for M-ary PSK is given by

(symbolerror)

erfc sine

E
P

M

p

h

È ˘Ê ˆ@ Á ˜Í ˙Ë ¯Î ˚
 (12.104)

As in the previous case, we shall consider the transmission to be almost error-free when 610eP
-£ . For this 

Pe, the values of (Rb/BT) are plotted against the values of (Eb/h) for M = 2, 4, 8, 16, 32 and 64 in Fig.12.22. 
The curve for the ideal system is also shown.
 From Fig. 12.22, we observe that as M is increased, the bandwidth efficiency, (Rb/BT) increases, but the 
(Eb /h) value required for error-free transmission moves away from the  Shannon limit.

3. M-ary FSK: We will now consider a coherent  M-ary FSK system employing  orthogonal signals by 
arranging adjacent frequencies to differ by 1/2T Hz, where T is the symbol period. Again, each of these 
M-signals represents a particular symbol which contains an information of log2 M bits.
 We know that the bandwidth efficiency of M-ary FSK is given by

22 logb

T

R M

B M
r = =  (see Eq. (10.131)) (12.105)

Note

CS-Rao_12.indd 780CS-Rao_12.indd   780 1/22/2013 10:20:26 AM1/22/2013   10:20:26 AM



Information Theory and Source Coding 781

and
1

( 1)
2 2e

E
P M erfc

h
= -  (see Eq. (10.130)) (12.106)

We also know that the following relations hold good:

T = Symbol period = Tb log2 M where Tb is bit duration

and E = Symbol energy = Eb log2 M where Eb is bit energy.

 As in the case of M-ary PSK, here too, we shall assume the transmission to be totally error-free if 
610eP

-£ . So, for this 610 ,eP
-£  the (Eb /h) required and the  bandwidth efficiency (Rb /BT) are determined 

for each value of  M-ary FSK. A plot of the bandwidth efficiency against (Eb /h) required for 610 ,eP
-£  is 

shown in Fig. 12.23. The performance curve for the ideal system is also shown alongside for comparison.

Fig. 12.23 (Eb /h)Comparison of M-ary FSK with the ideal system

As can be seen from the figure in the case of M-ary FSK, as M is increased, bandwidth efficiency decreases 

and the (Eb /h) value required for error-free transmission comes closer and closer to the Shannon limit.

Fig. 12.22 Comparison of  M-ary PSK with the  ideal system
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12.10 RATE DISTORTION THEORY

From  Shannon’s source coding theorem (see Section 12.4.3) we know that for a  discrete memoryless source 
with entropy H(s), the lower bound for the average length n  of a perfectly decipherable code is H(s) bits 
per source symbol. Hence, if we use a code with ( ),n H s=  error-free restoration of the source symbols is 
possible and so there is no loss of information involved in such a compression of the source data. Such a 
compression is therefore called  lossless compression. However, since n  bits are used on the average for 
representing each source symbol, the average code rate R in bits/codeword is equal to n . In certain situations 
such as magnetic disk storage, usage of a code with ( )n H s=  itself may not be possible, as the disk-space 
requirement may become too large. In such cases, we may be forced to use an n  = R that is even less than 
the source entropy H(s). But then, error-free restoration of source symbols will not be possible. That is, at 
such low values of R, there will be loss of information and so such a compression is referred to as  lossy 
compression and it always results in distortion of the source signal. A very familiar case of  lossy coding arises 
in the encoding of continuous-time signals. Samples of these signals have a continuum of values. So, theoreti-
cally an infinite codeword length is needed for their exact or error-free representation. That is, an infinite 
value of code-rate R is needed. We overcome this difficulty by resorting to  quantization of these samples; and 
quantization results in distortion.

Thus, in the two cases discussed above, we are forced to permit some amount of  distortion so as to 
have some desired or specified value of n  or R. The question that arises then is: For a given R, what is the 
minimum distortion D that we can possibly achieve? We may pose the question the other way about and ask: 
for a specified maximum distortion that can be tolerated, what is the minimum value of R that can be used? 
These two types of lossy compression problems are illustrated in Figs. 12.24(a) and (b).

For some specified code rate R0 how can we 
minimize the distortion D?

Fig. 12.24(a)

For some specified acceptable level of distortion 
D*, how can we minimize the code rate R

Fig. 12.24(b)

Rate distortion theory is a branch of information theory that deals with problems such as those posed above. 
In fact, it originated from Shannon’s proposal that the information rate of a continuous source be measured 
by employing some specific measure for distortion.
 Before we proceed any further, it is necessary to discuss ‘distortion’ and ‘ distortion measures’.

12.10.1 Distortion

Distortion is related to the fidelity of reproduction of a signal and it indicates how different or how far apart 
the reproduced signal is with respect to the original signal at the output of the source. This statement is 
equally applicable to continuous-time and  discrete-time signal. For a  continuous-time signal, x(t), produced 
by a source, if y(t) is the reproduced signal, we may have any of the following distortion measures:
 1. Absolute value of the maximum difference between y(t) and x(t) for all t, i.e.,

D -( ( ), ( )) max [| ( ) ( )|]
t

d x t y t x t y t
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 2. Average value with respect to time of the difference between x(t) and y(t), i.e.,
/2

– /2

1
( ( ), ( )) lim [| ( ) – ( )|]

T

T
T

d x t y t x t y t dt
TÆ•

D Ú

 3. The mean-squared value of the difference between x(t) and y(t), i.e.,
/2

2

– /2

1
( ( ), ( )) lim [ ( ) – ( )]

T

T
T

d x t y t x t y t dt
TÆ•

D Ú

 However, from a practical point of view, any  distortion measure should be mathematically tractable and 
also must closely approximate the human perception of what constitutes distortion and what does not, with 
reference to any particular physical signal. For instance,  phase distortion in an audio signal need not be 
considered as a distortion since our ear is insensitive to phase. However, when dealing with video signals, 
the distortion measure has to certainly take phase distortions into account since our eyes are quite sensitive to 
phase changes.

In order to discuss in a little detail about  distortion and distortion measures with reference to the coding 
of a  discrete memoryless source (DMS) consider now Fig.12.4. In that figure, for our present discussion, let 
the DMS give a set X of statistically independent source symbols xi, i = 0, 1, …, (M – 1) with probabilities 
of occurrence pi, i = 0, 1, …, (M – 1). Assume that the output of this DMS is encoded and that R is the  code 
rate, i.e., the average number n  of bits per codeword. From  Shannon’s source coding theorem, we know that 
there will be perfect representation of the source symbols by the  codewords and hence no distortion, if R ≥
H(s), where H(s) is the entropy of our DMS. Let a decoder decode the codewords and let Y be the alphabet 
at the output of the decoder and let this consist of symbols yj s, j = 0, 1, …, (L – 1) as shown in Fig. 12.4. We 
may now define what is called the ‘per-symbol’ distortion measure as follows.

1.  Hamming measure:
1 if

( , )
0 otherwise

j i

i j

y x
d x y

πÏÔD Ì
ÔÓ

 (12.107)

2.  Squared-error distortion measure:
2( , ) ( – )i j i jd x y x yD  (12.108)

 The statistical average of ( , )i jd x y  taken over all values of i and j, is called the average distortion and is 
denoted by D. It is given by

–1 –1

0 0

[ ( , )] [ ( ) ( | )] ( , )
M L

i j i j i i j
t j

D E d x y p x p y x d x y
= =

= = Â Â  (12.109)

D is non-negative and is a continuous function of the transition probabilities ( | ),j ip y x  which of course, are 
dependent on the encoder and decoder.
 Now recall our original problem: For a given maximum distortion that is permissible, what is the minimum 
value of the code-rate R that can be used? From Eq. (12.108) it is clear that if D is restricted to a value less 
than or equal to some D*, the transition probabilities ( | )j ip y x  that can be assigned, will be restricted to some 
set, say, 

D
P *  which is defined by

{ ( | ); }j iD
P p y x D D*

*= £  (12.110)

We will now use this set to define an important function, called the  rate distortion function.

12.10.2 Rate Distortion Function R(D*)

We know that in a situation like the one discussed above, the average  mutual information between the symbols 
in X and those in Y, is given by

–1 –1

2
0 0

( ; ) ( ) – ( | )

( | )
( , ) log

( )

M L
j i

i j
i j j

I X Y H X H X Y

p y x
p x y

p y= =

=

È ˘
= Í ˙

Í ˙Î ˚
Â Â (12.111)
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We now define what is called the  rate distortion function, R(D*), which is the smallest possible coding rate 
R in bits for which the  average distortion D is guaranteed not to exceed a specified maximum value D*. This 
rate distortion function is given by

( | )

( ) min [ ( ) – ( | )}

min [ ( ; )
j i

D

D D

p y x P

R D H X H X Y

I X Y

*

*

*

£

Œ

=

=

 (12.112)

 Since a given source symbol xi will have to appear at the output of the decoder as one of the possible yjs,
j = 0, 1, . . . ,(L-1), in the above equation, although the  transition probabilities have to be only from the set 

,
D

P *  they have to satisfy the condition that
–1

0

( | ) 1 for 0,1, , ( – 1)
L

j i
j

p y x i M
=

= = ºÂ  (12.113)

Obviously, as the maximum permissible distortion, D*, is increased, it will be possible to use a smaller rate 
R. This means that R(D*) is a decreasing function with respect to D*.

Recall that the basic question of the  rate distortion theory is: For a specified maximum distortion D*,
what is the minimum value of R that can be used? We now find that the answer to this question is R(D*), as 
given by Eq. (12.108). Determining R(D*) for a given set of {xi} with specified probabilities, pi, i = 0, 1, …, 
(M – 1), and a specified per symbol distortion measure ( , )i jd x y  boils down to finding the set 

D
P *  of ‘D*

- admissible’ transitional probabilities ( | ),j ip y x , j = 0, 1, …, (L – 1) and i = 0, 1, …, (M – 1), subject to the 
constraint stated in Eq. (12.112). Thu, determination of R(D*) involves solving of a variational problem and 
this, in general, is not an easy matter.

Examples of rate distortion functions
1. Consider a binary memoryless source with (1)P p=  and (0) 1 –P p=  for which the  Hamming 

distortion measure is used.
 In this case, the rate distortion function R(D*) works out to

( ) – ( ); 0 min[ ,1 – ]
( )

0; otherwise

H p H D D p p
R D

* *
* Ï £ £Ô= Ì

ÔÓ
 (12.114)

Here, H(p) is the value of the  entropy function H(s) of a binary memoryless source (see 

Fig. 12.2) at P(1) p= . Similarly, H(D*) is its value at D*.

Fig. 12.25 R(D*) for a binary memoryless source with Hamming distortion measure

Note
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2.  Rate distortion function for a Gaussian source: Consider a discrete memoryless zero-mean  Gaussian 
source with a  variance s2. A symbol of this will have a continuum of values and so has to be quantized to 
permit representation by a finite length code. Let the  distortion measure be the  squared-error measure, i.e.,

2( , ) ( – )d x y x y=
The rate distortion function for this Gaussian source is then given by

2
2

2

1
log ; 0

( ) 2

0;

D
R D D

D

s
s

s

*
* *

*

Ï Ê ˆ
£ £Ô Á ˜Ë ¯= Ì

Ô >Ó

 (12.115)

 We find that 2( ) asR D D s* *Æ • >  and R(D*) = 0 for 2
D s* = . Hence, a part of R(D*) vs. 2/D s*  is as 

given in Fig.12.26. Figure 12.27 gives a plot of R(D*) in bits vs. SNR in dB, where, SNR is defined as

2
10= 10 log ( / )dBSNR Ds *

Fig. 12.26  RDF for a zero-mean Gaussian source with 

variance s2

Fig. 12.27  R(D*) in bits vs. SNR for the zero-mean 

Gaussian source with variance s2

Summary 
 ■ The  information obtained from the occurrence of an  event ak with a  probability of occurrence of pk, is 

2( ) log (1/ )k kI a p=  bits loge (1/pk) nits.
 ■ 1  nit = log2 e  bits. Obviously, ‘nit’ is a bigger unit than a ‘bit’.
 ■ A  discrete memoryless source (DMS), is one which emits discrete random variables, Xi, which take only a discrete 

set of values and are statistically independent and identically distributed.
 ■ The average information per symbol emitted by a source is called its entropy and is denoted by H(S).
 ■ For a  DMS with alphabet S of size M, the  entropy is given by

1

2
0

( ) log
M

k k
k

H S p p
-

=
= - Â

 ■ where pk is the probability of the symbol x(k), k = 0, 1, …, (M – 1)
 ■ For a DMS with alphabet x(k), k = 0, 1, …, (M – 1) with probabilities pk, the entropy of the source is maximum 

when pk = 1/M for all k, and this maximum value of entropy equals H(S)max = log2 M.
 ■ H(s) for a DMS with alphabet size M has the following properties:
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 ■ (a) 20 ( ) log ,H S M£ £  and (b) 2( ) logH S M£  and the equality sign holds good only if all the symbols are equi-
probable.

 ■ If X and Y are two random variables with X taking values xi, i = 0, 1, …, (L – 1) with probabilities p(yj):
  (a) the  joint entropy of X and Y is

1 1

2
0 0

( , ) ( , ) log ( , )
M L

i j i j
i j

H p x y p x y
- -

= =
= - Â ÂX Y

  (b) The  conditional entropy H(Y | X = xi) is

1

2
0

( ) ( | ) log ( | )
L

i j i j i
j

H x p y x p y x
-

=
= = - ÂY X|

  (c) The conditional entropy of Y given X is

1 1

2
0 0

( ) ( , ) log ( | )
M L

i j j i
i j

H p x y p y x
- -

= =
= - Â ÂY |X

  Further,

( ) ( ) ( )

( ) ( )

H H H

H H

= +
= +

X Y X Y X

Y X Y

| |

|

 ■ The two basic requirements of any source coder are:
  (a)  Minimum average length of a  codeword for a given set of source alphabet {X} and the source symbol proba-

bility set {p(xi)}.
  (b) Unique  decipherability of the encoded sequence.

 ■ Codes having the above two properties are called ‘ optimal codes’.
 ■ Prefix-free or  instantaneous codes: Codes in which no codeword is a prefix to another codeword, are called prefix-

free codes, or instantaneous codes.
 ■ McMillan and Karush theorem: If for a given source, S, a code is optimal among the instantaneous codes, then it 

is optimal among all uniquely decipherable codes.
 ■ Kraft’s inequality: Kraft’s inequality spells out the constraint on the structure of uniquely decipherable codes. It 

states that a necessary and sufficient condition for the existence of an instantaneous code having word lengths of 
n0, n1, . . . , nM – 1 is given by

1

0

1i

M
n

i

D
-

-

=
£Â

  where D is the size of the encoder’s alphabet (D = 2 for binary codes).
 ■ Lower and upper bounds for the average length of a codeword, of a code which is uniquely decipherable:

( ) ( )
1

log log

H S H S
n

D D
£ < +

  where D is the size of the encoder’s alphabet and H(s) is the entropy of the source.
 ■ Shannon’s source coding theorem: For a  discrete memoryless source with entropy H(s), the minimum value of ,n

the average length of a codeword of a perfectly decipherable code is bounded as follows:

( ) ( )H S n H S£ < + Œ

  where, Œ can be made arbitrary small by appropriate coding.

 ■ Coding efficiency: coding efficiency min( )

Actual of the code

H S n

n

=
D

 ■  Shannon–Fano coding and  Huffman coding make use of the source statistics while  Lempel–Ziv source coding 
does not depend on the source statistics and is therefore a ‘ universal code’. While the two former codes are unequal 
length codes, the latter one is an equal length code.
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 ■ Discrete memoryless channel (DMC): A channel with discrete random variables with finite alphabet size as its 
input and output whose present output symbol depends only on the present input symbol but not on any of the 
previous input symbol, is called a discrete memoryless channel.

 ■ Transition matrix/channel matrix:

Y

j ip y x( | ) y0 y1 y2 ◊ ◊ ◊ yL – 2 yL – 1

x0 p y x0 0( | ) p y x1 0( | ) p y x2 0( | ) ◊ ◊ ◊
Lp y x-2 0( | ) Lp y x-1 0( | )

x1 p y x0 1( | ) p y x1 1( | ) p y x2 1( | ) ◊ ◊ ◊ Lp y x-2 1( | ) Lp y x-1 1( | )

X x2 p y x0 2( | ) p y x1 2( | ) p y x2 2( | ) ◊ ◊ ◊ Lp y x-2 2( | )
Lp y x-1 2( | )

◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊
◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ .

◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ .

xM – 2 Mp y x -0 2( | ) Mp y x -1 2( | ) Mp y x -2 2( | ) ◊ ◊ ◊ L Mp y x- -2 2( | ) L Mp y x- -1 2( | )

xM – 1 Mp y x -0 1( | ) Mp y x -1 1( | ) Mp y x -2 1( | ) ◊ ◊ ◊ L Mp y x- -2 1( | ) L Mp y x- -1 1( | )

 ■ Binary symmetric channel (BSC):

Transition matrix

(1 )

(1 )

p p
P

p p

-È ˘
= Í ˙-Î ˚

 ■ Binary erasure channel (BEC):

Transition matrix

(1 ) 0

0 (1 )

p p
P

p P

-È ˘
= Í ˙-Î ˚

 ■ Mutual information: Mutual information, I(X ; Y) of a channel represents the average amount of information trans-
ferred through the channel, in bits per symbol.

( ) ( ) ( ) ( ) ( ) ( ) 0I I H H H H= = - = - ≥X Y Y X Y Y X X X Y; ; | |

 ■ ( ) ( ) ( ) ( )I H H H= + -X Y X Y X Y; |

1 1

2
0 0

( ) ( )
( ) ( , ) log

( , )

M L
i j

i j
i j i j

p x p y
I p x y

p x y

- -

= =

È ˘
= - Í ˙

Í ˙Î ˚
Â ÂX Y;

 ■  Channel capacity C:

{ ( )}
max ( )s
P x

C I= X Y;  in bits/symbol
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  If R is the transmission rate in symbols/second,

(in bits /sec)
sC R C= ◊

 ■ Shannon’s channel coding theorem: Given a DMS with an entropy of H(S) bits/symbol emitting symbols at the 
rate if (1/Ts) symbols/sec, and given a DMC with a capacity of Cs bits/symbol through which the symbols are 
transmitted at the rate of (1/Tc) symbols per second, it is possible to construct a channel code which would make it 
possible to transmit the source symbols through the channel and be reconstructed with arbitrarily small probability 
of error if and only if

( ) s

s c

CH S

T T
£

 ■ Differential entropy: The differential entropy of a continuous random variable X having a PDF fX(x), is

2

1
( ) ( ) log

( )X
X

h f x dx
f x

•

-•

È ˘= Í ˙
Î ˚

ÚX

 ■ Properties of differential entropy:
  (a) unlike H(S) of a discrete source, the h(X) of a continuous source can be negative.
  (b) h(X) is completely determined by the variance s2 of X.
  (c)  For a fixed variance s2, the random variable X with Gaussian density has the maximum differential entropy 

and it is given by 2
2

1
( ) log (2 )

2
h ep s=X .

 ■ Mutual information (continuous channel):

  (a) , 2

( | )
( ) ( , ) log

( )
X

X Y
X

f x y
I f x y dxdy

f x

• •

• -•

È ˘= Í ˙
Î ˚

Ú Ú
–

X Y;

  (b) ( ) ( ) ( ) ( | )

( ) ( | ) 0

I I h h

h h

= = -
= - ≥

X Y Y X X X Y

Y Y X

; ;

 ■  Shannon––Hartley Law/Shannon’s information capacity theorem:

 Channel Capacity = 2log 1
S

C B
N

È ˘= +Í ˙Î ˚
bits/second

 ■ Ideal system:  An ideal system is defined as one that transmits data at a bit rate that is equal to the channel capacity, 
C in bits per second.

 ■ Shannon limit for an  AWGN channel:

log 2 1.6 dBb
e

E

h
ª = -

  This represents the theoretical minimum value of Eb/h for an AWGN channel working in the Rb < C region.
 ■ In the case of  M-ary PSK, as M is increased, the bandwidth efficiency (Rb /BT) increases but (Eb /h) value required 

for error-free transmission moves away from the Shannon limit.
 ■ In the case of  M-ary FSK, as M is increased, the bandwidth efficiency decreases and the (Eb /h) value required for 

error-free transmission comes closer to the Shannon limit.
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Review Questions 

1. Justify the use of log(1/ )p  as the measure of information given by the occurrence of an event whose 
probability of occurrence is p.

2. Show that 1 nit of information = log2 e bits of information.
3. What is the information (in bits) given when a single fair die is thrown?
4. A discrete memoryless source has the symbols A, B, C and D as its alphabet. What is the maximum 

information that can be associated with each symbol?
5. Define the term ‘entropy’ of a discrete memoryless source.
6. Explain what is meant by an extended source.
7. How are the joint entropy, marginal entropies and the conditional entropies of two random variables X

and Y related?
8. What is the need for source coding?
9. What are the basic requirements to be met by any source encoder?

10. What is an ‘optimal code’?
11. What is meant by the average length of a code?

 12. Explain what you mean by an ‘instantaneous code’?
13. Sate Kraft’s inequality and explain its significance.
14. What are the lower and upper bounds for the average length of a uniquely decipherable code?
15. What is the technique to be adopted for making n , the average code length of a uniquely decipherable 

code approach its lower bound [ ( )/log ]H S D ?
16. State Shannon’s source coding theorem and explain briefly its implications.
17. Define coding efficiency of a source encoder. How can we make this approach 100%?
18. Why are Shannon–Fano codes and Huffman codes called as suboptimal codes?
19. A Shannon–Fano code has given 100% coding efficiency. What can you say about the source?
20. For a given source with a certain set of symbol probabilities, does Huffman coding lead to a unique set 

of codewords for the various symbols? Whether your answer is in the affirmative or not, justify it.
21. What are the main disadvantages of Huffman coding?
22. What are the advantages of Lempel–Ziv coding?
23. What is a ‘transition’, or ‘channel’ matrix? State its properties.
24. What is a binary symmetric channel? Write down its transition matrix in terms of p, the transition 

probability.
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25. What is a binary erasure channel? Write down its transition matrix in terms of p, the probability of 
erasure of a symbol.

26. What is the physical meaning of the ‘mutual information’ of a channel? State the properties of I (X ; Y),
the mutual information of the discrete random variables X and Y.

27. Explain the meaning of the term ‘channel capacity’ of a channel.
28. When p, the probability of error of a binary symmetric channel is 0.5, the channel capacity is zero. 

Briefly explain why it is so, in a qualitative manner.
29. Explain, in your own words, the meaning and the importance of Shannon’s channel coding theorem.
30. Write down the expression for the differential entropy of a continuous random variable X with a PDF 

of fX(x). Why is it called the differential entropy?
31. What are the properties of the differential entropy of a continuous random variable X?
32. Write down Shannon–Hartley law and explain its implications.
33. What is ‘Shannon Limit’ with reference to an AWGN power limited Gaussian channel?
34. Define an ideal system. How is this concept useful?

Problems 
1. p denotes the probability of an event A. Plot the amount of information gained by the occurrence of A for 0 £ p £ 1.
2. A source produces five output symbols A, B, C, D and E with probabilities 0.35, 0.25, 0.20, 0.15 and 0.5 respec-

tively. Assuming successive symbols to be statistically independent, determine (a) the information associated with 
each one of the symbols, and (b) the entropy of the source.

3. A DMS has symbols a, b and c as its alphabet. If these have probabilities 0.65, 0.20 and 0.15 respectively, calculate
  (a) the entropy of the source.
  (b) the entropy of the second-order extension of the source.

4. A channel has the following transition matrix:

0.34 0.16 0.5

0.20 0.65 0.15

0.15 0.15 0.7

P

È ˘
Í ˙= Í ˙
Í ˙Î ˚

  (a) Sketch the channel diagram
  (b) If the input symbols are equally likely, calculate probabilities of the outputs.
  (c) Determine the input-output joint probability matrix.

5. A DMS with alphabet s0, s1 and s2 produces them with probabilities of 0.7, 0.2 and 0.1 respectively. Using 
Shannon–Fano algorithm and devise an unambiguous code for the source output. Determine the coding efficiency 
of your code.

6. For the output of the source given in Problem 5, devise an unambiguous code using Huffman algorithm. Find the 
average codeword length of the code. Now apply Huffman algorithm to the second-order extension of this source 
and determine the average codeword length.

7. For a BSC, the input binary symbols 0 and 1 occur with probabilities 0.25 and 0.75. Find the probabilities of the 
binary symbols 0 and 1 appearing at the output.

8. A channel is described by the matrix

0.5 0.5 0

0 0 1
P

È ˘
= Í ˙

Î ˚
  Determine the channel capacity of this channel and find the probabilities of the source symbols that yield this 

capacity.
9. Two binary symmetric channels, one with a transition probability of 0.1 and the other with a transition probability 

of 0.2 are connected in cascade. Determine the equivalent channel.
10. A continuous r.v. X is constrained to a peak magnitude of M so that –M < X < M. Show that the differential entropy 

h(X) is maximum when X is uniformly distributed between –M and +M.
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11. A continuous bandpass channel can be modeled as 
shown in Fig. P12.1. Assuming a signal power of 15.0 
W and a one-sided noise PSD of 10-4 W/Hz, plot the 
capacity of the channel as a function of the channel 
bandwidth.

12. A voice-grade channel of the telephone network has a 
bandwidth of 3.5 kHz

  (a) Calculate the information capacity of this telephone channel for a signal-to-noise ratio of 40 dB.
  (b)  Calculate the minimum signal-to-noise ratio required if information is to be transmitted through the channel at 

the rate of 9.6 kbps.

Multiple-Choice Questions 
1. A fair die is thrown and simultaneously a fair coin is also tossed. The die showed up 3 and the coin showed up 

‘head’. The information associated with these is
 (a) 1.08 bits (b) 0.58 bits (c) 3.585 bits (d) 1.82 bits

2. If 1 nit = k bits, k is equal to
 (a) 1.4428 (b) 0.69 (c) 1.359 (d) 0.735

3. The maximum entropy of a DMS with an alphabet size of 128 is
 (a) 4.852 bits (b) 7 nits (c) 2.107 bits (d) 7 bits

4. The maximum entropies of two DMSs S1 and S2 are in the ratio of 3 : 2. The ratio of the size of their alphabet is
 (a) 2 : 3 (b) 2.25 : 1 (c) 1.585 : 1 (d) 4 : 9

5. A discrete memoryless source produces four symbols whose probabilities are in the ratio of 0.25 : 0.5 : 0.75 : 1.0. 
The entropy of the source is

 (a) 1.8466 bits (b) 1.213 bits (c) 0.7853 bits (d) 2.2468 bits
6. The probabilities of occurrence of the output symbols of a binary memoryless source are in the ratio of 1 : 3. For 

the 3rd order extension of the source, the ratio of the probabilities of occurrence of the most frequent to the least 
frequent symbols is

 (a) 3 : 1 (b) 9 : 1 (c) 27 : 1 (d) 1 : 3
7. The transition matrix for a source producing three symbols A, B and C is as shown. The values of x, y and z are 

respectively

j

p(j | i) A B C

i A 0 Y 1/5

B X 1/2 0

C 1/2 2/5 Z

 (a) 
1 1 4

, ,
2 10 5

Ê ˆ
Á ˜Ë ¯

 (b) 
1 4 1

, ,
2 5 10

Ê ˆ
Á ˜Ë ¯

 (c) 
4 1 1

, ,
5 2 10

Ê ˆ
Á ˜Ë ¯

 (d) 
1 1 4

, ,
10 2 5

Ê ˆ
Á ˜Ë ¯

8. For given source alphabet and source statistics, an optimal code for the source is one that
 (a) has minimum average code length
 (b) has the property of unique decipherability and fixed code length
 (c) has both minimum average code length as well as unique decipherability
 (d) has 100% coding efficiency

9. A DMS is producing symbols xi, i = 0, 1, …, (M – 1) with probabilities p(xi), i = 0, 1, …, (M – 1). A particular 
binary code is giving code lengths ni for each xi in such a way that –( ) 2 in

ip x = . Then
 (a) the coding efficiency is 100%
 (b) the code gives minimum code length but not 100% coding efficiency

Fig. P12.11
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 (c) the code is not uniquely decipherable 
 (d) None of the above

10. Huffman coding gives
 (a) an equal length code which is unique (b) a variable length code which is unique
 (c) an equal length code which is not unique (d) a variable length code which is not unique

11. One of the following is a universal coding scheme. Which one is it?
 (a) Fano coding scheme   (b) Huffman coding scheme
 (c) Lempel–Ziv coding scheme (d) None of the above
 12. A binary symmetric channel has a transition matrix as shown. The transition probability and the channel capacity 

of the channel are respectively

0.5 0.5

0.5 0.5
P

È ˘
= Í ˙

Î ˚
 (a) (0.5, 1) (b) (0.5, 0) (c) (1, 0) (d) (0, 1)

13. Mutual information I(X ; Y) between two discrete random variables X and Y is given by
 (a) H(X) + H(Y) – H(X, Y)   (b) H(X) – H(Y | X)
 (c) H(Y) – H(X | Y)   (d) H(X) + H(Y) + H(X, Y)

14. For a continuous channel, the maximum rate of transfer of information, as given by the Shannon–Hartley law, is 
possible if and only if the input signal is

 (a) uniformly distributed   (b) Gaussian distributed 
 (c) Gaussian distributed and has a flat spectrum (d) a flat spectrum

15. With B >> Rb for operation to be in the Rb < C region, the Shannon limit of –1.6 dB represents the theoretical 
minimum required value of

 (a) the average transmitted power
 (b) the signal-to-noise ratio
 (c) (Eb / h) where Eb is the bit-energy and h is the one-sided PSD of the white noise on the AWGN channel
 (d) None of the above

16. For M-ary PCM, as M is increased, r, the bandwidth efficiency and the input signal-to-noise ratio (SR/NR) required 
for operation above the threshold, will respectively

 (a) increase, increase (b) increase, decrease (c) decrease, increase (d) decrease, decrease
 17. For M-ary PSK, as M is increased, bandwidth efficiency r and (Eb /h) required for error-free transmission, will 

respectively
 (a) increase, increase (b) increase, decrease (c) decrease, increase (d) decrease, decrease
 18. For M-ary FSK, as M is increased, bandwidth efficiency r and (Eb /h) required for error-free transmission, will 

respectively
 (a) increase, increase (b) increase, decrease (c) decrease, increase (d) decrease, decrease

Answers for Multiple-Choice Questions

 1. (c) 2. (a) 3. (d) 4. (b) 5. (a) 6. (c) 7. (b) 8. (c)
 9. (a) 10. (d) 11. (c) 12. (b) 13. (a) 14. (c) 15. (c) 16. (a)
 17. (a) 18. (d)

1. (c) 2. (a) 3. (d) 4. (b) 5. (a) 6. (c) 7. (b) 8. (c)
9. (a) 10. (d) 11. (c) 12. (b) 13. (a) 14. (c) 15. (c) 16. (a)

17. (a) 18. (d)
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13
“Until you value yourself, you will not value your time. Until you value your time, you will 

not do anything with it.”

M. Scott Peck (1936 – 2005)

American psychiatrist and author

Learning Objectives

After going through this chapter, students will be able to

 ■ understand the different ARQ systems and analyze their performance,

 ■ determine the output data rate and the error-correcting capability of a given linear block code,

 ■ describe the structure of a systematic block code and determine all the codewords and the dmin of the 

code (including cyclic codes),

 ■ use a knowledge of the block code employed, to decode a received word for all simple error patterns,

 ■ describe the operation of a given convolutional encoder, draw its state diagram and trellis diagram, 

and

 ■ apply Viterbi algorithm for maximum likelihood decoding of a given received word by making use of 

the trellis diagram of the convolutional encoder used.

13.1 INTRODUCTION

A high transmission rate and good reliability, i.e., low probability of error are the two important desirable 
features that one looks for in any digital communication system. The two parameters available to us for 
achieving the above twin objectives are the average signal power and bandwidth. For a given modulation 
scheme, as we had seen in Chapter 11, it is (Eb/h), the ratio of the bit-energy to the noise spectral density that 
determines the  bit-error probability, Pe, that can be achieved. Practical difficulties, however, may not permit 
one to increase Eb sufficiently to achieve the desired bit-error probability. In such situations, channel coding 
will be helpful.  Channel coding, as stated in Chapter 1, is intended to introduce controlled redundancy in 
order to provide some amount of error-detecting and correcting capability to the data being transmitted. This 
controlled redundancy helps in detecting erroneously decoded bits and makes it possible to correct the errors 
before passing on the data to the source decoder. From this, it should not be construed that channel coding 
will undo the data compression achieved by the source coder. It is always better to remove the  redundancy in 
the source output before introducing some controlled redundancy for achieving error correction capability. 
In some cases, channel coding may be used even for conserving transmitted power, for a given  probability 
of error. Channel coding employing error-correcting codes can, in fact, be used as an alternative technique to 
approach  Shannon limit. Channel coding may be used either for  error-detection or  error-correction, depending 
on the amount of redundancy introduced. Error-detecting codes are used in systems using Automatic Repeat 
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794 Communication Systems

Request (ARR). Use of channel coding, however, increases the  transmission bandwidth as the data rate is 
increased due to the redundancy introduced. It also increases the system complexity in the form of a channel 
encoder at the transmitter and a channel decoder at the receiver.

13.1.1 Types of Errors

Depending upon the nature of the noise, the bit stream passing through the channel is affected differently. The 
type of errors caused may be categorized into two types:
 1. Random errors: Noise affects the transmitted symbols independently, for example, deep space and 

satellite communication channels.
 2. Burst errors: Channel noise affects several consecutive bits and errors tend to occur in clusters, for 

example, HF links in which  multipath produces severe fading lasting over several bits.

13.2 ERROR-CONTROL STRATEGIES

Different error-control strategies can be employed in the transmission of digital data. These are:

13.2.1  Forward Error-Correction

It consists of a channel encoder at the transmitter and a channel decoder at the receiver, as shown in Fig. 13.1, 
and depends upon error-correcting codes.

Fig. 13.1 Block diagram of a system employing FEC

 The  FEC encoder and modulator are shown as separate units in the transmitter and correspondingly the 
detector and FEC decoder are also shown as two separate units in the receiver. However, in certain cases, 
where  bandwidth efficiency is of major concern, the functions of the FEC encoder and modulator at the trans-
mitter and those of the FEC decoder and the demodulator at the receiver are combined.
 The advantages and disadvantages in using FEC are as follows.
 1. No return path, or feedback channel is needed as in the case of  ARQ systems.
 2. The ratio of the number of information, or message bits to the total number of bits transmitted, defined 

as the information  throughput efficiency, is constant in FEC systems.
 3. A constant overall delay is obtained.
 4. On the other hand, the FEC systems need expensive input and output buffers for the encoders and 

decoders and sometimes buffer overflows cause problems.
 5. Only a relatively moderate information throughput is obtained.
 6. When very high reliability is needed, selection of an appropriate error-correcting code and imple-

menting its decoding algorithm may be difficult.
 7. Reliability of the received data is sensitive to channel degradations.
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13.2.2  Automatic Repeat Request (ARQ)

It requires a return path or feedback path from the receiver to the transmitter. It makes use of error-detection 
at the receiver. Broadly, there are two types of ARQ. These are:
 1.  Stop-and-wait ARQ
 2.  Continuous ARQ
In the case of ARQ systems, the  throughput efficiency is defined as the ratio of the average number of 
message bits accepted at the receiver per unit time to the number of message bits that would be accepted per 
unit time if the ARQ was not used.

1. Stop-and-wait ARQ: In the stop-and-wait ARQ, the transmitter transmits a codeword and then waits. On 
receiving the transmitted codeword, the receiver checks up whether there are any errors in it. If no errors are 
detected, the receiver sends an ‘ acknowledgement’ (ACK) signal through the return or feedback path. On 
receipt of an acknowledgement (ACK) signal, the transmitter transmits the next codeword. In case, one or 
more errors are detected in the received codeword, the receiver sends a  negative acknowledgement (NAK) to 
the transmitter, which, on receipt of the NAK, retransmits the same codeword that was sent earlier.

Disadvantage: A serious drawback of the stop-and-wait system is that the time interval between two 
successive transmissions is slightly greater than the round trip delay. So, in satellite channels, in which the 
round trip delay is quite large, use of stop-and-wait ARQ will very much degrade the transmission efficiency.

Advantage: These ARQ systems are very simple and so they are used on terrestrial microwave links as the 
round-trip delay is very small in these links.

2. Continuous ARQ: Continuous ARQ systems are of two types:
 (a)  Go back-N ARQ systems
 (b) Selective repeat ARQ systems
 (a) In a Go back-N ARQ system, the transmitter sends the message continuously without waiting for an 

ACK signal from the receiver. However, if the receiver detects an error in say the kth message, a NAK 
signal is sent to the transmitter indicating that the kth message is in error. The transmitter, on receiving 
the NAK signal, goes back to the kth  codeword and starts transmitting all the codewords from the kth

onwards.
   The Go back-N ARQ is quite useful in satellite links in which the  round trip delay is quite large. But 

buffering is generally its greatest drawback.
 (b) In a  selective repeat ARQ system, the transmitter goes on sending the messages one after the other 

without waiting for an ACK. In case the receiver detects an error in the kth codeword, it informs the 
transmitter indicating that the kth word is in error. The transmitter then immediately sends the kth word 
and then resumes transmission of the messages in a sequential order starting from where it broke the 
sequence in order to send the kth word.

   From the throughput efficiency point of view, the selective ARQ is the best among all the ARQ 
systems; but its implementation is expensive.

13.2.3 Combination of FEC and ARQ

If FEC alone is used, the codes may become too long for achieving the desired level of reliability and the 
system may become too complex and expensive.
 If ARQ alone is used, the throughput efficiency is reduced because of the retransmissions caused by error 
detection.
 So, a hybrid system employing both FEC and ARQ, in which the FEC system is contained within an ARQ 
system, may be used. Such an arrangement is shown in Fig. 13.2.
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Fig. 13.2 A  hybrid FEC-ARQ system

 As we have seen, the various types of ARQ systems have one good feature in common, i.e., that they need 
only  error-detection and not  error-correction. This makes the decoders relatively simple and inexpensive. 
However, FEC does have the advantage that it does not need a feedback path and this makes it useful in many 
applications despite the fact that its decoder is quite complex since it has to not only detect errors, but also 
correct them. But with the advent of VLSI technology and availability of microprocessors, it has become 
possible to implement these decoders relatively easily.
 For the rest of this chapter, we shall focus our attention on the study of different types of error-detecting 
and correcting codes, their properties, decoding algorithms, and the encoding and decoding techniques. In 
this context, the following comment is quite pertinent.
 Shannon’s channel coding theorem merely assures that codes do exist that enable one to transmit infor-
mation over a noisy channel with a probability of error that can be made arbitrarily small, provided the rate 
of transmission of information over the channel is less than the rate corresponding to its ‘ channel capacity’. 
But, unfortunately, it does not provide any clue, whatsoever on the way such codes can be designed.
 A code consists of a set of  codewords. Each codeword is a finite length sequence of code elements. If these 
code elements are drawn from the binary number field, which consists of only two digits – 0 and 1, the code 
is said to be a binary code. In this book, we will be discussing only binary codes. It is therefore necessary to 
be familiar with modulo-2 arithmetic since all arithmetic operations like addition, subtraction, multiplication 
and division in a binary number field will have to be as per this arithmetic.

13.3  MODULO–2 ARITHMETIC

The binary number field, unlike say, the real number field, has only two digits – 0 and 1. So the basic arith-
metic operations in this field proceed as follows:

1. Addition 0 0 0
0 1 1
1 0 1
1 1 0

+ =
+ =
+ =
+ =

 (i) Strictly speaking, we should use the notation ≈ for addition operation in a binary field. 

But, we will be using simply +, as it is more convenient to do so.

 (ii) Since 1 1 0+ = , it means that 1 1- = . It then follows that there is no difference between 

addition and subtraction operations in a binary field.

2. Multiplication: 0 0 0
0 1 0
1 0 0
1 1 1

¥ =
¥ =
¥ =
¥ =

3. Division: Division by 0 is not permitted
0 1 0
1 1 1

∏ =
∏ =

Note
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The reader might have noticed that modulo-2 addition is nothing but  EXCLUSIVE-OR operation and that 
multiplication of binary digits follows AND logic.

13.4 ERROR-CORRECTING CODES

Over the years, several  error-correcting codes have been found. However, all of them can be classified broadly 
as (i)  Block codes, and (ii)  Convolutional codes. Although both these types of codes introduce redundancy in 
order to provide error-correcting capability to the code, they differ in the way the redundancy is introduced 
and the presence or absence of memory in the encoder.
 The encoder of a block code takes successive segments of length k binary digits from the message bit 
stream. Using each segment of k message bits, it produces at its output a codeword of n binary digits where, n
is greater than k and is called the block length. The ( )n k-  additional bits introduced in the encoding process 
are called parity check bits and are generated from the k message bits by taking ( )n k-  different predeter-
mined linear combinations of them. These ( )n k-  different linear combinations define the mathematical 
structure of the code. The parity check bits, being related to the message bits, add redundancy to the message 
bit-stream and help in error correction. The ratio k/n is referred to as the  code rate, denoted by r and is such 
that 0 < r < 1.
 The  encoder of a convolutional code, on the 
other hand, operates on the message bit stream 
on a continuous basis by performing modulo-2 
discrete convolution on the message sequence 
as it passes through the encoder’s memory, the 
duration of which is equal to the duration of its own finite length impulse response. 
 In the next few sections, we will be discussing in more detail, about these two types of codes, taking up 
the block codes first.

13.5 BLOCK CODES

Of all the block codes, we shall discuss only about what are called the ‘ Linear block codes’. The linearity 
property of any code may be explained in a simple way by saying that a code is said to be linear if the sum 

(modulo-2 sum of corresponding bits) of any two of its code vectors result again in a code vector, i.e., the 
codewords of the code should obey the closure property with respect to modulo-2 addition of corresponding 
bits.
 Recall that we had earlier stated (see Fig.13.3) that the encoder of a block code maps each k-bit segment 
of the message bit stream into a codeword of n bits. If this mapping is such that the n-bit codeword consists 
of k unaltered message bits m0, m1, …, mk–1 and the remaining ( )n k-  are parity check bits b0, b1, …, bn–k–1

obtained by taking ( )n k-  different linear combinations of the k message bits, we call the resulting code as 
a ‘ systematic code’, or simply that the code is in a ‘systematic form’. Block codes in the systematic form 
are preferred because their implementation becomes much simpler. Hence, the codeword structure for a 
systematic code is as follows:

 Codeword C = (n – k) check bits : k message bits (13.1)

which means that if

0 1 2 1( , , , , )nc c c c c -= º  (13.2)

Then, for a systematic code,

( )

; 0,1, , ( 1)

; ( ), ( 1), , ( 1)
i

i
i n k

b i n k
c

m i n k n k n- -

= º - -ÏÔ= Ì = - - + º -ÔÓ
 (13.3)

Fig. 13.3 An encoder for a block code
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A segment of k  message digits (binary) is taken each time by the encoder to produce an n-length  codeword. 
Since there can be 2k distinct k-length binary sequences, it follows that there should correspondingly be 2k

distinct codewords. The full set of 2k distinct codewords corresponding to the 2k possible message sequences, 
is said to be constituting the (n, k) block code. In fact, these 2k code vectors, each of length n, form a  subspace 
of the n-dimensional vector space formed by the set of all possible 2n vectors, each of length n having entries 
from the binary number field. Since there can be 2n distinct n-length binary sequences, it means that out of 
these 2n possible n-length sequences, only 2k of them are legitimate codewords. The remaining (2 2 )n k-
n-length sequences are not codewords. Since the transmitter transmits the output of the encoder (perhaps after 
carrier modulation), only legitimate codewords are transmitted. But channel noise might affect one or more of 
the bits in the transmitted codeword. So unless the channel noise has transformed the transmitted codeword 
into another legitimate codeword, the received n-length sequence will be one of those (2 2 )n k-  sequences 
of length n which are not codewords. The receiver then knows that the received word is erroneous and the 
problem is only to find out which particular codeword was transmitted.

13.5.1  Generator Matrix

At this stage, it is necessary for us to adopt compact notation for representation of the message sequence, 
codewords, etc. so that the equations that we will be writing henceforth will not be too unwieldy. Hence, we 
shall use the following row-vector notation for these sequences:

m 0 1 1
(length )

Message sequence: ( , , , ); a (1 ) row vectork
k

m m m k-= º ¥

0 1 1
(length – )

Parity bit sequence : ( , , , ); a (1 ) row vectorn k
n k

b b b n k- -= º ¥ -b

0 1 1
(length )

Code word: ( , , , ); a (1 ) row vectorn
n

c c c n-= º ¥C  (13.4)

So, using Eq. (13.1), we may represent C as

[ ]= MC b m  (13.5)

Since each parity check bit bi is a distinct linear combination of the  message bits, let us write
th

0, 0 1, 1 1, 1check bit

                                  0,1, 2, , ( 1)
i i i k i kb i p m p m p m

i n k

- -= = ◊ + ◊ + º + ◊
= º - -  (13.6)

Hence, Eq. (13.6) represents a set of k linear equations all of which together may be conveniently represented 
as a single matrix equation as follows.

0,0 0,1 0, 1

1,0 1,1 1, 1
0 1 1 0 1 1

1,0 1,1 1, 1 ( )

( , ,…, ) [ , , , ]

n k

n k

k n k

k k k n k
k n k

p p p

p p p
m m m b b b

p p p

- -

- -
- - -

- - - - - ¥ -

È ˘
Í ˙
Í ˙ = ºÍ ˙
Í ˙
Í ˙Î ˚

L

L

M M M

L

 (13.7)

or more compactly as

( )[ ]k n kP ¥ - =m b  (13.8)
where

0,0 0,1 0, 1

1,0 1,1 1, 1
( )

1,0 1,1 1, 1

[ ]

n k

n k

k n k

k k k n k

p p p

p p p
P

p p p

- -

- -
¥ -

- - - - -

È ˘
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙Î ˚

L

L

M M M

K

 (13.9)
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Since as per Eq. (13.5),

[ ]= MC b m

\ we may write
[ ] [ ]kP I= =MC m m G  (13.10a)

where [ ]kP I= DMG  generator matrix (13.10b)

C is a 1 ¥ n row vector, m is a 1 ¥ k row vector, [P] is the k ¥ (n–k) matrix, i.e., the  parity check matrix, and 
[Ik] is a k ¥ k  identity matrix as given below

1 0 0

0 1 0
[ ]

0 0 1

k k k

k k

I ¥

¥

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
Î ˚

L

L

M M M

K

 (13.11)

The ( )k n¥  matrix [ ]kP IM  of Eq. (13.10) is called the  generator matrix [G] of the code because when it is 
premultiplied by the (1 ¥ k) message bit row vector, it gives the (1 ¥ n) codeword corresponding to that 
message vector. So, by using each one of the 2k possible (1 ¥ k) message vectors, we can generate all the 2k

valid code vectors of the (n, k) code by using this generator matrix. Thus,

[ ] [ ]k n k k nG P I¥ ¥= = MC m m  (13.12)

k[G] [P I ]D M  here because we have assumed that in the systematic (n, k) block code, each 

code vector is of the form [ m]= MC b  (see Eq. (13.5)). On the other hand, if we assume that 

= Mm b[ ]C , then [G] of the systematic code will be of the form kG [I P]= M .

The k rows of the generator matrix G are linearly independent in the sense that the linear combination of no 
two of its rows will result in any of the other rows. (In fact, these k linearly independent rows of G matrix 
form a  basis set for the k-dimensional  subspace formed by the 2k  code vectors. This in turn means that the 
rows of the G matrix are also codewords.) The matrix G is therefore said to be in the  canonical form.

Example 13.1 A binary linear block code has a generator matrix

1 1 0 1 1 0 0

1 1 1 0 0 1 0

0 1 1 1 0 0 1

È ˘
Í ˙= Í ˙
Í ˙Î ˚

G

Determine all its codewords.

Solution The generator matrix is a k ¥ n matrix. Hence in this code, k = 3 and n = 7. Since it is a binary 
code and k = 3, there are 8 possible distinct message sequences of length 3 and these are:

1 1 1 1 7

2 2 2

3 3 3

4 4 4

5 5 5

(0, 0, 0) [ ] [0, 0, 0][ ] [0, 0,…, 0]

(0, 0,1) [ ] [0, 0,1][ ] [0,1,1,1, 0, 0,1]

(0,1, 0) [ ] [0,1, 0][ ] [1,1,1, 0, 0,1, 0]

(0,1,1) [ ] [0,1,1][ ] [1, 0, 0,1, 0,1,1]

(1, 0, 0) [ ]

G G

G G

G G

G G

G

¥= \ = = =
= \ = = =
= \ = = =
= \ = = =
= \ =

m C m

m C m

m C m

m C m

m C m

6 6 6

7 7 7

8 8 8

[1, 0, 0][ ] [1,1, 0,1,1, 0, 0]

(1, 0,1) [ ] [1, 0,1][ ] [1, 0,1, 0,1,1,1]

(1,1, 0) [ ] [1,1, 0][ ] [0, 0,1,1,1,1, 0]

(1,1,1) [ ] [1,1,1][ ] [0,1, 0, 0,1,1,1]

G

G G

G G

G G

= =
= \ = = =
= \ = = =
= \ = = =

m C m

m C m

m C m

Note
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 As stated earlier, the k rows of the G matrix are indeed k of the 2k code vectors. It may be 

checked that C8 is row one of G, C3 is row 2 of G, and C2 is the 3rd row of G.

Example 13.2 An  (n, k) block code has a  generator matrix G. Using G, show that the sum of any two 
codewords results in another codeword.

Solution Let m1 and m2 be two arbitrary distinct message sequences. Then the corresponding codewords 
C1 and C2 are given by

and
1 1

2 2

[ ]

[ ]

G

G

=
=

C m

C m

Hence, 1 2 1 2( )[ ]G+ = +C C m m  (i)

Now, m1 is a binary message sequence of length k.
m2 is another binary message sequence also of length k.

\ when m1 and m2 are added using  modulo-2 arithmetic, we get another binary sequence which is also of 
length k and which therefore must be one of the 2k possible message sequences of length k.

Let 1 2 i+ =m m m  where 1 £ i £ 2k

Then from Eq. (i), 1 2 1 2( )[ ] [ ]i iG G+ = + = =C C m m m C

where Ci is the codeword corresponding to the k-length message sequence mi Œ (the set of 2k possible message 
sequences).
 Hence, the sum of any two codewords gives another valid codeword.

13.5.2  Parity Check Matrix

We have already seen that the k ¥ n generator matrix [G] completely characterizes a linear (n, k) block code 
in the sense that knowledge of [G] enables us to determine all the 2k  codewords of the code. This fact is clear 
from Eq. (13.12) and from Example 13.1.
 Apart from [G] matrix, there is another matrix, [H] which also completely characterizes the code. This 
H-matrix is called the  parity check matrix. As can be seen from Eq. (13.6), each one of the parity check bits is 
a linear combination of the message digits. Thus, in an (n, k) block code, the (n–k) parity check digits can be 
determined for any arbitrary set of k message digits, provided we have (n–k) parity-check equations, as clearly 
exemplified by Eq. (13.7). Thus, the parity-check equations give another way of characterizing a block code.
 Let us consider a (n–k) ¥ n matrix H defined as:

M( )[ ] T
n k n n kH I P- ¥ -È ˘D Î ˚  (13.13)

Then

M L ( )[ ][ ]

T

T T T T
n k n k k

k

P

H G I P I P P I

I

- -

È ˘
Í ˙È ˘= = ◊ + ◊Í ˙Î ˚
Í ˙Î ˚

 (13.14)

Recalling that PT is of size (n–k) ¥ k we find that both the matrix multiplications are quite compatible. Hence, 
even though PT is rectangular, it does not matter and each of the above matrix multiplications will yield PT.

i.e., ( ) ( )[0]T T T T T
n k k n k kI P P I P P- - ¥◊ = ◊ + ◊ = + =H G  (13.15)

Because we have to add the corresponding entries of the two matrices using modulo-2 arithmetic and since 
the corresponding entries are either both zero, or both 1, all the entries of the resultant ( )n k k- ¥  matrix are 
zero, i.e., we get an ( )n k k- ¥ null matrix.

Note
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Now, taking the transposes of the matrices on the two sides of Eq. (13.15), we get

( )[0]T
k n k¥ -◊ =G H  (13.16)

Equation (13.12) says that

[ ]G=C m

Post multiplying by HT on both sides, we get

( ) 1 ( )[ ] [0] [0]T T
k n k n kG ¥ - ¥ -◊ = = =C H m H m

\ T◊ =C H 0  (13.17)

The matrix [H](n–k) ¥ n is called the  parity-check matrix. The reason for calling it as parity check matrix may 
be seen from the following.
Equation (13.17) may also be written as

T◊ =H C 0  (13.17a)

Since

0,0 1,0 1,0

0,1 1,1 1,1

0,2 1,2 1,2

0, 1 1, 1 1, 1 ( )

1 0 0 0

0 1 0 0

[ ] [ ] 0 0 1 0

0 0 0 1

k

k

T
n k k

n k n k k n k
n k n

p p p

p p p

H I P p p p

p p p

-

-

- -

- - - - - - - - ¥

È ˘
Í ˙
Í ˙
Í ˙= = Í ˙
Í ˙
Í ˙
Í ˙Î ˚

L L

L L

M L L

M M M M M M M

L L

 (13.18)

0 1 – –1 – – 1 –1[ … … ]T T
n k n k n k nc c c c c c+=C  (13.19)

But from Eqs. (13.4) and (13.5), we may rewrite the above as

– – –0 1 1 0 1 1[ ]T T
n k nb b b m m m= º ºC  (13.20)

Substituting in Eq. (13.17a) using Eq. (13.20) for CT and Eq. (13.18) for [H]:

0,0 1,0 1,0 0

0,1 1,1 1,1 1

20,2 1,2 1,2

10, 1 1, 1 1, 1

1 0 0 0

0 1 0 0

[0]0 0 1 0

0 0 0 1

k

k

T
k

kn k n k k n k

p p p b

p p p b

bp p p

mp p p

-

-

-

-- - - - - - -

È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙◊ = =Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Î ˚Î ˚

L L

L L

L L

MM M M M M M M

L L

H C  (13.21)

This gives ( )n k-  equations, which are actually parity-check equations. To see this, let us take the first 
equation:

0 – –1 0,0 0 1,0 1 1,0 –10 0 … 0 … 0n k k kb b p m p m p m-+ + + + + ◊ + ◊ ◊ =

fi 0 0 0,0 1 1,0 –1 1,0… k kb m p m p m p -= ◊ + + + ◊  (13.22)

which is the parity check equation that gives the parity check bit b0. Like this, these (n – k) equations give the 
(n – k)  parity check bits (b0, b1, b2, …, bn–k–1) of the  code vector; the remaining elements of the code vector 
being the k unaltered  message bits (m0, m1, m2, …, mk–1) as given in Eq. (13.20).

13.5.3  Dual Code

Equation (13.16) says that G ◊ HT = 0

 Transposing both sides,  T◊ =G H 0  (13.23)
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From Eq. (13.23), it is clear that we can visualize a code for which the H-matrix is a  generator matrix and the 
G-matrix is the  parity-check matrix. This (n, n – k)  linear block code is called the  dual of the original (n, k)
block code.

While the G-matrix of a linear block code is useful in generating the code vectors (as output of 

the channel encoder at the transmitter), the H-matrix is useful at the decoder of the receiver. 

Since Eq. (13.17) is satisfied by C if and only if it is a legitimate code vector, the decoder of the 

receiver uses the received vector r in Eq. (13.17) in the place of C to check whether r satisfies 

that equation. If it does, then it is a valid code vector. If it does not, then the receiver decides 

that one or more bits of the received vector are erroneous.

Example 13.3 Consider a (6, 3) generator matrix

1 0 0 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0

È ˘
Í ˙= Í ˙
Í ˙Î ˚

M

M

M

G

Find (a) all the  code vectors of this code, (b) the parity-check matrix of this code, and (c) the  minimum 
weight of this code. (JNTU, Nov., 2009)

Solution As pointed out in the note under Eq. (13.12), here the structure of the given [G] matrix implies 
that the code vectors are of the form

[ ]m b= MC

(a) Since G is a k ¥ n matrix for an (n, k) block code, from the given G, we find that k = 3 and n = 6. Since k
= 3, there will be 2k = 8 codewords corresponding to the 2k = 8 possible message sequences. These message 
sequences are (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0) and (1, 1, 1). If a message 
sequence is (m0, m1, m2), then we know that the code vector corresponding to this message sequence is given 
by

0 1 2 3 4 5 0 1 2

1 0 0 0 1 1

( , , , , , ) [ , , ] 0 1 0 1 0 1

0 0 1 1 1 0

c c c c c c m m m

È ˘
Í ˙= = Í ˙
Í ˙Î ˚

M

M

M

C

\ 0 1 2 3 4 5 0 1 2 1 2 0 2 0 1( , , , , , ) [ , , , , , ]c c c c c c m m m m m m m m m= = + + +C

For the message sequence 0 (0, 0, 0)=m \ 0 [0, 0, 0, 0, 0, 0]=C

For m1, which is (0, 0, 1), m0 = 0, m1 = 0 and m2 = 1.

\
1 [0, 0,1,1,1, 0]=C

In a similar way, by finding values of m0, m1 and m2 for each of the 8 message sequences and then substituting 
those values in the above expression for C, we can get the remaining four code vectors, C2, C3, C4 and C5,
C6, and C7

2 3

4 5

6 7

[0,1, 0,1, 0,1]; [0,1,1, 0,1,1]

[1, 0, 0, 0,1,1]; [1, 0,1,1, 0,1]

[1,1, 0,1,1, 0]; [1,1,1, 0, 0, 0]

= =
= =
= =

C C

C C

C C

(b) Since [ ]kI P= MG  for the given matrix, correspondingly the parity-check matrix [H] is given by [ ]T
n kP I -M .

From the given G matrix, we find that

Note
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\

( )

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

0 1 1 1 0 0

[ ] 1 0 1 0 1 0

1 1 0 0 0 1

T
k n k

n k n

P P

H

¥ -

- ¥

È ˘ È ˘
Í ˙ Í ˙= \ =Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚
È ˘
Í ˙= Í ˙
Í ˙Î ˚

M

M

M

(c) The  minimum weight of a code is equal to the minimum number of 1s in any code vector among all the 
non-zero code vectors of the code. So, excluding C0, among the other code vectors, we find that C1, C2, C4

and C7 have three 1’s. Hence, the minimum weight of the code is 3.

Example 13.4 A parity check encoder appends a single  even parity bit b to each block of k message 
bits (m1, m2, …, mk). If k = 3 (a) determine the 2k possible codewords of this code, (b) determine its G and 
H matrices, (c) show that C◊HT = 0, and (iv) show that for a single error, the received vector r is such that 
r◊HT = 1.

Solution 
(a) Since k = 3, there will be 8 possible message blocks and correspondingly 8 codewords. The 8 message 
bits, the corresponding check bit for each and the resulting code vectors are all listed in the following table:

Message bits Check bit Codeword

m0 m1 m2 b0

c
0
   c

1
   c

2
   c

3

m0 m1 m2 b0

0  0  0 0 0  0  0  0 

0  0  1 1 0  0  1  1 

0  1  0 1 0  1  0  1 

0  1  1 0 0  1  1  0 

1  0  0 1 1  0  0  1 

1  0  1 0 1  0  1  0 

1  1  0 0 1  1  0  0 

1  1  1 1 1  1  1  1 

(b) Hence, for this code, k = 3 and n = 4. We know that the coefficient matrix, P is of size ( )k n k¥ - , i.e., 
3 ¥ 1 – a column vector with three entries. We know that

( )[ ]k n kP ¥ - =m b

i.e.,
0

0 1 2 1 0 0 0 1 1 2 2

2

[ , , ] Parity bit

p

m m m p b m p m p m p

p

È ˘
Í ˙ = fi ≈ ≈ =Í ˙
Í ˙Î ˚

Since even parity is needed, we should have

0 1 2
0 0 1 1 2 2

0 1 2

0 if 0

1 if 1

m m m
m p m p m p

m m m

≈ ≈ =Ï
≈ ≈ = Ì ≈ ≈ =Ó

 (i)

Since multiplication by 1 is not going to change the value of m0, m1, and m2, it follows that

0 1 2 1p p p= = =
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will satisfy the condition stipulated in Eq. (i),

\ ( )

1 1 0 0 1

[ ] 1 and [ ] [ ] 0 1 0 1

1 0 0 1 1
k n k k n kP G I P¥ - ¥

È ˘ È ˘
Í ˙ Í ˙= = =Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

M

To find the H-matrix, we know that

( )[ ] [ ]T
n k n n kH P I- ¥ -= M

\ [ ] [1 1 1 1] [1 1 1 1]H = =M

(c) To show that C◊HT = 0

0 1 2 0 0 1 2 0

1

1
[ ]

1

1

T
m m m b m m m b

È ˘
Í ˙
Í ˙= = ≈ ≈ ≈
Í ˙
Í ˙
Î ˚

CH

Because the check bit b0 is appended to m0, m1, m2 to get even parity, it means that 0 1 2 0 0m m m b≈ ≈ ≈ =
\ T =CH 0

(d) To show that r ◊ HT = 1 for a single error
A single error will upset the even parity and so

r ◊ HT = 0 1 2 1m m m b≈ ≈ ≈ =
where 0 1m m= +¢  since m0 is assumed to be the digit affected, i.e., has been changed from 0 to 1 or 1 to 0, 
which is equivalent to adding 1 to m0.

Example 13.5 For a certain code, the generator matrix G is

1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 1 1 0 0 1 0

1 0 1 0 0 0 1

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
Î ˚

M

M

M

M

G

Find all the codewords of its dual code.

Solution For the given code, we find (from G) that k = 4 and n = 7

Also,

1 1 0

0 1 1

1 1 1

1 0 1

P

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
Î ˚

\ M( )[ ] T
n k n n kH I P- ¥ -È ˘= Î ˚

\
1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1

È ˘
Í ˙= = ¢Í ˙
Í ˙Î ˚

H G

where G¢ is the  generator matrix of the dual code.
This is a (n¢, k¢) code where 7n =¢  and 3.k =¢
Since 3,k =¢  there are 23 = 8 possible distinct message sequences each of length 3. These are (0, 0, 0), 
(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0) and (1, 1, 1). Now, using the relation [ ]= ¢C m G ,
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where m is a message sequence, we can find out all the 8 code vectors corresponding to the eight message 
sequences. For instance, if the code vector corresponding to the message sequence (0, 1, 1) is needed, we 
have to simply add the second and third rows of the G¢. Thus,
 Message sequence code vector
 (0, 1, 1) 0, 1, 1, 1, 0, 0, 1
The other code vectors can be found out in a similar way.

Example 13.6 Given the H matrix as

1 0 1 1 0 0

1 1 0 0 1 0

0 1 1 0 0 1

È ˘
Í ˙= Í ˙
Í ˙Î ˚

H

Determine all the  codewords beginning with 1 1 1 …

Solution From the given  H matrix, n–k = 3 and n = 6 \ k = 3.

Also, since [ ] [ ]T
n kH P I -= M ,  we have 

1 0 1

1 1 0

0 1 1

T
P

È ˘
Í ˙= Í ˙
Í ˙Î ˚

\
1 0 0 1 1 0

[ ] 0 1 0 0 1 1

0 0 1 1 0 1
kI P

È ˘
Í ˙= = Í ˙
Í ˙Î ˚

MG

Since 0 1 2 0 1 2[ ]m m m b b b= MC , for the codeword beginning with 111, the message sequence = (1, 
1, 1) = m

Also

1 0 0 1 1 0

[1 1 1] 0 1 0 0 1 1

0 0 1 1 0 1

È ˘
Í ˙= = Í ˙
Í ˙Î ˚

C mG

   = Sum of all the three rows of the G matrix

\ [1 1 1 0 0 0] =C

13.5.4  Repetition Code

The repetition codes are the simplest linear block codes used for error correction. The coding simply consists 
of transmitting each message digit n times. Of these, (n–1) digits are  parity check digits used for error-
correction and the remaining one is the message digit. Since the message digit can be either a 1 or a 0 (in 
binary transmission), it follows that in repetition codes, the codewords will be either all zero, or all one, type. 
Since k = 1, the repetition code which transmits the same message bit n times, constitutes an (n, 1) block code. 
The  code rate for an (n, 1) repetition code is

1
bits/symbolr

n
=

Decoding of a received sequence simply consists of deciding on the basis of majority. If the transmitted 
codeword is n-zeros corresponding to a message digit ‘zero’, it is extremely unlikely that the noise on the 
channel would convert a majority of the 0s into 1s. So, if the majority of digits of the received sequence are 
decoded as 1s, the decoder decides that the transmitted message digit was a 1 and if the majority of the digits 
are 0s, it decides that the message digit was a 0.

Repetition codes possess good error correction capacity provided the channel noise is random and if Pe

is low. However, their code rate is generally very low.
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Example 13.7 Determine (a)  code rate, (b) the  generator matrix G, (c) the  parity-check matrix H, and 
(d) the coefficient matrix, P for a (3, 1) repetition code.

Solution Since it is a (3, 1) code, n = 3 and k = 1.

Hence, the code rate 
1 1

bits/symbol
3n

= =

The vector m = 1, i.e., a row vector of length 1.
The vector b = [ 1 1 ], a row vector of length 2.
From Eq. (13.7) it then follows that [P] = [1 1] = coefficient matrix.

Now, 1 3[ ] [ ] [111]k n k k n k nG P I¥ ¥ ¥ = ¥= =M

and
M

M
M

( )

1 0 1
[ ]

0 1 1
T

n k n n kH I P- ¥ -
È ˘È ˘= = Í ˙Î ˚ Î ˚

Example 13.8 Data stream encoded using a (3, 1)  repetition code, is transmitted over a binary 
symmetric channel having a  transition probability of P = 10-2. Determine the  probability of error Pe of the 
symbols received at the destination.

Solution  Channel encoder produces codewords (0, 0, 0) and 
(1, 1, 1) respectively for message binary digits 0 and 1, respec-
tively. Irrespective of whether a (0, 0, 0) is transmitted, or a 
(1, 1, 1) is transmitted, since there are 3 digits in the codeword, the 
length-3 sequence at the output of the BSC will have to be one of the 
following eight length-3 sequences. Let us assume the message digit 
is 1 and that consequently the  codeword given as input to the BSC is 
(1, 1, 1).

Message bit Encoded

word

Received

Word

Decoded

word

Received

digit

( 0 0 0 ) ( 0 0 0 ) 0

( 0 0 1 ) ( 0 0 0 ) 0

( 0 1 0 ) ( 0 0 0 ) 0

1 (1, 1, 1) ( 0 1 1 ) ( 1 1 1 ) 1

( 1 0 0 ) ( 0 0 0 ) 0

( 1 0 1 ) ( 1 1 1 ) 1

( 1 1 0 ) ( 1 1 1 ) 1

( 1 1 1 ) ( 1 1 1 ) 1

Since the message bit is 1, an error is said to have taken place if the received bit is a 0. As can be seen from 
the above table, this can happen if the decoded word is (0 0 0). The decoded word would be (0 0 0) if the 
received word is either all zeros, or if two of the three digits are 0s. That is, when either all three digits that are 
transmitted are received erroneously, the probability of which is p3, or two of the digits are received errone-
ously and the third is received correctly, the probability of which is -2 (1 )p p . Since the latter case can arise 
if the received word is either (0 0 1) or (0 1 0) or (1 0 0), the probability of the received digit being erroneous 
is given by

Fig. 13.4 A  binary symmetric channel
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Probability of a message bit 1 being received as a 0 after decoding = + -3 23 (1 )p p p .
From the symmetry of the problem, the problem of a message bit 0 being received as 1 is also the same.
\ assuming that the message bit is a 1 or a 0 with equal probability, the average probability of error, Pe is 
given by
  Pe =  (Problem of message bit being 1) ¥ (Problem of receiving it as a 0) 

+ (Problem of message bit being 0) ¥ (Problem of receiving it as a 1)
3 2 3 2

3 2

0.5 3 (1 ) 0.5 3 (1 )

3 (1 )

p p p p p p

p p p

= Î + - ˚ + Î + - ˚

= + -
Substituting p = 10–2, we get

-= ¥ 42.98 10eP

13.5.5  Minimum Distance dmin of a  Linear Block Code

Let C1 and C2 be two distinct binary sequences of the same length. Though they are of the same length, 
since they are two distinct sequences, their digits in corresponding locations will be different in one or more 
locations. We may then use the number of locations in which they differ as a measure of the distance between 
the two sequences or vectors. Accordingly, we define the Hamming distance as follows:

Hamming distance The  Hamming distance d(C1, C2) between two  code vectors having the same 
number of elements is defined as the number of locations in which their respective elements differ.

Hamming weight w(c) of a code vector The  Hamming weight of a code vector is defined as the 
number of non-zero elements in it.
 Obviously, the Hamming weight of a code vector will be the same as the Hamming distance between that 
code vector and the all-zero code vector of the same length.

13.5.6 Minimum Distance dmin of a Code

The minimum distance dmin of a linear block code is the smallest Hamming distance between any two code 

vectors of the code

 We know that when two binary code vectors of a linear block code are added (same as subtraction because 
of modulo-2 arithmetic) the resulting binary sequence also will be a code vector since the code is a linear 
code. We also know that this resultant code vector will have 1s only in those positions in which the elements 
differ. The number of positions in which they differ is the Hamming distance between them; but since the 
resultant code vector has 1s only at those locations, it is also equal to the Hamming weight of the resultant 
vector. Thus, we may state that the minimum distance dmin of a linear block code is the minimum value of 

the Hamming weight among all the non-zero code vectors of the code.
 The value of dmin of a linear block code depends on the structure of the code and it can be shown (see 
Example 13.9) that dmin of a linear block code is also equal to the minimum number of rows of the HT matrix 
which, when added will result in the all-zero vector.

Example 13.9 Show that dmin of a linear block code is equal to the minimum number of the rows of 
the HT matrix which will add up to zero.

Solution Consider a binary linear (n, k) block code. We know that its  parity-check matrix H is of size 
(n – k) ¥ n. So, let us represent this matrix as follows:

- ¥ -=( ) 0 1 2 1[ ] [ … ]n k n nH h h h h
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where hj, j = 0 to (n – 1) are the n columns of the H matrix. So, we may write [ ] ( )
T

n n kH ¥ -  matrix as follows:

- -

- -
¥ -

- - - - -

È ˘
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙Î ˚

K

K

M M M

K

0,0 0,1 0, 1

1,0 1,1 1, 1
( )

1,0 1,1 1, 1

[ ]

n k

n kT
n n k

n n n n k

h h h

h h h
H

h h h

Let C = (c0, c1, …, cn–1) be the non-zero code vector with minimum  Hamming weight. We know that the 
elements c0, c1, etc., are either 0 or 1, and that the Hamming weight represents the number of 1s in C. We 
know that when we consider

- -

- -
- ¥ -

- - - - -

È ˘
Í ˙
Í ˙= º =Í ˙
Í ˙
Í ˙Î ˚

K

K

M M M

K

0,0 0,1 0, 1

1,0 1,1 1, 1
0 1 1 1 ( )

1,0 1,1 1, 1

( , , , ) [0]

n k

n kT
n n k

n n n n k

h h h

h h h
c c c

h h h

CH

the resulting 1 ¥ (n–k) vector is the sum of those rows of HT matrix which correspond to the location of 1s in 
the code vector C. For instance, if C has 1s only in the ith and mth positions, then the 1 ¥ (n–k) vector obtained 
by taking CHT is the sum of the ith and mth rows of the HT matrix. Since dmin corresponds to the minimum 
Hamming weight among all the non-zero code vectors, it follows that dmin equals the minimum number of 
rows of HT matrix that would add up to zero vector.

13.5.7 Syndrome and Its Properties

The transmitter transmits only codewords. But owing to channel noise, what is received may or may not be 
a codeword and even if it is, it may not be the same codeword which was transmitted. This is because the 
noise can change one or more of the n binary digits of a transmitted codeword. We know that if we add a 1 
to a binary digit, it is changed – a 0 to a 1 and a 1 to a 0. So, suppose an n-length codeword is affected in two 
positions. We can model this change as one of adding an n-length vector e to the transmitted code vector C,
where e has 1s only at those positions in which the code vector is affected and zeros everywhere else. So, if 
r is the resultant received vector.

r = C + e (13.24)
where e = (e0, e1, …, n–1)

with

th1 1 if an error has occurred in the error-position

0 otherwise
i

i
e

ÏÔ= Ì
ÔÓ

 (13.25)

In Eq. (13.24), the vector e is called the  error-pattern, since its structure depends on the error locations.
 From Eq. (13.17), we know that CHT = 0 if and only if C is a code vector. So, if C is not a code vector, 
CHT will not be an all-zero (n–k) length row vector. Suppose we now consider

= T
S rH  (13.26)

where r is the n-length received vector, and the (n–k) row vector S is what is called the ‘ Syndrome’. The word 
syndrome actually means ‘a group of symptoms that are characteristic of a specific disease’. The appropri-
ateness of this name given to the vector S will be evident in the discussion that follows.

It must be noted that while S π 0 implies that r is not a code vector and that there are some 

errors, S = 0 does not automatically imply that there are no errors. It only implies that r is 

a codeword; but it may or may not be the codeword that was transmitted. The transmitted 

codeword might have been transformed into another  codeword.

Note
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Error-Control Coding 809

 There are certain properties of this ‘ syndrome’ which are extremely useful in understanding the way the 
 error correction is done. These properties of the syndrome are:

Property 1: The syndrome is independent of the transmitted code vector. It depends only on the  error 
pattern.

)

=
= + = +(

T

T T T

S rH

C e H CH eH

But CHT = 0 since C is a codeword.

\ = T
S eH  (13.27)

which shows that the syndrome S is independent of which  codeword has been transmitted and that it depends 
only on the error pattern e.

Property 2 Error patterns differing by a codeword will have the same syndrome. Suppose e1 is an error 
pattern and e2 = e1 + C where C is any codeword. Then the syndrome corresponding to the error pattern e1 is

1 1
T=S e H

The syndrome of the error pattern e2 is given by

= = + = + = ◊ =2 2 1 1 1 1( )T T T T T
S e H e C H e H CH e H S

\ =2 1S S

Thus, error patterns differing by a codeword have the same syndrome.
Cosets Suppose e is some arbitrary error pattern.

Let D +1 ie e C ; i = 0, 1, 2, …, (2k–1) (13.28)

(Since there are 2k code vectors for an (n, k) code.)
Then, we know from property 2 of the syndromes that all the 2k error patterns, eis of Eq. (13.28) have the 
same syndrome. This set of 2k error patterns defined by ei, i = 0, 1, 2, …, (2k–1) in Eq. (13.28), having a 
common syndrome, is said to form a coset of the code.

Definition A coset of an (n, k) block code is a set of 2k error patterns, characterized by a unique syndrome 
for all its elements.
 We know that we have altogether 2n distinct error patterns. If a set of 2k error patterns form a coset with 
a common syndrome, then the number of such cosets that we can have for an (n, k) linear block code, is 

-∏ =2 2 2n k n k cosets.
\ number of cosets = 2n–k (13.29)

Error pattern Although the syndrome is determined entirely by the  error pattern and the structure of the 
code (i.e., H), it is not possible to uniquely determine the error pattern from knowledge of the syndrome and 
the parity-check matrix, H. This is because, the relation

¥ -¥ - ¥
=

( )(1 ) (1 )

T

n n kn k n
S e H

represents only a set of (n – k) linear equations, each equation involving one of the (n – k) syndrome elements 
on one side and a linear combinations of the error pattern elements and parity check bits on the other side.
 Since we have 2n unknowns – the error pattern elements, i.e., e0, e1, …, -2 1ne , and only 2n–k linear equations, 
the set of equations is under-determined. So, it is not possible to solve the equations and get a unique solution 
for e, the error pattern.

13.5.8 dmin and Error-Correcting Capability of the Code

If the error pattern can be exactly determined from the syndrome of the received vector, we can just add that 
error pattern to the received vector and get the code vector that was actually transmitted. But, as pointed out 
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810 Communication Systems

earlier, exact determination of the  error pattern is not possible. So, some other decoding strategy which will 
enable us to pick the best possible codeword from knowledge of r has to be adopted. The ‘ minimum distance 

strategy’ gives such an approach.
 If the received vector, r, has a non-zero syndrome, certainly r is not a  codeword and the transmitter would 
not have transmitted it. To find the codeword that is most likely to have been transmitted, in the minimum 
distance strategy, we pick that codeword Ci which is closest to the received vector r. In other words, that Ci

for which d(Ci, r) is the least. It can be shown that provided dmin, the minimum distance between any two 
codewords of the code is (2t + 1), this approach enables us to detect and correct all error patterns whose 
 Hamming weight w(e) is less than or equal to t, i.e., any received vector r having at the most t errors can be 
correctly decoded provided dmin is at least (2t + 1).
 Although it is by no means a proof for the above assertion, the following geometrical interpretation 
provides a justification for it. A code vector, being an n-tuple, is represented as a point in an n-dimensional
space. Let Ci and Cj be two code vectors. An error pattern with t errors is also an

Fig. 13.5 Illustration of conditions for correct decoding

n-tuple and since it has only t number of 1s, its Hamming weight is t. Imagine that we have circles drawn with 
centers at Ci and Cj and radii equal to t. If Ci is the code vector that is transmitted and if the received vector r
is having t or less number of errors, the point r corresponding to the received vector will be within the circle 
of radius t drawn with center at Ci , as shown. Then d(Ci, r) < d(Cj, r) if the two circles are non-intersecting as 
shown in (a), i.e., if d(Ci, Cj) > 2t. In such a case, the received vector r will be identified by the decoder as Ci.
However, if the two circles intersect, as shown in Fig. 13.5(b), then there is no guarantee that d(Ci, r) < d(Cj, r)
even if the error-pattern has a Hamming weight that is less than or equal to t. Hence, all error-patterns with at 
the most t error can be corrected if and only if d(Ci, Cj) ≥ (2t + 1) for all Ci and Cj. In other words, it means 
that an  (n, k) linear block code with minimum distance dmin can correct up to t errors if and only if

Í ˙£ -Í ˙Î ˚
min

1
( 1)

2
t d  (13.30)

where Î ˚x  denotes the largest integer less than or equal to x.

13.5.9  Syndrome Decoding

Now, we are in a position to discuss a decoding method, called ‘Syndrome decoding’.
 Let us partition the 2n possible received vectors into 2k non-overlapping subsets as shown in the following 
array, called the ‘ standard array’. Thus, there are 2k columns in the array, each column being led by a code 
vector commencing with the all-zero vector at the left-most corner. Since there are 2k columns, there will be 

-∏ =2 2 2n k n k  rows. Each of these rows forms a ‘coset’ and the left-most element of each coset is called the 
‘coset leader’. The first row comprises the 2k possible zero-error received vectors. The  coset leader for the 
second row is say an error pattern e2 which is most likely. The other elements of this row, i.e., the coset are 

+ + º +2 2 3 2 22
( ), ( ), , ( )kC e C e C e . The coset leader for the third row, viz.; e3 is then selected and the other 
members of this coset, viz: + + º +2 3 3 3 32

( ), ( ), , ( )kC e C e C e  are filled up. Every time we pick a coset leader, 
we should make sure that it has not already appeared in the standard array. The coset leaders must be so 
chosen they are the most likely error patterns – those with smallest Hamming weight.
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Error-Control Coding 811

 The decoding procedure consists of the following steps:
 1. Determine the  syndrome of the received vector r:

= ◊ T
S r H

 2. Identify the coset with this syndrome and let its  coset leader be an  error pattern e.
 3. Decode the received vector r into the code vector = + .C r e

Standard Array

C1 = 0 C2 C3 º Ci º 2kC

e2 C2 + e2 C3 + e2 º C
i
 + e2 º

2kC + e2

e3 C2 + e3 C3 + e3 º C
i
 + e3 º

2kC + e3

M M M M M

eJ C2 + e
J

C3 + e
J

º C
i
 + e

J
º

2kC + e
J

M M M M M

2n k-e C2 + 2n k-e C3 + 2n k-e º C
i
 + 

2n k-e º
2kC + 2n k-e

Fig. 13.6  Standard array for an  (n,  k) linear block code

 The storage or memory space requirement for array decoding increases exponentially with the number 
of  parity check bits used in the code. To store the 2n–k coset leaders, each with n digits, we need n.2n–k digits 
storage. Further, to store the 2n–k syndromes each of (n–k) digits, we need (n–k) 2n–k digits storage. Thus, the 
total storage requirement is (2n–k) 2n–k bits.

Example 13.10 A linear (n, k) block code has a generator matrix:

1 0 1 1

0 1 1 0

È ˘
= Í ˙

Î ˚
G

 (a) Find all its codewords
 (b) Find its H – matrix
 (c) What is the minimum distance of the code and what is its error-correcting capacity.

Solution
 (a) Since k = 2, the possible message sequences are (0, 0), (0, 1), (1, 0), (1, 1). The corresponding code 

vectors are obtained by premultiplying G by the row vector representing the message sequence.

0

1

2

3

[0 0][ ] [0 0 0 0]

[0 1][ ] [0 1 1 0]

[1 0][ ] [1 0 1 1]

[1 1][ ] [1 1 0 1]

= =

= =

= =

= =

C G

C G

C G

C G

 (b) To find the H-matrix: 2[ ]I p= MG

  Hence, 
1 1 1 0

[ ]
1 0 0 1

T
n kP I -

È ˘
= = Í ˙

Î ˚
MH

 (c) dmin and t: We know that dmin of the code is given by the minimum  Hamming weight of the non-zero 
 code vectors. C1, C2, and C3 are the non-zero code vectors and of them, C1 has the minimum Hamming 
weight of 2.
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812 Communication Systems

  Hence,  dmin = 2 for this code
  If t errors are to be corrected, dmin should be equal to or greater than (2t + 1). As no positive integer 

value of t satisfies the equation

min 2 (2 1)d t= ≥ +
  the value of t = 0.

Example 13.11 The  generator matrix of a (6, 3)  linear block code is given by

[ ]
È ˘
Í ˙= Í ˙
Í ˙Î ˚

1 0 0 0 1 1

0 1 0 1 1 1

0 0 1 1 1 0

G

 (a) Find all its  code vectors.
 (b) What is its error correcting capacity?

Solution
 (a) Since k = 3, there should be 8 codewords corresponding to the 8 possible distinct binary message 

sequences of length 3. These are:

Message sequence Codeword

0 0 0 0 0 0 0 0 0 = All-zero code vector

0 0 1 0 0 1 1 1 0 = r3

0 1 0 0 1 0 1 1 1 = r2

0 1 1 0 1 1 0 0 1 = r2 + r3

1 0 0 1 0 0 0 1 1 = r1

1 0 1 1 0 1 1 0 1 = r1 + r3

1 1 0 1 1 0 1 0 0 = r1 + r2

1 1 1 1 1 1 0 1 0 = r1 + r2 + r3

  where r1, r2 and r3 are the first, second and third rows of the generator matrix G.
 (b) The minimum  Hamming weight of the non-zero code vector is 3.

  \ dmin = 3
  Hence, t = 1 since dmin = 2t + 1

  i.e., the given code has single-error correcting capacity.

Example 13.12 The  parity-check equations for a (6, 3)  systematic code are

0 3 0 1 2

1 4 0 1

3 5 0 2

b c m m m

b c m m

b c m m

= = + +

= = +

= = +

 (a) Determine the generator matrix of the code.
 (b) Determine the  parity-check matrix of the code.
 (c) List out all the code vectors of the code.
 (d) What is the error-correcting capability of the code?
 (e) Prepare an appropriate decoding table.
 (f) Decode the following received words: (i) 1 0 1 1 0 0, (ii) 0 1 0 0 1 1, and (iii) 0 0 1 1 0 0
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Error-Control Coding 813

Solution
 (a) and (b) The given  parity-check equations may be written as

0 1 2 0 1 2

0 1 2 0 1 2

0 1 2 0 1 2

1 1 1 1 0 0 0

1 1 0 0 1 0 0

1 0 1 0 0 1 0

m m m b b b

m m m b b b

m m m b b b

◊ + ◊ + ◊ + ◊ + ◊ + ◊ =

◊ + ◊ + ◊ + ◊ + ◊ + ◊ =

◊ + ◊ + ◊ + ◊ + ◊ + ◊ =

  \
1 1 1 1 0 0

1 1 0 0 1 0

1 0 1 0 0 1
T

n k-

È ˘
Í ˙= Í ˙
Í ˙
Í ˙
Î ˚
14243 14243

H

Ip

\
1 0 0 1 1 1

0 1 0 1 1 0

0 0 1 1 0 1

n k-

È ˘
Í ˙= Í ˙
Í ˙
Í ˙
Î ˚
14243 14243

G

I P

 (c) We know that 0 1 2 3 4 5

0 1 2 0 1 2

( , , , , , )

( , , , , , )

c c c c c c

m m m b b b

=

=

C

  Since k = 3, there will be 23 = 8 distinct message sequences. We shall first find out the  code vectors 
corresponding to each of these 8 message sequences by finding b0, b1 and b2 using the parity-check 
equations. We tabulate the result as follows.

Message m b0 b1 b2 c0 c1 c2 c3 c4 c5 C

0 0 0 0   0   0 0   0   0   0   0   0 = C1

0 0 1 1   0   1 0   0   1   1   0   1 = C2

0 1 0 1   1   0 0   1   0   1   1   0 = C3

0 1 1 0   1   1 0   1   1   0   1   1 = C4

1 0 0 1   1   1 1   0   0   1   1   1 = C5

1 0 1 0   1   0 1   0   1   0   1   0 = C6

1 1 0 0   0   1 1   1   0   0   0   1 = C7

1 1 1 1   0   0 1   1   1   1   0   0 = C8

 (d) From the above list of codewords, we find that dmin = 3 =  Minimum Hamming weight of any code 
vector.

  But dmin = 2t + 1 where t is the error-correcting capability
   \ t = 1. \ It is a single-error correcting code
 (e) Now, we will list the most likely  error patterns and the corresponding  syndromes. This will form the 

decoding table:

Error Patterns HT
S = syndrome

e0 = [0 0 0 0 0 0] 1 1 1 [0 0 0]

e1 = [0 0 0 0 0 1] 1 1 0 [0 0 1]

e2 = [0 0 0 0 1 0] 1 0 1 [0 1 0]

e3 = [0 0 0 1 0 0] 1 0 0 [1 0 0]

e4 = [0 0 1 0 0 0] 0 1 0 [1 0 1]

e5 = [0 1 0 0 0 0] 0 0 1 [1 1 0]

e6 = [1 0 0 0 0 0] [1 1 1]

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Ë ¯
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814 Communication Systems

 (f)   (i) For the given received vector r = 1 0 1 1 0 0, the  syndrome is
   

1 [1 1 0]T= =S r H

  From the above table in part (e), we find that 5 [0 1 0 0 0 0]= =e e

  \ the transmitted  code vector = 5= +C r e

\ 7[1  1  1  1  0  0]= =C C

 (ii) For the given received vector 2 [0  1  0  0  1  1]=r , the syndrome is

   2 [1  0  1]T= =S r H

  For this syndrome, from the table given in part (e), we find that the error-pattern is

   
4 [0  0  1  0  0  0]= =e e

  \ The transmitted code vector = 2 4= +C r e

  \ 4[0  1  0  0  1  1] [0  0  1  0  0  0] [0  1  1  0  1  1]= + = =C C

 (iii) For the given received vector 3 [0  0  1  1  0  0]=r , the syndrome is
   

3 [0  0  1]T= =S r H

  From the table given in part (e), we find that for this syndrome, the corresponding  error pattern is

   1 [0  0  0  0  0  1]= =e e

  \ 1[0  0  1  1  0  0] [0  0  0  0  0  1] [0  0  1  1  0  1]= + = =C C

  \ The transmitted code vector is = 1 [0  0  1  1  0  1]=C

13.5.10 Hadamard Codes

With k denoting the number of bits in the uncoded message sequence and n = 2k denoting the number of bits 
in a codeword, these codewords are the rows of a n ¥ n  Hadamard matrix. The smallest size Hadamard matrix 
is a 2 ¥ 2 square matrix and corresponds to k = 1. In order to avoid confusion, instead of using H2, we shall 
use M2 to denote a Hadamard matrix of order 2.

2

0 0

0 1

È ˘
= Í ˙

Î ˚
M  (13.31)

In the  Hadamard code, except the all-zero codeword, all the other codewords will have equal number of zeros 
and 1s. Hadamard matrices of larger sizes 4, 8, etc., can be constructed from the smallest sized ones using 
the following formula.

2 2
4

22

0 0 0 0

0 1 0 1

0 0 1 1

0 1 1 0

È ˘
Í ˙È ˘ Í ˙= =Í ˙ Í ˙Î ˚ Í ˙
Î ˚

M M
M

M M

 (13.32)

where 2M  is the matrix obtained by replacing each element of M2 by its complement.
 Another interesting feature of a Hadamard code is that the various codewords are orthogonal to each other. 
In an (n, k) Hadamard linear block code, since each codeword with n = 2k bits has k message bits, the number 
of  parity check bits in a codeword = (2k–k). Obviously, as k increases, the number of parity bits in a codeword 
will increase very rapidly, bringing down the code rate.

 r = code rate = 2
2

k

k

k k
k

n

-= =  (13.33)

Since the n bits of a codeword will have to occupy the same time as the original k message bits did, the trans-
mission bandwidth of Hadamard encoded sequence will be very high. Hence, Hadamard codes are used only 
in situations where a large transmission bandwidth requirement is not a problem.
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Error-Control Coding 815

 Since the codewords are  orthogonal to each other, it means that for a  codeword length of n bits, each 
codeword must differ from any other codeword in exactly n/2 places. This means that dmin for an (n, k)
Hadamard block code is

1
min

2
2

2 2

k
kn

d
-= = =  (13.34)

with min

1 2 2

1
( 1)

2

1 1
(2 1) 2 (2 1)

2 2
k k k

t d

t
- - -

Í ˙= -Í ˙Î ˚
Í ˙ Í ˙= - = - = -Í ˙ Í ˙Î ˚ Î ˚

,  (See Eq. (13.30))

  (13.35)

where Îx̊  denotes the largest integer less than x.
\ 2(2 1)k

t
-= -  (13.36)

From the above equation, it is clear that (i) k should be greater than 2 for this code to have any error correction 
capability, and (ii) As k is increased, although the code rate decreases as per Eq. (13.33), the error-correcting 
capability increases substantially.

Hamming code A  Hamming code is a (n, k)  linear block code with the following structure:
 If ( )m n kD -  = Number of parity check bits in a codeword, where n is the number of bits in a codeword 
and k is the number of message digits in a codeword, then
 1. (2 1)m

n = -  where ( ) 3m n k= - ≥
 2. k = no. of message bits = (2 1)m

m- -
 3. Minimum distance dmin = 3
 4. Error-correcting capability = t = 1.
 A systematic (n, k) Hamming code can be constructed by following the procedure indicated below:
 As an illustration, let us construct a Hamming code with m = 3.
\ n = 23 – 1 = 7. Also ( ) (7 3) 4k n m= - = - = . Since 3 ( )m n k= = -  and k = 4, construct a coefficient matrix, 
P of size ( ) (4 3)k n k¥ - = ¥  size, by using all 3-bit words with 2 or more 1s, arranging them in any order.

\ ( )

1 0 1

1 1 1

1 1 0

0 1 1

k n kP ¥ -

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
Î ˚

\ the  generator matrix 

1 0 1 1 0 0 0

1 1 1 0 1 0 0
[ ]

1 1 0 0 0 1 0

0 1 1 0 0 0 1

k k nP I ¥

È ˘
Í ˙
Í ˙= =
Í ˙
Í ˙
Î ˚

M

M
M

M

M

G

Since k = 4, there will be 2k = 16 possible codewords. These can be determined by premultiplying the 
 generator matrix G by each of the 16 4-bit binary message sequences.

Example 13.13 Determine all the codewords and their Hamming weights for the (7, 4) Hamming code 
whose generator matrix was determined in the above illustration as

1 0 1 1 0 0 0

1 1 1 0 1 0 0

1 1 0 0 0 1 0

0 1 1 0 0 0 1

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
Î ˚

M

M

M

M

G
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Solution With k = 4, there will be 24 = 16 possible distinct message sequences. The  code vectors, deter-
mined using each of these message sequences, are tabulated below.

Codewords Weight of 

codeword

Codewords Weight of 

codewordParity bits Message bits Parity bits Message bits

0  0  0 0  0  0  0 0 1  0  1 1  0  0  0 3

0  1  1 0  0  0  1 3 1  1  0 1  0  0  1 4

1  1  0 0  0  1  0 3 0  1  1 1  0  1  0 4

1  0  1 0  0  1  1 4 0  0  0 1  0  1  1 3

1  1  1 0  1  0  0 4 0  1  0 1  1  0  0 3

1  0  0 0  1  0  1 3 0  0  1 1  1  0  1 4

0  0  1 0  1  1  0 3 1  0  0 1  1  1  0 4

0  1  0 0  1  1  1 4 1  1  1 1  1  1  1 7

Example 13.14 For the (7, 4)  Hamming code of Example 13.13 determine the  H-matrix and the 
decoded codeword if the received codeword is 0 1 1 1 0 1 1

Solution Since

1 0 1 1 0 0 0

1 1 1 0 1 0 0

1 1 0 0 0 1 0

0 1 1 0 0 0 1

kP I

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
Í ˙
Í ˙Î ˚
14243 14243

G

The corresponding H-matrix is

1 0 0 1 1 1 0

0 1 0 0 1 1 1

0 0 1 1 1 0 1
T

n kI P-

È ˘
Í ˙= Í ˙
Í ˙
Í ˙
Î ˚
14243 14243

H

1 0 0

0 1 0

0 0 1

[0  1  1  1  0  1  1] [0  1  1]1 0 1

1 1 1

1 1 0

0 1 1

T

È ˘
Í ˙
Í ˙
Í ˙
Í ˙= ◊ = =Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

S r H

An  error pattern [0 0 0 0 0 0 1] would have produced this  syndrome, because the syndrome [0 1 0] is the 
seventh row of the HT matrix. Hence, the 7th digit in the received vector is in error; or the  error pattern is 
e = [ 0 0 0 0 0 0 1]. Hence, the decoded word is

[0  1  1  1  0  1  1] [0  0  0  0  0  0  1]

[0  1  1  1  0  1  0]

= + = +
=

C r e
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13.5.11 Cyclic Codes

Although  cyclic codes are a subclass of the  linear block codes, they have some very good features which 
make them extremely useful. In fact, some of the very good block codes like the  Hamming codes,  BCH codes 
and  Golay codes are in fact cyclic codes. The advantages of cyclic codes are:
 1. They have an excellent mathematical structure which makes the design of error-correcting codes with 

multiple-error correction capability relatively easier.
 2. The encoding and decoding circuits for cyclic codes can be easily implemented using  shift registers.
 3. Because of the availability of very efficient decoding methods that do not depend upon a look-up table, 

large memories are not needed for decoding. So powerful codes with n >> 1 can be used.
 4. Cyclic codes can correct errors caused by bursts of noise that affect several successive bits.
It is because of these attractive features that almost all  Forward Error Correcting (FEC) systems make use of 
cyclic codes.

Definition A linear block code is said to be a cyclic code if any  cyclic shift of a codeword is also a 
codeword.
 At this stage, a brief explanation of what we mean by a cyclic shift may be in order. Let (c0, c1, …, cn–1)
be a codeword of a cyclic code.

 Original  codeword  C = (c0, c1, c2, …, cn–2, cn–1) (13.37)

When is given a cyclic shift to the rightC  (cn–1, c0, c1, …, cn–3, cn–2)

When is given two cyclic shifts to the rightC  (cn–2, cn–1, c0, c1, …, cn–4, cn–3)

M

When is given ( – 1) cyclic shifts to the rightnC  (c1, c2, c3, …, cn–1, c0)

All the above n-tuples are also codewords.
 We may also think of a left cyclic shift to a codeword. If the original codeword C is given one left cyclic 
shift, we get

When is given one left cyclic shiftC  (c1, c2, c3, …, c0) (13.38)

 Notice that the result of giving k cyclic shifts to the right is the same as giving (n–k) cyclic shifts to the 

left.
 To explain the various algebraic properties and operations pertaining to cyclic codes, it is necessary to 
associate a codeword of the cyclic code with a polynomial c(x) as shown below:
 Codeword C = (c0, c1, c2, …, cn–1)

  Code polynomial 2 1
0 1 2 1( ) … n

nc x c c x c x c x
-

-= + + + +  (13.39)

Here, the coefficients c0, c1, c2, …, cn–1 of the polynomial are the elements c0, c1, c2, …, cn–1 of the codeword 
and so are binary digits 0 or 1.

Effect of multiplying c(x) by xk 2 1
0 1 2 1( ) … …n k n

n k nc x c c x c x c x c x
- -

- -= + + + + + +

\ 1 2 1
0 1 2 1( ) … …k k k k n n k

n k nx c x c x c x c x c x c x
+ + + -

- -◊ = + + + + + +  (13.40)

Rearranging the terms, we may write Eq. (13.40), as

1 1 1 1
1 1 0 1 1( ) … …k n n n k k k n

n k n k n n kx c x c x c x c x c x c x c x
+ + - + -

- - + - - -È ˘◊ = + + + + + + +Î ˚  (13.41)

1
1 1

1 1 1
1 1 0 1 1

( 1) ( 1) … ( 1)

… …

n n k n
n k n k n

k k k n
n k n k n n k

c x c x x c x x

c c x c x c x c x c x

-
- - + -

- + -
- - + - - -

È ˘= + + + + + +Î ˚
È ˘ È ˘+ + + + + + + +Î ˚ Î ˚  (13.42)
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All the terms in the second rectangular bracket of the above equation are for canceling 

identical additional terms deliberately introduced in the first rectangular bracket. For instance

( 1) ( ) ,n n n
n k n k n k n k n k n kc x c c x c c c x- - - - - -+ + = + + =

since cn–k, etc., are binary digits and modulo-2 addition of a binary digit with itself yields zero.

Hence, rearranging the terms of Eq. (13.42), we have
1 1 1

1 1 0 1 1

1
1 1

( ) [ … … ]

[ ( 1) ( 1) … ( 1)]

k k k k n
n k n k n n k

n n k n
n k n k n

x c x c c x c x c x c x c x

c x c x x c x x

- + -
- - + - - -

-
- - + -

= + + + + + + +

+ + + + + + +  (13.43)

Now we define
1

1 1( ) ( … ),k
n k n k nq x c c x c x

-
- - + -D + + +

Then, the term inside the second rectangular bracket in Eq. (13.43), may be recognized as

( )[ 1]n
q x x +

Further, the quantity in the first rectangular brackets of Eq. (13.43), may be recognized as the polynomial 
corresponding to the following n-tuple:

( )
1 1 0 1 1( , ,…, , , ,…, )k

Cn k n k n n kc c c c c- - + - - -=C  (13.44)

In fact, C(k) of Eq. (13.44) is the sequence obtained by giving k right cyclic shifts to the original code vector 
of Eq. (13.37). So we shall use the notation c(k)(x) to represent the polynomial corresponding to this k-shifted
sequence.

\ ( ) 1 1 1
1 1 0 1 1( ) …, …,k k k k n

n k n k n n kc x c c x c x c x c x c x
- + -

- - + - - -D + + + + +  (13.45)

Thus, we may rewrite Eq. (13.43) as
( )( ) ( )( 1) ( )k n k

x c x q x x c x= + +  (13.46)

The Eq. (13.46) tells us that c(k)(x) is obtained as the remainder when we divide xkc(x) by (xn + 1). We state 
this as

( )( ) ( ) module ( 1)k k n
c x x c x x= +  (13.47)

and c(k)(x) also is a  code polynomial since c(k) is also a  code vector. Since k is an arbitrary integer, it follows 
that the cyclic code property reduces to saying that
 If c(x) is a code polynomial, then c(k)(x), which is a k-times right-shifted version of c(x), is also a code 
polynomial.
 It should be noted that since Eq. (13.47) states that ( ) ( ) ( )k k

c x x c x=  modulo ( 1)n
x + , it means that xn = 1 

and so ( ) ( ).n
x c x c x=  Hence, when we go on giving cyclic shifts to c(x), after the nth shift the original 

polynomial is obtained.

13.5.12 Generator Polynomial

A factor g(x) of (xn + 1) which is of degree (n – k) is called a  generator polynomial of an (n, k) linear cyclic 

block code.

 (i) There may be several factors of degree (n – k) for the polynomial (xn + 1). All such 

factors of degree (n – 1) are generator polynomials and can be used for constructing 

(n, k)  linear cyclic codes. But all of these codes may not be equally good.

 (ii) Suppose we write g(x) as follows:
2

0 1 2( ) … n k
n kg x g g x g x g x

-
-= + + + +  (13.48)

Note

Note
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Then 0 1.n kg g -= =  This may be justified as follows:

The coefficients g0, g1, g2, …, gn–k are all binary digits and may be either 1 or 0. Suppose 

g0 = 0. Then

1 2( ) ( … ) ( )n k
n kg x x g g x g x xg x

-
-= + + + = ¢

Since g(x) is a factor of (xn + 1), x must also be a factor of (xn + 1) but it cannot be. So g0 π 0 \
g0 = 1. Similarly, if gn–k = 0, the g(x) is not of degree (n – k). It is (n – k – 1) or less. So, it does 

not qualify to be a generator polynomial (as per our definition of a generator polynomial). 

g(x) is called a generator polynomial because it generates all the code polynomials of the (n, 

k) linear cyclic block code. If c(x) is a code polynomial, then

( ) ( ) ( )c x a x g x= (13.49)

Now, we shall see how, given a generator polynomial, we may find the code polynomial (in systematic form) 
corresponding to a given message sequence (m0, m1, …, mk–1). Since we want a systematic code, the structure 
of a codeword would be of the form:

0 1 1 0 1 1

( ) parity bits message bits

( , ,…, , , ,…, )n k k

n k k

b b b m m m- - -

-

=
1442443 1442443

C  (13.50)

So, let us first construct a  message polynomial using the message sequence:
1

0 1 1( ) … k
km x m m x m x

-
-= + + +  (13.51)

We may also write a  parity-bit polynomial b(x) as
1

0 1 1( ) … n k
n kb x b b x b x

- -
- -= + + +  (13.52)

So, using Eq. (13.50), we may write the  code polynomial as
2 1 1 1

0 1 2 1 0 1 1( ) ( … ) ( … )n k n k n k n
n k kc x b b x b x b x m x m x m x

- - - - + -
- - -= + + + + + + + +

( ) ( )n k
b x x m x

-= +  (13.53)

From Eq. (13.49), we have
( ) ( ) ( ) ( ) ( )n k

c x a x g x b x x m x
-= = +

\ ( ) ( ) ( ) ( )n k
x m x a x g x b x

- = +  (modulo-2 arithmetic)

\ ( ) ( )
( )

( ) ( )

n k
x m x b x

a x
g x g x

-

= +  (13.54)

This equation indicates that when ( )n k
x m x

-  is divided by g(x), the quotient is a(x) and the remainder is b(x).
Hence, the steps involved in constructing an (n, k) linear cyclic code with systematic structure are:
 1. From the message bits, form the message polynomial m(x) and multiply it by xn–k.
 2. Divide xn–km(x) by g(x), the  generator polynomial. Let the remainder be b(x).
 3. Add b(x) to xn–km(x) to obtain the code polynomial c(x) corresponding to the message polynomial m(x).

c(x) will be in systematic form.

Example 13.15 If c(x) is a cyclic code polynomial, show that xc(x) divided by ( 1)n
x +  gives (1)( )c x .

Solution Let 2 1
0 1 2 1( ) … n

nc x c c x c x c x
-

-= + + + +

\
2 3

0 1 2 1( ) … n
nxc x c x c x c x c x-= + + + +

1

2
0 1 1

1 1

2 1 (1)
1 0 1 2

…
(1 )

…  which is ( )

n

n
nn

n
n n

n
n n

c

c x c x c x
x

c c x

c c x c x c x c x

-

-

- -

-
- -

+ + +
+

+

+ + + +
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\ when xc(x) is divided by (xn + 1), the remainder is c(1)(x) which is a polynomial obtained by cyclically 
shifting the code sequence corresponding to c(x) to the right by one step.

Example 13.16 For a (7, 4)  cyclic linear block code, show that there are two generator polynomials 
possible.

Solution Since it is a (7, 4) code, n = 7.
Hence, if g(x) is a  generator polynomial, then it must be a factor of 71 1n

x x+ = +  and also, it must be of 
degree ( ) 3.n k- =
Now, 7 3 2 31 ( 1)( 1)( 1)x x x x x x+ = + + + + +
Thus, both 3 2( 1)x x+ +  and 3( 1)x x+ +  qualify to be generator polynomials as both of them are factors of 

7 1x +  and are of degree ( ) 3.n k- =

Example 13.17 Taking 3 1x x+ +  as the generator polynomial for the (7, 4) cyclic linear block code, 
determine the  code vectors in  systematic form for the following message sequences: (a) 1 0 1 1, (b) 1 1 1 
1, and (c) 1 0 0 0.

Solution
 (a) m = message sequence = 1 0 1 1

\ message polynomial 2 3

2 3

( ) 1 0. 1. 1.

(1 )

m x x x x

x x

= + + +
= + +

  Further, since n = 7 and k = 4, 
3n k

x x
- =

\ ( ) 3 2 3 3 5 6( ) (1 )n k
x m x x x x x x x

- = + + = + +

  Now, to find b(x), we know from Eq. (13.54) that it is the remainder left when ( ) ( )n k
x m x

-  is divided by 
g(x). g(x) has been given to be 3( 1)x x+ +

   

3 2

3 6 5 3

6 4 3

5 4

5 3 2

4 3 2

4 2

3

3

1

1

1

1 remainder

x x x

x x x x x

x x x

x x

x x x

x x x

x x x

x x

x x

+ + +

+ + + +
+ +

+
+ +

+ +
+ + +

+
+ +

=

  \ 2 3( ) 1 and ( ) 1a x x x x b x= + + + =

  Now ( ) 3 2 3

3 5 6 2 3 4 5 6

( ) ( ) ( ) 1 (1 )

1 . . . . . .

n k
c x b x x m x x x x

x x x x x x x x x

-= + = + + +
= + + + = + + + + + +1 0 0 1 0 1 1

  \ code vector C = (1 0 0 1 0 1 1)

  This is obviously in the systematic form.
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 (b) For m = 1 1 1 1, 2 3( ) 1m x x x x= + + +

   
3 ( ) 3 4 5 6( )n k n k

x x x m x x x x x
- -= \ = + + +

  g(x) is given to be 
3( 1)x x+ +

  To find b(x), we divide ( ) ( )n k
x m x

-  by g(x) and find the remainder

3 2

3 6 5 4 3

6 4 3

5

5 3 2

3 2

3

2

1

1

0

1

Remainder = ( 1)

x x

x x x x x x

x x x

x

x x x

x x

x x

x x

+ +

+ + + + +
+ +

+ +

+ +
+ +

+ +

  \ 2 2( ) (1 ) (1 1. 1. )b x x x x x= + + = + +
  \ ( ) 3 2 3( ) ( ) ( ) ( ) (1 )n k

c x b x x m x b x x x x x
-= + = + + + +

   
2 3 4 5 6( ) . . . . . .c x x x x x x x= + + + + + +1 1 1 1 1 1 1

   C = (1, 1, 1, 1, 1, 1, 1)
 (c) For m = 1 0 0 0, m(x) = 1

\ 3n k
x x

- =  and ( ) 3( )n k
x m x x

- =

3 3

3

1

1

1

( 1) remainder

x x x

x x

x

+ +
+ +
+ =

  \ 2 3 4 5 6( ) . . . . .c x .x x x x x x= + + + + + +1 1 0 1 0 0 0

  \ C = (1 1 0 1 0 0 0)
  which is in  systematic form since the last four digits of C are the unaltered message digits.

13.5.13 Parity-Check Polynomial h(x)

Earlier, we had defined the  generator polynomial of a cyclic (n, k) linear block code and stated that knowledge 
of this polynomial enables one to construct all the  code polynomials of the code for all the 2k possible message 
polynomials. Thus, the generator polynomial g(x) is equivalent to the generator matrix, G, of the block code.
 Similarly, we can visualize a  parity-check polynomial, h(x) which is the equivalent of a parity-check 
matrix H. For a linear block code, we know that its generator matrix, G and parity-check matrix H must 
satisfy the relation (Eq. (13.16))

T◊ = 0G H

Analogous to this, for the generator and parity-check polynomials, we may write the relation

( ) ( ) 0 modulo ( 1)n
g x h x x∫ +  (13.55)

This relation implies that s(x) and h(x) are both factors of ( 1)n
x + . Since g(x) is of degree ( )n k- , we may 

now define the parity-check polynomial of an (n, k)  linear cyclic block code as:
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Definition A  parity-check polynomial, h(x) of a cyclic (n, k) linear block code is a polynomial of degree k 

which is a factor of (xn + 1).
 Although the coefficients of this polynomial h(x)

2
0 1 2( ) k

kh x h h x h x h x= + + + º +
are binary digits 0 and 1, just like in the case of g(x), here too it is necessary that

0 1kh h= =  (13.56)

Example 13.18 Find g(x) and h(x), the  generator polynomial and the parity-check polynomial of a 
systematic (7, 4) cyclic code. Determine G and H matrices of the code.

Solution Since k = 4 and n = 7, g(x) must be a polynomial of degree 3 which is a factor of 7( 1)x + . As 
we had already seen in Example 13.16,

7 3 2 31 ( 1)( 1)( 1)x x x x x x+ = + + + + +
Both the polynomials 3 2( 1)x x+ +  and 3( 1)x x+ +  qualify to be generator polynomials for this code. We 
shall choose

3( ) 1g x x x= + +
In Example 13.17, we had determined the  code polynomials in the  systematic form for a few message 
sequences. Following the same procedure, we find out the code polynomials in systematic form, for the four 
message sequences of  Hamming weight 1. The result is tabulated below.

Message sequence Message polynomial Code polynomial

0   0   0   1 1
3 2 3 4 5 61 . . . . . .x x x x x x x x+ + = + + + + + +1 1 0 1 0 0 0

0   0   1   0 x
1 2 4 2 3 4 5 6. . . . . .x x x x x x x x x+ + = + + + + + +0 1 1 0 1 0 0

0   1   0   0 x
2 2 5 2 3 4 5 61 . . . . . .x x x x x x x x x+ + + = + + + + + +1 1 1 0 0 1 0

1   0   0   0 x
3 2 6 2 3 4 5 61 . . . . . .x x x x x x x x+ + = + + + + + +1 0 1 0 0 0 1

The G-matrix is of size 4 7k n¥ = ¥  and we know that its rows are code vectors.

\

1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 1 1 0 0 1 0

1 0 1 0 0 0 1
k n¥

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
Î ˚

M

M

M

M

G

( )

1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1
n k n- ¥

È ˘
Í ˙= Í ˙
Í ˙Î ˚

M

M

M

H

In fact, these are the same matrices that we had obtained as the G and H matrices of a (7, 4) Hamming code, 
except, of course, that the rows of the P-matrix are permuted. Thus, we find that  Hamming codes are also 
 cyclic codes. In fact, any cyclic code generated by a primitive polynomial is a Hamming code of minimum 
distance 3. An  irreducible polynomial of degree m is said to be primitive if the smallest positive integer n 

for which the polynomial divides 1n
x +  is 2 1m - .

 Both 3(1 )x x+ +  and 2 3(1 )x x+ +  are irreducible polynomials which are  primitive.
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Now, to find h(x), the  parity check polynomial, we use the fact that

( ) ( ) mod ( 1) 0n
g x h x x + =

\ dividing ( 1)n
x +  by the g(x), which is 3 1x x+ +

4 2

73

7 5 4

5 4

5 3 2

4 3 2

4 2

3

3

1

11

1

1

1

1

0

x x x

xx x

x x x

x x

x x x

x x x

x x x

x x

x x

+ + +

++ +
+ +

+ +
+ +

+ + +
+ + +

+ +
+ +

\ 2 3( ) 1h x x x x= + + +

13.5.14 Calculation of Syndrome and Decoding of Cyclic Codes

Just as in the case of other block codes, for cyclic codes also  syndrome calculation is the first step in decoding. 
If c(x) is a code polynomial of the code and is transmitted and if the received polynomial is r(x), then

( ) ( ) ( )r x c x e x= +
where e(x) is the  error polynomial corresponding to the  error pattern created by the channel noise.

Let 2 1
0 1 2 1( ) n

nr x r r x r x r x
-

-= + + + º +  (13.57)

Divide r(x) by the  generator polynomial. Let q(x) be the quotient and s(x) be the remainder.

i.e., ( ) ( ) ( ) ( )r x q x g x s x= ◊ +  (13.58)

Since we have divided by g(x) which is of degree (n – k), the remainder, s(x) will have to be of degree 
( 1)n k- -  or less. s(x) is called the syndrome polynomial. It has the following interesting properties:

Property 1: If s(x) is the syndrome of the received polynomial, then it is the syndrome of the error polynomial 
also.

Proof: Since ( ) ( ) ( )r x c x e x= +
we may write ( ) ( ) ( )e x r x c x= +  (13.59)
we had seen that ( ) ( ) ( )c x a x g x=  (See Eq. (13.49))
Also, ( ) ( ) ( ) ( )r x q x g x s x= ◊ +  (See Eq. (13.58))
\ substituting these in Eq. (13.59), we get

( ) [ ( ) ( )] ( ) ( )
( ) ( ) ( )

e x a x q x g x s x

u x g x s x

= + +
= ◊ +  (13.60)

where ( ) ( ) ( )u x a x q xD +
Equation (13.60) shows the result of dividing e(x) by g(x) is a quotient of a(x) and a remainder of s(x).
Hence, the syndrome is the same for r(x) and e(x).

Property 2: If s(x) is the syndrome of r(x), the received polynomial, then x r(x) will have a syndrome of x
s(x).

Proof: Since ( ) ( ) ( ) ( )r x q x g x s x= ◊ + , (See Eq. 13.58)
( ) ( ) ( ) ( )xr x xq x g x xs x= +  (13.61)
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We know that multiplying r(x) by x is equivalent to giving one right cyclic shift to the received word r.
Equation (13.61) implies that the remainder obtained after dividing xr(x) by g(x) is xs(x).
 Hence, the syndrome of xr(x) is xs(x). Instead of giving one  right cyclic shift to r(x), suppose we give i
right cyclic shifts, then the resulting shifted received word is represented by xir(x). So, we may generalize the 
above result and say that if s(x) is the  syndrome polynomial of the received polynomial r(x), then xis(x) will 
be the syndrome polynomial of xir(x).

Property 3: If the errors occur only in the  parity check bits of the transmitted codeword, the syndrome 
polynomial and the  error pattern polynomial will be the same.

Proof:
2 1 1 1

0 1 2 1 1 1( ) … n k n k n k n
n k n k n k nr x r r x r x r x r x r x r x

- - - - + -
- - - - + -= + + + + + + + º +

In this (r0, r1, r2, …, rn–k–1) are the received parity-check bits. By saying that the errors are confined only to 
the parity check bits, we are implying that in the error pattern polynomial:

( ) ( )2 1 1
0 1 2 1 1( ) … …n k n k n

n k n k ne x e e x e x e x e x e x
- - - -

- - - -= + + + + + + +

coefficients en–k to en–1 are all zero, i.e., e(x) is of degree ( 1)n k- -  or less. Then from Eq. (13.60), which 
says that when e(x) is divided by g(x) which is of degree ( )n k- , the quotient is u(x) and the remainder is the 
syndrome s(x). Thus, if e(x) itself is of degree ( 1)n k- -  or less, since g(x) is of degree ( ),n k- u(x) must 
be zero. Then from that equation, it follows that s(x) = e(x).
 The following example illustrates how errors may be corrected by calculating the syndrome and making 
use of some of the above properties of it.

Example 13.19 A channel encoder uses a (7, 4)  linear cyclic block code in the  systematic form, the 
generator polynomial being 3( 1)x x+ + . Determine the correct codeword transmitted, if the received word 
is (a) 1 0 1 1 0 1 1 (b) 1 1 0 1 1 1 1.

Solution In order to perform  error correction using the  syndrome, we shall first prepare a list of the 
syndromes for each of the seven possible single errors. In the first three  error patterns listed, the errors are 
confined only to the parity check bits and so, using property 3 above, we have s(x) = e(x). For the remaining 
four error patterns, the errors are not in the parity check bits – they are in the message bits. So, we use 
property 1, i.e., we divide e(x) by g(x) and take the remainder as the syndrome polynomial s(x). We shall 
calculate these first.

 e = error pattern = 0 0 0 1 0 0 0   \ 2 3 4 5 6( ) 0.1 0. 0. 1. 0. 0. 0.e x x x x x x x= + + + + + +

 \ e(x) = x3

33

3

1

1

1

Remainder ( 1)

xx x

x x

x

+ +
+ +

= +

( ) (1 )s x x\ = +

 e = error pattern = 0 0 0 0 1 0 0  \ 2 3 4 5 6( ) 0.1 0. 0. 0. 1. 0. 0.e x x x x x x x= + + + + + +

43

4 2

2

1

( ) Remainder

x

xx x

x x x

x x

+ +
+ +

+ =

2( ) ( )s x x x\ = +
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 e =  error pattern = 0 0 0 0 0 1 0  \ 5( )e x x=
2

53

5 3 2

3 2

3

2

1

1

1

(1 ) Remainder

x

xx x

x x x

x x

x x

x x

+

+ +
+ +
+
+ +

+ + =

2( ) (1 )s x x x\ = + +

 e = error pattern = 0 0 0 0 0 0 1  \ 6( )e x x=
2

63

6 4 3

4 3

4 2

3 2

3

2

1

1

1

1 Remainder

x

xx x

x x x

x x

x x x

x x x

x x

x

+

+ +
+ +
+
+ +
+ +
+ +
+ =

2( ) (1 0. )s x x x\ = + +

Error Pattern Error poly

e(x)

Syndrome poly

s(x)

Syndrome S

1   0   0   0   0   0   0 1 + + 21 0. 0.x x 1   0   0

0   1   0   0   0   0   0 x
20 1. 0.x x+ + 0   1   0

0   0   1   0   0   0   0 x
2 20 0. 1.x x+ + 0   0   1

0   0   0   1   0   0   0 x
3 21 1. 0.x x+ + 1   1   0

0   0   0   0   1   0   0 x
4 20 1. 1.x x+ + 0   1   1

0   0   0   0   0   1   0 x
5 21 1. 1.x x+ + 1   1   1

0   0   0   0   0   0   1 x
6 21 0. 1.x x+ + 1   0   1

 (a) Received word = 1 0 1 1 0 1 1 \ 2 3 5 6( ) 1r x x x x x= + + + +
   Syndrome polynomial is obtained as the remainder when we divide r(x) by the  generator polynomial 

g(x), which is given to be x3 + x + 1

3 2

6 5 3 23

6 4 3

5 4 2

5 3 2

4 3

4 2

3 2

3

2

1

11

1

1

1

1

remainder

x x x

x x x xx x

x x x

x x x

x x x

x x

x x x

x x x

x x

x

+ + +

+ + + ++ +
+ +
+ + +
+ +
+ +
+ +
+ + +
+ +

=

2 2( ) 0.1 0. 1.

(0, 0, 1)

From the table, (0,  0,  1) for (0,  0,  1)

1  0 1 1 0 1 1

+ 0 1 1

1 0 0 1 0 1 1

Transmitted code vector is

(1 0 0 1 0 1 1)

s x x x x

S

e S

r e

\ = = + +
\ =

= =
\ = + =

\
=

C

C

C
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 (b) Received word = 1 1 0 1 1 1 1   3 4 5 6( ) 1r x x x x x x\ = + + + + +
3 2

3 6 5 4 3

6 4 3

5

5 3 2

3 2

3

2

1

1 1

1

1

1

remainder

x x

x x x x x x x

x x x

x x

x x x

x x x

x x

x

+ +

+ + + + + + +
+ +
+ +
+ +
+ + +
+ +

=

13.5.15 Encoders and Decoders for Cyclic Codes

The function of the encoder is to give the codeword in  systematic form when a message sequence is fed to 
it. For this, it needs to perform the operation implied in Eq. (13.54) in order to give out the parity bits. As 
we have already observed, multiplying a polynomial, say m(x) by ( )n k

x
-  can be obtained by just subjecting 

m(x) to (n–k) cyclic shifts to the right. The polynomial division operation needed to be performed can also be 
implemented very easily and effectively by the  shift register encoder shown in Fig.13.6.

Fig. 13.6 A shift register encoder for a cyclic (n, k) code

As already stated earlier, the coefficients g0 and gn–k of the  generator polynomial have to be equal to 1, only a 
solid connection is shown in both the cases. If any gi is zero, only an open circuit will be shown.
 The shift register contents are initialized to zero. Switch K1 is kept in the message bits position and the 
feedback switch K2 is kept closed. An external clock is used to shift the contents of the shift registers in the 
direction indicated by the arrowhead. The k message bits are first shifted into the shift register. Since K1

switch is in the message bits position, the message bits are also passed on to the transmitter simultaneously. 
After the k shifts, the registers contain the (n–k) parity check bits. At this time, the feedback switch K2 is 
opened and the switch K1 is thrown to the check bits position, making the check bits available to the trans-
mitter. Since the parity bits are preceded by the k unaltered message bits, the arrangement shown in Fig. 13.6 
gives the codewords in the systematic form.
 For calculating the  syndrome, we have to divide the received polynomial r(x) by the generator polynomial 
g(x). Syndrome is obtained as the remainder resulting from the division operation. So an arrangement as 
shown in Fig. 13.7 is used for implementing this division.

2 2( ) 0.1 0. 1.

(0, 0, 1)

From the table, the corresponding is

(0, 0, 1)

(1, 1, 1, 1, 1, 1, 1)

s x x x x

e

e

r e

\ = = + +
\ =

\ =
\ = + =

S

C
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Fig. 13.7  Syndrome calculator for an (n, k) cyclic code

With switch K1 closed, all the n bits of the received word are shifted into the registers. As soon as all the bits 
have been shifted, the  syndrome is available as the contents of the shift registers.

Example 13.20 A systematic (7, 4) cyclic code is to be generated making use of 3( 1)x x+ +  as 
the  generator polynomial. Draw the block schematic diagram of the encoder. By tracing the contents of 
the shift registers after shifting-in of each of the message bits, determine the parity check bits and the 
codeword in systematic form, assuming a message sequence m = (1, 1, 1, 1).

Solution Since the 3( ) 1 ,g x x x= + +  we have g0 = 1, g1 = 1, g2 = 0 and g3 = 1. So, the encoder shown in 
Fig. 13.6 takes the following form as shown in Fig. 13.8.

Fig. 13.8 Encoder for the (7, 4) cyclic code with g(x) = 1 + x + x3

The following table shows the contents z0, z1 and z2 of the three shift registers as the shifting of the input 
message bits progresses.

Input m z2 z1 z0 2 1z z=¢ 1 0 2z z z m= ≈ ≈¢ 0 2z z m= ≈¢
m0 = 1 0        0        0 0 1 1

m1 = 1 0        1        1 1 0 1

m2 = 1 1        0        1 0 1 0

m3 = 1 0        1        0 1 1 1

¨ b Æ ¨ m Æ

Hence, the codeword is C = (1  1  1    1   1   1   1).
This is in agreement with the result that we got for part (b) of Example 13.13.

13.5.16  Bose–Chaudhary–Hocquenghem Codes

Popularly known as  BCH codes, these form a subset of the larger class of cyclic codes. They were invented 
by  Hocquenghem in 1959 and independently by  Bose and  Chaudhary in 1960. In fact, the single-error 
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828 Communication Systems

correcting  Hamming codes can also be considered as  BCH codes. The general class of BCH codes is indeed 
a remarkable generalization of the Hamming codes, for multiple error correction. In 1961  Gorenstein and 
 Zeirler developed non-binary BCH codes as a generalization of the BCH codes.
 A detailed study of the theory and the method of construction of BCH codes is beyond the scope of 
this book. We will, however, briefly describe one important subclass of the binary BCH codes, called the 
primitive BCH codes, which have the capability to detect and correct up to t random type of errors per 
codeword.
 A t-error correcting binary BCH code exists with the following parameters for any pair of positive integers 
m and t, where m ≥ 3 and t < 2m-1.

 Block length 2 1m
n = -

 Number of parity check digits = ( )n k mt- £
  Minimum distance of the code: min 2 1d t≥ +
Besides their multiple error correction capability, an attractive feature of BCH codes is the flexibility in the 
choice of block length and  code rate. For a given code rate and a given block length, BCH code are the best 
known codes. For decoding of BCH codes,  Berlekamp’s iterative algorithm and  Chein’s search algorithm are 
very efficient.
  Reed-Solomon codes, a type of non-binary BCH codes, are being extensively used for forward error 
correction ( FEC). They are being used in digital storage systems, modems, etc. For detailed discussion of BCH 
codes and Reed_Solomon codes, the interested readers may refer to the textbook by  Shu Lin and  Costello.

13.5.17 Burst-Error Detection and Correction

Till now, we have considered a few important types of error detecting and correcting block codes for random 
errors, i.e., errors that occur randomly, generally affecting one or, in some cases, a few bits at random locations 
in a  codeword.
 But errors can occur in clusters too, i.e., several successive bits of a codeword may be affected. Such errors 
may be caused in wireless transmission systems by lightning, or deep fading lasting for several bit intervals, 
and in the case of storage systems, by defects in the magnetic materials. For  error detection and correction in 
such cases, ordinary random error codes are inefficient. A special class of codes, called burst error detecting 
and correcting codes have to be used.
 In connection with codes for burst errors, there are two useful results.
 1. For detecting burst errors of length p or less digits using a block code, it has been shown that it is 

necessary and sufficient for the block code to have p  parity check digits.
 2. For correcting  burst errors of length p or less, a linear block code should have at least 2p parity-check 

digits.
An interesting thing about the two results quoted above, is that the number parity-check bits needed depends 
only on the burst length but not on the message sequence length, k, or the code length, n. Because of this, 
block codes for  burst-error detection find application in  packet switching where, the packet length may vary 
from packet to packet.

13.5.18  Coding Gain of Block Codes

As stated earlier, we resort to error-correction through channel coding to reduce the  probability of error,  Pe.
But, as we have already seen, for an uncoded system with a given channel, Pe depends upon the average bit 
energy, which, for a given average power, depends upon the bit-rate. For the same channel, in the case of 
coded systems, it depends on the type of code too, in addition to the average power and bit rate.
 Suppose we consider an (n, k) block code. k information bits are mapped into an n-bit codeword, where, 
n > k. If the bit rate of the uncoded system, which we may call as the information rate, is say, r, then the bit 
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rate for the coded system will be r.(n/k) is we assume that the time taken to transmit k information bits is 
the same in both the systems. Thus, the coded system has a higher bit-rate than the uncoded system and so 
it requires a bandwidth that is (n/k) times the bandwidth required for the uncoded system. Thus, the coded 
system scarifies bandwidth in order to give better reliability.
 Now, for the comparison to be fair, let us say the energy utilized by the coded system to transmit k infor-
mation bits (using n coded bits for this purpose), is the same as the energy utilized by the uncoded system 
to transmit the k information bits. Then, Eb, the bit energy of the coded system and so, it is less. Since Pe

decreases with Eb, whatever may be the code, the question naturally arises: ‘Can the coded system with a 
smaller bit energy give more reliability than the uncoded system?
 The answer to the above question is: ‘Yes, to some extent, if a certain condition is satisfied’. The condition 
to be satisfied is that if the code used is a t-error correcting code, the actual number of errors occurring per 
codeword should not be more that t. If this condition is not satisfied, the coded system can have a Pe that is 
worse than that of an uncoded system. As long as this condition is satisfied, there will be some reduction in 
the  bit-error rate (BER). To what extent the BER will be reduced, will, of course, depend on the type of code 
used.
 From the above discussion, two points emerge: 
 1. For a given channel, a coded system requires a smaller value of bit energy Eb than an uncoded system 

to give a specified Pe at the same information rate.
 2. For a given channel and a given information rate, the extent of reduction possible in the bit energy when 

an error-correcting code is used, will depend on the type of code used.
The comparison between a coded and an uncoded system, as well as that between different codes, can be 
made in quantitative terms by making use of a parameter called the ‘ coding gain’, which may be defined as 
follows.

Definition Coding gain of a code is the ratio of the bit energies required by an uncoded system and a 
coded system for achieving a specified Pe, with the  information rate being the same for both. (It is generally 
expressed in dB.)

The term, ‘information rate’, used above, refer to the number of message bits, or information 

bits transmitted per unit time.

 It has been shown that the coding gain of an (n, k) block code is equal to the product of the code rate 
r (= k/n) and the value of the minimum  Hamming distance of the code (reference 5). Since r is always less 
than 1 and dmin is greater than or equal to one, the coding gain, as a ratio, can be either greater than, or less 
than 1. However, there are many block codes which provide good coding gains (i.e., above 1). For given 
values of n and k, it then follows that the (n, k) code with the largest value of its dmin will give the highest 
 coding gain.

13.6 CONVOLUTIONAL CODES

The encoder for a block code, as we have seen, takes a k-bit message block, produces ( )n k-  parity bits each 
of which is obtained according to some predetermined linear combination of the k message bits and produces 
an encoded sequence of n bits, where n > k, by appending the ( )n k-  parity bits to the k message bits. Thus, 
the codewords are produced on a block-by-block basis. The encoder for a block code therefore needs a buffer 
for storing the k message bits. An encoder for a convolutional code, on the other hand, acts on the message 
bits coming serially. It generates the output codeword by  modulo-2 discrete convolution of its own  impulse 
response (finite duration) with the sequence formed by the present message bit and a few message bits 

Note
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preceding the present one. The encoder for convolutional encoding is quite simple – a tapped  shift register. 
Further,  convolutional codes offer much better performance by sophisticated decoding techniques. Most of 
the block codes have rates k/n above 0.95. On the other hand, most of the convolutional codes have rates 
below 0.90. However, their low code rate is more than compensated by their very powerful error-correcting 

capabilities. Convolutional codes are generally preferred in space and satellite communication systems that 
require simple encoders which achieve high performance and for use in very noisy channels.

13.6.1  Convolutional Encoders

A convolutional encoder in its 
simplest form is a  finite state 
machine and consists of a tapped 
shift register with say ( 1)L +  stages 
whose outputs are connected to a 
modulo-2 adder through coefficient 
multipliers, as shown in Fig. 13.9. 
Since the message bits as well as 
the coefficients g0, g1, …, gL are all 
binary numbers, the arrangement is 
just a binary FIR filter whose finite 
impulse response is given by the 
coefficients g0, g1, …, gL.
 Since g0, g1, …, gL are either 
0 or 1, if any gi is a one, only a 
simple direct connection is shown, and if it is a 0, then the corresponding connection is not shown at all, as it 
is an open circuit. The first stage to which the input is given is referred to as the input stage and the remaining 
L stages of the shift register define the state of the encoder. With the contents of the shift register stages as 
marked in the figure, the output bit is given by

0 1 1i i i i L Lx m g m g m g- -= ◊ ≈ ◊ ≈ º + ◊

0

L

i j j
j

m g-
=

= Â  (modulo-2 addition) (13.62)

The reader might have identified the RHS of the above equation as the familiar ‘convolutional sum’ (similar 
to the convolutional integral for continuous-time signals) that gives the ith element of the output sequence in 
the case of a discrete-time filter. That is why these encoders are called convolutional encoders and the code, 
as a convolutional code.
 Whenever a message bit is shifted into the input stage of the shift register, one output bit, as determined by 
Eq. (13.62) is given out. Thus, for each input message bit only one output bit is obtained from the encoder. 
Hence, there is no  redundancy introduced and so no  error-detecting or correcting capability exists for the 
code produced by this simple encoder. Before we proceed to describe a more practical form of a convolu-
tional encoder, there is one important point that deserves mention. That is, that each message bit shifted into 
the input stage of the shift register has to go through all the ( 1)L +  stages: and as long as it stays in one or the 
other of these ( 1)L +  stages, it influences the output bit. Thus, each message bit influences (L + 1) successive 

encoded bits coming out from the encoder.
 A more practical form of a convolutional encoder is shown in Fig. 13.10. As pointed out earlier, for the 
generated code to have  error-correcting capability, it is necessary that each input bit should give rise to more 
than one bit of the encoded bit stream. This is achieved by using two or more modulo-2 summers and inter-
leaving the output bits from them by using a commutator switch as shown in the figure.

Fig. 13.9 A shift register convolutional encoder
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Fig. 13.10 A  convolutional encoder with n = 2, k = 1 and L = 2

Since each message bit shifted into the input stage produces one encoded output bit at each of the two 
modulo-2 adders, and the output commutator switch collects them as one pair of ordered output bits, k = 1 
and n = 2. Since there are 3  shift-register stages, L + 1 = 3 or L = 2. The code produced by a practical convolu-
tional encoder is generally referred to as an (n, k, L) code. The encoder of Fig. 13.10 thus produces a (2, 1, 2) 
convolutional code. Whereas in the encoder of Fig. 13.9, each message bit was influencing ( 1)L +  successive 
encoded bits, in the encoder of Fig. 13.10, each message bit influences ( 1)n L +  encoded bits, which is 6 in 
this case. This quantity, ( 1)n L +  is referred to as the  constraint length.

Definition The constraint length of a  convolutional code is defined as the number of encoder output bits 
influenced by each message bit.

 Constraint length of (n, k, L) code = ( 1)n L +  bits (13.63)

The definition of constraint length is not consistent in the literature. Some authors define it as 

simply the number of memory elements in the shift register. In that case, it is ( 1)L + . So, one 

must be careful and check up the way an author has defined the term. In this book, we adhere 

to the above definition and use the expression given for it in Eq. (13.63).

 Since each time a message bit is shifted into the shift register, n-encoded output bits are produced, the code 
rate of the (n, k, L) code is said to be 1/n. But, in fact, there is an oversimplification in the way we arrived 
at this value of the code rate. As we are going to see presently, this value of  code rate is correct only when 
the length of the message sequence is very large compared to ( 1)L + , the number of shift register elements. 
Suppose we have a message sequence of length K bits. Then it is only after K shifts that the last message bit 
would enter into the input stage of the shift register. After that it will take another L shifts to make this last 
message bit to come out of the shift register. So, a message sequence of K bits length needs altogether ( )K L+
shifts for the last message bit also to leave the shift register. We know that for an (n, k, L) code, the convo-
lutional encoder has n number of modulo-2 adders, and that each time a shifting is done, n encoded bits are 
produced (one at each adder). Hence, the output sequence has a length of ( )n K L+ . Thus, a K length message 

sequence produces ( )n K L+  output encoded bits. So, the code rate r is given by

 Code rate 
( )

K
r

n K L
=

+
 (13.64)

If K >> L, then the code rate is
1

r
n

@  (if K >> L) (13.65)

Note
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Time-domain approach Equation (13.62), which gives the convolution summation, forms the basis 
for the time-domain analysis of a  convolutional encoder. We shall now use this approach in the following 
example to demonstrate the two output sequences (1)

ix  and (2)
ix  of the encoder shown in Fig.13.10.

Example 13.21 Determine the output sequences (1) (2)andi ix x  and the encoded output sequence X of the 
encoder of Fig.13.10, given that the message sequence is 1 0 1 0 0 1.

Solution m0 = 1, m1 = 0, m2 = 1, m3 = 0, m4 = 0, m5 = 1 and from Fig.13.10,

(1) (1) (1)
0 1 21, 1 and 1g g g= = =

From Eq. (13.62), we have: 
2

(1) (1)

0

; 0,1,…i i j i
j

x m g i-
=

= =Â

\ (1) (1) (1) (1)
0 0 0 0 0 1 1 0 0

(1) (1) (1)
1 1 0 0 1

(1) (1) (1) (1)
2 2 0 1 1 0 2

(1) (1) (1) (1)
3 3 0 2 1 1 2

(1) (1) (1) (1)
4 4 0 3 1 2 2

1.1 1

0.1 1.1 1

1.1 0.1 1.1 1 1 0

0.1 1.1 0.1 1

0.1 0.1 1.

x m g m g m g

x m g m g

x m g m g m g

x m g m g m g

x m g m g m g

- -= ≈ = = =

= ≈ = ≈ =

= ≈ ≈ = ≈ ≈ = ≈ =

= ≈ ≈ = ≈ ≈ =

= ≈ ≈ = ≈ ≈
(1) (1) (1) (1)
5 5 0 4 1 3 2

(1) (1) (1)
6 5 1 4 2

(1) (1)
7 5 2

1 1

1.1 0.1 0.1 1

1.1 0.1 1

1.1 1

x m g m g m g

x m g m g

x m g

=

= ≈ ≈ = ≈ ≈ =

= ≈ = ≈ =

= = =

\ The sequence (1)
ix  = 1 1 0 1 1 1 1 1

To find the other sequence, i.e., (2),ix  we have

(2) (2) (2)
0 1 21 0 1g g g= = =  and again the message digits are 

m0 = 1 m1 = 0 m2 = 1 m3 = 0 m4 = 0 m5 = 1

Again, making use of Eq. (13.61),

(2) (2)
0 0 0

(2) (2) (2)
1 1 0 0 1

(2) (2) (2) (2)
2 2 0 1 1 0 2

(2) (2) (2) (2)
3 3 0 1 2 2 1

(2) (2) (2) (2)
4 4 0 3 1 2 2

(2) (2) (2)
5 5 0 4 1

1

0.1 1.0 0

1.1 1.0 1.1 1 1 0

0.1 0.1 1.0 0

0.1 0.0 1.1 1

x m g

x m g m g

x m g m g m g

x m g m g m g

x m g m g m g

x m g m g

= =

= ≈ = ≈ =

= ≈ ≈ = ≈ ≈ = ≈ =

= ≈ ≈ = ≈ ≈ =

= ≈ ≈ = ≈ ≈ =

= ≈ (2)
3 2

(2) (2) (2)
6 5 1 4 2

(2) (2)
7 5 2

1.1 0.0 0.1 1

1.0 0.1 0

1.1 1

m g

x m g m g

x m g

≈ = ≈ ≈ =

= ≈ = ≈ =

= = =

Hence, (2)
ix  = 1 0 0 0 1 1 0 1

As shown in Fig.13.10, the encoded output sequence x is obtained by  interleaving (1) (2)andi ix x  sequences.

Thus,
x = ( 1 1, 1 0, 0 0, 1 0, 1 1, 1 1, 1 0, 1 1)
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It is clear from the above example that the time-domain approach is quite cumbersome and time consuming. 
We will now outline the  transform domain approach for the analysis of convolutional encoders and then use 
that approach for solving the same problem.

Transform approach to convolutional encoder analysis As we have seen, a convolutional 
encoder performs a discrete linear convolution of two binary sequences – the input sequence and the 
encoder’s own impulse response. Since a linear convolution of two sequences is much easier to determine in 
the transform domain rather than in the time domain, we now define the modulo-2 D-transform of a binary 
sequence mk as

1 0 1 2
1 0 1 2( ) … …M D m D m D m D m D

-
-= ≈ ≈ ≈ ≈ ≈  (13.66)

whereas usual, ≈ denotes modulo-2 addition. As can easily be seen, it is just like the  Z-transform, with the 
differences that D is used instead of Z-1 and that the additions are  modulo-2 additions.
 Hence, if two binary sequences, mk and gk are linearly convolved and if a binary sequence, x, results, i.e., 
if

k kx m g= *  (13.67)

then in the D-transform domain, we can write

( ) ( ) ( )X D M D G D=  (13.68)

We may now define the  transfer function h(D) of a  convolutional encoder as the D-transform of its impulse 
response sequence, hk. h(D) is called the  generator polynomial of the encoder. The notation used for this is 
not in tune with what we have been using. This is because, we have reserved the notation H(D) for the parity-
check matrix of the code.
 A convolutional encoder may be described making use of a  generator matrix. The entries in this matrix 
are not 0s and 1s instead, they are polynomials in D with binary coefficients. They are, in fact, the transfer 
functions. The number of rows is equal to the number of inputs for the encoder and the number of columns 
is equal to the number of outputs. As in the case of block codes, here too, this generator matrix gives us the 
output if we know the inputs. We shall now illustrate the concept of a generator matrix for a convolutional 
coder by using the following examples.

Example 13.22 Find the generator matrix G(D) for the (2, 1, 2) convolutional encoder of Fig. 13.10.

Solution This encoder has one input and two 
outputs. So G(D) will be a 1 ¥ 2 matrix. The first 
column entry in this will be the transfer function 
pertaining to the input and the first output, i.e., 
between mk and (1).ix  This is equal to the D-transform
of the impulse response, (1),kh  for the first output. But, 
we know that

( )(1) (1) (1) (1)
0 1 2 (1  1  1)kh g g g= =

\ taking its D-transform, we have

(1) 2( ) (1 )h D D D= ≈ ≈

Proceeding in a similar fashion, with respect to the 
second output,

( )(2) (2) (2) (2)
0 1 2 (1  0  1)kh g g g= =

\ (2) 2( ) (1 )h D D= ≈

Fig. 13.11 (a) A (2, 1, 2) encoder
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Hence, 2 2( ) [1 , 1 ]D D D D= ≈ ≈ ≈G

\ if the D-transform of the outputs is represented by the vector C(D), we have
2 2

2 2

( ) ( )[1 , 1 ]

[ ( ) (1 ), ( ) (1 )]

D M D D D D

M D D D M D D

= ≈ ≈ ≈

= ◊ ≈ ≈ ◊ ≈

C

Example 13.23 Determine the output sequence (1) (2)andi ix x  and the interleaved output x for the 
 convolutional encoder of Fig. 13.10 assuming an input sequence m = 1 0 1 0 0 1. Use  transform-domain 
approach. What is the  code rate achieved?

Solution The time-domain convolutional 
operation described by Eq. (13.60) becomes a 
product operation in the D-transform domain.

(1) (1)( ) ( ) ( )iX D M D G D= ◊

where (1)( )iX D  is the D-transform of the output 
sequence at the first output, M(D) is the transform of 
the input sequence, m and (1)( )G D  is the transform of 
the impulse response (1)

g  pertaining to the input and 
first output of the encoder.

2 5

(1) 2

( ) (1 )

and ( ) -transform of [1 1 1] (1 )

M D D D

G D D D D

= ≈ ≈
= = ≈ ≈

\ (1) 2 5 2

2 5 3 6 2 4 7

3 4 5 6 7

( ) (1 )(1 )

1

1

iX D D D D D

D D D D D D D D

D D D D D D

= ≈ ≈ ≈ ≈

= ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

= ≈ ≈ ≈ ≈ ≈ ≈
\ (1)

ix  = 1 1 0 1 1 1 1 1

Similarly, (2) (2)( ) ( ) ( )iX D M D G D= ◊

where

( )
(2) (2) (2) (2)

0 1 2

2

( ) -transform of

-transform of  [1 0 1] 1

G D D g g g

D D

È ˘= Î ˚

= = ≈

\ (2) 2 5 2

2 5 2 4 7

( ) (1 )(1 )

1

iX D D D D

D D D D D

= ≈ ≈ ≈

= ≈ ≈ ≈ ≈ ≈

\ (2) 4 5 7( ) 1iX D D D D= ≈ ≈ ≈

Thus, (2)
ix  = 1 0 0 0 1 1 0 1

Interleaving 
(1) (2)and ,i ix x  we get the overall output as

x = ( 1 1, 1 0, 0 0, 1 0, 1 1, 1 1, 1 0, 1 1)

Note that exactly the same result was obtained earlier when we used the time-domain approach.

Code rate achieved = 
No. of digits in 6 3

.
No. of digits in 16 8

m

x
= =

Example 13.24 For the two-input, three-output convolutional encoder shown, determine the  generator 
matrix G(D) and the  parity-check matrix H(D). Show that G(D) H¢(D) = 0.

Fig. 13.11 (b) A(2, 1, 2) encode
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Solution If (1) (2) (3)( ), ( ) and ( )X D X D X D  are the D-trans-
forms of the three outputs (1) (2) (3), and ,x x x  then from the 
figure, we find

(1) (1)

(2) (2)

( ) ( ).1

( ) ( ).1

X D M D

X D M D

=

=

and (3) (1) (2)( ) (1 ) ( ) ( )X D D M D DM D= ≈ +

We know that in the generator matrix, G(D), the rows corre-
spond to the inputs and the columns to the outputs. We also 
know that each entry of G(D) is a  transfer function between 
the input corresponding to the row in which it is located and 
the output corresponding to the column in which it is located. 
Hence, using the above three equations, we may write down

1 0 1
( )

0 1

D
D

D

≈È ˘
= Í ˙

Î ˚
G

This is in the form 2 2 2 1( ) [ ]D I P¥ ¥= MG . Hence, by comparing this with Eq. (13.10a) which gives the structure 
of the  generator matrix for a block code, we may write H(D), the  parity-check matrix corresponding to the 
above G(D) as

1 1( ) [1 ]

[1 1]

D D D I

D D

¥= ≈

= ≈

MH

1
1 0 1 (1 )(1 )

( ) ( )   
0 1

1

T

D
D D D

D D D
D D D

≈È ˘
≈ ≈ ≈È ˘ È ˘Í ˙= = =Í ˙ Í ˙Í ˙ ≈Î ˚ Î ˚Í ˙Î ˚

G H 0

13.7 GRAPHICAL REPRESENTATION OF CONVOLUTIONAL CODES

 Convolutional code structure is generally presented in graphical form using any one of the following three 
equivalent ways:
 1. By drawing the  code tree
 2. By drawing the  trellis for the code
 3. By means of the  state diagram
We will now discuss each one of these in detail, using the convolutional code generated by the encoder of 
Fig. 13.10 for illustration.

13.7.1 Code Tree

In the code tree, the dark black dots are  nodes, and they represent the state of the encoder. From each 
node, there are two branches emanating – one upwards and the other downwards. When the encoder is in a 
particular state, from the node representing that state, we move upwards if the input (mi) is 0 and downwards 
if the input (mi) is a 1. Initially, the contents of all the  shift-register elements are set to zero. As we go on 
giving the input bits serially, starting at the left-most node, the path takes the upper branch if the input bit mi

is zero. The corresponding output 0 0 is marked on that branch and the next state is represented by the node 
on which the branch terminates. When the next message digit is shifted into the input element of the shift 
register, it will move up or down from that node, depending on whether the input bit (mi), now shifted into 
the shift register is a 0 or 1, respectively, and this process continues. The encoder has a memory of (L + 1) = 3 
bits. Hence, when the fourth message bit is shifted into the register, the first message bit is shifted out of the 

Fig. 13.12 Encoder of Example 13.24
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836 Communication Systems

shift register (see Fig. 13.14). Therefore, after the third branch, the tree repeats. So, all the nodes marked a
may be joined together. Same thing applies to nodes marked b, c and d. Joining like nodes together leads to 
the ‘ trellis’ representation.
 The path traced out along the tree for the input sequence 1 0 1 0 0 1 considered in Example 13.21 is 
shown by the dotted line. The corresponding outputs along this path are: 1 1, 1 0, 0 0, 1 0, 1 1, 1 1, 1 0, 
1 1 – exactly the same as what we got in Example 13.21. Note that eventhough there are only six digits in the 
input sequence, after the last input digit is shifted into the register, three more times we have to shift (with 
0 input) in order to shift out the contents of the registers caused by the previous inputs. That is why the last 
three additional digits shifted into the shift register have been shown as 0s while tracing the path taken by 
the encoder for the given input. These last three digits (zeros) appended by us to the actual input message 
sequence, constitute what is called, the ‘ tail of the message’.

Fig. 13.13  Code tree for the  convolutional encoder of Fig. 13.10
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 The sequence of changes in the  shift register contents, the outputs (1) (2)and ,u u  the state of the encoder 
each time a message digit is shifted into the shift register, is pictorially displayed in the following figure, i.e., 
Fig. 13.14.

13.7.2 Code Trellis

As we have observed during the discussion on the code tree, the tree is repetitive, the period of repetition, in 
terms of number of branches, depending upon the number of elements in the shift register used in the encoder. 
Since it is repetitive, a more compact description of a convolutional encoder may be obtained by joining 
together all the nodes in the code tree of Fig. 13.13 which are labeled using the same letter, say all nodes 
labeled ‘a’, all nodes labeled ‘b’ and so on. This results in an encoder representation, called the ‘ Code Trellis’.
In fact, the trellis is a more appropriate representation than the code tree for a convolutional encoder, which is 
a finite state machine. The code trellis for the (2, 1, 2) encoder of Fig. 13.10 is shown in Fig. 13.15. As shown 
in Fig. 13.14, the next state of the encoder is dependent on the current state and the bit mi that has just been 
shifted into the shift register. So in the code trellis, we show the current state on the left side and the next state 
on the right side. As we have already seen, there are only four possible states – a, b, c and d for the (2, 1, 2) 
encoder since mi-2 and mi-1 can each be either a 0 or a 1 and so mi-2 mi-1 which defines the state of the encoder, 
can take only the values 00, 01, 10, and 11, which we have represented by a, b, c and d respectively. A solid 
line has been used for the branch joining the current state with a next state if mi = 0 and a broken line is used 
if mi = 1. On each branch (either a solid line, or a broken line) the corresponding output u is also marked.

13.7.3 State Diagram

Imagine that we fold the code  trellis diagram vertically so as to make the a, b, c and d nodes in Fig. 13.15 
representing current state coalesce with the corresponding nodes on the right representing the next states, we 
then get the  state diagram, which is shown in Fig. 13.16. As shown in Fig. 13.15, it is only at nodes ‘a’ and 

Fig. 13.14  Pictorial display of the contents of the shift registers as the message digits 1 0 1 0 0 1 are shifted through 

the registers of the  convolutional encoder of Fig. 13.10
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‘b’ that the current state and the next state can be the same – in the former case when mi is 0 and in the latter, 
when mi is a 1. So, these transitions appear as self-loops at those nodes a solid line loop at node ‘a’ and a 
broken line loop at node ‘d’.
 The code trellis, or the  state diagram may be used for finding the resulting state sequence and output bits 
for a given message sequence.

13.7.4 The Trellis Diagram

The code trellis of Fig.13.15 shows only the 
steady-state transitions. A more useful trellis 
representation, referred to as the trellis diagram,
is shown in Fig.13.17 and it can be drawn directly 
from the state diagram of Fig.13.16. The encoder 
is assumed to be initially in state ‘a’, i.e., all the 
shift register contents are zeros. Looking at the 
state diagram of Fig.13.16, we find that an input 
of binary 0 to the encoder results in its remaining 
in the same state as indicated by the loop around 
state a in the state diagram and the horizontal line 
through the state a in the trellis diagram of Fig. 
13.17. When the encoder is in state a, an input of binary 1, however, results in a transition to state b (see the 
state diagram) and this is indicated in the trellis diagram by a line from state a to state b and since it is the 
‘next state’ from the initial state, it is shown against state b under the second node. As may be seen from the 
state diagram, any of the other three states can be reached from a given state by a sequence of two input bits. 
A third input results in transitions as shown. After the third input, the trellis becomes repetitive. In the trellis 
diagram, each trellis branch is labeled as shown, where the upper single digit represents the input and the 
lower double digit represents the resulting output.

Example 13.25 Use the code trellis of Fig.13.14 and determine the output sequence and the sequence 
of states which the encoder goes through when an input sequence of 1 1 0  1 1 0  0 1 0 is given. Assume 
an initial state of 0 0, i.e., a.

Fig. 13.15  Code trellis for the (2, 1, 2) encoder of Fig. 13.10

 Fig. 13.16  The state diagram for the (2, 1, 2) encoder of 

Fig. 13.10
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Solution Using the  code trellis of Fig. 13.14, we prepare the following table

Input 1 1 0 1 1 0 0 1 0

State a b d c b d c a b c

Output 11 01 01 00 01 01 11 11 10

Example 13.26 Sketch the  state diagram for the convo-
lutional encoder shown in Fig. 13.18.  Code rate is 1/2 and 
 constraint length L = 2. (JNTU, NOV. 2009)

Solution From the diagram of the encoder, it is clear that the 
definition of constraint length followed is as mentioned in the note 
given under Eq. (13.62). So, what has been given as L = 2 in the 
problem actually refers to the total number of shift registers in 
the encoder. Hence, as per the notation we are following, this is 
an (n, k, L) encoder with n = 2, k = 1 and L =1. Referring to Fig. 
13.19.

\

(1)

(2)
1

i

i i

m

m m

u

u -

=

= ≈

The state = mi–1

Since mi–1 can take only one of the two values, there are only two possible states.
Let the contents of the registers be 0, 0 initially. As shown below, there are only four possible values for 
mi mi–1

Fig. 13.17  Trellis diagram for the encoder of Fig. 13.10

Fig. 13. 18

Fig. 13.19
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Current state 0
mi mi–1   mi mi–1

0 0 1 0
(1) (2)0,   0

0  0

u u= =
\ =υ

(1) (2)1,  1

1  1

u u= =
\ =υ

 current state : 0 current state : 0
 next state    : 0 next state    : 1
 (since mi is 0) (since mi = 1)

Current state 1
   mi mi–1   mi mi–1

0 1 1 1
(1) (2)0,   1

0  1

u u= =
\ =υ

(1) (2)1,   0

1  0

u u= =
\ =υ

 current state : 1 current state : 1
 next state    : 0 next state    : 1
 (since mi = 0) (since mi = 1)

(a) Trellis (b) State diagram
Fig. 13.20

13.7.5 Decoding Methods

 Convolutional codes may be decoded using  tree-searching techniques. In Fig. 13.12, the path traced out along 
the tree for the input sequence 1 0 1 0 0 1 has been shown by a broken line on the code tree for the (2, 1, 2) 
convolutional encoder of Fig. 13.10. This suggests that to decode a received sequence, one can search the code 
tree for the path which is closest, in terms of Hamming distance, to the received sequence. However, since the 
number of possible paths is 2N for an N-bit message sequence, tree-searching requires a very complex decoder.
 In general, one may consider the following options for decoding of convolutional codes:
 1. Feedback decoding
 2. Sequential decoding
 3. Maximum likelihood decoding
 Feedback decoding requires simplified hardware but at the expense of good performance. For  sequential 
decoding the complexity of the hardware goes on increasing as the performance becomes better and better. 
 Maximum Likelihood decoding, which, for a  Binary Symmetric Channel, is equivalent to minimum distance 
decoding, is optimal for  AWGN but requires considerable search as mentioned earlier. However, Viterbi 
algorithm, which applies maximum likelihood principle, limits the comparison to a much smaller number 
compared to 2N and has found extensive application in practice, particularly in satellite communications.
 Before briefly discussing  Viterbi algorithm, we shall first discuss the principle of Maximum Likelihood 
decoding.

Maximum likelihood decoding Having discussed the  convolutional encoder and its code tree, trellis 
and  state diagram representations, we will now proceed to discuss the decoding process. If m is the message 
sequence or vector, the encoder maps it into a code vector C and there is a one-to-one relation between the 
two. Let us assume that the code vector C produced by the encoder is transmitted over a Binary Symmetric 
Channel (BSC) which has a  transition probability p owing to noise on the channel. Let the received vector be 
r. The function of the receiver is to observe r and make the best possible estimate 

)
m  of m. Since there is a 

one-to-one relationship between C and m, it means that the receiver has to make the best possible estimate 
)
C

of C by observing the received vector r. If its estimate 
)
C  of C is correct, i.e., if  

)
C  = C, then 

)
m  = m and we 

say no decoding error has occurred. On the other hand, if 
)
C π C,

)
m  will not be equal to m, the transmitted 

message vector, and so we say that a decoding error has occurred. The decoding rule by which the receiver 
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chooses an estimate 
)
C  of the transmitted codeword C, is said to be an optimum one if that decoding rule 

minimizes the average probability of occurrence of a  decoding error. From the maximum likelihood (ML) 
detection technique discussed in Chapter 4, we know that the probability of decoding error can be minimized 
by maximizing the log  likelihood function. So, if p(r | C) is the conditional probability of receiving r given 
that C has been transmitted, then the ML decoding technique consists of choosing that estimate 

)
C  of the 

transmitted code vector which maximizes log[ ( | )]p r C , the log likelihood function, and thereby minimizes 
the probability of decoding error.
 Now, the transmitted code sequence C and the received sequence r will have the same number of digits 
in them, although the digits in corresponding locations might differ at a few locations owing to the effect of 
noise on the  Binary Symmetric Channel (BSC) over which C is assumed to have been transmitted. So, if the 
transmitted sequence C is of length N digits, we will now try to express the log likelihood function in terms 
of the transition probability p of the BSC and the number of digits that are affected. Since the noise affects 
the various digits of C independently, if we denote the ith digits of C and r by ci and ri respectively, we may 
write

1

( | ) ( | )
N

i i
i

p p r c
=

= ’r C  (13.69)

Taking logarithm on both sides,

1

log ( | ) log ( | )
N

i i
i

p p r c
=

= Âr C  (13.70)

But,
if

( | )
(1 ) if

i i
i i

i i

p r c
p r c

p r c

πÏ
= Ì - =Ó

 (13.71)

So, if d be the number of digits of C that have been affected, i.e., if d be the  Hamming distance between r
and C,

log ( | ) log ( ) log(1 )

log ( ) log(1 )d

p d p N d p

p N d p

= + - -

= + - -

r C

 (13.72)

Note

 (i) N >> d so that (N d) N- ª ; and N log(1 p)-  is the same for all C.

 (ii) Since p, the transition probability of the BSC has to be less than 0.5 (why?) and is 

actually very much smaller that that, pd will go on decreasing as d increases. Further, 

d, the Hamming distance between r and C will be different for the various possible 

code sequences. Thus, to maximize log [ p( | )]r C , the log likelihood function, we have 

to minimize d by an appropriate choice of C as our estimate 
)
C  of the transmitted code 

vector.

Thus, the  maximum likelihood decoding is equivalent to  minimum distance decoding. This means that when 
the receiver receives a sequence r, it has to compare r with all the possible transmitted code vectors and 
choose that particular code vector which is closest to the received sequence r as the code vector that has been 
transmitted. ‘closest’ here means that of all the possible code vectors, the chosen code vector should differ 
from the received vector r in the fewest number of locations.

Viterbi algorithm Earlier, we had stated that the  code tree could be used for decoding a convolutional 
code by identifying a path through the code tree that differs from the received sequence in the fewest number 
of locations. We also stated that this is generally not feasible in practice because the number of paths in the 
tree code with which the received sequence will have to be compared, grows exponentially with the length of 
the message sequence.  Since a code tree and the  trellis diagram are equivalent representations, suppose we 
choose to use the trellis diagram rather than the code tree for decoding. Then the number of nodes at any level 
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of the  trellis diagram does not go on increasing with the length of the message sequence. Actually it remains 
constant at 2L+1 where (L+1) denotes the total number of  shift register stages. For example, if we consider 
the trellis diagram of Fig.13.17 which has been drawn for a (2, 1, 2)  convolutional encoder (for which L = 2), 
there are 4 nodes at any level and at any of these four nodes, only two paths are entering. Further, these two 
paths are identical from that point onwards. The  minimum distance decoder can, at this point, decide which 
path is to be retained in order to keep the path close to the received sequence. Again, at the next level too, a 
similar decision may be taken. This exactly, is what the  Viterbi algorithm does as it proceeds through the trellis 
diagram. At each level, to compute the closeness of the path through the trellis with the received sequence, it 
uses the  Hamming distance between the two as the metric. Thus, at each node, of the two paths, the one with 
smaller metric is retained and the other one is rejected. The retained paths are termed the survivor, or active 
paths. Only the  survivor paths and their metrics are stored. Details of the way we have to proceed with Viterbi 
algorithm are best understood by carefully following the various steps in the following example.

Example 13.27 Apply Viterbi algorithm for maximum likelihood decoding of the convolutional code 
generated by the (2, 1, 2) convolutional encoder of Fig.13.10. Assume that the received sequence is 1 0 1 
0 0 1 1 0 1 1 1 1.

Solution Initially the contents of all the shift-registers are assumed to be zero, i.e., we start from the 
state marked a (0 0). The procedure we adopt is: at each stage we find the optimum paths to the four states 
keeping in view the two received bits during that stage. From the state diagram of Fig.13.16 as well as the 
trellis diagram of Fig.13.17, it is clear that at any stage each state may be approached from two previous 
stages. For example, state a (0 0) may be approached from previous a (0 0) state, or c (1 0) state; state b (0 
1) may be approached from a (0 0) state or c (1, 0) state; state c (1 0) may be approached from b (0 1) or 
d (1 1); and state d (1 1) may be approached from a previous d (1 1) state or from b (0 1) state. Always, 
the one with minimum  Hamming distance is the survivor and is retained whereas the other path with larger 
Hamming distance is discarded. Hamming distances of the survivors are labeled.

(a) Stages 1 and 2
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(b) Stage 3

(c) Stage 4
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(d) Stage 5

(e) Stage 6

Fig. 13.21 Illustration of the use of  Viterbi algorithm
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The  optimum path is identified to be the one indicated by thick, black path ending in state b. The decoded 
 codeword and the corresponding received message sequence are:

 Received bits   :  1  0  1  0  0  1  1  0  1  1  1  1
 Decoded sequence  :  1  1  1  0  0  0  1  0  1  1  1  1
 Received message sequence :      1      0      1      0      0      1

Thus, the errors at the 2nd and 6th bits of the received sequence have been corrected and the actually trans-
mitted sequence has been received. The message sequence used at the transmitter for encoding, has also been 
obtained correctly (check with the results of Example 13.21). The encoder returns to the original state a (0 0) 
and remains there after a complete codeword is outputted. Obviously, the given received sequence is not due 
to transmission of a complete codeword.

Free distance and coding gain of convolutional codes While discussing  coding gain of block 
codes in Section 13.5, we found that coding gain depends upon dmin. For a block code, this has been defined 
as the minimum  Hamming distance between any two codewords, or the minimum  Hamming weight of any 
non-zero codeword of the code. But, in a convolutional code, there is nothing like a codeword. So, we regard 
to entire transmitted sequence corresponding to an input sequence, as a code vector and we define what is 
called the ‘ Free Distance’ of a  convolutional code as the minimum distance between code vectors, or the 
minimum Hamming weight of the non-zero code vector. This decides the error-correcting capability of the 
code. The free distance can be determined from the  code trellis, but the procedure is quite involved and will 
not be described here.
Thus,
 Free distance d W XDfree min[ ( )]  (13.73)

where X is any non-zero transmitted code vector.
 Just as the coding gain of a block code is equal to the product of its  code rate, r and its dmin, for the case 
of convolutional codes too the coding gain depends on the product of dfree and rc (where rc is the rate of the 
code), and it is defined as follows.

 Coding Gain for a convolutional code cr dD free

1

2
A convolutional code improves reliability when its coding gain, cr d >free

1
1

2
. This also is usually expressed 

in dB.

Turbo codes With block codes and convolutional codes, it is not possible in practice, to approach the 
theoretical limit for Shannon’s  channel capacity because the codeword length in the case of block codes 
and the  constraint length in the case of convolutional codes, need to be increased and that increases the 
complexity of the decoders very considerably, making their practical realization unfeasible. Of the various 
approaches proposed for overcoming these difficulties,  Turbo codes and Low Density Parity Check (LDPC) 
codes are worth mentioning.
 Turbo codes were first proposed by Berrou 
et al. in 1993. They have excellent  Bit Error 
Rate (BER) performance, almost nearing 
 Shannon limit and are becoming quite 
popular. The encoder of a turbo code consists 
of two systematic encoders connected 
together by means of an interleaver, as shown 
in Fig. 13.22.
 Encoders 1 and 2 generally use the same 
code and it is a short constraint length recursive convolutional code. The interleaver just permutes the input 

Fig. 13.22 Encoder of a turbo code
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message bits and feed its output to Encoder 2. The permutation of the message bits by the interleaver is 
completely deterministic and may be of repetitive type or pseudo-random type.
 Both  turbo codes and  LDPC codes make it possible to achieve very high coding gains of the order of 10 dB 
(coding gain may be taken as figure of merit for measuring the improvement in BER performance achieved 
by the use of a code).

MATLAB Example 13.1 For a (15,5) binary BCH code, find all its code words and determine its dmin

(minimum Hamming weight of any nonzero code word). Show that it can correct up to 3 errors

MATLAB Program
% Show that a [15,5] BCH code can correct one error and

%  has a generator polynomial X^5 + X + 1.

clc

clear all

k = 5;% Message length

n = 15;% Code-word length

m = 4

%

nwords = 32% Number of words to encode (i.e., sequences are 

randomly selected out of the 32 possible message

sequences, for encoding)

%

% Generation of messages

%

msg = gf(randint(nwords,k))

%

% Find t, the error-correction capability.

%

[genpoly,t] = bchgenpoly(n,k);

disp(‘Corresponding to the generator polynomial’)

genpoly

disp(‘Error corrections’)

t

disp(‘Therefore, It can correct up to three errors’);

dmin = 2*t+1

%

%  Finding the code words...(encode the message).

%

disp(‘The rows represent the 32 code words’)

code = bchenc(msg,n,k)

%

% adding noise to the code

%

% Corrupt up to t2 bits in each code word

disp(‘Code after addig noise’)

noisycode =  code + randerr(nwords,n,1:t)

%

% Decode the noisy code.

%
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[newmsg,err,ccode] =  bchdec(noisycode,n,k);

Hamming_weights_of_error_patterns = err

disp(‘The rows of this array represent the 32 message sequences obtained after 

decoding the noise affected code words’)

newmsg

disp(‘The rows represent the 32 code vectors obtained after decoding the noise 

affected code vectors’);

ccode

if ccode==code

 disp(‘All errors were corrected.’)

end

if newmsg==msg

 disp(‘The messages have been recovered perfectly.’)

end

[newmsg,err,ccode] = bchdec(noisycode,n,k);

ccode

Result
m = 4

nwords =  32

msg  array. 

Array elements = 

0    0    0    0    1

1    1    0    0    0

1    0    0    0    0

1    0    0    1    1

1    0    0    0    0

1    1    0    0    1

1    1    0    1    0

0    1    1    1    0

1    0    0    1    0

1    0    0    0    1

0    0    1    1    0

1    0    0    1    1

1    0    1    0    0

0    0    1    1    1

0    1    1    1    1

0    0    1    1    0

0    0    1    1    0

0    0    0    1    1

1    0    1    1    0

0    1    0    0    0

1    1    0    0    1

0    1    1    1    1

0    1    1    0    1

1    1    0    0    1

1    0    1    0    1

1    0    0    0    1

0    1    0    1    1

0    1    1    1    0

1    0    1    0    0
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1    0    1    1    1

1    1    0    1    1

0    0    0    0    1

Corresponding to the generator polynomial genpoly 

Array elements = 

      1    0    1    0    0    1    1    0    1    1    1    0    0    0    0

Error corrections

 t = 3  Therefore, It can correct up to three errors    dmin = 7

The rows represent the 32 = 25  code words
code Array elements = 

0    0    0    0    1    0    1    0    0    1    1    0    1    1    1

1    1    0    0    0    0    1    0    1    0    0    1    1    0    1

1    0    0    0    0    1    0    1    0    0    1    1    0    1    1

1    0    0    1    1    0    1    1    1    0    0    0    0    1    0

1    0    0    0    0    1    0    1    0    0    1    1    0    1    1

1    1    0    0    1    0    0    0    1    1    1    1    0    1    0

1    1    0    1    0    1    1    0    0    1    0    0    0    1    1

0    1    1    1    0    0    0    0    1    0    1    0    0    1    1

1    0    0    1    0    0    0    1    1    1    1    0    1    0    1

1    0    0    0    1    1    1    1    0    1    0    1    1    0    0

0    0    1    1    0    1    1    1    0    0    0    0    1    0    1

1    0    0    1    1    0    1    1    1    0    0    0    0    1    0

1    0    1    0    0    1    1    0    1    1    1    0    0    0    0

0    0    1    1    1    1    0    1    0    1    1    0    0    1    0

0    1    1    1    1    0    1    0    1    1    0    0    1    0    0

0    0    1    1    0    1    1    1    0    0    0    0    1    0    1

0    0    1    1    0    1    1    1    0    0    0    0    1    0    1

0    0    0    1    1    1    1    0    1    0    1    1    0    0    1

1    0    1    1    0    0    1    0    0    0    1    1    1    1    0

0    1    0    0    0    1    1    1    1    0    1    0    1    1    0

1    1    0    0    1    0    0    0    1    1    1    1    0    1    0

0    1    1    1    1    0    1    0    1    1    0    0    1    0    0

0    1    1    0    1    1    1    0    0    0    0    1    0    1    0

1    1    0    0    1    0    0    0    1    1    1    1    0    1    0

1    0    1    0    1    1    0    0    1    0    0    0    1    1    1

1    0    0    0    1    1    1    1    0    1    0    1    1    0    0

0    1    0    1    1    0    0    1    0    0    0    1    1    1    1

0    1    1    1    0    0    0    0    1    0    1    0    0    1    1

1    0    1    0    0    1    1    0    1    1    1    0    0    0    0

1    0    1    1    1    0    0    0    0    1    0    1    0    0    1

1    1    0    1    1    1    0    0    0    0    1    0    1    0    0

0    0    0    0    1    0    1    0    0    1    1    0    1    1    1

Code after adding noise
Noisy code  array elements = 

0    0    0    0    1    0    1    0    0    1    1    0    0    1    1

1    1    0    0    0    0    1    0    1    0    1    1    1    0    1

0    0    0    0    0    1    0    1    0    0    1    1    0    1    1

1    0    0    1    1    0    1    0    1    1    0    0    1    1    0

0    0    0    0    0    1    0    1    0    0    1    0    0    0    1

CS-Rao_13.indd 848CS-Rao_13.indd   848 1/25/2013 3:29:23 PM1/25/2013   3:29:23 PM



Error-Control Coding 849

1    1    0    0    1    0    1    0    1    1    1    1    0    1    0

0    1    0    1    0    1    1    0    0    1    0    1    0    1    1

0    1    1    1    1    0    1    0    1    0    1    0    0    1    1

0    0    0    1    0    0    0    1    1    0    1    0    1    0    1

0    0    0    1    1    1    1    1    0    1    1    1    1    0    0

0    0    1    1    0    0    0    1    0    0    0    0    1    0    0

1    0    0    1    1    0    1    0    1    0    0    1    0    1    0

1    0    1    0    0    1    1    0    1    1    1    0    0    0    1

0    1    1    1    1    1    1    1    0    0    1    0    0    1    0

1    1    1    1    1    0    0    0    1    1    0    0    1    0    0

0    1    1    0    0    1    1    1    0    0    0    0    1    0    0

0    0    1    1    0    1    1    1    0    1    0    0    1    0    1

0    1    0    1    1    1    1    1    1    0    1    1    0    0    1

1    0    1    1    1    0    1    0    0    0    1    1    1    0    1

0    1    0    0    0    1    1    1    0    0    1    0    1    1    0

1    1    0    0    0    0    0    0    0    0    1    1    0    1    0

0    1    1    1    1    0    1    1    1    1    0    0    1    0    0

0    0    1    1    1    1    1    0    0    0    0    1    0    1    0

1    1    0    0    1    0    0    0    1    1    0    1    0    1    0

1    0    1    0    0    1    0    0    1    0    0    0    1    0    1

0    0    0    0    1    1    1    1    0    1    0    0    1    0    0

0    1    0    1    1    1    0    1    0    0    0    0    1    1    0

0    0    1    1    0    0    0    0    1    0    1    0    0    1    1

1    0    1    0    1    1    1    1    1    1    1    0    0    0    0

1    0    0    0    1    0    0    0    0    1    0    1    0    0    1

1    1    0    1    1    1    0    0    0    0    1    0    1    1    0

0    0    0    0    1    0    1    0    0    1    0    0    1    1    1

Hamming_weights_of_error_patterns =

Columns 1 through 15 

1    1    1    3    3    1    2    2    2    3    3    2    1    3    2

Columns 16 through 30 

3    1    2    3    1    3    1    2    1    2    2    3    1    2    2

Columns 31 through 32

1    1

Newmsg

The rows of this array represent the 32 message sequences obtained after decod-

ing the noise-affected code words

newmsg Array elements = 

0    0    0    0    1

1    1    0    0    0

1    0    0    0    0

1    0    0    1    1

1    0    0    0    0

1    1    0    0    1

1    1    0    1    0

0    1    1    1    0

1    0    0    1    0

1    0    0    0    1

0    0    1    1    0

1    0    0    1    1
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1    0    1    0    0

0    0    1    1    1

0    1    1    1    1

0    0    1    1    0

0    0    1    1    0

0    0    0    1     1

1    0    1    1    0

0    1    0    0    0

1    1    0    0    1

0    1    1    1    1

0    1    1    0    1

1    1    0    0    1

1    0    1    0    1

1    0    0    0    1

0    1    0    1    1

0    1    1    1    0

1    0    1    0    0

1    0    1    1    1

1    1    0    1    1

0    0    0    0    1

The rows represent the 32 code vectors obtained after decoding the noise af-

fected code vectors

ccode  Array elements = 

0    0    0    0    1    0    1    0    0    1    1    0    1    1    1

1    1    0    0    0    0    1    0    1    0    0    1    1    0    1

1    0    0    0    0    1    0    1    0    0    1    1    0    1    1

1    0    0    1    1    0    1    1    1    0    0    0    0    1    0

1    0    0    0    0    1    0    1    0    0    1    1    0    1    1

1    1    0    0    1    0    0    0    1    1    1    1    0    1    0

1    1    0    1    0    1    1    0    0    1    0    0    0    1    1

0    1    1    1    0    0    0    0    1    0    1    0    0    1    1

1    0    0    1    0    0    0    1    1    1    1    0    1    0    1

1    0    0    0    1    1    1    1    0    1    0    1    1    0    0

0    0    1    1    0    1    1    1    0    0    0    0    1    0    1

1    0    0    1    1    0    1    1    1    0    0    0    0    1    0

1    0    1    0    0    1    1    0    1    1    1    0    0    0    0

0    0    1    1    1    1    0    1    0    1    1    0    0    1    0

0    1    1    1    1    0    1    0    1    1    0    0    1    0    0

0    0    1    1    0    1    1    1    0    0    0    0    1    0    1

0    0    1    1    0    1    1    1    0    0    0    0    1    0    1

0    0    0    1    1    1    1    0    1    0    1    1    0    0    1

1    0    1    1    0    0    1    0    0    0    1    1    1    1    0

0    1    0    0    0    1    1    1    1    0    1    0    1    1    0

1    1    0    0    1    0    0    0    1    1    1    1    0    1    0

0    1    1    1    1    0    1    0    1    1    0    0    1    0    0

0    1    1    0    1    1    1    0    0    0    0    1    0    1    0

1    1    0    0    1    0    0    0    1    1    1    1    0    1    0

1    0    1    0    1    1    0    0    1    0    0    0    1    1    1

1    0    0    0    1    1    1    1    0    1    0    1    1    0    0

0    1    0    1    1    0    0    1    0    0    0    1    1    1    1

0    1    1    1    0    0    0    0    1    0    1    0    0    1    1
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1    0    1    0    0    1    1    0    1    1    1    0    0    0    0

1    0    1    1    1    0    0    0    0    1    0    1    0    0    1

1    1    0    1    1    1    0    0    0    0    1    0    1    0    0

0    0    0    0    1    0    1    0    0    1    1    0    1    1    1

All errors were corrected.

The messages have been recovered perfectly.

Summary 
 ■ Error control strategies:

 (a) Forward Error Correction (FEC)
 (b) Automatic Repeat Request (ARQ)

 ■ ARQ Systems: These use error detecting codes. On detecting an error, the receiver requests the transmitter through 
a feedback channel, for retransmission.

 ■ Error-detecting and correcting codes: The channel encoder at the transmitter introduces controlled redundancy. 
The decoder of the receiver makes use of this redundancy to detect/correct the errors. Error correction needs more 
redundancy to be introduced than error detection.

 ■ Error-control codes: They are basically of two types:
 (a) Block codes
 (b) Convolutional codes

 ■ Block codes: The encoder of an (n, k) block code takes k message bits at a time and maps them into n encoded bits 
(n > k). The (n, k) block code has 2k codewords.

 ■ Code rate: The code rate of an (n, k) block code is the ratio of number of message bits to the number of bits in a 
codeword, i.e., code rate = k n r=( / )  and 0 < r < 1.

 ■ Channel data rate: If the source rate is Rs and an (n, k) block code encoder supplies data to the channel, the channel 
data rate sn k R= ( / ) .

 ■ Hamming distance: The Hamming distance between two N-length binary sequences is defined as the number of 
locations in which they are different.

 ■ Systematic block code: A systematic (n, k) block code is one in which each codeword consists of k unaltered 
message bits followed by (n – k) parity check bits.

 ■ Generator matrix: The generator matrix, G, of an (n, k) systematic block code is given by

k k n¥= [ ]MG P I

  where P is the k n k¥ -( )  coefficient matrix given by

   

n k

n k

k k k n k

p p p

p p p

p p p

- -

- -

- - - - -

È ˘
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙Î ˚

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

L

L

M M M

L

P

 ■ Code vector: If C is a 1 ¥ n code vector, m is a 1 ¥ k message vector and G is the generator matrix of an (n, k) block 
code, then C = m[G].

 ■ Parity-check matrix H:
T

n k n k n- - ¥= ( )[ ]MH I P

 ■ Some useful relations:
T T◊ = =andG H HG0 0

 ■ Repetition (n, k) code: It is a linear (n, k) block code in which a single message bit is encoded into n identical bits 
to produce a (n, l) block code.

 ■ Syndrome: If r is a 1 ¥ n received vector, its syndrome is a 1 ¥ (n–k) vector given by 
T= ◊S r H  while T◊ =C H 0

 ■ Hamming code: It is an (n, k) linear block code that has the following parameters and is a single-error correcting 
code:

  Block length :  
m

n = -2 1

  No. of message bits: 
m

k m= - -2 1
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  No.of parity bits : m n k= -( )

  and m is a positive integer and at least equal to 3.
 ■ Cyclic code: It is a subclass of linear block codes. Any cyclic shift given to a non-zero codeword of a cyclic code 

results in another codeword.
 ■ Generator polynomial g(x): The generator polynomial g(x) of an (n, k) cyclic code is a polynomial of degree (n–k)

that is a factor of (xn + 1). It is also the polynomial of least degree in the code.
 ■ Parity-check polynomial h(x): The parity-check polynomial of an (n, k) cyclic code with g(x) as its generator 

polynomial, satisfies the relation:
g(x) h(x) mod (xn + 1) = 0

 ■ Dual of a linear block code: For a linear (n, k) block code with G as the generator matrix and H as the parity check 
matrix, there exists a dual code with H as its generator matrix and G as the parity-check matrix.

 ■ BCH codes: Common binary BCH codes, known as primitive BCH codes are characterized by

  Block length 2 1m
n = -

  No. of message bits: k n mt≥ -   where m ≥ 3 and m
t < -(2 1)/2 .

  Min. distance : d t≥ +min 2 1
 ■ Convolutional encoder: An encoder for a convolutional code generates the output codeword by modulo-2 discrete 

convolution of its own impulse response with the sequence formed by the present message bit and a few message 
bits preceding the present bit.

 ■ Structure of a convolutional encoder: A convolutional encoder, in its simplest form, is a finite state machine and 
consists of a tapped shift register with (L+1) stages whose outputs are connected to one or more modulo-2 adders 
through coefficient multipliers.

 ■ Constraint length: For an (n, k, L) convolutional code, the quantity n(L + 1) is referred to as the constraint length. 
It represents the number of successive encoded bits influenced by each message bit.

 ■ Code rate of a convolutional code: The code rate of an (n, k, L) convolutional code is given by
K

r
n K L

=
+( )

  where K represents the message sequence length. If K >> L.

r
n

@
1

 ■ Representation of the structure of a convolutional code: It may be represented by any of the following three 
equivalent methods:

 (a)  Code tree (b)  State diagram (c)  Code trellis diagram
 ■ Decoding of convolutional codes: Basically, there are three methods of decoding a convolutional code:

 (a) Sequential decoding   (b)  Feedback decoding
 (c) Maximum likelihood decoding (ML decoding)
  Of these,  Viterbi algorithm using  ML decoding has become quite popular.
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Review Questions 
1. What are the two broad strategies adopted for error control in digital communications?
2. What are the different types of ARQ? Briefly discuss their features, advantages and disadvantages.
3. Compare ARQ and FEC methods of error control
4. What is meant by a ‘linear code’?
5. What is a systematic block code?
6. In a linear block code, how are the parity check bits produced?
7. Why is the generator matrix of a linear block code given that name?
8. In an (n, k) linear block code, how many codewords will be there? Justify your answer.
9. Given G, the generator matrix of a systematic linear block code, is it possible to construct the H matrix? If your 

answer is a ‘yes’, explain how.
10. If G and H are the generator matrix and the parity-check matrix of a linear block code, show that G◊HT = 0.
11. What is a repetition code?
12. What is a ‘syndrome vector’? How is it useful?
13. Briefly explain syndrome decoding of linear block codes.
14. Draw the block diagram of an encoder for a linear (n, k) block code and explain its working.
15. What is the meaning and the significance of dmin of a block code?
16. What is a cyclic code?
17. Show that giving i cyclic shifts to the right to the code vector of a cyclic code is equivalent to multiplying the code 

polynomial corresponding to that code vector by xi, modulo – (xn + 1)
18. If n k

n kb x b b x b x
- -

- -= + + º + 1
0 1 1( )  is the parity bits polynomial and k

km x m m x m x
-

-= + + º + 1
0 1 1( )  is the 

message bits polynomial of a systematic (n, k) linear cyclic code, write down the expression for the corresponding 
code polynomial.

19. State the relation between the generator polynomial g(x) and the parity check polynomial h(x) of an (n, k) cyclic 
linear code.

20. Draw the block diagram of an encoder for an (n, k) linear cyclic code and explain its working.
21. Draw the block diagram of the syndrome calculator for an (n, k) cyclic code and explain its working.
22. What is a Hamming code? What are its features?
23. Describe the structure of a t-error correcting binary BCH code. State some of the important good features of BCH 

codes.
24. What is a convolutional code? How is it different from a block code?
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854 Communication Systems

25. A particular convolutional code is described as an (n, k, L) code. What do these letters n, k and L represent?
26. What is meant by the ‘constraint length’ of a convolutional encoder?
27. What are the different methods of describing the structure of a convolutional encoder?
28. Explain how you would draw the trellis diagram of a convolutional encoder given its state diagram.
29. Show that for a binary symmetric channel, the ML decoding is equivalent to minimum distance decoding.
30. Briefly describe Viterbi algorithm for maximum likelihood decoding of convolutional codes.

Problems 
1. For the (7, 4) systematic Hamming code, determine

 (a) the generator matrix G.   (b) the parity-check matrix, H.
 (c) all the valid codewords   (d) the minimum distance, dmin of the code

2. For the dual of the systematic (7, 4) Hamming code of problem 1, find the G matrix, H matrix, all the valid 
codewords, and dmin.

3. For a (3, 1) repetition code, determine:
 (a) G matrix (b) H matrix (c)  The syndrome vector S for all possible single error 

patterns
4. Let H be the parity-check matrix of an (n, k) code. Then the matrix He defined by

e

È ˘
Í ˙
Í ˙
Í ˙=
Í ˙
Í ˙
Í ˙Î ˚

0

0

0

1 1 1

M

L

H H

  Is the parity-check matrix of an extended code. Show that
 (a) He defines an (n + 1, k) code
 (b) the minimum distance of the extended code is one more than the minimum distance of the original code.

5. Determine the relationship between n and k of a Hamming code. Using this result, show that the code rate 
approaches 1 for large value of n.

6. For the (7, 4) cyclic code of Example 13.18 with 1 + x + x3 as the generator polynomial g(x), show that (0 1 1 0 
1 0 0) is a code vector. When this codeword is transmitted, it was 
received as 0 1 1 1 1 0 0. Determine the syndrome polynomial for this 
received word.

7. A Golay code is a cyclic (23, 12) code with

   g x x x x x x x= + + + + + +5 6 7 9 11( ) 1

  Show that it can correct up to 3 errors.
8. For the convolutional encoder shown in Fig. P13.8, draw the code tree.
9. For the convolutional encoder of Fig. P13.1, draw the state diagram, 

and the trellis diagram.
10. The received sequence corresponding to an output sequence of the 

encoder of Fig. P13.1 is 1 1 0 1 0 1 0 1 1 1 1 1. Using Viterbi algorithm 
and using the trellis diagram of Problem 9, find the decoded sequence.

Multiple-Choice Questions 
 1. The ARQ systems having highest and lowest throughput efficiency are respectively
 (a) Stop-and-wait ARQ and Goback-N ARQ (b) Selective repeat ARQ and Stop-and-wait ARQ
 (c) Selective repeat ARQ and Goback-N ARQ (d) Stop-and-wait ARQ and Selective repeat ARQ

Fig. P13.8
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2. For a linear (7, 4) block code, the ratio of parity bits to message bits and the code rate are respectively

 (a) 
Ê ˆ
Á ˜Ë ¯

3 4
,

7 7
; (b) 

Ê ˆ
Á ˜Ë ¯

4 3
,

7 7
; (c) 

Ê ˆ
Á ˜Ë ¯

3 4
,

4 7
; (d) 

Ê ˆ
Á ˜Ë ¯

4 4
,

3 7

3. For a linear (7, 4) block code, the code rate and the ratio of channel rate to source rate are respectively

 (a) 
Ê ˆ
Á ˜Ë ¯

4 7
,

7 4
; (b) 

Ê ˆ
Á ˜Ë ¯

4 3
,

7 7
; (c) 

Ê ˆ
Á ˜Ë ¯

4 4
,

7 7
; (d) 

Ê ˆ
Á ˜Ë ¯

3 7
,

7 3

4. Given C1 = 1 1 0 1 0 1 1 and C2 = 1 0 1 1 1 0 1, the difference in their Hamming weights and the Hamming weight 
of their difference, are respectively

 (a) (1, 4) (b) (0, 0) (c) (4, 0) (d) (0, 4)
5. For a (7, 4) linear block code, the sizes of G and HT matrices are respectively

 (a) ¥ ¥(4 7, 3 7) ; (b) ¥ ¥(4 7, 7 3) ; (c) ¥ ¥(4 7, 7 4) ; (d) ¥ ¥(7 4, 7 3)
 6. For a (5, 1) repletion code, the sizes of the G matrix and H matrix are respectively
 (a) ¥ ¥(4 5, 5 4) ; (b) ¥ ¥(4 1, 4 5) ; (c) ¥ ¥(1 5, 4 5) ; (d) ¥ ¥(1 4, 4 5)

 7. A (7, 4) systematic Hamming code has 

È ˘
Í ˙= Í ˙
Í ˙Î ˚

1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1

H . It is known that a certain received code 

sequence r is in error in the second, third and fifth places. The syndrome of r is
 (a) (0, 1, 0) (b) (0, 1, 1)  (c) (0, 0, 1) (d) (0, 0, 0)
 8. g(x) and h(x) are respectively the generator polynomial and the parity-check polynomial of a linear cyclic (n, k)

code. The degree of h(x) and the product of g(x) and h(x) are respectively
 (a) n

k x +( , 1) ; (b) (k, 1) (c) (n – k, 1) (d) 
n

n k x- +( , 1)

9. If a block code is to have a t-error correction capability, then the minimum distance dmin of the code should be such 
that

 (a) d t≥min 2  (b) d t≥min  (c) d t≥ +min 2 1  (d) d t> +min 2 1
 10. If the constraint length of an (n, k, L) convolutional code is defined as the number of encoder output bits influenced 

by each message bit, then the constraint length is given by
 (a) L n +( 1)  (b) n L +( 1)  (c) n L k+( )  (d) L n k+( )

 11. The code tree of an (n, k, L) linear convolutional code repeats after the
 (a) kth stage (b) L th stage (c) (k+1)th stage (d) (L+1)th stage
 12. The state diagram of an (n, k, L) convolutional encoder is shown in Fig. M13.12. The number of shift register 

stages and the number of outputs for the encoder are respectively:
 (a) (2, 2) (b) (1, 1) (c) (2, 1) (d) (1, 2)

Fig. M13.12

Answers for Multiple-Choice Questions

 1. (b) 2. (c) 3. (a) 4. (d) 5. (b) 6. (c) 7. (d) 8. (a)
 9. (c) 10. (b) 11. (d) 12. (a)
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SPREAD SPECTRUM 

COMMUNICATION SYSTEMS

14
“Most of the important things in the world have been accomplished by people who have 

kept on trying when there seemed to be no hope at all.”

Dale Carnegie (1888 – 1955)

American writer

Learning Objectives

After going through this chapter, students will be able to

 ■ explain the principle of DSSS and FHSS and describe the operation of spread spectrum-based commu-

nication systems,

 ■ analyze the operation of and design PN sequence generators that produce PN sequences with good 

auto-correlation and cross-correlation characteristics,

 ■ calculate the probability of error of DS spread spectrum systems under single-tone jamming and 

multi-user conditions,

 ■ calculate the probability of error of FHSS systems under ‘barrage jamming’ and ‘partial-band 

jamming’ conditions,

 ■ describe how spread spectrum systems may be used for providing Code Division Multiple Access, and

 ■ explain how the PN code generators at the transmitter and the receiver can be perfectly aligned.

Historical Background

In 1942, one, Ms.  Hedy Lamarr, a scientifically talented Hollywood movie star and her co-inventor and an 
eccentric classical music composer, Mr.  George Antheil took a USA patent for what they called, “A Secret 
Communication System”. Conceptwise, it was the same as what we now know as a “ Frequency Hopping 
Spread Spectrum System”. The idea which they had patented was transmission of a message over a number 
of radio frequency carriers which followed a seemingly random pattern of sequence. The main objective of 
their proposed system was to have secure and secret communication between a transmitter and a receiver. 
Later, the US defense authorities used this concept for radio-guidance of a torpedo towards the intended 
target without any interference by way of  jamming, etc. Because of the immense possibilities for its use in 
military applications, most of the research and development work on  spread spectrum systems was carried 
out by the military establishments of various countries and most of this work was not available in open 
literature. The first commercial application of spread spectrum concept came up only in 1980 and it was 
for providing  multiple access facility from the earth stations to the  transponders on board a geosynchronous 
communication satellite.
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14.1 INTRODUCTION

There are some applications, like military communications, wherein a transmitted message is to be received 
only by the receiver for which it is intended; others should not be able to receive it. Further, in order to make 
the communication reliable, it should not be possible for any one to jam the transmitted signal.
  Spread spectrum systems are intended to provide such secure and reliable communication. As the name 
suggests, these systems spread the spectrum of the transmitted signal over a very wide bandwidth. This is 
achieved in these systems by modulating for a second time, an already modulated signal in such a way as 
to spread the power of the transmitted spread spectrum signal over a very large bandwidth. Thus, the  power 
spectral density of this signal is so low that any ordinary AM (or FM) receiver, with its 10 kHz (or 200 kHz) 
front-end bandwidth, receives an amount of spread spectrum signal power that is very much lower than the 
thermal noise power entering the receiver. Thus, the unauthorized receiver will not be able to receive the 
spread spectrum (SS) signal. As will be shown later, the SS signal cannot easily be jammed. Thus, these 
SS systems can provide very secure and reliable communication, making them ideally suited for military 
communications.
 One attractive feature of  spread spectrum signal which makes it extremely useful, especially in civilian 
applications, is that it enables an increase in the number of users over a given band – a feature that is exploited 
for providing  multiple access in  satellite communications and for increasing the number of subscribers using 
the same band, in the case of  cellular mobile communications.
Thus, spread spectrum communication provides
 1. protection against eavesdropping
 2. resistance to intentional  jamming
 3. resistance to  fading caused by  multipath effects
 4. multi-user facility over a given channel
 5. ranging facility
Basically, there are two types of spread spectrum systems. They are
 1. Direct Sequence (DS) spread spectrum systems
 2. Frequency Hopping (FH) spread spectrum systems
In this chapter, we will study both these types of systems, taking them in that order. Since pseudo noise (PN) 
sequences play an important role in the spread spectrum systems, we shall first briefly discuss PN sequences 
– their generation and their characteristics.

14.2 PSEUDO-NOISE SEQUENCES (PN SEQUENCES)

These are binary sequences which resemble random binary sequences. (In random binary sequences, 0s and 
1s are equi-probable.) Actually these  PN sequences are deterministic and they repeat after a certain length. 
However, because of their noise-like properties, they are widely used in applications such as synchronization, 
ranging, etc. Just as white noise has a delta function as its  auto-correlation function, these PN sequences also 
have auto-correlation functions which are highly peaked for zero shift (i.e., Delta) and are almost zero even 
for small shifts to either side.
 PN sequences can be generated easily using  shift register circuits with feedback from one or more stages. 
A PN sequence generator using a three-stage shift register is shown in Fig. 14.1.
 Since there are 3-shift-register stages and since each stage can have either a zero or a one, there can be 
23 = 8 distinct sets of contents, including 0 0 0. However, the 0 0 0 state is not permitted because once the 
shift register contents are 0 0 0, there will be no change whatever may be the number of shifts we give by 
clocking the circuit. For the  PN sequence generator of Fig. 14.1, if we assume that the shift register contents 
are initially 1 1 1, with each clocking pulse, the contents will change as shown in Table 14.1.
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Fig. 14.1 A three-stage shift register,  PN sequence generator

Table 14.1 Operation of the PN sequence generator of Fig. 14.1

Shifts x1¢ = x2 * x3 Shift register contents

 x1 x2 x3

0 - 1   1   1

1 1 ≈ 1 = 0 0   1   1

2 1 ≈ 1 = 0 0   0   1

3 0 ≈ 1 = 1 1   0   0

4 0 ≈ 0 = 0 0   1   0

5 1 ≈ 0 = 1 1   0   1

6 0 ≈ 1 = 1 1   1   0

7 1 ≈ 0 = 1 1   1   1

After the 7th shift, the pattern of the contents will repeat.

Thus, this PN sequence generator produces a sequence of length 7 and thereafter the same sequence will 
be repeated. This is to be expected since we have excluded one pattern, the all-zero pattern from the eight 
possible patterns. Hence, if N is the length of the sequence and m is the number of shift register stages,

2 1m
N = -  (14.1)

Every PN-sequence generator with m shift registers need not produce (2m – 1) length sequence. It depends on 
the feedback connections and the type of logic circuit used for combining the feedback outputs (In Fig. 14.1, 
the logic used was simply exclusive-OR addition). PN sequences with 2m – 1 length are called a  maximal

length sequences. An important property of a maximal length sequence is the number of 1s in it is always one 
more than the number of 0s. This property is called the ‘ balance property’.
 Since the PN sequence is periodic (with a period of 2m – 1 for maximal length sequence), its  auto-corre-
lation function defined by

/2

/2

1
( ) ( ) ( )

c

c

T

c T

R c t c t d
T

t t t
-

= -Ú  (14.2)

is also periodic with the same period.
In Eq. (14.2), c(t) is the time function representing the PN sequence, t is the delay and Tc is the duration of 
each binary digit in the sequence.

Note
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Spread Spectrum Communication Systems 859

Fig. 14.2  (a) Output binary sequence (b)  NRZ Bipolar waveform representation of the output sequence (c)  Auto-corre-

lation function of the PN sequence generated by the PN sequence generator of Fig. 14.1.

Applying Eq. (14.2) to the case of a  maximal-length sequence of N bits length and denoting the bit-duration 
of the maximal-length sequence by Tc, we get

1
1 | |; | |

( )
1

for the rest of the period

c
c

c

N
T

NT
R

N

t t

t

Ï Ê ˆ+
- £Ô Á ˜Ô Ë ¯= Ì

Ô-ÔÓ

 (14.3)

Figure 14.2 shows the binary output sequence from the  PN sequence generator in (a), the corresponding 
bipolar waveform in (b) and the auto-correlation function Rc(t) as a function of t (as given in Eq. (14.3)) in (c).
 We know that the  Fourier transform of the ACF gives the  PSD of a signal. Further, we also know that 
since the ACF, Rc(t), is periodic, the power spectral density of the PN sequence is discrete. It is in this respect 
that the  maximal-length PN sequence differs from the random binary sequence. Since the maximal-length 
sequence is periodic, its ACF is also periodic and its spectrum is discrete. However, the  random binary 
sequence is not periodic and its power spectrum is continuous.
 Table 14.2 gives the number and location of the feedback connections that would give us maximal-length 
PN sequences.

Table 14.2 Feedback details for generation of maximal-length PN sequences

m Sequence

Length N

Sequence (Initial state: All ones) Feedback digit

2 3 1 1 0 x1 ≈ x2

3 7 1 1 1 0 0 1 0 x2 ≈ x2

4 15 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 x3 ≈ x4

5 31 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0
1 0 1 1 1 0 1 1 0 0 0

x2 ≈ x5
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Example 14.1 A four-stage  shift register with feedback connections taken from the outputs of stages 4 
and 1 through a modulo-2 adder, is used for PN sequence generation. Assuming the initial contents of the 
shift register to be 0100, determine the output sequence. What is the length of the sequence?

Solution

Fig. 14.3 PN Generator circuit

Feedback

Digit

Shift Register Contents Output

Digit0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1 1 0 0 0 1

1 1 1 0 0 0

1 1 1 1 0 0

1 1 1 1 1 0

0 0 1 1 1 1

1 1 0 1 1 1

0 0 1 0 1 1

1 1 0 1 0 1

1 1 1 0 1 0

0 0 1 1 0 1

0 0 0 1 1 0

1 1 0 0 1 1

0 0 1 0 0 1

 The table shows the initial contents of the shift-register stages at the top. The first row shows the feedback 
digit m1 ≈ m4, the contents of the shift-register stages and the output digit after the first shifting. The other 
rows show the feedback digit, the shift-register contents and the output digit after each subsequent shifting.
 After 15 shiftings, the initial contents of the shift-registers are once gain obtained. For further shiftings, 
the same cycle of events will repeat. Thus, the length of one period of the  PN sequence is 15.
 The output sequence corresponding to one period of the generator is as given in the last column and is 
 Output sequence: 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 
Since m, the number of stages, is 4 and since the length of one period of the sequence is 15 which is equal to 
2m – 1, the sequence is a  maximal length sequence.
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14.3  BASICS OF  DIRECT SEQUENCE SPREAD SPECTRUM 

 COMMUNICATION

In an actual DS spread spectrum system, the binary data to be transmitted is first carrier modulated – say 
using PSK and then this modulated signal is subjected to spreading by multiplying it by the  PN sequence. 
However, in order to discuss the effect of multiplying the data sequence by the PN sequence, for the present, 
we shall consider only a baseband DS spread spectrum system, i.e., without initial carrier modulation by the 
data sequence. Let the NRZ bipolar waveform of the data sequence (before carrier modulation) be denoted by 
d(t) and the NRZ polar waveform of the binary output sequence of the PN sequence generator be denoted by 
c(t). Let the data digit duration be Tb sec and the PN sequence digit duration be Tc sec. In DS spread spectrum 
systems, it is always so arranged that

c bT T<<  (14.4)

Figure 14.4 shows the waveforms of d(t) and c(t) and also of the product of d(t) and c(t).

Fig. 14.4  (a) d(t), the NRZ polar waveform of the data sequence, (b) c(t), the NRZ polar waveform of the PN sequence, 

(c) s(t), the product waveform, i.e., product of d(t) and c(t).

Since ,c bT T<<  the waveform d(t) is narrow band, while the c(t) waveform is a wideband signal. Product 
of d(t) and c(t) in time domain is equivalent to  convolution of their spectra. But since the spectrum of c(t) is 
very wide compared to that of d(t), the product waveform s(t) will have a spectrum which is almost the same 
as that of c(t), the PN sequence waveform. That is, the spectrum of s(t), the baseband  DS spread spectrum 
signal is almost like the spectrum of c(t) itself. The PN sequence waveform, with its digital period Tc very 
small compared to Tb, actually ‘chips in’ into the data waveform d(t). That is why, the inverse of Tc is called 
the  chip frequency. Figure 14.5 shows the basic operations to be performed at the transmitter for producing 
the baseband spread spectrum signal and at the receiver for recovering the data sequence from the baseband 
DS spread spectrum signal. In order to illustrate how the spread spectrum modulation enables us to reject 
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deterministic interfering signals added to the transmitted signal s(t) during the course of its passage through 
the channel, we are adding the interfering signal i(t) to the  DS spread spectrum signal s(t).
 Since the interference is additive,

( ) ( ) ( ) ( ) ( ) ( )r t s t i t d t c t i t= + = ◊ +  (14.5)

The first operation to be performed at the receiver is to de-spread the received signal. For this purpose, it is 
multiplied by the PN sequence waveform c(t), which is assumed to be in perfect synchronism with the c(t)
used at the transmitting end.

2( ) ( ) ( ) ( ) ( ) ( ) ( )z t r t c t d t c t i t c t= ◊ = ◊ + ◊  (14.6)

From Eq. (14.3b), we find that c(t) is either 1 or –1 at any time.
So, 2( ) 1c t = +  for all t. Hence,

( ) ( ) ( ) ( )z t d t i t c t= + ◊  (14.7)

From Eq. (14.7), we find that when we de-spread the message or data waveform d(t), the interference signal 
i(t) gets spread over a wide bandwidth by getting multiplied by the PN sequence waveform, c(t). Thus, we 
find that z(t) consists of a narrowband component d(t) and a wideband component i(t).c(t). As shown in 
Fig.14.5(c), z(t) is integrated over a period of Tb, the data bit duration. The integrator acts as a low pass filter 
and removes the wideband component i(t) .c(t), thus achieving suppression of interfering signals. Further, at 
the end of each Tb, the output of the integrator gives a voltage n, whose value depends on whether the d(t) was 
+1 or –1 during that interval Tb besides, of course, the period Tb itself. This voltage is given to a comparator 
which acts as the  decision device and says that d(t) was 1 during that Tb if v > 0 and that it was a –1 if v < 0. 
Thus, the original data sequence is recovered suppressing the additive interfering signals picked up by the 
channel.
 The protection to the data given by the spreading sequence will improve as the PN sequence length is 
longer for a given data rate. The price paid for the security of communication, of course, is larger trans-
mission bandwidth, more complexity of the system, etc.

Fig. 14.5 Baseband  DS spread spectrum communication system model. (a) Transmitter, (b) Channel, (c) Receiver
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14.4  BPSK-DS SPREAD SPECTRUM SYSTEMS AND 

PROBABILITY OF ERROR

We have discussed in the previous section, how a DS spread spectrum baseband system can suppress inter-
ference signals. In practice, however, the data sequence, after spreading, is carrier modulated, generally using 
either  BPSK,  QPSK, or  MSK. Then it is transmitted over the channel. At the receiving end, the received 
signal is first subjected to coherent detection using the locally generated carrier signal that is arranged to be in 
phase and frequency synchronism with the carrier used at the transmitter. The output of the coherent detector 
is then subjected to dispreading by multiplying it with a locally generated PN sequence that is identical to and 
in synchronism with the one at the transmitter. After de-spreading, it is integrated over a bit duration Tb to get 
the observed random variable v, which is used for decision making, as shown in Fig.14.6.

Fig. 14.6  Direct sequence spread spectrum system using BPSK (a) Transmitter, (b) Receiver

14.4.1 Probability of Error due to Thermal Noise on the Channel

In Section 14.3, we had shown that a deterministic interfering signal added to the baseband spread spectrum 
signal in the course of its passage through the channel will be suppressed by the dispreading operation and 
the subsequent integration in the receiver. Thus, the interference signal is not going to influence the decision 
made by the  decision device. In other words, the interfering signal does not affect the  probability of error.
 From this, one may be tempted to jump to the conclusion that spread-spectrum systems will, in a similar 
way, suppress the random noise also added by the channel. But it is not correct to conclude like that. Random 
noise added to the SS signal during its passage through the channel, is unaffected by the de-spreading 
operation in the receiver. The de-spreading signal c(t) is like a random binary wave. So when the noise is 
multiplied by it, all that happens is that for some randomly occurring periods, the polarity of the noise is 
changed. Obviously, this does not in any way affect the  power spectral density, or the  probability density 
function of the noise. Earlier, we had seen that the message data sequence is un-affected by the spreading 
and  de-spreading. Since the signal as well as the thermal noise added by the channel are unaffected, the 
probability of error of a DS spread spectrum system using BPSK modulation, is the same as what a normal 
BPSK system gives. That is,

=
h

1

2
b

e

E
P erfc  (14.8)
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14.5 RESISTANCE TO JAMMING

 Jamming is resorted to in order to make a communication ineffective. It consists of radiating a large amount 
of RF power in a narrow band around the carrier frequency used for that communication.
 We will now briefly analyze and see the effect of jamming on  DS spread spectrum BPSK communication. 
To simplify the analysis, we shall make the following assumptions:
 1. We will assume that the jamming signal is a single-tone signal at the frequency fc which is the frequency 

of the carrier used for  BPSK modulation at the DS spread spectrum BPSK transmitter.
 2. Although in practice as shown in Fig. 14.6, the spectrum spreading operation at the transmitting-end 

precedes the BPSK modulation, we will, for the sake of this analysis, assume that the modulation 
(BPSK) is done first and the spectrum spreading is done subsequently. Similarly, at the receiver also, 
we will reverse the order in which phase demodulation and spectrum de-spreading are done. This is 
quite justified, because of the linear nature of all these operations.

So, for this analysis, we will use the following model for the DS spread-spectrum BPSK communication 
system.

Fig. 14.7 Model of DS spread-spectrum BPSK system used for analysis

Let the carrier signal at the transmitter have a power of P0 and a frequency of fc so that the carrier signal 
may be represented as 0 02 cosP tw . Let the jamming signal be of normalized power Pj and frequency fc so 

that it is 0( ) 2 cos( )jJ t P tw q= + . The  jammer signal phase will not have any relationship with the phase of 

the carrier used for BPSK modulation. q, in general, will be a random phase and we may justifiably assume 
that it is uniformly distributed over [0, 2p]. We assume perfect synchronism between the two  PN-sequence 
generators – one at the transmitter and the other at the receiver. We also assume that the locally generated 
carrier signal has a nominal power of unity and that it is in frequency and phase synchronism with the carrier 
used at the transmitter.
 With the data d(t) in polar NRZ format, the BPSK modulator is just a product device. Hence,

0 0( ) 2 ( )coss t P d t tw=  (14.9)

and
0 0( ) ( ) ( ) 2 ( ) ( )cosx t s t c t P d t c t tw= ◊ =  (14.10)

\
0 0 0( ) 2 ( ) ( )cos 2 cos( )jy t P d t c t t P tw w q= + +  (14.11)

and 2
0 0 0( ) 2 ( ) ( )cos 2 [cos( )] ( )jz t P d t c t t P t c tw w q= + +

But c2(t), as already pointed out earlier, is equal to 1 for all t.

\
0 0 0( ) 2 ( )cos 2 ( ) cos( )jz t P d t t P c t tw w q= + +  (14.12)
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The  coherent detector is again a product device followed by a low pass filter. Hence, the input, w(t), to the 
low pass filter in the coherent detector is given by

0

2 2
0 0 0 0 0

0 0 0 0

( ) ( ) 2 cos

2 ( )cos 2 ( )[cos cos sin cos sin )]

( )[1 cos 2 ] ( )[1 cos 2 ]cos ( )[sin 2 ]sin

j

j j

w t z t t

P d t t P c t t t t

P d t t P c t t P c t t

w

w w q w w q

w w q w q

= ◊

= + +

= + + + +

When w(t) is fed to the low pass filter whose cut-off frequency is just equal to the bandwidth of the baseband 
data signal, d(t), all the terms involving components with frequency around 2fc will be blocked by the LPF 
since its cut-off frequency is very much smaller than 2f0. Hence, output of the LPF, viz. v(t) is given by

0( ) ( ) ( )cosjv t P d t P c t q= + ¢  (14.13)

Note that in the second term on the RHS of Eq. (14.13), we have used ( )c t¢  instead of c(t). This is because, 
c(t) is a wideband signal and the LPF with its cut-off frequency fb = 1/Tb (this is the cut-off frequency chosen 
because the LPF pass bandwidth should be just enough to pass the data signal d(t), whose bandwidth is 
1/Tb) will not pass c(t). It will pass only that part of the spectrum of c(t) which lies within its pass band. Hence 

( )c t¢  represents the time signal corresponding to that part of the spectrum of c(t) which passes through the 
LPF. The  power spectrum of ( )cosjP c t q  is given by

2 2[cos ] sin
( )

2

j c c

c

P T E T f
S f

T f

q p

p

È ˘= Í ˙
Î ˚

 (14.14)

This is a sinc2 function whose first zero value occurs at f = 1/Tc = fc. Since fc, the  chip frequency is very much 
greater than fb, the inverse of the bit duration, the value of S(f) over a bandwidth of | | bf f£  can safely be 
taken as a constant equal to the one corresponding to the peak value of the sinc2 function.
 The PSD of the output term caused by the sinusoidal  jamming signal is given by

2[cos ]
( )

2

j cP T E
S f

q
=  (14.15)

As mentioned earlier, q is a r.v. which is uniformly distributed over [0, 2p]. Hence,

2 1
[cos ]

2
E q =  (14.16)

\ 0

1
( ) ( )/4; | |j c b

b

S f P T f f
T

= £ =  (14.17)

Now, from Eq. (14.12), it is clear that the signal component of the input to the coherent detector is the same 
as what it would have been for a simple BPSK receiver. If the interfering signal were random channel noise of 
two-sided  PSD equal to h/2, the noise signal at the input to the LPF of the coherent detector would also have 
a two-sided PSD of h/2. In such a case, we know that the  probability of error, Pe would be

=
h

1

2
b

e

E
P erfc  (14.18)

 When we have the sinusoidal jamming signal instead of  white noise as the interfering signal added by the 
channel, in the case of the  DS spread-spectrum BPSK system, the data signal component of the input to the 
coherent receiver is the same but the interfering signal component, instead of being the noise signal with PSD 
of h/2, is a wideband signal (because of the chip signal c(t)) which gives at the output of the LPF a noise-like 
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signal with a constant  PSD over | | ,bf f£  given by S0(f) of Eq. (14.17). So, substituting S0(f) in the place of 
h/2 in Eq. (14.18), we get

=
◊

21

2
b

e
j c

E
P erfc

P T

But Eb = bit energy = P0Tb.

\ Ê ˆ Ê ˆ= ◊ =Á ˜Á ˜ ◊Ë ¯Ë ¯
0 01 1

2
2 2 ( )/2

b
e

j c j c b

P T P
P erfc erfc

P T P T T
 (14.19)

\ = 01

2 /2( / )e
j c b

P
P erfc

P f f
 (14.20)

The quantity [ /2( / )]j c bP f f  is called the effective jamming power

\ eff [ /2( / )]j j c bP P f fD  (14.21)

\ = 0

eff

1

2e
j

P
P erfc

P
 (14.22)

The quantity (fc/fb), the ratio of the  chip frequency to the bit frequency, which is always very much larger than 
1, is called the  processing gain and denoted by Gp.

\ Processing gain = ( / )P c bG f fD  (14.23)

The processing gain is a measure of the extent to which the jamming signal power is reduced due to the use 
of spread spectrum. Larger the value of Gp, smaller will be the Pj eff for a given Pj. Smaller the value of Pj eff , 
smaller will be the Pe since the complementary  error function is a monotonically decreasing function of its 
argument.

So, higher the ratio of chip frequency to bit frequency, better will be the resistance to a  narrowband 

jamming signal.

Example 14.2 Determine the  jamming margin of a DSSS/BPSK system with a processing gain 
Gp = 40 dB if 810eP

-=  in the presence of jamming.

Solution Assuming equi-probable 0s and 1s, the probability of error of a BPSK system is

= =
h h

21

2
b b

e

E E
P erfc Q

where Eb is bit energy and h is the one-sided PSD of white noise.
 We may treat the jammer also as another source of noise. If Pj is the jammer’s power at the receiver, we 
may write the  probability of error due to the  jamming signal alone as

2 b
e

j

E
P Q

N
=

where
j

j
c

P
N

W
D
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Wc being the transmission bandwidth of the  DSSS system. Since the value of h has not been given, we shall 
ignore channel noise.

8(2 / ) 10e b jP Q E N
-= =

From the Q-function tables, we find that

2 / 5.7 ( / ) 16.245b j b jE N E N= \ =

 Jamming margin (J.M) is defined as

10 10
(indB)

10 log 10 log ( / )p b jJ M G E N◊ D -

and it represents the ability of the system to operate in the presence of jamming/interference.

\ 10
(indB)

40 10 log 16.245 40 12.107J M◊ = - = -

\ (in dB) 27.9 dBJ M◊ =

14.5.1  Multiple Access Using DS Spread Spectrum

Till now we have discussed how  DS spread spectrum systems enjoy some immunity against evesdropping 
(i.e., interception by unauthorized receivers) and  narrowband jamming. However, if with all its huge trans-
mission bandwidth, if a DSSS system can serve only one user, it will indeed be wasteful of bandwidth. DS 
spread spectrum systems can, in fact, provide multiple access, i.e., allow multiple users. This multiple access 
facility is called the Code Division Multiplexing Access (CDMA) and it has certain advantages over the other 
multiple access facilities like FDMA, TDMA, etc. It does not require any bandwidth allocation as in FDMA 
or, any time allocation and synchronization as in TDMA.
 In  CDMA using Direct Sequence Spread Spectrum (DSSS) each user is provided with a unique PN code 
and the PN codes given to different users are almost uncorrelated. Figure 14.8 illustrates the principle of 
CDMA based on DS spread spectrum.

Fig. 14.8  A DSSS-based CDMA system
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There are n users, each one transmitting data using a DS spread spectrum BPSK system; and all of them use 
the same carrier frequency f0. Since there is no frequency division, or time division and since all the DSSS 
signals will be present at the input of each of the receivers, multiple access interference (MAI) exists at 
each of the receivers, i.e., at the output of any given receiver, there will be some interference caused by the 
remaining (n – 1) users. We will now try to analyze and see how this interference affects the probability of 
error. To facilitate this analysis, we will make the following simplifying assumptions:
 1. The chip frequencies are the same for all the n systems.
 2. The transmitted powers are the same for all the systems.
 3. The data rates fb = 1/Tb are the same for all the systems.
 4. Thermal noise introduced by the channel is not taken into account
 5. The power presented by each DS SS signal at its receiver input is the same for all the receivers (i.e., the 

 near-far problem is not considered).
 6. The random phases of the n carrier signals are statistically independent. 
Let f0 Hz be the common carrier frequency, di(t) be the data transmitted and ci(t) be the  PN sequence signal 
of the i th user, and P0 be the power presented by each signal at the input of its receiver. The data rate is fb for 
all users and let qi be the random phase of the carrier of the i th user. Then the signal present at the input of 
each receiver is given by

0 0
1

( ) 2 ( ) ( ) cos( )
n

i i i
i

z t P c t d t tw q
=

= +Â  (14.24)

At the kth receiver, as shown in Fig. 14.8 the received signal z(t) is multiplied by ck(t) for de-spreading. Then, 

the resultant BPSK signal is coherently detected by multiplying it by 02 cos( )ktw q+  to get the signal v(t)
which is then applied to the integrate and dump circuit, the output variable from which is finally applied to the 
decision device. Because the integrator acts like a low pass filter, not all the components present in v(t) will 
be able to reach the output of the integrator. The signal v0(t) at the output of the integrator is

0 0
1

0 0
1

( ) ( ) ( ) ( )cos( )

( ) ( ) ( ) ( )cos( )

n

i k i i k
i

n

k i k i i k
i
i k

v t P c t c t d t

P d t P c t c t d t

q q

q q

=

=
π

¸
= - Ô

Ô
˝
Ô= + -
Ô
˛

Â

Â
 (14.25)

In writing the last equation, an assumption has been made that all the PN sequence waveforms, ci(t)s make 
transitions at the same time. It is then possible to put the last equation in the following form:

0 0 0 , ,
1

( ) ( ) ( )cos( )
n

k k i k i
i
i k

v t P d t P c t q
=
π

= + Â  (14.26)

Note that this equation has the same form as Eq. (14.13), the only difference being that in Eq. (14.26) there 
are (n – 1) interfering signals whereas in Eq. (14.13) there is only one. The PSD of one interfering signal was 
found to be given by Eq. (14.17) as

0

1
( ) /4; | |j c

b

S f P T f
T

= £  (14.27)

Hence in the present case, where there are (n – 1)  statistically independent interfering signals, the total  PSD 
of all these interferers is

0
0

( 1) 1
( ) ; | |

4
c

T
b

n P T
S f f

T

-
= £  (14.28)
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Spread Spectrum Communication Systems 869

The probability of bit error is then obtained by substituting for Pj in Eq. (14.19) making use of Eqs. (14.27) 
and (14.28). From Eq. (14.27), we have

0

4
( )j

c

P S f
T

= ◊

we have to replace S0(f) in this by S0T(f) because we have not one, but (n – 1) interferers, which are having a 
total  PSD of S0T(f) given by Eq. (14.28)

\ 0 0
0

( ) 4 ( 1) 4
( 1)

4
T c

j
c c

S f n P T
P n P

T T

◊ - ◊
= = = -

◊
 (14.29)

Substituting this in Eq. (14.19), we get

Ê ˆ Ê ˆ Ê ˆÊ ˆ= ◊ = Á ˜Á ˜ Á ˜Á ˜ Ë - ¯Ë ¯ Ë ¯Ë ¯
01 1 1

2 2
2 2 1

b b
e

j c c

P T T
P erfc erfc

P T n T

\ Ê ˆÊ ˆ= Á ˜ Á ˜Ë - ¯ Ë ¯
1 1

2
2 1

b
e

c

T
P erfc

n T
 (14.30)

Since the complementary  error function is a monotonically decreasing function of its argument, in order to 
minimize the  probability of bit error, we have to maximize the quantity under the square-root sign in Eq. 
(14.30) by making

( 1)/2c

b

f
n

f
>> -  (14.31)

 Before concluding the discussion on  CDMA, we would like to point out that one of the important assump-
tions we made in connection with CDMA systems was that the PN codes given to different users are almost 
uncorrelated. For this to be true it is necessary that the cross-correlation between the PN sequences assigned 
to any two users should be zero for all cyclic shifts. But, unfortunately, ordinary PN sequences do not satisfy 
this requirement.
 However, there is a special class of PN sequences, called the  Gold Sequences which possess excellent 
cross-correlation properties. Gold codes are briefly discussed in Section 14.7.

Example 14.3 In a DSSS/BPSK-based CDMA system with a processing gain of 40 dB and a  proba-
bility of error 710eP

-=  for each user, how many users can be accommodated if all the users share equal 
power?

Solution From Eq. (14.30), we have

Ê ˆ Ê ˆÊ ˆ Ê ˆ= =Á ˜ Á ˜Á ˜ Á ˜Ë - ¯ Ë - ¯Ë ¯ Ë ¯
1 1 1

2 4
2 ( 1) ( 1)

b b
e

c c

T T
P erfc Q

n T n T

But Pe is given to be 10–7. So, using the Q-function tables, we find that

1
4 5.2

( 1)

1
4 27.04

( 1)

b

c

b

c

T

n T

T

n T

Ê ˆÊ ˆ =Á ˜ Á ˜Ë - ¯ Ë ¯

Ê ˆÊ ˆ =Á ˜ Á ˜Ë - ¯ Ë ¯
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But it is given that Gp = 40 dB = 104 (ratio)

and we know that in a DSSS system, c
p

b

f
G

f

Ê ˆ= Á ˜Ë ¯

\
4

1 1
4 27.04

( 1) 10n -
Ê ˆ =Á ˜Ë - ¯

Solving for n, we get

n = 1482

Example 14.4 In a  DSSS-CDMA system, the data rate fb = 6 kbps and the chip rate fc = 12 Mb/s. 
What is the  jamming margin if an output SNR of 10 dB is required for a 510eP

-= ? Assume a system loss 
of 1.5 dB owing to imperfections in tracking and detection.

Solution The  processing gain 
6

3

12 10
2000

6 10
c

p
b

f
G

f

¥
= = =

¥

\ 10in dB 10 log 2000 33 dBpG = =

\ Jamming margin (J.M.) is given by

0
(indB)

[system loss in dB ( / ) ]pJ M G S N◊ = - +

 = 33 – 1.5 – 10 = 21.5 dB

14.5.2 Ranging Using DS Spread Spectrum Signals

To see how a  DS spread spectrum signal may be used for  ranging, consider a DS spread spectrum signal:

0 0( ) 2 ( )cos( )s t P c t tw q= +  (14.32)

For ranging, s(t) is transmitted. After it impinges on the intended target, a part of the reflected signal is 
received. The received signal r(t) may be represented as

0 0( ) ( 2 ) 2 ( 2 )cos ( 2 )r t s t T P c t T t Ta a w= - = - -

This signal is now correlated with the  chip signal c(t) used in the transmitter, delayed by an adjustable and 
accurately known delay of t sec, i.e., a signal ( )c t t- . The output of the correlator is

0

( ) ( 2 ) ( )
cNT

R c t T c t dtt t= - -Ú  (14.33)

where NTc is the total length of the  PN sequence c(t).
t is adjusted till R(t) takes a maximum value. In fact, R(t) takes a maximum value when t = 2T and will 

be negligibly small if t is greater than ( 2 )cT T+ . If v is the velocity of electromagnetic waves ( 83 10n = ¥
meters/sec).

 Range of the target = 51
3 10 km

2 2
d

n
t t

Ê ˆ= = ¥ ¥Á ˜Ë ¯

The accuracy of measurement is obviously dependent upon Tc. Smaller the value of Tc relative to T, the better 
is the accuracy.
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Example 14.5 A  DSSS system used for range measurement is required to give a range resolution of 
0.01 km. Find the  chip rate that is to be used.

Solution In a DSSS-based range measuring system, the precision of measurement = ±Tc = Chip period.
\ if v km/sec is the velocity of light, this precision corresponds to a range resolution of vTc km.

\ 0.01cvT =

Substituting 53 10¥  km for v and solving for (1/ ),cT  the chip rate, we get

5
71 3 10

chip rate 3 10 Hz
0.01 0.01c

v

T

¥Ê ˆ = = = = ¥Á ˜Ë ¯

\ chip rate = 30 MHz.

14.6 FREQUENCY HOPPING SPREAD SPECTRUM (FHSS) SYSTEMS

We have found, while discussing the resistance to jamming of a DS spread spectrum system that it depends 
primarily on the  processing gain, Gp. The processing gain is the ratio of the  chip frequency fc to the bit 
frequency fb. So, for a given data rate, the resistance to  jamming of a DS spread spectrum system can be 
improved only by increasing the chip-rate relative to the data rate. Beyond a certain limit, practical difficulties 
in the design and implementation of  PN sequence generators make it difficult to achieve very high chip 
frequencies and this puts a limit on the processing gain and the degree of resistance to jamming that can be 
achieved using  DS spread spectrum systems.
 One way of overcoming the above difficulty is to use  frequency hopping spread spectrum. In this also, just 
like in DS spread spectrum systems, the binary digital data modulates a carrier using a traditional modulation 
scheme like  M-ary FSK (For reasons to be discussed later, modulation schemes requiring coherent detection, 
like the PSK, QPSK, etc., cannot be used). This M-ary FSK modulated signal is then modulated a second 
time by another carrier frequency, but this carrier frequency changes its value, or rather hops, at regular 
intervals of Tc, the chip period, from one value to another from among a given set of values, according to a 
predetermined, pseudo-random pattern. This carrier frequency hopping is controlled at the transmitter by a 
 pseudorandom code generator, as shown in the block diagram of Fig. 14.9.
 As shown in Fig. 14.9(a), binary data d(t) is first used to produce an M-ary FSK modulated signal. This is 
again modulated by a carrier produced by a  frequency synthesizer that is controlled by a PN-code generator. 
This modulation is performed by feeding the M-ary FSK signal as well as the output of the frequency synthe-
sizer to a mixer. The mixer produces the sum frequency and difference frequency. The BPF that follows the 
mixer selects only the sum frequency signal, which is the FH/MFSK signal.
 At the receiving end, the received signal is fed to the mixer to which the output of a frequency synthe-
sizer is also given. The frequency of the signal produced by this synthesizer is controlled by a PN code 
generator which is identical to, and is in synchronism with, the one at the transmitter. The set of frequencies 
produced by the frequency synthesizer and their hopping pattern, are also exactly identical to those at the 
transmitter. The de-spread M-ary FSK signal coming out from the BPF is then detected using a  non-coherent

M-ary FSK detector. The reason for using non-coherent detection, in spite of its poorer performance as 
compared to a coherent detector, is the fact that frequency synthesizers cannot maintain phase coherence 
over successive hops. In fact, that is the reason why FHSS systems do not make use of phase dependent 
modulation schemes like BPSK, M-ary PSK, QPSK, etc. which require  coherent detection. The output of 
the M-ary FSK non-coherent detector is then fed to the  decision device (not shown in figure). Although the 
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non-coherent detector of an  FHSS system will have a poorer performance than the coherent detector that 
we can use in a  DSSS system, generally, the higher  processing gain attainable in FHSS systems more than 
compensates for the poor performance of the non-coherent detector.

14.6.1  FHSS Signal and Spreading Factor

Let Ts denote the symbol period for the M-ary FSK modulation. Let f0 denote the unmodulated carrier 
frequency of the M-ary FSK modulation. Then the M-ary FSK angular frequencies are:

0 0 0 0

1 3 5 ( 1)
, , ,…,

2 2 2 2k

M
w w w w w w w w w

-
= ± D ± D ± D ± D  (14.34)

and the M-ary FSK modulated signal itself can be written as

MFSK 0( ) 2 cos( ) for ( 1)k k s ss t P t kT t k Tw f= + £ £ +  (14.35)

After each  chip period Tc, the frequency  synthesizer output hops to a new value. If we denote the output 
signal frequency of the frequency synthesizer to be fi during a given chip period, then, during that chip 

period, we may represent the FH/MFSK signal as

FH/MFSK 0( ) 2 cos[( ) ]k i ks t P tw w f= + +  (14.36)

Fig. 14.9 FHSS/M-ary FSK (a) Transmitter, (b) Receiver
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In the above equation, we have taken ( )k iw w+  since the BPF following the mixer has been designed to 
give the sum frequency, as has already been mentioned. The mixing of the MFSK signal with the synthe-
sizer output signal having a frequency of fi increases the bandwidth occupancy. If the MFSK signal has a 
bandwidth Ws then we may write

Wc = B.W. of the FH/MFSK signal = LWs (14.37)

where L > 1, is called the spreading factor or processing gain.
 All along, we have been talking about the symbol period, Ts and the  chip period Tc, i.e., the period during 
which the frequency of the signal from the synthesizer remains at one of the fixed values out of the total 
number of frequencies to which it can ‘hop’. As these two periods, Ts and Tc are not directly related, they may 
be chosen independently. This gives rise to two types of frequency-hopping spread spectrum systems:
 1.  Slow-hopping FHSS: In this, the symbol rate Rs = 1/Ts of the MFSK signal is an integer multiple of the 

hop rate Rc = 1/Tc, where Tc is the chip period. Also, the bit rate Rb and the symbol rate Rs in a MFSK 
system are related by

2log
b

s

R
R

M
=

  Thus, since Tc ≥ Ts in slow hopping FHSS, there can be several symbols in one hop interval Tc.
 2.  Fast-hopping FHSS: If Tc < Ts, it is known as fast hopping. Thus, there will be multiple hops within 

each symbol of the M-ary FSK.
Figure 14.10 shows a typical hopping pattern.

Fig. 14.10 Typical hopping pattern
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Example 14.6 For a  slow FHSS system, show that the  processing gain is equal to 2m, the number of 
frequency slots available for hopping.

Solution In slow FHSS, the hop rate, i.e., the chip rate fc is less than the message bit rate fb. Therefore, 
two or more baseband bits are transmitted at the same frequency.
 Let Df be the separation between adjacent frequencies of the frequency synthesizer and let BT be the 
bandwidth of the modulated carrier wave (whatever be the type of digital modulation employed) before 
spreading. Then Df has to be larger than or at least equal to BT. If there are 2m discrete frequencies among 
which the synthesizer frequency hops, the bandwidth of the transmitter signal (after hopping) is

(FHSS) 2 2m m
T TB f B= ◊ D = ◊  (say)

\ (FHSS)
,

T

p
T

B
L G

B
= =  the processing gain = 2m

14.6.2 Resistance to Jamming

As we did in the case of  DS spread spectrum systems, for the  FH spread spectrum systems too, we shall 
examine the effect of  jamming and interferences in terms of their effect on the probability of error.
 We shall focus on two cases of jamming:
 1. ‘White noise, or ‘ barrage jamming’, which covers the entire bandwidth Wc of the FHSS signal.
 2.  Partial-band jamming in which the jamming signal power is spread over only a part of the bandwidth 

Wc of the FHSS signal.

White noise or barrage jamming As shown in Fig. 14.11(a), let J be the jamming power which is 
spread over the full bandwidth Wc of the FHSS signal. 

Fig. 14.11 (a) Barrage jamming, (b) Partial band jamming

 In the barrage jamming case, the jamming signal appears as white noise. Since we are considering FHSS 
with M-ary FSK, the  bit-error probability in the presence of white noise of two-sided  PSD of h/2, is

/21

2
bE

eP e
h-=  (14.38)

Hence, in the presence of barrage jamming signal with a PSD of Nj, the bit-error probability becomes

1
exp

2 2( )
b

ej
j

E
P

N

-È ˘= Í ˙h +Î ˚
 (14.39)

where /j cN J W= .
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 Partial band jamming If a denotes the fraction of the FHSS signal bandwidth, Wc, which is covered 
by the  jamming signal, assuming J to be the total jamming power as in the previous case, the jamming PSD 
is Nj/a and it has a bandwidth aWc. So the probability of being jammed is a and the probability of not being 
jammed is (1 – a). Therefore, the  probability of error may be written as

Pe =  (prob. of error in case of jamming) ¥ (Probability of jamming) + (prob. of error if there is no jamming) 
¥ (Prob. of not being jammed)

\
(1 )

exp exp
2 2( / ) 2 2

b b
e

j

E E
P

N

a a

a

- --È ˘ È ˘= +Í ˙ Í ˙h + hÎ ˚Î ˚
 (14.40)

Generally, slow-hop  FHSS signal is more susceptible since one or more symbols are transmitted at the same 
frequency. Also, the effect of  single-tone jamming will be negligible if there are a very large number of 
frequency slots to hop to.

Example 14.7 An FHSS/BFSK is used for transmitting binary data coming at a rate of 20 kbps. The 
unspread BFSK signal occupies a bandwidth of 25 kHz. The received signal power is –15 dBm. A jammer 
which can produce a received power of at the most –20 dBm either as a narrow band signal of 25 kHz 
bandwidth, or as a broadband signal occupying the full bandwidth of the FHSS system, is trying to jam 
the FHSS signal. If the spreading factor L of the FHSS/BFSK system is 25, find the improvement in the 
SNR (in dB) under broadband jamming as compared to narrowband jamming. Assume the one-sided PSD 
of the AWGN of the channel to be 10–11 W/Hz.

Solution The received power 
-= - = ¥ 515 dBm 3.162 10RP W

5
9

3

3.162 10
bit energy 1.581 10

20 10
b R bE P T

-
-¥

= = ◊ = = ¥
¥

Jamming power = –20 dBm = 10–5 W = Pj

In the case of narrow band jamming, this jamming power is spread over a bandwidth of 25 kHz. 
So the  power spectral density of the  narrowband jammer at the receiver =

5
9

JNB3 3

10
0.4 10

25 10 25 10

jP -
-= = ¥ = h

¥ ¥

\ for narrow band jamming, the SNR is given by

9 9 11

9 11
JNB

1.581 10 1.581 10 10
5.86 dB

410.4 10 10
bE - - -

- -
¥ ¥ ¥

= = =
h + h ¥ +

Since L = 25 = spreading factor of the  FHSS system, and since the bandwidth of the BFSK signal before 
spreading is 25 kHz, the bandwidth of the FHSS/BFSK signal is

(FHSS/BFSK)

25 25 kHz 625 kHzTB = ¥ =

\ the PSD of the jamming signal at the receiver in the case of  wideband jamming is

5
11

JWB 3 3

10
1.6 10

625 10 625 10

jP -
-h = = = ¥

¥ ¥
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\ SNR for the wideband jamming case is

9
2

11 11
JWB

1.581 10
0.608 10 60 (ratio)

1.6 10 10
bE -

- -
¥

= = ¥ =
h + h ¥ +

\ 10
JWB dB

10 log 60 17.78 dBbEÊ ˆ = =Á ˜h + hË ¯

\ improvement in SNR is (17.78 – 5.86) = 11.92 dB

14.6.3 CDMA with FHSS

As in  DS spread spectrum, multiple access is achieved in FHSS also by assigning a unique  PN code to each 
user, which in this case controls the frequency  hopping pattern. These codes that are assigned, must be so 
chosen that collisions do not occur. Recall that the frequency produced by the frequency synthesizer during 
a chip period depends on the PN sequence values during that chip period. So sometimes it may so happen 
that two or more users have, at a given time, the same PN sequence values produced by their respective PN 
sequence generators. In that case, a collision is said to have occurred in the spectrum.

Fig. 14.12  CDMA with FHSS

Whether it is a  slow hopping FHSS or a  fast hopping FHSS, when a collision occurs, it results in considerable 
increase in detection errors. In slow hopping FHSS, a collision in a particular hop, will result in several 
consecutive symbols being erroneous since there will be several M-ary symbols in the case of M-ary FSK 
and several bits in the case of binary FSK during that hop period. Such burst type of errors can be corrected 
by employing  FEC using  Reed-Solomon error-correcting codes.

14.6.4 Applications of Spread Spectrum Systems

Because of its ability to reject narrow band as well as broad band jamming,  FHSS systems find applications 
in military communications. FHSS further finds extensive use in bluetooth.
 Since a DS spread spectrum signal consists of a sequence of extremely short pulses and is therefore 
capable of giving very good accuracies in range measurements. DSSS systems find extensive use in  Global 
Positioning Systems (GPS). Further, the use of spread spectrum in GPS permits their use at reasonable power 
levels because of the  processing gain Gp.

Synchronization In spread spectrum communication systems, for satisfactory operation, there should 
be perfect alignment between the transmitted and received  PN codes. Further, if  coherent detection is needed 

CS-Rao_14.indd 876CS-Rao_14.indd   876 1/18/2013 11:34:41 AM1/18/2013   11:34:41 AM



Spread Spectrum Communication Systems 877

then the locally generated carrier at the receiver must be in frequency and phase synchronism with the carrier 
at the transmitter. It must be remembered that the carrier frequency as well as the  PN clock may drift with 
time. Further, if there is relative motion between the transmitter and receiver, as happens in the case of mobile 
and satellite spread spectrum systems, the carrier and PN clock will suffer Doppler frequency shift too.
 Insofar as synchronization of carrier frequency and phase are concerned, the techniques adopted for 
coherent reception in the case of conventional analog and digital communication are replicated. Synchroni-
zation of the PN sequence of the receiver with that of the transmitter proceeds in two steps –  acquisition and 
tracking. Acquisition is nothing but initial coarse alignment and this process tries to bring the receiver  PN 
sequence in alignment with that of the transmitter to within a fraction of a  chip period. Once the acquisition 
part is completed, fine alignment has to be done and that process is referred to as tracking. Both acquisition 
and tracking make use of feedback loop.

Acquisition
1. For DS spread spectrum: 

Fig. 14.13  DS spread spectrum synchronization (Acquisition)

Let the PN code used by the transmitter have N chips so that its total duration is NTc where Tc is the chip 
period. An exact replica of the PN code used at the transmitter, which is available at the receiver, is used to 
multiply the received signal r(t). The product is then integrated over a period of NTc, i.e., the total duration 
of the code. If the codes are in exact alignment, complete de-spreading will take place and the output of the 
integrator will be rather large compared to the threshold V and so the phase of the PN code generator will 
remain unaltered. But, in case the alignment between the two codes is not correct, the control signal from 
the comparator advances the phase of the PN code by half a chip. This way the process continues till the 
alignment of the two codes is correct to within half a chip.
 Thus, if initially the misalignment between the two codes was n chips, since each time the integration is 
performed for NTc seconds and it results in half-a-chip correction, the total time taken for acquisition is given 
by

=acq 2 seccT nNT  (14.41)

In the above discussion, of course, we have totally ignored the presence of additive noise present along with 
r(t).

2. For  FH spread spectrum systems: The acquisition circuit for FH spread spectrum is shown in Fig. 14.14. 
Note that the  PN code generator and the  frequency synthesizer of Fig. 14.14 are exactly identical to those at 
the transmitter.
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Fig. 14.14 ‘ Camp-and-wait’ type of acquisition circuit for FHSS signals

Let r(t), the received  FHSS signal have a frequency of 0 if f+  where f0 is the carrier frequency of the first 
modulation and fi is the frequency of the frequency synthesizer, at the transmitter. At the same time, suppose 
fj is the frequency of the signal produced by the  frequency synthesizer in the acquisition circuit of the receiver 
and let us assume that j if fπ . Since the received signal r(t) and this signal from the frequency synthesizer of 
the  acquisition circuit are multiplied, the product will have two components, the sum frequency component 
and the difference frequency component. The sum frequency component having a frequency of 0 ( )i jf f f+ +
will be rejected by the very narrow band BPF centered on f0. The difference frequency component with a 
frequency of 0 ( )i jf f f+ -  will be able to produce only a small voltage at the output of the BPF as j if fπ .
Since this will be less than the threshold voltage V, the output voltage of the comparator under these 
conditions, is arranged to turn off the controlled oscillator producing the clock pulses which are applied to 
the  PN code generator. So the state of the code generator does not change and hence the output signal of 
the frequency synthesizer will remain or ‘camp’ at the same frequency fj. The frequency synthesizer at the 
transmitter, however, continues to go on hopping from one frequency to another. Since fj is also among the 
frequencies it will ‘hop’ to, at some later instant of time, it will hop to that value and the received signal 
frequency will then be 0 jf f+ . Then, this and the output signal from the frequency synthesizer of the acqui-
sition circuit, which is still at the frequency fj, will mix and the difference frequency, which is now f0, will 
produce a large voltage at the output of the BPF. Since this will be larger than the threshold voltage V, the on/
off control voltage will be such as to ‘turn on’ the clock driving the PN code generator. Then the frequency 
synthesizer in the acquisition circuit will start ‘hopping’ again. Even now, the PN code generator in the acqui-
sition circuit may not be exactly in alignment with that in the transmitter but the misalignment will be within 

1
,

2 cT±  where Tc is the chip period.

Tracking Once the acquisition or coarse alignment is over, the next step is  tracking, i.e., the fine alignment.

For  DS spread spectrum: Tracking for DS spread spectrum signals may be done using what is called the 
 delay-locked loop (DLL) which is shown in Fig. 14.15.
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Fig. 14.15 A  delay-locked loop for  DS spread spectrum signal tracking

 The received DS spread spectrum signal, r(t), is applied simultaneously to two multipliers. One of the 
multipliers is fed with the PN code delayed by δ, a fraction of the chip interval and the other multiplier is fed 
with the same PN code advanced by δ. The output from each multiplier is fed to a BPF centered on f0 and the 
output of each BPF is envelope detected and the  envelope detector outputs are compared. The output of the 
summer is filtered in the loop filter and the output signal from the loop filter is used for controlling the VCO 
from which the clock signals for the  PN code generator are derived. Here, since fine alignment is needed, a 
continuous control is used. In case the c(t) generated in the DLL tracking circuit is in perfect alignment with 
the PN code used at the transmitter, the envelope detector outputs from the upper and lower arms would be 
equal and so the loop filter output would be zero and the phase of the PN code produced will not be changed. 
But if the PN code at the transmitter and the one in the  DLL circuit are not perfectly aligned, the output of one 
envelope detector would be more than that of the other and the loop filter output, which controls the  VCO, 
will change the clock signals in the proper direction so as to bring the two PN codes into alignment.

Since the acquisition process is already over, the PN codes at the transmitter and the receiver must have 
been coarsely aligned. So, the frequencies produced by their respective frequency synthesizers will be the 
same for most part of each hopping period as shown in (a) and (b) of Fig. 14.17. During this time, these 
frequencies are the same (as fi in both, or fj in both), the BPF output will be large, and when the frequencies 
are not the same, the BPF output will be very small. Actually, the bandwidth of the BPF used here in the 
tracking circuit is not very narrow; instead, it has a bandwidth that is sufficient to pass the data. The VCO 
shown in the figure is adjusted to have a nominal frequency that is equal to the frequency at which the 
hopping takes place, and it produces a rectangular waveform swinging between +1 V and –1 V with 50% duty 
cycle as shown in part (d) of Fig. 14.17. The output of the VCO is allowed to pass through the gate whenever 
there is output from the envelope detector and is blocked whenever the output of the envelope detector is zero 
as happens during those periods when the output frequencies of the synthesizers at the transmitter and the 
receiver are not the same. The result of this gate operation is that when the two frequencies are not the same, 
the input to the LPF will not be the symmetrical rectangular waveform of the VCO, instead, the durations 
of its positive swing and negative swing will be unequal therefore LPF output will not be zero. On the other 
hand, if the PN code at the transmitter and the receiver are exactly aligned, the gate allows the VCO waveform 
all the time and so the input to the LPF will be having equal durations for its positive and negative swings. 
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So in this case, the LPF output will be zero. Whenever the LPF output is not zero, the VCO, which is the 
clock waveform generator, will adjust in such a way as to make the LPF output equal to zero, i.e., to make the 
receiver PN code to get aligned with that at the transmitter.

14.7  GOLD CODES

As we have seen in Section 14.5 during our discussion on  CDMA using spread spectrum, PN sequences used 
for CDMA applications are required to have certain desirable characteristics.

Fig. 14.16  Early-Late Gate circuit for tracking  FHSS signal

Fig. 14.17 Early-Late gate circuit waveforms
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If x(t) and y(t) are two  PN sequences, these properties are:
 1. 0[ (0)/ ( )]xx xxR R tt π  should be as large as possible.

 2. max| ( )|xyR t  should be as small as possible for all t.

 3. 
max[| ( )| / (0)]xy xxR Rt  should be small.

In the context of the above requirements, we find that
 1. PN sequences generated by a single  shift register do not have good  cross-correlation properties so are 

not quite suitable for  CDMA applications.
 2. To generate different PN sequences with a single shift register, we have to change the feedback 

connection each time.
 3. A shift register of given length gives very few unique output sequences.

Fig. 14.18  Gold code generator

For Gold codes, which are generated by the  modulo-2 addition of the outputs of a few m-bit shift registers 
(generally only two) with certain feedback connections, the cross-correlation between (2 1)m

N = -  length 
sequences has a maximum value bounded by

/xyR Nf=  (14.42)

where

( 1)/2

( 2)/2

2 1 ; odd

2 1 ; even

m

m

m

m
f

+

+

Ï +Ô= Ì
+ÔÓ

 (14.43)

or in some cases

1
xyR

N
= -  (14.44)

Table 14.3 gives the preferred tap connections for a pair of shift registers and the max[| ( )| / (0)]xy xxR Rt  for the 
Gold codes generated.
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Table 14.3 Preferred pairs and connections for  Gold codes generation

m Preferred tap connections |Rxy(t)|max/Rxx(0)

5 (5, 2) (5, 4, 3, 2) 0.290

7 (7, 3) (7, 3, 2, 1) 0.134

8 (8, 7, 6, 5, 2, 1) (8, 7, 6, 1) 0.129

10 (10, 8, 5, 1) (10, 7, 6, 4, 2, 1) 0.064

12 (12, 9, 8, 5, 4, 3) (12, 7, 6, 4) 0.031

 Gold codes generated using preferred pairs and connections, have very good  cross- correlation properties 
although their auto-correlation values for t π 0 are slightly more. Further, since we get a different periodic 
sequence for each set of initial conditions of the registers, the two m-bit preferred register pairs will give us 
(2m – 1) unique output sequences. If the original sequences also are counted, we get altogether (2m + 1) unique 
sequences, whereas a single register configuration can give only one unique periodic output sequence.
 Gold codes are very useful for  CDMA applications because of their attractive cross-correlation property 
and the possibility of obtaining a large number of unique sequences.
 For more details on Gold codes, the reader is suggested to read J.K. Holmes, Coherent Spread Spectrum 

Systems, Wiley, 1982.

MATLAB Example 14.1 Although all analysis 
in the book is restricted to  AWGN channels, practical 
channels are often frequency selective (its effective 
impulse response is not an impulse). Wireless channels 
often experience deep fades. In this example, we will 
demonstrate how spread spectrum signal can be used 
to deal with frequency selective channels in a simple 
manner. In such channels, the signal is the weighted 
sum of the current and the previous samples. One 
implication is that the received pulse shape is modified 
by the channel. With  chip-rate sampling, the first few 
chips might be contaminated by the previous symbol. 
To ensure simple processing, we omit these chips in the 
receiver, and then apply a matched filter to the modified 
pulse. Assuming BPSK signaling, and the same chip 
sequence as used in Fig. 8.2, the  BER is depicted in Fig. 
14.19 as a function of the average BER. We observe 
that simply ignoring the contaminated chips makes the 
receiver simple, and yields good BER performance.

MATLAB code:
c = [-1,1,1,1,-1,-1,1]; %chip sequence

N = length(c); % Processing gain

e = [sqrt(3)/2,1/2]; % average gains of the impulse response points

snr_array = [-10:1:15]; %array of SNRs that will be plotted

Fig. 14.19
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num_realizations=10^6; % a large number of realizations are used for better 

averaging

noise_var_array = 10.^(-snr_array/20);

for snr_val=1:length(noise_var_array)

noise_level = noise_var_array(snr_val); %noise level is set to vary SNR with 

signal variance fixed

error=0;

for realization=1:num_realizations

d = sign(randn(1,2)); %generate a sequence of 2 symbols

x = (kron(d,ones(1,N)).*kron(ones(1,2),c))/sqrt(N);%performs multiplication of 

chip sequence and symbols

h = randn(1,2)+sqrt(-1)*randn(1,2); %generates random channel coefficients

h = h.*e;

y = h(1)*x(N+2:length(x)) + h(2)*x(N+1:length(x)-1); %generated channel output 

for 1 symbol

%y = awgn(y,20);

noise = randn(1,N-1)+sqrt(-1)*randn(1,N-1); %generate noise

y = y + noise_level*noise; % add noise of the proper level

%We assume h(1) and h(2) are known

%modified chip sequence is now g = h(1)*c + h(2)*[c(7),c(1:6)];

%We use a filter matched to g as can be expected 

g = h(1)*c + h(2)*[c(7),c(1:6)];

g = g/norm(g,2);

%However, we ignore the first chip as discussed earlier

%matched filter output after, sampling becomes

z = y*g(2:7)’;

%output of decision device is now

decision = sign(real(z));

if (decision~=d(2))

 error = error+1;

end

end

BER(snr_val) = error/num_realizations;

end

semilogy(snr_array,BER)

title(‘BER of Spread Spectrum Signal’)

ylabel(‘BER’)

xlabel(‘Average SNR’)

axis(‘square’)

MATLAB Example 14.2 Gold Codes

Take two 12-bit shift registers and the mod-2 combination of their outputs to obtain Gold sequences by 
giving the preferred pair of feedback connections to them, viz. (12, 7, 6, 4) and (12, 9, 8, 5, 4, 3). Find the 
cross-correlation to auto correlation ratio and plot the auto-correlation and cross-correlation.

MATLAB Program
%Gold code sequence generator

% The m-file uses two preferred pairs of m-sequences (length 2^n-1)

% chips long where n=12 with length 4095. The 4097 gold codes

%(two original m-sequences plus 2^n-1 Gold codes) produced in a 4095x4097 matrix
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% Here (with n=12) 

% The preferred pair used here is (12,7,6,4) and (12,9,8,5,4,3). 

% The m-file will also check the cross-correlation values between any two codes 

in % the matrix and should be three valued. The auto-correlation of a Gold code 

can % also be checked. 

clc

clear all

% Generate 1st m-sequence (12,7,6,4) of length 4095 (1+x^4+x^6+x^7+x^12)

n = 12;

N = 2^n-1;

k = 80

register1=ones(1,n); %initial fill

code1=zeros(1,N);

for i=1:N

 temp = mod(register1(4)+register1(6)+register1(7)+register1(12),2);

 code1(i) = 2*register1(n)-1;

 for j=n:-1:2

  register1(j)=register1(j-1);

 end

 register1(1) = temp;

end

% Generate 2nd m-sequence (12,9,8,5,4,3) of length 4095 (1+x^3+x^4+x^5+x^9+x^9+x^12)

register2= ones(1,n); %initial fill code2=zeros(1,4095);

for i=1:N

temp = mod(register2(3)+register2(4)+register2(5)+register2(8) +register2(9)+register2(12) , 2);

 code2(i) = 2*register2(n)-1;

 for j=n:-1:2

  register2(j)=register2(j-1);

 end

 register2(1) = temp;

end

m_sequence_1=code1; %1/-1(bipolar sequence) output

m_sequence_2=code2;  %1/-1(bipolar sequence) output

%

%

m_sequence_1=m_sequence_1’; %transpose to a column

m_sequence_2=m_sequence_2’;  %transpose to a column

%

%

% Generate a set of unique Gold codes in a matrix (4095x4097) which includes

% the original 1st and 2nd m-sequences plus (2^n - 1) = 4095 other Gold codes % with n=12.

%These unique codes are with initial fills of [1 1 1 1 1 1 1 1 1 1 1 1] in register1

% and register2. Other unique sets of Gold codes can be generated with 

% different initial fill values.

%

%

m_sequence_1 =m_sequence_1>0;  %change 1/-1 to 1/0 

m_sequence_2 =m_sequence_2>0;  %change 1/-1 to 1/0

%

Gold_code_matrix(:,1) = m_sequence_1;

Gold_code_matrix(:,2) = m_sequence_2;
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%

for phase_shift=0:N-1

 shifted_code=circshift(m_sequence_2,phase_shift);

 Gold_code_matrix(:,3+phase_shift)=mod(m_sequence_1+shifted_code,2);

end

%

% Change matrix codes from 1/0 to 1/-1 and show 33 codes in command window.

 Gold_code_matrix=2*Gold_code_matrix-1; %change 1/0 to 1/-1

%

% Choose 2 codes from Gold code matrix and plot the cross-correlation

% values. If codes are from preferred pairs, the three values would be

%(-9,-1,+7).

%

codeA=Gold_code_matrix(:,9);

codeB=Gold_code_matrix(:,11);

%

% Determine cross-correlations

%

for shift=0:k

 shifted_code1 = circshift(codeA,shift);

 crosscorrelation(shift+1) = codeB’*shifted_code1;

end

%

 subplot(2,1,1)

 plot(crosscorrelation) 

 grid on

 xlabel(‘shifts’);ylabel(‘value of correlations’);

 title(‘Cross-correlations of two codes’)

 xlim([1 k]);

%

% Choose 1 code from the Gold code matrix and plot the autocorrelation values.

%

 codeC=Gold_code_matrix(:,17);

%

for shift=0:k

 shifted_code_A= circshift(codeC,shift);

 autocorrelation_1(shift+1) = codeC’*shifted_code_A; 

end

%

% Show that all autocorrelation values of m-sequence 1 and 2

%(with nonzero shift) equals 31/-1. 

%

subplot(2,1,2)

plot(auto-correlation_1)

grid on

xlabel(‘shifts’);ylabel(‘value of correlations’);

title(‘Gold code auto-correlation’ )

xlim([1 k]);

ratio = abs(max(crosscorrelation(80)))/autocorrelation_1(1)
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Result
ratio = 0.0154

Cross-correlation of two codes
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Fig. 14.20

Summary 
 ■  Spread spectrum communication provides secure and reliable communication by preventing interception and 

resisting jamming.
 ■ There are basically two types of spread spectrum systems; the  Direct Sequence Spread Spectrum (DSSS) and the 

 Frequency Hopping Spread Spectrum (FHSS). Both of them relay heavily on Pseudo-random Noise sequence 
generators (PN code generators).

 ■ PN code generators use shift-registers with appropriate feedback.
 ■ An m stage  shift-register with appropriate feedback can produce  PN sequences of length (2m – 1). Such sequences 

are called  maximal-length sequences.
 ■ These  PN sequences have auto-correlation functions that resemble those of  white noise.
 ■ The basic principle of  DSSS is to spread the signal power over a very large bandwidth by modulating an already 

BPSK modulated signal, using a spreading signal, which is a maximal-length PN sequence.
 ■ At the receiving end, the  DSSS signal is first de-spread by multiplying the received signal by a PN sequence which 

is an exact replica of the one used for spreading at the transmitting-end and is in synchronism with it. Then the 
BPSK signal is detected using a coherent detector.

 ■ If the chip frequency is fc , the inverse of Tc, the pulse width of the PN sequence used for spreading, and fb is the 
inverse of the bit rate of the data, then the ratio ( fc / fb) is called the ‘Processing Gain’ of the DSSS system and it 
determines the degree of resistance offered by the DSSS signal to  jamming.

 ■ Both DSSS and  FHSS systems provide CDMA facility.
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 ■ DSSS signals can be used for ranging and the accuracy attainable increases with the  chip frequency.
 ■ In FHSS, a BFSK or M-ary FSK signal is again modulated by a carrier signal whose frequency goes on hopping 

from one value to another from among a given set of values, at regular intervals of Tc, the chip period, according 
to a predetermined pseudo-random pattern.

 ■ As phase coherence cannot be maintained in FHSS, only non-coherent detection is possible. Hence only BFSK or 
M-ary BFSK signals are used.

 ■ In DSSS as well as FHSS, it is necessary to maintain perfect alignment between the PN sequences used at the 
transmitter and the receiver.

 ■ Synchronization of the PN sequences is done in two stages. The first stage, called, ‘ Acquisition’, achieves coarse 
alignment, while the second stage, called ‘ Tracking’, achieves perfect synchronization.

 ■ For  CDMA applications, a large number of distinct PN codes must be available and they should have auto-corre-
lation characteristics similar to those of white noise and the  cross-correlation between any two must be ideally 
zero.  Gold codes satisfy all these requirements.
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Review Questions 
1. What are advantages of spread spectrum communication?
2. What are the two basic types of spread spectrum systems? Explain the basic principle of each of them.
3. What are PN sequences? Discuss their characteristics.
4. Explain how PN sequences are generated. What are maximal length sequences? What are their properties and why 

are the preferred?
5. Draw the circuit diagram of a PN sequence generator for generating length 15 PN sequences. Assuming the initial 

contents of the shift register stages to be all ones, explain its working. What is the output sequence obtained?
6. Explain with the help of a neat block diagram, the working of a BPSK DS spread spectrum transmitter.
7. Draw the block diagram of a BPSK/DS spread spectrum receiver and explain its working.
8. Explain how a DS spread spectrum system can suppress narrow band interfering signals.
9. Define the term ‘Processing Gain’, of a direct sequence spread spectrum system and explain its significance.

10. With the help of a neat block diagram, explain the working of a DS spread spectrum-based CDMA system.
11. Explain the principle of ranging using a DSSS system. On what factor(s) does the accuracy of measurement 

depend?
12. Explain the principle of FHSS systems.
13. Draw the block diagram of a BFSK/FHSS transmitter and explain it working.
14. With the help of a neat block diagram, explain the working of a BFSK/FHSS receiver.
15. Explain how a FHSS signal resists barrage type as well as partial band jamming.
16. With the help of a block diagram, explain the working of an FHSS based CDMA system.
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17. Explain the process of acquisition in the case of a DSSS system.
18. How is acquisition accomplished in the case of an FHSS system?
19. Explain how tracking is performed in the case of a DSSS system.
20. How is tracking performed in an FHSS system?

 21. What are the disadvantages of a single shift-register PN sequence generators?
22. Ideally what are the characteristics required to be possessed by a PN sequence to be used in CDMA applications?
23. What are Gold sequences? How are they generated?
24. Briefly discuss some of the important characteristics of Gold sequences which make them very useful in CDMA 

applications.

Problems 
1. If the initial state of the register is 1111, find the output sequence of the shift register. Is it an ML sequence?

Fig. P14.1

2. A four-stage shift register is used to generate a maximal length sequence. If the chip rate is 106 chips per second, 
find the PN sequence length and PN sequence period.

3. A DSSS/BPSK system is using a shift register of 19 stages for generation of the PN sequence. Determine the 
processing gain if the system is to be given an average probability of error of 10–5 in the presence of a single-tone 
jamming signal which has an average power three times that of the signal of interest, at the receiver input. Ignore 
the effect of additive white noise of the channel.

4. A DSSS/BPSK system has an information rate of 3 kbps. At the receiver, a single-tone jamming signal is producing 
a jamming signal that is five times more powerful than the desired signal. If 2010-h = W/Hz and if in the absence 
of the jamming signal the (SNR)R = 60 dB, calculate the chip rate and the transmission bandwidth if the probability 
of error (in the presence of the jamming signal) is to be 710eP

-= .
5. In a DSSS/BPSK-based CDMA system there are 10 users and each one is transmitting information at 6 kbps 

rate. If the probability of error is not to exceed 10–7, what should be the minimum chip rate needed? Assume that 
additive channel noise can be ignored.

6. A slow hop BFSK/FHSS system is operating with a received SNR of 50 dB and 1910-h = W/Hz. But a jammer 
has started giving a ‘barrage jamming’ signal which at the receiver has five times the power level of the desired 
signal. If a probability of error, Pe, of 10–7 is to be maintained even in the presence of the jamming signal, what is 
the minimum processing gain and the corresponding transmission bandwidth required for the FHSS system?

Multiple-Choice Questions 
1. The maximum length of a PN sequence that can be generated using a four-stage shift-register is

 (a) 4 (b) 8 (c) 16 (d) 15
2. The auto-correlation of the output of a PN sequence generator is

 (a) random   (b) deterministic and periodic
 (c) deterministic and non-periodic (d) None of these
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3. If fb and fc are the bit frequency of the data and the chip frequency respectively in a DSSS system, then
 (a) c bf f>>  (b) c bf f<<  (c) c bf f=  (d) No specific relation

4. A DSSS system transmitting binary data at the rate of 10 K bits/sec has PN sequence generators with five shift-
register stages and clock frequency of 1 MHz. The processing gain of the system is

 (a) 47 dB (b) 30 dB (c) 20 dB (d) 50 dB
5. An FHSS system has its frequency synthesizers controlled by five stage shift-registers with feedback connections 

taken from the second and fifth stages. The number of slots available for frequency hopping is
 (a) 32 (b) 31 (c) 24 (d) 28

Key to Multiple-Choice Questions

 1. (d) 2. (b) 3. (a) 4. (c) 5. (a)
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MULTICHANNEL MODULATION—

OFDM AND DMT

15
“The fantastic advances in the field of electronic communication constitute a greater 

danger to the privacy of the individual.”

Earl Warren (1891–1974)

American Republican politician and judge

Learning Objectives

After going through this chapter, students will be able to

 ■ explain how multipath can cause signal fading and ISI,

 ■ understand the difference between conventional FDM and Orthogonal Frequency Division Multi-

plexing,

 ■ describe how the subcarrier frequencies are chosen and explain how they are made orthogonal to 

each other,

 ■ understand how ISI and frequency selective fading can be almost eliminated by having a large 

number of subcarriers,

 ■ explain the meaning of cyclic prefix, why it is inserted and how it helps,

 ■ explain by mathematical analysis, how OFDM transforms a wideband single-carrier ISI channel into 

a number of independent narrowband parallel channels without ISI and how IDFT and DFT bring 

about this transformation,

 ■ understand that DMT is but a variant of OFDM and know in which aspects they differ, and

 ■ describe some of the applications of OFDM like ASDL and DAB.

15.1 INTRODUCTION

Besides causing attenuation, physical communication channels have two major effects on the signals trans-
mitted through them. The signal gets distorted and also gets corrupted by noise.  Signal distortion can be 
caused not only by the non-ideal transmission characteristic of the channel, but also by other factors such 
as multipath propagation in the case of some wireless channels and signal reflections caused by impedance 
mismatches in the case of wire line channels. In analog communication,  multipath may not have serious 
consequences because human ears and eyes can often tolerate the resultant distortions to a good extent. But 
in digital communications, multipath, which creates multiple copies of a signal with different delays, can 
create at the input to the receiver, a situation in which the delayed versions of one symbol when added may 
cause the symbol to spill over beyond that time-slot and interfere with the adjacent symbols, leading to severe 
intersymbol interference (ISI).
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 As we had already seen earlier, the two main factors contributing to decoding errors in a digital commu-
nication system, are  ISI and the noise (AWGN) introduced by the channel. In Chapter 10, we had discussed 
 equalization, which is one of the very widely used techniques for combating ISI. Transmitters generally 
have very little or no knowledge of the transmission characteristics of the channel. Hence, it is normal for 
the receivers to provide equalization. However, equalization arrangements, especially the non-linear ones 
like the  MLSE, are computationally quite complex. Simpler equalizers like the feedforward and  decision 
feedback equalizers suffer from the disadvantage that they are too much parameter-sensitive. Similarly, it 
may not always be possible to force all the ISI to zero using a  zero-forcing equalizer. Insofar as channel 
noise is concerned, in Chapter 11, we had discussed  optimum filters that would minimize its effect. It should, 
however, be noted that ISI usually results in some amount of performance degradation even if an optimum 
detector is used in the receiver.  Multichannel modulation which we will be discussing in this chapter, tackles 
the problem of high speed data transmission over a channel having severe intersymbol interference by 
converting this problem of serial transmission of symbols over a single channel into the relatively much 
simpler problem of parallel transmission of the given data stream over a large number of what are called, 
‘ subchannels’, each of which may be viewed as an  AWGN channel. We know it is easy to handle these.
 Multichannel modulation, also known as  multicarrier modulation, is a bandwidth-efficient communi-
cation technique that makes use of ‘ Orthogonal Frequency Division Multiplexing’ (OFDM). Simple OFDM 
assumes only partial a priori knowledge of the channel.  Discrete-Time Multitone Modulation (DMT), which 
is a variant of OFDM, however, makes use of a complete knowledge of the channel transmission character-
istics in order to selectively allocate symbols carrying more number of bits to subchannels having relatively 
low attenuation. This has the effect of equalizing the  probability of error across the various subchannels and 
also maximizing the average receiver  SNR.
 OFDM, which forms the basis for multichannel modulation, offers several benefits including high spectral 
efficiency as well as a good degree of immunity from RF interferences and the undesirable effects arising 
from multipath. It thus finds a number of practical applications in wire line as well as wireless communi-
cation.

15.2 MULTIPATH AND MULTIPATH CHANNELS

In high speed wireless channels, the most attractive feature of OFDM is its high resistance to the severe 
problem of  multipath propagation that causes considerable errors in the received data. Multipath interference 
at the receiver input produces two effects: ISI and  frequency selective fading. Hence, in this section, we shall 
briefly discuss the phenomenon of multipath and how it leads to these two effects.
 The phenomenon by which a transmitted signal arrives at the input to the receiver via two or more paths, 
is referred to as ‘multipath’. Figure 15.1 illustrates a typical example of multipath propagation in which the 
received signal is arriving via two separate paths – one, the direct path ( LOS) between the transmitter and 
the receiver and the second, the path taken by the part of the transmitted signal that reaches the receiver after 
getting reflected by the earth’s surface.
 For the above illustration of multipath propagation, it has been assumed that a direct path (LOS path) 
exists. Quite often, in cellular mobile communication, there may not be any direct path between the  base 
station and the mobile phone. The signal from the base station will then be reaching the mobile receiver only 
via scattering, or diffraction over a number of buildings surrounding the mobile receiver. As another example 
of multipath propagation, we may consider wireless communication between two aircrafts in flight. In this 
case, there can be an LOS path and one or more ground reflected paths.
 Thus, in a multipath scenario, the receiver receives multiple copies of the transmitted signal through 
various paths. These copies arrive at the receiver sequentially with different time delays (and hence with 
different phase shifts) because of the different path lengths. There will also be slight difference in the ampli-
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tudes of the signal components arriving through different paths; but this is not of much significance. Insofar 
as the relative phase shifts of the different components of the received signal are concerned, the two extreme 
cases are:
 1. They may have zero relative phase shifts and so add constructively so as to produce a strong resultant 

signal.
 2. They may add destructively and produce a zero/very weak resultant signal.
 In case the transmitter as well as the receiver are stationary, the multipath scenario at the receiver input 
will not vary with time and such a multipath is termed as a ‘ static’ multipath environment. In case either the 
transmitter, or the receiver, or both, are moving, a ‘ dynamic’ multipath environment that changes with time, 
results. Obviously, in a static multipath environment, the amplitude of the received signal does not change 
with time. But, in a dynamic multipath environment, the nature, lengths and even the number of paths as well 
as the phase relationships of the signal components arriving via those paths, will go on changing with time. 
Hence, the resultant received signal strength goes on changing. There may be constructive addition of the 
signal components arriving through various paths at certain locations and destructive addition at some others. 
This results in what is called, ‘ signal fading’. Further, this signal fading may be either ‘ frequency selective’, 
or ‘ non-frequency selective’, depending upon whether the bandwidth of the transmitted signal is greater 
than, or less than what is called the ‘ coherence bandwidth’ of the channel which is the signal bandwidth for 
which signal distortion becomes noticeable at the output of the channel.
 As mentioned earlier, in a multipath scenario, the receiver receives multiple copies of the transmitted 
signal and these arrive sequentially with different path delays. Consider now a situation in which a transmitter 
is transmitting symbols, each of duration T and that these symbols are arriving at the receiver via. two paths 
with a delay difference of DT. Then, as illustrated in Fig.15.2, each symbol gets extended by DT and overlaps 
with the next symbol for a time period of DT and thus causes  intersymbol interference (ISI).

Fig. 15.2 Two signal components with path delay difference DT

Fig. 15.1 Illustration of  multipath propagation
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 In high speed data transmission, the symbol duration T must necessarily be kept small and DT, which 
is independent of T and depends only on the maximum difference in path delays, can then become compa-
rable to T and cause considerable  ISI. It must be noted that smaller the value of DT, the delay difference, as 
compared to the symbol duration T, smaller is the intersymbol interference. In fact,  OFDM exploits this fact 
to make the ISI negligible, by making the symbol duration in each of its  subchannels equal to N times the 
symbol duration in the original data to be transmitted, where N is the number of subchannels. As will be seen 
in the next section, it mitigates the other effect of multipath, namely  frequency selective fading, by making 
the channel response of each of the N narrowband channels almost ‘flat’ by using a large N.

15.3 BASIC PRINCIPLE OF OFDM

Conceptually, OFDM has been known for at least the last four decades. However, its practical implemen-
tation was simply not possible with the type of semiconductor and computer techniques that were available in 
the 1960s and 1970s. It became a practical reality – and a highly successful one at that, from the late 1990s. 
Because of its superior performance in terms of  spectral efficiency and considerable immunity from  multipath 
effects, it is better suited for the present-day high-speed data transmission requirements as compared to the 
traditional single-carrier modulation methods.
 In conventional ‘ Frequency Division Multiplexing’ (FDM), independent signals produced by different 
sources are translated in frequency by subcarrier modulation and these frequency-translated signals are then 
arranged in adjacent frequency slots in a non-overlapping manner so that they all share the available spectrum. 
This frequency division multiplexed signal is then transmitted over the channel. To facilitate the separation of 
these various modulated signals using easily available bandpass filters, small guard bands are also provided 
between adjacent frequency slots. This increases the total frequency bandwidth occupancy of the multiplexed 
signal that is transmitted.
 As against this, in the case of  Orthogonal Frequency Division Multiplexing (OFDM), the subcarriers are 
rather tightly packed with no  guard bands and adjacent  subcarrier frequencies are separated by only (1/T) Hz, 
the  symbol rate in each subcarrier. However, separation of the modulated signals having different subcar-
riers does not pose any problem since these subcarriers with a separation of (1/T) Hz are  orthogonal (This 
was shown in connection with Sunde’s FSK (See Eq. (11.104) of Section 11.4.3 in Chapter 11). This makes 
it possible for OFDM to have a very high spectral efficiency. Whereas independent signals from different 
sources modulate the various subcarriers in conventional FDM, the various independent symbols from the 
same serial data stream which is to be transmitted, are used in OFDM for modulating the various  orthogonal 
subcarriers. This process is illustrated in the Table 15.1 assuming that the following serial bit stream is to be 
transmitted using five orthogonal subcarriers (In practice, the number of subcarriers used will be very high. It 
is of the order of 1536 in the case of  Digital Audio Broadcasting, i.e., DAB).
Assumed data stream:

1, –1, –1, 1, 1, 1, –1, 1, –1, –1, –1, 1, –1, 1, 1, 1, –1, –1, 1, –1

Orthogonal subcarriers:

SC1 ,    SC2 ,   SC3 ,   SC4 ,   SC5 

As shown in Table 15.1, the 20 bits in the assumed serial data stream are arranged into five parallel blocks 
using a serial-to-parallel converter, and are used for modulating the various subcarriers.
 From the above illustration it is clear that the data rate in each of the five subchannels is only (1/5) of the 
data rate that would have resulted, had the assumed data been transmitted using a single carrier. In general, 
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if N parallel subchannels are used, and if the rate of the given serial data is (1/Ts), the data rate in each 
subchannel would be

 
1 1

or s
s

T NT
T NT

= =  (15.1)

where T denotes the symbol period in each subchannel and Ts denotes the sampling period, which is equal to 
the symbol duration in the original data.
 Now, to make the subchannels orthogonal to each other we choose Df, the spacing between adjacent 
subcarriers equal to (1/T), the symbol rate in each subchannel.

\ 
1 1 s

s

f
f

T NT N
D = = =  (15.2)

This implies that if Hc(f) is the frequency response of the available single-carrier channel, it is sampled in 
frequency domain at regular frequency intervals of Df = fs/N as shown in Fig. 15.3.

Fig. 15.3 Sampling the frequency response of the channel at regular frequency interval of Df

Then, if fk is the mid-frequency of the bandwidth of the kth subchannel, we may write

th( ) subcarrier sin(2 ); 0,1,…, ( 1)k k kx t k f t k Np q= = + = -

where qk is the phase angle of the kth subcarrier, and the orthogonality of the subchannels means that the inner 
product of any two distinct subchannel carriers must be equal to zero. i.e.,

Table 15.1 Allocation of bits to the subcarriers

SC1 SC2 SC3 SC4 SC5

1 –1 –1 1 1

1 –1 1 –1 –1

–1 1 –1 1 1

1 –1 –1 1 –1

 (i) Each column in the above table represents the bits that will be carried by the subcarrier 

marked at the top of that column.

 (ii) These data-modulated subcarriers are then re-multiplexed to create the OFDM carrier.
Note
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π £ £ -

Ú  (15.3)

From the foregoing, we now make the following two remarks.

 (i) The symbol interval in each  subchannel of the  OFDM system is N times the symbol 

interval in the  single carrier system. Hence, for a large N, the symbol interval in each 

subchannel can be made much larger than the path delay difference caused by  multipath 

propagation. Thus, by choosing a large N, we can almost make the OFDM system 

ISI-free. Thus, OFDM converts an  ISI channel into N parallel subchannels which are 

simple  AWGN channels without ISI.

  It must, however, be noted that N cannot be indefinitely increased, since the serial-to-

parallel conversion of the data will then lead to very large time delays.

 (ii) A large value of N will make Df, the subcarrier spacing, very small and each subchannel 

will then have almost a flat frequency response over its narrow bandwidth. This 

mitigates, to a very large extent, the occurrence of  frequency selective fading caused by 

multipath. However, as stated above, N cannot be increased indefinitely.

 (iii) Each subchannel of the OFDM system is generally modulated using the spectrally 

efficient  M-ary QAM.

Thus, at least conceptually, formation of an OFDM signal may be visualized as illustrated in Fig. 15.4:

Fig. 15.4 Illustration of the conceptual formation of an  OFDM signal

 From the above, it appears that the implementation of an OFDM system requires a bank of N subcarrier 
oscillators, modulators and coherent M-ary QAM demodulators (on the receiving side). When N is large, as 
is generally the case in practical applications, it becomes quite expensive. Hence, practical implementation 
requires an altogether different approach. In this connection, it is interesting and useful to note the fact that 
the whole process of transformation of the single carrier wideband channel into N narrowband subchannels 
operating in parallel, is discrete both in time as well as frequency. This makes it possible to have a matrix 
representation of the transformation process. This, in turn, permits a  DFT implementation of the transfor-
mation. DFT implementation can be carried out completely in the digital domain using special purpose 
hardware for performing  FFT which is an efficient way of implementing DFT.

Remarks
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 Hence, in what follows, we will show how  DFT and its inverse operation  IDFT may be used to convert a 
single carrier wideband  ISI channel into a number of narrowband parallel  subchannels without ISI. As the 
pertinent analysis uses a number of key basic concepts of digital signal processing, we propose to first discuss 
these concepts briefly in the next section before proceeding with that analysis.

15.4 SOME SIGNAL PROCESSING CONCEPTS

15.4.1 Discrete-Time Fourier Transform

A discrete-time signal is a sequence of real or complex numbers. These numbers are assumed to be occurring 
at regular intervals of T seconds. The nth element of a discrete-time signal is generally denoted by x(nT) and 
the signal itself is denoted by {x(nT)}. As this notation is cumbersome, x(nT) is generally used to represent 
the sequence itself or its nth element. From the context, one can easily make out which one x(nT) represents.
 The  spectrum of a  discrete-time signal x(nT) is represented by its ‘ Discrete-Time Fourier Transform’ 
(DTFT) defined by

 ( ) ( )j T j nT

n

X e x nT e
w w

•
-

= -•
D Â  (15.4)

As is clear from Eq. (15.4), ( )j T
X e

w  is in general, a complex-valued function of the frequency variable ‘f ’, 

even if the DT signal x(nT) is purely real and that ( )j T
X e

w  is periodic in frequency with a period 
1

Hzsf
T

= = .
 If the time interval T between two consecutive elements of the signal x(nT) is taken as unity,

 ( ) ( )j j n

n

X e x n e
w w

•
-

= -•
= Â  (15.5)

( )j
X e

w  is a periodic complex-valued function of w with a period of 2p radians.
The  DTFT has an inverse and
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/2

1
( ) ( )

2

s

s

j T j nT
x nT X e e d

w
w w

w

w
p -

= Ú  (15.6)

In the above equation, vs = 2pfs = 2p/T

and 
1

( ) ( )
2

j j n
x n X e e d

p
w w

p

w
p -

= Ú  (15.7)

Some useful properties of DTFT

 1. Linearity: If 
DTFT DTFT

1 1 2 2( ) ( ), ( ) ( ) j j
x n X e x n X e

w w¨ææÆ ¨ææÆ  and if a1 and a2 are any two arbitrary 
constants then:

 DTFT
1 1 2 2 1 1 2 2[ ( ) ( )] ( ) ( )j j

a x n a x n a X e a X e
w w+ ¨ææÆ +  (15.8)

 2. Hermitian symmetry: If x(n) is a purely real valued discrete-time signal, its DTFT, viz. ( )j
X e

w  will 
have  Hermitian symmetry, i.e.,

 | ( )| | ( )| and ( ) ( )j j j j
X e X e X e X e

w w w w- -= – = -–  (15.9)

 3. Convolution theorem: Let 
DTFT

1 1( ) ( )j
x n X e

w¨ææÆ  and  
DTFT

2 2( ) ( )j
x n X e

w¨ææÆ . 

Then 1 2 1 2DTFT[ ( ) ( )] ( ) ( )j j
x n x n X e X e

w w* = ◊  (15.10)

  where the symbol * denotes  linear convolution.

Note
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 4. Multiplication theorem: Let 
DTFT

1 1( ) ( )j
x n X e

w¨ææÆ  and 
DTFT

2 2( ) ( )j
x n X e

w¨ææÆ . 

Then 
DTFT

1 2 1 2( ) ( ) ( ) ( )j j
x n x n X e X e

w w◊ ¨ææÆ *  (15.11)

15.4.2 Discrete Fourier Transform (DFT)

In the DTFT, given by Eq. (15.4), the parameter, t, is discretized but the frequency parameter f is not discretized; 
it is a continuous variable. Hence, DTFT cannot be directly used for machine computation of the  spectrum of 
a DT signal. In the  Discrete Fourier Transform (DFT), both these parameters are discretized. Time is repre-
sented by the discrete variable n and the frequency by the discrete variable k. The DFT is invertible and the 
inverse transform is denoted by  IDFT. The DFT of an N-length sequence x(n),  n = 0, 1, …,(N–1), is given by

DFT: 
p-

-

=
= = º -Â

21

0

( ) ( ) ; 0, 1, , ( 1)N

N
j nk

n

X k x n e k N  (15.12)

X(k)s are called the  DFT coefficients, and are in general complex even if x(n) is a real-valued sequence. As 
can be seen from the above equation, the DFT transforms an N-length sequence, x(n), into another N-length 
sequence, X(k), called the DFT coefficients sequence. We shall see the physical meaning of these DFT coeffi-
cients later. The inverse transformation is given by

IDFT: 
p-

=
= = º -Â

21

0

1
( ) ( ) ; 0, 1, , ( 1)N

N
j nk

k

x n X k e n N
N

 (15.13)

The (1/N) factor in the IDFT equation is only a  normalization factor which is used for ensuring 

that if 
DTF

( ) ( )x n X k¨ææÆ  then IDFT
( ) ( )X k x n¨ææÆ  without any need for scaling. In fact, we 

may split it and use a (1/ )N  factor in each of the DFT and IDFT equations.

Matrix representation of DFT and IDFT The DFT equation (as well as the IDFT equation) actually 
represents a set of N linear equations that can be compactly represented by a matrix equation. Let us define

 
2
N

j
W e

p-D  (15.14)

The DFT Eq. (15.12) may now be expanded for k = 0, 1, 2, …, (N – 1) to get

 

(1)(0) (2)(0) ( 1)(0)

(0)(1) (1)(1) (2)(1) ( 1)(1)

(0)(2) (1)(2) (2)(2) ( 1)(2)

(0)( 1) (1

(0) (0) 1 (1) (2) … ( 1)

(1) (0) (1) (2) … ( 1)

(2) (0) (1) (2) … ( 1)

( 1) (0) (1)

N

N

N

N

X x x W x W x N W

X x W x W x W x N W

X x W x W x W x N W

X N x W x W

-

-

-

-

= ◊ + + + + -

= + + + + -

= + + + + -

- = +

M M M

2)( 1) (2)( 1) ( 1)(2) … ( 1)N N N
x W x N W

- - -+ + + -

 These N equations may conveniently be written down as a single matrix equation. While doing so, we 
must note that Wm is N-periodic in the sense that as m takes integer values 0, 1, 2, etc., Wm will have distinct 
values only up to m = (N – 1) and that the values that it takes will repeat thereafter. For example, when m = 
N, W m = 1, which is the same as W 0. Similarly, W N+1 = W and, in general, W N+p, 0<p<N, is simply equal to 
W p itself. Hence, the above N equations may be written down completely as

Remark
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2

2 ( 1)

2 4 2( 1)

( 1) 2( 1) ( 1)

1 1 1 1(0) (0)

1(1) (1)

(2) (2)1

( 1) ( 1)1

N

N

N N N

X x

W W WX x

X xW W W

X N x NW W W

-

-

- - -

È ˘È ˘ È ˘Í ˙Í ˙ Í ˙Í ˙Í ˙ Í ˙Í ˙Í ˙ Í ˙= Í ˙Í ˙ Í ˙Í ˙Í ˙ Í ˙Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Í ˙Î ˚

L

L

L

M MM M M M

L

 (15.15)

The N ¥ N matrix on the RHS of Eq. (15.15) is called the  DFT matrix of order N.

Properties of the DFT matrix
 1. It is a square matrix and is symmetrical about its principal diagonal.
 2. The entries in the 0th row and hence in the 0th column, are all equal to 1.
 3. In general, the entry in the ith row and jth column, where, 0 £ j £ (N–1), is given by W i–j 

 4. The DFT matrix is a  unitary matrix, i.e., if 
1

(DFT matrix)
N

=Q  then =*
Q Q I , where I is the 

identity matrix and Q* is the Hermitian transpose (i.e., complex conjugate transpose) of Q. This implies 
that Q* is the inverse of Q.

Similarly, the matrix equation representation of the IDFT may be written down as

 

2

1 2 ( 1)

2 4 2( 1)

( 1) 2( 1) ( 1)

1 1 1 1(0) (0)

1(1) (1)
1

(2) (2)1

( 1) ( 1)1

N

N

N N N

x X

W W Wx X

x XW W W
N

x N X NW W W

- - - -

- - - -

- - - - - -

È ˘È ˘ È ˘Í ˙Í ˙ Í ˙Í ˙Í ˙ Í ˙Í ˙Í ˙ Í ˙= Í ˙Í ˙ Í ˙Í ˙Í ˙ Í ˙Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Í ˙Î ˚

L

L

L

M MM M M M

L

 (15.16)

15.4.3 Linear and Circular Convolutions

The  linear convolution between two sequences x(n) and y(n) is defined by the following equation:

 ( ) ( ) ( )
m

z n x n m y m
•

= -•
= -Â  (15.17)

where z(n) is the nth element of the resultant sequence, {z(n)}. This linear convolution of x(n) and y(n) is 
generally denoted by

 ( ) ( ) ( )z n x n y n= *  (15.18)
In case x(n) and y(n) are finite length sequences of lengths N1 and N2 respectively, it can be shown that 
the linear convolution of these two sequences will result in another finite length sequence, z(n) of length 
(N1 + N2 – 1).
 The linear convolution illustrated in Fig.15.5 may be represented as a matrix multiplication given below.

 

(0) (0) 0 0 0

(1) (1) (0) 0 0
(0)

(2) (2) (1) (0) 0
(1)

(3) (3) (2) (1) (0)
(2)

(4) 0 (3) (2) (1)
(3)

(5) 0 0 (3) (2)

(6) 0 0 0 (3)

z x

z x x
y

z x x x
y

z x x x x
y

z x x x
y

z x x

z x

È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙ È ˘Í ˙ Í ˙ Í ˙Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙Í ˙ Í ˙ Í ˙Í ˙ Í ˙ Î ˚
Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

 (15.19)
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Circular convolution For linear convolution, the two sequences x(n) and y(n) which are to be convolved, 
need not be of the same length. However, for circular or  cyclic convolution, the two sequences which are to be 
convolved are to be of equal length and the resultant sequence will also be of the same length.
 The circular or cyclic convolution of two N-length sequences x(n) and y(n) is defined by the following 
equation:

 
1

0

( ) ( ) ( ); 0,1, 2, , ( 1)
N

N
m

z n x n m y m n N
-

=
= - = º -Â  (15.20)

Here, ( )Nn m-  denotes  modulo-N subtraction of m from n. {z(n)} is the discrete-time signal resulting from 
the  circular convolution of x(n) and y(n). The circular convolution is often denoted by

 ( ) ( ) ( )z n x n y n= ƒ  (15.21)

 Equation (15.20) may conveniently be represented as the following matrix equation, assuming N = 5:

 

(0) (0) (4) (3) (2) (1) (0)

(1) (1) (0) (4) (3) (2) (1)

(2) (2) (1) (0) (4) (3) (2)

(3) (3) (2) (1) (0) (4) (3)

(4) (4) (3) (2) (1) (0) (4)

z x x x x x y

z x x x x x y

z x x x x x y

z x x x x x y

z x x x x x y

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙=
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

 (15.22)

Some useful properties of DFT
 1. DFT is linear in the sense that if 

DFT DFT
1 1 2 2( ) ( ), ( ) ( )

N N
x n X k x n X k¨ææÆ ¨ææÆ  and if a1 and a2 are 

arbitrary constants,

 
DFT

1 1 2 2 1 1 2 2[ ( ) ( )] [ ( ) ( )]
N

a x n a x n a X k a X k+ ¨ææÆ +  (15.23)

Fig. 15.5 Graphical representation of  discrete linear convolution
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 2. From the  N-periodicity of 
2

,N
j

e
p-

 it follows that the DFT and IDFT equations are N-periodic, i.e., they 
assume that {X(k)} and {x(n)} sequences are N-periodic. Hence, ( ) ( )X k X k mN= +  for every integer 
k, 0 ( 1)k N£ £ -  and for any integer m. Also, ( ) ( )x n x n mN= +  for every n, 0 ( 1)n N£ £ -  and any 
integer m.

 3. Convolution theorem: If x(n) and y(n) are two sequences each of length N, with ¨ææÆDFT
( ) ( )

N
x n X k  

¨ææÆDFT
and ( ) ( ),

N
y n Y k and if their  circular convolution leads to z(n), then

 ( ) ( ) ( );Z k X k Y k= ◊  k = 0, 1, 2, …, (N – 1) (15.24)

  Note that DFT supports circular convolution and not linear convolution.
 4. Multiplication theorem: If x(n) and y(n) are two N-length sequences with 

DFT
( ) ( )

N
x n X k¨ææÆ  and 

DFT
( ) ( ),

N
y n Y k¨ææÆ  and if ( ) ( ) ( )z n x n y n= ◊  then

 
1

( ) [ ( ) ( )]Z k X k Y k
N

= ƒ  (15.25)

 5. Complex-conjugate theorem: Let x(n) be a real-valued sequence of length N. Let 
DFT

( ) ( )
N

x n X k¨ææÆ . 
Then,

 ( ) ( ); 0,1, 2, , ( 1)X N k X k k N- = = º -  (15.26)

Overbar indicates complex conjugate

So, for any real-valued sequence of finite length N, the kth DFT coefficient and the (N – k)th DFT coefficient 
are complex conjugate of each other.

15.4.5 Physical Meaning of the DFT Coefficients

The relationship between DFT and DTFT reveals the physical meaning of the DFT coefficients. For this 
purpose, consider a sequence x(n) which is causal and of length N.

Then

 DTFT of x(nT): 
1

0

( ) ( )
N

j T j nT

n

X e x nT e
w w

-
-

=
= Â  (15.27)

and

 DFT of x(nT): 
21

0

( ) ( ) ; 0,1, 2, , ( 1)N

N
j nk

n

X k x nT e k N
p-

-

=
= = º -Â  (15.28)

A comparison of the above two equations reveals that

 ( )wp

w

w = =
= = º -

2
( ) ( ) ; 0, 1, 2, , ( 1)

s
NT N

j T

k k
X k X e k N   (15.29)

Equation (15.29) tells us that the kth  DFT coefficient, X(k), of an N-length sequence x(n) is the value of the 

DTFT of that sequence evaluated at the frequency s k
N

w
w

Ê ˆ= Á ˜Ë ¯ . This again suggests that the N-point DFT 

of an N-length sequence, x(n) can be obtained by sampling the DTFT of the sequence x(n) (in the frequency 
domain) at the frequencies

 
w w w w

w
Ê ˆ Ê ˆ Ê ˆ Ê ˆ

= ◊ ◊ º -Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯0, , 2, 3, , ( 1)s s s s N
N N N N

 (15.30)

Note
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15.4.6 Diagonalization of a Matrix and Circulant Matrices

1.  Diagonalization of a matrix: Let A be an N ¥ N matrix with N linearly independent eigenvectors : X1, X2, 
…, XN. Then

 AXi = liXi   ; i = 1, 2, …, N  (15.31)

where li  is the eigenvalue corresponding to the eigenvector Xi.
 Stacking the N equations represented by Eq. (15.31) side by side, we get

[AX1  AX2  .  .  .  AXN ] = [l1X1   l2X2    . . .  lNXN ]

i.e.,

 

1

2
1 2 1 2[ ] [ ]   N N

N

A

l

l

l

È ˘
Í ˙
Í ˙=
Í ˙◊
Í ˙
Î ˚

L LX X X X X X

Now, representing the  diagonal matrix on the RHS of the above equation by A, and the matrix with eigen-
vectors X1  X2  .  .  .  XN  as its columns, by U, we have

 A- -= L \ = L L =1 1orAU U A U U U U  (15.33)

We therefore find that the matrix A is diagonalized by premultiplying it by U–1 and post-multiplying by U, 
where U is the N ¥ N matrix whose columns are the N linearly independent eigenvectors of A. Such a matrix, 
U, is called a  modal matrix. In fact, this diagonalization is a particular case of  similarity transformation and 
the matrices A and L are similar. We know that all similar matrices have the same set of eigenvalues.

2. Circulant matrices: Before proceeding to  circulant matrices, we will first discuss one very interesting and 
useful class of matrices, called the ‘ permutation matrices’.

Definition A permutation matrix, P, is a square matrix whose elements are all either 0 or 1 and which has 
exactly one 1 in each row and column.
 As an example, a set of three permutation matrices of size 3 ¥ 3 are given below

 

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= = =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

1 2 0

0 0 1 0 1 0 1 0 0

1 0 0 ; 0 0 1 ; 0 1 0

0 1 0 1 0 0 0 0 1

P P P  (15.34)

Note that 2 3
1 2 1 0and ,P P P P= =  which is an  identity matrix of size 3 ¥ 3.

Properties of permutation matrices
 1. Let P be an N ¥ N permutation matrix and A be any N ¥ N matrix. Then, PA is a row-permutated version 

of A while AP is a column permuted version.
 2. Permutation matrices are  orthogonal matrices.
 3. If P is a permutation matrix, 1 ,T

P P
- =  the transpose of P.

 It is an easy matter to show that the above set of three 3 ¥ 3 permutation matrices have the following set 
of common eigenvectors:

 
2

1 2 2

2

11 1

1 ; ;

1

W W

WW

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙= = = Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚

V V V
 (15.35)
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where

 
2
3

j
W e

p-D  (15.36)

Thus, the  modal matrix for a 3 ¥ 3  permutation matrix is the following matrix which has the above three 
eigenvectors as its columns:

 
2

3

2

1 1 1

1

1

U W W

W W

È ˘
Í ˙

= Í ˙
Í ˙
Î ˚

 (15.37)

But, we know that the above U3 is the 3 ¥ 3  DFT matrix.
 We may generalize the above result and state that the N ¥ N DFT matrix is the modal matrix for any N ¥ 
N permutation matrix.
 The general form of an N ¥ N circulant, or  cyclic matrix is

 

- -

-

¥

- - -

È ˘
Í ˙
Í ˙
Í ˙D
Í ˙
Í ˙
Í ˙
Î ˚

L

L

L

M M M M

L

0 1 2 1

1 0 1 2

2 1 0 3
( )

(Circulant)

1 2 3 0

N N

N

N N

N N N

c c c c

c c c c

c c c cC

c c c c

 (15.38)

The reader might have noticed that each column (or row) of the above matrix is obtained by giving a one step 
circular, or  cyclic shift to the previous column (or row). A 3 ¥ 3 size cyclic matrix is given by

 

0 2 1

1 0 2
3 3

2 1 0

c c c

C c c c

c c c
¥

È ˘
Í ˙= Í ˙
Í ˙Î ˚

Note that any 3 ¥ 3  circulant matrix like the above one, is a linear combination of the three 3 ¥ 3 permutation 
matrices.

i.e., 0 0 1 1 2 2
3 3
C c P c P c P
¥

= + +

In general, we therefore have

 0 0 1 1 1 1N N
N N
C c P c P c P- -
¥

= + + +L  (15.39)

where the Pis, i = 0, 1, …, (N–1) are the set of N ¥ N permutation matrices. Since these N ¥ N – permutation 
matrices have the N ¥ N – DFT matrix as their modal matrix, their linear combination N NC ¥ , viz. the cyclic 
matrix of size N ¥ N also has the N ¥ N – DFT-matrix as its modal matrix.

 

-
- - --

- - - -- -
- -

È ˘ È ˘È ˘
Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙ =Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙Î ˚Î ˚ Î ˚

L LL

L LL

M M M M M MM M

LL L
2 2

0 1 1
( 1) ( 1)1 1

1 0 2

( 1) ( 1) ( 1)( 1)
1 2 0

1 1 1 1 1 1

1 1
 

1 1

N

N N
N N N N

N N NN
N NN N N N

c c c

W W W Wc c c

c c cW W W W

l
l

l -

È ˘
Í ˙
Í ˙◊
Í ˙◊
Í ˙◊
Í ˙
Î ˚

0

1

( 1)N

 N 3 N matrix N 3 N circulant matrix N 3 N IDFT matrix N 3 N diagonal matrix

The diagonal elements of the N ¥ N  diagonal matrix on the RHS of Eq. (15.40) are the eigenvalues (see Eq. 
15.33) of the N ¥ N cyclic matrix CN ¥ N. 
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It is left as an exercise to the reader to show that these N eigenvalues are just the DFT coeffi-

cients of the  generating vector of the  cyclic matrix, i.e., DFT coefficients of the first column of 

the cyclic matrix CN ¥ N. This means that

 

2

0 0
( 1)1

1 1

( 1) ( 1)
1 1

1 1 1

1

1

N
N N

N N
N N

N N

c

W W c

cW W

l

l

l

-

- - - -

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚Î ˚

L

L

M M M M M

L

 (15.41)

15.5  SINGLE CARRIER CHANNEL TO MULTICARRIER CHANNEL 

TRANSFORMATION – ROLE OF DFT AND IDFT

As has been stated in Section 15.1,  OFDM assumes partial information about the transmission channel. If the 
channel could be modeled as an FIR system of order K, the OFDM system should have an a priori knowledge 
of K. Of course, its knowledge about the channel would be complete if the channel’s impulse response coeffi-
cients, h(0), h(1), . . . , h(K) are also known. But OFDM system implementation does not require knowledge 
of these impulse response coefficients of the FIR channel.
 Suppose a data sequence {s(n)} is given as input to an  FIR channel of order K. Then, we know that the 
 linear convolution of the channel impulse response sequence and the data sequence will give us the output 
samples. That is,

 
0

( ) ( ) ( ) ( )
K

i

z n h i s n i w n
=

= - +Â  (15.42)

where w(n) is the nth sample of the additive  white noise process on the channel, and z(n) is the nth output 
sample. Then, a vector of N output samples is given by writing down the N equations corresponding to n = 0, 
1, …, (N – 1) in Eq. (15.42)

 

(0) (0) (0) (1) ( 1) ( ) ( ) (0)

(1) (0) (1) (1) (0) ( ) ( 1) (1)

z h s h s h K s K w

z h s h s h K s K w

= + - + + - +
= + + + - + +

L

L

 M

 
( ) (0) ( ) (1) ( 1) ( ) (0) ( )z K h s K h s K h K s w K= + - + + +L

 M

 

( 2) (0) ( 2) (1) ( 3) ( ) ( 2 ) ( 2)

( 1) (0) ( 1) (1) ( 2) ( ) ( 1 ) ( 1)

z N h s N h s N h K s N K w N

z N h s N h s N h K s N K w N

- = - + - + + - - + -
- = - + - + + - - + -

L

L  (15.43)

From the above set, we find that in order to determine N output samples z(0), z(1), …, z(N – 1), as many as 
N + K input sample values s(–K), s(–K + 1), …, (s(–1), s(0), s(1), …, s(N – 1) are being used. Insertion of 
what is called the ‘ cyclic prefix’, a step that is equivalent to  zero-padding that we normally resort to for 
converting a linear convolution into a  cyclic convolution, makes the input data vector also to be of the same 
length as the output vector. Further, the N ¥ N matrix that we get by writing Eq. (15.43) as a matrix equation, 
now becomes a cyclic N ¥ N matrix. Imagine the serial data to be as shown below:

Remarks
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…, ( ), ( 1),…, ( 2), ( 1), (0), (1),…, ( 1), ( ),

…, ( 2), ( 1), (0), (1),   

s K s K s s s s s N K s N K

s N s N s s

- + - - - + -
- - º

Insertion of cyclic prefix then consists of replacing { ( ), ( 1), , ( 2), ( 1)}s K s K s s- - + º - -  by {s(N – K), …, 
s(N – 2), s(N – 1)}. Once this is done the N-equations of Eq. (15.43) may be written down as a matrix equation 
involving a cyclic or  circular matrix, as shown below.

 

(0) (0) 0 0 ( ) ( 1) (1)

(1) (1) (0) 0 0 ( ) (2)

(2) (2) (1) (0) 0 0 ( ) . (3)

( ) ( ) ( 1) (1) (0) 0 ( )

0 ( ) ( 1) (2) (

( 2)

( 1)

z h h K h K h

z h h h K h

z h h h h K h

z K h K h K h h h K

h K h K h h

z N

z N

◊ ◊ ◊ - ◊ ◊ ◊È ˘
Í ˙ ◊ ◊ ◊ ◊ ◊ ◊Í ˙
Í ˙ ◊ ◊ ◊ ◊
Í ˙

◊ ◊ ◊Í ˙
Í ˙◊ ◊ ◊
Í ˙

=◊ ◊ ◊Í ˙
Í ˙ - ◊ ◊ ◊ ◊ ◊ ◊Í ˙

◊ - ◊ ◊ ◊Í ˙
Í ˙◊Í ˙
Í ˙-
Í ˙

-Î ˚

(0) (0)

(1) (1)

(2) (2)

( ) ( )

1) (0) 0

0

0 ( 2) ( 2)

0 0 ( ) ( 1) (1) (0) ( 1) ( 1)

s w
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h
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h K h K h h s N w N

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙

◊ ◊Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙◊ ◊
Í ˙ Í ˙ Í ˙

+◊ ◊Í ˙ Í ˙ Í
Í ˙ Í ˙ Í
Í ˙ Í ˙ Í

◊ ◊ ◊ ◊Í ˙ Í ˙ Í
Í ˙ Í ˙ Í◊ ◊ ◊Í ˙ Í ˙ Í
Í ˙ Í ˙ Í◊ - -
Í ˙ Í ˙ Í

◊ ◊ ◊ - ◊ ◊ ◊ - -Î ˚ Î ˚ Î ˚

˙
˙
˙
˙
˙
˙
˙
˙

 (15.44)
This N ¥ N circulant, or  cyclic matrix, Hc, can be diagonalized using the DFT and IDFT matrices of size 
N ¥ N (see Eq. (15.40).

\ 1
N c N HW H W

- = L  (15.45)

where LH is a  diagonal matrix with the eigenvalues of the circulant matrix, Hc, as its diagonal elements. But, 
we know from Eq. (15.41) and the remark preceding it that these eigenvalues are the  DFT coefficients of the 
N-length  generator vector of Hc, viz., the DFT of [h(0)  h(1)  h(2)  .  .  .  h(K)  0  0  .  .  .  0]T. This vector is the 
 impulse response sequence of the channel and so its N-point DFT is given by the N-samples of its  DTFT (see 
Section 15.4.5 and in particular Eq. (15.29). That is, they are H(0), H(1), H(2), . . . , H(N – 1).

 

(0)

(1)

( 1)

H

H

H

H N

È ˘
Í ˙
Í ˙
Í ˙L = ◊
Í ˙

◊Í ˙
Í ˙-Î ˚

 (15.46)

From Eq. (15.45), we have

 
1

1 1 1
c N H N N H NH W W W W

N N

-
- Ê ˆ Ê ˆ= L = LÁ ˜ Á ˜Ë ¯ Ë ¯

 (15.47)

Note that as stated earlier in the remark following Eq. (15.13), the  normalization factor (1/N) is now split into 

two factors and each of these, viz. (1/ ),N  is attached to the  DFT and  IDFT.
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 Substituting for Hc in Eq. (15.44) using Eq. (15.47), we get

 
1

(0) (0) (0)

(1) (1) (1)

1 1

( ) ( ) ( )

( 1) ( 1) ( 1)

N H N

z s w

z s w

W W
N N

z K s K w K

z N s N w N

-

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙◊ ◊ ◊
Í ˙ Í ˙ Í ˙

◊ ◊ ◊Í ˙ Í ˙ Í ˙Ê ˆ Ê ˆÍ ˙ Í ˙ Í ˙= L +◊ ◊ ◊Á ˜ Á ˜Í ˙ Í ˙ Í ˙Ë ¯ Ë ¯
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙◊ ◊ ◊Í ˙ Í ˙ Í ˙

◊ ◊ ◊Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚

 (15.48)

Let us now define the following vectors:
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(1) (1)

1 1

( ) ( )

( 1) ( 1)

N N

s s

s s

W W
N N

s K s K
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È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙◊ ◊
Í ˙ Í ˙

◊ ◊Í ˙ Í ˙Ê ˆ Ê ˆÍ ˙ Í ˙D = =◊ ◊Á ˜ Á ˜Í ˙ Í ˙Ë ¯ Ë ¯
Í ˙ Í ˙
Í ˙ Í ˙◊ ◊Í ˙ Í ˙

◊ ◊Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

%

%

%

%

%

s s  (15.49a)
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Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙◊ ◊
Í ˙ Í ˙

◊ ◊Í ˙ Í ˙Ê ˆÍ ˙ Í ˙D =◊ ◊Á ˜Í ˙ Í ˙Ë ¯
Í ˙ Í ˙
Í ˙ Í ˙◊ ◊Í ˙ Í ˙

◊ ◊Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

%

%

%

%

%

z  (15.49b)
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and

 

(0) (0)

(1) (1)

1

( ) ( )

( 1) ( 1)

N

w w

w w

W
N

w K w K

w N w N

È ˘ È ˘
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Í ˙ Í ˙
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Í ˙ Í ˙

◊ ◊Í ˙ Í ˙Ê ˆÍ ˙ Í ˙D =◊ ◊Á ˜Í ˙ Í ˙Ë ¯
Í ˙ Í ˙
Í ˙ Í ˙◊ ◊Í ˙ Í ˙

◊ ◊Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

%

%

%

%

%

w  (15.49c)

Now, premultiplying both sides of Eq. (15.48) by 
1

,NW
N

Ê ˆ
Á ˜Ë ¯

 and then making use of Eq. (15.49), we get

 H= L +% %%z s w  (15.50)

Since LH is the  diagonal matrix given by Eq. (15.46), the above equation may be written down as the following 
set of N equations in terms of the nth elements of the various vectors involved:

 ( ) ( ) ( ) ( ); 0,1, , ( 1)n H n n n n N= + = º -% %%z s w  (15.51)

For a proper interpretation of this extremely useful equation, one should clearly understand the role of ( )s n%  
and the difference between ( )s n%  and s(n). As per Eq. (15.42), the data sequence fed to the  FIR channel is, 
of course, s(n). We now distinguish this from the source data which is of interest at the destination (i.e., at 
the output of the receiver). Equation (15.49a) tells us that this source data vector ( )n%s  is the  DFT of the data 
vector s(n). That is, the data vector s(n) that is actually transmitted over the FIR channel is obtained by taking 
the IDFT of the source data vector ( )n%s . Equation (15.43) then tells us that the data part of the channel output 
z(n) corresponding to the data s(n) as input, can be obtained without recourse to the complex  linear convo-
lution of Eq. (15.42) by the insertion of the  cyclic prefix. From Eq. (15.49b), we find that %z  vector can be 
obtained (in the receiver) from the vector z by taking its DFT. Then Eq. (15.51) tells us that the nth element, 
n = 0, 1, . . . , (N–1) of %z  vector is equal to a scalar complex number H(n) (that represents the complex gain 
of the nth subchannel) times ( )n%s  plus the nth sample of the modified noise sample ( )n%w .
 In fact, Eq. (15.51) shows that the single FIR channel is in effect, replaced by N parallel channels with 
gains H(0), H(1), …, H(N – 1) and transmitting (0), (1) , ( 1),Nº -% % %s s s  respectively. It further shows that 
by taking the  IDFT of the source data vector and the DFT of the channel output vector,  OFDM converts a 
single ISI channel of order K into N parallel subchannels that are devoid of  ISI. And, what is interesting is, 
that this is achieved without having to generate and modulate the N  subcarriers. Also, these subchannels are 
independent since the noise samples on them are independent. This is because w(n)s being samples of  white 
Gaussian noise, are  statistically independent. So ( )n%w s are also independent since %w  vector is obtained by 
a linear transformation (DFT) of the %w vector. Figure 15.6 shows the block diagram of an OFDM system 
implemented using an N-point IDFT at the transmitter and an N-point DFT at the receiver.
Equation (15.51) suggests that the action of all the OFDM stages for the IDFT onwards can as well be equiva-
lently represented as shown in Fig. 15.7.
 Since H(0), H(1), …, H(N – 1) are the DFT coefficients of the N-length vector [h(0) h(1) … h(N – 1)  0 
… 0]T, they are just complex numbers independent of frequency. Thus, the subchannel gains are frequency 
independent.
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Fig. 15.6 N-point  DFT implementation of an  OFDM transmission system

Fig. 15.7  Diagrammatic representation of Eq. (15.51) illustrating the generation of N-independent  AWGN 

channels by an OFDM system



908 Communication Systems

 At this stage, we would like to make the following remarks regarding K, the  channel filter order and the 
 cyclic prefix:

 (i) The OFDM transmitter must have a priori knowledge of the order K of the channel filter.

 (ii) The length of the cyclic prefix being equal to K, use of an over-estimated value of K will 

lead to a reduction of the effective data rate and wastage of the channel bandwidth. This 

is because, insertion of the K-length cyclic prefix symbols at the transmitter and their 

removal at the output of the channel amounts to transmitting effectively N symbols in a 

time duration of (N + K)T.

To understand more clearly how the subcarrier modulation is implemented using IDFT at the transmitter, let 
us closely examine what exactly the ‘source data symbols’, denoted by ( ),s n%  n = 0, 1, …, (N – 1) represent. 
For this purpose, let us revisit the example pertaining to Table 15.1. For the sake of simplicity, it was assumed 
there that in each frame, each  subcarrier was getting modulated by a single bit. But as stated in point iii. of 
Remark 1,  M-ary QAM with its high  spectral efficiency, is generally used for subcarrier modulation. Suppose 
we want to use 16-ary QAM for this purpose. Then, in that example, we can modify Table 15.1 and arrange 
all the 20 serial bits in one block and allocate a group of 4 bits to each subcarrier as shown below.

 
1 2 3 4 5

{1, 1, 1,1} {1,1, 1,1} { 1, 1, 1,1} { 1,1,1,1} { 1, 1,1, 1}

SC SC SC SC SC
- - - - - - - - - -

Now, each of the above 4-bit groups can have 24 possible states each of which can be mapped uniquely 
into one of the 16 possible message states in the 16-ary QAM constellation. We know that each of these 
message states can be specified by its two orthogonal coordinates in the signal space of 16-ary QAM, i.e., by 
a complex number. Thus, each 4-bit sequence that is to be transmitted over a subchannel by 16-ary QAM, 

is uniquely mapped into a complex number. Hence, the actual serial binary input data which is to be trans-

mitted, is first segmented into groups of 4-bits each and these groups are mapped into the complex numbers 

corresponding to the 16-ary QAM message points in the constellation. It is the sequence of these complex 
numbers which constitutes what was earlier termed as ‘ source data’ and we represented an N-length sequence 
of these complex numbers by the [ (0) (1) (2) ( 1)]Ts s s s Nº -% % % %  vector in Eq. (15.49a), where N subcarriers 
were assumed. Hence, each of the complex numbers ( ), 0 ( 1),s i i N£ £ -%  represents the  message point (in 
the 16-ary QAM constellation) corresponding to the 4-bit sequence that is used for quadrature amplitude 
modulating the ith subcarrier. Equation (15.51) now tells us that the output from the nth  subcarrier is nothing 
but a  zero-mean AWGN sample plus a scaled version of the complex number ( )s n%  representing the message 
point in the  QAM constellation corresponding to the 4-bit sequence given to the nth subcarrier in that  OFDM 
frame, the scaling factor being the gain of the nth subchannel.
 The main task before the  OFDM receiver is to recover ( ), 0 ( 1)s n n N£ £ -%  from ( ), 0 ( 1)n n N£ £ -%z  as 
accurately as possible and then use these in the QAM decision device.
Multiplying both sides of Eq. (15.51) by 1[ ( )] ,H n

-  we get

 1 1[ ( )] ( ) ( ) [ ( )] ( )H n z n s n H n w n
- -= +% % %  (15.52)

Since w(n) is a Gaussian zero-mean random variable, the recovered message point 
1[ ( )] ( )H n z n

-
%  is also a 

random variable. We use this in the QAM decision device which identifies that  QAM message point ( )s n%  
which is nearest to this and decides that message point as the one that has been transmitted. The unique 
message sequence corresponding to that message point is then produced. The message sequence transmitted 
over the nth subchannel is thus decoded. Since H(n) represents the gain of the nth subchannel, 1[ ( )]H n

-  in 
Eq. (15.52) is a gain compensation factor used so as to make the total gain of each message point equal to 
unity before feeding it to the  QAM decision device. It has to be noted however that since 1[ ( )]H n

-  multiplies 

Remarks
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both the signal term as well as the noise term of Eq. (15.51), the gain compensation process does not alter 
the SNR. The foregoing however points to the need for the receiver to have knowledge of the actual gains of 

each of the N subchannels for optimum detection of the transmitted message points. These subchannel gains 
are usually estimated by the receiver using the received signals corresponding to unmodulated subcarriers 
initially transmitted by the OFDM transmitter.

Fig. 15.8 Gain compensation arrangement in the N subchannels

15.6  DISCRETE TIME MULTITONE (DMT) MODULATION

It is evident from Eq. (15.51) that the  SNR will be different in the various subchannels. This is because 
while ( ),w n%  the noise term has the same  variance for all n and is equal to the h/2, the two-sided PSD of the 
zero-mean AWGN on the channel, H(n), the  subchannel gain is different for various subchannels.
 As has been stated earlier in this chapter,  DMT is a variant of  OFDM in which subchannels with high 
gain that yield a high SNR are modulated to carry more bits per symbol than the subchannels with low gain. 
This is called  bit loading. This enables the transmitter to optimally choose different constellations for the 
various subchannels so as to maximize the average receiver SNR. Obviously, this will be possible only if 
the transmitter has a priori knowledge of the gains H(n)s for n = 0, 1, …, (N – 1). Generally, the receiver 
estimates these H(n)s using the unmodulated subcarrier signals initially transmitted by the transmitter. In 
DMT, therefore, the receiver must make available this information to the transmitter. That is why, we say 
that while an OFDM transmitter does not need to have complete knowledge of the channel response, a DMT 

transmitter needs that knowledge.
 A  DMT system block diagram differs from the OFDM block diagram shown in Fig. 15.5 on the trans-
mitter side as it will have what is called a ‘ constellation encoder’ included between the serial-to-parallel 
block and the IDFT block. This constellation encoder allocates bits among the N-parallel channels as per a 
bit-loading algorithm. It also represents each subchannel by a  QAM constellation.

15.7  PEAK-TO-AVERAGE POWER RATIO (PAR)

A serious problem encountered in  OFDM systems (this includes DMT systems too) is that the transmitted 
signal has occasional large peaks whenever the subchannel signals add constructively in phase. In fact, it 
has a noise-like amplitude with a large dynamic range. These large peaks can cause the power amplifiers of 
the transmitter to saturate leading to the generation of  inter-modulation distortion. Therefore to avoid this, 
it becomes necessary to use power amplifiers with a large peak-to-average power ratio; but then, it leads to 
inefficiency. Several methods are in use to overcome, or at least reduce, this  PAR problem. In some OFDM 
systems, the peaks in the transmitted signal are limited. This introduces distortion and can lead to higher 
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levels of data errors. However,  error-correcting codes can be used to eliminate those errors, although, of 
course, their use reduces the  data rate to some extent. Another approach to overcome the  PAR problem is to 
introduce pseudorandom phase shifts into the subchannel signals and thus reduce the possibility of occur-
rence of large peaks. Information regarding the set of  pseudorandom phase shifts given during a given signal 
interval can be passed on to the receiver using one of the N subchannels.

15.8 ADVANTAGES OF OFDM AND DMT

 1. It allows overlapping of the subcarrier spectra and thus has high  spectral efficiency.
 2. Close spacing of the subcarrier frequencies makes the subchannels to be flat  narrowband fading 

channels. Because of this, OFDM is more robust against frequency selective fading as compared to the 

single-carrier systems.
 3. OFDM is free of  ISI because of the use of  cyclic prefix.
 4. Through the use of error-correcting codes, the effect of  frequency selective fading can be completely 

eliminated.
 5. It is quite robust against impulsive noise.

15.9 DISADVANTAGES OF OFDM AND DMT

 1. OFDM signals have a high  peak-to-average power ratio. This causes problems in the operation of the 
RF power amplifiers.

 2. As compared to a single-carrier system, an OFDM system is more sensitive to carrier frequency drift 

and offsets.

15.10 APPLICATIONS OF OFDM AND DMT

Because of the advantages listed above, OFDM has found applications in a variety of digital communication 
systems. These include  Digital Audio Broadcasting (DAB),  Digital Video Broadcasting (DVB),  Wireless 
LAN’s etc. In fact, it is useful in all direct broadcasting and terrestrial applications which encounter  multipath 
distortion. DMT, on the other hand, is particularly useful in transmission of digital data over two-way 
channels and hence is widely used in  Asymmetric Digital Subcarrier Line (ADSL). In what follows, we 
briefly describe a few of these applications.

15.11 ASYMMETRIC DIGITAL SUBSCRIBER LINE  (ADSL)

The twisted-pair wire line that connects a subscriber’s premises to the telephone central office is called the 
 subscriber’s local loop. With the advent of internet, the need arose for providing high speed internet access 
to the telephone subscriber over the subscriber’s local loop. The dial-up type of  voice band modems that were 
in use for this purpose in the earlier days of internet, could not however go beyond a data rate of 56 kbps as 
they were using only the relatively very narrow voice band for digital transmission. That is why ADSL, which 
can have data rates up to 6.8 Mbps, has mostly replaced the voice band modems.
 The bandwidth that the subscriber’s local loop can support decreases with length of the loop and is 1.2 
MHz for a typical 3 km length loop. Transmission from the central office to the subscriber is called the down 
link and transmission from the subscriber to the central office is called the uplink. Generally, transmission on 
the subscriber’s local loop is asymmetrical since high speed digital transmission at the rate of a few mega-bits 
per second takes place along the  down link whereas data is transmitted along the  uplink at a much lower rate 
of a few hundred kilo-bits per second. That is why, it is called Asymmetrical Digital Subscriber Link (ADSL).
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 Of the available bandwidth of 1.2 MHz, the lower 0–25 kHz bandwidth obtained at the output of a low 
pass filter with a cut-off frequency of 25 kHz, is earmarked for voice transmission and the rest, i.e., 25 kHz 
to 1.2 MHz, obtained at the output of a high pass filter with a 25 kHz cut-off frequency, is for digital trans-
mission. The 25 kHz to 1.104 MHz bandwidth supports 256 parallel  DMT subchannels. These 256 available 
subchannels are divided between the downlink and the uplink. Subcarriers 6 to 32 corresponding to 25 kHz 
to 138 kHz are usually allocated to the transmission of data along the uplink, while the rest, i.e., 33 to 256, 
corresponding to 138 kHz to 1.104 MHz, are allocated for downlink transmission.
 The receiver informs the transmitter via the uplink about the SNRs on the various subchannels and 
depending on the SNR the transmitter selects the number of bits/symbol (i.e., the constellation size) for each 
subchannel, which may range anywhere from two bits/symbol corresponding to  QPSK to six bits/symbol 
corresponding to 64-QAM.

15.12 DIGITAL AUDIO BROADCASTING (DAB)

 Digital Audio Broadcasting (DAB) evolved during the period 1981 to 1990. A consortium of European 
nations started a research project named Eureka 147 in the year 1987 for developing  DAB. The project was 
successful and the first trial broadcasts were made in 1990. The DAB standards were finalized and adopted 
by the International Telecommunication Union (ITU) in 1994 and by the European Telecommunication 
Standards Institute (ETSI) in 1997. However, subsequently different countries adopted different standards. 
As of 2006, approximately 1000 DAB stations were operating worldwide. It is expected that in course of 
time, DAB will replace the conventional analog AM and FM broadcasting which are presently in use. Below 
are some basic OFDM-related features of Eureka 147 DAB which are useful for terrestrial applications, or 
satellite applications, or for both.
It operates in four different modes, as listed below:

Mode-I  in BAND-III (174 – 240 MHz) for terrestrial.
Mode-II  in the L-BAND (1452 – 1492 MHz) for both terrestrial as well as satellite applications.
Mode-III  for frequencies below 3 GHz for both terrestrial and satellite applications.
Mode-IV in the L-BAND for terrestrial as well as satellite applications.

 In all the modes, OFDM is used and  differential QPSK modulation is made use of on all the subchannels. 
Mode-I is meant for terrestrial broadcasting and it uses 1536  subcarriers with a spacing of 1 kHz between 
adjacent subcarriers. This corresponds to a symbol duration of 1 ms on each subchannel. It uses a frame 
duration of 96 ms and a cyclic prefix of 246 ms. For conserving the bandwidth, Eureka 147 DAB employs 
 MPEG audio compression.
 An upgrade to DAB, called the DAB+, was introduced in 2006. It makes use of a better audio codec 
HE-AACV2, ‘MPEG Surround’ audio format and  Reed-Solomon error correcting code.

Summary 
 ■ The phenomenon by which a transmitted signal arrives at the receiver via two or more paths is called ‘ multipath’.
 ■ In  static multipath the received signal amplitude does not change with time.
 ■ When the transmitter or the receiver, or both are in motion, the multipath environment at the receiver is dynamic 

and goes on changing with time causing signal fading.
 ■  ISI is small if DT, the time-delay difference is small compared to the symbol duration T.
 ■  OFDM stands for  Orthogonal Frequency Division Multiplexing.
 ■ It uses a large number of subcarriers which are orthogonal to each other and are tightly packed.
 ■ Instead of independent signal, independent symbols from the same serial data which is to be transmitted are used 

in OFDM to modulate the various subcarriers.
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 ■ If N is the number of  subcarriers, Ts is the sampling period for the given serial data to be transmitted and T is the 
symbol duration on each subcarrier, then T = NTs.

 ■ If Df is the spacing between adjacent subcarriers then Df = 1/T. This makes the subcarriers  orthogonal to each other.
 ■ Since T = NTs, for a given sampling rate of the data, making N very large will help in making T >> DT, where DT 

is the time-delay difference. Thus a large N can make the channel  ISI free.
 ■ A large value of N will make the frequency response of each subchannel to be almost flat. This helps in reducing 

 frequency selective fading caused by  multipath.
 ■ OFDM transforms a wideband single-carrier channel with ISI into N narrowband AWGN parallel subchannels 

which are ISI free.
 ■ The subcarrier modulation and demodulation as well as the above-mentioned transformation of a wideband ISI 

channel into N narrowband parallel  AWGN channels, is implemented in practice, using IDFT and DFT by using 
dedicated  FFT hardware.

 ■ Insertion of  cyclic prefix consists of replacing the K symbols - - + º -{ ( ) ( 1) ( 1)}s K s K s  by { ( )s N K-  
( 1)… ( 1)}s N K s N- + - .

 ■ OFDM transmitter must have an a priori knowledge of the order K of the  FIR channel.
 ■ For optimum detection of the transmitted message points, an OFDM receiver must have knowledge of the actual 

gains of each of the subchannels.
 ■  DMT stands for  Discrete-time Multi-Tone Modulation. It is a form of OFDM in which different subchannels are 

modulated using different constellations so as to improve the overall SNR.
 ■ DMT transmitter requires complete knowledge of the channel.
 ■ The main problem with OFDM and DMT systems is that their signal have a very large peak-to-average value 

resulting in saturation of the final power amplifiers of the transmitter.
 ■ OFDM has emerged as a very popular digital communication scheme and has found several applications in wire 

line as well as wireless digital communications. These include  ADSL, wireless  LAN,  DAB and  DVB, etc.
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MATHEMATICAL FORMULAE

Appendix

A
1. Cramer’s Method of Solving a System of Linear Equations

Let 1 1 1

2 2 2

a x b y c

a x b y c

+ =

+ =

Then and
x y

x y
D D

= =
D D

where, 1 1
1 2 2 1

2 2

1 1
1 2 2 1

2 2

1 1
1 2 2 1

2 2

x

y

a b
a b a b

a b

c b
c b c b

c b

a c
a c a c

a c

D = = -

D = = -

D = = -and

2. Geometric Progressions

 (i) Let nth term of a geometric progression with ‘a’ as the first term and ‘r’ as the common ratio, be tn.
Then

1n
nt a r

-= ◊

 (ii) Sum of n terms = 

(1 )
if | | 1

(1 )

( 1)
if | | 1

( 1)

n

n

a r
r

r

a r
r

r

Ï -
<Ô

-Ô
Ì

-Ô >Ô -Ó

 (iii) Sum of an infinite geometric progression if | | 1
(1 )

a
r

r
= <

-

3. Series Expansion

 (i) 
2 3

1
1! 2! 3!

x x x x
e = + + + +L

 (ii) 
2 4

cos 1
2! 4!

q q
q = - + +L
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914 Communication Systems

 (iii) 
3 5

sin
3! 5!

q q
q q= - + +L

 (iv) 3 51 2
tan

3 15
q q q q= + + +L

 (v) 1 3 51 3
sin

6 40
q q q q

- = + + +L

 (vi) 1 3 51 1
tan | | 1

3 5
q q q q q

- = - + + <L

 (vii) 2 51 1
sinc 1 ( ) ( )

3! 5
x x xp p= - + -L

 (viii) 
2 3

log(1 ) if | | 1
2 3

x x
x x x+ = - + + <L

4. Some Useful Limits

 (i) 
0

Lim cos 1
q

q
Æ

=

 (ii) 
0

Lim sin 0
q

q
Æ

=

 (iii) 
0

sin
Lim 1
q

q

qÆ
=   (q in radians)

 (iv) 
1Lim

n n
n

x a

x a
n a

x a

-

Æ

-
= ◊

-

 (v) 
( ) ( ) ( )

Lim Lim Lim
( ) ( ) ( )x a x a x a

f x f x f x

g x g x g xÆ Æ Æ

¢ ¢¢
= = =

¢ ¢¢
L

5. Differentiation

 (i) 1( )n nd
x n x

dx

-= ◊

 (ii) ( )x xd
e e

dx
=

 (iii) ( ) logx xd
a a a

dx
=

 (iv) (sin ) cos
d

x x
dx

=

 (v) (cos ) sin
d

x x
dx

= -

 (vi) 2(tan ) sec
d

x x
dx

=

 (vii) 2(cot ) cosec
d

x x
dx

= -

 (viii) (sec ) sec tan
d

x x x
dx

=
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 (ix) (cosec ) cosec cot
d

x x x
dx

= -

 (x) 
1

(log )
d

x
dx x

=

 (xi) 1

2

1
(sin )

1

d
x

dx x

- =
-

 (xii) 1

2

1
(cos )

1

d
x

dx x

- -
=

-

 (xiii) 1
2

1
(tan )

1

d
x

dx x

- =
+

 (xiv) 1
2

1
(cot )

1

d
x

dx x

- -
=

+

 (xv) chain rule: 
È ˘

= ◊Í ˙
Î ˚

( ) ( )
d d dy
f y f y

dx dy dx

6. Integration

 (i) x x
e dx e cÚ = +

 (ii) 
log

x
x a
a dx c

a
= +Ú

 (iii) 
1

1 1

n
n

n

x
x dx c

n

+

π-

= +
+

Ú

 (iv) 1 logx dx x c
-Ú = +

 (v) Kdx Kx cÚ = +

 (vi) sin cosxdx x cÚ = - +

 (vii) cos sinxdx x cÚ = +

 (viii) tan log cosxdx x cÚ = - +

 (ix) sec log(sec tan )xdx x x cÚ = + +

 (x) cosec log(cosec cot )xdx x x cÚ = - +

 (xi) cot log sinxdx x cÚ = +

 (xii) 2sec tanxdx x cÚ = +

 (xiii) 2cosec cotxdx x cÚ = - +

 (xiv) sec tan secx xdx x cÚ = +

 (xv) cosec cot cosecx xdx x cÚ ◊ = - +

 (xvi) 1 1

2
sin cos

1 –

dx
x c x c

x

- -Ú = + = - +

 (xvii) 1 1
2

tan cot
1

dx
x c x c

x

- -Ú = + = - +
+
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 (xviii) 1
2 2

1
tan

dx x
c

a ax a

-Ú = +
+

 (xix) 
2 2

1
log

2–

dx x a
c

a x ax a

-
Ú = +

+

 (xx) 2 2

2 2
log

–

dx
x x a c

x a

È ˘Ú = + - +Î ˚

 (xxi) 1

2 2
sin

–

dx x
c

aa x

- È ˘
Ú = +Í ˙Î ˚

 (xxii) 2 2

2 2
log

dx
x x a c

a x

È ˘Ú = + + +Î ˚
+

 (xxiii) 
2

1
sin( ) [sin( ) cos( )]x ax dx ax ax ax c

a
Ú = - +

 (xxiv) 
2

1
cos( ) [cos( ) sin( )]x ax dx ax ax ax c

a
Ú = + +

 (xxv) 
2

1
( 1)ax ax

xe dx e ax c
a

Ú = - +

 (xxvi) 
2 21

2
ax ax

xe dx e c
a

Ú = +

7. Some Useful Definite Integrals

 (i) 
2

0

1
; 0

2
ax

e dx a
a

p
•

- = >Ú

 (ii) 
22

0

1
; 0

4
ax

x e dx a
a a

p
•

- = >Ú

 (iii) 2

0 0

1
sinc sinc

2
xdx xdx

• •

= =Ú Ú

 (iv) 
2 2

0

sin( )
; and 0

2( )

abx ax
dx e a b

b x

p
•

-= >
+

Ú

 (v) 
2 2

0

cos( )
and 0

2( )

abax
dx e a b

bb x

p
•

-= >
+

Ú

 (vi) 
2 2

0

cos( ) ; 0ax a
e bx dx a

a b

•
- = >

+
Ú

 (vii) 
2 2

0

sin( ) ; 0ax b
e bx dx a

a b

•
- = >

+
Ú

 (viii) 2

0

( )j yx
e dx y

p
d

•
± =Ú

 (ix) 
1

0

/
; 0

sin( / )1

m

n

x n
dx n m

m nx

p

p

-•

= > >
+

Ú
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8. Trigonometric Identities

 (i) cos sinjx
e x j x
± = ±

 (ii) cos
2

jx jx
e e

x
-+

=

 (iii) 
1

sin ( )
2

jx jx
x e e

j

-= -

 (iv) sin( ) sin cos cos sinx y x y x y± = ±

 (v) cos( ) cos cos sin sinx y x y x y± = m

 (vi) 2 2cos 2 cos sinx x x= -

 (vii) sin 2 2 sin cosx x x=

 (viii) 2 1
cos (1 cos 2 )

2
x x= +

 (ix) 2 1
sin (1 cos 2 )

2
x x= -

 (x) 3cos 3 4 cos 3 cosx x x= -

 (xi) 3sin 3 3 sin 4 sinx x x= -
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USEFUL MATHEMATICAL AND 

PHYSICAL CONSTANTS

Appendix

B
1. Mathematical Constants

Pi (p) p = 3.1415927

  Base of natural logarithm  e = 2.7182818

  Logarithm of e to base 2 2log 1.442695e =

  Logarithm of 2 to base 10 10log 2 0.30103=

2. Physical Constants

  Boltzmann’s constant 231.38 10k
-= ¥  Joule/degree Kelvin

  Plank’s constant 346.625 10h
-= ¥  Joule-second.

  Charge of an electron 191.602 10e
-= ¥  coulomb

  Speed of light in vacuum 82.998 10c = ¥  meters/second

0
21

0

0

Thermal energy at

standard room temperature of 3.77 10 Joule

273 K

kT

kT

T

-

¸
Ô

= ¥˝
Ô= ∞ ˛
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FOURIER TRANSFORM THEOREMS 

AND TRANSFORM PAIRS

Appendix

C
1. Useful Theorems

Theorem Function Transform

Linearity 1 1 2 2( ) ( )a x t a x t+ 1 1 2 2( ) ( )a X f a X f+

Time-delay ( )x t t- ( ) j
X f e

wt-

Scale change x(at)
1

( / )
| |
X f a

a

Conjugation ( )x t ( )X f-

Duality X(t) x(–f)

Modulation 2( ) cj f t
x t e

p ( )cX f f-

Differentiation ( )
d
x t

dt
2 ( )j fX fp

Integration ( )
t

x dt t
-•
Ú

1 1
( ) (0) ( )

2 2
X f X f

j f
d

p
+

Convolution ( ) ( )x t y t* ( ) ( )X f Y f◊

Multiplication ( ) ( )x t y t◊ ( ) ( )X f Y f*

Parseval’s or Rayleigh’s theorem
2 2| ( )| | ( )|xx t dt E X f df

• •

-• -•

= =Ú Ú

Generalized Parseval’s theorem ( ) ( ) ( ) ( )x t y t dt X f Y f df

• •

-• -•

=Ú Ú
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920 Communication Systems

2. Basic Fourier Transform Pairs

( ) ( ) and ( ) ( )j t j t
X f x t e dt x t X f e df

w w
• •

-

-• -•

= =Ú Ú

S. No. Signal in time domain Signal in frequency domain

1. ( ) ( )x t td= ( ) 1X f =

2. x(t) = 1 ( ) ( )X f fd=

3. ( ) ( )x t u t=
1 1

( ) ( )
2 2

X f f
j f

d
p

= +

4. 0( )( ) j t
x t e

w f+= 0( ) ( )j
X f e f f

fd= -

5. ( ) sgn( )x t t=
1

( )X f
j fp

=

6. 0( ) cos( )x t tw f= + 0 0

1
( ) ( ) ( )

2
j j

X f e f f e f f
f fd d-È ˘= - + +Î ˚

7. ( ) ( )at
x t e u t

-=
1

( )
2

X f
a j fp

=
+

8. | |( ) a t
x t e

-= 2 2

2
( )

(2 )

a
X f

a fp
=

+

9. ( ) ( / )x t A t t= P ( ) sincX f A ft t=

10. ( ) sinc 2x t Wt=
1

( ) ( /2 )
2

X f f W
W

= P

11. ( ) ( / )x t A t t= L 2( ) sinc  X f A ft t=

12. 2( ) sinc 2x t Wt=
1

( ) ( /2 )
2

X f f W
W

= L
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HILBERT TRANSFORM PAIRS

Appendix

D
  Time Function Hilbert Transform

 1. cos 2 cf tp sin 2 cf tp

 2. sin 2 cf tp cos 2 cf tp-

 3. ( )cos 2 cx t f tp ( )sin 2 cx t f tp

  (When fc >>W,

  the band limiting frequency of x(t))

 4. ( )sin 2 cx t f tp ( )cos 2 cx t f tp-

  (When fc >>W)

 5. 1/t –pd (t)

 6. (sin t)/t (1 – cos t)/t

 7. d (t) (1/pt)
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ERROR FUNCTIONS AND 
Q–FUNCTIONS

Appendix

E
If X is Gaussian with mean m and variance s 2,

s

ps

- -=
2 2( ) /2

2

1
( )

2

x m
Xf x e

Probability of X taking a value greater than (m + ks) is the area under the shaded region and is given by

2/21
( )

2 k

Q k e d
l

l
p

•
-D Ú ,

where Q(◊) is called the Q – function.

The error function and complementary error function are defined as follows:

( )2

0

2
( ) 1 2 2

k

erf k e d Q k
l

l
p

-D = -Ú

and ( )22
( ) 1 ( ) 2 2

k

erfc k e d erf k Q k
l

l
p

•
-D = - =Ú

For k = 3, Q(k) may be approximated by

2/21
( )

2

k
Q k e

kp

-@
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Appendix E: Error Functions and Q–functions 923

Error Function Values

k erf (k) k erf (k) k erf (k)

0.00 0.0000 0.80 0.74210 1.60 0.97635

0.05 0.05637 0.85 0.77067 1.65 0.98083

0.10 0.11246 0.90 0.79691 1.70 0.98379

0.15 0.16800 0.95 0.82089 1.75 0.98667

0.20 0.22270 1.00 0.84270 1.80 0.98909

0.25 0.27633 1.05 0.86244 1.85 0.99111

0.30 0.32863 1.10 0.88021 1.90 0.99279

0.35 0.37938 1.15 0.89612 1.95 0.99418

0.40 0.42839 1.20 0.91031 2.00 0.99532

0.45 0.47548 1.25 0.92290 2.50 0.99959

0.50 0.52050 1.30 0.93401 3.00 0.99998

0.55 0.56332 1.35 0.94376

0.60 0.60386 1.40 0.95229

0.65 0.64203 1.45 0.95970

0.70 0.67780 1.50 0.96611

0.75 0.71116 1.55 0.97162
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CONSTRAINED OPTIMIZATION 

USING LAGRANGE MULTIPLIERS

Appendix

F
Constrained optimization is employed quite frequently in all branches of engineering. Here, we briefly 

explain the way Lagrange multipliers method may be used for constrained optimization.

 Suppose the function x(t) is to be minimized or maximized subject to the constraint c(t) = 0. We proceed 

by first forming the function

( ) ( ),J x t c tl= +

where, l is called a Lagrange multiplier. Then, sufficient conditions for optimal value of x(t) are:

0 and 0
J J

t l

∂ ∂
= =

∂ ∂

 (i) In case there are several variables, we take a partial derivatives of J with respect to each 

of those variables.

 (ii) In case there are several constraints, we use one Lagrange multiplier to introduce each 

of the constraints. For example, if 1 2 nc (t ) 0, c (t ) 0, , c (t ) 0= = º =  are n constraints 

under which the function x(t) has to be optimized, we form the following function

1 1 2 2 n nJ x(t ) c (t ) c (t ) … c (t )l l l= + + + +

  and the sufficient conditions for optimality of x(t) are given by

1 2 n

J J J J
0, 0, 0, , 0

t l l l

∂ ∂ ∂ ∂
= = = º =

∂ ∂ ∂ ∂

Example F.1 Suppose, we have a wire of length L and using it we want to form a rectangle that 

encloses maximum possible area.

 Let x and y be the length and breadth of the rectangle.

So, we have to maximize its area xy under the constraint that 2( ) .x y L+ = So, let us form the function

(2 2 )J xy x y Ll= + + -

Then,

2 0 /2

2 0 /2

J
y y

x

J
x x

y

l l

l l

∂
= + = fi = -

∂

∂
= + = fi = -

∂

 (i)

and  (ii)

Note
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Appendix F: Constrained Optimization using Lagrange Multipliers 925

Since /2,yl = -  substituting for l in (ii)

0

2 2 0 4 or /4

x y x y

J
x y L x L x L

l

- = fi =

∂
= + - = fi = =

∂

Hence, we should form a square with each side = 
4

L
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SIGNAL FADING AND 

DIVERSITY RECEPTION

Appendix

G
Random variations in the amplitude and phase of a received signal are referred to as ‘ fading’. If a fading is 
frequency dependent, such a fading is called ‘ frequency-selective fading’. Fading is caused most often by the 
variation with respect to time, of the difference in path lengths of various rays reaching the receiver. In this 
appendix, we will discuss the phenomenon of fading and the techniques for reducing/eliminating its effect.

G.1 Propagation Characteristics and Fading

We shall first briefly examine how the propagation characteristics sometimes lead to fading in the various 
frequency ranges.

1. Medium Wave Band (550–1600 kHz): At these frequencies, it is entirely  ground wave propagation during 
the daytime since the  sky wave at these frequencies is totally absorbed by the  D–layer of the  ionosphere 
during the daytime. Hence, there will not be any fading and a steady signal strength is obtained in the service 
area during the day. However, at night, the D–layer disappears and a fairly strong sky wave component 
is present in addition to the ground wave, especially at frequencies near the higher-end of the band. With 
increase in distance from the transmitter, the ground wave component becomes weaker due to attenuation. 
But, the sky wave component becomes stronger. Thus, there exists a region in which the two components are 
approximately equal in strength. Since these two components have traveled by different paths, interference 
between them can produce a resultant signal whose strength may vary between their sum and difference 
depending upon their relative phase relationship.
 If the ionosphere were time-invariant, the phase relation between the two would be constant and a resultant 
signal of steady amplitude would be obtained. However, electron density of the ionosphere goes on fluctu-
ating and because of this, the height from which the sky wave component gets reflected, also goes on fluctu-
ating. Thus, the path length of the sky wave component goes on changing continually, affecting the phase 
relationship between the two components in a random way. Hence, the amplitude and phase of the resultant 
signal fluctuate causing considerable fading of the received signal. Since phase change of the sky wave 
component is directly proportional to the change in path length and inversely proportional to the wavelength, 
the frequencies at the higher end of the medium wave band suffer deeper fading. The duration of the fade will 
be of the order of a few seconds to tens of seconds.

2. Shortwave Band (1600 kHz–30 MHz): At these frequencies, the ground wave attenuates within a short 
distance from the transmitter and so is of no consequence. All long distance shortwave communication is 
therefore only by ionospheric reflections.
 As in the case of frequencies near the upper edge of the medium wave band, in the shortwave band too, 
fading is caused by the interference of wave components. However, while it is the interference between the 
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Appendix G: Signal Fading and Diversity Reception 927

 ground wave component and the  sky wave component in 
the case of the medium wave band, it is the interference 
between two or more sky wave components (of the same 
transmitted signal) in the case of the shortwave band.
 Figure G.1 shows one possibility of two ionospheric 
reflected rays taking different paths for arriving at the 
receiver. Since the height of the reflection point in the 
ionosphere goes on changing continually, the path lengths 
of the two rays and also the phase relation between the two 
rays arriving at the receiver will go on changing randomly. 
Thus, there will be fading of the received signal and the 
fading will be more severe at the higher frequencies. This 
 frequency-selective fading can terribly distort an  AM 
signal. However, for  SSB signals the distortion will be 
much less because of their smaller bandwidth and so they 
will be intelligible.
 Although it is a rare occurrence, fading of a sky wave signal may be caused by ‘ Faraday fading’. Under 
certain favorable conditions, a plane polarized wave entering the ionosphere is changed into an elliptically 
polarized wave due to the earth’s magnetic field. Owing to random fluctuations in the electron density in 
the ionosphere, the direction of the major axis of the ellipse goes on changing causing fading of the signal 
induced in a vertical receiving antenna.

3. Fading at frequencies beyond 30 MHz: At these frequencies, the  ionosphere does not reflect the waves 
except occasionally due to the presence of the  sporadic E-layer which reflects waves at frequencies in the 
range of 30–60 MHz. Propagation at frequencies above 30 MHz is therefore only by tropospheric or  space 
wave propagation, which is essentially a line-of-sight (LOS) propagation. Elevated antennas are used for 
extending the range. These frequencies are extensively used for FM broadcasting, TV, terrestrial microwave 
relays and point-to-point communications including mobile communications.
 In  LOS propagation, the received signal is the vector sum of the direct-ray and the ground-reflected 
ray. Sometimes, there may be a third ray too – the one caused by reflection/scattering by irregularities in 
the troposphere. Local irregularities can change the phase relation between the direct-ray and the ground-
reflected ray and this may cause fading.

Fig. G.2  Multipath interference and fading in LOS propagation

Fig. G.1  Fading caused by interference between 

rays with different number of hops
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928 Communication Systems

 Further, the position of the irregularity in the  troposphere that gave rise to the third ray, will go on changing 
rapidly, causing the path length and so the phase-on-arrival of the third ray to change. This produces rapid 
fluctuations in the strength of the resultant received signal.  Fading is generally most pronounced near the 
 radio horizon and in the shadow region (i.e., beyond the radio horizon).

G.2 Diversity Systems for Combating Fading

Automatic Gain Control ( AGC) in AM receivers is meant to minimize fading and it can reduce signal varia-
tions from about 30–40 dB to about 3–4 dB. However, the ability of AGC is limited. If the received signal 
suffers a deep fade that brings it to the same level as noise, the AGC simply raises this noise level by increasing 
the gain of the RF and IF stages. On the other hand, in such a situation (i.e., received signal suffering a deep 
fade) a  diversity reception system tries to maintain a good signal level at the input to the receiver and so will 
be quite effective.
  FM systems have a certain amount of immunity against fading since the intelligence is carried not by 
the amplitude of the modulated signal, but its frequency. AGC, if provided in the receiver, is primarily for 
improving the limiting action and it can provide further immunity from fading. However, here too, if a deep 
fade takes the received signal strength to such a low level that the receiver operates below the  threshold, only 
noise will be obtained at the output. Further, because of their large bandwidth,  wideband FM signals are more 
susceptible to distortion caused by  frequency-selective fading than say, AM or  SSB signals.
 Diversity reception relies on the principle that if n number of replicas of a given transmitted signal are 
obtained from n independently fading channels, the probability of all of them fading simultaneously will be 
pn where p is the probability of fading of any one of the channels. Different diversity systems differ in the way 
they try to provide the n independently fading channels. Different types of diversity are:
 1. Space diversity
 2. Frequency diversity
 3.  Time diversity
 4.  Polarization diversity
Of these, the first two, i.e., space diversity and frequency diversity are most widely used. We will now discuss 
briefly the salient features of these two types.

1.  Space Diversity: In this type of diversity, independently fading channels are obtained by using a number 
of receiving antennas spaced about 3 to 30 wavelengths apart. For the shortwave band of 3 MHz to 30 MHz, 
the antennas are spaced about 3 to 10 wavelengths apart. Each antenna is connected to a separate receiver; 
but all these receivers share a common local oscillator, a detector, an AGC system and the audio amplifiers. 
The receiver with the maximum signal at its input at a given time, produces maximum AGC bias and hence, 
at that instant, it contributes maximum signal to the combined output; and the contribution of all the other 
receivers is negligible. Even if there is severe fading with a single antenna system (i.e., no diversity), a space 
diversity system with two antennas will ensure that there is no noticeable fading. By using a common local 
oscillator, we are ensuring that all the receivers are tuned to the same transmitted signal. For microwave links 
using space diversity, the two antennas are generally mounted on the same tower, but at different heights, 
keeping adequate separation between the two.

2.  Frequency Diversity: In frequency diversity, a given message signal at the transmitter is made to modulate 
two separate carrier frequencies whose frequency separation is more than the  coherence bandwidth* of the 

Coherence bandwidth Bc of a multipath channel is the inverse of Tm, where Tm is the multipath time-spread of the channel which repre-

sents the time delay between the arrival of the first and the last multipath signal components. For HF ionospheric channel, Bc, is typically 

102 to 103 Hz. Coherence time of a channel, Tc, on the other hand, is the inverse of the Doppler spread Bd of the channel. A typical value 

of the coherence time of HF ionospheric channel is 1 to 10 seconds.
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channel. This frequency separation ensures that the two channels fade independently. The single receiving 
antenna that is used at the receiving end feeds two separate receivers having separate RF amplifiers, mixers 
and local oscillators and a common set of IF amplifier, detector, AGC system and audio amplifiers.
 Both these diversity systems are widely used in commercial as well as military communications. However, 
since frequency diversity is wasteful of the frequency spectrum, space diversity is generally preferred 
wherever it is feasible to use it. Because of space constraint, frequency diversity however, has to be used in all 
ship-to-ship and ship-to-shore HF communications. For certain types of communications like the troposcatter 
communication links which suffer severe fading, both space and frequency diversity are simultaneously used. 
Such an arrangement is called ‘ quadruple diversity’ system.

G.3 Digital Communication through Multipath Fading Channels

As we have already seen, fading is caused by multipath propagation because of which the signal arrives at 
the receiver through paths of different lengths. The different path lengths cause the various multipath compo-
nents to arrive at the receiver with different phases. The number of paths, the path lengths and so the phases 
of the multipath components will change with time owing to changes in the medium. The resultant signal at 
the receiver, which is the vector sum of the various multipath components can therefore, at times, take one of 
the two possible extreme limits – one corresponding to the constructive interference of the multipath compo-
nents, and the other corresponding to their destructive interference. This results in the phenomenon called 
fading. Such channels are therefore characterized by time-varying impulse response models. Fading always 
leads to higher values of average probability of error and thus deteriorates the performance of any digital 
communication system. As in the case of analog communication systems operating over such channels, 
here too, diversity reception can be used to improve the system performance. Examples of multipath fading 
channels are the ones involved in line-of-sight microwave links, cellular mobile communications and under-
water acoustic communication.

Characterization of  multipath fading channels In a multipath fading channel, changes in the 
medium and therefore the changes in the impulse response of the channel are rather unpredictable making it 
necessary to characterize the channels statistically.
 Assume that an unmodulated carrier, cos cA tw , is transmitted through a multipath fading channel. It will 
then travel by different paths and each multipath component suffers attenuation as well as time-delay, both 
of which are time-dependent. Hence, ignoring for a moment, the additive noise, the received signal may be 
expressed as
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where an(t) and tn(t) are respectively the time-varying attenuation factor and the time-varying propagation 
delay for the nth path. From Eq. (G.1) it is clear that the equivalent lowpass complex-valued received signal is 
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Equation (G.2) reveals two things:
 1. Since an(t) and qn(t) are both time-varying, y(t), the response of the channel to exp( 2 )cj f tp  has 

many different frequency components, although exp( 2 )cj f tp  itself is a single-frequency signal. The 
bandwidth of y(t) is called the  Doppler frequency spread, Bd, of the channel and it indicates how rapidly 
y(t) is changing with time.

 2. The equivalent lowpass channel has a time-varying impulse response given by

2 ( )( ; ) ( ) ( ( ))c nj f t
n n

n

h t a t e t
p tt d t t-= -Â  (G.3)

  where, h(t; t) represents the response of the channel at time t due to an impulse applied at (t – t). Since 
an(t) and tn(t) vary randomly with time, y(t) as well as h(t; t) are complex-valued random processes. 
If n, the number of propagation paths is very large, central limit theorem can be applied. In that case, 
h(t; t) can be modeled as a complex-valued Gaussian random process. Then, at any instant of time, 
|h(t; t)|, the envelope of h(t; t), will be Rayleigh distributed and the channel itself is referred to as a 
Rayleigh fading channel. However, if in addition to the randomly moving ones, there are some fixed 
scatterers too in the medium, as sometimes happens in cellular mobile communication, then h(t; t) will 
have a non-zero mean and it will have an envelope with  Ricean distribution. In that case, the channel is 
referred to as a Ricean channel.

Channel parameters Because of the difference in path lengths, the various multipath signal compo-
nents arrive at the receiver at different points in time. The difference in arrival times of the first-to-arrive and 
the last-to-arrive multipath signal components is called the multipath delay spread and is denoted by Tm.
Besides the Doppler frequency spread, Bd, which we had discussed earlier and the multipath delay spread Tm,
there are two more parameters that are useful in characterizing multipath fading channels. These parameters 
are the coherence time Tc and the coherence bandwidth Bc of the channel.
 The coherence time Tc is defined as the inverse of the Doppler frequency spread Bd.

i.e.,
1

c
d

T
B

D  (G.4)

Coherence bandwidth, Bc, of the channel is defined as the inverse of the multipath delay spread, Tm.

i.e.,
1

c
m

B
T

D  (G.5)

 If a signal transmitted through a multipath fading channel has a bandwidth less than the coherence 
bandwidth, Bc of the channel, then all the different frequency components of the signal fade simultaneously 
and similarly and hence the channel is said to be ‘frequency non-selective’. On the other hand, if Bc is less 
than the signal bandwidth, signal components separated in frequency by more than Bc will be attenuated and 
phase-shifted differently, and the channel is said to be frequency selective. If the coherence time Tc is larger 
than the symbol period, the channel is said to be a slow-fading channel and if Tc is less than the symbol 
period, the channel is said to be a fast-fading channel.

Modeling of multipath fading channels A time-variant multipath channel is generally modeled 
as shown in Fig. G.3 as a  tapped delay-line with uniformly spaced taps. If W is the bandwidth of the signal 
transmitted through the channel, then the tap spacing is (1/W). The tap coefficients are modeled as complex-
valued Gaussian processes which are mutually uncorrelated, and

( )( ) ( ) nj t
n nc t a t e

q-=  (G.6)
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The total length of the tapped delay-line is the multipath delay spread, Tm, and is equal to (L/W) where L is
the number of signal paths.

Fig. G.3 Tapped delay-line model for a time variant multipath fading channel

Digital modulations for transmission over multipath fading channels Although a number 
of different types of digital modulation schemes are available and at least theoretically can be used on any 
channel, use of  ASK and  QAM is generally avoided for transmission over  multipath fading channels. This 
is because, it is extremely difficult to distinguish between two adjacent amplitude levels when the received 
signal amplitude itself is having large fluctuations due to fading. For this reason, only FSK and PSK are used 
for signals to be transmitted over fading multipath channels.

Performance of BPSK and orthogonal BFSK Analysis of the performance of  BPSK and  orthogonal 
 BFSK modulation when used for transmission over a frequency non-selective (i.e., Bc > W)  Rayleigh fading 
channel shows that the average probabilities of error work out to
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where br  is the average SNR/bit. For large values of ,br  these probabilities of error can be approximated by
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CS-Rao_App-G.indd 931CS-Rao_App-G.indd   931 1/18/2013 11:39:43 AM1/18/2013   11:39:43 AM



932 Communication Systems

Note that  orthogonal BFSK is inferior to  BPSK by 3 dB. Further while the probabilities of error for these 
modulations decreased exponentially with the SNR/bit in the case of a purely  AWGN channel, in the case of 
transmission over  Rayleigh fading channels, the probabilities of error are decreasing only inversely with the 
SNR/bit. This shows a clear deterioration of performance due to fading. 

Fig. G.4 Performance of BPSK and Orthogonal BFSK on a frequency non-selective Rayleigh fading channel

 Diversity reception for performance improvement Fading always causes performance degra-
dation. However, performance improvement is possible through the use of diversity reception, in which we 
supply to the receiver n number of replicas of the signal transmitted through n independently fading channels, 
as described earlier. While one may use different methods like  space diversity or  frequency diversity, etc. to 
obtain n  independently fading channels, the way these independently fading signals are used/combined in the 
receiver, is also important.
 There are different methods of combining these signals. What we described earlier in connection with 
space diversity, is a simple one which is easy to implement. In that, we arranged matters so that at any instant 
of time, only the received signal that was strongest among all at that moment was allowed to contribute to 
the output of the receiver. However, there are better methods of combining, although they are quite complex. 
These are:

1.  Equal gain combiner: In this type of combiner, which is quite suitable for coherent demodulation and 
detection, the receiver estimates the phase offsets of the n received signals after they are demodulated. These 
phase corrected signals are then summed up and their sum is applied as input to the detector.
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2.  Maximal ratio combiner: As in the equal-gain combiner, in this combiner also the phase offsets are 
estimated and corrected after demodulation. In addition, the received signal powers are also estimated and 
the phase-corrected signals from the demodulators are then weighted in proportion to their respective signal 
strengths (square roots of the powers) and then the sum of these weighted signals is applied as input to the 
detector. This method also is quite suitable for coherent demodulation and detection.

3.  Square-law combiner: If the receiver is using non-coherent demodulation, as for instance when orthogonal 
signals are used for transmitting the information over a number of independently fading channels, the square-
law combiner may be used. In this, the outputs of the non-coherent demodulators are squared, summed up 
and then given as input to the detector.
 Improvement in performance with diversity (n > 1), is seen in terms of the reduction in SNR/bit achieved 
as compared to the case with no diversity (i.e., n = 1), for any specified error probability. It is true that as 
n, the number of independently fading channels used in the diversity system is increased, the improvement 
in performance also increases. However, while n = 2 gives considerable improvement and n = 4 gives some 
more, the additional improvement achieved by using still larger values of n is quite small and is perhaps 
not worth it, keeping in view the additional complexity involved. Figure G.5 illustrates the performance 
improvement with n for  BPSK with maximal-ratio combiner and for  orthogonal BFSK with square-law 
combiner. In fact, all these combiners provide an exponential decrease in bit-error probability with n.

Fig. G.5 Performance of BPSK and orthogonal BFSK with diversity
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cyclic prefix, 903, 906, 908, 910, 912

cyclic shift, 817, 902

DAB, 911, 912

data-aided synchronization, 619

data compression, 511, 532

data rate, 910

decibels, 360

decipherability, 740, 741, 786

decipherable, 742, 744

decision boundaries, 616, 693, 694

decision device, 658, 862, 863, 871

decision-directed adaptation, 577

decision feedback, 565

decision feedback equalizers, 891

decision regions, 686, 687

decision threshold, 663

decoder, 501
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decoding error, 309, 841

de-commutator, 470

de-emphasis, 280, 297, 302, 384, 385, 408, 420

de-emphasis varactor, 296

de-emphasis filter, 408, 410

delayed AGC, 175

delay-locked loop (DLL), 878, 879

Delta Modulation (DM), 511, 513, 515

delta–sigma modulation, 518

demodulation, 159

de-multiplexers, 536

de-multiplexing, 535

density function, 314, 315, 319, 323, 326, 330, 644, 770

Density (PSD), 60

DEPSK, 592

depth of modulation, 138, 145

de-spreading, 863

destination, 416

destination signal-to-noise ratio, 385, 398, 406, 407, 408, 

415, 641

destination signal-to-noise ratio (S/N)D, 384

destination SNR, 386, 392, 393, 395, 397, 398, 400, 410, 

412, 420, 466

detection of AM, 235

detection of binary FSK, 590

detection of binary PSK, 590

detection of MSK, 605

detection of QPSK, 595

detection of SSB-SC signals, 238

detector, 148, 309

deterministic signal, 17, 20

deviation ratio, 252, 301, 406

DFT, 895, 896, 904, 906, 907

DFT coefficients, 897, 900, 904

DFT matrix, 898, 902

diagonal clipping, 164, 174, 234

diagonalization of a matrix, 901

diagonal matrix, 901, 902, 904, 906

dibit, 593, 597, 604, 708

differential amplifier, 153

differential encoding, 591

differential entropy, 768, 769, 770, 771, 773, 788

differential equation, 105

Differentially Encoded PSK, 634

Differential Phase Shift Keying (DPSK), 590, 591

Differential Pulse Code Modulator (DPCM), 522, 523

differential QPSK, 911

differential quantization, 528

differentiation, 22

Differentiation-in-frequency theorem, 72

differentiation-in-time theorem, 72

differentiation theorem, 45, 73, 75

differentiator, 336, 409

Digital Audio Broadcasting (DAB), 893, 910, 911

digital modulation schemes, 582

Digital Multiplexer (MUX), 535

digital multiplexing, 534, 535, 537

Digital Video Broadcasting (DVB), 910

dimension of a signal, 28

dimension of signal space, 54

diode switching modulator, 154, 158

direct method, 276, 294, 295, 301–303

Direct Sequence Spread Spectrum (DSSS), 861, 886

Direct sequence spread spectrum system, 863

Dirichlet conditions, 59, 62, 124

discharge time constant, 163, 164

Discrete Cosine Transform (DCT), 532

Discrete Fourier Transform (DFT), 532, 897

discrete linear convolution, 899

discrete memoryless, 747

Discrete Memoryless Channel (DMC), 753, 771, 787

Discrete Memoryless Source (DMS), 729, 732, 734–736, 

746, 749, 753, 766, 782, 783, 785, 786

discrete random process, 328, 730

discrete random variable, 313, 314, 316, 319, 320, 

323–325, 374, 732, 736, 767

discrete spectrum, 42, 58, 60

Discrete-Time Fourier Transform, 896

Discrete Time Multitone (DMT), 909

Discrete-Time Multitone Modulation (DMT), 891, 912

discrete-time random variables, 772

discrete-time signal, 19, 488, 782, 896

discrete-time systems, 96, 126

discrete transform, 531

discriminator, 282, 401–403, 405, 410, 417

dispersive channel, 556

distortion, 150, 185, 228, 297, 782, 783

distortionless transmission, 108, 127

distortion measure, 782, 783, 785

diversity reception, 932

diversity reception system, 928

D–layer, 926

DLL circuit, 879

DM, 487, 544

DMS, 734, 764, 785

DMT, 909, 912

DMT subchannels, 911

DMT system, 909

Doppler, 4

Doppler frequency spread, 930
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dot product, 39

dot product of vectors, 23

double conversion, 219

Double heterodyne receiver, 183, 238

doublers, 273, 274

double spotting, 180, 181, 237

down link, 910

down sampling, 444

DPCM, 487, 531, 544

DPCM system, 522

DPSK, 591, 633, 696, 697, 705, 706, 723, 724

DPSK receiver, 592, 593

DPSK transmitter, 591, 593

DSB-SC, 186, 190

DSB-SC modulation, 186, 1998

DSB-SC signal, 187–189, 191, 194, 196, 201, 222, 297, 

388, 621

DS spread spectrum, 864, 865, 876, 877, 878

DS spread spectrum communication, 862

DS spread spectrum signal, 861, 862, 870, 879

DS spread spectrum systems, 867, 871, 874

DSSS, 886

DSSS-CDMA system, 870

DSSS signal, 886

DSSS system, 867, 871, 872

DTFT, 896, 904

dual, 802

dual code, 801

duality theorem, 69, 70, 77, 90

dual slope detector, 283

dual-slope discriminator, 297

duo-binary conversion, 563

duo-binary conversion filter, 564, 569, 570

duo-binary signaling, 552, 563, 632

DVB, 912

dynamic multipath, 892

dynamic system, 97, 126, 128

Early Bird, 2

early-late bit synchronization, 620

early-late gate circuit, 880

early-late synchronizer, 635

effective bandwidth, 246, 261, 265, 267, 268, 301, 303

eigensignal, 105, 106, 128

eigenvectors, 532

electromagnetic waves, 343

elementary outcomes, 309

encoder, 797

encryption, 511

energy gap, 208

energy signal, 19, 20, 54, 85, 95

Energy Spectral Density (ESD), 60, 84, 88, 587

ensemble average, 331, 353, 375, 524

entropy, 733–735, 747–750, 756, 764, 767, 785

entropy function, 784

envelope, 164, 316

envelope detection, 159

envelope detector, 148, 160, 162, 168, 174, 192, 231, 

282, 386, 390, 391, 394, 402, 679, 879

equal gain combiner, 932

equalization, 675, 891

equalizer, 442, 574

equivalence gate, 592

equivalent noise bandwidth, 360

equivalent noise resistance, 358, 363, 376

equivalent noise temperature, 361, 362, 366, 377

ergodicity, 331, 375

ergodic processes, 331

error-control codes, 851

error-correcting capability, 830

error-correcting codes, 797, 910

error-correction, 511, 793, 796, 809, 824

error-detecting, 793, 796, 828, 830

error function, 618, 663, 664, 674, 701, 715, 866, 869

error pattern, 316, 808–811, 813, 814, 816, 823–825

error pattern polynomial, 824

error polynomial, 823

error propagation, 565, 578

Euclidian space, 24

even function, 87

even parity, 803

even signal, 30

even symmetry, 48, 53, 63, 64, 68, 83, 86, 127, 338

event, 309, 312, 730, 731, 785

EXCLUSIVE-OR, 797

existence of the Fourier transform, 62

expander, 494

expansion, 22, 68

expectation, 334, 596

expected value, 319, 320, 329

extended source, 735, 743

external noise, 342

extra-terrestrial noise, 343, 376

eye diagram, 579, 620, 624, 626, 631

eye pattern, 551, 579, 633

fading, 308, 342, 857, 926, 928

fading communication channels, 316

false synchronization, 539

Fano coding, 729
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Faraday fading, 927

fast-fading channel, 930

fast hopping FHSS, 873, 876

FDM, 462, 469, 470, 482

FDM system, 211

FEC, 794, 828, 876

feedback decoding, 840, 852

FFT, 895, 912

FH spread spectrum systems, 874, 877

FHSS signal, 872, 875, 878, 880

FHSS system, 872, 875, 876, 886

fidelity, 14, 184, 641, 642

fidelity curve, 185

Figure of Merit (FOM), 14, 386, 388, 389, 394, 406, 411, 

420

filter, 109

filter method, 200, 203, 238

finite state machine, 830

FIR channel, 903, 906, 912

first-order density function, 328

first-order distribution function, 328

flat–top sampled version, 441

flat-top sampling, 449, 482

FM broadcast receiver, 181, 282, 293, 296, 302, 303

FM broadcast transmitters, 302

FM demodulators, 281

FM demodulator with feedback, 290

FM detector, 402

FMFB, 418

FM receiver, 414

FM stereo receiver, 298

FM stereo transmitter, 297, 298

FM systems, 384, 928

FM transmitter, 253, 295, 305

formant frequencies, 531

Forward Error Correcting (FEC), 817

Forward Error-Correction, 794

Foster–Seeley detector, 303

Foster–Seeley discriminator, 283, 284, 285, 286, 288

Fourier series, 18, 59, 61, 77, 260, 263, 437

Fourier transform, 59, 60, 61, 70, 71, 87, 107, 124, 152, 

162, 199, 226, 270, 291, 332, 333, 350, 353, 432, 

441, 445, 557, 567, 587, 654, 859

Fourier transform theorems, 66, 124

frame, 535, 537, 545

frame bit, 539

frame synchronization, 487, 539, 540, 635

frame time, 535

framing bit, 538

free distance, 845

frequency deviation, 248, 250, 269, 274, 275, 402, 403, 

408

frequency deviation constant, 248, 253, 255, 266, 301, 

401, 600

frequency deviations, 280

frequency diversity, 928, 932

Frequency Division Multiplexing (FDM), 210, 238, 452, 

893

frequency doubler, 298

frequency folding effect, 433

Frequency Hopping Spread Spectrum (FHSS), 871, 886

Frequency Hopping Spread Spectrum System, 856

frequency modulated signal, 251

frequency modulation, 137, 246, 247, 249, 301, 600

Frequency Modulation Feedback (FMFB), 417

frequency multiplier, 273, 274

frequency response, 127

frequency response function, 105

frequency selective, 892

frequency selective fading, 891, 893, 895, 910, 912, 926, 

927, 928

Frequency Shift Keying (FSK), 582

frequency-shift theorem, 45

frequency stability, 280

frequency stabilization, 295

frequency synthesizer, 871, 877, 878

Frii’s formula, 362, 365, 366, 377

FSK, 583, 633, 696, 722

fundamental period, 54, 57

galactic noise, 343

ganged condenser, 181

GATE signal, 63

Gaussian channel, 773, 774

Gaussian density, 267, 680

Gaussian density function, 315, 318, 771

Gaussian distribution, 326, 769

Gaussian distribution function, 315

Gaussian Minimum Shift Keying (GMSK), 599

Gaussian modulated FM signal, 267

Gaussian MSK (GMSK), 608, 634

Gaussian random process, 333, 375

Gaussian random variable, 315, 323, 327, 340, 373, 651, 

700, 710, 711, 719, 769, 772

Gaussian source, 785

Gaussian zero-mean white noise, 665

generalized correlative coding, 569

generalized Fourier series, 30

generating vector, 903

generation of AM, 235
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generation of DSB-SC, 236

generation of narrowband FM, 259

generation of SSB-SC signals, 238

generation of wideband FM, 259

generator matrix, 798–800, 802, 804, 806, 812, 815, 833, 

834, 835, 851

generator polynomial, 818–823, 825–827, 833, 852

generator vector, 904

George Antheil, 856

GIBB’s phenomenon, 50

Global Positioning Systems (GPS), 876

G-matrix, 802, 822

GMSK, 610

Go back-N ARQ systems, 795

Golay codes, 817

Gold code generator, 881

Gold codes, 880, 882, 887

Gold sequences, 869

Gorenstein, 828

Gram–Schmidt orthogonalization, 18, 35

Gram–Schmidt orthogonalization procedure, 36, 52, 58

Gram–Schmidt procedure, 32, 33

granular noise, 514, 517, 543, 544

granular noise, 517

gray code, 593, 672

gray coding, 715

ground wave, 926, 927

GSM, 599

GSM cellular mobile communications, 610

guard band, 428, 893

Hadamard code, 814

Hadamard matrix, 814

half-power bandwidth, 108

half-wave symmetry, 48, 56, 58

Hamming code, 815–817, 822, 828, 851

Hamming distance, 807, 829, 841, 842, 845, 851

Hamming distortion measure, 784

Hamming measure, 783

Hamming weight, 807, 808, 810–812, 822, 845

hard-limiter, 511

harmonic frequencies, 42

Hartley, 730, 731

Hazeltine method, 171

Hedy Lamarr, 856

Hermitian symmetry, 63, 64, 896

high-level modulation, 169, 170, 236

high pass filter, 91, 110

Hilbert transform, 60, 90, 91, 95, 125, 209, 339, 387

Hilbert transformer, 91, 109

H matrix, 802, 805, 816

Hocquenghem, 827

Homodyne detection, 207

homogeneity, 66, 97

hopping pattern, 876

Huffman code, 747, 748, 749, 750

Huffman coding, 729, 746, 751, 752, 786

hybrid FEC-ARQ system, 796

I-channel, 711

ideal band pass filter, 127

ideal low pass filter, 127

ideal Nyquist bandwidth, 573

ideal Nyquist channel, 559, 560, 563, 632

ideal sampling, 430

ideal selectivity curve, 176

ideal system, 776, 777, 779, 781, 788

identity matrix, 799, 901

IDFT, 896, 897, 904, 906

IF amplifier, 173, 174, 296

image frequency, 237

image frequency rejection, 177

Image Frequency Rejection Ratio (IFRR), 178, 180, 237

image interference, 181

image rejection, 183, 296

image signal, 177

impulse function, 75, 334, 353

impulse response, 69, 99, 111, 126, 334, 336, 436, 445, 

564, 567, 621, 654, 660, 666, 667, 829

impulse response function, 60, 87, 91, 110

impulse response sequence, 904

impulses, 313

impulse sampling, 430

independent, 346

independent events, 372

independently fading channels, 932

independent processes, 375

independent random variables, 326, 327

independent sources, 326

indirect method, 273, 275, 294, 295, 302, 303

information, 762, 785

information capacity theorem, 729, 772, 779

information measure, 730

information rate, 829

information source, 732

information theory, 730, 740

inner product, 28, 30, 34, 39, 52, 702, 710

inner product, 683

innovation symbol, 752

inphase and quadrature component representation, 387, 

390
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inphase and quadrature components, 339, 340, 391, 402

inphase chennal, 595

in-phase component, 94, 448, 585, 586

instantaneous code, 741–743, 786

instantaneous frequency, 247, 248, 250, 254, 255, 266, 

305, 600

instantaneous sampling, 430

integrate-and-dump, 656, 664

integrate-and-dump circuit, 721

integrated noise figure, 359

Integrated Services Digital Network (ISDN), 2

integration, 22

integration theorem, 74

integrator, 409

interleaving, 536, 832

intermediate frequency, 173, 177, 297

inter-modulation distortion, 909

internal noise, 342

INTERNET, 3

interpolations, 477

inter-stage transformers, 177

inter-symbol influence, 738, 739

inter-symbol interference, 308, 551, 555, 556, 562, 574

inter-symbol interference (ISI), 552, 642, 890, 892

inverse Fourier transform, 61, 110

ionosphere, 926, 927

irreducible polynomial, 822

ISB receivers, 216

ISB transmitter, 216

ISI, 555, 557, 558, 560, 562, 565, 574, 576, 579, 581, 

632, 674, 675, 714, 891, 893, 895, 906, 910, 911, 

912

ISI channel, 896

Jacobian, 327, 340, 341

Jacob Ziv, 751

jammer signal, 864

jamming, 856, 857, 864, 871, 874, 886

jamming margin, 866, 867, 870

jamming signal, 865, 866, 875

Johnson noise, 344

joint density function, 324, 326–328, 340, 341, 374

joint entropy, 736, 737, 786

jointly Gaussian, 326, 339, 374

jointly Gaussian processes, 340

jointly Gaussian random variables, 326

jointly stationary, 334, 335

Joseph Fourier, 17

Karhunen–Loeve Transform (KLT), 532

Karush, 741

k) block code, 800

k) linear block code, 810, 811

Kraft–McMillan inequality, 741–743

Kraft’s inequality, 741, 786

kth-order stationarity, 330

Lagrange multiplier, 734, 735, 770

LAN, 912

Laplace transform, 60, 105

LC oscillator, 277

LDPC codes, 846

Legendre polynomials, 29

Lempel–Ziv coding, 729, 752

Lempel–Ziv source coding, 786

Lempel–Ziv source coding algorithm, 751

L’Hosptal’s rule, 344

likelihood function, 841

limiter, 285, 302, 401

limiting, 302

linear block code, 797, 802, 807, 812, 815, 817

linear combination, 26

linear convolution, 109, 896, 898, 903, 906

linear cyclic block code, 821, 824

linear cyclic codes, 818

linear delta modulator, 513

linear distortions, 4

linear independence, 27

linearity theorem, 45, 66, 74

linearly independent signals, 31, 52

linear modulation, 246, 385, 387, 413

linear phase response, 107, 110, 112

linear prediction, 524

Linear Predictive Coding (LPC), 532, 545

linear predictive vocoders, 487

linear system, 97

linear time-invariant systems, 98, 408

linear time-variant channels, 13

line codes, 496, 551, 553–555, 632

LMS algorithm, 636

local carrier, 206, 208

local oscillator, 174, 181, 273

loop filter, 290, 292, 418

LOS, 891

LOS links, 6

LOS propagation, 927

lossless channel, 760

lossless compression, 531, 782

lossy coding, 782

lossy compression, 782

lossy transmission line, 364

low bit-rate coding of speech, 531

CS-Rao_Index.indd 942CS-Rao_Index.indd   942 1/18/2013 11:40:48 AM1/18/2013   11:40:48 AM



Index 943

lower sideband (LSB), 142

lower side-frequency, 138, 139

low-level modulation, 169, 170, 236

low noise amplifier (LNA), 364, 365

low-noise amplifiers, 361

low pass filter, 65, 110

low pass sampling theorem, 375, 482

low pass signal, 91

LPC receiver, 534

LPC transmitter, 533

LSSB-SC signal, 198, 199, 201

LTI system, 102, 105, 106

magnitude, 43

magnitude response, 105, 108, 110, 112, 127

magnitude spectrum, 44, 63, 64, 67, 90, 109, 660

man-made noise, 343, 376

MAP detection, 647, 648

MAP detector, 648

marginal density function, 324, 327, 342

marginal entropies, 758

M-ary ASK, 611

M-ary band pass signaling, 611, 634

M-ary baseband signaling, 552, 581, 633, 670, 722

M-ary baseband transmission, 571, 573, 670

M-ary digital modulation, 9

M-ary FSK, 611, 614, 615, 635, 723, 780, 781, 788, 871

M-ary PAM, 673

M-ary PCM, 778, 779, 780

M-ary PSK, 611, 615, 616, 621, 635, 714, 715, 716, 723, 

724, 780, 781, 788

M-ary PSK signal, 617

M-ary QAM, 611, 612, 712, 713, 716, 724, 895, 908

M-ary QASK, 611

M-ary signaling, 573, 611, 619

Master group, 212, 239

matched filter, 654, 656, 657, 660, 661, 662, 667, 675, 

721

matched Filter, 2

matched filter receiver, 668

matched filters, 615

maximal-length PN sequence, 859

maximal length sequence, 858–860, 886

Maximal ratio combiner, 933

Maximum a posteriori detection, 647

Maximum a posteriori probability, 721

Maximum likelihood, 721

maximum likelihood decoding, 840, 841

maximum likelihood detection, 646

McMillan, 741

mean, 314, 317, 319, 320, 321, 330, 334, 374

mean-square error criterion, 675

mean-square sense, 337

medium wave band, 343

message bandwidth, 408

message bits, 797, 798, 801

message digits, 798

message point, 908

message polynomial, 819

message signal, 137, 386

mid-rise quantizer, 490

mid-tread quantizer, 490

Milky Way, 343

minimum distance, 828

minimum distance decoder, 842

minimum distance decoding, 841

dinimum distance dmin, 807

minimum distance strategy, 810

minimum Hamming weight, 813

minimum mean-square equalizer, 675

minimum mean square prediction error, 527

Minimum Shift Keying (MSK), 599, 602

minimum weight, 802, 803

mixed-type random variables, 313

mixer, 174, 273, 274, 282, 354

ML decoding, 852

ML detection, 647, 648

MLSE, 891

MMSE criterion, 722

MMSE optimum filter, 675

mobile communication, 280

modal matrix, 901, 902

modem, 582

modified Bessel function, 373

modified duo-binary conversion filter, 570

modified duo-binary filter, 567

modified duo-binary signaling, 566, 567

modified duo-binary system, 632

modulating signal, 137, 309

modulation, 136

modulation index, 138, 145, 155, 168, 169, 269, 301, 

303, 390, 393, 397, 399, 400, 406, 407, 466

modulation index for FM, 252, 259

modulation index for PM, 252, 260

modulation theorem, 45, 67, 70, 76

modulo-2 addition, 833, 881

modulo-2 arithmetic, 796, 800

modulo-2 discrete convolution, 829

modulo-N subtraction, 899

moment generating function, 322
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mono stable multi-vibrator

differential amplifier, 289

Monte Carlo simulation, 719, 720

Morse code, 1

MP3 standard, 532

MPEG, 911

MSK, 600, 602, 610, 709, 710, 712, 716, 723, 724, 863

MSK (Minimum Shift Keying), 634

MSK receiver, 606

MSK signal, 604, 607, 609

MSK transmitter, 606

M-th power loop, 621, 635

multicarrier modulation, 891

multichannel modulation, 891

multilevel signaling, 551

multipath, 4, 342, 794, 857, 890, 891, 893, 911, 912, 927

multipath distortion, 910

multipath fading channels, 929, 931

multipath propagation, 892, 895

multiple access, 856, 857, 867

multiplexed signal, 535

multiplexers, 536

multiplexing, 7, 137, 511, 582

multiplexing hierarchy, 540

multiplication theorem, 45, 70

mute circuit, 221

mutual inductance, 284

mutual information, 729, 756–759, 761, 763, 767, 771, 

772, 773, 783, 729, 787, 788

mutually exclusive, 309

narrowband angle modulation, 256, 301

narrowband fading channels, 910

narrowband FM, 407

Narrowband FM Signal, 258

narrowband jammer, 875

narrowband jamming, 866, 867

narrowband noise, 369

narrowband phase-modulated signal, 257

natural sampling, 437

NBFM signal, 257, 304

n-bit binary PCM, 544

n-dimensional vector space, 26

near-far problem, 868

negative acknowledgement (NAK), 795

negative feedback, 171, 172, 237

negative peak clipping, 166, 167, 174

neutralization, 171, 236

nit, 731, 785

nodes, 835

noise, 5, 308, 309, 342

noise bandwidth, 363

noise equivalent bandwidth, 355, 356, 376

noise equivalent circuit, 347

noise equivalent temperature, 361

noise figure, 184, 186, 359, 360, 362, 363, 364, 367, 368, 

377

noise limiters, 221

noise margin, 581

noise power spectral densities, 345, 346, 395, 399

noise power spectrum, 347

noise PSD, 389

noise source, 354, 367

noise temperature, 349

noise voltage, 348

non-coherent ASK, 680, 681, 696, 697

non-coherent BFSK, 704

non-coherent BFSK receiver, 690

non-coherent binary ASK, 677

non-coherent detection, 588

non-coherent detection of a binary ASK, 589

non-coherent FSK, 696, 697

non-coherent M-ary FSK, 871

non-coherent QPSK, 597

non-data-aided synchronization, 619

non-frequency selective, 892

non-linear distortion, 4, 308

non-linearity of the channel, 281

non-linear system, 97

non-periodic signals, 18

non-uniform quantization, 488, 490, 492, 493

norm, 28, 39

normalization factor, 897, 904

normalized frequency deviation, 600

normalized message signal, 394, 406

normal random variable, 314

norm of a signal, 54

North American hierarchy, 540, 541

notch filters, 309

N-periodicity, 900

NRZ bipolar waveform, 859

NRZ unipolar signal, 664

null matrix, 800

Nyquist, 730

Nyquist bandwidth, 560, 670

Nyquist channel, 560, 561

Nyquist criterion, 558, 559, 632

Nyquist rate, 428, 433, 434, 436, 439, 444, 482, 499, 

511, 519, 570, 732, 767, 772, 774, 778
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observation space, 643, 686

observed variable, 643, 666

odd signal, 30

odd symmetry, 48, 53, 63, 64, 127

OFDM, 893, 903, 906, 909, 911

OFDM frame, 908

OFDM receiver, 908

OFDM signal, 895

OFDM system, 895, 909

OFDM transmission system, 907

Offset QPSK (OQPSK), 597, 598, 599, 634

one-bit quantizer, 527

ON-OFF Keying (OOK), 582

op-amp, 153

optical fiber, 6

optimal codes, 740, 741, 786

optimum filter, 649, 650, 654, 721, 891

optimum (MMSE) linear receiver, 676

optimum path, 845

optimum receiver, 663, 666, 675, 722

optimum threshold, 665, 669, 676, 683, 700

orthogonal, 25, 30, 95, 325, 374, 585, 594, 601, 683, 

684, 685, 686, 687, 702, 815, 893, 912, 931

orthogonal BFSK, 932, 933

orthogonal expansion, 18

Orthogonal Frequency Division Multiplexing (OFDM), 

891, 893, 911

orthogonal functions, 40

orthogonal matrices, 901

orthogonal modulation, 705

orthogonal process, 330, 375

orthogonal set, 28

orthogonal signaling, 599

orthogonal signals, 31, 33, 55, 614, 616, 697, 780

orthogonal subcarriers, 893

orthogonal vectors, 26

orthonormal basis set, 33, 35

orthonormal functions, 38, 40

orthonormal set, 29, 32

orthonormal signals, 18, 32, 604

overall noise equivalent temperature, 364

overall noise figure, 362, 365

over-coupled transformers, 177

over modulation, 138, 148, 187

over-sampling, 519

over-sampling A/D converter, 518

packet switching, 828

padder, 182

Paley–Wiener criterion, 59, 112, 113, 127

PAM, 463, 464, 467, 482

PAM signal, 440, 449, 458, 459, 466

parity-bit polynomial, 819

parity check bits, 766, 797, 801, 811, 814, 824

parity check digits, 805, 828

parity-check equations, 812, 813

parity-check matrix, 799–802, 806, 807, 812, 834, 835

parity-check matrix, 800, 851

parity-check polynomial, 821–823, 852

PAR problem, 909, 910

Parseval’s theorem, 45, 64, 65, 70, 71, 84, 95, 655, 683

partial-band jamming, 874, 875

partial response signaling, 562, 569

partition noise, 354

pass bands, 110

PCM, 2, 490, 492, 553

PCM system, 487

PDF, 491

PDM, 464, 467, 468, 469, 482

PDM signal, 456, 458

Pe, 507, 642, 828

peak frequency deviation, 252, 253, 259, 269, 271, 277, 

281, 293, 304, 401, 406

peak limiting, 398

peak phase deviation, 253, 260, 271, 304

Peak-to-Average Power Ratio (PAR), 909, 910

percentage of modulation, 145, 149

periodic GATE, 77

periodic gate waveform, 154

periodic signal, 18, 19, 43, 46, 58, 59, 60

permutation matrices, 901

permutation matrix, 902

phase comparator, 290, 291

phase deviation, 247, 255

phase deviation constant, 247, 252, 266, 301, 305

phase discriminator, 195

phase distortion, 206, 207, 783

phase error, 193, 699, 701

phase-locked loop, 290

Phase Lock Loop (PLL), 417

phase modulated signal, 249, 251

phase modulation, 137, 246, 247, 263, 268, 301

phase modulator, 249

phase offset, 701, 707, 723

phase response, 105, 110, 127

phase shift, 105, 107

Phase-shift discriminator, 283

phase shifter, 202

Phase Shift Keying (PSK), 582, 591

phase-shift SSB-SC detector, 209
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phase spectra, 43

phase spectrum, 41, 44, 63, 64, 67, 109

phase tree, 601

phase trellis, 601

phasing method, 200, 202, 203, 238

phasor diagram, 257, 285, 392, 403, 414

physically realizable, 112, 113

pilot-carrier, 214, 215, 22

pitch frequency, 531, 533

pitch period, 532

pixels, 776

Plank’s constant, 344

PLL, 621

PN clock, 877

PN code, 876

PN code generator, 877, 878, 879

PN codes, 876

p-n junction, 354

PN sequence, 860, 861, 868, 870, 877

PN sequence generator, 857, 858, 859, 864, 871

PN sequences, 857, 881, 886

Poisson distribution, 316

Poisson random variable, 316, 317

polarization diversity, 928

Polar Non-Return-to-Zero (NRZ) Code, 554

polar NRZ sequence, 592

polar NRZ signal, 648, 664

polar signaling, 565, 646

post-detection noise, 404, 405, 408

post-detection noise spectrum, 410

post-detection signal-to-noise ratio, 399

‘power-bandwidth’ trade-off, 406, 407

power bandwidth trade-off, 384, 420, 509

power density spectrum, 366

power gain, 359

power-limited operation, 777

power signal, 19, 20, 54, 81, 85, 87

Power spectra, 607

Power spectral, 60

power spectral density, 85, 87, 125, 266, 267, 332, 339, 

344, 352, 355, 359, 367, 385, 389, 401, 408, 515, 

553, 654, 698, 857, 863, 875

power spectrum, 333, 353, 404, 405, 774, 865

power spectrum of QPSK, 596, 597

PPM, 464, 467, 468, 469, 482

PPM signal, 457, 458

practical diode detector, 165

pre-amplifier, 365

pre-coder, 565, 566

pre-coding, 632

pre-detection signal-to-noise ratio, 386

pre-detection SNR, 400, 402, 420

prediction error, 524, 527, 528, 530

prediction filter, 524, 528

predictor, 523

predictor order, 528

pre-emphasis, 280, 297, 302, 384, 385, 408, 420

pre-emphasis filter, 408, 410

pre-envelope, 92, 93, 199

prefix, 741

prefix-free, 786

prefix-free code, 741, 742

primitive, 822

primitive BCH codes, 828

probability, 308, 309, 311, 372, 731, 734, 785

probability density function, 314, 373, 491, 767, 769, 

772, 773, 863

Probability Density Function (PDF), 313

probability distribution, 340

probability of bit error, 869

probability of error, 10, 507, 557, 573, 596, 610, 611, 

642, 649, 652, 654, 666, 671, 672, 673, 675, 681, 

684, 693, 697, 698, 699, 701, 709, 713, 766, 777, 

793, 806, 828, 863, 865, 866, 869, 875, 891

probability of error, 668, 669, 689, 692, 705, 707, 721

probability of error Pe, 633, 645

probability of symbol error, 615, 618, 713–715

probability space, 310, 311, 324

processing gain, 527, 528, 530, 866, 870, 871, 872, 873, 

874, 876

product modulator, 153

properties of CDF, 313

properties of Fourier transform, 124

properties of Gaussian processes, 333

properties of Hilbert transform, 91, 125

properties of PDF, 314

properties of power spectral density, 86

properties of PSD, 125

proportional plus integral type, 418

PSD, 585, 586, 659, 675, 685, 704, 706, 720, 776, 859, 

865, 866, 868, 869, 874

PSD of a GMSK signal, 609

PSD of BPSK signal, 587

PSD of M-ary PSK, 617

PSD of MSK signal, 608

PSD of white noise, 350

pseudorandom code generator, 871

pseudorandom phase shifts, 910

PSK, 583, 633, 696, 712, 722

PTM, 463
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Pulse Amplitude Modulation (PAM), 426, 465

Pulse Code Modulation (PCM), 426, 488, 495

Pulse Duration Modulation (PDM or PWM), 426

Pulse Position Modulation (PPM), 456

pulse shaping, 551, 552

Pulse Time Modulation, 456

Pulse Width Modulation (PWM), 456

QAM, 197, 634, 716, 723, 724, 931

QAM constellation, 908, 909

QAM decision device, 908

QAM message point, 908

QAM signal, 611, 613, 712

Q-channel, 711

Q-factor, 356

Q-function, 315, 507, 645, 652, 671, 672, 673, 674, 698, 

707, 779, 867, 869

QPSK, 597, 604, 611, 616, 617, 634, 707, 708, 709, 712, 

714, 716, 723, 724, 863, 911

QPSK constellations, 598, 599

QPSK signal, 599

QPSK symbol error rate, 714

QPSK transmitter, 595

quadrature carrier multiplexing, 197, 198, 236

quadrature channel, 595

quadrature component, 94, 369, 448, 585, 678

quadrature FM detector, 287, 288

Quadrature Mirror Filters (QMF), 531

quadrature sampling, 448, 449

Quadriphase-Shift Keying (QPSK), 593

quadruple diversity, 929

quantization, 487, 488, 497, 782

quantization error, 491, 499, 514

quantization level, 495, 505, 553

quantization noise, 491, 492, 493, 495, 497, 504, 506, 

515, 527, 531

quantized sample, 501

quantized values, 488

quantizer, 487, 488, 489, 494

quarternary coding, 571

Quasi-Synchronous Multiplexers, 536

radar, 60, 94

radio horizon, 928

raised cosine filter, 562, 570, 621, 623, 625, 627, 628

raised cosine pulse, 580

raised cosine spectrum, 560, 632

random binary sequence, 596, 623, 625, 627, 628, 859

random errors, 794

random experiment, 312, 318, 327, 373

random phase, 328

random process, 327, 328, 331, 334, 773

random processes, 308, 309

random signals later, 17

random variable, 312, 318, 319, 321, 322, 327, 328, 331, 

373, 557, 687, 755, 770, 771, 773

ranging, 870

rate distortion function, 783, 784, 785

rate distortion theory, 782, 784

ratio detector, 285, 286, 297

Rayleigh density, 342, 690

Rayleigh density function, 315, 316, 327, 341, 678, 691

Rayleigh distribution, 315

Rayleigh fading channel, 342, 930–932

Rayleigh random variable, 315, 373

Rayleigh’s theorem, 65, 655

reactance modulator, 276, 278, 279, 281, 296

reactance modulator method, 303

real line, 312, 373

received signal power, 389, 396

receive filter, 556, 557, 560, 675

receiver, 309

receiver parameters, 238

reconstruction filter, 444, 445, 465, 501, 504

redundancy, 739, 765, 766, 793, 830

Reed-Solomon codes, 828

Reed-Solomon error correcting code, 876, 911

regeneration, 500

regenerative repeaters, 11, 488, 510, 511, 537, 545

reliability, 766

RELP, 534

repeaters, 510

repetition code, 805, 806

replication property, 22

resconstruction filter, 432

RF amplifier, 171, 173, 174, 182, 296

Ricean channel, 930

Ricean density, 680, 690

Ricean density function, 691

Ricean distribution, 679, 930

Ricean random variable, 316, 679

Rice density function, 316

Rice distribution, 316

Rice method, 171

Rice neutralization, 172

Rician density function, 342

Rician fading channels, 342

Rician random variable, 373

right cyclic shift, 824

ring modulator, 191, 192
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ripples, 51

rise time, 113, 127

robust quantizer, 492

roll-off factor, 553, 580

roll-off factor, 560

rotational symmetry, 58

round trip delay, 795

sample – and – hold, 442, 440

sample space, 309, 372

sampling, 487, 488

sampling frequency, 434, 435, 439, 447, 625, 627, 628

sampling function, 426, 427, 431, 437

sampling property, 22, 75

sampling theorem, 425, 437, 450

sampling time, 581

Samuel Morse, 740

satellite communications, 416, 857

SAW filters, 213, 239

saw-tooth waveform, 462

scaling theorem, 45, 76

scaling theorem, 68

Schwarz’s inequality, 18, 39, 40, 53, 650, 653, 660, 721

scrambling, 578

second-order density function, 329

second-order distribution function, 328

second-order PLL, 418

selective repeat ARQ system, 795

selectivity, 184

selectivity curve, 184, 185

sensitivity, 183, 184

sensitivity curve, 184

sequential decoding, 840

Shannon bound, 750

Shannon-Fano coding, 744, 786

Shannon–Hartley law, 774, 776, 788

Shannon–Hartley Theorem, 772

Shannon limit, 777, 780, 781, 788, 793, 845

Shannon’s, 744

Shannon’s channel coding theorem, 729, 766, 767, 774, 

788

Shannon’s information capacity theorem, 772, 774

Shannon’s source coding theorem, 782, 783, 786

Shannon’s theorem, 749

Shannon’s third theorem, 772, 774

shift, 4

shift register, 578, 830, 837, 842, 857, 860, 881

shift-register, 831, 835, 886

shift register encoder, 826

shift registers, 817

short-term fading, 462

short-wave band, 343

shot noise, 342, 351, 353, 354, 367, 376, 384

Shu Lin, 828

sideband filters, 213

Sigma–Delta A/D converter, 518, 519

Sigma–Delta modulation, 518

signal, 308

signal bandwidth, 107, 108

signal constellation, 552, 597, 604, 605, 612, 613, 616, 

693, 694, 698, 707, 708, 710, 712, 720

signal constellation, 614

signal constellation for QPSK, 594

signal constellations, 551

signal distortion, 890

signal fading, 697, 892

signal frequency, 174

signaling rate, 552

signal space, 18, 27, 28, 33, 52, 54, 594, 616, 634, 685, 

687, 693, 694, 697, 698, 710, 711, 723

signal space, 614

signal space diagram, 35–37, 605

signal space of MSK, 602

signal spaces, 23

signal to noise ratio, 776

signal-to-noise ratio, 268, 359, 386, 573, 654, 658, 660, 

661, 673

signal-to-noise ratio (SNR), 14, 358, 376, 394

signal-to-quantization noise ratio, 487, 497, 527

signum function, 73, 74

similarity transformation, 901

sinc filter, 623, 625, 628

sinc function, 337, 441, 445

sinc integral function, 114

sinc pulse, 559

single-bit quantizer, 511, 517

single carrier system, 895

single realization, 331

single-tone jamming, 875

single-tone modulation, 254, 256, 412

singularity’ functions, 62

sky wave, 926, 927

slope detector, 281, 282

slope overload, 513, 514, 519, 527, 543

slope overload distortion, 517

slope overload noise, 515, 544

slow fading, 286

slow-fading channel, 930

slow FHSS system, 874

slow hopping FHSS, 873, 876
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SNR, 416, 487, 706, 891, 909

solar noise, 343

sonar, 60, 94

source code, 744

source coding, 729

source coding theorem, 729, 730

source data, 908

source encoder, 765

source entropy, 745

space-charge limited region, 353

space communications, 416

space diversity, 928, 932

space wave, 927

spectral coefficients, 531

spectral density, 775

spectral efficiency, 552, 893, 908, 910

spectrum, 107, 109, 137, 896, 897

speech coding, 531

speech compression, 487

speech synthesizer, 532, 533

spike, 414

split phase or Manchester code, 554

sporadic E-layer, 927

spot noise figure, 359

spreading factor, 873

spread spectrum communication, 886

spread spectrum signal, 857

spread spectrum systems, 856, 857

squared-error distortion measure, 783

squared-error measure, 785

squared-magnitude response, 357

square-law combiner, 933

square law detection, 159

square law detector, 160, 168

square law modulator, 151, 152

squaring loop, 194, 196, 197

squelch, 219, 221

SSB receivers, 214

SSB-SC, 186

SSB-SC modulation, 198, 470

SSB-SC receivers, 239

SSB-SC signal, 204, 206, 213

SSB-SC transmitter, 202, 212

SSB signals, 927, 928

stability, 102

stagger tuned IF stages, 177

staircase waveform, 513

standard array, 810, 811

standard deviation, 320, 321, 374, 674

standard set of basis vectors, 26

start bit, 536

start–stop signaling, 536

state diagram, 835, 837–840, 852

static multipath, 892, 911

static system, 97, 128

stationarity, 375

stationary processes, 330

statistical independence, 326

statistically independent, 310, 311, 325, 327, 340, 341, 

342, 374, 585, 596, 678, 688, 731, 732, 734, 735, 

738, 758, 772, 773, 774, 776, 868, 906

statistically independent processes, 330

step response, 100, 114, 126

step size, 491, 495, 513, 514, 517

stereophonic FM receiver, 297

stereophonic receiver, 299

stereophonic transmission, 297

stop-and-wait ARQ, 795

stop bands, 110

strict-sense stationarity, 330

strong Dirichlet’s condition, 49, 53

Strowger switches, 2

stuffing, 536

sub-band coding, 531

subcarrier, 452, 470, 908

subcarrier frequencies, 893

subcarriers, 906, 911, 912

subchannel, 891, 893, 895, 896

subchannel gain, 909

subscriber’s local loop, 910

subsequences, 751, 752

subspace, 798, 799

Sunde’s BFSK, 601, 689

Sunde’s BFSK signal, 586

Sunde’s Binary FSK, 682

Sunde’s FSK, 585, 602

sun-spot cycle, 343

Super Group, 211, 212, 239

superheterodyne radio receiver, 362

superheterodyne receiver, 173, 237, 401

superposition, 66, 97

superposition integrals, 99

superposition principle, 345

supreheterodyne radio receivers, 354

survivor paths, 842

switching modulator, 153

symbol error, 780

symbol probability of error, 673

symbol rate, 615, 893

synchronization, 460, 462, 536, 538, 562, 578, 588, 600, 

619, 635

synchronous demodulator, 298

CS-Rao_Index.indd 949CS-Rao_Index.indd   949 1/18/2013 11:40:48 AM1/18/2013   11:40:48 AM



950 Index

synchronous detection, 159, 193, 208

synchronous detector, 169, 386, 387, 388, 390, 393

synchronous multiplexers, 536

syndrome, 808, 809, 811, 814, 816, 823, 824, 826, 827, 

851

syndrome calculator, 827

syndrome decoding, 810

syndrome polynomial, 823–825

syndromes, 813

synthesizer, 872

synthetic speech, 533

system, 96, 126

systematic block code, 851

systematic code, 797, 812

systematic form, 820, 821, 822, 824, 826

system bandwidth, 107, 108

T-1 carrier, 537, 538

tail of the message, 836

tapped-delay equalizer, 577

tapped delay-line, 930

tapped delay-line equalizer, 675

T-carrier, 487

Tchebycheff, 321

TDM, 462, 469, 470, 482, 487, 511

TDM hierarchy, 487

temperature-limited condition, 351, 352

temperature-limited region, 354

theorem, 311

thermal noise, 5, 315, 333, 334, 342, 344, 350, 351, 354, 

358, 366, 376, 384

thermionic emission, 351

Thevenin’s equivalent, 363

Third method, 200

three-point tracking, 182, 238

threshold, 416, 509, 510, 544, 557, 644, 651, 703, 779, 

780, 928

threshold effect, 292, 385, 507

threshold effect for AM, 420

‘threshold effect’ in envelope detection, 394

threshold extension, 384, 416, 420

threshold extension techniques, 385, 417

threshold in WBFM, 413

threshold phenomenon, 414

throughput efficiency, 794, 795

time averages, 331

time-delay theorem, 66, 76

Time diversity, 928

Time Division Multiplexing (TDM), 2, 426, 450, 534

time-invariant system, 91, 97

time scaling, 23

time-shift theorem, 45

time slot, 496, 552, 642, 643, 650

time-varying systems, 126

Toeplitz matrix, 526

tone modulation, 398

total energy, 54

total probability theorem, 311

tracking, 181, 237, 877, 878, 887

tracking error, 182

trade-off, 469

training period, 577

training sequence, 577

transducer, 7

transfer function, 105, 107, 109, 127, 347, 355, 367, 404, 

833, 835

transfer function, 128

transform domain approach, 833, 834

transistor switching modulator, 155

transitional probabilities, 753

transition matrix, 754, 760, 761, 787

transition probability, 759, 761, 762, 764, 784, 806, 840

transit-time, 351

transmission bandwidth, 247, 268, 385, 390, 397, 406, 

418, 469, 487, 680, 778, 794

transmission efficiency, 766

transmission loss, 400

transmit filter, 556, 557

transmitter, 145

transponders, 856

transversal filter, 524

trapezoidal pattern, 150, 235

trapezoid method, 149

tree-searching, 840

trellis, 835, 836

trellis diagram, 837–839, 841, 842

TRF receiver, 172, 173, 237

trigonometric Fourier series, 46, 48, 49, 56, 154

trimmer, 182

triplers, 273, 274

troposphere, 928

truncation of Fourier Series, 51

tuned circuit, 348

turbo codes, 845, 846

TV receivers, 181

TV signal, 227

TV transmitter, 227

two-point tracking, 182, 238

two-port networks, 361

two-sided noise power spectrum, 389
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two-sided power spectral density (PSD), 385

two-sided PSD, 416

TWT amplifier, 419

uncertainty, 730, 756

uncorrelated, 325, 344, 346, 351, 374

Uncorrelated Processes, 330, 375

uniform and non-uniform, 488

uniformly distributed, 326, 327, 330, 340

uniform quantization, 487, 488, 490, 544

uniform random variable, 314, 373

Unipolar Non-Return to Zero (NRZ) Code, 554

Unipolar Return-to-Zero Code, 554

unipolar RZ code, 619

unipolar signaling, 646

unipolar signals, 506

unitary matrix, 898

unit-impulse function, 21

unit-step function, 20, 100, 113

unit step response, 126

universal code, 786

unscrambler, 578

unvoiced sounds, 532

uplink, 910

upper sideband (USB), 142

upper side-frequency, 138, 139

USSB-SC signal, 198, 199, 202, 205

USSB-SC signals, 206

varactor, 305

varactor diode, 276, 277, 278, 279

variable selectivity, 219

variable sensitivity, 219

variance, 314, 319–321, 329, 340, 341, 373–375, 388, 

465, 511, 518, 527, 530, 651, 658, 674, 688, 694, 

700, 771, 772, 785, 909

varicap, 276

VCO, 290, 879

vector space, 24, 27, 52

very large group, 211, 212, 239

vestigial sideband modulation, 222, 239

video amplifier, 227

video signal, 223

Viterbi algorithm, 840, 842, 844, 852

vocal cords, 532

vocal tract, 531, 532

VOCODERS, 531, 545

voice band modems, 910

voiced speech, 532

volume compression, 398

VSB filter, 224, 225, 227

VSB signal, 224, 225, 226, 227, 228

VSELP, 534

waveguides, 5

wavelength, 137

wave trap, 221

WBFM, 295, 510

WBFM signal, 294, 301, 304

Weak Dirichlet’s condition, 49, 53

Weaver’s method, 200, 204, 238

white Gaussian noise, 660, 906

white noise, 334, 344, 350, 353, 355, 376, 402, 532, 865, 

886

white noise process, 903

white process, 333, 334

wideband FM, 279, 412

wideband FM signals, 928

wideband jamming, 875

wide-sense stationarity, 330, 331

Wiener–Hopf Equations, 526

Wiener–Khinchin, 332

Wiener–Khinchine theorem, 375

window function, 71

Wireless LAN’s, 910

word synchronization, 619

WSS, 375

WSS process, 331, 336

Zeirler, 828

zero crossing, 620

zero-crossing FM detector, 288

zero-forcing equalizer, 574, 576, 636, 675, 891

zero mean, 346

zero-mean AWGN, 647, 680, 908

zero-mean band pass process, 387

zero-mean Gaussian processes, 678

zero-mean Gaussian random variable, 644

zero-mean processes, 392

zero-mean stationary process, 527

zero-mean white Gaussian noise, 643, 649, 666, 677

zero-mean white noise, 356, 658

zero-order-hold (ZOH), 445, 482

zero-padding, 903

zero vector, 52

ZOH, 446

Z-transform, 833
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