
Computer Organization
(CS303/EE-504B/EEE-504B/IC-504B)

Second Edition

WBUT-2015

About the Author

Tarun Kumar Ghosh is currently Assistant Professor and Head, Department of Computer Science and

Engineering, Haldia Institute of Technology, Haldia, West Bengal. He previously served as Lecturer in

the Department of Computer Science and Engineering, Asansol Engineering College, Asansol, West

Bengal. He received his ME degree in Computer Science and Technology from Bengal Engineering

College (Deemed University), Shibpur, Howrah (currently known as Bengal Engineering and Science

University), and BTech in CSE from the University of Calcutta.

 Prof. Ghosh is a member of ACM (Association for Computing Machinery), CSI (Computer Society

of India) and Indian Society of Technical Education. He played an instrumental role in forming the CSI

Student Branch at Haldia Institute of Technology and has been working there since as the coordinator.

He has published several research papers in various conference proceedings and journals and conducted

a number of workshops and seminars. A coordinator at IGNOU, Haldia Study Centre, Prof. Ghosh is

also the recipient of a UGC Scholarship at the postgraduate level. His areas of interest include Computer

Architecture, Grid Computing, Interconnection Networks, Operating Systems, and Computer Graphics.

Tarun Kumar Ghosh

Assistant Professor and Head
Department of CSE

Haldia Institute of Technology
Haldia, West Bengal

Computer Organization
(CS303/EE-504B/EEE-504B/IC-504B)

Second Edition

WBUT-2015

McGraw Hill Education (India) Private Limited
NEW DELHI

McGraw Hill Education Offi ces

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

McGraw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited

P-24, Green Park Extension, New Delhi 110 016

Computer Organization, 2e (WBUT-2015)

Copyright © 2015, 2013, by McGraw Hill Education (India) Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise or stored in a database or retrieval system without the prior written permission of the publishers.

The program listing (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for

publication.

This edition can be exported from India only by the publishers,

McGraw Hill Education (India) Private Limited.

ISBN 13: 978-93-392-2209-3

ISBN 10: 93-392-2209-1

Managing Director: Kaushik Bellani

Head—Products (Higher Education and Professional): Vibha Mahajan

Associate Sponsoring Editor: Koyel Ghosh

Editorial Executive: Piyali Chatterjee

Manager—Production Systems: Satinder S Baveja

Assistant Manager—Editorial Services: Sohini Mukherjee

Assistant Manager—Production: Anjali Razdan

Senior Graphic Designer—Cover: Meenu Raghav

Senior Publishing Manager (SEM & Tech. Ed.): Shalini Jha

Assistant Product Manager: Tina Jajoriya

General Manager—Production: Rajender P Ghansela

Manager—Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be reliable.

However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any information

published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors, omissions, or

damages arising out of use of this information. This work is published with the understanding that McGraw Hill Education (India)

and its authors are supplying information but are not attempting to render engineering or other professional services. If such services

are required, the assistance of an appropriate professional should be sought.

Typeset at Text-o-Graphics, B-1/56, Aravali Apartment, Sector-34, Noida 201 301, and printed at

Cover Printer:

Visit us at: www.mheducation.co.in

Dedication

This book is dedicated to all my beloved students who are the stirring force

behind this work, and to my wife, Mamata, and my daughter, Twarita,

who are still bearing with my odd working hours.

Contents

Preface xi

Acknowledgements xv

1. Fundamentals of Computers 1.1–1.24

 1.1 Introduction 1.1

 1.2 Digital Computers 1.1

 1.3 Layers in a Computer System 1.3

 1.4 Types of Computers 1.6

 1.5 History of Computers 1.7

 1.6 Various Subsystems of a Computer 1.12

 1.7 Instruction Cycle 1.15

 1.8 Harvard Architecture 1.17

 Solved Problems 1.17

 Review Questions 1.21

2. Data Representation and Computer Arithmetic 2.1–2.38

 2.1 Introduction 2.1

 2.2 Data Types 2.1

 2.3 Number Systems 2.2

 2.4 Complements of Numbers 2.3

 2.5 Binary Data Representation 2.4

 2.6 Guard Bits and Truncation 2.11

 2.7 Multiplication of Unsigned and Signed Integers 2.12

 2.8 Division of Unsigned Integers 2.18

 2.9 Error Detection and Correction 2.24

 Solved Problems 2.28

 Review Questions 2.36

3. Datapath and Design of Arithmetic Logic Unit 3.1–3.27

 3.1 Introduction 3.1

 3.2 Micro-operation 3.1

 3.3 CPU Registers 3.2

 3.4 Register Transfer Language (RTL) 3.3

viii Contents

 3.5 Bus Transfer 3.3

 3.6 Memory Transfer 3.6

 3.7 Arithmetic Micro-operation 3.7

 3.8 Design of Some Arithmetic Units 3.7

 3.9 Logic Unit 3.16

 3.10 Shifter Unit 3.16

 3.11 Arithmetic Logic Unit (ALU) 3.18

 3.12 Bit-Slice Processors 3.20

 Solved Problems 3.21

 Review Questions 3.25

4. Memory Organization 4.1–4.65

 4.1 Introduction 4.1

 4.2 Memory Parameters 4.1

 4.3 Memory Hierarchy 4.2

 4.4 Access Method 4.4

 4.5 Main Memory 4.4

 4.6 Secondary (Auxiliary) Memory 4.17

 4.7 Associative Memory 4.22

 4.8 Cache Memory 4.25

 4.9 Virtual Memory 4.37

 Solved Problems 4.45

 Review Questions 4.59

5. Computer Instruction Set 5.1–5.54

 5.1 Introduction 5.1

 5.2 Instruction Set Design 5.1

 5.3 Instruction Formats 5.2

 5.4 CPU Organization 5.3

 5.5 Instruction Length 5.9

 5.6 Data Ordering and Addressing Standards 5.12

 5.7 Instruction Cycle 5.12

 5.8 Addressing Modes 5.15

 5.9 Instruction Set 5.21

 5.10 RISC Processors: Case Study 5.26

 5.11 Introduction to Pipelining 5.32

 Solved Problems 5.42

 Review Questions 5.51

6. Design of Control Unit 6.1–6.33

 6.1 Introduction 6.1

 6.2 Primary Concepts 6.2

 6.3 Design Methods 6.2

 Solved Problems 6.28

 Review Questions 6.31

 Contents ix

7. Input-Output Organization 7.1–7.38

 7.1 Introduction 7.1

 7.2 I/O Interface and I/O Driver 7.1

 7.3 Accessing I/O Devices 7.4

 7.4 Synchronous and Asynchronous Data Transfers 7.6

 7.5 Modes of Data Transfer 7.10

 7.6 Bus Arbitration 7.17

 7.7 Input-Output Processor (IOP) 7.19

 7.8 Data Transfer Mechanism 7.21

 Solved Problems 7.28

 Review Questions 7.34

Appendix 1—Digital Devices, Logic Design and Assembly Language Programming A1.1-A1.29

2007 Computer Organization (CS303) SQP.1-SQP.18

2007 Computer Architecture and Organization (CS404) SQP.1-SQP.15

2007 Computer Architecture and Organization (EC503) SQP.1-SQP.16

2008 Computer Organization and Architecture (CS404(EI)) SQP.1-SQP.10

2008 Computer Organization and Architecture (CS404) SQP.1-SQP.17

2008 Computer Organization (CS303) SQP.1-SQP.13

2009 Computer Organization and Architecture (CS404) SQP.1-SQP.9

2009 Computer Organization and Architecture (CS404 (EI)) SQP.1-SQP.16

2009 Computer Architecture and Organization (EC503) SQP.1-SQP.11

2009 Computer Organization (CS303) SQP.1-SQP.15

2010 Computer Architecture and Organization (EC503) SQP.1-SQP.18

2010 Computer Organization (CS303) SQP.1-SQP.16

2010 Computer Organization and Architecture (CS404) SQP.1-SQP.15

2010 Computer Organization and Architecture (CS404 (EI)) SQP.1-SQP.18

2011 Computer Organization ((CS303) (Old)) SQP.1-SQP.24

2011 Computer Organization ((CS303) (New)) SQP.1-SQP.18

2012 Computer Organization (CS303) SQP.1-SQP.18

2013 Computer Organization (CS303) SQP.1-SQP.14

2014 Computer Organization (CS303) SQP.1-SQP.9

Preface

OVERVIEW

The emergence of computers has revolutionized the design of electronic systems. Nowadays, computers

are used almost everywhere: education, business, entertainment, games, sports, security, conference,

and many more avenues. Designing a computer is a highly sophisticated and complex process. Over

the years, different methods have been applied to design computers.

 A brief explanation of the title Computer Organization is necessary here. Computer organization is

a lower level, more concrete description of the system that involves how the constituent parts of the

system are interconnected and how they inter-operate in order to realize the architectural specifi cations.

The organizational issues include the hardware details transparent to the programmer like memory

technology, interfacing between the CPU and peripherals, and system interconnect components like

computer buses and switches. Computer architecture deals with the conceptual design and basic over-

view of a computer system. It refers to the parameters of a computer system that are visible to the user.

It includes the instruction addressing modes, instruction formats, instruction sets, I/O mechanism, and

related concepts.

About the Book

This book is the outgrowth of a series of lectures based on the course Computer Organization and

Architecture and Advanced Computer Architecture, delivered over the last several years at different

colleges under West Bengal University of Technology, West Bengal. The basic aim is to simplify the

subject for every student.

 This book is intended to serve as a fi rst-level text for the revised curricula of Computer Organization

(CS303), taught in 3rd semester of Computer Science and Information Technology branches and

EE-504B, EEE-504B and IC-504B, taught in 5th semester of Electrical Engineering, Electrical and

Electronics Engineering and Instrumentation and Communication Engineering branches of West

Bengal University of Technology (WBUT), West Bengal.

 Covering major parts of the 1st semester paper (MCA-101) of MCA of WBUT, it will also be useful

for students of MCA, BCA and any other diploma course in Computer Science.

xii Preface

 This book is mostly self-contained, assuming that the reader has a basic knowledge of computer

programming, number systems, and digital logic. For the benefi t of those who have no prior knowledge

of digital logic and assembly language, the book includes an overview of the essential topics of digital

electronics and assembly-language programming in the Appendix.

Salient Features

 � Complete coverage of the WBUT syllabus (2010 Regulation)

 � Presented in a lucid and concise manner using ample diagrams and fl ow charts

 � Solved WBUT Question Papers from 2007 to 2014

 � Comprehensive Pedagogy:

 Illustrations: 350

 Solved Problems: 135

 Review Questions: Multiple Choice Questions 165

 Short and Long Answer Questions 195

Chapter Organization

The book is divided into seven chapters:

 � Chapter 1 presents basics of digital computers, different layers in a computer system, overview

of the operating systems, types of computers, brief history of computers, details of von-Neumann

computers, and introduction to the instruction cycle.

 � Chapter 2 discusses different data representation methods in computer registers and their relative

advantages and disadvantages, different arithmetic operations, and error detection and correction

methods.

 � Chapter 3 introduces different types of registers, register transfer language (RTL) and shows

how RTL is used to express micro-operations in symbolic form. This chapter also explains how a

common bus can be constructed. Some important arithmetic units are also designed. A hypotheti-

cal arithmetic logic unit (ALU) is developed to show the hardware design of the most common

micro-operations, and lastly a brief idea about bit-slice processors is introduced.

 � Chapter 4 gives the parameters of a memory, the concept of memory hierarchy, and different

concepts and working principles of main memory, secondary memory and cache memory are

covered. Several techniques to improve cache memory performance are described. The concept

and operation of associative memory is explained in detail. The overview of virtual memory is

also explained.

 � Chapter 5 contains basics of instruction sets, and the instruction formats. Different CPU organiza-

tions are discussed in detail with the help of examples. The basics of an instruction cycle and a

variety of addressing modes are explained. CISC and RISC concepts and their characteristics and

their relative advantages and disadvantages are described. As a case study of RISC machines, Sun

SPARC and PowerPC are briefl y discussed. The basic concepts about the pipelining technique

are also introduced.

 � Chapter 6 presents control unit design, using both hardwired and microprogramming approaches.

Both the approaches are illustrated through examples. Also, the microprogram sequencer is briefl y

discussed. At last, the basic concept of nanoprogramming is introduced.

 Preface xiii

 � Chapter 7 explains the techniques that computers use to communicate with peripheral devices.

Three modes of data transfer between computers and peripherals are discussed in detail: pro-

grammed I/O, interrupt I/O and direct memory access (DMA). In addition, the basics of bus

arbitration and input-output processor (IOP) are introduced. Lastly, both parallel and serial data

transfer techniques are described with some standard interfaces.

Feedback and Comments

I look forward to the comments and suggestions from the readers for further improving the book. I can

be reached at tarun_ghosh_2000@rediffmail.com

T K Ghosh

Publisher’s Note

Remember to write to us. We look forward to receiving your feedback, comments and ideas to enhance

the quality of this book. You can reach us at info.india@mheducation.com. Please mention the title and

the author’s name as the subject. In case you spot piracy of this book, please do let us know.

Acknowledgements

I sincerely thank all my colleagues, especially Mr. Anjan Mishra, Registrar; Mr. Susmit Maity;

Mr S K Sahnawaj; and Mr Subhankar Joardar. I am grateful to all my teachers, especially

Prof. Sudarshan Das, Prof. Subhrangshu Bandyopadhyay and Prof. Uma Bhattacharya. I must ac-

knowledge all my students, including Sri Dipankar Dutta and Sri Prithayan Barua, without whom

it was impossible to come up with the idea of writing this book. I sincerely appreciate my friend,

Mr Tushar Kanti Das for his encouragement and helpful comments during the writing this book.

 I am thankful to the following reviewers who have assessed various chapters of the script and pro-

vided valuable suggestions for improvement:

Mihir Kumar Mahato MCKV Institute of Technology, Howrah

Debojyoti Bagchi Calcutta Institute of Engineering and Management, Kolkata

 I am also thankful to the team at McGraw Hill Education (India) Pvt Ltd., especially Ms Vibha Mahajan,

Ms Koyel Ghosh, Ms Piyali Chatterjee, Ms Shalini Jha, Ms Tina Jajoriya, Ms Sohini Mukherjee and

Ms Anjali Razdan for their cooperation and support in bringing out this book on time.

 Last but not least, special thanks goes to my family members for their constant support throughout

the period of preparation of the manuscript.

T K Ghosh

ROADMAP TO THE SYLLABUS

 This text is suitable for the following subject codes:

CS303: Computer Organization (CSE & IT)

EE-504B: Computer Organization (EE)

EEE-504B: Computer Organization (EEE)

IC-504B: Computer Organization (ICE)

MCA 101: Computer Organization and Architecture (MCA)

 CS303: COMPUTER ORGANIZATION (CSE & IT)

 EE-504B: COMPUTER ORGANIZATION (EE)

 EEE-504B: COMPUTER ORGANIZATION (EEE)

 IC-504B: COMPUTER ORGANIZATION (ICE)

Module – 1:

Basic organization of the stored program computer and Operation sequence for execution of a

program. Role of operating systems and Compiler/Assembler. Fetch, decode and execute cycle,

Concept of operator, Operand, Registers and Storage, Instruction format. Instruction sets and

Addressing modes. Commonly used number systems. Fixed and fl oating point representation

of numbers.

 CHAPTER 1: FUNDAMENTALS OF COMPUTERS
 CHAPTER 2: DATA REPRESENTATION AND COMPUTER ARITHMETIC

 CHAPTER 5: COMPUTER INSTRUCTION SET

Module – 2:

Overfl ow and underfl ow. Design of adders - Ripple carry and Carry look ahead principles. Design

of ALU. Fixed point multiplication - Booth’s algorithm. Fixed point division - Restoring and Non-

restoring algorithms. Floating point - IEEE 754 standard.

 CHAPTER 2: DATA REPRESENTATION AND COMPUTER ARITHMETIC

 CHAPTER 3: DATAPATH AND DESIGN OF ARITHMETIC LOGIC UNIT

Module – 3:

Memory unit design with special emphasis on implementation of CPU-memory interfacing. Memory

organization, Static and Dynamic memory, Memory hierarchy, Associative memory, Cache memory,

Virtual memory, Data path design for read/write access.

 CHAPTER 3: DATAPATH AND DESIGN OF ARITHMETIC LOGIC UNIT

 CHAPTER 4: MEMORY ORGANIZATION

Module – 4: Design of control unit - Hardwired and Microprogrammed control.

Introduction to instruction pipelining. Introduction to RISC architectures. RISC vs CISC architectures.

I/O operations - Concept of handshaking, Polled I/O, interrupt and DMA.

 CHAPTER 6: DESIGN OF CONTROL UNIT

 CHAPTER 7: INPUT–OUTPUT ORGANIZATION

MCA 101: COMPUTER ORGANIZATION & ARCHITECTURE (MCA)

Data and number representation-binary-complement representation, BCD-ASCII, Conversion of numbers

from one number system to the other, (r-1)’s complement representation, Binary arithmetic

 CHAPTER 2: DATA REPRESENTATION AND COMPUTER ARITHMETIC

Structure of a digital machine (von-Neumann architecture), Logic gates, Basic logic operations, Truth

tables, Boolean expression, Simplifi cation, Combination circuits, Adders, Multiplexer, Sequential cir-

cuits, Registers.

 CHAPTER 3: DATAPATH AND DESIGN OF ARITHMETIC LOGIC UNIT

ROM, PROM, EPROM and dynamic RAM, Digital components, Bus structure: - Address bus, Data

bus and DMA controller.

 CHAPTER 4: MEMORY ORGANIZATION

xviii Roadmap to the Syllabus

Karnaugh Map, Coder, Decoder, Counter – Asynchronous and Synchronous. Flip Flops – RS, JK, and

D and T.

 CHAPTER 5: COMPUTER INSTRUCTION SET

Basic computer organisation and design, Micro-programmed control, Data representation, Register

transfer and micro-operations, Central processing unit, Pipeline and vector processing, Computer arith-

metic, Input-output organisation, Memory organisation, Microprocessors (8085), Personal computing,

CPU architecture, Instruction format, Addressing mode, Stacks and handling of interrupts, Assembly

language – Elementary probloems.

 CHAPTER 6: DESIGN OF CONTROL UNIT

 CHAPTER 7: INPUT–OUTPUT ORGANIZATION

 Roadmap to the Syllabus xix

CHAPTER

1
Fundamentals of Computers

1.1 INTRODUCTION

Nowadays computers are used in almost all steps of life: education, business, entertainment, games,

sports, security, conference, etc. The design of a computer is highly sophisticated and complex. Over

the years, different methods have been applied in designing it. Parameters such as performance, cost,

storage capacity, types of use determine the choice of different concepts and methods used in design-

ing a computer. The study of these concepts and techniques will be the goal of the book.

A computer is an automatic machine made up of electronic and electro-mechanical devices, which

processes the data.

Characteristics of Computers
(a) Speed�It has fast speed operation of several million operations per second.

(b) Accuracy�It is capable of performing calculations to the extent of 64 decimal accuracy.

(c) Storage�It is capable of storing large volumes of information.

(d) Decision making�It is capable of decision making according to the supplied information.

1.2 DIGITAL COMPUTERS

Most of the modern day computers are digital computers though some are also analog computers. An

analog computer senses input signals whose values keep changing continuously. It allows physical

processes such as pressure, acceleration, power, force etc. to be represented by electrical current or

voltage signals. Digital computers (or simply computers) perform the calculations on numerical or

digital values. Today�s most of the computers fall into this class. Digital computers use the binary

number system, which has two digits: 0 and 1. A binary digit is called a bit. Information is repre-

sented in digital computers in groups of bits. By using different coding techniques, groups of bits can

be made to represent discrete symbols, such as decimal digits or letters of the alphabet.

1.2 Computer Organization

The computer system consists of three main components.

l Hardware

l Software

l Human resources

(a) Hardware Hardware refers to the physical devices attached with the computer such as central

processing unit (CPU), keyboard, monitor, disk drive, printer and other peripherals. A block diagram

of a simple computer is shown in the Fig. 1.1.

(i) Memory: The memory unit stores programs as well as data. The memory unit consists of

different types of memories, each of which has been used for some specific purpose. There are

basically three types of memories used in a system:

n Secondary memory: The slow-speed and low-cost devices that provide backup storage are

called secondary memory. The most commonly used secondary memories are magnetic

disks, such as hard disk, floppy disk and magnetic tapes. This type of memory is used for

storing all programs and data, as this is used in bulk size.

n Main Memory: This is the memory that communicates directly with CPU. Only programs

and data currently needed by the CPU for execution reside in the main memory.

n Cache memory: This is a special high-speed main memory, sometimes used to increase the

speed of processing by making the current programs and data available to the CPU at a

rapid rate.

(ii) Arithmetic and Logic Unit (ALU): It is the main processing unit which performs arithmetic and

other data processing tasks as specified by the control unit. The ALU and control unit are the

main constituent parts of the Central Processing Unit (CPU). Another component of the CPU

is register unit�collection of different registers, used to hold the data or instruction

temporarily (for register, see Chapter 3).

(iii) Control Unit: This is the unit that supervises the flow of information between various units.

The control unit retrieves the instructions using registers one by one from the program, which

is stored in the memory. The instructions are interpreted (or decoded) by the control unit itself

and then the decoded instructions are sent to the ALU for processing.

(iv) Input Unit: This unit transfers the information as provided by the users into memory.

Examples include keyboard, mouse, scanner, etc.

(v) Output Unit: The output units receive the result of the computation and displayed to the

monitor or the user gets the printed results by means of a printer.

Figure 1.1 Block diagram of a computer

Fundamentals of Computers 1.3

(vi) Bus: A bus is a subsystem that transfers data or address or a special signal (like read, write,

etc) between various units of a computer or between two computers. A bus means a group of

common communication lines, where each line is used to transfer one bit of data or address at

a time. A bus can be used as a data bus or address bus. A data bus is used to transfer data

between two units of a computer. An address bus is used to transfer address information.

Sometimes data buses and address buses are used separately, and sometimes a single bus is

used for both data and address transfer.

(b) Software The information processed by the hardware devices. Software consists of the instructions

and data that the computers manipulate to perform various tasks. A sequence of instructions is called a

program. Generally, software can be either application software or system software. Application software

is a program or collection of programs used to solve a particular application-oriented problem. Examples

include editor program, real player, and railway reservation program. System software is a program used

to manage the entire system and to help in executing various application programs. Operating systems,

compilers and device drivers are some of the system software�s examples. System-programs are generally

machine-dependent and are not concerned with specific application programs.

(c) Human resources It is the manpower and skilled personnel (programmers) available to perform

operations on computer systems.

This book provides the knowledge necessary to understand the subject in a concise manner. This

subject is sometimes considered from two different points of view as computer architecture and

computer organization.

Computer architecture is the branch of study that deals with the conceptual design and basic

overview of a computer system. It refers to the parameters of a computer system those are visible to

the user. In other words, it deals with the attributes that have direct impact on the execution of a

program. It includes the instruction addressing modes, instruction formats, instruction sets, I/O mecha-

nism, etc.

Computer organization is a lower level, more concrete description of the system that involves how

the constituent parts of the system are interconnected and how they inter-operate in order to realize

the architectural specifications. The organizational issues include the hardware details transparent to

the programmer, like the memory technology, interfacing between the CPU and peripherals, system

interconnect components like, computer buses and switches.

For example, an issue like whether a computer will include multiply instruction in its instruction

set is an architectural issue. Whether that multiply instruction will be implemented by a special

hardware unit or by a technique of repeated add-shift operations, is an organizational issue.

1.3 LAYERS IN A COMPUTER SYSTEM

A computer system can be viewed as a collection of different layers, as shown in Fig. 1.2. The

innermost layer is the hardware part that consists of central processing unit (CPU), main memory,

input/output (I/O) devices, secondary storage, etc. The hardware provides the basic computing

resources. The Basic Input-Output System (BIOS) is a program consisting of I/O drivers, which are

1.4 Computer Organization

different programs to perform various I/O operations

on behalf of various peripheral devices attached to

the computer. When a program needs an I/O opera-

tion, it calls this program. BIOS programs are basi-

cally programs embedded on a chip, called

firmware.

When first power is on, this program runs. The

main task of the BIOS is to identify and initiate

component hardware like hard drives, keyboard, and

mouse. This prepares the computer to work by load-

ing the operating system into the main memory from

the hard disk. This process is known as booting (short

form of bootstrapping). In summary, BIOS can be

said to be a coded program embedded on a chip

(firmware) that recognizes and controls various pe-

ripheral devices that build up a computer.

A programmer writes an application program in a high-level language or assembly language. The

earliest computers had their instructions written in a binary code known as machine language that

could be executed directly. An instruction in machine language meaning �add the contents of two

memory locations� might take the form

00 1110 1100000000 100 1100 100000 111

Machine-language programs are extremely difficult for humans to write and so are very error-

prone. A substantial improvement is obtained by allowing operations and operand addresses to be

expressed in an easily understood symbolic form such as

ADD X1, X2

This symbolic format, which is referred to as assembly language, came into use in the 1950s, as

computer programs were growing in size and complexity. An assembly-language program requires a

special system program called an assembler to translate it into machine language before it can be

executed. Details about assembly language and assembler are discussed in the Appendix.

Because assembly language is specific to a given machine, programs written in assembly language

are not transferable from one machine to another. To circumvent this limitation, general-purpose

languages as BASIC, FORTRAN, PASCAL, and C/C++ have been devised; a program written in

these languages can be machine-independent. These languages are called high-level languages.

A compiler is a system program, which

converts the high-level language program into

equivalent machine language program con-

sisting of instructions of binary numbers (see

Fig. 1.3). This translation in the machine

language is called the object code. Each

machine (processor) needs its own compiler or an interpreter for each high-level language. The main

difference between a compiler and an interpreter lies in the process of generating machine code. The

compiler reads the entire problem first and then generates the object code. On the other hand, the

interpreter reads one instruction at a time, produces its object code, and executes the instruction before

Figure 1.2 Abstract layers in computer sysem

Figure 1.3 Function of a compiler

Fundamentals of Computers 1.5

reading the next instruction. BASIC language is a common example of an interpreter. Compilers are

generally used in languages such as FORTRAN, COBOL, C/C++ and PASCAL.

An operating system (OS) is a set of programs and utilities, which acts as the interface between

user programs and computer hardware. The purpose of an operating system is to provide an environ-

ment in which a user may execute the programs. An operating system is similar to a government. Like

a government, it performs no useful function by itself. It simply provides an environment within

which other programs can do useful work. An operating system can be viewed as a resource manager.

The operating system provides the means for the proper use of the resources in the operation of the

computer system. The main resources are the computer hardware in the form of processor (i.e. CPU),

memory, input/output devices, communication devices, etc., software and data. The following are the

main functions of an operating system:

l User�s program management

l Memory management

l Secondary storage management

l I/O management

l File management

l Protection

l Networking management

l Command interpretation

Types of Operating Systems
The operating systems (OS) can be classified into the following types:

Batch processing OS During 1960s this OS was used. Program, data and appropriate system com-

mands to be submitted together form a job. Same type jobs are batched together and are executed at a

time. This OS usually allows little or no interaction between users and executing programs. Thus, if

any error is encountered, the program has to be debugged offline, which makes the OS very inconve-

nient in developing the program. Batch processing OS too has the drawback: large CPU idle time.

MS-DOS is a popular batch processing OS.

Multiprogramming OS In this OS, multiple numbers of programs are executed concurrently. Sev-

eral programs are stored in the main memory at a time. The OS takes one program from the memory

and assigns it to the CPU for execution. Whenever, an I/O operation is encountered in the program,

the CPU switches from this program to the next waiting program in the memory. Thus, during this

time, the I/O operation for the first program is taken care by the I/O processor or DMA (direct

memory access) controller and the second program is executed by the CPU. So, the CPU is not idle at

any time and thus the throughput (i.e. no. of programs completed per unit time) of the system

increases. Windows 98 is an example of multiprogramming OS.

Multi-tasking or Time-sharing OS This OS is basically a logical extension of multiprogramming

OS. Here, the total CPU execution time is divided into equal number of slots. Multiple programs are

kept in main memory. The CPU takes one program from the memory and executes the program for

the defined time slot. When time slot is expired, the CPU switches from this program to the next in

waiting. Thus, the CPU time is shared by several programs, which is why it is called time-shared OS.

The main advantage of this OS is good CPU response time. Very popular example of this OS is

UNIX.

1.6 Computer Organization

Multithreading OS This is an operating system that allows different parts, called threads, of a

program to execute concurrently, using one CPU. However, the program has to be designed well so

that the different threads do not interfere with each other. Examples of the OS are Linux, UNIX and

Windows 2000.

Real-time OS These systems are used in the applications with very rigid requirement of completion

of task in the pre-specified time. The real-time operating systems are used in the environment, where

a large number of events mostly external to the computer are taken as inputs and processed in a highly

time-bound manner. These operating systems are application-oriented and are used in air defence

system, nuclear plant, petro-chemical plant, etc.

Distributed OS In 1990s, the decrease in hardware costs gives rise to the development of distributed

systems, where several CPUs are used to share their program-codes in order to execute one single

task through high-speed network. Here, each CPU has attached main memory and as a result the

CPUs do not share their main memory for code sharing. This system has advantages of good resource

sharing and high computation speed. Amoeba is an example of distributed OS.

Multiprocessing OS The OS is capable of supporting and utilizing more than one CPU for one

single task computation. In this case, the CPUs interact with each other through a large shared main

memory. Examples of multiprocessing OS are UNIX, Linux and Windows 2000.

1.4 TYPES OF COMPUTERS

Digital computers can be categorized into four different types, based on their performance, size and

cost. They are: mainframe computers, minicomputers, microcomputers and supercomputers.

Mainframe computer It is a large computer system consisting of thousands of ICs, which is physi-

cally distributed in more than one place. This computer is designed for intensive computational tasks

and used by large organizations like banks, railways and hospitals. Mainframe computer is often

shared by multiple users connected to the computer through several terminals. This computer is very

expensive. Examples include IBM system/360, Burroughs B 5000 and UNIVAC 1100/2200 series.

Minicomputer This class of computers is smaller and slower version of mainframe computer. Thus,

its cost is very less compared to the mainframe computer. This machine is designed to serve multiple

users simultaneously and used by smaller organizations and research centres. Computers like DEC�s

PDP, HP 3000 series and CDC 1700 are minicomputers.

Microcomputer Invention of microprocessor (i.e. CPU on a chip) gives rise to the microcomputer

that is small, low-cost and single user machine. It is also called personal computer (PC). This

inexpensive computer is designed to use on a small desk or even to carry. This class of computers is

very popular, due to its high performance per cost ratio and size. The more powerful microcomputer

designed to perform scientific applications is called workstation. IBM PC series based on Intel�s

80x86 family, Apple�s Macintosh and Motorola�s 680x0 family are examples of microcomputers.

Fundamentals of Computers 1.7

Supercomputer This class of computers is the most powerful and expensive computer available

today. This computer is design to perform fast using multiprocessing and parallel processing tech-

niques. This machine is specially used for complex scientific applications, like weather forecasting,

satellite launching, climate research and nuclear research. Popular supercomputers are Cray-1, Power-

PC and Fujitsu�s VP 200. An important point to be noted that today�s supercomputer tends to become

tomorrow�s normal computer.

1.5 HISTORY OF COMPUTERS

The modern day computers are the results of combined efforts of several scientists over last century.

The history of computers is divided into two eras: Mechanical Era and Electronic Era.

1.5.1 Mechanical Era

Abacus It is a manual device combining two fundamental concepts.

l Numerical information represented in physical form.

l Information can be manipulated in the physical form.

The mathematical operations such as addition, subtraction, division and multiplication can be

performed on abacus (Fig. 1.4).

Figure 1.4 Abacus

The abacus is nearly 2000 years old. It is very useful for teaching simple mathematics to children.

The abacus has a wooden frame with vertical rods on which wooden beads slide. Arithmetic problems

are solved when these beads are moved around. Beads are considered counted, when moved towards

the beam that separates the two decks: upper deck and lower deck. Each bead in the upper deck has a

value of five and each bead in the lower deck has a value of one.

Mechanical Computer/Calculator Mechanical computer was invented by French philosopher Pas-

cal in 1643. This could add and subtract 8 columns of numbers. Decimal numbers were engraved on

counter wheels much like those in a car�s odometer.

Babbage�s Difference Engine It was the first computer to perform multi-step operations automati-

cally, i.e. without human intervention in every step, and was designed by mathematician Charles

Babbage in the 19th century. A difference engine is a special-purpose mechanical calculator-cum-

1.8 Computer Organization

computer designed to tabulate polynomial functions. Since logarithmic and trigonometric functions

can be approximated by polynomials, such a machine is more general than it appears at first.

Babbage�s Analytical Engine Analytical Engine was the improved version of the Difference En-

gine. This machine is considered to be the first general-purpose programmable computer ever de-

signed. It was a decimal computer with word length of 50 decimal digits and a storage capacity of

1000 digits. An interesting feature on this machine was conditional branch instruction handling. Two

major components of this machine are an ALU called the mill and a main memory called the store. A

program for the Analytical Engine (Fig. 1.5) was composed of two sequences of punched cards:

Operation cards and Variable cards.

Figure 1.5 Structure of Babbage�s analytical engine

Punched card is a magnetic plat, on which the holes are punched and they are sensed by a machine.

Operation cards are used to select the operation to be performed by the mill and variable cards are

used to specify the locations in the store from which inputs were to be taken or results sent.

1.5.2 Electronic Era

Five generations of electronic computers have been distinguished. Their major characteristics are

summarized in the Table 1.1.

Table 1.1 Generations of computers

Generation no Technologies Hardware features Software features Representative Computers

1st (1946-1954) Vacuum tubes, Fixed-point Machine language, Institute for Advanced Studies

CRT memories arithmetic assembly language (IAS), UNIVAC (Universal

Automatic Computer), ENIAC

(Electronic Numerical Integrator

& Calculator)

(Contd.)

Fundamentals of Computers 1.9

2nd(1955-1964) Discrete transistors, Floating-point High-level IBM (International Business

ferrite cores, arithmetic languages, Machine) 7094,

magnetic disks subroutines

3rd (1965-1974) Integrated circuits Microprogra- Multi-programming IBM 360, DEC�s (Digital Equipment

(SSI and MSI) mming, operating systems, Corporation) PDP-8

Pipelining, Virtual memory

Cache memory

4th (1975-1978) LSI/VLSI circuits, Microprocessors, Real-time OS, Motorola�s 68020, Intel�s 80x86

Semiconductor Micro-computers parallel languages, family.

memories RISC

5th (1979- ULSI circuits, Embedded Multimedia, Intel�s Xeon, Duo-core.

onwards) optical disk, system, Massive Artificial

parallelism Intelligence,

Internet

IAS Computer/ Von-Neumann Computer In 1946, Von Neumann and his colleagues began the

design of a new stored-program computer, now referred to as the IAS computer, at the Institute for

Advanced Studies, Princeton. Nearly, all modern computers still use this stored-program concept.

This concept has three main principles:

1. Program and data can be stored in the same memory.

2. The computer executes the program in sequence as directed by the instructions in the program.

3. A program can modify itself when the computer executes the program.

This machine employed a random-access Cathode-Ray-Tube (CRT) main memory, which permit-

ted an entire word to be accessed in one operation. Parallel binary circuits were employed. Each

instruction contained only one memory address and had the format:

OPCODE ADDRESS

The central processing unit (CPU) contained several high-speed (vacuum-tube) registers used as

implicit storage locations for operands and results. Its input-output facilities were limited. It can be

considered as the prototype of all subsequent general-purpose computers.

Instruction Format The basic unit of information i.e. the amount of information that can be trans-

ferred between the main memory and CPU in one step is a 40-bit word. The memory has a capacity of

212 = 4096 words. A word stored in the memory can represent either instruction or data.

Data The basic data item is a binary number having the format shown in Fig. 1.6. Leftmost bit

represents the sign of number (0 for positive and 1 for negative) while the remaining 39 bits indicate

the number�s size. The numbers are represented as fixed-point numbers.

(Contd.)

Figure 1.6 Number word

1.10 Computer Organization

Instruction IAS instructions are 20 bits long, so that two instructions can be stored in each 40-bit

memory location. An instruction consists of two parts, as shown in Fig. 1.7: an 8-bit op-code (opera-

tion code), which defines the operation to be performed (add, subtract, etc.) and a 12-bit address part,

which can identify any of 212 memory locations that may be used to store an operand of the

instruction.

Figure 1.7 Instruction word

Reduced Word Length IAS instruction allows only one memory address. This results in a substan-

tial reduction in word length. Two aspects of the IAS organization make this possible.

1. Fixed registers in the CPU are used to store operands and results. The IAS instructions

automatically make use of these registers as required. In other words, CPU register addresses

are implicitly specified by the op-code.

2. The instructions of a program are stored in the main memory in approximately the sequence in

which they are to be executed. Hence the address of the next instruction pair is usually the

address of the current instruction pair plus one. The need for a next instruction address in the

instruction format is eliminated. Special branch instructions are included to permit the instruc-

tion execution sequence to be varied.

Structure of an IAS Computer The CPU of the IAS computer, as shown in Fig. 1.8, consists of a

data-processing unit (also known as datapath) and a program control unit. It contains various processing

and control circuits along with a set of high-speed registers (AC, MQ, DR, IBR, PC, IR, and MAR)

intended for temporary storage of instructions or data or memory addresses. The arithmetic-logic

circuits of the data-processing unit perform the main actions specified by instructions. The control

circuits in the program-control unit (simply control unit) are responsible for fetching instructions,

decoding instructions, fetching data (operands) from the memory and providing proper control signals

for all CPU actions. An electronic clock circuit is used to generate the basic timing signals needed to

synchronize the operation of the different parts of the system.

The main memory M is used for storing programs and data. A word transfer can take place

between the 40-bit data register (DR) of the CPU and any location M(X) with address X in M. The

address X to be used is stored in a 12-bit address register (MAR). The DR may be used to store an

operand during the execution of an instruction. Two additional registers for the temporary storage of

operands and results are included: the accumulator (AC) and the multiplier quotient register (MQ).

Two instructions are fetched simultaneously from M and transferred to the program control unit. The

instruction that is not to be executed immediately is placed in an instruction buffer register (IBR). The

op-code of the other instruction is placed in the instruction register (IR) where it is decoded. The

address field of the current instruction is transferred to the memory address register (MAR). Another

address register called the instruction address register or the program counter (PC) is used to store the

address of the next instruction to be executed.

Fundamentals of Computers 1.11

(or Datapath)

Figure 1.8 Structure of an IAS computer

Von-Neumann Bottleneck One of the major factors contributing for a computer�s performance is

the time required to move instructions and data between the CPU and main memory. The CPU has to

wait longer to obtain a data-word from the memory than from its registers, because the registers are

very fast and are logically placed inside the processor (CPU). This CPU-memory speed disparity is

referred to as Von-Neumann bottleneck. This performance problem is reduced by using a special type

memory called cache memory between the CPU and main memory. The speed of cache memory is

almost same as the CPU, for which there is almost no waiting time of the CPU for the required data-

word to come. Another way to reduce the problem is by using special type computers known as

Reduced Instruction Set Computers (RISC). This class of computers generally uses a large number of

registers, through which the most of the instructions are executed. This computer usually limits access

1.12 Computer Organization

to main memory to a few load and store instructions. This architecture is designed to reduce the

impact of the bottleneck by reducing the total number of the memory accesses made by the CPU and

by increasing the number of register accesses.

1.6 VARIOUS SUBSYSTEMS OF A COMPUTER

Nearly all modern-day computers are following the

Von Neumann�s concept (i.e. stored program con-

cept). So, we generally use the term �computer�

throughout the book to mean the Von Neumann com-

puter, unless it is stated otherwise.

In a computer, the component types recognized

fall into four main groups: CPU, memory unit, I/O

unit, and system bus; as shown in Figure 1.9. Here,

we give a brief summary of the characteristics of

these major components.

1.6.1 Central Processing Unit (CPU)

The CPU (simply processor) is the major subsystem

of a computer. It has two major functions:

1. Program Execution This involves a variety of data operations such as data processing, data

storage and data movement.

2. Interfacing with other Subsystems For program execution, the processor has to interface

with other subsystems like main memory, cache memory and I/O devices. The processor has the

responsibility of overall coordination of intercommunication between these subsystems. This is usu-

ally done via a set of buses.

Most contemporary CPUs are microprocessors, implying that their physical implementation is a

single VLSI chip. Figure 1.10 shows the essential internal organization of a CPU at the register-level.

The CPU contains the logic needed to execute its particular instruction set and is divided into

datapath (i.e. data-processing unit) and control units. The control unit generates addresses of instruc-

tions and data stored in external memory. In this particular system a cache memory is placed between

the main memory M and the CPU. The cache is a fast buffer memory designed to hold an active

portion of the system�s address space; it is often placed, totally or in part, on the same IC as the CPU.

Each memory request generated by the CPU is first directed to the cache. If the required information

is not currently available to the cache, the request is redirected to M and the cache is automatically

updated from M. The control unit fetches instructions from the cache or M and decodes them to

derive the control signals needed for their execution. The CPU�s datapath has the arithmetic-logic

circuits that execute most instructions; it also has a set of registers for temporary data storage. The

CPU manages a system bus, which is the main communication link among the CPU-cache subsystem,

main memory, and the I/O devices.

Figure 1.9 Major components of a computer

system

Fundamentals of Computers 1.13

The CPU is a synchronous sequential circuit whose clock period is the computer�s basic unit of

time. In one clock cycle the CPU can perform a register-transfer operation, such as fetching an

instruction word from M via the system bus and loading it into the instruction register (IR). This

operation can be expressed formally by IR ¨ M(PC); where PC is the program counter the CPU uses

to hold the expected address of the next instruction word. Once in the control unit, an instruction is

decoded to determine the actions needed for its execution; for example, perform an arithmetic opera-

tion on data words stored in CPU registers. The control unit then issues the sequence of control

signals that enables execution of the instruction in question. The entire process of fetching, decoding,

and executing an instruction constitutes the instruction cycle of CPU.

1.6.2 Memory Unit

A memory unit is an integral part of a computer system. Its primary function is to store all information

needed by the system. Typically, a memory unit holds programs and data. A computer designer has to

pay attention to the memory unit design because the memory system cost is a significant fraction of

the cost of the total computer system. The system performance is largely dependent on the organiza-

tion, storage capacity, and speed of operation of the memory system.

In a broad sense, a computer memory system can be logically divided into three categories:

l Main memory

l Secondary memory

l Cache memory

Main memory is the storage area in which all programs are executed. The CPU can directly access

only those items that are stored in the main memory. Therefore, all programs and data must be within

the main memory to speed up execution. Previously, the main memory was designed using magnetic

cores. In modern computers, semiconductor technology is employed in main memory design. Usually

Figure 1.10 Internal organization of a CPU

1.14 Computer Organization

the size of the main memory is much larger than that of collection of processor registers (register file),

and its operating speed is slower than the processor registers by a factor of almost 10.

Secondary memory refers to the storage medium comprising slow devices such as magnetic tapes

and disks. These devices are used to hold data files and programs, such as compilers and database

management systems, which are not frequently needed by the processor. Secondary memories are also

referred to as auxiliary or backup store.

Studies have shown that typical programs spend most of their execution times in a few main

routines or loops. In this situation, in a short period of time, the addresses generated by a CPU have

the tendency to get clustered around small regions in the main memory. This phenomenon is known

as the locality of reference. Suppose a small but a fast memory (faster than the main memory by 5 or

6 times) is installed to keep the most frequently needed information, and the CPU is instructed to

access this fast memory (as opposed to the main memory). The efficiency of program execution can

then be significantly improved. This newly added memory is known as the cache memory. This

concept was first implemented in the IBM 360/85 computer. Since this technique proved to be very

successful, it is included in modern-day computer systems.

1.6.3 I/O Unit

A user communicates with a computer system via the I/O devices interfaced to it. The user can enter

programs and data using the keyboard on a terminal and execute the programs to obtain results.

Therefore, the I/O devices connected to a computer system provide an efficient means of communica-

tion between the computer and the outside world. These I/O devices are commonly called peripherals

and include keyboards, CRT displays, printers, disks, and teletypewriters.

The characteristics of the I/O devices are normally different from those of the computer. For

example, the speed of operation of the peripherals is usually slower compared to the computer, and

the word length of the computer may be different from the data format of the peripheral devices. To

make the characteristics of the I/O devices compatible with those of the computer, interface hardware

circuitry between the computer and I/O devices is necessary. Interfaces provide all input and output

transfers between the computer and peripherals by using an I/O bus. An I/O bus carries three types of

signals: device address, data, and command.

For large computers, a separate intelligent I/O processor (IOP) or data channel is provided to route

all I/O transfers. To make small computer systems inexpensive, a separate interface rather than a

smart I/O processor is provided with each I/O device. I/O processors control all major I/O functions

and relieve the computer of these tasks.

The CPU uses the I/O bus when it executes an I/O instruction. A typical I/O instruction has three

fields. When the computer executes an I/O instruction, the control unit decodes the op-code field and

identifies it as an I/O instruction. The CPU then places the device address and command from

respective fields of the I/O instruction on the I/O bus. The interfaces for various devices connected to

the I/O bus decode this address, and the appropriate interface is selected. The identified interface

decodes the command lines and determines the function to be performed. Typical functions include

receiving data from an input device into the CPU or sending data to an output device from the CPU.

1.6.4 System Bus

A bus is a subsystem that transfers data or address or special signal (like read, write, etc) between

Fundamentals of Computers 1.15

various units of a computer or between two computers. A bus means a group of common communica-

tion lines, where each line is used to transfer one bit of data or address at a time. A shared communi-

cation path consisting of one or more connection lines is known as a bus. Sometimes, we say n-bit bus

or n-line bus, the meaning of which is that the bus consists of n parallel lines to transfer n-bits of data

all at a time. The n is called width of the bus. The width of the bus has an impact of performance of

computer. The wider the bus, the greater the number of bits transferred at a time. A bus can be used as

a data bus or address bus. A data bus is used to transfer data between two units of a computer. An

address bus is used to transfer address information.

All units of the computer communicate with each other by buses. In systems with many compo-

nents, communication may be controlled by a subsystem called a system bus (interconnection

network). The function of the system bus is to establish dynamic communication paths among the

components via the buses under its control. For cost reasons, these buses are usually shared. Only two

communicating devices can access and use a shared bus at any time, so a problem known as bus

contention results when several system components request use of the bus. The system bus resolves

such contention by selecting one of the requesting devices on some priority basis and connecting it to

the bus. The system bus may place the other requesting devices in a queue.

Bus control is one of the functions of a processor such as a CPU or an IOP. An IOP controls a

common I/O bus to which many IO devices are connected. The IOP is responsible for selecting a

device to be connected to the I/O bus and from there to the main memory. It also acts as a buffer

between the relatively slow I/O devices and the relatively fast main memory. Larger systems have

special processors whose sole function is to supervise data transfers over shared buses.

1.7 INSTRUCTION CYCLE

The instruction cycle is one of the most important mental models of computation. This embodies the

basic principle of how all modern processors work. This functional model has remained more or less

the same over decades no matter how and when the development of processors has taken place ever

since the days of Von Neumann architecture to today�s supercomputers. The principles are fairly

simple and can be easily generalized to any processor or operating system.

Once a computer has been powered on, it performs a continuous cycle called instruction cycle that

consists of the following subcycles:

1. Fetch cycle

2. Decode cycle

3. Execute cycle

4. Interrupt cycle

Figure 1.11 shows the sequence of steps to be performed by any computer for each instruction

execution.

Fetch Cycle The fetch cycle begins with retrieving the address stored in the Program Counter

(PC) register. The address stored in the PC is some valid address in the memory holding the instruc-

tion to be executed (in case this address does not exist we would end up causing an interrupt or

exception). The Central Processing Unit (CPU) completes this step by fetching the instruction stored

at this address from the memory and transferring this instruction to a special register�Instruction

1.16 Computer Organization

Figure 1.11 A simple instruction

cycle

Register (IR)�to hold the instruction to be executed. The PC is

incremented to point to the next address from which the new

instruction is to be fetched.

Decode Cycle The decode cycle is used for interpreting the

instruction that was fetched in the fetch cycle. Decoding deter-

mines three things:

l Type of operation to be performed by ALU.

l If data operands are needed for the instruction execution,

the memory or register addresses of those data are calcu-

lated.

l The address of the result to be sent.

Execute Cycle This cycle, as the name suggests, simply ex-

ecutes the instruction that was fetched and decoded in ALU.

Typical instructions include:

l Performing logic operations on data (such as OR, AND,

comparison, etc.)

l Performing arithmetic operations on the data (such as ad-

dition, subtraction, etc.)

Interrupt Cycle An interrupt can occur any time during the

program execution. Whenever it is caused, a series of events takes

place so that the instruction fetch-execute cycle can again resume

after the OS calls the routine to handle the interrupt. Therefore,

when an interrupt occurs, the following steps are performed by

the OS:

l Suspend the execution of current instruction

l Push the address of current instruction on the memory

stack

l Loading the PC with the first address of the interrupt han-

dler

l This starts the instruction fetch execute cycle again for the

instructions in the interrupt handler.

l Set the mode of operation as a privileged one, often termed as the supervisor mode, so that the

OS can execute the handler.

l Once the OS completes the execution of the interrupt handler, the address of the next instruc-

tion to be executed is obtained from popping the value of the address in the stack. The

suspended instruction can now continue with its execution.

This cycle of fetching a new instruction, decoding it and finally executing it continues until the

computer is turned off.

Fundamentals of Computers 1.17

1.8 HARVARD ARCHITECTURE

In 1944, Howard Aiken of Harvard University developed a computer (named Automatic Controlled

Calculator and later Harvard Mark I) which used two separate memories, one for program storage

(on punched tape) and other for data storage (on relay latches).

The Harvard architecture uses physically separate memories for their instructions and data, requiring

dedicated buses for each of them (see Fig. 1.12). Thus instructions and data can be fetched simultaneously.

Program memory and data memory can be of different widths, type etc. Both memories can be

accessed at the same time using separate buses. Thus Harvard computers are faster than Von Neumann

computers for a given circuit complexity. This architecture has been followed in modern day systems

like, Digital Signal Processors (DSP) and Microcontrollers.

Figure 1.12 Harvard architecture

The instruction format of the Harvard Mark I machine was:

ADDRESS1 ADDRESS2 OPCODE

where ADDRESS1 and ADDRESS2 specified the registers storing the operands while ADDRESS2

also specified the destination register where the result could be stored. OPCODE specified the

operation (add, subtract or multiplication etc) to be performed. The storage had the capacity to store

seventy two 23-digit decimal numbers.

1. What are the differences between low-level language and high-level language?

Answer

(a) Low-level languages are closer to the computers, that is low-level languages are generally

written using binary codes; whereas the high-level languages are closer to the human, that is

these are written using English-like instructions.

(b) Low-level language programs are machine dependent, that is, one program written for a

particular machine using low-level language cannot run on another machine. But, high-level

language programs are machine independent.

(c) As far as debugging is concerned, high-level programs can be done easily than low-level programs.

1.18 Computer Organization

(d) It is more convenient to develop application programs in high-level languages compared to the

low-level languages.

2. What are the differences between machine language and assembly language?

Answer

(a) Machine language instructions are composed of bits (0s and 1s). This is the only language the

computer understands. Each computer program can be written in different languages, but

ultimately it is converted into machine language because this is the only language the computer

understands. Assembly language instructions are composed of text-type mnemonic codes.

(b) Machine language instructions are difficult to understand and debug, since each instruction is

only combination of 0s and 1s. However, since assembly language instructions are closer to

the human language (i.e. English), it is easy to debug.

(c) In terms of execution, machine language is faster than assembly language. Because for assembly

language program, one converter called assembler is needed to convert it into equivalent

machine language program; whereas no converter is needed for machine language program.

3. Differentiate between compilers and interpreters.

Answer

(a) Compiler is a system program that converts the source program written in a high-level language
into corresponding target code in low-level language. This conversion is done by compiler at a
time for all instructions. However, the interpreter is a system program that translates each high-
level program instruction into the corresponding machine code. Here, in interpreter instead of
the whole program, one instruction at a time is translated and executed immediately. Popular
compilers are C, C++, FORTRAN, and PASCAL. The commonly used interpreters are BASIC
and PERL.

(b) The compilers execute more efficiently and are faster compared to interpreters. Though, the
interpreters can be designed easily.

(c) The compilers use large memory space compared to interpreters.

4. Describe the advantages and disadvantages of assembly language.

Answer

Advantages of Assembly Language:

The advantage of assembly language over high-level languages is that the computation time of an

assembly-language program is less. An assembly-language program runs faster to produce the desired

result.

Disadvantages of Assembly Language:

(i) Programming is difficult and time-consuming.

(ii) The assembly language is machine-oriented. The programmer must have a detailed knowledge

of the structure of the computer s/he is using. S/He must have the knowledge of registers and

instruction set of the computer, connections of ports to the peripherals, etc.

(iii) The program written in assembly language for one computer cannot be used on any other

computer, i.e. the assembly-language program is not portable. Each processor has its own

instruction set and hence its own assembly language.

(iv) An assembly-language program contains more instructions compared to a high-level language

program. Each statement of a program in a high-level language (such as C, FORTRAN,

PASCAL, etc.) corresponds to many instructions in an assembly-language program.

Fundamentals of Computers 1.19

5. Discuss briefly about Princeton architecture and Harvard architecture.

Answer

Princeton computers are computers with a single memory for program and data storage. The Von-

Neumann architecture is also known as Princeton architecture.

Harvard computers are computers with separate program and data memories. Data memory and

program memory can be different widths, type etc. Program and data can be fetched in one cycle, by

using separate control signals: �program memory read� and �data memory read�. Example includes

Harvard Mark 1 computer.

6. What is an Operating System (OS)? Briefly describe the major functions of an OS.

Answer

An operating system is a collection of programs and utilities, which acts as the interface between the

user and computer. The operating system is a system program that tells the computer to do tasks under

a variety of conditions. The main objective of an operating system is to create a user-friendly

environment.

The following are the main functions of operating systems:

1. Managing the user�s programs.

2. Managing the memories of computer.

3. Managing the I/O operations.

4. Controlling the security of computer.

7. Show the addressing for program and data, assuming Von-Neumann architecture for storing

the following program:

(a) Assume that a program has a length of 2048 bytes and the program starts from an address 0.

(b) The input data size is 512 bytes and stores from 3000.

(c) The results of 30 bytes generated after program execution are stored at address 4000.

Answer

The figure below shows the addressing of program and data.

Addressing of stored program in von Neumann architecture

1.20 Computer Organization

8. What is Von Neumann bottleneck? How can this be reduced?

Answer

Since the CPU has much higher speed than the main memory (RAM), the CPU has to wait longer to

obtain a data-word from the memory. This CPU-memory speed disparity is referred to as Von-

Neumann bottleneck.

This performance problem is reduced by using a special type fast memory called cache memory

between the CPU and main memory. The speed of cache memory is almost same as the CPU, for

which there is almost no waiting time of the CPU for the required data-word to come. Another way to

reduce the problem is by using special type computers known as Reduced Instruction Set Computers

(RISC). The intension of the RISC computer is to reduce the total number of the memory references

made by the CPU; instead it uses large number of registers for same purpose.

9. Why does increasing the amount of data that can be stored in a processor�s register file (i.e.

collection of registers) generally increase the performance of the processor?

Answer

The registers are very fast and are logically placed inside the processors. Thus, accessing data in

registers are faster than accessing data in the memory. Hence, by providing more data in the register

file allows more data to be accessed at this faster speed, improving performance.

10. What is the merit and demerit in using a single I/O bus for all the devices connected to a given

system?

Answer

Merit: The use of single bus means less complexity in system design. A single bus allows many

devices to interface to it without requiring that the system designers provide separate interfaces

for each device.

Demerit: The use of single bus reduces the bandwidth (i.e. speed of I/O operation). The several

devices attached to the single bus have to share the total possible bandwidth of the bus,

limiting the performance.

11. Assume that an LSI IC at semiconductor memory stores 1024 bits. Assume a main memory

unit of 1024 ICs. How many bytes do these ICs store?

Answer

Since an LSI IC at semiconductor memory stores 1024 bits, the main memory unit of 1024 ICs stores

1024 ¥ 1024 bits = (1024 ¥ 1024)/8 bytes = 128 KB.

12. How does a multiprogramming system give the illusion that multiple programs are running on

the machine simultaneously? What factor can cause this illusion to void?

Answer

In multiprogramming system, the processor switches among multiple programs executing them very

frequently�50 or more times per second. If the number of programs executing in the system is relatively

small, each program will get a chance to execute often enough that the system looks like processor is

executing all of the programs at the same time. However, if the number of programs executing on the

system gets too large, the processor will be busy in context switching (i.e. transferring control among

multiple programs) and thus execution of programs will get reduced, making the illusion void.

Fundamentals of Computers 1.21

13. Suppose a 600 MHz machine does the number of context switching 60 times per second. How

many cycles are there in each time-slice?

Answer

600 MHz = 600 ¥ 106 cycles per second.

Therefore, the number of cycles per time-slice = (600 ¥ 106)/60 = 107.

14. To achieve a speed-up of 4 on a program that originally took 80 ns to execute, what must be

the execution time of the program be reduced to?

Answer

Speed-up = before

after

Execution time

Execution time

Now, we have speed-up = 4 and execution timebefore = 80 ns.

Therefore, from the speed-up formulae, we get execution timeafter = 20 ns.

So, to achieve the speed-up of 4, execution time must be reduced to 20 ns.

Group-A

1. Choose the most appropriate option for the following questions:

(i) CPU consists of

(a) main memory and ALU

(b) main memory, ALU and control unit

(c) cache memory, ALU and control unit

(d) ALU, control unit and registers.

(ii) Control unit is

(a) a logic unit to provide control signals for different units

(b) used to control input-output from a processor

(c) used to control the CPU

(d) used to fetch the instruction from memory.

(iii) A compiler is

(a) an application program

(b) a system program used to convert a high-level program to low-level program

(c) a part of operating system

(d) a system program used to convert an assembly language program to low-level program.

(iv) An example of popular batch processing operating system is

(a) Windows 98

(b) MS-DOS

(c) UNIX

(d) Windows 2000.

(v) Which of the operating systems supports multiple CPUs through shared main memory?

(a) multiprogramming OS

(b) real-time OS

(c) distributed OS

(d) multiprocessing OS.

1.22 Computer Organization

(vi) BIOS is

(a) a collection of I/O driver programs

(b) part of OS to perform I/O operations

(c) firmware consisting of I/O driver programs

(d) a program to control one of the I/O peripherals.

(vii) Babbage�s difference engine is a computer

(a) for subtraction

(b) for both addition and subtraction

(c) for performing multi-step operations automatically

(c) for arithmetic and logical operations.

(viii) Stored program computers

(a) store the program and data in the same memory

(b) store the program and data in two separate memories

(c) store programs in memory

(d) store the program and data in the same address of memory.

(ix) Stored program computers

(a) require a permanent memory

(b) need small memory

(c) allow self modifying programs

(d) do not treat themselves as data.

(x) IAS computer introduced the concept of

(a) ALU, main memory, PC, AC and multiplier quotient (MQ) registers for executing instruc-

tions as well as stored program

(b) ALU, AC and MQ for executing an instruction as well as stored program

(c) decimal, fixed-point and floating point ALUs with stored program

(d) ALU, main memory, PC and subroutine calls.

(xi) The Von-Neumann bottleneck is a problem, which occurs due to

(a) small size main memory

(b) high-speed CPU

(c) speed disparity between CPU and main memory

(d) malfunctioning of any unit in CPU.

(xii) Where does the control unit look in order to find the address of the next instruction to be

fetched?

(a) Memory address register (WAR)

(b) Instruction register (IR)

(c) Memory buffer register (MBR)

(d) Accumulator (AC)

(xiii) Any computer must at least consist of

(a) data bus

(b) address bus

(c) control bus

(d) all of the above.

(xiv) Virtually all computer designs are based on the Von Neumann architecture. A high level view of

this architecture has the following three components:

(a) Buses, memory, input/output controllers

Fundamentals of Computers 1.23

(b) Hard disks, floppy disks, and the CPU

(c) Memory, the CPU, and printers

(d) Memory, input/output modules, and the CPU.

(xv) Which of the following programming languages has an instruction set closest to the machine

language of a computer?

(a) BASIC

(b) Fortran

(c) Assembly language

(d) C++

(xvi) An operating system that allows several processors to perform computation as the same time is

called

(a) single program

(b) multitasking

(c) multiprocessing

(d) real-time processing.

(xvii) The fundamental conceptual unit in a computer is

(a) CPU

(b) hard drive

(c) operating system

(d) transistor.

(xviii) A computer that is advertised as having a 96K byte DRAM memory and a 2.1 Gigabyte hard

drive has

(a) 96 K bytes of primary memory and 2.1 gigabytes of secondary memory

(b) 2.1 gigabytes of primary memory and 96 K bytes of secondary memory

(c) 96 bytes of cache, 2.1 gigabytes of primary memory

(d) 96 K bytes of cache, 96 K bytes of primary memory, and 2.1 gigabytes of secondary

memory.

(xix) Machine language and assembly language programming are

(a) preferred because machine codes can be run fast by the processor

(b) not preferred because larger memory is needed for a program

(c) preferred over high-level languages for correct development of a program

(d) not preferred over high-level languages for fast development of a program.

(xx) The unit which performs the tasks of fetching, decoding and managing the execution and then

storing the results is

(a) ALU (b) CU (c) Register file (d) Memory unit.

Group-B

2. What do you mean by a computer system? Describe the functions of different hardware components.

3. Classify the types of software in general. Discuss each of them in brief.

4. Define: operating system and compiler. Briefly discuss about different operating systems with ex-

amples.

5. What is BIOS? What is bootstrap loader?

6. Distinguish between compiler and interpreter with examples.

7. Describe the functions of OS?

8. Describe different types of external memories.

9. Discuss about different types computers: mainframe, mini, micro and supercomputer.

1.24 Computer Organization

10. What is the stored program computer? Discuss about its instruction and data formats.

11. Describe the structure of IAS computer.

12. Write short notes on: Von Neumann (IAS) computer and its bottleneck.

13. What are the basic stages of the fetch-execute cycle?

14. List two registers that are critical to the fetch-execute cycle.

15. Which computer components are important in the fetch-execute cycle? For each, state the reasons

why.

16. Can any computer component become involved in the fetch-execute cycle?

17. Describe what happens when an instruction is fetched.

18. Describe what happens while an instruction is decoded.

19. Describe what happens during the execution of an instruction.

20. Briefly describe Harvard architecture with a diagram.

CHAPTER

2
Data Representation and

Computer Arithmetic

2.1 INTRODUCTION

The computers store the binary information needed to perform some operation in memory or proces-

sor registers. The binary information can be instruction or data. Instruction is a bit or group of bits

used to instruct the computer to execute the program. Data (sometimes called operands) are numbers

and other binary-coded information that are operated on by an instruction to achieve required results.

In this chapter, we show how different data types are represented in binary coded form in processor

registers and the arithmetic operations which are performed on stored data.

2.2 DATA TYPES

Different user (application) programs use different types of data based on the problem. A program can

operate either on numeric data or non-numeric data. The different types of non-numeric data are as

follows:

l Characters

l Addresses

l Logical data

All non-binary data are represented in computer�s memory or registers in the binary coded form.

Character Data A character may be a digit, an alphabet or a special symbol, etc. A character is

represented by a group of bits. It includes upper-case and lower-case alphabets (26), decimal numbers

(10) and special characters, such as +, @, *, etc. A set of multiple characters usually form a meaning-

ful data. The standard code to represent characters is American Standard Code for Information

Interchange (ASCII). This standard uses an 8-bit pattern in which 7 bits specify the character. The 8th

bit is generally used as a parity bit for error detection or sometimes it is permanently 1 or 0. Another

popular code is Extended Binary Coded Decimal Interchange Code (EBCDIC) used for large comput-

ers. The computer systems such as IBM System/360 use this code. It is an 8-bit code without parity.

2.2 Computer Organization

Addresses The data or operand is often used as an address for some instructions. An address may

be a processor register or a memory location from where the required operand value is retrieved for

instruction execution. An address is represented by a group of bits. In some instructions, multiple

operand addresses are specified for data to be retrieved or stored. The details of this will be discussed

in Chapter 5.

2.3 NUMBER SYSTEMS

In our day-to-day life, we are using decimal numbers, which are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. In other

words, humans are most accustomed with decimal system. But, a computer can only understand the

information composed of 0s and 1s. That means the binary number system is followed by the

computers in most natural way. However, sometimes it is necessary to use other number systems, like

hexadecimal or octal or decimal systems.

A number in the number system of base or radix (r) is represented by a set of symbols from r

distinct symbols. The decimal number system uses 10 digits from 0 to 9, thus its base is 10. The

binary system uses two distinct digits 0 and 1, thus its base is 2. For octal system (base r = 8), a

number is represented by 8 distinct digits 0 to 7. The 16 symbols used in hexadecimal number system

(base 16) are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F. Here, the symbols A, B, C, D, E, and F

correspond to the decimal numbers 10, 11, 12, 13, 14, and 15 respectively.

The value of a number is calculated by summing up all multiplied value of each digit with an
integer power of r. For example, the decimal number 8752.4

= 8 ¥ 103 + 7 ¥ 102 + 5 ¥ 101 + 2 ¥ 100 + 4 ¥ 10�1

Similarly, the binary number 101101

= 1 ¥ 25 + 0 ¥ 24 + 1 ¥ 23 + 1 ¥ 22 + 0 ¥ 21 + 1 ¥ 20

Decimal Codes As we know, humans understand decimal system easily and computers process

every thing in binary, therefore there must be a conversion system from decimal-to-binary representa-

tion in computer�s input process. Similarly, binary-to-decimal conversion system must be a part of the

computer�s output process. These conversions should be performed very rapidly. To facilitate rapid

conversions, several number codes exist that encode each decimal separately by a group of bits. These

types of codes are called decimal codes. Two widely used decimal codes are: BCD (binary coded

decimal) and Excess-3 code.

BCD (Binary Coded Decimal) The BCD is the simplest binary code to represent a decimal

number. In BCD code, four bits are used to represent a decimal number. For example, decimal 5 is

represented by 0101. When a decimal number consists of more than one decimal digit, each digit is

independently represented by its 4-bit binary equivalent. For example, 39 is represented by 0011

1001.

BCD code is weighted (positional) code and weights of four bits which represent an individual

digit are 8, 4, 2 and 1. For this reason, the BCD code is sometimes called 8-4-2-1 code. In weighted

codes, the bits are multiplied by weights mentioned and addition of the weighted bits gives the

decimal digit. For example, the number 1001 in BCD code (8-4-2-1 code) gives the decimal equiva-

lent = 8 ¥ 1 + 4 ¥ 0 + 2 ¥ 0 + 1 ¥ 1= 9.

The code has the advantage of rapid conversion, though it has the disadvantage in forming comple-

ments. For example, the 1�s complement of 0011 (decimal 3) is 1100 (decimal 12), which is invalid

BCD code. To solve this problem, another decimal code called excess-3 code is used.

Data Representation and Computer Arithmetic 2.3

Excess-3 Code In this code, 0011 (decimal 3) is added to each BCD (decimal digit) of a number.

For example, 0110 (decimal 6) = 1001 (decimal 9) in excess-3 code. The excess-3 code for 435 is

0111 0110 1000. This code has been used in some older computers. The disadvantage of this code is

that it is not a weighted code that means the sum of weights of bits is not equal to the corresponding

decimal digit.

2.4 COMPLEMENTS OF NUMBERS

Before going to discuss the numerical data representation, we have to know about the complements of

a number, since complements are used in digital computers for simplifying the subtraction operation

and for logical manipulation. Complements of numbers in base/radix r system are of two types: the r�s

complement and (r-1)�s complement. Thus for binary system, there are 2�s and 1�s complement. For

decimal system, complements are 10�s and 9�s complements.

(r-1)’s Complement For a number N having m digits in base r, the (r � 1)�s complement of N is

defined as (rm � 1) � N. In case of decimal numbers, r = 10 and r � 1 = 9, so the 9�s complement of N

is (10m � 1) � N. Now, we know that 10m = 1000�0 (m 0s) in decimal. Therefore, 10m � 1 is

equivalent to 99�9 (m 9s) in decimal. For example, m = 5, we have 105 = 100000 and 105 � 1 =

99999. It infers that the 9�s complement of a decimal number is obtained by subtracting each digit

from 9. For example, the 9�s complement of 35367 is 99999 � 35367 = 64632.

In case of binary number system, r = 2 and r�1 = 1, so the 1�s complement of N is (2m �1) � N.

Again, we have, 2m = 1000�0 (m 0s) in binary. Thus, 2m �1 equals to 111�1 (m 1s) in binary. For

example, m = 5, we have 25 = (100000)2 and 25 � 1 = (11111)2. Thus the 1�s complement of a binary

number is obtained by subtracting each bit from 1. However, the subtraction of a bit from 1 means the

bit to change from 1 to 0 and 0 to 1. Hence, the 1�s complement of a binary number is obtained by

replacing 1s into 0s and 0s into 1s. For example, the 1�s complement of a binary number 101101 is

010010.

Similarly, the (r�1)�s complement of numbers in other systems like octal and hexadecimal can be

formulated.

r’s Complement The r�s complement of a number N having m digits in base r is defined as rm � N;

if N π 0 and 0; if N = 0. Note that, rm � N = [(rm � 1) � N] + 1. Thus, the r�s complement of a number

is obtained by adding 1 to the (r�1)�s complement of the number. For example, the 10�s complement

of a decimal number 43678 is 56321 + 1 = 56322 and the 2�s complement of a binary number 101101

is 010010 + 1 = 010011. An m-bit 2�s-complement number system can represent every integer in the

range �2m�1 to +2m�1 � 1. Also, note that, the complement of a complement of a number is

the original number. The r�s complement of N is rm � N. The complement of the complement is rm �

(rm � N) = N, which is the original number. Now, we will see the application of using r�s complement

in subtraction of unsigned numbers.

Subtraction of Unsigned Numbers

For subtraction, the borrow method is used in real life. In this method, when the minuend digit is

smaller than the corresponding subtrahend digit, we borrow a 1 from the next higher significant

position. This method is popularly used in school level mathematics. This method is found to be

2.4 Computer Organization

complex than the method that uses complements, when subtraction is to be performed in digital

computers. So, computers usually use the method of complements to implement subtraction.

The subtraction of two m-digit unsigned numbers A � B (B π 0) in base r can be performed using

the rule: The minuend A is added with the r�s complement of the subtrahend B, which gives A +

(rm � B) = (A � B) + rm.

Now, following two cases may arise.

Case-1: When A ≥ B

The addition gives an end carry rm from leading bit position (most significant position), which is to

be discarded and the rest is the result A � B.

Case-2: When A < B

The addition does not give any end carry and the addition is equal to rm � (B � A), which is the r�s

complement of (B � A). Now, to get the result in familiar form, the r�s complement of the result is

taken and a negative sign is placed in front of the result.

Let�s consider the example of subtraction, 45328 � 20342 = 24986. The 10�s complement of 20342

is 79658.

A = 45328

10�s complement of B = 79658

Sum of these two = 124986

Discard end carry 105 = �100000

Thus, answer is = 24986.

Now consider, an example where A < B. The subtraction 20342 � 45328, which will give �24986

as answer, is to be performed.

We have,

A = 20342

10�s complement of B = 54672

Sum = 75014

There is no end carry.

The result is � 24986, after taking 10�s complement of 75014.

The same way, the subtraction of two unsigned binary numbers can be done.

2.5 BINARY DATA REPRESENTATION

A number can be either unsigned or signed. Unsigned numbers are positive numbers, including zero.

So, the unsigned numbers can be represented by its magnitude, there is no need to represent the sign

of the numbers. Positive and negative numbers, including zero are treated as signed numbers. In order

to differentiate between positive and negative numbers, we need a notation for sign. In real life, a

negative number is indicated by a minus sign in leftmost position followed by its magnitude and a

positive number by a plus sign in leftmost position followed by its magnitude. But, everything in

computers must be represented with 1s and 0s, including the sign of numbers. As a result, it is the

common practice to represent the sign of numbers with a bit placed in the leftmost (most significant)

position of the number. The convention is that a bit 0 is used as sign bit for positive numbers and 1 for

negative numbers.

Data Representation and Computer Arithmetic 2.5

Moreover, a number may have a radix (binary) point. A number may be a fraction or integer or

mixed integer-fraction number, depending on the position of the radix point. Then the natural ques-

tion comes in mind: where is this radix (binary) point stored in the registers? There are two ways of

specifying the position of the binary point in a register: (1) by giving it a fixed position. So, this

method used to represent numbers is referred to as fixed-point representation method. (2) by using a

floating-point representation. The fixed-point numbers are known as integers whereas floating-point

numbers are known as real numbers.

2.5.1 Fixed-Point Number Representation

In a fixed-point representation, all numbers are represented as integers or fractions. The fixed-point

method assumes that the radix (binary) point is always fixed in one position. The two widely used

positions in register are (1) a binary point in the extreme left of the register to make the stored number

a fraction, and (2) a binary point in the extreme right of the register to make the stored number an

integer. As we have said everything is represented by 1s and 0s in computers, so in either case, the

binary point can not be stored in register; its existence is assumed from the fact of the number�s type,

viz. whether the number stored in the register is a fraction or an integer. Most of the computers follow

the first method (i.e. binary point is in the extreme left of the register).

The positive fixed-point (integer) number is represented by 0 in sign bit position and the magnitude

by a positive binary number. For example, +12 is to be stored in an 8-bit register. +12 is represented

by a sign bit of 0 in the leftmost position followed by the binary equivalent of 12, i.e. 0 0001100.

There is only one way to represent a positive number. However, there are three representations for a

negative integer number. The negative number is represented by 1 in the sign bit position and the

magnitude of the number is represented in one of three possible ways:

(a) signed-magnitude representation

(b) signed-1�s complement representation

(c) signed-2�s complement representation

In signed-magnitude representation of a negative number, the number is represented by a 1 in the

sign bit position and the magnitude by positive binary number. For other two representations, the

negative number is represented by a 1 in the sign bit position and the magnitude by either the 1�s

complement or 2�s complement of its positive value. There are three different methods to represent -

12 with 8-bit registers.

In signed-magnitude representation: 1 0001100

In signed-1�s complement representation: 1 1110011

In signed-2�s complement representation: 1 1110100

In signed-magnitude representation, the range for numbers using n-bit register is: �(2n�1 � 1) to

+(2n�1 �1). Note that there are two representations of 0 (+ 0 and � 0). + 0 has a value of 0 in the

magnitude field and sign bit as 0, while � 0 has a value 0 in the magnitude field and sign bit as 1.

Also, this method is not suitable for arithmetic operations in computer, as it creates hardware com-

plexity in computers.

The signed-1�s complement method has difficulties because it has two different representations of

0, like signed-magnitude method. It is useful as a logic operation since the change of 1 to 0 and 0 to 1

is equivalent to a logical complement operation. Thus, this method is not usually used for arithmetic

operation.

2.6 Computer Organization

In signed-2�s complement representation, the range for numbers using n bits is: �(2n�1) to

+(2n�1 �1). This range comes from the fact that there is only one representation for 0, allowing an odd

number of non-zero values to be represented. Thus, the negative numbers are represented using only

signed-2�s complement method.

Arithmetic Operations on Fixed-Point Numbers
Arithmetic Addition The addition of two numbers in the sign-magnitude system is performed by the

rules of ordinary arithmetic. This method of addition is quite complex when it is implemented in

computers. However, the addition using signed-2�s complement method is very simple and can be

stated as follows:

The two numbers, including their sign bits, are added and the carry out from the sign (leftmost)

position is discarded, if any. Numerical examples are illustrated below, where numbers are stored in

8-bit registers.

+9 00001001 �9 11110111

+15 00001111 +15 00001111

+24 00011000 +6 00000110

+9 00001001

�15 11110001

�6 11111010

Negative results are automatically in 2�s complement form. For example in last case, the signed

binary number 11111010 is a negative number because the leftmost bit is 1. So, its magnitude�s (7-

bits: 1111010) 2�s complement is 0000110. That is the binary equivalent of +6. Therefore, the result

is �6.

Arithmetic Subtraction Like the arithmetic addition, the subtraction of two numbers in the signed-

magnitude system is performed by the rules of ordinary arithmetic and it is quite complex in imple-

menting in computers.

But, subtraction of two signed binary numbers when negative numbers are in 2�s complement form

is very simple and can be stated as follows:

The 2�s complement of the subtrahend, including the sign bit is added with the minuend, including

the sign bit. The carry out from the sign bit position is discarded, if any. The subtraction can be

summarized with the relation:

A � B = A + 1�s complement of B + 1.

This method of subtraction is obtained from the fact that the subtraction can be converted into

addition, if sign of subtrahend is reversed. In other words,

(±A) � (+B) = (±A) + (�B)

(±A) � (�B) = (±A) + (+B)

Consider the subtraction (�9) � (�15) = +6. For 8-bit registers, this can be written as 11110111 +

00001111 = 100000110. The correct answer is 00000110 (i.e., +6), after removing the end carry.

Note that the addition and subtraction of binary numbers in the signed-2�s complement system are

performed by the same basic addition and subtraction rules as unsigned numbers. Moreover, the

addition and subtraction of binary numbers are performed by only the addition operation. Thus,

computers need only one common additive hardware circuit to handle two arithmetic operations.

Data Representation and Computer Arithmetic 2.7

Overflow in Fixed-Point Representation An overflow is a problem in digital computers because

the numbers are stored in registers, which are finite in length. If two numbers of n digits each are

added and the sum occupies n + 1 digits, an overflow will occur. This holds good irrespective of the

numbers� type. Since a register of n-bit can not accommodate the result of n + 1 bits, an overflow

results. If it occurs, a corresponding flip-flop in CPU is set, which is then verified by the user or

program.

If one number is positive and the other is negative, after an addition overflow cannot occur, since

addition of a positive number to a negative number produces a number that is always smaller than the

larger of the two original numbers. However, an overflow may occur if the two numbers added are of

same sign i.e., both are positive or both are negative. Let�s consider following examples.

Carries: 01 Carries: 10

+69 0 1000101 �69 1 0111011

+78 0 1001110 �78 1 0110010

+147 1 0010011 �147 0 1101101

Observe that the 8-bit result that should have been positive (first example) has a negative sign bit

and the 8-bit result that should have been negative (second example) has a positive sign bit. However,

if the carry out from the sign bit position is treated as the sign of the result, the 9-bit answer thus

obtained will be correct answer. Since the 9-bit answer cannot be accommodated with 8-bit register,

we say that an overflow results.

To detect an overflow condition the carry into the sign bit position and the carry out from the sign

bit position are examined. If these two carries are both 0s or both are 1s, there is no overflow. If these

two carries are not equal (i.e., if one is 0 and other is 1), an overflow condition exists. This is

illustrated in the examples where the two carries are explicitly shown. Using an XOR gate (For detail,

see Appendix), whose two inputs are these carries, an overflow can be detected when the output of

the gate is 1.

2.5.2 Floating-Point Representation

In scientific applications of computers, fractions are frequently used. So, a uniform system of repre-

sentation is required which automatically keeps track of the position of the radix (binary) point. Such

a system of representation is called floating-point representation of numbers.

In floating-point representation, a number has two parts. The first part is called mantissa or

fraction, to represent a signed fixed-point number, which may be a fraction or an integer. The second

part is called exponent or characteristic, to designate the position of the radix point. For example, in

floating-point representation, the decimal number +786.231 is represented with a mantissa and an

exponent as follows:

Mantissa Exponent

+ 0.786231 + 03

This representation is equivalent to the scientific notation +0.786231 ¥ 10+03.

In floating-point representation, a number is always assumed to interpret a number in the following

scientific notation:

±M ¥ r ±E

2.8 Computer Organization

Out of three (mantissa M, radix r and exponent E), only the mantissa M and the exponent E are

physically present in the register, including their sign bits. The radix r is not present, but its presence

and the position of it in the mantissa are always assumed. Most computers use fractional system of

representation for mantissa, but some computers use the integer system for mantissa.

If the integer system of representation for mantissa is used, the decimal number +786.231 is

represented in floating-point with a mantissa and an exponent as follows:

Mantissa Exponent

+ 786231 �03

The floating-point binary number is also represented in the same fashion. For example, the binary

number + 10011.1101 can be represented with 12-bit mantissa and 6-bit exponent as below.

Mantissa Exponent

0 10011110100 0 00101

The mantissa has a leading 0 to indicate positive sign and the exponent has representation of + 5.

When the most significant digit (left most) of the mantissa is nonzero, the floating-point number is

said to be normalized. For example, 0.00386 ¥ 104 is not a normalized number. The corresponding

normalized number is 0.386 ¥ 102. Similarly, the 8-bit binary number 00011100 is not normalized

because of the three leading 0s. The number can be normalized by shifting it three positions to the left

and leaving out the leading 0s to obtain 11100000. But, the left shifting three positions means

multiplication of the original number with 23 = 8. So, to retain the value of number same, the

exponent must be subtracted by 3. The maximum possible precision for the floating-point number is

achieved by normalization. Another advantage of using normalized floating point numbers is in-

creased coverage of numbers. If a computer uses all numbers as normalized, then one bit position can

be saved by omitting the most significant position, which is always 1. This 1 is called hidden 1. It

should be noted that a zero cannot be normalized because it does not have a nonzero digit.

Floating-point representation is more useful than fixed-point representation, in dealing with very

large or small numbers. Moreover, the floating-point representation is more accurate in arithmetic

operation.

IEEE Standard for Floating-Point Numbers Initially, different computer manufacturers were

using different formats for the floating-point representation. The most common ways of representing

floating-point numbers in computers are the formats standardized as the IEEE (Institute of Electrical

and Electronics Engineers) 754 standard, commonly called �IEEE floating-point�. These formats can

be manipulated efficiently by nearly all modern floating-point computer hardware. It has two similar

formats as follows:

1. Single Precision Format It is 32-bit format, in which 8-bit is for exponent, 23-bit for mantissa,

1-bit for sign of the number, as shown in Fig. 2.1. Here, the implied base 2 and original signed

exponent E are not stored in register. The value actually stored in the exponent field is an unsigned

integer E¢ called biased exponent, which is calculated by the relation E¢ = E + 127. This is referred to

as the excess-127 format. Thus, E¢ is in the range 0 £ E ¢ £ 255. The end values of this range, 0 and

255, are used to represent special values. Therefore, the range of E¢ is 1 £ E¢ £ 254, for normal values.

This means that the actual exponent (E) is in the range �126 £ E £ 127.

The lower-order 23 bits represent the mantissa. Since binary normalization is used, the most

significant bit of the mantissa is always set to 1. This bit is not explicitly represented; it is assumed to

Data Representation and Computer Arithmetic 2.9

be to the immediate left of the binary point. This bit is called hidden 1. Thus, the 23 bits stored in the

mantissa M field actually represent the fractional part of the mantissa, that is, the bits to the right of

the binary point. The 1-bit sign field S contains 0 for positive and 1 for negative number.

2. Double Precision Format This is 64-bit format in which 11-bit is for biased exponent E¢,

52-bit for mantissa M and 1-bit for sign of the number, as shown in Fig. 2.2. The representation is

same as single precision format, except the size and thus other related parameters.

Figure 2.1 IEEE Single precision format

Special Values

Here we consider IEEE single precision (i.e., 32-bit) format. The end values 0 and 255 of the biased

exponent E¢ are used to represent special values.

Case �1: When E¢ = 0

If the mantissa M = 0, the exact 0 value is represented.

If the mantissa M π 0, denormal numbers are represented. Their value is ± 0.M ¥ 2�126. Thus, they

are smaller than the smallest normal number. The mantissa part of the number 0.M has a leading 0

instead of the usual leading 1. That is, M is any nonzero 23-bit fraction. The purpose of introducing

denormal numbers is to allow for gradual underflow, providing an extension of the range of normal

representable numbers that is useful in dealing with very small numbers in certain situations.

Figure 2.2 IEEE double precision representation

2.10 Computer Organization

Case- 2: When E¢ = 255

If the mantissa M = 0, the value infinity (•) is represented. The infinity is the result of dividing a

normal number by 0.

If the mantissa M π 0, the result represented is called Not a Number (NaN). A NaN is a result of

performing an invalid operation such as dividing 0 by 0 or 1- .

Similarly, for double precision (i.e., 64-bit) format, the end values 0 and 2047 of the biased

exponent E¢ are used to represent special values.

Example 2.1 Represent the binary positive number 1101011 in the IEEE single-precision format.

The binary positive number 1101011 = + 1.101011 ¥ 26

The 23-bit mantissa M = 0.101011 000000 000000 00000

The biased exponent E¢ = E + 127 = 6 + 127 = 133 = 1000 0101

The sign bit S = 0, since the number is positive.

Therefore, the IEEE single-precision (32-bit) representation is:

0 1000 0101 101011 000000 000000 00000

Example 2.2 Represent the decimal number � 0.75 in the IEEE single-precision format.

The decimal number � 0.75 = � 0.11 in binary = � 1.1 ¥ 2�1

The 23-bit mantissa M = 0.100000 000000 000000 00000

The biased exponent E¢ = E + 127 = �1 + 127 = 126 = 0111 1110

Since the number is negative, the sign bit S = 1

Therefore, the IEEE single-precision (32-bit) representation is:

1 0111 1110 100000 000000 000000 00000

Arithmetic Operations on Floating-point Numbers
Add/Subtract Operation The rule for the operation is summarized below:

Steps

1. Choose the number with the smaller exponent and shift its mantissa right a number of posi-

tions equal to the difference in exponents.

2. Set the exponent of the result equal to the larger exponent.

3. Perform addition/subtraction on the mantissas and determine the sign of the result.

4. Normalize the result, if necessary.

Multiplication Operation The rule for the operation is summarized below (based on IEEE Single-

precision representation):

Steps

1. Add the exponents and subtract 127.

2. Multiply the mantissas and determine the sign of the result.

3. Normalize the result, if necessary.

Division Operation The rule for the operation is summarized below (based on IEEE Single-preci-

sion representation):

Data Representation and Computer Arithmetic 2.11

Steps

1. Subtract the exponents and add 127.

2. Divide the mantissas and determine the sign of the result.

3. Normalize the result, if needed.

Overflow and Underflow in Floating-Point Representation If the result of an arithmetic operation

on floating-point numbers is too large or too small to be stored in computer, an overflow or underflow

may result. If two floating-point numbers of the same sign are added, a carry may be generated from

the high-order bit position (most significant bit position) we call it as mantissa overflow, as this extra

bit cannot be accommodated in the allotted mantissa field. Such overflow can be corrected easily by

shifting the sum one position to the right and thus incrementing the exponent. When two floating-

point numbers are multiplied, the exponents are added. Some times, the sum of the exponents may be

very large and all bits of the sum result can not be stored in the allotted exponent field. This is called

exponent overflow. This type overflow can not be corrected and hence an error signal is generated by

the computer.

Similarly, when two floating-point numbers are subtracted, there may be at least one 0 in the most

significant position in the mantissa of the result. Then the resultant mantissa is said to be in underflow

condition. This condition can again be corrected by shifting the result to the left and decrementing the

exponent until a non-zero bit appears in the left-most position in the mantissa. In case of division of two

numbers, the exponent of the divisor is subtracted from the exponent of the dividend. The subtraction

result may be too small to be represented. This is called exponent underflow. Like exponent overflow,

this problem can not be solved and thus an error signal is generated by the computer.

2.6 GUARD BITS AND TRUNCATION

When the mantissa is shifted right, some bits at the right most position (least significant position) are

lost. In order to obtain maximum accuracy of the final result; one or more extra bits known as guard

bits, are included in the intermediate steps. These bits temporarily contain the recently shifted out bits

from the right most side of the mantissa. When the number has to be finally stored in a register or in

a memory as the result, the guard bits are not stored. However, based on the guard bits, the value of

the mantissa can be made more precise by the rounding (truncation) technique.

The truncation of a number involves ignoring of the guard bits. Suppose n = 3 bits are used in final

representation of a number, n = 3 extra guard bits are kept during operation. By the end of the

operation, the resulting 2n = 6 bits need to be truncated to n =3 bits by one of the following three

methods. In all cases truncation error exists, which is E = actual value � truncated value.

Chopping In this method, simply all n = 3 guard bits are dropped. All fractions in the range 0. b�1

b�2 b�3 000 to 0. b�1 b�2 b�3 111 are truncated to 0. b�1 b�2 b�3. The truncation error of chopping is

0 £ E £ 0.000111 < 0.001 = 2�n . Since E is always greater than 0, we say this truncation error is

biased.

Von Neumann Rounding If at least one of the guard bits is 1, the least significant bit of the

retained bits is set to 1, no matter whether it is originally 0 or 1; otherwise nothing is changed in

retained bits and simply guard bits are dropped. Two worst cases may arise (for b�3 = 1 and 0) when

at least one of the guard bits is 1.

2.12 Computer Organization

M fi 0101

Q fi 1100

0000

0000

0101

0101

0111100 Final Product

üï
ý
ïþ

Partial Products

Figure 2.3 Paper and pencil

method (Manual

method)

Case-1: The number 0. b�1 b�2 1111 is truncated to 0. b�1 b�2 1. The truncation error is E = 0. b�1

b�2 1111 � 0. b�1 b�2 1 = 0.000111 < 0.001 = 2�n .

Case-2: The number 0. b�1 b�2 0001 is truncated to 0. b�1 b�2 1. Then the truncation error is E = 0.

b�1 b�2 0001 � 0. b�1 b�2 1 = � 0.000111 > � 0.001 = � 2�n.

Both cases can be summarized as | E | < 2�n. Thus the Von Neumann rounding error is unbiased,

because the range of error is symmetrical about 0.

Rounding Here, the truncation of the number is done according to the following rules.

Rule-1: If the highest guard bit is 1 and the rest guard bits are not all 0s, a 1 is added to the

lsb position of the bits retained. Thus, 0. b�1 b�2 b�3 1xx is rounded to 0. b�1 b�2 b�3 + 0.001. The error

in this case is E = 0. b�1 b�2 b�3 1xx � (0. b�1 b�2 b�3 + 0.001) = 0.0001xx � 0.001 =

�(0.001 � 0.0001xx) > � 0.0001 = � 2�(n+1).

Rule-2: If the highest guard bit b�(n+1) is 0, drop all guard bits. Thus, the number 0. b�1 b�2 b�3 0xx is

rounded to 0. b�1 b�2 b�3. The truncation error E is = 0. b�1 b�2 b�3 0xx � 0. b�1 b�2 b�3 = 0.0000xx >

� 0.0001 = � 2�(n+1).

Rule-3: If the highest guard bit is 1 and the rest guard bits are all 0s, the rounding depends on the lsb,

b�n = b�3.

If lsb = 0, the number 0. b�1 b�2 0100 is truncated to 0. b�1 b�2 0. The error in this case is E = 0.

b�1 b�2 0100 � 0. b�1 b�2 0 = 0.0001 = 2�(n+1).

If lsb = 1, the number 0. b�1 b�2 1100 is truncated to 0. b�1 b�2 1 + 0.001. The truncation error E is

= 0. b�1 b�2 1100 � (0. b�1 b�2 1 + 0.001) = � 0.0001 = � 2�(n+1).

The value represented by guard bits is 0.5 * 2�n, it is randomly rounded either up or down with

equal probability (50%). The rounding error of these cases can be summarized as | E | £ 2�(n+1). Thus,

the rounding error is unbiased.

Comparing the three rounding methods, we see that the rounding technique has the smallest

unbiased rounding error, but it requires most complex and costly hardware.

2.7 MULTIPLICATION OF UNSIGNED AND SIGNED INTEGERS

Two unsigned integers can be multiplied the same way as two

decimal numbers by manual method. Consider the multiplication of

two unsigned integers, where the multiplier Q =12 = (1100)2 and

the multiplicand M = 5 = (0101)2 as illustrated in Fig. 2.3.

2.7.1 Array Multiplier

In the paper and pencil (manual) method, shifted versions of multi-

plicands are added. This method can be implemented by using AND

gates and full adders (for full adder, see Appendix). The hardware

realization of this method for 4-bit multiplier Q and 4-bit multipli-

cand M is shown in Fig. 2.4. The basic combinational cell used in

the array as the building block handles one bit of the partial product, as shown in Fig. 2.4(a). If the

multiplier bit Qi is 1, then this cell adds an incoming partial product bit to the corresponding multipli-

cand bit Mi. Each row of the array adds the multiplicand appropriately left shifted to the incoming

Data Representation and Computer Arithmetic 2.13

partial product PPi to generate outgoing partial product PPi+1. If the multiplier bit Qi is 0, PPi is

passed down vertically as PPi+1 with a physical right shift. Initial partial product PP0 is all 0s and PP4

is the desired 8-bit product M ¥ Q = Pr7 Pr6 Pr5 Pr4 Pr3 Pr2 Pr1 Pr0.

Outgoing

Figure 2.4 4 ¥ 4 array multiplier

2.7.2 Sequential Multiplication Method for Unsigned Numbers

Here, instead of shifting the multiplicand to the left, the partial product is shifted to the right, which

results in leaving the partial product and the multiplicand in the required relative position. When the

corresponding bit of the multiplier is 0, there is no need to add all zeroes to the partial product since

it will not alter its value. An n ¥ n unsigned multiplier has three n-bit registers, A, M and Q. The

2.14 Computer Organization

Figure 2.5 Sequential multiplication method

multiplication method is described in the flowchart shown in Fig. 2.5. The A register, called the

accumulator, is initialized to 0. The Q register is initially set to the multiplier value.

When the algorithm is terminated, the A register holds the high-order n bits, and the Q register

holds the low-order n bits of the product. The M register always holds the multiplicand. The F flip-

flop holds the end carry generated in the addition. This flip-flop F is used as the serial input, when the

register pair AQ is shifted right one position.

Example 2.3 To illustrate this method, consider, the multiplier Q = 14 = 11102 and the multipli-

cand M = 6 = 01102.

M F A Q Size

Initial 0110 0 0000 1110 4

Configuration

Data Representation and Computer Arithmetic 2.15

Step-1

As Q[0]=0

R.S.(FAQ) 0110 0 0000 0111 3

Size � �

Step-2

As Q[0]= 1

A = A + M 0110 0 0110 0111 �

RS(FAQ) 0110 0 0011 0011 2

Size � �

Step-3

As Q[0]=1

A = A + M 0110 0 1001 0011 �

RS(FAQ) 0110 0 0100 1001 1

Size � �

Step-4

As Q[0]=1

A= A + M 0110 0 1010 1001 �

RS(FAQ) 0110 0 0101 0100 0

Size � �

Since the size register is currently 0, the algorithm is terminated and the final product is = AQ = 0101

01002 = 8410.

This method of multiplication is good for unsigned number multiplication. In case of signed

number multiplication, the signs of the operands can be treated separately and the multiplication of

magnitudes of the numbers can be processed using the above method. The sign of the product is

determined as Mn ≈ Qn, where Mn, Qn are the signs of the multiplicand (M) and the multiplier (Q)

respectively.

2.7.3 Booth’s Multiplication Procedure (for Signed Numbers)

As we have seen lastly, the multiplication of signed numbers in sequential multiplication method

requires extra processing steps besides the main multiplication for the magnitude. This is an overhead

when operands are denoted in signed 2�s complement form. The overhead can be eliminated by a

specific mapping rule, called the recoded multiplication technique, in which the multiplier is mapped

in accordance with the recoding technique. The basis of the recoding technique is the property, called

string property. This states that �a block of consecutive k 1s in a binary sequence of multiplier may be

replaced with a block of k � 1 consecutive 0s surrounded by the digits 1 and 1�.

For example, consider the following multiplier:

0011110 (equivalent decimal is 30).

By the string property, it may be considered as the difference between 0100000 (decimal 32) and

0000010 (decimal 2). The multiplication by 0011110 can be achieved by summing up the following

two products:

(a) 25 times the multiplicand.

(b) 2�s complement of 21 times the multiplicand.

2.16 Computer Organization

In sequential multiplication method, four additions are required due to the string of four 1s. This

can be replaced by one addition and one subtraction. This is one significant advantage of Booth�s

multiplication method over sequential multiplication method. The recoding rule on multiplier can be

summarized as below:

Step-1: Start searching 1 from lsb (right most bit). Skip all 0s and continue the search till first 1

encountered.

Step-2: Change the first 1 in multiplier as 1.

Step-3: Search for a 0 one by one without disturbing all succeeding 1s; just recode them (1s) as 0s.

When a 0 is encountered, change this 0 as 1.

Step-4: Proceed to look for next 1 without disturbing 0s and continue using steps 2 and 3.

Table 2.1 Booth�s Recoding Rule

Ai Ai�1 Recoding (change) for Ai Remarks on multiplier

0 0 0 Sequence of 0s

1 0 1 Start of sequence of 1s

1 1 0 Sequence of 1s

0 1 1 End of sequence of 1s

Example 2.4 Original number = 0011110 = 30

Recoded form = 01000 1 0 = (0 + 32 + 0 + 0 + 0 � 2 + 0) = 30.

Based on this recoding rule, the Booth�s algorithm for multiplication can be developed easily. The

algorithm inspects two lower-order multiplier bits at time to take the next step of action. The algo-

rithm is described by the flowchart in Fig. 2.6. A flip-flop (a fictitious bit position) is used to the right

of lsb of the multiplier and it is initialized to 0. Subsequently, it receives the lsb of the multiplier when

the multiplier is shifted right.

Once all bits of the multiplier are inspected, the accumulator and multiplier registers together

contain the product. Ignore the right end flip-flop used for holding an initial 0, as it is a fictitious bit

and subsequent lsbs from multiplier. The circuit block diagram of the Booth�s multiplication

algorithm is shown in Fig. 2.7.

Example 2.5 To see how this procedure works, the following example is considered. M = � 6 =

1010 and Q = 7 = 0111.

M A Q Size

Initial

Configuration 1010 0000 0111 0 4

Step-1

As Q[0] = 1 and

Q[�1]=0

A=A � M 1010 0110 0111 0 �

And ARS(AQ) 1010 0011 0011 1 3

Data Representation and Computer Arithmetic 2.17

Figure 2.6 Booth�s multiplication algorithm

Step-2

As Q[0]=1 and

Q[�1]=1

ARS(AQ) 1010 0001 1001 1 2

Step-3

As Q[0]=1 and

Q[�1]=1

ARS(AQ) 1010 0000 1100 1 1

2.18 Computer Organization

11

1011 101010

1011

10100

1011

1001

Quotient = decimal 3

Remainder = decimal 9

Figure 2.8 Paper and pencil (manual)

division method

Step-4

As Q[0]=0 and

Q[�1]=1

A=A + M 1010 1010 1100 1 �

ARS(AQ) 1010 1101 0110 0 0

Since, the Size register becomes 0, the algorithm is terminated and the product is = AQ = 1101 0110,

which shows that the product is a negative number. To get the number in familiar form, take the 2�s

complement of the magnitude. The result is � 42.

Advantages of the Booth�s multiplication method:

(i) Pre-processing steps are unnecessary, so the Booth�s algorithm treats signed numbers in a

uniform way with unsigned numbers.

(ii) Less number of additions and subtractions are required, compared to the sequential multiplica-

tion method.

2.8 DIVISION OF UNSIGNED INTEGERS

The division is more complex operation than multiplication. Given a dividend (D) and a divisor (V),

the quotient (Q) and the remainder (R) are related according to the following expression:

D = QV + R, where 0 £ R < V.

Subtractive division algorithms are derived from the paper and pencil (manual) method. This

process is illustrated in Fig. 2.8; using D = 42 (in decimal) = 101010 and Q = 11 (in decimal) = 1011.

In this method, every iteration generates one quotient bit. First, align the divisor below the dividend

from msb and try to subtract it from the dividend. If the

result of the subtraction is positive, then put a 1 for the

quotient, and shift the divisor one position to the right.

The process is repeated. However, if the divisor cannot

be subtracted from the dividend for a positive result, put

a 0 for the quotient and shift the divisor to the right.

Then, try to subtract the same from the dividend. This

process continues until all bits of the dividend are

covered.

Figure 2.7 Block diagram of Booth�s multiplication algorithm

Data Representation and Computer Arithmetic 2.19

2.8.1 Restoring Division Method

Now, the manual division method can be modified in the following way to obtain restoring division

method.

Instead of shifting the divisor, shift the dividend to the left. The restoring division method uses

three n-bit registers A, M, Q for dividing two n-bit numbers. The register M is used to hold the

divisor. Initially, A contains 0 and Q holds the n-bit dividend. In each iteration, the contents of

register-pair AQ are shifted to the left first. The content of M is then subtracted from A. If the result

of subtraction is positive, a 1 is placed into the vacant position created in lsb position of Q by the left

shift operation; otherwise a 0 is put into this position and before beginning the next iteration, restore

the content of A by adding the current content of A register with M. For this step, the algorithm is

referred to as a restoring division algorithm. When the algorithm terminates, the A register contains

the remainder result and the Q register contains the quotient result.

The restoring division algorithm to divide two n-bit numbers is described using the flowchart

shown in Fig. 2.9. The circuit block diagram of the restoring division method is shown in Fig. 2.10.

Example 2.6 To illustrate restoring division algorithm, let us consider an example where dividend

Q = 7 = 0111 and divisor M = 3 = 0011.

M A Q Size

Initial Configuration 00011 00000 0111 4

Step-1

LS(AQ) 00011 00000 111� �

A=A � M 00011 11101 111� �

As Sign of A= �ve

Set Q[0]=0

& Restore A 00011 00000 1110 3

Step-2

LS(AQ) 00011 00001 110� �

A=A � M 00011 11110 110� �

As Sign of A= �ve

Set Q[0]=0

Restore A 00011 00001 1100 2

Step-3

LS(AQ) 00011 00011 100� �

A=A � M 00011 00000 100� �

As Sign of A= +ve

Set Q[0]=1 00011 00000 1001 1

Step-4

LS(AQ) 00011 00001 001� �

A=A � M 00011 11110 001� �

As Sign of A= �ve

Set Q[0]=0 00011 00001 0010 0

Restore A

From the above result, we see that the quotient = Q = 0010 = 2 and remainder = A = 00001 = 1.

2.20 Computer Organization

Figure 2.9 Restoring division algorithm

Data Representation and Computer Arithmetic 2.21

Figure 2.10 Block diagram of restoring division algorithm

2.8.2 Non-restoring Division Method

In the previous restoring method, we see that some extra additions are required to restore the number,

when A is negative. Proper restructuring of the restoring division algorithm can eliminate that restora-

tion step. This is known as the non-restoring division algorithm.

The three main steps in restoring division method were:

1. Shift AQ register pair to the left one position.

2. A = A � M.

3. If the sign of A is positive after the step 2, set Q[0] = 1; otherwise, set Q[0] = 0 and restore A.

Now, assume that the step 3 is performed first and then step 1 followed by step 2. Under this

condition, the following two cases may arise.

Case 1: When A is positive:

Note that shifting A register to the left one position is equivalent to the computation of 2A and then

subtraction. This gives the net effect on A as 2A � M.

Case 2: When A is negative:

First restore A by adding the content of M register and then shift A to the left one position. After that

A will be subtracted from M register. So, all together they give rise the value of A as 2(A + M) �

M = 2A + M.

Basis on these two observations, we can design the non-restoring division method and it is de-

scribed in the flowchart, as shown in Fig. 2.11.

This algorithm removes the restoration step, though it may require a restoration step at the end of

algorithm for remainder A, if A is negative.

Example 2.7 To illustrate this method, let us take an example where dividend Q = 0111 and

divisor M = 0011.

M A Q Size

Initial Configuration 00011 00000 0111 4

2.22 Computer Organization

Step-1

As Sign of A= +ve

LS(AQ) 00011 00000 111� �

A=A � M 00011 11101 111� �

As sign of A= �ve

Set Q[0]=0 00011 11101 1110 3

Step-2

As sign of A= �ve

LS(AQ) 00011 11011 110� �

A=A + M 00011 11110 110� �

As sign of A= �ve

Set Q[0]=0 00011 11110 1100 2

Step-3

As sign of A= �ve

LS(AQ) 00011 11101 100� �

A=A + M 00011 00000 100� �

As sign of A= +ve

Set Q[0]=1 00011 00000 1001 1

Figure 2.11 Non-restoring division method

Data Representation and Computer Arithmetic 2.23

Step-4

As sign of A= +ve

LS(AQ) 00011 00001 001� �

A=A � M 00011 11110 001� �

As sign of A= �ve

Set Q[0]=0 00011 00001 0010 0

Restore A

From the above last step, we conclude that quotient = 0010 = 2 and remainder = 00001 = 1.

These two algorithms can be extended to handle signed numbers as well. The sign of the result

must be treated separately as in case of multiplication and the positive magnitudes of the dividend and

divisor are performed using either of the last two techniques for quotient and remainder.

Figure 2.11 (Contd.)

2.24 Computer Organization

2.9 ERROR DETECTION AND CORRECTION

Error detection and correction are essential parts of any communication, data storage application.

Some examples are magnetic drives, CDs and mobile phones. Words (i.e. messages) that are transmit-

ted over a communication channel can be damaged; their bits can be masked or inverted by noise.

Some simple codes can detect but cannot correct these errors; others can detect and correct one or

more errors. Here we address one Hamming code that can correct a single-bit error and detect a

double-bit error.

2.9.1 Parity Bit and Parity Checker

Binary data, when transmitted and processed, is susceptible to noise that can alter its 1s to 0s and 0s

to 1s. To detect such errors, an additional bit called the parity bit is added to data bits and the word

containing data bits and the parity bit is transmitted. At the receiving end, the number of 1s in the

word received is counted and the error, if any, is detected. However, this parity check detects only

single-bit errors.

A parity bit of a 0 or a 1 is attached to the data bits such that the total number of 1s in the word is

even for even parity and odd for odd parity. The parity bit can be attached to the code group either at

the beginning or at the end depending on system design. A given system operates with either even or

odd parity but not both. So, a word always contains either an even or odd number of 1s. At the

receiving end, if the word received has an even number of 1s in the odd parity system or an odd

number of 1s in the even parity system, it implies that an error has occurred.

This simple check does have limitation: it only detects errors, without being able to correct them.

2.9.2 Hamming Code Approach

Hamming codes are an extension of this simple method that can be used to detect and correct a larger

set of errors. In the late 1940�s, Claude Shannon was developing information theory and coding as a

mathematical model for communication. At the same time, Richard Hamming, a colleague of Shan-

non at Bell Laboratories, found a need for error correction in his work on computers. Hamming

realized that a more sophisticated pattern of parity checking allowed the correction of single errors

along with the detection of double errors. The codes that Hamming devised, the single-error-correct-

ing binary Hamming codes and their single-error-correcting, double-error-detecting extended versions

marked the beginning of coding theory. These codes remain important to this day, for theoretical and

practical reasons as well as historical.

A computer memory, prone to errors, could be the unreliable channel. Storage of data into memory

could be the sending process and the reading of data from memory the receiving process. Protecting

data in computer memories was one of the earliest applications of Hamming codes. We now describe

the clever scheme invented by Hamming in 1948. To keep things simple, we describe the binary

length 7 Hamming code.

2.9.3 Design of Single Error Detecting and Correcting Hamming Code

In a code where each code word contains several message bits (i.e. data bits) and several check bits

Data Representation and Computer Arithmetic 2.25

(i.e. parity bits), each check bit must be some function of the message bits. In the Hamming code each

check bit is taken to be a mod 2 sum of a subset of the message bits. Assume that the rate of the code

is 4/7, so that for every four information bits transmitted, there are three check bits introduced in the

codeword. Call these the parity check bits. Three check bits c1, c2, c4 are added to 4 information bits

d7, d6, d5 and d3. Each of the check bits maintains even parity for specified bit positions of the 7-bit

code. For such a design, the check bits c1, c2, c4 are computed for 4 information bits as shown in

Figure 2.12.

Decimal Hamming Code Bit Position

d7 d6 d5 c4 d3 c2 c1

0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1

2 0 0 1 1 0 0 1

3 0 0 1 1 1 1 0

4 0 1 0 1 0 1 0

5 0 1 0 1 1 0 1

6 0 1 1 0 0 1 1

7 0 1 1 0 1 0 0

8 1 0 0 1 0 1 1

9 1 0 0 1 1 0 0

c1 maintains even parity for c1, d3, d5 and d7.

c2 maintains even parity for c2, d3, d6 and d7.

c4 maintains even parity for c4, d5, d6 and d7.

Figure 2.12 7-bit Hamming code with 4 information bits and 3 check bits c1, c2, c4

Thus as example, for four information bits 0101, c1 = 1, c2 = 0 and c4 = 1. This 7-bit encoded word

is sent to the destination where check bits c*1, c*2, c*4 are recomputed and the error vector e is

computed as e = (c*4 + c4) (c*2 + c2) (c*1 + c1). The error correcting Hamming code is so designed

that the decimal value of the error vector directly specifies the error position. Thus for e = 000, there

is no error. On the other hand, if the code word 0101101 (say) is transmitted as 0001101 with an error

in 6th bit position, then at the destination c*1 = 1, c*2 = 1 and c*4 = 0, while c1 = 1, c2 = 0 and c4 = 1.

Hence, error vector e = 110, that is the code word has an error in the bit position 6. By inverting this

bit position, the correct code word is resorted at the destination.

2.9.4 Encoding in the Hamming Code

Let us define the check bits c1, c2, c4 as follows:

c4 ∫ d5 + d6 + d7 (mod 2)

c2 ∫ d3 + d6 + d7 (mod 2)

c1 ∫ d3 + d5 + d7 (mod 2)

After the message sequence is encoded into the code word c = (d7 d6 d5 c4 d3 c2 c1), the codeword is

transmitted across the noisy channel. The channel adds an error pattern e = (e7 e6 � e1) to the code

2.26 Computer Organization

word, to obtain the received pattern r = c + e. The decoder then has to estimate the original message

from the distorted code word.

Let us rewrite the equations above as

d5 + d6 + d7 + c4 ∫ 0 (mod 2)

d3 + d6 + d7 + c2 ∫ 0 (mod 2)

d3 + d5 + d7 + c1 ∫ 0 (mod 2)

Every code word satisfies these equations. Therefore, the matrix equation below

7

6

5

4

3

2

1

d

d

d1 1 1 1 0 0 0 0

c1 1 0 0 1 1 0 = 0

d1 0 1 0 1 0 1 0

c

c

æ ö
ç ÷
ç ÷æ ö æ öç ÷ç ÷ ç ÷ç ÷ç ÷ ç ÷è ø è øç ÷
ç ÷
ç ÷è ø

is just a restatement of the three equations above. The first matrix on the left-hand side is called the

parity check matrix H. Thus every codeword c satisfies the equation

HcT =

æ ö
ç ÷
ç ÷è ø

0

0

0

Therefore, another way of describing the code is by specifying its parity check matrix H. Note that

the seven columns of the parity check matrix are the seven distinct non zero combinations of three

bits.

The Hamming code of length 7 is an example of a linear algebraic code. It can be proved that a

binary code of length n is a subspace of the space of all vectors with n components, over the field

F2 = {0, 1}, i.e. each component being either a 0 or a 1. Since this Hamming code has four

information bits and the check bits are completely determined by the information bits, the subspace

has 24 = 16 vectors. These sixteen vectors constitute the code, which is itself a subspace of the vector

space containing a total of 27 = 128 vectors, each of length 7 bits.

2.9.5 Syndrome Decoding

Given the received pattern r, the decoder must eventually decide what the transmitted codeword was.

If the decoder is able to find the error pattern e, then the code word is c = r + e. To estimate e, it first

forms the product H rT = H cT + H eT = H eT. This product is called the syndrome, and reveals the

pattern of parity check failures on the received pattern.

It is desirable to design the code such that the error syndrome H eT directly specifies the error bit

position. In that case, it is evident that the ith column of the matrix H should have the binary

combination for the decimal value i. Because the error pattern will have a single 1 in the position in

which the error has occurred and 0s everywhere else. Therefore, the error syndrome will denote the

binary combination of the error position. For example, if 7-bit code word c = 0101010 is distorted by

the channel and the error pattern e is 1000000, then r = c + e = 1101010. Therefore, the error

syndrome specifying the error position H (c + e)T = (1 1 1)T. This proves that there is an error in the

7th position.

Data Representation and Computer Arithmetic 2.27

Decoding in the Hamming code then consists of the following three steps:

1. Form the syndrome H rT from the received vector r.

2. If the syndrome is the all zero vector, assume no errors have occurred. If it is not, then find out

which column of H the syndrome matches. If the column index is i, then the estimated error

pattern e is the vector with a 1 in the ith position and 0s everywhere else.

3. Form c = r + e as the decoder�s estimate of the transmitted codeword.

2.9.6 Single Error Correcting Code for 8-bit Information

For 8-bit information, the number of check bits required is 4. The check bits c1 , c2 , c4 and c8 are

defined as follows:

c8 ∫ d9 + d10 + d11 + d12 (mod 2)

c4 ∫ d5 + d6 + d7 + d12 (mod 2)

c2 ∫ d3 + d6 + d7 + d10 + d11 (mod 2)

c1 ∫ d3 + d5 + d7 + d9 + d11 (mod 2)

The parity check matrix H for this 12-bit single error correcting code is thus given below.

H =

1 1 1 1 1 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1 0 0 0

0 1 1 0 0 1 1 0 0 1 1 0

0 1 0 1 0 1 0 1 0 1 0 1

æ ö
ç ÷
ç ÷
ç ÷è ø

The error syndrome will denote the binary combination of the error position. For example, if 12-bit

code word c = 101110111110 is distorted by the channel and the error pattern e is 010000000000,

then r = c + e = 111110111110. Therefore, the error syndrome specifying the error position H (c + e)T

= (1 0 1 1)T, implying the error in 11th position.

2.9.7 Single Error Correcting and Double Error Detecting Code

Under the assumption that the probability of the channel flipping a bit during transmission is less than

1/2, and that bit errors occur independently of one another, the more probable error pattern is the one

with fewer 1s. Thus, the decoder follows what is known as a maximum likelihood strategy and

decodes into the codeword that is at the smallest Hamming distance from the received pattern.

Hamming distance between code words is the number of corresponding positions in which the code

words differ. In other words, even if there is a double error, the decoder will mistake it for a single

error, as there will be a single error with an identical syndrome, which the maximum likelihood

strategy will choose as its estimate of the error pattern. Thus, if this Hamming code is used for single

error correction, it cannot correctly detect double errors.

For double error detection along with single error correction, the minimum Hamming distance

should be 4. Such a code can be designed by adding an extra check bit to the single-bit error

correcting code. For the 7-bit single error correcting code, the extra check bit c8 can be added to

maintain parity for each of the eight bits. The check bits c1, c2, c4 and c8 are defined as follows:

2.28 Computer Organization

c8 ∫ d7 + d6 + d5 + c4 + d3 + c2 + c1 (mod 2)

c4 ∫ d5 + d6 + d7 (mod 2)

c2 ∫ d3 + d6 + d7 (mod 2)

c1 ∫ d3 + d5 + d7 (mod 2)

The corresponding parity check matrix H is thus given below.

H =

1 1 1 1 1 1 1 1

0 1 1 1 1 0 0 0

0 1 1 0 0 1 1 0

0 1 0 1 0 1 0 1

æ ö
ç ÷
ç ÷
ç ÷è ø

For such a design, if most significant bit of error syndrome is 1, then the remaining 3 positions

specify the single bit error position. On the other hand, if most significant bit of the non-zero error

syndrome is 0, then it indicates a double bit error situation. Since error in any single bit position will

be invariably reflected in the check bit c8. So in the syndrome, if the check bit c8 is 0 with non-zero

state for other check bits, it implies a double error case. Consider following two examples:

Example 1: Codeword c = 00101101 and error pattern e = 01000000.

So, c + e = 01101101

Therefore, H (c + e)T = (1 1 1 1)T which indicates an error in 7th bit position.

Example 2: Codeword c = 00101101 and error pattern e = 00011000.

So, c + e = 00110101

Therefore, H (c + e)T = (0 0 0 1)T which indicates double bit error situation.

1. Directly convert the following decimal numbers into hexadecimal numbers:

(a) 70

(b) 130

(c) 1348

Answer

(a) 70 = (4 ¥ 16) + 6 = 46 in HEX.

(b) 130 = (8 ¥ 16) + 2 = 82 in HEX

(c) 1348 = (5 ¥ 16 ¥ 16) + (4 ¥ 16) + 4 = 544 in HEX.

2. Directly convert the following hexadecimal numbers into decimal numbers:

(a) 7A

(b) 1F

(c) 13C

Answer

(a) 7A = (7 ¥ 16) + 10 = 122

(b) 1F = (1 ¥ 16) + 15 = 31

(c) 13C = (1 ¥ 16 ¥ 16) + (3 ¥ 16) + 12 = 316

Data Representation and Computer Arithmetic 2.29

3. What is the radix of number if the solution of the quadratic equation:

x2 � 10x + 31 = 0 is x = 5 and x = 8.

Answer

The solution of the quadratic equation:

x2 � 10x + 31 = 0 is x = 5 and x = 8.

Let r be the radix of the number.

This means,

(x2 � 10x + 31)r = [(x � 5)(x � 8)]10

= [x2 � (5 + 8)10 x + (40)10] = [x2 � (13)10 x + (40)10]

Therefore, (10)r = (13)10

fi 1 ¥ r = 13

fi r = 13

Also, (31)r = (40)10. This holds true for r = 13.

So, the radix of the number is 13.

4. Represent integer number �19 in 8-bit format using

(a) signed magnitude method

(b) signed 1�s complement method

(c) signed 2�s complement method

Answer

In signed magnitude method, the representation is: 1001 0011

In signed 1�s complement method, the representation is: 1110 1100

In signed 2�s complement method, the representation is: 1110 1101

5. What are the minimum and maximum integers representable in n-bit value using

(a) signed magnitude method?

(b) signed 1�s complement method?

(c) signed 2�s complement method?

Give the argument for each.

Answer

(a) In signed magnitude method, one bit is used to record the sign of the number, giving the

representable range in n-bit is: � (2n�1 � 1) to + (2n�1 �1).

(b) Like signed magnitude method, signed 1�s complement method reserves one bit for the sign

of the number, giving the representable range in n-bit is: � (2n�1 � 1) to + (2n�1 �1).

(c) In signed-2�s complement representation, only one representation for 0 is used, allowing an

odd number of non-zero values to be represented. Thus the range for numbers using n bits is:

� (2n�1) to + (2n�1 �1).

6. Use 8-bit two�s complement integers, perform the following computations:

(a) �34 + (�12) (b) 17 � 35

(c) �22 � 7 (d) 18 � (�5)

Answer

(a) In 2�s complement representation, �34 = 1101 1110

�12 = 1111 0100

2.30 Computer Organization

Adding these two numbers, we get, 11101 0010, which is 9-bit result. By addition rule

discard the 9th bit and get the result: 1101 0010, which shows that the number is negative. To

get the result in its familiar form, take 2�s complement of the result. The result is �46.

(b) 17 � 35: This is subtraction and we know that 2�s complement of (35) is to be added with 17.

The representation of 17 is 0001 0001 and 2�s complement of 35 is 1101 1101. After addition,

we get 1110 1110. This is negative number and its value is �18.

(c) �22 � 7 = (�22) � 7. This is a subtraction. So, 2�s complement of 7 is to be added with (�22).

The 2�s complement of 7 = 1111 1001 and representation of (�22) = 1110 1010. After

addition of these two we get, 11110 0011. This is 9-bit result. So, by rule, discard 9th bit and

get the result as 1110 0011, which shows it is negative number. The result in equivalent

decimal is �29.

(d) 18 � (�5) = 18 + 5. The representation of 18 is 0001 0010 and representation of 5 is 0000

0101. We get after addition, 0001 0111. The result is equivalent to decimal 23.

7. Can you add 8-bit signed numbers 0110 0010 and 0100 0101? If not, why? Suggest a solution.

Answer

Carries: 01

0110 0010

0100 0101

(add) 1010 0111

This result suggests that the number is negative, which is wrong. However, if the carry out from

the sign bit position is treated as the sign of the result, the 9-bit answer thus obtained will be correct

answer. So, there is an overflow.

To detect an overflow condition the carry into the sign bit position and the carry out from the sign

bit position are examined. If these two carries are both 0s or both are 1s, there is no overflow. If these

two carries are not equal (i.e., if one is 0 and other is 1), an overflow condition exists. Considering the

carry from the sign bit position with (i.e. 0, here) along with the 8-bit result will give correct answer.

8. Write down the Boolean expression for overflow condition when adding or subtracting two

binary numbers expressed in two�s complement.

Answer

If one number is positive and the other is negative, after an addition overflow cannot occur, since

addition of a positive number to a negative number produces a number that is always smaller than the

larger of the two original numbers. However, an overflow may occur if the two numbers added are of

same sign i.e., both are positive or both are negative. Let�s consider following examples.

Carries:01 Carries:10

+69 0 1000101 �69 1 0111011

+78 0 1001110 �78 1 0110010

+147 1 0010011 �147 0 1101101

Observe that the 8-bit result that should have been positive (first example) has a negative sign bit

and the 8-bit result that should have been negative (second example) has a positive sign bit. However,

if the carry out from the sign bit position is treated as the sign of the result, the 9-bit answer thus

obtained will be correct answer. Since the 9-bit answer cannot be accommodated with 8-bit register,

we say that an overflow results.

Data Representation and Computer Arithmetic 2.31

To detect an overflow condition the carry into the sign bit position (i.e. Cn�1) and the carry out

from the sign bit position (i.e. Cn) are examined. If these two carries are both 0s or both are 1s, there

is no overflow. If these two carries are different, an overflow condition exists. The overflow occurs if

the Boolean expression Cn ≈ Cn�1 is true.

9. Give the merits and demerits of the floating point and fixed point representations for storing

real numbers

Answer

Merits of fixed-point representation:

(a) This method of representation is suitable for representing integers in registers.

(b) Very easy to represent, because it uses only one field: magnitude field.

Demerits of fixed-point representation:

(a) Range of representable numbers is restricted.

(b) It is very difficult to represent complex fractional numbers.

(c) Since there is no standard representation method for it, it is some time confusing to represent a

number in this method.

Merits of floating-point representation:

(a) By this method, any type and any size of numbers can be represented easily.

(b) There are several standardized representation methods for this.

Demerits of floating-point representation:

(a) Relatively complex representation, because it uses basically two fields: mantissa and exponent

fields.

(b) Length of register for storing floating-point numbers is large.

10. Add 2.56 and 2.34 ¥ 102, assuming three significant decimal digits. Round the sum to the

nearest decimal number with three significant decimal digits.

Answer

First we must shift the smaller number to the right to align the exponents, so 2.56 becomes 0.0256

¥ 102. The sum of mantissas is

2.3400

+ 0.0256

2.3656

Thus, the sum is 2.3656 ¥ 102. Since, we have two digits to round, we want values 0 to 49 to round

down and 51 to 99 to round up, 50 being the tiebreaker. Rounding the sum up with three significant

digits gives 2.37 ¥ 102.

11. Represent following decimal numbers in IEEE 754 floating point format:

(a) �1.75

(b) 21

Answer

(a) The decimal number � 1.75 = � 1.11 in binary = �1.11 ¥ 20

The 23-bit mantissa M = 0.110000 000000 000000 00000

The biased exponent E¢ = E + 127 = 0 + 127 = 127 = 0111 1111

2.32 Computer Organization

Since the number is negative, the sign bit S = 1

Therefore, the IEEE single-precision (32-bit) representation is:

1 0111 1111 110000 000000 000000 00000

(b) The decimal number 21 = + 10101 in binary = + 1.0101 ¥ 2
4

The 23-bit mantissa M = 0.010100 000000 000000 00000

The biased exponent E¢ = E + 127 = 4 + 127 = 131 = 1000 0011

Since the number is positive, the sign bit S = 0

Therefore, the IEEE single-precision (32-bit) representation is:

0 1000 0011 010100 000000 000000 00000

12. What value is represented by the IEEE single precision floating point number:

0101 0101 0110 0000 0000 0000 0000 0000?

Answer

The sign of the number = 0, biased exponent value = 10101010 = 170. So the exponent value = 170 �

127 = 43. The mantissa field = 110 0000 0000 0000 0000 0000.

Therefore, the value of the number = + (1.11)2 ¥ 243 = 1.75 ¥ 243 = 1.539 ¥ 1013 (approx.).

13. How NaN (Not a Number) and Infinity are represented in IEEE 754 standard?

Answer

Not a Number (NaN) is represented when biased exponent E¢ = 255 and mantissa M π 0. NaN is a

result of performing an invalid operation such as 0/0 and 1- .

Infinity is represented when E¢ = 255 and M = 0. The infinity is the result of dividing a normal

number by 0.

14. A floating point number system uses 16 bits for representing a number. The most significant

bit is the sign bit. The least significant nine bits represent the mantissa and remaining 6 bits

represent the exponent. Assume that the numbers are stored in the normalized format with one

hidden bit

(a) Give the representation of �1.6 ¥ 103 in this number system.

(b) What is the value represented by 0 000100 110000000?

Answer

The format of the 16-bit floating-point representation is as follows:

Data Representation and Computer Arithmetic 2.33

(a) The representation of �1.6 ¥ 103 in this system:

The decimal number �1.6 ¥ 103 = �1600 = �11001000000 in binary = �1.1001000000 ¥ 210.

Mantissa (M) in 9-bit = 0.6 = 0.100100000

Exponent (E) in 6-bit = 10 = 001010

Since the number is negative, the sign bit S = 1

Therefore, the 16-bit representation is:

1 001010 100100000

(b) The binary number is 0 000100 110000000

The msb indicates the number is positive.

The biased exponent (E) = 000100 = 4

The mantissa (M) = 110000000 = 384.

Thus the value represented by this number = +1. M ¥ 2E = +1.384 ¥ 24 = 22.144.

15. Compute the product of the following pair of unsigned integers. Generate the full 8-bit result.

(a) 1001 ¥ 0110

(b) 1111 ¥ 1111

Answer

(a) 1001 ¥ 0110.

This can be written as

(1001 ¥ 100) + (1001 ¥ 10) = 100100 + 10010 = 0011 0110.

(b) 1111 ¥ 1111.

This can be written as

(1111 ¥ 1000) + (1111 ¥ 100) + (1111 ¥ 10) + (1111 ¥ 1) = 1111000 + 111100 + 11110 +

1111 = 1110 0001.

16. Multiply �13 and +14 by the method of partial products.

Answer

�13 = 10011 (multiplicand)

+14 = 01110 (multiplier)

00000

10011

10011

10011

100001010

In case of negative multiplicand, 2�s complement multiplier is added additionally with n-bit shift

due to sign extension of partial product on the right shifting.

The 2�s complement of multiplier left shifted by n i.e. 5 bits is 1001000000.

Add this shifted number with added result of partial products, to get the correct result of signed

numbers multiplication.

Thus, 100001010 + 1001000000 = 1101001010 = �182.

2.34 Computer Organization

17. Give the recoded Booth�s multiplier representations for the following:

(a) 1100 1010

(b) 1110 1101

Answer

(a) Original multiplier: 1 1 0 0 1 0 1 0 = 0 1 1 0 0 1 0 1 0

Recoded pattern: 1 0 1 0 1 1 1 1 0

(b) Original multiplier: 1 1 1 0 1 1 0 1 = 0 1 1 1 0 1 1 0 1

Recoded pattern: 1 0 0 1 1 0 1 1 1

18. For Booth�s algorithm, when do worst case and best case occur?

Answer

Worst case is one when there are maximum number of pairs of (01)s or (10)s in the multipliers. Thus,

maximum number of additions and subtractions are encountered in the worst case.

Best case is one when there is a large block of consecutive 1s in the multipliers, requiring

minimum number of additions and subtractions.

19. Multiply +12 and +14 using Booth�s recoding technique.

Answer

Since 5-bit number can be in the range �16 to +15 only and the product 12 ¥ 14 will be outside this

range, we use 10-bit numbers.

Multiplicand (+12) = 00000 01100

Multiplier (+14) = 00000 01110

After Booth�s recoding, multiplier = 00000 100 1 0

1st partial product = 0000000000

2nd partial product= 111110100 (2�s complement of multiplicand)

3rd partial product= 00000000

4th partial product= 0000000

5th partial product= 001100

(6th �10th) partial products are all 0s

After addition, result = 0010101000 = 168.

20. Describe Booth�s modified algorithm and show that just N/2 partial products are required to

multiply two N-bit binary numbers. Describe the method using the two numbers A = 10101010

and B = 11001110.

Answer

A faster version of Booth�s multiplication algorithm for signed numbers, known as the modified

Booth�s algorithm, examines three adjacent bits Q[i + 1] Q[i] Q[i � 1] of the multiplier Q at a time,

instead of two. Apart from three basic actions performed by original Booth�s algorithm, which can be

expressed as: add 0, 1 ¥ M (multiplicand) and 1
�
 ¥ M to Ac (the accumulated partial products), this

modified algorithm performs two more actions: add 2 ¥ M and 2
�
 ¥ M to Ac. These have the effect of

increasing the radix from 2 to 4 and allow an N ¥ N multiplication requiring only N/2 partial

products.

Observe that bit pair (1, 1
�
) is equivalent to pair (0, 1). That is instead of adding 1

�
 times of the

multiplicand M at shift position i to 1 ¥ M at position i + 1, the same result is obtained by adding

Data Representation and Computer Arithmetic 2.35

1 ¥ M at position i. Other cases are: (1, 0) is equivalent to (0, 2), (1
�
, 1) is equivalent to (0, 1

�
), and so

on. The following table shows the multiplicand selection decisions for all possibilities.

Q[i + 1] Q[i] Q[i � 1] Multiplicand selected at position i

0 0 0 0 ¥ M

0 0 1 1 ¥ M

0 1 0 1 ¥ M

0 1 1 2 ¥ M

1 0 0 2
�
 ¥ M

1 0 1 1
�
 ¥ M

1 1 0 1
�
 ¥ M

1 1 1 0 ¥ M

Operands Values i Q[i + 1] Q[i] Q[i � 1] Action

Multiplicand M = A 1010 1010

Multiplier Q = B 1100 1110

P0 0000 0000 1010 1100 0 100 Add 2
�
 ¥ M to Ac

P2 0000 0000 0000 00 2 111 Add 0 ¥ M to Ac

P4 1111 1010 1010 4 001 Add 1 ¥ M to Ac

P6 0001 0101 10 6 110 Add 1
�
 ¥ M to Ac

Product 0001 0000 1100 1100 = P0 + P2 + P4 + P6.

21. How can the non-restoring division algorithm be deduced from restoring division algorithm?

Answer

The three main steps in restoring division method are:

1. Shift AQ register pair to the left one position.

2. A = A � M.

3. If the sign of A is positive after the step 2, set Q[0] = 1; otherwise, set Q[0] = 0 and restore A.

Now, assume that the step 3 is performed first and then step 1 followed by step 2. Under this

condition, the following two cases may arise.

Case 1: When A is positive:

Note that shifting A register to the left one position is equivalent to the computation of 2A and then

subtraction. This gives the net effect on A as 2A � M.

Case 2: When A is negative:

First restore A by adding the content of M register and then shift A to the left one position. After that

A will be subtracted from M register. So, all together they give rise to the value of A as 2(A + M) �

M = 2A + M.

Basis on these two observations, we can design the non-restoring division method.

2.36 Computer Organization

Group A

1. Choose the most appropriate option for the following questions:

(i) A binary number with n digits has the value

(a) n2 � 1 (b) 24 (c) 2(n � 1) (d) 2n � 1

(ii) The ASCII code is for information interchange by a binary code. It is for

(a) numbers only

(b) alphabet only

(c) alphanumeric and other common symbols

(d) none of these.

(iii) The Excess-3 code for number 3 is

(a) 0110 (b) 0011 (c) 0001 (d) 1001

(iv) The maximum unsigned binary number in 8-bit is

(a) 255 (b) 256 (c) 128 (d) 127.

(v) The minimum and maximum 8-bit numbers in signed magnitude representation are

(a) 0 and 255 (b) � 127 and 127 (c) � 128 and 127 (d) none.

(vi) The minimum and maximum 8-bit numbers in signed 2�s complement representation are

(a) �127 and 127 (b) �128 and 127 (c) 0 and 255 (d) none.

� (vii) The complement operations are useful for

(a) logical operations

(b) addition and subtraction operations

(c) arithmetic operations

(d) subtraction and logical operations.

(viii) The number � 0.125 is represented in IEEE single-precision format as:

(a) 1 0111 1100 1000�� 0

(b) 1 0111 1110 1000�� 0

(c) 1 0111 1111 0010�� 0

(d) 1 0111 1100 0000�� 0

(ix) In floating-point representation, biased exponent is used to:

(a) facilitate representation of zero

(b) increase the range of representation

(c) reduce the overhead of comparing the sign bits of exponent in floating point arithmetic

(d) both (a) and (c).

(x) The floating-point numbers are normalized

(a) to enhance to range of representation

(b) to increase the precision of the number

(c) to make the number simple

(d) both (a) and (b).

(xi) The hidden one-bit to the immediate left of mantissa of IEEE 754 floating-point represen-

tation is used to facilitate:

(a) enhancement of the range of representation

Data Representation and Computer Arithmetic 2.37

(b) representation of NaN (not a number) representation

(c) enhancement of the precision of number

(d) representation of sign bit.

(xii) The overflow in floating-point representation is detected by inspecting

(a) the carry into sign bit and carry-out from the sign bit positions and if they are different

(b) these two carries and if they are same

(c) the size of the numbers

(d) the sign of the number.

(xiii) Floating-point representation is used to store

(a) Boolean values (b) whole numbers

(c) real numbers (d) integers

(xiv) Guard bits are

(a) least significant some bits used to increase the precision of number

(b) least significant some bits used to guard against virus attacks on the stored data

(c) most significant some bits used to hold bits which would be shifted out after left shift

operations

(d) used to perform logical shift operations efficiently.

(xv) Which of the following the truncation technique has the smallest unbiased rounding error?

(a) chopping (b) Von Neumann rounding

(c) rounding (d) both (b) and (c).

(xvi) The number of AND gates and number of full adders required in 4 ¥ 4 array multiplier are

(a) 4 and 4 (b) 16 and 4

(c) 4 and 16 (d) 16 and 16, respectively.

(xvii) The sequential multiplication method is generally used to multiply two unsigned numbers, but

can be used for multiplication of signed numbers, where the sign of the product is processed

separately using one

(a) OR gate (b) NOT gate (c) XOR gate (d) AND gate.

(xviii) The maximum number of additions and subtractions are required for which of the following

multiplier numbers in Booth�s algorithm?

(a) 0100 1111 (b) 0111 1000 (c) 0000 1111 (d) 0101 0101.

(xix) Which multiplier out of the following gives the worst case for implementing Booth�s

algorithm?

(a) 0111 0000 (b) 0111 0110 (c) 0000 0111 (d) 0101 0101

(xx) Which multiplier out of the following gives the best case for implementing Booth�s

algorithm?

(a) 0111 1100 (b) 0111 0110 (c) 0000 0111 (d) 0101 0101

(xxi) The number 237.5 in IEEE format will be truncated to

(a) 237 (b) 238 (c) 1.237.5 (d) 0.2735

(xxii) Only one restoration step may be required in non-restoring division algorithm, if

(a) the sign of accumulator register is negative

(b) the sign of accumulator register is positive

(c) the accumulator register produces overflow

(d) the accumulator register produces underflow.

(xxiii) To transmit data bits 1011, the correct even parity 7-bit Hamming Code is

(a) 0101101 (b) 1010101 (c) 1100111 (d) 0110111

2.38 Computer Organization

Group B

2. Why do digital computers use binary numbers for their operations?

3. Describe two complement methods. Prove that complement of a complement is the original number.

4. Discuss the fixed-point representation method with example.

5. What are representations of integer number � 19 in 8-bit format using

(a) signed magnitude method?

(b) signed 1�s complement method?

(c) signed 2�s complement method?

6. Compare different integer representation methods.

7. What are the minimum and maximum integers representable in n-bit value using

(a) signed magnitude method?

(b) signed 1�s complement method?

(c) signed 2�s complement method?

Give the argument for each.

8. Discuss the overflow problem in fixed-point representation and its detection method using example.

9. Describe floating-point representation using examples.

10. When is a floating-point called normalized floating-point number? Give the reason(s) for converting

a non-normalized floating-point number into normalized one.

11. What is biased exponent and why?

12. Give the IEEE single-precision representation for floating-point numbers. Represent the number �

7.75 in this representation.

13. Discuss the overflow and underflow problems in floating-point representation.

14. What is a guard bit? Describe different truncation methods with their errors.

15. Discuss the 4 ¥ 4 array multiplier method with block diagram.

16. Discuss the sequential multiplication method and use this to multiply decimal numbers 27 and 56.

Can you apply this method to multiply two signed numbers?

17. Give the recoded Booth�s multiplier representations for the following:

(a) 1001 0011

(b) 1110 1010

18. Describe the Booth�s multiplication method and use this to multiply decimal numbers �23 and 9.

What are the advantages of this method?

19. Discuss the restoring division algorithm and use this to divide decimal number 23 by 6. Can you

apply this method to divide two signed numbers?

20. Deduce the non-restoring division algorithm from restoring division algorithm.

21. Describe the non-restoring division algorithm and use this to divide decimal number 29 by 7.

22. What is a parity bit? How is the syndrome for the Hamming code interpreted?

23. For the 8-bit word 0011 1001, the check bits stored with it would be 0111. Suppose when the

word is read from memory, the check bits are calculated to be 1101. What is the data word that

was read from memory?

CHAPTER

3
Datapath and Design

of Arithmetic Logic Unit

3.1 INTRODUCTION

As discussed in Section 1.6, the Central Processing Unit (CPU) consists of two major parts: a

datapath (data processing) unit and a Control Unit (CU). The datapath is a collection of the Arith-

metic Logic Unit (ALU) and various registers capable of performing certain (micro)operations on the

data. The ALU simply executes the instructions in the order as dictated by the CU. The ALU

performs the instruction execution on the operand data stored in registers.

In this chapter, we will discuss various registers that are used in any processor, register transfer

micro-operation. Also, we will design one hypothetical ALU and prior to that, some important

arithmetic units will be discussed.

3.2 MICRO-OPERATION

A CPU with many registers reduces the number of references to the main memory, and thus simplify-

ing the programming task and shortening the execution time. As instruction execution progresses,

data are transferred from one register to another, often passing through the ALU to perform some

arithmetic or logic operation.

An operation performed on the data stored in registers is called micro-operation. The result of the

micro-operation may replace the previous binary information of a register or may be transferred to

another register. Examples of micro-operations are add, subtract, shift, load and clear, etc.

The internal hardware structure of a computer is characterized by the following attributes:

1. The types of micro-operations performed on the binary information stored in registers.

2. The control signals that initiate the sequence of micro-operations.

3. The set of registers it contains and their functions.

The frequently used micro-operations in digital computers are classified into four categories:

1. Register Transfer Micro-operations: Transfer of binary information from one register to an-

other.

3.2 Computer Organization

2. Arithmetic Micro-operations: Arithmetic operations performed on the data stored in registers.

3. Logical Micro-operations: Bit manipulation operations on non-numeric data stored in registers.

4. Shift Micro-operations: Shift operations on data stored in registers.

3.3 CPU REGISTERS

Computers contain some registers within CPU for faster execution. The number of registers differs

from processor to processor. A register is nothing but a collection of flip flops (see Appendix, for

details) each capable of storing one bit of information. Registers are available in the following forms:

(a) Accumulator (AC).

(b) General-purpose registers,

(c) Special-purpose registers.

Computer registers are designated by capital letters (sometimes followed by numerical) to denote the

function of the register.

Accumulator (AC) The accumulator is a register which holds one of the operands before the

execution of an instruction, and receives the result of most of the arithmetic and logical micro-

operations. Thus, an accumulator is the most frequently used register. Some CPUs have a single

accumulator and some have several accumulators. An accumulator is denoted by AC or sometimes A.

General-purpose Registers General-purpose registers or processor registers are used for storing

data and intermediate results during the execution of a program. These registers are donated by capital

letter R followed by some number. The individual flip-flops in an n-bit register are numbered in

sequence from 0 to n-1, starting from 0 in the rightmost position and increasing the numbers towards

the left. The Fig. 3.1 shows the representation of 16-bit register in block diagram.

Figure 3.1 Block diagram of a register

Special-purpose Registers Each processor contains a number of special purpose registers for

various purposes. Commonly used special-purpose registers and their functions are summarized below:

Register Function

PC (Program Counter) Holds the address of the next instruction to be executed.

IR (Instruction Register) Holds the instruction code (operation code) currently being executed.

SP (Stack Pointer) Holds the address of the top element of the memory stack.

BR (Base Register) Holds the starting address of the memory stack.

MAR (Memory Address Register) Holds the address of the data item to be retrieved from the main memory.

MBR or DR (Memory Buffer Holds the data item retrieved from the main memory.

Register or Data Register)

SR or PSW (Status Register Holds the condition code flags and other information that describe the

or Program Status Word) status of the currently executing program.

Datapath and Design of Arithmetic Logic Unit 3.3

3.4 REGISTER TRANSFER LANGUAGE (RTL)

Register Transfer Language (RTL) is the symbolic notation used to describe the micro-operation

transfer between registers. Information transfer from one register to another is characterized in sym-

bolic form by means of a replacement operator. The symbolic code R1 ¨ R2 indicates a transfer of

the content of register R2 into R1. The transfer micro-operation means the content of source register

R2 is copied into the destination register R1, but the content of R2 remains same. This transfer micro-

operation overwrites the content of R1 by the content of R2.

As far as internal hardware connectivity is concerned, a register transfer implies that circuits are

available from the outputs of the source register to the inputs of the destination register and that the

destination register has a parallel load capability. Normally, the register transfer occurs under a

predetermined control condition. This can be illustrated by means of an if-then symbolic code:

If (C = 1) then (R1 ¨ R2)

where C is a control signal generated in the control circuit. A control function is sometimes specified

to separate the control variables from the register transfer operation. A control function is nothing, but

a Boolean variable that is equal to 1 or 0. Thus the above symbolic code is equivalent to:

C: R1 ¨ R2

A colon is used to terminate the control condi-

tion. This code means that the transfer micro-

operation be performed only if C = 1. Fig. 3.2(a)

shows the block diagram that illustrates the trans-

fer from R2 to R1. Register R1 has a load con-

trol input C that is controlled by the control cir-

cuit. A common clock is used to synchronize all

the activities in the total circuit for transfer op-

eration.

As shown in the timing diagram (Fig. 3.2(b)),

in the rising edge of a clock pulse at time t, the

control section activates C. The next positive tran-

sition of the clock at time t + 1 finds the load

input enabled and the data inputs of R1 are then

loaded with the data outputs of register R2 in

parallel. At time t + 1, C should be disabled;

otherwise if C remains active, the transfer will

occur with every clock pulse transition.

3.5 BUS TRANSFER

Many registers are provided in the CPU of a computer for fast execution. Therefore several paths

must be provided to transfer information from one register to another. If a separate communication

line is used between each register pair in the system, the number of lines will be excessive and thus

cost of communication will be huge. Thus it is economical to have a common bus system for

Figure 3.2 Transfer from R2 to R1 when C = 1 (in

symbolic code C: R1 ¨ R2)

3.4 Computer Organization

transferring information between registers in a multiple-register configuration. A bus system consists

of a group of common communication lines, where each line is used to transfer one bit of a register at

a time. Thus, a shared communication path consisting of one or more connection lines is known as a

bus and the transfer of data through this bus is known as bus transfer. Sometimes, it is said that n-bit

bus or n-line bus, the meaning of which is that the bus consists of n parallel lines to transfer n-bit of

data all at a time. The n is called width of the bus. The width of the bus has an impact on a computer�s

performance. The wider the bus, the greater the number of bits transferred at a time.

We will present two ways to construct common bus system. One way is using multiplexers (simply

known as MUXs, see appendix for MUX) and another way is using tri-state buffers.

3.5.1 Construction of a Common Bus Using MUXs

The Fig. 3.3 shows an n-line common bus system using multiplexers for register transfer, where four

registers are used each of n-bit. This common bus is used to transfer a register�s content to other

register or memory at a single time. A multiplexer selects one source register whose all n-bit informa-

tion is then placed on the bus. Two multiplexers are shown in the figure one for the low-order

significant bit and another for the high-order significant bit. The bus consists of n 4 ¥ 1 multiplexers

each having four data inputs, 0 through 3 and two common selection lines for all multiplexers.

Figure 3.3 Bus system for four registers

Each MUX has four input lines each is connected to all four registers� bits marked. The two

selection lines S0 and S1 are connected to the selection inputs of all n MUXs. The selection lines

choose all n bits of one register and transfer them into the n-line common bus. For example, when S1

S0 = 00, the 0th data inputs of all n MUXs are selected and placed to the outputs that form the bus.

The function table for bus shown in Fig. 3.3 is given below.

Datapath and Design of Arithmetic Logic Unit 3.5

S1 S0 Register selected

0 0 A

0 1 B

1 0 C

1 1 D

General case Suppose an n-line bus system is to be constructed for k registers of n bits each. The

number of MUXs needed to construct the bus is equal to n, the number of bits in each register. The

size of each multiplexer must be k ¥ 1, since it multiplexes k data lines.

3.5.2 Construction of a Common Bus Using Tri-state Buffers

Another way to construct a common bus system is using tri-state buffers. A tri-state gate is a digital

circuit that exhibits three states out of which two states are normal signals equivalent to logic 1 and

logic 0 similar to a conventional gate. The third state is a high-impedance state. The high-impedance

state behaves like an open circuit, which means that no output is produced though there is an input

signal and does not have logic significance. The gate is controlled by one separate control input C. If

C is high the gate behaves like a normal logic gate having output 1 or 0. When C is low the gate does

not produce any output irrespective of the input values. The graphic symbol of a tri-state buffer gate is

shown in Fig. 3.4.

Figure 3.4 Graphic symbol for a tri-state buffer gate

A common bus system with tri-state buffers is described in Fig. 3.5. The outputs of four buffers are

connected together to form a single line of the bus. The control inputs to the buffers, which are

generated by a common decoder, determine which of the four normal inputs will communicate with

the common line of the bus. Note that only one buffer may be in the active state at any given time.

Because the selection lines S0, S1 of the decoder activate one of its output lines at a time and the

output lines of the decoder act as the control lines to the buffers. For example, if select combination

S1S0 is equal to 00, then 0th output of the decoder will be activated, which then activates the top-most

tri-state buffer and thus the bus line content will be currently A0, 0th bit of A register.

General case Suppose an n-line common bus for k registers of n bits each using tri-state buffers

needs to be constructed. We need n circuits with k buffers in each as shown in Fig. 3.5. Therefore,

total number of buffers needed is k * n. Only one decoder is required to select among the k registers.

Size of the decoder should be log2k-to- k.

3.6 Computer Organization

3.6 MEMORY TRANSFER

When the information is transferred from a

memory word it is called a read operation and

when the information is stored into a memory it

is called write operation. In both cases the

memory word is specified by an address. This

memory word is designated by the symbol M. A

memory address is specified to select a particular

memory word among many available words dur-

ing the transfer. Consider a memory unit that

receives the address from a register, called the

memory address register (MAR), as shown in Fig. 3.6. The data from memory is transferred to

another register, called memory buffer register (MBR) or data register (DR).

The read operation can be stated as:

Read: MBR ¨ M[MAR]

This symbolic instruction causes a transfer of data into MBR from the memory word M selected by

the address information in MAR.

Let the data is to be transferred from a general-purpose register R1 into a memory word M selected

by the address in MAR. The write operation can be stated as:

Write: M[MAR] ¨ R1

By this symbolic instruction, a data word is transferred from R1 register to the memory word M

selected by the register MAR.

Figure 3.6 Memory unit communicating with ex-

ternal registers

Figure 3.5 A single line of a bus system with tri-state buffers

Datapath and Design of Arithmetic Logic Unit 3.7

3.7 ARITHMETIC MICRO-OPERATION

The basic arithmetic micro-operations are addition, subtraction, increment, decrement and shift. The

arithmetic addition micro-operation is defined by the statement

R1 ¨ R2 + R3

This micro-operation states that the content of R2 register is added to the content of R3 register and

the result is stored into R1 register. In order to implement this operation with hardware we need three

registers and a digital circuit to perform addition. The basic arithmetic micro-operations are listed in

the Table 3.1.

Table 3.1 Basic Arithmetic Micro-operations

Symbolic notation Description

R1 ¨ R2 + R3 Added contents of R2 and R3 transferred to R1

R1 ¨ R2 � R3 Contents of R2 minus R3 transferred to R1

R1 ¨ R1 +1 Incrementing the content of R1 by 1

R1 ¨ R1 �1 Decrementing the content of R1 by 1

R1 ¨ R1 Complementing the content of R1 (1�s complement)

R1 ¨ R1 +1 2�s complement the content of R1 (negate)

R1 ¨ R2 + R3 +1 Content of R2 added with 2�s complement of R3 (subtraction) and transferred to R1.

In this table, the subtraction micro-operation is performed using 2�s complement method. The multi-

plication and division are not included in this table; though, the operations are two valid micro-

operations. The multiplication operation can be implemented by a sequence of add and shift micro-

operations. The division can be implemented with a sequence of subtract and shift micro-operations.

3.8 DESIGN OF SOME ARITHMETIC UNITS

3.8.1 Binary Adder

Binary adder is an essential part of every computer, because the micro-operations addition and

subtraction of two binary numbers stored in two registers are performed by this unit. A binary adder is

a digital circuit that generates the arithmetic sum of two binary numbers of any lengths. The binary

adder is basically constructed with full adders (for details of full adder, see Appendix). Binary adders

are of two types:

1. Serial Adder

2. Parallel Adder.

Serial Adder A serial adder is an adder, which performs the addition of two binary numbers

serially bit by bit starting with lsb. Addition of one bit position takes one clock cycle. The circuit for

this adder is shown in Fig. 3.7. The operands are provided bit by bit starting with lsbs. Thus, for an n-

bit serial adder, n clock cycles are needed to complete the n-bit numbers� addition. At each cycle, the

carry produced by a bit position should be stored in a D-flip-flop and it is given as input during the

next cycle through carry-in. Therefore, serial adder is a sequential circuit.

3.8 Computer Organization

Advantage The serial adder circuit is small and hence, it is very inexpensive irrespective of the

number of bits to be added.

Disadvantage The serial adder is very slow since it takes n clock cycles for addition of two n-bit numbers.

Parallel Adder A parallel adder is an adder, which adds all bits of two numbers in one clock cycle.

It has separate adder circuit for each bit. Therefore, to add two n-bit numbers, parallel adder needs n

separate adder circuits. There are basically two types of parallel adders, depending on the way of

carry generation:

(a) Carry-Propagate Adder (CPA) or Ripple Carry Adder (RCA)

(b) Carry Look-ahead Adder (CLA).

Carry-Propagate Adder (CPA) For addition of two n-bit numbers, n full adders (FAs) are re-

quired. Each full adder�s carry output will be the input of the next higher bit full adder. Each full

adder performs addition for same position bits of two numbers. An n-bit CPA circuit is shown in the

Fig. 3.8.

The addition time is decided by the delay introduced by the carry. In worst case, the carry from the

first full adder stage has to propagate through all the full adder stages. Therefore, the maximum

propagation delay for n-bit CPA is D ¥ n, where D is the time delay for each full adder stage and n is

the number of bits in each operand.

Advantage This adder, being a combinational circuit, is faster than serial adder. In one clock period

all bits of two numbers are added.

Disadvantages

1. The addition delay becomes large, if the size of numbers to be added is increased.

2. The hardware cost is more than that of serial adder. Because, number of full adders needed is

equal to the number of bits in operands.

Figure 3.8 An n-bit Carry-Propagate Adder (CPA)

Figure 3.7 A serial adder

Datapath and Design of Arithmetic Logic Unit 3.9

Carry Look-ahead Adder (CLA) A Carry Look-ahead Adder (CLA) is a high-speed adder,

which adds two numbers without waiting for the carries from the previous stages. In the CLA, carry-

inputs of all stages are generated simultaneously, without using carries from the previous stages.

In the full adder, the carry output Ci+1 is related to its carry input Ci as follows:

Ci+1=AiBi + (Ai+Bi)Ci

This result can be rewritten as:

Ci+1 = Gi + PiCi (1)

where Gi = AiBi and Pi = Ai + Bi

The function Gi is called the carry-generate function, since a

carry Ci+1 is generated when both Ai and Bi are 1s. The function

Pi is called as carry-propagate function, since if Ai or Bi is a 1,

then the input carry Ci is propagated to the next stage. The basic

adder (BA) for generating the sum Si, carry propagate Pi and

carry generate Gi bits, is shown in Fig. 3.10. The sum bit Si = Ai

≈ Bi ≈ Ci. For the implementation of one basic adder, two XOR

gates, one AND gate and one OR gate are required.

Now, we want to design a 4-bit CLA, for which four carries

C1, C2, C3 and C4 are to be generated. Using equation number

(1); C1, C2, C3 and C4 can be expressed as follows:

C1= G0 + P0C0

C2= G1 + P1C1

C3= G2 + P2C2

C4= G3 + P3C3

These equations are recursive and the recursion can be removed as below.

C1 = G0 + P0C0 (2)

C2 = G1 + P1C1

= G1 + P1(G0 + P0C0)

= G1 + P1G0 + P1P0C0 (3)

BA

Figure 3.10 Basic adder

Figure 3.9 Implementation of a 16-bit CPA using 4-bit CPAs

Building Long Adder Since carry is propagated serially through each full adder, smaller size

CPAs can be cascaded to obtain a large CPA. As an example, construction of 16-bit CPA using four

4-bit CPAs is shown in the Fig. 3.9

3.10 Computer Organization

C3 = G2 + P2C2

= G2 + P2(G1 + P1G0 + P1P0C0)

= G2 + P2G1 + P2P1G0 + P2P1P0C0 (4)

C4 = G3 + P3C3

= G3 + P3(G2 + P2G1 + P2P1G0 + P2P1P0C0)

= G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0 (5)

The equations (2), (3), (4) and (5) suggest that C1, C2, C3 and C4 can be generated directly from C0.

In other words, these four carries depend only on the initial carry C0. For this reason, these equations are

called carry look-ahead equations. A 4-bit carry look-ahead adder (CLA) is shown in Fig. 3.11.

Figure 3.11 4-bit carry look-ahead adder (CLA)

The maximum delay of the CLA is 6 ¥ D (for Gi and Pi generation, delay = D, for Ci generation,

delay = 2D and lastly another 3D for sum bit Si) where D is the average gate delay. The same holds

good for any number of bits because the adder delay does not depend on size of number (n). It

depends on the number of levels of gates used to generate the sum and the carry bits.

Carry-Save Adder (CSA) The various types of adders we have discussed so far can add two

numbers only. In parallel processing and in multiplication and division, multi-operand addition is

often encountered. More powerful adders are required which can add many numbers instead of two

together. Such type high-speed multi-operand adder is called a carry-save adder (CSA). To see the

effectiveness, consider the following example:

34

62

58

76

10 ¨ Sum vector

22 ¨ Carry vector

230 ¨ Final result.

Datapath and Design of Arithmetic Logic Unit 3.11

In this example, four decimal numbers are added. First, the unit place digits are added, and

producing a sum of 0 and a carry digit of 2. Similarly the ten place digits are added, producing a sum

of 1 and a carry digit of 2. These summations can be performed in parallel to produce a sum vector of

10 and a carry vector of 22, because there is no carry propagation from the unit place digit to the tenth

place digit. When all digits of the operands are added, the sum and the shifted carry vector are added

in the conventional manner, i.e. using either CPA or CLA, which produces the final answer.

The CSA takes three numbers as inputs, say, X, Y and Z, and produces two outputs, the sum vector

S and carry vector C. The sum vector S and carry vector C are obtained by the following relations:

S = X ≈ Y ≈ Z

C = XY + YZ + XZ; Here all logical operations are performed bit-wise.

The final arithmetic sum of three inputs, i.e. Sum = X + Y + Z, is obtained by adding the two

outputs, i.e. Sum = S + C, using a CPA or CLA.

Let us take one example to illustrate the CSA technique.

X = 0 1 0 1 1 0

Y = 1 1 0 0 1 1

Z = 0 0 1 1 0 1

S = 1 0 1 0 0 0

C = 0 1 0 1 1 1

Sum = S + C = 1 0 1 0 1 1 0

The carry-save addition process can be implemented in fully parallel mode or in series-parallel

mode. Let us consider the 4-operand summation:

Sum = X + Y + Z + W

where X, Y, Z and W are 4-bit operands. The block diagram representation of this summation process

is shown in Fig. 3.12(a).

In this system, the first carry-save adder (CSA) adds X, Y and Z and produces a sum vector (S1)

and a carry vector (C1). The sum vector, the shifted carry vector and the fourth operand W are applied

as the inputs to the second CSA. The results produced by the second CSA are then added by a CPA to

generate the final summation, Sum.

The carry is propagated only in the last step. So, the total time required to add 4 operands is:

Time (4) = 2 * [CSA add time] + [CPA add time]

In general, time to add n operands by this method is:

Time (n) = (n�2) * [CSA add time] + [CPA add time]

This result can again be improved by using a CLA in the last stage, instead of CPA.

3.8.2 Binary Incrementer Unit

The binary incrementer unit is used to perform the increment micro-operation. The increment micro-

operation adds one to the number stored in a register. For example, if a 4-bit register has a binary

value 1001, after increment operation, it will be 1010. This micro-operation can be implemented two

ways, one is by using binary up counter (for counter, see Appendix) and other is by using combina-

tional circuit. Some times, it is required to perform the operation using combinational circuits. The

3.12 Computer Organization

Figure 3.12 4-operand summation

diagram of a 4-bit combinational circuit incrementer is shown in Fig. 3.13. Here, four half adders

(HA) (for half adder, see Appendix) are connected in cascade. Note that, the one of the inputs of the

least significant stage HA is connected to logic �1�.

The circuit in the Fig. 3.13 can easily be extended to design an n-bit incrementer by using more

number of half adders. Instead of half adders, full adders can be used in the incrementer circuit where

one of the inputs of each full adder is connected to logic �0� and first stage full adder�s carry input is

fixed to logic �1�.

Datapath and Design of Arithmetic Logic Unit 3.13

Figure 3.13 4-bit incrementer circuit

3.8.3 Binary Decrementer Unit

The binary decrementer unit performs the decrement micro-operation. The decrement micro-operation

subtracts value one from the number stored in a register. For example, if a 4-bit register has a binary

value 1001, it will be 1000 after the decrement operation. The same operation can easily be imple-

mented using combinational circuit half subtractors or sequential circuit binary down counter (see

Appendix). There may be occasions when the decrement micro-operation must be realized with

combinational circuit full adders. The subtraction of two binary numbers can be performed by taking

the 2�s complement of the subtrahend and then adding it to the minuend, as discussed in Section

2.4.1. The diagram of a 4-bit combinational decrementer circuit has been implemented using full

adders, shown in Fig. 3.14.

Figure 3.14 4-bit decrementer circuit

Here, we are adding a bit 1 as one of the inputs to the full adder. This means that binary number

(1111) is added with the operand number A. The binary number (1111) means �1 in decimal, since

the negative number is represented in computers using signed 2�s complement method. That means,

we are adding �1 with the operand value stored in register A.

3.8.4 Binary Adder-Subtractor Unit

Recall that the subtraction A�B is equivalent to A+2�s complement of B (i.e. 1�s complement of B

+1). The addition and subtraction can be combined to a single circuit by using exclusive-OR (XOR)

gate with each full adder. The circuit is shown in the Fig. 3.15.

3.14 Computer Organization

The selection input S determines the operation. When S = 0, this circuit performs the addition

operation and when S = 1, this circuit performs subtraction operation. The inputs to each XOR gate

are S-input and B- input. When S = 0, we have 0 ≈ B = B (It can be verified from the truth table of

XOR gate). This means that the direct B-value is given as input into a full adder (FA) and the carry-

input into first full adder is 0. Thus, the circuit performs addition. When S = 1, we have 1 ≈ B = B

(It can be verified from the truth table of XOR gate) and carry-input is 1. This means that the circuit

performs the addition of A with 2�s complement of B. For unsigned numbers, A � B if A ≥ B or the

2�s complement of (B � A) if A < B. For signed numbers, the result is A � B provided that there is no

overflow.

3.8.5 Arithmetic Unit

The basic arithmetic micro-operations listed in Table 3.1 can be implemented in one composite

arithmetic unit. The diagram of a 4-bit arithmetic circuit is shown in Fig. 3.16. The circuit has a 4-bit

parallel adder and four multiplexers for 4-bit arithmetic unit. There are two 4-bit inputs A and B, and

the 5-bit output is K. The size of each multiplexer is 4:1. The two common selection lines for all four

multiplexers are S0 and S1. Cin is the carry input of the parallel adder and the carry out is Cout. The

four inputs to each multiplexer are B- value, B-value, logic�1 and logic�0.

The output of the circuit is calculated from the following arithmetic sum:

K = A + Y + Cin

where A is a 4-bit number, Y is the 4-bit output of multiplexers and Cin is the carry input bit to

the parallel adder. By this circuit it is possible to get 8 arithmetic micro-operations, as listed in the

Table 3.2.

Case 1: When S1 S0 = 00.

In this case, the values of B are selected to the Y inputs of the adder. If Cin = 0, output K = A + B.

If Cin = 1, output K = A + B + 1. In both cases the micro-operation addition is performed without

carry or with carry input.

Case 2: When S1 S0 = 01.

The complements of B are selected to the Y inputs of the adder. If Cin = 0, output K = A + B. This

means the operation is subtraction with borrow. If Cin = 1, output K = A + B + 1, which is equivalent

to A + 2�s complement of B. Thus this gives the subtraction A � B.

Figure 3.15 4-bit binary adder-subtractor

Datapath and Design of Arithmetic Logic Unit 3.15

Figure 3.16 4-bit arithmetic unit

Case 3: When S1 S0 = 10.

Here, all 1s are selected to the Y inputs of the adder. This means Y = (1111), which is equivalent to

2�s complement of decimal 1, that means, Y = �1. If Cin = 0, the output K = A �1, which is a

decrement operation. If Cin = 1, the output K = A � 1 + 1 = A. This causes the direct transfer of A to

K.

Case 4: When S1 S0 = 11.

In this case, all 0s are selected to the Y inputs of the adder. If Cin = 0, the output K = A, which is

a transfer operation. If Cin = 1, output K = A + 1. This means the value of A is incremented by 1.

Observe that only seven different arithmetic micro-operations are deduced, because the transfer

operation is generated twice.

Table 3.2 Arithmetic unit Function Table

S1 S0 Cin Y K = A + Y + Cin Operation

0 0 0 B K = A + B Addition

0 0 1 B K = A + B + 1 Addition with carry

0 1 0 B K = A+ B Subtraction with borrow

0 1 1 B K = A + B +1 Subtraction

1 0 0 1 K = A � 1 Decrement

1 0 1 1 K = A Transfer

1 1 0 0 K = A Transfer

1 1 1 0 K = A + 1 Increment

3.16 Computer Organization

3.9 LOGIC UNIT

Logic unit is needed to perform the logical micro-operations such as OR, AND, XOR (exclusive-OR),

complement, etc on individual pairs of bits stored in registers. For example, the OR micro-operation

between the contents of two registers R2 and R3 can be stated as

C: R1 ¨ R2 ⁄ R3.

This symbolic instruction specifies the OR micro-operation to be performed on the contents of

registers R2 and R3 bitwise, provided that the control variable C = 1.

Special symbols are used for logic micro-operations XOR, AND and complement (some times

called NOT). The symbol ≈ is used to denote XOR micro-operation. The symbol Ÿ is used to

designate AND micro-operation and the symbol � (or �) used as a bar on the top of a register name

indicates the (1�s) complement or NOT micro-operation.

Now, we will design a logic unit that can perform the four basic logic micro-operations: OR, AND,

XOR and complement. Because from these four micro-operations, all other logic micro-operations

can be derived. A one-stage logic unit for these four basic micro-operations is shown in the Fig. 3.17.

The logic unit consists of four gates and a 4:1 multi-

plexer. The outputs of the gates are applied to the data

inputs of the multiplexer. Using two selection lines,

one of the data inputs of the multiplexer is selected as

the output. The ith stage is shown using subscript i. For

a logic unit with n bits, the diagram must be repeated n

times for i = 1, 2, 3, �n. Then the common selection

lines are applied to all the stages. For example, to de-

sign a 4-bit logic unit, four 4:1 multiplexers and 16

gates (out these, 4 OR-gates, 4 AND-gates, 4 XOR-

gates and 4-NOT gates) are required. The correspond-

ing function table is shown in the Table 3.3.

Table 3.3 Function Table for Logic Unit

S1 S0 Output (L) Operation

0 0 L = A Ÿ B AND

0 1 L = A ⁄ B OR

1 0 L = A ≈ B XOR

1 1 L = A Complement of A

3.10 SHIFTER UNIT

Shifter unit is used to perform shift micro-operations. Shift micro-operations are used to transfer

stored data serially. The shifting of bits of a register can be in either direction, left or right. Shift

micro-operations can be classified into three categories:

(a) Logical (b) Circular (c) Arithmetic.

Figure 3.17 One ith stage logic unit

Datapath and Design of Arithmetic Logic Unit 3.17

In logical shift, all bits including sign bit take part

in the shift operation. A bit 0 is entered in the vacant

extreme bit position (left most or right most). As a

result, the left-most bit is lost, if it is the left shift

operation. Similarly, the right-most bit is lost, if it is

the right shift operation. We use the symbols lsl and

lsr for left shift and right shift micro-operations re-

spectively.

In circular shift (also known as rotation operation),

one bit shifted out from one extreme bit position en-

ters the other extreme side�s vacant bit position as

shown in Fig. 3.18. No bit is lost or added.

In arithmetic shift, sign bit remains unaffected and

other bits (magnitude bits) take part in shift micro-op-

eration, as shown in Fig. 3.19. As a result of the arith-

metic left shift operation, the left-most bit of the mag-

nitude part is lost and extreme right vacant bit is filled

in with 0. Similarly, the right-most bit is lost and va-

cant left most bit of the magnitude part is filled in with

the sign bit of the number, if it is the arithmetic right

shift operation.

Shifter unit can be constructed using bidirectional

shift register with clock circuit. However, it would be more efficient for a processor having many

registers to implement the shifter unit with a combinational circuit. A combinational shifter unit can

be constructed with multiplexers as shown in Fig. 3.20. The content of a register that has to be shifted

Figure 3.18 Circular shift micro-operation

Figure 3.19 Arithmetic shift micro-operation

Figure 3.20 3-bit combinational shifter unit

3.18 Computer Organization

is first placed onto a common bus and the shifted number is then loaded back into the register. This

requires one clock pulse for loading the shifted number into the register. A 3-bit shifter is shown in

figure whose three data inputs are A0, A1 and A2, and three data outputs are G0, G1 and G2. There are

two serial inputs, one IL for left shift operation and another IR for right shift operation. If the selection

line S is 0, the stored input data is shifted right. If the selection line S is 1, the stored input data is

shifted left. The function table shown in Table 3.4 illustrates shift micro-operations.

Table 3.4 Function Table for Combinational Shifter Unit

Selection line Output

S G0 G1 G2

0 IR A0 A1

1 A1 A2 IL

A shifter unit for n data inputs and outputs requires n multiplexers.

3.11 ARITHMETIC LOGIC UNIT (ALU)

The arithmetic, logic and shifter units introduced earlier can be combined into one ALU with com-

mon selection lines. The shift micro-operations are often performed in a separate unit, but sometimes

the shifter unit is made part of the overall ALU. Since the ALU is composed of three units, namely,

arithmetic, logic and shifter units. For 4-bit ALU, four multiplexers for arithmetic unit are needed

each of size 4 ¥ 1, four multiplexers for logic unit are needed each of size 4 ¥ 1 and four multiplexers

for shifter unit are needed each of size 2 ¥ 1. A complete block diagram schematic of a 4-bit ALU is

shown in Fig. 3.21.

The set of four multiplexers each of 4:1 at output end chooses among arithmetic output in K, logic

output in L and shift output in G. A particular arithmetic or logic micro-operation is selected with

selection inputs S1 and S0. The final output of the ALU is determined by the set of multiplexers with

selection lines S3 and S2. The function table for the ALU is shown in the Table 3.5. The table lists

14 micro-operations: 8 for arithmetic, 4 for logic and 2 for shifter unit. For shifter unit, the selection

line S1 is used to select either left or right shift micro-operation.

Table 3.5 Function Table for ALU

S3 S2 S1 S0 Cin Output (F) Operation

0 0 0 0 0 F = A + B Addition

0 0 0 0 1 F = A + B + 1 Addition with carry

0 0 0 1 0 F = A + B¢ Subtraction with borrow

0 0 0 1 1 F = A + B¢ + 1 Subtraction

0 0 1 0 0 F = A � 1 Decrement A

0 0 1 0 1 F = A Transfer A

0 0 1 1 0 F = A Transfer A

0 0 1 1 1 F = A + 1 Increment A

(Contd.)

Datapath and Design of Arithmetic Logic Unit 3.19

0 1 0 0 x F = A Ÿ B AND

0 1 0 1 x F = A ⁄ B OR

0 1 1 0 x F = A ≈ B XOR

0 1 1 1 x F = A Complement of A

1 0 0 x x F = lsr A Shift right A into F

1 0 1 x x F = lsl A Shift left A into F

The rapid growth in IC technology permitted the manufacturers to produce an ALU as an MSI

block. Such systems implement many operations and their use as a system component reduces the

hardware cost, board space, debugging effort and failure rate. Usually, each MSI ALU chip is

designed as a 4-bit slice. However, a designer can easily interconnect n such chips to get a 4n-bit

ALU. The most popular 4-bit ALU chips are the 74381 and 74181. The 74381 ALU performs 3

arithmetic, 3 Boolean and 2 miscellaneous operations on 4-bit operands. The 74181 ALU performs 16

arithmetic and 16 Boolean operations on two 4-bit operands.

(Contd.)

Figure 3.21 4-bit 14-function ALU

3.20 Computer Organization

3.12 BIT-SLICE PROCESSORS

The chip count which results in high power dissipation and poor reliability is the primary concern of

MSI functional blocks.

To eliminate this difficulty, a new approach called the bit-slice technique became feasible because

of advances in IC technology. A bit-slice processor chip typically includes an ALU and a few

registers. Using bit slices, a designer can build a processor of any word length. For example, a 4-bit

slice processor includes a register file (i.e., collection of registers) and an ALU for performing

operations on 4-bit data, so that four such chips can be combined to build a 16-bit processor unit.

Examples of bit-slice processors are Intel�s 3000 and AMD�s (Advanced Micro-Devices�) AM2901.

Figure 3.22 shows how a 16-bit processor can be constructed from four 4-bit processor slices.

The data buses and register files of the individual slices are effectively cascaded to increase their

size from 4 to 16 bits. The control lines that select and sequence the operations to be performed are

connected to every slice so that all slices execute the same actions in lockstep with one another. Thus

each slice performs the same operation on a different 4-bit part (slice) of the input operands and

Figure 3.22 16-bit processor composed of four 4-bit slices

Datapath and Design of Arithmetic Logic Unit 3.21

produces only the corresponding part of the results. The required control signals are derived from an

external control unit, which can be hardwired or microprogrammed. Certain operations require

information to be exchanged between slices. For example, to implement a shift operation, each slice

must be able to send a bit to, and receive a bit from, its left or right neighbours. Similarly, when

performing addition or subtraction, carry bits must be transmitted between neighbouring slices. For

this purpose horizontal connections are provided between the slices as shown in Fig. 3.22.

1. Why every computer system is associated with a set of general-purpose registers?

Answer

Some general-purpose registers are used inside processor to enhance the effective execution speed.

The registers are fastest storage devices whose speed is almost same as processors in computer

systems and are used to hold the instructions and data temporarily. The processors do not have to wait

for required instructions and data, if they are available in registers.

2. A digital computer has a common bus system for k-registers of n bits each. The bus is

constructed with multiplexers.

(a) What size of multiplexers is needed?

(b) How many multiplexers are there in the bus?

Answer

For an n-line bus system for k-registers of n bits each:

(a) The size of each multiplexer must be k ¥ 1, since it multiplexes k data lines each from a

register.

(b) Each multiplexer transfers one bit of the selected register. The number of multiplexers needed

to construct the bus is equal to n, the number of bits in each register.

3. A digital computer has a common bus system for k-registers of n bits each. The bus is

constructed with tri-state buffers.

(a) How many decoders are needed and what size of decoder is needed?

(b) How many tri-state buffers are there in the bus?

Answer

For an n-line bus system for k-registers of n bits each:

(a) Only one decoder is required to select among the k-registers. Size of the decoder should be

log2k-to- k.

(b) The total number of buffers needed is k * n.

4. Show the circuit diagram for implementing the following register transfer operation:

if (ab = 1) then R1 ¨ R2 else R1 ¨ R3; where a and b are control variables.

3.22 Computer Organization

Answer

The control function C is ab. The register transfer operation can be written as:

C: R1 ¨ R2

C�: R1 ¨ R3

The circuit diagram for the register transfer operations is shown below.

The R2 register is selected by the MUX if control condition C = 1; otherwise register R3 is

selected as source register.

Hardware implementation of �if (ab = 1) then R1 ¨ R2 else R1 ¨ R3�

5. Two unsigned numbers of 2-bit each are to be added. Which adder is faster: serial adder or

ripple carry adder?

Answer

In serial adder, the propagation delay of the flip-flop, tf also contributes to total addition delay. If ts is
the delay for single stage adder, the minimum period of the clock must be (ts + tf). Hence, the

minimum time needed by the serial adder is 2 ¥ (ts + tf).
In ripple carry adder, addition time = 2 ¥ ts.

Thus, the ripple carry adder is faster.

6. Suppose a 16-bit ripple carry adder (RCA) is constructed using 4-bit RCA as building block.
What is the maximum addition delay of the adder?

Answer

To generate S15, C15 must be available. The generation of C15 depends on the availability of C14,
which in turns must wait for C13 to become available. The maximum delay for such adder can be
computed as:

15 ¥ 2D (for carry to propagate through 15 full adders) + 3D (for S15 generation from C15) = 33D.

7. Suppose a 16-bit carry look-ahead adder (CLA) is constructed using 4-bit CLA as building
block. What is the maximum addition delay of the adder?

Answer
The maximum delay for such adder can be computed as:

D(for Gi, Pi generation) + 2D (for C4 generation from C0) + 2D (for C8 generation from C4) +
2D (for C12 generation from C8) + 2D (for C15 generation from C12) + 3D (for S15 generation from
C15) = 12D.

Datapath and Design of Arithmetic Logic Unit 3.23

8. Why CLA is called fast parallel adder?

Answer
In the CLA, carry-inputs of all stages are generated simultaneously, without using carries from the
previous stages. These input carries depend only on the initial carry C0. For this reason, CLA is fast
parallel adder.

9. If the average gate delay is 4 ns, what is the delay for an 8-bit carry look-ahead adder?

Answer
For carry look-ahead adder, the addition delay is 6 ¥ gate delay = 6 ¥ 4 ns = 24 ns.

10. Two 4-bit unsigned numbers are to be multiplied using the principle of carry save adders.
Assume the numbers to be A3 A2 A1 A0 and B3 B2 B1 B0. Show the arrangement and intercon-
nection of the adders and the input signals so as to generate an 8-bit product as P7 P6 P5 P4 P3

P2 P1 P0.

Answer
The multiplication of two unsigned is done by repeated add-shift operations. Add-shift multiplication
of two 4-bit numbers is illustrated in figure below.

A3 A2 A1 A0 = A
B3 B2 B1 B0 = B

A3B0 A2B0 A1B0 A0B0 = W1
A3B1 A2B1 A1B1 A0B1 = W2

A3B2 A2B2 A1B2 A0B2 = W3
A3B3 A2B3 A1B3 A0B3 = W4

P7 P6 P5 P4 P3 P2 P1 P0 = A ¥ B = Product

Figure Add-shift multiplication of two 4-bit numbers (A ¥ B = Product)

The additions of partial products W1, W2, W3 and W4, which are generated using bit-wise AND
logic operations, can be done using CSA-tree as shown in figure below to realize the multiplier for 4-
bit numbers.

The first carry-save adder (CSA-1) adds W1, W2 and W3 and produces a sum vector (S1) and a
carry vector (C1). The sum vector, the shifted carry vector and the fourth partial product W4 are
applied as the inputs to the second CSA. The results produced by the second CSA are then added by
a CPA to generate the final summation Sum.

3.24 Computer Organization

11. How many CSA levels are needed to reduce 8 summands to 2?

Answer

Let, 8 summands be denoted as A1, A2, A3, � A8. The schematic representation of the carry save

addition is shown in figure below. The diagram shows that addition requires four-level CSAs.

12. Suppose register A holds the 8-bit number 11011001. Determine the B operand and the logic

micro-operation to be performed in order to change the value in A to:

(a) 01101101

(b) 11111101

Answer

(a) If B = 1011 0100 and the XOR logic micro-operation is performed with A, then the content of

A will be 0110 1101. That is, A ¨ A ≈ B.

(b) If OR logic micro-operation is performed between A and B, then the content of A will be 1111

1101. That is, A ¨ A ⁄ B.

13. Suppose register A holds the 8-bit number 11011001. Determine the sequence of binary values

in A after an arithmetic shift-right, followed by a circular shift-right and followed by a logical

shift-left.

Answer

The value in A = 1101 1001

After arithmetic shift right, the value in A = 1110 1100

After circular shift right, the value in A = 0111 0110

After logical shift left, the value in A = 1110 1100

Datapath and Design of Arithmetic Logic Unit 3.25

14. What is bit-slice processor? Give some examples.

Answer

A bit-slice processor is constructed from processor modules of smaller bit width. Each of these

processes one bit field of an operand. Each processor module chip typically includes an ALU and a

few registers. Using smaller size processors, one can design a processor of any word length. For

example, a 4-bit bit slice processor includes a register file and an ALU to perform operations on 4-bit

data, so that four such chips can be combined to build a 16-bit processor unit.

Some of bit-slice processors are Intel�s 3000-family and AMD�s AM2900 family.

Group A

1. Choose the most appropriate option for the following questions:

(i) Microoperation in computers is an operation

(a) in ALU (b) on stored data in register

(c) in control unit (d) performed by the operating system.

(ii) A register is

(a) a part of main memory (b) a part of CPU

(c) collection of flip-flops (d) Both (b) and (c).

(iii) The address of the next instruction to be executed is held by

(a) AC (accumulator) register (b) IR (instruction register)

(c) PC (program counter) register (d) SP (stack pointer).

(iv) A bus in the computer system is

(a) collection of some individual lines each is used to send a bit randomly

(b) collection of parallel lines each is used to send one bit synchronously

(c) collection of lines through which control signals are sent

(d) collection of lines through which data are sent.

(v) To construct an n-line common bus using MUX for k-registers of n bits each, the number of

MUXs and size of each MUX are

(a) k and n ¥ 1 (b) n and 2k

(c) n and k ¥ 1 (d) k and 2n, respectively.

(vi) To construct an n-line common bus using tri-state buffers for k-registers of n bits each, the

number of buffers and size of common decoder are

(a) n and log2k-to- k (b) n*k and log2n-to- n

(c) k and log2n-to- n (d) k*n and log2k-to- k, respectively.

(vii) To add two n-bit numbers in parallel adder, the number of clock periods required is

(a) n (b) 2*n (c) 1 (d) n/2.

(viii) The number of clock periods needed in n-bit serial adder to add two numbers is

(a) n (b) 2*n (c) 1 (d) n/2.

(ix) The maximum propagation delay for n-bit CPA is

(a) D * n (b) 6 * D (c) n

(d) D, where D is the time delay for each full adder stage.

3.26 Computer Organization

(x) All carries in the CLA depend on

(a) final stage carry only (b) initial input carry only

(c) previous stage carry (d) Both (a) and (b).

(xi) The maximum propagation delay for n-bit CLA is

(a) D * n (b) 6 * D (c) n

(d) D, where D is the average gate delay.

(xii) The CSA is

(a) 2-to-1 converter

(b) 3-to-1 converter

(c) 3-to-2 converter

(d) n-to-2 converter; where n is any positive integer.

(xiii) The minimum number of CSA-levels and minimum number of CSAs required in CSA tree to

add seven n-bit operands are

(a) 3 and 5 (b) 4 and 4 (c) 4 and 5 (d) 5 and 4, respectively.

(xiv) In arithmetic shift operation, 0s are padded in vacant positions for

(a) left/right shift of sign magnitude numbers

(b) right shift of 2�s complement negative numbers

(c) left shift of 2�s complement negative numbers

(d) right/left shift of 1�s complement numbers.

(xv) The difference between an 8-bit composite adder-subtractor made from full adder subunits

is in the use of

(a) 8 extra carry bits

(b) 8 XORs

(c) 8-bit inverter and one 8-bit increment circuit

(d) 8 NOT gates.

(xvi) How many 8-bit ALU slices can be used for designing a 32-bit ALU? Assume that 32-bit

operations take nearly four times the 8-bit slice time.

(a) 4 in parallel (b) 4 in parallel plus 4 in series

(c) 8 in series (d) 4 in series.

Group B

2. Show the circuit diagram for implementing the following register transfer operation:

if (ab = 1) then R1 ¨ R2 else R1 ¨ R3; where a and b are control variables.

3. What is bus and what is bus transfer? Why do most computers have a common bus system?

4. Construct a common bus system using MUXs for three registers, each of 4-bits.

5. A digital computer has a common bus system for k-registers of n-bits each. The bus is constructed

with MUXs.

(i) What sizes of MUXs are needed?

(ii) How many MUXs are there in the bus?

6. What is tri-state buffer? Construct a common bus system using tri-state buffers for two registers of

4-bits each.

7. A digital computer has a common bus system for k-registers of n-bits each. The bus is constructed

with tri-state buffers.

(iii) What size of common decoder is needed?

(iv) How many tri-state buffers are there in the bus?

Datapath and Design of Arithmetic Logic Unit 3.27

8. Explain the significance of timing signals in a computer system.

9. What is memory transfer? What are the different registers associated for memory transfer? Discuss.

10. What is binary adder? What are different types of binary adders?

11. What is serial adder? Discuss it using diagram. What are its merits and demerits?

12. What is parallel adder? What are different types of parallel adders? What are its merits and

demerits?

13. Compare and contrast serial adder and parallel adder.

14. What is carry propagate adder (CPA)? Design a 4-bit CPA. What are its merits and demerits?

Estimate the maximum propagation delay for n-bit CPA.

15. What is carry look-ahead adder (CLA)? Design a 4-bit CLA. What are its merits and demerits?

Estimate the maximum propagation delay for n-bit CLA.

16. Why CLA is called fast parallel adder? Explain.

17. How do you design a 32-bit CPA using 8-bit CPAs? Give the block diagram.

18. What is carry save adder (CSA)? Use one example to illustrate its operation.

19. How many CSA levels are needed to reduce 16 summands to 2 using CSA-tree pattern? Draw the

diagram. What is the addition time for n summands?

20. Design a 4-bit incrementer circuit using full adders.

21. Design a 4-bit combinational decrementer circuit.

22. Design an n-bit adder/subtractor composite unit.

23. Design a 3-bit arithmetic unit, which will perform addition, subtraction, increment, decrement and

transfer operations.

24. Design a logic circuit that performs four logic operations of XOR, XNOR, NOR and NAND.

25. Suppose register A holds the 8-bit number 11011001. Determine the B operand and the logic micro-

operation to be performed in order to change the value in A to:

(i) 01101101

(ii) 11111101

26. Suppose register A holds the 8-bit number 11011001. Determine the sequence of binary values in A

after an arithmetic shift-right, followed by a circular shift-right and followed by a logical shift-left.

27. Design a 4-bit combinational shifter circuit.

28. Design a 2-bit ALU that performs addition, subtraction, logical AND, logical OR and logical shift

operations.

29. Design an arithmetic circuit with one selection variable S and two n-bit data inputs A and B.

The circuit generates the following four arithmetic operations in conjunction with the carry

Cin. Draw the logic diagram for the first two stages:

S Cin = 0 Cin = 1

0 K = A + B K = A + 1

1 K = A � 1 K = A + B� + 1

CHAPTER

4
Memory Organization

4.1 INTRODUCTION

Memory system of a computer is just as important as the CPU in determining its performance because

programs and data they operate on are stored in the memory of a computer. The execution speed of

programs is highly dependant on the speed with which instructions and data can be transferred

between the processor and memory. It is also very important to have a large memory to enhance the

execution of programs that are large and deal with huge amounts of data.

Ideally, we would like to have the memory which would be fast, large and inexpensive. Unfortu-

nately, it is impossible to meet all three requirements simultaneously. If we increase the speed and

capacity, then cost will increase. We can achieve these goals at optimum level by using several types

of memories.

4.2 MEMORY PARAMETERS

There are three basic parameters in choosing a memory:

l Capacity

l Speed

l Bandwidth or Data Transfer Rate

Capacity The capacity of the memory is an important factor

that characterizes the size of a computer. Memory can be viewed

as a storage unit containing m number of locations (addresses),

each of which stores n numbers of bits, as shown in Fig. 4.1. In

other words, the memory has m addresses and with word length of

n bits. Each word is addressed uniquely by log2 m number of bits.

All n bits of a word are read or stored in one basic operation. The

total capacity of the memory is expressed as m ¥ n-bit or m-word

memory.

Figure 4.1 A memory with m lo-

cations of each n bits

4.2 Computer Organization

The maximum capacity of a memory is determined by the addressing scheme. For example, a 16-

bit computer that generates 16-bit addresses is capable of addressing up to 216= 64K memory loca-

tions.

Speed A useful parameter of the memory is its speed of operation, which is the time that elapses

between the initiation of an operation and the completion of that operation. This is measured in terms

of two parameters: access time, tA and cycle time, tC. Sometimes speed is measured in terms of access

time and sometimes in terms of cycle time. For example, to perform a read operation, first the address

of the location is sent to memory followed by the �read� control signal. The memory decodes the

address to select the location and reads out the contents of the location. The access time is the time

taken by the memory to complete a read operation from the moment of receiving the �read� control

signal. Generally, access times for read and write are equal. The memory cycle time is the minimum

time delay required between the initiations of two successive memory operations. For example, the

time delay between two successive memory read operations is the memory cycle time. During the first

read operation, the information read from memory is available after the access time. This data can be

immediately used by CPU. However, the memory is still busy with some internal operation for some

more time called recovery time, tR. During this time, another memory access, read or write cannot be

initiated. Only after the recovery time, next operation can be started. The cycle time is the total time

including access time and recovery time: tC = tA + tR. This recovery time varies with memory

technology.

Bandwidth or Data Transfer Rate The maximum amount of information that can be transferred

to or from the memory per unit time is called bandwidth and is expressed as number of bytes or words

per second. It depends on the speed of access and the width of data bus.

4.3 MEMORY HIERARCHY

The total memory capacity of a computer can be considered as being a hierarchy of components. The

memory hierarchy system consists of all storage devices used in a computer system and are broadly

divided into following four groups, shown in Fig. 4.2.

l Secondary (auxiliary) memory

l Main (primary) memory

l Cache memory

l Internal memory

Secondary Memory The slow-speed and low-cost devices that provide backup storage are called

secondary memory. The most commonly used secondary memories are magnetic disks, such as hard

disk, floppy disk and magnetic tapes. This type of memory is used for storing all programs and data,

as this is used in bulk size. When a program not residing in main memory is needed to execute, it is

transferred from secondary memory to main memory. Programs not currently needed in main memory

(in other words, the programs are not currently executed by the processor) are transferred into

secondary memory to provide space for currently used programs and data.

Main Memory This is the memory that communicates directly with CPU. Only programs and data

currently needed by the CPU for execution reside in the main memory. Main memory occupies

Memory Organization 4.3

central position in hierarchy by being able to communicate directly with CPU and with secondary

memory devices through an I/O processor, as depicted in Fig. 4.3.

Figure 4.2 Memory hierarchy

Figure 4.3 Interconnection between memories and the CPU

Cache Memory This is a special high-speed main memory, sometimes used to increase the speed

of processing by making the current programs and data available to the CPU at a rapid rate. Gener-

ally, the CPU is faster than main memory, thus resulting that processing speed is limited mainly by

the speed of main memory. So, a technique used to compensate the speed mismatch between CPU

and main memory is to use an extremely fast, small cache between CPU and main memory, whose

access time is close to CPU cycle time. The cache is used for storing portions of programs currently

being executed in the CPU and temporary data frequently needed in the present computations. Thus,

the cache memory acts as a buffer between the CPU and main memory. By making programs and data

available at a rapid rate, it is possible to increase the performance of computer.

Cache memory is one high-speed main memory (SRAM). The cache memory can be placed in

more than one level. Most of the recent microprocessors - starting from Intel 80486- have on-chip

(memory chip is placed inside the CPU chip) cache memory also known as internal cache. High

performance microprocessors such as- Pentium pro and later have two levels of cache memory on-

chip. These are known as level 1 (L1) and level 2 (L2) caches. An on-chip cache is slightly faster than

an off-chip cache of same technology.

4.4 Computer Organization

Internal Memory This memory refers to the high-speed registers used inside the CPU. These

registers hold temporary results when a computation is in progress. There is no speed disparity

between these registers and the CPU because they are fabricated with the same technology. However,

since registers are very expensive, only a few registers are used as internal memory.

4.4 ACCESS METHOD

A basic characteristic of a memory is the order or sequence in which information can be accessed.

The methods of accessing include the following:

l Sequential or Serial access

l Random access

l Direct or Semi-random access

l Associative

Sequential Access In this method, the memory is accessed in a specific linear sequential manner.

For example, if fourth record (collection of data) stored in a sequential access memory needs to be

accessed, the first three records must be skipped. Thus, the access time in this type of memory

depends on the location of the data. Magnetic disks, magnetic tapes and optical memories like CD-

ROM use this method.

Random Access In this mode of access, any location of the memory can be accessed randomly. In

other words, the access to any location is not related with its physical location and is independent of

other locations. For random access, a separate mechanism is there for each location. Semiconductor

memories (RAM, ROM) are this type.

Direct Access This method is basically the combination of previous two methods. Memory de-

vices such as magnetic hard disks contain many rotating storage tracks. If each track has its own read/

write head, the tracks can be accessed randomly, but access within each track is sequential. In this

case the access is semi-random or direct. The access time depends on both the memory organization

and the characteristic of storage technology.

Associative Access This is a special type of random access method that enables one to make a

comparison of desired bit locations within a word for a specific match and to do this for all words

simultaneously. Thus, based on a portion of a word�s content, word is retrieved rather than its address.

Cache memory uses this type of access mode.

4.5 MAIN MEMORY

The central storage unit in a computer system is the main memory which is directly accessible by the

CPU. It is a relatively large and fairly fast external memory used to store programs and data during

the computer operation. Most of the main memory in a general-purpose computer is made up of RAM

(Random Access Memory) integrated circuit chips, which are volatile (i.e. if power goes off, the

stored information is lost) in nature. But a small part of the main memory is also constructed with

ROM (Read Only Memory) chips, which are non-volatile. Originally, RAM was used to refer to a

Memory Organization 4.5

random-access memory, but now it is used to mean a read-write memory (RWM) to distinguish it

from a read-only memory, although ROM�s access mechanism is also random.

RAM is used to store the most of the programs and data that are modifiable. Integrated RAM chips

are available in two forms: one is static RAM (SRAM) and another is dynamic RAM (DRAM). The

SRAM memories consist of circuits capable of retaining the stored information as long as power is

applied. That means this type of memory requires constant power. SRAM memories are used to build

cache memory. On the other hand, DRAM stores the binary information in the form of electric

charges that applied to capacitors. The stored information on the capacitors tend to loss over a period

of time and thus the capacitors must be periodically recharged to retain their state. The main memory

is generally made up of DRAM chips.

Comparison of SRAM and DRAM
1. The SRAM has lower access time, which means it is faster compared to the DRAM.

2. The SRAM requires constant power supply, which means this type of memory consumes more

power; whereas, the DRAM offers reduced power consumption, due to the fact that the

information is stored in the capacitor.

3. Due to the relatively small internal circuitry in the one-bit memory cell of DRAMs, the large

storage capacity in a single DRAM memory chip is available compared to the same physical

size SRAM memory chip. In other words, DRAM has high packaging density compared to the

SRAM.

4. SRAM is costlier than DRAM.

Another part of the main memory consists with ROMs (read only memories), whose contents are

not generally altered by the users/programmers. In other words, the ROM is generally used for storing

the programs and data that are permanently resident in the computer. In this connection, it is worth

noting that the ROM portion of the main memory is needed for storing an initial start-up program

called a Bootstrap Loader. The Bootstrap Loader is a system program whose task is to load a portion

the operating system from secondary memory (hard-disk) to main memory (RAM).

4.5.1 RAM and ROM Chips

Most part of the main memory is consisted of RAM chips, since RAM chip is used to read and write

operations on programs and data. A block diagram of a RAM chip of size 512 ¥ 8 is shown in Fig.

4.4.

Figure 4.4 Block diagram of a RAM chip

The chip has 512 locations each location capable of storing 8 bits. This requires a 9-bit address bus

and 8-bit bidirectional data bus. Here, note that the data bus is bidirectional, since it allows the

4.6 Computer Organization

transfer of data either from memory to CPU during read operation or from CPU to memory during

write operation. The R/W control line specifies either read or write operation. When this line is high,

the control line sends read signal and when it is low, it sends a write signal. Some chip selection lines

are required to enable the desired chip from multiple chips in a large memory system before read or

write operation on it.

A ROM is used to read the information from it. So, it does not have any R/W line, because when

a chip is selected, it will be used to read the binary information from it. Also, the data bus is

unidirectional. A ROM chip is organized externally in a similar manner as RAM. A block diagram

for a ROM chip of size 512 ¥ 8 is shown in Fig. 4.5.

Figure 4.5 Block diagram of a ROM chip

For the same physical size chip, it is possible to have more bits of ROM than of RAM, because the

internal binary cells in ROM occupy less space than in RAM, which can be easily understood by their

internal circuits discussed in Section 4.5.2. In other words, ROM has high packaging density com-

pared to the RAM.

Construction of Large Memory Using Small Chips The large memory can be constructed by

expanding some small size chips in either horizontally or vertically. In horizontal expansion, the word

is increased; whereas in vertical expansion, number of locations is increased. For example, two RAM

chips each of size 512 ¥ 4 can be horizontally expanded to obtain a large memory of size 512 ¥ 8 and

the same number of 512 ¥ 4 RAM chips can be connected vertically to construct a large memory of

size 1K ¥ 4. Sometimes large memory is constructed using either horizontal or vertical technique or

sometimes using both techniques.

Large memory to be constructed can be of heterogeneous (i.e. mixture of both RAM and ROM) or

homogeneous (i.e. either all chips are RAM or ROM, but not both). We will discuss it using some

examples.

RAM and ROM chips are available in a variety sizes. If the memory needed for a computer is

larger than the size of a single chip, then it is necessary to combine a number of smaller chips to form

the required memory size.

To illustrate this construction, we will take two examples. First is of heterogeneous and second is

homogeneous connection.

Heterogeneous Case

Example 4.1 Suppose, we have two sets of memories with RAM of size 512 ¥ 8 and ROM of size

512 ¥ 8 to design a memory of capacity 1024 ¥ 8.

This is already mentioned that for the same physical size chip, it is possible to have

more bits of ROM than of RAM, because the internal binary cells in ROM occupy

Memory Organization 4.7

less space than in RAM. Therefore, we will take a ROM of size 512 bytes and the

four RAM chips each of 128 bytes. The Fig. 4.6 shows the interconnection diagram

of these memories with the CPU having16 address lines.

The address lines 1 to 7 are connected to each memory and address lines 8, 9 are

used in dual purposes. In case of a RAM selection out of four RAMs, these two lines

are used through a 2-to�4 decoder and the lines are also connected to the ROM as

address lines along with lines 1 to 7 giving a total of 9 address lines in the ROM,

since the ROM has 512 locations. The CPU address line number 10 is used for

separation between RAM and ROM.

Memory Address Map The interconnection between memory and CPU is estab-

lished from the size of memory needed and the type of RAM and ROM chips

available. The addressing of memory can be designed by means of a table, known as

memory address map, which specifies the memory address space assigned to each

chip. The address map table for the memory connection to the CPU shown in Fig.

4.6 is constructed in Table 4.1. The CPU generates 16-bit address for memory read

or write operation. In case of any RAM operation, only 7-bit address is required.

Since there are 4 RAM chips, a 2-to-4 decoder is required for selecting any one

RAM at a time. For this 8 and 9 lines are required. Also, 10th line is used for

separation of RAM with ROM. The ROM chip has 512 bytes and so it needs 9

address lines. For the ROM, along with lower-order 7 address lines, 8 and 9 lines are

used as address lines. The other 11 to 16 lines of CPU are unused and for simplicity

we assume that they carry 0s as address signals.

Table 4.1 Memory address map table for the Fig. 4.6

Chip selected Address space (in HEX) Address bus

10 9 8 7 6 5 4 3 2 1

RAM1 0200 � 027F 1 0 0 x x x x x x x

RAM2 0280 � 02FF 1 0 1 x x x x x x x

RAM3 0300 � 037F 1 1 0 x x x x x x x

RAM4 0380 � 03FF 1 1 1 x x x x x x x

ROM 0000 � 01FF 0 x x x x x x x x x

Homogeneous Case Suppose the required large RAM memory size is K ¥ L and the small size

RAM chip capacity is m ¥ n, then the number of small size chips required can be calculated as:

The number of chips each of size m ¥ n = s = È(K * L)/(m * n)˘.

Example 4.2 Suppose, we have to construct a large RAM-type memory of size 1K ¥ 8 using same

size smaller RAM chips each of size 256 ¥ 2.

The block diagram for 256 ¥ 2 RAM chip is shown in figure 4.7.

The larger 1K ¥ 8 RAM memory requires 10 address lines and 8 data lines. The

construction of this memory using smaller RAMs each of 256 ¥ 2 needs 1K/256=

1024/256 = 4 rows and 8/2 = 4 columns of smaller chips, as in shown in figure 4.8.

Total number of smaller chips required is s = 4*4 = 16. In the Fig. 4.8, all chips are

4.8 Computer Organization

Figure 4.6 Memory connection with 16-bit CPU

Figure 4.7 Block diagram for 256 ¥ 2 RAM chip

Memory Organization 4.9

of equal size, i.e. 256 ¥ 2. The address lines A8 and A9 are connected to a 2-to-4

decoder, which activates (selects) one of four rows of chips at a time. For example, if

A8 A9 = 00, then decoder selects first row of four chips for read or write operation.

Since same 8-bit address is sent to all chips at a time. When one row of four chips is

selected, 8 bits of data from a common location in all four chips are accessed

simultaneously.

Figure 4.8 Realization of 1K ¥ 8 RAM using 256 ¥ 2 chips

4.10 Computer Organization

Example 4.3 Suppose a large memory of 1K ¥ 4 is to be constructed using 512 ¥ 2 RAM chips.

For small size RAM chip of 512 ¥ 2, number of address lines required is 9 and

number of data lines is 2. For large memory of 1K ¥ 4, number of address lines

required is 10 and number of data lines is 4.

Therefore, in the interconnection diagram:

The number of rows = 1K/512 = 1024/512 = 2

The number of columns = 4/2 = 2

Hence, the number of small size RAMs required = 2*2 = 4.

The interconnection diagram is shown in Fig. 4.9. Here in the diagram, only two

rows are there. So, the first row is selected (activated) by A9 line of the address bus

directly and the second row is selected by its complement bit information. In other

words, if A9 line contains logic 1, then first row of chips will be selected and

otherwise the second row will be selected.

Figure 4.9 Construction of 1K ¥ 4 memory using 512 ¥ 2 RAM chips

4.5.2 Internal Organization of Memory Chips

A memory consists of cells in the form of an array, in which each cell is capable of storing one bit of

information. Each row of the cells constitutes a memory word and all cells of a row are connected to

a common line referred to as a word line. Thus, a w ¥ b memory has w number of words, each word

having b number of bits. The main storage array is referred to random access memory in the sense

that each memory location (word) has a unique wired-in addressing mechanism. As a result, corre-

sponding to given address of a word the bits of that word can be accessed randomly and the time to

access any location is equal to the memory cycle time. Depending on the access mechanism, different

types of memory organization have evolved. These are referred to as 2D, 3D and 2.5D, where D

stands for dimension.

Memory Organization 4.11

2D Organization This is the simplest type of organization. An example of size 16 ¥ 4 memory is

shown in Figure 4.10. The cells are organized in the form of a two-dimensional array with rows and

columns.

Each row refers to a word line. For a 4-bit per word memory, 4 cells are interconnected to a word

line. Each column in the array refers to a bit line. The Memory Address Register (MAR) holds the

address of the location where read/write operation is executed. For a w ¥ b memory, MAR has

log2 w = n bits. Here in this example, n = 4. The content of MAR is decoded by an address decoder

on the chip to activate each word line. The cells in each column are connected to a sense/write circuit

by two bit lines. Two bit lines are complement to each other. The sense/write circuits are activated by

the chip select (CS) lines. The sense/write circuits are connected to the data lines of the chip. During

a read operation, these circuits sense or read the information stored in the cells selected by a word line

and transmit this information to the data lines. During a write operation, the sense/write circuits

receive or write input information from the data lines and store it in the selected cells.

Figure 4.10 2D organization of a memory chip of size 16 ¥ 4

3D Organization For an n-bit MAR in 2D organization the word lines are linearly selected and

hence the number of decoder gates is 2n. By contrast, in 3D organization as shown in Figure 4.11, the

number of decoder gates reduces to 2.2n/2 for x = y = n/2. Such saving in the circuit cost has

motivated the designers to design 3D organized memory cell array.

4.12 Computer Organization

The n-bit address is divided into two parts having x and y number of bits. For a square array, each half

is decoded and 2n/2 X and Y drive lines are fed into each array of bit plane. For b-bit word memory,

there are b number of planes each referring to a bit. Corresponding to each bit plane there is a sense/

write circuit. The read/write operations in 3D organization is same as to 2D with the modifications

that a cell in a bit plane is selected by activating X and Y drive lines simultaneously, and bit

information passed through the selected cell in a bit plane. Thus, each cell in the array needs 3

terminals�X, Y and bit line connected to sense/write circuit. More the number of terminals (wires)

through a cell, larger the cell size and consequently switching speed is less. Also the design of the

overall circuit becomes very complex.

Figure 4.11 3D memory organization

2.5D Organization To cope with the above difficulties experienced in 3D organization, the design

of 2.5D memory organization has evolved which combines the function of bit lines and Y drive lines.

In 2.5D organization there exists a segment, corresponding to bit plane of 3D organization. The

content of MAR is divided into two parts�x and y number of bits. The number of segments S is

equal to 2y. X = 2x drive lines are fed into the cell array and y number of bits decode one bit line out

of S lines fed into a segment of the array. In total, there are Sb number of bit lines for a b bit per word

memory.

Thus, for any given address in the MAR, the column decoder decodes b out of Sb bit lines by using

the y bits of the MAR while a particular word line is activated by using the x bits. Thus only the b

number of bits in the array are accessed by enabling the word line and b number of bit lines

simultaneously. A general 2.5D memory organization is shown in Figure 4. 12.

Let us consider an example to realize a 256K ¥ 8 (256K word, 8-bit/word) memory with 512 ¥ 512

cell array in a 2.5D organized configuration. The cell array in a chip, as shown in Figure 4.13(a), can

be organized with 512 rows and 64 segments with 8 columns per segment. The chip select line is used

as decoder enable signal within the chip that realizes 32K ¥ 8-bit memory. Eight such chips can be

organized as noted in Figure 4.13(b), to realize the 256K ¥ 8-bit memory. In this configuration, the

Memory Organization 4.13

Figure 4.12 Memory organization

MAR is divided into three parts�the 9-bit field is fed as the row address for each chip while the 6-bit

field is input as the column address. The remaining three bits of 18-bit MAR (for 256K of word

addresses) are used to select 1 out of 8 chips a noted in Figure 4.13(b).

Though 2.5D organized memory may need lesser chip decoding logic, it suffers from one draw-

back. With high density chips, a simple failure, such as external pin connection opening or a failure

on one bit can render the entire chip inoperative.

SRAM Memory Cell Static memories (SRAMs) are memories that consist of circuits capable of

retaining their state as long as power is applied. Thus, this type of memories is called volatile

memories. The Fig. 4.14 shows a cell diagram of SRAM memory. A latch is formed by two inverters

connected as shown in the figure. Two transistors T1 and T2 are used for connecting the latch with

two bit lines. The purpose of these transistors is to act as switches that can be opened or closed under

the control of the word line, which is controlled by the address decoder. When the word line is at

0-level, the transistors are turned off and the latch retains its information. For example, the cell is at

state 1 if the logic value at point A is 1 and at point B is 0. This state is retained as long as the word

line is not activated.

Read Operation For the read operation, the word line is activated by the address input to the

address decoder. The activated word line closes both the transistors (switches) T1 and T2. Then the bit

values at points A and B can transmit to their respective bit lines. The sense/write circuit at the end of

the bit lines sends the output to the processor.

Write Operation Similarly, for the write operation, the address provided to the decoder activates the

word line to close both the switches. Then the bit value that to be written into the cell is provided

through the sense/write circuit and the signals in bit lines are then stored into the cell.

4.14 Computer Organization

Figure 4.13 256K ¥ 8 memory configured out of 2.5D 512 ¥ 512 memory chips

CMOS (Complementary Metal Oxide Semiconductor) Realization of SRAM One SRAM

cell using CMOS is shown in Fig. 4.15. Four transistors (T3, T4, T5 and T6) are cross connected in

such a way that they produce a stable state. In state 1, the voltage at point A is maintained high and

voltage at point at B is low by keeping transistors T3 and T6 on (i.e. closed), while T4 and T5 off (i.e.

open). Similarly, in state 0, the voltage at A is low and at point B is high by keeping transistors T3 and

T6 off, while T4 and T5 on. Both these states are stable as long as the power is applied on it. Thus, for

state 1, if T1 and T2 are turned on (closed), bit lines b and b will have high and low signals,

respectively. The state of the cell is read or written as above.

Memory Organization 4.15

Figure 4.14 A SRAM cell Figure 4.15 A CMOS SRAM cell

The main advantage of using CMOS SRAMs is the low power

consumption. Since, when the cell is being accessed the current

flows in the cell only. Otherwise, T1, T2 and one transistor in

each inverter are turned off, ensuring that there is no active path

between Vcc and ground.

DRAM Memory Cell Though SRAM is very fast, but it is

expensive because of its each cell requires several transistors.

Relatively less expensive RAM is DRAM, due to the use of one

transistor and one capacitor in each cell, as shown in the Fig.

4.16, where C is the capacitor and T is the transistor. Informa-

tion is stored in a DRAM cell in the form of a charge on a

capacitor and this charge needs to be periodically recharged.

For storing information in this cell, transistor T is turned on and an appropriate voltage is applied to

the bit line. This causes a known amount of charge to be stored in the capacitor. After the transistor is

turned off, due to the property of the capacitor, it starts to discharge. Hence, the information stored in the

cell can be read correctly only if it is read before the charge on the capacitor drops below some threshold

value.

Types of RAM
Asynchronous DRAM (ADRAM) The DRAM described above is the asynchronous type DRAM.

The timing of the memory device is controlled asynchronously. A specialized memory controller

circuit generates the necessary control signals to control the timing. The CPU must take into account

the delay in the response of the memory.

Synchronous DRAM (SDRAM) These RAM chips� access speed is directly synchronized with the

CPU�s clock. For this, the memory chips remain ready for operation when the CPU expects them to

be ready. These memories operate at the CPU-memory bus without imposing wait states. SDRAM is

commercially available as modules incorporating multiple SDRAM chips and forming the required

capacity for the modules.

Figure 4.16 A DRAM cell

4.16 Computer Organization

Double-Data-Rate SDRAM (DDR SDRAM) This faster version of SDRAM performs its opera-

tions on the both edges of the clock signal; whereas a standard SDRAM performs its operations on

the rising edge of the clock signal. Since they transfer data on both edges of the clock, the data

transfer rate is doubled. To access the data at high rate, the memory cells are organized into two

groups. Each group is accessed separately.

Rambus DRAM (RDRAM) The

RDRAM provides a very high data trans-

fer rate over a narrow CPU-memory bus.

It uses various speedup mechanisms, like

synchronous memory interface, caching

inside the DRAM chips and very fast sig-

nal timing. The Rambus data bus width is

8 or 9 bits.

Cache DRAM (CDRAM) This memory

is a special type DRAM memory with an

on-chip cache memory (SRAM) that acts

as a high-speed buffer for the main DRAM.

ROM Memory Cell ROM is another part of main memory, which is used to store some permanent

system programs and system data. A ROM cell structure is shown in Fig. 4.17. A logic value 1 is

stored in the cell if the transistor is not connected to the ground at point P; otherwise, a binary 0 is

stored. The bit line is connected through a resistor to the power supply.

In order to read the state of the cell, the word line is activated to close the transistor, which acts as a

switch. The voltage on the bit line drops to near zero if point P is connected. The point P is not connected

to retain the state of cell as 1. When it is manufactured, data are written into ROM cells.

Variety of ROM chips is available, which are discussed briefly next.

Types of ROM
PROM Memory Cell Some ROM designs allow the data to be loaded into the cell by user, and then

this ROM is called PROM (Programmable ROM). Inserting a fuse at point P in Fig. 4.14 achieves

programmability. Before it is programmed, the memory contains all 0s. The user can insert 1s at the

required locations by burning out the fuses of cells at these locations using high-voltage currents. The

PROM�s cells are once programmable, i.e. the user can store the desired bits in the cells only once

and these bits cannot be altered.

EPROM An erasable PROM (EPROM) uses a transistor in each cell that acts as a programmable

switch. The contents of an EPROM can be erased (set to all 1s) by burning out the device to

ultraviolet light for a few (20 to 30) minutes. Since ROMs and PROMs are simpler and thus cheaper

than EPROMs. The EPROMs are used during system development and debugging.

EEPROM (Electrically Erasable PROM): In many applications, permanent data have to be gener-

ated in a program application and need to be stored. For example, in a mobile phone the telephone

numbers are to be kept permanently till the user wants to erase those data. Similarly, the user may

wish to erase previously entered information. EEPROMs have an advantage in that the information in

them can be selectively erased by writing 1s and each bit in the information can be stored again by

writing the desired bit. An EEPROM needs two write operations at an address, one for erase and one

Figure 4.17 A ROM memory cell

Memory Organization 4.17

for writing. RAM writes the information directly without first erasing that information at that address.

But in the EEPROM, the stored information is non-volatile.

Flash Memory A currently popular type of EEPROM, in which erasing is performed in large blocks

rather than bit by bit, is known as flash EPROM or flash memory. Erasing in large blocks reduces the

overhead circuitry, thus leading to greater density and lower cost. The current trend is �memory stick�

made of flash memory that is used to Universal Serial Bus (USB) of the personal computer for data

exchange between computers.

4.6 SECONDARY (AUXILIARY) MEMORY

The largest capacity and less expensive memory in the system is secondary memory. The following

hierarchy diagram in Fig. 4.18 illustrates some the various devices that are available for secondary

(auxiliary) storage of data. The most common secondary memory devices used are magnetic tapes and

magnetic disks.

Figure 4.18 Classification of secondary memory

4.6.1 Magnetic Tape

Magnetic tapes were the first kind of secondary memory used in computer systems. A tape is flexible

polyester coated with special magnetic material. A magnetic tape is similar to a home tape recorder.

However, a magnetic tape holds digital information, whereas a tape recorder holds analog informa-

tion. A magnetic tape is divided vertically into frames and horizontally into nine parallel tracks, as in

Fig. 4.19.

Each frame is capable of storing 9 bits of data. The first 8 bits form a data byte and the 9th bit holds

the parity. The parity bit is used for error correction and detection. Information is stored along tracks

using read-write heads. Read-write heads are designed in such a way that they can access all nine

tracks contained in a frame simultaneously. Data is written on the tape by varying the current through

the read-write heads. Data is read or written in contiguous records. The records are separated by gaps

referred to as inter-record gaps. The length of a magnetic tape is typically 2400 feet and it is stored on

a reel. The major difficulty with this device is the particle contamination caused by improper manual

handling.

4.18 Computer Organization

4.6.2 Magnetic Disk

Disks that are permanently attached to the

unit assembly and cannot be removed by

the general user are called hard disks. A

disk drive with removable disks is called a

floppy disk drive. The disks used with a

floppy disk drive are small removable disks

made of plastic coated with magnetic re-

cording material. There are two sizes com-

monly used, with diameters of 5.25 and

3.5 inches.

The magnetic disk is made of either alu-

minium or plastic coated with a magnetic

material so that information can be stored

on it. The recording surface is divided into

a number of concentric circles called tracks.

The tracks are commonly divided into sec-

tions called sectors. To distinguish between

two consecutive sectors, there is a small

inter-sector gap. In most systems, the mini-

mum quantity of information transfer is a

sector. Generally, the innermost track has maximum storage density (i.e. bits per linear inch) and

outermost track has minimum density. The subdivision of one disk surface into tracks and sectors is

shown in Fig. 4.20.

The information is accessed onto the tracks using movable read-write heads that move from the

innermost to the outmost tracks and vice-versa. Generally, several identical disks are stacked over one

another with some separation between them to form a disk pack. A typical disk pack is shown in

Fig 4.21. There is one read-write head per surface. Therefore, if there are n disks, there are 2n

surfaces. During normal operation, disks are rotated continuously at a constant angular velocity. Same

Figure 4.19 A part of a magnetic tape

Figure 4.20 A single disk view

Memory Organization 4.19

radius tracks on different surfaces of disks form a logical cylinder. A disk pack with n disks has 2n

tracks per cylinder. Another part of the disk is the electronic circuitry that controls the operation of

the disk, which is called disk controller.

To access data, the read-write head must be placed on the proper track based on the given cylinder

address. The time required to position the read-write head over the desired track is known as the seek

time, ts. This depends on the initial position of the head relative to the specified track or cylinder

address. Seeking the required track is the most time-consuming operation because it involves moving

the read-write head arm. After positioning the read-write head on the desired track, the disk controller

has to wait until the desired sector is under the read-write head. This waiting time is known as

rotational latency, tl. Rotational latency depends on the rotation speed of the disk. The access time of

the disk is the sum of ts and tl.

There are two ways an n-bit word can be stored:

1. Consecutively store the entire word in one track of the same surface.

2. Store the word in n different tracks of a cylinder.

For the second approach, it is possible to read or write all n bits at the same time, because there is

a read-write head for every surface. However, both cases involve the same seek-time and rotational

latency overhead.

Problem 4.1 A disk pack has 19 surfaces. Storage area on each surface has an inner diameter of

22 cm and outer diameter of 33 cm. Maximum storage density on any track is

2000 bits/cm and minimum spacing between tracks is 0.25 mm.

Figure 4.21 A disk pack

4.20 Computer Organization

(a) What is the storage capacity of the pack?

(b) What is the data transfer rate in bytes per second at a rotational speed of

3600 rpm?

Solution Given, no. of surfaces = 19

Inner track diameter = 22 cm

Outer track diameter = 33 cm

So, total track width = (33-22)/2 cm = 5.5 cm

Track separation = 0.25 mm

Thus, no. of tracks/surface = (5.5*10)/0.25 = 220

Minimum track circumference = 22 * P cm

Maximum track storage density = 2000 bits/cm, which will be on innermost track.

So, data storage capacity/track = 22 * P *2000 bits = 138.23 Kbits

Disk speed = 3600 rpm

So, rotation time = 1/3600 minute = 16.67 msec (1 msec.=103 sec)

(a) Storage capacity = 19*220*138.23 Kbits = 577.8 Mbits = 72.225 Mbytes.

(b) Data transfer rate = 138.23 kbits/16.67 msec = 8.2938 Mbits/sec

This is the maximum data transfer rate excluding seek time and rotational latency.

Problem 4.2 A hard disk with one platter rotates at 15,000 rpm and has 1024 tracks, each with

2048 sectors. Disk read-write head starts at track 0. (Tracks are numbered from 0 to

1023) The disk receives a request to access a random sector on a random track. If the

seek time of the disk head is 1 ms for every 100 tracks it crosses.

(a) What is the average seek time?

(b) What is the average rotational latency?

(c) What is the transfer time for a sector?

Solution (a) Since, the disk receives a request to access a track at random. Thus, the head

may have to move either direction. On an average, the head will have to move

1024/2 = 511.5 tracks.

Since the seek time of the head is 1ms per 100 tracks, the average seek time

= 511.5/100 = 5.115 ms.

(b) Since, the platter rotates at 15,000 rpm, each rotation takes 1/15000 min. =

(60 * 103)/15000 = 4 ms.

The average rotational latency is half the rotation time, which is = 2 ms.

(c) Each rotation takes 4 ms.

Number of sectors per track = 2048.

Therefore, each sector has read-write head over it = 4/2048 ms = 0.002 ms

(apprx.)

Therefore, the transfer time is = 0.002 ms (apprx.)

4.6.3 Optical Media

Although optical media have slower seek times and transfer rates than magnetic media, they do have

the greatest storage capacities. Although multimedia has been available with computers, it was not

practical until the development of large volume portable storage devices. Depending on the type of

optical media, typical disc capacities are 650�680 MB and 4.7�17 GB.

Memory Organization 4.21

CD CD represents Compact Disc (note: when referring to optical media, disc ends in �c� not �k� as

with magnetic disks). CD-ROM means Compact Disk � Read Only Memory, and it is the same

media as that used in a home or car CD player. Because the same formats are used for music and data,

audio CDs can be played on a computer sound system that has the proper hardware and software.

Although data CDs can be read by a computer, they cannot be

played in a stereo system, and if they could, what would they sound

like? Just a few years ago, software applications were installed from

several floppy disks, but now they are usually installed from a single

CD-ROM. CDs were the optical discs referred to earlier with a

storage capacity of 650�680 MB, which is the equivalent of about

470 standard 3.5� floppy disks. Yet some applications are so large

that they may require more than one disk. For example, it requires

four discs to install all the components of the Premium version of

Office2000. A photographic top view of a CD is shown in Fig. 4.22.

Unlike magnetic disks that place data in concentric circles

(tracks), optical discs mimic the layout of a phonograph

record and place data in a single spiral (track). However,

the spiral track on a CD is only on one side and spirals from

inside out. Digital data�binary 0s and 1s�are represented

by pits, which scatter a low power laser beam, and lands

(flat spots), which reflect it. This is illustrated in the

Fig. 4.23 that depicts the side view of a CD.

By holding one of the CDs up to the light, the pits can be

seen because they are less than a millionth of a meter in

diameter.

CD-R CD-R means Compact Disc�Recordable. With the proper hardware (a burner), blank CD-R

discs, and appropriate software, we can create our own data or audio CDs. Unlike CD-ROM disks

where the pits are pressed into the surface in a process similar to that used to make phonograph

records, CD-R discs contain a dye layer composed of photosensitive organic compounds. By using a

higher energy setting, the dye is heated by the writing laser and becomes opaque through a chemical

reaction. So the sections of the disk that have not been burned act as lands, while the opaque sections

act as the non-reflective pits. In addition to being able to create new CDs, CD-R drives can also read

CD-ROMs and play audio CDs. Furthermore, newly created audio CDs can also be played in a home

or car sound system. Unfortunately, CD-R discs can only be recorded once. That is, the same tracks

cannot be erased and then rerecorded over. Some of the newer burners are multi-session; this allows

users to keep adding data to a CD-ROM over time. This is important if we want to use the CD-R

drive to create backup CD-ROMs instead of the traditional tape backups. Are CDs reusable? In other

words, can we erase and rerecord them? The answer is yes and it is nothing but the CD-RW.

CD-RW The final type of CDs is CD-RW, which means Compact Disc�ReWriteable. With the

proper hardware (also called a burner), blank CD-RW discs, and appropriate software, we can create

our own data or audio CDs. CD-RW technology uses a different kind of data-bearing layer from that

used in an ordinary CD-R. This technology uses a phase change process to alter its state from a

reflective state to a light absorbing state, and it can be reversed to make the area erasable and

Figure 4.22 Top view of a CD

Figure 4.23 Side view of a very small

portion of CD

4.22 Computer Organization

reusable. When attempting to copy an audio CD to a blank CD-RW disc, the warning message as

shown in Fig 4.24 appears.

Figure 4.24 A warning message for using CD-RW to copy audio CD

CD-RW discs will not play in a home or car sound system, and, furthermore, older CD-ROM players

cannot read them.

DVD The newest type of optical storage and the one with the greatest storage capacity is DVD,

which means Digital Versatile Disc (originally digital video disc). CD players use an infrared laser to

read the information stored on the disc, whereas DVD players use red lasers, which allow the bits to

be packed closer together. DVDs also have a more efficient encoding, which helps to increase the

capacity of the discs. Unlike CDs, DVDs can be dual layered and double sided. DVDs have a storage

capacity of 4.7-17 GB, which is the equivalent of up to 15 CDs. Furthermore, DVD players can read

CDs, and it is not surprising that they are the standard, or at least the optional, disc reader in many

newer computer systems.

With such an enormous storage capacity, what are some practical uses for DVD-ROMs? As

indicated by their early name, the most popular one is for the playback of movies. Many videotape

rental stores are now including an increasing number of movies titles on DVD, which can be played

in a computer DVD player or in one attached to a home entertainment system. Because of the high

storage capacity, not only can a full-length movie be recorded on a single disc, but so can multiple

language tracks and subtitles written in different languages. By using an audio DVD, a box set of

CDs could be released on a single disc instead of multiple CDs. Recall that the Premier version of

Office2000 requires four CDs. A single DVD could be used in place of these. Phonebooks of the

entire population of our country are available on approximately 4�6 regional CDs containing all the

listed phone numbers. Can computer users create their own DVDs? As we may expect, the answer is

yes. Comparable to the record-once CD-R burners are the DVD-R burners, and a combination DVD-

R/CD-RW burner can be found in modern-day computers. However, there are two competing and

incompatible standards for rewriteable DVDs � DVD+RW and DVD-RAM.

4.7 ASSOCIATIVE MEMORY

Several data-processing applications require the search of data in a block or record stored in memory.

The normal procedure of searching a block is to store all data where they can be addressed in

Memory Organization 4.23

sequence. The normal search method is selecting addresses in sequence, reading the content of

memory at each address and comparing the information read with the data being searched until a

match occurs.

The searching time for desired data stored in memory can be reduced largely if stored data can be

searched only by the data value itself rather than by an address. The memory accessed by the data

content is known as associative memory or content addressable memory (CAM). When a data is

stored in this memory, no address is stored. At any first empty location, the data is stored. When a

data word is to be read from the memory, only the data word or part of data, called key, is provided.

The memory is sequentially searched thoroughly for match with the specified key and set them for

reading next.

The advantage of using this memory is that it

is suitable for parallel searches due to its orga-

nization. The searching in this memory is fast.

Since each cell must have storage capability as

well as logic circuits for matching, the associa-

tive memory is more expensive than a RAM

memory. For this reason, this memory is used in

applications, where search time is very critical

and must be very short. An associative memory

organization is shown in Fig. 4.25.

Hardware Structure The associative memory

consists of a memory array and logic for m words

with n bits per word. In this organization, sev-

eral registers are used, functions of which are

described next.

1. Input register (I) The input register I is used

to hold the data to be written into the associa-

tive memory or the data to be searched for. At a time it holds one word of data of the memory, i.e. its

length is n-bit.

2. Mask register (M) The mask register M provides a mask for choosing a particular field or key in

the input register�s word. The maximum length of this register is n-bit, because the M register can

hold a portion of the word or all bits of the word to be searched. Suppose, a student database file

containing several fields such as name, class roll number, address, etc. is stored in the memory. From

this file, say only �name� field is required for searching. Then the M register will hold this �name�

field only and the searching in the memory will be only with respect to this field without bothering

about other fields. Thus, only those bits in the input register that have 1s in their corresponding

position of the mask register are compared. The entire argument is compared with each memory word

if the mask register contains all 1s. Each word in memory is matched with the input data in the

I-register.

To illustrate the matching technique, let the input register I and mask register M have the following

information:

Figure 4.25 Block diagram of associative memory

4.24 Computer Organization

I = 1001 1011

M = 1111 0000

Word1 = 0011 1100 no match

Word2 = 1001 0011 match

Only four leftmost bits of I are compared with stored memory words because M has 1s in these

positions. There is a match for word2, but not with word1.

3. Select register (S) The select register S has m bits, one for each memory word. If matches found

after comparing input data in I register with key field in M register, then the corresponding bits in

select register (S) are set.

4. Output register (Y) This register contains the match data word retrieved from the associative

memory.

The relation between the memory array and four external registers in an associative memory

system is shown in Fig. 4.26.

Figure 4.26 Associative memory of size m ¥ n

The internal organization of a cell Cij is shown in Fig. 4.27. It consists of a flip-flop storage

element Aij and the circuits for matching, selecting, reading and writing the cell. By a write operation,

the input bit Ij is stored into the cell. By a read operation, the stored bit is read from the cell. The

match and select logic compares the content of the storage cell with the corresponding unmasked bit

of the input register and provides an output for the decision logic that sets the bit in Si.

Memory Organization 4.25

4.8 CACHE MEMORY

Cache memory is small and fast memory used to increase the instruction-processing rate. Its operation

is based on the property called �locality of reference� inherent in programs. Analysis of a large

number of typical programs shows that the CPU references to main memory during some time period

tend to be confined within a few localized areas in memory. In other words, few instructions in the

localized areas in memory are executed repeatedly for some time duration and other instructions are

accessed infrequently. This phenomenon is known as the property of locality of reference. This

property may be understood considering that when a program loop is executed, the CPU repeatedly

refers to the set of instructions in memory that constitutes the loop. Thus loop tends to localize the

references to memory for fetching the instructions.

There are two dimensions of the locality of reference property: temporal and spatial.

Temporal Locality Recently referenced instructions are likely to be referenced again in the near

future. This is often caused by special program constructs such as iterative loops or subroutines. Once

a loop is entered or a subroutine is called, a small code segment will be referenced repeatedly many

times. Thus temporal locality tends to cluster the access in the recently used areas.

Spatial Locality This refers to the tendency of a program to access instructions whose addresses

are near one another. For example, operations on tables or arrays involve accesses of a certain

clustered area in the address space. Program segments, such as routines and macros, tend to be stored

in the same neighbourhood of the memory space.

If active segments of a program are placed in a fast small cache memory, the average memory

access time can be reduced, thus reducing the total execution time of the program. This memory is

logically placed between the CPU and main memory as shown in Fig. 4.3. Because we know that the

cache memory�s speed is almost same as that of CPU. The main idea of cache organization is that by

keeping the most frequently accessed instructions and data in the fast cache memory, the average

memory access time will be almost same as access time of cache.

Figure 4.27 One cell of associative memory

4.26 Computer Organization

The operation of the cache is conceptually very easy and is as follows: First the cache memory is

accessed, when the CPU needs to access memory for a word. If the word is found in the cache, the

CPU reads it from the fast cache memory. If the word addressed by the CPU is not found in the cache,

the main memory is accessed next to find the word. Due to the property of locality of reference, a

block of words containing the one just accessed is then brought into the cache memory from main

memory. The block size may vary from machine to machine. Another term often used to refer to a

cache block is cache line.

4.8.1 Performance of Cache Memory

The performance of the cache memory is measured in terms of a quantity called hit ratio. When the

CPU refers to memory and finds the word in cache, it is said that a hit occurred. If the word is not

found in cache, then the CPU refers to the main memory for the desired word and it is referred to as

a miss to cache. The hit ratio (h) is defined below:

Hit ratio (h) =
number of hits

total CPU references to memory

=
number of hits

number of hits + number of misses

Thus, the hit ratio is nothing but a probability of getting hits out of some number of memory

references made by CPU. So its range is 0 £ h £ 1.

Now we will observe the average access time of a memory system consisting of two levels of

memories: main memory and cache memory.

Let, tc, h and tm denote the cache access time, hit ratio in cache and the main memory access time,

respectively. Then the average access time can be formulated as:

tav = h* tc + (1� h) *(tc+ tm) = tc + (1 � h) * tm ...(4.1)

This equation is derived from the fact that when there is a cache hit, the main memory is not be

accessed and in the case of cache miss, both main memory and cache memory are accessed.

4.8.2 Cache Mapping

The main characteristic of cache memory is its fast access time. Therefore, the waiting time for the CPU is

very small or nil when searching for words in the cache. The transfer of data as a block from main memory

to cache memory is referred to as a mapping process. Three types of cache mapping have been used.

1. Associative mapping.

2. Direct mapping.

3. Set-associative mapping.

To discuss these three mapping procedures we will use a specific example of memory organization

as shown in Fig. 4.28.

The cache can store 256 words (each of 8 bits) out of 64K words in main memory at any given

time. There is a duplicate copy in main memory for each word stored in cache. The CPU communi-

cates with both memories. The CPU first sends a 16-bit (because 64K = 216) address to cache

memory. If there is a hit, the CPU accepts the 8-bit data from cache. If there is a miss, the CPU reads

the word from main memory and the word is then transferred to cache.

Memory Organization 4.27

Here, in all three methods, we will be using hexadecimal (HEX) numbers for both address and data

for simplicity. Then address of 16 bits is shown in four-digit HEX number and similarly 8 bits data is

shown in 2-digit HEX number.

Associative Mapping The associative cache

memory uses the fastest and most flexible mapping

method, in which both address and data of the

memory word are stored. This organization is some-

times referred to as a fully associative cache and is

illustrated in Fig. 4.29. The cache memory can store

256 words out of 64K words from main memory.

This method allows any location in cache to store

any word from main memory. The CPU first sends a

16-bit address for a desired word to the input regis-

ter and the associative cache memory is then searched

for a matching the address sequentially. If the ad-

dress of the desired word is found, then the 8-bit

data word is read and sent to the CPU. If no match

occurs, then main memory is searched for the ad-

dress of the word. Then address-data pair is brought

into the cache memory from main memory and placed

onto an old address-data pair, if the cache is full. In this situation, a replacement algorithm is needed

for selecting an old address-data pair to make place for the newly coming address-data pair. For this,

different type replacement algorithms such as First-in First-out (FIFO) or Least Recently Used (LRU)

are used, which have been discussed later in this section.

Merits of Associative Mapping This memory is easy to implement and it is also very fast.

Demerits of Associative Mapping This memory is expensive compared to random-access memories

because of additional storage of addresses with data in the cache memory. Here, in our example, we

are storing 16 + 8 = 24 bits for a single word of 8-bit.

Direct Mapping Instead of storing total address information with data in cache, only part of

address bits is stored along with data in the direct cache mapping. Let us assume that cache memory

can hold 2m words and main memory can hold 2n words. This means that the CPU will generate n-bit

memory address. This n-bit address is divided into two fields: lower-order m bits for the index field

and the remaining higher-order (n-m) bits for the tag field. The direct mapping cache organization

uses the n-bit address to access the main memory and the m-bit index to access the cache. So, for our

example, the index and tag fields are shown as follows:

Figure 4.28 Example of cache memory

Figure 4.29 Associative mapping cache

(all numbers in HEX system)

4.28 Computer Organization

8 bits 8 bits

Tag Index

The internal organization of the words in the cache memory is shown in Fig. 4.30.

Figure 4.30 Direct mapping cache organization

The cache memory stores maximum 256 data words and their associated tags. Due to a miss in the

cache, a new word is brought into the cache; the tag bits are stored alongside the data bits. The index

field is used as the address to access the cache, when the CPU generates a word�s address. The tag

field of the CPU address is matched sequentially with all tag values stored in cache. If the CPU�s tag-

address matches with any cache tag, i.e. there is a hit and the desired data word is read by the CPU

from cache. If there is no match in cache, then there is a miss and the required word is read from main

memory, which is then stored in the cache together with its new tag, replacing the previous tag-data

pair value. Thus, the new tag-data pair is placed in same indexed location in cache as CPU�s current

index of the address for which miss has occurred. But, here it can be noted that the hit ratio can drop

considerably if two or more words whose addresses have the same index but different tags are

accessed repeatedly.

The cache is divided into cache blocks, also called cache lines. A block contains a set of contigu-

ous address words of same size. Each block is typically 32 bytes. We know that data is transferred

from main memory to cache memory as block. The direct mapping example just described above uses

a block size of one word. The direct mapping cache organization using block size 8 words is shown in

Fig. 4.31.

The index field is now divided into two parts: the block field and the word field. Since each block

size is 8 words, the 256-word cache can hold 32 blocks. The block number is specified with a 5-bit

field, since there are 32 blocks and a word within a block is specified by 3 bits, since each block

contains 8 words. The tag field for all stored words within a block is same, since a block contains

consecutive 8 words of data. When a miss occurs in cache, an entire block must be brought into cache

memory from main memory.

Memory Organization 4.29

Merits of direct mapped cache

(a) This is the simplest type of cache mapping, since only tag field is required to match. That�s

why it is one of the fastest cache.

(b) Also, it is less expensive cache relative to the associative cache. Because instead of storing all

16 bits of the address, only tag value of 8 bits is stored along with the data word.

Demerits of direct mapped cache The hit ratio is not good. It needs frequent replacement for data-

tag value. Because there is a fixed cache location for any given block. For example, if a program

happens to reference words repeatedly from two different blocks that map into the same cache block,

then the blocks need to be swapped in continuously making hit ratio to drop.

Set-Associative Mapping The direct mapped cache can hold maximum 256 words, according to

our example. The set-associative cache is an improved version of direct mapped cache organization,

where multiple of 256 words can be stored, but with increased cost. In set-associative cache memory,

two or more words can be stored under the same index address. Each data word is stored together

with its tag. The number of tag-data words under an index is said to form a set. If k number of words

with their associated tags (i.e. set size = k) are stored under an index of cache, then the cache memory

is called k-way set-associative. A 2-way set-associative memory is shown in Fig. 4.32, where two data

words together with two tag values are stored in a single index address.

For 2-way set-associative cache, the word length is 2(8 + 8) = 32 bits, since each tag requires 8 bits

and each data word requires 8 bits. So, the cache memory size is now converted to 256 ¥ 32. This

means that the cache memory can hold 512 words of the main memory.

When the CPU generates a memory address of 16-bit, the index value of 8-bit is used to access the

cache. Then the tag field of CPU address is compared with both tags under the selected index of the

2-way set associative cache memory for hits. The comparison of tags in the set of cache memory is

done using the associative search technique, which is why the mapping technique is called set-

associative mapping. In this case, since multiple number of words is stored under a common index

value, the hit ratio improves compared to previous two techniques.

If the set is full and a miss occurs in a set-associative cache, then one of the stored tag-data pairs

must be replaced with a new pair value from the main memory. Some important replacement algo-

rithms are discussed next.

Figure 4.31 Direct mapping cache with block size of 8 words

4.30 Computer Organization

Merits of Set-Associative Cache This cache memory has highest hit ratio compared to other two

cache memories.

Demerits of Set-Associative Cache This is the most expensive memory. The cost increases as set

size increases.

Replacement Methods In case a miss occurs in cache memory, then a new data from main

memory needs to be placed over old data in the selected location of cache memory. In case of direct

mapping cache, we have no choice and thus no replacement algorithm is required. The new data has

to be stored only in a specified cache location as per the mapping rule for the direct mapping cache.

For associative mapping and set-associative mapping, we need a replacement algorithm since we have

multiple choices for locations. We outline below some most used replacement algorithms.

First-in first-out (FIFO) algorithm This algorithm chooses the word that has been in the cache for

a long time. In other words, the word which entered the cache first, gets pushed out first.

Least recently used (LRU) algorithm This algorithm chooses the item for replacement that has

been used by the CPU minimum number of times in the recent past.

Cache Writing Methods Generally only two operations: read and write are performed on a

memory. The read operation does not change the content of memory, since a copy of data has been

retrieved from the memory in the course of read operation. However, the write operation changes the

content of memory. So, the write operation should be performed carefully. There are two methods in

writing into cache memory: Write-through and Write-back policies.

Write-through policy This is the simplest and most commonly used procedure to update the cache.

In this technique, when the cache memory is updated, at the same time the main memory is also

updated. Thus the main memory always contains the same data as the cache. But it is a slow process,

since each time main memory needs to be accessed.

Write-back policy In this method, during a write operation only the cache location is updated. When

the update occurs, the location is marked by a flag called modified or dirty bit. When the word is

replaced from cache, it is written into main memory if its flag bit is set. The philosophy of this method

is based on the fact that during a write operation, the word residing in cache may be accessed several

times (temporal locality of reference). This method reduces the number of references to main memory.

However, this method may encounter the problem of inconsistency due to two different copies of the

same data, one in cache and other in main memory.

Figure 4.32 2-way set-associative cache memory

Memory Organization 4.31

Cache Types

Caches are distinguished by the kinds of information they store.

Instruction cache vs Data cache: Instruction or I-cache stores instructions only, while a data or D-

cache stores data only. Separating the stored data in this way recognizes the different access behavior

patterns of instructions and data. For example, programs tend to involve few write accesses, and they

often exhibit more temporal and spatial locality than the data they process.

Unified cache vs Split cache: A cache that stores both instructions and data is referred to as unified

cache. A split cache, on the other hand, consists of two associated but largely independent units: an I-

cache for instructions and a D-cache for data. While a unified cache is simpler, a split cache makes it

possible to access programs and data concurrently. A split cache can also be designed to manage its I-

and D-cache components differently.

Caches are also classified by the level they occupy in the memory hierarchy. Early computers employed

a single, multichip cache that occupied one level of the hierarchy between the CPU and main

memory. Two developments made it desirable to introduce two or more cache levels in high-performance

systems: the feasibility of including part of the real memory space on a microprocessor chip and

growth in the size (but not the speed) of main memory in typical computers. A level 1 (L1) or primary

cache is an efficient way to implement an on-chip memory. An additional memory level can be

introduced via an off-chip, level 2 (L2) or secondary cache. The desirability of an L2 cache increases

with the size of main memory, assuming that the size of the on-chip, L1 cache is fixed. As main-

memory size increases further, even more cache levels may be desirable.

4.8.3 Techniques to Improve the Cache Memory Performance

Referring Eq. (4.1), a better measure of memory hierarchy performance is the average memory access

time:

Average memory access time = Hit time + Miss rate ¥ Miss penalty

where Hit time is the time to hit the cache, Miss rate is the fraction of accesses that are not in the

cache (i.e., (1 - h)) and Miss penalty is the additional clock cycles to service the miss. In other words,

the extra time needed to bring the desired information into the cache from main memory in case of a

miss in cache is called the miss penalty.

Hence, in order to improve the cache performance, i.e., to minimize the average access time, different

efficient techniques must be implemented in the memory system to reduce the hit time, miss rate and

miss penalty.

Techniques to Reduce the Miss Rate

Before going into details of different techniques, we have to gain better insights into the causes of

misses. There are three types of misses (they are known as �three C�s�):

Compulsory The very first access to a block cannot be in the cache, so the block must be brought

into the cache. These are also called cold start misses.

Capacity If the cache cannot contain all the blocks needed during execution of a program, capacity

misses will occur because of blocks being discarded and later retrieved.

4.32 Computer Organization

Conflict If the block placement strategy is set-associative or direct-mapped, conflict misses (in

addition to compulsory and capacity misses) will occur because a block can be discarded and later

retrieved if too many blocks map to its set. These are also called collision misses.

Compulsory miss rates are usually small. There is little we can do about these misses other than

pre-fetching. We can eliminate all conflict misses if we use a fully associative cache. But fully

associative caches are expensive in terms of hardware and slower which lengthen the clock cycle,

reducing overall performance. Little can be done for capacity misses other than having larger caches

but we will find other things we can adjust to improve on capacity misses.

Some techniques to reduce the cache miss rate are described below.

∑ Large Block Size The simplest way to reduce miss rate is to increase block size. Large block

sizes will reduce compulsory misses. Large blocks may increase conflict misses and even

capacity misses if cache is small. So, it is the task of the cache designer to choose the block

sizes in such a way that all types of cache miss rates are minimized.

∑ Higher Associativity Increased associativity of a set associative cache will reduce the cache

miss rate. That means that an 8-way set associative cache will experience less number of cache

misses than that of 4-way or 2-way set associative cache. But higher way set associative cache

will increase the cost of the memory.

∑ Use of Victim Cache To reduce the conflict misses without impairing clock rate, one small

fully associative cache called victim cache is placed between a cache and its refill path. This

victim cache contains only blocks (victims) that are discarded recently from a cache because of

a miss and are checked on a miss to see if they have the desired data before going to the next

lower-level memory. If it is found there, the victim block and cache block are swapped.

∑ Large Cache A larger cache will reduce capacity miss rates since the cache has a larger

capacity. Also it will reduce conflict miss rates because the larger cache allows more refill lines

(i.e. more cache blocks).This is an obvious solution and has no seeming performance drawbacks.

However, you must be careful where you put this larger cache. A larger on-chip cache might

take space away from other hardware that could provide performance increases (registers, more

functional units, logic for multiple-issue of instructions, etc.). Also, more cache means a greater

expense for the machine.

∑ Compiler Optimizations Till now our techniques to reduce misses have required changes to or

additions to the hardware: larger blocks, higher associativity, use of victim cache and large

cache. This final technique reduces miss rates without any hardware changes. Specific techniques

include:

❏ Merging Arrays This first technique reduces misses by improving spatial locality. Some

programs reference multiple arrays in the same dimension with the same indices at the same

time. The danger is that these accesses will interfere with each other, leading to conflict

misses. This danger is removed by combining these independent matrices into a single

compound array so that a single cache block can contain the desired elements.

/* Before */ int val[SIZE]; int key[SIZE];

/* After */ struct merge { int val; int key;

};

struct merge merged_array[SIZE];

Memory Organization 4.33

An interesting characteristic of this example is that the proper coding practice of using an

array of records would achieve the same benefits as this optimization.

❏ Loop Interchange Some programs have nested loops that access data in memory in non-

sequential order. Simply exchanging the nesting of the loops can make the code access the

data in the order it is stored. Like the prior example, this technique reduces misses by

improving spatial locality. Reordering maximizes use of data in a cache block before it is

discarded.

/* Before */

for (j =0; j < 100; j = j+1)

for (i=0; i < 5000; i = i+1)

x[i][j] = 2 * x[i] [j];

 /* After */

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i] [j] ;

The original code would skip through memory in strides of 100 words, while the revised

version accesses all the words in the cache block before going to the next one. This optimization

improves cache performance without affecting the number of instructions executed, unlike

the prior example.

❏ Loop Fusion Some programs have separate sections of code that access the same arrays

with the same loops, performing different computations on the common data. By �fusing� the

code into a single loop, the data that are fetched into the cache can be used repeatedly before

being swapped out. Hence, in contrast to our first two techniques, the target of this optimization

is reducing misses via improved temporal locality.

/* Before */

for (i=0; i < N; i = i+1)

for (j=0; j < N; j = j+1)

a[i] [j] = 1/ b[i][j] * c[i][j];

for (i=0; i < N; i = i+1)

for (j=0; j < N; j = j+1)

d[i] [j] = a[i] [j] + c[i][j];

/* After */

for (i=0; i < N; i = i+1)

for (j=0; j < N; j = j+1)

{

a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i] [j] + c[i][j];

}

4.34 Computer Organization

The original code would take all the misses to access arrays a and c twice, once in the first

loop and then again in the second. In the fused loop, the second statement freeloads on the

cache accesses of the first statement.

Techniques to Reduce the Hit Time

∑ Small and Simple Caches Associative cache access requires using the address part to find the

appropriate line (block) in the cache. The set-associative cache uses index part of the address to

find the appropriate block in cache and then comparing tags to see if the entry is the right one.

Also these comparisons use more hardware to be done in parallel. It is also critical to keep the

cache small so that it fits on the chip. One solution is to keep tags on the chip and data off the

chip. This permits a faster comparison followed by accessing the data portion somewhat slower.

In the end, this result is not appealing for reducing hit time. Thus a better approach is to use

direct-mapped caches.

∑ Avoid Address Translation CPU generates an address and sends it to cache. But the address

generated is a logical (virtual) address, not the physical address in memory. To obtain the

physical address, the virtual address must first be translated. Translation requires accessing

information stored in registers, TLB (Translation Look-aside Buffer) or main memory page

table, followed by a concatenation. If we store virtual addresses in the cache, we can skip this

translation. There are problems with this approach though

� if a process is switched out of memory then the cache must be flushed.

� the OS and user may share addresses in two separate virtual address spaces.

Thus this may cause problems if we use the virtual addresses in the cache.

∑ Pipelining Writes Write operations will take longer than read operations because the tag must

be checked before the write can begin. A read can commence and if the tag is wrong, the item

read can be discarded. The write takes two steps, tag comparison first; followed by the write (a

third step might be included in a write-back cache by combining items in a buffer). By pipelining

writes, we can partially speed up the process. This works by overlapping the tag checking and

writing portions. Although this only works with more than one consecutive write where all

writes are cache hits.

Techniques to Reduce the Miss Penalty

∑ Multilevel Caches To improve the performance, we find that we would like

 � a faster cache to keep pace with memory

 � a larger cache to lower miss rate

Both cases will offer a small but fast cache on the CPU chip and a larger but slower cache on

the motherboard. The slower cache is still much faster than main memory. This gives us a new

formula for average memory access time = Hit time L1 + miss rate L1 * miss penalty L1; where

L1 is the first cache (called the first-level cache).

Miss penalty L1 = hit time L2 + miss rate L2 * miss penalty L2; where L2 is the second cache

(called the second-level cache).

Thus, average memory access time = hit time L1 + miss rate L1 * (hit time L2 + miss rate L2 *

miss penalty L2).

∑ Early Restart On a cache miss, memory system moves a block into cache. Transferring a full

block will require many bus transfers. Rather than having the cache and CPU wait until the

Memory Organization 4.35

entire block is available, move requested word from the block first to allow cache access as soon

as the item is available and transfer rest of block in parallel with that access. This requires two

ideas:

 Early restart The cache transmits the requested word to the CPU as soon as it arrives from

memory.

 Critical word first Have memory return the requested word first and the remainder of the

block afterward (this is also known as wrapped fetch).

∑ Priority of Reads over Writes This is based on the philosophy �Make the more common case

fast�. Reads occur with a much greater frequency than writes. In programs, instructions are read

only and many operands are read but not written back. Writes are slower anyway because of the

need to write to both cache and main memory. If we use a write buffer for both types of write

policy:

 Write-through cache writes to write buffer first and any read misses are given priority over

writing the write buffer to memory.

 Write-back cache writes to write buffer and the write buffer is only written to memory when

we are assured of no conflict with a read miss.

Thus, read misses have priority over write misses since read misses are more common, so we

make the common case fast.

The techniques discussed so far to improve miss rate, miss penalty and hit time generally affect the

other components of the average memory access equation as well as the complexity of the memory

hierarchy. Generally a technique helps only one factor. For example, �large cache size� technique can

reduce misses, but it hurts the hit time. Thus in summary, no technique helps more than one category.

Problem 4.3 A hierarchical cache-main memory subsystem has the following specifications:

(i) Cache access time of 50 nsec

(ii) main memory access time of 500 nsec

(iii) 80% of memory request are for read

(iv) hit ratio of 0.9 for read access and the write-through scheme is used.

Calculate the following:

(a) average access time of the memory system considering only memory read cycle.

(b) average access time of the system both for read and write requests.

Solution Given,

Cache access time tc = 50 nsec.

Main memory access time tm = 500 nsec.

Probability of read pr = 0.8

Hit ratio for read access hr = 0.9

Writing scheme: write-through.

(a) Considering only memory read cycle,

The average access time tav-r = hr * tc + (1�hr)* (tc + tm)

= 0.9*50 + (1�0.9)*550

= 100 nsec.

4.36 Computer Organization

(b) For both read and write cycles,

The average access time = pr * tav-r + (1�pr)* tm Since in write-through method,

access time for write cycle will be the main memory

access time.

= 0.8* 100 + (1�0.8) * 500

= 180 nsec.

Problem 4.4 For a cache memory of size 32 KB, how many cache lines (blocks) does the cache

hold for block sizes of 32 or 64 bytes?

Solution The number of blocks in cache = size of cache/block size.

Thus, for block size of 32 bytes, the number of blocks = (32 * 1024)/32 = 1024.

Similarly, for block size of 64 bytes, the number of blocks = (32 * 1024)/64 = 512.

Problem 4.5 A computer has a main memory of 64K ¥ 16 and a cache memory of 1K words. The

cache uses direct mapping with a block size of four words.

(a) How many bits are there in the tag, index, block and word fields of the address

format?

(b) How many bits are there in each word of cache?

(c) How many blocks can the cache accommodate?

Solution (a) The main memory size = 64K ¥ 16

Therefore, the CPU must generate the address of 16-bit (since 64K = 216)

The cache memory size = 1K

Therefore, the size of index field of cache = 10-bit (1K = 210)

The tag-field uses 16 � 10 = 6 bits

The size of each cache block = 4 words

Thus, the number of blocks in cache = 1024/4 = 256

Therefore the number of bits required to select each block = 8 (since 256 = 28)

The number of bits required to select a word in a block = 2, because there are

4 words in each block.

Thus, the address format is as follows:

6 8 2

Tag Block Word

Index

(b) The main memory size = 64K ¥ 16

Therefore, the number of bits in each word in cache = 16

(c) From part (a); the number of blocks in cache = 256.

Problem 4.6 A cache has 64 KB capacity, 128-byte lines and is 4-way set-associative. The CPU

generates 32-bit address for accessing data in the memory.

(a) How many lines and sets does the cache have?

(b) How many entries are required in the tag field?

(c) How many bits of tags are required in each entry in the tag array?

ì ï ï ï ï í ï ï ï ï î

Memory Organization 4.37

Solution (a) The number of lines in cache = (64 * 1024)/128 = 512.

Since the cache is 4-way set-associative, the number of sets = 512/4 = 128.

(b) Since one tag array entry is required for each line, the tag array needs

512 entries.

(c) Since cache has 128 sets, the number bits required to select a set = 7.

Each line consists of 128 bytes.

Therefore, number of bits required to select a byte (word) = 7

Since the CPU generates 32-bit address to access a byte (word) in memory, the

number of bits of tag required in each entry in the tag array = 32 � (7 + 7) = 18.

4.9 VIRTUAL MEMORY

Parts of programs and data are brought into main memory from secondary memory, as the CPU needs

them. Virtual memory is a technique used in some large computer systems, which gives the program-

mer an illusion of having a large main memory, though that may not be the case. The size of virtual

memory is equivalent to the size of secondary memory. Each address referenced by the CPU called

the virtual (logical) address is mapped to a physical address in main memory. This mapping is done

during run-time and is performed by a hardware device called memory-management unit (MMU) with

the help of a memory map table, which is maintained by the operating system.

The virtual memory makes the task of programming much easier, because the programmer no

longer needs to bother about the amount of physical memory available. For example, a program size

is 18 MB and the available user part of the main memory is 15 MB (Other part of the main memory is

occupied by the operating system). First, 15 MB of the program is loaded into main memory and then

remaining 3 MB is still in the secondary memory. When the remaining 3 MB code is needed for

execution, swap out the 3 MB code from main memory to secondary memory and swap in new 3 MB

code from secondary memory to main memory.

The advantage of virtual memory is efficient utilization of main memory, because the larger size

program is divided into blocks and partially each block is loaded in the main memory whenever it is

required. Thus multiple programs can be executed simultaneously. The technique of virtual memory

has other advantages of efficient CPU utilization and improved throughput.

Logical (Virtual) Address Space and Physical Address Space When a program needs to be

executed, the CPU would generate addresses called logical addresses. The corresponding addresses in

the physical memory, as occupied by the executing program, are called physical addresses. The set of

all logical addresses generated by the CPU or program is called logical-address space and the set of

all physical addresses corresponding to these logical addresses is called physical-address space. The

memory-management unit (MMU) maps each logical address to a physical address during program

execution. Figure 4.33 illustrates this mapping method, which uses a special register called base

register or relocation register. The content of the relocation register is added to every logical address

generated by the user program at the beginning of execution. For example, if the relocation register

holds an address value 2000, then a reference to the location 0 by the user is dynamically relocated to

2000 address. A reference to the address 150 is mapped to the address 2150.

4.38 Computer Organization

A virtual memory system may be configured in one of the following ways:

1. Paging technique

2. Segmentation technique.

Paging Paging is a non-contiguous memory allocation method. In other words, the program is

divided into small blocks in paging and these blocks are loaded elsewhere in main memory. In paging,

the virtual address space is divided into equal size blocks called pages and the physical (main)

memory is divided into equal size blocks called frames. The size of a page and size of a frame are

equal. The size of a page or a frame is dependent on the operating system and is generally 4 KB.

In paging, operating system maintains a data structure called page table, which is used for mapping

from logical address to physical address. The page table generally contains two fields, one is page

number and other is frame number. The table specifies the information that which page would be

mapped to which frame. Each operating system has its own way of maintaining the page tables; most

allocate a page table for each program.

Each address generated by the CPU (i.e. virtual address) is divided into two parts: page number (p)

and offset or displacement (d). The page number p is used as index in the page table and the offset d

is the word number within the page p. The structure of paging method is shown in Fig. 4.34.

In order to illustrate the paging, let us consider the following example:

There are two programs of sizes 16 KB and 24 KB in the virtual memory (secondary memory). The

available physical (main) memory is 72 KB and size of each page is 4 KB.

For first program of size 16 KB, the number of pages is 16 KB/4 KB = 4 and similarly, for second

program of size 24 KB the number of pages is 6. Since the size of physical memory is 72 KB, the

number of frames is 72 KB/4 KB = 18. For each program, a page table is maintained. The page tables

for programs and their mappings are shown in Fig. 4.35. Page tables are created by the operating

system. In this example, total 10 pages (4 for program 1 and 6 for program 2) are loaded in different

parts of physical memory. Since the physical memory has 18 frames, therefore remaining 8 free

frames can be used for some other programs.

Advantages

1. The paging supports time-sharing system.

2. It utilizes the memory efficiently.

3. It supports non-contiguous memory allocation.

4. It is quite easy to implement.

Figure 4.33 A simple memory-management scheme

Memory Organization 4.39

Disadvantages

1. The paging may encounter a problem called page break. For example, the virtual address

space for a program is 18 KB and the page size is 4 KB. Thus the number of frames required

by this program is 5. However, the used space in last (fifth) frame of the physical memory is

only 2 KB and remaining 2 KB of the frame is wasted. This is referred to as page break.

2. When the number of pages in a virtual memory is large, it is quite difficult to maintain the

page tables.

Page Replacement When a program starts execution, one or more pages are brought to the main

memory and the page table is responsible to indicate their positions. When the CPU needs a particular

page for execution and that page is not in main (physical) memory (still in the secondary memory),

this situation is called page fault. When the page fault occurs, the execution of the present program is

suspended until the required page is brought into main memory from secondary memory. The re-

quired page replaces an existing page in the main memory, when it is brought into main memory.

Thus, when a page fault occurs, a page replacement is needed to select one of the existing pages to

make the room for the required page. There are several replacement algorithms such as FIFO (First-

in First-out), LRU (Least Recently Used) and optimal page replacement algorithm available.

The FIFO algorithm is simplest and its criterion is �select a page for replacement that has been in

the main memory for longest period of time�.

The LRU algorithm states that �select a page for replacement, if the page has not been used often

in the past�. The LRU algorithm is difficult to implement, because it requires a counter for each page

to keep the information about the usage of page.

The optimal algorithm generally gives the lowest page faults of all algorithms and its criterion is

�replace a page that will not be used for the longest period of time�. This algorithm is also difficult to

implement, because it requires future knowledge about page references.

Figure 4.34 Paging structure

4.40 Computer Organization

An algorithm is evaluated by running it on a particular string of memory references and computing

the number of page faults. The string of memory references is called a reference string. We can

generate reference strings randomly or we can trace a given system and record the address of each

memory reference. For example, if we trace a particular executing program and obtain the following

address sequence:

0202, 0103, 0232, 0324, 0123, 0344, 0106, 0287, 0345, 0654, 0102, 0203, 0234, 0205, 0104,

0134, 0123, 0145, 0156, 0167

If size of each page is 100 bytes, the above address sequence is reduced to the reference string:

2, 1, 2, 3, 1, 3, 1, 2, 3, 6, 1, 2, 1

To determine the number of page faults for a particular reference string and page-replacement

algorithm, we also need to know the number of page frames available. This is obvious that, if number

of available-frames increases, the number of page faults decreases.

To illustrate the page replacement algorithms, we shall use the following reference string:

0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 3, 2, 4, 1

for a memory with 3 frames. The algorithm having least page fault is considered the best one.

Figure 4.35 Example of paging

Memory Organization 4.41

Example for FIFO

Frame

0 1 2 3 0 1 2 3 0 1 3 2 4 1

0 0 0 0 3 3 3 2 2 2 1 1 1

1 1 1 1 0 0 0 3 3 3 2 2

2 2 2 2 1 1 1 0 0 0 4

Page fault y y y y y y y y y y n y y n

If a required page is already in main memory, page replacement is not required, which is indicated

in the table by �n�. In that situation, no page fault occurs.

From this table, we observe that 12 page faults occur, out of 14 references. Thus, the page fault

rate is = no. of page faults/no. of page references in the string = 12/14 = 85%.

Example of LRU:

Frame

0 1 2 3 0 1 2 3 0 1 3 2 4 1

0 0 0 0 3 3 3 2 2 2 1 1 4 4

1 1 1 1 0 0 0 3 3 3 3 3 1

2 2 2 2 1 1 1 0 0 2 2 2

Page fault y y y y y y y y y y n y y y

From this table, we observe that 13 page faults occur, out of 14 references. Thus, the page fault

rate is = 13/14 = 93%.

Example of Optimal replacement algorithm:

Frame

0 1 2 3 0 1 2 3 0 1 3 2 4 1

0 0 0 0 0 0 1 1

1 1 1 1 2 2 2

2 2 3 3 3 4

Page fault y y y y n n y n n y n n y n

From this table, we observe that 7 page faults occur, out of 14 references. Thus, the page fault rate

is = 7/14 = 50%.

Segmentation Segmentation is a memory management scheme that supports the user view of

memory. A logical-address space of a program is a collection of segments. A segment is defined as a

logical grouping of instructions, such as subroutine, array or data area. Each segment has a name and

a length. The address of the segment specifies both segment name and offset within the segment. For

simplicity of implementation, segments are referred to by a segment number rather than by a segment

name. Thus, a logical address consists of two tuples: (segment number (s), offset (d)).

The mapping of logical address to corresponding physical address is done using segment table.

Each entry of the segment table has a segment base and a segment limit. The segment base indicates

the starting physical address where the segment resides in main memory and the segment limit

Reference

string

Reference

string

Reference

string

4.42 Computer Organization

specifies the length of the segment. The hardware implementation of segmentation is shown in

Fig. 4.36.

A logical address consists of two fields: (segment number (s), offset (d)). The segment number s is

used as an index in the segment table and the offset d is word number within the segment s. The offset

d must be between 0 and the segment limit. If offset is beyond that range, the operating system

generates an error signal (trap), which means that the offset is not valid. If it is valid, it is added with

the segment base to produce the address in the physical memory for the desired word.

To illustrate the segmentation technique, we consider the example in Fig. 4.37. The logical address

space is divided into 3 segments. Each segment has an entry in the segment table. The base specifies

the starting address of the segment and the limit specifies the size of the segment. For example, first

(i.e. 0th) segment is loaded in the main memory from 1000 to 1500. Thus, the base is 1000 and limit is

1500 � 1000 = 500. A reference to word (byte) 20 of segment 0 is mapped onto address 1000 + 20 =

1020. Thus, the logical address (0 (segment no.), 20 (offset)) is mapped to the corresponding physical

address 1020. Similarly, a reference to word 50 of segment 2 is mapped onto address 2500 + 50 =

2550. Thus, the logical address (2, 50) has the corresponding physical address 2550.

The advantages of segmentation are:

1. It supports efficient utilization of physical memory. Unlike paging, there is no space wastage

within a segment.

2. It supports user view of memory more efficiently. It can handle dynamically growing segments.

3. Protection and sharing can be done easily.

Examples: The processors such as IBM 360/67 and VAX 11/780 use paging. Intel�s microprocessor

80286 supports only segmentation; whereas microprocessor 80386 uses both segmentation and paging

schemes.

Problem 4.7 Consider a logical address space of 8 pages of 1024 words each, mapped onto a

physical memory of 32 frames.

(a) How many bits are there in the logical address?

(b) How many bits are there in the physical address?

Figure 4.36 Segmentation hardware

Memory Organization 4.43

Solution (a) Logical address space consists of 8 pages, each of 1024 words.

To select each page, 3 bits are required. (Because 8 = 23)

To select each word in a page, 10 bits are required. (Because1024 = 210)

Therefore, the logical address consists of 3 + 10 = 13 bits.

(b) The physical memory consists of 32 frames.

So, to select each frame, 5 bits are required.

Since in paging, size of page and size of frame are equal.

Therefore, the physical address consists of 5 + 10 = 15 bits.

Problem 4.8 Consider the following segment table:

Segment Base Length

0 215 500

1 2000 160

2 1200 40

What are the physical addresses for the following logical addresses?

(a) 0, 430

(b) 1, 234

(c) 2, 13

Solution (a) The physical address corresponding to 0, 430 is 215 (base) + 430 (offset) = 645.

(b) In logical address 1, 234; offset value 234 is greater than the length of segment 1

(i.e. 160). So, there is an error.

(c) The physical address corresponding to 2, 13 is 1200 + 13 = 1213.

Figure 4.37 Example of segmentation

4.44 Computer Organization

Translation Look-aside Buffer (TLB)

In paging scheme, the main memory is accessed two times to retrieve data, one for accessing a page

table and another for accessing data itself. Since the access time of the main memory is large, one

new technique is adopted to speed up the data retrieval. A fast associative memory called translation

look-aside buffer (TLB) is used to hold most recently used page table entries. When the CPU needs to

access a particular page, the TLB is accessed first. If desired page table entry is present in the TLB, it

is called TLB hit and then the frame number is retrieved from the table to get the physical address in

main memory. If the desired page table entry is not present in the TLB, it is called TLB miss and then

the CPU searches the original page table in main memory for the desired page table entry and this

information (entry) is also loaded in the TLB. This ensures that translation information pertaining to a

future reference is confined to the TLB. The organization of address translation scheme that includes

a TLB is shown in Fig. 4.38.

n n

Figure 4.38 Address translation using TLB

This concept is used in many mainframes, including the IBM 370/168 computer. In the IBM 370/168,

the TLB can hold 128 entries. With the advent of IC technology, this technique is also gaining

popularity in the microprocessor world.

Memory Organization 4.45

1. Describe the storage structure of a bipolar storage cell and explain the reading and writing

operations on the cell. Give a suitable diagram.

Answer

Two junction transistors T0 and T1 are connected in such a way that they form a flip-flop. Assuming

point D at ground voltage (i.e. word line is disabled), when T0 is on, the flip-flop stores logic �0�

while current flows to ground through T0 making point A at �0� level. This in turns holds T1 off. As a

result, the point B is held at voltage equal to the base-emitter voltage of T0 (i.e. B at logic �1�)

whereby T0 is held on. Similarly, when T1 is on, the point B is at �0� level while the point A is held at

the base-emitter voltage of T1 (i.e. A at logic �1�) whereby T1 is held on. Depending on 0 (or 1)

stored, T0 (or T1) is on and both the diodes D0 and D1 are reverse biased. As a result both the bit lines

b and b¢ are isolated from the flip-flop cell.

Read operation: On selecting the word line, the voltage at D goes down at ground level, which selects

the cell. Depending on the T0 (or T1) conducting, the point A (or B) gets the voltage close to ground

level. As a result D0 (or D1) gets forward biased. Depending on D0 (or D1) being forward biased, the

appropriate logic value is read through bit line b (or b¢).

Write operation: On selecting the word line, the voltage at D goes down at ground level to select the
cell. Depending on the logic �1� (or �0�) to be written, the bit line b (or b¢) is held high whereby D0 (or
D1) gets forward biased and consequently T1 (or T0) switch is on resulting T0 (or T1) off.

2. How do the following influence the performance of a virtual memory system?
(i) Size of a page (ii) Replacement policy

Answer
(i) Page size: If page size is large, the page fault rate will be less. But, in that case, transfer time

of the page will increase.
If page size is small, the memory is better utilized, but number of pages and hence the size

of page table will be large.
(ii) Replacement policy: When a page fault occurs, a page replacement is needed to select one of

the existing pages to make the room for the required page. There are several replacement

4.46 Computer Organization

policies such as FIFO (First-in First-out), LRU (Least Recently Used) and optimal page
replacement algorithm available. The performance of virtual memory is degraded if too many
page faults occur, because that lead to bring the new required pages to the physical memory.
That�s why the algorithm which gives lowest page faults is considered as best algorithm.

3. A computer has direct mapped cache with 16 one-word blocks. The cache is initially empty.
What is the observed hit ratio when the CPU generates the following word address sequence:
1, 4, 8, 5, 20, 17, 19, 56, 9, 11, 4, 43, 5, 6, 9, 17?

Answer
The direct mapping is expressed as

I = J mod K

Where

I = cache block number
J = main memory block number
K = number of blocks in cache.

The processor generates the addresses for words in main memory. In our problem, K = 16 with one
word per block and main memory block sequence is: 1, 4, 8, 5, 20, 17, 19, 56, 9, 11, 4, 43, 5, 6, 9, 17.

Thus, the corresponding cache block sequence and its word is as (block no., word address): (1, 1),
(4,4), (8,8), (5,5), (4,20), (1,17), (3,19), (8,56), (9,9), (11, 11), (4,4), (11,43), (5,5), (6,6), (9,9), (1,17).
Initially, cache is empty.

(Cache block no., word address) (1,1) (4,4) (8,8) (5,5) (4,20) (1,17) (3,19) (8,56) (9,9)

Hit(H)/Miss (M) M M M M M and M and M M and M

replace replace replace

(Cache block no., word address) (11,11) (4,4) (11,43) (5,5) (6,6) (9,9) (1,17)

Hit(H)/Miss(M) M M M and replace H M H H

Therefore, hit ratio = 3/16.
4. What is the bandwidth of a memory system that transfers 128-bit of data per reference, has a

speed 20 ns per operation?

Answer
Given the speed of 20 ns, one memory reference can initiate in every 20 ns and each memory
reference fetches 128-bit (i.e. 16 bytes) of data. Therefore, the bandwidth of the memory system is
16 bytes/20 ns = (16 ¥ 109)/20 bytes per second = 8 ¥ 108 bytes per second.

5. What will be the maximum capacity of a memory, which uses an address bus of size 12-bit?

Answer

The maximum capacity of memory will be 212 words i.e. 4096 words.

6. Why is the memory system of a computer organized as a hierarchy?

Answer

Ideally, we would like to have the memory which would be fast, large and inexpensive. Unfortu-
nately, it is impossible to meet all three requirements simultaneously. If we increase the speed and
capacity, then cost will increase. We can achieve these goals at optimum level by using several types
of memories, which collectively give a memory hierarchy.

The lower levels of memory hierarchy, which are implemented using slow and cheap memory
technologies, contain most of programs and data. The higher levels of memory hierarchy, which are

Memory Organization 4.47

implemented using fast and expensive memory technologies, contain smaller amount of programs and
data. The processor, being very high speed device, references data in the fast higher levels of memory
hierarchy. If referred data is not available there, it is moved from lower levels of the hierarchy so that
the higher levels handle most references. If most references are handled by the higher levels, the
memory system gives an average access time almost same as the fastest level of the memory hierar-
chy, with a cost per bit same as that of the lowest level of the hierarchy.

7. What are destructive read out memory and non-destructive read out memory? Give examples.

Answer

In some memories, reading the memory word destroys the stored word, this fact is known as destruc-

tive readout and memory is known as destructive readout memory. In these memories, each read
operation must be followed by a write operation that restores the memory�s original state. Example
includes dynamic RAM.

In some memories, the reading the memory word does not destroy the stored word, this fact is
known as non-destructive readout and memory is known as non-destructive readout memory.
Examples include static RAM and magnetic memory.

8. Why do the DRAMs generally have large capacities than SRAMs constructed by the same

fabrication technology?

Answer

Each DRAM cell contains two devices � one capacitor and one transistor, while each SRAM cell
consists of six transistors. This means a DRAM cell is much smaller than a SRAM cell, allowing the
DRAM to store more data in the same size chip space.

9. Why is refreshing required in Dynamic RAM?

Answer

Information is stored in a dynamic RAM memory cell in the form of a charge on a capacitor. Due to

the property of the capacitor, it starts to discharge. Hence, the information stored in the cell can be

read correctly only if it is read before the charge on the capacitor drops below some threshold value.

Thus, this charge in capacitor needs to be periodically recharged or refreshed.

10. Suppose a DRAM memory has 4 K rows in its array of bit cells, its refreshing period is 64 ms

and 4 clock cycles are needed to access each row. What is the time needed to refresh the

memory if clock rate is 133 MHz? What fraction of the memory�s time is spent performing

refreshes?

Answer

In DRAM memory, no. of rows of cells in memory is 4K = 4096 and 4 clock cycles are needed to
access each row.

Therefore, no. of cycles needed to refresh all rows = 4096 ¥ 4 = 16384 cycles.
Since clock rate is 133 MHz,
The time needed to refresh all rows = 16384 / (133 ¥ 106) seconds

= 123 ¥ 10�6 seconds
= 0.123 ms. [1 ms = 10�3 sec.]

Thus, the refreshing process occupies 0.123 ms in each 64 ms time interval.
Therefore, refresh overhead is 0.123/64 = 0.002.
Hence, only 0.2 % of the memory�s time is spent performing refreshes.

4.48 Computer Organization

11. How many 256 ¥ 4 RAM chips are needed to provide a memory capacity of 2048 bytes? Show

also the corresponding interconnection diagram.

Answer

The given RAM memory size is 256 ¥ 4. This memory chip requires 8 (because 256 = 28) address
lines and 4 data lines.
Size of memory to be constructed is 2048 bytes, which is equivalent to 2048 ¥ 8. Thus, it requires 11
(because 2048 = 211) address lines and 8 data lines.
In the interconnection diagram:
The number of rows required = 2048/256 = 8.
The number of columns required = 8/4 = 2.
Thus, total number of RAMs each of size 256 ¥ 4 required = 8 * 2 = 16.
The interconnection diagram is shown in the following figure.

12. Explain how a RAM of capacity 2 K bytes can be mapped into the address space (1000)H to

(17FF)H of a CPU having a 16 bit address lines. Show how the address lines are decoded to

generate the chip select condition for the RAM.

Answer

Since the capacity of RAM memory is 2048 bytes = 2 KB, the memory uses 11 (2 KB = 211) address

lines, say namely A10 � A0, to select one word. Thus, memory�s internal address decoder uses 11 lines

A10 � A0 to select one word.

Memory Organization 4.49

To select this memory module, remaining 5 (i.e. 16 � 11) address lines A15 � A11 are used. Thus, an

external decoding scheme is employed on these higher-order five address bits of processor�s address.

The address space of the memory is 1000H and 17FFH.

Therefore, the starting address (1000)H in memory is as:

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Based on the higher-order five bits (00010), external decoding scheme performs a logical AND

operation on address values: 15A , 14A , 13A , A12 and 11A . The output of AND gate acts as chip select

(CS) line. The address decoding scheme is shown in the following figure.

13. A high speed tape system accommodates 1200 ft. reel of standard 9-track tape. The tape is

moved past the recording head at a rate of 140 inches per second. What must be the linear

tape recording density in the order to achieve a data transfer rate of 105 bits per second?

Answer

Given,

Tape length = 1200 ft.

Tape speed = 140 inches/sec.

Data transfer rate = 105 bits/sec.

We have, data transfer rate = tape density ¥ tape speed

Therefore, the tape density = 105/140 bits/inch

 = 714 bits/inch

14. Suppose a 30 GB hard-disk is to be manufactured. If the technology used to manufacture the

disks allows 1024-byte sectors, 2048-sector tracks and 4096-track platters. How many platters

are required?

Answer

The total capacity of each platter = size of each sector ¥ no. of sectors per track ¥ no. of tracks per

platter

4.50 Computer Organization

= 1024 ¥ 2048 ¥ 4096 bytes

= 8 ¥ 230 bytes

= 8 GB

Therefore, no. of platters required = Ècapacity_of_disk/capacity_of_each_platter˘

= È30/8˘

= 4.

15. What is the average time to read or write a 512-byte sector from a disk rotating at 5,400

RPMs, if the seek time is 12 ms, the transfer rate is 4 MB per second and the controller

overhead is 8 ms?

Answer

Disk access time = seek time + rotational latency + transfer time + control overhead

Rotational latency = (60 * 1000)/5400 = 11.11 ms

Transfer time = 512/4MB = 0.122 ms

Disk access time = 12 + 11.11 + 0.122 + 8 ms = 31.232 ms

16. A hierarchical cache-main memory subsystem has the following specifications: (i) Cache

access time of 160 ns (ii) main memory access time of 960 n (iii) hit ratio of cache memory is

0.9. Calculate the following:

(a) Average access time of the memory system.

(b) Efficiency of the memory system.

Answer

Given,

Cache access time, tc = 160 ns

Main memory access time, tm = 960 ns

Hit ratio, h = 0.9

(a) The average access time of the system, tav = h ¥ tc + (1 � h) ¥ (tc + tm)

= 0.9 ¥ 160 + 0.1 ¥ (160 + 960)

= 256 ns

(b) The efficiency of the memory system = tc / tav

= 160/256

= 0.625

17. A three level memory system having cache access time of 15 ns and disk access time of 80 ns

has a cache hit ratio of 0.96 and main memory hit ratio of 0.9. What should be the main

memory access time to achieve effective access time of 25 ns?

Answer

Given,

Cache access time, tc = 15 ns

Disk (secondary) memory access time, ts = 80 ns

Hit ratio for cache, hc = 0.96

Hit ratio for main memory, hm = 0.9

Memory Organization 4.51

The average access time, tav = 25 ns

Let, the main memory access time is tm unit.

Now, we know, the average access time of the memory system,

 tav = hc ¥ tc + hm ¥ (1�hc) ¥ (tc + tm) + (1�hc) ¥ (1�hm) ¥ (tc + tm + ts)

That is, 25 = 0.96 ¥ 15 + 0.9 ¥ 0.04 ¥ (15 + tm) + 0.04 ¥ 0.1 ¥ (15 + tm + 80)

By simplifying, we get, tm = 27

Hence, the main memory access time must be 27 ns to achieve the effective access time of 25 ns.

18. Explain how cache memory increases the performance of a computer system.

Answer

Due the locality of reference property of programs, some blocks like program loop, subroutine and

data array in the programs are referenced frequently. Since the cache memory�s speed is almost same

as that of CPU. When these program blocks are placed in fast cache memory, the average memory

access time is reduced, thus reducing the total execution time of the program.

19. How does the size of cache block (i.e. line) affect the hit ratio?

Answer

Generally, increasing the block size of a cache increases the hit ratio because of the property of

locality of reference, i.e. the addresses close to an address that has just been referenced are likely to

be referenced soon. Increasing the block size increases the amount of data near the address that

caused the miss that is brought into the cache on a cache miss. Since most of this data is likely to be

referenced soon, bringing it into the cache eliminates the cache misses that would have occurred when

data was referenced.

However, sometimes large block can reduce the performance of the memory system. Since the

larger blocks reduce the number of blocks in the cache, conflict misses can arise giving the reduced

performance of the system.

20. Given the following, determine size of the sub-fields (in bits) in the address for direct mapping,

associative and set associative mapping cache schemes: We have 256 MB main memory and

1MB cache memory. The address space of this processor is 256 MB. The block size is 128

bytes. There are 8 blocks in a cache set.

Answer

Given,

The capacity of main memory = 256 MB

The capacity of cache memory = 1 MB

Block size = 128 bytes.

A set contains 8 blocks.

Since, the address space of the processor is 256 MB.

The processor generates address of 28-bit to access a byte (word).

The number of blocks main memory contains = 256 MB/128 bytes = 221.

Therefore, no. of bits required to specify one block in main memory = 21.

Since the block size is 128 bytes.

4.52 Computer Organization

The no. of bits required to access each word (byte) = 7.

For associative cache, the address format is:

Tag Word

21 7

The number of blocks cache memory contains = 1 MB / 128 bytes = 213.

Therefore, no. of bits required to specify one block in cache memory = 13.

The tag field of address = 28 � (13 + 7) = 8-bit.

For direct cache, the address format is:

In case of set-associative cache:

A set contains 8 blocks.

Therefore, the number of sets in cache = 213 / 8 = 210.

Thus, the number of bits required to specify each set = 10.

The tag field of address = 28 � (10 + 7) = 11-bit.

For set-associative cache, the address format is:

Tag Set Word

11 10 7

21. Why do virtual page and physical frame have same size, in paging?

Answer

Virtual address that is generated by processor is divided into two fields; page number that identifies

the page containing an address word and offset that identifies the location of the address (word)

within the page. Similarly, physical address is divided into two fields; frame number and offset. If the

page size and frame size are same, address translation can be done easily. The offset from the virtual

address can be concatenated with the frame number that corresponds to the virtual page containing

the address to produce the physical address that corresponds to a virtual address. If these two were

different, a complicated means would be required for address translation.

22. In a system with 64-bit virtual addresses and 43-bit physical addresses, how many bits are

required for the virtual page number and physical frame number if the pages are 8 KB in size?

How big is each page table entry? How many page table entries are required for this system?

Answer

Since the page size is 8 KB, 13 bits are required for the offset field of both the virtual and physical

address.

Therefore, bits required for the virtual page number = 64 � 13 = 51 and

Bits required for the physical frame number = 43 � 13 = 30.

Each page table entry contains frame number and a valid/invalid bit.

Memory Organization 4.53

So, a total of (30 + 1) i.e. 31 bits is used to store each page table entry.

Since each virtual page number contains 51 bits,

The virtual address space can hold 251 pages, which requires 251 page table entries.

23. A virtual memory system has the following specifications:

l Size of the virtual address space is 64 KB

l Size of physical address space is 4 KB

l Page size is 512 byte

From the following page table, what are the physical addresses corresponding to the virtual

addresses:

(a) 3494 (b) 12350 (c) 30123

Page number Frame number

0 0

3 1

7 2

4 3

10 4

12 5

24 6

30 7

Answer

Since page size is 512 bytes

Lower order 9 bits are used for offset within the page.

Size of the virtual address space is 64 KB

Therefore, each virtual address consists of 16-bit.

Thus, higher order 16�9 i.e. 5 bits specify the virtual page number.

(a) For virtual address 3494; lower (494) number is the offset and higher (3) is the page number.

Now, looking in the table, we find frame number (1) corresponding to the page number (3). By

concatenating the offset within the page with the physical frame number, we get physical

address 1494 corresponding to the virtual address 3494.

(b) For virtual address 12350, the physical address is 5350.

(c) For virtual address 30123, the physical address is 7123.

24. What is a translation look-aside buffer (TLB)?

Answer

In paging scheme, the main memory is accessed two times to retrieve data, one for accessing page

table and another for accessing data itself. Since the access time of main memory is large, one new

technique is adopted to speed up the data retrieval. A fast associative memory called translation look-

aside buffer (TLB) is used to hold most recently used page table entries. When CPU needs to access a

4.54 Computer Organization

particular page, the TLB is accessed first. If desired page table entry is present in the TLB, it is called

TLB hit and then the frame number is retrieved from the table to get the physical address in main

memory. If the desired page table entry is not present in the TLB, it is called TLB miss and then CPU

searches the original page table in main memory for the desired page table entry. The organization of

address translation scheme that includes a TLB is shown in the following figure.

Logical

Page no. Frame no.

Physical

address

25. Suppose a processor�s TLB has hit ratio 80% and it takes 20 ns to search the TLB and 100 ns

to access main memory. What will be the effective access time?

Answer

When the referred page number is found in the TLB, then a mapped memory access takes (20 + 100)

i.e. 120 ns. If it is not found in the TLB, then we must first access memory for the page table

and frame number, and then access the desired word in memory, for a total of (20 + 100 + 100) i.e.

220 ns.

Therefore, the effective access time = (TLBhit ¥ TIMEhit) + (TLBmiss ¥ TIMEmiss)

 = 0.8 ¥ 120 + 0.2 ¥ 220 ns

 = 140 ns

26. Why does the virtual memory prevent programs from accessing each other�s data?

Answer

Each program has its own virtual address space. The virtual memory system translates different

programs� virtual addresses to different physical addresses so that no two programs� virtual addresses

map onto the same physical addresses, thus preventing the programs from accessing each other�s data.

27. What is memory interleaving? What are the varieties of it? Discuss.

Answer

The main memory is partitioned into several independent memory modules (chips) and addresses

distributed across these modules. This scheme, called interleaving, allows concurrent accesses to

more than one module. The interleaving of addresses among M modules is called M-way interleaving.

Memory Organization 4.55

There are two basic methods, higher-order and lower-order interleaving, of distributing the ad-

dresses among the memory modules. Assume that there are a total of N = 2n words in main memory.

Then the physical address for a word in memory consists of n bits, an�1 an�2 � a1a0. One method,

high-order interleaving, distributes the addresses in M = 2m modules so that each module i, for 0 £ i

£ M�1, contains consecutive addresses i2n�m to (i+1)2n�m �1, inclusive. The high-order m bits are

used to select the module while the remaining n-m bits select the address within the module, as shown

in next diagram.

The second method, called low-order interleaving, distributes the addresses so that consecutive

addresses are located within consecutive modules. The low-order m bits of the address select the

module, while the remaining n-m bits select the address within the module. Hence, an address A is

located in module A mod M.

28. The following measurements are given for a computer system that uses a paged memory

system with a TLB:

� Time taken to search in the TLB: 20 ns

� Main memory access time: 100 ns.

Determine the average access time assuming a TLB hit ratio of 0.8.

Answer

In the event of a TLB hit, the time needed to retrieve the data is

t1 = TLB search time + time for one memory access

= 20 + 100 ns

= 120 ns

However, when a TLB miss occurs, the main memory is accessed twice (first access for page table

and frame number and then second access for the desired data in memory) to retrieve the data.

4.56 Computer Organization

Therefore, the retrieval time t2 in this case is

t2 = TLB search time + 2 (time for one memory access)

= 20 + 200 ns

= 220 ns

The average access time tav is

tav = h t1 + (1 � h) t2 where h is the TLB hit ratio.

= 0.8 * 120 + 0.2 * 220 ns

= 140 ns

29. Consider three machines with different cache organizations, and measured instruction and

data miss rates as:

Instruction Miss Rate Data Miss Rate Organization

Cache 1: 4% 8% Direct mapped with one-word blocks.

Cache 2: 2% 5% Direct mapped with four-word blocks.

Cache 3: 2% 4% Two-way set associative with four-word blocks.

Assume each instruction takes one reference to memory for the instruction, and one-third of

the instructions take one reference to memory for data (the other two-thirds have no data

references). The cache miss penalty is 6 + W, where W is the number of words in a cache

block. Compute the aggregate miss rate and the average memory access time for each

machine. Find which machine spends the least and most cycles on cache misses.

Answer

Each instruction takes one reference to memory, and 1/3 of instructions also require a data reference;

thus, for every four memory references, 3 are instructions and 1 is data, or 3/4 of memory references

are for instructions, 1/4 for data. If the instruction miss rate is X and the data miss rate is Y, the

aggregate miss rate is simply 0.75X + 0.25Y.

For Cache 1: 0.75*4% + 0.25*8% = 5%

For Cache 2: 0.75*2% + 0.25*5% = 2.75%

For Cache 3: 0.75*2% + 0.25*4% = 2.5%

The average memory access time is computed as hit-time + miss-rate*miss-penalty. The cache miss

penalty is 6 + W, where W is the number of words in a cache block. We use the aggregate miss-rate

here, and assume hit-time is one.

Average access time of Cache 1: 1 + 0.05*7 = 1.35

Average access time of Cache 2: 1 + 0.0275*10 = 1.275

Average access time of Cache 3: 1 + 0.025*10 = 1.25

Note that Cache 3 has a miss rate 1/2 that of Cache 1, but the average memory access time is very

close.

Every 7500 instructions will include 2500 data references, for 10000 memory references. Cache 1

will have 500 misses in those references, using 3500 cycles to fill the cache. Cache 2 will have 275

misses, using 2750 cycles to fill the cache line. Cache 3 will have 250 misses, using 2500 cycles to

fill the cache line. Thus, Cache 3 uses the least cycles for cache fills.

Memory Organization 4.57

30. Which machine gives better performance between the following two?

(a) A machine with a base CPI of 1, overall cache miss rate of 3%, cache penalty of 10

cycles, and clock cycle time of C (frequency = 1/C), or

(b) A machine with base CPI of 1, overall cache miss rate of 5%, cache penalty of 16 cycles,

and clock cycle time of 0.6C (frequency = 5/(3C)).

Assume each instruction takes one reference to memory for the instruction, and one-third of

the instructions take one reference to memory for data (the other two-thirds have no data

references).

Answer

For IC (instruction count) instructions, the execution time is IC*CPI*C, where CPI is clock cycles per

instruction and C is the cycle time.

We have one instruction reference for each instruction and one data reference for every 3 instruc-

tions. The cache miss rate will cause an extra MP (miss penalty) cycles for every MR (miss rate)

memory references, which occur at a rate of MRI (memory references per instruction).

Therefore, the execution time formula is IC*(CPI+MRI*MR*MP)*C.

Execution time of machine 1: IC*(1 + 4/3*0.03*10)*C = 1.4 *IC*C

Execution time of machine 2: IC*(1 + 4/3*0.05*16)*0.6C = 1.24 *IC*C

Comparing these two, the IC and C terms drop out.

So, machine 2 gives better performance, because it takes less time.

31. Consider the performance of a main memory organization, when a cache miss has occurred,

as

l 4 clock cycles to send the address

l 24 clock cycles for the access time per word

l 4 clock cycles to send a word of data.

Estimate:

(i) The miss penalty for a cache block of 4 words.

(ii) The main memory bandwidth.

Answer

Given, a cache block of 4 words.

(i) Therefore, the miss penalty is 4 ¥ (4 + 24 + 4) or 128 clock cycles.

(ii) The memory bandwidth of 4/128 = 1/32 words per clock cycle.

32. Show the memory map with a CPU having 8 bit data bus and 16 bit address bus requring four

RAM chips of size 256 x 8 bit each and a ROM chip of 512 x 8 bit size. Explain the meory

map.

Answer

The addressing of memory can be designed by means of a table, known as memroy address map,

which specifies the meory address space assigned to each chip. The address map table for the memory

connection to the CPU shown in Figure 8 is constructed in Table.

4.58 Computer Organization

Figure 8 Memory connection with 16-bit CPU

The CPU generates 16-bit address for memory read or write operation. The address lines 1 to 8 are

connected to each memory and address line 9 is used in dual purposes. In case of a RAM selection

out of four RAMs, the line no. 9 and line no. 10 are used through a 2-to-4 decoder. The line no. 9 is

also connected to the ROM as address line along with lines 1 to 8 giving a total of 9 address lines in

the ROM, since the ROM has 512 locations. The CPU address line number 11 is used for separation

between RAM and ROM. The other 12 to 16 lines of CPU are unused and for simplicity we assume

that they carry 0s as address signals. For ROM, 10th line is unused and thus it can be assumed that this

line carries signal 0.

Memory Organization 4.59

Table Memory address map table

Chip selected Address space (in HEX) Address bus

11 10 9 8 7 6 5 4 3 2 1

RAM1 0400 � 04FF 1 0 0 x x x x x x x x

RAM2 0500 � 05FF 1 0 1 x x x x x x x x

RAM3 0600 � 06FF 1 1 0 x x x x x x x x

RAM4 0700 � 07FF 1 1 1 x x x x x x x x

ROM 0000 � 01FF 0 0 x x x x x x x x x

33. What is Blu-ray Disc (BD)?

Answer

After DVD, Blu-ray Disc (BD) (not Blue-ray) is the name of a new optical disc format jointly

developed by the Blu-ray Disc Association (BDA), a group of the world�s leading consumer electron-

ics, personal computer and media manufacturers, in the year 2006. The format was developed to

enable recording, rewriting and playback of high-definition video (HD), as well as storing large

amounts of data. The format offers more than five times the storage capacity of traditional DVDs and

can hold up to 25GB on a single-layer disc and 50GB on a dual-layer disc.

While current optical disc technologies such as DVD, DVD±R, DVD±RW, and DVD-RAM rely

on a red laser to read and write data, the new BD format uses a blue-violet laser instead, hence the

name Blu-ray. Despite the different type of lasers used, Blu-ray products can easily be made back-

wards compatible with CDs and DVDs through the use of a BD/DVD/CD compatible optical pickup

unit. The benefit of using a blue-violet laser (405nm) is that it has a shorter wavelength than a red

laser (650nm), which makes it possible to focus the laser spot with even greater precision. This allows

data to be packed more tightly and stored in less space, so it is possible to fit more data on the disc

even though it is the same size as a CD/DVD. This together with the change of numerical aperture to

0.85 is what enables Blu-ray Discs to hold 25GB/50GB. Blu-ray disc also has a higher data transfer

rate - 36 Mbps (megabits per second) - than today�s DVDs, which transfer at 10 Mbps. A Blu-ray disc

can record 25 GB of material in just over an hour and a half.

Group A

1. Choose the most appropriate option for the following questions:

(i) How many memory locations can be addressed by a 32-bit computer?

(a) 64 KB (b) 32 KB (c) 4 GB (d) 4 MB

(ii) The access time of memory is the time duration

(a) from receiving read/write signal to the completion of read/write operation

(b) from receiving an address value to the completion of read/write operation

(c) from receiving a chip enable signal to the completion of read/write operation

(d) for all memory operations starting from enable signal.

4.60 Computer Organization

(iii) The bandwidth of memory accesses is in ascending order for

(a) cache, DRAM, SDRAM and RDRAM

(b) SRAM, DRAM, SDRAM and cache

(c) DRAM, SDRAM, RDRAM and cache

(d) RDRAM, DRAM, SDRAM and cache.

(iv) The memory hierarchy system in respect of increasing speed consists of

(a) secondary, main, cache and internal

(b) internal, main, cache and secondary

(c) internal, secondary, main and cache

(d) cache, main, secondary and internal.

(v) The memory hierarchy system in respect of increasing cost consists of

(a) secondary, main, cache and internal

(b) internal, main, cache and secondary

(c) internal, secondary, main and cache

(d) cache, main, secondary and internal.

(vi) The semi-random access mechanism is followed in

(a) RAM (b) ROM (c) magnetic (d) register.

(vii) The associative access mechanism is followed in

(a) main (b) cache (c) magnetic (d) both (a) and (b).

(viii) The initial bootstrap program is generally stored in

(a) RAM (b) ROM (c) magnetic (d) cache.

(ix) If the size of a RAM is 1 GB (assuming it is byte-addressable), it means that it has number of

address lines and number of data lines as

(a) 20 and 8 (b) 20 and 16 (c) 30 and 8 (d) 10 and 32.

(x) To construct a RAM memory of capacity 512 words each of size 12 bits using RAM chips each

of size 128 ¥ 4, the number of smaller size RAM chips required is

(a) 4 (b) 8 (c) 12 (d) 16.

(xi) A computer�s memory is composed of 8 K words of 32 bits each. How many bits are required

for memory address if the smallest addressable memory unit is a word?

(a) 13 (b) 8 (c) 10 (d) 6

(xii) A computer�s memory is composed of 4 K words of 32 bits each. How many total bits are there

in the memory?

(a) 12800 (b) 1280000 (c) 1310720 (d) 131072

(xiii) A computer�s memory is composed of 8 K words of 32 bits each, and a byte is 8 bits. How

many bytes does this memory contain?

(a) 8 K (b) 32 K (c) 16 K (d) 4 K

(xiv) A computer�s memory is composed of 8 K words of 32 bits each, and the smallest addressable

memory unit is an 8-bit byte. How many bits will be required for the memory address?

(a) 12 (b) 15 (c) 13 (d) 10

(xv) The number of transistors required in SRAM, DRAM and ROM are

(a) 4, 2, 2 (b) 1, 1, 4 (c) 1, 6, 1 (d) 6, 1, 1; respectively.

(xvi) Flash memory is

(a) SRAM (b) DDR SDRAM (c) PROM (d) EEPROM.

(xvii) What characteristic of RAM memory makes it not suitable for permanent storage?

(a) Too slow (b) Unreliable (c) It is volatile (d) Too bulky

Memory Organization 4.61

(xviii) Part of the operating system is usually stored in ROM so that it can be used to boot up the

computer. ROM is used rather than RAM because

(a) ROM chips are faster than RAM

(b) ROM chips are not volatile

(c) ROM chips are cheaper than RAM chips

(d) None of the above.

(xix) A given memory chip has 12 address pins and 4 data pins. It has the following number of

locations:

(a) 24 (b) 212 (c) 248 (d) 216.

(xx) RAM is called DRAM (Dynamic RAM) when

(a) it is always moving around data

(b) it requires periodic refreshing

(c) it can do several things simultaneously

(d) none of the above.

(xxi) Which of the following is non-volatile memory?

(a) EEPROM (b) SRAM (c) DRAM (d) None of the above

(xxii) The cylinder in a disk pack is

(a) collection of all tracks in a surface

(b) logical view of same radius tracks on different surfaces of disks

(c) collection of all sectors in a track

(d) collection of all disks in the pack.

(xxiii) The amount of time required to read a block of data from a disk into memory is composed of

seek time, rotational latency, and transfer time. Rotational latency refers to

(a) the time it takes for the platter to make a full rotation

(b) the time it takes for the read-write head to move into position over the appropriate track

(c) the time it takes for the platter to rotate the correct sector under the head

(d) none of the above.

(xxiv) If a magnetic disc has 100 cylinders, each containing 10 tracks of 10 sectors, and each sector

can contain 128 bytes, what is the maximum capacity of the disk in bytes?

(a) 128,000 (b) 12,800,000 (c) 12,800 (d) 1,280,000

(xxv) According to the specifications of a particular hard disk a seek takes 3 msecs (thousandths of a

second) between adjacent tracks. If the disk has 100 cylinders, how long will it take for the head

to move from the innermost cylinder to the outermost cylinder?

(a) 30 ms (b) 300 ms (c) 3000 ms (d) 3 ms

(xxvi) The locality of reference property justifies the use of

(a) secondary memory (b) main memory

(c) cache memory (d) register.

(xxvii) The order of CPU references in memories is as

(a) secondary, main and cache (b) cache, main and secondary

(c) main, cache and secondary (d) cache, secondary and main.

(xxviii) The hit ratio for cache memories is in ascending order for

(a) associative, direct and set-associative (b) direct, associative and set-associative

(c) set-associative, direct, associative (d) set-associative, associative, direct.

4.62 Computer Organization

(xxix) Paging is

(a) non-contiguous memory allocation method

(b) implementation of virtual memory

(c) contiguous memory allocation method

(d) both (a) and (b).

(xxx) Size of virtual memory is equivalent to the size of

(a) main memory (b) secondary memory

(c) cache memory (d) totality of (a) and (b).

(xxxi) Code sharing is possible in

(a) paging (b) segmentation (c) both (a) and (b) (d) none.

(xxxii) A page fault

(a) occurs when a program accesses a main memory

(b) is an error in a specific page

(c) is an access to a page not currently residing in main memory

(d) is a reference to a page residing in another page.

(xxxiii) The user view of memory is supported by

(a) paging (b) segmentation (c) both (d) none.

(xxxiv) Associative memory is

(a) very cheap memory (b) pointer addressable memory

(c) content addressable memory (d) slow memory.

(xxxv) Cache memory is made up of

(a) CMOS RAM (b) bipolar RAM (c) magnetic disc (d) optical disc.

(xxxvi) A 20-bit address bus allows access to a memory of capacity

(a) 1 MB (b) 2 MB (c) 32 MB (d) 64 MB.

(xxxvii) The largest delay in accessing data on disk is due to

(a) seek time (b) rotation time

(c) data transfer time (d) none.

(xxxviii) Cache memory refers to

(a) cheap memory that can be plugged into the mother board to expand main memory

(b) fast memory present on the processor chip that is used to store recently accessed data

(c) a reserved portion of main memory used to save important data

(d) a special area of memory on the chip that is used to save frequently used constants

(xxxix) A major advantage of direct mapping of a cache is its simplicity. The main disadvantage

of this organization is that

(a) it does not allow simultaneous access to the intended data and its tag

(b) it is more expensive than other types of cache organizations

(c) the cache hit ratio is degraded if two or more blocks used alternately map onto the

same block frame in the cache

(d) its access time is greater than that of other cache organizations

(e) the number of blocks required for the cache increases linearly with the size of the

main memory

(xxxx) If a cache access requires one clock cycle and handling cache misses or stalls the proces-
sor for an additional five cycles, which of the following cache hit rates comes closest to
achieving an average memory access of 2 cycles?
(a) 75 (b) 80 (c) 83 (d) 86 (e) 98

Memory Organization 4.63

(xxxxi) A computer that is advertised as having a 96 K byte DRAM memory and a 2.1 gigabyte
hard drive has
(a) 96 K bytes of primary memory and 2.1 gigabytes of secondary memory
(b) 2.1 gigabytes of primary memory and 96 K bytes of secondary memory
(c) 96 bytes of cache, 2.1 gigabytes of primary memory
(d) 96 K bytes of cache, 96 K bytes of primary memory, and 2.1 gigabytes of secondary

memory
(xxxxii) A memory management technique used to improve computer performance is

(a) selecting memory chips based on their cost
(b) storing as much data as possible on disk
(c) using the cache to store data that will most likely be needed soon
(d) preventing data from being moved from the cache to primary memory.

(xxxxiii) Access time is
(a) time taken to request and complete the requested data
(b) same as the latency time
(c) both (a) and (b) are correct
(d) both (a) and (b) are incorrect.

(xxxxiv) If a page fault occurs then the contents of cache memory search the information in
(a) secondary memory (b) main memory
(c) cache memory (d) virtual memory.

(xxxxv) Partition of memory in fixed size is
(a) segmentation (b) paging
(c) both segmentation and paging (d) neither segmentation nor paging.

Group B

2. What do you mean by capacity, access time, cycle time and bandwidth of memory?

3. Why is the memory system of a computer organized as a hierarchy? What are the basic elements of

a memory hierarchy?

4. Describe different access methods of the memory system.

5. What are two major elements of the main memory? Explain each of them.

6. Compare and contrast SRAM and DRAM.

7. What will be the maximum capacity of a memory, which uses an address bus of size 8-bit?

8. Show the bus connections with a CPU to connect 4 RAM chips of size 256 ¥ 8 bit each and a ROM

chip of 512 ¥ 8 bit size. Assume the CPU has 8 bit data bus and 16 bit address bus. Clearly specify

generation of chip select signals. Give the memory address map for the system.

9. Suppose we are given RAM chips each of size 256 ¥ 4. Design a 2 K ¥ 8 RAM system using this

chip as the building block. Draw a neat logic diagram of your implementation.

10. Briefly describe the storage structure of a CMOS SRAM storage cell and explain the read and write

operations on the cell. Give the suitable diagram.

11. Draw the cell structure of DRAM and explain the read and write operations on it.

12. Briefly describe different types of RAMs.

13. Draw and describe the storage structure of a ROM storage cell and explain the read and write

operations on the cell.

14. Briefly describe different types of ROMs.

15. Explain the need of auxiliary (secondary) memory devices. How are they different from main

memory?

4.64 Computer Organization

16. What are the different types of secondary memories?

17. Give at least two differences between magnetic tape and magnetic disk.

18. Discuss in brief the internal structure of magnetic tape using diagram. Explain how read and write

operations are performed on it.

19. Draw and describe the internal structure of a disk-pack.

20. Define:

(a) Sector

(b) Track

(c) Cylinder

(d) Rotational latency

(e) Seek time

(f) Access time in magnetic disk.

21. Why the formatting of disk is necessary before working on that disk?

22. What is the transfer rate of an 8-track magnetic tape whose speed is 120 inches per second and

whose density is 1600 bits per inch?

23. A disk pack has 20 recording surfaces and has a total of 4000 cylinders. There is an average of

300 sectors per track. Each sector contains 512 bytes of data.

(a) What is the maximum number of bytes that can be stored in this pack?

(b) What is the data transfer rate in bytes per second at a rotational speed of 3600 rpm?

(c) Using a 32-bit word, suggest a suitable scheme for specifying the disk address, assuming that

there are 256 bytes per sector.

24. A disk pack has the following parameters:

(a) average time to position the magnetic head over a track is 20 ns

(b) rotational speed of 2400 rpm.

(c) number of bits per track is 20000

(d) number of bits per sector is 1500

Calculate the average time to read one sector.

25. What is CAM? What is its main characteristic? What is its main advantage? Draw and describe

hardware structure of associative memory or CAM. Also draw its one bit cell structure.

26. The cache memory is designed based on one property of programs stored memory. What is that

property? Explain. What are different varieties of this property?

27. What is cache memory? How does cache memory increase the performance of a computer? What is

hit ratio?

28. Describe the operation of cache memory. What is meant by �the cache memory has hit ratio of 0.8�?

29. Derive an expression for effective (average) access time for an n-level memory system having hit

ratios h1, h2, � hn and access times t1, t2� � tn ,where t1< t2 < �tn.

30. A three level memory system having cache access time of 10 nsec and disk access time of 40 nsec

has a cache hit ratio of 0.96 and main memory hit ratio of 0.9. What should be the main memory

access time to achieve effective access time of 10 nsec?

31. What is meant by cache mapping? What are different types of mapping? Describe different mapping

techniques with suitable example.

32. Compare different cache mapping techniques.

33. What are different replacement methods in cache memories? Explain.

34. Name different cache memory writing methods. Explain them with advantages and disadvantages.

35. Name the categories of cache misses and explain the reasons behind them.

36. Write three methods for reducing cache miss rates.

Memory Organization 4.65

37. What is virtual memory? What are the reasons for using it?

38. What do you mean by logical address space and physical address space?

39. Explain the paging and segmentation techniques used for implementing virtual memory.

40. A digital computer has a memory unit of 64 K ¥ 16 and a cache memory of 1 K words. The cache

uses direct mapping with a block size of 4 words. How many bits are there in the tag, index, block

and word fields of the address format?

41. What is the limitation of direct-mapped cache? Explain with an example how it can be improved in

set-associative cache.

42. Compare paging and segmentation methods.

43. What is page fault? What are different page replacement algorithms? Describe briefly.

44. Consider a cache (M1) and (M2) hierarchy with the following characteristics;

M1: 16 k words, 50 ns access time;

M2: 1 M words, 400 ns access time;

Assume 8 word cache blocks and a set size of 256 words with set-associative mapping.

(a) Show the mapping between M2 and M1.

(b) Calculate the effective memory-access time with a cache-hit ratio of h = 0.95.

45. Consider the design of 3-level memory hierarchy with following specification for memory hierarchy.

Memory levels Access time Capacity Cost/KB

Cache 25ns 512 KB $1.25

Main memory unknown 32 MB $0.2

Disk unit 4 ms unknown $0.0002

The design goal is to achieve effective memory access time t = 10.04 microsecond with cache-hit

ratio h1 = 0.98 and h2 = 0.9 in the main memory unit. Also the total cost of the memory hierarchy is

upper-bounded by $1500. Find out the unknown terms in the above table.

46. A system has 48 bit virtual address, 36 bit physical address and 128 MB of main memory address.

The system has 4096 bytes of pages. How many virtual and physical pages can the address support?

How many page frames of main memory are there?

47. What do you mean by page reference string? Suppose a process accesses the following addresses at

a particular time interval: 0100,0432,0101,0612,0102,0103,0104,0101,0611,0102,0103,0104,0101,

0601,0101,0102,0609,0102,0105. Assume a page size=100 bytes.

What will be the reference string? Using this reference string, calculate the page fault rate for the

following algorithms:

(a) FIFO replacement.

(b) LRU replacement.

(c) Optimal replacement.

Assume that number of frames = 3.

48. If the size of cache block is increased, discuss possible merits and demerits.

49. Which locality of reference is exploited if the size of cache block increases?

50. In order to exploit temporal locality of reference, what should be the policy of writing program?

51. How does the size of cache block affect the hit ratio?

52. If the size of MAR and MDR are 32-bit and 16-bit respectively, what is the size of main memory?

CHAPTER

5
Computer Instruction Set

5.1 INTRODUCTION

Computer architecture is defined as the study of the components and their interconnections that form

a computer system. An instruction set design for a machine is the primary architectural consideration.

The complete collection of instructions that are understood by a machine is called the instruction set

for the machine. Much of a computer system�s architecture is hidden from a high level language

programmer. In the abstract sense, the programmer should not really care about what is the underlying

architecture. The instruction set is the boundary where the computer designer and the computer

programmer can view the same machine. Any weakness of the instruction set design will drastically

affect the machine language programmer and the compiler. Hence, a well-designed, pre-planned

instruction set enables the compilers to create a compact machine language program. This chapter

discusses the various factors that influence the instruction set design.

5.2 INSTRUCTION SET DESIGN

The complete collection of instructions that are understood by a machine (processor) is called the

instruction set for the machine. As pointed out earlier, a well-designed, pre-planned instruction set

enables the compilers to create a compact machine language program. Thus, it is a very important task

for computer architects to design a good instruction set for the concerned machine.

Before finalizing the instruction set for a computer, computer architects have to consider the

following aspects.

Flexibility to the programmer A programmer wishes to have as many instructions as possible so

that the appropriate operations are carried out by the respective instructions. While designing the

instruction set, it should be noted that too many instructions in the instruction set results in a complex

control unit design. Instruction decoding requires huge circuitry and time.

5 . 2 Computer Organization

Number of addressing modes If all possible addressing modes are present in the architecture, it will

give a lot of options for programming a particular program. However, it will again require complex

control unit.

Number of general purpose registers (GPRs) If the CPU has a large number of GPRs, the execu-

tion will be faster. But, use of large number of registers increases cost of the CPU.

System performance The system performance can be enhanced, if less number of instructions is

used in a program. For short programs, instructions should be powerful. Thus, a single instruction

must be able to perform several microoperations (i.e, large length instructions are used). So, reduced

size program is desired. But, this increases the complexity in the control unit design and instruction

execution time.

Applications An instruction set for a particular computer is designed in aiming the certain applica-

tion area. For example, a scientific computer must have strong floating-point arithmetic without which

the precision would be heavily degraded. Whereas, an entertainment computer must have multimedia

operations.

5.3 INSTRUCTION FORMATS

In broad sense, the superiority of a computer is decided on the basis of its instruction set. Since, the

total number of instructions and their powerfulness has contributed to the efficiency of the computer,

these two factors are given highest priority. An efficient program is the one which is short, hence fast

execution and occupies less memory space. The size of a program depends largely on the formats of

instructions used.

A computer usually has a variety of instruction formats. It is the task of the control unit within

CPU to interpret each instruction code and provide the necessary control functions needed to process

the instruction. The most common format followed by instructions is depicted in the Fig. 5.1.

Figure 5.1 Different fields of instructions

The bits of the instruction are divided into groups called fields. The commonly used fields found in

instruction formats are:

1. Operation Code (or, simply Op-code): This field states the operation to be performed. This

field defines various processor operations, such as add, subtract, complement, etc.

2. Address: An address field designates a memory address or a processor register or an operand

value.

3. Mode: This field specifies the method to get the operand or effective address of operand. In

some computers� instruction set, the op-code itself explicitly specifies the addressing mode

used in the instruction. A computer has various addressing modes, which are presented in the

Section 5.8.

For example, in the instruction ADD R1, R0; ADD is the op-code to indicate the addition opera-

tion and R1, R0 are the address fields for operands.

Computer Instruction Set 5 . 3

In certain situations, other special fields are sometimes used. For example, a field that gives the

number of shifts in a shift-type micro-operation or, a label field is used to process unconditional

branch instruction.

Since the number of address fields is the primary concern of an instruction format, we check the

effect of including multiple address fields in an instruction in the Section 5.5.

The memory or processor registers store the operand values on which operation codes specified by

computer instructions are executed. Memory addresses are used to specify operands stored in memory.

A register address specifies an operand stored in processor register. A register address is a binary

number of k bits that defines one of 2k registers in the CPU. Thus a CPU with 32 processor registers

R0 to R31 has a register address field of 5 bits. For example, processor register R7 is specified by the

binary number 00111. The internal organization of processor registers determines the number of

address fields in the instruction.

5.4 CPU ORGANIZATION

The design of an instruction set for a computer depends on the way in which the CPU is organized.

Generally, there are three different CPU organizations with certain specific instructions:

1. Single accumulator organization.

2. General register organization.

3. Stack organization.

5.4.1 Single Accumulator Based CPU Organization

In early days of computer history, computers had accumulator based CPUs. It is a simple CPU, in

which the accumulator register is used implicitly for processing all instructions of a program and

intermediate results are stored into this register. The instruction format in this computer uses one

address field. For this the CPU is known as one address machine. For example, the instruction

arithmetic multiplication defined by an assembly language instruction uses one address field and is

written as

MULT X

where X is the address of the operand. The MULT instruction in this example performs the operation

AC ¨ AC * M[X]. AC is the accumulator register and M[X] denotes the memory word (operand)

located at location X. The organization of an accumulator-based processor is shown in Figure 5.2.

The program counter (PC) register holds address of the next instruction to be executed. The

memory address register (MAR) holds the address of the data to be accessed in memory. The stack

pointer (SP) is a special register used to hold the address of the top element of the stack. The

instruction register (IR) holds the instruction currently being executed. The status register (SR)

indicates different status flags such as zero flag (Z-flag) and carry flag (C-flag).

This type of CPU organization is first used in PDP-8 processor and is used for process control and

laboratory applications. This type of CPU organization has been totally replaced by the introduction

of the new general register based CPU.

5 . 4 Computer Organization

Figure 5.2 Accumulator-based CPU organization

Advantages

1. One of the operands is always held by the accumulator register. This results in short instruc-

tions and less memory space.

2. Instruction cycle takes less time because it saves time in instruction fetching from memory.

Disadvantages

1. When complex expressions are computed, program size increases due to the usage of many

short instructions to execute it. Thus memory size increases.

2. As the number of instructions increases for a program, the execution time increases.

5.4.2 General Register Based CPU Organization

Instead of a single accumulator register, multiple general registers are used in this type of CPU

organization. This type computer uses two or three address fields in their instruction format. Each

address field may specify a general register or a memory word. For example, an arithmetic multiplica-

tion written in an assembly language uses three address fields and is written as

MULT R1, R2, R3

The meaning of the operation is R1 ¨ R2 * R3. This instruction also can be written in the

following way, where the destination register is the same as one of the source registers.

MULT R1, R2

This means the operation R1 ¨ R1 * R2, which uses two address fields. The use of large number

of registers results in short programs with limited instructions. The organization of a general register-

based processor is shown in Figure 5.3. The organization of a general register-based IBM 360 and

PDP-11 are some of the typical examples.

The advantages of this organization:

1. Since large number of registers is used in this organization, the efficiency of the CPU in-

creases.

2. Less memory space is used to store the program since the instructions are used in more

compact way.

Computer Instruction Set 5 . 5

Figure 5.3 Typical general-register based CPU organization

The disadvantages of this organization:

1. Care should be taken to avoid unnecessary usage of registers. Thus compilers need to be more

intelligent in this aspect.

2. This organization involves more cost, since large number of registers is used.

5.4.3 Stack Based CPU Organization

Stack based computer operates instructions, based on a data structure called stack. A stack is a list of

data words with a Last-In, First-Out (LIFO) access method that is included in the CPU of most

computers. A portion of memory unit used to store operands in successive locations can be considered

as a stack in computers. The register that holds the address for the top most operand in the stack is

called a stack pointer (SP). The two operations performed on the operands stored in a stack are the

PUSH and POP. From one end only, operands are pushed or popped. The PUSH operation results in

inserting one operand at the top of stack and it decreases the stack pointer register. The POP

operation results in deleting one operand from the top of stack and it increases the stack pointer

register.

For example, Fig. 5.4 shows a stack of four data words in the memory. PUSH and POP instructions

require an address field. The PUSH instruction has the format:

PUSH <memory address>

The PUSH instruction inserts the data word at specified address to the top of the stack. The POP

instruction has the format:

POP <memory address>

The POP instruction deletes the data word at the top of the stack to the specified address. The stack

pointer is updated automatically in either case. The PUSH operation can be implemented as

SP ¨ SP � 1 ; decrement the SP by 1

SP ¨ <memory address> ; store the content of specified memory address into SP, i.e.

at top of stack

5 . 6 Computer Organization

Figure 5.5 Effects of stack operations on the stack in Fig. 5.4

Figure 5.4 A stack of words in memory

The POP operation can be implemented as

<memory address> ¨ SP ; transfer the content of SP (i.e. top most data)into specified

memory location

SP ¨ SP + 1 ; increment the SP by 1

The Fig. 5.5 shows the effects of these two operations on the stack in Fig. 5.4.

Operation-type instructions do not need an address field in stack-organized computers. This is

because the operation is performed on the two operands that are on top of the stack. For example, the

instruction

SUB

in a stack computer consists of an operation code only with no address field. This operation pops the

two top data from the stack, subtracting the data, and pushing the result into the stack at the top. The

organization of a stack-based machine is shown in Fig. 5.6.

PDP-11, Intel�s 8085 and HP 3000 are some of the examples of stack organized computers.

Computer Instruction Set 5 . 7

Advantages

1. Efficient computation of complex arithmetic expressions.

2. Execution of instructions is fast, because operand data are stored in consecutive memory

locations.

3. Since instructions do not have address field, the length of instructions is short.

Disadvantage

1. Program size lengthens.

One of the three types of organizations that have just been described has been implemented in most

contemporary computers. Though, some computers have been built with features from more than one

camp. For example, the Intel 8080 microprocessor has seven general-purpose registers, one of which is

an accumulator register. Thus, some of the characteristics of a general register organization and some of

the characteristics of an accumulator organization are followed by the processor 8080.

5.4.4 Arithmetic Expression Evaluation

The stack organization is very effective for evaluating arithmetic expressions. Expressions are usually

represented in what is known as infix notation, in which each operator is written between two

operands (e.g., A + B). With this notation, we must distinguish between (A + B) * C and A + (B * C)

by using either parentheses or some operator-precedence convention. Thus, the order of the operators

and operands in an arithmetic expression does not uniquely determine the order in which operations

are to be performed.

Polish notation (also known as prefix notation), named after the Polish mathematician Jan Lukasiewicz,

refers to the notation in which the operator is placed before its two operands (e.g., + AB). Regardless

of the complexity of an expression, no parentheses are required when using Polish notation.

Reverse Polish notation (RPN) (also known as postfix notation) refers to the analogous notation in

which the operator is placed after its two operands (e.g., AB +). Again, regardless of the complexity

of an expression, no parentheses are required when using reverse Polish notation.

Stack-organized computers are better suited to postfix (RPN) notation than traditional infix notation.

Thus the infix notation must be converted to postfix notation (RPN). The conversion from infix

Figure 5.6 Typical stack-based CPU organization

5 . 8 Computer Organization

notation to reverse Polish notation must take into consideration the operational hierarchy adopted for

infix notation. Conventionally, three levels of precedence for the usual five binary operators as:

Highest: Exponentiation (^)

Next highest: Multiplication (*) and division (/)

Lowest: Addition (+) and subtraction (�)

Consider the expression

(A � B)*[C/(D + E) + F]

To evaluate the expression we must first perform the arithmetic inside the parentheses (A � B) and

(D + E). Next we must calculate the expression inside the square brackets. The division of C / (D + E)

must be done prior to the addition of F since division has precedence over addition. The last operation

is the multiplication of the two terms between the parentheses and brackets. The expression can be

converted to reverse Polish notation, without the use of parentheses, by taking into consideration the

operation hierarchy. The converted expression is

AB � CDE + / F+*

Now we want to calculate the value of an arithmetic expression by using a stack. The procedure

consists of first converting the arithmetic expression into its equivalent reverse Polish notation. The

operands are pushed into the stack in the order in which they appear. The following microoperations

are executed with the stack when an operation is encountered: (1) the topmost operands in the stack

are used for the operation, and (2) the stack is popped and the result of the operation replaces the

lower operand. By pushing the operands into the stack continuously and performing the operations as

defined above, the expression is evaluated in the proper order and the final result remains on top of

the stack.

For illustration, consider the following arithmetic expression:

(2 + 4) * (4 + 6)

In reverse Polish notation, it is expressed as

2 4 + 4 6 + *

The stack operations are shown in Fig. 5.7 for this expression evaluation.

Figure 5.7 Stack operations to evaluate (2 + 4) * (4 + 6)

5.4.5 Subroutines

A subroutine is a program segment for carrying out repeatedly needed tasks such as searching, and

sorting. A subroutine may be written and tested separately. A subroutine can be linked with a user

program so that the latter can call the former as many times as needed. Thus the use of subroutines

Computer Instruction Set 5 . 9

can save a programmer�s time as well as the memory space needed by an application program. A

large program can be thought of as a collection of independent program modules, where each module

may be a subroutine or a set of subroutines. This is the key feature of the modern software approach

called modular programming.

Subroutine calls and returns from subroutines are usually handled by two special instructions,

CALL and RET, respectively. The CALL instruction is of the form CALL SUB, where the parameter

SUB refers to the address of the first instruction of the subroutine. When this instruction is executed,

the current contents of the PC (Program Counter) register are saved in the stack, and the PC is loaded

with <SUB> The current content of the PC provides the address of the instruction that immediately

follows the CALL instruction. This address is also called the return address because this is the point

where execution of the calling program will take place after exiting from the subroutine. The CALL

instruction is functionally equivalent to the following instruction sequence:

PUSH PC ; save the return address in the stack (SP)

JP SUB ; branch to the subroutine

The RET instruction is usually the last instruction of the subroutine. When this instruction is

executed, the return address previously saved in the stack is retrieved and loaded into the PC. The

control is then transferred to the calling program. A RET instruction is functionally equivalent to:

POP PC ; PC ¨ (SP)

Here we might have the natural question: why the return address is not saved in a CPU register

rather than the stack. This arrangement fails to work if nested subroutine calls are to be implemented.

Subroutine nesting refers to one subroutine calling another.

For example, consider the main program M and two subroutines SUB1 and SUB2 shown in Fig. 5.8

(a) The main program calls subroutine SUB1, and this subroutine in turn calls subroutine SUB2.

Parameters RM and RSUB1 refer to the return addresses of the main program M and the subroutine

SUB1 respectively. When the main program calls subroutine SUB1, the return address RM is pushed

into the stack (see Figure 5.8(b)) and the control is transferred to subroutine SUB1. Similarly, when

subroutine SUB1 calls subroutine SUB2, the return address RSUB1 is pushed into the stack (see

Figure 5.8(c)), and the control is transferred to subroutine SUB2. When subroutine SUB2 completes

its execution, the return address is retrieved from the stack and loaded into the PC. Since the return

address is RSUB1, the execution of subroutine SUB1 is resumed. Similarly, when subroutine SUB1

terminates, the return address RM (see Figure 5.8(d)) is retrieved from the stack and loaded into the

PC. The execution of the main program is then resumed.

To implement subroutine nesting, the return addresses must be retrieved exactly in the reverse

order in which they are saved. Since a stack is a LIFO data structure, its use is a natural solution to

this problem. Suppose a CPU register is used to save the return address. The return address RSUB1

will overwrite the return address RM, and control will not be transferred back to the main program at

all.

5.5 INSTRUCTION LENGTH

Length of an instruction basically depends on the number of address fields used in it.

The advantages and disadvantages of using number of addresses in an instruction are summarized

on next page:

5 .10 Computer Organization

Figure 5.8 Implementation of a 2-level subroutine nesting

l The fewer the addresses, the shorter the instruction. Long instructions with multiple addresses

usually require more complex decoding and processing circuits.

l Limiting the number of addresses also limits the range of functions each instruction can

perform.

l Fewer addresses means more primitive instructions, and longer programs are needed.

l Storage requirements of shorter instructions and longer programs tend to balance; larger pro-

grams require longer execution time.

The length of an instruction can be affected by and affects:

l Memory size

l Memory organization

l Bus structure

l CPU complexity

l CPU speed

To show how the number of addresses affects a computer program, we will evaluate the arithmetic

statement

X = (A + B) � (C + D)

using zero, one, two or three address instructions. For this, LOAD symbolic op-code is used for

transferring data to register from memory. STORE symbolic op-code is used for transferring data to

memory from register. The symbolic op-codes ADD and SUB are used for the arithmetic operations

addition and subtraction respectively. Assume that the respective operands are in memory addresses

A, B, C and D and the result must be stored in the memory at address X.

Computer Instruction Set 5. 11

Three-address Instructions The general register organized computers use three-address instruc-

tions. Each address field may specify either a processor register or a memory operand. The program to

evaluate X = (A + B) � (C + D) in assembly language is shown below, together with comments that

give explanation of each instruction.

ADD R1, A, B ; R1¨ M[A] + M[B]

ADD R2, C, D ; R2 ¨ M[C] + M[D]

SUB X, R1, R2 ; X ¨ R1 � R2

The advantage of three-address format is that it generates short programs. The disadvantage is that it

uses long instructions.

Two-address Instructions The most popular instructions in commercial computers are two-ad-

dress instructions. The general register organized computers use two-address instructions as well.

Like three-address instructions, each address field may specify either a processor register or a memory

operand. The assembly program using two-address instructions to evaluate X = (A + B) � (C + D) is

as follows:

LOAD R1, A ; R1¨ M[A]

ADD R1, B ; R1 ¨ R1 + M[B]

LOAD R2, C ; R2 ¨ M[C]

ADD R2, D ; R2 ¨ R2 + M[D]

SUB R1, R2 ; R1 ¨ R1 � R2

STORE X, R1 ; X ¨ R1

One-address Instructions The single accumulator based computers use one-address instructions.

Here, all instructions use an implied accumulator (AC) register. The program to evaluate X = (A + B)

� (C + D) using one-address instructions is as follows:

LOAD C ; AC ¨ M[C]

ADD D ; AC ¨ AC + M[D]

STORE T ; T ¨ AC

LOAD A ; AC ¨ M[A]

ADD B ; AC ¨ AC + M[B]

SUB T ; AC ¨ AC � M[T]

STORE X ; X ¨ AC

T is the temporary memory location required for storing the intermediate result.

Zero-address Instructions Zero-address instructions are used by stack-organized computers, which

do not use any address field for the operation-type instructions. The name �zero-address� is given to

this type of computer because of the absence of an address field in the computational instructions.

However, two basic instructions in stack PUSH and POP require an address field to specify the

destination or source of operand. The assembly language program using zero-address instructions is

written next. In the comment field, the symbol TOS is used, which means the top of stack.

PUSH A ; TOS ¨ A

5 .12 Computer Organization

PUSH B ; TOS ¨ B

ADD ; TOS ¨ (A + B)

PUSH C ; TOS ¨ C

PUSH D ; TOS ¨ D

ADD ; TOS ¨ (C + D)

SUB ; TOS ¨ (A + B) � (C + D)

POP X ; X ¨ TOS

5.6 DATA ORDERING AND ADDRESSING STANDARDS

There are two different schemes followed for position-

ing of data words in memory and addressing: Big-endian

assignment and Little-endian assignment. Suppose we

have 32-bit data word 642CD09A HEX to be stored in

memory from address 0 onwards. Since there are 4 bytes

in each word, the word occupies addresses 0 to 3, if the

memory is byte-addressable (i.e. successive addresses

refer to successive byte locations in the memory). In big-

endian assignment, the most significant byte is stored in

lower address and least significant byte is stored in higher

address. The little-endian assignment is used for oppo-

site ordering. That means, the least significant byte is

stored in lower address and the most significant byte is

stored in higher address in little-endian scheme. The meth-

ods are depicted in the Fig. 5.9 (assuming word length

of the machine = 32 bits). In figure, the number in each

box indicates the byte address of the data word. Thus,

the byte arrangements and memory addresses are as fol-

lows:

In big-endian (address [data]): 0 [64], 1 [2C], 2 [D0],

3 [9A].

In little-endian (address [data]): 0 [9A], 1 [D0],

2 [2C], 3 [64].

Some computers use only one method, whereas some commercial computers use both.

5.7 INSTRUCTION CYCLE

As pointed out in Chapter 1, the processing required for each instruction of a program is called

instruction cycle. The control unit�s task is to go through an instruction cycle (see Figure 5.10) that

can be divided into five major phases:

Figure 5.9 Byte and word addressing (as-

suming word length = 32 bits)

Computer Instruction Set 5. 13

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Fetch the operand(s) from memory or register.

4. Execute the whole instruction.

5. Store the output result to the memory or register.

Step 1 is basically performed using a special register in the CPU called program counter (PC) that

holds the address of the next instruction to be executed. If the current instruction is simple arithmetic/

logic or load/store type the PC is automatically incremented. Otherwise, PC is loaded with the address

dictated by the currently executing instruction. The decoding done in Step 2 determines the operation

to be performed and the addressing mode of the instruction for calculation of address of operands.

After getting the information about the addresses of operands, the CPU fetches the operands in Step 3

from memory or registers and stores them its registers. In step 4, the ALU of processor executes the

instruction on the stored operands in registers. After the execution of instruction, in phase 5 the result

is stored back in memory or register and returns to step 1 to fetch the next instruction in sequence. All

these sub-operations are controlled and synchronized by the control unit.

5.7.1 Instruction Fetch

An instruction is generally fetched from a memory location specified by a register called program

counter (PC). It keeps track of the address of instruction in memory that has to be executed next. The

instruction is executed sequentially unless an instruction changes the content of the PC. The instruc-

tion register holds the instruction until it is decoded. The instruction decoder analyzes the bit pattern

and then determines the next action to be performed by the control unit. The PC is incremented every

time, an instruction is fetched. But when a jump (branch) instruction is executed, i.e. program calls

another program known as subroutine, then the content of the PC is replaced by the address given in

jump location. In this operation, the processor is required to remember the contents of the program

counter at the time of jump enabling processor to resume the task of execution of main program when

it has finished the last instruction of the subroutine. When the processor receives the call instruction

of the subroutine, it increments the content of the PC and stores the content in a specified reserved

memory area known as stack. The address of the instruction of the main program to be executed after

completion of the subroutine is stored in the stack. Many processors reserve stack area inside the

processor itself. This type of stack is known as internal stack. Other processors have stack area

somewhere in the memory and have a pointer pointed to the stack top. The stack pointer (SP) register

holds the address of the stack-top. The stack is a sequence of memory locations defined by the

programmer. The stack is used to save the content of a register during the execution of a program.

5.7.2 Instruction Decode and Execution

The content of the PC is transferred to the special register known as address buffer or memory

address register (MAR). The content of the MAR is transferred to the memory through the address

bus. By sending certain control signals to the memory the CPU also indicates that it wants to read the

contents of the memory. The decoder circuitry in the memory is activated and the memory under-

stands what is to be done. Then the memory sends op-code to the CPU through the data bus. The

op-code first comes in a data buffer or data register. The operation code is then placed in the

5 .14 Computer Organization

Figure 5.10 Instruction cycle

instruction register (IR). The instruction decoder decodes the instruction and resolves the addressing

mode used in the instruction for knowing the addresses of operands. Then the instruction is executed

by the ALU of CPU. Finally, the content of the PC is incremented. The execution of an instruction

requires the flow of data in most of the instructions. A data is received either from the memory or

input devices. The data word flows to the processor through the data bus and is placed in accumulator

(AC) or any other general-purpose register depending upon the instruction. After the execution of an

instruction, the data is placed in a register or a memory location. After the execution of a program, the

result (data) is placed in the memory or sent to an output device. When a data word is written into the

memory, it is also held in data buffer until the write operation is completed.

Computer Instruction Set 5. 15

5.7.3 Interrupt Cycle

To process interrupts, an interrupt cycle is added to the instruction cycle (which consists of two major

cycles: fetch and execute, here), as shown in Figure 5.11. In the interrupt cycle, the CPU checks to

verify if any interrupts have occurred, indicated by the presence of an interrupt signal. If no interrupts

are pending, the CPU proceeds to the fetch cycle and fetches the next instruction of the current

program as usual. If an interrupt is pending, the CPU does the following:

1. It suspends execution of the current program being executed.

2. It saves the context of the current program being executed. This means saving the address of

the next instruction to be executed and any other data relevant to current activity of the CPU.

3. It sets PC (program counter) to start address of interrupt handler (i.e. interrupt service routine)

to service the interrupt.

4. Then process interrupt.

5. After the completion of interrupt handler, the CPU resumes execution of the interrupted

program.

Figure 5.11 Instruction cycle with interrupts

Interrupts are not always handled immediately, the CPU has authority to disable all or selected

interrupt signals and subsequently enable them. A disabled interrupt simply means that the CPU can

and will ignore that interrupt request signal.

For example, it is generally desirable to finish the processing of one interrupt before taking on

another. Thus, interrupts are often disabled while the CPU is processing an interrupt. If an interrupt

occurs during this time, it generally remains pending and will be checked by the CPU after the CPU

has enabled interrupt. A simple flowchart of interrupt cycle is shown in Figure 5.12.

5.8 ADDRESSING MODES

The datapath (specifically ALU) of the CPU executes the instructions as dictated by the op-code field

of instructions. The instructions are executed on some data stored in registers or memory. The

different ways in which the location of an operand is specified in an instruction are referred to as

addressing modes. A computer uses variety of addressing modes.

5 .16 Computer Organization

Figure 5.12 Flowchart of a simple interrupt cycle

The advantages of having different addressing modes:

Computers use different addressing modes for the following purposes:

1. It gives programming versatility or flexibility to the programmers with respect to the number

of instructions and execution time by providing various addressing modes.

2. To reduce the length of the instructions or the size of programs. Because these two parameters

are associated with the capacity of memory.

A computer generally has variety of addressing modes. Sometimes, two or more addressing modes

are combined in one mode. The popular addressing modes are discussed next.

Class I Here, no address field is used in instruction.

1. Implied (or Inherent) mode In this mode the operands are indicated implicitly by the instruction.

The accumulator register is generally used to hold the operand and after the instruction execution the

result is stored in the same register. For example,

Computer Instruction Set 5. 17

(a) RAL; Rotates the content of the accumulator left through carry.

(b) CMA; Takes complement of the content of the accumulator.

This mode is very popular with 8-bit micro-processors such as the Intel�s 8085.

2. Immediate mode In this mode the operand is mentioned explicitly in the instruction. In other

words, an immediate-mode instruction contains an operand value rather than an address of it in the

address field. To initialize register to a constant value, this mode of instructions is useful. For

example:

(a) MVI A, 06; Loads equivalent binary value of 06 to the accumulator.

(b) ADI 05; Adds the equivalent binary value of 05 to the content of AC.

3. Stack addressing mode Stack-organized computers use stack addressed instructions. In this ad-

dressing mode, all the operands for an instruction are taken from the top of the stack. The instruction

does not have any operand field. For example, the instruction

SUB

uses only one op-code (SUB) field, no address field. Both the operands are in the topmost two

positions in the stack, in consecutive locations. When the SUB instruction is executed, two operands

are popped out automatically from the stack one-by-one. After subtraction, the result is pushed onto

the stack. Since no address field is used, the instruction is short.

Class II Here, address field is register address.

4. Register (direct) mode In this mode the processor registers hold the operands. In other words, the

address field is now register field, which contains the operands required for the instruction. A particu-

lar register is selected from a register field in the instruction. Out of 2k registers in the CPU, one

register is selected using k-bit field. This mode is useful to a long program in storing the intermediate

results in the registers rather than in memory. This will result in fast execution since register accessing

is much faster than memory accessing.

For example:

ADD R1, R2; Adds contents of registers R1 and R2 and stores the result in R1.

5. Register indirect mode In this mode the in-

struction specifies an address of CPU register

that holds the address of the operand in memory.

In other words, address field is a register which

contains the memory address of operand (see

Fig. 5.13). This mode is very useful for rapid

access of the main memory location such as an

array. The advantage of using this mode is that

using small number of bits in the address field

of the instruction a memory location is accessed

rather than directly using large bits.

6. Auto-increment or auto-decrement mode

This is similar to the register indirect mode ex-

cept that after or before register�s content is used

Figure 5.13 Register indirect mode

5 .18 Computer Organization

to access memory it is incremented or decremented. It is necessary to increment or decrement the

register after every access to an array of data in memory, if the address stored in the register refers to

the array. This can be easily achieved by this mode.

Class III Here, address field is a memory address.

Before discussing different addressing modes in this category, we need to know about the effective

address of the operand.

Sometimes the instruction directly gives the address of the operand in its format. Sometimes the

instruction does not give the operand or its address explicitly. Instead of that, it specifies the informa-

tion from which the memory address of the operand can be determined. This address is referred to as

effective address.

7. Direct (or Absolute) address mode In this mode the in-

struction contains the memory address of the operand explic-

itly. Thus, the address part of the instruction is the effective

address (Fig. 5.14). Since the operand address is directly avail-

able in the instruction, there is no need for the effective

address calculation step. Hence the instruction cycle time is

reduced. Examples of direct addressing are:

(a) STA 2500H ; Stores the content of the accumulator in

the memory location 2500H.

(b) LDA 2500H ; Loads the accumulator with the content

of the memory location 2500H.

All branch-type instructions use direct addressing modes,

because the address field of these specifies the actual branch

address.

8. Indirect address mode In this mode the instruction

gives a memory address in its address field which holds

the address of the operand. Thus, the address field of

the instruction gives the address where the effective

address is stored in memory. The Fig. 5.15 gives the

idea of the mode. The following example illustrates the

indirect addressing mode:

MOV R1, (X); Content of the location whose

address is given in X is loaded into register R1.

Since in this addressing, there is the scope of chang-

ing the address during run-time of program without

changing the instruction content. This type of address-

ing modes gives flexibility in programming. It is very

useful for implementing pointers in C language. However, instruction cycle time increases as there

are two memory accesses.

Class IV Here, address field does not contain an effective address. The effective address is calcu-

lated from the following relation:

Effective address = address part of instruction + content of a CPU special register.

Figure 5.14 Direct addressing

mode

Figure 5.15 Indirect addressing mode

Computer Instruction Set 5. 19

9. Relative address mode or PC-relative address mode In this

mode the effective address is obtained by adding the content of

program counter (PC) register with address part of the instruc-

tion. The instruction specifies the memory address of operand

as the relative position of the current instruction address

(Fig. 5.16). Generally, this mode is used to specify the branch

address in the branch instruction, provided the branch address is nearer to the instruction address.

For example, the assembly language instruction

JR 20; Branch to a location relative to the value 20 (offset)

The branch location is computed by adding the offset value 20 with the current value of the PC.

This instruction (JR 20) requires 2 bytes: one for the op-code (JR) and another for its offset value 20.

Consider that the instruction is stored in memory as shown in Fig. 5.17.

Figure 5.16 Relative addressing

mode

Figure 5.17 Example of relative addressing

Since the instruction is two-byte, the content of PC is 2000 + 2 = 2002 after the instruction fetch.

The branch address is calculated by adding the content of PC with address part of instruction (offset),

which gives 2022. Thus, after the instruction execution, the program branches to 2022 address in

memory.

10. Indexed address mode In this mode the effective

address is determined by adding the content of index

register (XR) with the address part of the instruction

(Fig. 5.18). This mode is useful in accessing operand

array. The address part of the instruction gives the start-

ing address of an operand array in memory. The index

register is a special CPU register that contains an index value for the operand. The index value for

operand is the distance between the starting address and the address of the operand. Any operand in

the array can be accessed with the same instruction provided that the index register contains the

Figure 5.18 Indexed addressing mode

5 .20 Computer Organization

correct index value. For example, an operand array starts at memory address 1000 and assume that the

index register XR contains the value 0002. Now consider load instruction

LDA 1000

The effective address of the operand is calculated as:

Effective address = 1000 + content of XR

= 1002.

11. Base register address mode This mode is used

for relocation of the programs in the memory.

Relocation is a technique of moving program or data

segments from one part of memory to another part of

memory. Relocation is an important feature of multi-

programming systems. In this mode the content of the

base register (BR) is added to the address part of the instruction to obtain the effective address (Fig.

5.19). This mode is similar to the indexed addressing mode, but exception is in the way they are used.

A base register holds the starting address of a memory array of operands and the address part of the

instruction gives a displacement or offset relative to this starting address. The base register addressing

mode has the advantage over index addressing mode with respect to the size of instructions, because

size of instructions in first case is smaller than that of second case.

Numerical Example
To illustrate various addressing modes, we will see the effect of the addressing modes on the instruc-

tion defined in Fig. 5.20. Suppose, the 2-word instruction stored at addresses 2000 and 2001 is an

instruction:

Figure 5.19 Base register addressing mode

Figure 5.20 Example of addressing modes

Computer Instruction Set 5. 21

LDA 2500; Load the accumulator (AC) register with the value as indicated by 2500

The address field value 2500 may be an operand value or memory address or register address of

operand, which depends on the mode of instruction.

Table 5.1 shows the effective address of operand and content of AC register after the instruction

execution for different addressing modes, if applicable.

In case of relative addressing, the effective address of the operand is calculated as:

Effective address = Content of PC + Address part of instruction

= 2002 + 2500

= 4502

The content of PC which holds the address of the next instruction to be executed, is 2002 since the

current instruction being executed is stored in the locations 2000 and 2001. The operand address for

other addressing modes can easily be determined.

Table 5.1 Example of Addressing Modes

Addressing Mode Effective Address Content of AC

Immediate 2001 2500

Register � 2300

Register Indirect 2300 2450

Auto-decrement 2299 2400

Direct 2500 2700

Indirect 2700 2250

Relative 4502 3400

Indexed 2520 2800

5.9 INSTRUCTION SET

An instruction set of a processor is a collection that defines all the instructions. A complete instruc-

tion set is often referred to as the instruction set architecture (ISA) of the processor. An instruction

from the set alone can be used in a program that runs on the processor. An instruction set of a

processor must have the following characteristics:

1. Completeness We should be able to construct a machine language program to evaluate any

function that is computable using a reasonable amount of memory space.

2. Efficiency Frequently required functions can be performed rapidly using relatively few instruc-

tions.

3. Regularity The instruction set should contain expected op-codes and addressing modes. For

example, if there is left shift op-code, there should be right shift op-code.

4. Compatibility To reduce hardware and software design costs, the instructions may be required to

be compatible with those of existing machines.

5 .22 Computer Organization

5.9.1 Instruction Types

The instructions in an instruction set are classified into different types on the basis of the following

factors:

1. Op-code: Type of operation performed by the instruction.

2. Data: Type of data, i.e., binary, decimal, etc.

3. Operand location: Memory, register, etc.

4. Operand addressing: Method of specifying the operand location.

5. Instruction length: one byte, two byte, etc.

6. Number of address fields: 0 address, 1 address, 2 addresses, 3 addresses.

No two computers have same instruction set. But the actual operations available in the instruction

set are not very different from one computer to another. Almost every computer has some unique

instructions which attract the programmers. Computer architects give considerable attention to the

framing of the instruction set since it involves both the programmer and the computer machine.

Taking into account some important instructions of several popular computers, the instructions can be

classified into following five types:

1. Data transfer instructions, which copy information from one location to another either in the

processor�s internal register set or in the external main memory.

2. Arithmetic instructions, which perform operations on numerical data.

3. Logical instructions, which include Boolean and other non-numerical operations.

4. Program-control instructions, such as branch instructions, which change the sequence in which

programs are executed.

5. Input-output (I/O) instructions, which cause information to be transferred between the proces-

sor or its main memory and external I/O devices.

These types are not mutually exclusive. For example, the arithmetic instruction A = B + C imple-

ments the data transfer A ¨ B when C is set to zero.

Table 5.2 lists some sample instructions for each type of instructions. Since different computer

manufacturers follow different types of symbolic names to instructions in assembly language notation,

even for the same instruction; a simple mnemonics is adopted in this table for better comprehension.

Table 5.2 List of Common Instruction Types

Type Operation name Description

Data transfer MOVE Copy word or block from source to destination.

LOAD Copy word from memory to processor register.

STORE Copy word from processor register to memory.

XCHG Swap contents of source and destination.

CLEAR Transfer word of 0s to destination.

SET Transfer word of 1s to destination.

PUSH Transfer word from source to top of stack.

POP Transfer word from top of stack to destination.

Arithmetic ADD Compute sum of two operands.

ADC Compute sum of two operands and a carry bit.

SUB Compute difference of two operands.

MULT Compute product of two operands.

(Contd.)

Computer Instruction Set 5. 23

DIV Compute quotient and remainder of two operands.

MUADD Compute product of two operands and add it to a third operand.

ABS Replace operand by its absolute value.

NEG Change sign of operand.

INCR Add 1 to operand.

DECR Subtract 1 from operand.

ASH(L/R) Shift operand left (right) with sign bit.

Logical AND Perform bit-wise logical AND of operands.

OR Perform bit-wise logical OR of operands.

XOR Perform bit-wise logical exclusive-OR of operands.

NOT Complement the operand.

SHIFT (Logical) Shift operand left (right) introducing 0s at the end.

ROTATE Left (right) shift operand around closed path.

CONVERT Change data format, for example from binary to decimal.

Program control JUMP Unconditional transfer; load PC with specified address.

JUMPC Test specified conditions; if true, load PC with specified address.

JUMPSUB Place current control information including PC in known location and

then load PC with specified address.

RET Restore current program control information including PC from known

location.

INT Create a software interrupt; save current program control information

in a known location and load the address corresponding to the speci-

fied code into PC.

TEST Test operand for specified condition and affect relevant flags.

COMPARE Make logical or arithmetic comparison of two or more operands and

set relevant flags.

WAIT (HOLD) Stop program execution; test a specified condition continuously; when

the condition is satisfied, resume instruction execution.

NOP No operation is specified, but program execution continues.

EXECUTE Fetch operand from specified location and execute as instruction; note

that PC is not modified.

Input-output IN (READ) Copy of data from specified IO port to specified or implied destination.

OUT (WRITE) Copy of data from specified or implied source to IO port.

START IO Transfer instructions to I/O processor (IOP) to initiate an IO operation.

HALT IO Transfer instructions to IOP to terminate an IO operation.

TEST IO Transfer status information from IO system to specified destination.

5.9.2 CISC vs RISC

The computer architectures have been categorized into following two, based on CPU design and

instruction set:

1. CISC (Complex Instruction Set Computer)

2. RISC (Reduced Instruction Set Computer)

Earlier most computer programming was done in assembly language. The instruction set architec-

ture (ISA) was considered the most important part of computer architecture, because it determined

how difficult it was to obtain optimal performance from the system.

(Contd.)

5 .24 Computer Organization

Nowadays instruction set architecture (ISA) has become less significant for several reasons. Firstly,

most programming is now done in high-level languages, so the programmer rarely interacts with the

instruction set. Secondly, there is convergence that CISC is dropping less common instructions and

RISC is including more common instructions.

All relatively older systems (main frame, mini or micro) follow CISC technique. Today�s systems

have been designed by taking important features from both types. RISC systems are more popular

today due to their performance level as compared to CISC systems. However, due to high cost, RISC

systems are used for special applications where speed, reliability, etc are important.

CISC In early days of computer history (before 1980s), most computer families started with simple

instruction set, due to high cost of hardware. Then the hardware cost has dropped and the software

cost has gone up steadily in the past three decades. Also, the semantic gap between HLL (high-level

language) and computer architecture has widened. As the result of these, more and more functions

have been built into hardware, making the instruction set very large and complex. Due to the popular-

ity of micro-programmed control unit, large instruction set results.

Major characteristics of CISC

l A large number of instruction types used � typically from 100 to 250 instructions.

l A large number of addressing modes used- typically from 5 to 15 different modes.

l Some instructions that perform specialized tasks are used infrequently.

l Variable-length instruction formats.

l Small number of general-purpose registers (GPRs) � typically 8-24 GPRs.

l Clock per instruction (CPI) lies between 2 and 15.

l Mostly micro-programmed control units.

l Most instructions manipulate operands in memory.

Some examples of CISC processors are given below:

VAX 11/780

Number of instructions: 303

Instruction size: 2 � 8 bytes

Instruction format: not fixed

Addressing modes: 22

Number of general purpose registers: 16

Intel�s Pentium

Number of instructions: 235

Instruction size: 1 � 8 bytes

Instruction format: not fixed

Addressing modes: 11

Number of general purpose registers: 8

Demerits of CISC machines

l CPU complexity: The micro-programmed control unit design becomes complex since the

instruction set is large.

l System size and cost: Due to complexity of the CPU, a lot of hardware circuitry is used in the

system. Thus, the hardware cost of the system and the power consumption have increased.

Computer Instruction Set 5. 25

l Clock per instruction (CPI): Due to increased hardware circuitry, the propagation delays are

more and the number of clock periods needed for each instruction execution is large and hence

the overall execution time is reduced. In other words, the CPI consists of some number of

clock pulses.

l Reliability: As heavy hardware is prone to frequent failures, the reliability of the system

degrades.

l Maintainability: Since there are a large number of huge circuits, troubleshooting and detecting

a fault is tough task.

RISC We started with RISC instruction sets and gradually moved to CISC instruction sets during

the 1980s. After two decades of using CISC machines, computer scientists realized that only 25% of

instructions of CISC machines are frequently used about 95% of the time. This proves that about 75%

of hardware-supported instructions often are not used at all. Gradually VLSI (Very Large Scale

Integration) technology has been invented, which offers design of very small-size chips (processor on

a chip) with reasonable cost. Thus, we can replace micro-store, which earlier occupied about 70% of

chip area, with registers. There was increased difference between CPU and memory speeds and

complex instructions were not used by new compilers in CISC machines. These lead to the new

concept of load/store architecture called RISC.

Major characteristics of RISC

l Relatively few number of instruction types�typically less than100 instructions.

l Relatively few addressing modes�typically less than or equal to 5.

l Fixed-length, easily decoded instruction formats.

l Large number of general-purpose registers (GPRs)�typically 32-192 GPRs.

l Mostly split data cache and instructions cache.

l Clock per instruction (CPI) lies between 1 and 2.

l Mostly hardwired control units.

l Memory access limited to load and store instructions.

l All operations are executed within registers of the CPU.

RISC processor�s example includes:

Sun SPARC

Number of instructions: 52

Instruction size: 4 bytes

Instruction format: fixed

Addressing modes: 2

Number of general purpose registers: up to 520

PowerPC

Number of instructions: 206

Instruction size: 4 bytes

Instruction format: not fixed (but small differences)

Addressing modes: 2

Number of general purpose registers: 32

Demerits of RISC machines

l Lacks some sophisticated instructions found in CISC processors.

5 .26 Computer Organization

l Several RISC instructions may be needed to replace one CISC instruction, which results in

longer programs.

l Difficult to program at assembly level.

l No solution for floating point numbers.

l Performance is intimately tied to compiler optimisation.

� aim is to make procedure call/return and parameter passing highly efficient.

l More error-prone and less flexible hardwired control units.

The conclusion about these two classes of computers has been summarized as:

l RISC is good in environments requiring

� small size.

� low power consumption.

� low heat dissipation.

l On modern-day general-purpose machines, RISC and CISC have converged to an extent. For

example, Intel�s Pentium series, the VAX 9000 and Motorola 88100 are built with mixed

features taken from both the RISC and CISC camps.

l Modern RISCs (ARM, Sun SPARC, HP PA-RISC) more complex than forebears.

l Modern CISCs incorporate many features learned from RISC.

5.10 RISC PROCESSORS: CASE STUDY

5.10.1 Sun SPARC

SPARC stands for Scalable Processor ARChitecture. It is an architecture defined by Sun Microsystems.

Sun developed its own SPARC implementation but also licenses the architecture to other vendors to

produce SPARC-compatible machines. The SPARC architecture is inspired by the Berkeley RISC I

machine, and its instruction set and register organization is based closely on the Berkeley RISC model.

The instruction set of the SPARC architecture has a distinct RISC style. The architecture specifications

describe a processor in which data and memory addresses are 64-bit long. Instructions are of equal

length, and they are all 32-bit long. Both integer and floating-point instructions are provided.

There are two register files, one for integer data and one for floating-point data. Integer registers are

64-bit long. Their number is implementation dependent and can vary from 64 to 528. SPARC uses a

scheme known as register windows. At any given time, an application program sees only 32 registers,

R0 to R31. Of these, the first eight are global registers that are always accessible. The remaining 24

registers are local to the current context.

Floating-point registers are only 32-bit long because this is the length of single-precision floating-

point numbers according to the IEEE Standard described in Chapter 2. The instruction set includes

floating-point instructions for double- and quad-precision operations. Two sequentially numbered

floating-point registers are used to hold a double-precision operand and four are used for quad-

precision. There is a total of 64 registers, F0 to F63. Single precision operands can be stored in F0 to

F31, double precision operands in F0, F2, F4, . . . , F62, and quad-precision in F0, F4, F8, . . . , F60.

Instruction Set

Table 5.3 lists the instruction set for the SPARC architecture.

Computer Instruction Set 5. 27

Table 5.3 SPARC Instrcution Set

OP-CODE Description OP-CODE Description

Load/Store Instructions Arithmetic Instructions

LDSB Load signed byte ADD Add

LDSH Load signed half word ADDCC Add, set icc

LDUB Load unsigned byte ADDX Add with carry

LDUH Load unsigned half word ADDXCC Add with carry, set icc

LD Load word SUB Subtract

LDD Load double word SUBCC Subtract, set icc

STB Store byte SUBX Subtract with carry

STH Store half word SUBXCC Subtract with carry, set icc

STD Store word MULSCC Multiply step, set icc

STDD Store double word Jump/Branch Instructions

Shift Instructions BCC Branch on condition

SLL Shift left logical FBCC Branch on floating-point condition

SRL Shift right logical CBCC Branch on coprocessor condition

SRA Shift right arithmetic CALL Call procedure

Boolean Instructions JMPL Jump and link

AND AND TCC Trap on condition

ANDCC AND, set icc SAVE Advance register window

ANDN NAND RESTORE Move windows backward

ANDNCC NAND, set icc RETT Return from trap

OR OR Miscellaneous Instructions

ORCC OR, set icc SETHI Set high 22 bits

ORN NOR UNIMP Unimplemented instruction(trap)

ORNCC NOR, set icc RD Read a special register

XOR XOR WR Write a special register

XORCC XOR, set icc IFLUSH Instruction cache flush

XNOR Exclusive NOR

XNORCC Exclusive NOR, set icc

#icc: Integer condition code field of the PSR (Programme Status Register)

Instruction Format

SPARC uses a simple set of 32-bit instruction formats (Fig. 5.21)

Addressing Modes

Only simple load and store instructions reference memory. There are separate load and store instructions

for word (32-bit), double word, half word and byte. For the latter two cases, there are instructions for

loading these quantities as signed or unsigned numbers. Signed numbers are sign extended to fill out

the 32-bit destination register. Unsigned numbers are padded with 0s.

The only available addressing mode, other than register, is a displacement mode. That is, the effective

address (EA) of an operand consists of a displacement from an address contained in a register:

EA = (RS1) + S2

or EA = (RS1) + (RS2)

5 .28 Computer Organization

Figure 5.21 SPARC Instruction formats

depending on whether the second operand is immediate or a register reference. This single addressing

mode is quite versatile and can be used to deduce other addressing modes, as shown in Table 5.4.

Table 5.4 Deduced addressing modes with SPARC

Mode Algorithm SPARC Equivalent Instruction Type

Immediate operand = A S2 Register to register

Direct EA = A R0 + S2 Load, store

Register EA = R RS1, RS2 Register to register

Register indirect EA = (R) RS1 + 0 Load, store

Displacement EA = (R) + A RS1 + S2 Load, store

5.10.2 PowerPC

In the early 1990s, IBM, Motorola and Apple collaborated on the development of a RISC-style processor

family, the PowerPC for the personal computer and workstation markets. PowerPC processors produced

by both IBM and Motorola have been used in IBM and Apple computers. In general, these processors

have architectural features that have provided computing power similar to that of the Intel 32-bit

processors over comparable time periods.

The following are the principal members of the PowerPC family (Table 5.5):

∑ 601: The purpose of the 601 was to bring the PowerPC architecture to the marketplace as

quickly as possible. The 601 is a 32-bit machine.

Computer Instruction Set 5. 29

∑ 603: This was intended for low-end desktop and portable computers. It is also a 32-bit machine,

comparable in performance with the 601, but with lower cost and a more efficient implementation.

∑ 604: This was also intended for desktop computers and low-end servers. Again, this is a 32-bit

machine, but it uses much more advanced superscalar (discussed in chapter 8) design techniques

to achieve greater performance.

∑ 620: This was intended for high-end servers. This is the first member of the PowerPC family to

implement a full 64-bit architecture, including 64-bit registers and data paths.

∑ 740/750: This is also known as the G3 processor. This processor integrates two levels of cache

in the main processor chip, providing significant performance improvement over a comparable

machine with off-chip cache organization.

∑ G4: This processor increases the parallelism and internal speed of the processor chip.

Table 5.5 PowerPC Processor family summary

601 603 604 740/750 (G3) G4

First release year 1993 1994 1994 1997 1999

Clock speed (MHz) 50�120 100�300 166�350 200�366 500

L1 cache � 16 Kbyte instr. 32 Kbyte instr. 32 Kbyte instr. 32 Kbyte instr.

16 Kbyte data 32 Kbyte data 32 Kbyte data 32 Kbyte data

Off-chip L2 cache support � � � 256 Kbyte - 1Mbyte 256 Kbyte - 1 Mbyte

Number of transistors 2.8 1.6-2.6 3.6-5.1 6.35 �

(millions)

Register Set

There are 32 general-purpose registers and 32 floating-point registers. The floating-point registers are

64 bits long. The IEEE standard is used for representation of floating-point numbers. The PowerPC

architecture defines both 32-bit and 64-bit modes of operation. The size of the general-purpose

registers is determined by which of these modes is implemented by a particular processor.

Data Types

The PowerPC can deal with data types of 8 (byte), 16 (half word), 32 (word), and 64 (double word) bits

in length. Some instructions require that memory operands be aligned on a 32-bit boundary. In general,

however, alignment is not required. One interesting feature of the PowerPC is that it can use either little-

endian or big-endian style; that is, the least significant byte is stored in the lowest or highest address.

The byte, half word, word, and double word are general data types. The processor interprets the

contents of a given item of data depending on the instruction. The fixed-point processor recognizes

the following data types:

∑ Unsigned byte This can be used for logical or integer arithmetic operations. It is loaded from

memory into a general register by zero extending on the left to the full register size.

∑ Unsigned half word This is same as for unsigned byte, but for 16-bit quantities.

∑ Signed half word This is used for arithmetic operations; loaded into memory by sign extend-

ing on the left to full register size (i.e. the sign bit is replicated in all vacant positions).

∑ Unsigned word It is used for logical operations and as an address pointer.

5 .30 Computer Organization

∑ Signed word This is used for arithmetic operations.

∑ Unsigned double word This is used as an address pointer.

∑ Byte string From 0 to 128 bytes in length.

In addition, the PowerPC supports the single- and double-precision floating-point data types defined

in IEEE 754.

Instruction Set

Table 5.6 lists the instruction set for the PowerPC architecture.

Table 5.6 PowerPC instruction set

Instruction Description

Load/Store

lwzu Load word and zero extend to left; update source register

ld Load double word

lmw Load multiple word; load consecutive words into contiguous registers from the target register

through general-purpose register 31

lswx Load a string of bytes into registers beginning with target register; 4 bytes per register; wrap

around from register 31 to register 0

Integer Arithmetic

add Add contents of two registers and place in third register

subf Subtract contents of two registers and place in third register

mullw Multiply low-order 32-bit contents of two registers and place 64-bit product in third register

divd Divide 64-bit contents of two registers and place in quotient in third register

Branch Oriented

b Unconditional branch

bl Branch to target address and place effective address of instruction following the branch into the

Link Register

bc Branch conditional on Count Register and/or on bit in Condition Register

sc System call to invoke an operating system service

trap Compare two operands and invoke system trap handler if specified conditions are met

Logical and Shift

cmp Compare two operands and set four condition bits in the specified condition register field

crand Condition register AND: two bits of the Condition Register are ANDed and the result placed in

one of the two bit positions

and ANDing contents of two registers and place in third register

cntlzd Count number of consecutive 0 bits starting at bit zero in source register and place count in

destination register

rldic Rotate left double word register, AND with mask, and store in destination register

sld Shift left bits in source register and store in destination register

Floating-Point

lfs Load 32-bit floating-point number from memory, convert to 64-bit format, and store in floating-

point register

fadd Add contents of two registers and place in third register

fmadd Multiply contents of two registers, add the contents of a third, and place result in fourth register

(Contd.)

Computer Instruction Set 5. 31

Instruction Description

fcmpu Compare two floating-point operands and set condition bits

Cache Management

dcbf Data cache block flush; perform lookup in cache on specified target address and perform flushing

operation

icbi Instruction cache block invalidate

Instruction Format

All instructions in the PowerPC are 32-bit long and follow a regular format. The first 6 bits of an

instruction specify the operation to be performed (i.e., Op-code). In some cases, there is an extension to

the op-code elsewhere in the instruction that specifies a particular sub-case of an operation. In Fig. 5.22,

op-code bits are represented in leftmost field of each format.

(Figure Contd)

(Contd.)

5 .32 Computer Organization

Figure 5.22 PowerPC Instruction Formats

Addressing Modes

Like most RISC machines, the PowerPC uses a simple and relatively straightforward set of addressing

modes. As shown in Table 5.7, these modes are conveniently classified with respect to the type of

instruction.

Table 5.7 PowerPC Addressing Modes

Mode Description

Load/Store Addressing

Indirect EA = (BR) + D

Indirect indexed EA = (BR) + (IR)

Branch Addressing

Absolute EA = I

Relative EA = (PC) + I

Indirect EA = (L/CR)

Fixed-Point Computation

Register EA = GPR

Immediate Operand = I

Floating-Point Computation

Register EA = FPR

EA = effective address (X) = contents of X

BR = base register IR = index register

L/CR = link or count register GPR = general-purpose register

FPR = floating-point register D = displacement

I = immediate value PC = program counter

5.11 INTRODUCTION TO PIPELINING

Pipelining offers an economical way to realize parallelism in digital computers. Pipeline processing

has led to the tremendous improvement of system throughput in the modern digital computers. The

concept of pipeline processing in a computer is similar to assembly lines in an industrial plant. A job

passes through various stages of the assembly (pipe) line and finally rolls out. The pipeline is

Computer Instruction Set 5. 33

continuously fed at the input end with new jobs one at a time. At each stage a part of the job is done

and then it is passed on to the next stage; when it passes through the last stage, it gets completed, and

the finished product rolls out.

To get the basic idea of pipelining, let us consider a real-life example: �Suppose 100 students

appear for an examination of a subject. There are 5 questions, all are to be attempted. After the

examination, all 100 scripts are to be evaluated by examiner(s) for grading. Further, we are assuming

that each question evaluation takes 5 minutes, for simplicity.� For evaluation of all 100 scripts, we

may employ two approaches:

Approach-1 Employing one examiner for all scripts.

In this case, the total evaluation time = 100 ¥ 5 ¥ 5 = 2500 minutes.

Approach-2 Employing five examiners, assuming each examiner is specialized for a single question

evaluation.

Assumption is that ith examiner (Ei) is specialized for ith question (Qi) evaluation for all scripts.

All examiners are sitting adjacently and all 100 scripts are stacked in front of first examiner who is

specialized for first question evaluation for all scripts. After first question evaluation, he/she passes

the script to the adjacent second examiner for second question evaluation of that script. During that

time, the first examiner is free to take the second script from the stack for its first question evaluation.

Therefore, after the first 10 minutes, the first examiner takes script number 3 for its first question

evaluation; second examiner takes script number 2 for its second question and third examiner takes

script number 1 for its third question evaluation, during the next 5 minutes. This process continues.

Thus, after first 5 ¥ 5 = 25 minutes, the first script gets evaluated completely and after another 5

minutes (after first 30 minutes) the second script gets evaluated totally and so on. Thus, after first 25

minutes, a question gets evaluated in each 5 minutes. This process is shown in Figure 5.23. All 100

scripts are evaluated in this manner. Thus, total evaluation time = 25 + 99 ¥ 5 = 520 minutes. This

suggests that employing specialized examiners takes much less time compared to the one examiner

employing approach.

The approach-2 uses pipelining concept, while approach-1 uses non-pipelining.

Figure 5.23 Real-life example of pipelining

5 .34 Computer Organization

5.11.1 Principles of Pipelining

Pipelining is a technique of decomposing a sequential task into subtasks, with each subtask being

executed in a special dedicated stage (or segment) that operates concurrently with all other stages.

Each stage performs partial processing dictated by the way the task is partitioned. Result obtained

from a stage is transferred to the next stage in the pipeline. The final result is obtained after the

instruction has passed through all the stages. All stages are synchronized by a common clock. Stages

are pure combinational circuits performing arithmetic or logic operations over the data stream flowing

through the pipe. The stages are separated by high-speed interface clocked latches. The latches are

made with master-slave flip-flops, which can isolate inputs from outputs. Upon the arrival of a clock

pulse, all latches transfer data to the next stage simultaneously. Figure 5.24 shows the linear pipeline

with k stages.

Figure 5.24 Concept of pipelining

Overlapped operations of pipeline processors are represented by a two-dimensional chart called

space-time diagram as shown in Figure 5.25. Assume that the pipeline uses 4 stages.

Figure 5.25 Space-time diagram of 4-stage pipeline processor

Clock-period Ideally, we expect the execution delay in all stages should be same. But, due to the

difference in the hardware circuitry in different stages of a pipeline, execution delay cannot be same.

Shorter latency stages may finish early and long latency stages are still continuing with their specified

tasks. Since one single clock circuitry is used for the synchronization in the pipeline, we have to

define the clock period uniformly so that no overwriting or no partial execution of results produced in

any stage.

The logic circuitry in each stage Si has a time delay denoted by ti. Let tl be the time delay of each

interface latch. The clock-period of a linear pipeline is defined by

t = 1{ }k
i i=τ + tl = tm + tl where tm = maximum stage delay.

The reciprocal of the clock-period is called the frequency f = 1/t of a pipeline processor.

Computer Instruction Set 5. 35

5.11.2 Performance of Pipeline Processor

Three parameters to measure the performance of a pipeline processor are

l speedup

l efficiency

l throughput

Speedup: It is defined as

Sk =
Time to execute n tasks in k-stage non - pipeline processor

Time to execute n tasks in k - stage pipeline processor

=
n.k.

[k + (n -1)]

t

t
 where, t = clock period of the pipeline processor.

Time to execute n tasks in k-stage pipeline processor is t[k + (n � 1)] units, where k clock periods

(cycles) are needed to complete the execution of the first task and remaining (n � 1) tasks require (n � 1)

cycles. Time to execute n tasks in k-stage non-pipeline processor is n.k.t, where each task requires k

cycles because no new task can enter the pipeline until the previous task finishes.

It can be noted that the maximum speedup is k, for n >> k (i.e. n Æ •). In other words, the

maximum speedup that a linear pipeline can provide is k, where k is the number of pipeline stages.

But this maximum speedup is never fully achievable because of data dependencies between instruc-

tions, interrupts, program branches, etc.

The larger the number k of pipeline stages, the higher the potential speedup performance. How-

ever, the number of pipeline stages cannot be increased indefinitely due to practical constraints on

costs, control complexity, circuit implementation, and packaging limitations. Furthermore, the number

of tasks n also affects the speedup; the longer the better in using a pipeline.

Efficiency To define it, we need to define another term �time-space span�. It is the product (area)

of a time interval and a stage space in the space-time diagram. A given time-space span can be in

either a busy state or an idle state, but not both.

The efficiency of a linear pipeline is measured by the percentage of busy time-space spans over the

total time-space span, which equals the sum of all busy and idle time-space spans. Let n, k, t be the

number of tasks (instructions), the number of pipeline stages and the clock period of a linear pipeline,

respectively. Then the efficiency is defined by

h =
n.k. n

k.[k. + (n 1).] k + (n 1)

t

t t
=

- -

Note that h Æ 1 (i.e., 100%) as n Æ •. This means that the larger the number of tasks flowing

through the pipeline, the better is its efficiency. Additionally, it can be observed that h = Sk/k, from

the expressions of speedup and efficiency. This yields another view of the efficiency of a linear

pipeline as the ratio of its actual speedup to the ideal speedup k. For the same reason as speedup, this

ideal efficiency is not achievable.

Throughput The number of tasks that can be completed by a pipeline per unit time is called its

throughput. Mathematically, it is defined as

w =
n

k. + (n 1).

h

t t t
=

-

5 .36 Computer Organization

Note that in ideal case, w = 1/t = f, frequency, when h Æ 1 as n Æ •. This means that the maximum

throughput of a linear pipeline is equal to its frequency, which corresponds to one output result per

clock period.

Problem 5.1 Suppose the time delays of the four stages of a pipeline are t1 = 60 ns, t2 = 70 ns,

t3 = 90 ns and t4 = 80 ns respectively and the interface latch has a delay tl = 10 ns,

then

(i) What would be the maximum clock frequency of the pipeline?

(ii) What is the maximum speedup of this pipeline over its equivalent non-pipeline

counterpart?

Solution The clock-period should at least t = 90 + 10 = 100 ns.

So, the clock frequency, f = 1/t =1/100 = 10 MHz.

In case of non-pipeline, the time delay = t1 + t2 + t3 + t4 = 60 + 70 + 90 + 80 = 300

ns.

So, the speed-up = 300/100 = 3. This means that the pipeline processor is 3 times

faster than its equivalent non-pipeline processor.

5.11.3 Instruction Pipeline

We know that an instruction execution cycle may consist of many operations like, fetch instruction,

decode instruction, fetch operands, execute instruction, and write-back the result into memory. These

operations of the instruction execution cycle can be realized through the pipelining concept. Each of

these operations forms one stage of a pipeline. Each operation may require one or more clock periods

to execute, depending on the instruction type, processor and memory architectures used. The overlap-

ping of execution of the operations through the pipeline provides a speedup over the normal execu-

tion. Thus, the pipeline used for instruction cycle operations is known as instruction pipeline. A

typical instruction pipeline is shown in Figure 5.26. The instruction fetch stage (IF) fetches instruc-

tions from memory, presumably one per cycle. The instruction-decode stage (ID) resolves the instruc-

tion function like, add or subtract, etc., to be performed and identifies the operands needed. The

operand fetch stage (OF) fetches the operand values needed for execution into processor registers.

The execute stage (EX) executes the instructions on the stored operand values. The last write-back

stage (WB) is used to write results into registers or memory. All high-performance computers are now

equipped with this pipeline.

Figure 5.26 A 5-stage instruction pipeline

5.11.4 Pipeline Hazards

Pipeline hazards are situations that prevent the next instruction in the instruction stream from execut-

ing during its designated clock cycle. The instruction is said to be stalled. When an instruction is

stalled, all instructions later in the pipeline than the stalled instruction are also stalled. Instructions

earlier than the stalled one can continue. No new instructions are fetched during the stall. Thus, the

Computer Instruction Set 5. 37

pipeline cannot execute instructions at its peak rate due to such situations. There are three types of

pipeline hazards:

1. Control hazards

2. Structural hazards

3. Data hazards

Control Hazards Such hazards arise from the pipelining of branches and other instructions that

change the content of program counter (PC) register. Branch instructions can cause delay in pipelined

processors, because the processor cannot determine which instruction to fetch next until the branch

instruction has been executed completely. A typical computer program consists of four types of

instructions, as below:

Arithmetic/load type : 60%

Store type : 15%

Unconditional branch type : 5%

Conditional branch type : 20%.

The arithmetic/load and store instructions (75% of a typical program) do not alter the sequential

execution order of the program (in-order execution). This implies that pipeline-flow is linear type.

However, the branch type instructions (25%) may alter the program counter (PC) content in order to

jump to a program location other than the next instruction. In other words, the branch-type instruc-

tions may cause out-orders execution. This means that the branch types of instructions causes some

adverse effects on the pipeline performance. The effect of branching on pipeline performance de-

scribed in Figure 3.13, using a linear instruction pipeline that consists of five stages: instruction fetch

(IF), instruction decode (ID), operand fetch (OF), execution (EX) and write-back result (WB).

Possible memory conflicts between overlapped fetches are ignored and sufficiently large cache memory

is assumed.

As shown in Figure 5.27(a), a stream of instructions is executed continuously in an overlapped

fashion in the instruction pipeline if any branch-type instruction is not encountered in stream of

instructions. The performance, in this case, would be one instruction execution in each pipeline cycle

after first k cycles in a k-stage pipeline, as discussed in the speedup definition.

On contrary, if a branch instruction enters in the pipeline, the performance would be hampered.

After execution of an instruction halfway down the pipeline, a conditional branch instruction may be

resolved and then the program counter (PC) needs to be loaded with a new address to which program

should be directed, making all pre-fetched instructions (either in the cache memory or already in the

pipeline) useless. The next instruction cannot be initiated until the completion of the current branch

instruction. This causes extra time penalty (delay) in order to execute next instruction in the pipeline,

as shown in Figure 5.27(b).

Techniques to Solve the Control Hazards Pipelined computers employ various techniques to mini-

mize the performance degradation caused by instruction branching. Following are such techniques:

Prefetching One way of handling a conditional branch is to prefetch both the target instruction part

and the instructions following the branch. In other words, instruction words ahead of the one currently

being decoded in the instruction-decoding (ID) stage are fetched from the memory system before the

ID stage requests them. Figure 5.28 illustrates the pre-fetching technique. The memory here is

5 .38 Computer Organization

Figure 5.27 The effect of branching on the performance of an instruction pipeline

Figure 5.28 An instruction pipeline with prefetching

Computer Instruction Set 5. 39

assumed to be in multiple modules, all modules can be accessed concurrently. There are two prefetch

buffers (caches) of instructions used:

(a) Sequential prefetch buffer.

(b) Target prefetch buffer.

The sequential prefetch buffer holds instructions fetched during the sequential part of a program.

The target prefetch buffer holds instructions fetched from the target of a conditional branch. When a

branch is resolved as successful, the entire sequential prefetch buffer is invalidated, but the other

buffer is validated. However, when a branch is unsuccessful, the reverse is true. If the instruction

requested by the decoder is available in the sequential buffer used for sequential instructions or is

available in the target buffer if a conditional branch has just been resolved and is successful, it enters

the decoder with no delay. Otherwise, the decoder is idle until the instruction returns from memory.

Branch Prediction Another procedure that some computers use is branch prediction. A pipeline

with branch prediction uses some additional logic to guess the outcome of a conditional branch

instruction before it is executed. The prediction is based on either branch code types statically or

branch history during program execution. The probability of branch with respect to a particular

branch instruction type can be used to predict branch (Static branch strategy). Sometimes the branch

history is taken into consideration to predict whether or not the branch will be taken next time when it

occurs (Dynamic branch strategy). According to the prediction, the pipeline begins prefetching the

instruction stream from the predicted path. A correct prediction eliminates the wasted time caused by

branch penalties.

Delayed Branch A procedure employed in most

RISC processors is the delayed branch. In this pro-

cedure, the compiler detects the branch instructions

and rearranges the machine language code sequence

by inserting useful instructions that keep the pipe-

line operating without interruptions. If no useful in-

structions can be placed after a branch instruction,

no-operation (NOP) instructions can be inserted there.

This causes the computer to fetch the target instruc-

tion during the execution of the no-operation instruc-

tion, allowing a continuous flow of the pipeline.

As an example of a delayed branch, consider the

execution of a code fragment in Figure 5.29(a). The

original program is modified by moving the useful

instruction I1 into the delay slot (step) after the branch

instruction I3. By so doing, instructions I1, I4, and I5

are executed regardless of the branch outcome.

In case the branch is unsuccessful, the execution

of the modified program produces the same results

as the original program. In case the branch is suc-

cessful in the modified program, execution of the delayed instructions I1 and I5 is needed anyway.

Only one cycle was wasted in executing instruction I4, which is not needed.

Therefore, if we use a five-stage instruction pipeline, the delay slot has been reduced to one for an

Figure 5.29 Reordering of instructions for a

delayed branch

5 .40 Computer Organization

unsuccessful branch and reduced to two for a successful branch in this example.

In general, data dependence between instructions moving across the branch and the remaining

instructions being scheduled must be analyzed. Since instructions I1 and I4 are independent of the

remaining instructions (I2, I3, I5, and I6), leaving them in the delay slot will not create data hazards.

Sometimes NOP fillers can be inserted in the delay slot if no useful instructions can be found.

However, inserting NOP fillers does not save any cycles in the delayed branch operation. From the

above analysis, one sees that delayed branching is effective in short instruction pipelines with about

four stages. Delayed branching has been built into most RISC processors, including the MIPS R4000

and Motorola MC88110.

Structural Hazards Structural hazards occur when a certain resource (memory, functional unit) is

requested by more than one instruction at the same clock period.

Example Instruction ADD R4, X fetches operand X from memory in the OF stage at third clock

period. The memory doesn�t accept another access during that period. For this, (i+2)th instruction

cannot be initiated at third clock period to fetch the instruction from memory. Thus, one clock cycle is

stalled in the pipeline for all subsequent instructions. This is shown in Figure 5.30.

Figure 5.30 Structural hazard in instruction pipeline

Technique to Solve Structural Hazards Certain resources are duplicated in order to avoid structural

hazards. Functional units (ALU, FP unit) can be pipelined themselves in order to support several

instructions at a time. A classical way to avoid hazards at memory access is by providing separate

data and instruction caches.

Data Hazards Inter-instruction dependencies may arise to prevent the sequential (in-order) data

flow in the pipeline, when successive instructions overlap their fetch, decode and execution through a

pipeline processor. This situation due to inter-instruction dependencies is called data hazard (some-

times known as logic hazard).

Example Suppose we have two instructions, I1 and I2 in a program. In a pipeline the execution of I2

can start before I1 has terminated. If in a certain stage of the pipeline, I2 needs the result produced by

I1, but this result has not yet been generated, then we have a data hazard.

According to various data update patterns in instruction pipeline, there are three classes of data

hazards exist:

l Write After Read (WAR) hazards

l Read After Write (RAW) hazards

l Write After Write (WAW) hazards

Note that read-after-read is not a hazard, because nothing is changed on a read operation. To

Computer Instruction Set 5. 41

discuss these three hazards, we define the following:

Resource object: It refers to working registers, memory locations and special flags.

Data object: The contents of resource objects are called data objects. Each instruction can be consid-

ered as a mapping from a set of data objects to a set of data objects.

Domain of instruction: The domain D(I) of an instruction I is the set of resource objects whose data

objects may affect the execution of instruction I.

Range of instruction: The range R(I) of an instruction I is the set of resource objects whose data

objects may be modified by the execution of instruction I. Obviously, the domain of an instruction

holds operands to be read (retrieved) in the instruction execution and its range set will hold the

results produced.

Now, consider two instructions I and J in a program, where I occurs before J. Between instructions

I and J, there may be none or other instructions. Meanings of three hazards are as follows (see Figure

5.31):

l RAW (read after write)�J tries to read some data object before I writes it, so J incorrectly gets

the old value of the data object. Program order must be preserved to ensure that J receives the

value from I.

l WAW (write after write)�J tries to write (modify) some data object before it is written by I.

The writes end up being performed in the wrong order, leaving the value written by I rather

than the value written by J in the destination.

l WAR (write after read)�J tries to write some data object before it is read by I, so I incorrectly

gets the new value.

Listed below are conditions under which possible hazards can occur:

R(I) « D(J) π f for RAW hazard

R(I) « R(J) π f for WAW hazard

D(I) « R(J) π f for WAR hazard

These conditions are necessary conditions but not sufficient conditions. This means the hazard may

not appear even if one or more of the conditions exist. The occurrence of a data hazard depends on

the order in which the two instructions are executed. As long as the order is right, the hazard will not

occur.

Detection of Data Hazards Hazard detection method can be implemented in the instruction-fetch

(IF) stage of a pipeline processor by comparing the domain and the range of the incoming instruction

with those of the instructions being processed in the pipeline. If any of the earlier necessary condi-

tions is detected, a warning signal must be generated to prevent the hazard from taking place.

Solution of Data Hazards The system must resolve the interlock situation when a hazard is

detected. Consider the sequence of instructions {�. I, I+1, �., J, J+1,�.} in which a hazard has

been detected between the current instruction J and a previous instruction I. This hazardous situation

can be resolved in one of the two following ways:

l One simple solution is to stall the pipeline and to ignore the execution of instructions J,

J+1,�., down the pipeline until the instruction I has passed the point of resource conflict.

l A more advanced approach is to ignore only instruction J and continue the flow of instructions

J+1, J+2,�, down the pipeline. However, the potential hazards due to the suspension of J must

be continuously tested as instructions J+1, J+2,� execute prior to J. Thus, multilevels of

5 .42 Computer Organization

hazard detection may be encountered, which requires much more complex control policies to

resolve such multilevels of hazards.

1. If each register is specified by 3 bits and instruction ADD R1, R2, R3 is two-byte long; then

what is the length of op-code field?

Answer

The op-code field can have 16 � 3 � 3 � 3 = 7 bits.

Op-code 7-bit R1 3-bit R2 3-bit R3 3-bit

2. What is the maximum number of 0-address, 1-address and 2-address instructions if the

instruction size is of 32-bit and 10-bit address field?

Answer

In 0-address instructions, no address field is used. So, all 32-bit of the instruction size can be used as

the size of op-code field. Therefore, maximum number of 0-address instructions is 232.

In 1-address instructions, one address field is used whose size is given as 10-bit. So, remaining

32 � 10 i.e. 22-bit can be used as op-code field. Therefore, maximum number of 1-address instruc-

tions is 222.

In 2-address instructions, two address fields are used; collectively they occupy 20-bit. So, remain-

ing 32 � 20 i.e. 12-bit can be used as op-code field. Therefore, maximum number of 2-address

instructions is 212.

Figure 5.31 Possible data hazards in an instruction pipeline

Computer Instruction Set 5. 43

3. There are 58 processor registers, 7 addressing modes and 16K ¥ 32 main memory. State the

instruction format and size of each field if each instruction supports one register operand and

one address operand.

Answer

The processor has 58 registers, so 6-bit is used to specify each register uniquely (because 32 < 58

< 64).

No. of addressing modes is 7, so 3-bit is used in mode field in the instruction format (because 7 < 8).

The main memory size is 16K ¥ 32; so to access each word of 32-bit in memory 14-bit address is

generated.

Therefore, the op-code field requires 32 � 3 � 6 � 14 = 9-bit.

The instruction format will be as:

Op-code (9-bit) Mode (3-bit) Register addr. (6-bit) Memory addr. (14-bit)

4. The 32-bit value 40A75429 is stored to the location 1000. What is the value of the byte in

address 1002 if the system is big-endian? If little-endian?

Answer

In big-endian assignment, the most significant byte is stored in lower address and least significant

byte is stored in higher address. Therefore, the byte 54 will be stored in location 1002.

In little-endian assignment, the least significant byte is stored in lower address and the most signifi-

cant byte is stored in higher address. Therefore, the byte A7 will be stored in location 1002.

5. What are advantages of general-register based CPU organizations over stack based CPU

organizations?

Answer

There are three main advantages of general-register based CPU organizations over stack based CPU

organizations.

(a) In general-register based CPU organizations, reading a register does not affect its content,

whereas, in stack based CPU organizations, reading value from the top of the stack removes

the value from the stack.

(b) In general register-based CPU organizations, any register from register file can be chosen to

keep values while writing a program; whereas, in stack based CPU organizations, accessing

values is limited by the LIFO (last-in first-out) nature of the stack.

(c) Since, fewer memory references are made by programs written in general register-based CPU

organizations, the effective execution is faster than that in stack based CPU organizations,

where generally stack is implemented by memory locations and locations are accessed in LIFO

nature.

6. Assuming that all registers initially contain 0, what is the value of R1 after the following

instruction sequence is executed?

MOV R1, #6

MOV R2, #5

ADD R3, R1, R1

SUB R1, R3, R2

MULT R3, R1, R1

5 .44 Computer Organization

Answer

The instruction MOV R1, #6 places value 6 into register R1 and instruction MOV R2, #5 places value

5 into register R2. The instruction ADD R3, R1, R1 performs addition of values 6 in R1 and 6 in R1

and result 12 is stored in register R3. The instruction SUB R1, R3, R2 subtracts value 5 in R2 from 12

in R3 and result 7 is stored in register R1. Last instruction MULT R3, R1, R1 multiplies values 7 with

7 (content of R1) and result 49 is put into register R3. Therefore, the value of R1, after the execution

of all instructions in the sequence, is 7.

7. What value remains on the stack after the following sequence of instructions?

PUSH #3 (symbol # indicates direct value of the number)

PUSH #5

PUSH # 4

ADD

PUSH # 7

SUB

MULT

Answer

After first three push operations, the stack contains 4, 5, 3 starting from the top of the stack. Then the

ADD operation automatically pops two top most values from the stack, which are here 4 and 5, and

then added and sum value 9 is push on the top of the stack. Thus, now stack has 9 and 3. After PUSH

#7, the stack contains 7, 9, 3 starting from the top. Next instruction SUB subtracts the top value of the

stack from the next value down in the stack. So after SUB instruction execution, the value 9 � 7 i.e. 2

is push on the top of the stack. Finally, MULT instruction pops 2 and 3 from the stack and pushes

2 ¥ 3 i.e. 6 on the stack.

8. Why stack is not generally implemented using a processor�s register file?

Answer

The stack gives the illusion of having large storage space to the programmer. Due to the limited

number of registers in CPU, a system that used only register file to implement its stack would only be

able to push small amount of data onto the stack. Thus, the programmers would have to take care of

the finite size of the register implemented stack, while writing the programs, which would make

programming harder.

9. Explain why a given (Infix) arithmetic expression needs to be converted to Reverse Polish

Notation (RPN) for effective use of a stack organization.

Answer

Stack-organized computers are better suited to postfix (RPN) notation than traditional infix notation.

In infix notation, operator is placed between operands. In postfix notation, operator is placed after

operands. For example, infix notation A * B becomes AB * in postfix notation.

Once an expression is recoded in postfix notation, converting it into a stack-based program is very

easy. Starting from the left, each operand is replaced with a PUSH operation to place the operand on

the stack and operator is replaced with the appropriate instruction to perform the operation.

Computer Instruction Set 5. 45

10. Convert the given arithmetic expression to RPN Notation:

(A + B ^ D) / (E � F) + G

Answer

Conventionally, three levels of precedence for the usual five binary operators as:

Highest: Exponentiation (^)

Next highest: Multiplication (*) and division (/)

Lowest: Addition (+) and subtraction (�)

Based on the priorities of operators, the given expression can be written as

((A + (B ^ D))/(E � F)) + G

Now, the equivalent postfix (RPN) expression can be evaluated as follows:

((A + (BD ^))/(EF �)) + G

fi ((ABD ^ +)/(EF �)) + G

fi (ABD ^ + EF � /) + G

fi ABD ^ + EF � / G +

11. How stack is useful in subroutine call?

Answer

Subroutine is a self-contained sequence of instructions that can be called or invoked from any point in

a program. When a subroutine is called, a branch is made to the first executable instruction of the

subroutine. After the subroutine has been executed, a return is made to the instruction following the

point at which it was called. Consider the following code segment:

MAIN ()

{

CALL SUB1 ()

Next instruction

}

SUB1 ()

{

RETURN

}

After CALL SUB1 () has been fetched, the program counter (PC) contains the address of the �Next

instruction� immediately following CALL. This address of PC is saved on the stack, which is the

return address to main program. PC then contains address of the first executable instruction of

subroutine SUB1 () and processor continues to execute its codes. The control is returned to the main

program from the subroutine by executing RETURN, which pulls the return address (i.e. address of

Next instruction) off the stack and puts it in the PC.

5 .46 Computer Organization

Since the last item stored on the stack is the first item to be removed from it, the stack is well suited

to nested subroutines. That is, a subroutine is able to call another subroutine and this process can be

repeated many times. Eventually, the last subroutine called completes its computations and returns to the

subroutine that called it. The return address needed for this first return is the last one generated in the

nested call sequence. That is, return addresses are generated and used in last-in-first-out order. This

suggests that the return addresses associated with subroutine calls should be pushed onto a stack.

12. Suppose it takes 7 ns to read an instruction from memory, 3 ns to decode the instruction, 5 ns

to read the operands from register file, 2 ns to perform the computation of the instruction and

4 ns to write the result into the register. What is the maximum clock rate of the processor?

Answer

The total time to execute an instruction = (7 + 3 + 5 + 2 + 4) ns = 21 ns. That is, an instruction cycle

takes 21 ns.

The time to execute an instruction by processor must be greater than the clock cycle time of the

processor. Therefore, the maximum clock rate = 1/cycle time

= 1 / (21 ¥ 10�9) Hertz

= 1000/21 MHz (1 MHz = 106 Hz)

= 47.62 MHz

13. What do you mean by instruction cycle, machine cycle and T states?

Answer

Instruction cycle: The processing required for a single instruction is called instruction cycle. The

control unit�s task is to go through an instruction cycle that can be divided into five major phases:

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Fetch the operand(s) from memory or register.

4. Execute the whole instruction.

5. Store the output result to the memory or register.

Machine cycle: A machine cycle consists of necessary steps carried out to perform the memory access

operation. Each of the basic operations such as fetch or read or write operation constitutes a machine

cycle. An instruction cycle consists of several machine cycles.

T-states: One clock cycle of the system clock is referred to as T-state. A machine cycle consists of

several T-states.

14. A two-byte relative mode branch instruction is stored in memory location 1000. The branch is

made to the location 87. What is the effective address?

Answer

Since the instruction is two-byte, the content of PC is 1000 + 2 = 1002 after the instruction fetch. The

effective branch address is calculated by adding the content of PC with address part of instruction

(offset) which is 87. Thus the effective address is 1002 + 87 = 1089. Thus, after the instruction

execution, the program branches to 1089 address in memory.

15. What is load-store architecture? What are advantages and disadvantages of this architecture

over other general register based architectures?

Computer Instruction Set 5. 47

Answer

In load-store architecture, only two instructions � load and store can access the memory system. In

other general register based architectures, not only load and store, other instructions can access the

operands in memory system.

Advantages:

(a) To implement a program, small number of instructions can be used.

(b) By minimizing the set of instructions that can access the memory system makes design of

control unit simpler.

(c) By limiting the accesses to memory system increases the overall performance of the machine.

Disadvantages:

(a) As only two instructions can access memory; the length of the programs increases and thus

storing the programs requires large memory.

(b) Large and complex instructions are difficult to programming.

16. The first two bytes of a 2M ¥ 16 main memory have the following HEX values:

Byte-0 is FE

Byte-1 is 01

If these bytes hold a 16-bit 2�s complement integer, what is its actual decimal value if:

(a) memory is big-endian?

(b) memory is little-endian?

Answer

(a) For big-endian memory access, the value of integer is = FE0116 = 1111 1110 0000 00012 =

�51110

(b) For little-endian memory access, the value of integer is = 01FE16 = 0000 0001 1111 11102 =

51010

17. A digital computer has a memory unit with 24-bit per word. The instruction set consists of 150

different operations. All instructions have an operation code part (op-code) and an address

part (allowing for only one address). Each instruction is stored in one word of memory.

(a) How many bits are needed for the op-code?

(b) How many bits are left for the address part of the instruction?

(c) What is the maximum allowable size for memory?

(d) What is the largest unsigned binary number that can be accommodated in one word of

memory?

Answer

(a) Since 27 < 150 < 28, 8 bits are required for the op-code field.

(b) Since the word size is 24-bit, therefore the number of bits used in the address part of the

instruction = 24 � 8 = 16-bit

(c) Since address field size of an instruction is 16-bit, the maximum allowable size for memory is

216, or 32M.

(d) The largest unsigned number in one word of memory consists of 24 ones, therefore its value =

224 � 1.

5 .48 Computer Organization

18. What is meant by pipeline architecture? How does it improve the speed of execution of a

processor?

Answer

Pipelining is a technique of decomposing a sequential task into subtasks, with each subtask being

executed in a special dedicated stage (segment) that operates concurrently with all other stages. Each

stage performs partial processing dictated by the way the task is partitioned. Result obtained from a

stage is transferred to the next stage in the pipeline. The final result is obtained after the instruction

has passed through all the stages. All stages are synchronized by a common clock.

Several instructions are executed in different stages of the pipeline simultaneously. Thus, execu-

tions of several instructions are overlapped in the pipeline, giving the increased rate at which instruc-

tions execute.

19. Consider the execution of a program of 20000 instructions by a linear pipeline processor with

a clock rate 40 MHz. Assume that the instruction pipeline has five stages and that one

instruction is issued per clock cycle. The penalties due to branch instructions and out-of-order

executions are ignored. Calculate the speed-up of the pipeline over its equivalent non-pipeline

processor, the efficiency and throughput.

Answer

Given,

No. of instructions (tasks) n = 20000

No. of stages k = 5

Clock rate f = 40 MHz

Clock period t = 1/f = 1 / (40 ¥ 106) sec

Speed up Sp =
n k

k + (n � 1)

´

=
20000 5

5 (20000 1)

´

+ -

= 4.99

Efficiency h =
n

k + (n � 1)

=
20000

5 (20000 �1)+

= 0.99

Throughput w =
h

t

= 0.99 ¥ (40 ¥ 106) instructions per second

= 39.6 MIPS

20. Deduce that the maximum speed-up in a k-stage pipeline processor can be k. Is this maximum

speed-up always achievable? Explain.

Computer Instruction Set 5. 49

Answer

Speed-up is defined as

Sp =
Time to execute n tasks in k-stage non-pipeline processor

Time to execute n tasks in k-stage pipeline processor

Time to execute n tasks in k-stage pipeline processor is t[k + (n � 1)] units, where k clock periods

(cycles) are needed to complete the execution of the first task and remaining (n � 1) tasks require

(n � 1) cycles. Time to execute n tasks in k-stage non-pipeline processor is n.k.t, where each task

requires k cycles because no new task can enter the pipeline until the previous task finishes. The

clock period of the pipeline processor is t.

Thus Sp =
n.k. nk

[(n 1)] k + (n 1)k

t

t
=

+ - -

The maximum speedup can be deduced for n >> k, that means n Æ •.

Max Sp =
k

Lt
(k/n) +1 � (1/n)n®¥

= k

But this maximum speedup k is never fully achievable because of data dependencies between instruc-

tions, interrupts, program branches, etc.

21. How do you derive clock cycle time of a pipelined processor from its unpipelined implementa-

tion?

Answer

The cycle time of a pipelined processor is dependent on four factors: (i) the cycle time of the

unpipelined processing, (ii) the number of pipeline stages, (iii) how evenly the ALU logic is divided

among the stages, and (iv) the delay of the pipeline latches. If the logic can be divided evenly among

the pipeline stages, the clock period of the pipelined processor is given by

Cycle timepipelined =
unpipelinedCycle time

Number of pipelne stages
 + Pipeline latch delay

This is written, because each stage contains the same fraction of the original logic, plus one pipeline

latch. As the number of pipeline stages increases, the pipeline latch delay becomes a greater and

greater fraction of the cycle time, limiting the benefit of dividing a processor into a very large number

of pipeline stages.

22. Given a non-pipelined processor with 15 ns clock period. How many stages of pipelined

version of the processor are required to achieve a clock period of 4 ns? Assume that the

interface latch has delay of 0.5 ns.

Answer

We can write the clock period of a pipeline processor as:

Clock period of pipeline =
Clock period of non-pipeline

No. of pipeline stages
 + Interface latch delay

5 .50 Computer Organization

This can be written as:

No. of pipeline stages =
Clock period of non-pipeline

Clock period of pipelne � Interface latch delay

Therefore, for our problem,

No. of pipeline stages =
15

4 � 0.5

= 4.3

Since the number of stages in pipeline cannot be fraction, by rounding up gives the number of stages

as 5.

23. What is clock skewing? Describe.

Answer

Ideally, we expect the clock periods to arrive at all stages (latches) at the same time. However, due to

a problem known as clock skewing, the same clock pulse may arrive at different stages with a time

offset of D. Let tmax be the time delay of the longest logic path within a stage and tmin that of the

shortest logic path within a stage.

To avoid a race in two successive stages, we must choose maximum stage delay, tm ≥ tmax + D and

interface latch delay tl £ tmin � D. These constraints translate into the following bounds on the clock

period when clock skew takes effect:

tl + tmax + D £ t £ tm + tmin � D

In the ideal case, D = 0, tmax = tm, and tmin = tl. Thus, we have t = tm + tl, which is consistent with

the definition of clock period without the effect of clock skewing.

24. Identify all of the RAW, WAR and WAW hazards in the instruction sequence:

DIV R1, R2, R3

SUB R4, R1, R5

ASH R2, R6, R7

MULT R8, R4, R2

BEQ R9, #0, R10

OR R3, R11, R1

Also identify all of the control hazards in the sequence.

Answer

RAW hazard exists between instructions:

DIV and SUB

ASH and MULT

SUB and MULT

DIV and OR

WAR hazard exists between instructions:

DIV and ASH

DIV and OR

There is no WAW hazard.

There is only one control hazard between the BEQ and OR instructions.

Computer Instruction Set 5. 51

Group A

1. Choose the most appropriate option for the following questions:

(i) An instruction set

(a) is a complete collection of instructions understood by the CPU

(b) for a machine is different from an instruction set of another machine

(c) is common for all machines

(d) both (a) and (b).

(ii) What is the correct definition of the term �instruction set�?

(a) The range of op-codes which a CPU is programmed to recognize.

(b) The list of instructions in memory which forms the program being executed.

(c) A specific subroutine of a program, run if conditions relating to the flag register are

satisfied.

(d) The process by which a single instruction of a program is executed.

(iii) Use of short instructions in a program leads to

(a) large program (b) small program (c) fast execution (d) both (a) and (c).

(iv) Where does the control unit look in order to find the address of the next instruction to be

fetched?

(a) Memory Address Register (MAR)

(b) Instruction Register (IR)

(c) Memory Buffer Register (MBR)

(d) Accumulator (AC)

(v) Which of the following is NOT one of the three stages of the instruction execution cycle?

(a) Decode (b) Fetch (c) Flag (d) Execute

(vi) The addressing mode of an instruction is resolved by

(a) ALU (b) DMA controller (c) CU (d) program.

(vii) An one-address machine has accumulator organization based CPU, supports two addressing

modes and has 8 registers. All arithmetic and logic instructions use accumulator and one

destination register only. If the instruction length is 80 bit, what is the length of op-code field in

the instruction?

(a) 3 (b) 4 (c) 5 (d) 6.

(viii) The stack organized computers use instructions of

(a) zero-address (b) one-address (c) two-address (d) three-address.

(ix) The stack-pointer (SP) register holds the address of an element in the stack. What is the position

of that element in stack?

(a) bottom (b) any position (c) top (d) none.

(x) The length of an instruction in the instruction set depends on the number of

(a) addresses in the address field

(b) bits in op-code field

(c) bits in mode field

(d) bits in any special field used in the instruction.

(xi) Suppose we have 32-bit data word 94A203DE HEX to be stored in memory from address 0

onwards. In little-endian the word is stored in the order as (address [data]):

5 .52 Computer Organization

(a) 0 [DE], 1[03], 2[A2], 3[94]

(b) 0 [94], 1[A2], 2[03], 3[DE]

(c) 0 [A2], 1[94], 2[DE], 3[03]

(d) 0 [94], 1[A2], 2[03], 3[DE].

(xii) Suppose an instruction cycle consists of four major phases:

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Fetch the operand(s) from memory or register.

4. Execute the whole instruction.

The addressing mode of instructions is resolved in (a) step (1) (b) step (2) (c) step (3) (d)

step (4).

(xiii) Immediate operand

(a) is a variable fetched from the processor register fast

(b) is a constant and is part of an instruction

(c) is an operand, which takes no time to fetch with

(d) can be used to load the registers.

(xiv) With indirect addressing, how many memory lookups are needed to obtain the required data?

(a) Two (b) Zero (c) Three (d) One

(xv) A computer uses words of size 32-bit. The instruction

(a) must always be fetched in two cycles with one byte in each cycle

(b) must always be fetched in one cycle with 2 bytes in each cycle

(c) may or may not be of one byte length

(d) must be of 2 bytes length.

(xvi) A two-byte long assembly language instruction BR 09 (branch instruction) stored at location

1000 (all numbers are in HEX). The program counter (PC) holds the address

(a) 1002 (b) 1000 (c) 1009 (d) 100B.

(xvii) The unit which performs the task of fetching, decoding, managing the execution and then

storing results is

(a) ALU (b) CU (c) Memory unit (d) I/O processor

(xviii) An indexed addressed instruction having an address field with all 0 bits is equivalent to:

(a) register direct mode (b) register indirect mode

(c) memory indirect mode (d) memory indirect mode.

(xix) From quickest to slowest instruction execution time, order these three addressing modes:

(a) Immediate, indirect, direct (b) Indirect, immediate, direct

(c) Direct, indirect, immediate (d) Immediate, direct, indirect

(xx) The addressing mode in which the data is directly available as an operand is

(a) immediate (b) relative (c) indexed (d) direct

(xxi) Name the addressing mode in which the base address is with the displacement and the effective

address is calculated

(a) immediate (b) relative (c) indexed (d) direct

(xxii) The CPI value for a RISC processor is

(a) 1 (b) 2 (c) 3 (d) none.

(xxiii) Name the processor in which large number of complex instructions is available

(a) RISC (b) CISC (c) Hardwired (d) Micro-programmed

Computer Instruction Set 5. 53

Group B

2. What is meant by �instruction set of a machine�? What are the different parameters that determine

the design of an instruction set of a machine? Explain.

3. What are the different fields of an instruction generally used in a computer?

4. Classify the CPU organizations. Give one example for each.

5. What are 0, 1, 2 and 3-address machines? Give examples.

6. Write the assembly language procedures using 0, 1, 2 and 3 � address instructions to implement the

instruction: X = (A + B ¥ C)/(D � E), using suitable assumptions.

7. What is the importance of stack in some CPU organization?

8. What is reverse Polish notation? Convert the following expression from infix to reverse Polish:

(A ¥ B) + (C ¥ D) + E

9. What is the difference between big-endian and little-endian?

10. Why do we need various addressing modes?

11. What is instruction cycle? Describe with the help of flowchart.

12. Briefly describe following addressing modes with example:

(a) implied

(b) immediate

(c) stack

(d) register

(e) register indirect

(f) auto increment

(g) direct

(h) indirect

(i) relative

(j) base

(k) indexed.

13. What is the main difference between base and index register addressing modes?

14. What are the characteristics of a good instruction set?

15. Compare and contrast between CISC and RISC. Give two examples of each.

16. Why every computer is associated with a set of general purpose registers?

17. What is the maximum number of 0-address, 1-address, 2-address instructions if the instruction size

is of 32-bit and 10-bit address field?

18. There are 54 processor registers, 5 addressing modes and 8K ¥ 32 main memory. State the instruc-

tion format and size of each field if each instruction supports one register operand and one address

operand.

19. Why would it not be a good idea to implement a stack using a processor�s register file?

20. What value remains on the stack after the following sequence of instructions?

PUSH #6 (symbol # indicates direct value of the number)

PUSH #8

PUSH # 4

ADD

5 .54 Computer Organization

PUSH # 12

SUB

MULT

21. What are the merits and demerits of fixed-length and variable-length instruction formats?

22. Is there any possible justification for an instruction with two op-codes?

23. A relative mode branch instruction is stored in memory location 530 (decimal). The branch is made

to the location 30 (decimal). What is the effective address?

24. What are the different address modes supported by (a) PowerPC machine (b) SPARC machine?

Briefly discuss each.

25. What is pipelining? How does it improve the performance of a processor?

26. How do you define the clock period of a pipeline?

27. What are the different parameters to measure the performance of a pipeline? Explain.

28. Define speedup of a pipeline processor. Show that the maximum speedup of a k-stage pipeline is k.

Is this maximum speedup always achievable? Explain.

29. What is pipeline hazard? What are the different pipeline hazards? Briefly explain.

CHAPTER

6
Design of Control Unit

6.1 INTRODUCTION

A CPU can be considered as a collection of three major components:

l Arithmetic logic unit (ALU)

l Control unit (CU)

l Register set.

The ALU performs arithmetic and logic operations on the data values stored in registers, where as the

sequence of operations is controlled by the CU.

The function of the CU is to control system operations by routing the selected data items to the

selected processing hardware of ALU at the right time. A control unit�s responsibility is to activate

the associated processing hardware units by generating a set of signals that are synchronized with a

master clock. The inputs to the control unit are the master clock, status information from the process-

ing units and command signals from the external devices like memory, I/O system. The outputs

produced by the typical control unit are the signals that activate the processing units and responses to

an external environment (such as operation complete and operation aborted) due to exceptions (inte-

ger overflow or underflow).

A control unit performs the following responsibilities:

l Instruction interpretation

l Instruction sequencing

During the interpretation phase, the control unit reads instructions from the memory (using the PC

register as a pointer). It then resolves the instruction type and addressing mode, gets the necessary

operands and routes them to the appropriate functional units of the execution unit. Required signals

are then issued to the different units of ALU to perform the desired operation and the results are

routed to the specific destination. Thus, this phase is done in �instruction decoding� step of the

instruction cycle.

During the sequencing phase, the control unit finds the address of the next instruction to be executed

and loads it into the PC. Thus, this phase is done in �instruction fetch� step of the instruction cycle.

In this chapter we will discuss basic operational concept of the CU and design techniques of it.

6.2 Computer Organization

6.2 PRIMARY CONCEPTS

The preliminary concepts forming the basis for control unit design are the register transfer micro-

operations and their analytical descriptions. In Section 3.4, we have discussed the register transfer in

details. There we saw that register transfer occurs under some predetermined control condition(s),

which is (are) generated by the control unit. Here we take another example for further illustration.

Example 6.1 If t = 0 and x = 1 then A ¨ B

else A ¨ D

where A, B and D are 4-bit registers.

Here, depending on the x and t values,

4-bit content of B or D register is copied

to A register.

Such a selective register transfer micro-

operation can be expressed as follows:

C: A ¨ B

 C¢: A ¨ D [C¢ indi-

cates complement of C].

Where C = t¢ Ÿ x and C¢ = (t¢ Ÿ
x)¢ = t ⁄ x¢.
A hardware implementation for this trans-

fer is shown in Fig. 6.1.

The B register is selected by the MUX if condition C = 1; otherwise register D is

selected as source register.

6.3 DESIGN METHODS

Control units are designed in two different ways:

l Hardwired approach

l Microprogramming approach

When the control signals are generated using conventional sequential logic design techniques, the

control unit is said to be hardwired. The sequential logic circuit generates specific sequences of

control signals in response to externally supplied instructions. Logic gates, flip flops, decoders and

other digital circuits are used to implement hardwired control organization. As name suggests, if the

design has to be changed or modified, a hardwired control unit requires changes in the wiring among

the various components.

In the microprogrammed approach, all control functions that can be simultaneously activated are

grouped to form control words stored in a separate ROM memory called the control memory. From

the control memory, the control words are fetched one at a time and the individual control fields are

routed to various functional units to activate their appropriate circuits. The desired task is performed

by activating these circuits sequentially.

Figure 6.2 depicts the general structures of hardwired and microprogrammed control units.

Figure 6.1 Hardware implementation of

�if t = 0 and x = 1 then A ¨
B else A ¨ D�

Design of Control Unit 6.3

Comparison Between Two Methods The microprogramming approach is more expensive than

hardwired approach. In microprogramming approach, a control ROM memory is needed.

The main advantage of microprogramming is it provides a well-structured control organization.

Control signals are systematically transformed into formatted words (microinstructions). With micro-

programming, many additions and changes are made by simply changing the microprogram in the

control memory, as the control signals are embedded in a kind of two-level software called firmware.

A small change in the hardwired approach may lead to redesigning the entire system.

Now-a-days microprogramming is accepted as a standard tool to design the control unit of a

computer. For example, processors such as IBM 370, PDP-11 and Intel 80¥86 family have a

microprogrammed control units. However, some olden day computers like Zilog�s 16-bit micropro-

cessor Z8000 still use a hardwired control unit.

6.3.1 Hardwired Control Design

The hardwired control unit design includes the following summarized steps:

1. State the task to be performed.

2. Suggest a trial processing section.

3. Devise a register-transfer description of the algorithm based on the processing section outlined

in the step 2.

4. Describe major characteristics of the hardware components to be used in the processing

section.

5. Establish the design of the processing section by providing necessary control signals.

6. Provide a block diagram of the controller section.

7. Generate the state diagram of the controller section with different control states.

8. Specify the characteristics of the hardware components to be used in the controller section.

9. Give the complete design of the controller and draw a logic diagram of the final circuit.

Example 6.2 Multiplier Control Unit Let us take one example to illustrate the design proce-

dure.

Step 1 (Statement of task) Implement a Booth�s multiplier to multiply two signed

4-bit numbers.

Figure 6.2 General structures of two approaches of control unit design

6.4 Computer Organization

We know that Booth�s procedure inspects a pair of multiplier bits (refer Section

2.7.3) and performs one of the following actions:

Multiplier bits inspected Action

Q[i] Q[i-1] (in ith position)

0 0 None

0 1 Add M

1 0 Subtract M

1 1 None

Step 2 To design Booth�s multiplication method, the processing section is pro-

posed in the Fig. 6.3. As mentioned in the Section 2.7.3, the 4-bit register M will

hold the multiplicand. The mul-

tiplier Q register is 5-bit wide.

Initially, the high-order 4-bit of

this register will hold the 4-bit

multiplier. The least-significant

bit of this register is initialized

with the fictitious 0. The 4-bit

adder/subtractor unit is used to

perform the operations A + M

or A � M. The result produced

by this hardware unit is always

stored to the 4-bit accumulator

A. Here, the accumulated partial

product stored in (AQ) register

pair is shifted right. The L register is used to keep track of the iteration count. In the

example case, this register is initialized with decimal 4 and thus L is 3-bit in length

and decremented by 1 after the completion of each iteration. Thus, the algorithm

terminates when L reaches decimal 0. When L equals to decimal 0 (termination of

algorithm), the high- and low-order 4 bits of the final product are found in the

registers A and Q, respectively. The 4-bit data buses - Inbus and Outbus, are used to

transfer data into and out of the processing section respectively.

Step 3 For 4 ¥ 4 Booth�s multiplication algorithm, a register transfer description is

devised next. Q [0: �1] is used to indicate the low-order 2 bits of the Q register

(Initially Q[0] indicates the lsb of Q register and Q[�1] indicates a fictitious 0).

Similarly, Q[3:0] indicates the high-order 4 bits of the Q register. The last step, Go

to HALT, introduces an infinite loop after the algorithm is completed.

Registers: M[4], A[4], Q[5], L[3];

Buses: Inbus[4], Outbus[4];

START A ¨ 0, M ¨ Inbus, L¨ 4

Q[3:0] ¨ Inbus, Q[�1] ¨ 0;

LOOP If Q[0:�1] = 01 then go to ADD

If Q[0:�1] = 10 then go to SUB

Figure 6.3 Processing section for 4 ¥ 4 Booth�s

multiplication

Design of Control Unit 6.5

Go to RSHIFT;

ADD A ¨ A + M;

Go to RSHIFT;

SUB A ¨ A � M;

RSHIFT ASR (AQ), L ¨ L�1;

If L π 0 then go to LOOP

Outbus ¨ A;

Outbus ¨ Q[3:0];

HALT Go to HALT;

Step 4 The processing section contains three main elements:

l 4-bit adder/subtarctor.

l General-purpose registers.

l Tri-state buffers.

The operational characteristics of these three elements are provided in Fig. 6.4. By

introducing the proper values to control inputs C, L, R and D, four operations (clear,

parallel load, right shift and decrement) can be performed. A clock circuit synchro-

nizes all these operations. The 4-bit adder/subtractor can be implemented using a

Figure 6.4 Different major components in processing section

6.6 Computer Organization

4-bit parallel adder chip and four XOR gates (which is implemented in Section

3.5.4). To build a general-purpose register, standard flip-flops and gates can be used.

The tri-sate buffers are used to control the data transfer to the outbus.

Step 5 There are 10 control signals required: C0, C1, C2, C3, C4, C5, C6, C7, C8, C9

and their tasks are provided next. The micro-operations A ¨ 0, M ¨ Inbus, L ¨ 4

will be executed when C0, C1, C2 are held high. Similarly, other micro-operations are

performed by activating proper signals. Though, the signals� tasks are self-explana-

tory. A detail logic diagram of the processing section along with various control-

signal points is shown in Fig. 6.5. In the diagram, a total of 8 tri-state buffers are

needed, out of which a set of 4 buffers are controlled by C8 and another set of 4

buffers are controlled by C9. Though two buffers are shown in Fig. 6.5, one is

controlled by C8 and other is controlled by C9.

Figure 6.5 4 ¥ 4 Booth�s multiplier processing section

C0: A ¨ 0 C5: A ¨ F

C1: M ¨ Inbus C6: ASR (AQ)

C2: L ¨ 4 C7: L ¨ L � 1

Design of Control Unit 6.7

C3: Q[3:0] ¨ Inbus C8: Outbus ¨ A

Q[�1] ¨ 0 C9: Outbus ¨ Q[3:0]

C4: F ¨ l + r

C¢4: F ¨ l � r

Step 6 The processing section

intermediately generates three out-

puts Q[0], Q[�1] and Z. When the

content of the L register becomes

0, then Z register is set to 1. These

outputs are status outputs and are

used as inputs to the controller to

allow the controller to decide the

next step of the algorithm. With

this information a block diagram

for the controller section can be

generated, as shown in the

Fig. 6.6.

Step 7 The controller has 5 inputs and 10 control outputs. The clock input is used

to synchronize the controller�s activities. The Reset input is asynchronous input used

to reset the controller so that a new computation can start. The controller must

initiate a set of micro-operations in a specified sequence controlled by the clock

input. Thus, it is recognized as a sequential logic circuit. The state diagram for the

Booth�s multiplier controller is shown in the Fig. 6.7.

Initially, the controller is in the state T0. At this time the control signals C0, C1 and

C2 are generated at high state. Thus, the operations A ¨ 0, M ¨ Inbus and L ¨ 4

are performed. The controller then moves to the state T1 in the next clock cycle to

perform the operation Q[3:0] ¨ Inbus and Q[�1] ¨ 0. The controller moves to the

state T9 only when a computation is completed and the controller stays in that state

infinitely until a Reset input forces the controller to switch to the state T0 and a new

computation step starts.

The states are generated in the state diagram according to the following rules:

l If the two or more micro-operations are independent of each other and can be

completed within one clock cycle, they are grouped into one state. For ex-

ample, micro-operations A ¨ 0, M ¨ Inbus and L ¨ 4 are independent to

each other. That is why they are executed in one clock period. If these micro-

operations cannot be performed within the selected T0 clock period, then either

clock period duration needs to be increased or the micro-operations have to be

divided into a sequence of micro-operations.

l Generally a new state is introduced for conditional testing. For example, the

conditional testing of the bit pair Q[0] Q[�1] introduces the new state T2 in

Fig. 6.7.

Figure 6.6 Block diagram of the Booth�s multi-

plier controller

6.8 Computer Organization

Control Operation Signals to be

State performed activated

T0 A ¨ 0, M ¨ Inbus C0, C1, C2

L ¨ 4

T1 Q[3:0] ¨ Inbus C3

Q[–1] ¨ 0

T2 None None

T3 A ¨ A + M C4, C5

T4 A ¨ A – M C5

T5 ASR (AQ) C6, C7

L ¨ L – 1

T6 None None

T7 Outbus ¨ A C8

T8 Outbus ¨ Q[3:0] C9

T9 None None

Figure 6.7 Controller�s state diagram and description

There are 10 states in the controller state diagram. Ten non-overlapping timing

signals (T0 to T9) must be generated for the controller to perform the Booth�s

algorithm. But, only one will be high for a clock pulse.

Step 8 Since minimum 10 clock cycles (periods) are needed for 10 states in the

controller, a mod-16 counter and a 4-to-16 decoder are used to generate the clock

periods and to select one of the control signals at the appropriate state respectively.

The characteristic of the mod-16 counter is discussed in the Fig. 6.8.

Step 9 The controller and its logic diagram are shown in the Fig. 6.9. The main

component of this design is the sequence controller (SC) hardware, which sequences

the controller as indicated in the state diagram in Fig. 6.7. The truth table of SC is

derived from the controller�s state diagram and is shown in Table 6.1.

Design of Control Unit 6.9

Figure 6.8 Characteristics of the counter used in the controller design

Table 6.1 Truth Table of Sequence Controller

Z Q[0] Q[�1] T2 T3 T6 T9 Load External data

(L) d3 d2 d1 d0

x 0 0 1 x x x 1 0 1 0 1

x 1 1 1 x x x 1 0 1 0 1

x 1 0 1 x x x 1 0 1 0 0

x x x x 1 x x 1 0 1 0 1

0 x x x x 1 x 1 0 0 1 0

x x x x x x 1 1 1 0 0 1

For example, consider the logic involved in deriving the first entry of the SC truth

table. Observe that the mod-16 counter is loaded with the specified external data if

the counter control inputs C and L are 0 and 1 respectively. From the controller�s

state diagram, it can be observed that if the present control state is T2 (counter output

= 0010) and if the bit pair inspected is 00 (i.e., Q[0] Q[�1] = 00) then the next state

will be T5. When these input conditions occur, the counter must be loaded with

external data value 0101 (When counter output = 0101, then T5 =1). Therefore, the

SC generates load (L) = 1 and d3 d2 d1 d0 = 0101.

Using the same reasoning, the last entry of the SC truth table is obtained. From the

controller�s state diagram, it can be observed that if the present state is T9, the next

control state will be same T9 (it stays in the infinite loop). The SC must generate the

outputs load (L) =1 and d3 d2 d1 d0 = 1001 to obtain the desired state sequence.

Similarly, other entries of the SC truth table are derived.

The counter will automatically count up in response to the clock pulse (because the

enable input E is fixed with 1), when the counter load control input L = 0. In other

words, the sequential execution flow will be there when load input (L) = 0. Such

normal sequencing activities are desirable in the following situations:

l Present state is: T0, T1, T4, T5, T7, or T8.

l Present state is: T2 and Q[0] Q[�1] = 01.

l Present state is: T6 and Z = 1.

These results suggest that the SC should not affect the counter load control input L.

Hence these possibilities are excluded from the SC truth table. The SC must exercise con-

trol only when there is a need for the counter to deviate from its normal counting sequence.

6.10 Computer Organization

CPU Hardwired Control Unit The general CPU hardwired control unit is depicted in Fig. 6.10.

The inputs to the control unit are content of instruction register (IR), the clock signal, the status (flag)

and control signals. Consider, the instruction register (IR). The control unit will perform different

functions for different instructions. There must be a unique logic input for each op-code to simplify

the control unit logic. In order to perform this function, a decoder is used which takes an encoded

input and produces a single output. To synchronize all micro-operations, a clock unit is used which

issues a repetitive sequence of pulses. The clock cycle time must be long enough to allow the

propagation of signals along data paths and through processing units. The control unit generates

different control signals at different time units within a single instruction cycle. For this reason, a

counter is used as input to the control unit to generate different timing states T1, T2, T3 and so on for

different control signals. At the end of the instruction cycle, the control unit must reinitialize the

counter at T1 using special Reset signal.

6.3.2 Microprogrammed Control Unit

Microprogramming is a modern concept used for designing a control unit. It can be used for design-

ing control logic for any digital system. As stated earlier, a microprogrammed control unit�s control

words are held in a separate ROM memory called the control memory (CM). Each control word

contains signals to activate one or more micro-operations. When these words are retrieved in a

sequence, a set of micro-operations are activated that will complete the desired task.

Figure 6.9 Logic diagram of the Booth�s multiplier controller

Design of Control Unit 6.11

Like conventional program, retrieval and interpretation of the control words are done. The instruc-

tions of a CPU are stored in the main memory. They are fetched and executed in a sequence. The

CPU can perform different functions simply by changing the instructions stored in the main memory.

Similarly, the control unit can execute a different control operation by changing the contents of the

CM. Hence, the microprogrammed approach offers greater flexibility than its hardwired counterpart,

since this approach is based on the programming concept giving an easy way for altering the contents

of the CM.

Usually, all microinstructions have three important fields:

l Control field

l Next-address field

l Condition for branching.

A control memory in addition to the conventional main memory is used in the microprogramming

approach. Thus, it is desired to give more emphasis on minimizing the length of the microinstruction.

The length of the microinstruction decides the size of the control memory, as well as the cost involved

with this approach. The following factors are directly involved with the length of a microinstruction:

l How many micro-operations can be activated simultaneously (the degree of parallelism).

l The control field organization.

l The method by which the address of the next microinstruction is specified.

Several micro-operations can be executed simultaneously. A single microinstruction with a common

op-code can be specified for all micro-operations executed in parallel. This allows short microprograms

to be written. The length of microinstruction increases, whenever there is a need for parallelism.

Similarly, short microinstructions have limited capability in expressing parallelism. Since massive

parallelism is not possible using short microinstructions, the overall length of a microprogram written

using these instructions will increase.

There are various ways to organize control information. A simple way to organize the control field

would be to have one bit for each control line that controls the processing unit, allowing full parallelism,

Figure 6.10 Block diagram of CPU hardwired control unit

6.12 Computer Organization

and there is no need for decoding the control field. However, this method cannot use the control

memory efficiently when it is impossible to invoke all control operations simultaneously.

 Consider the example shown in Fig. 6.11. Assume there are four registers A, B, C and D whose

contents are transferred to the destination register R when the appropriate control line is activated:

C0: R ¨ A

C1: R ¨ B

C2: R ¨ C

C3: R ¨ D

Since there is only one destination register R, it is not possible to allow more than one transfer at

any given time. If one bit is allocated for each control in the control field, the result will appear as

shown next:

This method of organizing control fields is known as unencoded format.

Figure 6.11 A register can be loaded from four independent sources

In the previous format, there are only five valid binary pat-

terns. However, five distinct binary patterns can be represented

by using only 3 bits according to the basic switching theory.

Such an arrangement is illustrated in Fig. 6.12.

The control information is encoded into a 3-bit field, and a

decoder is needed to get the actual control information, in Fig.

6.12. The relationship between the encoded and the actual con-

trol information is specified as follows:

E2 E1 E0 Action

0 0 0 No operation (NOP)

0 0 1 R ¨ A

0 1 0 R ¨ B

0 1 1 R ¨ C

l 0 0 R ¨ D

Figure 6.12 Encoded control

arrangement

Design of Control Unit 6.13

This way of organizing the control field is known as encoded format method, which specifies to a

short control field and short microinstructions. One extra hardware element, namely decoder is needed

for such a reduction. Therefore, a compromise must be made.

Fifteen control lines can be specified in a fully unencoded form as shown next:

The same information can be specified in the fully encoded form as shown next:

In the first and second cases, the sizes of the control field are 16 and 4 bits, respectively. However,

the second approach needs a 4-to-16 decoder to generate the actual control signals. Thus, the control

information is given by a partial encoding, as a measure of compromise and is shown next:

The control signals are partitioned into disjoint groups of control fields, so two signals of different

groups can be enabled in parallel. For the above example, the control signals are partitioned into two

groups as:

Group 1: C1 C2 C3 C4 C5 C6 C7.

Group 2: C8 C9 C10 C11C12 C13 C14 C15.

With the above grouping, C8 can be activated simultaneously with C1 or C2 but not C1 and C2.

Using one 3-to-8 and one 4-to-16 decoders, the actual control signals are generated. In the last case,

the control field requires 7 bits E0 to E6. This technique is mixed one which lies between the unen-

coded and fully encoded approaches.

Horizontal and Vertical Microprogramming Based on the length of microinstructions, the

microprogramming method is either horizontal or vertical.

Having an individual bit for each control signal in the microinstruction format is known as a

horizontal microinstruction, as shown in Fig. 6.13. The unencoded method, discussed above, is

6.14 Computer Organization

usually followed in horizontal organization. Each bit in microinstruction activates one control signal.

Several control signals can be simultaneously generated by a single microinstruction. The length of

the microinstruction is large. Horizontal microinstructions have the following general attributes:

l Long formats.

l Ability to express a high degree of parallelism.

l Very little encoding of the control information.

In the IBM 360/model 50, the microinstructions used in control unit follow horizontal format.

In a vertical microinstruction (Fig. 6.14), a single

field can produce an encoded sequence. The encoded

technique is followed in this organization. The verti-

cal microprogram technique takes more time for gen-

erating the control signals due to the decoding time

and also more microinstructions are needed. But the

overall cost is less since the microinstructions are

small in size. The horizontal microprogram releases faster control signals but the control memory size

is huge due to increased word length. Thus, the vertical microinstructions are characterized by:

l Short formats.

l Limited ability to express parallel microoperations.

l Considerable encoding of the control information.

In the IBM 370/model 145, the microinstructions used in control unit follow vertical format.

Structure of Microprogrammed Control Unit We now describe the design of a typical

microprogrammed control unit. The architecture of a typical modern microprogrammed control unit is

shown in Fig. 6.15. This architecture was proposed by Maurice Wilkes in 1953.

The various components used in Fig. 6.15 are summarized next.

Control Memory Buffer Register (CMBR) The function of CMBR is same as the MBR (memory

buffer register) of the main memory. It is basically a latch and acts as a buffer for the microinstruc-

tions retrieved from the CM. Typically, each microinstruction has three fields as:

Condition select Branch address Control functions

The condition select field selects the external condition to be tested. The output of the MUX will be 1,

if the selected condition is true. The MPC will be loaded with the address specified in the branch

address field of the microinstruction, because the output of the MUX is connected to the load input of

the microprogram counter (MPC). However, the MPC will point to the next microinstruction to be

executed, if the selected external condition is false. Thus, this arrangement allows conditional branch-

ing. The control function field of the microinstruction may hold the control information in an encoded

form which thus may require decoders.

Figure 6.13 Horizontal microinstruction

Figure 6.14 Vertical microinstruction

Design of Control Unit 6.15

Microprogram Counter (MPC) The task of MPC is same as the PC (program counter) used in the

CPU. The address of the next microinstruction to be executed is held by the MPC. Initially, it is

loaded from an external source to point to the starting address of the microprogram to be executed.

From then on, the MPC is incremented after each microinstruction fetch and the instruction fetched is

transferred to the CMBR. However, the MPC will be loaded with the contents of the branch address

field of the microinstruction that is held in the CMBR, when a branch instruction is encountered.

External Condition Select MUX Based on the contents of the condition select field of the micro-

instruction, this MUX selects one of the external conditions. Therefore, the condition to be selected

must be specified in an encoded form. Any encoding leads to a short microinstruction, which implies

a small control memory; hence the cost is reduced. Suppose two external conditions X1, X2 are to be

tested; then the condition-select and actions taken are summarized next:

Condition select Action taken

00 No branching

01 Branch if X1 =1

10 Branch if X2 =1

11 Always branching (unconditional branching)

The multiplexer has four inputs V0, V1, V2, V3 where Vi is routed to the multiplexer�s output when

the condition select field has decimal equivalent i. Hence we require V0 = 0, V1 = X1, V2 = X2, V3 = 1

to control the loading of microinstruction branch addresses into MPC.

Figure 6.15 General-purpose microprogrammed control unit

6.16 Computer Organization

Example 6.3 The design of a typical microprogrammed control unit is discussed now. Consider

the implementation of a microprogrammed control unit for the 4 ¥ 4 Booth�s multi-

plication. First step will be writing of the microprogram in a symbolic form, then

next task will be generating of control signals and architecture of the control unit,

and lastly we will give the microprogram in binary for 4 ¥ 4 Booth�s multiplication.

The symbolic microprogram for 4 ¥ 4 Booth�s multiplication is as follows:

Control Memory Control word

Address

0 START A ¨ 0, M ¨ Inbus, L ¨ 4

1 Q[3:0] ¨ Inbus, Q[�1] ¨ 0;

2 LOOP If Q[0: �1] = 01 then go to ADD;

3 If Q[0: �1] = 10 then go to SUB;

4 Go to RSHIFT;

5 ADD A ¨ A + M;

6 Go to RSHIFT;

7 SUB A ¨ A � M;

8 RSHIFT ASR (AQ), L ¨ L�1;

9 If Z = 0 then go to LOOP;

10 Outbus ¨ A;

11 Outbus ¨ Q[3:0];

12 HALT Go to HALT;

In this task, three conditions, Q[0] Q[�1] = 01, Q[0]Q[�1] = 10 and Z = 0, are

tested. Here, Z corresponds to the L register. When L π 0, Z is reset to 0, otherwise

Z is set to 1. These three conditions are applied as inputs to the condition select

MUX. Additionally, to take care of no-branch and unconditional-branch situations,

logic 0 and logic 1 are applied as data inputs to this MUX, respectively. Therefore,

The MUX is able to handle five data inputs and thus must be at least an 8:1. The size

of the condition select field must be 3 bits in length.

With this design, the condition select field may be interpreted as below:

Condition select Action taken

000 No branching

001 Branch if Q[0] = 0 and Q[�1] = 1

010 Branch if Q[0] = 1 and Q[�1] = 0

011 Branch if Z = 0

100 Unconditional branching

With these details, the size of the control word is calculated as follows:

Size of a control size of the size of the number of

word = condition select + branch address + control

field field functions

 = 3 + 4 + 10

 = 17 bits.

Design of Control Unit 6.17

Hence, the sizes of the CMDB and CM are 17 bits and 13 ¥ 17, respectively. The

complete hardware organization of the control unit and control signals is shown in

Fig. 6.16.

C0 : A ¨ 0

C1 : M ¨ Inbus

C2 : L ¨ 4

C3 : Q[3:0] ¨ Inbus, Q[�1] ¨ 0

C4 : F ¨ l + r

C¢4 : F ¨ l � r

C5 : A ¨ F

C6 : ASR (AQ)

C7 : L ¨ L � 1

C8 : Outbus ¨ A

C9 : Outbus ¨ Q[3:0]

Figure 6.16 Microprogrammed 4 ¥ 4 Booth�s multiplier control unit

Finally, the generation of binary microprogram stored in the CM will be dis-

cussed. There exists a control word for each line of the symbolic program listing. For

example, consider the first line (0th) of the symbolic listing program mentioned

previously. This instruction, being a simple load instruction, introduces no branch-

ing. Therefore, the condition-select field should be 000. Thus, the contents of the

branch address field are irrelevant. However, without any loss of generality, the

contents of this field can be reset to 0000. For this instruction, three micro-opera-

tions C0, C1 and C2 are activated. Therefore, only the corresponding bit positions in

the control function fields are set to 1. This results in the following binary micro-

instruction:

6.18 Computer Organization

Condition select Branch address Control function

000 0000 1110000000

The binary microinstruction corresponding to third line of the symbolic micropro-

gram does not activate any micro-operation. But, it branches to 5th location after

checking one condition (Q[0: �1] = 01). So, the condition-select field should be 001

and the branch address will be 0101. Therefore the complete binary microinstruction

corresponding to this instruction is as follows:

Condition select Branch address Control function

001 0101 0000000000

Continuing in this way, the complete binary microprogram for 4 ¥ 4 Booth�s

multiplier can be produced, as in the Table 6.2.

Table 6.2

Control Memory Condition Branch address Control function

address select (3-bit) (4-bit) (10-bit)

In decimal In binary C0C1�C9

0 0000 000 0000 1110000000

1 0001 000 0000 0001000000

2 0010 001 0101 0000000000

3 0011 010 0111 0000000000

4 0100 100 1000 0000000000

5 0101 000 0000 0000110000

6 0110 100 1000 0000000000

7 0111 000 0000 0000010000

8 1000 000 0000 0000001100

9 1001 011 0010 0000000000

10 1010 000 0000 0000000010

11 1011 000 0000 0000000001

12 1100 100 1100 0000000000

CPU Microprogrammed Control Unit Here, we want to design microprogrammed control unit

for a basic accumulator-based CPU as shown in Fig. 6.17. This CPU consists of a data processing unit

(DPU) designed to execute the set of 10 basic single-address instructions listed in Table 6.3. The

instructions are assumed to be fixed length and to execute on data words of the same fixed length, say

32 bits. The function of control unit (CU) is to manage the control signals linking the CU to the DPU,

as well as the control signals between the CPU and the external memory M.

In order to design the CU, first we have to identify the relevant control actions (micro-operations)

needed to process the given instruction set using the hardware from Fig. 6.17. The instruction

execution behavior of the CPU is shown in Fig. 6.18 using a flowchart. All instructions require a

common instruction-fetch phase, followed by an execution-phase that varies with each instruction

type. The content of the program counter (PC) is copied to the memory address register (AR) in the

fetch phase. A memory read operation is then executed, which transfers the instruction word I to

memory data register (DR); that is expressed by DR ¨ M(AR). Op-code of I is transferred to the

Design of Control Unit 6.19

instruction register (IR), where it is decoded; at the same time PC is incremented to point to the next

consecutive instruction in M.

The op-code type of current instruction determines the subsequent operations to be performed. For

example, the store instruction ST X is executed in three steps: the address field X of ST X is

transferred to AR, the content of the accumulator (AC) is transferred to DR and finally the memory

write operation M(AR) ¨ DR is performed. The branch-on-zero instruction BZ adr is executed by

first checking AC. If AC π 0, no action is taken; if AC = 0, the address field adr, which is in

DR(ADR), is transferred to PC, thus performing the branch operation. From Fig. 6.18, it can be seen

that instruction fetching takes three cycles, while instruction execution takes from one to three cycles.

The control signals and control points needed by the CPU are determined implicitly by the micro-

operations appearing in the flow chart. A suitable set of control signals for the CPU and their

functions are listed in the Table 6.4. Figure 6.19 shows the approximate points of the corresponding

control points in both the CU and DPU. The control signals generated by CU are used as control

inputs to different units of DPU and memory. Three basic groups can be created for these control

lines, as:

� Operation select: C2, C9, C10, C11, C12.

� Memory control: C1, C8.

� Data transfer: C0, C3, C4, C5, C6, C7.

Figure 6.17 An accumulator based CPU organization

6.20 Computer Organization

Figure 6.18 Flowchart of the accumulator based CPU

Design of Control Unit 6.21

Here memory control refers to the external memory M. Many of the control signals route informa-

tion between the CPU�s internal data and control registers.

Table 6.3 Instruction set for CPU in Fig. 6.17

Type Symbolic format Assembly format Remark

Data transfer AC ¨ M(X) LD X Load X from memory into AC

M(X) ¨ AC ST X Store content of AC in memory as X

DR ¨ AC MOV DR, AC Copy (transfer) content of AC to DR

AC ¨ DR MOV AC, DR Copy content of DR to AC

Data processing AC ¨ AC Ÿ DR AND AND DR to AC bit-wise

AC ¨ ÿ AC NOT Complement content of AC

AC ¨ AC + DR ADD Add DR to AC

AC ¨ AC � DR SUB Subtract DR from AC

Program control PC ¨ M(adr) BRA adr Jump to instruction with address adr.

if AC = 0 then PC BZ adr Jump to instruction with address adr if AC = 0.

¨ M(adr)

Figure 6.19 Control points for accumulator based CPU

6.22 Computer Organization

Table 6.4 Control signals for accumulator based CPU

Control signal Operation controlled

C0 AR ¨ PC

C1 DR ¨ M(AR)

C2 PC ¨ PC + 1

C3 PC ¨ DR(ADR)

C4 IR ¨ DR(OP)

C5 AR ¨ DR(ADR)

C6 DR ¨ AC

C7 AC ¨ DR

C8 M(AR) ¨ DR

C9 AC ¨ AC Ÿ DR

C10 AC ¨ ÿ AC

C11 AC ¨ AC + DR

C12 AC ¨ AC � DR

Each machine instruction is executed by a microprogram stored in CM which acts as a real-time

interpreter for the instruction, in a microprogrammed CPU. The set of microprograms that interprets a

particular instruction set or machine language ML is called an emulator for ML.

Now we want to write an emulator for the target instruction set whose members are LD, ST,

MOV1, MOV2, AND, NOT, ADD, SUB, BRA and BZ. In Fig. 6.19, the micro-operations that

implement the various instructions appear, from which the required microprograms are deduced. The

op-code of each instruction identifies the microprogram selected to emulate the instruction. Hence,

the microprogram�s starting address is determined by the content of the instruction register (IR). We

will use the unmodified content of IR as the microprogram address for the current instruction. We will

further assume that each microinstruction can specify a branch condition, a branch address that is

used only if the branch condition is satisfied and a set of control fields defining the micro-operations

to be performed. These microinstruction fields can easily be adapted to a variety of formats (horizon-

tal, vertical or mixed), as discussed earlier.

A complete emulator for the given instruction set in symbolic form is listed in Fig. 6.20. The

conversion of each microinstruction to binary code can be done easily. For this conversion, first the

control signals need to be identified, depending on the micro-operations listed in the Fig. 6.20. The

next task is to identify the external status conditions to be tested by the multiplexer in microprogrammed

control unit. A distinct microprogram for each of the ten possible instruction execution cycles and

another microprogram called FETCH have constituted this emulator. The FETCH microprogram

controls the instruction-fetch cycle. The �go to IR� micro-operation is implemented by MPC ¨ IR,

which transfers control to the first microinstruction in the microprogram that interprets the current

instruction. Either such branch operations can be included in a general operate-with-branching format

or separate branch microinstructions can be defined, depending on the microinstruction format chosen.

In Fig. 6.20, it is assumed that MPC is the default address source for microinstructions and is

incremented automatically in every clock cycle.

Design of Control Unit 6.23

FETCH: AR ¨ PC;

DR ¨ M(AR);

PC ¨ PC +1, IR ¨ DR(OP);

go to IR;

LD: AR ¨ DR(ADR)

DR ¨ M(AR);

AC ¨ DR, go to FETCH

ST: AR ¨ DR(ADR);

DR ¨ AC;

M(AR) ¨ DR, go to FETCH;

MOV1: DR ¨ AC, go to FETCH;

MOV2: AC ¨ DR, go to FETCH;

AND: AC ¨ AC Ÿ DR, go to FETCH;

NOT: AC ¨ ÿ AC, go to FETCH;

ADD: AC ¨ AC + DR, go to FETCH;

SUB: AC ¨ AC – DR, go to FETCH;

BRA: PC ¨ DR(ADR), go to FETCH;

BZ: if AC = 0 then PC ¨ DR(ADR), go to FETCH:

Figure 6.20 A symbolic microprogrammed emulator for a small instruction set

Microprogram Sequencer The microprogramming approach is systematic, flexible, and less

error-prone. Advances in IC technology have made LSI designers think of a general solution for

implementing a microprogrammed CPU. A microprogrammed CPU has two major activities to be

performed:

1. Fetching and interpreting microinstructions.

2. Generating the next address of the microinstruction to be retrieved.

The first task is assumed by the control memory and the associated circuit elements.

Designers have replaced the next address generation of a microprogrammed control unit with a

single LSI component called a microprogram sequencer, which checks certain bits in the microin-

struction and finds the next address for the control memory. The sequencer contains a microprogramrned

counter (MPC) and circuit elements necessary to perform functions such as address incrementing,

address sequencing for subroutine calls, returns, and conditional branching. At the present time, many

microprogrammed control units manufactured use the following components:

l A control memory (ROM or RAM)

l A microprogram sequencer

The general organization of a microprogrammed control unit constructed using a microprogram

sequencer is shown in Figure 6.21.

The microinstruction in this figure is assumed to have the following format:

Condition select field Branch-type field Branch address field Control function field

An additional field called branch type field (BT) has been included which generates the next

address, a 3-bit field (B2 B1 B0). Its interpretation is summarized as follows:

6.24 Computer Organization

Figure 6.21 Structure of a Microprogrammed CPU using Microprogram Sequencer

Design of Control Unit 6.25

B2 B1 B0 Action performed

000 No branching and, therefore, the next address is MPC + 1

001 Branch to the address specified in the branch address field if the condition selected by the condition

select field is true. The MPC is loaded with the contents of the branch address field

010 Branch to the subroutine if the condition is met. Here, the return address is saved in a subroutine-

return address register (SRAR). MPC is loaded with the address of subroutine, or MPC is loaded

with MPC + 1. The single register SRAR is replaced with a set of registers to form a stack, if it is

desired to implement nested or recursive subroutine calls

011 Unconditional branch to subroutine loads the MPC in the address of subroutine and the return

address is saved in SRAR

100 Unconditional branch loads the MPC with the contents of the branch address field

101 Conditional return from subroutine loads the MPC with SRAR, if the condition is met; otherwise, it

is loaded with MPC + 1

110 Unconditional return from subroutine. Always loads the MPC with the return address saved in SRAR

The MPC is loaded with one of the following sources:

l MPC + 1 computed by the parallel adder

l Branch address field of the microinstruction

l SRAR

As shown from the branch-type field B2 B1 B0 listed before, the SRAR is loaded only when B¢2 B1

B¢0 Z1 + B¢2 B1 B0 is 1; where Z1 refers to the output of the MUX1. This Boolean equation is true

when there is an unconditional branch to the subroutine or when a branch to a subroutine with the

selected condition is true.

This equation can also be simplified as follows:

B¢2 B1 B¢0 Z1 + B¢2 B1 B0

= B¢2 B1 (B¢0 Z1 + B0)

= B¢2 B1 [(B0 + B¢0) (B0 + Z1) Since yz + x = (x + y) (x + z)

= B¢2 B1 (B0 + Zl) Since B0 + B¢0 = 1

This hardware implementation has a 2-bit microprogram counter and three multiplexers, MUX1,

MUX2, and MUX3. The MUX1 selects the desired condition, and multiplexers MUX2 and MUX3

select the low- and high-order address bits, respectively. First, the control word is fetched to the

CMBR. Depending on the value of the BT, the next address is computed and loaded into the MPC.

Consider some specific numeric examples:

If B2 B1 B0 = 000, line 0 of MUX2 and MUX3 are selected. Since these lines are outputs of the

2-bit parallel adder, outputs of the multiplexer MUX2 and MUX3 transfer the value MPC + 1 into

MPC.

Assume B2 B1 B0 = 001 and the contents of the condition select field are 01. The binary pattern of

the BT selects line 1 of the multiplexers MUX2 and MUX3. These lines are outputs of multiplexers A

and D. These two multiplexers are controlled by output Z1 of the condition-select multiplexer (MUX1).

Line 0 of the A and D multiplexers are connected to the output of the 2-bit parallel adder with a value

of MPC + 1. Line 1 of the A and D multiplexers are connected to branch address A1 A0. The

condition select field selects the CY flag. Therefore, if CY = 1, then Z1 = 1. Line 1 of the A and D

multiplexers are selected, and branch address A1 A0 is transferred to the MPC. However, if CY = 0,

the MPC is loaded with MPC + 1.

6.26 Computer Organization

If the contents of the BT and the condition-select field are 010 and 10, respectively, line 2 of the

multiplexers MUX2 and MUX3 are selected. These lines are outputs of multiplexers B and D; both of

these multiplexers are controlled by output Z1 of the MUX1. Therefore; if S-flag = 1, lines B and D

are selected, and MPC is loaded with the starting address of the subroutine specified in A1 A0. The

SRAR is simultaneously loaded with the return address MPC + 1 (since B�2 B1 (B0 + Z1) is true). If

S-flag = 0, however, the MPC is loaded with MPC + 1. The SRAR remains unaffected (because

B0 Z1 = 00).

The other operating modes of this circuit can be explained in a similar manner.

The microprogram sequencer described so far is simple in structure. A practical LSI sequencer

offers more attractive features. Example of a popular microprogram sequencer is AM 2909, a 4-bit

microprogram sequencer developed by Advanced Microdevices Incorporated.

Nanoprogramming A microprogam stored in a single control memory (CM) interprets an instruc-

tion fetch from memory, in most microprogrammed CPUs. However, in a few machines, the microin-

structions do not directly issue the signals that control the hardware. Instead, they are used to access a

second control memory called a nanocontrol memory (NCM) that directly controls the hardware.

Therefore, there are two levels of control memories, a higher-level one termed a microcontrol memory

(MCM) whose contents are microinstructions and the lower-level NCM that stores nanoinstructions

(see Fig. 6.22).

Figure 6.22 Two level control organization for nanoprogramming

Apparently, one may feel that two-level structure will increase the overall cost, but it actually

improves the economy of the system by reducing the total space required.

The horizontal and vertical microprogramming concepts together give the concept of

nanoprogramming. In reality, this method gives useful trade-offs between these two techniques. The

nanoprogramming technique offers significant savings in space when a group of micro-operations

occur many times in a microprogram.

Design of Control Unit 6.27

Let us consider a nanoprogrammed computer in which control memory has dimension A ¥ B. So

the size of this memory is A*B bits to store the microprogram. Assume this microprogram has K (K <

A) unique microinstructions. In nanocontrol memory (NCM) of size K ¥ B, these K microinstructions

are held. These K microinstructions occur once in the NCM. Each microinstruction in the original

microprogram is replaced with an address that specifies the location of the NCM in which the original

B-bit wide microinstruction is stored. Since the NCM has K addresses, only Èlog2K˘ bits are needed

to specify one NCM address. Therefore, the size of each microinstruction in a two-level control

memory is only Èlog2K˘ bits. This is shown in Fig. 6.23.

Figure 6.23 Nanoprogramming concept

The operation of a control unit using a two-level memory shown in Fig. 6.21 can be explained

next. The first microinstruction from the microprogram of MCM is read. This microinstruction is

actually the first address of the NCM. The content of this location in the NCM is the control word,

which is transferred to the nanoinstruction register (NIR). The bits in this register are then used to

control the gates for one cycle. After completion of the cycle, the second microinstruction is read

from the MCM and the process continues. Therefore, two memory fetches (one for the MCM and the

other for NCM) are required. The conventional control memory consists of a single memory; thus,

one memory fetch is necessary. This reduction in control unit using single-level of memory is

compensated by the cost of the memory when the same microinstructions occur many times in the

microprogram. The main disadvantage of nanoprogramming is that a control unit using a NCM is

slower than one using a conventional control memory, since the nanoprogramming concept consists

of two-level memory.

6.28 Computer Organization

The nanoprogramming concept was first used in the QM-1 computer designed around 1970 by

Nanodata Corporation. It is also employed in the Motorola 680X0 microprocessors series.

Example 6.4 Example of nanoprogramming Let us take one practical example of the

nanoprogramming concept: the nanomemory structure of the Motorola MC68000

16-bit microprocessor in Fig. 6.24. It has 640 microinstructions, out of which 280 are

unique, as shown in Fig. 6.24. The contents of the MCM are pointers to the NCM.

Each microinstruction of the MCM is of size = Èlog2280˘ = 9 bits in length.

It can be seen that the MC68000 offers control memory savings. In the MC68000,

the MCM is 640 ¥ 9 bits and the NCM is 280 ¥ 70 bits, since there are 280 unique

microinstructions. If the MC68000 is implemented by using a single CM, this memory

will have 640 ¥ 70 bits. Therefore, the use of nanoprogramming saves a total of

= 640 * 70 � (640 * 9 + 280 * 70) bits

= 19, 440 bits.

1. What are the different status flags in a processor?

Answer

The processor uses one special register called status register to hold the latest program status. It holds

1-bit flags to indicate certain conditions that produced during arithmetic and logic operations. The bits

are set or reset depending on the outcome of most recent arithmetic and logic operation. The register

generally contains following four flags:

Carry (C): it indicates whether there is any end-carry from the most significant bit position.

Zero (Z): it indicates whether the result is zero or non-zero.

Sign (S): it indicates whether the result is positive or negative.

Overflow (V): it indicates whether the operation produces any overflow or not.

There may be other flags such as parity and auxiliary carry.

2. What are the advantages and disadvantages of microprogram control unit over hardwired

control unit?

Figure 6.24 MC68000 control unit�s memory structure

Design of Control Unit 6.29

Answer

Advantages of microprogram control unit:

(a) It provides a well-structured control organization. Control signals are systematically trans-

formed into formatted words (microinstructions). Logic gates, flip flops, decoders and other

digital circuits are used to implement hardwired control organization.

(b) With microprogramming, many additions and changes can be made by simply changing the

microprogram in the control memory. A small change in the hardwired approach may lead to

redesigning the entire system.

Disadvantage of microprogram control unit:

The microprogramming approach is more expensive than hardwired approach. Since a control ROM

memory is needed in microprogramming approach.

3. Suppose there are 15 micro-instructions in control memory that generate the control signals

for an instruction and it takes 7 micro-instructions to read an instruction from memory into

instruction register IR and then to decode the instruction. Assuming a read of control memory

address occurs in 1 ns, what will be the time taken by the processor for the instruction?

Answer

For reading an instruction from memory and decoding, number of micro-instructions required = 7 and

that for execution = 15. Therefore, time required to process an instruction = 7 + 15 = 22 ns.

4. An encoded microinstruction format is to be used in control unit. Show how a 9-bit micro-

operation field can be divided into subfields to specify 46 different control signals.

Answer

The 9-bit micro-operation can be divided into two subfields to specify 46 control signals by a partial

encoding, as shown in figure below.

The control signals are partitioned into disjoint groups of control fields, so two signals of different

groups can be enabled in parallel. The control signals are partitioned into two groups as:

Group 1: C1 C2 �.C31.

Group 2: C32 C33 �.C46.

With the above grouping, C32 can be activated simultaneously with C1 or C2 but not C1 and C2.

Using one 5-to-32 and one 4-to-16 decoders, the actual control signals are generated.

6.30 Computer Organization

5. A processor has 28 distinct instructions with 13 instructions having 12 micro-instructions and

15 having 18 micro-instructions.

(a) How many addresses are used in control memory?

(b) If three instructions jump to another set of micro-instructions, each having four micro-

instructions, then how many addresses are now used in control memory? Assume that

each micro-instruction also stores a branch address.

Answer

(a) Number of addresses in control memory for 28 instructions = 13 ¥ 12 + 15 ¥ 18 = 426.

(b) Number of addresses in control memory = 13 ¥ 12 + 15 ¥ 18 + 3 ¥ 4 = 438.

6. Why do most modern processors follow microprogramming control organizations?

Answer

Microprogramming allows relatively complex instructions to be implemented using small number of

hardware circuitry, because control memory stores the necessary control signals directly instead of

large number of logic gates as used in hardwired control organization. Moreover, many additions and

changes can be made by simply changing the microprogram in the control memory.

7. A conventional microprogrammed control unit includes 2048 words by 117 bits. Each of

512 microinstructions is unique. Calculate the savings achieved by having a nanoprogramming

technique. Calculate the sizes of microcontrol memory and nanocontrol memory.

Answer

It has 2048 microinstructions, out of which 512 are unique, as shown in figure below. The contents of

the microcontrol memory (MCM) are pointers to the nanocontrol memory (NCM). Each microinstruc-

tion of the MCM is of size = Èlog2512˘ = 9 bits in length.

Now, control unit has: the MCM is 2048 ¥ 9 bits and the NCM is 512 ¥ 117 bits, since there are

512 unique microinstructions. In conventional microprogramming by using a single CM, this memory

size is 2048 ¥ 117 bits. Therefore, the use of nanoprogramming saves a total of

= 2048 * 117 � (2048 * 9 + 512 * 117) bits

= 1,61,280 bits.

8. What are the advantages and disadvantages of two-level control structure?

Answer

Advantages:

The two-level control structure using nanoprogramming technique offers significant savings in memory

space when a group of micro-operations occur many times in a microprogram.

Design of Control Unit 6.31

Disadvantages:

The main disadvantage of two level control structure using nanoprogramming is that a control unit

using a nanocontrol memory (NCM) is slower than one using a conventional control memory, since

the nanoprogramming concept consists of two-level memory. Therefore, two memory fetches (one for

the microcontrol memory (MCM) and the other for NCM) are required.

Group A

1. Choose the most appropriate option for the following questions:

(i) Microprogrammed control unit is

(a) sequential logic controller

(b) low-cost control unit

(c) easily modifiable, because it follows programming technique

(d) none.

(ii) A hardwired control unit needs

(a) sequence controller and decoder, but does not use control memory

(b) state machine and control memory

(c) multiplexer and control memory

(d) encoder and control memory.

(iii) The control unit which is once designed no further change is possible is

(a) Hardwired

(b) Micro-programmed

(c) Firmware

(d) Programmed

(iv) In horizontal microprogramming, microinstruction bits

(a) need extra encoder

(b) need extra decoder

(c) generate smaller output control signals

(d) does not require extra decoding circuitry to generate control signals.

(v) In vertical microprogramming, microinstruction bits

(a) need extra encoder

(b) need extra decoder

(c) generate smaller output control signals

(d) does not require extra decoding circuitry to generate control signals.

(vi) High degree of parallelism is possible in

(a) horizontal microprogrammed control organization

(b) vertical microprogrammed control organization

(c) mixed control organization

(d) none.

(vii) Microprogram counter (MPC) is special register used in the microprogrammed control unit to

hold

(a) address of the next microinstruction to be executed

(b) address of a branch instruction always

6.32 Computer Organization

(c) address of the next sequential instruction

(d) none.

(viii) An emulator for an instruction set S is

(a) a hardwired control unit for S

(b) a microprogram for a particular program

(c) a microprogram control unit for S

(d) a set of microprograms that interpret S.

(ix) Relatively new processors use

(a) microprogrammed CU (b) hardwired CU

(c) merger of two (d) none.

(x) The MUX is used in microprogrammed control unit to

(a) select one of microinstructions to be executed

(b) select one of control signals generated simultaneously

(c) select one of the external conditions

(d) none.

(xi) The important advantage of using two-level nanoprogramming is

(a) rapid generation of control signals

(b) reduced required space in control store

(c) high parallelism in control signals

(d) less complex.

(xii) Control memory width can be optimized by

(a) reducing the length of microinstruction

(b) employing efficient encoding technique

(c) encoding maximally compatible signals in the same control field

(d) none.

(xiii) The length of control memory can be reduced by

(a) using unencoded microinstructions

(b) encoding maximally compatible signals in the same control field

(c) encoding microinstructions in different control fields which can be executed concurrently

(d) none.

Group B

2. Describe the functions of control unit (CU).

3. What are different methods for control unit design? Explain.

4. Compare different techniques to design control unit.

5. What are the advantages of hardwired control unit? Describe the design of hardwired control unit of

CPU, with diagram.

6. Consider the following algorithm:

Registers: A[8], B[8], C[8];

START: A ¨ 0000 1101;

B ¨ 0000 0101;

LOOP: A ¨ A * B;

B ¨ B � 1;

If B π 0 then go to LOOP;

C ¨ A;

HALT: go to HALT;

Design a hardwired control unit to implement this algorithm.

Design of Control Unit 6.33

7. What are the advantages of microprogrammed control unit? Describe the design of microprogrammed

control unit of CPU, with diagram.

8. Define:

(a) control memory (b) microinstruction (c) microprogram.

9. What are the different methods for organizing control field of microinstructions? Explain each of

them in details.

10. What are the characteristics of horizontal and vertical microprogrammings? Give example for each.

11. Design a microprogrammed control unit for algorithm in Question No. 6.

12. An encoded microinstruction format is to be used in control unit. Show how a 9-bit micro-operation

field can be divided into subfields to specify 46 different control signals.

13. What are the advantages and disadvantages of two-level control structure?

14. A conventional microprogrammed control unit includes 2048 words by 117 bits. Each of

512 microinstructions is unique. Calculate the savings achieved by having a nanoprogramming

technique. Calculate the sizes of microcontrol memory and nanocontrol memory.

15. Show that it is possible to specify 675 micro-operations using a 10-bit control function field.

CHAPTER

7
Input-Output Organization

7.1 INTRODUCTION

Data transfer between the computer and external device takes place through I/O mechanism. One

communicates with a computer system via the I/O devices interfaced to it. The user can enter

programs and data using the keyboard on a terminal, executes the programs to obtain results and

finally the results may be displayed on monitor of the computer. Therefore, the I/O devices connected

to a computer system provide an efficient means of communication between the computer and the

outside world. These I/O devices are commonly known as peripherals and popular I/O devices used

are keyboard, monitor, printer, disk and mouse.

In this chapter, we will consider in detail interconnection system and various ways in which I/O

operations are performed.

7.2 I/O INTERFACE AND I/O DRIVER

Every computer supports a variety of peripheral devices. To use a peripheral device, two modules are

required:

(a) I/O interface or I/O controller.

(b) I/O driver.

7.2.1 I/O Interface or I/O Controller

I/O interface is a hardware device provides a means for transferring information between central

system (i.e. CPU and main memory) and external I/O peripheral device. Peripheral devices connected

to a computer need I/O interface circuits for interfacing them with the CPU and/or memory. Each

peripheral has its own I/O controller that operates the particular device. The purpose of the I/O

interface is to resolve the differences that exist between the central computer and each peripheral. The

major differences are:

7.2 Computer Organization

l Peripherals are mainly electromechanical and electromagnetic devices and their manner of

operations is different from the operation of the CPU and main memory, which are electronic

devices. Hence, a conversion of signal values may be required.

l Data codes and formats in peripheral devices are different from the code format in the CPU

and memory.

l The data transfer rate of the peripheral devices is usually slower than the transfer rate of the

CPU and therefore, a synchronization mechanism may be required.

l The various peripheral devices attached to a computer have different modes of operations and

each must be controlled so as not to disturb the operation of other peripherals connected to the

CPU.

In order to resolve these differences, computer systems must include special hardware device

called I/O interface with each peripheral to supervise and synchronize all I/O transfers.

The linkage of the I/O interface to the central computer is via the bus. A typical communication

linkage between the central computer (i.e. CPU and main memory) and several peripheral devices is

shown in Fig. 7.1. The I/O bus consists of data lines, address lines and control lines. The magnetic

disk, printer, monitor and keyboard are used in practically any general-purpose computer. Each

peripheral device has associated with it an I/O interface unit. A device�s interface circuit constitutes

of an address decoder, the data and status registers, and the control circuitry. Each I/O interface unit

decodes the address and control signal received from the I/O bus, interprets them for the peripheral

and provides signals for the peripheral. It synchronizes the data flow and supervises the transfer

between peripheral and processor. For example, the printer controller controls the paper motion, the

printing timing and the selection of printing characters. An I/O controller may be incorporated

separately or may be physically integrated with the peripheral.

Figure 7.1 Connection of I/O bus to I/O controllers

Input-Output Organization 7.3

The I/O bus from the central computer is attached to all peripheral controllers. To communicate

with a particular I/O device, the processor places a device address on the address lines. The address

decoder of I/O interface monitors the address lines. When a particular I/O interface detects its own

address, it activates the path between the bus lines and the peripheral device that it controls. All

peripherals whose addresses do not correspond to the address in the bus are disabled by their inter-

faces.

When the address is made available in the address lines, at that time the processor provides an

operation code in the control lines. The interface selected responds to the operation code and pro-

ceeds to execute it. The operation code is referred to as an I/O command. The meaning of the

command depends on the peripheral type that the processor is addressing. There are four types of I/O

commands that an I/O interface may receive when it is addressed by a processor:

1. Control It is used to enable an I/O device and to give directive what to do. For example, a

magnetic tape unit may be instructed to rewind or to move forward one record. These commands are

tailored to the particular type of peripheral device.

2. Test It is used to test various status conditions associated with an I/O interface and its peripheral.

For example, the processor may want to know that the peripheral of interest is powered on and ready

for use. It also may want to know if the most recent I/O operation is completed and if any error

occurs.

3. Read This causes the I/O interface to obtain a data-item from the peripheral and places it in an

internal buffer (data register). The processor can then obtain the data item by requesting that the I/O

interface places it on the data bus.

4. Write This causes the I/O interface to take a data-item from the data bus and subsequently

transfers that data item to the peripheral.

Some well known I/O interface devices are: SCSI (Small Computer System Interface), USB (Uni-

versal Serial Bus), IDE (Integrated Drive Electronics), RS-232C, FireWire, Centronics Interface.

There are two types of I/O interfaces available: Serial interface and Parallel interface. In serial

interface, there is only one data line and thus data bits are transmitted serially one after other.

Examples include: USB, RS-232C, and FireWire. In parallel interface, there are multiple data lines in

parallel and thus multiple number of bits can be transmitted from the system simultaneously. Ex-

amples include: SCSI, Centronics Interface, and IDE.

7.2.2 I/O Driver

I/O driver is a software module that issues different commands to the I/O controller, for executing

various I/O operations. Following are certain operations performed by different I/O drivers:

l Reading a file from a disk.

l Printing some lines by the printer.

l Displaying a message on monitor.

l Storing some data on disk.

The I/O driver program for a given peripheral device is developed only after knowing the architec-

ture of the I/O controller device. The I/O driver program and I/O controller device together achieve

the I/O operation done on behalf of corresponding peripheral device. An I/O operation can be

performed by calling the relevant I/O interface (or I/O controller) and passing relevant signals for

7.4 Computer Organization

operation. After completing the I/O operation, the I/O driver returns control to the called program and

passes return signals about the completion of the operation. Figure 7.2 illustrates communication

between the I/O controller and the application program. The collection of I/O driver programs is

called BIOS (Basic Input Output System).

Figure 7.2 Communication between I/O controller and application program

The I/O drivers for the basic peripheral devices supported by the general PC are part of the BIOS

which is physically stored in ROM part of main memory. The I/O drivers for other peripherals are

provided on the floppy diskette or CD. This program is installed in the hard disk and brought into the

RAM by bootstrap system program during booting.

7.3 ACCESSING I/O DEVICES

Like the I/O bus, the memory bus contains data, address and read/write control lines. In addition to

communicating with I/O, the processor must communicate with the memory unit. There are three

ways that processor uses computer buses to communicate with memory and I/O:

1. Use two separate buses (address, data and control), one for memory and the other for I/O.

2. Use one common bus (address and data) for both memory and I/O but have separate control

lines for each.

3. Use one common bus (address, data and control) for memory and I/O.

In the first case, the computer has separate sets of data, address, and control buses, one for

accessing memory and the other for I/O. This procedure is used in computers that provide a separate

I/O processor (IOP), also called I/O channel in addition to the CPU. The memory communicates with

both the CPU and the IOP through a memory bus. The objective of the IOP is to provide a separate

path for the transfer of information between external I/O devices and internal memory.

In the second case, computers use one common bus to transfer information between memory or I/O

and the CPU. The distinction between a memory transfer and I/O transfer is made through

separate read and write lines. The CPU specifies whether the address on the address lines is for a

memory word or for an interface register by enabling one of two possible read or write lines. I/O-read

and I/O-write control lines are enabled during an I/O transfer. The memory read and memory write

control lines are enabled during a memory transfer. This configuration isolates all I/O interface

addresses from the addresses assigned to memory and is referred to as the isolated I/O or I/O mapped

I/O method for assigning addresses in a common bus. This method isolates memory and I/O addresses

Input-Output Organization 7.5

so that memory address values are not

affected by interface address assignment

since each has its own address space, as

shown in Fig. 7.3. This method is followed

in the IBM PC.

In the third case, computers use only

one set of read and write signals and do

not distinguish between memory and I/O

addresses. This configuration is referred

to as memory mapped I/O, as depicted in

Fig. 7.4. The processor treats an I/O in-

terface register as being part of the

memory system. In other words, the pro-

cessor uses a portion of the memory ad-

dresses to represent I/O interface. Com-

puters with memory mapped I/O can use

memory type instructions to access I/O

data. It allows the computer to use the

same instructions for either I/O transfers or for memory transfers. Most of the modern computers use

this technique; even though some computers like Intel 8088 support both I/O mapped I/O and memory

mapped I/O techniques.

I/O Port Figure 7.5 shows a block diagram of an example of an I/O interface unit. It consists of two

data registers called ports, a control register, a status register, bus buffers and timing and control

circuits. Using the data bus, the interface communicates with the CPU. The chip select and register

select inputs determine the address assigned to the interface. The I/O R/W is a common control line

that specifies an input or output, respectively. The four registers communicate directly with the I/O

device attached to the interface.

The I/O data to and from the device can be transferred into either port A or port B. The interface

may operate with an input device or with an output device, or with a device that requires both input

and output. If the interface is connected to a printer, it will only output data, and if it services a

character reader, it will only input data. A magnetic disk unit transfers data in both directions but not

at the same time, so the interface can use bidirectional lines. A command is passed to the I/O device

by sending a word to the appropriate interface register. In a system like this, the command in the I/O

bus is not needed because control is sent to the control register, status information is received from

the status register and data are transferred to and from port A and port B registers. Thus the transfer of

data, control and status information is always through the common data bus. The distinction between

data, control or status information is determined from the particular interface register with which the

CPU communicates.

The control register receives control information from the CPU. By loading appropriate bits into

the control register, the interface and the I/O device attached to it can be placed in various operating

modes. For example, port A may be defined as an input port and port B as an output port. A magnetic

tape unit may be instructed to start the tape moving in the forward direction or to rewind the tape. The

bits in the status register are used for status conditions and for recording errors that may occur during

Figure 7.4 Memory mapped I/O

Figure 7.3 I/O mapped I/O

7.6 Computer Organization

the data transfer. For example, a status bit may indicate that port B has received a new data item from

the CPU that is to be transferred to the I/O device. Another bit in the status register may indicate that

a parity error has occurred during the transfer.

The interface registers communicate with the CPU through bidirectional data bus. The address bus

selects the interface unit through the chip select (CS) line and the two register select input lines (RS0

and RS1). Usually an address decoder circuit must be provided externally to detect the address

assigned to the interface registers. This decoder circuit enables the chip select input when the inter-

face is selected by the address bus. The two register select inputs (RS0 and RS1) are usually con-

nected to the two least significant lines of the address bus. These two inputs select one of the four

registers in the interface as specified in the table associated with the diagram. The content of the

selected register is transfer into the CPU through the data bus when the I/O R/W signal is at logic �1�

(i.e. I/O read). The CPU transfers binary information into the selected register via the data bus when

the I/O R/W input is at logic �0� (i.e. I/O write).

7.4 SYNCHRONOUS AND ASYNCHRONOUS DATA TRANSFERS

In order to execute a task in a computer, transfer of information among different devices is necessary.

Figure 7.5 Example of an I/O interface unit

Input-Output Organization 7.7

When two units have to communicate with each other for data transfer, usually one of them is the

master and the other one is slave. Sometimes one word of data is transferred between two units in one

clock period or some times in more than one clock period. There are two types of data transfer

depending on the mechanism of timing the data: Synchronous and Asynchronous.

7.4.1 Synchronous Transfer

In this mode of data transfer, the sending and receiving units are enabled with same clock signal. The

synchronous transfer is possible between two units when each of them knows the behavior of the

other. The master performs a sequence of actions for data transfer in a predetermined order; each

action is synchronized with the common clock. The master is designed to supply the data at a time

when the slave is definitely ready for it. Usually, the master will introduce sufficient delay to take into

account the slow response of the slave, without any request from the slave. The master does not

expect any acknowledgement signal from the slave, when a data is sent by the master to the slave.

Similarly, when a data from slave is read by the master, neither the slave informs that a data has been

placed on the data bus nor the master acknowledges that a data has been read. Both master and slave

perform their own task of transferring data at designated clock period. Since both devices know the

behavior (response time) of each other,

no difficulty arises. Prior to transferring

data, the master must logically select the

slave either by sending slave�s address

or sending �device select� signal to the

slave. But, there is no acknowledgement

signal from the slave to master if device

is selected.

As for example, the Fig. 7.6 shows

timing diagram for synchronous read op-

eration. The master first places slave�s

address in the address bus and read sig-

nal in the control line at the falling edge

of a clock. The slave places data in the

data bus at the raising edge of the clock. The entire read operation is over in one clock period.

Advantages of Synchronous Transfer

1. The design procedure is easy. The master does not wait for any acknowledge signal from the

slave though the master waits for a time equal to slave�s response time.

2. The slave does not generate acknowledge signal, though it obeys the timing rules as per the

protocol set by the master or system designer.

Disadvantages of Synchronous Transfer

1. If a slow speed unit is connected to a common bus, it can degrade overall rate of transfer in the

system.

2. If the slave operates at a slow speed, the master will be idle for some time during data transfer

and vice versa.

Figure 7.6 Timing diagram for synchronous read operation

7.8 Computer Organization

7.4.2 Asynchronous Transfer

There is no common clock between the master and slave in asynchronous transfer. Each has its own

private clock for internal operations. This approach is widely used in most computers. Asynchronous

data transfer between two independent units requires that control signals be transmitted between the

communicating units to indicate the time at which data is being transmitted. One simple way is to use

a strobe signal supplied by one of the units to indicate the other unit when the transfer has to occur.

Strobe Control Technique A single control line

is used by the strobe control method of asynchronous

data transfer to time each transfer. The strobe may be

activated by either the source or the destination unit.

A source-initiated transfer is depicted in Fig. 7.7. The

source takes care of proper timing delay between the

actual data signals and the strobe signal. The source

places the data first, and after some delay, generates

the strobe to inform about the data on the data bus.

Before removing the data, source removes the strobe

and after some delay it removes the data. By these two

leading and trailing end delays, the system ensures the

reliable data transfer.

Similarly, the destination can initiate data transfer

by sending strobe signal to the source unit as shown

in Fig. 7.8. In response, the source unit places data on

the data bus. After receiving data, the destination unit

removes the strobe signal. Only after sensing the re-

moval of strobe signal, the source removes the data

from the data bus.

The disadvantage of the strobe method is that the

source unit that initiates the transfer cannot know

whether the destination unit has actually received the

data item that was placed in the bus. Similarly, a des-

tination unit that initiates the transfer cannot know

whether the source unit has actually placed the data

on the bus.

Handshaking Technique To overcome this problem of strobe technique, another method com-

monly used is to accompany each data item being transferred with a control signal that indicates the

presence of data in the bus. The unit receiving the data item responds with another control signal to

acknowledge receipt of the data. This type of agreement between two independent units is referred to

as handshaking mode of transfer.

Figure 7.9 shows the data transfer method when initiated by the source. The two handshaking lines

are �data valid�, which is generated by the source unit, and �data accepted� generated by the destination

unit. The source first places data and after some delay issues data valid signal. On sensing data valid

signal, the destination receives data and then issues acknowledgement signal data accepted to indicate

Figure 7.7 Source-initiated strobe for data

transfer

Figure 7.8 Destination initiated strobe for

data transfer

Input-Output Organization 7.9

the acceptance of data. On sensing data accepted

signal, the source removes data and data valid signal.

On sensing removal of data valid signal, the destination

removes the data accepted signal.

Figure 7.10 illustrates destination initiated hand-

shaking technique. The destination first sends the data

request signal. On sensing this signal, the source places

data and also issues the data valid signal. On sensing

data valid signal, the destination acquires data and

then removes the data request signal. On sensing this,

the source removes both the data and data valid

signal.

The advantage of handshaking scheme is that it

provides a high degree of flexibility and reliability

because the successful completion of a data transfer

relies on active participation by both units.

The disadvantages of handshaking scheme are:

1. A slow speed destination unit can hold up the bus whenever it gets a chance to communicate.

2. If one of the two communicating devices is faulty, the initiated data transfer cannot be completed.

Examples of asynchronous transfer

1. The centronics interface follows handshaking scheme.

2. Most microprocessors such as Motorola 88010 and Intel 80286 follow this bus transfer mecha-

nism.

Figure 7.9 Source-initiated transfer using

handshaking

Figure 7.10 Destination initiated handshaking technique

7.10 Computer Organization

7.5 MODES OF DATA TRANSFER

Information transferred from the central computer (i.e. CPU and main memory) into a peripheral

device originates in the memory unit. Information received from a peripheral device is usually stored

in memory for later processing. The CPU only executes the I/O instructions and may accept the data

temporarily, but the ultimate source or destination is the memory unit. Data transfer between the

central computer and I/O devices may be handled in a variety of modes. Three possible modes are:

1. Programmed I/O.

2. Interrupt-initiated I/O.

3. Direct memory access (DMA).

The CPU executes a program to communicate with an I/O device via I/O interface registers for

programmed I/O. This is a software method.

An external I/O device requests the processor to transfer data by activating a signal on the computer�s

interrupt line during interrupt-initiated I/O. In response, the computer executes a program called the

interrupt-service routine (ISR) to carry out the function desired by the external I/O device. This is

also a software method.

Data transfer between the computer�s main memory and an external I/O device occurs without

CPU involvement in direct memory access (DMA). It is a hardware method.

7.5.1 Programmed I/O

This is the software method where CPU is needed all the times during data transfer between any two

devices. Programmed I/O operations are the result of I/O instructions written in the computer program

or I/O routine. Each data item transfer is initiated by an instruction in the program or I/O routine.

Generally, the transfer is to and from a CPU register and peripheral. Transferring data under program

control requires constant monitoring of the peripheral by the CPU. Once a data transfer is initiated,

the CPU is required to monitor the interface to see when a transfer can again be made.In other words,

the CPU polls the devices for next data transfer. This is why the programmed I/O is sometimes called

polled I/O.Through the mid-1990s, programmed I/O was the only way that most systems ever accessed

IDE/ATA hard disks.

Example 7.1 Example of Programmed I/O: Transferring data from I/O device to memory.

I/O device does not have direct access to memory in the programmed I/O method.

A transfer from an I/O device to memory requires the execution of several instruc-

tions by the CPU, including an input instruction to transfer the data from the device

to the CPU and a store instruction to transfer the data from the CPU to memory.

Figure 7.11 shows an example of data transfer from an I/O device through its

interface into memory via the CPU. The handshaking procedure is followed here.

The device transfers bytes of data one at a time, as they are available. The device

places a byte of data, when available, in the I/O bus and enables its data valid line.

The interface accepts the byte into its data register and enables its data accepted line.

A flag bit is then set in its status register by the interface. The device now disables

the data valid line, but it will not transfer another byte until the data accepted line is

disabled and flag bit is reset by the interface.

Input-Output Organization 7.11

An I/O routine or a program is written for the computer to check the flag bit in the

status register to determine if a byte is placed in the data register by the I/O device.

By reading the status register into a CPU register and checking the value of the flag

bit, this can be done. When the flag is set to 1, the CPU reads the data from data

register and then transfers to the memory by executing store instruction. The flag bit

is then reset to 0 by either the CPU or the interface, depending on the design of

interface circuits. When the flag bit is reset, the interface disables the data accepted

line and the device can then transfer the next data byte. Thus the following four steps

to be executed by the CPU to transfer each byte:

1. Read the status register of interface unit.

2. Check the flag bit of the status register and go to step (3) if it is set; otherwise

loop back to step (1).

3. Read the data register of interface unit for data.

4. Send the data to the memory by executing store instruction.

The programmed I/O method is particularly useful in small low-speed computers or in systems that

are dedicated to monitor a device continuously. Generally the CPU is 5-7 times faster than an I/O

device. Thus, the difference in data transfer rate between the CPU and the I/O device makes this type

of transfer inefficient.

7.5.2 Interrupt-initiated I/O

In the programmed I/O method, the program constantly monitors the device status. Thus, the CPU

stays in the program until the I/O device indicates that it is ready for data transfer. This is time-

consuming process since it keeps the CPU busy needlessly. It can be avoided by letting the device

controller continuously monitor the device status and raise an interrupt to the CPU as soon as the

device is ready for data transfer. Upon detecting the external interrupt signal, the CPU momentarily

stops the task it is processing, branches to an interrupt-service-routine (ISR) or I/O routine or

interrupt handler to process the I/O transfer, and then returns to the task it was originally performing.

Thus, in the interrupt-initiated mode, the ISR software (i.e. CPU) performs data transfer but is not

involved in checking whether the device is ready for data transfer or not. Therefore, the execution

Figure 7.11 Data transfer from I/O device to memory through CPU

7.12 Computer Organization

time of CPU can be optimized by employing it to execute normal program, when no data transfer is

required. Figure 7.12 illustrates the interrupt process.

The CPU responds to the interrupt signal by storing the return address from the program counter

(PC) register into a memory stack or into a processor register and then control branches to an ISR

program that processes the required I/O transfer. The way that the CPU chooses the branch address of

the ISR varies from one unit to another. In general, there are two methods for accomplishing this. One

is called vectored interrupt and the other is non-vectored. In a vectored interrupt, the source that

interrupts supplies the branch information (starting address of ISR) to the CPU. This information is

called the interrupt vector, which is not any fixed memory location. In a non-vectored interrupt, the

branch address (starting address of ISR) is assigned to a fixed location in memory.

In interrupt-initiated I/O, the device controller should have some additional intelligence for check-

ing device status and raising an interrupt whenever data transfer is required. This results in extra

hardware circuitry in the device controller.

Interrupt Hardware An interrupt handling hardware implements the interrupt. To implement inter-

rupts, the CPU uses a signal known as an interrupt request (INTR) signal to the interrupt handler or

controller hardware, which is connected to each I/O device that can issue an interrupt to it. Here,

interrupt controller makes liaison with the CPU on behalf of I/O devices. Typically, interrupt control-

ler is also assigned an interrupt acknowledge (INTA) line that the CPU uses to signal the controller

that it has received and begun to process the interrupt request by employing an ISR. Figure 7.13

shows the hardware lines for implementing interrupts.

The interrupt controller uses a register called interrupt-request mask register (IMR) to detect any

interrupt from the I/O devices. Consider there is n number of I/O devices in the system. Therefore

IMR is n-bit register, where each bit indicates the status of one I/O device. Let, IMR�s content is

denoted as E0 E1 E2 � En-1. When E0 = 1 then device 0 interrupt is recognized; When E1 = 1 then

device 1 interrupt is recognized and so on. The processor uses a flag bit known as interrupt enable

(IE) in its status register (SR) to process the interrupt. When this flag bit is �1�, the CPU responds to

the presence of interrupt; otherwise not.

Figure 7.12 Interrupt process

Input-Output Organization 7.13

Enabling and Disabling Interrupts Sometimes a program does not want any interruption; it

informs the CPU not to encourage any interrupt. The CPU ignores interrupt and hence any interrupts

which arrived in the mean time remain pending, until the program issues another directive to the CPU

asking it to allow interrupt. Therefore, there has to be some feature to enable or disable an interrupt.

Disabling an interrupt is called masking. There can be two types of interrupts in an I/O organization.

l Non-maskable interrupts: The user program cannot disable it by any instruction. Some com-

mon examples are: hardware error and power fail interrupt.

l Maskable interrupts: The user program can disable all or a few device interrupts by an instruction.

A flag bit known as interrupt enable (IE) is used in processor status register (SR) to process the

interrupt. When this flag bit is �1�, the CPU responds to the interrupt. When this flag bit is �0�, the

CPU ignores the interrupt. The program must issue enable interrupt (EI) instruction to set the IE flag.

The CPU sets the IE flag, when executing this instruction. The program must issue disable interrupt

(DI) instruction to reset the IE flag. The CPU resets the IE flag, when executing this instruction.

Thus, in respect of interrupt servicing the CPU�s behavior is controlled by the program that is being

executed currently. There are two following special situations when the CPU resets the IE flag on its

own:

1. During non-maskable interrupts handling.

2. During interrupt servicing; the CPU resets the IE flag immediately after saving the return

address into memory or into a special register and before branching to ISR. Thus, when CPU

starts execution of ISR, interrupts are disabled. Therefore, it is up to the ISR to allow interrupts

(by an EI instruction) if it wishes.

Interrupt Nesting During the execution of one ISR, if it allows another interrupt, then this is

known as interrupt nesting. Suppose the CPU is initially executing program �A� when first interrupt

occurs. The CPU after storing return address of instruction in program �A�, starts executing ISR1.

Now say in the mean time, second interrupt occurs. The CPU again after storing return address of

Figure 7.13 Hardware interrupt

7.14 Computer Organization

instruction in ISR1, starts executing ISR2. When it is executing ISR2, third interrupt occurs. The

CPU again performs storing of return address for ISR2 and then starts executing ISR3. After complet-

ing ISR3, the CPU resumes the execution of ISR2 for remaining portion. Similarly, after completing

ISR2, the CPU resumes the execution of ISR1 for remaining portion. After completing ISR1, the

CPU returns to the program �A� and continues from the location it branched earlier.

Priority Interrupt In a typical application a number of I/O devices are attached to the computer,

with each device being able to originate an interrupt request. The first task of the interrupt controller

is to identify the source of the interrupt. There is also the possibility that several sources may request

interrupt service simultaneously. In this case the controller must also decide which to service first. A

priority interrupt is a system that establishes a priority over the various sources to determine which

condition is to be serviced first when two or more requests arrive simultaneously. Devices with high-

speed transfers such as magnetic disks are usually given high priority and slow devices such as

keyboards receive low priority. When two devices interrupt the CPU at the same time, the CPU

services the device, with the higher priority first.

The interrupt requests from various sources are connected as input to the interrupt controller. As

soon as the interrupt controller senses (using IMR) the presence of any one or more interrupt requests,

it immediately issues an interrupt signal through INTR line to the CPU. The interrupt controller

assigns a fixed priority for the various interrupt requestor devices. For example, the IRQ0 is assigned

the highest priority among the eight different interrupt requestors. Assigning decreasing order of

priority from IRQ0 to IRQ7, the IRQ7 is the lowest priority. It (IRQ7) is serviced only when no other

interrupt request is present.

7.5.3 Direct Memory Access (DMA)

To transfer large blocks of data at high speed, this third method is used. A special controlling unit

may be provided to allow transfer a block of data directly between a high speed external device like

magnetic disk and the main memory, without continuous intervention by the CPU. This method is

called direct memory access (DMA).

DMA transfers are performed by a control circuit that is part of the I/O device interface. We refer

to this circuit as a DMA controller. The DMA controller performs the functions that would normally

be carried out by the CPU when accessing the main memory. During DMA transfer, the CPU is idle

or can be utilized to execute another program and CPU has no control of the memory buses. A DMA

controller takes over the buses to manage the transfer directly between the I/O device and the main

memory.

The CPU can be placed in an idle state using two special control signals, HOLD and HLDA (hold

acknowledge). Figure 7.14 shows two control signals in the CPU that characterize the DMA transfer.

The HOLD input is used by the DMA controller to request the CPU to release control of buses. When

this input is active, the CPU suspends the execution of the current instruction and places the address

bus, the data bus and the read/write line into a high-impedance state. The high-impedance state

behaves like an open circuit, which means that the output line is disconnected from the input line and

does not have any logic significance. The CPU activates the HLDA output to inform the external

DMA controller that the buses are in the high-impedance state. The control of the buses has been

taken by the DMA controller that generated the bus request to conduct memory transfers without

processor intervention. After the transfer of data, the DMA controller disables the HOLD line. The

Input-Output Organization 7.15

CPU then disables the HLDA line and regains the control of the buses and returns to its normal

operation.

DMA Controller To communicate with the CPU and I/O device, the DMA controller needs the

usual circuits of an interface. In addition to that, it needs an address register, a word count register, a

status register and a set of address lines. Three registers are selected by the controller�s register select

(RS) line. The address register and address lines are used for direct communication with the memory.

The address register is used to store the starting address of the data block to be transferred. The word

count register contains the number of words that must be transferred. This register is decremented by

one after each word transfer and internally tested for zero after each transfer. Between the device and

memory under control of the DMA, the data transfer can be done directly. The status register contains

information such as completion of DMA transfer. All registers in the DMA controller appear to the

CPU as I/O interface registers. Thus, the CPU can read from or write into the DMA registers under

program control via the data bus.

When executing the program for I/O transfer, the CPU first initializes the DMA controller. After

that, the DMA controller starts and continues to transfer data between memory and peripheral unit

until an entire block is transferred. The DMA controller is initialized by the CPU by sending the

following information through the data bus:

1. The starting address of the memory blocks where data are available for read or where data are

to be stored for write.

2. The number of words in the memory block (word count) to be read or written.

3. Read or write control to specify the mode of transfer.

4. A control to start the DMA transfer.

DMA Transfer In DMA transfer, I/O devices can directly access the main memory without

intervention by the processor. Figure 7.15 shows a typical DMA system. The sequences of events

involved in a DMA transfer between an I/O device and the main memory are discussed next.

A DMA request signal from an I/O device starts the DMA sequence. DMA controller activates the

HOLD line. It then waits for the HLDA signal from the CPU. On receipt of HLDA, the controller

sends a DMA ACK (acknowledgement) signal to the I/O device. The DMA controller takes the

control of the memory buses from the CPU. Before releasing the control of the buses to the controller,

the CPU initializes the address register for starting memory address of the block of data, word-count

register for number of words to be transferred and the operation type (read or write). The I/O device

can then communicate with memory through the data bus for direct data transfer. For each word

transferred, the DMA controller increments its address-register and decrements its word count regis-

ter. After each word transfer, the controller checks the DMA request line. If this line is high, next

Figure 7.14 CPU bus signals for DMA transfer

7.16 Computer Organization

word of the block transfer is initiated and the process continues until word count register reaches zero

(i.e., the entire block is transferred). If the word count register reaches zero, the DMA controller stops

any further transfer and removes its HOLD signal. It also informs the CPU of the termination by

means of an interrupt through INT line. The CPU then gains the control of the memory buses and

resumes the operations on the program which initiated the I/O operations.

Advantages of DMA It is a hardware method, whereas programmed I/O and interrupt I/O are

software methods of data transfer. DMA mode has following advantages:

1. High speed data transfer is possible, since CPU is not involved during actual transfer, which

occurs between I/O device and the main memory.

2. Parallel processing can be achieved between CPU processing and DMA controller�s I/O op-

eration.

DMA Transfer Modes DMA transfers can be of two types: cycle stealing and block (burst)

transfer.

Memory accesses by the CPU and the DMA controllers are interlocking. Requests by DMA

devices for using memory buses are always given higher priority than processor requests. Among

different DMA devices, top priority is given to high-speed peripherals such as a disk, a high-speed

network interface or a graphics display device. Since the CPU originates most memory access cycles,

the DMA controller can be said to �steal� memory cycles from the CPU. Hence, this interlocking

technique is usually called cycle stealing.

Figure 7.15 Typical DMA system

Input-Output Organization 7.17

When DMA controller is the master of the memory buses, a block of memory words is transferred

in continuous without interruption. This mode of DMA transfer is known as block (burst) transfer.

This mode of transfer is needed for fast devices such as magnetic disks, where data transmission

cannot be stopped or slowed down until an entire block is transferred.

7.6 BUS ARBITRATION

A conflict may arise if the number of DMA controllers or other controllers or processors try to access

the common bus at the same time, but access can be given to only one of those. Only one processor or

controller can be bus master. The bus master is the controller that has access to a bus at an instance.

To resolve these conflicts, bus arbitration procedure is implemented to coordinate the activities of all

devices requesting memory transfers. Bus arbitration refers to a process by which the current bus

master accesses and then leaves the control of the bus and passes it to another bus requesting

processor unit. The selection of the bus master must take into account the needs of various devices by

establishing a priority system for gaining access to the bus. The bus arbiter decides who would

become current bus master. There are two approaches to bus arbitration:

1. Centralized bus arbitration: A single bus arbiter performs the required arbitration.

2. Distributed bus arbitration: All devices participate in the selection of the next bus master.

7.6.1 Methods of Bus Arbitration

There are three bus arbitration methods:

1. Daisy Chaining Method.

2. Polling or Rotating Priority Method.

3. Fixed Priority or Independent Request Method.

Daisy Chaining Method The daisy chaining method is a centralized bus arbitration method.

During any bus cycle, the bus master may be any device�the processor or any DMA controller unit,

connected to the bus. Figure 7.16 illustrates the daisy chaining method.

Figure 7.16 Daisy chained bus arbitration

All devices are effectively assigned static priorities according to their locations along a bus grant

control line (BGT). The device closest to the central bus arbiter is assigned the highest priority.

Requests for bus access are made on a common request line, BRQ. Similarly, the common acknowl-

edge signal line (SACK) is used to indicate the use of bus. When no device is using the bus, the

SACK is inactive. The central bus arbiter propagates a bus grant signal (BGT) if the BRQ line is high

7.18 Computer Organization

and acknowledge signal (SACK) indicates that the bus is idle. The first device, which has issued a bus

request, receives the BGT signal and stops the latter�s propagation. This sets the bus-busy flag in the

bus arbiter by activating SACK and the device assumes bus control. On completion, it resets the

bus-busy flag in the arbiter and a new BGT signal is generated if other requests are outstanding (i.e.,

BRQ is still active). The first device simply passes the BGT signal to the next device in the line.

The main advantage of the daisy chaining method is its simplicity. Another advantage is scalability.

The user can add more devices anywhere along the chain, up to a certain maximum value.

Polling or Rotating Priority Method In this method, the devices are assigned unique priorities

and compete to access the bus, but the priorities are dynamically changed to give every device an

opportunity to access the bus. This dynamic priority algorithm generalizes the daisy chain implemen-

tation of static priorities discussed above. Recall that in the daisy chain scheme all devices are given

static and unique priorities according to their positions on a bus-grant line (BGT) emanating from a

central bus arbiter. However, in the polling scheme, no central bus arbiter exists, and the bus-grant

line (BGT) is connected from the last device back to the first in a closed loop (Fig. 7.17). Whichever

device is granted access to the bus serves as bus arbiter for the following arbitration (an arbitrary

device is selected to have initial access to the bus). Each device�s priority for a given arbitration is

determined by that device�s distance along the bus-grant line from the device currently serving as bus

arbiter; the latter device has the lowest priority. Hence, the priorities change dynamically with each

bus cycle.

Figure 7.17 Rotating priority method

The main advantage of this method is that it does not

favor any particular device or processor. The method is

also quite simple.

Fixed Priority or Independent Request Method In

bus independent request method, the bus control passes

from one device to another only through the centralized

bus arbiter. Figure 7.18 shows the independent request

method. Each device has a dedicated BRQ output line and

BGT input line. If there are m devices, the bus arbiter has

m BRQ inputs and m BGT outputs. The arbiter follows a

priority order with different priority level to each device.

At a given time, the arbiter issues bus grant (BGT) to the

highest priority device among the devices who have issued

bus requests. This scheme needs more hardware but generates fast response.

Figure 7.18 Fixed priority bus arbitra-

tion method

Input-Output Organization 7.19

7.7 INPUT-OUTPUT PROCESSOR (IOP)

The DMA mode of data transfer reduces CPU�s overhead in handling I/O operations. It also allows

parallelism in CPU and I/O operations. Such parallelism is necessary to avoid wastage of valuable

CPU time while handling I/O devices which are much slower compared to CPU. The concept of

DMA operation can be extended to relieve the CPU further from getting involved with the execution

of I/O operations. This gives rise to the development of special purpose processor called IO processor

(IO channel).

The IOP is just like a CPU that handles the details of I/O operations. It is more equipped with

facilities than those are available in a typical DMA controller. The IOP can fetch and execute its own

instructions that are specifically designed to characterize I/O transfers. In addition to the I/O-related

tasks, it can perform other processing tasks like arithmetic, logic, branching and code translation. The

block diagram of an IOP is shown in Fig. 7.19. The main memory unit takes the pivotal role. It

communicates with processor by means of DMA.

Figure 7.19 Block diagram of a computer with IOP

The data formats of peripheral devices differ from memory and CPU data formats. The IOP must

structure data words from many different sources. For example, it may be necessary to take four bytes

from an input device and pack them into one 32-bit word before the transfer to memory. Data are

gathered in the IOP at the device rate and bit capacity while the CPU is executing its own program.

After the input data are assembled into a memory word, they are transferred from IOP directly into

memory by �stealing� one memory cycle from the CPU. Similarly, an output word transferred from

memory to the IOP is directed from the IOP to the output device at the device rate and bit capacity.

7.20 Computer Organization

The communication between the IOP and the devices attached to it is similar to the program

control method of transfer. Communication with the memory is similar to the direct memory access

method. The way by which the CPU and IOP communicate depends on the level of sophistication

included in the system. In very-large-scale computers, each processor is independent of all others and

any one processor can initiate an operation. In most computer systems, the CPU is the master while

the IOP is a slave processor. The CPU is assigned the task of initiating all operations, but I/O

instructions are executed in the IOP. CPU instructions provide operations to start an I/O transfer and

also to test I/O status conditions needed for making decisions on various I/O activities. The IOP, in

turn, typically asks for CPU attention by means of an interrupt. It also responds to CPU requests by

placing a status word in a prescribed location in memory to be examined later by a CPU program.

When an I/O operation is desired, the CPU informs the IOP where to find the I/O program and then

leaves the transfer details to the IOP.

Instructions that are read from memory by an IOP are sometimes called commands, to distinguish

them from instructions that are read by the CPU. Otherwise, an instruction and a command have

similar functions. Commands are prepared by experienced programmers and are stored in memory.

The command words constitute the program for the IOP. The CPU informs the IOP where to find the

commands in memory when it is time to execute the I/O program.

CPU-IOP Communication The communication between CPU and IOP may take different for-

mats, depending on the particular computer considered. In most cases the memory unit acts as a

message center where each processor leaves information for the other.

The sequence of operations may be carried out as shown in the flowchart of Figure 7.20. The CPU

sends an instruction to test the IOP path.

The IOP responds by inserting a status word in memory for the CPU to check. The bits of the

status word indicate the condition of the IOP and I/O device, such as IOP overload condition, device

busy with another transfer, or device ready for I/O transfer. The CPU refers to the status word in

memory to decide what to do next. If all are in order, the CPU sends the instruction to start I/O

transfer. The memory address received with this instruction tells the IOP where to find its program.

The CPU can now continue with another program while the IOP is busy with the I/O program.

Both programs refer to memory by means of DMA transfer. When the IOP terminates the execution

of its program, it sends an interrupt request to the CPU. The CPU responds to the interrupt by issuing

an instruction to read the status from the IOP. The IOP responds by placing the contents of its status

report into a specified memory location. The status word indicates whether the transfer has been

completed or if any errors occurred during the transfer. From inspection of the bits in the status word,

the CPU determines if the I/O operation was completed satisfactorily without errors.

The IOP takes care of all data transfers between several I/O units and the memory while the CPU is

processing another program. The IOP and CPU are competing for the use of memory, so the number

of devices that can be in operation is limited by the access time of the memory. It is not possible to

saturate the memory by I/O devices in most systems, as the speed of most devices is much slower than

the CPU. However, some very fast units, such as magnetic disks, can use an appreciable number of

the available memory cycles. In that case, the speed of the CPU may deteriorate because it will often

have to wait for the IOP to conduct memory transfers.

Input-Output Organization 7.21

7.8 DATA TRANSFER MECHANISM

There are basically two methods of data transfer:

l Parallel

l Serial

Figure 7.20 CPU- IOP communication

7.22 Computer Organization

7.8.1 Parallel Communication

In parallel mode, all bits of data (usually a byte) are transferred parallel over the communication lines

known as buses. Thus, all the bits of data are transferred simultaneously within the timeframe allotted

for the transmission. A total of 9-bit (8 bits of a byte data and a parity bit) data bus is commonly used

between the sender and receiver. Accordingly, the interface circuit must be of parallel type so that all

the bits of data are transferred simultaneously over the data bus (Figure 7.21).

In case of a parallel interface, the connection between the device and the computer uses a multi-pin

connector and a cable with as many wires, typically arranged in a flat configuration. The circuits at

either end are relatively simple, as there is no need for conversion between parallel and serial formats.

This arrangement is suitable for devices that are physically close to the computer. A parallel data

transfer scheme has traditionally been used for higher-speed peripherals such as magnetic tape and

disk.

Figure 7.21 Parallel mode of transfer

As mentioned earlier, parallel data transfer scheme has the inherent advantage for high data

transfer rate. However, it requires large bus width and thus the associated hardware cost is high. The

serial format is much more convenient and cost-effective where longer cables are needed.

7.8.2 Standard Parallel Interfaces

IEEE 1284 The demand for higher transfer speed and bi-directional transfer between the PC and

an external peripheral introduces the IEEE 1284 standard in 1997. The 1284 standard defines 5

modes of data transfer. Each mode provides a method of transferring data in either the forward

direction (PC to peripheral), reverse direction (peripheral to PC) or bi-directional data transfer (half

duplex). The defined modes are:

1. Compatibility Mode (Centronics or standard mode): Forward direction only.

2. Nibble Mode (Hewlett Packard Bi-tronics): 4 bits at a time using status lines for data. Reverse

direction only.

3. Byte Mode: 8 bits at a time using data lines, sometimes referred to as a bi-directional port.

Reverse direction only.

4. EPP (Enhanced Parallel Port): Used primarily by non-printer peripherals, CD ROM, tape,

hard drive, network adapters, etc. It is bi-directional.

5. ECP (Extended Capability Port): Used primarily by new generation of printers and scanners.

It is bi-directional.

Input-Output Organization 7.23

All parallel ports can implement a bi-directional link by using the compatible and nibble modes for

data transfer. Byte mode can be utilized by about 25% of the installed base of parallel ports. All three

of these modes utilize software only to transfer the data. The driver has to write the data, check the

handshake lines (i.e. BUSY), assert the appropriate control signals (i.e. STROBE) and then go on to

the next byte. This is very software intensive and limits the effective data transfer rate to 50 to 100

Kbytes per second.

In addition to the previous 3 modes, EPP and ECP are being implemented on the latest I/O

controllers by most of the Super I/O chip manufacturers. These modes use hardware to assist in the

data transfer. For example, in EPP mode, a byte of data can be transferred to the peripheral by a

simple OUT instruction. The I/O controller handles all the handshaking and data transfer to the

peripheral.

SCSI (Small Computer System Interface) SCSI (pronounced as �Scuzzy�) is an 8- or 16-bit

parallel interface that allows up to seven devices to connect to a PC along a single cable, with each

device having a unique address. Many computers use SCSI for interfacing to internal or external hard

drives, tape back-ups, and CD-ROMs. SCSI interfaces are fast (synchronous version has a peak data

rate of 4 Mbytes and asynchronous version has that of 1.5 Mbytes) and the cable can be as long as 19-

feet (6 meters). The SCSI uses a handshaking protocol. A device connected to a SCSI is intelligent

and expensive. But the parallel-port interface is simpler, cheaper and much more common. There are

different SCSI standards: SCSI (or SCSI 1), SCSI 2 and SCSI 3.

IEEE 488 The IEEE-488 interface began as Hewlett Packard�s GPIB (general-purpose interface

bus). It is a parallel interface that enables up to 15 devices to communicate at speeds of up to

1 Megabit per second. This interface has long been popular for interfacing to lab instruments.

Expansion cards with IEEE-488 interfaces are available.

7.8.3 Serial Communication

In serial data transfer, each data bit is sent sequentially over a single data bus line (Figure 7.22). In

order to implement serial data transmission, the sender and receiver must divide the timeframe

allotted for the transmission of a data (byte) into subintervals during which each bit is sent and

received. For serial transmission, the interface, known as serial interface, uses only one line to

transmit data bit by bit. Serial communication is usually selected for data transfer over long distance

involving devices having low data-transfer rates. Typically through a serial communication link, the

Figure 7.22 Serial mode transfer

7.24 Computer Organization

devices such as the keyboard and mouse are connected directly to the computer. Other devices such

as printers and scanners may be connected to a computer either directly or via a communication

network so that they may be shared among several users.

Serial communication implies that data are sent one bit at a time. This requires that both the

transmitting and the receiving devices use the same timing information for interpretation of individual

bits. When the communicating devices are physically close to each other and multiple signal paths are

available, a clock signal can be transmitted along with the data. However, this is not feasible over

longer links, where only one signal path is available. More importantly, even if a second path is

provided, the delays encountered by the data and the clock signals could be different. For these

reasons, timing information and data are encoded on one transmission channel. A variety of encoding

schemes have been developed that enable the receiver to decode the received signal and recover the

timing and transmitted data correctly.

Modulation and Demodulation Computer systems often use standard telephone lines for trans-

mission of digital data over a long distance. The bandwidth of such lines being very low (of the order

of 3 kHz), to transmit normal digital pulse it is necessary to convert them to suitable format for

reliable transmission. Most commonly used scheme is to convert digital logic 0 and 1 levels to low

frequency sine waves. It is referred to as frequency shift keying (FSK) in which a logic �0� is

represented by sine wave of low frequency, while a logic �1� is represented sine wave of high

frequency. The duration of sine wave frequency is same as that of logic 1 or 0 bit time of serial data.

Special circuit, termed as Modem is used at the sending station to convert logic level to sine wave

(that is modulation). The reverse process (that is demodulation from sine wave to logic level) is

implemented at the receiving end. Thus modem is used to convert serial input data to FSK output

signal and also convert an FSK input to serial data output.

Therefore, as shown in Figure 7.23, a modem is installed at each end of a communications link to

perform the desired signal transformations. The figure shows a computer connected to a network

server. This could be a permanent connection or a dialed connection over a telephone line.

Figure 7.23 Remote connection to a network

Input-Output Organization 7.25

Full-Duplex and Half-Duplex Links A communication link may be operated according to one of

the following three schemes:

l Simplex: This allows transmission in one direction only.

l Half duplex (HDX): This allows transmission in either direction, but not at the same time.

l Full duplex (FDX): This allows simultaneous transmission in both directions.

The simplex configuration is useful only if the remote location contains an input or an output

device, but not both. Therefore, based on economy and speed of operation required, the half or full

duplex is chosen.

To obtain a half-duplex link, switches at both ends must be used to connect either the transmitter or

the receiver, but not both to the line. When transmission in one direction is completed, the switches

are reversed to enable transmission in the reverse direction. Control of the position of the switches is

a part of the function of the devices at each end of the line.

Full-duplex operation is possible on a four-wire link, with two wires dedicated to each direction of

transmission. It is also possible on a two-wire link by using two non-overlapping frequency bands.

The two bands create two independent transmission channels, one for each direction of transmission.

Serial data communication generally uses either asynchronous or synchronous communication

scheme. These two methods employ different techniques for transmitting data between sender and

receiver.

Asynchronous Communication This is a simple scheme in which the sender and receiver use

independent clock signals having the same nominal frequency. No attempt is made to guarantee that

the two clocks have exactly the same phase or frequency. For data transmission within a few tens of

kilobits per second, this scheme is used.

This simple scheme uses a technique called start-stop. To facilitate timing recovery, data are

organized in groups of 6 to 8 bits, with a well-defined beginning and end. In a typical arrangement,

alphanumeric characters encoded in 8 bits are transmitted as shown in Figure 7.24. The line connect-

ing the transmitter and the receiver is in the 1 state when idle. Transmission of a character is preceded

by a 0 bit, referred to as the Start bit, followed by eight data bits and one or two Stop bits. The Stop

bits have a logic value of 1. The Start bit alerts the receiver that data transmission is about to begin.

Its leading edge is used to synchronize the receiver clock with that of the transmitter. The Stop bits at

the end delineate consecutive characters in the case of continuous transmission. When transmission

stops, the line remains in the 1 state after the end of the Stop bits. It is the responsibility of the sender

and receiver circuitry to insert and remove the Start and Stop bits.

Figure 7.24 Asynchronous serial character transmission

7.26 Computer Organization

A number of standard transmission rates are found in commercially available equipment ranging

from 300 to 56,000 bits per second. Start-Stop transmission is used on short connections, such as the

connection between the computer and the modem in Figure 7.23. For longer distances, such as for the

connection between the two modems in the figure, Start-Stop can be used only at very low speeds.

High-speed modems use the synchronous transmission schemes discussed in the next.

Synchronous Communication Synchronous transmission is needed to transmit data at higher

speed. In this case, the receiver recovers the clock timing used by the transmitter by continuously

observing the positions of the transitions in the received signal and adjusting the phase of its local

clock accordingly. As a result, the receiver�s clock is synchronized with the transmitter�s clock and

can be used to recover the transmitted data correctly. There is a wide range of techniques used to

encode timing information over synchronous links. They vary in ability to make use of the bandwidth

of the link and hence in the data rate they can achieve.

In the synchronous communication, after a fixed number of data bytes, a special bit pattern called

SYNC is sent to mark the end. There are gaps between adjacent characters in the asynchronous commu-

nication, whereas there is no gap between adjacent characters in the synchronous communication. There

is a continuous stream of data bits coming at a fixed speed in the synchronous communication scheme.

Here, data are transmitted in blocks consisting of several hundreds or thousands of bits each.

The rate at which the data bits are sent is known as the Baud Rate, specified in BPS (Bits Per

Second). The standard baud rates are: 50, 110, 134.5, 150, 300, 1200, 2400, 4800, 9600, 19200 and

38400. The baud rate chosen in a communication system depends on the quality of the transmission

line and the capability of the transmitting and receiving end equipments.

7.8.4 Standard Serial Interfaces

This section introduces serial communication standards used for data transfer over long distances

from a CPU to another CPU or IO devices like printer, VDU terminals, etc. Serial transmission

requires only two wires to carry all the necessary data, address and control information. It does so one

bit at a time and hence it is much slower than parallel transmission. However, parallel transmission

over a long distance is too costly. Cost and benefit consideration has forced the introduction of some

serial data transmission schemes.

RS-232C Standard The RS-232C interface is a standard interface for serial data communication;

first introduced in the year 1962 and specified by the Electronics Industries Association (EIA) (RS

stands for Recommended Standard).

The RS-232C interface expects a modem to be connected at the receiving and the transmitting end.

The modem is DCE (Data Communication Equipment) and the computer, terminal, or printer with

which the modem is interfaced is DTE (Data Terminal Equipment). The DCE and the DTE are linked

via a cable whose length should not exceed 50 ft. Though not reliable, it may not affect the communi-

cation if the speed of data transfer is reduced when the distance is increased. The DTE has a 25 pin D

type male connector and the DCE has a 25 pin D type female connector. However, some systems use

9-pin connectors.

The RS-232C standard follows negative logic. A logical 1 is represented by a negative voltage and

logical 0 is represented by a positive voltage. The level 1 (High) varies from -3 to -15 V and the level

0 (Low) varies from +3 to +15 V. In practice the hardware circuits used for the RS-232C interface

maintain the signal level at +12 V (logic 0) and at �12 V (logic 1).

Input-Output Organization 7.27

Table 7.1 lists the RS-232C interface signals. The TXD carries the data bits sent by the DTE. The

modem receives the TXD signal and uses it for modulating the carrier signal. The RXD is the data

from the DCE to the DTE. The RXD is generated by the modem by demodulating the signal received

from the other end modem.

Before sending data the DTE requests for permission from the modem by the RTS signal. When the

modem finds that the communication path (consisting of telephone line, the other end modem and DTE)

is ready for communication, it issues the CTS signal to the DTE as an acknowledgement for the RTS.

The DTE issues the DTR signal when it is powered-on, error-free and ready. The modem issues a

DSR signal to indicate that it is powered-on and error-free.

The RI and RLSD signals are used with the dialed modem. When the telephone line is a shared

(switched) line, a dialed modem is used and a telephone set is attached to the modem. When a DTE at

one end wants to communicate with a DTE at the other end, it initiates a dial sequence. The modem at

the sending end sends a dial tone. In response the called modem issues the RI Signal to its DTE, and

sends an answer tone for 2 s to the calling modem. Then the calling modem sends an 8 ms duration

tone on the telephone line. Now the called modem issues CD to its DTE. The CD is an indication to

the DTE that it will soon be receiving the data sent by the other end DTE.

Table 7.1 RS-232C signals

Pin number EIA ckt. Signal description Common abbreviation From DCE To DCE

1 AA Frame ground GND X X

2 BA Transmitted data TXD X

3 BB Received data RXD X

4 CA Request to send RTS X

5 CB Clear to send CTS X

6 CC Data set ready DSR X

7 AB Signal ground/common return SG X X

8 CF Received line signal detector RLSD OR CD X

9 Reserved

10 Reserved

11 Unassigned

12 SCF Secondary received line X

signal detector

13 SCB Secondary clear to send X

14 SBA Secondary transmitted data X

15 DB Transmitter signal X

element timing (DCE)

16 SBB Secondary received data X

17 DD Receiver signal element timing X

18 Unassigned

19 SCA Secondary request to send X

20 CD Data terminal ready DTR X

21 CG Signal quality detector SQ X

22 CE Ring indicator DCE X

23 CH Data signal rate selector (DTE) X

24 CI Data signal rate selector (DCE) X

25 DA Transmitter signal

element timing (DTE) DTE X

26 Unassigned

7.28 Computer Organization

A few other serial interface standards like RS 422A and RS 423A have also evolved which aim to

remove some of the drawbacks of RS 232C, such as all data and control signals are referred to same

ground pin 7 (Table 7.1). By contrast, RS 422A uses two wires for each signal. Standard RS 485 is an

upgraded version of RS 422A.

USB (Universal Serial Bus) The Universal Serial Bus (USB) has a lot of advantages over the

RS232C serial port in respect of several parameters, such as easy installation, faster transfer rate,

minimum cabling and multiple device connections. A new option for I/O interfacing is the USB, a

project of a group that includes Intel and Microsoft. A single USB port can have up to 127 devices

communicating at either 1.5 Megabits/second or 12 Megabits/second over a 4-wire cable. An USB

device can be connected without switching-off a PC. The �Plug and Play� feature in the BIOS (Basic

Input Output System) and the USB devices takes care of detection, device recognition and handling.

This feature is known as hot pluggability. The user is totally free from the burden of the configuration

procedures.

IEEE 1394 The IEEE-1394 high-performance serial bus, also known as Firewire, is another new

interface. It allows up to 63 devices to connect to a PC, with transmission rates of up to 400 Megabits

per second (i.e. up to 30 times higher bandwidth than USB). The 6-wire cables can be as long as 15

feet, with daisy chains extending to over 200 feet. It has the same Hot Pluggability feature as USB.

The interface is especially popular for connecting digital audio and video devices. Unlike USB, the

IEEE 1394 supports DMA transfers. IEEE-1394 expansion cards are available for PCs.

1. Differentiate between isolated I/O and memory mapped I/O.

Answer

(a) In the isolated (I/O mapped) I/O, computers use one common address bus and data bus to

transfer information between memory or I/O and the CPU; but use separate read-write control

lines, one for memory and another for I/O. Whereas, in memory mapped I/O, computers use

only one set of read and write lines along with same set of address and data buses for both

memory and I/O devices.

(b) The isolated I/O technique isolates all I/O interface addresses from the addresses assigned to
memory. Whereas, the memory mapped I/O does not distinguish between memory and I/O

addresses.
(c) Processors use different instructions for accessing memory and I/O devices in isolated I/O. In

memory mapped I/O, processors use same set of instructions for accessing memory and I/O.
(d) Thus, the hardware cost is more in isolated I/O relative to the memory mapped I/O, because

two separate read-write lines are required in first technique.

2. A processor executes 50,000,000 cycles in one second. A printer device is sent 8 bytes in
programmed I/O mode. The printer can print 500 characters per second and does not have a
print-buffer.

(a) How much time will be taken to acknowledge the character status?
(b) How many processor cycles are used in transferring just 8 bytes?

Input-Output Organization 7.29

Answer

(a) Time taken to acknowledge the character status = 1/500 second = 2 ms, which is equivalent to

2 ¥ 50,000 cycles = 100,000 cycles.

(b) Number of processor cycles used in transferring 8 bytes = 8 ¥ 100,000 = 800,000.

3. How does polling work?

Answer

A processor is generally equipped with multiple interrupt lines those are connected between processor

and I/O modules. Several I/O devices share these interrupt lines. There are two ways to service

multiple interrupts: polled and daisy chaining technique.

In polling, interrupts are handled by software. When the processor detects an interrupt, it branches

to a common interrupt service routine (ISR) whose function is to poll each I/O device to determine

which device caused the interrupt. The order in which they are polled determines the priority of each

interrupt. The highest priority device is polled first and if it is found that its interrupt signal is on, the

CPU branches to the device�s own ISR for I/O transfer between the device and CPU. Otherwise it

moves to poll the next highest priority device.

4. Differentiate between polled I/O and interrupt driven I/O.

Answer

(a) In the polled I/O or programmed I/O method, the CPU stays in the program until the I/O

device indicates that it is ready for data transfer, so CPU is kept busy needlessly. But, in

interrupt driven I/O method, CPU can perform its own task of instruction executions and is

informed by raising an interrupt signal when data transfer is needed.

(b) Polled I/O is low cost and simple technique; whereas, interrupt I/O technique is relatively high

cost and complex technique. Because in second method, a device controller is used to continu-

ously monitor the device status and raise an interrupt to the CPU as soon as the device is ready

for data transfer.

(c) The polled I/O method is particularly useful in small low-speed computers or in systems that

are dedicated to monitor a device continuously. However, interrupt I/O method is very useful

in modern high speed computers.

5. Discuss the advantage of interrupt-initiated I/O over programmed I/O.

Answer

In the programmed I/O method, the program constantly monitors the device status. Thus, the CPU

stays in the program until the I/O device indicates that it is ready for data transfer. This is time-

consuming process since it keeps the CPU busy needlessly. It can be avoided by letting the device

controller continuously monitor the device status and raise an interrupt to the CPU as soon as the

device is ready for data transfer. Upon detecting the external interrupt signal, the CPU momentarily

stops the task it is processing, branches to an interrupt-service-routine (ISR) or I/O routine or

interrupt handler to process the I/O transfer, and then after completion of I/O transfer, returns to the

task it was originally performing. Thus, in the interrupt-initiated mode, the ISR software (i.e. CPU)

performs data transfer but is not involved in checking whether the device is ready for data transfer or

not. Therefore, the execution time of CPU can be optimized by employing it to execute normal

programs, when no data transfer is required.

7.30 Computer Organization

6. What are the different types of interrupt? Give examples.

Answer

There are basically three types of interrupts: external, internal or trap and software interrupts.

External interrupt: These are initiated through the processors� interrupt pins by external devices.

Examples include interrupts by input-output devices and console switches. External interrupts can be

divided into two types: maskable and non-maskable.

Maskable interrupts: The user program can enable or disable all or a few device interrupts by

executing instructions EI or DI.

Non-maskable interrupts: The user program cannot disable it by any instruction. Some common

examples are: hardware error and power fail interrupt. This type of interrupt has higher priority than

maskable interrupts.

Internal interrupt: This type of interrupts is activated internally by exceptional conditions. The inter-

rupts caused due to overflow, division by zero and execution of an illegal op-code are common

examples of this category.

Software interrupts: A software interrupt is initiated by executing an instruction like INT n in a

program, where n refers to the starting address of a procedure in program. This type of interrupts is

used to call operating system. The software interrupt instructions allow to switch from user mode to

supervisor mode.

7. What are the differences between vectored and non-vectored interrupt?

Answer

In a vectored interrupt, the source that interrupts supplies the branch information (starting address of

ISR) to the CPU. This information is called the interrupt vector, which is not any fixed memory

location. The processor identifies individual devices even if they share a single interrupt-request line.

So the set-up time is very less.

In a non-vectored interrupt, the branch address (starting address of ISR) is assigned to a fixed

location in memory. Since the identities of requesting devices are not known initially. The set-up time

is quite large.

8. Draw and discuss the schematic diagram for daisy chain polling arrangement in case of

vectored interrupt for three devices.

Answer

To implement interrupts, the CPU uses a signal, known as an interrupt request (INTR) signal to the

interrupt controller hardware, which is connected to each I/O device that can issue an interrupt to it.

Here, interrupt controller makes liaison with the CPU on behalf of I/O devices. Typically, the interrupt

controller is also assigned an interrupt acknowledge (INTA) line that the CPU uses to signal the

controller that it has received and begun to process the interrupt request by employing an ISR

(interrupt service routine). Devices are connected in daisy chain fashion, as shown in the figure

below, to set up a priority interrupt system.

The devices are placed in a chain-fashion with highest priority device in the first place (device 1),

followed by lower priority devices. When one or more devices send interrupt signal through the

interrupt controller to the CPU, the CPU then sets interrupt acknowledge (INTA) to the controller,

Input-Output Organization 7.31

which in turn sends it to the highest priority device. If this device has generated the interrupt INTR, it

will accept the INTA; otherwise it will pass the INTA signal to the next device until the INTA is

accepted by one requestor device. When the INTA is accepted by a device, the device puts its own

interrupt vector address (VAD) to the data bus using the interrupt controller.

9. �Interrupt request is serviced at the end of current instruction cycle while DMA request is

serviced almost as soon as it is received, even before completion of current instruction

execution.� Explain.

Answer

In the interrupt initiated I/O, interrupt request is serviced at the end of current instruction cycle,

because the processor takes part in the I/O transfer for which processor was interrupted. Thus proces-

sor will be busy in data transfer after this instruction.

But in DMA transfer, the processor is not involved during data transfer. It actually initiates the data

transfer. The whole data transfer is supervised by DMA controller and at that time processor is free to

do its own task of instruction execution.

10. Suppose a disk transfers data at 5 MB per second at sustained rate. If the disk controller

interrupts the processor for every 4-byte word, how often will the processor be interrupted for

continuous operations?

Answer

Since the word size is 4 bytes, here, 5 MB per second is same as 1.25 ¥ 220 words per second.

So, 1.25 ¥ 220 times per second, or in every 0.76 microseconds (approx) will be interrupted.

11. Suppose the disk transfers data at 5 MB per second at sustained rate. If the disk controller

interrupts the processor for every sector transfer, where a sector is 512 bytes, how often will

the processor be interrupted for continuous operation?

Answer

Since the sector size is 512 bytes, here. 5 MB per second is 10240 sectors per second.

So, 10240 times per second, or in every 97.7 microseconds (approx.), the process will be inter-

rupted.

7.32 Computer Organization

12. Give the main reason why DMA based I/O is better in some circumstances than interrupt

driven I/O?

Answer

To transfer large blocks of data at high speed, DMA method is used. A special DMA controller is

provided to allow transfer a block of data directly between a high speed external device like magnetic

disk and the main memory, without continuous intervention by the CPU. The data transmission

cannot be stopped or slowed down until an entire block is transferred. This mode of DMA transfer is

known as burst transfer.

13. What are the different types of DMA controllers and how do they differ in their functioning?

Answer

DMA controllers are of two types:

� Independent DMA controller

� DMA controller having multiple DMA-channels

Independent DMA controller:

For each I/O device a separate DMA controller is used. Each DMA controller takes care of supporting

one of the I/O controllers. A set of registers to hold several DMA parameters is kept in each DMA

controller. Such arrangement is shown in figure below for floppy disk controller (FDC) and hard disk

controller (HDC). DMA controllers are controlled by the software.

DMA controller having multiple DMA-channels:

In this type of DMA controller, only one DMA controller exists in the system, but this DMA

controller has multiple sections or channels, each channel is for one I/O device. In this case, the

software deals each channel in the same way. Multiple DMA channels in a DMA controller work in

overlapped fashion, but not in fully parallel mode since they are embedded in a single DMA control-

ler. Such DMA controller design technique is adopted in most of the computer system and is shown in

figure below for floppy disk controller (FDC) and hard disk controller (HDC).

Input-Output Organization 7.33

14. What are the advantages and disadvantages of an asynchronous transfer?

Answer

Advantages:

(a) High degree of flexibility and reliability can be achieved because the successful completion of

a data transfer relies on active participation by both communicating units.

(b) Delays in transmission or in interface circuits are taken care of.

(c) There is no need of clock for synchronization of source and destination.

Disadvantages:

(a) A slow speed destination unit can hold up the bus whenever it gets a chance to communicate.

(b) If one of the two communicating devices is faulty, the initiated data transfer cannot be com-

pleted.

(c) Since handshaking involves exchange of signals twice, the data transfer is limited.

15. Suppose n devices are connected in daisy chained mode. An ith device executes the interrupt

service routine (ISR) in a time period Ti. What is the maximum waiting time of ith device?

Assume that each device executes an ISR only once, context switch time can be neglected and

0th device has highest priority.

Answer

In daisy chained method, an ith device gets the service only after all devices 0 to i �1 are serviced.

Now since each device executes an ISR only once, therefore maximum possible waiting time of ith

device = T0 + T1 + � + Ti�1.

16. Using asynchronous serial format of 7-bit data, odd parity and two stop bits at bit rate of

1500 bits / sec, the message START is to be transmitted. What will be the time for transmis-

sion?

Answer

Size of each character= 7 (data bits) + 1 (start bit) + 2 (stop bits) + 1 (parity bit)

= 11 bits

7.34 Computer Organization

So, to transmit message START, total no. of bits transmitted = 5 ¥ 11 = 55 bits

Bit rate = 1500 bits / sec

Therefore, time taken for transmission = 55 / 1500 sec = 36.67 msec

17. Suppose a system has following specifications:

l 400 ns memory cycle time for read/write

l 3 microsec for execution of an instruction on average

l interrupt service routine (ISR) consists of seven instructions

l each byte transfer requires 4 cycles (instructions)

l 50% of the cycles use memory bus

Determine the peak data transfer rate for�(a) programmed I/O (b) interrupt I/O, and (c) DMA.

Answer

Given,

Instruction execution time (average) = 3 m sec

Memory read/write cycle = 400 ns

(a) Instructions/IO byte = 4

In programmed I/O, CPU is continuously polling the I/O devices

Therefore, the peak data transfer rate = CPU speed/4

= 1/(3 ¥ 10�6 ¥ 4) bytes/sec

= 83 Kbytes/sec

(b) ISR consists of seven instructions.

In interrupt driven I/O, the peak data transfer rate = CPU speed/7

= 1/(3 ¥ 10�6 ¥ 7) bytes/sec

= 47.6 Kbytes/sec

(c) DMA:

Under burst transfer, peak data transfer rate = 1/memory cycle time

= 1 / (400 ¥ 10�9) bytes/sec

= 2.5 Mbytes/sec

Under cycle stealing, 50% of the cycles use memory bus

Peak data transfer rate = No. of memory cycles/memory cycle time

= 0.5/(400 ¥ 10�9) bytes/sec

= 1.25 Mbytes/sec

Group A

1. Choose the most appropriate option for the following questions:

(i) An I/O interface is

(a) a hardware unit used for transferring data with central computer (CPU and memory) on

behalf of a peripheral device

(b) a software used for transferring data with central computer (CPU and memory) on behalf of

a peripheral device

Input-Output Organization 7.35

(c) a firmware used for transferring data with central computer (CPU and memory) on behalf

of a peripheral device

(d) none.

(ii) In order to execute a program, instructions must be transferred from memory along a bus to the

CPU. If the bus has 8 data lines, at most one 8-bit data can be transferred at a time. How many

memory accesses would be needed in this case to transfer a 32-bit instruction from memory to

the CPU?

(a) 1 (b) 2 (c) 3 (d) 4

(iii) Suppose that a bus has 16 data lines and requires 4 cycles of 250 ns each to transfer data. The

bandwidth of this bus would be 2 Megabytes/second. If the cycle time of the bus was reduced to

125 ns and the number of cycles required for transfer stayed the same, what would the band-

width of the bus?

(a) 1 Megabyte/second (b) 4 Megabytes/second

(c) 8 Megabytes/second (d) 2 Megabytes/second

(iv) Any computer must at least consist of

(a) data bus (b) address Bus (c) control Bus (d) all of the above.

(v) An I/O command

(a) is generated by CPU to communicate with a particular peripheral

(b) is generated by a peripheral which wants to communicate with CPU or memory

(c) initiates an I/O transfer

(d) is provided through data bus.

(vi) An I/O driver is

(a) hardware unit used for transferring data with central computer (CPU and memory) on

behalf of a peripheral device

(b) software module that issues different commands to the I/O interface

(c) common program for all peripherals attached with the computer

(d) modifiable by the general users.

(vii) The objective of the IOP (I/O processor) is to use

(a) common buses (address, data and control) for the transfer of information between memory

and I/O devices

(b) common address and data buses, but separate control lines

(c) a separate bus

(d) none.

(viii) The main advantage of memory mapped I/O technique is

(a) no extra instructions are required

(b) no extra control signals are required

(c) the operations are done directly at the I/O register address

(d) DMA operations are fast.

(ix) Synchronous mode of data transfer

(a) is suitable for high speed devices

(b) occurs between two communicating devices, where one device is master and another is

slave

(c) is suitable for slow speed devices

(d) both (b) and (c).

7.36 Computer Organization

(x) Asynchronous data transfer

(a) can be initiated by source or destination device

(b) is initiated by source device

(c) is initiated by destination device

(d) is controlled by clock and can be initiated by source or destination device.

(xi) Asynchronous mode of data transfer

(a) is suitable for high speed devices

(b) occurs between two communicating devices, where one device is master and another is

slave

(c) is suitable for slow speed devices

(d) both (b) and (c).

(xii) When bulk data transfer is needed

(a) programmed I/O technique is used

(b) interrupt-initiated I/O technique is used

(c) DMA mode is used

(d) IOP is used.

(xiii) During data transfer in programmed I/O method

(a) the CPU can be busy on its own task of instruction execution

(b) the CPU is totally idle

(c) the CPU monitors the interface status

(d) none.

(xiv) When a device interrupts, the CPU finds the service routine address for processing from the

(a) interrupt vector start address

(b) interrupt vector location defined as per the device address

(c) program already under execution

(d) device control register.

(xv) DMA operations need

(a) switching logic between the I/O and system bus

(b) I/O bus

(c) special control signals to CPU such as hold and hold acknowledge

(d) no CPU control signals.

(xvi) DMA operations are initiated by

(a) DMA controller (b) I/O interface (c) I/O driver (d) CPU.

(xvii) Bus arbitration means

(a) master-slave synchronous or asynchronous data transfer

(b) a process by which a bus controller controls the bus most of the time

(c) a process by which the current bus master accesses and then leaves the control of the bus

and passes it to another bus requesting device

(d) a process to give bus accesses among many devices by polling the requesting device.

(xviii) Half-duplex communication allows transmission

(a) in either direction, but not at the same time

(b) in one direction only

(c) simultaneous transmission in both directions

(d) none of them

Input-Output Organization 7.37

(xix) The handshaking technique

(a) is used in synchronous data transfer

(b) is used in asynchronous data transfer and uses two control signals in opposite direction

(c) works even if one the communicating device gets faulty in the midway of data transfer

(d) is not much flexible.

(xx) When processor architecture disables execution of other devices interrupt during execution of

an ISR

(a) higher priority devices must have short ISRs

(b) interrupts should be used only when absolutely necessary

(c) interrupt routines should be made as short as possible

(d) DMA transfer be used.

(xxi) The data transfer technique in which no start and stop bits are used is

(a) synchronous

(b) asynchronous

(c) both synchronous and asynchronous

(d) neither synchronous nor asynchronous

(xxii) The bus arbitration technique in which the count lines are connected to all units is

(a) Daisy chaining

(b) polling

(c) independent requesting

(d) none.

(xxiii) The bus arbitration technique in which separate BUS REQUEST and BUS GRANT lines for

every unit are available is

(a) daisy chaining

(b) polling

(c) independent requesting

(d) none

(xxiv) The bus arbitration technique in which all units are connected to a single BUS REQUEST line

is

(a) daisy chaining

(b) polling

(c) independent requesting

(d) none

Group B

2. What is I/O interface or I/O controller? Why do we need I/O interfaces to the peripherals?

3. Discuss in brief how the data transfer take place between CPU and a peripheral.

4. What is I/O command? What are different types of I/O command?

5. Classify the I/O controllers. Give one example of each.

6. What is I/O driver? What are the functions of I/O drivers?

7. What is the difference between memory-mapped I/O and I/O-mapped I/O? Also state the advantages

and disadvantages of each.

8. Describe the synchronous mode of data transfer with merits and demerits.

9. Describe the asynchronous mode of data transfer with merits and demerits. What are different

techniques of asynchronous data transfer? Explain them with relative merits and demerits.

7.38 Computer Organization

10. What are the different modes of data transfer between central computer and I/O devices? Briefly

discuss each.

11. Explain the programmed I/O technique in brief. What are the advantages and disadvantages of using

this method?

12. Discuss how data transfer from I/O device to memory occurs in programmed I/O method.

13. Explain the interrupt-initiated I/O technique in brief. What are the advantages and disadvantages of

using this method?

14. Differentiate between vectored interrupt and non-vectored interrupt.

15. Compare between maskable and non-maskable interrupts.

16. Discuss how nesting of interrupts is handled.

17. Explain how an I/O operation based on an interrupt is more efficient than I/O operation based on a

programmed mode of operation.

18. When a device interrupt occurs, how does the CPU determine which device issued the interrupt?

19. Explain DMA mode of data transfer. Where does DMA mode of data transfer find its use?

20. What are different modes of DMA transfer? Compare them.

21. When a DMA controller takes control of a bus, and while it retains control of the bus, what does the

CPU do?

22. What is bus arbitration? What are different methods of bus arbitration? Explain them.

23. What is cycle stealing and how does it enhance the performance of the system?

24. In virtually all computers having DMA modules, DMA access to main memory is given higher

priority than CPU access to main memory. Why?

25. Write short note on: input-output processor (IOP).

26. Discuss about the asynchronous serial data transmission with a diagram.

27. What is the main advantage of the synchronous serial transmission over its counterpart? Discuss

about the synchronous serial data transmission in brief.

28. Write a short note on RS-232C standard communication interface.

APPENDIX
Digital Devices,

Logic Design and Assembly
Language Programming

Here, we want to discuss some important digital devices like logic gates, flip-flops, registers, full

adders, and multiplexers etc, which are used throughout the book. Also, we discuss the assembly

language basics.

A.1 LOGIC GATES

The digital systems consist of some primitive logic circuits known as logic gates. These circuits

operate on binary variables that assume one of two distinct logic states, usually called 0 and 1. Logic

gates are electronic circuits because they are made up of a number of electronic devices and compo-

nents. Each gate has a distinct graphic symbol and its operation can be described by means of an

algebraic expression. The input-output relationship of the binary variables for each gate can be

represented in tabular form by a truth table. There are three basic types of gates�AND, OR and NOT

(or Inverter). The other gates like XOR, NAND and NOR gates can be derived from these basic gates.

A.1.1 AND Gate

The AND gate is a circuit with two or more inputs and a single output. The output assumes the logic

1 state, only when each of its inputs is at logic state 1.

The output assumes the logic state 0, when at least one of its inputs is at logic 0 state. The graphic

symbols and truth tables of two input and three-input AND gates are shown in Fig. A.1. The symbol

for AND operation is �.� (dot) or �Ÿ� and thus A AND B can be written as A.B or A Ÿ B.

A.1.2 OR Gate

The OR gate, like AND gate, has two or more inputs and only one output. The output assumes the

logic state 1, if at least one of the inputs is at logic state 1 and output assumes logic state 0 only when

A.2 Computer Organization

all inputs are at logic 0. The graphic symbols and truth tables of two input and three-input OR gates

are shown in Fig. A.2. The symbol for OR operation is �+� (plus) or �⁄� and thus A AND B can be

written as A.B or A ⁄ B.

A.1.3 NOT Gate

The NOT gate has only one input and only one

output. It is sometimes referred to as inverter. It is

a device whose output is always the complement

of its input. That is, the output assumes logic state

1 if the input is at logic state 0. The output as-

sumes logic state 0 if the input is at logic state 1.

The graphic symbol and truth table of NOT gate

are shown in Fig. A.3. The symbol for NOT

operation is �
_
� (bar) �ÿ�and thus NOT can be

written as A or ÿA.

Truth Table

Inputs Outputs

A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Truth Table

Inputs Outputs

A B X

0 0 0

0 1 0

1 0 0

1 1 1

Figure A.1 The AND gate

(a) : Two-input AND gate (b) Three-input AND gate

Truth Table

Inputs Outputs

A B X

0 0 0

0 1 1

1 0 1

1 1 1

Truth Table

Inputs Outputs

A B C X

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

(a) Two-input OR gate (b) Three-input OR gate

Figure A.2 The OR gate

Truth Table

Inputs Outputs

A X

0 1

1 0

Figure A.3 The NOT gate

Digital Devices, Logic Design and Assembly Language Programming A.3

A.1.4 XOR (Exclusive-OR) Gate

The XOR gate has two inputs and one output. The output assumes logic state 1 when one and only

one of its two inputs is at logic state 1. The output assumes logic state 0 when both inputs are at logic

state 0 or both at logic 1. In other words, the

output assumes logic state 1 only when its

two inputs are different and its output as-

sumes logic state 0 when both inputs are

same.

The graphic symbol and truth table of XOR

gate are shown in Fig. A.4. The symbol for

XOR operation is �≈� and thus A XOR B

can be written as A ≈ B, which is logically

equivalent to A.B + A.B

A.1.5 NAND and NOR Gates

The two most widely used gates in real circuits are the NAND and NOR gates. These two gates are called

universal gates because other logic operations can be realized using either NAND gates or NOR gates.

Both NAND and NOR gates can perform all three basic logic operations (AND, OR, NOT).

NAND Gate The NAND gate is combination of AND and NOT gates, which is shown in

Fig. A.5.(a). The output assumes logic state 0, only when each of the inputs assumes a logic state 1.

The output assumes logic state 1, for all other combination of inputs. The graphic symbols and truth

Truth Table

Inputs Outputs

A B X

0 0 0

0 1 1

1 0 1

1 1 0

Figure A.4 The XOR gate

Truth Table

Inputs Outputs

A B X

0 0 1

0 1 1

1 0 1

1 1 0

(a) Realization of NAND gate (b) Two-input NAND gate

Truth Table

Inputs Outputs

A B C X

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

(c) Three-input NAND gate

Figure A.5 The NAND gate

A.4 Computer Organization

tables of two input and three-input NAND gates are shown in Figs A.5.(b) and A.5.(c) respectively.

The expression for the output of the NAND gate can be written as ABC¼

NOR Gate The NOR gate is the combination of OR gate and NOT gate, which is shown in

Fig A.6.(a). The output assumes logic state 1, only when each of the inputs assumes a logic state 0.

The output assumes logic state 0, for all other combination of inputs. The graphic symbols and truth

tables of two input and three-input NOR gates are shown in Figs A.6.(b) and A.6.(c) respectively. The

expression for the output of the NOR gate can be written as A B C+ + +¼.

Truth Table

Inputs Outputs

A B X

0 0 1

0 1 0

1 0 0

1 1 0

(a) Realization of NOR gate (b) Two-input NOR gate

Truth Table

Inputs Outputs

A B C X

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

(c) Three-input NOR gate

Figure A.6 The NOR gate

Realization of Other Logic Functions Using NAND/NOR Gates The NAND and NOR gates

are said to be universal gates, because using only NAND or NOR gates other logic operation can be

realized. It is easier to fabricate NAND or NOR gates using IC (integrated circuit) technology than

AND or OR gates. In addition to that, NAND and NOR gates consume less power. As a consequence,

they are used as fundamental building blocks in fabricating the digital devices. Figure A.7 shows how

other gates can be realized using NAND gates.

Similarly, different gates can be realized using NOR gates.

A.2 CLASSIFICATION OF LOGIC CIRCUITS

There are two types of logic circuits: (i) combinational and (ii) sequential.

The combinational circuit is one whose output state at any instant is dependent only on the states

of the inputs at that time. Thus, combinational circuit has no memory. Combinational circuits are

Digital Devices, Logic Design and Assembly Language Programming A.5

realized by logic gates. Examples of combinational circuits are adder, subtractor, multiplexer,

decoder, demultiplexer, etc.

The sequential circuit is one whose output state at any instant is dependent not only on the present

states of inputs at that instant, but also on the prior input states. Thus, sequential circuit has memory.

The sequential circuits are realized by logic gates in addition with flip-flops. Examples of sequential

circuits are registers, counters, etc.

A.2.1 Combinational Circuits

Half Adder A half adder (HA) is an arithmetic circuit which adds two binary digits and produces

two output bits: sum bit and carry bit. According to the binary addition rules, the sum (S) bit and the

carry (C) bit are given by the truth table:

Inputs Outputs

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Figure A.7 Realization of different gates using NAND gates

A.6 Computer Organization

From this table, we conclude that the sum (S) bit is obtained by XOR operation of A and B, and

the carry (C) bit is obtained by AND operation of A and B. Therefore,

S = A. B + A .B = A ≈ B

C = A.B

Hence, half adder (HA) can be realized by using one XOR gate and one AND gate, as shown in

Fig. A.8 (a). Figure A.8 (b) shows the block diagram of half adder.

Figure A.8 The half adder

Full Adder A full adder (FA) is an arithmetic circuit that adds two binary digits and a carry bit and

produces a sum bit and a carry bit. When two n-bit numbers are to be added, there may be a carry

from one stage to the next stage. The carry generated from one stage is to be added to the next stage.

Then we use the full adder which adds two normal input-bits A and B and the carry from the previous

stage called the carry-in Cin. The outputs of the full adder are the sum bit S and the carry bit called

Cout. The truth table of a full adder is as:

Inputs Outputs

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

From the truth table, the expressions for sum S and carry-out Cout can be written as:

S = A . B .Cin + A .B. inC + A. B . inC + A.B.Cin = A ≈ B ≈ Cin (1)

Cout = A .B.Cin + A. B .Cin + A.B. inC + A.B.Cin = A.B + (A + B).Cin

= A.B + (A ≈ B).Cin (2)

Now, expressions (1) and (2) can be realized using XOR, AND and OR gates, to get sum S and

carry-out Cout, which is shown in Fig. A.9. It is worth noting that a full adder is a combination of two

half adders, as shown in Fig. A.9. The block diagram of a full adder (FA) is shown in Fig. A.10.

BCD Adder The BCD number is introduced in Chapter 2. When two BCD digits are added

together with a possible carry from previous stage, the sum can be maximum 19. Since, maximum

Digital Devices, Logic Design and Assembly Language Programming A.7

BCD digit is 9, thus 9 + 9 + 1 (carry from previous stage) = 19. When two BCD digits are added

using 4-bit binary adder, the sum will be in binary form and the range of sum will be 0 to 19 in

equivalent decimal. The binary sum and BCD sum in this range is shown in Table A.1. By observing

the table, it is clear that the two sums are identical upto decimal 9 and thus no correction is required.

When sum is greater than 9, we find an invalid BCD sum representation. The binary 0110 (i.e. 6) is

added to the binary sum to get the valid BCD sum representation. This will generate an output carry

as required.

The BCD adder must be able to perform the following:

(a) Add two BCD digits using one 4-bit parallel adder.

(b) If the binary sum of this adder is greater than or equal to binary 1010 (i.e. decimal 10), add

binary 0110 (decimal 6) to the sum and generates the required output carry.

From the table, the logic circuit for necessary correction can be derived. It is clear that when binary

sum from 4-bit parallel adder is greater than 01001 (i.e. decimal 9) we need a correction. This can be

said in other words as, BCD carry X will be in high state when either of the following conditions

occurs:

1. When C = 1 (sums greater than or equal to 16)

2. When S3 = 1 and either S2 or S1 (sums in the range 10 to 15). Since decimal numbers 8 and 9

also have S3 = 1. To distinguish decimal numbers 10 to 15 from 8 and 9, we use S2 S1 bit

positions.

Table A.1 Relation of binary sum and BCD sum

 Binary sum BCD sum

C S3 S2 S1 S0 X S3 S2 S1 S0 Decimal

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 2

0 0 0 1 1 0 0 0 1 1 3

0 0 1 0 0 0 0 1 0 0 4

0 0 1 0 1 0 0 1 0 1 5

Figure A.9 Logic diagram of full adder Figure A.10 Block diagram of

full adder

(Contd)

A.8 Computer Organization

0 0 1 1 0 0 0 1 1 0 6

0 0 1 1 1 0 0 1 1 1 7

0 1 0 0 0 0 1 0 0 0 8

0 1 0 0 1 0 1 0 0 1 9

0 1 0 1 0 1 0 0 0 0 10

0 1 0 1 1 1 0 0 0 1 11

0 1 1 0 0 1 0 0 1 0 12

0 1 1 0 1 1 0 0 1 1 13

0 1 1 1 0 1 0 1 0 0 14

0 1 1 1 1 1 0 1 0 1 15

1 0 0 0 0 1 0 1 1 0 16

1 0 0 0 1 1 0 1 1 1 17

1 0 0 1 0 1 1 0 0 0 18

1 0 0 1 1 1 1 0 0 1 19

Thus, the condition for correction and the output carry can be expressed as:

X = C + S3.S2 + S3.S1

The BCD adder can be implemented as (see Fig. A.11): First two BCD numbers are added using

simple 4-bit parallel adder, which produces the sum as C S3 S2 S1 S0. Then a correction is needed

when this sum is equal to or greater than 10, which is implemented by using the above expression for

X. Lastly, another 4-bit parallel adder is used to add binary 0110, produced by the correction logic,

with the sum S3 S2 S1 S0. This will produce the required BCD sum output S3 S2 S1 S0. The carry

output X is used as the carry to the next BCD adder.

Figure A.11 BCD adder

Decoders A decoder is combinational circuit that converts n-bit coded information into a maxi-

mum of 2n unique outputs. Thus, only one of 2n unique outputs is activated for each of the possible

(Contd)

Digital Devices, Logic Design and Assembly Language Programming A.9

combinations of n-bit inputs. The logic diagram of a 2- to-4 line decoder is shown in figure A.12. It

has two-input lines A and B and four-output lines D0, D1, D2 and D3. The truth table of the decoder is

shown in Fig. A.12(b).

Some decoders have one or more enable inputs to control the operation of the circuit. For example,

the 2-to-4 line decoder in Fig. A.12 has one enable line E. When E is high, the decoder is activated

and when E is low, it is disabled.

Enable Inputs Outputs

E A B D0 D1 D2 D3

0 x x 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1

(b) Truth Table for 2-to-4 line decoder

Figure A.12 A 2-to-4 line decoder

Encoder An encoder is a combinational circuit that performs the �reverse� function of the decoder.

An encoder has 2n (or less) input lines and n output lines. The output lines generate the binary code

corresponding to the input value. An encoder has a number of input lines, out of which only one is

activated at a given time.

An octal-to-binary encoder is an example of it. An octal-to-binary encoder (8-to-3 encoder) accepts

8 input lines and produces a 3-bit output code corresponding to the activated input. Figure A.13

shows the truth table and the logic circuit for an octal-to-binary encoder.

From the truth table we see that A2 is a 1 if any of the digits D4 or D5 or D6 or D7 is a 1.

Thus,

A2 = D4 + D5 + D6 + D7

Similarly, A1 = D2 + D3 + D6 + D7

A0 = D1 + D3 + D5 + D7

We see that D0 is not present in any of the expressions. So, D0 can have any logic value (i.e. don�t

care).

A.10 Computer Organization

Figure A.13 An octal-to-binary encoder

Multiplexers A multiplexer (simply known as MUX) is a combinational circuit that accepts several

data inputs and directs only one of them at a time to go through the single output line. The selection

of a particular data input to the output line is controlled by a set of select inputs. A 2n-to-1 multiplexer

has 2n input data lines, one output line and n input select lines whose bit combination selects which

input data is routed to the output line.

The logic diagram of a 4-to-1 line MUX is shown in Fig. A.14. Four data inputs are D0, D1, D2, D3

and two select lines are S0, S1. The logic value applied to the select inputs S0, S1 determine which

AND gate is enabled, so that its data input the OR gate to the output. The function table of the

multiplexer is shown in Fig. A.14(b).

(b) Function table

Select inputs Output

S1 S0 Z

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Figure A.14 A 4-to-1 line multiplexer

Demultiplexers A demultiplexer (simply DEMUX) is a combinational circuit that performs re-

verse operation of the multiplexer. It accepts only one input data and transfers the input data through

one of several output lines. Thus, a demultiplexer is a 1-to-2n device, whereas, a multiplexer is a 2n-

Digital Devices, Logic Design and Assembly Language Programming A.11

to-1 device. Like MUX, a DEMUX has n select input lines whose bit combination selects which

output line is used to transfer the input data.

The logic circuit and function table for a 1-to-4 line DEMUX are shown in Fig. A.15. The two

select lines S0 and S1 enable only one AND gate at a time and the data (I) on the input line passes

through the selected gate to the associated output line.

Figure A.15 A 1-to-4 line demultiplexer

Select inputs Outputs

S1 S0 D0 D1 D2 D3

0 0 I 0 0 0

0 1 0 I 0 0

1 0 0 0 I 0

1 1 0 0 0 I

(b) Function table

A.2.2 Sequential Circuits

Generally, sequential circuits are of sequential type. In synchronous sequential circuits, signals are

used to change the states of the storage cells only at the discrete instants of time. Synchronization is

achieved by a timing device known as clock pulse generator that generates clock pulses.

Flip-Flops A flip-flop is a binary storage cell capable of storing one bit of information. It can retain

its state indefinitely until its state is changed by applying the proper triggering signal. A

flip-flop using the clock signal is called the clocked flip-flop. It has two outputs, one labeled Q for the

normal value and another labeled Q for the complement value of the stored bit.

Even though a logic gate has no storage capability, several logic gates can be connected together to

form a storage cell. Depending on the interconnection pattern of logic gates and number of inputs

used, the flip-flops can be of different types. The common types of flip-flops are described next.

SR Flip-Flop The SR flip-flop has three input lines, one line labeled S for set, one line labeled R

for reset and another line labeled C for clock signal. It has two inputs, one labeled Q for the normal

value of the output and another labeled Q for the complement value of it. A realization of a SR flip-

flop using universal gate, NAND and its truth table is shown in Fig. A.16.

When no clock pulse is applied, the output of the flip-flop cannot change irrespective of the input

values at S and R. When clock pulse is applied, the flip-flop will be affected according to the input

values at S and R. Thus, the flip-flop is enabled when clock is applied to the circuit. The truth table is

given for enabled flip-flop. Q(t) and Q(t+1) indicate the binary state of the Q output at given time t

and next time t+1 respectively. The SR flip-flop has invalid (indeterminate) state when both S and R

are logic �1� simultaneously.

A.12 Computer Organization

D Flip-Flop The D (data) flip-flop has only one input line and is obtained from SR flip-flop by

putting one inverter between the S and R input lines. Thus a D flip-flop can be realized using SR flip-

flop as shown in Fig. A.17. If the input D has logic state 1, the output of the flip-flop assumes the

state 1. If the input D has logic state 0, the output of the flip-flop assumes the state 0. This is shown in

the truth table.

Inputs Output

S R Q(t+1) Remarks

0 0 Q(t) No change

0 1 0 Reset

1 0 1 Set

1 1 ? Indeterminate

(c) Truth table

Figure A.16 The SR flip-flop

Input Output

D Q(t + 1) Remarks

0 0 Reset

1 1 Set

(b) Truth table

Figure A.17 D flip-flop

JK Flip-Flop The JK flip-flop is versatile and most widely used flip-flop. The operation of JK flip-

flop is same as the SR flip-flop, except that it has no indeterminate state for logic input �1� for both

the inputs. In this situation, the state of the output is changed and the output state is the complement

of the previous state. A realization of a JK flip-flop using universal gate, NAND and its truth table is

shown in Fig. A.18.

Inputs Output

J K Q(t+1) Remarks

0 0 Q(t) No change

0 1 0 Reset

1 0 1 Set

1 1 Q (t) Toggle

(c) Truth table

Figure A.18 The JK flip-flop

T Flip-Flop A T flip-flop has one input line, labeled T for toggle. T flip-flop acts as toggle switch.

Toggle means switching over to the opposite state. It can be realized using a JK flip-flop with input

T = J = K, as shown in Fig. A.19.

Digital Devices, Logic Design and Assembly Language Programming A.13

Triggering of Flip-Flops Clocked flip-flops can be positive edge-triggered or negative edge-

triggered. Positive edge-triggered flip-flops are those in which state transitions take place only at the

positive going (i.e. logic 0 to logic 1) edge of the clock pulse. Negative edge-triggered flip-flops are

those in which state transitions take place only at the negative going (i.e. logic 1 to logic 0) edge of

the clock pulse. Positive edge-triggering is indicated by a �triangle� symbol at the clock terminal of

the flip-flop. Negative edge-triggering is indicated by a �triangle� symbol with a bubble at the clock

terminal of the flip-flop. The triggering of flip-flops is shown in the Fig. A.20.

Figure A.20 Triggering of flip-flops

Shift Registers A register is a collection of flip-flops each capable of storing one bit of informa-

tion. An 8-bit register has 8 flip-flops and is capable storing 8-bit data. In a shift register, the flip-flops

are connected in series. The output of each flip-flop is connected to the input of the adjacent flip-flop

in the register. The content of a shift register can be shifted within the register without changing the

order of the bits. Data can be shifted one position left or right at a time when one clock is applied to

the register. Based on the ways of loading into and reading out the data, shift registers can be

classified into four categories:

l Serial-in, serial-out

l Serial-in, parallel-out

l Parallel-in, serial-out

l Parallel-in, parallel-out

Counters A digital counter (simply counter) is a set of flip-flops whose states change in response

to clock pulses applied at the input to the counter. The flip-flops are interconnected in such a way that

their combined state at any time is the binary equivalent to the total number of pulses applied up to

that time. Thus, counters are used to count clock pulses or time interval.

Counters can be of two types: asynchronous and synchronous.

In asynchronous counters (also called ripple counters), the flip-flops (FFs) within the counter do not

change the states at exactly the same time. This is because FFs are not clocked simultaneously.

Synchronous counters are counters in which all the FFs are clocked simultaneously. Synchronous

counters are faster than asynchronous counters, because the propagation delay is less.

Input Output

T Q(t+1) Remarks

0 Q(t) No change

1 Q (t) Toggle

(b) Truth table

Figure A.19 T flip-flop

A.14 Computer Organization

A counter can be up-counter or down-counter. An up-counter is a counter which counts in the

upward direction, i.e. 0, 1, 2, �, N-1. A down-counter is a counter which counts in the downward

direction, i.e. N-1, N-2, �, 1, 0. Each counts of the counter is called the state of the counter. The

total number of states through which the counter can progress is called the modulus of the counter. A

3-bit counter is often referred to as a modulus-8 (or mod-8) counter since it has eight states. Similarly,

a 4-bit counter is a mod-16 counter.

Asynchronous Counters Asynchronous counter can be realized by using by the use of JK flip-flops,

as shown in Fig. A.21. The flip-flops are connected in series. The Q-output of each FF is connected to

the clock input pf the next FF. Thus, the output of each FF drives the next FF. In this respect, counter

is called ripple counter or serial counter. All the J and K inputs are tied to Vcc. This means that each

FF will change state (toggle) with a negative transition at its clock input.

The counter shown in Fig. A.21 is a ripple up-counter. Similarly, a down-counter can be realized,

as shown in Fig. A.22. The clock is still used at the clock input of the first FF, but the complement of

Q0 is used to drive second FF in the series. Similarly, the complement of Q1 is used to drive next FF.

Clock States

pulses Q2 Q1 Q0

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 0 0 0

(b) Truth table

Figure A.21 3-bit asynchronous up-counter

Clock States

pulses Q2 Q1 Q0

0 1 1 1

1 1 1 0

2 1 0 1

3 1 0 0

4 0 1 1

5 0 1 0

6 0 0 1

7 0 0 0

8 1 1 1

(b) Truth table

Figure A.22 3-bit asynchronous down-counter

Synchronous Counters The ripple counter is the simplest to build, but each FF has a propagation

delay. This problem can be eliminated in synchronous counters.

Digital Devices, Logic Design and Assembly Language Programming A.15

In synchronous counters, all FFs are triggered simultaneously by the same clock pulse so that all

FFs change their state at the same time. For this, counters are called as parallel or carry look-ahead

counters. Figure A.23 shows the schematic diagram of a 3-bit synchronous up counter.

Figure A.23 Realization of 3-bit synchronous up-counter

A.3 MOS IMPLEMENTATION OF LOGIC GATES

The MOS (Metal Oxide Semiconductor) logic uses metal oxide semiconductor field effect transistors

(MOSFETs). Compared to the bipolar logic families, the MOS families are simpler, inexpensive

to fabricate and require much less power. There are three logic families constructed using MOS

transistors:

l PMOS: Using p-channel transistors

l NMOS: Using n-channel transistors

l CMOS: Using both p-channel and n-channel transistors

PMOS is the slowest, oldest type and nearly obsolete today. NMOS is widely used in memories

and microprocessors. CMOS is suitable for individual logic circuit design and it consumes very less

power.

NMOS Transistors An n-channel transistor is said to be of NMOS-type and it behaves as a closed

(on) switch when its gate input is equivalent to positive voltage Vcc (i.e. Vin = Vcc), as shown in

Fig. A.24(a) and it acts as an open (off) switch when its gate input is 0 (i.e. Vin = 0), as shown in

Fig. A.24(b).

Figure A.24 NMOS transistor

A.16 Computer Organization

A NOT gate can be realized using NMOS transistor, as shown in Fig. A.25. The transistor T acts

as a switch.

When gate input voltage, Vin = 0, the transistor T acts as an open switch and output voltage, Vout =

Vcc. When Vin = Vcc, the transistor T acts as a closed switch and output voltage Vout is near to 0.

Thus, the circuit performs the function of a NOT gate.

PMOS Transistors A p-channel transistor is said to be of PMOS-type and it behaves as an open

switch when the gate input, Vin = Vcc, as indicated by Fig. A.26(a). It acts as a closed switch when Vin

= 0 V, as indicated by the Fig. A.26(b).

Figure A.25 Realization of NOT gate

using NMOS transistor

Figure A.26 PMOS transistor

Note that the PMOS transistor has a bubble on the gate input in its graphical symbol, which

indicates that its functionality is complementary to that of an NMOS transistor. Also note that in

PMOS transistors, the positions of source and drain terminals are revered in comparison to the NMOS

transistors.

CMOS Transistors A CMOS (complementary metal oxide semiconductor) transistor uses both n-

channel and p-channel transistors to take several advantages over PMOS and NMOS transistors. The

CMOS transistor is faster and consumes less power than other two types. The basic idea of CMOS

circuit is illustrated by the inverter circuit in Fig. A.27.

Input Transistors state Output

Vin T1 T2 Vout

low (0) on off high (1)

high (1) off on low (0)

(b) Truth table

Figure A.27 CMOS realization of a NOT gate

Digital Devices, Logic Design and Assembly Language Programming A.17

When Vin = Vcc, transistor T1 is turned off and transistor T2 on. Thus the output voltage, Vout, drops

to 0. When Vin is supplied with 0 V, transistor T1 is turned on and transistor T2 off. Thus the output

voltage, Vout, gets up to Vcc. Hence, the logic values at points indicated by input Vin and output Vout

are complements to each other and the circuit acts as a NOT gate.

In same way, other logic gates can be realized using CMOS transistors.

A.4 PROGRAMMABLE LOGIC DEVICES

In recent years, programmable logic devices (PLDs) have all but replaced special-purpose logic

devices such as AND gates, flip-flops, counters, multiplexers, etc. PLDs are ICs (integrated chips)

that can be programmed, and often re-programmed, to implement different logic functions.

The main reason for using programmable logic is to reduce total costs. This is due to a number of

reasons. One important advantage is that design with PLDs is faster and this reduces the time required

to bring a product to market. Programmable devices also reduce the risks associated with product

development since they allow last-minute changes, often without having to redesign circuit boards.

Since PLDs often replace several other special-purpose devices the design usually has fewer compo-

nents and this reduces assembly, test and repair costs. Using PLDs also means fewer parts needs to be

stocked and this reduces inventory costs. Since more of the logic is integrated into each chip the

number of interconnections is decreased and this increases the reliability of the product.

A PLD is an IC that contains a large number of gates, FFs, and registers that are interconnected on

the chip. Many of the connections, however, are fusible links that can be broken. The IC is said to be

programmable because the specific function of the IC for a given application is determined by the

selective breaking of some of the interconnections while leaving others intact. The �fuse blowing�

process can be done either by the manufacturer in accordance with the customer�s instructions, or by

the customer himself. This process is called programming because it produces the desired circuit

pattern interconnecting the gates, FFs, registers, and so on.

Of course, there are some disadvantages to using programmable logic. Design with PLDs requires

additional development software and hardware which is often very expensive. Design staff often need

to be trained to use new design tools. In addition, parts must be programmed before they can be

assembled into a final product.

In spite of these disadvantages programmable logic usually makes economic sense except for very

simple (e.g. bus buffers, latches, some decoders), very complex (e.g. CPU), or very high-speed

circuits (e.g. DRAM controller). Even for one-off designs, it is often easier to use PLDs if the

development tools are available.

The various PLDs used are PALs (programmable array logic), FPLAs (field programmable logic

arrays) and PROMs (programmable read only memories).

A.4.1 Programmable Array Logic (PAL)

Programmable array logic (PAL) (a registered trade mark of Monolithic Memories) is a particular

family of PLA devices that is widely used and available from a number of manufacturers. A PAL is a

programmable logic device in which each output is computed as a two-level �sum of products� (an

OR of ANDs).

A.18 Computer Organization

The PAL circuits consist of a set of AND gates whose inputs can be programmed and whose

outputs are connected to an OR gate, i.e. the inputs to the OR gate are hard wired. Some manufactur-

ers also allow output inversion to be programmed. Thus, like AND-OR and AND-OR-INVERT logic,

they implement a sum of products logic function. Figure A.28 shows a small example of the basic

structure. The fuse symbols represent fusible links that can be burned open using equipment similar to

a PROM (programmable read only memory) programmer. Note that every input variable and its

complement can be left either connected or disconnected from every AND gate. We then say that the

AND gates are programmed. Figure A.29 shows how the circuit is programmed to implement F = A

BC + A B C. Note that all input variables and their complements are left connected to the unused

AND gate, whose output is, therefore, A A B B C C = 0. The 0 has no effect on the output of the

OR gate. On the other hand, if all inputs to the unused AND gate were burned open, the output of the

AND gate would �float� HIGH (logic 1), and the output of the OR gate in that case would remain

permanently l. The actual PAL circuits have several groups of AND gates, each group providing

inputs to separate OR gates.

Figure A.28 Basic structure of a PAL circuit

Figure A.30 (a) shows a conventional means for abbreviating PLA connection diagrams. Note that

the AND gate is drawn with a single input line, whereas in reality, it has three inputs. An X (cross)

sign denotes a connection through an intact fusible link and a dot sign represents a permanent

connection. The absence of any symbol represents an open or no connection by virtue of a burned-

open link. In the example shown, input A is connected to the gate through a fusible link, input C is

permanently connected, and input B is disconnected. Therefore, the output of the gate is AC.

Figure A.30 (b) shows an example of how the PAL structure is represented using the abbreviated

connections. In this example, the circuit is un-programmed because all the fusible links are intact.

Note that the 3-input OR gates are also drawn with a single input line.

Digital Devices, Logic Design and Assembly Language Programming A.19

Figure A.29 The circuit of Fig. A.28 programmed to implement F = A BC + A B C

Figure A.30 Simplified method for showing connections in PLA circuit

A.20 Computer Organization

The advantages of the PAL architecture include low and fixed (two gate) propagation delays

(typically down to 5 ns), and simple, low-cost (free), design tools. However, the PAL architecture

limits the design to simple state machines and simple combinational circuits.

A.4.2 Field Programmable Logic Array (FPLA)

The FPLA represents another type of programmable logic but with a slightly different architecture.

The FPLA combines the characteristics of the PROM and the PAL by providing both a programmable

OR array and a programmable AND array. This feature makes it the most versatile of the three PLDs.

However, it has some disadvantages. Because has two sets of fuses, it is more difficult to manufac-

ture, program and test it than a PROM or PAL. Figure A.31 demonstrates the FPLA structure, with

every fusible link intact.

Figure A.31 Structure of an un-programmed FPLA circuit

A.4.3 Programmable ROM (PROM)

A programmable ROM can be viewed as a type of programmable logic array and thus used for that

purpose. The address inputs to the PROM serve as logic variable inputs and the data output as the

node where the output of a logic function is realized. For example, stating that a 1 is stored at address

Digital Devices, Logic Design and Assembly Language Programming A.21

1001 is the same as stating that the logic function being implemented equals 1 when the input

combination is A BC D. In both the cases, the output will be a 1 when the input is 1001. When we

regard a PROM as a PLA, we realize that the AND gates are not programmed. In effect, an AND gate

is already in place for every possible combination of the inputs corresponding to every possible

address of the PROM. Therefore, to program a PROM as a PLA, we must have a truth table that

specifies the value of the function being implemented for every possible combination of the inputs.

For each combination where F = 1, we leave the output of the corresponding AND gate connected to

the output OR gate. For each combination where F = 0, we burn open the connection to the OR gate.

We see that a PROM is a PLA with fixed AND gates and a programmable OR gate. An M ¥ N

PROM can be regarded as a PLA having N programmable OR gates, capable of implementing N

different logic functions of M variables. A PROM is ideally suited for implementing a logic function

directly from a truth table.

An example of an actual PROM that is often used as a PLD is AM27S13, which is a 512 ¥ 4

PROM manufactured using high speed Schottky TTL technology. Since 512 = 29, this PROM has

nine address inputs and four data outputs. Thus, the AM27S13 can be programmed to generate four

outputs each of which can be any logic function of the nine different inputs.

Example Show how an 8 ¥ 1 PROM can be programmed to implement the logic function

whose truth table is shown in Figure A.32.

Solution Figure A.32 shows the programmed PROM in the simplified connection format of a

PLA. A logic 1 or a 0 is stored at every address combination corresponding to a

combination of input variables for which the function equals a 1 or a 0.

The PROM can generate any possible logic function of the input variables be-

cause it generates every possible AND product term. In general, any application that

requires every input combination to be available is a good candidate for a PROM.

However, PROMs become impractical when a large number of input variables have

to be accommodated, because the number of fuses doubles for each added input

variable.

A.4.4 Other PLD Features

Many PLDs include one or more of the following as part of their architecture: FFs, latches, input

registers, and output registers. Very often, the operating characteristics of these devices are program-

mable, as are the connections to other devices on the chip. This gives the logic designer a great deal

of flexibility in designing counters and other sequential logic circuits. This type of PLD is sometimes

called a programmable logic sequencer.

Programming When PLDs were first introduced, the logic designer would develop a fuse map that

showed which fuses to blow. The manufacturer would then program the device according to the fuse

map, test it, and return it the designer. In recent years, the availability of relatively inexpensive

programming equipment has made it convenient for users to program their own PLDs. There are

universal programmers in the market that can program the most common PROMs, PALs and FPLAs.

The device to be programmed is plugged into a socket on the programmer and the programmer

programs and tests the device according to data that have been supplied by the user.

A.22 Computer Organization

Figure A.32 Programming a PROM to implement a truth table

The programming and test data are typically developed by using the commonly available software

that will run on standard PCs. Using this software, the user enters the data into the computer describ-

ing the logic functions to be programmed into the PLD, as well as information on how the device is to

be tested. The software then generates a fuse map and the test data in a form that can be sent over a

Digital Devices, Logic Design and Assembly Language Programming A.23

cable to the PLD programmer�s memory. Once the programmer has the data, it can proceed to

program and test the device. When finished, the programmer will indicate whether the device has

passed or failed the test procedure. If it passes, it can be removed from the programmer�s socket and

placed in the prototype circuit for further testing.

Erasable PLDs The PLDs we have been talking about are programmed by blowing fuses. Once a

fuse is blown, it cannot be reconnected. Thus, if you make a mistake in programming or if you want

to change the design, the device will no longer be useful. This drawback has been addressed by

several manufacturers who have developed PLDs that can be erased and programmed over and over.

These are called erasable programmable logic devices (EPLDs). These devices are programmed and

erased much like EPROMs and EEPROMs.

A.5 INTRODUCTION TO ASSEMBLY-LANGUAGE PROGRAMMING

A set of instructions written for a computer to perform a task is called a program and a group of

programs is called software. The physical components of a computer system are called hardware. It is

possible to design parts of the hardware without a knowledge of its software capabilities. It is also

possible to be familiar with various aspects of computer software without being concerned with

details of how the computer hardware operates. However, those concerned with computer architecture

should have a knowledge of both hardware and software because the two branches influence each

other.

Writing a program for a computer consists of specifying, directly or indirectly, a sequence of

machine instructions. Machine instructions are represented by patterns of 0s and 1s. Such patterns are

difficult for people to work with and understand. It is preferable to write programs with the more

familiar symbols of the alphanumeric character set. Such a symbolic program is referred to as an

assembly-language program. As a consequence, there is a need for translating this assembly-language

program into equivalent binary program (machine language) recognized by the hardware. This trans-

lation is done by a special program called an assembler.

To design programs using the instruction sets, the symbolic user-oriented format called assembly

language can be used. This section discusses the basic features of assembly language and their

relationship both to the computer organization and to the machine-language programs that are actually

executed by the computer. Most computer programming is now done using high-languages such as C,

which, like assembly language, must be translated (compiled) into machine language prior to execu-

tion.

A.5.1 Assembly Language

A complete set of symbolic operation names known as mnemonics and rules for their use constitute

programming language, generally referred to as an assembly language. The set of rules for using the

mnemonics in the specification of complete instructions and programs called the syntax of the

language.

Programs written in an assembly language can be automatically translated into a sequence of

machine instructions by a program called an assembler. The assembler program is one of a collection

of utility programs that are a part of the system software. The assembler, like any other program, is

A.24 Computer Organization

stored as a sequence of machine instructions in the memory of the computer. A user (application)

program is usually entered into the computer through a keyboard and stored either in the memory or

on a magnetic disk. At this point, the user program is simply a set of lines of alphanumeric characters.

When the assembler program is executed, it reads the user program, analyzes it, and then generates

the desired machine language program. The machine language program contains patterns of 0s and 1s

specifying instructions that will be executed by the computer. The user program in its original

alphanumeric text format is called a source program, while the assembled machine language program

is called an object program.

The assembly language for a given computer may or may not be case sensitive, that is, it may or

may not distinguish between capital and lower case letters. We will use capital letters to denote all

names and labels in our examples in order to improve the readability of the text. For example, we will

write a Move (transfer) instruction as:

MOV R0, R1

The mnemonic MOV represents the binary pattern, or op-code, for the operation performed by the

instruction. The assembler translates this mnemonic into the binary op-code that the computer under-

stands.

The op-code mnemonic is followed by at least one blank space character. Then the information that

specifies the operands is given. In our example, the source operand is in register R1, which is

transferred to destination register R0.

Since there are several possible addressing modes for specifying operand locations, the assembly

language must indicate which mode is being used. For example, a numerical value or a name used by

itself, such as registers R0, R1 in the preceding instruction, may be used to denote the register mode.

The sharp (#) sign usually denotes an immediate operand. Thus, the instruction

ADD R1, #5

adds the number 5 to the contents of register R1 and puts the result back into register R1. The sharp

sign is not the only way to denote the immediate addressing mode. In some assembly languages, the

intended addressing mode is indicated in the op-code mnemonic. In this case, a given instruction has

different op-code mnemonics for different addressing modes. For example, the previous Add instruc-

tion may be written as

ADI R1, 5

The suffix I in the mnemonic ADI states that the source operand is given in the immediate addressing

mode.

The indirect addressing is usually specified by putting parentheses around the name or symbol

denoting the pointer to the operand. For example, if content of a location whose address is given in X

is to be loaded into register R1, the desired action can be specified as

MOV R1, (X)

A.5.2 Assembler Directives

In addition to providing a mechanism for representing instructions in a program, the assembly lan-

guage allows the programmer to specify other information needed to translate the source program into

the object program. The assembly language allows symbolic names to be assigned to user-defined

Digital Devices, Logic Design and Assembly Language Programming A.25

constants and variables, such as the immediate operand appearing in earlier examples. For example,

many assembly languages use the statement

SUB EQU 2001

to indicate that the symbol SUB is to be equivalent (EQU) to the decimal number 2001. This

statement does not denote an instruction that will be executed when the object program is run; in fact,

it will not even appear in the object program. It simply informs the assembler that the name SUB

should be replaced by the value 2001 wherever it appears in the program. Such type of non-execut-

able assembly language instruction, called assembler directive (or pseudo-instruction), is used by the

assembler while it translates a source program into an object program.

Table A.2 lists a representative set of the directives found in most assembly languages. Other

assembly language programs may recognize many more directives. The EQU (Equivalent) directive

tells the assembler to equate two different names for the same thing, as we have already discussed.

The ORG (origin) pseudo-instruction informs the assembler that the instruction or operand in the

following line is to be placed in a memory location specified by the number next to ORG. For

example, consider the following program segment

ORG 100

LDA SUB

Here, the first line has the pseudo-instruction ORG to define the origin of the program at memory

location 100. In other words, the LDA instruction is to be assigned to memory location 100. It is also

possible to use ORG more than once in a program to specify more than one segment of memory.

Table A.2 List of representative assembly language directives

Type Op-code Description

Symbol definition EQU Equate symbolic name (in label position) to

operand value.

Memory assignment ORG Origin: use operand value as starting address

for subsequent instructions.

DS Define storage: reserve the specified number

of consecutive locations (bytes) in memory.

DC Define constant: store the operand values as

constants.

Miscellaneous END End of program(s) to be assembled.

RET Return the control from the current sub-rou

tine to calling (main) routine.

IF Start of conditional block of instructions to

be assembled only if a specified condition is met.

ENDIF End of conditional block.

Sometimes it is useful to reserve a block of memory for future use, for example, as a buffer storage

area for I/O data, without specifying its contents. The DS (define storage) instruction is provided for

this purpose. Thus the directive

L2 DS 200

A.26 Computer Organization

states that a block of 200 memory bytes should be reserved, beginning at the current location L2. If it

is desired to actually define data to be placed in a program, the DC (define constant) directive is used.

The END symbol is placed at the end of the program to inform the assembler that the program is

terminated. The RET assembler directive identifies the point at which execution of the program

should be terminated. It causes the assembler to insert an appropriate machine instruction that returns

control to the calling program or to the operating system of the computer.

A.5.3 Rule of Assembly Language

A programming language is defined by a set of rules. Users must conform with all format rules of the

language if they want their programs to be translated correctly. Almost every commercial computer

has its own particular assembly language. In other words, the assembly language differs in detail and

complexity from one computer to another. The rules for writing assembly-language programs are

documented and published in manuals which are usually available from the computer manufacturer.

The basic unit of an assembly-language program is a line of code. The specific language is defined

by a set of rules that specify the symbols that can be used and how they may be combined to form a

line of code. We will now formulate the rules of an assembly language for writing symbolic programs

for the basic computer.

Each line of an assembly language program to be written in the form:

Label Operation Operand(s) Comment

These four fields are separated by an appropriate delimiter, typically one or more blank characters.

The Label is an optional field associated with the memory address where the machine language

instruction produced from the statement will be loaded. Labels may also be associated with addresses

of data items. The Operation field contains the op-code mnemonic (symbolic word such as MOV,

ADD) of the desired instruction or assembler directive (non-executable assembly-language instruction

such as the EQU). The Operand field contains addressing information for accessing one or more

operands, depending on the type of instruction. The Comment field is ignored by the assembler

program and each comment is generally preceded by a semi-colon (;). It is used for documentation

purposes to make the program easier to understand.

An Example Let us consider an example to perform a subtraction of two numbers. The subtraction

is performed by adding the minuend to the 2�s complement of the subtrahend. The negative numbers

are represented in signed-2�s complement forms. Also assume that the subtraction is: 85 � (�20) =

105. Since the subtrahend is negative (�20), we take 2�s complement of it (1�s complement and

increment of the AC).

Table A.3 gives an assembly language program for this task. The first line has the pseudo-

instruction ORG to define the origin of the program at memory location 200. The next six lines define

machine instructions, and the last four have pseudo-instructions. Three symbolic addresses have been

used as Labels and in second field as an address of a memory-reference instruction. Three of the

pseudo-instructions specify operands, and the last one signifies the END of the program.

Digital Devices, Logic Design and Assembly Language Programming A.27

Table A.3 An assembly-language program to subtract two numbers

ORG 200 ; Origin of program is location 200

LDA SUB ; Load subtrahend to AC

CMA ; Complement AC

INC ; Increment AC

ADD MIN ; add minuend to AC

STA RES ; Store difference (result)

H LT ; Halt computer

MIN DC 85 ; Minuend

SUB DC -20 ; Subtrahend

RES DS 0 ; Result stored here

END ; End of symbolic program

To translate this assembly language program into an equivalent binary code, we assume six instruc-

tions of the basic computer in Table A.4, to provide an easy reference.

Table A.4 A simple computer instructions (M refers to memory word)

Symbol Hexadecimal code Description

ADD 1 Add M to AC

LDA 2 Load AC from M

STA 3 Store AC in M

CMA 7200 Complement AC

INC 7020 Increment AC

HIT 7001 Halt computer

The translation of the assembly program into machine codes is done by a special program called an

assembler. The translation of the assembly program of Table A.3 into an equivalent binary code may

be done by scanning the program and replacing the symbols by their machine code binary equivalent.

Starting from the first line, we encounter an ORG pseudo-instruction. This states to start the binary

program from the location 200. The second line has two symbols. It is a memory-reference instruction

to be placed in location 200. The mnemonic of the operation is LDA. Checking instruction set of the

computer, suppose we find that the first hexadecimal digit of the instruction should be 2 (which is

equivalent numeric op-code of LDA). The binary value of the address part must be obtained from the

address symbol SUB. We scan the Label field and find this symbol in 9th line. To determine its

hexadecimal value we note that the 2nd line contains an instruction for location 200 and every other

line specifies a machine instruction or an operand for sequential memory locations. Counting lines,

we find that Label SUB in 9th line corresponds to memory location 207. Therefore, the hexadecimal

address of the instruction LDA must be 207. When the two parts of the instruction are assembled, we

obtain the hexadecimal code as 2207. The other lines representing machine instructions are translated

in a similar manner and their hexadecimal code is listed in Table A.5.

Two lines in the assembly program specify decimal operands with the pseudo-instruction DC. A

third specifies a zero means it reserves one 16-bit memory space to store the result. Decimal 85 is

converted to binary and placed in location 206 in its hexadecimal equivalent. Decimal -20 is a

negative number and must be converted into binary in signed-2�s complement form. The hexadecimal

equivalent of the binary number is placed in location 207. The END directive indicates the end of the

assembly program.

A.28 Computer Organization

A.5.4 Assembler

A source program written in an assembly language must be assembled into a machine language object

program before it can be executed. This is done by the assembler program, which replaces all symbols

denoting operations and addressing modes with the binary codes used in machine instructions, and

replaces all names and labels with their actual values.

Table A.5 Listing of translated program of Table A.4

Hexadecimal code

Location Content Assembly program

ORG 200

200 2207 LDA SUB

201 7200 CMA

202 7020 INC

203 1206 ADD MIN

204 3208 STA RES

205 7001 HLT

206 0055 MIN DC 85

207 FFEC SUB DC -20

208 0000 RES DS 0

END

The assembler assigns addresses to instructions and data blocks, starting at the address given in the

ORG assembler directives. It also inserts constants that may be given in DC directives and reserves

memory space as requested by DS directives.

The main part of the assembly process is determining the values that replace the names. In some

cases, where the value of a name is specified by an EQU directive, this is a simple task. In other

cases, where a name is defined in the Label field of a given instruction, the value represented by the

name is determined by the location of this instruction in the assembled object program. Hence, the

assembler must keep track of addresses as it generates the machine code for successive instructions.

For example, the names MIN and SUB will be assigned the values 206 and 207, respectively.

In some cases, the assembler does not directly replace a name representing an address with the

actual value of this address. For example, in a branch instruction, the name that specifies the location

to which a branch is to be made (the branch target) is not replaced by the actual address. A branch

instruction is usually implemented in machine code by specifying the branch target using the relative

addressing mode. The assembler computes the branch offset, which is the distance to the target and

puts it into the machine instruction.

As the assembler scans through a source program, it keeps track of all names and the numerical

values that correspond to them in a symbol table. Thus, when a name appears a second time, it is

replaced with its value from the table. A problem arises when a name appears as an operand before it

is given a value. For example, this happens if a forward branch is required. The assembler will not be

able to determine the branch target, because the name referred to has not yet been recorded in the

symbol table. A simple solution to this problem is to have the assembler scan through the source

program twice. During the first pass, it creates a complete symbol table. At the end of this pass, all

Digital Devices, Logic Design and Assembly Language Programming A.29

names will have been assigned numerical values. The assembler then goes through the source pro-

gram a second time and substitutes values for all names from the symbol table. Such an assembler is

called a two-pass assembler.

The assembler stores the object program on a magnetic disk. The object program must be loaded

into the memory of the computer before it is executed. For this to happen, another utility program

called a loader must already be in the memory. Executing the loader performs a sequence of input

operations needed to transfer the machine language program from the disk into a specified place in

the memory. The loader must know the length of the program and the address in the memory where it

will be stored. The assembler usually places this information in a header preceding the object code.

Having 1oaded the object code, the loader starts execution of the object program by branching to the

first instruction to be executed. Recall that the address of this instruction has been included in the

assembly language program as the operand of the END assembler directive. The assembler includes

this address in the header that precedes the object code on the disk.

When the object program begins executing, it proceeds to completion unless there are logical

errors in the program. The user must be able to find errors easily. The assembler can detect and report

syntax errors. To help the user find other programming errors, the system software usually includes a

debugger program. This program enables the user to stop execution of the object program at some

points of interest and to examine the contents of various processor registers and memory locations.

2007
Computer Organization

(CS-303)
Semester: 3rd

Time Allotted: 3 hours Full Marks: 70

Group-A

(Multiple-Choice Questions)

1. Choose the correct alternatives for the following: 10 ¥ 1 = 10

(i) When signed numbers are used in binary arithmetic, then which one of the following

notations would have unique representation for zero?

(a) magnitude (b) 1�s complement (c) 2�s complement (d) none.

Answer

(c) 2�s complement

(ii) How many address bits are required for a 1024 ¥ 8 memory?

(a) 1024 (b) 5 (c) 10 (d) none.

Answer

(c) 10

(iii) The principle of locality justifies the use of

(a) interrupt (b) polling (c) DMA (d) cache memory.

Answer

(d) cache memory

(iv) A major advantage of direct mapping of a cache is its simplicity. The main disadvantage of

this organization that

(a) it does not allow simultaneous access to the intended data and its tag

(b) it is more expensive than other types of cache organizations

(c) the cache hit ratio is degraded if two or more blocks used alternatively map onto the

same block frame in the cache

(d) its access time is greater than that of other cache organizations.

SQP.2 Computer Organization

Answer

(c) the cache hit ratio is degraded if two or more blocks used alternatively map onto the

same block frame in the cache

(v) A digital computer has a memory unit with 24 bits per word. The instruction set consists of

150 different operations. All instructions have an operation code part (op-code) and address

part (allowing for only one address). Each instruction is stored in one word of memory. Bits

are needed for op-code

(a) 6 (b) 7 (c) 8 (d) 9

Answer

(c) 8

(vi) Maximum n bit 2�s complement number is

(a) 2n (b) 2n � 1 (c) 2n�1 � 1 (d) cannot be said.

Answer

(c) 2n�1 � 1

(vii) State true or false:

Adding 0110 11012 to 1010 00102 in 8-bit 2�s complement binary will cause an overflow:

(a) true (b) false.

Answer

(a) true

(viii) Micro instructions are kept in

(a) main memory (b) control memory (c) cache memory (d) none.

Answer

(b) control memory

(ix) Instruction cycle is

(a) fetch-decode-execution (b) decode-fetch-execute

(c) fetch-execution-decode (d) none.

Answer

(a) fetch-decode-execution

(x) The basic principle of the von Neumann computer is

(a) storing program and data in separate memory

(b) using pipe line concept

(c) storing both program and data in the same memory

(d) using a large number of registers.

Answer

(c) storing both program and data in the same memory

Group-B

(Short-Answer Questions)

Answer any three of the following. 3 ¥ 5 = 15

2. (a) Explain the difference between three-address, two-address, one-address instructions & zero-

address instruction with suitable examples.

(b) Give an example and explain Base-Index Addressing. 3 + 2

Solved Question Paper 2007 (CS-303) SQP.3

Answer:

(a) The size of programs consisting of all three-address instructions is small, whereas that of

programs using zero-address instructions is large. Three- and two-address instructions are gen-

erally used in general-register organized processors, one-address instructions used in single

accumulator based processors and zero-address instructions are used in stack based CPU organi-

zations.

Suppose we have to evaluate the arithmetic statement

X = (A + B) * C

using zero, one, two or three address instructions. For this, LOAD symbolic op-code is used for

transferring data to register from memory. STORE symbolic op-code is used for transferring

data to memory from register. The symbolic op-codes ADD and MULT are used for the arith-

metic operations addition and multiplication respectively. Assume that the respective operands

are in memory addresses A, B and C and the result must be stored in the memory at address X.

Using three-address instructions, the program code in assembly language is as:

ADD R1, A, B ; R1¨ M[A] + M[B]

MULT X, C, R1 ; X ¨ M[C] + R1

Using two-address instructions, the program code in assembly language is as:

LOAD R1, A ; R1¨ M[A]

ADD R1, B ; R1 ¨ R1 + M[B]

LOAD R2, C ; R2¨ M[C]

MULT R1, R2 ; R1 ¨ R1 * R2

STORE X, R1 ; X ¨ R1

Using one-address instructions, the program code in assembly language is as:

LOAD A ; AC ¨ M[A]

ADD B ; AC ¨ AC + M[B]

STORE T ; T ¨ AC

LOAD C ; AC ¨ M[C]

MULT T ; AC ¨ AC * M[T]

STORE X ; X ¨ AC

Using zero-address instructions, the program code in assembly language is as:

PUSH A ; TOS ¨ A [TOS means top of the stack]

PUSH B ; TOS ¨ B

ADD ; TOS ¨ (A + B)

PUSH C ; TOS ¨ C

MULT ; TOS ¨ ((A + B) * C)

POP X ; X ¨ TOS

(b) In this mode the content of the base register (BR) is added to the address part of the instruction

to obtain the effective address. This mode is similar to the indexed addressing mode, but

exception is in the way they are used. A base register holds the starting address of a memory

array of operands and the address part of the instruction gives a displacement or offset relative

to this starting address. This mode is used for relocation of the programs in the memory.

SQP.4 Computer Organization

For example, an operand array starts at memory address 1000 and thus the base register BR

contains the value 1000. Now consider load instruction

LDA 0002

The effective address of the operand is calculated as:

Effective address = 0002 + content of BR

= 1002.

3. (a) Explain the difference between full associative and direct mapped cache mapping approaches.

(b) What are �write through� and �write back� policies in cache? 3 + 2

Answer

(a) The fully associative cache memory uses the fastest and most flexible mapping method, in

which both address and data of the memory word are stored. This memory is expensive because

of additional storage of addresses with data in the cache memory.

In the direct cache mapping, instead of storing total address information with data in cache,

only part of address bits is stored along with data. Suppose the cache memory can hold 2m

words and main memory can hold 2n words. The n-bit address generated by the CPU is divided

into two fields: lower-order m bits for the index field and the remaining higher-order (n-m) bits

for the tag field. The direct mapping cache organization uses the m-bit index to access the cache

and higher-order (n-m) bits of tag are stored along side the data in cache. This is the simplest

type of cache mapping, since only tag field is required to match. That�s why it is one of the

fastest caches. Also, it is less expensive cache relative to the associative cache.

(b) There are two policies in writing into cache memory: (i) write-through (ii) write-back.

Write-Through Policy: This is the simplest and most commonly used procedure to update the

cache. In this technique, when the cache memory is updated, at the same time the main memory

is also updated. Thus, the main memory always contains the same data as the cache.

Write-Back Policy: In this method, during a write operation only the cache location is up-

dated. When the update occurs, the location is marked by a flag called modified or dirty bit.

When the word is replaced from cache, it is written into main memory if its flag bit is set.

4. (a) Briefly explain the IEEE 754 standard format for floating point representation.

(b) How NaN (Not a Number) and Infinity are represented in this standard. 3 + 2

Answer

(a) The IEEE 754 has two similar formats as follows:

1. Single precision format: It is 32-bit format, in which 8-bit is for exponent, 23-bit for

mantissa, 1-bit for sign of the number, as shown in the following figure.

Solved Question Paper 2007 (CS-303) SQP.5

Here, the implied base 2 and original signed exponent E are not stored in register. The value

actually stored in the exponent field is an unsigned integer E¢ called biased exponent, which

is calculated by the relation E¢ = E + 127. This is referred to as the excess�127 format.

Thus, E¢ is in the range 0 £ E¢ £ 255. The end values of this range, 0 and 255, are used to

represent special values. Therefore, the range of E¢ is 1 £ E¢ £ 254, for normal values. This

means that the actual exponent (E) is in the range �126 £ E £ 127.

2. Double precision format: This is 64-bit format in which 11-bit is for biased exponent E¢, 52-

bit for mantissa M and 1-bit for sign of the number, as shown in figure next. The represen-

tation is same as single precision format, except the size and thus other related parameters.

(b) Not a Number (NaN) is represented when E¢ = 255 and M π 0. NaN is a result of performing an

invalid operation such as 0/0 and �1 .

Infinity is represented when E¢ = 255 and M = 0. The infinity is the result of dividing a

normal number by 0.

5. (a) Draw and explain the basic structure of a Hard-Disk and explain seek-time and latency time

associated with it.

(b) Compare restoring and non-restoring division algorithms. 3 + 2

Answer

(a) Disks that are permanently attached to the unit assembly and cannot be removed by the general

user are called hard disks. A hard disk consists of some number of circular magnetic disks. The

magnetic disk is made of either aluminum or plastic coated with a magnetic material so that

information can be stored on it. The recording surface is divided into a number of concentric

circles called tracks. The tracks are commonly divided into sections called sectors. To distin-

guish between two consecutive sectors, there is a small inter-sector gap. In most systems, the

minimum quantity of information transfer is a sector. The information is accessed onto the

tracks using movable read-write heads that move from the innermost to the outmost tracks and

vice-versa. There is one read-write head per surface. During normal operation, disks are rotated

continuously at a constant angular velocity. Same radius tracks on different surfaces of disks

form a logical cylinder.

SQP.6 Computer Organization

To access data, the read-write head must be placed on the proper track based on the given

cylinder address. The time required to position the read-write head over the desired track is

known as the seek time, ts. After positioning the read-write head on the desired track, the disk

controller has to wait until the desired sector is under the read-write head. This waiting time is

known as rotational latency, tl. The access time of the disk is the sum of ts and tl.

(b) Both algorithms are directly used for division of two unsigned numbers. The restoring algorithm

requires more number of additions compared to non-restoring algorithm. Because in first algo-

rithm, when the accumulator register becomes negative after the subtraction of divisor from

accumulator content, the content of accumulator is restored to previous value by adding divisor

to it. This restoration step is not required in non-restoring algorithm. However, the non-restoring

algorithm may require a restoration step at the end of algorithm, if content of accumulator is

negative.

6. (a) Explain the difference between Instruction pipeline and arithmetic Pipeline.

(b) What are the different hazards in pipeline? 3 + 2

Answer

(a) 1. Instruction pipeline is used to process all instructions, whereas arithmetic pipeline is used to

process arithmetic type instructions such as addition, subtraction, multiplication, etc.

2. In instruction pipeline, the execution of a stream of instructions can be pipelined by over-

lapping the execution of the current instruction with the fetch, decode and operand fetch of

subsequent instructions. An arithmetic pipeline divides an arithmetic operation, such as a

multiply, into multiple arithmetic steps each of which is executed one-by-one in different

arithmetic stages in the ALU.

3. All high-performance computers are now equipped with instruction pipeline. The number of

arithmetic pipelines varies from processors to processors.

Solved Question Paper 2007 (CS-303) SQP.7

(b) Pipeline hazards are situations that prevent the next instruction in the instruction stream from

executing during its designated clock cycle. There are three types of pipeline hazards:

1. Control hazards

2. Structural hazards

3. Data hazards

Control hazards:

They arise from the pipelining of branches and other instructions that change the content of

program counter (PC) register.

Structural Hazards:

Structural hazards occur when a certain resource (memory, functional unit) is requested by more

than one instruction at the same time.

Data Hazards:

Inter-instruction dependencies may arise to prevent the sequential (in-order) data flow in the

pipeline, when successive instructions overlap their fetch, decode and execution through a

pipeline processor. This situation due to inter-instruction dependencies is called data hazard.

Group-C

(Long-Answer Questions)

Answer any three of the following questions. 3 ¥ 15 = 45

7. (a) Describe the function of major components of a digital computer with neat sketch.

(b) Explain the reading and writing operations of a basic static MOS cell.

(c) How many 128 ¥ 16 RAM chips are needed to construct a memory capacity of 4096 words

(16 bit is one word)? How many lines of the address bus must be used to access a memory

of 4096 words? For chip select, how many lines must be decoded? 5 + 6 + 4

Answer

(a)

The major units of a computer are described next:

(i) Arithmetic and Logic Unit (ALU): It is the main processing unit which performs arithmetic

and other data processing tasks as specified by the control unit. The ALU and control unit

are the main constituent parts of the Central Processing Unit (CPU). Another component of

the CPU is register unit-collection of different registers, used to hold the data or instruction

temporarily.

SQP.8 Computer Organization

(ii) Control Unit: This is the unit that supervises the flow of information between various units.

The control unit retrieves the instructions using registers one by one from the program,

which is stored in the memory. The instructions are interpreted (or decoded) by the control

unit itself and then the decoded instructions are sent to the ALU for processing.

(iii) Memory: The memory unit stores programs as well as data. Generally three types of memo-

ries are used: secondary, main and cache memories.

(iv) Input Unit: This unit transfers the information as provided by the users into memory.

Examples include keyboard, mouse, scanner, etc.

(v) Output Unit: The output units receive the result of the computation and displayed to the

monitor or the user gets the printed results by means of a printer.

(b) One SRAM cell using CMOS is shown in figure next. Four transistors (T3, T4, T5 and T6) are

cross connected in such a way that they produce a stable state. In state 1, the voltage at point A

is maintained high and voltage at point at B is low by keeping transistors T3 and T6 on (i.e.

closed), while T4 and T5 off (i.e. open). Thus, for state 1, if T1 and T2 are turned on (closed), bit

lines b and b¢ will have high and low signals, respectively.

Read Operation: For the read operation, the word line is activated by the address input to the

address decoder. The activated word line closes both the transistors (switches) T1 and T2. Then

the bit values at points A and B can transmit to their respective bit lines. The sense/write circuit

at the end of the bit lines sends the output to the processor.

Write Operation: Similarly, for the write operation, the address provided to the decoder activates

the word line to close both the switches. Then the bit value that to be written into the cell is

provided through the sense/write circuit and the signals in bit lines are then stored into the cell.

(c) The number of 128 ¥ 16 RAM chips needed to construct a memory capacity of 4096 ¥ 16 is

= (4096/128) * (16/16) = 32.

Since the large memory size is 4096 words. The number of lines in the address bus used to

access the memory is 12.

Since the 32 rows (= 4096/128) of 128 ¥ 16 RAMs are used to construct the large memory of

size 4096 ¥ 16. The number of lines decoded to select a RAM is 5. Therefore the address

decoder size is 5-to-32.

Solved Question Paper 2007 (CS-303) SQP.9

8. (a) Give the Booth�s algorithm for multiplication of signed 2�s complement numbers in flow-

chart and explain.

(b) Multiply �5 by �3 using Booth�s algorithm.

(c) What is von Neumann architecture? What is von Neumann bottleneck?

(d) What is virtual memory? 5 + 4 + 4 + 2

Answer

(a)

SQP.10 Computer Organization

The algorithm inspects two lower-order multiplier bits at time to take the next step of action.

The algorithm is described by the flowchart shown above. A flip-flop (a fictitious bit position) is

used to the right of lsb of the multiplier and it is initialized to 0. Subsequently, it receives the lsb

of the multiplier when the multiplier is shifted right.

Once all bits of the multiplier are inspected, the accumulator and multiplier registers together

contain the product. Ignore the right end flip-flop used for holding an initial 0, as it is a fictitious

bit and subsequent lsbs from multiplier.

(b) M = �5 = 1011 and Q = �3 = 1101.

M A Q Size

Initial

Configuration 1011 0000 1101 0 4

Step-1

As Q[0]=1and

Q[�1]=0

A=A � M 1011 0101 1101 0 -

And ARS(AQ) 1011 0010 1110 1 3

Step-2

As Q[0]=0 and

Q[�1]=1

A = A + M 1011 1101 1110 1 -

ARS(AQ) 1011 1110 1111 0 2

Step-3

As Q[0]=1 and

Q[�1]=0

A = A � M 1011 0011 1111 0 -

ARS(AQ) 1011 0001 1111 1 1

Step-4

As Q[0]=1 and

Q[�1]=1

ARS(AQ) 1011 0000 1111 1 0

Since, the size register becomes 0, the algorithm is terminated and the product is = AQ = 0000

1111, which shows that the product is a positive number. The result is 15 in decimal.

(c) Von Neumann architecture:

The architecture uses a concept, known as stored-program concept, and has three main prin-

ciples:

1. Program and data can be stored in the same memory.

2. The computer executes the program in sequence as directed by the instructions in the

program.

3. A program can modify itself when the computer executes the program.

Each instruction contains only one memory address and has the format:

OPCODE ADDRESS

The 8-bit op-code specifies the operation to be performed by the CPU and 12-bit address

specifies the operand�s memory address. Thus, length of each instruction is 20-bit.

Solved Question Paper 2007 (CS-303) SQP.11

Von-Neumann bottleneck:

One of the major factors contributing for a computer�s performance is the time required to move

instructions and data between the CPU and main memory. The CPU has to wait longer to obtain

a data-word from the memory than from its registers, because the registers are very fast and are

logically placed inside the processor (CPU). This CPU-memory speed disparity is referred to as

Von-Neumann bottleneck.

(d) Virtual memory is a technique used in some large computer systems, which gives the program-

mer an illusion of having a large main memory, although which may not be the case. The size of

virtual memory is equivalent to the size of secondary memory. Each address referenced by the

CPU called the virtual (logical) address is mapped to a physical address in main memory. This

mapping is done during run-time and is performed by a hardware device called memory-man-

agement unit (MMU) with the help of a memory map table, which is maintained by the operat-

ing system.

9. (a) Explain the basic Direct Memory Access (DMA) operation for transfer of data bytes be-

tween memory and peripherals.

(b) Give the main reason why DMA based I/O is better in some circumstances than interrupt

driven I/O?

(c) What is programmed I/O technique? Why is it not very useful?

(d) According to the following information, determine size of the subfields (in bits) in the

address for Direct Mapping and Set Associative Mapping cache schemes:

l We have 256 MB main memory and 1 MB cache memory

l The address space of the processor is 256 MB

l The block size is 128 bytes

l There are 8 blocks in a cache set. 5 + 3 + 3 + 4

Answer

(a) DMA transfers are performed by a control circuit that is part of the I/O device interface. We

refer to this circuit as a DMA controller. The DMA controller performs the functions that would

normally be carried out by the CPU when accessing the main memory. During DMA transfer,

the CPU is idle or can be utilized to execute another program and CPU has no control of the

memory buses. A DMA controller takes over the buses to manage the transfer directly between

the I/O device and the main memory.

The CPU can be placed in an idle state using two special control signals, HOLD and HLDA

(hold acknowledge). The following figure shows two control signals in the CPU that character-

ize the DMA transfer. The HOLD input is used by the DMA controller to request the CPU to

release control of buses. When this input is active, the CPU suspends the execution of the

current instruction and places the address bus, the data bus and the read/write line into a high-

impedance state. The high-impedance state behaves like an open circuit, which means that the

output line is disconnected from the input line and does not have any logic significance. The

CPU activates the HLDA output to inform the external DMA controller that the buses are in the

high-impedance state. The control of the buses has been taken by the DMA controller that

generated the bus request to conduct memory transfers without processor intervention. After the

transfer of data, the DMA controller disables the HOLD line. The CPU then disables the HLDA

line and regains the control of the buses and returns to its normal operation.

SQP.12 Computer Organization

(b) To transfer large blocks of data at high speed, DMA method is used. A special DMA controller

is provided to allow transfer a block of data directly between a high speed external device like

magnetic disk and the main memory, without continuous intervention by the CPU. The data

transmission cannot be stopped or slowed down until an entire block is transferred. This mode

of DMA transfer is known as burst transfer.

(c) This is the software method where CPU is needed all the times during data transfer between any

two devices. Programmed I/O operations are the result of I/O instructions written in the com-

puter program or I/O routine. Each data item transfer is initiated by an instruction in the

program or I/O routine. Generally, the transfer is to and from a CPU register and peripheral.

Transferring data under program control requires constant monitoring of the peripheral by the

CPU.

The programmed I/O method is particularly useful in small low-speed computers or in sys-

tems that are dedicated to monitor a device continuously. Generally the CPU is 5-7 times faster

than an I/O device. Thus, the difference in data transfer rate between the CPU and the I/O

device makes this type of transfer inefficient.

(d) The address space of the processor is 256 MB. So, the processor generates an address of 28-bit.

The cache memory size = 1MB

Therefore, the size of index field of cache = 20-bit (1MB = 220)

The tag-field uses 28 � 20 = 8 bits.

The number of blocks in cache = Size of cache/size of a block = 220/27 = 8192.

Therefore the number of bits required to select each block = 13 (since 8192 = 213)

The size of each block is 128 bytes.

So, the number of bits required to select a word (byte) in a block = 7.

Thus, the address format for direct mapped cache is as follows:

The number of blocks in a set is = 8

Number of bits required to select a block in a set is = 3 (because 8 = 23).

Number of sets in the set-associative cache is = 8192/8 = 1024.

To select each set, number of bits required is = 10 (because 1024 = 210).

Therefore, tag field requires (28 � (10 + 7)) = 11 bits.

Thus, the address format for set-associative cache is as follows:

Solved Question Paper 2007 (CS-303) SQP.13

10. Write short notes on any three of the following: 3 ¥ 5 = 15

(a) Magnetic recording

(b) Adder-subtractor circuit

(c) Addressing modes

(d) Stack organization

(e) Bus organization using tristate buffer.

Answer

(a) A conducting coil called head does the data recording and retrieval from the disk. During read

or write operation, the head is stationary while the disk platter rotates beneath it. The electricity

flowing through the write coil that produces a magnetic field causes the write operation. Pulses

are sent to the write head and magnetic patterns are recorded on the surface below, with

different patterns for positive and negative currents. A head is shown in the figure below.

The read and write signals pass through coils around a ring of soft magnetic material. A very

narrow gap separates the ring from a storage cell on a track so that their respective magnetic

field can induct. This induction permits information transfer between the head and the storage

medium.

(b) The subtraction A � B is equivalent to A+ 2�s complement of B (i.e. 1�s complement of B +1).

The addition and subtraction can be combined to a single circuit by using exclusive-OR (XOR)

gate with each full adder. The 4-bit adder-subtractor circuit is shown in figure next. The

selection input S determines the operation. When S = 0, this circuit performs the addition

operation and when S = 1, this circuit performs subtraction operation.

SQP.14 Computer Organization

(c) The ALU of the CPU executes the instructions as dictated by the op-code field of instructions.

The instructions are executed on some data stored in registers or memory. The different ways in

which the location of an operand is specified in an instruction are referred to as addressing

modes. A computer uses variety of addressing modes; some of them are described below:

1. Implied (or Inherent) Mode: In this mode the operands are indicated implicitly by the

instruction. The accumulator register is generally used to hold the operand and after the

instruction execution the result is stored in the same register. For example,

RAL; Rotates the content of the accumulator left through carry.

2. Immediate Mode: In this mode the operand is mentioned explicitly in the instruction. In

other words, an immediate-mode instruction contains an operand value rather than an ad-

dress of it in the address field. To initialize registers to a constant value, this mode of

instructions is useful. For example:

MVI A, 06; Loads equivalent binary value of 06 to the accumulator

3. Register (Direct) Mode: In this mode the processor registers hold the operands. In other

words, the address field is now register field, which contains the operands required for the

instruction.

For example:

ADD R1, R2; Adds contents of registers R1 and R2 and stores the result in R1.

4. Register Indirect Mode: In this mode the instruction specifies an address of CPU register

that holds the address of the operand in memory.

5. Direct (or Absolute) Address Mode: In this mode the instruction contains the memory

address of the operand explicitly. Example of direct addressing is:

STA 2500H ; Stores the content of the accumulator in the memory location 2500H.

6. Indirect Address Mode: In this mode the instruction gives a memory address in its address

field which holds the address of the operand.

For example:

MOV R1, (X) ; Content of the location whose address is given in X is loaded

into register R1.

7. Relative Address Mode or PC-relative Address Mode: In this mode the effective address is

obtained by adding the content of program counter (PC) register with address part of the

instruction.

(d) Stack based computer operates instructions, based on a data structure called stack. A stack is a

list of data words with a Last-In, First-Out (LIFO) access method that is included in the CPU of

most computers. A portion of memory unit used to store operands in successive locations can be

considered as a stack in computers. The register that holds the address for the top most operand

in the stack is called a stack pointer (SP). The two operations performed on the operands stored

in a stack are the PUSH and POP. From one end only, operands are pushed or popped. The

PUSH operation results in inserting one operand at the top of stack and it decreases the stack

pointer register. The POP operation results in deleting one operand from the top of stack and it

increases the stack pointer register.

For example, figure below shows a stack of four data words in the memory. PUSH and POP

instructions which require an address field. The PUSH instruction has the format:

PUSH <memory address>

Solved Question Paper 2007 (CS-303) SQP.15

The PUSH instruction inserts the data word at specified address to the top of the stack. The POP

instruction has the format:

POP <memory address>

The POP instruction deletes the data word at the top of the stack to the specified address. The

stack pointer is updated automatically in either case. The PUSH operation can be implemented

as

SP ¨ SP � 1 ; decrement the SP by 1

SP ¨ <memory address> ; store the content of specified memory

 address into SP, i.e. at top of stack

The POP operation can be implemented as

<memory address> ¨ SP ; transfer the content of SP (i.e. top most data)

 into specified memory location

SP ¨ SP + 1 ; increment the SP by 1

A stack of words in memory

The figure next shows the effects of these two operations on the stack in figure above.

SQP.16 Computer Organization

(e) A tri-state gate is a digital circuit that exhibits three states out of which two states are normal

signals equivalent to logic 1 and logic 0 similar to a conventional gate. The third state is a high-

impedance state. The gate is controlled by one separate control input C. If C is high the gate

behaves like a normal logic gate having output 1 or 0. When C is low the gate does not produce

any output irrespective of the input values. The graphic symbol of a tri-state buffer gate is

shown below.

The common bus is used to transfer a register�s content to other register or memory at a single

time. A common bus system with tri-state buffers is described in the figure next, where one line

of the common bus is shown.

Assume that there are four registers A, B, C and D. The outputs of four buffers are connected

together to form a single line of the bus. The control inputs to the buffers, which are generated

by a common decoder, determine which of the four normal inputs will communicate with the

common line of the bus. Note that only one buffer may be in the active state at any given time.

Because the selection lines S0, S1 of the decoder activate one of its output lines at a time and the

output lines of the decoder act as the control lines to the buffers. For example, if select combina-

tion S1S0 is equal to 00, then 0th output of the decoder will be activated, which then activates the

top-most tri-state buffer and thus the bus line content will be currently A0, 0th bit of A register.

Solved Question Paper 2007 (CS-303) SQP.17

11. (a) Classify memory system in a digital computer according to their use.

(b) A random access memory module of capacity 2048 bytes is to be used in a computer and

mapped between 2000H and 27FFH. Explain with the help of a block diagram the address

decoding schema assuming 16 bit address bus.

(c) How do the following influence the performance of a virtual memory system?

(i) Size of page

(ii) Replacement policy. 3 + 7 + 5

Answer

(a) The memory system consists of all storage devices used in a computer system and are broadly

divided into following four groups:

l Secondary (auxiliary) memory

l Main (primary) memory

l Cache memory

l Internal memory

Secondary Memory: The slow-speed and low-cost devices that provide backup storage are

called secondary memory. The most commonly used secondary memories are magnetic disks,

such as hard disk, floppy disk and magnetic tapes. This type of memory is used for storing all

programs and data, as this is used in bulk size. When a program not residing in main memory is

needed to execute, it is transferred from secondary memory to main memory. Programs not

currently needed in main memory (in other words, the programs are not currently executed by

the processor) are transferred into secondary memory to provide space for currently used pro-

grams and data.

Main Memory: This is the memory that communicates directly with CPU. Only programs and

data currently needed by the CPU for execution reside in the main memory. Main memory

occupies central position in hierarchy by being able to communicate directly with CPU and with

secondary memory devices through an I/O processor.

Cache Memory: This is a special high-speed main memory, sometimes used to increase the

speed of processing by making the current programs and data available to the CPU at a rapid

rate. Generally, the CPU is faster than main memory, thus resulting that processing speed is

limited mainly by the speed of main memory. So, a technique used to compensate the speed

mismatch between CPU and main memory is to use an extremely fast, small cache between

CPU and main memory, whose access time is close to CPU cycle time.

Internal memory: This memory refers to the high-speed registers used inside the CPU. These

registers hold temporary results when a computation is in progress. There is no speed disparity

between these registers and the CPU because they are fabricated with the same technology.

However, since registers are very expensive, only a few registers are used as internal memory.

(b) Since the capacity of RAM memory is 2048 bytes i.e. 2 KB, the memory uses 11 (2 KB = 211)

address lines, say namely A10 � A0, to select one word. Thus, memory�s internal address

decoder uses 11 lines A10 � A0 to select one word.

To select this memory module, remaining 5 (i.e. 16 � 11) address lines A15 � A11 are used.

Thus, an external decoding scheme is employed on these higher-order five address bits of

processor�s address.

SQP.18 Computer Organization

The address space of the memory is 2000H to 27FFH.

Therefore, the starting address (2000H) in memory is as:

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Based on the higher-order five bits (00100), external decoding scheme performs a logical AND

operation on address values: 15A , 14A , A13, 12A and 11A . The output of AND gate acts as

chip select (CS) line. The address decoding scheme is shown in the figure below.

(c) (i) Page size: This is very important issue in designing virtual memory. For a given virtual-

memory space, if the page size decreases, the number of pages increases and thus the size of

page table increases. For example, a virtual memory of 2 MB, there will be 2048 pages of 1

KB, but only 1024 pages of 2 KB. Since each executing program must have its own copy of

the page table, a large page size is advantageous.

On contrary, memory is better utilized with smaller pages. In other words, no or little

space will be wasted inside a page, if it smaller. With smaller page size, total I/O time

should be reduced, since locality of reference will be improved.

(ii) Replacement policy: When a page fault occurs, a page replacement is needed to select one

of the existing pages in main memory to make the room for the required page. Designing

appropriate replacement algorithms is an important task. We want one with the lowest page

fault rate. There are several replacement algorithms such as FIFO (First-in First-out), LRU

(Least Recently Used) and optimal page replacement algorithm available. Among these,

optimal algorithm generally has the lowest page fault rate.

Group-A

(Multiple-Choice Questions)

1. Choose the correct alternatives for the following: 10 ¥1 = 10

(i) With 2�s complement representation, the range of values that can be represented on the data

bus of an 8 bit microprocessor is given by

(a) �128 to + 127 (b) �128 to + 128 (c) �127 to + 128 (d) �256 to + 128.

Answer

(a) �128 to + 127

(ii) Booth�s algorithm for computer arithmetic is used for

(a) multiplication of number in sign magnitude form

(b) multiplication of number in 2�s complement form

(c) division of number in sign magnitude form

(d) division of number in 2�s complement form.

Answer

(b) multiplication of number in 2�s complement form

(iii) Micro instructions are kept in

(a) main memory (b) control store (c) cache (d) none of these.

Answer

(b) Control store

(iv) What is the 2�s complement representation of �24 in a 16-bit microcomputer?

(a) 0000 0000 0001 1000 (b) 1111 1111 1110 1000

(c) 1111 1111 1110 0111 (d) 0001 0001 1111 0011.

Answer

(b) 1111 1111 1110 1000

2007
Computer Architecture

and Organization

(CS-404)
Semester: 4th

Time Alloted: 3 hours Full Marks: 70

SQP.2 Computer Organization

(v) Associative memory is a

(a) pointer addressable memory (b) very cheap memory

(c) content addressable memory (d) slow memory.

Answer

(c) content addressable memory

(vi) The principle of locality justifies the use of

(a) interrupts (b) polling

(c) DMA (d) cache Memory.

Answer

(d) cache memory

(vii) In a microprocessor the address of the next instruction to be executed is stored in

(a) stack pointer (b) address latch

(c) program counter (d) general purpose register.

Answer

(c) program counter

(viii) A system has 48-bit virtual address, 36-bit physical address and 128 MB main memory;

how many virtual and physical pages can the address spaces support?

(a) 236, 224 (b) 212, 236

(c) 224, 234 (d) 234, 236

Answer

(a) 236, 224

(ix) The basic principle of the von Neumann computer is

(a) storing program and data in separate memory

(b) using pipeline concept

(c) storing both program and data in the same memory

(d) using a large number of registers.

Answer

(c) storing both program and data in the same memory

(x) Physical memory broken down into groups of equal size is called

(a) page (b) tag

(c) block (d) index.

Answer

(c) block

Group-B

(Short-Answer Questions)

Answer any three of the following. 3 ¥ 5 = 15

2. What is virtual memory? Why is it called virtual? Write the advantage of virtual memory.

Answer

Virtual memory is a technique used in some large computer systems, which gives the programmer an

illusion of having a large main memory, although which may not be the case. The size of virtual

memory is equivalent to the size of secondary memory. Each address referenced by the CPU called

the virtual (logical) address is mapped to a physical address in main memory. This mapping is done

during run-time and is performed by a hardware device called memory-management unit (MMU) with

the help of a memory map table, which is maintained by the operating system.

Solved Question Paper 2007 (CS-404) SQP.3

Virtual memory is not a physical memory, is actually a technique. That is why it is called virtual

memory.

The advantage of virtual memory is efficient utilization of main memory, because the larger size

program is divided into blocks and partially each block is loaded in the main memory whenever it is

required. Thus multiple programs can be executed simultaneously. The technique of virtual memory

has other advantages of efficient CPU utilization and improved throughput.

3. What is meant by parallel processing? What is the basic objective of parallel processing?

Answer

Parallel processing is an efficient form of information processing which emphasizes the exploitation

of concurrent events in the computing process. Parallel processing is the basis of parallel computers.

The basic objective of the parallel processing is to improve the performance of a computer system by

carrying out several tasks simultaneously.

4. What do you mean by instruction cycle, machine cycle and T states?

Answer

Instruction cycle: The processing required for a single instruction is called instruction cycle. The

control unit�s task is to go through an instruction cycle that can be divided into five major phases:

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Fetch the operand(s) from memory or register.

4. Execute the whole instruction.

5. Store the output result to the memory or register.

Machine cycle: A machine cycle consists of necessary steps carried out to perform the memory access

operation. Each of the basic operations such as fetch or read or write operation constitutes a machine

cycle. An instruction cycle consists of several machine cycles.

T-states: One clock cycle of the system clock is referred to as T-state.

5. Distinguish between vectored interrupt and non-vectored interrupt.

Answer:

Interrupt is a special signal to the CPU generated by an external device that causes the CPU to

suspend the execution of one program and the execution of another.

In a vectored interrupt, the source that interrupts supplies the branch information (starting address

of ISR) to the CPU. This information is called the interrupt vector, which is not any fixed memory

location. The processor identifies individual devices even if they share a single interrupt-request line.

So the set-up time is very less.

In a non-vectored interrupt, the branch address (starting address of ISR) is assigned to a fixed

location in memory. Since the identities of requesting devices are not known initially, the set-up time

is quite large.

SQP.4 Computer Organization

6. Compare RISC with CISC.

Answer

CISC RISC

1. A large number of instruction types used - typically 1. Relatively few number of instruction types-

from 100 to 250 instructions. typically less than100 instructions.

2. A large number of addressing modes used - typically 2. Relatively few addressing modes - typically

from 5 to 15 different modes. less than or equal to 5.

3. Variable-length instruction formats. 3. Fixed-length, easily decoded instruction formats.

4. Small number of general-purpose registers (GPRs) - 4. Large number of general-purpose registers (GPRs)-

typically 8-24 GPRs. typically 32-192 GPRs.

5. Clock per instruction (CPI) lies between 2 and 15. 5. Clock per instruction (CPI) lies between 1 and 2.

6. Mostly micro-programmed control units. 6. Mostly hardwired control units.

7. Most instructions manipulate operands in memory. 7. All operations are executed within registers of the CPU.

Group-B

(Long-Answer Questions)

Answer any three questions. 3 ¥ 15 = 45

7. (a) What is pipelining ?

(b) What are speedup, throughput and efficiency of a pipelined architecture?

(c) Describe pipeline hazards.

(d) Compare between centralized and distributed architecture. Which is the best architecture

among them and why? 2 + 3 + 5 + 3 + 2

Answer

(a) Pipelining is a technique of decomposing a sequential task into subtasks, with each subtask

being executed in a special dedicated stage (segment) that operates concurrently with all other

stages. Each stage performs partial processing dictated by the way the task is partitioned. Result

obtained from a stage is transferred to the next stage in the pipeline. The final result is obtained

after the instruction has passed through all the stages. All stages are synchronized by a common

clock. Stages are pure combinational circuits performing arithmetic or logic operations over the

data stream flowing through the pipe. The stages are separated by high-speed interface latches

(i.e. collection of registers). Figure below shows the pipeline concept with k stages.

(b) Speed-up: It is defined as

Sk =
Time to execute n tasks in k-stage non-pipeline processor

Time to execute n tasks in k-stage pipeline processor

Solved Question Paper 2007 (CS-404) SQP.5

=
n k

[k (n � 1)]

× × t

t +
where, t = clock period of the pipeline processor.

Time to execute n tasks in k-stage pipeline processor is t[k + (n�1)] units, where k clock

periods (cycles) are needed to complete the execution of the first task and remaining (n�1) tasks

require (n�1) cycles. Time to execute n tasks in k-stage non-pipeline processor is n.k.t, where

each task requires k cycles because no new task can enter the pipeline until the previous task

finishes.

It can be noted that the maximum speed-up is k, for n >> k. But this maximum speed-up is

never fully achievable because of data dependencies between instructions, interrupts, program

branches, etc.

Efficiency: To define it, we need to define another term �time-space span�. It is the product

(area) of a time interval and a stage space in the space-time diagram. A given time-space span

can be in either a busy state or an idle state, but not both.

The efficiency of a linear pipeline is measured by the percentage of busy time-space spans

over the total time-space spans, which equal the sum of all busy and idle time-space spans. Let

n, k, t be the number of tasks (instructions), the number of stages and the clock period of a

linear pipeline, respectively. Then the efficiency is defined by

h =
n k n

k [k (n � 1)] k (n � 1)

× × t
=

× × t + × t +

Note that h Æ 1 (i.e., 100%) as n Æ •. This means that the larger the number of tasks flowing

through the pipeline, the better is its efficiency. For the same reason as speed-up, this ideal

efficiency is not achievable.

Throughput: The number of tasks that can be completed by a pipeline per unit time is called its

throughput. Mathematically, it is defined as

w =
n

k (n � 1)

h
=

× t + × t t

Note that in ideal case, w = 1/t = f, frequency, when h Æ 1. This means that the maximum

throughput of a linear pipeline is equal to its frequency, which corresponds to one output result

per clock period.

(c) Pipeline hazards are situations that prevent the next instruction in the instruction stream from

executing during its designated clock cycle. There are three types of pipeline hazards:

1. Control hazards

2. Structural hazards

3. Data hazards

Control hazards: They arise from the pipelining of branches and other instructions that change

the content of program counter (PC) register.

Structural hazards: Structural hazards occur when a certain resource (memory, functional unit)

is requested by more than one instruction at the same time.

SQP.6 Computer Organization

Data hazards: Inter-instruction dependencies may arise to prevent the sequential (in-order) data

flow in the pipeline, when successive instructions overlap their fetch, decode and execution through

a pipeline processor. This situation due to inter-instruction dependencies is called data hazard.

(d) In centralized architecture, all the processors access the physical main memory uniformly. All

processors have equal access time to all memory words. The architecture is shown in the

following figure.

In distributed system, a local memory is attached with each processor. All local memories

distributed throughout the system form a global shared memory accessible by all processors. A

memory word access time varies with the location of the memory word in the shared memory.

The distributed system is depicted in the figure.

It is faster to access a local memory with a local processor. The access of remote memory

attached to other processor takes longer due to the added delay through the interconnection

network. Therefore, the distributed system is faster and in this regard, it is better.

8. (a) What is meant by DMA? Why is it useful? Briefly explain with suitable diagram, the DMA

operation in association with CPU.

(b) Draw the schematic diagram for daisy chain polling arrangement in case of vectored inter-

rupt for three devices. 2 + 2 + 6 + 5

Answer

(a) A special controlling unit called DMA controller is provided to allow transfer a block of data

directly between a high speed external device like magnetic disk and the main memory, without

continuous intervention by the CPU. This method is called direct memory access (DMA).

DMA is useful, because it has following advantages:

1. High speed data transfer is possible, since CPU is not involved during actual transfer, which

occurs between I/O device and the main memory.

Solved Question Paper 2007 (CS-404) SQP.7

2. Parallel processing can be achieved between CPU processing and DMA controller�s I/O

operation.

In DMA transfer, I/O devices can directly access the main memory without intervention by

the processor. The following figure shows a typical DMA system.

The sequences of events involved in a DMA transfer between an I/O device and the main

memory are as follows:

A DMA request signal from an I/O device starts the DMA sequence. DMA controller acti-

vates the HOLD line. It then waits for the HLDA signal from the CPU. On receipt of HLDA,

the controller sends a DMA ACK (acknowledgement) signal to the I/O device. The DMA

controller takes the control of the memory buses from the CPU. Before releasing the control of

the buses to the controller, the CPU initializes the address register for starting memory address

of the block of data, word-count register for number of words to be transferred and the operation

type (read or write). The I/O device can then communicate with memory through the data bus

for direct data transfer. For each word transferred, the DMA controller increments its address-

register and decrements its word count register. After each word transfer, the controller checks

the DMA request line. If this line is high, next word of the block transfer is initiated and the

process continues until word count register reaches zero (i.e., the entire block is transferred). If

the word count register reaches zero, the DMA controller stops any further transfer and removes

its HOLD signal. It also informs the CPU of the termination by means of an interrupt through

INT line. The CPU then gains the control of the memory buses and resumes the operations on

the program which initiated the I/O operations.

(b) To implement interrupts, the CPU uses a signal, known as an interrupt request (INTR) signal to

the interrupt controller hardware, which is connected to each I/O device that can issue an

SQP.8 Computer Organization

interrupt to it. Here, interrupt controller makes liaison with the CPU on behalf of I/O devices.

Typically, interrupt controller is also assigned an interrupt acknowledge (INTA) line that the

CPU uses to signal the controller that it has received and begun to process the interrupt request

by employing an ISR (interrupt service routine). Devices are connected in daisy chain fashion,

as shown in figure below, to set up priority interrupt system.

The devices are placed in a chain-fashion with highest priority device in the first place (device

1), followed by lower priority devices. The priorities are assigned by the interrupt controller.

When one or more devices send interrupt signal through the interrupt controller to the CPU, the

CPU then sets interrupt acknowledge (INTA) to the controller, which in turns sends it to the

highest priority device. If this device has generated the interrupt INTR, it will accept the INTA;

otherwise it will pass the INTA signal to the next device until the INTA is accepted by one

requestor device. When the INTA is accepted by a device, device puts its own interrupt vector

address (VAD) to the data bus using interrupt controller.

9. (a) Discuss the principle of carry look ahead adder and design a 4-bit CLA adder and estimate

the speed enhancement with respect to ripple carry adder.

(b) Briefly state the relative advantages and disadvantages of parallel adder over serial adder.

(c) X = (A + B) ¥ C

Write down the zero address, one address and three address instructions for the expression.

(4 + 3) + 2 + 6

Answer

(a) Principle of CLA: A Carry Look-ahead Adder (CLA) is a high-speed adder, which adds two

numbers without waiting for the carries from the previous stages. In the CLA, carry-inputs of all

stages are generated simultaneously, without using carries from the previous stages.

Design: In the full adder, the carry output Ci+1 is related to its carry input Ci as follows:

Ci+1 = AiBi + (Ai+Bi)Ci

This result can be rewritten as:

Ci+1 = Gi + PiCi (1)

where Gi = AiBi and Pi = Ai + Bi

The function Gi is called the carry-generate function, since a carry Ci+1 is generated when both

Solved Question Paper 2007 (CS-404) SQP.9

Ai and Bi are 1s. The function Pi is called as carry-propagate function, since if Ai or Bi is a 1,

then the input carry Ci is propagated to the next stage. The basic adder (BA) for generating the

sum Si, carry propagate Pi and carry generate Gi bits, is shown in the following figure. The sum

bit Si is = Ai ≈ Bi ≈ Ci. For the implementation of one basic adder, two XOR gates, one AND

gate and one OR gate are required.

Now, to design a 4-bit CLA, four carries C1, C2, C3 and C4 are to be generated. Using Eq. (1);

C1, C2, C3 and C4 can be expressed as follows:

C1 = G0 + P0C0

C2 = G1 + P1C1

C3 = G2 + P2C2

C4 = G3 + P3C3

These equations are recursive and the recursion can be removed as below.

C1 = G0 + P0C0 (2)

C2 = G1 + P1C1

= G1 + P1(G0 + P0C0)

= G1 + P1G0 + P1P0C0 (3)

C3 = G2 + P2C2

= G2 + P2(G1 + P1G0 + P1P0C0)

= G2 + P2G1 + P2P1G0 + P2P1P0C0 (4)

C4 = G3 + P3C3

= G3 + P3(G2 + P2G1 + P2P1G0 + P2P1P0C0)

= G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0 (5)

The Eqs (2), (3), (4) and (5) suggest that C1, C2, C3 and C4 can be generated directly from C0. In

other words, these four carries depend only on the initial carry C0. For this reason, these

equations are called carry look-ahead equations. A 4-bit carry look-ahead adder (CLA) is

shown in the figure next.

The maximum delay of the CLA is 6 ¥ D (for Gi and Pi generation, delay =D, for Ci generation,

delay = 2D and lastly another 3D for sum bit Si) where D is the average gate delay. The same holds

good for any number of bits because the adder delay does not depend on size of number (n). It

SQP.10 Computer Organization

depends on the number of levels of gates used to generate the sum and the carry bits. Whereas, the

maximum propagation delay for CPA depends on size of inputs and for n-bit CPA it is D ¥ n, where

D is the time delay for each full adder stage and n is the number of bits in each operand.

(b) Advantage of parallel adders over serial adders: The parallel adder, being a combinational

circuit, is faster than serial adder. In one clock period all bits of two numbers are added, whereas

a serial adder requires n clock periods to add two n-bit numbers.

Disadvantages of parallel adders over serial adders:

1. The addition delay becomes large, if the size of numbers to be added is increased. But this

remains same for serial adders.

2. The hardware cost is more than that of serial adder. Because, number of full adders needed

is equal to the number of bits in operands.

(c) To evaluate this arithmetic expression, we use some op-codes as: LOAD symbolic op-code is used

for transferring data to register from memory. STORE symbolic op-code is used for transferring data

to memory from register. The symbolic op-codes ADD and MULT are used for the arithmetic opera-

tions addition and multiplication respectively. Assume that the respective operands are in memory

addresses A, B and C and the result must be stored in the memory at address X.

Using three-address instructions, the program code in assembly language is as:

ADD R1, A, B ; R1 ¨ M[A] + M[B]

MULT X, C, R1 ; X ¨ M[C] + R1

Using two-address instructions, the program code in assembly language is as:

LOAD R1, A ; R1 ¨ M[A]

ADD R1, B ; R1 ¨ R1 + M[B]

LOAD R2, C ; R2 ¨ M[C]

MULT R1, R2 ; R1 ¨ R1 * R2

STORE X, R1 ; X ¨ R1

Using one-address instructions, the program code in assembly language is as:

LOAD A ; AC ¨ M[A]

ADD B ; AC ¨ AC + M[B]

Solved Question Paper 2007 (CS-404) SQP.11

STORE T ; T ¨ AC

LOAD C ; AC ¨ M[C]

MULT T ; AC ¨ AC * M[T]

STORE X ; X ¨ AC

Using zero-address instructions, the program code in assembly language is as:

PUSH A ; TOS ¨ A [TOS means top of the stack]

PUSH B ; TOS ¨ B

ADD ; TOS ¨ (A + B)

PUSH C ; TOS ¨ C

MULT ; TOS ¨ ((A + B) * C)

POP X ; X ¨ TOS

10. (a) Why do we require memory hierarchy ? Show the memory hierarchy diagram indicating the

speed and cost.

(b) Distinguish between SRAM and DRAM.

(c) How many 256 ¥ 4 RAM chips are needed to provide a memory capacity of 2048 bytes?

Show also the corresponding interconnection diagram.

(d) A disk drive has 20 sectors/track, 4000 bytes/sector, 8 surfaces all together. Outer diameter

of the disk is 12 cm and inner diameter is 4 cm. Inter-track space is 0.1 mm. What is the no.

of tracks, storage capacity of the disk drive and data transfer rate there from each surface?

The disk rotates at 3600 rpm. (2 + 1) + 3 + (2 + 2) + 5

Answer

(a) Ideally, we would like to have the memory which would be fast, large and inexpensive. Unfortu-

nately, it is impossible to meet all three requirements simultaneously. If we increase the speed

and capacity, then cost will increase. We can achieve these goals at optimum level by using

several types of memories, which collectively give a memory hierarchy.

A memory hierarchy system broadly divided into following four groups, shown in figure

below.

l Secondary (auxiliary) memory

l Main (primary) memory

l Cache memory

l Internal memory

SQP.12 Computer Organization

(b) Distinguish between SRAM and DRAM:

1. The SRAM has lower access time, which means it is faster compared to the DRAM.

2. The SRAM requires constant power supply, which means this type of memory consumes

more power; whereas, the DRAM offers reduced power consumption, due to the fact that

the information is stored in the capacitor.
3. Due to the relatively small internal circuitry in the one-bit memory cell of DRAMs, the large

storage capacity in a single DRAM memory chip is available compared to the same physical size
SRAM memory chip. In other words, DRAM has high packaging density compared to the SRAM.

4. SRAM is costlier than DRAM.
(c) The given RAM memory size is 256 ¥ 4. This memory chip requires 8 (because 256 = 28)

address lines and 4 data lines.
Size of memory to be constructed is 2048 bytes, which is equivalent to 2048 ¥ 8. Thus, it

requires 11 (because 2048 = 211) address lines and 8 data lines.
In the interconnection diagram:
The number of rows required = 2048/256 = 8.
The number of columns required = 8/4 = 2.
Thus, total number of RAMs each of size 256 ¥ 4 required = 8 * 2 = 16.

(d) Given
No. of sectors per track = 20
No. of bytes in each sector = 4000
No. of surfaces in disk pack = 8.
Outer diameter of disk = 12 cm.
Inner diameter = 4 cm.
Inter-track gap = 0.1 mm.

Solved Question Paper 2007 (CS-404) SQP.13

So, total width of track = (12 � 4)/2 = 4 cm.
No. of tracks per surface = (4 * 10)/0.1 = 400.
Thus, the total storage capacity of the disk drive = no. of surfaces * no. of tracks per surface *
no. sectors per track * capacity of each sector = 8 * 400 * 20 * 4000 = 256000000 bytes =
244.14 MB (apprx.).

The rotational speed = 3600 rpm

So, the rotation time = 60/3600 sec = 1/60 sec.

Storage capacity of each track = 20 * 4000 bytes = 80000 bytes.

Thus, the data transfer rate = 80000/(1/ 60) = 4800000 bytes /sec = 4.578 MB/sec.

11. (a) Explain Booth�s algorithm. Apply Booth�s algorithm to multiply the two numbers (+14)10

and (�12)10. Assume the multiplier and multiplicand to be of 5 bits each.

(b) Give the flowchart for division of two binary numbers and explain. 10 + 5

Answer

(a) For Booth�s algorithm, see the answer of question no. 8(a) of 2007 (CS-303).

Multiplication of numbers (+14) 10 and (�12) 10:

Multiplicand, M = + 14 = 01110 and multiplier, Q = �12 = 10100.

M A Q Size

Initial

Configuration 01110 00000 10100 0 5

Step-1

As Q[0]=0 and

Q[�1]=0

ARS(AQ) 01110 00000 01010 0 4

Step-2

As Q[0]=0 and

Q[�1]=0

ARS(AQ) 01110 00000 00101 0 3

Step-3

As Q[0]=1 and

Q[�1]=0

A = A � M 01110 10010 00101 0 �

ARS(AQ) 01110 11001 00010 1 2

Step-4

As Q[0]=0 and

Q[�1]=1

A = A + M 01110 00111 00010 1 -

ARS(AQ) 01110 00011 10001 0 1

Step -5

As Q[0] = 1and

Q[�1] = 0

A = A � M 01110 10101 10001 0 -

ARS (AQ) 01110 11010 11000 1 0

Since the size register becomes 0, the algorithm is terminated and the product is = AQ = 1101011000,

which shows that the product is a negative number. To get the result in familiar form, take the 2�s

complement of the magnitude of the number and the result is �168 in decimal.

SQP.14 Computer Organization

(b) The restoring division method uses three n-bit registers A, M, Q for dividing two n-bit numbers.

The register M is used to hold the divisor. Initially, A contains 0 and Q holds the n-bit dividend.

In each iteration, the contents of register-pair AQ are shifted to the left first. The content of M is

then subtracted from A. If the result of subtraction is positive, a 1 is placed into the vacant

position created in lsb position of Q by the left shift operation; otherwise a 0 is put into this

position and before beginning the next iteration, restore the content of A by adding the current

content of A register with M. For this step, the algorithm is referred to as a restoring division

algorithm. When the algorithm terminates, the A register contains the remainder result and the

Q register contains the quotient result.

The restoring division algorithm to divide two n-bit numbers is described using the flowchart

shown in figure below.

Solved Question Paper 2007 (CS-404) SQP.15

The algorithm discussed is used for division of two unsigned integers. This algorithm can be

extended to handle signed numbers as well. The sign of the result must be treated separately and

the positive magnitudes of the dividend and divisor are performed using this technique for

quotient and remainder. The sign of the quotient is determined as Mn ≈ Qn, where Mn, Qn are

the signs of the divisor (M) and the dividend (Q) respectively.

Group-A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following: 10 ¥ 1 = 10

(i) What is the 2�s complement representation of �24 in a 16-bit microcomputer?

(a) 0000 0000 0001 1000 (b) 1111 1111 1110 1000

(c) 1111 1111 1110 0111 (d) 0001 0001 1111 0011

Answer

(b) 1111 1111 1110 1000

(ii) The basic principle of the von Neumann computer is

(a) storing program and data in separate memory

(b) using pipeline concept

(c) storing both program and data in the same memory

(d) using a large number of registers.

Answer

(c) storing both program and data in the same memory

(iii) In a microprocessor the address of the next instruction to be executed is stored in

(a) stack pointer (b) address latch

(c) program counter (d) general purpose register

Answer

(c) program counter

(iv) For BIOS (Basic Input/Output System) and IOCS (Input/Output Control System), which

one of the following is true?

(a) BIOS and IOCS are same

2007
Computer Architecture

and Organization

(EC-503)
Time Alloted: 3 hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

SQP.2 Computer Organization

(b) BIOS controls all devices and IOCS controls only certain devices

(c) BIOS is not a part of operating system and IOCS is a part of operating system

(d) BIOS is stored in ROM and IOCS is stored in RAM.

Answer

(c) BIOS is not a part of operating system and IOCS is a part of operating system

(v) The principle of locality justifies the use of

(a) interrupts (b) polling (c) DMA (d) cache memory

Answer

(d) cache memory.

(vi) The performance of a pipelined processor suffers if

(a) the pipeline stages have different delays

(b) consecutive instructions are dependent on each other

(c) the pipeline stages share hardware resources

(d) all of these

Answer

(d) all of these.

(vii) �Delayed Branching� is related to

(a) pipeline hazard (b) pipeline remedy (c) both (a) and (b) (d) none of these

Answer

(b) pipeline remedy

(viii) How many RAM chips of size (256 ¥ 1 bit) are required to build 1 M byte memory?

(a) 8 (b) 10 (c) 24 (d) 32

Answer

(b) pipeline remedy

(ix) The mode field determines

(a) the type of addressing (b) the type of operand

(c) the type of instruction format (d) the type of arithmetic or logic operation.

Answer

(a) the type of addressing

(x) By left-shifting the content of a register once, its content is

(a) doubled (b) halved

(c) both (a) and (b) (d) no such decision can be made

Answer

(a) doubled

Group-B

(Short-Answer Type Questions)

Answer any three of the following. 3 ¥ 5 = 15

2. What is Harvard architecture? Explain briefly using a block diagram. 1 + 4

Answer

In Harvard architectures, separate program and data memories are used. Data memory and

program memory can be different widths, type, etc. Program and data can be fetched in one

Solved Question Paper 2007 (EC-503) SQP.3

cycle by using separate control signals- �program memory read� and �data memory read�. Example

includes Harvard Mark 1 computer. The block diagram of Harvard architecture is shown in the

figure below.

Harvard architecture

In a Harvard computer, the CPU can both read an instruction and perform a data memory access

at the same time, even without a cache. A Harvard architecture computer can thus be faster than

a von Neumann computer (which uses common memory for both data and instructions) for a

given circuit complexity because instruction fetches and data access do not contend for a single

memory pathway.

Modern high performance CPU chip designs incorporate aspects of both Harvard and von

Neumann architectures. Harvard architecture is used as the CPU accesses the cache. On-chip

cache memory is divided into an instruction cache and a data cache. In the case of a cache miss,

however, the data is retrieved from the main memory, which contains both instruction and data

collectively. Thus, the von Neumann architecture is used as the CPU accesses the main memory.

The Harvard architectures are used frequently in specialized Digital Signal Processors (DSPs)

for vedio and audio applications.

3. Sketch the instruction format of a two address instruction that uses immediate, register direct

and indexed addressing mode if size of the memory is 1 MB and size of instruction word is

limited to 16 bits with 3 bit op-code field. 5

Answer

Specifications:

Memory size = 1MB; so 20 address bits are used

3 bit op-code.

3 addressing modes; so 2 mode bits are used.

The instruction is 2-address instruction; so a total of 45 bits (i.e. 3 + 2 + 20 + 20) are required

for the instruction.

Since the word size is 16-bit, the instruction must be of 3-word.

(i) Immediate Mode: The data word is kept in the second word and third word is left vacant.

The format is shown below:

SQP.4 Computer Organization

(ii) Register Direct Mode: Assuming 32 CPU registers each of 16-bit, 5 bits are used to

specify one register. The format is shown below, where X stands for unused.

(iii) Indexed Addressing Mode: The 20-bit base address is stored as part of first two words and

third word is unused. The format is shown below:

4. What is flash memory? Explain with an example. 2 + 3

Answer

A currently popular type of non-volatile EEPROM (Electrically Erasable Programmable ROM),

in which erasing is performed in large blocks rather than bit by bit, is known as flash EPROM

or flash memory. Erasing in large blocks reduces the overhead circuitry, thus leading to greater

density and lower cost. Flash memory gets its name because the memory chip is organized so

that a section of memory cells are erased in a single action i.e. �flash�. The current trend is

�memory stick� made of flash memory that is used to Universal Serial Bus (USB) of the

personal computer for data exchange between computers. The following figure shows a block

diagram of an 1-KB flash memory.

1 KB Flash memory

5. What are the advantages of relative addressing mode over direct addressing mode? 5

Answer

In relative addressing mode, the effective address is obtained by adding the content of program

counter (PC) register with address part of the instruction. The instruction specifies the memory

address of operand as the relative position of the current instruction address. Generally, this

mode is used to specify the branch address in the branch instruction, provided the branch

address is nearer to the instruction address.

Operand (i.e. effective) address = content of PC + offset.

Relative addressing mode

Solved Question Paper 2007 (EC-503) SQP.5

In direct addressing mode, the instruction contains the memory address of the operand explicitly.

Thus, the address part of the instruction is the effective address.

Direct addressing mode

The advantages of relative addressing mode over direct addressing mode:

∑ In relative addressing mode, smaller number of bits are used as the address of the operands

compared to the direct addressing mode.

∑ Since the size of relative addressed mode instructions is shorter than that of direct mode

instructions, the relative addressed mode instructions occupy lesser memory space, which

decreases the memory requirement.

∑ Due to the smaller size for relative addressing mode instructions, either data bus width is

small or instruction fetch takes less time.

6. Distinguish between arithmetic pipeline and instruction pipeline. 5

Answer

See answer of question 6(a) of 2007 (CS-303).

Group-C

(Long-Answer Questions)

Answer any three of the following. 3 ¥ 15 = 45

7. (a) With the help of a block diagram discuss the construction and working of an 8-bit carry-

look-ahead adder. Also compute total time needed to perform one addition using gate

delay of each gate ä ìs and no delay are involved in the connecting wires. 8 + 3

(b) What are the advantages of carry-look-ahead adder over ripple-carry adders? Explain. 4

Answer

(a) A Carry Look-ahead Adder (CLA) is a high-speed adder, which adds two numbers without

waiting for the carries from the previous stages. In the CLA, carry-inputs of all stages are

generated simultaneously, without using carries from the previous stages.

In the full adder, the carry output Ci+1 is related to its carry input Ci as follows:

Ci+1 = AiBi + (Ai + Bi) Ci

This result can be rewritten as:

Ci+1 = Gi + PiCi (1)

where Gi = AiBi and Pi = Ai + Bi

SQP.6 Computer Organization

The function Gi is called the carry-generate function, since a carry Ci+1 is generated when

both Ai and Bi are 1s. The function Pi is called as carry-propagate function, since if Ai or

Bi is a 1, then the input carry Ci is propagated to the next stage. The basic adder (BA) for

generating the sum Si, carry propagate Pi and carry generate Gi bits, is shown in figure

below. The sum bit Si is = Ai ⊕ Bi ⊕ Ci. For the implementation of one basic adder, two

XOR gates, one AND gate and one OR gate are required.

Basic Adder

Now, for an 8-bit CLA, eight carries C1, C2, �, C8 are to be generated. Using equation

number (1); C1, C2, �, C8 can be expressed as follows:

C1 = G0 + P0C0

C2 = G1 + P1C1

C8 = G7 + P7C7

These equations are recursive and the recursion can be removed as below.

C1 = G0 + P0C0 (2)

C2 = G1 + P1C1

= G1 + P1(G0 + P0C0)

= G1 + P1G0 + P1P0C0 (3)

C3 = G2 + P2C2

= G2 + P2(G1 + P1G0 + P1P0C0)

= G2 + P2G1 + P2P1G0 + P2P1P0C0 (4)

Similarly, C4, C5, C6, C7 and C8 can be expanded to remove the recursion.

The equations (2), (3), (4) and others, if derived, suggest that C1, C2, �, C8 can be

generated directly from C0. In other words, these eight carries depend only on the initial

carry C0. For this reason, these equations are called carry look-ahead equations. An 8-bit

carry look-ahead adder (CLA) is shown in figure below.

Solved Question Paper 2007 (EC-503) SQP.7

8-bit Carry Look-ahead Adder (CLA)

Total time needed to perform one addition:

The maximum delay of the CLA is 6 ¥ d (for Gi and Pi generation, delay = d, for Ci

generation, delay = 2d and lastly another 3d for sum bit Si) where d is the average gate

delay. The same holds good for any number of bits because the adder delay does not

depend on size of number (n). It depends on the number of levels of gates used to generate

the sum and the carry bits.

(b) The advantages of carry-look-ahead adder over ripple-carry adders:

∑ Generally, the carry look-ahead adder (CLA) is faster than the ripple carry adder

(RCA). Because, the maximum delay of the CLA is 6 ¥ d, where d is the average gate

delay and this holds good for any size numbers. However, the maximum propagation

delay for n-bit RCA is d x n, where n is the number of bits in each operand.

∑ The RCA becomes slow once the sizes of operands are increased, which is not true for

CLA. The speed of CLA remains same irrespective of sizes of operands.

8. (a) Using Booth�s algorithm, multiply (+14) and (�12) when the numbers are represented in

2�s complement form. 9

(b) Compare and contrast restoring and non-restoring divisions. 6

Answer

(a) See answer of question no. 11(a) of 2007 (CS-404).

(b) See answer of question 5(b) of 2007 (CS-303).

9. (a) Explain Flynn�s classification for multi-processor system. 5

(b) Discuss the advantages of vector processing over scalar processing. 5

(c) Explain how daisy chaining is used for bus arbitration in a multiprocessor system. 5

Answer

(a) Flynn�s classification: Based on the number of simultaneous instruction and data streams

used by a CPU during program execution, digital computers can be classified into four

categories as:

SQP.8 Computer Organization

∑ Single instruction stream-single data stream (SISD) machine.

∑ Single instruction stream-multiple data stream (SIMD) machine.

∑ Multiple instruction stream-single data stream (MISD) machine.

∑ Multiple instruction stream-multiple data stream (MIMD) machine.

SISD Computer

Most serial computers available today falls in this organization as shown in figure next.

Instructions are executed sequentially but may be overlapped in their execution stages (In

other words the technique of pipelining can be used in the CPU). Modern day SISD

uniprocessor systems are mostly pipelined. Examples of SISD computers are IBM 360/91,

CDC Star-100 and TI-ASC.

SISD Computer

SIMD Computer

Array processors falls into this class. As illustrated in figure next, there are multiple

processing elements supervised by the common control unit. All PEs (processing elements,

which are essentially ALUs) receive the same instruction broadcast from the control unit

but operate on different data sets from distinct data streams. The shared memory subsystem

containing multiple modules is very essential. This machine generally used to process

vector type data. Examples of SIMD computers includes Illiac-IV and BSP.

SIMD Computer

MISD Computer

Very few or no parallel computers fit in this organization, which is conceptually illustrated

in figure next. There are n processor elements, each receiving distinct instructions to

execute on the same data stream and its derivatives. The results (outputs) of one processor

Solved Question Paper 2007 (EC-503) SQP.9

element become the inputs (operands) of the next processor element in the series. This

architecture is also known as systolic arrays.

Captions: CU: control unit PE: processing element IS: instruction stream DS: data stream.

MISD computer (Systolic array)

MIMD Computer

This category covers multiprocessor systems and multiple computer systems. The structure

of MIMD computer is shown in figure next. An MIMD computer is called tightly coupled

(or Uniform Memory Access (UMA)) if the degree of interactions among the processors is

high. Otherwise, we consider them loosely coupled (or Non-Uniform Memory Access

(NUMA)). Most commercial MIMD computers are loosely coupled. Examples of MIMD

multiprocessors are C.m*, C.mmp, Cray-3 and S-1.

MIMD computer

(b) To examine the advantages of vector processing over scalar processing, we compare the

following two programs to perform the same task, one written for vector processing and

the other written for scalar processing.

SQP.10 Computer Organization

Example: In a conventional scalar processor, the �for� loop

For I = 1 to N do

A(I) = B(I)+C(I);

End

is implemented by the following sequence of scalar operations:

INITIALIZE I=1;

LABEL: READ B(I);

READ C(I);

ADD B(I)+C(I);

STORE A(I) = B(I)+C(I);

INCREMENT I = I+1;

IF I <= N GO TO LABEL;

STOP;

In a vector processor, the above �for� loop operation can be vectorized into one vector

instruction as:

A (1: N)=B(1: N)+C(1: N);

where A(1: N) refers to the N-element vector consisting of scalar components A(1),

A(2),..., A(N). To execute this vector instruction, vector processor uses an adder pipeline.

Thus, the advantages of vector processing over scalar processing can be summarized as:

∑ The execution of the scalar loop repeats the loop-control overhead in each iteration

which is eliminated by using hardware or firmware controls in vector processing using

pipelines. A vector-length register is used to control the vector operations.

∑ Due to the usage of various pipelines in vector processors, the overall throughput is

much higher than that of scalar processors.

∑ In vector processing using pipelines, sharing of resources like memory, bus, etc is

possible in larger extend.

(c) The daisy chaining method is a centralized bus arbitration method. During any bus cycle,

the bus master may be any device - a processor or any DMA controller unit, connected to

the bus. Figure below illustrates the daisy chaining method, where devices are processors.

Daisy chained bus arbitration

Solved Question Paper 2007 (EC-503) SQP.11

All devices (processors) are effectively assigned static priorities according to their locations

along a bus grant control line (BGT). The device (processor) closest to the central bus

arbiter is assigned the highest priority. Requests for bus access are made on a common

request line, BRQ. Similarly, the common acknowledge signal line (SACK) is used to

indicate the use of bus. When no device (processor) is using the bus, the SACK is inactive.

The central bus arbiter propagates a bus grant signal (BGT) if the BRQ line is high and

acknowledge signal (SACK) indicates that the bus is idle. The first device, which has

issued a bus request, receives the BGT signal and stops the latter�s propagation. This sets

the bus-busy flag in the bus arbiter by activating SACK and the device assumes bus

control. On completion, it resets the bus-busy flag in the arbiter and a new BGT signal is

generated if other requests are outstanding (i.e., BRQ is still active). The first device

simply passes the BGT signal to the next device in the line.

The main advantage of the daisy chaining method is its simplicity. Another advantage is

scalability. The user can add more devices anywhere along the chain, up to a certain

maximum value.

10. (a) What is meant by �pipeline architecture�? 2

(b) How does it improve the speed of execution of processor? 5

(c) What are pipeline hazards? 3

(d) A non-pipeline system takes 40 ns to process a task. The same task can be processed in a

four segment pipeline with a clock cycle of 10 ns. Determine the speed up ratio of the

pipeline for 50 tasks. What is the maximum speed up that can be achieved in this case? 5

Answer

(a) Pipeline architecture performs overlapped computations to exploit temporal parallelism; in

other words, pipeline architecture uses one parallel processing concept, known as pipelining.

Pipelining is a technique of decomposing a sequential task into subtasks, with each subtask

being executed in a special dedicated stage (segment) that operates concurrently with all

other stages. Each stage performs partial processing dictated by the way the task is

partitioned. Result obtained from a stage is transferred to the next stage in the pipeline.

The final result is obtained after the instruction has passed through all the stages. All

stages are synchronized by a common clock. Stages are pure combinational circuits

performing arithmetic or logic operations over the data stream flowing through the pipe.

The stages are separated by high-speed interface latches (i.e. collection of registers).

Figure below shows the pipeline concept with k stages.

Concept of pipelining

SQP.12 Computer Organization

(b) Time to execute n tasks in k-stage pipeline processor is t[k + (n � 1)] units, where t = clock

period of the pipeline processor. Since, k clock periods (cycles) are needed to complete the

execution of the first task and remaining (n � 1) tasks require (n � 1) cycles, because of

overlapped execution of tasks. Time to execute n tasks in k-stage non-pipeline processor is

n.k.t, where each task requires k cycles because no new task can start its execution until the

previous task finishes.

Thus, the speed-up (Sk)of pipeline processor over its equivalent non-pipeline processor is

defined as:

Time to execute tasks in k-stage non-pipeline processor

Time to execute tasks in k-stage pipeline processor

n.k.

((1)

k

n
S

n

k n

t

t

=

=

+ -

(c) See answer of question 6(b) of 2007 (CS-303).

(d) In non-pipeline processor, a task takes 40 ns and there are 50 tasks.

So, the total time to execute all tasks in non-pipeline processor is 40 ¥ 50 = 2000 ns.

In case of 4-stage (i.e. k = 4) pipeline with a clock cycle of 10 ns (i.e. t = 10), the total

time to execute the same number of tasks = t[k + (n � 1)]

= 10 [4 + 49]; by putting n = 50

= 530 ns.

Thus, the speed up ratio of the pipeline = 2000/530 = 3.77

It can be noted, from the speed-up relation in answer of question no. 10(b), that the

maximum speed-up is k, for n >> k. So, the maximum speed up that can be achieved in

this case is k = 4.

11. Write short notes on any three of the following: 3 ¥ 5

(a) Microprogramming and microprogrammed control unit

(b) Page replacement policies

(c) Interrupt servicing with priority interrupts

(d) Vector processors and their uses

(e) Architecture of IOP.

Answer

(a) Microprogramming and microprogrammed control unit: Microprogramming is a modern

approach to design a control unit. In the microprogrammed approach, all control functions

that can be simultaneously activated are grouped to form control words stored in a separate

ROM memory called the control memory. From the control memory, the control words are

fetched one at a time and the individual control fields are routed to various functional units

to activate their appropriate circuits. The desired task is performed by activating these

circuits sequentially.

Like conventional program, retrieval and interpretation of the control words are done.

The instructions of a CPU are stored in the main memory. They are fetched and executed

in a sequence. The CPU can perform different functions simply by changing the instructions

stored in the main memory. Similarly, the control unit can execute a different control

operation by changing the contents of the CM. Hence, the microprogrammed approach

Solved Question Paper 2007 (EC-503) SQP.13

offers greater flexibility than its hardwired counterpart, since this approach is based on the

programming concept giving an easy way for altering the contents of the CM.

Usually, all microinstructions have three important fields:

∑ Control field

∑ Next-address field

∑ Condition for branching.

We now describe the design of a typical microprogrammed control unit. The architecture

of a typical modern microprogrammed control unit is shown in the figure below.

General-purpose microprogrammed control unit

The various components used in the figure above are summarized next.

Control memory buffer register (CMBR): The function of CMBR is same as the MBR

(memory buffer register) of the main memory. It is basically a latch and acts as a buffer for

the microinstructions retrieved from the CM. Typically, each microinstruction has three

fields as:

Condition select Branch address Control functions

The condition select field selects the external condition to be tested. The output of the

MUX will be 1, if the selected condition is true. The MPC will be loaded with the address

specified in the branch address field of the microinstruction, because the output of the

MUX is connected to the load input of the microprogram counter (MPC). However, the

MPC will point to the next microinstruction to be executed, if the selected external condition

is false. Thus, this arrangement allows conditional branching. The control function field of

SQP.14 Computer Organization

the microinstruction may hold the control information in an encoded form which thus may

require decoders.

Microprogram counter (MPC): The task of MPC is same as the PC (program counter)

used in the CPU. The address of the next microinstruction to be executed is held by the

MPC. Initially, it is loaded from an external source to point to the starting address of the

microprogram to be executed. From then on, the MPC is incremented after each

microinstruction fetch and the instruction fetched is transferred to the CMBR. However,

the MPC will be loaded with the contents of the branch address field of the microinstruction

that is held in the CMBR, when a branch instruction is encountered.

External condition select MUX: Based on the contents of the condition select field of the

microinstruction, this MUX selects one of the external conditions. Therefore, the condition

to be selected must be specified in an encoded form. Any encoding leads to a short

microinstruction, which implies a small control memory; hence the cost is reduced. Suppose

two external conditions X1, X2 are to be tested; then the condition-select and actions taken

are summarized next:

Condition select Action taken

00 No branching

01 Branch if X1 =1

10 Branch if X2 =1

11 Always branching (unconditional branching)

The multiplexer has four inputs V0, V1, V2, V3 where Vi is routed to the multiplexer�s

output when the condition select field has decimal equivalent i. Hence we require V0 = 0,

V1 = X1, V2 = X2, V3 = 1 to control the loading of microinstruction branch addresses into

MPC.

(b) Page replacement policies: When a program starts execution, one or more pages are

brought to the main memory and the page table is responsible to indicate their positions.

When the CPU needs a particular page for execution and that page is not in main (physical)

memory (still in the secondary memory), this situation is called page fault. When the page

fault occurs, the execution of the present program is suspended until the required page is

brought into main memory from secondary memory. The required page replaces an existing

page in the main memory, when it is brought into main memory. Thus, when a page fault

occurs, a page replacement is needed to select one of the existing pages to make the room

for the required page. There are several replacement algorithms such as FIFO (First-in

First-out), LRU (Least Recently Used) and optimal page replacement algorithm available.

The FIFO algorithm is simplest and its criterion is �select a page for replacement that

has been in main memory for longest period of time�.

The LRU algorithm states that �select a page for replacement, if the page has not been

used often in the past�. The LRU algorithm is difficult to implement, because it requires a

counter for each page to keep the information about the usage of page.

The optimal algorithm generally gives the lowest page faults of all algorithms and its

criterion is �replace a page that will not be used for the longest period of time�. This

Solved Question Paper 2007 (EC-503) SQP.15

algorithm is also difficult to implement, because it requires future knowledge about page

references.

An algorithm is evaluated by running it on a particular string of memory references and

computing the number of page faults. The string of memory references is called a reference

string.

(c) Interrupt servicing with priority interrupts: In a typical application a number of I/O

devices are attached to the computer, with each device being able to originate an interrupt

request. The first task of the interrupt controller is to identify the source of the interrupt.

There is also the possibility that several sources may request interrupt service simultaneously.

In this case the controller must also decide which to service first. A priority interrupt is a

system that establishes a priority over the various sources to determine which condition is

to be serviced first when two or more requests arrive simultaneously. Devices with high-

speed transfers such as magnetic disks are usually given high priority and slow devices

such as keyboards receive low priority. When two devices interrupt the CPU at the same

time, the CPU services the device, with the higher priority first.

The following figure implements the interrupts. The interrupt requests from various

sources are connected as input to the interrupt controller. As soon as the interrupt controller

senses (using IMR) the presence of any one or more interrupt requests, it immediately

issues an interrupt signal through INTR line to the CPU. The CPU uses a flag bit known

as interrupt enable (IE) in its status register (PS) to process the interrupt. When this flag

bit is �1�, the CPU responds to the presence of interrupt by enabling INTA line; otherwise

not. The interrupt controller assigns a fixed priority for the various interrupt requestor

devices. For example, the IRQ0 is assigned the highest priority among the eight different

interrupt requestors. Assigning decreasing order of priority from IRQ0 to IRQ7, the IRQ7

is the lowest priority. It (IRQ7) is serviced only when no other interrupt request is present.

Hardware interrupt

SQP.16 Computer Organization

(d) Vector processors and their uses: A vector processor consists of a scalar processor and a

vector unit, which could be thought of as an independent functional unit capable of

efficient vector operations. Scalar instructions are executed on the scalar processor, whereas

vector instructions are executed on the vector unit, which is generally pipelined. When

designing the instruction set for a vector unit, one has to choose an ISA (Instruction Set

Architecture). Most of today�s vector units have an instruction set that generalizes the

Load/Store ISA (RISC architecture) of scalar processors. Vector processors are processors,

which have special hardware for performing operations on vectors.

Most of the available supercomputers are vector supercomputers. A supercomputer is

characterized by very high execution speed, large main memory and secondary memory

and the use of parallel structured software in large extend. Supercomputers are specifically

designed to perform huge vectors or matrix computations in the scientific areas of petroleum

exploration, VLSI circuit design, meteorology, nuclear research and artificial intelligence,

etc.

(e) Architecture of IOP: The concept of DMA operation can be extended to relieve the CPU

further from getting involved with the execution of I/O operations. This gives rise to the

development of special purpose processor called IO processor (or IO channel).

The IOP is just like a CPU that handles the details of I/O operations. It is more

equipped with facilities than those are available in a typical DMA controller. The IOP can

fetch and execute its own instructions that are specifically designed to characterize I/O

transfers. In addition to the I/O-related tasks, it can perform other processing tasks like

arithmetic, logic, branching and code translation. The block diagram of an IOP is shown in

figure below. The main memory unit takes the pivotal role. It communicates with processor

by means of DMA.

Block diagram of a computer with IOP

Group-A

(Multiple-Choice Questions)

1. Choose the correct answer from the given alternatives in each of the following:

(i) Maximum number of directly addressable locations in the memory of a processor having

10-bits wide control bus, 20-bits address bus, and 8-bit data bus is

(a) 1K (b) 2K (c) 1M (d) none of these

Answer

(c) 1M

(ii) Booth�s algorithm for computer arithmetic is used for

(a) multiplication of numbers in sign magnitude form

(b) multiplication of numbers in two�s complement form

(c) division of numbers in sign magnitude form

(d) division of numbers in two�s complement form

Answer

(b) multiplication of numbers in two�s complement form

(iii) The last statement of any Symbolic Mircroprogram must contain

(a) NEXT (b) OVER (c) FETCH (d) INDRCT

Answer

(c) FETCH

(iv) Virtual memory system allows the employment of

(a) more than address space (b) the full address space

(c) more than hard disk capacity (d) none of these

2008
Computer Organization

and Architecture
(CS-404(EI))

This question paper is for EIE, 4th Semester and for new syllabus

Semester: 4th

Time Alloted: 3 hours Full Marks: 70

SQP.2 Computer Organization

Answer

(a) more than address space

(v) In fourth generation computers, the main technology used is

(a) Transistor (b) SSI (c) MSI (d) LSI & VLSI

Answer

(d) LSI & VLSI

(vi) The numbers in the range �23 to +31 are represented by the minimum number of bits

(a) 6 (b) 8 (c) 7 (d) 5

Answer

(a) 6

(vii) Bidirectional buses use

(a) tri-state buffers

(b) two tri-state buffers in cascade

(c) two back to back connected tri-state buffers in parallel

(d) two back to back connected buffers

Answer

(c) two back to back connected tri-state buffers in parallel

(viii) CPU gets the address of next instruction to be processed from

(a) Instruction register (b) Memory address register

(c) Index register (d) Program counter

Answer

(d) Program counter

(ix) The first computer used to store a program is

(a) EDSAC (b) ENIAC (c) EDVAC (d) ACE

Answer

(b) ENIAC

(x) A machine using base register addressing method has n base registers and displacement

contains k bits; programmer can access any

(a) n regions of k addresses each (b) 2n regions of 2k addresses each

(c) n regions of 2k addresses each (d) none of these

Answer

(c) n regions of 2k addresses each

Group-B

(Short-Answer Questions)

Answer any three of the following. 3 ¥ 5 = 15

2. (a) Write the key features of von Neumann architecture of a computer and mention the bottle-

necks.

(b) How does Harvard architecture differ from von Neumann architecture? 2 + 2 + 1

Answer

(a) See answer of question number 8 (C) of 2007 (CS-303).

(b) A single memory is used for both program and data storage in Von Neumann computers.

Solved Question Paper 2008 (CS-404(EI)) SQP.3

But, Harvard computers are computers with separate programs and data memories. Data memory and

program memory can be of different widths, type, etc. Program and data can be fetched in one

cycle, by using separate control signals��program memory read� and �data memory read�.

3. (a) Write + 710 in IEEE 64-bit format.

(b) Convert IEEE 32-bit format 4040000016 in decimal value.

(c) Convert IEEE 64-bit format ABCD00000000000016 in decimal value. 2 + 1.5 + 1.5

Answer

(a) The decimal number +7 = + 111 in binary = + 1.11 ¥ 22

The 52-bit mantissa M =0.11000 00000 00000 00000 00000 00000 00000 00000 00000 0000000

The biased exponent E¢ = E + 1023 = 2 + 1023 = 1025 = 100000 00001, using 11-bit.

Since the number is positive, the sign bit S = 0

Therefore, the IEEE double-precision (64-bit) representation is:

0 100000 00001 11000 00000 00000 00000 00000 00000 00000 00000 00000 0000000

(b) The number 4040000016 has equivalent binary representation as:

0100 0000 0100 0000 0000 0000 0000 0000

The sign of the number = 0, biased exponent value = 1000 0000 = 128. So the exponent value

= 128 � 127 = 1. The mantissa field = 100 0000 0000 0000 0000 0000.

Therefore, the decimal value of the number = + (1.1)2 ¥ 21 = 1.5 ¥ 2 = 3.

(c) The number ABCD00000000000016 has equivalent binary representation as:

1010 1011 1100 1101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

The sign of the number = 1, biased exponent value = 010 1011 1100 = 700. So the exponent

value = 700 � 1023 = �323. The mantissa field = 1101 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000.

Therefore, the decimal value of the number = �(1.1101)2 ¥ 2
�323 = �1.8125 ¥ 2-323.

4. Evaluate the arithmetic statement X = (A + B) * (C + D) in zero, one, two and three address

machines. 5

Answer

To evaluate the statement X = (A + B) * (C + D) in zero, one, two and three address machines, we

assume the following assumptions:

LOAD symbolic op-code is used for transferring data to register from memory. STORE symbolic op-

code is used for transferring data to memory from register. The symbolic op-codes ADD and MULT

are used for the arithmetic operations�addition and multiplication respectively. Assume that the

respective operands are in memory addresses A, B, C and D and the result must be stored in the

memory at address X.

For zero address machine:

The assembly language program using zero-address instructions is written next. In the comment field,

the symbol TOS is used, which means the top of stack.

PUSH A ; TOS ¨ A

PUSH B ; TOS ¨ B

ADD ; TOS ¨ (A + B)

PUSH C ; TOS ¨ C

SQP.4 Computer Organization

PUSH D ; TOS ¨ D

ADD ; TOS ¨ (C + D)

MULT ; TOS ¨ (A + B) * (C + D)

POP X ; X ¨ TOS

For one address machine:

The assembly language program using one address instructions is written below.

LOAD A ; AC ¨ M[A]

ADD B ; AC ¨ AC + M[B]

STORE T ; T ¨ AC

LOAD C ; AC ¨ M[C]

ADD D ; AC ¨ AC + M[D]

MULT T ; AC ¨ AC * M[T]

STORE X ; X ¨ AC

For two address machine:

The assembly language program using two address instructions is written below.

LOAD R1, A ; R1 ¨ M[A]

ADD R1, B ; R1 ¨ R1 + M[B]

LOAD R2, C ; R2 ¨ M[C]

ADD R2, D ; R2 ¨ R2 + M[D]

MULT R1, R2 ; R1 ¨ R1 * R2

STORE X, R1 ; X ¨ R1

For three address machine:

The assembly language program using three address instructions is written below.

ADD R1, A, B ; R1 ¨ M[A] + M[B]

ADD R2, C, D ; R2 ¨ M[C] + M[D]

MULT X, R1, R2 ; X ¨ R1 * R2

5. What are vectored interrupts? How are they used in implementing hardware interrupts? 5

Answer

In a vectored interrupt I/O method, the source device that interrupts, supplies the branch information

(i.e. the starting address of interrupt service routine (ISR)) to the CPU. This information is called the

interrupt vector, which is not any fixed memory location.

To implement interrupts, the CPU uses a signal, known as an interrupt request (INTR) signal to the

interrupt handler or controller hardware, which is connected to each I/O device that can issue an

interrupt to it. Here, interrupt controller makes liaison with the CPU on behalf of I/O devices.

Typically, interrupt controller is also assigned an interrupt acknowledge (INTA) line that the CPU

uses to signal the controller that it has received and begun to process the interrupt request by

employing an ISR. The following figure below shows the hardware lines for implementing interrupts.

2

Solved Question Paper 2008 (CS-404(EI)) SQP.5

1. Interrupt from interrupt controller when data transfer is needed.

2. Using IE flip-flop, CPU detects interrupt.

3. CPU branches to a respective device�s ISR after enabling INTA.

The interrupt controller uses a register called interrupt-request mask register (IMR) to detect any

interrupt from the I/O devices. If there is n number of I/O devices in the system, then IMR is n-bit

register and each bit indicates the status of one I/O device. Let IMR�s content be denoted as E0 E1 E2

�.. En-1. When E0 = 1 then device 0 interrupt is recognized; When E1 = 1, then device 1 interrupt is

recognized and so on. The processor uses a flag bit known as interrupt enable (IE) in its status

register (SR) to process the interrupt. When this flag bit is �1�, the CPU responds to the presence of

interrupt by enabling INTA line; otherwise not. When the INTA is accepted by a device, device puts

its own interrupt vector address (VAD) to the data bus using interrupt controller.

6. Compare RISC with CISC.

Answer

See answer of question number 6 of 2007 (CS-404).

Group-C

(Long-Answer Questions)

Answer any three of the following. 3 ¥ 15 = 45

7. (a) Explain Booth�s algorithm. Apply Booth�s algorithm to multiply the two numbers (+ 14)

and (�12). Assume the multiplier and multiplicand to be of 5 bits each.

(b) Give the flowchart for division of two binary numbers and explain. 10 + 5

Answer

(a) For Booth�s algorithm, see the answer of question no. 8(a) of 2007 (CS-303).

For multiplication of two numbers (+14) and (�12), see answer of question no. 11(a) of 2007

(CS-404).

(b) See answer of question no. 11(b) of 2007 (CS-404).

8. (a) Explain the memory hierarchy pyramid, showing both primary and secondary memories in

the diagram and also explain the relationship of cost, speed and capacity.

(b) Given the following, determine size of the sub-fields (in bits) in the address for direct mapping,

associative and set associative mapping cache schemes.

l We have 256 MB main memory and 1 MB cache memory.

SQP.6 Computer Organization

l The address space of this processor is 256 MB.

l The block size is 128 bytes.

There are 8 blocks in a cache set. 5 + 10

Answer

(a) The total memory capacity of a computer can be considered as being a hierarchy of components.

The memory hierarchy system consists of all storage devices used in a computer system and are

broadly divided into following four groups, shown in the pyramid figure below.

l Secondary (auxiliary) memory

l Main (primary) memory

l Cache memory

l Internal memory

Secondary memory: The slow-speed and low-cost devices that provide backup storage are

called secondary memory. The most commonly used secondary memories are magnetic disks,

such as hard disk, floppy disk and magnetic tapes. This type of memory is used for storing all

programs and data, as this is used in bulk size. When a program not residing in main memory is

needed to execute, it is transferred from secondary memory to main memory. Programs not

currently needed in main memory (in other words, the programs that are not currently executed

by the processor) are transferred into secondary memory to provide space for currently used

programs and data.

Memory hierarchy

Main memory: This is the memory that communicates directly with CPU. Only programs and

data currently needed by the CPU for execution reside in the main memory. Main memory

occupies central position in hierarchy by being able to communicate directly with CPU and with

secondary memory devices through an I/O processor.

Cache memory: This is a special high-speed main memory, sometimes used to increase the

speed of processing by making the current programs and data available to the CPU at a rapid

rate. Generally, the CPU is faster than a main memory, thus the processing speed is limited

mainly by the speed of main memory. So, a technique used to compensate the speed mismatch

between CPU and main memory is to use an extremely fast, small cache between CPU and main

memory, whose access time is close to CPU cycle time. The cache is used for storing portions of

programs currently being executed in the CPU and temporary data frequently needed in the

present computations. Thus, the cache memory acts as a buffer between the CPU and the main

memory. By making programs and data available at a rapid rate, it is possible to increase the

performance of computer.

Solved Question Paper 2008 (CS-404(EI)) SQP.7

Internal memory: This memory refers to the high-speed registers used inside the CPU. These

registers hold temporary results when a computation is in progress. There is no speed disparity

between these registers and the CPU because they are fabricated with the same technology.

However, since registers are very expensive, only a few registers are used as internal memory.

(b) Given,

The capacity of main memory = 256 MB

The capacity of cache memory = 1MB

Block size = 128 bytes.

A set contains 8 blocks.

Since the address space of the processor is 256 MB, the processor generates address of 28-bit

to access a byte (word). Because 256 MB = 228.

The number of blocks main memory contains = 256 MB / 128 bytes = 221.

Therefore, no. of bits required to specify one block in main memory = 21.

Since the block size is 128 bytes.

The no. of bits required to access each word (byte) = 7.

For associative cache, the address format is:

Tag-address Word

21 7

The number of blocks cache memory contains = 1 MB/128 bytes = 213.

Therefore, no. of bits required to specify one block in cache memory = 13.

The tag field of address = 28 � (13 + 7) = 8-bit.

For direct cache, the address format is:

Tag Block Word

8 13 7

Index

In case of set-associative cache:

A set contains 8 blocks.

Therefore, the number of sets in cache = 213/8 = 210.

Thus, the number of bits required to specify each set = 10.

The tag field of address = 28 � (10 + 7) = 11-bit.

For set-associative cache, the address format is:

Tag Set Word

11 10 7

9. (a) Explain the mapping of virtual address to physical address.

(b) Explain the reading and writing operation of a basic static RAM cell.

(c) Why does a DRAM cell need refreshing? 5 + 5 + 5

üïïïïïïýïïïïïïþ

SQP.8 Computer Organization

Answer

(a) When a program needs to be executed, the CPU would generate addresses, called logical or

virtual addresses. The corresponding addresses in the physical memory, as occupied by the executing

program, are called physical addresses. The set of all logical addresses generated by the CPU or

program is called logical-address space and the set of all physical addresses corresponding to

these logical addresses is called physical-address space. The memory-management unit (MMU)

maps each logical address to a physical address during program execution.

The figure below illustrates this mapping method, which uses a special register called base

register or relocation register.

The content of the relocation register is added to every logical address generated by the user

program at the beginning of execution. For example, if the relocation register holds an address

value 2000, then a reference to the location 0 by the user is dynamically relocated to 2000 address.

A reference to the address 150 is mapped to the address 2150.

(b) Static memories (SRAMs) are memories that consist of circuits capable of retaining their state

as long as power is applied. Thus, this type of memories are called volatile memories. The

figure below shows a cell diagram of SRAM memory. A latch is formed by two inverters

connected as shown in the figure. Two transistors T1 and T2 are used for connecting the latch

with two bit lines. The purpose of these transistors is to act as switches that can be opened or

closed under the control of the word line, which is controlled by the address decoder. When the

word line is at 0-level, the transistors are turned off and the latch retains its information. For

example, the cell is at state 1 if the logic value at point A is 1 and at point B is 0. This state is

retained as long as the word line is not activated.

Solved Question Paper 2008 (CS-404(EI)) SQP.9

Read Operation: For the read operation, the word line is activated by the address input to the

address decoder. The activated word line closes both the transistors (switches) T1 and T2. Then

the bit values at points A and B can transmit to their respective bit lines. The sense/write circuit

at the end of the bit lines sends the output to the processor.

Write Operation: Similarly, for the write operation, the address provided to the decoder acti-

vates the word line to close both the switches. Then, the bit value to be written into the cell is

provided through the sense/write circuit and the signals in bit lines are then stored into the cell.

(c) Information is stored in a dynamic memory cell in the form of a charge on a capacitor. Due to

the property of the capacitor, it starts to discharge. Hence, the information stored in the cell can

be read correctly only if it is read before the charge on the capacitor drops below some threshold

value. Thus this charge in capacitor needs to be periodically recharged or refreshed.

10. (a) What are the various modes of data transfer between computer and peripherals? Explain.

(b) Differentiate between isolated I/O and memory mapped I/O.

(c) Show how computer bus is organized using tri-state buffer. 5 + 5 + 5

Answer

(a) The modes of data transfer between computer and peripherals are:

1. Programmed I/O.

2. Interrupt-initiated I/O.

3. Direct memory access (DMA).

Programmed I/O: This is the software method where CPU is needed all the times during data

transfer between any two devices. Programmed I/O operations are the result of I/O instructions

written in the computer program or I/O routine. Each data item transfer is initiated by an

instruction in the program or I/O routine. Generally, the transfer is to and from a CPU register

and peripheral. Transferring data under program control requires constant monitoring of the

peripheral by the CPU. Once a data transfer is initiated, the CPU is required to monitor the

interface to see when a transfer can again be made.

Interrupt-initiated I/O: In the programmed I/O method, the program constantly monitors the

device status. Thus, the CPU stays in the program until the I/O device indicates that it is ready

for data transfer. This is time-consuming process since it keeps the CPU busy needlessly. It can

be avoided by letting the device controller continuously monitor the device status and raise an

interrupt to the CPU as soon as the device is ready for data transfer. Upon detecting the external

interrupt signal, the CPU momentarily stops the task it is processing, branches to an interrupt-

service-routine (ISR) or I/O routine or interrupt handler to process the I/O transfer, and then

returns to the task it was originally performing. Thus, in the interrupt-initiated mode, the ISR

software (i.e. CPU) performs data transfer but is not involved in checking whether the device is

ready for data transfer or not. Therefore, the execution time of CPU can be optimized by

employing it to execute normal program, when no data transfer is required.

Direct Memory Access (DMA): To transfer large blocks of data at high speed, this third method

is used. A special controlling unit may be provided to allow transfer a block of data directly

between a high speed external device like magnetic disk and the main memory, without continuous

intervention by the CPU. This method is called direct memory access (DMA).

DMA transfers are performed by a control circuit that is part of the I/O device interface. We

refer to this circuit as a DMA controller. The DMA controller performs the functions that would

SQP.10 Computer Organization

normally be carried out by the CPU when accessing the main memory. During DMA transfer,

the CPU is idle or can be utilized to execute another program and CPU has no control of the

memory buses. A DMA controller takes over the buses to manage the transfer directly between

the I/O device and the main memory.

The CPU can be placed in an idle state using two special control signals, HOLD and HLDA

(hold acknowledge). Figure below shows two control signals in the CPU that characterize the

DMA transfer. The HOLD input is used by the DMA controller to request the CPU to release

control of buses. When this input is active, the CPU suspends the execution of the current

instruction and places the address bus, the data bus and the read/write line into a high-imped-

ance state. The high-impedance state behaves like an open circuit, which means that the output

line is disconnected from the input line and does not have any logic significance. The CPU

activates the HLDA output to inform the external DMA controller that the buses are in the high-

impedance state. The control of the buses has been taken by the DMA controller that generated

the bus request to conduct memory transfers without processor intervention. After the transfer of

data, the DMA controller disables the HOLD line. The CPU then disables the HLDA line and

regains the control of the buses and returns to its normal operation.

(b) 1. In the isolated (I/O mapped) I/O, computers use one common address bus and data bus to

transfer information between memory or I/O and the CPU; but use separate read-write control

lines one for memory and another for I/O. Whereas, in memory mapped I/O, computers use

only one set of read and write lines along with same set of address and data buses for both

memory and I/O devices.

2. The isolated I/O technique isolates all I/O interface addresses from the addresses assigned to

memory. Whereas, the memory mapped I/O does not distinguish between memory and I/O

addresses.

3. Processors use different instructions for accessing memory and I/O devices in isolated I/O. In

memory mapped I/O, processors use same set of instructions for accessing memory and I/O.

4. Thus, the hardware cost is more in isolated I/O relative to the memory mapped I/O, because

two separate read-write lines are required in first technique.

(c) See answer of question number 10 (e) of 2007 (CS-303).

11. (a) What is meant by DMA? Why is it useful? Briefly explain, with suitable diagram, the DMA

operation in association with CPU.

(b) Draw the schematic diagram for daisy chain polling arrangement in case of vectored inter-

rupt for three devices. 2 + 2 + 4 + 7

Answer

(a) See answer of question number 8 (a) of 2007 (CS-404).

(b) See answer of question number 8 (b) of 2007 (CS-404).

2008
Computer Organization

and Architecture

(CS-404)
Semester: 4th

Time Allotted: 3 hours Full Marks: 70

Group-A

(Multiple-Choice Questions)

1. Choose the correct alternatives for the following : 10 ¥ 1 = 10

(i) Thrashing

(a) reduces page I/O

(b) decreases the degree of multiprogramming

(c) implies excessive page I/O

(d) none of these.

Answer

(c) implies excessive page I/O

(ii) When signed numbers are used in binary arithmetic, then which one of the following

notations would have unique representation for zero?

(a) Sign magnitude (b) Sign 1�s complement

(c) Sign 2�s complement (d) None of these.

Answer

(c) Sign 2�s complement

(iii) If the memory chip size is 256 ¥ 1 bits, then the number of chips required to make up

1 kbytes of memory is

(a) 32 (b) 24 (c) 12 (d) 8

Answer

(a) 32

SQP.2 Computer Organization

(iv) How many address bits are required for a 512 ¥ 4 memory?

(a) 512 (b) 4 (c) 9 (d) A0 � A6

Answer

(c) 9

(v) What is the 2�s complement representation of �20 in a 16-bit micro-computer?

(a) 0000 0000 0001 1000 (b) 1111 1111 1110 0111

(c) 1111 1111 1110 1000. (d) none of these.

Answer

(d) none of these

(vi) The technique of placing software in a ROM semiconductor chip is called

(a) PROM (b) EPROM (c) FIRMWARE (d) Micro-processor.

Answer

(c) FIRMWARE

(vii) Which one is the advantage of virtual memory?

(a) Faster access to memory on an average

(b) Process can be given protected address spaces

(c) Program larger than the physical memory size can be run

(d) None of these.

Answer

(c) Program larger than the physical memory size can be run

(viii) A page fault

(a) occurs when a program access a page memory

(b) is an error in a specific page

(c) is an access to a page not currently in memory

(d) none of these.

Answer

(c) is an access to a page not currently in memory

(ix) Convert(FAFAFA)16 into Octal form

(a) 76767676 (b) 76575372 (c) 76737672 (d) 76727672.

Answer

(b) 76575372

(x) The logic circuitry in ALU is

(a) entirely combinational (b) entirely sequential

(c) combinational cum sequential (d) none of these.

Answer

(a) entirely combinational

Group-B

(Short-Answer questions)

Answer any three of the following. 3 ¥ 5 = 15

2. Explain the memory hierarchy pyramid, showing both primary and secondary memory in the

diagram and also explain the relationship of cost, speed and capacity.

Solved Question Paper 2008 (CS-404) SQP.3

Answer

See answer of question number 8(a) of 2008(CS-404(EI)).

3. Discuss about the different hazards in pipelining.

Answer

Pipeline hazards: Pipeline hazards are situations that prevent the next instruction in the instruction

stream from executing during its designated clock cycle. The instruction is said to be stalled. When an

instruction is stalled, all instructions later in the pipeline than the stalled instruction are also stalled.

Instructions earlier than the stalled one can continue. No new instructions are fetched during the stall.

Types of pipeline hazards are:

1. Control hazards

2. Structural hazards

3. Data hazards

Control hazards

They arise from the pipelining of branches and other instructions that change the content of program

counter (PC) register.

Solution of control hazards:

In order to cope with the adverse effects of branch instructions, an important technique called prefetching

is used. Prefetching technique states that: Instruction words ahead of the one currently being decoded

in the instruction-decoding (ID) stage are fetched from the memory system before the ID stage

requests them.

Structural hazards

Structural hazards occur when a certain resource (memory, functional unit) is requested by more than

one instruction at the same time.

Example: Instruction ADD R4, X fetches operand X from memory in the OF stage at 3rd clock period.

The memory doesn�t accept another access during that period. For this, (i+2)th instruction cannot be

initiated at 3rd clock period to fetch the instruction from memory. Thus, one clock cycle is stalled in

the pipeline for all subsequent instructions. This is illustrated next.

Clock cycles 1 2 3 4 5 6 7 8 9 10 11 12 13

ADD R4,X Æ IF ID OF EX WB

Instr. i+1 IF ID OF EX WB

Instr. i+2 stall IF ID OF EX WB

Instr. i+3 IF ID OF EX WB

Penalty: 1 cycle.

Structural hazard in instruction pipeline

Solution of structural hazards:

Certain resources are duplicated in order to avoid structural hazards. Functional units (ALU, FP unit)

can be pipelined themselves in order to support several instructions at a time. A classical way to avoid

hazards at memory access is by providing separate data and instruction caches.

SQP.4 Computer Organization

Data hazards

Inter-instruction dependencies may arise to prevent the sequential (in-order) data flow in the pipeline,

when successive instructions overlap their fetch, decode and execution through a pipeline processor.

This situation due to inter-instruction dependencies is called data hazard.

Example: We have two instructions, I1 and I2. In a pipeline the execution of I2 can start before I1 has

terminated. If in a certain stage of the pipeline, I2 needs the result produced by I1, but this result has

not yet been generated, we have a data hazard.

According to various data update patterns in instruction pipeline, there are three classes of data

hazards exist:

� Write After Read (WAR) hazards

� Read After Write (RAW) hazards

� Write After Write (WAW) hazards

Solution of data hazards:

The system must resolve the interlock situation when a hazard is detected. Consider the sequence of

instructions {� I, I + 1, �, J, J + 1, �} in which a hazard has been detected between the current

instruction J and a previous instruction I. This hazardous situation can be resolved in one of the two

following ways:

� One simple solution is to stall the pipeline and to ignore the execution of instructions J, J + 1,

�, down the pipeline until the instruction I has passed the point of resource conflict.

� A more advanced approach is to ignore only instruction J and continue the flow of instructions J

+ 1, J + 2, �, down the pipeline. However, the potential hazards due to the suspension of J

must be continuously tested as instructions J + 1, J + 2, � execute prior to J. Thus, multilevel of

hazard detection may be encountered, which requires much more complex control policies to

resolve such multilevel of hazards.

4. Explain how a RAM of capacity 2 kbytes can be mapped into the address space (1000)H to

(17FF)H of a CPU having a 16-bit address lines. Show how the address lines are decoded to

generate the chip select condition for the RAM.

Answer

Since the capacity of RAM memory is 2 KB, the memory uses 11 (2 KB = 211) address lines, say

namely A10 � A0, to select one word. Thus, memory�s internal address decoder uses 11 lines A10 � A0

to select one word.

To select this memory module, remaining 5 (i.e. 16 � 11) address lines A15 � A11 are used. Thus, an

external decoding scheme is employed on these higher-order five address bits of processor�s address.

The address space of the memory is 1000H and 17FFH.

Therefore, the starting address (1000H) in memory is as:

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Based on the higher-order five bits (00010), external decoding scheme performs a logical AND

operation on address values: 15A , 14A , 13A , A12 and 11A . The output of AND gate acts as chip

select (CS) line. The address decoding scheme is shown in figure below.

Solved Question Paper 2008 (CS-404) SQP.5

5. Evaluate the following arithmetic statement using three addresses, two addresses and one ad-

dress instructions:

X = (A+B) * (C+D)

Answer

See answer of question number 4 of 2008(CS-404(EI)).

6. Use 8-bit two�s complement integers, perform the following computations : 2 + 2 + 1

(i) �34 + (�12) (ii) 17 � 35 (iii) 18 � (�5).

Answer

(i) In 2�s complement representation, �34 = 1101 1110

�12 = 1111 0100

Adding these two numbers, we get, 11101 0010, which is 9-bit result. By addition rule discard

the 9th bit and get the result: 1101 0010, which shows that the number is negative. To get the

result in its familiar form, take 2�s complement of the result. The result is �46.

(ii) 17 � 35: This is subtraction and we know that 2�s complement of (35) is to be added with 17.

The representation of 17 is 0001 0001 and 2's complement of 35 is 1101 1101. After addition,

we get, 1110 1110. This negative number and its value is �18.

(iii) 18 � (�5) = 18 + 5. The representation of 18 is 0001 0010 and representation of 5 is 0000 0101.

We get after addition, 0001 0111. The result is equivalent to decimal 23.

Group �C

(Long-Answer Questions)

Answer any three questions. 3 ¥ 15 = 45

7. (a) Multiply +14 and �13 using Booth�s sequential method of multiplication. Draw the corre-

sponding circuit block diagram.

(b) Multiply +12 and �11 using modified Booth�s sequential method of multiplication. Draw

the corresponding circuit block diagram. (4 + 4) + (4 + 3)

Answer

(a) Multiplication of numbers + 14 and �13:

Multiplicand, M = + 14 = 01110 and multiplier, Q = �13 = 10011.

SQP.6 Computer Organization

M A Q Size

Initial

Configuration 01110 00000 10011 0 5

Step-1

As Q[0]=1and

Q[�1]=0

A + A � M 01110 10010 10011 0 �

ARS(AQ) 01110 11001 01001 1 4

Step-2

As Q[0]=1 and

Q[�1]=1

ARS(AQ) 01110 11100 10100 1 3

Step-3

As Q[0] = 0 and

Q[�1] = 1

A = A + M 01110 01010 10100 1 �

ARS(AQ) 01110 00101 01010 0 2

Step-4

As Q[0] = 0 and

Q[�1] = 0

ARS(AQ) 01110 00010 10101 0 1

Step -5

As Q[0] = 1and

Q[�1] = 0

A = A � M 01110 10100 10101 0 �

ARS (AQ) 01110 11010 01010 1 0

Since, the size register becomes 0, the algorithm is terminated and the product is = AQ =

11010 01010, which shows that the product is a negative number. To get the result in familiar

form, take the 2�s complement of the magnitude of the number and the result is �182 in decimal.

The circuit block diagram of the Booth�s sequential multiplication algorithm is shown below.

Solved Question Paper 2008 (CS-404) SQP.7

(b) A faster version of Booth�s multiplication algorithm for signed numbers, known as the modified

Booth�s algorithm, examines three adjacent bits Q[i + 1] Q[i] Q[i � 1] of the multiplier Q at a

time, instead of two. Apart from three basic actions performed by original Booth�s algorithm,

which can be expressed as: add 0, 1 ¥ M (multiplicand) and1 ¥ M to A (the accumulated partial

products), this modified algorithm performs two more actions: add 2 ¥ M and2 ¥ M to A. These

have the effect of increasing the radix from 2 to 4 and allow an N ¥ N multiplication requiring

only N/2 partial products.

The following table lists the multiplicand selection decisions for all possibilities.

Q[i + 1] Q[i] Q[i � 1] Multiplicand selected at position i

0 0 0 0 ¥ M

0 0 1 1 ¥ M

0 1 0 1 ¥ M

0 1 1 2 ¥ M

1 0 0 2 ¥ M

1 0 1 1 ¥ M

1 1 0 1 ¥ M

1 1 1 0 ¥ M

For the multiplication of two numbers +12 and �11:

Operands Values i Q[i + 1] Q[i] Q[i � 1] Action

Multiplicand M = +12 01100

Multiplier Q = �11 10101

After including extended sign bit and implied 0 to right of lsb, multiplier = 1101010

P0 00000 01100 0 010 Add 1 ¥ M to A

P2 00001 100xx 2 010 Add 1 ¥ M to A

P4 11010 0xxxx 4 110 Add 1 ¥ M to A

Product = 11011 11100 = P0 + P2 + P4. This result shows that it is equivalent to �132.

8. (a) Show the steps for Restoring and Non-restoring method of division when 9 is divided by 2

using 4-bit representation. Draw the block diagram and explain.

(b) Design the Control Unit for the Restoring Division approach. 3 + 2 + 3 + 7

Answer

(a) Division of 9 by 2 using restoring division method:

Dividend Q = 9 = 1001 and divisor M = 2 = 0010.

M A Q Size

Initial Configuration 00010 00000 1001 4

Step-1

LS(AQ) 00010 00001 001� �

A=A � M 00010 11111 001� �

As Sign of A= �ve

Set Q[0]=0

& Restore A 00010 00001 0010 3

SQP.8 Computer Organization

Step-2

LS(AQ) 00010 00010 010� �

A=A � M 00010 00000 010� �

As Sign of A= +ve

Set Q[0]=1 00010 00000 0101 2

Step-3

LS(AQ) 00010 00000 101� �

A=A � M 00010 11110 101� �

As Sign of A= �ve

Set Q[0]=0

Restore A 00010 00000 1010 1

Step-4

LS(AQ) 00010 00001 010� �

A=A � M 00010 11111 010� �

As Sign of A= �ve

Set Q[0]=0

Restore A 00010 00001 0100 0

From the above result, we see that the quotient = Q = 0100 = 4 and remainder = A = 00001 = 1.

Division of 9 by 2 using non-restoring division method:

Dividend Q = 9 = 1001 and divisor M = 2 = 0010.

M A Q Size

Initial Configuration 00010 00000 1001 4

Step-1

As Sign of A= +ve

LS(AQ) 00010 00001 001� �

A=A � M 00010 11111 001� �

As sign of A= �ve

Set Q[0]=0 00010 11111 0010 3

Step-2

As sign of A= �ve

LS(AQ) 00010 11110 010� �

A=A + M 00010 00000 010� �

As sign of A= +ve

Set Q[0]=1 00010 00000 0101 2

Step-3

As sign of A = +ve

LS(AQ) 00010 00000 101� �

A=A � M 00010 11110 101� �

As sign of A= �ve

Set Q[0]=0 00010 11110 1010 1

Solved Question Paper 2008 (CS-404) SQP.9

Step-4

As sign of A= �ve

LS(AQ) 00010 11101 010� �

A=A + M 00010 11111 010� �

As sign of A= �ve

Set Q[0]=0

Restore A 00010 00001 0100 0

(i.e. A= A+M)

From the above last step, we conclude that quotient = 0100 = 4 and remainder = 00001 = 1.

The block diagram of the restoring division method is shown below.

(b) The microprogrammed control unit for restoring divison method:

The symbolic microprogram for n ¥ n restoring divison is as follows:

Control

Memory Control word

Address

0 START A ¨ 0, M ¨ Inbus, L ¨ 4

1 Q ¨ Inbus

2 LOOP LS (AQ)

3 A ¨ A � M

4 If A[n] = 0 then goto ONE

5 Q[0] ¨ 0, A ¨ A + M

6 ONE Q[0] ¨ 1

7 L ¨ L �1

8 If Z = 0 then go to LOOP

9 Outbus ¨ A;

10 Outbus ¨ Q;

11 HALT Go to HALT;

SQP.10 Computer Organization

In this task, two conditions, sign of A, i.e. A[n] = 0 and Z = 0, are tested. Here, Z corresponds

to the L register. When L π 0, Z is reset to 0, otherwise Z is set to 1. These two conditions are

applied as inputs to the condition select MUX. Additionally, to take care of no-branch and

unconditional-branch situations, a logic 0 and logic 1 are applied as data inputs to this MUX,

respectively. Therefore, The MUX is able to handle four data inputs and thus must be at least an

4:1. The size of the condition select field must be 2 bits in length.

With this design, the condition select field may be interpreted as below:

Condition Action

select taken

00 No branching

01 Branch if A[n] =0

10 Branch if Z =0

11 Unconditional branching

With these details, the size of the control word is calculated as follows:

Size of a control size of the size of the number of

word = condition select + branch address + control

field field functions

= 2 + 4 + 11

= 17 bits.

Hence, the sizes of the CMDB and CM are 17 bits and 12 ¥ 17, respectively. The complete

hardware organization of the control unit and control signals is shown in the next figure.

C0 : A ¨ 0

C1 : M ¨ Inbus

C2 : L ¨ 4

C3 : Q ¨ Inbus

C4 : LS (AQ)

C5 : F ¨ l � r

C�5 : F ¨ l + r

C6 : A ¨ F

C7 : Q[0] ¨ 1

C�7 : Q[0] ¨ 0

C8 : L ¨ L � 1

C9 : Outbus ¨ A

C10 : Outbus ¨ Q

Solved Question Paper 2008 (CS-404) SQP.11

Microprogrammed n ¥ n restoring divider control unit

Finally, the generation of binary microprogram stored in the CM is discussed. There exists a

control word for each line of the symbolic program listing. For example, consider the first line

(0th) of the symbolic listing program mentioned previously. This instruction, being a simple load

instruction, introduces no branching. Therefore, the condition-select field should be 00. Thus,

the contents of the branch address field are irrelevant. However, without any loss of generality,

the contents of this field can be reset to 0000. For this instruction, three micro-operations C0, C1

and C2 are activated. Therefore, only the corresponding bit positions in the control function

fields are set to 1. This results in the following binary microinstruction:

Condition Branch Control

select address function

00 0000 11100000000

Continuing in this way, the complete binary microprogram for n ¥ n restoring divider can be

produced, as in the following table.

Control Memory Condition Branch Control function (11-bit)

address select (2-bit) address (4-bit)

In decimal In binary C0C1�..C10

0 0000 00 0000 11100000000

1 0001 00 0000 00010000000

2 0010 00 0000 00001000000

3 0011 00 0000 00000110000

4 0100 01 0110 00000000000

5 0101 00 0000 00000010000

6 0110 00 0000 00000001000

7 0111 00 0000 00000000100

8 1000 10 0010 00000000000

9 1001 00 0000 00000000010

10 1010 00 0000 00000000001

11 1011 11 1011 00000000000

SQP.12 Computer Organization

9. (a) What is Cache memory ? Why is it needed ?

Explain the Write-through and Write-back mechanism.

Why is set-associative mapping technique more advantageous than direct or associative

mapping technique?

A computer has 512 KB cache memory and 2 MB main memory. If the block size is

64 bytes, then find out the subfields for

(i) direct mapped cache

(ii) associative

(iii) 8-way set associative cache.

(b) Why memory hierarchy is needed?

What are the different levels in memory hierarchy? 11 + 4

Answer

(a) This is a special high-speed main memory, sometimes used to increase the speed of processing

by making the current programs and data available to the CPU at a rapid rate. Generally, the

CPU is faster than main memory, thus resulting that processing speed is limited mainly by the

speed of main memory. So, a technique used to compensate the speed mismatch between CPU

and main memory is to use an extremely fast, small cache between CPU and main memory,

whose access time is close to CPU cycle time. The cache is used for storing portions of

programs currently being executed in the CPU and temporary data frequently needed in the

present computations. Thus, the cache memory acts as a buffer between the CPU and main

memory. By making programs and data available at a rapid rate, it is possible to increase the

performance of computer.

There are two methods in writing into cache memory:

Write-Through Policy: This is the simplest and most commonly used procedure to update the

cache. In this technique, when the cache memory is updated, at the same time the main memory

is also updated. Thus, the main memory always contains the same data as the cache. But it is a

slow process, since each time main memory needs to be accessed.

Write-Back Policy: In this method, during a write operation only the cache location is updated.

When the update occurs, the location is marked by a flag called modified or dirty bit. When the

word is replaced from cache, it is written into main memory if its flag bit is set. The philosophy

of this method is based on the fact that during a write operation, the word residing in cache may

be accessed several times (temporal locality of reference). This method reduces the number of

references to main memory. However, this method may encounter the problem of inconsistency

due to two different copies of the same data, one in cache and other in main memory.

The set-associative mapping is a combination of the direct- and associative-mapping tech-

niques. Blocks of the cache are grouped into sets and the mapping allows a block of the main

memory to reside in any block of a specific set. Hence, the conflict problem of the direct method

is eased by having a few choices for block placement. At the same time, the hardware cost is

reduced by decreasing the size of the associative search. That is why the set-associative map-

ping technique is more advantageous than direct- or associative- mapping technique.

Given,

Solved Question Paper 2008 (CS-404) SQP.13

The size of cache = 512 KB

The size of main memory = 2 MB

The block size = 64 bytes.

The main memory capacity = 2 MB = 221 bytes.

So, the processor generates 21-bit address to access each word in cache memory.

The cache memory size = 512 KB = 219 bytes and each block size = 64 bytes = 26 bytes.

Therefore, the number of blocks in cache memory = 512 KB/64 bytes = 213.

So, the block field size = 13-bit.

Since each block size = 64 bytes, the sector (or word) field size = 6-bit.

Thus, the tag field size = 21 � (13 + 6) = 2-bit.

Therefore the address format in direct-mapped cache is as follows:

2 13 6

Tag Block Sector (or Word)

The number of blocks main memory contains = 2 MB/64 bytes = 215.

Therefore, no. of bits required to specify one block in main memory = 15.

Since, the block size is 64 bytes.

The no. of bits required to access each word (byte) = 6.

For associative cache, the address format is:

Tag-address Word

15 6

In case of 8-way set-associative cache:

Each set contains 8 blocks.

Therefore, the number of sets in cache = 213/8 = 210.

Thus, the number of bits required to specify each set = 10.

The tag field of address = (21 � (10 + 6) = 5-bit.

For 8-way set-associative cache, the address format is:

Tag Set Word

5 10 6

(b) Ideally, we would like to have the memory which would be fast, large and inexpensive. Unfortu-

nately, it is impossible to meet all three requirements simultaneously. If we increase the speed

and capacity, then cost will increase. We can achieve these goals at optimum level by using

several types of memories, which collectively give a memory hierarchy.

A memory hierarchy system is broadly divided into following four groups, shown in figure

below.

l Secondary (auxiliary) memory

l Main (primary) memory

l Cache memory

l Internal memory

SQP.14 Computer Organization

10. (a) If two n bit numbers are added then the result will be maximum how bit long?

(b) If two n bit numbers are multiplied then the result will be maximum how bit long?

(c) Design a 4-bit Arithmetic unit using multiplexers and full adders.

(d) Two 4-bit unsigned numbers are to be multiplied using the principle of carry save adders.

Assume the numbers to be A3 A2 A1 A0 and B3 B2 B1 B0. Show the arrangement and

interconnection of the adders and the input signals so as to generate an eight bit product as

P7 P6 P5 P4 P3 P2 P1 P0. 1 + 1 + 6 + 7

Answer

(a) If two n bit numbers are added then the result will be maximum (n + 1)-bit long.

(b) If two n bit numbers are multiplied then the result will be maximum (n + n)-bit i.e. 2n-bit long.

(c) The diagram of a 4-bit arithmetic circuit is shown in figure below. The circuit has a 4-bit parallel

adder and four multiplexers for 4-bit arithmetic unit. There are two 4-bit inputs A and B, and the

5-bit output is K. The size of each multiplexer is 4:1. The two common selection lines for all four

multiplexers are S0 and S1. Cin is the carry input of the parallel adder and the carry out is Cout. The

four inputs to each multiplexer are B- value, B -value, logic-0 and logic-1.

The output of the circuit is calculated from the following arithmetic sum:

K = A + Y + Cin

where A is a 4-bit number, Y is the 4-bit output of multiplexers and Cin is the carry input bit to

the parallel adder. By this circuit it is possible to get 8 arithmetic micro-operations, as listed in

the Table below.

Case 1: When S1 S0 = 00.

In this case, the values of B are selected to the Y inputs of the adder. If Cin = 0, output K = A +

B. If Cin = 1, output K = A + B + 1. In both cases the micro-operation addition is performed

without carry or with the carry input.

Case 2: When S1 S0 = 01.

The complements of B are selected to the Y inputs of the adder. If Cin = 0, output K = A + B .

This means the operation is subtraction with borrow. If Cin = 1, output K = A + B + 1, which is

equivalent to A + 2�s complement of B. Thus this gives the subtraction A � B.

Case 3: When S1 S0 = 10.

Here, all 1s are selected to the Y inputs of the adder. This means Y = (1111), which is

equivalent to 2�s complement of decimal 1, that means, Y = �1. If Cin = 0, the output K = A � 1,

Solved Question Paper 2008 (CS-404) SQP.15

which is a decrement operation. If Cin = 1, the output K = A � 1 + 1 = A. This causes the direct

transfer of A to K.

Case 4: When S1 S0 = 11.

In this case, all 0s are selected to the Y inputs of the adder. If Cin = 0, the output K = A, which is a

transfer operation. If Cin = 1, output K = A + 1. This means the value of A is incremented by 1.

Observe that only seven different arithmetic micro-operations are deduced, because the transfer

operation is generated twice.

Table Arithmetic unit function table

S1 S0 Cin Y K = A + Y + Cin Operation

0 0 0 B K = A + B Addition

0 0 1 B K = A + B + 1 Addition with carry

0 1 0 B K = A + B Subtraction with borrow

0 1 1 B K = A + B + 1 Subtraction

1 0 0 1 K = A � 1 Decrement

1 0 1 1 K = A Transfer

1 1 0 0 K = A Transfer

1 1 1 0 K = A + 1 Increment

4-bit Arithmetic Unit

SQP.16 Computer Organization

(d) The multiplication of two unsigned is done by repeated add-shift operations. Add-shift multipli-

cation of two 4-bit numbers is illustrated in figure below.

A3 A2 A1 A0 = A

B3 B2 B1 B0 = B
__

A3B0 A2B0 A1B0 A0B0 = W1

A3B1 A2B1 A1B1 A0B1 = W2

A3B2 A2B2 A1B2 A0B2 = W3

A3B3 A2B3 A1B3 A0B3 = W4
__

P7 P6 P5 P4 P3 P2 P1 P0 = A ¥ B = Product

Add-shift multiplication of two 4-bit numbers (A ¥ B = Product)

The additions of partial products W1, W2, W3 and W4, which are generated using bit-wise

AND logic operations, can be done using CSA-tree as shown in figure below to realize the

multiplier for 4-bit numbers.

The first carry-save adder (CSA-1) adds W1, W2 and W3 and produces a sum vector (S1) and a

carry vector (C1). The sum vector, the shifted carry vector and the fourth partial product W4 are

applied as the inputs to the second CSA. The results produced by the second CSA are then

added by a CPA to generate the final summation Sum.

11. (a) Explain the basic Direct Memory Access (DMA) operation for transfer of data bytes between

memory and peripheral.

(b) What is programmed I/O technique? Why is it not very useful?

(c) What are the different types of interrupt? Give example.

(d) Give the main reason why DMA based I/O is better in some circumstances than interrupt

driven I/O. 6 + 3 + 3 + 3

Answer

(a) See answer of question no. 9 (a) of 2007 (CS-303).

(b) See answer of question no. 9 (c) of 2007 (CS-303).

Solved Question Paper 2008 (CS-404) SQP.17

(c) Types of interrupt:

There are basically three types of interrupts: external, internal or trap and software interrupts.

External interrupt: These are initiated through the processors� interrupt pins by external devices.

Examples include interrupts by input-output devices and console switches. External interrupts

can be divided into two types: maskable and non-maskable.

Maskable interrupt: The user program can enable or disable all or a few device interrupts by

executing instructions EI or DI.

Non-maskable interrupt: The user program cannot disable it by any instruction. Some common

examples are: hardware error and power fail interrupt. This type of interrupt has higher priority

than maskable interrupts.

Internal interrupt: This type of interrupts is activated internally by exceptional conditions. The

interrupts caused due to overflow, division by zero and execution of an illegal op-code are

common examples of this category.

Software interrupt: A software interrupt is initiated by executing an instruction like INT n in a

program, where n refers to the starting address of a procedure in program. This type of interrupts

is used to call operating system. The software interrupt instructions allow use to switch from

user to supervisor mode.

(d) See answer of question no. 9 (b) of 2007 (CS-303).

Group-A

(Multiple-Choice Questions)

1. Choose the correct alternatives for the following :

(i) When signed numbers are used in binary arithmetic then which of the following notations

would have unique representation for zero?

(a) Sign magnitude (b) 1�s complement

(c) 2�s complement (d) None of these.

Answer

(c) 2�s complement

(ii) The logic circuitry in ALU is

(a) entirely combinational (b) entirely sequential

(c) combinational cum sequential (d) none of these.

Answer

(a) entirely combinational

(iii) In a micro-processor, the address of the next instruction to be executed is stored in

(a) stack pointer (b) address latch

(c) program counter (d) general purpose register.

Answer

(c) program counter

(iv) The technique of placing software in a ROM semiconductor chip is called

(a) PROM (b) EPROM (c) FIRMWARE (d) Micro- processor.

Answer

(c) FIRMWARE

2008
Computer Organization

(CS-303)

Semester: 3rd

Time Alloted: 3 hours Full Marks: 70

SQP.2 Computer Organization

(v) Cache memory

 (a) increases performance (b) increases machine cycle

(c) reduces performance (d) none of these.

Answer

(a) increases performance

(vi) Associative memory is a

(a) very cheap memory (b) pointer addressable

(c) content addressable memory (d) slow memory

Answer

(c) content addressable memory

(vii) A single bus structure is primarily found in

(a) mainframe computers (b) super computers

(c) high-performance machines (d) mini and micro-computers

Answer

(d) mini and micro-computers

(viii) Memory mapped I/O scheme used for the allocation of address to memories and I/O devices

is used for

(a) small systems (b) large systems

(c) large and small systems (d) very large systems

Answer

(c) large and small systems

(ix) The conversion of (FAFAFA)16 into octal form is

(a) 76767676 (b) 76575372 (c) 76737672 (d) 76727672.

Answer

(b) 76575372

(x) Which of the following addressing modes is used in the instruction PUSH B?

(a) Immediate (b) Register (c) Direct (d) register indirect

Answer

(a) Immediate

Group-B

(Short-Answer Questions)

Answer any three of the following. 3 ¥ 5 = 15

2. Show the circuit diagram for implementing the following register transfer operation. If (ab = 1)

then R1 ¨ R2 else R1 ¨ R3, where a and b are control variables.

Answer

Here, depending on the a and b values, n-bit content of R2 or R3 register is copied to R1 register.

Such a selective register transfer micro-operation can be expressed as follows:

C: R1 ¨ R2

C¢: R1 ¨ R3 [C¢ indicates complement of C].

where C = a Ÿ b¢ and C¢ = (a Ÿ b¢)¢ = a¢ ⁄ b

A hardware implementation for this transfer is shown in the figure below.

Solved Question Paper 2008 (CS-303) SQP.3

The R2 register is selected by the MUX if condition C = 1; otherwise register R3 is selected as

source register.

Hardware implementation of �if (ab = 1) then R1 ¨ R2 else R1 ¨ R3�.

3. What do you mean by instruction cycle, machine cycles and T states?

Answer

See answer of question no. 4 of 2007 (CS-404).

4. What is virtual memory ? Why is it called virtual? Write the advantage of virtual memory.

2 + 1 + 2

Answer

See answer of question no. 2 of 2007 (CS-404).

5. What are the advantages of microprogramming control over hardwired control? What is the role

of an operating system? 3+2

Answer

The main advantage of microprogramming is that it provides a well-structured control organization.

Control signals are systematically transformed into formatted words (microinstructions). With micro-

programming, many additions and changes are made by simply changing the microprogram in the

control memory (ROM), whereas, a small change in the hardwired approach may lead to redesigning

the entire system.

The main roles of an operating system:

1. Managing the user�s programs

2. Managing the memories of the computer

3. Managing the I/O operations

4. Controlling the security of a computer

6. What are the different types of interrupt ? Give examples. What is programmed I/O technique?

3 +2

Answer

Types of interrupt

There are basically three types of interrupts: external, internal or trap and software interrupts.

External interrupt: These are initiated through the processors� interrupt pins by external devices.

SQP.4 Computer Organization

Examples include interrupts by input�output devices and console switches. External interrupts can be

divided into two types: maskable and non-maskable.

Maskable interrupts: The user program can enable or disable all or a few device interrupts by

executing instructions EI or DI.

Non-maskable interrupts: The user program cannot disable it by any instruction. Some common

examples are hardware error and power fail interrupt. This type of interrupt has higher priority than

maskable interrupts.

Internal interrupt: This type of interrupt is activated internally by exceptional conditions. The

interrupts caused due to overflow, division by zero and execution of an illegal op-code are common

examples of this category.

Software interrupts: A software interrupt is initiated by executing an instruction like INT n in a

program, where n refers to the starting address of a procedure in program. This type of interrupt is

used to call an operating system. The software interrupt instructions allow us to switch from user to

supervisor mode.

Programmed I/O: This is the software method where the CPU is needed all the times during data

transfer between any two devices. Programmed I/O operations are the result of I/O instructions

written in the computer program or I/O routine. Each data item transfer is initiated by an instruction in

the program or I/O routine. Generally, the transfer is to and from a CPU register and peripheral.

Transferring data under program control requires constant monitoring of the peripheral by the CPU.

Once a data transfer is initiated, the CPU is required to monitor the interface to see when a transfer

can again be made. In other words, the CPU polls the devices for next data transfer. This is why the

programmed I/O is sometimes called polled I/O. Through the mid-1990s, programmed I/O was the

only way that most systems ever accessed IDE/ATA hard disks.

Group-C

(Long-Answer Questions)

Answer any three of the following. 3 ¥ 15 = 45

7. (a) What is the Von Neumann concept and its bottleneck?

(b) Represent the decimal value - 7.5 in IEEE - 754 single precision floating- point format.

(c) Compare parallel adder with serial adder.

(d) What is the necessity of guard bits?

(e) Explain and draw 4-bit binary decrementer circuit. 4 + 3 + 4 + 1 + 3

Answer

(a) See answer of question no. 8(c) of 2007 (CS-303).

(b) The decimal number � 7.5 = - 111.1 in binary = - 1.111 x 22

The 23-bit mantissa M = 0.111000 000000 000000 00000

The biased exponent E¢ = E + 127 = 2 + 127 = 129 = 1000 0001

Since the number is negative, the sign bit S = 1

Therefore, the IEEE single-precision (32-bit) representation is

1 1000 0001 111000 000000 000000 00000

Solved Question Paper 2008 (CS-303) SQP.5

 (c)

Parallel Adder Serial Adder

1. This adder is a combinational circuit, which adds

all bits of two numbers in one clock cycle.

2. This adder, being a combinational circuit, is faster

than a serial adder. In one clock period all bits of

two numbers are added.

3. The hardware cost is more than that of serial adder

because, number of adder blocks needed is equal to

the number of bits in operands.

1. This adder is a sequential circuit, which performs

the addition of two binary numbers serially bit by

bit starting with lsb.

2. The serial adder is very slow since it takes n clock

cycles for addition of n-bit numbers.

3. The serial adder circuit is small and hence, it is

very inexpensive irrespective of the number of bits

to be added.

(d) When the mantissa is shifted right, some bits at the rightmost position (least significant position)

are lost. In order to obtain maximum accuracy of the final result; one or more extra bit known as

guard bits, are included in the intermediate steps. These bits temporarily contain the recently

shifted out bits from the rightmost side of the mantissa. When the number has to be finally stored

in a register or in a memory as the result, the guard bits are not stored. However, based on the

guard bits, the value of the mantissa can be made more precise by the rounding technique.

(e) The binary decrementer unit performs the decrement micro-operation. The decrement micro-

operation subtracts value one from the number stored in a register. For example, if a 4-bit

register has a binary value 1001, it will be 1000 after the decrement operation. The subtraction

can easily be implemented using combinational circuit half-subtractors or sequential circuit

binary down counter. The decrement micro-operation can be realized with combinational circuit

full adders. The subtraction of two binary numbers can be performed by taking the 2�s comple-

ment of the subtrahend and then adding it to the minuend. The diagram of a 4-bit combinational

decrementer circuit has been implemented using full adders, shown in the figure below.

4-bit Decrementer Circuit

Here, we are adding a bit 1 as one of the inputs to the full adder. This means that binary number

(1111) is added with the operand number A. The binary number (1111) means �1 in decimal,

since the negative number is represented in computers using signed 2�s complement method.

That means, we are adding �1 with the operand value stored in register A.

8. (a) Draw the internal cell diagram of PROM and explain its functionality.

(b) What is cache memory ? How does it increase the performance of a computer ? What is hit

ratio?

SQP.6 Computer Organization

(c) A three-level memory system having cache access time of 5 nsec and disk access time of 40

nsec, has a cache hit ratio of 0.96 and main memory hit ratio of 0.9. What should be the

main memory access time to achieve an overall access time of 16 nsec?

(d) Define : (i) rotational latency (ii) seek time. 4+4+5+2

Answer

(a) A PROM cell structure is shown in the figure below. A logic value 1 is stored in the cell if the

transistor is not connected to the ground at point P; otherwise, a binary 0 is stored. The bit line

is connected through a resistor to the power supply. Inserting a fuse at point P in the figure

achieves programmability. Before it is programmed, the memory contains all 0s. The user can

insert 1s at the required locations by burning out the fuses of cells at these locations using high-

voltage currents. The PROM�s cells are once programmable, i.e., the user can store the desired

bits in the cells only once and these bits cannot be altered.

A PROM memory cell

In order to read the state of the cell, the word line is activated to close the transistor, which acts

as a switch.

 (b) This is a special high-speed main memory, used to increase the speed of processing by making

the current programs and data available to the CPU at a rapid rate. Generally, the CPU is faster

than the main memory, thus resulting that processing speed is limited mainly by the speed of

main memory. So, a technique used to compensate the speed mismatch between CPU and main

memory is to use an extremely fast, small cache between CPU and main memory, whose access

time is close to CPU cycle time. The cache is used for storing portions of programs currently

being executed in the CPU and temporary data frequently needed in the present computations.

Thus, the cache memory acts as a buffer between the CPU and main memory. By making pro-

grams and data available at a rapid rate, it is possible to increase the performance of a computer.

The performance of the cache memory is measured in terms of a quantity called hit ratio.

When the CPU refers to memory and finds the word in cache, it is said that a hit occurred. If the

word is not found in the cache, then the CPU refers to the main memory for the desired word

and it is refereed to as a miss to cache. The hit ratio (h) is defined below:

Hit ratio (h) =
number of hits

total CPU references to memory

=
number of hits

number of hits + number of misses

Solved Question Paper 2008 (CS-303) SQP.7

Thus, the hit ratio is nothing but a probability of getting hits out of some number of memory

references made by CPU. So its range is 0 £ h £ 1.

(c) Given,

Cache access time, tc = 5 ns

Disk access time, ts = 40 ns

Cache hit ratio, hc = 0.96

Main memory hit ratio hm = 0.9

Effective access time, tav = 16 ns

We have to find out the main memory access time, tm

We know,

tav = hctc + (1 � hc) hm (tc + tm) + (1 � hc) (1 � hm) (tc + tm + ts)

i.e., 16 = 0.96 * 5 + 0.04 * 0.9 * (5 + tm) + 0.04 * 0.1 * (5 + tm + 40)

i.e., tm = 271

Therefore, required main memory access time is 271 ns.

(d) To access data in disk, the read-write head must be placed on the proper track based on the

given cylinder address. The time required to position the read-write head over the desired track

is known as the seek time, ts. This depends on the initial position of the head relative to the

specified track or cylinder address. Seeking the required track is the most time-consuming

operation because it involves moving the read-write head arm. After positioning the read-write

head on the desired track, the disk controller has to wait until the desired sector is under the

read-write head. This waiting time is known as rotational latency, tl. Rotational latency depends

on the rotation speed of the disk. The access time of the disk is the sum of ts and tl.

9. (a) What is instruction cycle ? Draw the time diagram for memory write operation.

(b) Explain the basic DMA operations for transfer of data between memory and peripherals.

(c) Evaluate the arithmetic statement X = (A * B)/(C + D) in one, two and three address

machines. 1 + 4 + 5 + 5

Answer

(a) For instruction cycle, see answer of question no. 4 of 2007 (CS-404).

For time diagram of memory write,

The timing diagram for memory write is

shown in the next figure.

Similar to the memory read, to write a

memory word, the address is specified on

the address bus to select the word among

many available words at first clock period

T1. At second clock period T2, memory write

signal is activated and after seeing the write

signal activated, memory stores data in it from

the data bus. The total operation needs three

clock periods.
Timing diagram for memory write

SQP.8 Computer Organization

(b) See answer of question no. 9(a) of 2007 (CS-303).

(c) We have to evaluate the arithmetic statement

X = (A * B)/(C + D)

using zero, one, two or three address instructions. For this, LOAD symbolic op-code is used for

transferring data to the register from memory. STORE symbolic op-code is used for transferring

data to the memory from register. The symbolic op-codes ADD, MULT and DIV are used for

the arithmetic operations addition, multiplication and division respectively. Assume that the

respective operands are in memory addresses A, B, C and D and the result must be stored in the

memory at address X.

Using three-address instructions, the program code in assembly language is as follows:

MULT R1, A, B ; R1 ¨ M[A] * M[B]

ADD R2, C, D ; R2 ¨ M[C] + M[D]

DIV X, R1, R2 ; X ¨ R1/R2

Using two-address instructions, the program code in assembly language is as follows:

LOAD R1, A ; R1 ¨ M[A]

MULT R1, B ; R1 ¨ R1 * M[B]

LOAD R2, C ; R2 ¨ M[C]

ADD R2, D ; R2 ¨ R2 + M[D]

DIV R1, R2 ; R1 ¨ R1/R2

STORE X, R1 ; X ¨ R1

Using one-address instructions, the program code in assembly language is as follows:

LOAD C ; AC ¨ M[C]

ADD D ; AC ¨ AC + M[D]

STORE T ; T ¨ AC

LOAD A ; AC ¨ M[A]

MULT B ; AC ¨ AC * M[B]

DIV T ; AC ¨ AC / M[T]

STORE X ; X ¨ AC

10. (a) Given the following, determine the size of the sub-fields in the address for direct mapping,

associative mapping and set-associative mapping cache schemes:

Main memory size 512 MB

Cache memory size 1 MB

Address space of processor 512 MB

Block size 128 B

8 blocks in cache set

(b) Differentiate between memory mapped I/O and I/O mapped I/O. 10 + 5

Answer

(a) Given,

The capacity of main memory = 512 MB

The capacity of cache memory = 1MB

Solved Question Paper 2008 (CS-303) SQP.9

Block size = 128 bytes

A set contains 8 blocks.

Since the address space of the processor is 512 MB.

The processor generates address of 29-bit to access a byte (word).

The number of blocks main memory contains = 512 MB / 128 bytes = 222.

Therefore, no. of bits required to specify one block in main memory = 22.

Since the block size is 128 bytes.

The no. of bits required to access each word (byte) = 7.

For associative cache, the address format is

Tag-address Word

22 7

The number of blocks cache memory contains = 1 MB / 128 bytes = 213.

Therefore, no. of bits required to specify one block in cache memory = 13.

The tag field of address = 29 � (13 + 7) = 9-bit.

For direct cache, the address format is

Tag Block Word

9 13 7

Index

In case of a set-associative cache:

A set contains 8 blocks.

Therefore, the number of sets in cache = 2
13

 / 8 = 2
10

.

Thus, the number of bits required to specify each set = 10.

The tag field of address = 29 � (10 + 7) = 12-bit.

For set-associative cache, the address format is

Tag Set Word

12 10 7

(b) 1. In the isolated (I/O mapped) I/O, computers use one common address bus and data bus to

transfer information between memory or I/O and the CPU; but use separate read-write

control lines one for memory and another for I/O. Whereas, in memory mapped I/O, com-

puters use only one set of read and write lines along with same set of address and data buses

for both memory and I/O devices.

2. The isolated I/O technique isolates all I/O interface addresses from the addresses assigned

to memory. Whereas, the memory mapped I/O does not distinguish between memory and I/

O addresses.

3. Processors use different instructions for accessing memory and I/O devices in isolated I/O. In

memory mapped I/O, processors use same set of instructions for accessing memory and I/O.

üïïïïïïýïïïïïïþ

SQP.10 Computer Organization

4. Thus, the hardware cost is more in isolated I/O relative to the memory mapped I/O, because

two separate read-write lines are required in first technique.

11. Write short notes on any three of the following: 3 ¥ 5

(a) Magnetic recording (b) Cache replacement policies

(c) Non-restoring division method (d) Addressing modes

(e) Booth�s algorithm

Answer

(a) See answer of question no. 10 (a) of 2007 (CS-303).

(b) In case a miss occurs in cache memory, then a new data from main memory needs to be placed

over old data in the selected location of cache memory. In case of direct mapping cache, we

have no choice and thus no replacement algorithm is required. The new data has to be stored

only in a specified cache location as per the mapping rule for the direct mapping cache. For

associative mapping and set-associative mapping, we need a replacement algorithm since we

have multiple choices for locations. We outline below some most used replacement algorithms.

First-In First-Out (FIFO) Algorithm: This algorithm chooses the word that has been in the cache

for a long time. In other words, the word which entered the cache first, gets pushed out first.

Least Recently Used (LRU) Algorithm: This algorithm chooses the item for replacement that

has been used by the CPU minimum number of times in the recent past.

(c) Non restoring division method: It is described in the following flowchart.

Solved Question Paper 2008 (CS-303) SQP.11

Non-restoring division method

This algorithm removes the restoration steps of restoring algorithm, though it may require a

restoration step at the end of algorithm for remainder A, if A is negative.

(d) To obtain the addresses of operands, the address mode is needed. A processor can support

various addressing modes in order to give flexibility to the users. The addressing mode gives the

way addresses of operands are determined.

The various addressing modes are discussed next.

1. Implied (or inherent) mode: In this mode the operands are indicated implicitly by the instruc-

tion. The accumulator register is generally used to hold the operand and after the instruction

execution the result is stored in the same register. For example,

RAL; Rotates the content of the accumulator left through carry.

CMA; Takes complement of the content of the accumulator.

2. Immediate mode: In this mode the operand is mentioned explicitly in the instruction. In other words,

an immediate-mode instruction contains an operand value rather than an address of it in the address

field. To initialize registers to a constant value, this mode of instructions is useful. For example:

SQP.12 Computer Organization

MVI A, 06; Loads equivalent binary value of 06 to the accumulator.

ADI 05; Adds the equivalent binary value of 05 to the content of AC.

3. Stack addressing mode: Stack-organized computers use stack addressed instructions. In this

addressing mode, all the operands for an instruction are taken from the top of the stack. The

instruction does not have any operand field. For example, the instruction

SUB

uses only one op-code (SUB) field, no address field. Both the operands are in the topmost two

positions in the stack, in consecutive locations. When the SUB instruction is executed, two

operands are popped out automatically from the stack one-by-one. After subtraction, the result is

pushed onto the stack. Since no address field is used, the instruction is short.

4. Register (direct) mode: In this mode the processor registers hold the operands. In other words,

the address field is now register field, which contains the operands required for the instruction.

For example:

ADD R1, R2; Adds contents of registers R1 and R2 and stores the result in R1.

5. Register indirect mode: In this mode the instruction specifies an address of CPU register that

holds the address of the operand in memory. In other words, address field is a register which

contains the memory address of operand.

6. Auto-increment or auto-decrement mode: This is similar to the register indirect mode except

that after or before register�s content is used to access memory it is incremented or decremented. It

is necessary to increment or decrement the register after every access to an array of data in memory,

if the address stored in the register refers to the array. This can be easily achieved by this mode.

7. Direct (or absolute) address mode: In this mode the instruction contains the memory address

of the operand explicitly. Thus, the address part of the instruction is the effective address.

Examples of direct addressing are:

STA 2500H ; Stores the content of the accumulator in the memory location

2500H.

LDA 2500H ; Loads the accumulator with the content of the memory location

2500H.

8. Indirect address mode: In this mode the instruction gives a memory address in its address

field which holds the address of the operand. Thus, the address field of the instruction gives the

address where the effective address is stored in memory. The following example illustrates the

indirect addressing mode:

MOV (X), R1 ; Content of the location whose address is given in X is loaded

into register R1.

9. Relative address mode or PC-relative address mode: In this mode the effective address is

obtained by adding the content of program counter (PC) register with address part of the

instruction. The instruction specifies the memory address of operand as the relative position of

the current instruction address. Generally, this mode is used to specify the branch address in the

branch instruction, provided the branch address is nearer to the instruction address.

Solved Question Paper 2008 (CS-303) SQP.13

10. Indexed address mode: In this mode the effective address is determined by adding the

content of index register (XR) with the address part of the instruction. This mode is useful in

accessing operand array. The address part of the instruction gives the starting address of an

operand array in memory. The index register is a special CPU register that contains an index

value for the operand. The index value for operand is the distance between the starting address

and the address of the operand. For example, an operand array starts at memory address 1000

and assume that the index register XR contains the value 0002. Now consider load instruction

LDA 1000

The effective address of the operand is calculated as:

Effective address = 1000 + content of XR

= 1002.

11. Base register address mode: This mode is used for relocation of the programs in the

memory. Relocation is a technique of moving program or data segments from one part of

memory to another part of memory. Relocation is an important feature of multiprogramming

systems. In this mode the content of the base register (BR) is added to the address part of the

instruction to obtain the effective address.

(e) See answer of question no. 8(a) of 2007 (CS-303).

Group-A

(Multiple-Choice Questions)

1. Choose the correct alternatives for the following: l0 ¥ 1 = 10

(i) With 2�s complement representation, the range of values that can be represented on the data

bus of an 8-bit microprocessor is given by

(a) �128 to +127 (b) �128 to +128

(c) �127 to +128 (d) �256 to +256

Answer

(a) �128 to +127

(ii) When signed numbers are used in binary arithmetic then which one of the following nota-

tions would have unique representation for zero ?

(a) Sign magnitude (b) Sign 1�s complement

(c) Sign 2�s complement (d) None of these

Answer

(c) Sign 2�s complement

(iii) If the memory chip size is 256 ¥ 1 bits then the number of chips required to make up 1

kilobyte of memory is

(a) 32 (b) 24 (c) 12 (d) 8

Answer

(a) 32

(iv) How many address bits are required for a 512 ¥ 4 memory?

(a) 512 (b) 4 (c) 9 (d) AO-A6.

Answer

(c) 9

2009
Computer Organization

and Architecture
(CS-404)

Semester: 4th

Time Alloted: 3 hours Full Marks: 70

SQP.2 Computer Organization

(v) What is the 2�s complement representation of �24 in a 16-bit microcomputer ?

(a) 0000 0000 0001 1000 (b) 1111 1111 1110 0111

(c) 1111 1111 1110 1000 (d) 0001 0001 1111 0011.

Answer

(c) 1111 1111 1110 1000

(vi) The technique of placing software in a ROM semiconductor chip is called

(a) PROM (b) EPROM

(c) FIRMWARE (d) microprocessor

Answer

(c) FIRMWARE

(vii) The logic circuit in the ALU is

(a) entirely combinational (b) very cheap memory

(c) content addressable memory (d) slow memory

Answer

(a) entirely combinational

(viii) The principle of locality justifies the use of

(a) interrupts (b) polling (c) DMA (d) cache memory

Answer

(d) cache memory

(ix) Conversion of (FAFAFA)16 into octal form is

(a) 76767676 (b) 76575372 (c) 76737672 (d) 76727672

Answer

(b) 76575372

(x) Associative memory is a

(a) pointer addressable memory (b) very cheap memory

(c) content addressable memory (d) slow memory

Answer

(c) content addressable memory

Group-B

(Short-Answer Questions)

Answer any three of the following questions. 3 ¥ 5 = 15

2. Describe stack base CPU.

Answer

See answer of question number 10 (d) of 2007 (CS-303).

3. Write three points to differentiate I/O mapped IO and memory mapped IO.

Answer

1. In the isolated (I/O mapped) I/O, computers use one common address bus and data bus to

transfer information between memory or I/O and the CPU; but use separate read-write

control lines one for memory and another for I/O. Whereas, in memory mapped I/O, com-

puters use only one set of read and write lines along with same set of address and data buses

for both memory and I/O devices.

Solved Question Paper 2009 (CS-404) SQP.3

2. The isolated I/O technique isolates all I/O interface addresses from the addresses assigned

to memory. Whereas, the memory mapped I/O does not distinguish between memory and I/

O addresses.

3. Processors use different instructions for accessing memory and I/O devices in isolated I/O. In

memory mapped I/O, processors use same set of instructions for accessing memory and I/O.

4. Thus, the hardware cost is more in isolated I/O relative to the memory mapped I/O, because

two separate read-write lines are required in first technique.

4. Write a short note on bus organization using tri-state buffer.

Answer

See answer of question number 10 (e) of 2007 (CS-303).

5. Write + 710 in IEEE 64 bit format.

Answer

See answer of question number 3 (a) of 2008 (CS-404(EI)).

6. (a) Where does DMA mode of data transfer find its use?

(b) What are the different types of DMA controllers and how do they differ in their functioning?

2 + 3

Answer

(a) To transfer large blocks of data at high speed, the DMA method is used. A special controlling

unit is provided to allow transfer a block of data directly between a high speed external device

like magnetic disk and the main memory, without continuous intervention by the CPU.

(b) DMA controllers are of two types:

� Independent DMA controller

� DMA controller having multiple DMA-channels

Independent DMA controller:

For each I/O device a separate DMA controller is used. Each DMA controller takes care of

supporting one of the I/O controllers. A set of registers to hold several DMA parameters is kept

in each DMA controller. Such arrangement is shown in the figure below for floppy disk control-

ler (FDC) and hard disk controller (HDC). DMA controllers are controlled by the software.

SQP.4 Computer Organization

DMA controller having multiple DMA-channels:

In this type of DMA controller, only one DMA controller exists in the system, but this DMA

controller has multiple sections or channels each channel is for one I/O device. In this case, the

software deals each channel in the same way. Multiple DMA channels in a DMA controller

work in overlapped fashion, but not in fully parallel mode since they are embedded in a single

DMA controller. Such DMA controller design technique is adopted in most of the computer

system and is shown in the figure below for floppy disk controller (FDC) and hard disk control-

ler (HDC).

Group-C

(Long-Answer Questions)

Answer any three of the following questions. 3 ¥ 15 = 45

7. (a) Describe the function of major components of a digital computer with a neat sketch.

(b) Explain the role of an operating system in a computer system.

(c) Explain the relative advantages and disadvantages of a parallel adder over a serial adder.

(d) What is the difference between a carry-look ahead adder and a ripple carry adder?

7 + 4 + 2 + 2

Answer

(a) See answer of question number 7(a) of 2007 (CS-303).

(b) An operating system (OS) is a set of programs and utilities, which acts as the interface between

user programs and computer hardware. It creates a user-friendly environment. The following are

the main roles of an operating system:

(i) Program creation

(ii) Program execution

(iii) Accounting

(iv) Controlling access to files

(v) System access

Solved Question Paper 2009 (CS-404) SQP.5

(vi) Error detection and response

(vii) Managing the memories of the computer

(viii) Controlling the I/O operations

(ix) Controlling the security of the computer

(c) See answer of question number 9(b) of 2007 (CS-404).

(d) (i) The carry-look ahead adder (CLA) is much faster than a ripple carry adder (RCA). Also,

addition delay in a CLA is independent of the number of bits to be added in two operand

numbers, whereas, that in a RCA is dependent of the size of the two numbers to be added.

(ii) The circuitry of a CLA is more complex than that of an RCA.

8. (a) Give Booth�s algorithm for multiplication of signed 2�s complement numbers.

(b) Multiply (+15) and (�11) using Booth�s algorithm.

(c) Give the flowchart for division of two binary numbers using restoring division algorithm

and explain. 5 + 5 + 5

Answer

(a) See answer of question number 8(a) of 2007 (CS-303).

(b) Multiplication of numbers (+ 15)10 and (�11)10:

Multiplicand, M = + 15 = 01111 and multiplier, Q = �11 = 10101.

M A Q Size

Initial

Configuration 01111 00000 101010 5

Step-1

As Q[0] = 1 and

Q[�1] = 0

A = A � M 01111 10001 101010 �

ARS(AQ) 01111 11000 110101 4

Step-2

As Q[0] = 0 and

Q[�1] = 1

A = A + M 01111 00111 110101 �

ARS(AQ) 01111 00011 111010 3

Step-3

As Q[0] = 1 and

Q[�1] = 0

A = A � M 01111 10100 111010 �

ARS(AQ) 01111 11010 011101 2

Step-4

As Q[0]=0 and

Q[�1] = 1

A = A + M 01111 01001 011101 �

ARS(AQ) 01111 00100 101110 1

SQP.6 Computer Organization

Step-5

As Q[0] = 1 and

Q[�1] = 0

A = A � M 01111 10101 101110 �

ARS (AQ) 01111 11010 110111 0

Since the size register becomes 0, the algorithm is terminated and the product is = AQ = 1101011011,

which shows that the product is a negative number. To get the result in familiar form, take the 2's

complement of the magnitude of the number and the result is � 165 in decimal.

(c) See answer of question number 11(b) of 2007 (CS-404).

9. (a) Give the merits and demerits of the floating-point and fixed-point presentations storing real

numbers.

(b) What are biased exponents?

(c) What are guard bits?

(d) Convert � 32.75 to IEEE 754 single-precision floating point.

(e) Use IEEE single-precision floating point numbers to compute 13.25 + 4.5.

4 + 2 + 2 + 3 +4

Answer

(a) Merits of fixed-point representation:

(i) This method of representation is suitable for representing integers in registers.

(ii) Very easy to represent, because it uses only one field: magnitude field.

Demerits of fixed-point representation:

(i) Range of representable numbers is restricted.

(ii) It is very difficult to represent complex fractional numbers.

(iii) Since there is no standard representation method for it, it is some time confusing to repre-

sent a number in this method.

Merits of floating-point representation:

(i) By this method, any type and any size of numbers can be represented easily.

(ii) There are several standardized representation methods for this.

Demerits of floating-point representation:

(i) Relatively complex representation, because it uses basically two fields: mantissa and expo-

nent fields.

(ii) Length of register for storing floating-point numbers is large.

(b) In order to eliminate the sign bit of the exponent E, one positive constant (C) is added with the

original exponent E to make it as an unsigned integer number E�. This E� is called biased

exponent, where E� = E + C. Thus, in this process, we can use n bits to represent an exponent

instead of (n � 1) bits.

(c) When the mantissa is shifted right, some bits at the right most position (least significant position)

are lost. In order to obtain maximum accuracy of the final result; one or more extra bits known

as guard bits, are included in the intermediate steps. These bits temporarily contain the recently

shifted out bits from the right most side of the mantissa. When the number has to be finally

stored in a register or in a memory as the result, the guard bits are not stored. However, based on

Solved Question Paper 2009 (CS-404) SQP.7

the guard bits, the value of the mantissa can be made more precise by one of three rounding

techniques: chopping, von Neumann rounding and rounding.

(d) The decimal number � 32.75 = �100000.11 in binary = �1.00000112 ¥ 25

The 23-bit mantissa M = 0.00000 110000 000000 000000

The biased exponent E� = E + 127 = 5 + 127 = 132 = 1000 0100

Since the number is negative, the sign bit S = 1

Therefore, the IEEE 754 single-precision (32-bit) representation is:

1 1000 0100 00000 110000 000000 000000

(e) The decimal number 13.25 = 1.101012 ¥ 23

Therefore, the IEEE single-precision (32-bit) representation of 13.25 is

0 1000 0010 10101 000000 000000 000000

The decimal number 4.5 = 1.0012 ¥ 22

Therefore, the IEEE single-precision (32-bit) representation of 4.5 is

0 1000 0001 00100 000000 000000 000000

Shifting 4.5 to the right one place to make the exponents the same (i.e., 3) gives 4.5 = 0.100102

¥ 2
3
. Adding mantissas (1.101012 + 0.100102) gives a result of 10.001112.

So, we have to shift the resultant mantissa to one position right to get the mantissa as

1.0001112 and thus exponent as 4.

Therefore, the IEEE single-precision representation of this is

0 1000 0011 00011 100000 000000 000000

10. (a) Compare RISC with CISC.

(b) What do you mean by pipeline processing?

(c) What are instruction pipeline and arithmetic pipeline?

(d) Differentiate between polled I/O and interrupt driven I/O.

(e) Distinguish between vectored and non-vectored interrupts. 4 + 2 + 2 + 3 + 4

Answer

(a) See answer of question number 6 of 2007 (CS-404).

(b) See answer of question number 7(a) of 2007 (CS-404).

(c) Instruction pipeline: When the execution of a stream of instructions can be pipelined by over-

lapping the execution of the current instruction with the fetch, decode and operand fetch of

subsequent instructions, it is called instruction pipeline. All high-performance computers are

now equipped with instruction pipeline.

Arithmetic pipeline: An arithmetic pipeline divides an arithmetic operation, such as multiply,

into multiple arithmetic steps each of which is executed one-by-one in different arithmetic

stages in the ALU. The number of arithmetic pipelines varies from processors to processors.

SQP.8 Computer Organization

(d) (i) In the polled I/O or programmed I/O method, the CPU stays in the program until the I/O

device indicates that it is ready for data transfer, that is, CPU is kept busy needlessly. But,

in interrupt driven I/O method, CPU can perform its own task of instruction executions and

is informed by raising an interrupt signal when data transfer is needed.

(ii) Polled I/O is low cost and simple technique; while, interrupt I/O technique is relatively high

cost and complex technique. Because in second method, a device controller is used to

continuously monitor the device status and raise an interrupt to the CPU as soon as the

device is ready for data transfer.

(iii) The polled I/O method is particularly useful in small low-speed computers or in systems

that are dedicated to monitor a device continuously. However, interrupt I/O method is very

useful in modern high speed computers.

(e) Interrupt is a special signal to the CPU generated by an external device that causes the CPU to

suspend the execution of one program and start the execution of another.

In a vectored interrupt, the source that interrupts supplies the branch information (starting

address of ISR) to the CPU. This information is called the interrupt vector, which is not any

fixed memory location. The processor identifies individual devices even if they share a single

interrupt-request line. So the set-up time is very less.

In a non-vectored interrupt, the branch address (starting address of ISR) is assigned to a fixed

location in memory. Since the identities of requesting devices are not known initially, the set-up

time is quite large.

11. (a) What do you mean by logical address space and physical address space?

(b) Explain with an example how logical address is converted into physical address and also

explain how page replacements take place.

(c) Write the advantages of virtual memory system.

(d) (i) How many address lines are present in a 256 k ¥ 8 RAM?

(ii) How many such RAMs will be required to construct 1 M ¥ 32 memory bank?

(iii) How many such RAMs will be required to construct 512 k ¥ 32 memory bank?

2 + 4 + 3 + (3 ¥ 2)

Answer

(a) When a program needs to be executed, the CPU would generate addresses, called logical

addresses. The corresponding addresses in the physical memory, as occupied by the executing

program, are called physical addresses. The set of all logical addresses generated by the CPU or

program is called logical-address space and the set of all physical addresses corresponding to

these logical addresses is called physical-address space. The memory-management unit (MMU)

maps each logical address to a physical address during program execution.

(b) The memory-management unit (MMU) maps each logical address to a physical address during

program execution. The figure below illustrates this mapping method, which uses a special

register called base register or relocation register.

Solved Question Paper 2009 (CS-404) SQP.9

A memory-management scheme

The content of the relocation register is added to every logical address generated by the user

program at the beginning of execution. For example, if the relocation register holds an address

value 2000, then a reference to the location 0 by the user is dynamically relocated to 2000

address. A reference to the address 150 is mapped to the address 2150.

Page Replacement

When a program starts execution, one or more pages are brought to the main memory and the

page table is responsible to indicate their positions. When the CPU needs a particular page for

execution and that page is not in main (physical) memory (still in the secondary memory), this

situation is called page fault. When the page fault occurs, the execution of the present program

is suspended until the required page is brought into main memory from secondary memory. The

required page replaces an existing page in the main memory, when it is brought into main

memory. Thus, when a page fault occurs, a page replacement is needed to select one of the

existing pages to make the room for the required page. There are several replacement algorithms

such as FIFO (First-in First-out), LRU (Least Recently Used) and optimal page replacement

algorithm available.

The FIFO algorithm is simplest and its criterion is �select a page for replacement that has been

in main memory for longest period of time�.

The LRU algorithm states that �select a page for replacement, if the page has not been used

often in the past�. The LRU algorithm is difficult to implement, because it requires a counter for

each page to keep the information about the usage of page.

The optimal algorithm generally gives the lowest page faults of all algorithms and its criterion is

�replace a page that will not be used for the longest period of time�. This algorithm is also

difficult to implement, because it requires future knowledge about page references.

(c) See answer of question number 2 of 2007 (CS-404).

(d) (i) Since 256k = 218, the RAM of size 256k ¥ 8 requires 18 address lines.

(ii) Size of memory bank to be constructed is 1M ¥ 32. Thus, it requires 20 (because 1M = 220)

address lines and 32 data lines.

Thus, total number of RAMs each of size 256k ¥ 8 required = (220/218) * (32/8) = 4 * 4 = 16.

(iii) Size of memory bank to be constructed is 512k ¥ 32. Thus, it requires 19 (because 512k = 219)

address lines and 32 data lines.

Thus, total number of RAMs each of size 256k ¥ 8 required = (219/218) * (32/8) = 2 * 4 = 8.

Group-A

(Multiple-Choice Questions)

1. Choose the correct alternatives for the following : 10 ¥ 1 = 10

(i) The logic circuit in ALU is

(a) entirely combinational (b) entirely sequential

(c) combinational cum sequential (d) none of these

Answer

(a) entirely combinational

(ii) In a microprocessor the address of the next instruction to be executed is stored in

(a) stack pointer (b) address latch

(c) program counter (d) general purpose register.

Answer

(c) program counter

(iii) The basic principle of a von Neumann computer is

(a) storing program and data in separate memory

(b) using pipeline concept

(c) storing both program and data in the same memory

(d) using a large number of registers.

Answer

(c) storing both program and data in the same memory

(iv) Physical memory broken down into groups of equal size is called

(a) page (b) tag (c) block (d) index

Answer

(c) Block

2009
Computer Organization

and Architecture
(CS-404 (EI))

Semester: 4th

Time Alloted: 3 hours Full Marks: 70

SQP.2 Computer Organization

(v) The minimum number of operands with any instruction is

(a) 1 (b) 0 (c) 2 (d) 3.

Answer

(b) 0

(vi) The principle of locality justifies the use of

(a) interrupts (b) DMA (c) polling (d) cache memory

Answer

(d) cache memory

(vii) Instruction cycle is

(a) fetch-decode-execution (b) fetch-execution-decode

(c) decode-fetch-execution (d) none of these

Answer

(a) fetch-decode-execution

(viii) How many address bits are required for a 1024 ¥ 8 memory ?

(a) 1024 (b) 5 (c) 10 (d) none of these.

Answer

(c) 10

(ix) The technique of placing software in a ROM semiconductor chip is called

(a) PROM (b) EPROM (c) EEPROM (d) firmware

Answer

(d) firmware

(x) Cache memory is used to increase the speed of

(a) hard disk (b) CPU (c) floppy disk (d) none of these

Answer

(b) CPU

Group-B

(Short-Answer questions)

Answer any three of the following. 3 ¥ 5 = 15

2. What do you mean by instruction cycle, machine cycle and T states ? 5

Answer

See answer of question no. 4 of 2007 (CS-404).

3. Briefly discuss register stack organization of CPU. 5

Answer

See answer of question no. 10(d) of 2007 (CS-303).

4. What is locality of reference ? What is memory mapping ? Why is it needed ? 2 + 1 + 2

Answer

Locality of reference: Analysis of a large number of typical programs shows that the CPU references

to main memory during some time period tend to be confined within a few localized areas in memory.

In other words, few instructions in the localized areas in memory are executed repeatedly for some

Solved Question Paper 2009 (CS-404 (EI)) SQP.3

time duration and other instructions are accessed infrequently. This phenomenon is known as the

property of locality of reference. This property may be understood considering that when a program

loop is executed, the CPU repeatedly refers to the set of instructions in memory that constitutes the

loop. Thus loop tends to localize the references to memory for fetching the instructions.

Memory Mapping and Why: First the cache memory is accessed, when the CPU needs to access

memory for a word. If the word is found in the cache, the CPU reads it from the fast cache memory.

If the word addressed by the CPU is not found in the cache, the main memory is accessed next to find

the word. Due to the property of locality of reference, a block of words containing the one just

accessed is then brought into the cache memory from main memory. The transfer of data as a block

from main memory to cache memory is referred to as a mapping process.

5. Discuss IEEE representation of floating point number. 5

Answer

See answer of question no. 4(a) of 2007 (CS-303)

Group�C

(Long-Answer Questions)

Answer any three questions. 3 ¥ 15 = 45

6. (a) Write notes on magnetic disk and magnetic tape. 5

(b) A disk pack has 19 surfaces. Storage area on each surface has an inner diameter of 22 cm

and an outer diameter of 33 cm. Maximum storage density on each track is 2000 bits/cm

and minimum spacing between tracks is 0.25 mm.

(i) What is the storage capacity of the pack ?

(ii) What is the data transfer rate in bytes per second at a rotational speed of 3600 rpm?

2 +2

(c) What is seek time and rotational latency? 1 + 1

(d) Suppose a DRAM memory has 4k rows in its array of bits cells. Its refreshing period is

64 ms. 4 clock cycles are required to access each row.

(i) What is the time needed to refresh the memory if the clock rate is 133 MHz ?

(ii) What fraction of the memory�s time is spent for performing refreshes ? 2 + 2

Answer

(a) Magnetic Disk: Disks that are permanently attached to the unit assembly and cannot be removed

by the general user are called hard disks. A disk drive with removable disks is called a floppy

disk drive. The disks used with a floppy disk drive are small removable disks made of plastic

coated with magnetic recording material. There are two sizes commonly used, with diameters of

5.25 and 3.5 inches.

The magnetic disk is made of either aluminium or plastic coated with a magnetic material so

that information can be stored on it. The recording surface is divided into a number of concen-

tric circles called tracks. The tracks are commonly divided into sections called sectors. To

distinguish between two consecutive sectors, there is a small inter-sector gap. In most systems,

the minimum quantity of information transfer is a sector. Generally, the innermost track has

maximum storage density (i.e., bits per linear inch) and outermost track has minimum density.

The subdivision of one disk surface into tracks and sectors is shown in the figure.

SQP.4 Computer Organization

A single disk view

The information is accessed onto the tracks using movable read-write heads that move from

the innermost to the outmost tracks and vice-versa. Generally, several identical disks are stacked

over one another with some separation between them to form a disk pack. A typical disk pack is

shown in the figure. There is one read-write head per surface. Therefore, if there are n disks,

there are 2n surfaces. During normal operation, disks are rotated continuously at a constant

angular velocity. Same radius tracks on different surfaces of disks form a logical cylinder. A

disk pack with n disks has 2n tracks per cylinder. Another part of the disk is the electronic

circuitry that controls the operation of the disk, which is called disk controller. To access data,

the read-write head must be placed on the proper track based on the given cylinder address.

Magnetic Tape: Magnetic tapes were the first kind of secondary memory used in computer

systems. Tape is flexible polyester coated with special magnetic material. A magnetic tape is

similar to a home tape recorder. However, a magnetic tape holds digital information, whereas a

tape recorder holds analog information. A magnetic tape is divided vertically into frames and

horizontally into nine parallel tracks, as in the figure.

Each frame is capable of storing 9 bits of data. The first 8 bits form a data byte and the 9th bit

holds the parity. The parity bit is used for error correction and detection. Information is stored

along tracks using read-write heads. Read-write heads are designed in such a way that they can

access all nine tracks contained in a frame simultaneously. Data is written on the tape by varying

the current through the read-write heads. Data is read or written in contiguous records. The

records are separated by gaps referred to as inter-record gaps. The length of a magnetic tape is

typically 2400 feet and it is stored on a reel. The major difficulty with this device is the particle

contamination caused by improper manual handling.

Solved Question Paper 2009 (CS-404 (EI)) SQP.5

A disk pack

A part of a magnetic tape.

(b) Given, no. of surfaces = 19

Inner track diameter = 22 cm

Outer track diameter = 33 cm

So, Total track width = (33-22)/2 cm = 5.5 cm

Track separation = 0.25 mm

Thus, no. of tracks/surface = (5.5 * 10)/0.25 = 220

Minimum track circumference = 22 * P cm

Maximum track storage density = 2000 bits/ cm, which will be on innermost track.

So, data storage capacity/track = 22 * P * 2000 bits = 138.23 Kbits

Disk speed = 3600 rpm

SQP.6 Computer Organization

So, rotation time = 1/3600 minute = 16.67 ms (1 ms.=103 s)

i. Storage capacity = 19 * 220 * 138.23 kbits = 577.8 Mbits = 72.225 Mbytes.

ii. Data transfer rate = 138.23 kbits/16.67 ms = 8.2938 Mbits/s

This is the maximum data transfer rate excluding seek time and rotational latency.

(c) To access data from a magnetic disk, the read-write head must be placed on the proper track

based on the given cylinder address. The time required to position the read-write head over the

desired track is known as the seek time, ts. This depends on the initial position of the head

relative to the specified track or cylinder address. Seeking the required track is the most time-

consuming operation because it involves moving the read-write head arm. After positioning the

read-write head on the desired track, the disk controller has to wait until the desired sector is

under the read-write head. This waiting time is known as rotational latency, tl. Rotational

latency depends on the rotation speed of the disk. The access time of the disk is the sum of ts
and tl.

(d) Given,

Memory has 4k (= 4096) rows

It has refreshing period is 64 ms. In other words, period of refreshing all rows of memory is

64 ms.

To access each row, 4 clock cycles are required.

Therefore, it takes 4096 ¥ 4 = 16384 cycles to refresh all rows.

(i) At a clock rate of 133 MHz, the time needed to refresh all rows (i.e. memory) is 16384 /

(133 ¥ 106) = 123 ¥ 10�6 seconds (approx.).

(ii) Therefore, the refreshing process occupies 0.123 ms in each 64 ms time interval. Thus, the

refreshing overhead is 0.123/64 = 0.0019, which is less than 0.2 per cent of the total time

available for accessing the memory.

7. (a) Classify different types of ROM and briefly describe them. What is flash memory? Briefly

describe the organization of a basic RAM cell. 3 + 1 + 3

(b) What is von Neumann architecture ? What is von Neumann bottleneck ? How can this be

reduced? 2 + 1 + 2

(c) What is virtual memory ? Why is it called virtual ? 1 + 1

(d) What is tertiary memory ? 1

Answer

(a) Types of ROM

PROM Memory: Some ROM designs allow the data to be loaded into the cell by user, and then

this ROM is called PROM (Programmable ROM). A fuse is used in each cell to achieve

programmability. Before it is programmed, the memory contains all 0s. The user can insert 1s at

the required locations by burning out the fuses of cells at these locations using high-voltage

currents. The PROM�s cells are once programmable, i.e., the user can store the desired bits in

the cells only once and these bits cannot be altered.

EPROM: An erasable PROM (EPROM) uses a transistor in each cell that acts as a program-

mable switch. The contents of an EPROM can be erased (set to all 1s) by burning out the device

to ultraviolet light for a few (20 to 30) minutes. Since ROMs and PROMs are simpler and thus

cheaper than EPROMs. The EPROMs are used during system development and debugging.

Solved Question Paper 2009 (CS-404 (EI)) SQP.7

EEPROM: In many applications, permanent data have to be generated in a program application

and need to be stored. For example, in a mobile phone the telephone numbers are to be kept

permanently till the user wants to erase those data. Similarly, the user may wish to erase

previously entered information. EEPROMs have an advantage in that the information in them

can be selectively erased by writing 1s and each bit in the information can be stored again by

writing the desired bit. An EEPROM needs two write operations at an address, one for erase and

one for writing. RAM writes the information directly without first erasing that information at

that address. But in the EEPROM, the stored information is non-volatile.

Flash Memory: A currently popular type of EEPROM, in which erasing is performed in large

blocks rather than bit by bit, is known as flash EPROM or flash memory. Erasing in large

blocks reduces the overhead circuitry, thus leading to greater density and lower cost. The

current trend is �memory stick� made of flash memory that is used to Universal Serial Bus

(USB) of the personal computer for data exchange between computers.

RAM Memory Cell Organization

Figure below shows a cell diagram of basic RAM memory. A latch is formed by two inverters

connected as shown in the figure. Two transistors T1 and T2 are used for connecting the latch with

two bit lines. The purpose of these transistors is to act as switches that can be opened or closed under

the control of the word line, which is controlled by the address decoder. When the word line is at

0-level, the transistors are turned off and the latch retains its information. For example, the cell is at

state 1 if the logic value at point A is 1 and at point B is 0. This state is retained as long as the word

line is not activated.

A basic RAM cell

Read Operation: For the read operation, the word line is activated by the address input to the address

decoder. The activated word line closes both the transistors (switches) T1 and T2. Then the bit values

at points A and B can transmit to their respective bit lines. The sense/write circuit at the end of the bit

lines sends the output to the processor.

Write Operation: Similarly, for the write operation, the address provided to the decoder activates the

word line to close both the switches. Then the bit value that to be written into the cell is provided

through the sense/write circuit and the signals in bit lines are then stored into the cell.

SQP.8 Computer Organization

(b) See answer of question no. 8(c) of 2007 (CS-303)

Reduction of von Neumann bottleneck: This performance problem is reduced by using a special

type memory called cache memory between the CPU and main memory. The speed of cache

memory is almost same as the CPU, for which there is almost no waiting time of the CPU for

the required data-word to come. Another way to reduce the problem is by using special type

computers known as Reduced Instruction Set Computers (RISC). This class of computers gener-

ally uses a large number of registers, through which the most of the instructions are executed.

This computer usually limits access to main memory to a few load and store instructions. This

architecture is designed to reduce the impact of the bottleneck by reducing the total number of

the memory accesses made by the CPU and by increasing the number of register accesses.

(c) See answer of question no. 2 of 2007 (CS-404)

(d) Tertiary Memory: This memory is a third level of storage, apart from main memory and second-

ary memory. It is primarily used for extraordinarily large data storage. This memory is much

slower than the secondary memory and mainly used for storing rarely needed data. When this

data is needed by the system, it is copied to secondary memory before use. Typical examples of

this type memory include tape library and optical jukeboxes. In robotic mechanism, this memory

is mainly used.

8. (a) Draw the flowchart of Booth�s Multiplication Algorithm and explain it. Perform the Booth�s

Multiplication on (�9) * (�13) up to five digits. Show every step. 5 + 5

(b) Draw the flowchart of storing and re-storing Division Algorithm. 5

Answer

(a) For Booth�s Algorithm: See answer of question no. 8(a) of 2007 (CS-303)

Multiplication of numbers � 9) 10 and (�13) 10:

Multiplicand, M = � 9 = 10111 and multiplier, Q = � 13 = 10011.

M A Q Size

Initial

Configuration 10111 00000 10011 0 5

Step-1

As Q[0] = 1 and

Q[�1] = 0

A = A � M 10111 01001 10011 0 �

ARS(AQ) 10111 00100 11001 1 4

Step-2

As Q[0] = 1 and

Q[�1] = 1

ARS(AQ) 10111 00010 01100 1 3

Step-3

As Q[0] = 0 and

Q[�1] = 1

A = A + M 10111 11001 01100 1 �

ARS(AQ) 10111 11100 10110 0 2

Solved Question Paper 2009 (CS-404 (EI)) SQP.9

Step-4

As Q[0] = 0 and

Q[�1] = 0

ARS(AQ) 10111 11110 01011 0 1

Step-5

As Q[0] = 1 and

Q[�1] = 0

A = A � M 10111 00111 01011 0 �

ARS (AQ) 10111 00011 10101 1 0

Since the size register becomes 0, the algorithm is terminated and the product is = AQ = 00011

10101, which shows that the product is a positive number and the result is + 117 in decimal.

(b) See answer of question no. 11(b) of 2007 (CS-404)

9. (a) What will be the maximum capacity of a memory which uses an address bus of size 12 bit?

1

(b) What is an instruction format ? What is instruction cycle ? Draw the state transition diagram

of an instruction cycle. 2 + 1 + 3

(c) What is interrupt ? What is the difference between vectored & non-vectored interrupts?

1 + 2

(d) Why is DMA mode of data transfer used ? What are the different types of DMA controllers

and how do they differ in their functioning ? 2 + 3

Answer

(a) The maximum capacity of memory will be 212 words, i.e., 4096 words.

(b) Instruction Format: A computer usually has a variety of instruction formats. It is the task of the

control unit within CPU to interpret each instruction code and to provide the necessary control

functions needed to process the instruction. The most common format followed by instructions

is depicted in the figure.

Different fields of instructions

The bits of the instruction are divided into groups called fields. The commonly used fields found

in instruction formats are the following:

1. Operation Code (or, simply Op-code): This field states the operation to be performed. This

field defines various processor operations, such as add, subtract, complement, etc.

2. Address: An address field designates a memory address or a processor register or an oper-

and value.

3. Mode: This field specifies the method to get the operand or effective address of operand. In

some computers� instruction set, the op-code itself explicitly specifies the addressing mode

used in the instruction. A computer has various addressing modes.

For example, in the instruction ADD R1, R0; ADD is the op-code to indicate the addition

operation and R1, R0 are the address fields for operands.

SQP.10 Computer Organization

Instruction Cycle: The processing required for a single instruction is called instruction cycle.

The control unit�s task is to go through an instruction cycle (see figure) that can be divided into

five major phases:

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Fetch the operand(s) from memory or register.

4. Execute the whole instruction.

5. Store the output result to the memory or register.

Figure 6 Instruction cycle.

Solved Question Paper 2009 (CS-404 (EI)) SQP.11

The step 1 is basically performed using a special register in the CPU called program counter

(PC) that holds the address of the next instruction to be executed. If the current instruction is

simple arithmetic/logic or load/store type the PC is automatically incremented. Otherwise, PC is

loaded with the address dictated by the currently executing instruction. The decoding done in

step 2 determines the operation to be performed and the addressing mode of the instruction for

calculation of address of operands. After getting the information about the addresses of oper-

ands, the CPU fetches the operands in step 3 from memory or registers and stores them its

registers. In step 4, the ALU of processor executes the instruction on the stored operands in

registers. After the execution of instruction, in phase 5 the result is stored back in memory or

register and returns to step 1 to fetch the next instruction in sequence. All these sub-operations

are controlled and synchronized by the control unit.

(c) See answer of question no. 10(e) of 2009 (CS-303)

(d) A special controlling unit called DMA controller is provided to allow transfer a block of data

directly between a high speed external device like magnetic disk and the main memory, without

continuous intervention by the CPU. This method is called direct memory access (DMA).

DMA is useful, because it has following advantages:

(i) High-speed data transfer is possible, since CPU is not involved during actual transfer,

which occurs between I/O device and the main memory.

(ii) Parallel processing can be achieved between CPU processing and DMA controller�s I/O

operation.

DMA controllers are of two types:

� Independent DMA controller

� DMA controller having multiple DMA-channels

Independent DMA controller:

For each I/O device a separate DMA controller is used. Each DMA controller takes care of

supporting one of the I/O controllers. A set of registers to hold several DMA parameters is kept

in each DMA controller. Such arrangement is shown in figure below for floppy disk controller

(FDC) and hard disk controller (HDC). DMA controllers are controlled by the software.

SQP.12 Computer Organization

DMA controller having multiple DMA-channels:

In this type of DMA controller, only one DMA controller exists in the system, but this DMA

controller has multiple sections or channels each channel is for one I/O device. In this case, the

software deals each channel in the same way. Multiple DMA channels in a DMA controller work

in overlapped fashion, but not in fully parallel mode since they are embedded in a single DMA

controller. Such DMA controller design technique is adopted in most of the computer system and

is shown in figure below for floppy disk controller (FDC) and hard disk controller (HDC).

10. (a) What is hit ratio? What is the difference between associative and set-associative mappings?

1 + 2

(b) A hierarchical cache-main memory sub-system has the following specifications: Cache

access time : 50 ns, Main memory access time : 500 ns, 80% of memory request for read, hit

ratio : 0.9 for read access and write-through scheme is used.

(i) Calculate the average access time of the memory system considering only memory

read cycle.

(ii) Calculate the average access time of the memory system both for read and write. 2 + 2

(c) Briefly describe Flynn�s classification of parallel computers. 4

(d) Discuss about the different hazards in pipelining. 3

(e) What is array processor? 1

Answer

(a) Hit ratio: When the CPU refers to memory and finds the word in cache, it is said that a hit

occurred. If the word is not found in cache, then the CPU refers to the main memory for the

desired word and it is referred to as a miss to cache. The hit ratio (h) is defined below:

Hit ratio (h) =
number of hits

total CPU references to memory

=
number of hits

number of hits number of misses+

Solved Question Paper 2009 (CS-404 (EI)) SQP.13

Thus, the hit ratio is nothing but a probability of getting hits out of some number of memory

references made by CPU. So its range is 0 £ h £ 1.

Difference between associative and set-associative mappings: The associative cache memory

uses the fastest and most flexible mapping method, in which both address and data of the

memory word are stored. Whereas, in set-associative cache, two or more words can be stored

under the same index address, which is not stored in the memory. Each data word is stored

together with its tag. The number of tag-data words under an index is said to form a set. The set-

associative cache has higher hit ratio compared to associative cache. But, the set-associative

cache is the most expensive memory. The cost increases as set size increases.

(b) Given,

Cache access time tc = 50 ns

Main memory access time tm = 500 ns

Probability of read pr = 0.8

Hit ratio for read access hr = 0.9

Writing scheme: write-through.

(i) Considering only memory read cycle,

the average access time tav-r = hr * tc + (1 � hr) * (tc + tm)

= 0.9 * 50 + (1 � 0.9) * 550

= 100 ns

(ii) For both read and write cycles,

the average access time = pr * tav-r + (1 � pr) * tm. Since in write-through method,

access time for write cycle will be the main memory access time.

= 0.8 * 100 + (1 � 0.8) * 500

= 180 ns

(c) Flynn�s classification: Based on the number of simultaneous instruction and data streams used

by a CPU during program execution, digital computers can be classified into four categories as:

∑ Single instruction stream-single data stream (SISD) machine.

∑ Single instruction stream-multiple data stream (SIMD) machine.

∑ Multiple instruction stream-single data stream (MISD) machine.

∑ Multiple instruction stream-multiple data stream (MIMD) machine.

SISD Computer

Most serial computers available today fall in this organization as shown in figure next. Instructions

are executed sequentially but may be overlapped in their execution stages (In other words the

technique of pipelining can be used in the CPU). Modern day SISD uniprocessor systems are

mostly pipelined. Examples of SISD computers are IBM 360/91, CDC Star-100 and TI-ASC.

SQP.14 Computer Organization

SIMD Computer

Array processors fall into this class. As illustrated in figure next, there are multiple processing

elements supervised by the common control unit. All PEs (processing elements, which are

essentially ALUs) receive the same instruction broadcast from the control unit but operate on

different data sets from distinct data streams. The shared memory subsystem containing multiple

modules is very essential. This machine generally used to process vector type data. Examples of

SIMD computers includes Illiac-IV and BSP.

MISD Computer

Very few or no parallel computers fit in this organization, which is conceptually illustrated in

figure next. There are n processor elements, each receiving distinct instructions to execute on

the same data stream and its derivatives. The results (outputs) of one processor element become

the inputs (operands) of the next processor element in the series. This architecture is also known

as systolic arrays.

Captions: CU: control unit PE: processing element IS: instruction stream DS: data stream.

MISD computer (Systolic array)

Solved Question Paper 2009 (CS-404 (EI)) SQP.15

MIMD Computer

This category covers multiprocessor systems and multiple computer systems. The structure of

MIMD computer is shown in figure next. An MIMD computer is called tightly coupled (or

Uniform Memory Access (UMA)) if the degree of interactions among the processors is high.

Otherwise, we consider them loosely coupled (or Non-Uniform Memory Access (NUMA)). Most

commercial MIMD computers are loosely coupled. Examples of MIMD multiprocessors are

C.m*, C.mmp, Cray-3 and S-1.

(d) Pipeline hazards: Pipeline hazards are situations that prevent the next instruction in the instruc-

tion stream from executing during its designated clock cycle. The instruction is said to be

stalled. When an instruction is stalled, all instructions later in the pipeline than the stalled

instruction are also stalled. Instructions earlier than the stalled one can continue. No new

instructions are fetched during the stall.

Types of pipeline hazards are:

1. Control hazards

2. Structural hazards

3. Data hazards

Control hazards

They arise from the pipelining of branches and other instructions that change the content of

program counter (PC) register.

Solution of control hazards:

In order to cope with the adverse effects of branch instructions, an important technique called

prefetching is used. Prefetching technique states that: Instruction words ahead of the one cur-

rently being decoded in the instruction-decoding (ID) stage are fetched from the memory system

before the ID stage requests them.

Structural Hazards

Structural hazards occur when a certain resource (memory, functional unit) is requested by more

than one instruction at the same time.

Example: Instruction ADD R4, X fetches operand X from memory in the OF stage at 3rd clock

period. The memory doesn�t accept another access during that period. For this, (i+2)th instruc-

SQP.16 Computer Organization

tion cannot be initiated at 3rd clock period to fetch the instruction from memory. Thus, one clock

cycle is stalled in the pipeline for all subsequent instructions. This is illustrated next.

Solution of structural hazards:

Certain resources are duplicated in order to avoid structural hazards. Functional units (ALU, FP

unit) can be pipelined themselves in order to support several instructions at a time. A classical

way to avoid hazards at memory access is by providing separate data and instruction caches.

Data Hazards

Inter-instruction dependencies may arise to prevent the sequential (in-order) data flow in the

pipeline, when successive instructions overlap their fetch, decode and execution through a

pipeline processor. This situation due to inter-instruction dependencies is called data hazard.

Example: We have two instructions, I1 and I2. In a pipeline the execution of I2 can start before

I1 has terminated. If in a certain stage of the pipeline, I2 needs the result produced by I1, but this

result has not yet been generated, we have a data hazard.

According to various data update patterns in instruction pipeline, there are three classes of data

hazards exist:

- Write After Read (WAR) hazards

- Read After Write (RAW) hazards

- Write After Write (WAW) hazards

Solution of data hazards:

The system must resolve the interlock situation when a hazard is detected. Consider the se-

quence of instructions {�. I, I+1, �., J, J+1,�.}in which a hazard has been detected between

the current instruction J and a previous instruction I. This hazardous situation can be resolved in

one of the two following ways:

∑ One simple solution is to stall the pipeline and to ignore the execution of instructions J,

J+1,�., down the pipeline until the instruction I has passed the point of resource conflict.

∑ A more advanced approach is to ignore only instruction J and continue the flow of

instructions J+1, J+2,�, down the pipeline. However, the potential hazards due to the

suspension of J must be continuously tested as instructions J+1, J+2,� execute prior to J.

Thus, multilevel of hazard detection may be encountered, which requires much more

complex control policies to resolve such multilevel of hazards.

(e) An array processor is a synchronous array of parallel processors and consists of multiple pro-

cessing elements (PEs) (PEs are essentially ALUs) under the supervision of one control unit

(CU). An array processor can handle single instruction and multiple data (SIMD) streams.

Hence, array processors are also known as SIMD computers. SIMD machines are especially

designed to perform vector computations over large matrices or arrays of data.

Group-A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following : 10 ¥ 1 = 10

(i) A digital computer has a common bus system for 16 registers of 32-bits each. How many

MUX are needed and what will be the size of each MUX?

(a) 32, 16 (b) 16, 32 (c) 8, 16 (d) 16, 8

Answer

(a) 32, 16 ¥ 1

(ii) The basic principle of a Harvard computer is

(a) storing program and data in separate memory

(b) storing program and data in same memory

(c) using pipeline concept

(d) using a large number of registers

Answer

(a) storing program and data in separate memory

(iii) A digital computer has a memory unit of 32 k ¥ 12 and cache memory of 512 ¥ 12 words.

The cache uses direct mapping. How many bits are there in tag, index field?

(a) 6, 10 (b) 10, 6 (c) 9, 6 (d) 6, 9.

Answer

(d) 6, 9

(iv) A �hit� occurs

(a) when a word is found in virtual memory

(b) when a word is found in cache memory

2009
Computer Architecture

and Organization
(EC-503)

Time Alloted: 3 hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

SQP.2 Computer Organization

(c) when a word is not found in virtual memory

(d) when a word is not found in cache memory

Answer

(b) when word is found in cache memory

(v) Delayed branching is related to

(a) pipeline hazard (b) pipeline remedy (c) both (a) and (b) (d) none of these

Answer

(b) pipeline remedy

(vi) Normalized representation of 0.00101 ¥ 22 is

(a) 0.00101 ¥ 22 (b) 1.01 ¥ 22 (c) 1.01 ¥ 2�1 (d) none of these

Answer

(c) 1.01 ¥ 2-1

(vii) Principle of Locality justifies the use of

(a) DMA (b) cache memory (c) main memory (d) none of these

Answer

(b) Cache Memory

(viii) The first computer used to store a program is

(a) EDSAC (b) ENIAC (c) EDVAC (d) none of these

Answer

(b) ENIAC

(ix) Number of transistors in a CMOS static RAM cell is

(a) 1 (b) 4 (c) 6 (d) none of these

Answer

(c) 6

Group-B

(Short-Answer Type Questions)

Answer any three of the following. 3 ¥ 5 = 15

2. Draw the control circuit for the following RTL:

T1 : A ¨ B

T2 : A ¨ C 5

Answer

Here, we have two control functions, T1 and T2. The RTL:

T1 : A ¨ B

T2 : A ¨ C

means that A will be loaded with the content of register B if control function T1 is enabled,

otherwise A will be loaded with the content of register B if control function T2 is enabled. In

other words, we can say that T1 and T2 are complementary to each other. Thus, the given RTL

can be stated as �if (T1 = 1) then A ¨ B else A ¨ C�. Therefore, the circuit diagram for the

register transfer operations is as shown below.

Solved Question Paper 2009 (EC-503) SQP.3

Figure 1 Hardware implementation of RTL � T1 : A ¨ B T2 : A ¨ C�

3. With a diagram, distinguish between DRAM and SRAM. 5

Answer

Figure 2 A SRAM cell

Figure 3 A DRAM cell

SQP.4 Computer Organization

Differences between SRAM and DRAM:

1. The SRAM has lower access time, which means it is faster compared to the DRAM.

2. The SRAM requires constant power supply, which means this type of memory consumes

more power; whereas, the DRAM offers reduced power consumption, due to the fact that

the information is stored in the capacitor.

3. Due to the relatively small internal circuitry in the one-bit memory cell of DRAMs, the

large storage capacity in a single DRAM memory chip is available compared to the same

physical size SRAM memory chip. In other words, DRAM has high packaging density

compared to the SRAM.

4. SRAM is costlier than DRAM.

4. (a) Write key features of von Neumann architecture of a computer and mention the bottlenecks.

(b) How does Harvard architecture differ from von Neumann architecture? 2 + 1 + 2

Answer

(a) See answer of question no. 8(c) of 2007 (CS-303).

(b) See answer of question no. 2(b) of 2008 (CS-404(EI).

5. (a) What is cache mapping? Explain the difference between full associative and direct cache

mapping.

(b) What are �write through� and �write back� policies in cache? 1 + 2 + 2

Answer

(a) The transfer of data as a block from main memory to cache memory is referred to as a

cache mapping process. Three types of cache mapping have been used:

1. Associative mapping.

2. Direct mapping.

3. Set-associative mapping.

For second part: See answer of question number 3(a) of 2007 (CS-303).

(b) See answer of question number 3(b) of 2007 (CS-303).

6. What are the different types of interrupts? Give an example. What is programmed I/O technique?

 5

Answer

There are basically three types of interrupts: external, internal or trap and software interrupts.

External interrupt These are initiated through the processors� interrupt pins by external devices.

Examples include interrupts by input-output devices and console switches. External interrupts

can be divided into two types�maskable and non-maskable.

Maskable interrupt The user program can enable or disable all or a few device interrupts by

executing instructions EI or DI.

Non-maskable interrupt The user program cannot disable it by any instruction. Some common

examples are: hardware error and power fail interrupt. This type of interrupt has higher priority

than maskable interrupts.

Internal interrupt This type of interrupts are activated internally by exceptional conditions.

The interrupts caused due to overflow, division by zero and execution of an illegal op-code are

common examples of this category.

Solved Question Paper 2009 (EC-503) SQP.5

Software interrupt A software interrupt is initiated by executing an instruction like INT n in a

program, where n refers to the starting address of a procedure in program. This type of interrupts

is used to call the operating system. The software interrupt instructions allow to switching from

user to supervisor mode.

Programmed I/O

This is the software method where the CPU is needed all the times during data transfer between

any two devices. Programmed I/O operations are the result of I/O instructions written in the

computer program or I/O routine. Each data item transfer is initiated by an instruction in the

program or I/O routine. Generally, the transfer is to and from a CPU register and peripheral.

Transferring data under program control requires constant monitoring of the peripheral by the

CPU. Once a data transfer is initiated, the CPU is required to monitor the interface to see when

a transfer can again be made. In other words, the CPU polls the devices for next data transfer.

This is why the programmed I/O is sometimes called polled I/O. Through the mid-1990s,

programmed I/O was the only way that most systems ever accessed IDE/ATA hard disks.

Group-C

(Long-Answer Type Questions)

Answer any three of the following. 3 ¥ 15 = 45

7. (a) Using Booth�s algorithm multiply (�9) and (�3), when numbers are represented in 2�s

complement form. 9

(b) Show how the non-restoring method is deduced from restoring division method. 4

(c) Write down the steps of the algorithm of addition or subtraction of two floating point

numbers. 2

Answer

(a) Multiplicand, M = �9 = 10111 and multiplier, Q = �3 = 11101.

M A Q Size

Initial

Configuration 10111 00000 111010 5

Step-1

As Q[0]=1 and

Q[�1]=0

A = A � M 10111 01001 111010 �

ARS(AQ) 10111 00100 111101 4

Step-2

As Q[0]=0 and

Q[�1]=1

A = A + M 10111 11011 111101 �

ARS(AQ) 10111 11101 111110 3

Step-3

As Q[0]=1 and

Q[�1]=0

SQP.6 Computer Organization

A = A � M 10111 00110 111110 �

ARS(AQ) 10111 00011 011111 2

Step-4

As Q[0]=1 and

Q[�1]=1

ARS(AQ) 10111 00001 101111 1

Step-5

As Q[0] = 1 and

Q[�1] = 1

ARS (AQ) 10111 00000 110111 0

Since the size register becomes 0, the algorithm is terminated and the product is = AQ = 00000

11011, which shows that the product is a positive number and the result is + 27 in decimal.

(b) In the restoring method, some extra additions are required to restore the number, when A

is negative. Proper restructuring of the restoring division algorithm can eliminate that

restoration step. This is known as the non-restoring division algorithm.

The three main steps in restoring division method are:

1. Shift AQ register pair to the left one position.

2. A = A � M.

3. If the sign of A is positive after the step 2, set Q[0] = 1; otherwise, set Q[0] = 0 and

restore A.

Now, assume that the step 3 is performed first and then step 1 followed by step 2. Under

this condition, the following two cases may arise.

Case 1: When A is positive:

Note that shifting A register to the left one position is equivalent to the computation of 2A

and then subtraction. This gives the net effect on A as 2A - M.

Case 2: When A is negative:

First restore A by adding the content of M register and then shift A to the left one position.

After that A will be subtracted from M register. So, all together they give rise the value of

A as 2(A + M) � M = 2A + M.

Basis on these two observations, we design the non-restoring division method, where

the restoration step is eliminated.

(c) The rule for the addition/subtraction operation is summarized below:

Steps:

i. Choose the number with the smaller exponent and shift its mantissa right a number of

positions equal to the difference in exponents.

ii. Set the exponent of the result equal to the larger exponent.

iii. Perform addition/subtraction on the mantissas and determine the sign of the result.

iv. Normalize the result, if necessary.

8. (a) Define MIMD type parallel processing. Define speed-up of a parallel processing system.

2 + 2

Solved Question Paper 2009 (EC-503) SQP.7

(b) Show that when K jobs are processed over an N stage pipeline, the speed-up obtained is

Sp = (NK) / (N + K � 1) 6

(c) With the help of a neat diagram show the structure of a typical arithmetic pipeline performing

A * B + C. 5

Answer

(a) MIMD type parallel processing This type processing based on the MIMD (Multiple

Instruction Stream Multiple Data Stream) computers as defined by M. J. Flynn.

This category computers cover multiprocessor systems and multiple computer systems

(see figure below). An MIMD computer is called tightly coupled (or Uniform Memory

Access (UMA) if the degree of interactions among the processors is high. Otherwise, we

consider them loosely coupled (or Non-Uniform Memory Access (NUMA). Most commercial

MIMD computers are loosely coupled.

Figure 4 MIMD computer

Speed-up S(n) of a parallel processing system is defined as the ratio of total execution time

T(1) on serial processing system to the corresponding execution time T(n) on a processing

system whose degree of parallelism is n.

Thus, S(n) =
T(1)

T(n)

(b) Speed-up is defined as

Sp =
Time to execute K tasks in N-stage non-pipeline processor

Time to execute K tasks in N-stage pipeline processor

Time to execute K tasks in N-stage pipeline processor is t[N + (K�1)] units, where N

clock periods (cycles) are needed to complete the execution of the first task and remaining

(K�1) tasks require (K�1) cycles. Time to execute K tasks in N-stage non-pipeline processor

is K.N.t, where each task requires N cycles because no new task can enter the pipeline

until the previous task finishes. The clock period of the pipeline processor is t.

Thus Sp =
K N NK

[N (K 1)] N (K 1)

× × t
=

t + - + -

SQP.8 Computer Organization

(c) The sub-operations to be performed for arithmetic expression A * B + C in each stage of

the pipeline are as follows:

Sub-operation-1: R1 ¨ A, R2 ¨ B Input A and B

Sub-operation-2: R3 ¨ R1 * R2, R4 ¨ C Multiply and input C

Sub-operation-3: R5 ¨ R3 + R4 Add C to product

Five registers are loaded with new data in every clock period. The corresponding pipeline is

shown below.

Pipeline processing for A * B + C

9. (a) Discuss the principle of carry look ahead adder and design a 4-bit CLA adder and estimate

the speed enhancement with respect to ripple carry adder.

(b) Briefly state the relative advantages and disadvantages of parallel adder over serial adder.

(c) X = (A + B) ¥ C

Write down the zero address, one address and three addresses instruction for the expression.

(4 + 3) + 2 + 6

Answer

(a) See answer of question no. 9(a) of 2007 (CS-404).

(b) See answer of question no. 9(b) of 2007 (CS-404).

(c) See answer of question no. 9(c) of 2007 (CS-404).

10. (a) Why DMA based I/O is better than other I/O techniques? 3

(b) Differentiate between isolated I/O and memory mapped I/O. 3

(c) Explain DMA based data transfer operation between memory and other peripherals. 6

(d) What is the difference between vectored and non-vectored interrupt? 3

Answer

(a) A special controlling unit called DMA controller is provided to allow transfer a block of data

directly between a high-speed external device like magnetic disk and the main memory, without

continuous intervention by the CPU. This method is called direct memory access (DMA).

Solved Question Paper 2009 (EC-503) SQP.9

DMA is useful and better than other I/O techniques, because it has following advantages:

1. High speed data transfer is possible, since CPU is not involved during actual transfer,

which occurs between I/O device and the main memory.

2. Parallel processing can be achieved between CPU processing and DMA controller�s I/

O operation.

In DMA transfer, I/O devices can directly access the main memory without intervention by

the processor.

(b) 1. In the isolated (I/O mapped) I/O, computers use one common address bus and data bus

to transfer information between memory or I/O and the CPU; but use separate read-

write control lines one for memory and another for I/O. Whereas, in memory mapped I/

O, computers use only one set of read and write lines along with same set of address

and data buses for both memory and I/O devices.

2. The isolated I/O technique isolates all I/O interface addresses from the addresses

assigned to memory. Whereas, the memory mapped I/O does not distinguish between

memory and I/O addresses.

3. Processors use different instructions for accessing memory and I/O devices in isolated

I/O. In memory mapped I/O, processors use same set of instructions for accessing

memory and I/O.

4. Thus, the hardware cost is more in isolated I/O relative to the memory mapped I/O,

because two separate read-write lines are required in first technique.

(c) See answer of question no. 9(a) of 2007 (CS-303).

(d) Interrupt is a special signal to the CPU generated by an external device that causes the

CPU to suspend the execution of one program and start the execution of another.

In a vectored interrupt, the source that interrupts supplies the branch information (starting

address of ISR) to the CPU. This information is called the interrupt vector, which is not

any fixed memory location. The processor identifies individual devices even if they share

a single interrupt-request line. So the set-up time is very less.

In a non-vectored interrupt, the branch address (starting address of ISR) is assigned to a

fixed location in memory. Since the identities of requesting devices are not known initially,

the set-up time is quite large.

11. Write short notes any three of the following: 3 ¥ 5

(a) Magnetic recording

(b) Adder-subtractor circuit

(c) Stack organization

(d) Bus organization using tri-state buffer

(e) DMA

(f) Addressing modes.

Answer

(a) See answer of question number 10(a) of 2007 (CS-303).

(b) See answer of question number 10(b) of 2007 (CS-303).

(c) See answer of question number 10(d) of 2007 (CS-303).

(d) See answer of question number 10(e) of 2007 (CS-303).

SQP.10 Computer Organization

(e) DMA processing: To transfer large blocks of data at high speed, this third method is used.

A special controlling unit may be provided to allow transfer a block of data directly

between a high speed external device like magnetic disk and the main memory, without

continuous intervention by the CPU. This method is called direct memory access (DMA).

DMA transfers are performed by a control circuit that is part of the I/O device interface.

We refer to this circuit as a DMA controller. The DMA controller performs the functions

that would normally be carried out by the CPU when accessing the main memory. During

DMA transfer, the CPU is idle or can be utilized to execute another program and CPU has

no control of the memory buses. A DMA controller takes over the buses to manage the

transfer directly between the I/O device and the main memory.

The CPU can be placed in an idle state using two special control signals, HOLD and

HLDA (hold acknowledge). Figure below shows two control signals in the CPU that

characterize the DMA transfer. The HOLD input is used by the DMA controller to request

the CPU to release control of buses. When this input is active, the CPU suspends the

execution of the current instruction and places the address bus, the data bus and the read/

write line into a high-impedance state. The high-impedance state behaves like an open

circuit, which means that the output line is disconnected from the input line and does not

have any logic significance. The CPU activates the HLDA output to inform the external

DMA controller that the buses are in the high-impedance state. The control of the buses

has been taken by the DMA controller that generated the bus request to conduct memory

transfers without processor intervention. After the transfer of data, the DMA controller

disables the HOLD line. The CPU then disables the HLDA line and regains the control of

the buses and returns to its normal operation.

To communicate with the CPU and I/O device the DMA controller needs the usual

circuits of an interface. In addition to that, it needs an address register, a word count

register, a status register and a set of address lines. Three registers are selected by the

controller�s register select (RS) line. The address register and address lines are used for

direct communication with the memory. The address register is used to store the starting

address of the data block to be transferred. The word count register contains the number of

words that must be transferred. This register is decremented by one after each word

transfer and internally tested for zero after each transfer. Between the device and memory

under control of the DMA, the data transfer can be done directly. The status register

contains information such as completion of DMA transfer. All registers in the DMA

controller appear to the CPU as I/O interface registers. Thus, the CPU can read from or

write into the DMA registers under program control via the data bus.

Solved Question Paper 2009 (EC-503) SQP.11

When executing the program for I/O transfer, the CPU first initializes the DMA

controller. After that, the DMA controller starts and continues to transfer data between

memory and peripheral unit until an entire block is transferred. The DMA controller is

initialized by the CPU by sending the following information through the data bus:

1. The starting address of the memory blocks where data are available for read or where

data are to be stored for write.

2. The number of words in the memory block (word count) to be read or written.

3. Read or write control to specify the mode of transfer.

4. A control to start the DMA transfer.

(f) See answer of question number 10(c) of 2007 (CS-303).

Group-A

(Multiple Choice Type Questions)

1. Choose the correct alternatives of the following: 10 ¥ 1 = 10

(i) When signed numbers are used in binary arithmetic, then which one of the following

notations would have unique representation for zero?

(a) Magnitude (b) 1�s complement (c) 2�s complement (d) None of these

Answer

(c) 2�s complement

(ii) Maximum n bit 2�s complement number is

(a) 2n (b) 2n � 1 (c) 2n�1 � 1 (d) cannot be said

Answer

(c) 2n�1 � 1

(iii) For BIOS (Basic Input/Output System) and IOCS (Input/Output Control System), which

one of the following is true?

(a) BIOS and IOCS are same.

(b) BIOS controls all devices and IOCS controls only certain devices.

(c) BIOS is not a part of the operating system and IOCS is a part of the operating system.

(d) BIOS is stored in ROM and IOCS is stored in RAM.

Answer

(c) BIOS is not a part of the operating system and IOCS is a part of the operating system.

(iv) Which logic gate has the highest speed ?

(a) ECL (b) TTL (c) RTL (d) DTL

2009
Computer Organization

(CS-303)
Time Alloted: 3 hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

SQP.2 Computer Organization

Answer

(a) ECL

(v) Booth�s algorithm for computer arithmetic is used for

(a) multiplication of numbers in sign magnitude form

(b) multiplication of numbers in 2�s complement form

(c) division of numbers in sign magnitude form

(d) division of numbers in 2�s complement form

Answer

(b) multiplication of numbers in 2�s complement form

(vi) How many RAM chips of size (256 K ¥ 1 bit) are required to build 1 M byte memory?

(a) 32 (b) 10 (c) 8 (d) 24

Answer

(a) 32

(vii) The conversion (FAFAFB)16 into octal form is

(a) 76767676 (b) 76575372 (c) 76737672 (d) none of these

Answer

(d) none of these

(viii) A decimal number has 30 digits. Approximately, haw many would the binary representation

have?

(a) 30 (b) 32 (c) 60 (d) 90

Answer

(d) 90

(ix) The logic circuit in the ALU is

(a) entirely combinational (b) entirely sequential

(c) combinational cum sequential (d) none of these

Answer

(a) entirely combinational

(x) State True or False:

Adding 0110 11012 to 1010 00102 in 8-bit 2�s complement binary will cause an overflow

(a) True (b) False

Answer

(a) True

Group-B

(Short-Answer Type Questions)

Answer any three of the following. 3 ¥ 5 = 15

2. (a) Briefly explain IEEE 754 standard format for floating point representation in single precision.

(b) Write +710 in IEEE 754 floating point representation in double precision. 3 + 2

Answer

Solved Question Paper 2009 (CS-303) SQP.3

(a) IEEE 754 Single precision format It is 32-bit format, in which 8-bit is for exponent, 23-bit

for mantissa, 1-bit for sign of the number, as shown in figure below. Here, the implied

base 2 and original signed exponent E are not stored in register. The value actually stored

in the exponent field is an unsigned integer E¢ called biased exponent, which is calculated

by the relation E¢ = E + 127. This is referred to as the excess-127 format. Thus, E¢ is in the

range 0 £ E¢ £ 255. The end values of this range, 0 and 255, are used to represent special

values. Therefore, the range of E¢ is 1 £ E¢ £ 254, for normal values. This means that the

actual exponent (E) is in the range -126 £ E £ 127.

(b) See answer of question no. 3(a) of 2008 (CS-404(EI)).

3. What is interrupt ? What are the differences between vectored and non-vectored interrupts?

1 + 4

Answer

Interrupt is a special signal to the CPU generated by an external device that causes the CPU to

suspend the execution of one program and start the execution of another.

In a vectored interrupt, the source that interrupts supplies the branch information (starting

address of ISR) to the CPU. This information is called the interrupt vector, which is not any

fixed memory location. The processor identifies individual devices even if they share a single

interrupt-request line. So the set-up time is very less.

In a non-vectored interrupt, the branch address (starting address of ISR) is assigned to a fixed

location in memory. Since the identities of requesting devices are not known initially, the set-up

time is quite large.

4. (a) Where does DMA mode of data transfer find its use?

(b) What are the different types of DMA controllers and how do they differ in their functioning?

2 + 3

Answer

(a) To transfer large blocks of data at high speed, the DMA method is used. A special controlling

unit is provided to allow transfer a block of data directly between a high speed external

device like magnetic disk and the main memory, without continuous intervention by the CPU.

(b) DMA controllers are of two types:

� Independent DMA controller

� DMA controller having multiple DMA-channels

SQP.4 Computer Organization

Independent DMA controller:

For each I/O device a separate DMA controller is used. Each DMA controller takes care of

supporting one of the I/O controllers. A set of registers to hold several DMA parameters is kept

in each DMA controller. Such arrangement is shown in figure below for floppy disk controller

(FDC) and hard disk controller (HDC). DMA controllers are controlled by the software.

DMA controller having multiple DMA-channels:

In this type of DMA controller, only one DMA controller exists in the system, but this DMA

controller has multiple sections or channels each channel is for one I/O device. In this case, the

software deals each channel in the same way. Multiple DMA channels in a DMA controller work

in overlapped fashion, but not in fully parallel mode since they are embedded in a single DMA

controller. Such DMA controller design technique is adopted in most of the computer system and

is shown in figure below for floppy disk controller (FDC) and hard disk controller (HDC).

Solved Question Paper 2009 (CS-303) SQP.5

5. Explain the difference between full associative and direct mapped cache mapping approaches.

Answer

See answer of question no. 3(a) of 2007 (CS-303).

6. Compare and contrast RISC and CISC architecture.

Answer

See answer of question no. 6 of 2007 (CS-404).

Group-C

(Long-Answer Type Questions)

Answer any three of the following. 3 ¥ 15 = 45

7. (a) Give the Booth�s algorithm for multiplication of signed 2�s complement numbers in

flowchart and explain.

(b) Multiply �5 and �3 using Booth�s algorithm.

(c) What is von Neumann architecture? What is von Neumann bottleneck?

(d) What is the necessity of guard bits? 5 + 4 + 4 + 2

Answer

(a) See answer of question no. 8(a) of 2007 (CS-303).

(b) See answer of question no. 8(b) of 2007 (CS-303).

(c) See answer of question no. 8(c) of 2007 (CS-303).

(d) See answer of question no. 7(d) of 2008 (CS-303).

8. (a) Define �latency time� of a memory.

(b) Can a ROM be also a RAM? Justify your answer.

(c) Explain the memory hierarchy pyramid, also explain the relationship of cost, speed and

capacity.

(d) A hierarchical cache-main memory subsystem has the following specification :

(i) Cache access time of 160 ns

(ii) Main memory access time 960 ns

(iii) Hit ratio of cache memory is 0.9

Calculate the following:

(a) Average access time of the memory system

(b) Efficiency of the memory system 1 + 3 + 5 + (3 + 3)

Answer

(a) The latency time is measured in terms of two parameters: access time, tA and cycle

time, tC. Some times, latency is measured in terms of access time and some times in

terms of cycle time. To perform a read operation, first the address of the location is

sent to memory followed by the 'read' control signal. The memory decodes the address,

selects the location and reads out the contents of the location. The access time is the

time taken by the memory to complete a read operation from the moment of receiving

the 'read' control signal. Generally, access time for read and write is equal. Suppose

two successive memory read operations have to be performed. During the first read

operation, the information read from memory is available after the access time. This

SQP.6 Computer Organization

data can be immediately used by CPU. However, the memory is still busy with some

internal operation for some more time called recovery time, tR. During this time,

another memory access, read or write cannot be initiated. Only after the recovery time,

next operation can be started. The cycle time is the total time including access time

and recovery time: tC = tA + tR. This recovery time varies with memory technology.

(b) Yes. The ROM is also random access memory. In random mode of access, any

location of the memory can be accessed randomly.

Also, ROM memories are available in variety of modes, such as PROM, EPROM, and

EEPROM, in which both read and write operations can be performed.

(c) The total memory capacity of a computer can be considered as being a hierarchy of

components. The memory hierarchy system consists of all storage devices used in a

computer system and are broadly divided into following four groups, shown in figure

below.

∑ Secondary (auxiliary) memory

∑ Main (primary) memory

∑ Cache memory

∑ Internal memory

Memory hierarchy

Secondary Memory: The slow-speed and low-cost devices that provide backup storage are

called secondary memory. The most commonly used secondary memories are magnetic

disks, such as hard disk, floppy disk and magnetic tapes. This type of memory is used for

storing all programs and data, as this is used in bulk size. When a program not residing in

main memory is needed to execute, it is transferred from secondary memory to main

memory. Programs not currently needed in main memory (in other words, the programs

are not currently executed by the processor) are transferred into secondary memory to

provide space for currently used programs and data.

Main Memory: This is the memory that communicates directly with CPU. Only programs

and data currently needed by the CPU for execution reside in the main memory. Main

memory occupies central position in hierarchy by being able to communicate directly with

CPU and with secondary memory devices through an I/O processor.

Solved Question Paper 2009 (CS-303) SQP.7

Cache Memory: This is a special high-speed main memory, sometimes used to increase

the speed of processing by making the current programs and data available to the CPU at a

rapid rate. Generally, the CPU is faster than main memory, thus resulting that processing

speed is limited mainly by the speed of main memory. So, a technique used to compensate

the speed mismatch between CPU and main memory is to use an extremely fast, small

cache between CPU and main memory, whose access time is close to CPU cycle time. The

cache is used for storing portions of programs currently being executed in the CPU and

temporary data frequently needed in the present computations. Thus, the cache memory

acts as a buffer between the CPU and main memory. By making programs and data

available at a rapid rate, it is possible to increase the performance of computer.

Internal memory: This memory refers to the high-speed registers used inside the CPU.

These registers hold temporary results when a computation is in progress. There is no

speed disparity between these registers and the CPU because they are fabricated with the

same technology. However, since registers are very expensive, only a few registers are

used as internal memory.

(d) Given,

Cache access time, tc = 160 ns

Main memory access time, tm = 960 ns

Hit ratio, h = 0.9

(i) Now we have,

Average access time of the memory system, tav = htc + (1 � h)(tc + tm)

= 0.9 ¥ 160 + 0.1 ¥ (160 + 960)

= 256 ns

(ii) Efficiency of the memory system = (tc / tav) ¥ 100 %

= (160/ 256) ¥ 100 %

= 62.5 %

9. (a) What is locality of reference? Explain the concept of cache memory with it.

(b) Briefly explain write-through and write-back policies.

(c) State L1 and L2 cache policies with suitable figure.

(d) Discuss the role of OS.

(e) How many 256 ¥ 4 RAM chips are needed to provide a memory capacity of 2048 bytes?

Show also the corresponding interconnection diagram. 2 + 2 + 2 + 2 + 7

Answer

(a) Analysis of a large number of typical programs shows that the CPU references to main

memory during some time period tend to be confined within a few localized areas in

memory. In other words, few instructions in the localized areas in memory are executed

repeatedly for some time duration and other instructions are accessed infrequently. This

phenomenon is known as the property of locality of reference.

Consider that when a program loop is executed, the CPU repeatedly refers to the set of

instructions in memory that constitutes the loop. Thus loop tends to localize the references to

memory for fetching the instructions. If this program loop is placed in fast cache memory, the

average memory access time can be reduced, thus reducing the total execution time of the

program. Because we know that the cache memory�s speed is almost same as that of CPU.

SQP.8 Computer Organization

(b) Write-Through Policy: This is the simplest and most commonly used procedure to update

the cache. In this technique, when the cache memory is updated, at the same time the main

memory is also updated.

Advantage: The main memory always contains the same data as the cache.

Disadvantage: It is a slow process, since each time main memory needs to be accessed.

Write-Back Policy: In this method, during a write operation only the cache location is

updated. When the update occurs, the location is marked by a flag called modified or dirty

bit. When the word is replaced from cache, it is written into main memory if its flag bit is

set. The philosophy of this method is based on the fact that during a write operation, the

word residing in cache may be accessed several times (temporal locality of reference).

Advantage: The method is faster than write-through, because this method reduces the

number of references to main memory.

Disadvantage: This method may encounter the problem of inconsistency due to two different

copies of the same data, one in cache and other in main memory.

(c) Cache memory has been used in two or even three levels in modern-day computers. For

two level cache organization, level 1, simply L1 is used as on-chip cache and level 2,

simply L2 is used as off-chip cache. This is shown in following figure. Obviously, L1

cache access is faster than L2, but capacity of L2 is more than that of L1. Since L1 is

embedded in the processor, processor first accesses L1 then L2 in case of miss on L1.

(d) See answer of question no. 7(b) of 2009 (CS-404).

(e) See answer of question no. 10(c) of 2007 (CS-404).

10. (a) A 32-bit floating-point binary number has a bit plus a sign for the exponent. The mantissa

is assumed to be a normalized fraction. Numbers in the mantissa and exponent are in

signed-magnitude representation. What are the largest and smallest positive quantities that

can be represented, excluding zero ? Explain with example.

(b) Explain with diagrams, Serial and Parallel Adders.

(c) ADD A + B, where A = 63.11236589 ¥ 1015 and B = 0.002365991 ¥ 10�29.

4 + 4 + 4 + 3

Answer

(a) As some information are missing in the problem, we assume that the format of the 32-bit

floating-point representation as

Solved Question Paper 2009 (CS-303) SQP.9

The maximum value of the number which can be stored is shown in the figure below:

Therefore, the maximum value = (1 � 2�23) ¥ 2127

ª 2127

The minimum value of the number which can be stored is shown in the figure below:

Therefore, the minimum value = (2�1) ¥ 2�127

ª 2128

(a) A binary adder is a digital circuit that generates the arithmetic sum of two binary numbers

of any lengths. The binary adder is basically constructed with full adders. Binary adders

are of two types:

1. Serial Adder

2. Parallel Adder.

Serial Adder: A serial adder is an adder, which performs the addition of two binary

numbers serially bit by bit starting with lsb. Addition of one bit position takes one clock

cycle. The circuit for this adder is shown in figure below. The operands are provided bit

by bit starting with lsbs. Thus, for an n-bit serial adder, n clock cycles are needed to

complete the n-bit numbers� addition. At each cycle, the carry produced by a bit position

should be stored in a D-flip-flop and it is given as input during the next cycle through

carry-in. Therefore, serial adder is a sequential circuit.

SQP.10 Computer Organization

Figure A Serial Adder

Advantage: The serial adder circuit is small and hence, it is very inexpensive irrespective

of the number of bits to be added.

Disadvantage: The serial is very slow since it takes n clock cycles for addition of n-bit

numbers.

Parallel Adder: A parallel adder is an adder, which adds all bits of two numbers in one

clock cycle. It has separate adder circuit for each bit. Therefore, to add two n-bit numbers,

parallel adder needs n separate adder circuits.

For addition of two n-bit numbers, n full adders (FAs) are required. Each full adder�s carry

output will be the input of the next higher bit full adder. Each full adder performs addition

for same position bits of two numbers. An n-bit adder circuit is shown in the figure below.

Figure An n-bit Parallel Adder

The addition time is decided by the delay introduced by the carry. In worst case, the carry

from the first full adder stage has to propagate through all the full adder stages. This is

why this type adder is called Carry-Propagate Adder (CPA). Therefore, the maximum

propagation delay for n-bit adder is D x n, where D is the time delay for each full adder

stage and n is the number of bits in each operand.

There are basically two types of parallel adders, depending on the way of carry generation.

(a) Carry-Propagate Adder (CPA) or Ripple Carry Adder (RCA)

(b) Carry Look-ahead Adder (CLA).

Advantage: This adder, being a combinational circuit, is faster than serial adder. In one

clock period all bits of two numbers are added.

Disadvantages:

(a) The addition delay becomes large, if the size of numbers to be added is increased.

Solved Question Paper 2009 (CS-303) SQP.11

(b) The hardware cost is more than that of serial adder. Because, number of full adders

needed is equal to the number of bits in operands.

(c) A = 63.11236589 ¥ 1015 and B = 0.002365991 ¥ 10�29

We have to perform A + B.

The rule for the ADD operation of two floating-point numbers is summarized below:

Steps

1. Choose the number with the smaller exponent and shift its mantissa right a number of

positions equal to the difference in exponents.

2. Set the exponent of the result equal to the larger exponent.

3. Perform addition on the mantissas and determine the sign of the result.

4. Normalize the result, if necessary.

Therefore, the mantissa 0.002365991 is to be shifted right 44 positions (by step-1).

So, the modified mantissa is:

0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 002365991

Now, we have to add this shifted mantissa with the mantissa in no. A (by step -3).

Therefore, we get the resultant mantissa as

63.1123 6589 0000 0000 0000 0000 0000 0000 0000 0000 0000 002365991

As this number is normalized one, we get the final result as

63.1123 6589 0000 0000 0000 0000 0000 0000 0000 0000 0000 002365991 x 1015

11. Write short notes on any three of the following: 3 ¥ 5

(a) Pipeline hazards

(b) Adder�subtractor circuit

(c) Data flow architecture

(d) Bus organization using tri-state buffer

(e) Virtual address to real address mapping.

Answer

(a) Pipeline hazards: Pipeline hazards are situations that prevent the next instruction in the

instruction stream from executing during its designated clock cycle. The instruction is said

to be stalled. When an instruction is stalled, all instructions later in the pipeline than the

stalled instruction are also stalled. Instructions earlier than the stalled one can continue.

No new instructions are fetched during the stall.

Types of pipeline hazards are:

1. Control hazards

2. Structural hazards

3. Data hazards

Control hazards:

They arise from the pipelining of branches and other instructions that change the content of

program counter (PC) register.

Solution of control hazards:

In order to cope with the adverse effects of branch instructions, an important technique called

prefetching is used. Prefetching technique states that: Instruction words ahead of the one currently

being decoded in the instruction-decoding (ID) stage are fetched from the memory system

before the ID stage requests them.

SQP.12 Computer Organization

Structural hazards

Structural hazards occur when a certain resource (memory, functional unit) is requested by more

than one instruction at the same time.

Example: Instruction ADD R4, X fetches operand X from memory in the OF stage at 3rd clock

period. The memory doesn�t accept another access during that period. For this, (i+2)th instruction

cannot be initiated at 3rd clock period to fetch the instruction from memory. Thus, one clock

cycle is stalled in the pipeline for all subsequent instructions. This is illustrated next.

Clock cycles Æ 1 2 3 4 5 6 7 8 9 10 11 12 13

ADD R4,X IF ID OF EX WB

Instr. i+1 IF ID OF EX WB

Instr. i+2 stall IF ID OF EX WB

Instr. i+3 IF ID OF EX WB

Penalty: 1 cycle.

Structural hazard in instruction pipeline

Solution of structural hazards:

Certain resources are duplicated in order to avoid structural hazards. Functional units (ALU, FP

unit) can be pipelined themselves in order to support several instructions at a time. A classical

way to avoid hazards at memory access is by providing separate data and instruction caches.

Data hazards

Inter-instruction dependencies may arise to prevent the sequential (in-order) data flow in the

pipeline, when successive instructions overlap their fetch, decode and execution through a

pipeline processor. This situation due to inter-instruction dependencies is called data hazard.

Example: We have two instructions, I1 and I2. In a pipeline the execution of I2 can start before

I1 has terminated. If in a certain stage of the pipeline, I2 needs the result produced by I1, but this

result has not yet been generated, we have a data hazard.

According to various data update patterns in instruction pipeline, there are three classes of data

hazards exist:

� Write After Read (WAR) hazards

� Read After Write (RAW) hazards

� Write After Write (WAW) hazards

Solution of data hazards:

The system must resolve the interlock situation when a hazard is detected. Consider the sequence

of instructions {� I, I + 1, �, J, J + 1, �} in which a hazard has been detected between the

current instruction J and a previous instruction I. This hazardous situation can be resolved in

one of the two following ways:

� One simple solution is to stall the pipeline and to ignore the execution of instructions J,

J + 1, �, down the pipeline until the instruction I has passed the point of resource conflict.

� A more advanced approach is to ignore only instruction J and continue the flow of instructions

J+1, J+2,�, down the pipeline. However, the potential hazards due to the suspension of J

must be continuously tested as instructions J+1, J+2,� execute prior to J. Thus, multilevel

Solved Question Paper 2009 (CS-303) SQP.13

of hazard detection may be encountered, which requires much more complex control policies

to resolve such multilevel of hazards.

(b) See answer of question no. 10(b) of 2007 (CS-303).

(c) Data flow architecture:

Data flow computers are based on the concept of data-driven computation, which is drastically

different from the operation of a conventional von Neumann machine. The fundamental

difference is that instruction execution in a conventional computer is under program-flow

control, whereas that in a data flow computer is driven by the data (operand) availability.

Jack Dennis (1974) of MIT has identified three basic issues towards development of an

ideal architecture for future computers. The first is to achieve a high performance/cost

ratio; the second is to match the ratio with technological progress; and the third is to offer

better programmability in application areas. The data flow model offers an approach to

meet these demands. The recent progress in the VLSI microelectronic area has provided

the technological basis for developing data flow computers.

The concept of data flow computing is illustrated by the control of computation sequences

for the statement a = (b + 1) * (b � c) in the following figure. In a data flow computing

environment, instructions are activated by the availability of data tokens as indicated by

the () in the figure. Data flow programs are represented by directed graphs, which show

the flow of data between instructions. Each instruction consists of an operator, one or two

operands and one or more destinations to which the result (data token) will be sent.

Figure Instruction execution in a data flow computer for the computation of

a = (b + 1) * (b � c) by direct data forwarding

Major features are identified below for the data flow computers:

1. Data flow computers have a data-driven organization that is characterized by a passive

examine stage. Instructions are examined to reveal the operand availability; upon

which they are executed immediately if the functional units are available.

2. Intermediate or final results are passed directly as data token between instructions.

3. There is no concept of shared data storage as embodied in notion of a variable.

SQP.14 Computer Organization

4. Program sequencing is constrained only by data dependency among instructions.

5. The data-driven concept means asynchrony, which means that many instructions can

be executed simultaneously and asynchronously.

6. A high degree of implicit parallelism is expected in a data flow computer.

(d) See answer of question no. 10(e) of 2007 (CS-303).

(e) Virtual address to real address mapping:

When a program needs to be executed, the CPU would generate addresses, called logical

addresses. The corresponding addresses in the physical memory, as occupied by the

executing program, are called physical addresses. The set of all logical addresses generated

by the CPU or program is called logical-address space and the set of all physical addresses

corresponding to these logical addresses is called physical-address space. The memory-

management unit (MMU) maps each logical address to a physical address during program

execution. The figure below illustrates this mapping method, which uses a special register

called base register or relocation register. The content of the relocation register is added to

every logical address generated by the user program at the beginning of execution. For

example, if the relocation register holds an address value 2000, then a reference to the

location 0 by the user is dynamically relocated to 2000 address. A reference to the address

150 is mapped to the address 2150.

Figure A simple memory-management scheme

A virtual memory system may be configured in one of the following ways:

1. Paging technique

2. Segmentation technique

Paging:

Paging is a non-contiguous memory allocation method. In other words, the program is divided into

small blocks in paging and these blocks are loaded into else where in main memory. In paging, the

virtual address space is divided into equal size blocks called pages and the physical (main) memory is

divided into equal size blocks called frames. The size of a page and size of a frame are equal. The size

of a page or a frame is dependent on the operating system and is generally 4 KB.

In paging, operating system maintains a data structure called page table, which is used for mapping

from logical address to physical address. The page table generally contains two fields, one is page

number and other is frame number. The table specifies the information that which page would be

Solved Question Paper 2009 (CS-303) SQP.15

mapped to which frame. Each operating system has its own way of maintaining the page tables; most

allocate a page table for each program.

Segmentation:

Segmentation is a memory management scheme that supports the user view of memory. A logical-

address space of a program is a collection of segments. A segment is defined as a logical grouping of

instructions, such as subroutine, array or data area. Each segment has a name and a length. The

address of the segment specifies both segment name and offset within the segment. For simplicity of

implementation, segments are referred to by a segment number rather than by a segment name. Thus,

a logical address consists of two tuples: (segment number (s), offset (d)).

The mapping of logical address to corresponding physical address is done using segment table.

Each entry of the segment table has a segment base and a segment limit. The segment base indicates

the starting physical address where the segment resides in main memory and the segment limit

specifies the length of the segment.

Group-A

(Multiple-Choice Type Questions)

1. Choose the correct alternatives for the following: 10 ¥ 1 = 10

(i) The logic circuit in ALU is

(a) entirely combinational (b) entirely sequential

(c) combinational cum sequential (d) none of these

Answer

(a) entirely combinational

(ii) In a microprocessor the address of the next instruction to be executed is stored in

(a) stack pointer (b) address latch

(c) program counter register (d) general purpose

Answer

(c) program counter register

(iii) Physical memory broken down into groups of equal size is called

(a) page (b) tag (c) block (d) index

Answer

(c) block

(iv) The basic principle of a Von Neumann computer is

(a) storing program and data in separate memory

(b) using pipeline concept

(c) storing both program and data in the same memory

(d) using a large number of registers

2010
Computer Architecture

and Organization

(EC-503)
Time Allotted: 3 hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

SQP.2 Computer Organization

Answer

(c) storing both program and data in the same memory

(v) The principle of locality justifies the use of

(a) interrupts (b) DMA (c) polling (d) cache memory

Answer

(d) cache memory

(vi) Instruction cycle is

(a) fetch-decode-execution (b) fetch-execution decode

(c) decode-fetch-execution (d) none of these

Answer

(a) fetch-decode-execution

(vii) Associative memory is a

(a) pointer addressable memory (b) very cheap memory

(c) content addressable memory (d) slow memory

Answer

(c) content addressable memory

(viii) Conversion of (FAFAFA)16 into octal form is

(a) 76767676 (b) 76575372 (c) 76737672 (d) 76727672

Answer

(b) 76575372

(ix) The technique of placing software in a ROM semiconductor chip is called

(a) PROM (b) EPROM (c) Firmware (d) Microprocessor

Answer

(c) Firmware

(x) How many address bits required for a 512 ¥ 4 memory?

(a) 512 (b) 4 (c) 9 (d) A0 � A6

Answer

(c) 9

Group-B

(Short-Answer Type Questions)

Answer any three of the following. 3 ¥ 5 = 15

2. Explain the reading and writing operations of a basic static MOS cell.

Answer

One SRAM cell using CMOS is shown in the Figure 1. Four transistors (T3, T4, T5 and T6)

are cross connected in such a way that they produce a stable state. In the state 1, the

voltage at the point A is maintained high and voltage at point at B is low by keeping

transistors T3 and T6 on (i.e. closed), while T4 and T5 off (i.e. open). Similarly, in state 0,

the voltage at A is low and at point B is high by keeping transistors T3 and T6 off, while T4

and T5 on. Both these states are stable as long as the power is applied on it. Thus, for state

1, if T1 and T2 are turned on (closed), bit lines b and b¢ will have high and low signals,

respectively.

Solved Question Paper 2010 (EC-503) SQP.3

Figure 1 A CMOS SRAM cell

Read Operation:

For the read operation, the word line is activated by the address input to the address

decoder. The activated word line closes both the transistors (switches) T1 and T2. Then the

bit values at points A and B can transmit to their respective bit lines. The sense/write

circuit at the end of the bit lines sends the output to the processor.

Write Operation:

Similarly, for the write operation, the address provided to the decoder activates the word line

to close both the switches. Then the bit value that to be written into the cell is provided

through the sense/write circuit and the signals in bit lines are then stored into the cell.

3. Give Booth�s algorithm for multiplication of signed 2�s complement number in flowchart

and explain.

Answer

The algorithm inspects two lower-order multiplier bits at a time to take the next step of

action. The algorithm is described by the flowchart in the figure 2. A flip-flop (a fictitious

bit position) is used to the right of lsb of the multiplier and it is initialized to 0. Subsequently,

it receives the lsb of the multiplier when the multiplier is shifted right.

Once all bits of the multiplier are inspected, the accumulator and multiplier registers

together contain the product. Ignore the right-end flip-flop used for holding an initial 0, as

it is a fictitious bit and subsequent lsbs from multiplier.

4. Explain the concept of virtual memory.

Answer

Parts of programs and data are brought into main memory from secondary memory, as the

CPU needs them. Virtual memory is a technique used in some large computer systems,

which gives the programmer an illusion of having a large main memory, although which

may not be the case. The size of virtual memory is equivalent to the size of secondary

memory. Each address referenced by the CPU called the virtual (logical) address is mapped

to a physical address in the main memory. This mapping is done during run-time and is

performed by a hardware device called Memory-Management Unit (MMU) with the help

of a memory map table, which is maintained by the operating system.

SQP.4 Computer Organization

The virtual memory makes the task of programming much easier, because the programmer

no longer needs to bother about the amount of physical memory available. For example,

suppose a program size is 18 MB and the available user part of the main memory is 15 MB

(other part of the main memory is occupied by the operating system). First, 15 MB of the

program is loaded into main memory and then remaining 3 MB is still in the secondary

memory. When the remaining 3 MB code is needed for execution, swap out 3 MB code

from main memory to secondary memory and swap in new 3 MB code from secondary

memory to main memory.

The advantage of virtual memory is efficient utilization of main memory, because the

larger size program is divided into blocks and partially each block is loaded in the main

memory whenever it is required. Thus multiple programs can be executed simultaneously.

The technique of virtual memory has other advantages of efficient CPU utilization and

improved throughput.

Figure 2 Booth's multiplication algorithm

Solved Question Paper 2010 (EC-503) SQP.5

The memory-management unit (MMU) maps each logical address to a physical address

during program execution. Figure 3 illustrates this mapping method, which uses a special

register called base register or relocation register. The content of the relocation register is

added to every logical address generated by the user program at the beginning of execution.

For example, if the relocation register holds an address value 2000, then a reference to the

location 0 by the user is dynamically relocated to 2000 address. A reference to the address

150 is mapped to the address 2150.

Figure 3 A simple memory-management scheme

A virtual memory system may be configured in one of the following ways:

(i) Paging technique

(ii) Segmentation technique

5. What is Von Neumann architecture? What is Von Neumann bottleneck?

Answer

In 1946, Von Neumann and his colleagues began the design of a new stored-program

computer, now referred to as the IAS computer, at the Institute for Advanced Studies,

Princeton. Nearly, all modern computers still use this stored-program concept. This concept

has three main principles:

1. Program and data can be stored in the same memory.

2. The computer executes the program in sequence as directed by the instructions in the

program.

3. A program can modify itself when the computer executes the program.

Each instruction contains only one memory address and has the format:

OPCODE ADDRESS

The 8-bit op-code specifies the operation to be performed by the CPU and 12-bit address

specifies the operand�s memory address. Thus length of each instruction is 20 bits.

Von-Neumann Bottleneck:

One of the major factors contributing for a computer�s performance is the time required to move

instructions and data between the CPU and main memory. The CPU has to wait longer to obtain

a data-word from the memory than from its registers, because the registers are very fast and are

logically placed inside the processor (CPU). This CPU-memory speed disparity is referred to as

Von-Neumann bottleneck. This performance problem is reduced by using a special type memory

called cache memory between the CPU and main memory. The speed of cache memory is

almost same as the CPU, for which there is almost no waiting time of the CPU for the required

SQP.6 Computer Organization

data-word to come. Another way to reduce the problem is by using special type computers

known as Reduced Instruction Set Computers (RISC). This class of computers generally uses a

large number of registers, through which the most of the instructions are executed. This computer

usually limits access to main memory to a few load and store instructions. This architecture is

designed to reduce the impact of the bottleneck by reducing the total number of the memory

accesses made by the CPU and by increasing the number of register accesses.

6. (a) What are the widths of data bus and address bus for 4096 ¥ ¥ ¥ ¥ ¥ 8 memory?

(b) What do you mean by program status word? 2 + 3

Answer

(a) Given memory size is 4096 ¥ 8. The width of data bus = 8-bit and that of address bus =

12-bit (because 4096 = 212).

(b) Program status word (PSW): It is a special-purpose register that holds the condition code

flags and other information that describe the status of the currently executing program.

This register is also known as status register. Generally, there are five flags (i.e., status

bits), namely, Carry (CY), Parity (P), Auxiliary Carry (AC), Zero (Z) and Sign (S) flags.

The processor uses these flags to test data conditions.

Group-C

(Long-Answer Type Questions)

Answer any three of the following. 3 ¥ 15 = 45

7. (a) Compare parallel adder with serial adder.

(b) Briefly describe Carry-Look-Ahead adder.

(c) Multiply �5 by �3 using Booth�s algorithm. 4 + 6 + 5

Answer

(a)

Parallel Adder Serial Adder

1. This adder is a combinational circuit, which adds 1. This adder is a sequential circuit, which performs

all bits of two numbers in one clock cycle. the addition of two binary numbers serially bit

by bit starting with lsb.

2. This adder, being a combinational circuit, is faster 2. The serial adder is very slow since it takes n

 than serial adder. In one clock period all bits of clock cycles for addition of n-bit numbers.

 two numbers are added.

3. The hardware cost is more than that of serial 3. The serial adder circuit is small and hence, it is

adder. Because, number of adder blocks needed is very inexpensive irrespective of the number of

equal to the number of bits in operands. bits to be added.

(b) A Carry Look-ahead Adder (CLA) is a high-speed adder, which adds two numbers without

waiting for the carries from the previous stages. In the CLA, carry-inputs of all stages are

generated simultaneously, without using carries from the previous stages.

In the full adder, the carry output Ci+1 is related to its carry input Ci as follows:

Ci+1=AiBi + (Ai+Bi)Ci

This result can be rewritten as:

Ci+1= Gi + PiCi (1)

Solved Question Paper 2010 (EC-503) SQP.7

where Gi = AiBi and Pi = Ai + Bi

The function Gi is called the carry-generate function, since a carry Ci+1 is generated when

both Ai and Bi are 1s. The function Pi is called as carry-propagate function, since if Ai or Bi is a

1, then the input carry Ci is propagated to the next stage. The basic adder (BA) for generating

the sum Si, carry propagate Pi and carry generate Gi bits, is shown in the figure 4. The sum bit Si

is = Ai ≈ Bi ≈ Ci. For the implementation of one basic adder, two XOR gates, one AND gate

and one OR gate are required.

Figure 4 Basic adder

For example, we want to design a 4-bit CLA, for which four carries C1, C2, C3 and C4 are to be

generated. Using equation number (1); C1, C2, C3 and C4 can be expressed as follows:

C1 = G0 + P0C0

C2 = G1 + P1C1

C3 = G2 + P2C2

C4 = G3 + P3C3

These equations are recursive and the recursion can be removed as below.

C1 = G0 + P0C0 (2)

C2 = G1 + P1C1

= G1 + P1(G0 + P0C0)

= G1 + P1G0 + P1P0C0 (3)

C3 = G2 + P2C2

= G2 + P2(G1 + P1G0 + P1P0C0)

= G2 + P2G1 + P2P1G0 + P2P1P0C0 (4)

C4 = G3 + P3C3

= G3 + P3(G2 + P2G1 + P2P1G0 + P2P1P0C0)

= G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0 (5)

The Eqs (2), (3), (4) and (5) suggest that C1, C2, C3 and C4 can be generated directly from C0. In

other words, these four carries depend only on the initial carry C0. For this reason, these

equations are called carry look-ahead equations. A 4-bit carry look-ahead adder (CLA) is

shown in the figure 5.

The maximum delay of the CLA is 6 ¥ D (for Gi and Pi generation, delay = D, for Ci

generation, delay = 2D and lastly another 3D for sum bit Si) where D is the average gate delay.

The same holds good for any number of bits because the adder delay does not depend on size

of number (n). It depends on the number of levels of gates used to generate the sum and the

carry bits.

SQP.8 Computer Organization

Figure 5 4-bit Carry Look-ahead Adder (CLA)

(c) M = �5 = 1011 and Q = �3 = 1101.

M A Q Size

Initial Configuration 1011 0000 1101 0 4

Step-1

As Q[0] = 1and

Q[�1] = 0

A = A � M 1011 0101 1101 0 �

And ARS(AQ) 1011 0010 1110 1 3

Step-2

As Q[0] = 0 and

Q[�1] = 1

A = A + M 1011 1101 1110 1 �

ARS(AQ) 1011 1110 1111 0 2

Step-3

As Q[0] = 1 and

Q[�1] = 0

A = A � M 1011 0011 1111 0 �

ARS(AQ) 1011 0001 1111 1 1

Step-4

As Q[0] = 1 and

Q[�1] = 1

ARS(AQ) 1011 0000 1111 1 0

Since the Size register becomes 0, the algorithm is terminated and the product is = AQ = 0000

1111, which shows that the product is a positive number. The result is 15 in decimal.

Solved Question Paper 2010 (EC-503) SQP.9

8. (a) What is pipelining?

(b) What are speed-up, throughput and efficiency of a pipelined architecture?

(c) Describe pipeline hazards.

(d) What do you mean by paging?

(e) What are instruction pipeline and arithmetic pipeline? 2+3+5+2+3

Answer

(a) Pipelining is a technique of decomposing a sequential task into subtasks, with each subtask

being executed in a special dedicated stage (segment) that operates concurrently with all

other stages. Each stage performs partial processing dictated by the way the task is

partitioned. Result obtained from a stage is transferred to the next stage in the pipeline.

The final result is obtained after the instruction has passed through all the stages. All

stages are synchronized by a common clock. Stages are pure combinational circuits

performing arithmetic or logic operations over the data stream flowing through the pipe.

The stages are separated by high-speed interface latches (i.e., collection of registers). The

Figure 6 shows the pipeline concept with k stages.

(b) Speed-up: It is defined as

Time to execute tasks in -stage non-pipeline processor
=

Time to execute tasks in -stage pipeline processor

n k
S

k n k

. .

[(1)]

n k

k n

t

t + -

= where, t = clock period of the pipeline processor.

Figure 6 Concept of pipelining

Time to execute n tasks in k-stage pipeline processor is t [k + (n�1)] units, where k clock

periods (cycles) are needed to complete the execution of the first task and remaining (n � 1)

tasks require (n � 1) cycles. Time to execute n tasks in k-stage non-pipeline processor is n.k.t,

where each task requires k cycles because no new task can enter the pipeline until the previous

task finishes.

It can be noted that the maximum speed-up is k, for n >> k. But this maximum speed-up is

never fully achievable because of data dependencies between instructions, interrupts, program

branches, etc.

Efficiency: To define it, we need to define another term �time-space span�. It is the product

(area) of a time interval and a stage space in the space-time diagram. A given time-space span

can be in either a busy state or an idle state, but not both.

SQP.10 Computer Organization

The efficiency of a linear pipeline is measured by the percentage of busy time-space spans

over the total time-space span, which equals the sum of all busy and idle time-space spans. Let

n, k, t be the number of tasks (instructions), the number of stages and the clock period of a

linear pipeline, respectively. Then the efficiency is defined by

. .

.[. (1).] (1)

n k n

k k n k n

t
h

t t
= =

+ - + -

Note that h Æ 1 (i.e., 100%) as n Æ •. This means that the larger the number of tasks flowing

through the pipeline, the better is its efficiency. For the same reason as speed-up, this ideal

efficiency is achievable.

Throughput: The number of tasks that can be completed by a pipeline per unit time is called its

throughput. Mathematically, it is defined as

. (1).

n

k n

h
w

t t t
= =

+ -

Note that in ideal case, w = 1/t = f, frequency, when h Æ 1. This means that the maximum

throughput of a linear pipeline is equal to its frequency, which corresponds to one output result

per clock period.

(c) Pipeline hazards are situations that prevent the next instruction in the instruction stream from

executing during its designated clock cycle. There are three types of pipeline hazards:

1. Control hazards

2. Structural hazards

3. Data hazards

Control hazards:

They arise from the pipelining of branches and other instructions that change the content of

program counter (PC) register.

Structural hazards:

Structural hazards occur when a certain resource (memory, functional unit) is requested by more

than one instruction at the same time.

Data hazards:

Inter-instruction dependencies may arise to prevent the sequential (in-order) data flow in the

pipeline, when successive instructions overlap their fetch, decode and execution through a

pipeline processor. This situation due to inter-instruction dependencies is called data hazard.

(d) Paging is a non-contiguous memory allocation method. In other words, the program is divided

into small blocks in paging and these blocks are loaded into else where in main memory. In

paging, the virtual address space is divided into equal size blocks called pages and the physical

(main) memory is divided into equal size blocks called frames. The size of a page and size of a

frame are equal. The size of a page or a frame is dependent on the operating system and is

generally 4 KB.

In paging, operating system maintains a data structure called page table, which is used for

mapping from logical address to physical address. The page table generally contains two fields,

one is page number and other is frame number. The table specifies the information that which

page would be mapped to which frame. Each operating system has its own way of maintaining

the page tables; most allocate a page table for each program.

Solved Question Paper 2010 (EC-503) SQP.11

(e) Arithmetic pipeline: An arithmetic pipeline divides an arithmetic operation, such as a multiply,

into multiple arithmetic steps each of which is executed one-by-one in different arithmetic

stages in the ALU. Examples include 4-stage pipeline used in Star-100, 8-stage pipeline used in

TI-ASC.

Instruction pipeline: The execution of a stream of instructions can be pipelined by overlapping

the execution of the current instruction with the fetch, decode and operand fetch of subsequent

instructions. All high-performance computers are now equipped with this pipeline.

9. (a) Explain the basic Direct Memory Access (DMA) operation for transfer of data bytes

between memory and peripherals.

(b) Give the main reason why DMA based I/O is better in some circumstances than interrupt

driven I/O.

(c) What is programmed I/O technique? Why is it not very useful?

(d) According to the following information, determine size of the subfields (in bits) in the

address for Direct Mapping and Set Associative Mapping cache schemes:

∑ We have 256 MB main memory and 1 MB cache memory

∑ The address space of the processer is 256 MB

∑ The block size is 128 bytes

∑ There are 8 blocks in a cache set 5 + 3 + 3 + 4

Answer

(a) DMA transfers are performed by a control circuit that is part of the I/O device interface.

We refer to this circuit as a DMA controller. The DMA controller performs the functions

that would normally be carried out by the CPU when accessing the main memory. During

DMA transfer, the CPU is idle or can be utilized to execute another program and CPU has

no control of the memory buses. A DMA controller takes over the buses to manage the

transfer directly between the I/O device and the main memory.

The CPU can be placed in an idle state using two special control signals, HOLD and

HLDA (hold acknowledge). Figure 7 shows two control signals in the CPU that characterize

the DMA transfer. The HOLD input is used by the DMA controller to request the CPU to

release control of buses. When this input is active, the CPU suspends the

Figure 7 CPU bus signals for DMA transfer

execution of the current instruction and places the address bus, the data bus and the read/

write line into a high-impedance state. The high-impedance state behaves like an open

circuit, which means that the output line is disconnected from the input line and does not

have any logic significance. The CPU activates the HLDA output to inform the external

SQP.12 Computer Organization

DMA controller that the buses are in the high-impedance state. The control of the buses

has been taken by the DMA controller that generated the bus request to conduct memory

transfers without processor intervention. After the transfer of data, the DMA controller

disables the HOLD line. The CPU then disables the HLDA line and regains the control of

the buses and returns to its normal operation.

(b) To transfer large blocks of data at high speed, DMA method is used. A special DMA

controller is provided to allow transfer a block of data directly between a high-speed

external device like magnetic disk and the main memory, without continuous intervention

by the CPU. The data transmission cannot be stopped or slowed down until an entire block

is transferred. This mode of DMA transfer is known as burst transfer.

(c) This is the software method where CPU is needed all the times during data transfer

between any two devices. Programmed I/O operations are the result of I/O instructions

written in the computer program or I/O routine. Each data item transfer is initiated by an

instruction in the program or I/O routine. Generally, the transfer is to and from a CPU

register and peripheral. Transferring data under program control requires constant monitoring

of the peripheral by the CPU.

The programmed I/O method is particularly useful in small low-speed computers or in

systems that are dedicated to monitor a device continuously. Generally the CPU is 5-7

times faster than an I/O device. Thus, the difference in data transfer rate between the CPU

and the I/O device makes this type of transfer inefficient.

(d) The address space of the processor is 256 MB. So, the processor generates an address of

28-bit.

The cache memory size = 1 MB

Therefore, the size of index field of cache = 20-bit (1MB = 220)

The tag-field uses 28 � 20 = 8 bits.

The number of blocks in cache = Size of cache / size of a block = 220/27 = 8192.

Therefore the number of bits required to select each block = 13 (since 8192 = 213)

The size of each block is 128 bytes.

So, the number of bits required to select a word (byte) in a block = 7.

Thus, the address format for direct mapped cache is as follows:

The number of blocks in a set is = 8

Number of bits required to select a block in a set is = 3 (because 8 = 23).

Number of sets in the set-associative cache is = 8192/8 = 1024.

To select each set, number of bits required is = 10 (because 1024 = 210).

Therefore, tag field requires (28 � (10 + 7)) = 11 bits.

Thus, the address format for set-associative cache is as follows:

10. (a) Evaluate the following arithmetic expression using 0, l, 2, 3 address instruction:

X = (A+B)/(C*D).

Solved Question Paper 2010 (EC-503) SQP.13

(b) Why do we require memory hierarchy? Show the memory hierarchy diagram indicating

speed and cost.

(c) Distinguish between SRAM and DRAM. 8 + (2 + 2) + 3

Answer

(a) To evaluate the statement X = (A + B) / (C * D) in zero, one, two and three address

machines, we assume the following assumptions:

LOAD symbolic op-code is used for transferring data to register from memory. STORE

symbolic op-code is used for transferring data to memory from register. The symbolic op-

codes ADD, DIV and MULT are used for the arithmetic operations addition, division and

multiplication respectively. Assume that the respective operands are in memory addresses

A, B, C and D and the result must be stored in the memory at address X.

For zero-address machine:

The assembly-language program using zero-address instructions is written next. In the comment

field, the symbol TOS is used, which means the top of stack.

PUSH A ; TOS ¨ A

PUSH B ; TOS ¨ B

ADD ; TOS ¨ (A + B)

PUSH C ; TOS ¨ C

PUSH D ; TOS ¨ D

MULT ; TOS ¨ (C * D)

DIV ; TOS ¨ (A + B) / (C * D)

POP X ; X ¨ TOS

For one-address machine:

The assembly-language program using one-address instructions is written below.

LOAD C ; AC ¨ M[C]

MULT D ; AC ¨ AC * M[D]

STORE T ; T ¨ AC

LOAD A ; AC ¨ M[A]

ADD B ; AC ¨ AC + M[B]

DIV T ; AC ¨ AC/M[T]

STORE X ; X ¨ AC

For two-address machine:

The assembly-language program using two-address instructions is written below.

LOAD R1, A ; R1 ¨ M[A]

ADD R1, B ; R1 ¨ R1 + M[B]

LOAD R2, C ; R2 ¨ M[C]

MULT R2, D ; R2 ¨ R2 * M[D]

DIV R1, R2 ; R1 ¨ R1 / R2

STORE X, R1 ; X ¨ R1

For three-address machine:

The assembly-language program using three-address instructions is written below.

ADD R1, A, B ; R1 ¨ M[A] + M[B]

MULT R2, C, D ; R2 ¨ M[C] * M[D]

DIV X, R1, R2 ; X ¨ R1/R2

SQP.14 Computer Organization

(b) Ideally, we would like to have the memory which would be fast, large and inexpensive.

Unfortunately, it is impossible to meet all three requirements simultaneously. If we increase

the speed and capacity, then cost will increase. We can achieve these goals at optimum

level by using several types of memories, which collectively give a memory hierarchy.

A memory hierarchy system is broadly divided into following four groups, shown in

Fig. 8.

∑ Secondary (auxiliary) memory

∑ Main (primary) memory

∑ Cache memory

∑ Internal memory

Figure 8 Memory hierarchy

(c) (i) The SRAM has lower access time, which means it is faster compared to the DRAM.

(ii) The SRAM requires constant power supply, which means this type of memory consumes

more power; whereas, the DRAM offers reduced power consumption, due to the fact that

the information is stored in the capacitor.

(iii) Due to the relatively small internal circuitry in the one-bit memory cell of DRAMs, the

large storage capacity in a single DRAM memory chip is available compared to the same

physical size SRAM memory chip. In other words, DRAM has high packaging density

compared to the SRAM.

(iv) SRAM is costlier than DRAM.

11. Write short notes on any three of the following: 3 ¥ 5

(a) Bus organization using Tri-state Buffer

(b) Cache replacement policies

(c) Restoring Division method

(d) Comparison between RISC and CISC

(e) Instruction format.

Answer

(a) A tri-state gate is a digital circuit that exhibits three states out of which two states are

normal signals equivalent to logic 1 and logic 0 similar to a conventional gate. The third

state is a high-impedance state. The gate is controlled by one separate control input C. If C

is high the gate behaves like a normal logic gate having output 1 or 0. When C is low the

gate does not produce any output irrespective of the input values. The graphic symbol of a

tri-state buffer gate is shown in Fig. 9.

Solved Question Paper 2010 (EC-503) SQP.15

Figure 9 Symbol of a tri-state buffer gate

The common bus is used to transfer a register�s content to other register or memory at a

single time. A common bus system with tri-state buffers is described in Fig. 10, where one

line of the common bus is shown.

Figure 10 A single line of a bus system with tri-state buffers

Assume that there are four registers A, B, C and D. The outputs of four buffers are

connected together to form a single line of the bus. The control inputs to the buffers,

which are generated by a common decoder, determine which of the four normal inputs will

communicate with the common line of the bus. Note that only one buffer may be in the

active state at any given time. Because the selection lines S0, S1 of the decoder activate one

of its output lines at a time and the output lines of the decoder act as the control lines to

the buffers. For example, if select combination S1S0 is equal to 00, then 0th output of the

decoder will be activated, which then activates the top-most tri-state buffer and thus the

bus line content will be currently A0, 0
th bit of A register.

(b) In case a miss occurs in cache memory, then a new data from main memory needs to be

placed over old data in the selected location of cache memory. In case of direct mapping

cache, we have no choice and thus no replacement algorithm is required. The new data has

to be stored only in a specified cache location as per the mapping rule for the direct

mapping cache. For associative mapping and set-associative mapping, we need a replacement

algorithm since we have multiple choices for locations. Some most used replacement

algorithms are given below.

First-In First-Out (FIFO) Algorithm: This algorithm chooses the word that has been in the

cache for a long time. In other words, the word which entered the cache first, gets pushed

out first.

Least Recently Used (LRU) Algorithm: This algorithm chooses the item for replacement

that has been used by the CPU minimum number of times in the recent past.

SQP.16 Computer Organization

(c) The restoring division method uses three n-bit registers A, M, Q for dividing two n-bit

numbers. The register M is used to hold the divisor. Initially, A contains 0 and Q holds the

n-bit dividend. In each iteration, the contents of register-pair AQ are shifted to the left first.

The content of M is then subtracted from A. If the result of subtraction is positive, a 1 is

placed into the vacant position created in lsb position of Q by the left shift operation;

otherwise a 0 is put into this position and before beginning the next iteration, restore the

content of A by adding the current content of A register with M. For this step, the algorithm

is referred to as a restoring division algorithm. When, the algorithm terminates, the A

register contains the remainder result and the Q register contains the quotient result.

The restoring division algorithm to divide two n-bit numbers is described using the flowchart

shown in Fig. 11.

Figure 11 Restoring division algorithm

Solved Question Paper 2010 (EC-503) SQP.17

(d)

CISC RISC

1. A large number of instruction types used� 1. Relatively few number of instruction types�

typically from 100 to 250 instructions. typically less than100 instructions.

2. A large number of addressing modes used� 2. Relatively few addressing modes�typically less

typically from 5 to 15 different modes. than or equal to 5.

3. Variable-length instruction formats. 3. Fixed-length, easily decoded instruction formats.

4. Small number of general-purpose registers 4. Large number of general-purpose registers

(GPRs)�typically 8�24 GPRs. (GPRs)�typically 32�192 GPRs.

5. Clock per instruction (CPI) lies between 2 and 15. 5. Clock per instruction (CPI) lies between 1 and 2.

6. Mostly microprogrammed control units. 6. Mostly hardwired control units.

7. Most instructions manipulate operands in memory. 7. All operations are executed within registers of the CPU.

(e) In broad sense, the superiority of a computer is decided on the basis of its instruction set.

Since the total number of instructions and their powerfulness has contributed to the efficiency

of the computer, these two factors are given highest priority. An efficient program is the

one which is short, hence fast execution and occupies less memory space. The size of a

program depends largely on the formats of instructions used.

A computer usually has a variety of instruction formats. It is the task of the control unit

within CPU to interpret each instruction code and provide the necessary control functions

needed to process the instruction. The most common format followed by instructions is

depicted in Fig. 12.

Figure 12 Different fields of instructions

The bits of the instruction are divided into groups called fields. The commonly used fields found

in instruction formats are given below.

1. Operation Code (or, simply Op-code): This field states the operation to be performed.

This field defines various processor operations, such as add, subtract, complement, etc.

2. Address: An address field designates a memory address or a processor register or an

operand value.

3. Mode: This field specifies the method to get the operand or effective address of operand.

In instruction set of some computers, the op-code itself explicitly specifies the addressing

mode used in the instruction. A computer has various addressing modes.

For example, in the instruction ADD R1, R0; ADD is the op-code to indicate the addition

operation and R1, R0 are the address fields for operands.

In certain situations, other special fields are sometimes used. For example, a field that gives

the number of shifts in a shift-type micro-operation or, a label field is used to process unconditional

branch instruction.

The memory or processor registers store the operand values on which operation codes specified

by computer instructions are executed. Memory addresses are used to specify operands stored in

SQP.18 Computer Organization

memory. A register address specifies an operand stored in processor register. A register address

is a binary number of k bits that defines one of 2k registers in the CPU. Thus a CPU with 32

processor registers R0 to R31 has a register address field of 5 bits. For example, processor

register R7 is specified by the binary number 00111. The internal organization of processor

registers determines the number of address fields in the instruction.

Group-A

(Multiple-Choice Type Questions)

1. Choose the correct alternatives for the following: 10 ¥ l = 10

(i) From a source code, a compiler can detect

(a) run-time error (b) logical errors (c) syntax error (d) none of these

Answer

(c) Syntax error

(ii) The purpose of ROM in a computer system is

(a) to store constant data required for computers own use

(b) to help reading from memory

(c) to store application program

(d) to store 0s in memory.

Answer

(a) to store constant data required for computers own use

(iii) Which one does not possess the characteristics of a memory element?

(a) A toggle switch (b) A lamp (c) An AND gate (d) None of these

Answer

(c) An AND gate

(iv) Data from memory location after fetching is deposited by memory in

(a) MAR (b) MBR (c) IR (d) Status Register.

Answer

(b) MBR

2010
Computer Organization

(CS-303)
Time Allotted: 3 hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

SQP.2 Computer Organization

(v) How many minimum NAND gates are required to make a flip flop?

(a) 4 (b) 3 (c) 2 (d) 5.

Answer

(a) 4

(vi) Virtual memory system allows the employment of

(a) more than address space (b) the full address space

(c) more than hard disk capacity (d) none of these.

Answer

(a) more than address space

(vii) A system has 48-bit virtual address, 36-bit physical address and 128 MB main memory.

How many virtual and physical pages can the address space support?

(a) 236, 224 (b) 212, 236 (c) 224, 234 (d) 234, 236

Answer

(a) 236, 224

(viii) A UART is an example of

(a) serial asynchronous data transmission ship (b) PIO

(c) DMA controller (d) none of these

Answer

(a) serial asynchronous data transmission ship

(ix) A priority interrupt may be accomplished by

(a) polling (b) daisy chain

(c) parallel method of priority interrupt (d) all of these.

Answer

(d) all of these

(x) Control program memory can be reduced by

(a) horizontal format (b) vertical format micro-program

(c) hardwired control unit (d) none of these.

Answer

(b) vertical format micro-program

GROUP-B

(Short-Answer Type Questions)

Answer any three of the following. 3 ¥ 5 = 15

2. (a) A digital computer has a common bus system for 16 registers of 32 bits each. The bus is

constructed with multiplexers.

(i) How many selection inputs are there in each multiplexer?

(ii) What size of multiplexers is needed?

(iii) How many multiplexers are there in the bus?

(b) Why do most computers have a common bus system? 3 + 2

Answer

(a) (i) and (ii) The size of each multiplexer must be 16 ¥ 1, because it multiplexes 16 data lines.

Therefore, the number of selection inputs in each multiplexer is 4 (because 16 = 24)

Solved Question Paper 2010 (CS-303) SQP.3

(iii) The number of multiplexers needed to construct the bus is equal to 32, the number

of bits in each register.

(b) Many registers are provided in the CPU of a computer for fast execution. Therefore,

several paths must be provided to transfer information from one register to another. If a

separate communication line is used between each register pair in the system, the number

of lines will be excessive and thus cost of communication will be huge. Thus it is

economical to have a common bus system for transferring information between registers

in a multiple-register configuration.

3. Draw the logic diagram of a common bus which connects 4 registers of 4-bit each using tri-state

buffers. 5

Answer

A tri-state gate is a digital circuit that exhibits three states out of which two states are

normal signals equivalent to logic 1 and logic 0 similar to a conventional gate. The third

state is a high-impedance state. The high-impedance state behaves like an open circuit,

which means that no output is produced though there is an input signal and does not have

logic significance. The gate is controlled by one separate control input C. If C is high the

gate behaves like a normal logic gate having output 1 or 0. When C is low the gate does

not produce any output irrespective of the input values. The graphic symbol of a tri-state

buffer gate is shown in Fig. 1.

Figure 1 Graphic symbol for a tri-state buffer gate

A common bus system with tri-state buffers is described in Fig. 2. The outputs of four

buffers are connected together to form a single line of the bus. The control inputs to the

buffers, which are generated by a common decoder, determine which of the four normal

inputs will communicate with the common line of the bus. Note that only one buffer may

be in the active state at any given time. Because the selection lines S0, S1 of the

Figure 2 A single line of a bus system with tri-state buffers

SQP.4 Computer Organization

decoder activate one of its output lines at a time and the output lines of the decoder act as

the control lines to the buffers. For example, if select combination S1S0 is equal to 00, then

0th output of the decoder will be activated, which then activates the top-most tri-state

buffer and thus the bus line content will be currently A0, 0th bit of A register.

4. What is virtual memory? Why is it called virtual? Write the advantages of virtual memory.

2 + 1 + 2

Answer

Virtual memory is a technique used in some large computer systems, which gives the

programmer an illusion of having a large main memory, although which may not be the

case. The size of virtual memory is equivalent to the size of secondary memory. Each

address referenced by the CPU called the virtual(logical) address is mapped to a physical

address in main memory. This mapping is done during run-time and is performed by a

hardware device called memory-management unit (MMU) with the help of a memory map

table, which is maintained by the operating system.

Virtual memory is not a physical memory, is actually a technique. That is why it is

called virtual memory.

The advantage of virtual memory is efficient utilization of main memory, because the

larger size program is divided into blocks and partially each block is loaded in the main

memory whenever it is required. Thus multiple programs can be executed simultaneously.

The technique of virtual memory has other advantages of efficient CPU utilization and

improved throughput.

5. What is programmed I/O technique? Why is it not very useful? 3 + 2

Answer

Program I/O technique is the software method where CPU is needed all the times during

data transfer between any two devices. Programmed I/O operations are the result of I/O

instructions written in the computer program or I/O routine. Each data item transfer is

initiated by an instruction in the program or I/O routine. Generally, the transfer is to and

from a CPU register and peripheral. Transferring data under program control requires

constant monitoring of the peripheral by the CPU. Once a data transfer is initiated, the

CPU is required to monitor the interface to see when a transfer can again be made. In

other words, the CPU polls the devices for next data transfer. This is why the programmed

I/O is sometimes called polled I/O.

The programmed I/O method is particularly useful in small low-speed computers or in

systems that are dedicated to monitor a device continuously. Generally the CPU is 5-7

times faster than an I/O device. Thus, the difference in data transfer rate between the CPU

and the I/O device makes this type of transfer inefficient.

6. Draw the block diagram and explain the functionality of microprogrammed control unit.

Answer

In the microprogrammed approach, all control functions that can be simultaneously activated

are grouped to form control words stored in a separate ROM memory called the control

memory. From the control memory, the control words are fetched one at a time and the

individual control fields are routed to various functional units to activate their appropriate

circuits. The desired task is performed by activating these circuits sequentially.

Solved Question Paper 2010 (CS-303) SQP.5

Figure 3 depicts the general structure of a microprogrammed control unit.

Figure 3 Microprogrammed control unit

Microprogramming is a modern concept used for designing a control unit. It can be used for

designing control logic for any digital system. As stated earlier, a microprogrammed control

unit�s control words are held in a separate ROM memory called the control memory (CM). Each

control word contains signals to activate one or more micro-operations. When these words are

retrieved in a sequence, a set of micro-operations are activated that will complete the desired

task.

GROUP-C

(Long-Answer Type Questions)

Answer any three of the following. 3 ¥ 15 = 45

7. (a) Explain the difference between associative and set-associative cache mapping technique.

(b) With the help of following information, determine the size of sub-fields (in bits) in the

address for direct mapping, associative mapping and Set-associative mapping:

∑ 512 MB main memory and 2 MB cache memory

∑ The address space of this processor is 256 MB

∑ The block size is 256 bytes

∑ There are 16 blocks in a cache set.

(c) Briefly explain the two write policies, write through and write back for cache design. What

are we getting the advantages and disadvantages of both the methods? 4 + 6 + 5

Answer

(a) (i) The associative cache memory uses the fastest and most flexible mapping method, in

which both address and data of the memory word are stored; whereas, in set-associative

cache, two or more words can be stored under the same index address, which is not

stored in the memory. Each data word is stored together with its tag. The number of

tag-data words under an index is said to form a set.

(ii) The set-associative cache has higher hit ratio compared to associative cache.

(iii) The set-associative cache is the most expensive memory. The cost increases as set size

increases.

(b) Given,

The capacity of main memory = 512 MB

The capacity of cache memory = 2 MB

SQP.6 Computer Organization

Block size = 256 bytes.

A set contains 16 blocks.

Since the address space of the processor is 256 MB.

The processor generates address of 28-bit to access a byte (word).

The number of blocks main memory contains = 256 MB/256 bytes = 220.

Therefore, no. of bits required to specify one block in main memory = 20.

Since the block size is 256 bytes.

The no. of bits required to access each word (byte) = 8.

For associative cache, the address format is

The number of blocks cache memory contains = 2 MB / 256 bytes = 213.

Therefore, no. of bits required to specify one block in cache memory = 13.

The tag field of address = 28 � (13 + 8) = 7-bit.

For direct cache, the address format is

In case of set-associative cache,

A set contains 16 blocks.

Therefore, the number of sets in cache = 213 / 16 = 29.

Thus, the number of bits required to specify each set = 9.

The tag field of address = 28 � (9 + 8) = 11-bit.

For set-associative cache, the address format is

(c) Write-Through Policy: This is the simplest and most commonly used procedure to update the

cache. In this technique, when the cache memory is updated, at the same time the main

memory is also updated.

Advantage: The main memory always contains the same data as the cache.

Disadvantage: It is a slow process, since each time main memory needs to be accessed.

Write-Back Policy: In this method, during a write operation only the cache location is

updated. When the update occurs, the location is marked by a flag called modified or dirty

bit. When the word is replaced from cache, it is written into main memory if its flag bit is

set. The philosophy of this method is based on the fact that during a write operation, the

word residing in cache may be accessed several times (temporal locality of reference).

Advantage: The method is faster than write-through, because this method reduces the number

of references to main memory.

Disadvantage: This method may encounter the problem of inconsistency due to two different

copies of the same data, one in cache and other in main memory.

Solved Question Paper 2010 (CS-303) SQP.7

8. (a) With the help of suitable diagram, explain the advantage of carry look ahead adder over

conventional parallel adder.

(b) If a CPU has 8-bit data bus and 16-bit address bus, draw the connection diagram for this

CPU with four 256 ¥ 8 RAM and one 512 ¥ 8 ROM.

(c) Show the bus connection with a CPU to connect four RAM chips of size 256 ¥ 8-bit each

and a ROM chip of 512 ¥ 8-bit size. Assume the CPU has 8-bit data bus and 16-bit address

bus. Clearly specify generation of chip select signals.

(d) What is dirty bit? 5 + 4 + 4 + 9

Answer

(a) A Carry Look-ahead Adder (CLA) is a high-speed adder, which adds two numbers without

waiting for the carries from the previous stages. In the CLA, carry-inputs of all stages are

generated simultaneously, without using carries from the previous stages.

In the full adder, the carry output Ci+1 is related to its carry input Ci as follows:

Ci+1 = AiBi + (Ai+Bi)Ci

This result can be rewritten as:

Ci+1= Gi + PiCi (1)

where Gi = AiBi and Pi = Ai + Bi

The function Gi is called the carry-generate function, since a carry Ci+1 is generated when

both Ai and Bi are 1s. The function Pi is called as carry-propagate function, since if Ai or Bi is a

1, then the input carry Ci is propagated to the next stage. The basic adder (BA) for generating

the sum Si, carry propagate Pi and carry generate Gi bits, is shown in Fig. 4. The sum bit Si is =

Ai ≈ Bi ≈ Ci. For the implementation of one basic adder, two XOR gates, one AND gate and

one OR gate are required.

Figure 4 Basic Adder

For example, we want to design a 4-bit CLA, for which four carries C1, C2, C3 and C4 are to be

generated. Using equation number (1); C1, C2, C3 and C4 can be expressed as follows:

C1 = G0 + P0C0

C2 = G1 + P1C1

C3 = G2 + P2C2

C4 = G3 + P3C3

These equations are recursive and the recursion can be removed as below.

C1 = G0 + P0C0 (2)

C2 = G1 + P1C1

= G1 + P1(G0 + P0C0)

SQP.8 Computer Organization

= G1 + P1G0 + P1P0C0 (3)

C3 = G2 + P2C2

= G2 + P2(G1 + P1G0 + P1P0C0)

= G2 + P2G1 + P2P1G0 + P2P1P0C0 (4)

C4 = G3 + P3C3

= G3 + P3(G2 + P2G1 + P2P1G0 + P2P1P0C0)

= G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0 (5)

The equations (2), (3), (4) and (5) suggest that C1, C2, C3 and C4 can be generated directly from

C0. In other words, these four carries depend only on the initial carry C0. For this reason, these

equations are called carry look-ahead equations. A 4-bit carry look-ahead adder (CLA) is

shown in Fig. 5.

The maximum delay of the CLA is 6 ¥ D (for Gi and Pi generation, delay = D, for Ci

generation, delay = 2D and lastly another 3D for sum bit Si) where D is the average gate delay.

The same holds good for any number of bits because the adder delay does not depend on size

of number (n). It depends on the number of levels of gates used to generate the sum and the

carry bits.

Figure 5 4-bit Carry Look-ahead Adder (CLA)

(b) Figure 6 shows the interconnection diagram of these memories with the CPU having 16

address lines.

The address lines 1 to 8 are connected to each memory and address line 9 is used in dual

purposes. In case of a RAM selection out of four RAMs, the line no. 9 and line no. 10 are

used through a 2-to-4 decoder. The line no. 9 is also connected to the ROM as address line

along with lines 1 to 8 giving a total of 9 address lines in the ROM, since the ROM has 512

locations. The CPU address line number 11 is used for separation between RAM and ROM.

The other 12 to 16 lines of CPU are unused and for simplicity we assume that they carry 0s

as address signals. For ROM, 10th line is unused and thus it can be assumed that this line

carries signal 0.

Solved Question Paper 2010 (CS-303) SQP.9

Figure 6 Interconnection diagram

The address map table for the memory connection to the CPU shown in Fig. 6 is constructed

in the following table.

Chip selected Address space (in HEX) Address bus

11 10 9 8 7 6 5 4 3 2 1

RAM1 0400 � 04FF 1 0 0 x x x x x x x x

RAM2 0500 � 05FF 1 0 1 x x x x x x x x

RAM3 0600 � 06FF 1 1 0 x x x x x x x x

RAM4 0700 � 07FF 1 1 1 x x x x x x x x

ROM 0000 � 01FF 0 0 x x x x x x x x x

(c) Same as question no. (b) above.

SQP.10 Computer Organization

(d) In write-back cache update policy, only cache location is updated and it is marked as

updated with an associated tag bit, known as dirty bit. The main memory location of the

word is updated later, when the block containing this marked word is to be removed from

the cache to make room for the new block.

9. (a) Explain Booth�s Multiplication Algorithm for signed 2�s complement numbers with proper

flow-chart. Illustrate this with an example by multiplying (� 9) ¥ (� 13).

(b) Explain destructive read out and non-destructive read out of memory system. (5 + 5) + 5

Answer

(a) The algorithm inspects two lower-order multiplier bits at time to take the next step of action.

The algorithm is described by the flowchart shown in Fig. 7. A flip-flop (a fictitious bit

position) is used to the right of lsb of the multiplier and it is initialized to 0. Subsequently, it

receives the lsb of the multiplier when the multiplier is shifted right.

Once all bits of the multiplier are inspected, the accumulator and multiplier registers

together contain the product. Ignore the right end flip-flop used for holding an initial 0, as it

is a fictitious bit and subsequent lsbs from multiplier.

Figure 7 Booth's multiplication algorithm

Solved Question Paper 2010 (CS-303) SQP.11

Multiplication of numbers (� 9)10 and (� 13)10:

Multiplicand, M = �9 = 10111 and multiplier, Q = �13 = 10011.

M A Q Size

Initial Configuration 10111 00000 10011 0 5

Step-1

As Q[0] = 1 and

Q[�1] = 0

A = A � M 10111 01001 10011 0 �

ARS(AQ) 10111 00100 11001 1 4

Step-2

As Q[0] = 1 and

Q[�1] = 1

ARS(AQ) 10111 00010 01100 1 3

Step-3

As Q[0] = 0 and

Q[�1] = 1

A = A + M 10111 11001 01100 1 �

ARS(AQ) 10111 11100 10110 0 2

Step-4

As Q[0] = 0 and

Q[�1] = 0

ARS(AQ) 10111 11110 01011 0 1

Step-5

As Q[0] = 1 and

Q[�1] = 0

A = A � M 10111 00111 01011 0 �

ARS (AQ) 10111 00011 10101 1 0

Since the Size register becomes 0, the algorithm is terminated and the product is = AQ =

00011 10101, which shows that the product is a positive number and the result is + 117 in

decimal.

(b) In some memories, the reading the memory word destroys the stored word, this fact is known

as destructive readout and memory is known as destructive readout memory. In these

memories, each read operation must be followed by a write operation that restores the

memory�s original state. Example includes dynamic RAM.

In some memories, the reading the memory word does not destroy the stored word, this fact

is known as non-destructive readout and memory is known as non-destructive readout

memory. Examples include static RAM and magnetic memory.

10. (a) Explain non-restoring division algorithm and explain the hardware diagram. Perform the

Restoring division operation with 19 divided by 8.

(b) What is Belady anomaly for page replacement technique? Explain with example.

(3 + 2 + 5) + 5

SQP.12 Computer Organization

Answer

(a) In the restoring method, some extra additions are required to restore the number, when A is

negative. Proper restructuring of the restoring division algorithm can eliminate that restoration

step. This is known as the non-restoring division algorithm.

The three main steps in restoring division method were:

1. Shift AQ register pair to the left one position.

2. A = A � M.

3. If the sign of A is positive after the step 2, set Q[0] = 1; otherwise, set Q[0] = 0 and

restore A.

Now, assume that the step 3 is performed first and then step 1 followed by step 2. Under this

condition, the following two cases may arise.

Case 1: When A is positive

Note that shifting A register to the left one position is equivalent to the computation of 2A

and then subtraction. This gives the net effect on A as 2A � M.

Case 2: When A is negative

First restore A by adding the content of M register and then shift A to the left one position.

After that A will be subtracted from M register. So, all together they give rise the value of A

as 2(A + M) � M = 2A + M.

Basis on these two observations, the non-restoring division method can be designed.

This algorithm removes the restoration step, though it may require a restoration step at the

end of algorithm for remainder A, if A is negative.

The hardware block diagram of non-restoring division algorithm is shown in Fig. 8.

Restoring division operation with 19 divided by 8:

Dividend Q = 19 = 010011 and divisor M = 8 = 001000.

M A Q Size

Initial Configuration 001000 000000 010011 6

Step-1

LS(AQ) 001000 000000 10011� �

A = A � M 001000 111000 10011� �

As Sign of A = �ve

Set Q[0] = 0 and Restore A 001000 000000 100110 5

Figure 8 Block diagram of non-restoring division algorithm

Solved Question Paper 2010 (CS-303) SQP.13

Step-2

LS(AQ) 001000 000001 00110 � �

A = A � M 001000 111001 00110 � �

As Sign of A = �ve

Set Q[0] = 0

Restore A 001000 000001 001100 4

Step-3

LS(AQ) 001000 000010 01100 � �

A = A � M 001000 111010 01100 � �

As Sign of A = �ve

Set Q[0] = 0

Restore A 001000 000010 011000 3

Step-4

LS(AQ) 001000 000100 11000 � �

A = A � M 001000 111100 11000 � �

As Sign of A = �ve

Set Q[0] = 0

Restore A 001000 000100 110000 2

Step-5

LS(AQ) 001000 001001 10000 � �

A = A � M 001000 000001 10000 � �

As Sign of A = +ve

Set Q[0] = 1 001000 000001 100001 1

Step-6

LS(AQ) 001000 000011 00001 � �

A = A � M 001000 111011 00001 � �

As Sign of A = �ve

Set Q[0] = 0

Restore A 001000 000011 000010 0

From the above result, we see that the quotient = Q = 000010 = 2 and remainder = A =

000011 = 3.

(b) The general fact for any page replacement technique is that as the number of frames available

increases, the number of page faults will decrease.

However, for some page replacement algorithms, the page fault rate may increase as the

number of allocated frames increases. This fact is most unexpected and is known as Belady�s

anomaly.

To illustrate the problem that is possible with a FIFO page replacement algorithm, we

consider the reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

Then it can be noticed that the number of faults for four frames (10) is greater than the

number of faults for three frames (9). This is very much unexpected result and is known as

Belady�s anomaly.

SQP.14 Computer Organization

11. (a) What are the different types of DMA controllers and how do they differ in their functioning?

(b) Explain the basic DMA operations for transfer of data between memory and peripherals.

(c) Differentiate between memory mapped I/O and I/O mapped I/O. 5 + 5 + 5

Answer

(a) DMA controllers are of two types:

� Independent DMA controller

� DMA controller having multiple DMA-channels

Independent DMA controller:

For each I/O device a separate DMA controller is used. Each DMA controller takes care of

supporting one of the I/O controllers. A set of registers to hold several DMA parameters is

kept in each DMA controller. Such arrangement is shown in Fig. 9 for floppy disk controller

(FDC) and hard disk controller (HDC). DMA controllers are controlled by the software.

Figure 9 Independent DMA controller

 Figure 10 DMA controller having multiple DMA channels

Solved Question Paper 2010 (CS-303) SQP.15

DMA controller having multiple DMA-channels:

In this type of DMA controller, only one DMA controller exists in the system, but this DMA

controller has multiple sections or channels each channel is for one I/O device. In this case,

the software deals each channel in the same way. Multiple DMA channels in a DMA

controller work in overlapped fashion, but not in fully parallel mode since they are embedded

in a single DMA controller. Such DMA controller design technique is adopted in most of the

computer system and is shown in Fig. 10 for floppy disk controller (FDC) and hard disk

controller (HDC).

(b) In DMA transfer, I/O devices can directly access the main memory without intervention by

the processor. Figure 11 shows a typical DMA system. The sequences of events involved in

a DMA transfer between an I/O device and the main memory are discussed next.

Figure 11 Typical DMA System

A DMA request signal from an I/O device starts the DMA sequence. DMA controller

activates the HOLD line. It then waits for the HLDA signal from the CPU. On receipt of

HLDA, the controller sends a DMA ACK (acknowledgement) signal to the I/O device. The

DMA controller takes the control of the memory buses from the CPU. Before releasing the

control of the buses to the controller, the CPU initializes the address register for starting

memory address of the block of data, word-count register for number of words to be transferred

and the operation type (read or write). The I/O device can then communicate with memory

through the data bus for direct data transfer. For each word transferred, the DMA controller

increments its address-register and decrements its word count register. After each word

transfer, the controller checks the DMA request line. If this line is high, next word of the

block transfer is initiated and the process continues until word count register reaches zero

SQP.16 Computer Organization

(i.e., the entire block is transferred). If the word count register reaches zero, the DMA

controller stops any further transfer and removes its HOLD signal. It also informs the CPU

of the termination by means of an interrupt through INT line. The CPU then gains the

control of the memory buses and resumes the operations on the program which initiated the

I/O operations.

(c) (i) In the isolated (I/O mapped) I/O, computers use one common address bus and data bus to

transfer information between memory or I/O and the CPU; but use separate read-write

control lines one for memory and another for I/O. Whereas, in memory mapped I/O, computers

use only one set of read and write lines along with same set of address and data buses for

both memory and I/O devices.

(ii) The isolated I/O technique isolates all I/O interface addresses from the addresses assigned to

memory. Whereas, the memory mapped I/O does not distinguish between memory and I/O

addresses.

(iii) Processors use different instructions for accessing memory and I/O devices in isolated I/O.

In memory mapped I/O, processors use same set of instructions for accessing memory and

I/O.

(iv) Thus, the hardware cost is more in isolated I/O relative to the memory mapped I/O, because

two separate read-write lines are required in first technique.

Group-A

(Multiple-Choice Type Questions)

1. Choose the correct alternatives for the following: l0 ¥ 1 = 10

(i) Periodic refreshing is needed in

(a) ROM (b) EPROM (c) SRAM (d) DRAM

Answer

(d) DRAM

(ii) The 2�s complement representation of (�24) in a 16-bit micro-computer is

(a) 0000 0000 0001 1000 (b) 1111 1111 1110 0111

(c) 1111 1111 1110 1000 (d) 0001 0001 1111 0011

Answer

(c) 1111 1111 1110 1000

(iii) Which of the following addressing modes is used in �Push B�?

(a) Immediate (b) Register (c) Direct (d) Register Direct

Answer

(a) Immediate

(iv) Which of the following I/O mechanisms requires the least hardware support?

(a) Polled (b) Interrupt driven (c) DMA (d) Memory-mapped

Answer

(a) Polled

(v) The basic principle of a Von Neumann computer is

(a) storing program and data in separate memory

(b) using pipeline concept

2010
Computer Organization

and Architecture
(CS-404)

Time Allotted: 3 hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

SQP.2 Computer Organization

(c) storing program and data in the same memory

(d) using a large number of register.

Answer

(c) storing program and data in the same memory

(vi) The performance of a pipelined processor suffers if

(a) the pipeline stages have different delays

(b) consecutive instructions are depends on each other

(c) the pipeline stages share H/W resource

(d) all of these.

Answer

(d) all of these

(vii) Associative memory is a

(a) very cheap memory (b) pointer addressable memory

(c) content addressable memory (d) slow memory

Answer

(c) content addressable memory

(viii) How many RAM chips of size (256 K ¥ 1 bit) are required to build 1 M byte memory?

(a) 24 (b) 10 (c) 32 (d) 8

Answer

(c) 32

(ix) A ripple carry adder requires time in the order of

(a) linear time (O(N)) (b) constant (c) (O(log (N))) (d) (O (N log (N)))

Answer

(a) linear time (O(N))

(x) How many address bits are required for a 1024 ¥ 8 memory?

(a) 5 (b) 10 (c) 1024 (d) None of these

Answer

(b) 10

 Group-B

(Short-Answer Type Questions)

Answer any three of the following. 3 ¥ 5 = 15

2. Using 8-bit 2�s complement integers, perform the following computations:

(i) 26 � (�4) (ii) 1 � 7

Answer

(i) Binary representation of 26 = 0001 1010

Binary representation of 4 = 0000 0100

Binary representation of (�4) = 1111 1100

2�s complement of (�4) = 0000 0100

Therefore, 26 � (�4) = 0001 1010 + 0000 0100 = 0001 1110, which is the answer.

(ii) Binary representation of 1 = 0000 0001

Binary representation of 7 = 0000 0111

2�s complement of (7) = 1111 1001

Solved Question Paper 2010 (CS-404) SQP.3

Therefore, 1 � 7 = 0000 0001 + 1111 1001 = 1111 1010, which shows that the result is

negative (because of bit �1� in leftmost position). To get the result in familiar form, take

2�s complement of the 7-bit magnitude of this result and this becomes 000 0110. This is

binary equivalent of +6. Therefore, the result is � 6.

3. Explain the following with respect to pipelined architecture:

Speed-up, throughput, efficiency.

Answer

Speed-up: It is defined as

Time to execute tasks in -stage non-pipeline processor
=

Time to execute tasks in -stage pipeline processor

n k
S

k n k

. .

[(1)]

n k

k n

t

t
=

+ -
where, t = clock period of the pipeline processor.

Figure 1 Concept of pipelining

Time to execute n tasks in k-stage pipeline processor is t[k + (n � 1)] units, where k clock

periods (cycles) are needed to complete the execution of the first task and remaining (n � 1)

tasks require (n�1) cycles. Time to execute n tasks in k-stage non-pipeline processor is n.k.t,

where each task requires k cycles because no new task can enter the pipeline until the previous

task finishes.

It can be noted that the maximum speed-up is k, for n >> k. But this maximum speed-up is

never fully achievable because of data dependencies between instructions, interrupts, program

branches, etc.

Efficiency: To define it, we need to define another term �time-space span�. It is the product

(area) of a time interval and a stage space in the space-time diagram. A given time-space span

can be in either a busy state or an idle state, but not both.

The efficiency of a linear pipeline is measured by the percentage of busy time-space spans

over the total time-space span, which equals the sum of all busy and idle time-space spans. Let

n, k, t be the number of tasks (instructions), the number of stages and the clock period of a

linear pipeline, respectively. Then the efficiency is defined by

. .

.[. (1).] (1)

n k n

k k n k n

t
h

t t
= =

+ - + -

Note that h Æ 1 (i.e., 100%) as n Æ •. This means that the larger the number of tasks flowing

through the pipeline, the better is its efficiency. For the same reason as speed-up, this ideal

efficiency is achievable.

SQP.4 Computer Organization

Throughput: The number of tasks that can be completed by a pipeline per unit time is called its

throughput. Mathematically, it is defined as

. (1).

n

k n

h
w

t t t
= =

+ -

Note that in ideal case, w = 1/t = f, frequency, when h = 1. This means that the maximum

throughput of a linear pipeline is equal to its frequency, which corresponds to one output result

per clock period.

4. Explain the working (with a suitable example) of a carry look-ahead adder.

Answer

A Carry Look-ahead Adder (CLA) is a high-speed adder, which adds two numbers without

waiting for the carries from the previous stages. In the CLA, carry-inputs of all stages are

generated simultaneously, without using carries from the previous stages.

In the full adder, the carry output Ci+1 is related to its carry input Ci as follows:

Ci+1 = AiBi + (Ai + Bi)Ci

This result can be rewritten as:

Ci+1 = Gi + PiCi (1)

where Gi = AiBi and Pi = Ai + Bi

The function Gi is called the carry-generate function, since a carry Ci+1 is generated when

both Ai and Bi are 1s. The function Pi is called as carry-propagate function, since if Ai or Bi is a

1, then the input carry Ci is propagated to the next stage. The basic adder (BA) for generating

the sum Si, carry propagate Pi and carry generate Gi bits, is shown in Fig. 2. The sum bit Si is =

Ai ≈ Bi ≈ Ci. For the implementation of one basic adder, two XOR gates, one AND gate and

one OR gate are required.

Figure 2 Basic adder

For example, we want to design a 4-bit CLA, for which four carries C1, C2, C3 and C4 are to be

generated. Using equation number (1); C1, C2, C3 and C4 can be expressed as follows:

C1 = G0 + P0C0

C2 = G1 + P1C1

C3 = G2 + P2C2

C4 = G3 + P3C3

These equations are recursive and the recursion can be removed as below.

C1 = G0 + P0C0 (2)

C2 = G1 + P1C1

Solved Question Paper 2010 (CS-404) SQP.5

= G1 + P1(G0 + P0C0)

= G1 + P1G0 + P1P0C0 (3)

C3 = G2 + P2C2

= G2 + P2(G1 + P1G0 + P1P0C0)

= G2 + P2G1 + P2P1G0 + P2P1P0C0 (4)

C4 = G3 + P3C3

= G3 + P3(G2 + P2G1 + P2P1G0 + P2P1P0C0)

= G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0 (5)

The equations (2), (3), (4) and (5) suggest that C1, C2, C3 and C4 can be generated directly from

C0. In other words, these four carries depend only on the initial carry C0. For this reason, these

equations are called carry look-ahead equations. A 4-bit carry look-ahead adder (CLA) is

shown in Fig. 3.

The maximum delay of the CLA is 6 ¥ D (for Gi and Pi generation, delay = D, for Ci generation,

delay = 2D and lastly another 3D for sum bit Si) where D is the average gate delay. The same holds

good for any number of bits because the adder delay does not depend on size of number (n). It

depends on the number of levels of gates used to generate the sum and the carry bits.

Figure 3 4-bit Carry Look-ahead Adder (CLA)

5. Explain how a RAM of capacity 2k bytes can be mapped into address space (1000)H to (17FF)H

of CPU having a 16-bit address lines. Show how the address lines are decoded to generate the

chip select condition for the RAM.

Answer

Since the capacity of RAM memory is 2k bytes, the memory uses 11 (2 KB = 211) address lines,

say namely A10�A0, to select one word. Thus, memory�s internal address decoder uses 11 lines

A10�A0 to select one word.

To select this memory module, remaining 5 (i.e., 16�11) address lines A15�A11 are used. Thus,

an external decoding scheme is employed on these higher-order five address bits of processor�s

address.

SQP.6 Computer Organization

The address space of the memory is 1000H and 17FFH.

Therefore, the starting address (1000)H in memory is as

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Based on the higher-order five bits (00010), external decoding scheme performs a logical AND

operation on address values: 15 14 13 12 11A , A , A , A and A . The output of AND gate acts as chip select

(CS) line. The address decoding scheme is shown in Fig. 4.

Figure 4 Address decoding scheme

6. What is cache memory? What are the different mechanisms of writing into it? Briefly describe.

Answer

Cache memory is a special high-speed main memory, sometimes used to increase the speed of

processing by making the current programs and data available to the CPU at a rapid rate.

Generally, the CPU is faster than main memory, thus resulting that processing speed is limited

mainly by the speed of main memory. So, a technique used to compensate the speed mismatch

between CPU and main memory is to use an extremely fast, small cache between CPU and main

memory, whose access time is close to CPU cycle time. The cache is used for storing portions of

programs currently being executed in the CPU and temporary data frequently needed in the

present computations. Thus, the cache memory acts as buffer between the CPU and main

memory. By making programs and data available at a rapid rate, it is possible to increase the

performance of computer.

There are two methods in writing into cache memory:

Write-Through Policy: This is the simplest and most commonly used procedure to update the cache.

In this technique, when the cache memory is updated, at the same time the main memory is also

updated. Thus, the main memory always contains the same data as the cache. But it is a slow process,

since each time main memory needs to be accessed.

Write-Back Policy: In this method, during a write operation only the cache location is updated. When

the update occurs, the location is marked by a flag called modified or dirty bit. When the word is

replaced from cache, it is written into main memory if its flag bit is set. The philosophy of this method

is based on the fact that during a write operation, the word residing in cache may be accessed several

times (temporal locality of reference). This method reduces the number of references to the main

Solved Question Paper 2010 (CS-404) SQP.7

memory. However, this method may encounter the problem of inconsistency due to two different

copies of the same data, one in cache and other in main memory.

Group-C

(Long-Answer Type Questions)

Answer any three of the following. 3 ¥ 15 = 45

7. (a) What do you mean by Instruction Cycle, Machine Cycle and T-States?

(b) Compare RISC with CISC.

(c) What do you mean by Von Neumann bottleneck?

Specify possible strategies for handling it. 6 + 5 + 4

Answer

(a) Instruction cycle: The processing required for a single instruction is called instruction cycle.

The control unit�s task is to go through an instruction cycle that can be divided into five

major phases:

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Fetch the operand(s) from memory or register.

4. Execute the whole instruction.

5. Store the output result to the memory or register.

Machine cycle: A machine cycle consists of necessary steps carried out to perform the

memory access operation. Each of the basic operations such as fetch or read or write

operation constitutes a machine cycle. An instruction cycle consists of several machine

cycles.

T-states: One clock cycle of the system clock is referred to as T-state.

(b)

CISC RISC

1. A large number of instruction types used� 1. Relatively few number of instruction types�

typically from 100 to 250 instructions. typically less than100 instructions.

2. A large number of addressing modes used� 2. Relatively few addressing modes�typically less

typically from 5 to 15 different modes. than or equal to 5.

3. Variable-length instruction formats. 3. Fixed-length, easily decoded instruction formats.

4. Small number of general-purpose registers 4. Large number of general-purpose registers

(GPRs)�typically 8�24 GPRs. (GPRs)�typically 32�192 GPRs.

5. Clock per instruction (CPI) lies between 2 and 15. 5. Clock per instruction (CPI) lies between 1 and 2.

6. Mostly microprogrammed control units. 6. Mostly hardwired control units.

7. Most instructions manipulate operands in memory. 7. All operations are executed within registers of the CPU.

(c) One of the major factors contributing for a computer�s performance is the time required to

move instructions and data between the CPU and main memory. The CPU has to wait longer

to obtain a data-word from the memory than from its registers, because the registers are very

fast and are logically placed inside the processor (CPU). This CPU-memory speed disparity

is referred to as Von-Neumann bottleneck.

This performance problem is reduced by using a special type memory called cache memory

between the CPU and main memory. The speed of cache memory is almost same as the

SQP.8 Computer Organization

CPU, for which there is almost no waiting time of the CPU for the required data-word to

come. Another way to reduce the problem is by using special types of computers known as

Reduced Instruction Set Computers (RISC). This class of computers generally uses a large

number of registers, through which the most of the instructions are executed. This computer

usually limits access to main memory to a few load and store instructions. This architecture

is designed to reduce the impact of the bottleneck by reducing the total number of the

memory accesses made by the CPU and by increasing the number of register accesses.

8. (a) With the help of a block diagram, describe the components of a microprogrammed control

unit. Discuss the advantages and disadvantages of horizontal and vertical micro-instructions.

What is a microprogram sequencer/control?

(b) What is bus arbitration? Explain clearly. (4 + 4 + 2) + 5

Answer

(a) The architecture of a typical modern microprogrammed control unit is shown in Fig. 5. This

architecture was proposed by Maurice Wilkes in 1953.

Figure 5 General-purpose microprogrammed control unit

The various components used in the figure are summarized next.

Control memory buffer register (CMBR): The function of CMBR is same as the MBR

(memory buffer register) of the main memory. It is basically a latch and acts as a buffer for

the microinstructions retrieved from the CM. Typically, each micro-instruction has three

fields as

Condition Branch Control
select address functions

Solved Question Paper 2010 (CS-404) SQP.9

The condition select field selects the external condition to be tested. The output of the

MUX will be 1, if the selected condition is true. The MPC will be loaded with the address

specified in the branch address field of the microinstruction, because the output of the MUX

is connected to the load input of the Micro Program Counter (MPC). However, the MPC

will point to the next microinstruction to be executed, if the selected external condition is

false. Thus, this arrangement allows conditional branching. The control function field of the

microinstruction may hold the control information in an encoded form which thus may

require decoders.

Microprogram counter (MPC): The task of MPC is same as the PC (program counter) used

in the CPU. The address of the next micro-instruction to be executed is held by the MPC.

Initially, it is loaded from an external source to point to the starting address of the

microprogram to be executed. From then on, the MPC is incremented after each micro-

instruction fetch and the instruction fetched is transferred to the CMBR. However, the MPC

will be loaded with the contents of the branch address field of the micro-instruction that is

held in the CMBR, when a branch instruction is encountered.

External condition select MUX: Based on the contents of the condition select field of the

microinstruction, this MUX selects one of the external conditions. Therefore, the condition

to be selected must be specified in an encoded form. Any encoding leads to a short micro-

instruction, which implies a small control memory; hence the cost is reduced. Suppose two

external conditions X1, X2 are to be tested; then the condition-select and actions taken are

summarized next:

Condition select Action taken

00 No branching

01 Branch if X1 = 1

10 Branch if X2 = 1

11 Always branching (unconditional branching)

The multiplexer has four inputs V0, V1, V2, V3 where Vi is routed to the multiplexer�s output

when the condition select field has decimal equivalent i. Hence we require V0 = 0, V1 = X1,

V2 = X2, V3 = 1 to control the loading of microinstruction branch addresses into MPC.

Advantages of horizontal micro-instructions:

(i) Ability to express a high degree of parallelism.

(ii) Very little encoding of the control information.

Disadvantage of horizontal micro-instructions:

(i) The length of the micro-instruction is large and thus the control memory size is huge.

Advantages of vertical micro-instructions:

(i) Short micro-instruction format and thus the overall of the control memory is small.

(ii) A single field can produce an encoded sequence.

Disadvantages of vertical micro-instructions:

(i) Limited ability to express parallel microoperations.

(ii) Considerable encoding of the control information. Therefore, this technique takes more

time for generating the control signals due to the decoding time and also more

microinstructions are needed.

SQP.10 Computer Organization

The microprogramming approach is systematic, flexible, and less error-prone. Advances in

IC technology have made LSI designers think of a general solution for implementing a

microprogrammed CPU. A microprogrammed CPU has two major activities to be performed:

1. Fetching and interpreting micro-instructions

2. Generating the next address of the micro-instruction to be retrieved

The first task is assumed by the control memory and the associated circuit elements.

Designers have replaced the next address generation of a microprogrammed control unit

with a single LSI component called a microprogram sequencer, which checks certain bits in

the microinstruction and finds the next address for the control memory. The sequencer

contains a microprogrammed counter (MPC) and circuit elements necessary to perform

functions such as address incrementing, address sequencing for subroutine calls, returns, and

conditional branching.

(c) A conflict may arise if the number of I/O devices or processors or memory unit try to access

the common bus at the same time, but access can be given to only one of those. Only one

processor or I/O device can be bus master. The bus master is the controller that has access to

the bus at an instance. To resolve these conflicts, bus arbitration procedure is implemented

to coordinate the activities of all devices requesting memory transfers. Bus arbitration refers

to a process by which the current bus master accesses and then leaves the control of the bus

and passes it to another bus requesting processor unit. The selection of the bus master must

take into account the needs of various devices by establishing a priority system for gaining

access to the bus. The bus arbiter decides who would become current bus master. There are

two approaches to bus arbitration:

1. Centralized bus arbitration: A single bus arbiter performs the required arbitration.

2. Distributed bus arbitration: All devices participate in the selection of the next bus

master.

There are three bus arbitration methods:

1. Daisy Chaining Method.

2. Polling or Rotating Priority Method.

3. Fixed Priority or Independent Request Method.

9. (a) A CPU has 32-bit memory address and a 256 KB cache memory. The cache is organized as

a 4-way set associative cache with cache block size of 16 bytes.

(i) What is the number of sets in the cache?

(ii) What is the size (in bits) of the tag field per cache block?

(iii) What is the number and size of comparators required for tag matching?

(iv) How many address bits are required to find the byte offset within a cache block?

(b) What are the widths of data bus and address bus for (4096 ¥ 8) memory? What do you mean

by program status word? Define content addressable memory. What is control word?

(4 ¥ 2) + (2 + 2 + 2 + 1)

Answer

(a) (i) The of blocks in cache = (256 * 1024)/16 = 214 = 16384.

Since the cache is 4-way set associative, the number of sets = 214/4 = 212 = 4096.

(ii) Since cache has 4096 sets, the number bits required to select a set = 12.

Each block consists of 16 bytes.

Therefore, number of bits required to select a byte (word) = 4.

Solved Question Paper 2010 (CS-404) SQP.11

Since the CPU generates 32-bit address to access a byte (word) in memory, the number

of bits of tag required in each entry in the tag array = 32 � (12 + 4) = 16.

(iii) As calculated previously, the number of bits required to select a byte (word) = 4.

(b) Given memory size is 4096 ¥ 8. The width of data bus = 8-bit and that of address bus =

12-bit (because 4096 = 212).

Program Status Word (PSW): It is a special purpose register that holds the condition code flags and

other information that describe the status of the currently executing program. This register is also

known as status register. Generally, there are five flags (i.e., status bits), namely, Carry (CY), Parity

(P), Auxiliary Carry (AC), Zero (Z) and Sign (S) flags. The processor uses these flags to test data

conditions.

Content Addressable Memory: The searching time for desired data stored in memory can be reduced

largely if stored data can be searched only by the data value itself rather than by an address. The

memory accessed by the data content is known as associative memory or Content Addressable

Memory (CAM). When a data is stored in this memory, no address is stored. At any first empty

location, the data is stored. When a data word is to be read from the memory, only the data word or

part of data called key is provided. The memory is sequentially searched thoroughly for match with

the specified key and set them for reading next.

Control Word: In the microprogrammed control unit design approach, all control functions that can be

simultaneously activated are grouped to form control words stored in a separate ROM memory called

the control memory. From the control memory, the control words are fetched one at a time and the

individual control fields are routed to various functional units to activate their appropriate circuits.

The desired task is performed by activating these circuits sequentially.

10. (a) Draw and explain the flowchart for division of two binary numbers using non-restoring

algorithm. Use the example of 8 to be divided by 3.

(b) Explain the difference between instruction pipeline and arithmetic pipeline.

(c) Why is Carry Look-Ahead Adder (CLA) called a fast parallel adder? What will be the delay

if you construct a 16-bit CLA using 4-bit CLA blocks?

Answer

(a) In the restoring division method, some extra additions are required to restore the number,

when A is negative. Proper restructuring of the restoring division algorithm can eliminate

that restoration step. This is known as the non-restoring division algorithm.

The three main steps in restoring division method were

1. Shift AQ register pair to the left one position.

2. A = A � M.

3. If the sign of A is positive after the step 2, set Q[0] = 1; otherwise, set Q[0] = 0 and

restore A.

Now, assume that the step 3 is performed first and then step 1 followed by the step 2. Under

this condition, the following two cases may arise.

Case 1: When A is positive

Note that shifting A register to the left one position is equivalent to the computation of 2A

and then subtraction. This gives the net effect on A as 2A � M.

Case 2: When A is negative

First restore A by adding the content of M register and then shift A to the left one position.

After that A will be subtracted from M register. So, all together they give rise the value of A

as 2(A + M) � M = 2A + M.

SQP.12 Computer Organization

Basis on these two observations, we can design the non-restoring division method and it is

described in the flowchart, as shown in Fig. 6.

Figure 6 Non-restoring division method

Solved Question Paper 2010 (CS-404) SQP.13

This algorithm removes the restoration step, though it may require a restoration step at the

end of algorithm for remainder A, if A is negative.

Example: we have dividend Q = 8 = 1000 and divisor M = 3 = 0011.

 M A Q Size

Initial Configuration 00011 00000 1000 4

Step-1

As sign of A = +ve

LS(AQ) 00011 00001 000� �

A = A � M 00011 11110 000� �

As sign of A = �ve

Set Q[0] = 0 00011 11110 0000 3

Step-2

As sign of A = �ve

LS(AQ) 00011 11100 000� �

A = A + M 00011 11111 000� �

As sign of A = �ve

Set Q[0] = 0 00011 11111 0000 2

Step-3

As sign of A = �ve

LS(AQ) 00011 11110 000� �

A = A + M 00011 00001 000� �

As sign of A = +ve

Set Q[0] = 1 00011 00001 0001 1

Step-4

As sign of A = +ve

LS(AQ) 00011 00010 001� �

A = A � M 00011 11111 001� �

As sign of A = �ve

Set Q[0] = 0 00011 00010 0010 0

Restore A

From the above last step, we conclude that quotient = 0010 = 2 and remainder = 00010 = 2.

(b) 1. Instruction pipeline is used to process all instructions, whereas arithmetic pipeline is

used to process arithmetic type instructions such as addition, subtraction, multiplication,

etc.

2. In instruction pipeline, the execution of a stream of instructions can be pipelined by

overlapping the execution of the current instruction with the fetch, decode and operand

fetch of subsequent instructions. An arithmetic pipeline divides an arithmetic operation,

such as a multiply, into multiple arithmetic steps each of which is executed one-by-one

in different arithmetic stages in the ALU.

3. All high-performance computers are now equipped with instruction pipeline. The number

of arithmetic pipelines varies from processors to processors.

SQP.14 Computer Organization

(c) In the CLA, carry-inputs of all stages are generated simultaneously, without using carries

from the previous stages. These input carries depend only on the initial carry C0. For this

reason, CLA is fast parallel adder.

The maximum delay for such adder can be computed as:

D (for Gi, Pi generation) + 2D (for C4 generation from C0) + 2D (for C8 generation from C4) + 2D (for

C12 generation from C8) + 2D (for C15 generation from C12) + 3D (for S15 generation from C15) = 12D.

11. (a) What is SRAM?

(b) What is DMA?

(c) What is the bandwidth of a memory system that transfers 128-bit data per reference having a

speed of 20 nanoseconds per operation?

(d) How do the following influence the performance of a virtual memory system?

(i) Size of page

(ii) Replacement policies of pages.

(e) What is a floating point number? Write down the steps to subtract 110. 101101 from 10110.

1110 2 + 3 + 3 + 4 + 3

Answer

(a) The SRAM (static RAM) memories consist of circuits capable of retaining the stored

information as long as power is applied. That means this type of memory requires constant

power. SRAM memories are used to build cache memory.

(b) To transfer large blocks of data at high speed, this method is used. A special controlling unit

may be provided to allow transfer a block of data directly between a high speed external

device like magnetic disk and the main memory, without continuous intervention by the

CPU. This method is called direct memory access (DMA).

DMA transfers are performed by a control circuit that is part of the I/O device interface. We

refer to this circuit as a DMA controller. The DMA controller performs the functions that

would normally be carried out by the CPU when accessing the main memory. During DMA

transfer, the CPU is idle or can be utilized to execute another program and CPU has no

control of the memory buses. A DMA controller takes over the buses to manage the transfer

directly between the I/O device and the main memory.

(c) The bandwidth is the data transfer rate by the memory. It is expressed as number of bytes

(words) per second.

Here, the memory system transfers 128-bit data per reference having a speed of 20 nano sec

per operation.

Therefore, 128-bit data word is transferred in 20 ns.

So, the bandwidth of the memory system = 128/20 bits per ns

= (128 * 109)/20 bits per sec

= 64 * 108 bits per sec

(d) (i) Page size: If page size is large, the page fault rate will be less. But, in that case,

transfer time of the page will increase.

If page size is small, the memory is better utilized, but number of pages and hence the

size of page table will be large.

(ii) Replacement policy: When a page fault occurs, a page replacement is needed to select

one of the existing pages to make the room for the required page. There are several

Solved Question Paper 2010 (CS-404) SQP.15

replacement algorithms such as FIFO (First-in First-out), LRU (Least Recently Used)

and optimal page replacement algorithm available. The algorithm which gives lowest

page faults is considered as best algorithm.

The FIFO algorithm is simplest and its criterion is �select a page for replacement

that has been in main memory for longest period of time�.

The LRU algorithm states that �select a page for replacement, if the page has not

been used often in the past�. The LRU algorithm is difficult to implement, because it

requires a counter for each page to keep the information about the usage of page.

The optimal algorithm generally gives the lowest page faults of all algorithms and

its criterion is �replace a page that will not be used for the longest period of time�. This

algorithm is also difficult to implement, because it requires future knowledge about

page references.

An algorithm is evaluated by running it on a particular string of memory references

and computing the number of page faults. The string of memory references is called a

reference string.

(e) In floating-point representation, a number has two parts. The first part is called mantissa or

fraction, to represent a signed fixed-point number, which may be a fraction or an integer.

The second part is called exponent or characteristic, to designate the position of the radix

point. For example, in floating-point representation, the decimal number +786.231 is

represented with a mantissa and an exponent as follows:

Mantissa Exponent

+ 0.786231 + 03

This representation is equivalent to the scientific notation + 0.786231 ¥ 10+03.

If the integer system of representation for mantissa is used, the decimal number +786.231 is

represented in floating-point with a mantissa and an exponent as follows:

Mantissa Exponent

+ 786231 � 03

Subtraction of 110. 101101 from 10110. 1110:

110. 101101 = .1101 01101 ¥ 2+3

10110. 1110 = .1011 01110 ¥ 2+5

We select the larger exponent (i.e., +5) as the exponent of the result.

Therefore, the mantissa of the number with smaller exponent, i.e., .1101 01101 is shifted

right 2 positions (equals to the difference in the exponents).

So, this becomes .001101 01101.

Now we subtract .001101 01101 from .1011 01110 and this gives rise to .01111 111011

This mantissa indicates that it is non-normalized number, because of a leading 0.

So, after normalization, the resultant mantissa becomes .11111 11011 and its exponent

becomes equivalent to +4.

Group-A

(Multiple-Choice Type Questions)

1. Choose the correct alternatives for the following: 10 ¥ 1 = 10

(i) How many bits are needed to represent a digit in hexadecimal notation?

(a) 8 (b) 16 (c) 4 (d) 2.

Answer

(c) 4

(ii) How many RAM chips (each of 128 ¥ 4) are required to provide a memory capacity of

2048 bytes?

(a) 32 (b) 16 (c) 8 (d) 64

Answer

(a) 32

(iii) Principle of locality is justified in the use of

(a) daisy chaining (b) DMA (c) interrupts (d) Cache memory

Answer

(d) Cache memory

(iv) Range of values on a data bus of an 8-bit microprocessor using 2�s complement

representation will be

(a) � 128 to + 128 (b) � 128 to + 127 (c) � 127 to + 128 (d) � 127 to + 127

Answer

(b) � 128 to + 127

(v) Bidirectional buses use

(a) two back-to-back connected buffers

2010
Computer Organization

and Architecture
CS-404 (EI)

Time Allotted: 3 hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

SQP.2 Computer Organization

(b) two tri-state buffers in cascade

(c) tri-state buffers

(d) two tri-state buffers back-to-back connected in parallel .

Answer

(d) two tri-state buffers back-to-back connected in parallel

(vi) How many memory locations can be accessed by a 32-bit computer?

(a) 64 KB (b) 32 KB (c) 4 GB (d) None of these

Answer

(c) 4 GB

(vii) Highest speed logic gate among the following is

(a) TTL (b) DTL (c) RTL (d) ECL.

Answer

(d) ECL

(viii) A �hit� is considered when a

(a) word is found in the cache (b) word is not found in the cache

(c) word is found in the virtual memory (d) word is not found in the virtual memory

Answer

(a) word is found in the cache

(ix) Which one of the following is volatile in nature?

(a) ROM (b) DVD-ROM (c) CD-ROM (d) RAM.

Answer

(d) RAM

(x) Using binary arithmetic, the unique representation of zero is

(a) sign magnitude (b) 2�s complement (c) 1�s complement (d) none of these

Answer

(b) 2�s complement

Group-B

(Short-Answer Type Questions)

Answer any three of the following. 3 ¥ 5 = 15

2. Explain an interrupt cycle with a flowchart.

Answer

To process interrupts, an interrupt cycle is added to the instruction cycle (which consists of

two major cycles: fetch and execute, here), as shown in Fig. 1. In the interrupt cycle, the

CPU checks to verify if any interrupts have occurred, indicated by the presence of an

interrupt signal. If no interrupts are pending, the CPU proceeds to the fetch cycle and fetches

the next instruction of the current program as usual. If an interrupt is pending, the CPU does

the following:

1. It suspends execution of the current program being executed.

2. It saves the context of the current program being executed. This means saving the

address of the next instruction to be executed and any other data relevant to current

activity of the CPU.

Solved Question Paper 2010 CS-404 (EI) SQP.3

3. It sets PC (program counter) to start the address of interrupt handler (i.e., interrupt

service routine) to service the interrupt.

4. Then process interrupt.

5. After the completion of interrupt handler, the CPU resumes execution of the interrupted

program.

Figure 1 Instruction cycle with interrupts

Interrupts are not always handled immediately. The CPU has authority to disable all or

selected interrupt signals and subsequently enable them. A disabled interrupt simply means

that the CPU can and will ignore that interrupt request signal.

For example, it is generally desirable to finish the processing of one interrupt before

taking on another. Thus, interrupts are often disabled while the CPU is processing an

interrupt. If an interrupt occurs during this time, it generally remains pending and will be

checked by the CPU after the CPU has enabled interrupt.

A simple flowchart of interrupt cycle is shown in Fig. 2.

3. What is the difference between hardwired control and microprogrammed control?

Answer

(i) Microprogrammed control provides a well-structured control organization. Control

signals are systematically transformed into formatted words (microinstructions). Logic

gates, flip flops, decoders and other digital circuits are used to implement hardwired

control organization.

(ii) With microprogramming, many additions and changes are made by simply changing

the microprogram in the control memory. A small change in the hardwired approach

may lead to redesigning the entire system.

(iii) The microprogramming approach is more expensive than hardwired approach. Since a

control ROM memory is needed in the microprogramming approach.

(iv) Microprogrammed control unit design method has been followed in modern-day control

units of processors, and the hardwired approach is almost not followed nowadays.

4. What is a multiprocessor? Write briefly about the Harvard architecture. 1 + 4

Answer

A multiprocessor is a single computer consisting of multiple processors, which may communicate

and cooperate at different levels in solving a given problem. The communication may occur by

sending messages from one processor to the other or by sharing a common memory.

SQP.4 Computer Organization

Figure 2 Flowchart of a simple interrupt cycle

In 1944, Howard Aiken of Harvard University developed a computer (named Automatic

Controlled Calculator and later Harvard Mark I) which used two separate memories, one for

program storage (on punched tape) and other for data storage (on relay latches).

Harvard architecture uses physically separate memories for their instructions and data,

requiring dedicated buses for each of them (see Fig. 3). Thus instructions and data can be

fetched simultaneously.

Figure 3 Harvard architecture

Program memory and data memory can be of different widths, type, etc. Both memories

can be accessed at the same time using separate buses. Thus, Harvard computers are faster

Solved Question Paper 2010 CS-404 (EI) SQP.5

than Von Neumann computers for a given circuit complexity. This architecture has been

followed in modern-day systems like Digital Signal Processors (DSP) and microcontrollers.

The instruction format of the Harvard Mark I machine was

ADDRESS1 ADDRESS2 OPCODE

where ADDRESS1 and ADDRESS2 specified the registers storing the operands while

ADDRESS2 also specified the destination register where the result could be stored. OPCODE

specified the operation (add, subtract or multiplication, etc.) to be performed. The storage

had the capacity to store seventy-two 23-digit decimal numbers

5. With the help of a diagram explain clearly the structure and working of a typical arithmetic

pipeline to perform : X * Y + Z.

Answer

The sub-operations to be performed for the arithmetic expression X * Y + Z in each stage of

the pipeline are as follows:

Sub-operation-1: R1 ¨ X, R2 ¨ Y Input X and Y

Sub-operation-2: R3 ¨ R1 * R2, R4 ¨ Z Multiply and input Z

Sub-operation-3: R5 ¨ R3 + R4 Add Z to product

Five registers are loaded with the new data in every clock period. The corresponding pipeline

is shown in Fig. 4.

Figure 4 Pipeline processing for X * Y + Z

Group-C

(Long-Answer Type Questions)

Answer any three of the following. 3 ¥ 15 = 45

6. (a) Show the bus connection with a CPU to connect four RAM chips of size 256 ¥ 8 bits each

and a ROM chip of 512 ¥ 8 bit size. Assume the CPU has 8-bit data bus and 16-bit address

bus. Clearly specify generation of chip select signals.

SQP.6 Computer Organization

(b) What is an instruction cycle? Describe the steps of an instruction cycle with a suitable diagram.

(c) What are the advantages of interrupt-initiated I/O over programmed I/O? 6 + 6 + 3

Answer

(a) Figure 5 shows the interconnection diagram of these memories with the CPU having 16

address lines.

Figure 5 Interconnection diagram

The address lines 1 to 8 are connected to each memory and address line 9 is used in dual

purposes. In case of a RAM selection out of four RAMs, the line no. 9 and line no. 10 are used

through a 2-to-4 decoder. The line no. 9 is also connected to the ROM as address line along with

lines 1 to 8 giving a total of 9 address lines in the ROM, since the ROM has 512 locations. The

CPU address line number 11 is used for separation between RAM and ROM. The other 12 to 16

lines of CPU are unused and for simplicity we assume that they carry 0s as address signals. For

ROM, 10th line is unused and thus it can be assumed that this line carries signal 0.

Solved Question Paper 2010 CS-404 (EI) SQP.7

The address map table for the memory connection to the CPU shown in Fig. 6 is constructed

in the following table.

Chip selected Address space (in HEX) Address bus

11 10 9 8 7 6 5 4 3 2 1

RAM1 0400 � 04FF 1 0 0 x x x x x x x x

RAM2 0500 � 05FF 1 0 1 x x x x x x x x

RAM3 0600 � 06FF 1 1 0 x x x x x x x x

RAM4 0700 � 07FF 1 1 1 x x x x x x x x

ROM 0000 � 01FF 0 0 x x x x x x x x x

(b) The processing required for each instruction of a program is called instruction cycle. The

control unit�s task is to go through an instruction cycle (see Fig. 6) that can be divided into

five major phases:

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Fetch the operand(s) from memory or register.

4. Execute the whole instruction.

5. Store the output result to the memory or register.

Figure 6 Instruction cycle

SQP.8 Computer Organization

The step 1 is basically performed using a special register in the CPU called program counter

(PC) that holds the address of the next instruction to be executed. If the current instruction is

simple arithmetic/logic or load/store type, the PC is automatically incremented. Otherwise,

the PC is loaded with the address dictated by the currently executing instruction. The

decoding done in the step 2 determines the operation to be performed and the addressing

mode of the instruction for calculation of address of operands. After getting the information

about the addresses of operands, the CPU fetches the operands in the step 3 from memory or

registers and stores them in its registers. In the step 4, the ALU of the processor executes the

instruction on the stored operands in the registers. After the execution of instruction, in the

phase 5, the result is stored back in the memory or register and returns to the step 1 to fetch

the next instruction in sequence. All these sub-operations are controlled and synchronized by

the control unit.

(c) In the programmed I/O method, the program constantly monitors the device status. Thus, the

CPU stays in the program until the I/O device indicates that it is ready for data transfer. This

is a time-consuming process since it keeps the CPU busy needlessly. It can be avoided by

letting the device controller continuously monitor the device status and raise an interrupt to

the CPU as soon as the device is ready for data transfer. Upon detecting the external

interrupt signal, the CPU momentarily stops the task it is processing, branches to an interrupt-

service-routine (ISR) or I/O routine or interrupt handler to process the I/O transfer, and then

returns to the task it was originally performing. Thus, in the interrupt-initiated mode, the ISR

software (i.e., CPU) performs data transfer but is not involved in checking whether the

device is ready for data transfer or not. Therefore, the execution time of the CPU can be

optimized by employing it to execute normal program, when no data transfer is required.

7. (a) What are the different types of DMA controllers and how do they function?

(b) Briefly describe pipeline hazards.

(c) What is the difference between a carry-look ahead adder and a ripple carry adder ?

(d) What are the bottlenecks of Von Neumann concept? 5 + 5 + 3 + 2

Answer

(a) DMA controllers are of two types:

� Independent DMA controller

� DMA controller having multiple DMA-channels

Independent DMA controller:

For each I/O device a separate DMA controller is used. Each DMA controller takes care of

supporting one of the I/O controllers. A set of registers to hold several DMA parameters is

kept in each DMA controller. Such arrangement is shown in Fig. 7 for floppy disk controller

(FDC) and hard disk controller (HDC). DMA controllers are controlled by the software.

DMA controller having multiple DMA-channels:

In this type of DMA controller, only one DMA controller exists in the system, but this DMA

controller has multiple sections or channels each channel is for one I/O device. In this case, the

software deals each channel in the same way. Multiple DMA channels in a DMA controller work

in overlapped fashion, but not in fully parallel mode since they are embedded in a single DMA

controller. Such DMA controller design technique is adopted in most of the computer system and

is shown in Fig. 8 for floppy disk controller (FDC) and hard disk controller (HDC).

Solved Question Paper 2010 CS-404 (EI) SQP.9

Figure 7 Independent DMA controller

 Figure 8 DMA controller having multiple DMA channels

(b) Pipeline hazards are situations that prevent the next instruction in the instruction stream from

executing during its designated clock cycle. There are three types of pipeline hazards:

1. Control hazards

2. Structural hazards

3. Data hazards

Control hazards:

They arise from the pipelining of branches and other instructions that change the content of

the program counter (PC) register.

Structural Hazards:

Structural hazards occur when a certain resource (memory, functional unit) is requested by

more than one instruction at the same time.

SQP.10 Computer Organization

Data Hazards:

Inter-instruction dependencies may arise to prevent the sequential (in-order) data flow in the

pipeline, when successive instructions overlap their fetch, decode and execution through a

pipeline processor. This situation due to inter-instruction dependencies is called data hazard.

(c) (i) In the Carry Look-ahead Adder (CLA), carry inputs of all stages are generated

simultaneously, without using carries from the previous stages. In the Ripple Carry

Adder (RCA), carry input of any stage depends on carry out from the previous stage.

(ii) Generally, the CLA is faster than the RCA. Because, the maximum delay of the CLA

is 6 ¥ d, where d is the average gate delay and this holds good for any size numbers.

However, the maximum propagation delay for n-bit RCA is d ¥ n, where n is the

number of bits in each operand.

(iii) The RCA becomes slow once the sizes of operands are increased, which is not true for

CLA. The speed of CLA remains same irrespective of sizes of operands.

(iv) The hardware cost of the CLA is more than that of RCA for same-size number addition.

(d) One of the major factors contributing for a computer�s performance is the time required to

move instructions and data between the CPU and main memory. The CPU has to wait longer

to obtain a data-word from the memory than from its registers, because the registers are very

fast and are logically placed inside the processor (CPU). This CPU memory speed disparity

is referred to as Von-Neumann bottleneck. This performance problem is reduced by using a

special type memory called cache memory between the CPU and main memory. The speed

of cache memory is almost same as the CPU, for which there is almost no waiting time of

the CPU for the required data word to come. Another way to reduce the problem is by using

special types of computers known as Reduced Instruction Set Computers (RISC). This class

of computers generally uses a large number of registers, through which most of the instructions

are executed. This computer usually limits access to main memory to a few load and store

instructions. This architecture is designed to reduce the impact of the bottleneck by reducing

the total number of the memory accesses made by the CPU and by increasing the number of

register accesses.

8. (a) A hierarchical cache-main memory sub-system has the following specifications: cache access

time is 50 ns, main memory access time is 500 ns, 80% of memory request for read, hit ratio

0.9 for read access and write-through scheme is used.

(i) Calculate the average access time of the memory system considering only memory read

cycle.

(ii) Calculate the average access time of the memory system both for read and write.

(b) Explain clearly the procedure of virtual address translation into real address in a paged

virtual memory system.

(c) What is the difference between associative and set-associative mappings? 6 + 6 + 3

Answer

(a) Given,

Cache access time tc = 50 ns.

Main memory access time tm = 500 ns

Probability of read pr = 0.8

Hit ratio for read access hr = 0.9

Writing scheme: write-through.

Solved Question Paper 2010 CS-404 (EI) SQP.11

(i) Considering only memory read cycle,

The average access time tav�r = hr * tc + (1 � hr) * (tc + tm)

= 0.9 * 50 + (1 � 0.9) * 550

= 100 ns

(ii) For both read and write cycles,

The average access time = pr * tav�r + (1 � pr) * tm. Since in write-through method,

access time for write cycle will be the main memory access time.

= 0.8 * 100 + (1 � 0.8) * 500

= 180 ns

(b) Paging is a non-contiguous memory allocation method. In other words, the program is

divided into small blocks in paging and these blocks are loaded elsewhere in the main

memory. In paging, the virtual address space is divided into equal-size blocks called pages

and the physical (main) memory is divided into equal size blocks called frames. The size of

a page and size of a frame are equal. The size of a page or a frame is dependent on the

operating system and is generally 4 KB.

In paging, operating system maintains a data structure called page table, which is used for

mapping from logical address to physical address. The page table generally contains two

fields, one is page number and other is frame number. The table specifies the information

that which page would be mapped to which frame. Each operating system has its own way of

maintaining the page tables; most allocate a page table for each program.

Each address generated by the CPU (i.e., virtual address) is divided into two parts: page

number (p) and offset or displacement (d). The page number p is used as index in the page

table and the offset d is the word number within the page p. The structure of paging method

is shown in Fig. 9.

 Figure 9 Paging structure

(c) (i) The associative cache memory uses the fastest and most flexible mapping method, in

which both address and data of the memory word are stored whereas, in set-associative

SQP.12 Computer Organization

cache, two or more words can be stored under the same index address, which is not

stored in the memory. Each data word is stored together with its tag. The number of

tag-data words under an index is said to form a set.

(ii) The set-associative cache has a higher hit ratio compared to associative cache.

(iii) The set-associative cache is the most expensive memory. The cost increases as set size

increases.

9. (a) Using Booth�s algorithm multiply (�3) and (�5) up to five digits. Show every step.

(b) Evaluate the following statement using zero address and two-address machines: Z = (M + N)

* (P + Q).

(c) Explain Flynn�s classification with respect to computer architecture. 6 + 5 + 4

Answer

(a) M = � 5 = 11011 and Q = �3 = 11101.

M A Q Size

Initial Configuration 11011 00000 11101 0 5

Step-1

As Q[0] = 1and

Q[�1] = 0

A = A � M 11011 00101 11101 0 �

And ARS(AQ) 11011 00010 11110 1 4

Step-2

As Q[0] = 0 and

Q[�1] = 1

A = A + M 11011 11101 11110 1 �

ARS(AQ) 11011 11110 11111 0 3

Step-3

As Q[0] = 1 and

Q[�1] = 0

A = A � M 11011 00011 11111 0 �

ARS(AQ) 11011 00001 11111 1 2

Step-4

As Q[0] = 1 and

Q[�1] = 1

ARS(AQ) 11011 00000 11111 1 1

Step-5

As Q[0] = 1 and

Q[�1] = 1

ARS(AQ) 11011 00000 01111 1 0

Since the Size register becomes 0, the algorithm is terminated and the product is = AQ =

00000 01111, which shows that the product is a positive number. The result is 15 in decimal.

(b) To evaluate the statement Z = (M + N) * (P + Q) in zero and two address machines, we

assume the following assumptions:

LOAD symbolic op-code is used for transferring data to register from memory. STORE

Solved Question Paper 2010 CS-404 (EI) SQP.13

symbolic op-code is used for transferring data to memory from register. The symbolic op-

codes ADD and MULT are used for the arithmetic operations of addition and multiplication

respectively. Assume that the respective operands are in memory addresses M, N, P and Q

and the result must be stored in the memory at address Z.

For zero-address machine

The assembly-language program using zero-address instructions is written next. In the comment

field, the symbol TOS is used, which means the top of stack.

PUSH M ; TOS ¨ M

PUSH N ; TOS ¨ N

ADD ; TOS ¨ (M + N)

PUSH P ; TOS ¨ P

PUSH Q ; TOS ¨ Q

ADD ; TOS ¨ (P + Q)

MULT ; TOS ¨ (M + N) * (P + Q)

POP Z ; Z ¨ TOS

For two-address machine

The assembly-language program using two-address instructions is written below.

LOAD R1, M ; R1 ¨ M[M]

ADD R1, N ; R1 ¨ R1 + M[N]

LOAD R2, P ; R2 ¨ M[P]

ADD R2, Q ; R2 ¨ R2 + M[Q]

MULT R1, R2 ; R1 ¨ R1 * R2

STORE Z, R1 ; Z ¨ R1

(c) Based on the number of simultaneous instruction and data streams used by a CPU during

program execution, digital computers can be classified into four categories. This scheme for

classifying computer organizations was proposed by Michael J Flynn. The objective of a

processor (CPU) is the execution of a sequence of instructions on a set of data. The term

stream is used here to denote a sequence of items (instructions or data) as executed or

operated upon by a single CPU. Instructions or data are defined with respect to a given

processor. An instruction stream is a sequence of instructions as executed by the processor;

a data stream is a sequence of data including input, partial, or temporary results, called for

by the instruction stream.

The multiplicity of the ALU and CU provided to service the instruction and data streams controls

computer organization. Flynn�s four-machine organizations are as follows:

∑ Single instruction stream-single data stream (SISD) machine

∑ Single instruction stream-multiple data stream (SIMD) machine

∑ Multiple instruction stream-single data stream (MISD) machine

∑ Multiple instruction stream-multiple data stream (MIMD) machine

Both instructions and data are fetched from the memory modules. Instructions are decoded by the

control unit, which sends the decoded instruction stream to the processor elements (ALUs) for

execution. Data streams flow between the processor elements and the memory bi-directionally. A

shared memory subsystem, consisting of multiple memory modules, can be used in a machine. Each

instruction stream is generated in the form of control signals by an independent control unit. The

SQP.14 Computer Organization

shared memory subsystem generates multiple data streams simultaneously.

SISD Computer

Most serial computers available today fall in this organization as shown in Fig. 10. Instructions are

executed sequentially but may be overlapped in their execution stages (In other words the technique

of pipelining can be used in the CPU). Modern-day SISD uniprocessor systems are mostly pipelined.

A SISD computer may have more than one functional unit in it, but all are under the supervision of

one control unit. This type of machines can process only scalar type instructions.

Figure 10 SISD Computer

SIMD Computer

Array processors fall into this class. As illustrated in Fig. 11, there are multiple processing elements

supervised by the common control unit. All PEs (processing elements, which are essentially ALUs)

receive the same instruction broadcast from the control unit but operate on different data sets from

distinct data streams. The shared memory subsystem containing multiple modules is very essential.

This machine generally used to process vector-type data.

Figure 11 SIMD computer

MISD Computer

Very few or no parallel computers fit in this organization, which is conceptually illustrated in Fig. 12.

There are n processor elements, each receiving distinct instructions to execute on the same data

stream and its derivatives. The results (outputs) of one processor element become the inputs (oper-

Solved Question Paper 2010 CS-404 (EI) SQP.15

ands) of the next processor element in the series. This architecture is also known as systolic arrays.

This structure has received much less attention, though some fault-tolerance machines can be used in

this class. Thus, in general no practical machine of this class exists.

Figure 12 MISD computer (Systolic array)

MIMD Computer

This category covers multiprocessor systems and multiple computer systems (Fig. 13). An MIMD

computer is called tightly coupled (or Uniform Memory Access (UMA)) if the degree of interactions

among the processors is high. Otherwise, we consider them loosely coupled (or Non-Uniform Memory

Access (NUMA)). Most commercial MIMD computers are loosely coupled.

Figure 13 MIMD computer

Listed below are several system models under each of the three existing computer organizations under

Flynn�s classification.

SQP.16 Computer Organization

Computer class Computer system models

SISD (using one functional unit) IBM 701; IBM 1620; IBM 7090; PDP VAX-11/780.

SISD (with multiple functional units) IBM 360/91; CDC Star-100; TI-ASC; Cray-I; Fujitsu VP-200.

SIMD Illiac-IV; PEPE; BSP.

MIMD IBM 370/ 168 MP; Univac 1100 / 80;

(Loosely coupled) Tandem 16; C.m*.

MIMD C.mmp; Cray-3; S-1; Cray�X MP;

(Tightly coupled) Denelcor HEP.

10. (a) Design and describe the function of a control unit with block diagram for a typical computer

having 16-bit instruction register.

(b) Describe briefly the different addressing modes. 9 + 6

Answer

(a) Figure 14 shows a general model of the control unit with all its inputs and outputs. The

inputs are as follows:

∑ Clock: In each clock period, the control unit causes one micro-operation or a group of

simultaneous micro-operations to be executed.

∑ Instruction register: This register holds the op-code of the current instruction to be executed

that determines which micro-operations to perform during the execution cycle.

∑ Flags: The control unit needs these to determine the status of the CPU and the outcome of

the previous ALU operations. For example, the control unit will branch to a specific

location in memory if the zero flag is set, for the instruction �branch on zero (BZ)�.

∑ Control signals from control bus: These are provided to the control unit by the control

bus portion of the system bus. These include signals like interrupt signals and

acknowledgements.

The outputs are as follows:

∑ Control signals within the processor: These signals are of two types�one that activates

specific ALU functions and other that causes data to be moved from one register to

another register.

∑ Control signals to control bus: These signals are also of two types�one for memory and

other for I/O devices.

Figure 14 General model of the control unit

Solved Question Paper 2010 CS-404 (EI) SQP.17

(b) The ALU of the CPU executes the instructions as dictated by the op-code field of instructions.

The instructions are executed on some data stored in registers or memory. The different

ways in which the location of an operand is specified in an instruction are referred to as

addressing modes. A computer uses variety of addressing modes; some of them are described

below:

1. Implied (or Inherent) Mode In this mode, the operands are indicated implicitly by the

instruction. The accumulator register is generally used to hold the operand and after the

instruction execution the result is stored in the same register. For example,

RAL; Rotates the content of the accumulator left through carry

2. Immediate Mode In this mode, the operand is mentioned explicitly in the instruction. In

other words, an immediate-mode instruction contains an operand value rather than an

address of it in the address field. To initialize registers to a constant value, this mode of

instructions is useful. For example:

MVI A, 06; Loads equivalent binary value of 06 to the accumulator

3. Register (Direct) Mode In this mode, the processor registers hold the operands. In other

words, the address field is now a register field, which contains the operands required for

the instruction.

For example,

ADD R1, R2; Adds contents of registers R1 and R2 and stores the result in R1

4. Register Indirect Mode In this mode, the instruction specifies an address of CPU regis-

ter that holds the address of the operand in memory.

5. Direct (or Absolute) Address Mode In this mode the instruction contains the memory

address of the operand explicitly. Example of direct addressing is

STA 2500H; Stores the content of the accumulator in the memory location 2500H.

6. Indirect Address Mode: In this mode, the instruction gives a memory address in its

address field which holds the address of the operand.

For example,

MOV R1, (X) ; Content of the location whose address is given in X is loaded into

register R1.

7. Relative Address Mode or PC-relative Address Mode In this mode, the effective address

is obtained by adding the content of program counter (PC) register with address part of

the instruction. Generally, this mode is used to specify the branch address in the branch

instruction, provided the branch address is nearer to the instruction address.

8. Indexed Address Mode In this mode, the effective address is determined by adding the

content of index register (XR) with the address part of the instruction. This mode is useful

in accessing operand array. The address part of the instruction gives the starting address

of an operand array in memory. The index register is a special CPU register that contains

an index value for the operand. The index value for operand is the distance between the

starting address and the address of the operand. Any operand in the array can be accessed

with the same instruction provided that the index register contains the correct index value.

For example, an operand array starts at memory address 1000 and assume that the index

register XR contains the value 0002. Now consider load instruction

SQP.18 Computer Organization

LDA 1000

The effective address of the operand is calculated as

Effective address = 1000 + content of XR = 1002

9. Base Register Address Mode This mode is used for relocation of the programs in the

memory. Relocation is a technique of moving program or data segments from one part of

memory to another part of memory. Relocation is an important feature of multiprogram-

ming systems. In this mode the content of the base register (BR) is added to the address

part of the instruction to obtain the effective address. This mode is similar to the indexed

addressing mode, but exception is in the way they are used. A base register holds the

starting address of a memory array of operands and the address part of the instruction

gives a displacement or offset relative to this starting address. The base register address-

ing mode has the advantage over index addressing mode with respect to the size of

instructions, because size of instructions in first case is smaller than that of second

category.

Group-A

(Multiple-Choice Type Questions)

1. Choose the correct alternatives for the following: 10 ¥ 1 = 10

(i) How many address bits are required for a 1024 ¥ 8 memory?

(a) 1024 (b) 5 (c) 10 (d) none of these

Answer

(c) 10

(ii) Micro instructions are kept in the

(a) main memory (b) cache memory

(c) control memory (d) none of these

Answer

(c) control memory

(iii) Booth�s algorithm for computer arithmetic is used for

(a) multiplication of numbers in signed magnitude form

(b) division of numbers in signed magnitude form

(c) multiplication of numbers in 2�s complement form

(d) division of numbers in 2�s complement form

Answer

(c) multiplication of numbers in 2�s complement form

(iv) In a microprocessor, the address for the next executable instruction is stored in the

(a) stack pointer (b) program counter

(c) instruction register (d) none of these.

Answer

(b) program counter

2011
Computer Organization

(CS-303 (New))
Time Allotted: 3 hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

SQP.2 Computer Organization

(v) A single bus structure is primarily found in

(a) mini and micro computers (b) large mainframe computers

(c) super computers (d) analog computers

Answer

(a) Mini and micro computers

(vi) Cache memory is used to

(a) increase performance (b) increase machine cycles

(c) decrease performance (d) none of these

Answer

(a) increase performance

(vii) Instruction cycle is

(a) fetch-decode-execution (b) fetch-execution-decode

(c) fetch-encode-execution (d) fetch-execution-encode

Answer

(a) fetch-decode-execution

(viii) Equivalent hexadecimal of (76575372)8 will be

(a) FAFAFF (b) FAFAFA (c) FFFAAA (d) FAAFAF

Answer

(b) FAFAFA

(ix) Associative memory is

(a) a very cheap memory (b) pointer addressable memory

(c) content addressable memory (d) all of these

Answer

(c) content addressable memory

(x) Which of the following addressing mode is used for the instruction �Push B�?

(a) Register (b) Register indirect (c) Direct (d) Immediate

Answer

(d) Immediate

Group-B

(Short-Answer Type Questions)

Answer any three of the following. 3 ¥ 5 = 15

2. Explain the difference between full associative and direct mapped cache mapping approaches.

Explain �write through� and �write back� policies in cache. 3 + 2

Answer

The fully associative cache memory uses the fastest and most flexible mapping method in

which both address and data of the memory word are stored. This memory is expensive

because of additional storage of addresses with data in the cache memory.

In the direct cache mapping, instead of storing total address information with data in

cache, only parts of address bits are stored along with data. Suppose the cache memory can

Solved Question Paper 2011 (CS-303 (New)) SQP.3

hold 2m words and the main memory can hold 2n words. The n-bit address generated by the

CPU is divided into two fields: lower-order m bits for the index field and the remaining

higher-order (n � m) bits for the tag field. The direct mapping cache organization uses the

m-bit index to access the cache and higher-order (n � m) bits of tag are stored along side the

data in cache. This is the simplest type of cache mapping, since only tag field is required to

match. That�s why it is one of the fastest caches. Also, it is less expensive cache relative to

the associative cache.

There are two policies in writing into cache memory: (i) write-through (ii) write-back.

Write-Through Policy: This is the simplest and most commonly used procedure to update

the cache. In this technique, when the cache memory is updated, at the same time the main

memory is also updated. Thus the main memory always contains the same data as the cache.

Write-Back Policy: In this method, during a write operation only the cache location is

updated. When the update occurs, the location is marked by a flag called modified or dirty

bit. When the word is replaced from the cache, it is written into the main memory if its flag

bit is set.

3. Differentiate among three-, two-, one- and zero- address instructions with suitable examples.

Explain base index addressing with example. 3 + 2

Answer

The size of programs consisting of all three-address instructions is small, whereas that of

programs using zero-address instructions is large. Three- and two-address instructions are

generally used in general-register organized processors, one-address instructions used in

single accumulator based processors and zero-address instructions are used in stack-based

CPU organizations.

Suppose we have to evaluate the arithmetic statement

X = (A + B) * C

using zero, one, two or three address instructions. For this, LOAD symbolic op-code is used

for transferring data to register from memory. STORE symbolic op-code is used for transferring

data to memory from register. The symbolic op-codes ADD and MULT are used for the

arithmetic operations of addition and multiplication respectively. Assume that the respective

operands are in memory addresses A, B and C and the result must be stored in the memory

at the address X.

Using three-address instructions, the program code in assembly language is as:

ADD R1, A, B ; R1 ¨ M[A] + M[B]

MULT X, C, R1 ; X ¨ M[C] + R1

Using two-address instructions, the program code in assembly language is as:

LOAD R1, A ; R1 ¨ M[A]

ADD R1, B ; R1 ¨ R1 + M[B]

LOAD R2, C ; R2 ¨ M[C]

MULT R1, R2 ; R1 ¨ R1 * R2

STORE X, R1 ; X ¨ R1

SQP.4 Computer Organization

Using one-address instructions, the program code in assembly language is as:

LOAD A ; AC ¨ M[A]

ADD B ; AC ¨ AC + M[B]

STORE T ; T ¨ AC

LOAD C ; AC ¨ M[C]

MULT T ; AC ¨ AC * M[T]

STORE X ; X ¨ AC

Using zero-address instructions, the program code in assembly language is as:

PUSH A ; TOS ¨ A [TOS means top of the stack]

PUSH B ; TOS ¨ B

ADD ; TOS ¨ (A + B)

PUSH C ; TOS ¨ C

MULT ; TOS ¨ ((A + B) * C)

POP X ; X ¨ TOS

In base index addressing mode, the content of the base register (BR) is added to the address

part of the instruction to obtain the effective address. This mode is similar to the indexed

addressing mode, but the exception is in the way they are used. A base register holds the

starting address of a memory array of operands and the address part of the instruction gives

a displacement or offset relative to this starting address. This mode is used for relocation of

the programs in the memory.

For example, an operand array starts at memory address 1000 and thus the base register

BR contains the value 1000. Now consider the load instruction

LDA 0002

The effective address of the operand is calculated as:

Effective address = 0002 + content of BR

= 1002.

4. What is interrupt? Differentiate between vectored and non-vectored interrupts. 1 + 4

Answer

Interrupt is a special signal to the CPU generated by an external device that causes the CPU

to suspend the execution of one program and start the execution of another.

In a vectored interrupt, the source that interrupts supplies the branch information (starting

address of ISR) to the CPU. This information is called the interrupt vector, which is not any

fixed memory location. The processor identifies individual devices even if they share a

single interrupt-request line. So the set-up time is very less.

In a non-vectored interrupt, the branch address (starting address of ISR) is assigned to a

fixed location in memory. Since the identities of requesting devices are not known initially,

the set-up time is quite large.

Solved Question Paper 2011 (CS-303 (New)) SQP.5

5. Compare and contrast RISC and CISC architecture in brief.

Answer

CISC RISC

1. A large number of instruction types used�

typically from 100 to 250 instructions.

2. A large number of addressing modes used�

typically from 5 to 15 different modes.

3. Variable-length instruction formats.

4. Small number of general-purpose registers

(GPRs)�typically 8-24 GPRs.

5. Clock per instruction (CPI) lies between 2 and

15.

6. Mostly micro-programmed control units.

7. Most instructions manipulate operands in

memory.

6. What are the advantages of micro programming control over hardwired control ? Explain the

role of an operating system in brief. 3 + 2

Answer

The main advantage of microprogramming is it provides a well-structured control organization.

Control signals are systematically transformed into formatted words (microinstructions).

With microprogramming, many additions and changes are made by simply changing the

microprogram in the control memory (ROM). Whereas, a small change in the hardwired

approach may lead to redesigning the entire system.

The main roles of operating system:

1. Managing the user�s programs

2. Managing the memories of computer

3. Managing the I/O operations

4. Controlling the security of computer

Group-C

(Long-Answer Type Questions)

Answer any three of the following. 3 ¥ 15 = 45

7. (a) Describe the major components of a digital computer with a suitable block diagram.

(b) What are von Neumann concept and its bottlenecks?

(c) Explain and draw a binary decrement unit.

(d) Represent the decimal value �7.5 in IEEE-754 single precision floating point formats.

5 + 4 + 3 + 3

1. Relatively few number of instruction types�

typically less than100 instructions.

2. Relatively few addressing modes�typically

less than or equal to 5.

3. Fixed-length, easily decoded instruction

formats.

4. Large number of general-purpose registers

(GPRs)�typically 32-192 GPRs.

5. Clock per instruction (CPI) lies between 1

and 2.

6. Mostly hardwired control units.

7. All operations are executed within registers

of the CPU.

SQP.6 Computer Organization

Answer

(a)

Figure 1 Block diagram of a computer

The major units of a computer are described next:

(i) Arithmetic and Logic Unit (ALU): It is the main processing unit which performs

arithmetic and other data processing tasks as specified by the control unit. The ALU

and control unit are the main constituent parts of the Central Processing Unit (CPU).

Another component of the CPU is register unit�collection of different registers, used

to hold the data or instruction temporarily.

(ii) Control Unit: This is the unit that supervises the flow of information between various

units. The control unit retrieves the instructions using registers one by one from the

program, which is stored in the memory. The instructions are interpreted (or decoded)

by the control unit itself and then the decoded instructions are sent to the ALU for

processing.

(iii) Memory: The memory unit stores programs as well as data. Generally, three types of

memories are used: secondary, main and cache memories.

(iv) Input Unit: This unit transfers the information as provided by the users into memory.

Examples include keyboard, mouse, scanner, etc.

(v) Output Unit: The output units receive the result of the computation and display it to

the monitor or the user gets the printed results by means of a printer.

(b) The concept is known as stored-program concept and has three main principles:

1. Program and data can be stored in the same memory.

2. The computer executes the program in sequence as directed by the instructions in the

program.

3. A program can modify itself when the computer executes the program.

Each instruction contains only one memory address and has the format:

OPCODE ADDRESS

The 8-bit op-code specifies the operation to be performed by the CPU and 12-bit address

specifies the operand�s memory address. Thus length of each instruction is 20-bit.

Solved Question Paper 2011 (CS-303 (New)) SQP.7

Von-Neumann bottleneck:

One of the major factors contributing for a computer�s performance is the time required to

move instructions and data between the CPU and main memory. The CPU has to wait longer

to obtain a data-word from the memory than from its registers, because the registers are very

fast and are logically placed inside the processor (CPU). This CPU-memory speed disparity

is referred to as Von-Neumann bottleneck.

(c) The binary decrementer unit performs the decrement micro-operation. The decrement micro-

operation subtracts value one from the number stored in a register. For example, if a 4-bit

register has a binary value 1001, it will be 1000 after the decrement operation. The subtraction

can easily be implemented using combinational circuit half-subtractors or sequential circuit

binary down counter. The decrement micro-operation can be realized with combinational

circuit full adders. The subtraction of two binary numbers can be performed by taking the

2�s complement of the subtrahend and then adding it to the minuend. The diagram of a 4-bit

combinational decrementer circuit has been implemented using full adders, shown in the

figure below.

Figure 2 4-bit Decrementer Circuit

Here, we are adding a bit 1 as one of the inputs to each full adder. This means that binary

number (1111) is added with the operand number A. The binary number (1111) means �1 in

decimal, since the negative number is represented in computers using signed 2�s complement

method. That means, we are adding �1 with the operand value stored in register A.

(d) The decimal number � 7.5 = �111.1 in binary = �1.111 ¥ 22

The 23-bit mantissa M = 0.111000 000000 000000 00000

The biased exponent E¢ = E + 127 = 2 + 127 = 129 = 1000 0001

Since the number is negative, the sign bit S = 1

Therefore, the IEEE single-precision (32-bit) representation is:

1 1000 0001 111000 000000 000000 00000

8. (a) Compare parallel adder with serial adder.

(b) With a suitable block diagram discuss the construction and working principles of an 8-bit

carry- look-ahead adder.

(c) What are the advantages of CLA over ripple carry adder?

(d) Explain the importance of a common bus system in a computer. 4 + 5 + 4 + 2

SQP.8 Computer Organization

Answer

(a)

Parallel Adder Serial Adder

1. This adder is a combinational circuit, which adds

all bits of two numbers in one clock cycle.

2. This adder, being a combinational circuit, is

faster than serial adder. In one clock period all

bits of two numbers are added.

3. The hardware cost is more than that of serial

adder. Because, number of adder blocks needed

is equal to the number of bits in operands.

(b) A Carry Look-ahead Adder (CLA) is a high-speed adder, which adds two numbers without

waiting for the carries from the previous stages. In the CLA, carry inputs of all stages are

generated simultaneously, without using carries from the previous stages.

In the full adder, the carry output Ci + 1 is related to its carry input Ci as follows:

Ci+1 = AiBi + (Ai + Bi)Ci

This result can be rewritten as:

Ci + 1 = Gi + PiCi (1)

where Gi = AiBi and Pi = Ai + Bi

The function Gi is called the carry-generate function,

since a carry Ci + 1 is generated when both Ai and Bi are

1s. The function Pi is called as carry-propagate function,

since if Ai or Bi is a 1, then the input carry Ci is

propagated to the next stage. The basic adder (BA) for

generating the sum Si, carry propagate Pi and carry

generate Gi bits, is shown in the figure on the right. The

sum bit Si is = Ai ≈ Bi ≈ Ci. For the implementation of

one basic adder, two XOR gates, one AND gate and

one OR gate are required.

Now, for an 8-bit CLA, eight carries C1, C2, �, C8 are to be generated. Using equation

number (1); C1, C2, �, C8 can be expressed as follows:

C1 = G0 + P0C0

C2 = G1 + P1C1

����

C8 = G7 + P7C7

These equations are recursive and the recursion can be removed as below.

C1 = G0 + P0C0 (2)

C2 = G1 + P1C1

= G1 + P1(G0 + P0C0)

= G1 + P1G0 + P1P0C0 (3)

C3 = G2 + P2C2

= G2 + P2(G1 + P1G0 + P1P0C0)

= G2 + P2G1 + P2P1G0 + P2P1P0C0 (4)

1. This adder is a sequential circuit, which per-

forms the addition of two binary numbers se-

rially bit by bit starting with lsb.

2. The serial adder is very slow since it takes n

clock cycles for addition of n-bit numbers.

3. The serial adder circuit is small and hence, it

is very inexpensive irrespective of the num-

ber of bits to be added.

Figure 3 Basic Adder (BA)

Solved Question Paper 2011 (CS-303 (New)) SQP.9

Similarly, C4, C5, C6, C7 and C8 can be expanded to remove the recursion.

The equations (2), (3), (4) and others, if derived, suggest that C1, C2, �, C8 can be

generated directly from C0. In other words, these eight carries depend only on the initial

carry C0. For this reason, these equations are called carry look-ahead equations. An 8-bit

carry look-ahead adder (CLA) is shown in the figure below.

Figure 4 8-bit Carry Look-ahead Adder (CLA)

The maximum delay of the CLA is 6 ¥ D (for Gi and Pi generation, delay = D, for Ci

generation, delay = 2D and lastly another 3D for sum bit Si) where D is the average gate

delay. The same holds good for any number of bits because the adder delay does not depend

on size of number (n). It depends on the number of levels of gates used to generate the sum

and the carry bits. Whereas, the maximum propagation delay for CPA depends on size of

inputs and for n-bit CPA it is D ¥ n, where D is the time delay for each full adder stage and

n is the number of bits in each operand.

(c) The advantages of carry-look-ahead adder over ripple-carry adders:

l Generally, the carry look-ahead adder (CLA) is faster than the ripple carry adder (RCA).

Because, the maximum delay of the CLA is 6 ¥ d, where d is the average gate delay and

this holds good for any size numbers. However, the maximum propagation delay for

n-bit RCA is d ¥ n, where n is the number of bits in each operand.

l The RCA becomes slow once the sizes of operands are increased, which is not true for

CLA. The speed of CLA remains same irrespective of sizes of operands.

(d) Many registers are provided in the CPU of a computer for fast execution. Therefore, several

paths must be provided to transfer information from one register to another. If a separate

communication line is used between each register pair in the system, the number of lines will

be excessive and thus cost of communication will be huge. Thus it is economical to have a

common bus system for transferring information between registers in a multiple-register

configuration.

9. (a) Explain Booth�s multiplication algorithm with a suitable flowchart.

(b) Using Booth�s algorithm multiply (�12) and (+6).

(c) What do you mean by �guard bit�? 8 + 5 + 2

SQP.10 Computer Organization

Answer

(a)

Figure 5 Booth�s multiplication algorithm

The algorithm inspects two lower-order multiplier bits at time to take the next step of

action. The algorithm is described by the flowchart shown above (Fig. 5). A flip-flop (a

fictitious bit position) is used to the right of lsb of the multiplier and it is initialized to 0.

Subsequently, it receives the lsb of the multiplier when the multiplier is shifted right.

Solved Question Paper 2011 (CS-303 (New)) SQP.11

Once all bits of the multiplier are inspected, the accumulator and multiplier registers

together contain the product. Ignore the right end flip-flop used for holding an initial 0, as it

is a fictitious bit and subsequent lsbs from multiplier.

(b) Multiplication of numbers (+6)10 and (�12)10:

Multiplicand, M = +6 = 00110 and multiplier, Q = �12 = 10100.

M A Q Size

Initial Configuration 00110 00000 10100 0 5

Step-1

As Q[0] = 0 and Q[�1] = 0

ARS(AQ) 00110 00000 01010 0 4

Step-2

As Q[0] = 0 and Q[�1] = 0

ARS(AQ) 00110 00000 00101 0 3

Step-3

As Q[0] = 1 and Q[�1] = 0

A = A � M 00110 11010 00101 0 �

ARS(AQ) 00110 11101 00010 1 2

Step-4

As Q[0] = 0 and Q[�1] = 1

A = A + M 00110 00011 00010 1 �

ARS(AQ) 00110 00001 10001 0 1

Step-5

As Q[0] = 1 and Q[�1] = 0

A = A � M 00110 11011 10001 0 �

ARS(AQ) 00110 11101 11000 1 0

Since the size register becomes 0, the algorithm is terminated and the product is = AQ =

1110111000, which shows that the product is a negative number. To get the result in familiar

form, take the 2�s complement of the magnitude of the number and the result is �72 in

decimal.

(c) When the mantissa is shifted right, some bits at the right most position (least significant

position) are lost. In order to obtain maximum accuracy of the final result; one or more extra

bits known as guard bits, are included in the intermediate steps. These bits temporarily

contain the recently shifted out bits from the right most side of the mantissa. When the

number has to be finally stored in a register or in a memory as the result, the guard bits are

not stored. However, based on the guard bits, the value of the mantissa can be made more

precise by the rounding technique.

10. (a) Explain instruction cycle, machine cycle and T-states with suitable example.

(b) What are the advantages of relative addressing mode over direct address mode?

(c) Draw and explain the timing diagram for memory write operation.

(d) Evaluate the arithmetic statement X = (A * B)/(C + D) in one-, two- and three- address

machine. 5 + 4 + 3 + 3

SQP.12 Computer Organization

Answer

(a) Instruction cycle: The processing required for a single instruction is called instruction

cycle. The control unit�s task is to go through an instruction cycle that can be divided into

five major phases:

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Fetch the operand(s) from memory or register.

4. Execute the whole instruction.

5. Store the output result to the memory or register.

Machine cycle: A machine cycle consists of necessary steps carried out to perform the

memory access operation. Each of the basic operations such as fetch or read or write

operation constitutes a machine cycle. An instruction cycle consists of several machine

cycles.

T-states: One clock cycle of the system clock is referred to as T-state.

(b) In relative addressing mode, the effective address is obtained by adding the content of

program counter (PC) register with address part of the instruction. The instruction specifies

the memory address of the operand as the relative position of the current instruction address.

Generally, this mode is used to specify the branch address in the branch instruction, provided

the branch address is nearer to the instruction address.

Figure 6 Relative addressing mode

In direct addressing mode, the instruction contains the memory address of the operand

explicitly. Thus, the address part of the instruction is the effective address.

Figure 7 Direct addressing mode

The advantages of relative addressing mode over direct addressing mode:

l In relative addressing mode, smaller number of bits are used as the address of the

operands compared to the direct addressing mode.

Solved Question Paper 2011 (CS-303 (New)) SQP.13

l Since the size of relative addressed mode instructions is shorter than that of direct mode

instructions, the relative addressed mode instructions occupy lesser memory space,

which decreases the memory requirement.

l Due to the smaller size for relative addressing mode instructions, either data bus width

is small or instruction fetch takes less time.

(c) The timing diagram for memory write is given as below.

Figure 8 Timing diagram of memory write

To write a memory word, the address is specified on the address bus to select the word

among many available words at first clock period T1. At second clock period T2, memory

write signal is activated and after seeing the write signal activated, memory stores data in it

from the data bus. The total operation needs three clock periods.

(d) We have to evaluate the arithmetic statement

X = (A * B) / (C + D)

using one, two or three address instructions. For this, LOAD symbolic op-code is used for

transferring data to register from memory. STORE symbolic op-code is used for transferring

data to memory from register. The symbolic op-codes ADD, MULT and DIV are used for

the arithmetic operations addition, multiplication and division respectively. Assume that the

respective operands are in memory addresses A, B, C and D and the result must be stored in

the memory at address X.

Using three-address instructions, the program code in assembly language is as:

MULT R1, A, B ; R1 ¨ M[A] * M[B]

ADD R2, C, D ; R2 ¨ M[C] + M[D]

DIV X, R1, R2 ; X ¨ R1 / R2

Using two-address instructions, the program code in assembly language is as:

LOAD R1, A ; R1 ¨ M[A]

MULT R1, B ; R1 ¨ R1 * M[B]

LOAD R2, C ; R2 ¨ M[C]

ADD R2, D ; R2 ¨ R2 + M[D]

DIV R1, R2 ; R1 ¨ R1 / R2

STORE X, R1 ; X ¨ R1

SQP.14 Computer Organization

Using one-address instructions, the program code in assembly language is as:

LOAD C ; AC ¨ M[C]

ADD D ; AC ¨ AC + M[D]

STORE T ; T ¨ AC

LOAD A ; AC ¨ M[A]

MULT B ; AC ¨ AC * M[B]

DIV T ; AC ¨ AC/M[T]

STORE X ; X ¨ AC

11. Write short notes on any three of the following: 3 ¥ 5

(a) IAS computer

(b) Concept of handshaking in I/O operation

(c) Static and dynamic memory

(d) DMA controller

(e) Classify MRI and non-MRI instructions.

Answer

(a) IAS Computer:

In 1946, Von Neumann and his colleagues began the design of a new stored-program

computer, now referred to as the IAS computer, at the Institute for Advanced Studies,

Princeton. Nearly, all modern computers still use this stored-program concept. This concept

has three main principles:

1. Program and data can be stored in the same memory.
2. The computer executes the program in sequence as directed by the instructions in the

program.

3. A program can modify itself when the computer executes the program.

This machine employed a random-access Cathode-Ray-Tube (CRT) main memory, which

permitted an entire word to be accessed in one operation. Parallel binary circuits were

employed. Each instruction contained only one memory address and had the format:

OPCODE ADDRESS

The central processing unit (CPU) contained several high-speed (vacuum-tube) registers

used as implicit storage locations for operands and results. Its input-output facilities were

limited. It can be considered as the prototype of all subsequent general-purpose computers.

Instruction Format: The basic unit of information, i.e. the amount of information that can be

transferred between the main memory and CPU in one step is a 40-bit word. The memory

has a capacity of 212 = 4096 words. A word stored in the memory can represent either

instruction or data.

Data: The basic data item is a binary number having the format shown in Fig. 9. Leftmost bit

represents the sign of number (0 for positive and 1 for negative) while the remaining 39 bits

indicate the number�s size. The numbers are represented as fixed-point numbers.

Figure 9 Number word

Solved Question Paper 2011 (CS-303 (New)) SQP.15

Instruction: IAS instructions are 20 bits long, so that two instructions can be stored in each

40-bit memory location. An instruction consists of two parts, as shown in Figure below: an

8-bit op-code (operation code), which defines the operation to be performed (add, subtract,

etc.) and a 12-bit address part, which can identify any of 212 memory locations that may be

used to store an operand of the instruction.

Figure 10 Instruction word

(b) Concept of handshaking in I/O operation:

The disadvantage of the strobe method is that the source unit that initiates the transfer

cannot know whether the destination unit has actually received the data item that was placed

in the bus. Similarly, a destination unit that initiates the transfer cannot know whether the

source unit has actually placed the data on the bus.

To overcome this problem of strobe technique, another method commonly used is to

accompany each data item being transferred with a control signal that indicates the presence

of data in the bus. The unit receiving the data item responds with another control signal to

acknowledge receipt of the data. This type of agreement between two independent units is

referred to as handshaking mode of transfer.

Figure 11 below shows the data transfer method when initiated by the source. The two

handshaking lines are data valid, which is generated by the source unit, and data accepted,

generated by the destination unit. The source first places data and after some delay, issues

data valid signal. On sensing data valid signal, the destination receives data and then issues

acknowledgement signal data accepted to indicate the acceptance of data. On sensing data

accepted signal, the source removes data and data valid signal. On sensing removal of data

valid signal, the destination removes the data accepted signal.

Figure 11 Source-initiated transfer using handshaking

SQP.16 Computer Organization

Figure below illustrates destination initiated handshaking technique. The destination first

sends the data request signal. On sensing this signal, the source places data and also issues

the data valid signal. On sensing data valid signal, the destination acquires data and then

removes the data request signal. On sensing this, the source removes both the data and data

valid signal.

Figure 12 Destination initiated handshaking technique

The advantage of handshaking scheme is that it provides a high degree of flexibility and

reliability because the successful completion of a data transfer relies on active participation

by both units.

The disadvantages of handshaking scheme are:

1. A slow speed destination unit can hold up the bus whenever it gets a chance to

communicate.

2. If one of the two communicating devices is faulty, the initiated data transfer cannot be

completed.

Examples of asynchronous transfer:

1. The centronics interface follows handshaking scheme.

2. Most microprocessors such as Motorola 88010 and Intel 80286 follow this bus transfer

mechanism.

(c) Static and dynamic memory: The central storage unit in a computer system is the main

memory which is directly accessible by the CPU. It is a relatively large and fairly fast

external memory used to store programs and data during the computer operation. Most of the

main memory in a general-purpose computer is made up of RAM (Random Access Memory)

integrated circuit chips, which are volatile (i.e. if power goes off, the stored information is

lost) in nature. But a small part of the main memory is also constructed with ROM (Read

Only Memory) chips, which are non-volatile. Originally, RAM was used to refer to a random-

access memory, but now it is used to mean a read-write memory (RWM) to distinguish it

from a read-only memory, although ROM�s access mechanism is also random.

Solved Question Paper 2011 (CS-303 (New)) SQP.17

RAM is used to store the most of the programs and data that are modifiable. Integrated

RAM chips are available in two forms: one is static RAM (SRAM) and another is dynamic

RAM (DRAM). The SRAM memories consist of circuits capable of retaining the stored

information as long as power is applied. That means this type of memory requires constant

power. SRAM memories are used to build cache memory. On the other hand, DRAM stores

the binary information in the form of electric charges that applied to capacitors. The stored

information on the capacitors tends to be lost over a period of time and thus the capacitors

must be periodically recharged to retain their state. The main memory is generally made up

of DRAM chips.

Comparison of SRAM and DRAM

1. The SRAM has lower access time, which means it is faster compared to the DRAM.

2. The SRAM requires constant power supply, which means this type of memory consumes

more power; whereas, the DRAM offers reduced power consumption, due to the fact

that the information is stored in the capacitor.

3. Due to the relatively small internal circuitry in the one-bit memory cell of DRAMs, the

large storage capacity in a single DRAM memory chip is available compared to the

same physical size SRAM memory chip. In other words, DRAM has high packaging

density compared to the SRAM.

4. SRAM is costlier than DRAM.

(d) DMA controller: To transfer large blocks of data at high speed, this third method is used. A

special controlling unit may be provided to allow transfer a block of data directly between a

high speed external device like magnetic disk and the main memory, without continuous

intervention by the CPU. This method is called direct memory access (DMA).

DMA transfers are performed by a control circuit that is part of the I/O device interface.

We refer to this circuit as a DMA controller. The DMA controller performs the functions

that would normally be carried out by the CPU when accessing the main memory. During

DMA transfer, the CPU is idle or can be utilized to execute another program and CPU has

no control of the memory buses. A DMA controller takes over the buses to manage the

transfer directly between the I/O device and the main memory.

The CPU can be placed in an idle state using two special control signals, HOLD and

HLDA (hold acknowledge). Figure 13 shows two control signals in the CPU that characterize

the DMA transfer. The HOLD input is used by the DMA controller to request the CPU to

release control of buses. When this input is active, the CPU suspends the execution of the

current instruction and places the address bus, the data bus and the read/write line into a

high-impedance state. The high-impedance state behaves like an open circuit, which means

that the output line is disconnected from the input line and does not have any logic significance.

The CPU activates the HLDA output to inform the external DMA controller that the buses

are in the high-impedance state. The control of the buses has been taken by the DMA

controller that generated the bus request to conduct memory transfers without processor

intervention. After the transfer of data, the DMA controller disables the HOLD line. The

CPU then disables the HLDA line and regains the control of the buses and returns to its

normal operation.

SQP.18 Computer Organization

Figure 13 CPU bus signals for DMA transfer

To communicate with the CPU and I/O device the DMA controller needs the usual
circuits of an interface. In addition to that, it needs an address register, a word-count register,
a status register and a set of address lines. Three registers are selected by the controller�s
register select (RS) line. The address register and address lines are used for direct
communication with the memory. The address register is used to store the starting address of
the data block to be transferred. The word count register contains the number of words that
must be transferred. This register is decremented by one after each word transfer and internally
tested for zero after each transfer. Between the device and memory under control of the
DMA, the data transfer can be done directly. The status register contains information such as
completion of DMA transfer. All registers in the DMA controller appear to the CPU as I/O
interface registers. Thus, the CPU can read from or write into the DMA registers under
program control via the data bus.

When executing the program for I/O transfer, the CPU first initializes the DMA controller.
After that, the DMA controller starts and continues to transfer data between memory and
peripheral unit until an entire block is transferred. The DMA controller is initialized by the
CPU by sending the following information through the data bus:

1. The starting address of the memory blocks where data are available for read or where
data are to be stored for write.

2. The number of words in the memory block (word count) to be read or written.
3. Read or write control to specify the mode of transfer.
4. A control to start the DMA transfer.

(e) Classify MRI and non-MRI instructions:

Memory reference instructions (MRIs) work directly between the registers and main memory.
Memory reference instructions load values into and store values from the general registers.

We need to be very precise about our instruction format so that we can easily interpret it
in hardware. Instructions are stored in one part of memory and data in another. For a
memory unit with 1M words we need 20 bits to specify an address since 220 = 1M. If we
store each instruction code in one 32-bit memory word and 16 working registers, we have
available 8 bits for the operation code to specify 256 instructions. The instruction format is
mentioned below:

There are four basic instructions that reference the memory directly:

LOAD Reg, Address
STORE Reg, Address
JUMP Address
CALL Reg, Address

These all have the same instruction format as provided above.

Group-A

(Multiple-Choice Type Questions)

1. Choose the correct alternatives for the following: 10 ¥ 1 = 10

(i) The principle of locality justifies the use of

(a) interrupt (b) polling

(c) DMA (d) cache memory

Answer

(d) cache memory

(ii) Instruction cycle is

(a) fetch-decode-execution (b) fetch-execution-decode

(c) decode-fetch-execution (d) none of these

Answer

(a) fetch-decode-execution

(iii) Subtractor can be implemented using

(a) adder (b) complementer (c) both (a) and (b) (d) none of these

Answer

(c) both (a) and (b)

(iv) How many RAM chips of size 256K ¥ 1 bit are required to built 1 MB memory?

(a) 24 (b) 10 (c) 32 (d) 8

Answer

(c) 32

(v) Maximum n bit 2�s complement number is

(a) 2n (b) 2n � 1 (c) 2n � 1 � 1 (d) cannot be said

2011
Computer Organization

(CS-303 (Old))
Time Allotted: 3 hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

SQP.2 Computer Organization

Answer

(c) 2n � 1 � 1

(vi) Micro instructions are kept in

(a) main memory (b) control memory (c) cache memory (d) none of these

Answer

(b) control memory

(vii) Physical memory broken down into groups of equal size is called

(a) page (b) tag (c) block (d) index

Answer

(c) block

(viii) Overflow occurs when

(a) data is out of range (b) data is within range

(c) both (a) and (b) (d) none of these

Answer

(a) data is out of range

(ix) The minimum number of operands with any instruction is

(a) 1 (b) 0 (c) 2 (d) 3

Answer

(b) 0

(x) The basic principle of the von Neumann computer is

(a) storing program and data in separate memory

(b) using pipeline concept

(c) storing both program and data in the same memory

(d) using a large number of register

Answer

(c) storing both program and data in the same memory

Group-B

(Short-Answer Type Questions)

Answer any three of the following. 3 ¥ 5 = 15

2. (a) What is tri-state buffer? Construct a single line common bus system using tri-state buffer.

(b) What are guard bits? (1 + 2) + 2

Answer

(a) A tri-state gate is a digital circuit that exhibits three states out of which two states are normal

signals equivalent to logic 1 and logic 0 similar to a conventional gate. The third state is a

high-impedance state. The high-impedance state behaves like an open circuit, which means

that no output is produced though there is an input signal and does not have logic significance.

The gate is controlled by one separate control input C, If C is high the gate behaves like a

normal logic gate having output 1 or 0. When C is low, the gate does not product any output

irrespective of the input values. The graphic symbol of a tri-state buffer gate is shown in

Fig. 1.

Solved Question Paper 2011 (CS-303 (Old)) SQP.3

Figure 1 Graphic symbol for a tri-state buffer gate

A common bus system with tri-state buffers is described in Fig. 2. The outputs of four

buffers are connected together to form a single line of the bus. The control inputs to the

buffers, which are generated by a common decoder, determine which of the four normal

inputs will communicate with the common line of the bus. Note that only one buffer may be

in the active state at any given time. Because the selection lines S0, S1 of the decoder activate

one of its output lines at a time and the output lines of the decoder act as the control lines to

the buffers. For example, if select combination S1S0 is equal to 00, then 0th output of the

decoder will be activated, which then activates the top-most tri-state buffer and thus the bus

line content will be currently A0, 0
th bit of A register.

Figure 2 A single line of a bus system with tri-state buffers

(b) When the mantissa is shifted right, some bits at the rightmost position (least significant

position) are lost. In order to obtain maximum accuracy of the final result; one or more extra

bits known as guard bits, are included in the intermediate steps. These bits temporarily

contain the recently shifted out bits from the rightmost side of the mantissa. When the

number has to be finally stored in a register or in a memory as the result, the guard bits are

not stored. However, based on the guard bits, the value of the mantissa can be made more

precise by the rounding technique.

3. Describe stack based CPU.

Answer

Stack-based computer operates instructions, based on a data structure called stack. A stack is

a list of data words with a Last-In, First-Out (LIFO) access method that is included in the

SQP.4 Computer Organization

CPU of most computers. A portion of memory unit used to store operands in successive

locations can be considered as a stack in computers. The register that holds the address for

the top most operand in the stack is called a stack pointer (SP). The two operations performed

on the operands stored in a stack are the PUSH and POP. From one end only, operands are

pushed or popped. The PUSH operation results in inserting one operand at the top of stack

and it decreases the stack pointer register. The POP operation results in deleting one operand

from the top of stack and it increases the stack pointer register.

For example, Fig. 3 shows a stack of four data words in the memory. PUSH and POP

instructions require an address field each. The PUSH instruction has the format:

PUSH <memory address>

Figure 3 A stack of words in memory

The PUSH instruction inserts the data word at specified address to the top of the stack.

The POP instruction has the format:

POP <memory address>

The POP instruction deletes the data word at the top of the stack to the specified address.

The stack pointer is updated automatically in either case. The PUSH operation can be

implemented as

SP ¨ SP � 1 : decrement the SP by 1

SP ¨ <memory address> : store the content of specified memory address into

SP, i.e. at top of stack

The POP operation can be implemented as

<memory address> ¨ SP : transfer the content of SP (i.e. top most data) into

specified memory location

SP ¨ SP + 1 : increment the SP by 1

Figure 4 shows the effects of these two operations on the stack in Figure 3.

Solved Question Paper 2011 (CS-303 (Old)) SQP.5

Figure 4 Effects of stack operations on the stack in Fig. 3

Operation-type instructions do not need an address field in stack-organized computers.

This is because the operation is performed on the two operands that are on top of the stack.

For example, the instruction

SUB

in a stack computer consists of an operation code only with no address field. This operation

pops the two top data from the stack, subtracting the data, and pushing the result into the

stack at the top. The organization of a stack-based machine is shown in Fig. 5.

Figure 5 Typical stack-based CPU organization

PDP-11, Intel�s 8085 and HP 3000 are some of the examples of stack-organized computers.

The advantages of this organization:

1. Efficient computation of complex arithmetic expressions.

2. Execution of instructions is fast, because operand data are stored in consecutive memory

locations.

3. Since instructions do not have address field, the length of instructions is short.

The disadvantage of this organization:

1. Program size lengthens.

SQP.6 Computer Organization

4. (a) Write +710 in IEEE 32-bit format.

(b) Convert IEEE 32-bit format 4040000016 in decimal value.

(c) What is the role of an operating system? 2 + 2 + 1

Answer

(a) The decimal number +710 = +111 in binary = +1.11 ¥ 2+2

The 23-bit mantissa M = 0.110000 000000 000000 00000

The biased exponent E¢ = E + 127 = +2 + 127 = 129 = 1000 0001

Since the number is positive, the sign bit S = 0

Therefore, the IEEE single-precision (32-bit) representation is:

0 1000 0001 110000 000000 000000 00000

(b) The given number in IEEE 32-bit format is 4040000016

= 0100 0000 0100 0000 0000 0000 0000 00002

Since the leading bit is 0, the number is positive.

Next higher order 8-bit indicates the biased exponent (E¢) and it is (1000 00000)2 = 128

Therefore, the original exponent E = E¢ � 127 = 128 � 127 = 1

The leading bit in mantissa (after binary point) is 1, so the actual mantissa is (1.1)2

Thus, the decimal number is = +(1.1)2 ¥ 2+1 = +(11)2 = +310

(c) An operating system (OS) is a set of programs and utilities which acts as the interface

between user programs and computer hardware. The purpose of an operating system is to

provide an environment in which a user may execute the programs. The following are the

main functions of an operating system:

l User�s program management

l Memory management

l Secondary storage management

l I/O management

l File management

l Protection

l Networking management

l Command interpretation

5. Evaluate the following arithmetic expression into three-address, two-address, one-address, zero-

address instruction format : X = (A + B) * C

Answer

To evaluate this arithmetic expression, we use some op-codes as: LOAD symbolic op-code

is used for transferring data to register from memory. STORE symbolic op-code is used for

transferring data to memory from register. The symbolic op-codes ADD and MULT are used

for the arithmetic operations addition and multiplication respectively. Assume that the

respective operands are in memory addresses A, B and C and the result must be stored in the

memory at address X.

Using three-address instructions, the program code in assembly language is as:

ADD R1, A, B ;R1 ¨ M[A] + M[B]

MULT X, C, R1 ;X ¨ M[C] + R1

Solved Question Paper 2011 (CS-303 (Old)) SQP.7

Using two-address instructions, the program code in assembly language is as:

LOAD R1, A ;R1 ¨ M[A]

ADD R1, B ;R1 ¨ R1 + M[B]

LOAD R2, C ;R2 ¨ M[C]

MULT R1, R2 ;R1 ¨ R1 * R2

STORE X, R1 ;X ¨ R1

Using one-address instructions, the program code in assembly language is as:

LOAD A ;AC ¨ M[A]

ADD B ;AC ¨ AC + M[B]

STORE T ;T ¨ AC

LOAD C ;AC ¨ M[C]

MULT T ;AC ¨ AC * M[T]

STORE X ;X ¨ AC

Using zero-address instructions, the program code in assembly language is as:

PUSH A ;TOS ¨ A [TOS means top of the stack]

PUSH B ;TOS ¨ B

ADD ;TOS ¨ (A + B)

PUSH C ;TOS ¨ C

MULT ;TOS ¨ ((A + B) * C)

POP X ;X ¨ TOS

6. (a) Explain the difference between full associative and direct mapped cache mapping approaches.

(b) What are �write through� and �write back� policies in cache? 3 + 2

Answer

(a) The fully associative cache memory uses the fastest and most flexible mapping method in

which both address and data of the memory word are stored. This memory is expensive

because of additional storage of addresses with data in the cache memory.

In the direct cache mapping, instead of storing total address information with data in

cache, only part of address bits is stored along with data. Suppose the cache memory can

hold 2m words and main memory can hold 2n words. The n-bit address generated by the CPU

is divided into two fields: lower-order m bits for the index field and the remaining higher-

order (n�m) bits for the tag field. The direct mapping cache organization uses the m-bit

index to access the cache and higher-order (n�m) bits of tag are stored along side the data in

cache. This is the simplest type of cache mapping, since only tag field is required to match.

That�s why it is one of the fastest caches. Also, it is less expensive cache relative to the

associative cache.

(b) There are two policies in writing into cache memory: (i) write-through (ii) write-back.

Write-Through Policy: This is the simplest and most commonly used procedure to update

the cache. In this technique, when the cache memory is updated, at the same time the main

memory is also updated. Thus the main memory always contains the same data as the cache.

Write-Back Policy: In this method, during a write operation only the cache location is

updated. When the update occurs, the location is marked by a flag called modified or dirty

bit. When the word is replaced from cache, it is written into main memory if its flag bit is

set.

SQP.8 Computer Organization

Group-C

(Long-Answer Type Questions)

Answer any three of the following. 3 ¥ 15 = 45

7. What is virtual memory? Why is it called virtual? What are the different address spaces?

Explain with example how logical address is converted into physical address and also explain

how page replacements take place. Explain the instruction cycle with a neat diagram. Explain

the disadvantages of stored program computer. 2 + 2 + 4 + 5 + 2

Answer

Virtual memory is a technique used in some large computer systems, which gives the

programmer an illusion of having a large main memory, although which may not be the case.

The size of virtual memory is equivalent to the size of secondary memory. Each address

referenced by the CPU called the virtual (logical) address is mapped to a physical address in

main memory. This mapping is done during run-time and is performed by a hardware device

called memory-management unit (MMU) with the help of a memory map table, which is

maintained by the operating system.

Virtual memory is not a physical memory, is actually a technique. That is why it is called

virtual memory.

When a program needs to be executed, the CPU would generate addresses, called logical

addresses. The corresponding addresses in the physical memory, as occupied by the executing

program, are called physical addresses. The set of all logical addresses generated by the

CPU or program is called logical-address space and the set of all physical addresses

corresponding to these logical addresses is called physical-address space. The memory-

management unit (MMU) maps each logical address to a physical address during program

execution. Figure 6 illustrates this mapping method, which uses a special register called base

register or relocation register. The content of the relocation register is added to every logical

address generated by the user program at the beginning of execution. For example, if the

relocation register holds an address value 2000, then a reference to the location 0 by the user

is dynamically relocated to 2000 address. A reference to the address 150 is mapped to the

address 2150.

When a program starts execution, one or more pages are brought to the main memory and

the page table is responsible to indicate their positions. When the CPU needs a particular

page for execution and that page is not in main (physical) memory (still in the secondary

memory), this situation is called page fault. When the page fault occurs, the execution of the

present program is suspended until the required page is brought into main memory from

secondary memory. The required page replaces an existing page in the main memory, when

it is brought into main memory. Thus, when a page fault occurs, a page replacement is

needed to select one of the existing pages to make the room for the required page. There are

several replacement algorithms such as FIFO (First-in First-out), LRU (Least Recently

Used) and optimal page replacement algorithm available.

The FIFO algorithm is simplest and its criterion is �select a page for replacement that has

been in main memory for longest period of time�.

The LRU algorithm states that �select a page for replacement, if the page has not been

used often in the past�. The LRU algorithm is difficult to implement, because it requires a

counter for each page to keep the information about the usage of page.

Solved Question Paper 2011 (CS-303 (Old)) SQP.9

The optimal algorithm generally gives the lowest page faults of all algorithms and its

criterion is �replace a page that will not be used for the longest period of time�. This

algorithm is also difficult to implement, because it requires future knowledge about page

references.

An algorithm is evaluated by running it on a particular string of memory references and

computing the number of page faults. The string of memory references is called a reference

string.

Figure 6 A simple memory-management scheme

The processing required for a single instruction is called instruction cycle. The control

unit�s task is to go through an instruction cycle (see Fig. 7) that can be divided into five

major phases:

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Fetch the operand(s) from memory or register.

4. Execute the whole instruction.

5. Store the output result to the memory or register.

The step 1 is basically performed using a special register in the CPU called program

counter (PC) that holds the address of the next instruction to be executed. If the current

instruction is simple arithmetic/logic or load/store type the PC is automatically incremented.

Otherwise, PC is loaded with the address dictated by the currently executing instruction. The

decoding done in step 2 determines the operation to be performed and the addressing mode

of the instruction for calculation of address of operands. After getting the information about

the addresses of operands, the CPU fetches the operands in step 3 from memory or registers

and stores them its registers. In step 4, the ALU of processor executes the instruction on the

stored operands in registers. After the execution of instruction, in phase 5 the result is stored

back in memory or register and returns to step 1 to fetch the next instruction in sequence. All

these sub-operations are controlled and synchronized by the control unit.

Nearly all modern computers still use the stored-program concept. This concept has three

main principles:

1. Program and data can be stored in the same memory.

2. The computer executes the program in sequence as directed by the instructions in the

program.

3. A program can modify itself when the computer executes the program.

SQP.10 Computer Organization

Disadvantages of the stored-program concept: One of the major factors contributing for a

computer�s performance is the time required to move instructions and data between the CPU

and main memory. The CPU has to wait longer to obtain a data-word from the memory than

from its registers, because the registers are very fast and are logically placed inside the

processor (CPU). This CPU-memory speed disparity is referred to as Von-Neumann

bottleneck. This performance problem is reduced by using a special type memory called

cache memory between the CPU and main memory. The speed of cache memory is almost

same as the CPU, for which there is almost no waiting time of the CPU for the required

data-word to come. Another way to reduce the problem is by using special types of computers

known as Reduced Instruction Set Computers (RISC). This class of computers generally uses

Figure 7 Instruction cycle

Solved Question Paper 2011 (CS-303 (Old)) SQP.11

a large number of registers, through which most of the instructions are executed. This

computer usually limits access to main memory to a few load and store instructions. This

architecture is designed to reduce the impact of the bottleneck by reducing the total number

of the memory accesses made by the CPU and by increasing the number of register accesses.

8. Show the memory map with a CPU having 8 bit data bus and 16 bit address bus requiring four

RAM chips of size 256 ¥ 8 bit each and a ROM chip of 512 ¥ 8 bit size. Explain the memory

map. Among dynamic MOS cell and static MOS cell which one is used for the construction of

cache memory and which one for main memory? What is destructive readout and non-destructive

readout memory? 7 + 4 + 4

Answer

The addressing of memory can be designed by means of a table, known as memory address

map, which specifies the memory address space assigned to each chip. The address map

table for the memory connection to the CPU shown in Fig. 8 is constructed in Table 1. The

CPU generates 16-bit address for memory read or write operation. The address lines 1 to 8

are connected to each memory and address line 9 is used in dual purposes. In case of a RAM

selection out of four RAMs, the line no. 9 and line no. 10 are used through a 2-to-4 decoder.

The line no. 9 is also connected to the ROM as address line along with lines 1 to 8 giving a

total of 9 address lines in the ROM, since the ROM has 512 locations. The CPU address line

number 11 is used for separation between RAM and ROM. The other 12 to 16 lines of CPU

are unused and for simplicity we assume that they carry 0s as address signals. For ROM, 10th

line is unused and thus it can be assumed that this line carries signal 0.

Table 1 Memory address map table for Fig. 8

Chip selected Address space (in HEX) Address bus

11 10 9 8 7 6 5 4 3 2 1

RAM1 0400 � 04FF 1 0 0 x x x x x x x x

RAM2 0500 � 05FF 1 0 1 x x x x x x x x

RAM3 0600 � 06FF 1 1 0 x x x x x x x x

RAM4 0700 � 07FF 1 1 1 x x x x x x x x

ROM 0000 � 01FF 0 0 x x x x x x x x x

Dynamic MOS cell is used to construct main memory and static MOS cell is used to

construct cache memory because static memory is faster than dynamic memory.

In some memories, the reading the memory word destroys the stored word, this fact is

known as destructive readout and memory is known as destructive readout memory. In these

memories, each read operation must be followed by a write operation that restores the

memory�s original state. Example includes dynamic RAM.

In some memories, the reading the memory word does not destroy the stored word, this

fact is known as non-destructive readout and memory is known as non-destructive readout

memory. Examples include static RAM and magnetic memory.

9. Explain with a neat circuit diagram of static MOS cell and dynamic MOS cell. Describe

memory reading and writing process. What is daisy chaining ? Discuss the data transfer using

the DMA. 2 + 7 + 2 + 4

SQP.12 Computer Organization

Figure 8 Memory connection with 16-bit CPU

Answer

Static MOS Cell

One static MOS cell is shown in Fig. 9. Four transistors (T3, T4, T5 and T6) are cross

connected in such a way that they produce a stable state. In the state 1, the voltage at point A

is maintained high and voltage at point at B is low by keeping transistors T3 and T6 on (i.e.

closed), while T4 and T5 off (i.e. open). Similarly, in state 0, the voltage at A is low and at

point B is high by keeping transistors T3 and T6 off, while T4 and T5 on. Both these states

are stable as long as the power is applied on it. Thus, for state 1, if T1 and T2 are turned on

(closed), bit lines b and b� will have high and low signals respectively.

Solved Question Paper 2011 (CS-303 (Old)) SQP.13

Read Operation: For the read operation, the word line is activated by the address input to

the address decoder. The activated word line closes both the transistors (switches) T1 and T2.

Then the bit values at points A and B can transmit to their respective bit lines. The sense/

write circuit at the end of the bit lines sends the output to the processor.

Write Operation: Similarly, for the write operation, the address provided to the decoder

activates the word line to close both the switches. Then the bit value that to be written into

the cell is provided through the sense/write circuit and the signals in bit lines are then stored

into the cell.

The main advantage of using static MOS memory is the low power consumption. Since,

when the cell is being accessed the current flows in the cell only. Otherwise, T1, T2 and one

transistor in each inverter are turned off, ensuring that there is no active path between Vcc

and ground.

Dynamic MOS Cell:

Though static MOS memory is very fast, but it is

expensive because of its each cell requires several

transistors. Relatively less expensive RAM is dynamic

MOS memory, due to the use of one transistor and

one capacitor in each cell, as shown in Fig. 10, where

C is the capacitor and T is the transistor. Information

is stored in a DRAM cell in the form of a charge on a

capacitor and this charge needs to be periodically

recharged.

For storing information in this cell, transistor T is

turned on and an appropriate voltage is applied to the

bit line. This causes a known amount of charge to be

stored in the capacitor. After the transistor is turned off, due to the property of the capacitor,

it starts to discharge. Hence, the information stored in the cell can be read correctly only if it

is read before the charge on the capacitor drops below some threshold value.

Figure 9 A static MOS cell

Figure 10 A dynamic MOS cell

SQP.14 Computer Organization

To implement interrupts, the CPU uses a signal, known as an interrupt request (INTR)

signal to the interrupt controller hardware, which is connected to each I/O device that can

issue an interrupt to it. Here, interrupt controller makes liaison with the CPU on behalf of I/O

devices. Typically, interrupt controller is also assigned an interrupt acknowledge (INTA) line

that the CPU uses to signal the controller that it has received and begun to process the

interrupt request by employing an ISR (interrupt service routine). Devices are connected in

daisy chain fashion, as shown in Fig. 11, to set up priority interrupt system.

Figure 11 Daisy chaining priority interrupt system

The devices are placed in a chain-fashion with highest priority device in the first place

(device 1), followed by lower priority devices. When one or more devices send interrupt

signal through the interrupt controller to the CPU, the CPU then set interrupt acknowledge

(INTA) to the controller, which in turns sends it to the highest priority device. If this device

has generated the interrupt INTR, it will accept the INTA; otherwise it will pass the INTA

signal to the next device until the INTA is accepted by one requestor device. When the

INTA is accepted by a device, device puts its own interrupt vector address (VAD) to the data

bus using interrupt controller.

To transfer large blocks of data at high speed, this third method is used. A special

controlling unit may be provided to allow transfer a block of data directly between a high

speed external device like magnetic disk and the main memory, without continuous intervention

by the CPU. This method is called direct memory access (DMA).

DMA transfers are performed by a control circuit that is part of the I/O device interface.

We refer to this circuit as a DMA controller. The DMA controller performs the functions

that would normally be carried out by the CPU when accessing the main memory. During

DMA transfer, the CPU is idle or can be utilized to execute another program and CPU has

no control of the memory buses. A DMA controller takes over the buses to manage the

transfer directly between the I/O device and the main memory.

The CPU can be placed in an idle state using two special control signals, HOLD and

HLDA (Hold Acknowledge). Figure 12 shows two control signals in the CPU that characterize

the DMA transfer. The HOLD input is used by the DMA controller to request the CPU to

release control of buses. When this input is active, the CPU suspends the execution of the

current instruction and places the address bus, the data bus and the read/write line into a

Solved Question Paper 2011 (CS-303 (Old)) SQP.15

high-impedance state. The high-impedance state behaves like an open circuit, which means

that the output line is disconnected from the input line and does not have any logic significance.

The CPU activates the HLDA output to inform the external DMA controller that the buses

are in the high-impedance state. The control of the buses has been taken by the DMA

controller that generated the bus request to conduct memory transfers without processor

intervention. After the transfer of data, the DMA controller disables the HOLD line. The

CPU then disables the HLDA line and regains the control of the buses and returns to its

normal operation.

10. Discuss various addressing modes with examples. Write a program that can evaluate the

expression X = A � B + C � D in a single accumulator processor. Assume that the processor

has load, store, sub and add instructions. What is the difference between zero-address and

one-address instructions. Write a short note on overflow detection with examples. What are

status flags ? 5 + 3 + 2 + 5

Answer

To obtain the addresses of operands, the address mode is needed. A processor can support

various addressing modes in order to give flexibility to the users. The addressing mode gives

the way addresses of operands is determined.

The various addressing modes are discussed next.

1. Implied (or Inherent) Mode: In this mode the operands are indicated implicitly by the

instruction. The accumulator register is generally used to hold the operand and after the

instruction execution the result is stored in the same register. For example,

RAL; Rotates the content of the accumulator left through carry.

CMA; Takes complement of the content of the accumulator.

2. Immediate Mode: In this mode the operand is mentioned explicitly in the instruction.

In other words, an immediate-mode instruction contains an operand value rather than an

address of it in the address field. To initialize registers to a constant value, this mode of

instructions is useful. For example:

MVI A, 06; Loads equivalent binary value of 06 to the accumulator.

ADI 05; Adds the equivalent binary value of 05 to the content of AC.

3. Stack addressing Mode: Stack-organized computers use stack addressed instructions.

In this addressing mode, all the operands for an instruction are taken from the top of the

stack. The instruction does not have any operand field. For example, the instruction

SUB

Figure 12 CPU bus signals for DMA transfer

SQP.16 Computer Organization

uses only one op-code (SUB) field, no address field. Both the operands are in the

topmost two positions in the stack, in consecutive locations. When the SUB instruction

is executed, two operands are popped out automatically from the stack one-by-one.

After subtraction, the result is pushed onto the stack. Since no address field is used, the

instruction is short.

4. Register (Direct) Mode: In this mode the processor registers hold the operands. In

other words, the address field is now register field, which contains the operands required

for the instruction. For example:

ADD R1, R2; Adds contents of registers R1 and R2 and stores the result in R1.

5. Register Indirect Mode: In this mode the instruction specifies an address of CPU

register that holds the address of the operand in memory. In other words, address field

is a register which contains the memory address of operand.

6. Auto-increment or Auto-decrement Mode: This is similar to the register indirect

mode except that after or before register�s content is used to access memory it is

incremented or decremented. It is necessary to increment or decrement the register after

every access to an array of data in memory, if the address stored in the register refers to

the array. This can be easily achieved by this mode.

7. Direct (or Absolute) Address Mode: In this mode the instruction contains the memory

address of the operand explicitly. Thus, the address part of the instruction is the effective

address. Examples of direct addressing are:

STA 2500H ; Stores the content of the accumulator in the memory location

2500H.

LDA 2500H ; Loads the accumulator with the content of the memory location

2500H.

8. Indirect Address Mode: In this mode the instruction gives a memory address in its

address field which holds the address of the operand. Thus, the address field of the

instruction gives the address where the effective address is stored in memory. The

following example illustrates the indirect addressing mode:

MOV (X), R1 ; Content of the location whose address is given in X is loaded

into register R1.

9. Relative Address Mode or PC-relative Address Mode: In this mode the effective

address is obtained by adding the content of program counter (PC) register with address

part of the instruction. The instruction specifies the memory address of operand as the

relative position of the current instruction address. Generally, this mode is used to

specify the branch address in the branch instruction, provided the branch address is

nearer to the instruction address.

10. Indexed Address Mode: In this mode the effective address is determined by adding

the content of index register (XR) with the address part of the instruction. This mode is

useful in accessing operand array. The address part of the instruction gives the starting

address of an operand array in memory. The index register is a special CPU register

that contains an index value for the operand. The index value for operand is the

distance between the starting address and the address of the operand. For example, an

Solved Question Paper 2011 (CS-303 (Old)) SQP.17

operand array starts at memory address 1000 and assume that the index register XR

contains the value 0002. Now consider load instruction

LDA 1000

The effective address of the operand is calculated as:

Effective address = 1000 + content of XR

= 1002.

11. Base Register Address Mode: This mode is used for relocation of the programs in the

memory. Relocation is a technique of moving program or data segments from one part

of memory to another part of memory. Relocation is an important feature of

multiprogramming systems. In this mode the content of the base register (BR) is added

to the address part of the instruction to obtain the effective address.

We have to evaluate the expression X = A � B + C � D in a single accumulator

processor. Single accumulator based machine is a simple CPU in which the accumulator

register (AC) is used implicitly for processing all instructions of a program and

intermediate results are stored into this register. The instruction format in this computer

uses one address field. For this the CPU is known as one address machine.

For this, LOAD symbolic op-code is used for transferring data to register from

memory. STORE symbolic op-code is used for transferring data to memory from register.

The symbolic op-codes ADD and SUB are used for the arithmetic operations of addition

and subtraction respectively. Assume that the respective operands are in memory

addresses A, B, C and D and the result must be stored in the memory at address X.

The single accumulator based computers use one-address instructions. Here, all

instructions use an implied accumulator (AC) register. The program to evaluate X =

(A � B) + (C � D) using one-address instructions is as follows:

LOAD C ; AC ¨ M[C]

SUB D ; AC ¨ AC � M[D]

STORE T ; T ¨ AC

LOAD A ; AC ¨ M[A]

SUB B ; AC ¨ AC � M[B]

ADD T ; AC ¨ AC + M[T]

STORE X ; X ¨ AC

T is the temporary memory location required for storing the intermediate result.

One-address instructions are followed by the single accumulator based computers.

Here, all instructions use an implied accumulator (AC) register. Zero-address instructions

are used by stack-organized computers, which do not use any address field for the

operation-type instructions. The name �zero-address� is given to this type of computer

because of the absence of an address field in the computational instructions. Generally,

one address instructions are executed quickly compared to the zero address instructions,

because the accumulator register is used all the times for one address instructions

execution while memory is generally accessed most of the time for zero address

instructions execution.

An overflow is a problem in digital computers because the numbers are stored in

registers, which are finite in length. If two numbers of n digits each are added and the

SQP.18 Computer Organization

sum occupies n + 1 digits, an overflow will occur. This holds good irrespective of the

numbers� type. Since a register of n-bit can not accommodate the result of n + 1 bits, an

overflow results. If it occurs, a corresponding flip-flop in CPU is set, which is then

verified by the user or program.

If one number is positive and the other is negative, after an addition overflow cannot

occur, since addition of a positive number to a negative number produces a number that

is always smaller than the larger of the two original numbers. However, an overflow

may occur if the two numbers added are of same sign i.e., both are positive or both are

negative. Let�s consider following examples.

Carries: 01 Carries: 10

+69 0 1000101 �69 1 0111011

+78 0 1001110 �78 1 0110010

+147 1 0010011 �147 0 1101101

Observe that the 8-bit result that should have been positive (in first example) has a

negative sign bit and the 8-bit result that should have been negative (in second example)

has a positive sign bit. However, if the carry out from the sign bit position is treated as

the sign of the result, the 9-bit answer thus obtained will be correct answer. Since the 9-

bit answer cannot be accommodated with 8-bit register, we say that an overflow results.

To detect an overflow condition the carry into the sign bit position and the carry out

from the sign bit position are examined. If these two carries are both 0s or both are 1s,

there is no overflow. If these two carries are not equal (i.e., if one is 0 and other is 1),

an overflow condition exists. This is illustrated in the examples where the two carries

are explicitly shown. Using an XOR gate, whose two inputs are these carries, an

overflow can be detected when the output of the gate is 1.

The processor uses one special register called status register (SR) to hold the latest

program status. It holds 1-bit flags to indicate certain conditions that produced during

arithmetic and logic operations. The bits are set or reset depending on the outcome of

most recent arithmetic and logic operation. The register generally contains following

four flags:

Carry (C): It indicates whether there is any end-carry from the most significant bit

position.

Zero (Z): It indicates whether the result is zero or non-zero.

Sign (S): It indicates whether the result is positive or negative.

Overflow (V): It indicates whether the operation produces any overflow or not.

There may be other flags such as parity and auxiliary carry.

11. Write short notes on any three of the following: 3 ¥ 5

(a) Carry look ahead adder

(b) Design of a 4-bit adder-subtractor circuit

(c) Tri-state buffer

(d) Booth�s algorithm for multiplication

(e) Cache memory.

Solved Question Paper 2011 (CS-303 (Old)) SQP.19

Answer

(a) Carry look ahead adder: A Carry Look-ahead Adder (CLA) is a high-speed adder, which

adds two numbers without waiting for the carries from the previous stages. In the CLA,

carry-inputs of all stages are generated simultaneously, without using carries from the previous

stages.

In the full adder, the carry output Ci+1 is related to its carry input Ci as follows:

Ci+1 = AiBi + (Ai + Bi)Ci

This result can be rewritten as:

Ci + 1 = Gi + PiCi (1)

where Gi = AiBi and Pi = Ai + Bi

The function Gi is called the carry-generate function,

since a carry Ci + 1 is generated when both Ai and Bi are

1s. The function Pi is called as carry-propagate function,

since if Ai or Bi is a 1, then the input carry Ci is

propagated to the next stage. The basic adder (BA) for

generating the sum Si, carry propagate Pi and carry

generate Gi bits, is shown in Fig. 13. The sum bit Si is =

Ai ≈ Bi ≈ Ci. For the implementation of one basic

adder, two XOR gates, one AND gate and one OR gate

are required.

Now, we want to design a 4-bit CLA, for which four

carries C1, C2, C3 and C4 are to be generated. Using equation number (1); C1, C2, C3 and C4

can be expressed as follows:

C1= G0 + P0C0

C2= G1 + P1C1

C3= G2 + P2C2

C4= G3 + P3C3

These equations are recursive and the recursion can be removed as below.

C1 = G0 + P0C0 (2)

C2 = G1 + P1C1

= G1 + P1(G0 + P0C0)

= G1 + P1G0 + P1P0C0 (3)

C3 = G2 + P2C2

= G2 + P2(G1 + P1G0 + P1P0C0)

= G2 + P2G1 + P2P1G0 + P2P1P0C0 (4)

C4 = G3 + P3C3

= G3 + P3(G2 + P2G1 + P2P1G0 + P2P1P0C0)

= G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0 (5)

The equations (2), (3), (4) and (5) suggest that C1, C2, C3 and C4 can be generated directly

from C0. In other words, these four carries depend only on the initial carry C0. For this

reason, these equations are called carry look-ahead equations. A 4-bit carry look-ahead

adder (CLA) is shown in Figure 14.

Figure 13 Basic adder

SQP.20 Computer Organization

The maximum delay of the CLA is 6 ¥ D (for Gi and Pi generation, delay = D, for Ci

generation, delay = 2D and lastly another 3D for sum bit Si) where D is the average gate

delay. The same holds good for any number of bits because the adder delay does not depend

on size of number (n). It depends on the number of levels of gates used to generate the sum

and the carry bits.

Figure 14 4-bit Carry Look-ahead Adder (CLA)

(b) Design of a 4-bit adder-subtractor circuit: Recall that the subtraction A � B is equivalent

to A+ 2�s complement of B (i.e. 1�s complement of B +1). The addition and subtraction can

be combined to a single circuit by using exclusive-OR (XOR) gate with each full adder. The

circuit is shown in Fig. 15.

Figure 15 4-bit Binary Adder-Subtractor

The selection input S determines the operation. When S = 0, this circuit performs the

addition operation and when S = 1, this circuit performs subtraction operation. The inputs to

each XOR gate are S-input and B-input. When S = 0, we have 0 ≈ B = B (It can be verified

from the truth table of XOR gate). This means that the direct B-value is given as input into a

full adder (FA) and the carry-input into first full adder is 0. Thus, the circuit performs

addition. When S = 1, we have 1 ≈ B = B
�
 (It can be verified from the truth table of XOR

gate) and carry-input is 1. This means that the circuit performs the addition of A with 2�s

Solved Question Paper 2011 (CS-303 (Old)) SQP.21

complement of B. For unsigned numbers, A � B if A ≥ B or the 2�s complement of (B � A)

if A < B. For signed numbers, the result is A � B provided that there is no overflow.

(c) Tri-state buffer: A tri-state gate is a digital circuit that exhibits three states out of which

two states are normal signals equivalent to logic 1 and logic 0 similar to a conventional gate.

The third state is a high-impedance state. The high-impedance state behaves like an open

circuit, which means that no output is produced though there is an input signal and does not

have logic significance. The gate is controlled by one separate control input C. If C is high

the gate behaves like a normal logic gate having output 1 or 0. When C is low the gate does

not produce any output irrespective of the input values. The graphic symbol of a tri-state

buffer gate is shown in Figure 16.

Figure 16 Graphic symbol for a tri-state buffer gate

A common bus system with tri-state buffers is described in Fig. 17. The outputs of four

buffers are connected together to form a single line of the bus. The control inputs to the

buffers, which are generated by a common decoder, determine which of the four normal

inputs will communicate with the common line of the bus. Note that only one buffer may be

in the active state at any given time. Because the selection lines S0, S1 of the decoder activate

one of its output lines at a time and the output lines of the decoder act as the control lines to

the buffers. For example, if select combination S1S0 is equal to 00, then 0th output of the

decoder will be activated, which then activates the top-most tri-state buffer and thus the bus

line content will be currently A0, 0
th bit of A register.

Figure 17 A single line of a bus system with tri-state buffers

SQP.22 Computer Organization

(d) Booth�s algorithm for multiplication: The algorithm inspects two lower-order multiplier

bits at a time to take the next step of action. The algorithm is described by the flowchart in

Figure 18. A flip-flop (a fictitious bit position) is used to the right of lsb of the multiplier and

it is initialized to 0. Subsequently, it receives the lsb of the multiplier when the multiplier is

shifted right.

Figure 18 Booth�s multiplication algorithm

Solved Question Paper 2011 (CS-303 (Old)) SQP.23

Once all bits of the multiplier are inspected, the accumulator and multiplier registers

together contains the product. Ignore the right end flip-flop used for holding an initial 0, as it

is a fictitious bit and subsequent lsbs from multiplier. The circuit block diagram of the

Booth�s multiplication algorithm is shown Fig. 19.

Figure 19 Block diagram of Booth�s multiplication algorithm

Example:

To see how this procedure works, the following example is considered. M = �6 = 1010 and

Q = 7 = 0111.

M A Q Size

Initial Configuration 1010 0000 0111 0 4

Step-1

As Q[0] = 1 and Q[�1] = 0

A = A � M 1010 0110 0111 0 �

And ARS (AQ) 1010 0011 0011 1 3

Step-2

As Q[0] = 1 and Q[�1] = 1

ARS(AQ) 1010 0001 1001 1 2

Step-3

As Q[0] = 1 and Q[�1] = 1

ARS (AQ) 1010 0000 1100 1 1

Step-4

As Q[0] = 0 and Q[�1] = 1

A = A + M 1010 1010 1100 1 �

ARS (AQ) 1010 1101 0110 0 0

Since the size register becomes 0, the algorithm is terminated and the product is = AQ =

1101 0110, which shows that the product is a negative number. To get the number in

familiar form, take the 2�s complement of the magnitude. The result is � 42.

Advantages of the Booth�s multiplication method:

(i) Pre-processing steps are unnecessary, so the Booth�s algorithm treats signed numbers in

a uniform way with unsigned numbers.

(ii) Less number of additions and subtractions are required, compared to the sequential

multiplication method.

SQP.24 Computer Organization

(e) Cache memory: Cache memory is small and fast memory used to increase the instruction-

processing rate. Its operation is based on the property called �locality of reference� inherent

in programs. Analysis of a large number of typical programs shows that the CPU references

to main memory during some time period tend to be confined within a few localized areas in

memory. In other words, few instructions in the localized areas in memory are executed

repeatedly for some time duration and other instructions are accessed infrequently. This

phenomenon is known as the property of locality of reference.

If active segments of a program are placed in a fast small cache memory, the average

memory access time can be reduced, thus reducing the total execution time of the program.

This memory is logically placed between the CPU and main memory. Because we know that

the cache memory�s speed is almost same as that of CPU. The main idea of cache organization

is that by keeping the most frequently accessed instructions and data in the fast cache

memory, the average memory access time will be almost same as access time of cache.

The main characteristic of cache memory is its fast access time. Therefore, the waiting

time for the CPU is very small or nil when searching for words in the cache. The transfer of

data as a block from main memory to cache memory is referred to as a mapping process.

Three types of cache mapping have been used.

1. Associative mapping

2. Direct mapping

3. Set-associative mapping

Cache memory is one high-speed main memory (SRAM). The cache memory can be placed

in more than one level. Most of the recent microprocessors�starting from Intel 80486�

have on-chip (memory chip is placed inside the CPU chip) cache memory also known as

internal cache. High performance microprocessors such as Pentium pro and later have two

levels of cache memory on-chip. These are known as level 1 (L1) and level 2 (L2) caches.

An on-chip cache is slightly faster than an off-chip cache of same technology.

Group-A

(Multiple-Choice-Type Questions)

ect alternatives from the following: 10

The maximum number of directly addressable locations in the memory of a processor hav-

ing a 10-bit wide control bus, 20-bit address bus, and 8-bit data bus is

(b) 2K (c) 1 M

two back-to-back connected tri-state buffers in parallel

two back-to-back connected buffers

two back-to-back connected tri-state buffers in parallel

Micro-instructions are kept in the

(b) control memory (c) cache memory

control

;X ← AC

Using zero-address instructions, the program code in assembly language is

;TOS ← A [TOS means top of the stack]

;TOS ← B

;TOS ← (A + B)

;TOS ← C

;TOS ← (A + B) * (C)

;X ← TOS

The rotational speed = 3600 rpm

So, the rotation time = 60/3600 s = 1/60 s.

Storage capacity of each track = 20 * 4000 bytes = 80000 bytes.

Thus, the data transfer rate = 80000 / (1/ 60) = 4800000 bytes/second = 4.578 MB/s

on Neumann architecture? What is Von Neumann bottleneck?

on Neumann and his colleagues began the design of a new stored-program computer

The POP operation results in deleting one operand from the top of the

stack and it increases the stack pointer register.

For example, Figure 1 shows a stack of four data-words in the memory

 instruction deletes the data word at the top of the stack to the specifi

stack pointer is updated automatically in either case. The PUSH operation can be implemented

;decrement the SP

address> ; store the content of specifi

into SP, i.e., at top of memory stack

 operation can be implemented as

address> ← SP ; transfer the content of SP

into specifi ed memory location

metic and other data-processing tasks as specifi ed by the control unit.

control unit are the main constituent parts of the Central Processing Unit (CPU).

component of the CPU is the register unit—collection of dif

the data or instruction temporarily.

This is the unit that supervises the fl ow of information between various

The control unit retrieves the instructions using registers one by one from the

program, which is stored in the memory. The instructions are interpreted (or decoded)

by the control unit itself and then the decoded instructions are sent to the

e 4: Bus system for four registers using MUXs

The function table for the bus shown in Figure 4 is given below

00110 11111 01010 1

00110 00101 01010 1

00110 00010 10101 0

There are 8 blocks in a cache set.

 three-level memory system having cache access time of 5 ns and disk access time of 40 ns,

has a cache hit ratio of 0.96 and main memory hit ratio of 0.9.

memory access time to achieve an overall access time of 16 ns?

This is a special high-speed main memory, sometimes used to increase the speed of process-

ing by making the current programs and data available to the CPU at a rapid rate. Generally

the CPU is faster than main memory, thus the resulting processing speed is limited mainly by

The number of blocks the cache memory contains = 1 MB/128 bytes = 2

Therefore, number of-bits required to specify one block in the cache memory = 13.

eld of address = 28 – (13 + 7) = 8-bit.

For direct cache, the address format is

8 7

Tag Word

13

Block

 controller: For each I/O device, a separate DMA

 controller takes care of supporting one of the I/O controllers.

 parameters is kept in each DMA controller. Such an arrangement is shown in

Figure 6 for Floppy-Disk Controller (FDC) and Hard-Disk Controller (HDC). DMA

lers are controlled by the software.

CPU Memory

e 7: DMA controller having multiple DMA channels

The processing required for a single instruction execution is called the

s task is to go through an instruction cycle that can be divided into fi

Fetch the instruction from memory.

Decode the instruction.

Fetch the operand(s) from memory or register.

Execute the whole instruction.

essing modes. A computer uses a variety of addressing modes; some of them

Implied (or Inherent) Mode: In this mode, the operands are indicated implicitly by the

The accumulator register is generally used to hold the operand and after the

instruction execution the result is stored in the same register

RAL; Rotates the content of the accumulator left through carry

Immediate Mode: In this mode, the operand is mentioned explicitly in the instruction.

In other words, an immediate-mode instruction contains an operand value rather than

an address of it in the address fi eld. To initialize registers to a constant value, this mode

of instructions are useful. For example:

for mapping from the logical address to the physical address.

elds, one is the page number and the other is frame number

information that which page would be mapped to which frame. Each operating system has its

own way of maintaining the page tables; most allocate a page table for each program.

Each address generated by the CPU (i.e., virtual address) is divided into two parts:

offset or displacement (d). The page number p is used as index in the page table

 is the word number within the page p. The structure of the paging method is

horizontal microinstruction.

Horizontal microinstructions have the following general attributes:

Ability to express a high degree of parallelism

ry little encoding of the control information

In a vertical microinstruction, a single fi eld can produce an encoded sequence.

technique is followed in this organization. The vertical microprogram technique takes more

time for generating the control signals due to the decoding time and also more microinstruc-

Thus, the vertical microinstructions are characterized by

Group-A

(Multiple-Choice-Type Questions)

ect alternatives for the following: 10

increases performance (b) increases machine cycle

reduces performance (d) none of these

(b) 0000011 (c) 1100010

The logic circuit in the ALU is

entirely combinational (b) combinational cum sequential

entirely sequential (d) none of these

entirely combinational

task it was originally performing. Thus, in the interrupt-initiated mode, the ISR software (i.e.,

CPU) performs data transfer but is not involved in checking whether the device is ready for

Therefore, the execution time of the CPU can be optimized by employing

it to execute normal programs, when no data transfer is required.

Represent (–9.50) in 64-bit IEEE fl oating point representation.

What are ‘write-through’ and ‘write-back’ policies in cache memory?

The decimal number –9.5 = –1001.1 in binary = –1.0011 × 2

The 52-bit mantissa M = 0.00110 00000 00000 00000 00000 00000 00000 00000 00000

;Branch to a location relative to the value 20 (of

The branch location is computed by adding the offset value 20 with the current value of the

This instruction (JR 20) requires 2 bytes: one for the op-code (JR) and another for its

fset value 20. Consider that the instruction is stored in the memory as shown in Figure 1.

Memory PC

2002

Af

in which the location of an operand is specifi ed in an instruction are referred to as

 computer uses a variety of addressing modes; some of them are described below:

Implied (or Inherent) Mode: In this mode, the operands are indicated implicitly by the

The accumulator register is generally used to hold the operand and after

the instruction execution, the result is stored in the same register

RAL; Rotates the content of the accumulator left through carry

Immediate Mode: In this mode, the operand is mentioned explicitly in the instruction.

In other words, an immediate-mode instruction contains an operand value rather than

an address of it in the address fi eld. To initialize registers to a constant value, this mode

Address Mode: This mode is used for relocation of the programs in the

Relocation is a technique of moving program or data segments from one part

of the memory to another part. Relocation is an important feature of multiprogramming

systems. In this mode, the content of the Base Register (BR) is added to the address part

of the instruction to obtain the effective address. This mode is similar to the indexed

addressing mode, but the exception is in the way they are used.

the starting address of a memory array of operands and the address part of the instruc-

tion gives a displacement or offset relative to this starting address.

addressing mode has the advantage over index addressing mode with respect to the

size of instructions, because size of instructions in the fi

produce a stable state. In the state 1, the voltage at the point A

at the the point at B is low by keeping transistors T3 and T6 on (i.e., closed), while

f (i.e., open). Similarly, in the state 0, the voltage at A is low and at the point B is high by

 and T6 off, while T4 and T5 on. Both these states are stable as long as

the power is applied on it. Thus, for the state 1, if T1 and T2 are turned on (closed), bit lines

 will have high and low signals respectively. The state of the cell is read or written

The main advantage of using CMOS SRAMs is the low power consumption. Since when the

cell is being accessed, the current fl ows in the cell only. Otherwise,

speed and capacity then cost will increase. We can achieve these goals at optimum level by

using several types of memories, which collectively give a memory hierarchy

 memory hierarchy system is broadly divided into following four groups, shown in

Secondary (auxiliary) memory

Main (primary) memory

Internal memory

registers hold temporary results when a computation is in progress.

ity between these registers and the CPU because they are fabricated with the same technol-

 since registers are very expensive, only a few registers are used as internal

 computer has a main memory of 64K × 16 and a cache memory of 1K words.

uses direct mapping with a block size of 4 words.

How many-bits are there in tag, index, block, and word fi

What is the size of one cache word?

How many blocks can be accommodated in the cache?

TLB has a hit ratio of 80% and it takes 20 ns to search the

= 140 ns

Pipeline architecture performs overlapped computations to exploit temporal parallelism; in other

words, pipeline architecture uses one parallel processing concept, known as pipelining.

The addressing of memory can be designed by means of a table, known as

es the memory address space assigned to each chip.

for the memory connection to the CPU shown in Figure 6 is constructed in

generates a 16-bit address for memory read or write operation.

connected to each memory and address lines 9 are used in dual purposes. In case of a RAM

selection out of four RAMs, the line 9 and line 10 are used through a 2-to-4 decoder

line 9 is also connected to the ROM as address line along with lines 1 to 8 giving a total of 9

address lines in the ROM, since the ROM has 512 locations. The CPU address line number 1

to the interrupt controller hardware, which is connected to each I/O device that can issue an

interrupt to it. Here, the interrupt controller makes liaison with the CPU on behalf of I/O

, the interrupt controller is also assigned an

line that the CPU uses to signal the controller that it has received and begun to process the

interrupt request by employing an ISR (Interrupt Service Routine). Devices are connected in

daisy-chain fashion, as shown in Figure 7, to set up a priority interrupt system.

The devices are placed in a chain-fashion with highest priority device in the fi

followed by lower priority devices. When one or more devices send interrupt signal through

the interrupt controller to the CPU, the CPU then sets interrupt acknowledge (INT

, which in turns sends it to the highest priority device. If this device has generated

Group-A

(Multiple-Choice-Type Questions)

 questions.

on-Neumann bottleneck is a problem, which occurs due to

small-size main memory

speed disparity between CPU and main memory

high-speed CPU

may or may not be of one-byte length

The CPI value for a RISC processor is

(b) 2 (c) 3

cycle stealing means

controller gets opportunity to transfer only one word in a time slot

Explain IEEE single precision format for representing –10.5.

The decimal number –10.510 = –1010.1 in binary = –1.0101 × 2

The 23-bit mantissa M = 0.010100 000000 000000 00000

 = E + 127 = +3 + 127 = 130 = 1000 0010

Since the number is negative, the sign bit S = 1

Therefore, the IEEE single-precision (32-bit) representation is

010100 000000 000000 00000

 mode of data transfer used? What are different types of DMA

The SRAM has lower access time, which means it is faster compared to the DRAM.

The SRAM requires constant power supply, which means this type of memory consumes

more power; whereas the DRAM offers reduced power consumption, due to the fact

that the information is stored in the capacitor.

Due to the relatively small internal circuitry in the one-bit memory cell of DRAMs,

ge storage capacity in a single DRAM memory chip is available compared to the

same physical size SRAM memory chip. In other words, DRAM has high packaging

density compared to the SRAM.

SRAM is costlier than DRAM.

 is a technique of decomposing a sequential task into subtasks, with each subtask

being executed in a special dedicated stage (segment) that operates concurrently with all other

stages. Each stage performs partial processing dictated by the way the task is partitioned.

result obtained from a stage is transferred to the next stage in the pipeline.

obtained after the instruction has passed through all the stages.

by a common clock. Stages are pure combinational circuits performing arithmetic or logic

operations over the data stream fl owing through the pipe. The stages are separated by high-

speed interface latches (i.e., collection of registers). Figure 2 shows the pipeline concept with

Inner track diameter = 20 cm

Outer track diameter = 30 cm

So, total track width = (30 – 20)/2 cm = 5 cm

ack separation = 0.5 mm

Thus, no. of tracks/surface = (5*10)/0.5 = 100

Minimum track circumference = 20 * Π cm

Maximum track storage density = 2000 bits/ cm, which will be on innermost track.

So, Data storage capacity/track = 20 * Π*2000 bits = 122.77 Kbits

Disk speed = 3600 rpm

So, rotation time = 1/3600 minute = 16.67 ms (1 m = 103 s)

tached to the other processor takes longer due to the added delay through the interconnection

Therefore, the distributed system is faster and in this regard, it is better

 cache has 64 KB capacity, 128-byte lines and is 4-way set-associative.

32-bit address for accessing data in the memory.

How many lines and sets does the cache have?

How many entries are required for tag?

How many bits of tags are required in each entry in the tag array?

 hierarchical cache-main memory subsystem has the following specifi

Cache memory access time 80 ns

	Title
	Contents
	1 Fundamentals of Computers
	2 Data Representation and Computer Arithmetic
	3 Datapath and Design of Arithmetic Logic Unit
	4 Memory Organization
	5 Computer Instruction Set
	6 Design of Control Unit
	7 Input-Output Organization
	APPENDIX
	Question Papers

