
Computer Programming
First Edition

About the Author

E Balagurusamy, is presently the Chairman of EBG Foundation, Coimbatore. He has been Member,

Union Public Service Commission, New Delhi and Vice-Chancellor, Anna University, Chennai. He is a

teacher, trainer, and consultant in the fi elds of Information Technology and Management. He holds an ME

(Hons) in Electrical Engineering and PhD in Systems Engineering from the Indian Institute of Technology,

Roorkee. His areas of interest include Object-Oriented Software Engineering, E-Governance: Technology

Management, Business Process Re-engineering, and Total Quality Management.

A prolifi c writer, he has authored a large number of research papers and several books. His best

selling books, among others include:

 • Fundamentals of Computers

 • Computing Fundamentals and C Programming

 • Programming in ANSI C, 5/e

 • Programming in C#, 3/e

 • Programming in Java, 4/e

 • Object-Oriented Programming with C++, 4/e

 • Programming in BASIC, 3/e

 • Numerical Methods

 • Reliability Engineering

A recipient of numerous honours and awards, he has been listed in the Directory of Who’s Who of

Intellectuals and in the Directory of Distinguished Leaders in Education.

Computer Programming
First Edition

E Balagurusamy

Chairman

EBG Foundation

Coimbatore

McGraw Hill Education (India) Private Limited
NEW DELHI

McGraw Hill Education Offi ces

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

McGraw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited

P-24, Green Park Extension, New Delhi 110 016

Computer Programming, 1e

Copyright © 2014, by McGraw Hill Education (India) Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission of

the publishers. The program listing (if any) may be entered, stored and executed in a computer system, but they may not

be reproduced for publication.

This edition can be exported from India only by the publishers,

McGraw Hill Education (India) Private Limited.

ISBN (13): 978-9-35-134177-2

ISBN (10): 9-35-134177-1

Vice President and Managing Director: Ajay Shukla

Head—Higher Education Publishing and Marketing: Vibha Mahajan

Manager—Publishing (Science, Engineering & Mathematics): Shalini Jha

Editorial Executive—Acquisitions: Vamsi Deepak Sankar

Executive—Editorial Services: Sohini Mukherjee

Manager—Production Systems: Satinder S Baveja

Production Executive: Anuj K Shriwastava

Sr. Product Specialist: Tina Jajoriya

Assistant General Manager—Higher Education (Marketing): Vijay Sarathi

General Manager—Production: Rajender P Ghansela

Production Manager—Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be

reliable. However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any

information published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors,

omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw

Hill Education (India) and its authors are supplying information but are not attempting to render engineering or other

professional services. If such services are required, the assistance of an appropriate professional should be sought.

Typeset at Text-o-Graphics, B-1/56, Aravali Apartment, Sector-34, Noida 201 301, and printed at

Cover Printer:

Contents

Preface xi

UNIT-1 INTRODUCTION

1. Introduction to Computers 1.1-1.49

 1.1 Introduction 1.2

 1.2 Overview of Computers 1.2

 1.3 Applications of Computers 1.1

 1.4 Characteristics of Computers 1.5

 1.5 Evolution of Computers 1.6

 1.6 Computer Generations 1.12

 1.7 Classifi cation of Computers 1.18

 1.8 Basic Computer Organisation 1.26

 1.9 Number System and Computer Codes 1.34

 1.10 Decimal System 1.35

 1.11 Binary System 1.35

 1.12 Hexadecimal System 1.36

 1.13 Octal System 1.37

 1.14 4-Bit Binary Coded Decimal (BCD) Systems 1.37

 1.15 8-Bit BCD Systems 1.40

 1.16 16-Bit Unicode 1.44

 1.17 Conversion of Numbers 1.45

2 Problem Solving and Offi ce Automation 2.1–2.12

 2.1 Introduction 2.3

 2.2 Planning the Computer Program 2.3

 2.3 Problem Solving 2.4

 2.4 Structuring the Logic 2.10

 2.5 Application Software Packages 2.13

3 Solved Examples—Number Systems and Computer Codes 3.1–3.10

4 Problem-Solving Examples 4.1–4.15

5 Solved Programming Exercises 5.1–5.66

vi Contents

UNIT-2 C PROGRAMMING BASICS

6 Overview of C 6.3–6.23

 6.1 History of C 6.3

 6.2 Importance of C 6.5

 6.3 Sample Program 1: Printing a Message 6.5

 6.4 Sample Program 2: Adding Two Numbers 6.8

 6.5 Sample Program 3: Interest Calculation 6.10

 6.6 Sample Program 4: Use of Subroutines 6.12

 6.7 Sample Program 5: Use of Math Functions 6.13

 6.8 Basic Structure of C Programs 6.14

 6.9 Programming Style 6.16

 6.10 Executing a ‘C’ Program 6.16

 6.11 Unix System 6.18

 6.12 Ms-Dos System 6.20

 Review Questions 6.21

 Programming Exercises 6.22

7 Constants, Variables, and Data Types 7.1–7.29

 7.1 Introduction 7.1

 7.2 Character Set 7.1

 7.3 C Tokens 7.3

 7.4 Keywords and Identifi ers 7.3

 7.5 Constants 7.4

 7.6 Variables 7.8

 7.7 Data Types 7.9

 7.8 Declaration of Variables 7.12

 7.9 Declaration of Storage Class 7.5

 7.10 Assigning Values to Variables 7.16

 7.11 Defi ning Symbolic Constants 7.22

 7.12 Declaring a Variable as Constant 7.23

 7.13 Declaring a Variable as Volatile 7.23

 7.14 Overfl ow and Underfl ow of Data 7.24

 Review Questions 7.27

 Programming Exercises 7.29

8 Operators and Expressions 8.1–8.32

 8.1 Introduction 8.1

 8.2 Arithmetic Operators 8.1

 8.3 Relational Operators 8.4

 8.4 Logical Operators 8.6

 8.5 Assignment Operators 8.6

 8.6 Increment and Decrement Operators 8.8

 8.7 Conditional Operator 8.10

 Contents vii

 8.8 Bitwise Operators 8.10

 8.9 Special Operators 8.10

 8.10 Arithmetic Expressions 8.12

 8.11 Evaluation of Expressions 8.13

 8.12 Precedence of Arithmetic Operators 8.14

 8.13 Some Computational Problems 8.16

 8.14 Type Conversions in Expressions 8.17

 8.15 Operator Precedence and Associativity 8.21

 8.16 Mathematical Functions 8.23

 Review Questions 8.27

 Programming Exercises 8.30

9 Managing Input and Output Operations 9.1–9.30

 9.1 Introduction 9.1

 9.2 Reading a Character 9.2

 9.3 Writing a Character 9.5

 9.4 Formatted Input 9.6

 9.5 Formatted Output 9.15

 Review Questions 9.27

 Programming Exercises 9.29

10 Decision Making and Branching 10.1–10.38

 10.1 Introduction 10.1

 10.2 Decision Making with IF Statement 10.1

 10.3 Simple IF Statement 10.2

 10.4 The IF.....ELSE Statement 10.6

 10.5 Nesting of IF....ELSE Statements 10.9

 10.6 The ELSE IF Ladder 10.13

 10.7 The Switch Statement 10.16

 10.8 The ? : Operator 10.20

 10.9 The GOTO Statement 10.23

 Review Questions 10.31

 Programming Exercises 10.35

11 Decision Making and Looping 11.1–11.38

 11.1 Introduction 11.1

 11.2 The WHILE Statement 11.3

 11.3 The DO Statement 11.6

 11.4 The FOR Statement 11.8

 11.5 Jumps in LOOPS 11.15

 11.6 Concise Test Expressions 11.23

 Review Questions 11.31

 Programming Exercises 11.35

viii Contents

UNIT-3 ARRAYS AND STRINGS

12 Arrays 12.3–12.41

 12.1 Introduction 12.3

 12.2 One-dimensional Arrays 12.5

 12.3 Declaration of One-dimensional Arrays 12.6

 12.4 Initialization of One-dimensional Arrays 12.8

 12.5 Two-dimensional Arrays 12.12

 12.6 Initializing Two-dimensional Arrays 12.17

 12.7 Multi-dimensional Arrays 12.21

 12.8 Dynamic Arrays 12.22

 12.9 More about Arrays 12.22

 Review Questions 12.36

 Programming Exercises 12.38

13 Character Arrays and Strings 13.1–13.33

 13.1 Introduction 13.1

 13.2 Declaring and Initializing String Variables 13.2

 13.3 Reading Strings from Terminal 13.3

 13.4 Writing Strings to Screen 13.8

 13.5 Arithmetic Operations on Characters 13.13

 13.6 Putting Strings Together 13.14

 13.7 Comparison of Two Strings 13.16

 13.8 String-handling Functions 13.16

 13.9 Table of Strings 13.22

 13.10 Other Features of Strings 13.24

 Review Questions 13.29

 Programming Exercises 13.31

UNIT-4 FUNCTIONS AND POINTERS

14 User-defi ned Functions 14.3–14.57

 14.1 Introduction 14.3

 14.2 Need for User-defi ned Functions 14.3

 14.3 A Multi-function Program 14.4

 14.4 Elements of User-defi ned Functions 14.7

 14.5 Defi nition of Functions 14.8

 14.6 Return Values and their Types 14.10

 14.7 Function Calls 14.11

 14.8 Function Declaration 14.13

 14.9 Category of Functions 14.15

 14.10 No Arguments and no Return Values 14.15

 14.11 Arguments but no Return Values 14.18

 14.12 Arguments with Return Values 14.21

 14.13 No Arguments but Returns a Value 14.25

 14.14 Functions that Return Multiple Values 14.26

 Contents ix

 14.15 Nesting of Functions 14.27

 14.16 Recursion 14.29

 14.17 Passing Arrays to Functions 14.30

 14.18 Passing Strings to Functions 14.35

 14.19 The Scope, Visibility and Lifetime of Variables 14.36

 14.20 Multifi le Programs 14.46

 Review Questions 14.52

 Programming Exercises 14.56

15 Pointers 15.1–15.38

 15.1 Introduction 15.1

 15.2 Understanding Pointers 15.1

 15.3 Accessing the Address of a Variable 15.4

 15.4 Declaring Pointer Variables 15.5

 15.5 Initialization of Pointer Variables 15.6

 15.6 Accessing a Variable through its Pointer 15.8

 15.7 Chain of Pointers 15.10

 15.8 Pointer Expressions 15.11

 15.9 Pointer Increments and Scale Factor 15.12

 15.10 Pointers and Arrays 15.14

 15.11 Pointers and Character Strings 15.17

 15.12 Array of Pointers 15.19

 15.13 Pointers as Function Arguments 15.20

 15.14 Functions Returning Pointers 15.23

 15.15 Pointers to Functions 15.23

 15.16 Pointers and Structures 15.26

 15.17 Troubles with Pointers 15.29

 Review Questions 15.35

 Programming Exercises 15.38

UNIT-5 STRUCTURES AND UNIONS

16 Structures and Unions 16.3–16.36

 16.1 Introduction 16.3

 16.2 Defi ning a Structure 16.3

 16.3 Declaring Structure Variables 16.5

 16.4 Accessing Structure Members 16.7

 16.5 Structure Initialization 16.8

 16.6 Copying and Comparing Structure Variables 16.10

 16.7 Operations on Individual Members 16.12

 16.8 Arrays of Structures 16.13

 16.9 Arrays within Structures 16.15

 16.10 Structures within Structures 16.17

 16.11 Structures and Functions 16.19

 16.12 Unions 16.21

 16.13 Size of Structures 16.23

x Contents

 16.14 Bit Fields 16.23

 Review Questions 16.30

 Programming Exercises 16.34

17 The Preprocessor 17.1–17.14

 17.1 Introduction 17.1

 17.2 Macro Substitution 17.2

 17.3 File Inclusion 17.6

 17.4 Compiler Control Directives 17.7

 17.5 ANSI Additions 17.10

 Review Questions 17.13

 Programming Exercises 17.14

APPENDIX

 Appendix I: Developing a C Program: Some Guidelines A.1

 Appendix II: Bit-level Programming A.19

 Appendix III: ASCII Values of Characters A.25

 Appendix IV: ANSI C Library Functions A.27

 Appendix V: Projects A.31

 Appendix VI: C99 Features A.82

MODEL QUESTION PAPERS

 Model Question Paper MQP.1–MQP20

SOLVED QUESTION PAPERS

 Solved Question Paper 1 SQP.3–SQP.16

 Solved Question Paper 2 SQP.17–SQP.40

Preface

T
he developments in digital electronics and related technologies during the last few decades

have ushered in the second Industrial Revolution that is popularly referred to as the Information

Revolution. Computer technology plays an ever-increasing role in this new revolution. A sound

knowledge of how computers work and how they process data and information has, therefore, become

indispensable for anyone who seeks employment not only in the area of IT but also in any other fi eld.

Rightly so, many institutions and universities in India have introduced a subject covering the

Computer Programming for the undergraduate students. This book is designed primarily to address

the topics covered under this subject.

Why C Language?

C is a powerful, fl exible and elegantly structured programming language. It is also a machine-independent

language. Since it combines the features of a high-level language with the elements of the assembler, it

is suitable for both systems and applications programming. C is undoubtedly the most popular and most

widely used general-purpose language today.

Why is this Book a Winner?

This book ensures a smooth and successful transition to being a skilled C programmer. The book uses

a simple-to-complex and easy-to-learn approach throughout. The concept of ‘learning-by-example’ has

been stressed everywhere in the book. Each feature of the language is treated in depth followed by a

complete program example to illustrate its use. Wherever necessary, concepts are explained pictorially

to facilitate better understanding. The book presents a contemporary approach to programming, offering

a combination of theory and practice.

Pedagogical Features

 • Bottom-up approach of explaining concepts

 • Algorithms and Flowcharts conversed extensively

 • Codes with Comments provided throughout the book to illustrate the use of various features of

the language

 • Supplementary Information and Notes that complement but stand apart from the text have been

included in special boxes

Chapter Organization

This book covers the history evolution and organization of computers along with the various number

systems, computer software, and problem solving using C which is explained in Unit 1. Unit 2 introduces

the students to programming using C language with detailed coverage on usage of arrays and strings

which are very important in any programming language. Unit 3 deals with arrays and strings while

Units 4 and 5 deals with Functions, Pointers, Structures and Union. This chapter ends with coverage of

Pre-processor directives and an introduction of how to develop C-Program.

Resources Available on the Web

The McGraw-Hill Online Learning Centre of the book can be accessed at http://www.mhhe.com/

balagurusamy/fcpau. The site gives the student an opportunity to explore in greater depth the features

and application of the C language. It contains case studies and a few sample C programs are also

provided.

Feedback

I welcome any constructive criticism of the book and will be grateful for any appraisal by the readers.

Feedback to improve the book will be highly appreciated.

E Balagurusamy

Publisher’s Note

McGraw Hill Education (India) Private Limited looks forward to receiving from teachers and students
their valuable views, comments and suggestions for improvements, all of which may be sent to
tmh.corefeedback@gmail.com, mentioning the title and author’s name in the subject line.

xii Preface

Unit 1: INTRODUCTION

Introduction
to Computers

 1.1 INTRODUCTION

Computers are used for a variety of purposes, starting from simple arithmetic calculations to
a very complex data analysis such as weather forecasting. They have become an integral part
of man’s everyday life. From the end user’s standpoint, a computer looks like a simple device
that automates the otherwise manual computational tasks. However, when we try to explore
the basic anatomy of a computer, we get to learn how it performs both simple and complex
tasks in an organised manner with the help of discrete components seamlessly integrated with
each other.
 We will begin this chapter by explaining the key characteristics of a modern-day computer
system. We will then explore how computers have evolved over the last six decades. The evolution
of computers has been distinctly divided into fi ve generations. Each of these generations is
marked by a technological revolution that made the computers of that era take a big leap from
its predecessors.
 There is not a single factor that can uniquely categorise the modern-day computers. In
this chapter, we will learn how a computer is categorised on the basis of operating principles,
applications, and size. Further, we will learn the basic computer organisation; that is, how the
various components of a computer interact with each other and work in unison. Finally, we will
learn about the various number systems that a computer supports and the techniques that are
used to convert data from one number system to another.

 1.2 OVERVIEW OF COMPUTERS

A computer is an electronic machine that takes input from the user, processes the given input
and generates output in the form of useful information. A computer accepts input in different
forms such as data, programs and user reply. Data refer to the raw details that need to be
processed to generate some useful information. Programs refer to the set of instructions that
can be executed by the computer in a sequential or non-sequential manner. User reply is the
input provided by the user in response to a question asked by the computer. The main task of a
computer system is to process the given input of any type in an effi cient manner. Therefore, the

1

Computer Programming1.4

computer is also known by various other names such as data processing unit, data processor
and data processing system.
 A computer includes various devices that function as an integrated system to perform
several tasks described above. These devices are:
 • Central Processing Unit (CPU) It is the processor of the computer that is responsible

for controlling and executing instructions in the computer. It is considered as the most
signifi cant component of the computer. It is the “brain” of the computer.

 • Monitor It is a screen, which displays information in visual form, after receiving the
video signals from the computer.

 • Keyboard and Mouse These are the devices, which are used by the computer, for
receiving input from the user.

 Figure 1.1 shows the various components of a computer.

Monitor

Keyboard

Mouse

CPU

Fig. 1.1 The components of computer

 The unique capabilities and characteristics of a computer have made it very popular among
its various users, including engineers, managers, accountants, teachers, students, etc.

 1.3 APPLICATIONS OF COMPUTERS

Today, computers are used in almost every sphere of life such as education, communication
and banking. The users from different locations can easily and quickly communicate with each
other with the help of computers. The use of computers has reduced the paper work to a large
extent. Thus, computers have become a basic need to perform various tasks in our day-to-day
life. The various application areas of computers are as follows:
 • Education Computers are used in schools and colleges to teach students in a better

and easy way. The students can get more information about a specifi c topic or subject
using the Internet. Computers help in easy learning by creating presentations on a
specifi c topic. Today, students can fi ll their application forms and give their exams online
that facilitates distance education.

 • Business Computers are used in different types of businesses to store a large amount
of information in the form of a database. Using computers, business meetings can be
held between people sitting at remote locations through web conferencing. Buyers and
sellers can conduct business online through the use of computers and Internet.

Introduction to Computers 1.5

 • Communication Computers that are connected with each other through Internet can
be used to transfer data to and from other computers. In order to establish communication
between two users, e-mail is one of the most common mediums that is used. Through
e-mail users can send/receive text messages, graphic messages and fi le attachments.

 • Science Computers are used by various scientists for the purpose of research and
development. They generally make use of computer for research and analysis of new
theories. With the help of computers, scientists are moving towards the possibility of
predicting natural disasters such as earthquake and tsunami.

 • Engineering Computers are used by engineers for the creation of complex drawings
and designs while working in different fi elds like automobiles and construction.

 • Entertainment Computers are used in the entertainment industry for creating
graphics and animations. There are various free as well as proprietary graphics software
available for creating graphics and animations.

 • Banking Now days, computers are being increasingly used for online banking.
Through online banking, the users or customers can transfer and receive money by using
computers and Internet. Some banks also provide the facility of online bill payment
through their websites.

 • Health Computers are used by doctors to diagnose various kinds of diseases and
ailments. Several analog and digital devices are connected with computers enabling the
doctors to monitor the condition of a patient and view the internal organs of the body.
Further, bioinformatics has evolved as an altogether new science that deals with the
application of information technology in the fi eld of molecular biology.

 1.4 CHARACTERISTICS OF COMPUTERS

The characteristics and capabilities of a modern digital computer include, among others:
 • Speed A computer is a fast electronic device that can solve large and complex

problems in few seconds. The speed of a computer generally depends upon its hardware
confi guration.

 • Storage capacity A computer can store huge amount of data in its different storage
components in many different formats. The storage area of a computer system is
generally divided into two categories—main memory and secondary storage.

 • Accuracy A computer carries out calculations with great accuracy. The accuracy
achieved by a computer depends upon its hardware confi guration and the instructions.

 • Reliability A computer produces results without any error. Most of the errors generated
in the computer are human errors that are created by the user itself. Therefore, they are
very trustworthy machines.

 • Versatility Computers are versatile machines. They can perform many different tasks
and can be used for many different purposes.

 • Diligence Computers can perform repetitive calculations any number of times with
the same accuracy.

 Computers do not suffer from human traits, such as tiredness, fatigue, lack of concentration,
etc. Although computers are highly reliable and versatile machines, they do possess certain
limitations. Since computers are capable of doing only what they are instructed to do, any
wrong instruction (or faulty logic) or any wrong data may result in erroneous output. This is
popularly known as “Garbage-In, Garbage-Out” (GIGO).

Computer Programming1.6

 A computer is a dumb machine and therefore lacks “common sense”. Anything it does is a
result of human instructions. It carries out instructions as long as it can understand them, no
matter whether they are right or wrong. Although computers can be instructed to make certain
decisions based on mathematical or logical equations, they cannot make decisions in situations
where qualitative considerations are involved.

 1.5 EVOLUTION OF COMPUTERS

In ancient times, people used different mechanical devices and methods for performing
computing operations. However, these devices and methods used for calculations were not very
fast and accurate. This fact led to the invention of a computer. The computer was developed
to produce accurate results at a very fast speed. Since its invention, the computer has gone
through several phases of technological developments. We can understand these developments
by just looking at the history of computers. Before the invention of any type of calculating
device, people carried out simple arithmetic calculations, such as addition and subtraction on
their fi ngers. This method of counting is still preferred in schools as it teaches children how
to count. In ancient times, people also used stones for representing numbers and carrying out
simple calculations. These stones were then kept at a place that was suitable for adding and
subtracting more stones. In this manner, people performed simple arithmetic calculations.
However, the use of stones did not constitute the only method of performing calculation at that
time. People also used other devices—such as notches in a stick and knots in a rope—for carrying
out simple calculations. However, the purpose of each device was to represent numbers. Some
of the early computing devices were manually operated, while the later computing devices
were completely automated.

1.5.1 Manual Computing Devices

The idea of using stones for representing numbers and putting them at a place for performing
simple calculations led to the invention of a device called sand table. A sand table was a device
that arranged stones in three channels in the sand. Each channel could have a maximum of
10 stones. The addition operation was performed on this device by incrementing the count of
right hand channel by one and by adding one stone in it. As soon as the right hand channel
reached its maximum capacity, the stones were removed from that channel and one stone was
added to the left hand channel. Figure 1.2 shows the idea of sand table used for the purpose
of calculations.
 The idea of sand table led to the development of a fast calculating device of that time,
which was known as abacus. Unlike the sand table, the abacus replaced the sand frame with a
wooden frame, the grooves with wires and the stones with beads. An abacus was also known as
a counting frame and became popular among the people in Asia Minor around 5000 years back.
This device is still in use in many parts of the world. In this device, the wooden frame consists
of many wires, with beads sliding on them. The user of an abacus can perform arithmetic
operations by sliding the beads on the wires by hand. Figure 1.3 shows an abacus consisting of
beads on different wires of a wooden frame.

Introduction to Computers 1.7

100's 10's

Sand

Stone

1's

 Fig. 1.2 A sand table

Fig. 1.3 An abacus

 Another complicated manual computing device called napier bones was developed by John
Napier in the year 1614. This device was specially designed for the multiplication and quotient
of numbers. Napier bones consisted of a board whose left edge was divided into 9 squares.
These 9 squares were used to hold the numbers from 1 to 9. It also consisted of 10 rods, which
were made up of strips of ivory bones. The multiplication of two numbers with Napier bones
could be performed in a faster manner, if one of the numbers involved in multiplication was
of a single digit only. Figure 1.4 shows the arrangement of bones for the multiplication of two
numbers—one is of four digits and the other of one digit.
 Figure 1.4 shows the process of multiplying the number 5437 with any other number of a
single digit. For instance, suppose we want to multiply 5437 with 6. The computation process
with this device starts with the rightmost bone and proceeds towards the left bones. The last
digit in the 6th row of the 7-bone is 2, so the rightmost digit of the multiplication output
is 2. After this, add the two adjacent numbers in the same row forming the parallelogram,
which are 8 and 4. The addition of these two numbers is 12, so the next rightmost digit of the

Computer Programming1.8

multiplication output is 2. Now, we have obtained 22 with a carry 1. Similarly, add the next two
adjacent numbers and the carry to obtain the digit 6. At this stage, we have obtained 622 with
no carry. We can proceed like this to obtain the fi nal answer as 32622. The idea of using bones
to carry out the multiplication of numbers was modifi ed by Edmund Gunter in 1620 to produce
a device known as slide rule. This device consisted of two sets of graduated scales, which could
slide over each other. The slide rule was developed not only for performing multiplication and
division of numbers, but also for various scientifi c functions, such as logarithms, trigonometry,
roots, etc. Apart from these manual computing devices, many other devices were also developed
for computation purposes. Some of these devices were pascaline, stepped reckoner, punch card
system, etc. Pascaline was a calculator developed by Blaise Pascal in 1642. It was also known
as a numerical wheel calculator. This device contained a set of toothed wheels that could be
operated by hand. Pascaline was designed to handle numbers up to 999,999.999. Pascaline
was further improved by German mathematician, Gottfried Wilhem Von Leibriz to produce a
device, called stepped reckoner. Stepped reckoner was able to perform the multiplication and
division of numbers as well as calculation of the square root of a number. Figure 1.5 shows an
illustration of how computing devices have evolved over a period of time:

1

2

3

4

5

6

7

8

9

5 4 3 7

1

1 1

1 1

1

1

1

2

2

3

3

4

4

2

2

2

0

0

2

2

2

3

3

2

2

3

4

4

5

6

0

5 2

6 2

5

8

4

0

5

0

5

0

5

4

7

9

8

4

8

0

6

2

1

8

5

2

9

6

3

1

6

Fig. 1.4 The napier bones

Introduction to Computers 1.9

Fig. 1.5 Evolution of computing devices

Computer Programming1.10

1.5.2 Automated Computing Devices

Charles Babbage, a professor of mathematics at the Cambridge
University, made some worthwhile efforts towards automatic
computing. He is also considered to be the father of modern
computer. In 1812, Charles Babbage decided to automate the
repeated series of steps needed in tabulating various functions,
such as polynomial, logarithmic and trigonometric. In 1822,
he presented a working model of his concept with the help of
an automatic mechanical computing machine. He named the
automatic mechanical computing machine as difference engine.
In 1823, Babbage made it more automatic by providing the
feature of printing the tabulated results. Babbage did not stop
here and started working on developing the analytical engine. The
analytical engine was considered as the completely automatic,
general-purpose programmable digital computer. The analytical
engine was the fi rst device that used all the features of a modern
digital computer, which include an input unit, an output unit,
a storage unit, a processor and a control unit. This engine
was designed to perform various mathematical operations by
getting two sets of inputs from the user. The fi rst set of input is
a program that contains a set of instructions to operate on the
data. The other set of input contains the list of variables used
in the program or data. The analytical engine built by Babbage
in 1833 was digital, programmable and automatic. However, it
was a slow engine that took almost 3 minutes to multiply two
numbers of twenty fi gures each.
 In 1937, an American mathematician, Howard Aiken
designed MARK I and completed it in the year 1944. MARK I
was one of the well-known early computers that could perform
the multiplication of two numbers of twenty fi gures in just 6
seconds. Hence, as compared to the analytical engine, MARK
I performed calculations at a much faster speed. However, this
computer was also not considered very fast from the user’s point
of view because it printed the results of calculations at the rate
of one result per 5 seconds. Also, MARK I computer was noisy
and large in size. In the year 1944, a British mathematician,
Alan Mathison developed the fi rst pure electronic digital
programmable computer. This computer was known as Colossus.
Colossus was a special-purpose electronic device that used the
vacuum tube technology in performing different operations. It
was designed to perform only some specifi c functions.
 The Electronic Numerical Integrator And Calculator
(ENIAC) was another general-purpose electronic digital
computer developed at the Moore School of Engineering of the
University of Pennsylvania by John Eckert, John Mauchly and

Fig. 1.6 Charles Babbage

Fig. 1.7 Difference Engine

Fig. 1.8 Howard Aiken

Introduction to Computers 1.11

their team in the year 1946. This computer also used the vacuum tube technology in constructing
the basic circuits. It was a general-purpose computer that was capable of solving all types of
computing problems. It included all the features and components of a modern digital computer.
The internal hardware structure of ENIAC included 17,468 vacuum tubes, 1,500 relays, 70,000
registers, 7,200 crystal diodes and 10,000 capacitors. It was a bulky computer and operated
at 1000 times more speed than that of MARK I computer. ENIAC was designed to perform
simple arithmetic operations as well as some advanced operations, such as separating the sign
of a number and comparing different numbers to check whether they are equal or not. The
computer used the decimal number system for representing and processing values.

Fig. 1.9 MARK 1

Fig. 1.10 John Eckert Fig. 1.11 ENIAC

 In 1949, another electronic computer that used the binary number system for representing
and processing values was introduced. This computer was known as Electronic Discrete
Variable Automatic Computer (EDVAC). EDVAC was also invented by John Eckertt and

Computer Programming1.12

John Mauchly and was considered as the successor of ENIAC. EDVAC was the fi rst computer
that worked on the principle of stored program. The stored program computer considers the
programs and data stored in the memory as a string of binary numbers. Therefore, programs
and data stored in the memory are indistinguishable inputs for the computer. The different
hardware components of EDVAC were magnetic tape, control unit, dispatcher unit, processor,
timer, dual memory and three temporary tanks to hold a single word.
 Electronic Delay Storage Automatic Calculator (EDSAC) was another early British
electronic computer developed by Maurice Wilkes and his team at the University of Cambridge
Mathematical Laboratory in 1949. It also used the vacuum tube technology in constructing the
basic logic circuits and mercury delay lines for constructing the memory of a computer. The
typical input and output unit of this computer system was punch card and teleprinter
respectively. These computer systems were only able to carry out 650 instructions per second.
Therefore, these computers were not considered as fast computing devices. During 1950s,
Eckert-Mauchly Computer Corporation, a company of John
Eckertt and John Mauchly, made some serious efforts in the fi eld
of automated computing. In 1951, the company invented the fi rst
commercial computer that was known as Universal Automatic
Computer (UNIVAC). This computer was a bulky computer that
used 5200 vacuum tubes for constructing the basic logic circuits.
The mercury data lines were used to construct the memory for
storing data and programs. UNIVAC was able to process numbers
as well as alphabetic characters in an effi cient manner. The
important feature of UNIVAC—that made it unique among other
well-known early computers—was that it provided separate
processes for handling input/output and processing functions.

 1.6 COMPUTER GENERATIONS

Over the years, various computing devices were invented that enabled people to solve different
types of problems. All these computing devices can be classifi ed into several generations. These
generations refer to the phases of improvement made to different computing devices. The
different phases of improvement made to computing devices resulted in a small, cheap, fast,
reliable and productive computer. The technological development in the fi eld of computers not
only refers to the improvements made to the hardware technologies, but also the improvements
made to the software technologies. The history of computer development is often discussed in
terms of different generation of computers, as listed below.
 • First generation computers
 • Second generation computers
 • Third generation computers
 • Fourth generation computers
 • Fifth generation computers

1.6.1 First Generation Computers

The fi rst generation computers were employed during the period 1940–1956. These computers
used the vacuum tubes technology for calculation as well as for storage and control purposes.

Fig. 1.12 UNIVAC

Introduction to Computers 1.13

Therefore, these computers were also known as vacuum tubes or thermo ionic valves based
machines. Figure 1.13 shows the vacuum tube used in fi rst generation computers.

Glass enclosure

Plate (anode)

Filament

Grid

Connection pins

Tube base

Insulated
element
support

Heater

Cathode

Fig. 1.13 A vacuum tube

 A vacuum tube is made up of glass and contains fi laments inside it. The fi laments when
heated, generate electrons which eventually help in the amplifi cation and deamplifi cation
of electronic signals. The input and output medium for fi rst generation computers was the
punched card and printout respectively. Some examples of fi rst generation computers are
ENIAC, EDVAC, EDSAC and UNIVAC.
 The following were the two major advantages of fi rst generation computer systems:
 • These computers were the fastest computing devices of their time.
 • These computers were able to execute complex mathematical problems in an effi cient

manner.
 The above two advantages of fi rst generation computers were not suffi cient enough to
make them popular among the users. The fi rst generation computers had many disadvantages
associated with them; some of them are mentioned below:
 • The functioning of these computers depended on the machine language. A machine

language is a language in which all the values are represented in the form of 0s and 1s.
Therefore, these computers were not very easy to program.

 • They were generally designed as special-purpose computers. Therefore, they were not
very fl exible in running different types of applications.

Computer Programming1.14

 • The use of vacuum tube technology made these computers very large and bulky. Due to
their large size, it was not an easy task to install them properly.

 • They were not easily transferable from one place to another due to their huge size and
also required to be kept in cool places.

 • They were single tasking because they could execute only one program at a time and
hence, were not very productive.

 • They generated huge amount of heat and hence were prone to hardware faults. Hence,
they were not considered as reliable and required proper maintenance at regular
intervals.

1.6.2 Second Generation Computers

The second generation computers were employed during
the period 1956–1963. The main characteristic of these
computers was the use of transistors in place of vacuum
tubes in building the basic logic circuits. The transistor
was invented by Shockley, Brattain and Bardeen, in 1947,
for which they won the Nobel Prize. A transistor is a
semiconductor device that is used to increase the power
of the incoming signals by preserving the shape of the
original signal. It has three connections, which are emitter
(E), base (B) and collector (C). The base of the transistor is
the gate through which the signal, needed to be amplifi ed,
is sent. The signal sent through the base of the transistor
is, generally, a small fl ow of electrons. Therefore, the base
terminal also acts as the input gate for the transistor. The
collector of the transistor is used to collect the amplifi ed
signal. The emitter of the transistor acts as the output gate for emitting the amplifi ed signal
to the external environment. Figure 1.14 shows the transistor used to manufacture circuitry
of second generation computers.
 The use of transistor technology helped in improving the performance of computers to a
large extent. The transistor was a superior technology over vacuum tubes. Transistors used
in second generation computers were smaller, faster, cheaper and generated less heat than
vacuum tubes used in fi rst generation computers. Transistors were also lightweight electronic
devices that required very less power during their operation. These characteristic features
of transistors made the second generation computers smaller, faster, cheaper, more effi cient,
more productive and more reliable, as compared to the fi rst generation computers. Printers,
secondary storage and operating system technology were also invented during this era.
However, these computers still relied on punched card and printout for carrying out their
input/output operations. Another major technological development made to these computers
was the replacement of the machine language with the assembly language. Assembly language
is a low-level language that allows the programmer to use simple English words—called
mnemonics—to represent different instructions in a program. Some examples of second
generation computers are PDP-8, IBM 1401 and IBM 7090.
 The following were the advantages of second generation computers:
 • They were the fastest computing devices of their time.

Emitter

Base

Collector

Fig. 1.14 A transistor

Introduction to Computers 1.15

 • They were easy to program because of the use of assembly language.
 • They could be transferred from one place to other very easily because they were small

and lightweight computing devices.
 • They required very less power in carrying out their operations.
 • They were more reliable as compared to fi rst generation computers and hence, did not

require maintenance at regular intervals of time.
 The following were the limitations of second generation computers:
 • The input and output media for these computers were not improved to a considerable

extent.
 • They were required to be placed in air-conditioned places.
 • The cost of these computers was very high and they were beyond the reach of home

users.
 • They were special-purpose computers and could execute only specifi c applications.

1.6.3 Third Generation Computers

The third generation computers were employed
during the period 1964–1975. The major
characteristic feature of third generation computer
systems was the use of Integrated Circuits (ICs). The
IC technology was also known as microelectronics
technology. ICs are the circuits that combine
various electronic components, such as transistors,
resistors, capacitors, etc. onto a single small silicon
chip. The fi rst IC was developed by Jack Kilby and
Robert Noyce in the year 1958. Figure 1.15 shows
a typical IC chip used for manufacturing third
generation computers.
 ICs were superior to vacuum tubes and
transistors in terms of cost and performance. The
cost of ICs was very low and the performance was
very high because all the electronic components were arranged very close to each other. They
also required very low power for performing their operations. Therefore, the use of ICs in third
generation computers made them smaller, faster, more effi cient and more reliable than the
fi rst and second generation of computers. Some examples of third generation computers are
NCR 395, B6500, IBM 370, PDP 11 and CDC 7600.
 The following were the merits of the third generation computers:
 • They were the fastest computing devices as compared with fi rst and second generation of

computers. The computational time for these computers was also reduced to great extent.
The computational time for these computers was usually measured in nanoseconds.

 • They were very productive because of their small computational time.
 • They were easily transportable from one place to another because of their small size.
 • They used high-level languages. A high-level language is a computer programming

language that is independent of the machine details. Hence, the programmer fi nds it
very easy to use them. The programs written in these languages on one computer can be
easily executed on some other computer.

IC

Chip

Fig. 1.15 An integrated circuit

Computer Programming1.16

 • They could be installed very easily and required less space for their installation.
 • They were able to execute any type of application, such as business and scientifi c

applications. Hence, the third generation computers were also considered as general-
purpose computers.

 • They were more reliable and required less frequent maintenance schedules.
 Some of the disadvantages of third generation computers were:
 • The storage capacity of these computers was still very small.
 • The performance of these computers degraded while executing large applications,

involving complex computations because of the small storage capacity.
 • The cost of these computers was very high.
 • They were still required to be placed in air-conditioned places.

1.6.4 Fourth Generation Computers

The fourth generation computers were employed during 1975–1989. The invention of Large
Scale Integration (LSI) technology and Very Large Scale Integration (VLSI) technology led to
the development of fourth generation computers. However, these computers still used the IC
technology to build the basic circuits. The LSI technology allowed thousands of transistors to
be fi tted onto one small silicon chip. On the other hand, the VLSI technology allowed hundreds
of thousands of transistors to be fi tted onto a single chip. As a result, the manufacturers were
able to reduce the size of the computers and
make them cheaper as compared to the other
generation of computers.
 The progress in LSI and VLSI technologies
led to the development of the microprocessor,
which became the major characteristic
feature of the fourth generation computers.
A microprocessor incorporates various
components of a computer—such as CPU,
memory and Input/Output (I/O) controls—onto
a single chip. The computers in this generation
were designed to have a microprocessor, some
additional storage chips and support circuitry.
Some popular later microprocessors include
Intel 386, Intel 486 and Pentium. Figure 1.16
shows the Intel P4004 microprocessor chip
developed in 1971.
 The term Personal Computer (PC) became known to the people during this era. The term
PC refers to a computer that is designed to be used by an individual. Since the size and cost
of the computer was decreased to a considerable extent in this period, people started using
these computers for their personal work too. The storage technologies used in the fourth
generation computers were also improved and they started using static and dynamic Random
Access Memory (RAM). The advantage of using this type of memory was that it allowed the
computers to access the stored information at a rapid pace and hence helped in increasing the
productivity and performance of the computers. Some of the examples of fourth generation
computers are IBM PC, IBM PC/AT, Apple and CRAY-1.

P4004

4095C

Fig. 1.16 The Intel P4004 microprocessor chip

Introduction to Computers 1.17

 The use of LSI and VLSI technologies made the fourth generation computers small, cheap,
compact and powerful. Apart from these technologies, the fourth generation computers also
included the following developments:
 • Development of Graphical User Interfaces (GUIs)
 • Development of new operating systems
 • Invention of various secondary storage and I/O devices
 • Development of Local Area Network (LAN)
 Some of the advantages of fourth generation computers were:
 • The use of LSI, VLSI and semiconductor technologies made these computers very

powerful in terms of their processing speed and access time.
 • The storage capacity of these computers was very large and faster, and hence, they were

very productive and highly optimised.
 • They were highly reliable and required very less maintenance.
 • They provided a user-friendly environment while working because of the development

of GUIs and interactive I/O devices.
 • The programs written on these computers were highly portable because of the use of

high-level languages.
 • They were very versatile and suitable for every type of application.
 • They required very less power to operate.
 Some of the problems associated with fourth generation computers were:
 • The soldering of LSI and VLSI chips on the wiring board was not an easy task and

required complicated technologies to bind these chips on the wiring board.
 • The working of these computers is still dependent on the instructions given by the

programmer.

1.6.5 Fifth Generation Computers

The different types of modern digital computers come under the category of fi fth generation
computers. The fi fth generation computers are based on the Ultra Large Scale Integration
(ULSI) technology that allows almost ten million electronic components to be fabricated on one
small chip. The ULSI technology helps in increasing the power and speed of the microprocessor
chips and the capacity of primary and secondary storage devices to a great extent. As a result,
the fi fth generation computers are faster, cheaper and more effi cient, as compared to the
fourth generation computers. Some of the improvements or developments made during this
generation of computers are:
 • Development of various portable computers such as laptop, pocket computer, Personal

Digital Assistant (PDA), etc.
 • Development of Parallel Processors.
 • Development of centralised computers called servers.
 • Invention of optical disk technology.
 • Invention of the Internet and its different services.
 Some of the advantages of fi fth generation computers are:
 • They are the fastest and powerful computers till date.
 • They are able to execute a large number of applications at the same time and that too at

a very high speed.

Computer Programming1.18

 • The use of ULSI technology helps in decreasing the size of these computers to a large
extent. Some of the fi fth generation computers are so small in size that they can be used
while traveling.

 • The users of these computers fi nd it very comfortable to use them because of the several
additional multimedia features.

 • They are versatile for communications and resource sharing.
 The fi fth generation computers are highly appreciated by their users because of their
several advantages. However, the major disadvantage of the fi fth generation computers is
that they are not provided with an intelligent program that could guide them in performing
different operations. Nowadays, scientists are making serious efforts in this fi eld, and artifi cial
intelligence and expert system applications are the results of these efforts. Figure 1.17 shows
a snapshot of the evolution of computers over different generations.

Fifth Generation

(1989 -till date)

ULSI

Fastest

of all times

Technology

Speed

ULSI

Programming

language

HLL,

Integrated

Development

Environment (IDE)

intelligence

Examples

Lack of

human-like

Disadvantages

Fourth Generation

(1975 -1989)

VLSI

Faster

than third

generation

Technology

Speed

VLSI

Programming

language

HLL

IBM PC series

Apple series

Examples

Difficult to

manufacture

Disadvantages

Third Generation

(1964 -1975)

Integrated circuits(IC)

Faster

than second

generation

Technology

Speed

IC

Programming

language

High

level

language(HLL)

IBM-360,

Honeywell-6000

Examples

Limited

storage

capacity

Disadvantages

Second Generation

(1956 -1963)

Transistor

Faster

than first

generation

Technology

Speed

Transistor

Programming

language

Assembly

language

IBM-1401,

IBM-1620

Examples

High cost,

Limited to

special

purpose tasks

Disadvantages

First Generation

(1940 -1956)

Vaccum tubes

Fastest

computing

device of

its time

Technology

Speed

Vaccum

tubes

Programming

language

Machine

level

language

EDSAC,

EDVAC

Examples

Large & Bulky,

Difficult to

program

Disadvantages

Laptop

PDA

Fig. 1.17 Genertaion of computers—a snapshot

 1.7 CLASSIFICATION OF COMPUTERS

There are different types of computers available these days. The function of each type of
computer is to process data and provide some output to the users. However, the methods or
techniques used by these computers to process and handle the data may be different. We can
classify computers according to the following three criteria:

Introduction to Computers 1.19

 • Based on operating principles
 • Based on applications
 • Based on size and capability

1.7.1 Based on Operating Principles

On the basis of operations performed and methods used to store and process data and
information, computers can be classifi ed into the following categories:
 • Analog computers
 • Digital computers
 • Hybrid computers
Analog computers The analog computers
represent data in the form of continuous electrical
signals having a specifi c magnitude. These
computers are very fast in their operation and
allow several other operations to be carried out
at the same time. However, the results produced
by these computers are not very accurate.
Therefore, the analog computers are widely used
in applications in which the accuracy of results is
not a major concern. They are powerful tools to
solve differential equations.
 The electronic circuit employed in modern
analog computers is generally an Operational
Amplifi er (Op-Amp). It is made up of
semiconductor integrated circuits. The three
different characteristic features of Op-Amps are:
 • They have large voltage gain. The voltage

gain of an amplifi er is defi ned as the ratio
of the output voltage to the input voltage.

 • They have infi nite input resistance. The input resistance is defi ned as the ratio of change
in the input voltage to the change in input current.

 • They have zero output resistance. The output resistance is the nominal resistance
measured with no load.

 Figure 1.19 shows the basic circuit used in
analog computers.
 In Fig. 1.19, the triangle represents an amplifi er
that is used to invert the incoming signal. If the
incoming signal is a positive signal, then it will be
inverted into a negative output signal. Similarly, if
the incoming signal is a negative signal, then it will
be inverted into a positive output signal. Rf and Rin
are used to represent the feedback resistor and the
input resistor respectively.

Fig. 1.18 Analog computer

Rf

VoutVin

Rin

 Fig. 1.19 Integrated circuit of
 an operational amplifi er

Computer Programming1.20

Digital computers The digital computer, also known as the digital information processing
system, is a type of computer that stores and processes
data in the digital form. Therefore, each type of data is
usually stored in these computers in terms of 0s and
1s. The output produced by these computers is also in
the digital form. The digital computers are also capable
of processing the analog data. However, the analog
data should be fi rst converted to the digital form,
before being processed by these computers. Similarly,
if we want the output in the analog form, then the
digital information produced by these computers
should be fi rst converted to an analog form. These
conversions are generally carried out by the in-built
components of digital computers.
 Digital computers are generally faster and more reliable than the analog computer systems
and provide more accurate results. The computer used by a home user is a typical example
of a digital computer. The digital computers are also employed in colleges, universities and
small- and medium-sized businesses. The different hardware components of a digital computer
are an Arithmetic Logic Unit (ALU), a Control Unit (CU), a memory unit and I/O units. The
ALU of a digital computer is used to perform various arithmetic operations, such as addition,
subtraction, multiplication and division and various logic operations such as AND, OR, NOT,
etc. CU helps in directing the operations of ALU. The memory unit is used to store the data on
temporary or permanent basis. The input units are used to enter the data into the computer
and the output units are used to display the information generated by the computer to the
user.
Hybrid computers The hybrid computer is a combination of analog computer and digital
computer because it encompasses the best features of both these computers. Therefore, the
hardware components of hybrid computers are usually the
mixture of analog and digital components. These features make
the hybrid computers very fast, effi cient and reliable. In these
computers, data is generally measured and processed in the
form of electrical signals and is stored with the help of digital
components. However, these computers can also be used to
perform various types of logical operations.
 The input accepted by the hybrid computers is a continuously
varying input signal. This input signal is then converted by
them into a set of discrete values for performing different
operations. These computers prove to be very cost-effective in
performing complex simulations. The hybrid computers are
also less expensive than the digital computers.
 The computer used in hospitals to measure the heartbeat
of a patient is a very good example of a hybrid computer. Apart
from this, the hybrid computers are also used in scientifi c
applications, various engineering fi elds and in controlling
business processes.

Fig. 1.20 Digital computer

Fig. 1.21 Hybrid computer

Introduction to Computers 1.21

1.7.2 Based on Applications

Different computers are designed for different purposes so that they can perform their tasks
according to their capabilities. On the basis of different applications or purposes, computers
can be classifi ed into the following categories:
General-purpose computers They are designed in such a manner that they can work in
all environments. The general-purpose computers are versatile and can store a number of
programs meant for performing distinct tasks. However, the general-purpose computers are
not effi cient and consume a large amount of time in generating the result.
Special-purpose computers They are designed in such a manner that they can perform
only a specifi ed task. The special-purpose computers are not versatile and their speed and
memory size depend on the task that is to be performed. These computers are less expensive
as they do not contain any redundant information. The special-purpose computers are effi cient
and consume less amount of time in generating the result.

1.7.3 Based on Size and Capability

Computers differ from each other in terms of their shape, size and weights. Each type of
computer performs some unique functions and can be employed in the fi elds suited for them.
These computers also differ in terms of processing speed. Some of them are of moderate speed,
whereas some others operate at a very fast speed. On the basis of size and capability, computers
can be classifi ed into the following categories:
 • Microcomputers
 • Mini computers
 • Mainframe computers
 • Super computers
Microcomputers A microcomputer is a small and cheap digital computer that is designed to
be used by individuals. It is built around a microprocessor, a storage unit and an I/O channel.
Apart from these components, the other parts that a microcomputer includes are power supply,
connecting cables, keyboard, mouse, printer and scanner. These computers also include several
software programs such as operating system, system software and utility software. The micro
computers are generally available in the form of PCs, workstations and notebook computers.
Figure 1.23 shows the block diagram of a microcomputer.

Fig. 1.22 Microcomputer

Computer Programming1.22

Peripheral devices

Interface circuitry

Memory

Microprocessor

System bus

Fig. 1.23 The block diagram of a micro computer

 • Microprocessor It is the heart of the microcomputer. It incorporates all the functions
of a CPU onto a single IC in a microcomputer. The basic units of microprocessor are ALU,
register unit and CU. ALU is used to perform various arithmetic and logic operations.
The register unit is used to store the data and instructions temporarily needed by the
ALU. The various registers used by a microcomputer are Accumulator (AC), program
control register, I/O register, instruction register, Memory Address Register (MAR)
and Memory Buffer Register (MBR). CU is used to manage and direct the operations
performed by the microcomputer.

 • Memory It is used to store the data and instructions on temporary or permanent basis.
A microcomputer generally employs two types of memories, i.e., primary memory and
secondary memory. Primary memory, also called main memory, is used to store the data
and instructions temporarily. It stores only those instructions and data that are needed
by the microprocessor of the computer for processing. The secondary memory, also called
auxiliary memory, is used to store data and instructions permanently. Magnetic disks
and magnetic tapes are some of the examples of secondary storage.

 • Peripheral devices They are generally the input and output devices attached to
the computer. The various input devices—such as keyboard and mouse—are used to
enter program and data into the computer before performing any kind of operation.
They are used to transfer data and instructions from the external environment into
the computer. The various output devices—such as monitor and printer—are used to
display the results computed by the computer to the user. The major function performed
by the output devices is to convert the binary result computed by the computer into a
form that can be easily understood by the users.

 • System bus It is also referred to as the frontside bus, memory bus, local bus or host
bus. The system bus in the micro computer is used to connect microprocessor, memory
and peripheral devices into a single unit. The system bus is a collective name given to
address, data and control bus. The address bus is a unidirectional bus that is used to
identify a peripheral device or a memory location. The data bus is a bidirectional bus

Introduction to Computers 1.23

that is used to transfer data among microprocessor, memory and peripheral devices of
the computer. The control bus is used by the microprocessor to send control signals to
the various devices within the computer.

 Depending on the size, the microcomputer can be further classifi ed into the following
types:
 • Desktop computer It is also known as PC. The desktop computer systems are

designed to be used by an individual at a single location. The typical components of a
desktop computer are keyboard, mouse, monitor, hard disk storage, peripheral devices
and a system unit. These computers are very cheap and an individual can easily purchase
them for home or business use. The different manufacturers of desktop computers are
Apple, IBM, Dell and Hewlett-Packard (HP).

 • Laptop computer It is a portable computer that can be taken from one place to
another at any time very easily. It is also known as notebook computer, notepad or mobile
computer. The laptop computer is a small-size computer that incorporates all the features
of a typical desktop computer. These computers are provided with a rechargeable battery
that removes the need of continuous external power supply. However, these computer
systems are more expensive than desktop computers. The different manufacturers of
laptop computers are Acer, Apple, Panasonic, Sony and HP.

 • Hand-held computer It is also known as PDA (Personal Digital Assistant),
converged device, palmtop or mobile device. The hand-held computer is a very small-
size computer that can be kept in the pocket. It generally has a very small display screen
and the input device for these computers is a pen or an electronic stylus. The storage
capacity of hand-held computers is not very large. They generally use small cards to
store data and programs instead of disk drives. Therefore, they are less powerful as
compared to the desktop and laptop computers. The different examples of hand-held
computers are Apple Newton, Casio Cassiopeia, Franklin eBookMan, etc.

Mini computers A mini computer was fi rst introduced in the year 1960 by Digital Equipment
Corporation (DEC). They were called mini
computers because of their smaller size than the
other computers of those times. They can handle
more data and more input and output than micro
computers. Mini computers are less powerful than
mainframe computers but more powerful than
micro computers. Therefore, they are also referred
to as the midrange computers. They are able to
cater to the needs of multiple users at a single
instant of time. The number of users supported by
mini computers may range between 4 and 200.
These computers are generally designed for small
and medium-sized business environments.
 Mini computers are generally used in business
environments as the centralised computer or the
network server. After implementing the mini
computer as the network server, hundreds of
desktop computers can be connected to it. Mini
computers can also be used as the web servers Fig. 1.24 Mini computer

Computer Programming1.24

that can handle thousands of transactions in a day. These computers are less expensive than
mainframe computers and hence suitable for those organisations that cannot afford high-
priced servers. The different examples of mini computers are PDP 11, IBM (8000 series), VAX
7500, etc.
Mainframe computers A mainframe computer is a very large computer that is employed
by large business organisations for handling major applications, such as fi nancial transaction
processing, Enterprise Resource Planning (ERP), industry and consumer statistics, and census.
They are capable of handling almost millions of records in a day. The mainframe computers
can also be used as the centralised computers with several user terminals connected to it. The
mainframe computers are actually considered as the predecessor of servers. These computers
are bigger and more expensive than other computers. The implementation of mainframe
computers also requires large space with a closely monitored humidity and temperature levels.
These computers are termed as mainframe because all the hardware units are arranged into
a frame. The different manufacturers of mainframe computers are IBM, Amdahl, Hitachi, etc.
Examples of mainframe computers are IBM 3000, VAX 8000 and CDC 6600.

Fig. 1.25 Mainframe computer

 The mainframe computers can maintain large databases that can be accessed by remote
users with a simple terminal. Therefore, they are also known as super servers or database
servers. The processing speed of these computers is generally optimised by employing more
than one microprocessor to execute millions of instructions per second. The mainframe
computers also have large capacity of primary and secondary storage as compared with other
types of computers.
 Some of the characteristic features of mainframe computers are:
 • A typical mainframe computer generally has a maximum of 16 microprocessors. However,

some modern mainframe computers can have more than 16 microprocessors.
 • The RAM capacity of these computers lies between 128 MB and 8 GB.
 • They are able to run multiple operating systems, and therefore, termed ‘virtual

machines’.
 • They have different cabinets for primary storage, secondary storage and I/O units.
 • They can handle huge amount of I/O operations at the same time.

Introduction to Computers 1.25

Super computers A super computer is the fastest type of computer that can perform complex
operations at a very high speed. The super computers were fi rst presented in the year 1960 by
Seymour Cray at Control Data Corporation (CDC). They are more expensive than the other
categories of computers and are specially designed for the applications in which large number
of complex calculations have to be carried out to get the desired output. The main reason behind
the fast speed of super computers is that they are designed only to execute small number of
programs at a time rather than many programs simultaneously. Some of the manufacturers of
super computers are IBM, Silicon Graphics, Fujitsu, Intel, etc. Examples of Super Computers
are CRAY 3, Cyber 205, NEC SX-3 and PARAM from India.

Fig. 1.26 Supercomputer

 The various application areas of super computers are:
 • Weather forecasting
 • Animated graphics
 • Fluid mechanics
 • Nuclear energy research
 • Petroleum exploration
 Super computers are manufactured with no special hardware. Like the typical computer,
they have CPU and memory as their major components. However, the CPU of super computer
operates at faster speed, as compared to the other categories of computers. Super computers
are the fastest computers because they employ thousands of processors, hundreds of gigabytes
of RAM and thousands of gigabytes of secondary storage.
 The designers of super computers use two different methods for optimising their
performance. These methods are pipelining and parallelism. Pipelining is a technique that
allows the microprocessors to execute the second instruction before the execution of the fi rst
instruction is completed, whereas parallelism allows the microprocessors to execute several
instructions at the same time. In this type of computing, a large and complex problem is
fi rst divided into smaller problems, that are solved concurrently by the microprocessor of the
computer.

Computer Programming1.26

 1.8 BASIC COMPUTER ORGANISATION

The basic computer organisation involves the interfacing of different units of the computer and
various operations performed between these units. The basic computer organisation explains
the way in which different units of computer are interconnected with each other and controlled.
Some of the basic units of computer organisation are:
 • Input Unit
 • Memory Unit
 • CPU
 • Output Unit
 Figure 1.27 shows the basic computer organisation.

Arithmetic
Logic Unit

Registers

Control Unit

CPU

Cache memory

Memory Unit
Input
Unit

Output
Unit

Fig. 1.27 The block diagram of a computer system

1.8.1 Input Unit

An input unit is an electronic device, which is used to feed input data and control signals to a
computer. It is also known as input device. Input devices are connected to the computer system
using cables. The most commonly used input devices among others are:
 • Keyboard
 • Mouse
 • Scanner
Keyboard A standard keyboard includes alphanumeric keys, function keys, modifi er keys,
cursor movement keys, spacebar, escape key, numeric keypad, and some special keys, such as
Page Up, Page Down, Home, Insert, Delete and End. The alphanumeric keys include the number
keys and the alphabet keys. The function keys are the keys that help perform a specifi c task

Introduction to Computers 1.27

such as searching a fi le or refreshing a Web page. The modifi er keys such as Shift and Control
keys modify the casing style of a character or symbol. The cursor movement keys include up,
down, left and right keys, and are used to modify the direction of the cursor on the screen. The
spacebar key shifts the cursor to the right by one position. The numeric keypad uses separate
keypads for numbers and mathematical operators. A keyboard is shown in Fig. 1.28.

Special purpose keys
Function keys

Modifier
keys

Alphanumeric keys

Arrows keys

Numeric keys

Fig. 1.28 Keyboard

Mouse The mouse allows the user to select elements on
the screen, such as tools, icons, and buttons, by pointing and
clicking them. We can also use a mouse to draw and paint on
the screen of the computer system. The mouse is also known
as a pointing device because it helps change the position of
the pointer or cursor on the screen.
 The mouse consists of two buttons, a wheel at the top
and a ball at the bottom of the mouse. When the ball moves,
the cursor on the screen moves in the direction in which the
ball rotates. The left button of the mouse is used to select
an element and the right button, when clicked, displays
the special options such as open and explore and shortcut
menus. The wheel is used to scroll down in a document or a
Web page. A mouse is shown in Fig. 1.29.

Scanner A scanner is an input device that converts
documents and images as the digitised images understandable
by the computer system. The digitised images can be
produced as black and white images, gray images, or coloured
images. In case of coloured images, an image is considered
as a collection of dots with each dot representing a
combination of red, green, and blue colours, varying in
proportions. The proportions of red, green, and blue colours
assigned to a dot are together called as colour description.
The scanner uses the colour description of the dots to produce
a digitised image. Figure 1.30 shows a scanner.

Right button

Scroll button

Left button

Fig. 1.29 Mouse

Fig. 1.30 Scanner

Computer Programming1.28

1.8.2 Memory Unit

The memory unit of a computer is used to store data, instructions for processing data,
intermediate results of processing and the fi nal processed information. The memory units of
a computer are classifi ed as primary memory and secondary memory. Figure 1.31 shows the
memory categorization in a computer system.

Fig. 1.31 Categorization of Memory Devices

Primary Memory The primary memory is available in the computer as a built-in unit of
the computer. The primary memory is represented as a set of locations with each location
occupying 8 bits. Each bit in the memory is identifi ed by a unique address. The data is stored
in the machine-understandable binary form in these memory locations. The commonly used
primary memories are:
 • ROM ROM represents Read Only Memory that stores data and instructions, even

when the computer is turned off. It is the permanent memory of the computer where
the contents cannot be modifi ed by an end user. ROM is a chip that is inserted into the
motherboard. It is generally used to store the Basic Input/Output system (BIOS), which
performs the Power On Self Test (POST).

 • RAM RAM is the read/write memory unit in which the information is retained only
as long as there is a regular power supply. When the power supply is interrupted or
switched off, the information stored in the RAM is lost. RAM is a volatile memory that

Introduction to Computers 1.29

temporarily stores data and applications as long as they are in use. When the use of
data or the application is over, the content in RAM is erased.

Integrated
chips

Fig. 1.32 RAM

 • Cache memory Cache memory is used to store the data and the related application
that was last processed by the CPU. When the processor performs processing, it fi rst
searches the cache memory and then the RAM, for an instruction. The cache memory is
always placed between CPU and the main memory of the computer system.

 Table 1.1 depicts some of the key differences between RAM and ROM:

Table 1.1

RAM ROM

It is a read/write memory It is a read only memory

It is volatile storage device It is a permanent storage device

Data is erased as soon as power supply is Data remains stored even after power supply
turned off has been turned off

It is used as the main memory of a computer It is used to store Basic input output system

system (BIOS).

Secondary Memory Secondary memory represents the external storage devices that are
connected to the computer. They provide a non-volatile memory source used to store information
that is not in use currently. A storage device is either located in the CPU casing of the computer
or is connected externally to the computer. The secondary storage devices can be classifi ed as:
 • Magnetic storage device The magnetic

storage devices store information that can
be read, erased and rewritten a number of
times. These include fl oppy disk, hard disk
and magnetic tapes.

 • Optical storage device The optical
storage devices are secondary storage devices
that use laser beams to read the stored data.
These include CD-ROM, rewritable compact
disk (CD-RW), and digital video disks with read only memory (DVD-ROM).

Fig. 1.33 Magnetic tape

Computer Programming1.30

 • Magneto-optical storage device The magneto-optical devices are generally used
to store information, such as large programs, fi les and backup data. The end user
can modify the information stored in magneto-optical storage devices multiple times.
These devices provide higher storage capacity as they use laser beams and magnets for
reading and writing data to the device. Examples of magneto-optical devices include
Sony MiniDisc, Maxoptix T5-2600, etc.

Tracks

Sectors

Incident laser beam
Reflected laser beam

 Fig. 1.34 Magnetic disk Fig. 1.35 Optical Disk

Dielectric
layers

Laser beams

Lens
Substrate layer

Protective coating

Reflective aluminium layer Magneto optical flim

Fig. 1.36 Magneto-optical disk

Introduction to Computers 1.31

 • Universal serial bus (USB) drive USB drive or
commonly known as pen drive is a removable storage
device that is interfaced on the USB port of a computer
system. It is pretty fast and compact in comparison to other
storage devices like CD and fl oppy disk. One of the most
important advantages of a USB drive is that it is larger in
capacity as compared to other removable storage devices.
Off late, it has become very popular amongst computer
users.

1.8.3 CPU

The function of any computer system revolves around a central component known as CPU. The
CPU, which is popularly referred as the “brain” of the computer, is responsible for processing
the data inside the computer system. It is also responsible for controlling all other components
of the system. The main operations of the CPU include four phases:
 • Fetching instructions from the memory
 • Decoding the instructions to decide what operations are to be performed
 • Executing the instructions
 • Storing the results back in the memory
 The three main components of CPU are:
 • Arithmeitc and Logic Unit (ALU)
 • Control Unit (CU)
 • Registers
ALU ALU is a part of the CPU that performs arithmetic and logical operations on the
data. The arithmetic operations can be addition, subtraction, multiplication or division. The
multiplication and division operations are usually implemented by the ALU as the repetitive
process of addition and subtraction operations respectively. It takes input in the form of an
instruction that contains an opcode, operands and the format code. The opcode specifi es the
operation to be performed and the operands specify the data on which operation is to be
performed. The format code suggests the format of the operands, such as fi xed-point or fl oating-
point. The output of ALU contains the result of the operation and the status of the result,
whether it is fi nal or not. The output is stored in a storage register by the ALU. Register is a
small storage area inside the CPU from where data is retrieved faster than any other storage
area. It also performs 16 different types of logical operations. The various logical operations
include greater than (>), less than (<), equal to (=), not equal to (π), shift left, shift right, etc.
It makes use of various logic gates, such as AND, OR, NOR, etc. for performing the logical
operations on the data.
CU CU is an important component of CPU that controls the fl ow of data and information. It
maintains the sequence of operations being performed by the CPU. It fetches an instruction
from the storage area, decodes the instruction and transmits the corresponding signals to
the ALU and the storage registers. CU guides the ALU about the operations that are to be
performed and also suggests the I/O devices to which the data is to be communicated. CU uses
a program counter register for retrieving the next instruction that is to be executed. It also
uses a status register for handling conditions such as overfl ow of data.

Fig. 1.37 USB drive

Computer Programming1.32

Registers Central processing unit contains a few, special-purpose, temporary storage units
known as registers. They are high-speed memory locations used for holding instructions, data
and intermediate results that are currently being processed. A processor can have different
types of registers to hold different types of information. They include, among others:
 • Program Counter (PC) to keep track of the next instruction to be executed.
 • Instruction Register (IR) to hold instructions to be decoded by the control unit.
 • Memory Address Register (MAR) to hold the address of the next location in the memory

to be accessed.
 • Memory Buffer Register (MBR) for storing data received from or sent to CPU.
 • Memory Data Register (MDR) for storing operands and data.
 • Accumulator (ACC) for storing the results produced by arithmetic and logic units.
 Many computers employ additional registers for implementing various other requirements.
The number and sizes of registers, therefore, vary from processor to processor. An effective
implementation of registers can increase considerably the speed of the processor.
 Figure 1.38 shows a typical block diagram of computer system, illustrating the arrangement
of CPU with the input and output units as well as the memory of the computer system.

Fig. 1.38 Illustration of CPU and memory

1.8.4 Output Unit

Output unit is an electronic device, which is used to communicate the output obtained after
processing a specifi c task, to the user. The data processed by the CPU, is made available to the
end user by the output devices. The most commonly used output devices are:

Introduction to Computers 1.33

 • Monitor
 • Printer
 • Speaker
Monitor A monitor is the most commonly used output device that produces visual displays
generated by the computer. The monitor, also known as a screen, is connected as an external
device using cables or connected either as a part of
the CPU case. The monitor connected using cables,
is connected to the video card placed on the expansion
slot of the motherboard. The display device is used
for visual presentation of textual and graphical
information. The monitors can be classifi ed as
Cathode Ray Tube (CRT) monitors or Liquid Crystal
Display (LCD) monitors. The CRT monitors are
large, occupy more space in the computer, whereas
LCD monitors are thin, light weighted, and occupy
lesser space. Both the monitors are available as
monochrome, gray scale and colour models. However,
the quality of the visual display produced by the
CRT is better than that produced by the LCD.
 The inner side of the screen of the CRT contains
the red, green, and blue phosphors. When a beam of electrons strike the screen, the beam
strikes the red, green and blue phosphors on the screen and irradiates it to produce the image.
The process repeats itself for a change in the image, thus refreshing the changing image. To
change the colour displayed by the monitor, the intensity of the beam striking the screen is
varied. If the rate at which the screen gets refreshed is large, then the screen starts fl ickering,
when the images are refreshed.
 The LCD monitor is a thin display device that consists of a number of colour or monochrome
pixels arrayed in front of a light source or refl ector. LCD monitors consume a very small amount
of electric power.
 A monitor can be characterised by its monitor size and resolution. The monitor size is the
length of the screen that is measured diagonally. The resolution of the screen is expressed as
the number of picture elements or pixels of
the screen. The resolution of the monitor is
also called the dot pitch. The monitor with a
higher resolution produces a clearer image.

Printer The printer is an output device
that transfers the text displayed on the
screen, onto paper sheets that can be
used by the end user. The various types of
printers used in the market are generally
categorised as dot matrix printers, inkjet
printers, and laser printers. Dot matrix
printers are commonly used in low quality
and high volume applications like invoice
printing, cash registers, etc. However, inkjet

Fig. 1.39 A Monitor

Screen

Operating
Buttons

Base

Fig. 1.40 A Printer

Paper in

Control
Buttons

Paper out

Computer Programming1.34

printers are slower than dot matrix printers and generate high-quality photographic prints.
Since laser printers consist of microprocessor, ROM and RAM, they can produce high-quality
prints in quicker time without being connected to a computer.
 The printer is an output device that is used to produce a hard copy of the electronic text
displayed on the screen, in the form of paper sheets that can be used by the end user. It is an
external device that is connected to the computer system using cables. The computer needs to
convert the document that is to be printed to data that is understandable by the printer. The
printer driver software or the print driver software is used to convert a document to a form
understandable by the printer. When the computer components are upgraded, the upgraded
printer driver software needs to be installed on the computer.
 The performance of a printer is measured in terms of dots per inch (DPI) and pages per
minute (PPM) produced by the printer. The greater the DPI parameter of a printer, the better
is the quality of the output generated by it. The higher PPM represents higher effi ciency of the
printer.

Speaker The speaker is an electromechanical transducer
that converts an electrical signal into sound. They are
attached to a computer as output devices, to provide audio
output, such as warning sounds and Internet audios. We can
have built-in speakers or attached speakers in a computer to
warn end users with error audio messages and alerts. The
audio drivers need to be installed in the computer to produce
the audio output. The sound card being used in the computer
system decides the quality of audio that we listen using
music CDs or over the Internet. The computer speakers vary
widely in terms of quality and price. The sophisticated
computer speakers may have a subwoofer unit, to enhance
bass output.

 1.9 NUMBER SYSTEM AND COMPUTER CODES

A computer is a digital system that stores and processes different types of data in the form
of 0s and 1s. The different types of data handled by a computer system include numbers,
alphabets and some special characters. Therefore, there is a need to change the data entered
by the users into a form that the computer system can understand and process. Different types
of codes have been developed and used to represent the data entered by the users in the binary
format. The binary system represents each type of data in terms of binary digits—0s and 1s.
Since these codes convert the data into the binary from, the computer codes are also referred
as binary codes.
 The decimal system is not the only number system used by computer users. Computer
professionals use different number systems according to their requirements to communicate
with the computer system. Therefore, before understanding the various computer codes, we
need to understand the concept of number systems. All the number systems used by computer
professionals to interact with computer systems come under the category of positional number
system. The positional number system is a number system in which numbers are represented
using some symbols called digits and the values of these numbers can be determined by taking

Fig. 1.41 Speakers

Introduction to Computers 1.35

the position of digits into consideration. The different number systems, which come under the
category of positional number system, are as follows:
 • Decimal system
 • Binary system
 • Hexadecimal system
 • Octal system

 1.10 DECIMAL SYSTEM

The decimal system is a positional number system that uses 10 as a base to represent different
values. Therefore, this number system is also known as base 10 number system. In this
system, 10 symbols are available for representing the values. These symbols include the digits
from 0 to 9. The decimal system can be used to represent both the integer as well as fl oating
point values. The fl oating point values are generally represented in this system by using a
period called decimal point. The value of any number represented in the decimal system can
be determined by fi rst multiplying the weight associated with each digit in the given number
with the digit itself and then adding all these values produced as a result of multiplication
operation. The weight associated with any digit depends upon the position of the digit itself
in the given number. The most common method to determine the weight of any digit in any
number system is to raise the base of the number system to a power that initially starts with
a 0 and then increases by 1 as we move from right to left in the given number. To understand
this concept, let us consider the following fl oating point number represented in the decimal
system:

 Decimal point

6 5 4 3 . 1 2 4

 In the above example, the value 6543, which comes before the decimal point, is called
integer value and the value 124, which comes after the decimal point, is called fraction value.
 6 × 103 × 5 × 102 + 4 × 101 + 3 × 100 + 1 × 10–1 + 2 × 10–2 + 4 × 10–3

 = 6000 + 500 + 40 + 3 + 0.1 + 0.02 + 0.004
 = 6543.124

 1.11 BINARY SYSTEM

The binary number system uses base 2 to represent different values. Therefore, the binary
system is also known as base-2 system. As this system uses base 2, only two symbols are
available for representing the different values in this system.
 The following are some of the technical terms used in binary system:
 • Bit. It is the smallest unit of information used in a computer system. It can either have

the value 0 or 1. Derived from the words Binary digIT.
 • Nibble. It is a combination of 4 bits.
 • Byte. It is a combination of 8 bits. Derived from words ‘by eight’.
 • Word. It is a combination of 16 bits.

Computer Programming1.36

 • Double word. It is a combination of 32 bits.
 • Kilobyte (KB). It is used to represent the 1024 bytes of information.
 • Megabyte (MB). It is used to represent the 1024 KBs of information.
 • Gigabyte (GB). It is used to represent the 1024 MBs of information.
 In the binary system, the weight of any bit can be determined by raising 2 to a power
equivalent to the position of bit in the number. To understand this concept, let us consider the
following binary number:

 Binary point

1 0 1 0 0 1 . 0 1 0 1

 In the binary system, the point used to separate the integer and the fraction part of a
number is known as binary point. Like the decimal system, the powers to the base increases
by 1 towards the left for the integer part and decreases by 1 towards the right for the fraction
part. The value of the given binary number can be determined as the sum of the products of
the bits multiplied by the weight of the bit itself. Therefore, the value of the binary number
101001.0101 can be obtained as:

 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 + 0 × 2–1 + 1 × 2–2 + 0 × 2–3 + 1 × 2–4

 = 32 + 8 + 1 + 0.25 + 0.0625
 = 41.3125

 The binary number 101001.0101 represents the decimal value 41.3125.

 1.12 HEXADECIMAL SYSTEM

The hexadecimal system is a positional number system that uses base 16 to represent different
values. Therefore, this number system is known as base-16 system. As this system uses base
16, 16 symbols are available for representing the values in this system. These symbols are the
digits 0–9 and the letters A, B, C, D, E and F. The digits 0–9 are used to represent the decimal
values 0 through 9 and the letters A, B, C, D, E and F are used to represent the decimal values
10 through 15.
 The weight associated with each symbol in the given hexadecimal number can be determined
by raising 16 to a power equivalent to the position of the digit in the number. To understand
this concept, let us consider the following hexadecimal number:

 Hexdecimal point

4 A 9 . 2 B

 In the hexadecimal system, the point used to separate the integer and the fraction part of
a number is known as hexadecimal point. The value of the hexadecimal number can also be
determined as the sum of the products of the symbol multiplied by the weight of the symbol
itself. Therefore, the value of the given hexadecimal number is:

Introduction to Computers 1.37

 = 4 × 162 + 10 × 161 + 9 × 160 + 2 × 16–1 + 11 × 16–2

 = 1024 + 160 + 9 + 0.125 + 0.0429
 = 1193 + 0.1679
 = 1193.1679

 The hexadecimal number 4A9. 2B represents the decimal value 1193.1679.

 1.13 OCTAL SYSTEM

The octal system is the positional number system that uses base 8 to represent different values.
Therefore, this number system is also known as base-8 system. As this system uses base 8,
eight symbols are available for representing the values in this system. These symbols are the
digits 0 to 7.
 The weight associated with each digit in the given octal number can be determined by
raising 8 to a power equivalent to the position of digit in the number. To understand this
concept, let us consider the following octal number:

 Octal point

2 1 5 . 4 3

 In octal system, the point used to separate the integer and the fraction part of a number is
known as octal point. Using these place values, we can now determine the value of the given
octal number as:

 2 × 82 + 1 × 81 + 5 × 80 + 4 × 8–1 + 3 × 8–2

 = 128 + 8 + 5 + 0.5 + 0.0469
 = 141 + 0.5469
 = 141.5469

 The octal number 215.43 represents the decimal value 141.5469.

 1.14 4-BIT BINARY CODED DECIMAL (BCD) SYSTEMS

The BCD system is employed by computer systems to encode the decimal number into its
equivalent binary number. This is generally accomplished by encoding each digit of the decimal
number into its equivalent binary sequence. The main advantage of BCD system is that it is a
fast and effi cient system to convert the decimal numbers into binary numbers as compared to
the pure binary system. However, the implementation of this coding system requires a lot of
circuits that makes the design of the computer systems very complicated.
 The 4-bit BCD system is usually employed by the computer systems to represent and
process numerical data only. In the 4-bit BCD system, each digit of the decimal number is
encoded to its corresponding 4-bit binary sequence. The two most popular 4-bit BCD systems
are:
 • Weighted 4-bit BCD code
 • Excess – 3 (XS – 3) BCD code

Computer Programming1.38

1.14.1 Weighted 4-Bit BCD Code

The weighted 4-bit BCD code is more commonly known as 8421 weighted code. It is called
weighted code because it encodes the decimal system into binary system by using the concept
of positional weighting into consideration. In this code, each decimal digit is encoded into
its 4-bit binary number in which the bits from left to right have the weights 8, 4, 2, and 1
respectively. Table 1.2 lists the weighted 4-bit BCD code for decimal digits 0 through 9.

Table 1.2 Weighted 4-bit BCD codes

 Decimal digits Weighted 4-bit BCD code

 0 0000

 1 0001

 2 0010

 3 0011

 4 0100

 5 0101

 6 0110

 7 0111

 8 1000

 9 1001

NOTE: Apart from 8421, some other weighted BCD codes are 4221, 2421 and 5211.

Example 1.1 Represent the decimal number 5327 in 8421 BCD code.

The given decimal number is 5327.
 The corresponding 4-bit 8421 BCD representation of decimal digit 5 is 0101.
 The corresponding 4-bit 8421 BCD representation of decimal digit 3 is 0011.
 The corresponding 4-bit 8421 BCD representation of decimal digit 2 is 0010.
 The corresponding 4-bit 8421 BCD representation of decimal digit 7 is 0111.
 Therefore, the 8421 BCD representation of decimal number 5327 is 0101 0011 0010
0111.

Example 1.2 Determine the decimal number corresponding to the 8421 BCD code

01001001.

The given 8421 BCD code is 01001001.
 To determine the equivalent decimal number, simply divide the 8421 BCD code into sets
of 4-bit binary digits as:
 0100 1001
 The decimal number corresponding to the binary digits 0100 is 4.
 The decimal number corresponding to the binary digits 1001 is 9.
 Therefore, the decimal number equivalent to 8421 BCD code 0100 1001 is 49.

Introduction to Computers 1.39

1.14.2 Excess-3 BCD Code

The Excess-3 (XS-3) BCD code does not use the principle of positional weights into consideration
while converting the decimal numbers to 4-bit BCD system. Therefore, we can say that this code
is a non-weighted BCD code. The function of XS-3 code is to transform the decimal numbers
into their corresponding 4-bit BCD code. In this code, the decimal number is transformed to
the 4-bit BCD code by fi rst adding 3 to all the digits of the number and then converting the
excess digits, so obtained, into their corresponding 8421 BCD code. Therefore, we can say that
the XS-3 code is strongly related with 8421 BCD code in its functioning. Table 1.3 lists the XS-3
BCD code for decimal digits 0 through 9.

Table 1.3 Excess–3 BCD codes

 Decimal digits Excess-3 BCD code

 0 0011

 1 0100

 2 0101

 3 0110

 4 0111

 5 1000

 6 1001

 7 1010

 8 1011

 9 1100

NOTE: Apart from XS-3 code, the other nonweighted BCD code is 4-bit Gray code.

Example 1.3 Convert the decimal number 85 to XS–3 BCD code.

The given decimal number is 85.
 Now, add 3 to each digit of the given decimal number as:
 8 + 3 = 11
 5 + 3 = 8
 The corresponding 4-bit 8421 BCD representation of the decimal digit 11 is 1011.
 The corresponding 4-bit 8421 BCD representation of the decimal digit 8 is 1000.
 Therefore, the XS–3 BCD representation of the decimal number 85 is 1011 1000.

Example 1.4 Represent the decimal number 173 in XS-3 BCD code.

The given decimal number is 173.
 Now, add 3 to each digit of the given decimal number as:
 1 + 3 = 4
 7 + 3 =10
 3 + 3 = 6
 The corresponding 4-bit 8421 BCD representation of the decimal digit 4 is 0100.

Computer Programming1.40

 The corresponding 4-bit 8421 BCD representation of the decimal digit 10 is 1010.
 The corresponding 4-bit 8421 BCD representation of the decimal digit 6 is 0110.
 Therefore, the XS-3 BCD representation of the decimal number 173 is 0100 1010 0110.

NOTE: 4-bit BCD systems are inadequate for representing and handling nonnumeric data. For this
purpose, 6-bit BCD and 8-bit BCD systems have been developed.

 1.15 8-BIT BCD SYSTEMS

The 8-bit BCD systems were developed to overcome the limitations of 6-bit BCD systems.
The 6-bit BCD systems can handle numeric as well as nonnumeric data but with few special
characters. The 8-bit BCD systems can handle numeric as well as nonnumeric data with almost
all the special characters such as +, - , *, /, @, $, etc. Therefore, the various codes under the
category of 8-bit BCD systems are also known as alphanumeric codes. The three most popular
8-bit BCD codes are:
 • Extended Binary Coded Decimal Interchange Code (EBCDIC)
 • American Standard Code for Information Interchange (ASCII)
 • Gray code

1.15.1 EBCDIC Code

The EBCDIC code is an 8-bit alphanumeric code that was developed by IBM to represent
alphabets, decimal digits and special characters, including control characters. Control
characters are the special characters that are used to perform a specifi c function. For example,
the control character FF is used to feed the next page into the printer or eject the current
page from the printer. The EBCDIC codes are generally the decimal and the hexadecimal
representation of different characters. This code is rarely used by non IBM-compatible computer
systems. Table 1.4 lists some important EBCDIC characters and their corresponding decimal
and hexadecimal representation.

Table 1.4 EBCDIC codes

 Characters Decimal representation Hexadecimal representation

 NUL 0 00

 SOH 1 01

 STX 2 02

 ETX 3 03

 HT 5 05

 DEL 7 07

 VT 11 0B

 FF 12 0C

 CR 13 0D

 SO 14 0E

 SI 15 0F

Introduction to Computers 1.41

 DLE 16 10

 IUS 31 1F

 ESC 39 27

 BEL 47 2F

 SUB 63 3F

 [74 4A

 . 75 4B

 < 76 4C

 (77 4D

 + 78 4E

 & 80 50

 $ 91 5B

 * 92 5C

 - 96 60

 / 97 61

 % 108 6C

 ? 111 6F

 = 126 7E

 A – i 129 – 137 81 – 89

 j – r 145 – 153 91 – 99

 s – z 162 – 169 A2 – A9

 A – I 193 – 201 C1 – C9

 J – R 209 – 217 D1 – D9

 S – Z 226 – 233 E2 – E9

 0 – 9 240 – 249 F0 – F9

1.15.2 ASCII Code

The ASCII code is pronounced as ASKEE and is used for the same purpose for which the
EBCDIC code is used. However, this code is more popular than EBCDIC code as unlike the
EBCDIC code, this code can be implemented by most of the non-IBM computer systems.
Initially, this code was developed as a 7-bit BCD code to handle 128 characters but later it
was modifi ed to an 8-bit code. We can check the value of any ASCII code by just holding down
the Alt key and typing the ASCII code. For example, when we hold down the Alt key and type
66 from the keyboard, then the character B appears on the screen. This shows that the ASCII
decimal code 66 represents the character B. Table 1.5 lists some important ASCII codes and
their corresponding decimal and hexadecimal representations.

Computer Programming1.42

Table 1.5 ASCII codes

 Characters Decimal representation Hexadecimal representation

 NUL 0 0

 SOH 1 1

 STX 2 2

 ETX 3 3

 EOT 4 4

 ENQ 5 5

 ACK 6 6

 BEL 7 7

 BS 8 8

 HT 9 9

 CAN 24 18

 SUB 26 1A

 ESC 27 1B

 RS 30 1E

 US 31 1F

 ! 33 21

 # 35 23

 $ 36 24

 % 37 25

 & 38 26

 * 42 2A

 + 43 2B

 / 47 2F

 0 – 9 48 – 57 30 – 39

 < 60 3C

 = 61 3D

 > 62 3E

 ? 63 3F

 A – I 65 – 73 41 – 49

 J – O 74 – 79 4A – 4F

 P – Z 80 – 90 50 – 5A

 a – i 97 – 105 61 – 69

 j – o 106 – 111 6A – 6F

 p – z 112 – 122 70 – 7A

1.15.3 Gray Code

Gray code is another important code that is also used to convert the decimal number into an
8-bit binary sequence. However, this conversion is carried in a manner that the contiguous

Introduction to Computers 1.43

digits of the decimal number differ from each other by one bit only. Table 1.6 lists the 8-bit
Gray code for decimal numbers 0 through 9.

Table 1.6 8-Bit Gray code

 Decimal number 8-Bit Gray code

 0 00000000

 1 00000001

 2 00000011

 3 00000010

 4 00000110

 5 00000111

 6 00001111

 7 00001011

 8 00001001

 9 00001101

 We can convert the Gray coded number to its binary equivalent by remembering the
following two major rules:
 • The Most Signifi cant Bit (MSB) of the Gray coded number and the equivalent binary

number is always the same.
 • The next-to-most signifi cant bit of the binary number can be determined by adding

the MSB of the binary number to the next-to-most signifi cant bit of the gray coded
number.

Example 1.5 Convert the Gray coded number 11010011 to its binary equivalent.

The given Gray coded number is 11010011.
 The following table lists the steps showing the conversion of the Gray coded number into
its binary equivalent:

 S No. Gray coded digit Binary addition operation Binary digit

 1 1 1

 2 1 1 + 1 0

 3 0 0 + 0 0

 4 1 1 + 0 1

 5 0 0 + 1 1

 6 0 0 + 1 1

 7 1 1 + 1 0

 8 1 1 + 0 1

 Hence, the binary equivalent of Gray coded number 11010011 is 10011101.

 We can also convert a number represented in the binary form to Gray code representation.
For carrying out this conversion, we need to remember the following two rules:

Computer Programming1.44

 • The Most Signifi cant Digit (MSD) of the binary number and the gray coded number is
always the same.

 • The next MSD of the gray coded number can be obtained by adding the subsequent pair
of bits of the binary number starting form the left.

NOTE: We need to ignore the carry, if it is generated while adding the subsequent pairs of bits of the

binary number.

Example 1.6 Convert the binary number 10100011 to its equivalent Gray coded number.

The given binary number is 10100011.
 The following table lists the steps showing the conversion of binary number to its
equivalent Gray coded number:

 S.No. Binary digit Binary addition operation Gray coded digit

 1 1 1

 2 0 1 + 0 1

 3 1 0 + 1 1

 4 0 1 + 0 1

 5 0 0 + 0 0

 6 0 0 + 0 0

 7 1 0 + 1 1

 8 1 1 + 1 0

 Hence, the Gray coded equivalent of the binary number 10100011 is 11110010.

 1.16 16-BIT UNICODE

The 16-bit Unicode is an International 16-bit character set that contains a maximum of 216 =
65,536 different characters. These characters are suffi cient to represent almost all the technical
and special symbols used by the major languages of the world. The 16-bit Unicode, (also called
16-bit universal character set), encodes the different characters by assigning them a unique
value. In computer terminology, this unique value is referred as code point. The code assigned
to each character of different languages is universal and can be used on any platform without
any modifi cation. Therefore, we can say that the 16-bit Unicode allows the computer systems
to deal with almost all the characters belonging to different languages used in the world.
 The 16-bit Unicode is a character code that is supported by almost all the operating systems
such as MS Windows, Linux and Mac OS X. For example, MS Windows operating system allows
the use of all the Unicode characters through an accessory called Character Map. Figure 1.42
shows the user interface of the character map.
 Using the Character Map window, we can select any of the Unicode characters and copy it
to the clipboard. After copying it to the clipboard, we can use the selected Unicode character in
any application running under MS Windows operating system.

Introduction to Computers 1.45

Fig. 1.42 The character map window

 1.17 CONVERSION OF NUMBERS

The computer systems accept data in decimal form, whereas data is stored and processed
in binary form. Therefore, it becomes necessary to convert the numbers represented in one
system into the numbers represented in another system. The different types of number system
conversions can be divided into the following major categories:
 • Non-decimal to decimal
 • Decimal to non-decimal
 • Octal to hexadecimal

1.17.1 Non-Decimal to Decimal

The non-decimal to decimal conversions can be implemented by taking the concept of place
values into consideration. The non-decimal to decimal conversion includes the following
number system conversions:
 • Binary to decimal conversion
 • Hexadecimal to decimal conversion
 • Octal to decimal conversion
Binary to decimal conversion A binary number can be converted to equivalent decimal
number by calculating the sum of the products of each bit multiplied by its corresponding place
value.

Computer Programming1.46

Example 1.7 Convert the binary number 10101101 into its corresponding decimal number.

The given binary number is 10101101.
 Now, calculate the sum of the products of each bit multiplied by its place value as:
 (1 × 27) + (0 × 26) + (1 × 25) + (0 × 24) + (1 × 23) + (1 × 22) + (1 × 21) + (1 × 20)
 = 128 + 0 + 32 + 0 + 8 + 4 + 0 + 1
 = 173
 Therefore, the binary number 10101101 is equivalent to 173 in the decimal system.

Example 1.8 Convert the binary number 1011.010 into its equivalent in decimal system.

The given binary number is 1011.010.
 Now, calculate the sum of the products of each bit multiplied by its place value as:
 (1 × 23) + (0 × 22) + (1 × 21) + (0 × 20) + (1 × 2–1) + (1 × 2–2) + (1 × 2–3)
 = 8 + 2 + 1 + ¼
 = 11 + 0.25
 = 11.25
 Therefore, the binary number 1011.010 is equivalent to 11.25 in the decimal system.

Hexadecimal to decimal conversion A hexadecimal number can be converted into its
equivalent number in decimal system by calculating the sum of the products of each symbol
multiplied by its corresponding place value.

Example 1.9 Convert the hexadecimal number A53 into its equivalent in decimal system.

The given hexadecimal number is A53.
 Now, calculate the sum of the products of each symbol multiplied by its place value as:

 (10 × 162) + (5 × 161) + (3 × 160)
 = 2560 + 80 + 3
 = 2643
 Therefore, the hexadecimal number A53 is equivalent to 2643 in the decimal system.

Example 1.10 Convert the hexadecimal number AB21.34 into its equivalent in the decimal

system.

The given hexadecimal number is AB21.34.
 Now, calculate the sum of the products of each symbol multiplied by its place value as:

 (10 × 163) + (11 × 162) + (2 × 161) + (1 × 160) + (3 × 16–1) + (4 × 16–2)
 = 40960 + 2816 + 32 + 1 + 3/16 + 4/256
 = 43809 + 0.1875 + 0.015625
 = 43809.203

 Therefore, the hexadecimal number AB21.34 is equivalent to 43809.203 in the decimal
system.

Octal to decimal conversion An octal number can be converted into its equivalent number
in decimal system by calculating the sum of the products of each digit multiplied by its
corresponding place value.

Introduction to Computers 1.47

Example 1.11 Convert the octal number 5324 into its equivalent in decimal system.

The given octal number is 5324.
 Now, calculate the sum of the products of each digit multiplied by its place value as:
 (5 × 83) + (3 × 82) + (2 × 81) + (4 × 80)
 = 2560 + 192 + 16 + 4
 = 2772
 Therefore, the octal number 5324 is equivalent to 2772 in the decimal system.

Example 1.12 Convert the octal number 325.12 into its equivalent in decimal system.

The given octal number is 325.12.
 Now, calculate the sum of the products of each digit multiplied by its place value as:
 (3 × 82) + (2 × 81) + (5 × 80) + (1 × 8–1) + (2 × 8–2)
 = 192 + 16 + 5 + 1/8 + 2/64
 = 213 + 0.125 + 0.03125
 = 213.15625
 Therefore, the octal number 325.12 is equivalent to 213.15625 in the decimal system.

1.17.2 Decimal to Non-Decimal

The decimal to non-decimal conversions are carried out by continually dividing the decimal
number by the base of the desired number system till the decimal number becomes zero.
After the decimal number becomes zero, we may note down the remainders calculated at each
successive division from last to fi rst to obtain the decimal number into the desired system. The
decimal to non-decimal conversion includes the following number system conversions:
 • Decimal to binary conversion
 • Decimal to octal conversion

Decimal to binary conversion The decimal to binary conversion is performed by repeatedly
dividing the decimal number by 2 till the decimal number becomes zero and then reading the
remainders from last to fi rst to obtain the binary equivalent of the given decimal number.
The following examples illustrate the method of converting a decimal number to its binary
equivalent:

Example 1.13 Convert the decimal number 111 into its equivalent binary number.

The given decimal number is 111.
 The following table lists the steps showing the conversion of the given decimal number to
its binary equivalent:

 Decimal number Divisor Quotient Remainder

 111 2 55 1

 55 2 27 1

 27 2 13 1

 13 2 6 1

 6 2 3 0

 3 2 1 1

 1 2 0 1

Computer Programming1.48

 Now, read the remainders calculated in the above table in upward direction to obtain
the binary equivalent, which is 1101111.
 Therefore, the binary equivalent of the decimal number 111 is 1101111.

Decimal to octal conversion The decimal to octal conversion is performed by repeatedly
dividing the decimal number by 8 till the decimal number becomes zero and reading the
remainders from last to fi rst to obtain the octal equivalent of the given decimal number.
The following examples illustrate the method of converting decimal number to its octal
equivalent:

Example 1.14 Convert the decimal number 45796 to its equivalent octal number.

The given decimal number is 45796.
 The following table lists the steps showing the conversion of the given decimal number
to its octal equivalent:

 Decimal number Divisor Quotient Remainder

 45796 8 5724 4

 5724 8 715 4

 715 8 89 3

 89 8 11 1

 11 8 1 3

 1 8 0 1

 Now, read the remainders calculated in the above table in upward direction to obtain
the octal equivalent, which is 131344.
 Therefore, the corresponding octal equivalent of 45796 is 131344.

1.17.3 Octal to Hexadecimal

A given octal number can be converted into its equivalent hexadecimal number in two different
steps. Firstly, we need to convert the given octal number into its binary equivalent. After
obtaining the binary equivalent, we need to divide the binary number into 4-bit sections
starting from the LSB.
 The octal to binary conversion is a simple process. In this type of conversion, we need to
represent each digit in the octal number to its equivalent 3-bit binary number.

Example 1.15 Convert the octal number 365 into its equivalent hexadecimal number.

The given octal number is 365.
 Firstly, convert the given octal number into its binary equivalent.
 The 3-bit binary equivalent of the octal digit 3 is 011.
 The 3-bit binary equivalent of the octal digit 6 is 110.
 The 3-bit binary equivalent of the octal digit 5 is 101.
 Therefore, the binary equivalent of the given octal number is 011110101.
 Now, we need to convert this binary number into the equivalent hexadecimal number.
 Divide the binary number into 4-bit sections as:

Introduction to Computers 1.49

0000 1111 0101
 The hexadecimal equivalent of 4-bit binary number 0000 is 0.
 The hexadecimal equivalent of 4-bit binary number 1111 is F.
 The hexadecimal equivalent of 4-bit binary number 0101 is 5.
 Therefore, the hexadecimal equivalent of the given octal number is F5.

Problem Solving
and Offi ce Automation

 2.1 INTRODUCTION

A computer program is basically a set of logical instructions, written in a computer programming

language that tells the computer how to accomplish a task. The process of computer program

development involves a series of standard steps that realize the solution of a real-world problem

into a computer program. The process of program development starts with identifying the

problem fi rst. Once a problem is well understood and documented, a series of problem-solving

techniques like algorithms, fl owcharts and pseudocodes are carried out in arriving at the most

effi cient solution.

 Although there are a number of software vendors in the market, the main driving force

behind the software revolution is the Microsoft Corporation. Microsoft today has a suite

of software packages that meet many of the standard application requirements of most

organisations.

 This software suite, popularly known as Microsoft Offi ce, includes the following application

packages:

 • Microsoft Word—developed in 1983, and it provides powerful tools for creating and

manipulating word-processing documents.

 • Microsoft Excel—developed in 1985, and it enables to create detailed spreadsheets for

viewing and collaboration.

 • Microsoft PowerPoint—developed in 1988, and it provides a complete set of tools for

creating presentations.

 • Microsoft Access—developed in 1992, and it gives powerful tools for creating and

managing databases.

 In this chapter, we will discuss briefl y how to use various features of these packages.

 2.2 PLANNING THE COMPUTER PROGRAM

Whenever a user wants to use a computer for solving a problem, he/she has to perform various

interrelated tasks in a systematic manner. A user cannot get the solution of a problem by

simply providing input to the computer without preparing the base for solving the problem. The

working process of a computer is similar to the human mind, which fi rst analyses the complete

2

Computer Programming2.2

situation of a problem, its causes and its parameters, and then decides the way to solve the

problem on the basis of available parameters. All the activities, which have to be performed by

a user in order to solve a problem using computer, are grouped into three phases:

 • Identifying the purpose

 • Developing a program

 • Executing the program

1. Identifying the purpose It is the fi rst stage of problem solving using a computer. It

basically focuses on understanding the problem. In this stage, two basic activities are performed

by the user. These activities are as follows:

 • Identifying parameters and constraints A user has to identify the role of different

parameters in solving the problem, i.e. the user must have the knowledge about the

relation between the various parameters and the problem itself. After identifying the

problem and its parameters, the user has to identify the associated constraints that

need to be considered in order to generate an accurate solution of the problem. The

identifi cation of parameters and constraints help in choosing the most appropriate

method to solve the problem.

 • Collecting information After analysing the problem and choosing the solution

method, a user has to collect the information related to the identifi ed parameters of the

problem. In order to collect the information, a user can use the documents and reports

pertaining to the previous versions of the problem. The collected information helps in

designing the layout of the output or solution of the problem.

2. Developing a program After analysing the problem, a user has to plan for developing the

program, which will provide the solution of the program after execution. A program includes

multiple instructions having a specifi c syntax. For developing a program, a user has to perform

the following activities:

 • Identifying the logical structure It is the most important activity in which a user

prepares the logical structure of the program by analysing the various tasks that need

to be performed for solving the problem. In order to prepare the logical structure of a

program, a user performs the following task:

 (i) Writing algorithm to list the various steps.

 (ii) Drawing fl owchart to represent the fl ow of information.

 (iii) Writing pseudocode to specify the programming specifi cations.

 • Writing the computer program After preparing the logic, a user has to write the

program code in a particular programming language. The program code should be

syntactically and semantically correct in order to generate the desired result.

 • Debugging the program After writing the complete program, a user has to apply

the debugging techniques for removing any possible errors in the program. Several

programming environments provide debugging tools that aid the users in effectively

and effi ciently removing the errors in a program.

3. Executing the program After developing an error-free program, it needs to be executed

in order to view the solution of the original problem.

 2.3 PROBLEM SOLVING

Problems that can be solved through a computer may range in size and complexity. Since

computers do not possess any commonsense and cannot make any unplanned decisions, the

Problem Solving and Offi ce Automation 2.3

problem, whether simple or complex, has to be broken into a well-defi ned set of solution

steps for the computer to implement. Problem solving is the process of solving a problem in a

computer system by following a sequence of steps. The major steps that we need to follow for

solving a problem are as follows:

 1. Preparing hierarchy chart A hierarchy chart shows the top–down solution of a

problem. In case of large problems, we can break them into parts representing small

tasks, prepare several algorithms and later combine them into one large algorithm.

 2. Developing algorithm An algorithm is a sequence of steps written in the form of

English phrases that specify the tasks that are performed while solving a problem. It

involves identifying the variable names and types that would be used for solving the

problem.

 3. Drawing fl owchart A fl owchart is the graphical representation of the fl ow of control

and logic in the solution of a problem. The fl owchart is a pictorial representation of an

algorithm.

 4. Writing pseudocode Pseudocode is quite similar to algorithms. It uses generic syntax

for describing the steps that are to be performed for solving a problem. Along with the

statements written using generic syntax, pseudocode can also use English phrases for

describing an action.

2.3.1 Hierarchy Chart

Hierarchy chart is a solution approach that suggests a top–down solution of a problem. We

very often come across large problems to be solved using computers. It may be very diffi cult

to comprehend the solution steps of such large problems at one go. In such situations, we can

decompose the problem into several parts, each representing a small task, which is easily

comprehensible and solvable. We can then prepare solution steps for each task independently

and later combine them into one large solution algorithm. Fig. 2.1 illustrates a hierarchy chart

for computing pay of an employee in an organisation.

Pay-roll
problem

Compute
gross pay

Compute
deductions

Compute
net pay

Compute
IT

Compute
loans

Compute
PF

Fig. 2.1 Hierarchy chart for pay-roll problem

 Since the chart graphically illustrates the structure of a program, it is also known as

a structure chart. While developing a computer program, we may treat each subtask as a

Computer Programming2.4

module and prepare computer code for testing independently. This approach is popularly

known as modular programming. Note that the hierarchy chart does not provide any detail

about program logic. We have to use the tools discussed further to prepare logic for each task.

2.3.2 Algorithms

Algorithms help a programmer in breaking down the solution of a problem into a number

of sequential steps. Corresponding to each step, a statement is written in a programming

language; all these statements are collectively termed as a program. The following is an

example of an algorithm to add two integers and display the result:

Algorithm to add two integers and display the result

Step 1 – Accept the fi rst integer as input from the user.

 (integer1)

Step 2 – Accept the second integer as input from the user.

 (integer2)

Step 3 – Calculate the sum of the two integers.

 (integer3 = integer1 + integer2)

Step 4 – Display integer3 as the result.

 There is a time and space complexity associated with each algorithm. Time complexity

specifi es the amount of time required by an algorithm for performing the desired task. Space

complexity specifi es the amount of memory space required by an algorithm for performing the

desired task. When solving a complex problem, it is possible to have more than one algorithm

to provide the required solution. The algorithm that takes less time and requires less memory

space is the best one.

Characteristics of an algorithm The various characteristics that are necessary for a

sequence of instructions to qualify as an algorithm are:

 • The instructions must be in an ordered form.

 • The instructions must be simple and concise. They must not be ambiguous.

 • There must be an instruction (condition) for program termination.

 • The repetitive programming constructs must possess an exit condition. Otherwise, the

program might run infi nitely.

 • The algorithm must completely and defi nitely solve the given problem statement.

Qualities of a good algorithm Typically, an algorithm is considered as good, if:

 • It uses the most effi cient logic to solve the given problem statement. (Time complexity)

 • It uses minimal system memory for its execution. (Space complexity)

 • It is able to generate the most accurate results for a wide range of input set.

 • It is easy to implement in the form of a program.

 • It is designed with standard conventions so that others are able to easily modify it while

adding additional functionality.

2.3.3 Flowcharts

A fl owchart can be defi ned as the pictorial representation of a process, which describes the

sequence and fl ow of the control and information in a process. The fl ow of information is

Problem Solving and Offi ce Automation 2.5

represented in a fl owchart in a step-by-step form. This technique is mainly used for developing

business workfl ows and solving problems using computers.

 Flowchart uses different symbols for depicting different activities, which are performed at

different stages of a process. The various symbols used in a fl owchart are as follows:

 • Start and end It is represented by an oval or a rounded rectangle in a fl owchart. It is

used to represent the starting and the ending of a process. Every process starts and ends

at some point, so and therefore a fl owchart always contains one start as well as one end

point. Figure 2.2 shows the start and the end symbols used in a fl owchart.

or

Fig. 2.2 Start and end symbol

 • Input or output It is represented by a parallelogram in a fl owchart. It is used to

represent the inputs given by the user to the process and the outputs given by the

process to the user. Figure 2.3 shows the input or output symbol.

Fig. 2.3 Input or output symbol

 • Action or process It is represented by a rectangle. It represents the actions, logics and

calculations taking place in a process. Figure 2.4 shows the action or process symbol.

Fig. 2.4 Action or process symbol

 • Decision or condition It is represented by a rhombus or a diamond shape in a

fl owchart. It represents the condition or the decision-making step in the fl owchart. The

result of the decision is a Boolean value, which is either true or false. Each of these

values takes the fl ow of the program to a certain point, which is shown with the help of

arrows. Figure 2.5 shows the decision or condition symbol.

Fig. 2.5 Decision or condition symbol

Computer Programming2.6

 • Arrow It is represented by a directed line in a fl owchart. It represents the fl ow of

process and the sequence of steps in the fl owchart. It guides the process about the

direction and the sequence, which is to be followed while performing the various steps

in the process. Figure 2.6 shows the arrow symbol.

Fig. 2.6 Arrow symbol

 • Connector It is represented by a circle in a fl owchart. It represents the continuation

of the fl ow of steps when a fl owchart continues to the next page. A character, such as

an alphabet (a to z) or a symbol (a, b or c), etc. can be placed in the circle at the position

where the fl ow is broken and the same character is also placed in the circle at the

position from where the fl owchart continues. Figure 2.7 shows the connector symbol.

Fig. 2.7 Connector symbol

 In order to understand how a fl owchart represents the fl ow of information, consider an

example of fl owchart in which addition of two numbers is represented (Fig. 2.8).

Start

Num 1 = value 1
Num 2 = value 2

Result = num 1 + num 2

Display (result)

Stop

Fig. 2.8 Flowchart of addition of two numbers

Problem Solving and Offi ce Automation 2.7

Advantages of using a fl owchart Some of the key advantages of using a fl owchart in program

design are:

 • It helps to understand the fl ow of program control in an easy way.

 • Developing program code by referring its fl ow chart is easier in comparison to developing

the program code from scratch.

 • It helps in avoiding semantic errors.

 • Any concept is better understood with the help of visual representation. This fact also

holds true for fl owcharts. It is easier to understand the pictorial representation of a

programming logic.

 • A fl owchart acts as documentation for the process or program fl ow.

 • The use of fl owcharts works well for small program design.

Disadvantages of using a fl owchart Flowcharts also have certain limitations, such as:

 • For a large program, the fl ow chart might become very complex and confusing.

 • Modifi cation of a fl owchart is diffi cult and requires almost an entire rework.

 • Since fl owcharts require pictorial representation of programming elements, it becomes

a little tedious and time consuming to create a fl owchart.

 • Excessive use of connectors in a fl owchart may at times confuse the programmers.

2.3.4 Pseudocodes

Analysing a detailed algorithm before developing a program is very time consuming. Hence,

there arises a need of a specifi cation that only focuses on the logic of the program. Pseudocodes

serve this purpose by specifying only the logic, which is used by the programmer for developing

a computer program.

 Pseudocode is not written using specifi c syntax of a programming language, rather it

is written with a combination of generic syntax and normal English language. It helps the

programmer understand the basic logic of the program after which it is the programmer’s

choice to write the fi nal code in any programming language. An example of a pseudocode to add

two numbers and display the result is as follows:

A pseudocode to add two numbers and display the result

Defi ne: Integer num1, num2, result.

Input: Integer num1.

Input: Integer num2.

Sum: result = num1 + num2

Output: Display(result).

 After the pseudocode for a computer program has been written, it is used to develop the

source code for the computer program. The source code is developed using a programming

language, which can be an assembly language or a high-level programming language. After

the source code has been written, the programmer detects and eliminates any errors in the

program so that the program generates the desired output on execution.

Advantages of pseudocodes Some of the key advantages of using a fl owchart in program

design are:

 • Pseudocode is easy to comprehend as it used English phrases for writing program

instructions.

Computer Programming2.8

 • Developing program code using pseudocode is easier in comparison to developing the

program code from scratch.

 • Developing program code using pseudocode is also easier in comparison to developing

the program code from fl owchart.

 • The pseudocode instructions are easier to modify in comparison to a fl owchart.

 • The use of pseudocode works well for large program design.

Disadvantages of pseudocodes Pseudocodes also have certain limitations, such as:

 • Since, pseudocode does not use any kind of pictorial representations for program

elements; it may at times become diffi cult to understand the program logic.

 • There is no standard format for developing a pseudocode. Therefore, it may become a

challenge to use the same pseudocode by different programmers.

 • Pseudocodes are at a disadvantage in comparison to fl owhcarts when it comes to

understanding the fl ow of program control.

 2.4 STRUCTURING THE LOGIC

While writing the pseudocode for a problem, it is necessary to defi ne all the logics used in the

pseudocode for developing the program. Pseudocode of a problem should be able to describe the

sequence of execution of statements and procedures specifi ed in the program. The sequence of

the execution of instructions determines the basic structure of a program or the logic used to

solve a problem. The basic structure of a program comprises different sets of the statements,

whose execution is dependent on some conditions and decisions. These conditions and decision-

making statements are specifi ed in a control structure. Depending upon the sequence of the

execution of the statements, the control structures are categorised as follows:

 • Sequence structure The execution of the statements in a sequence structure is done

sequentially, i.e. all the statements are executed in the same order as they are written

in the program.

 • Selection structure In the selection structure, two sets of statement blocks are

written in a program along with one or more conditions. The execution of a particular

block’s statements occurs only if the conditional statement specifi ed at the beginning of

the block is true. A selection structure is also known as the branching structure.

 • Repetition structure In the repetition structure, a block of two or more instructions

is specifi ed along with a conditional statement. The execution of these instructions is

repeated many times if the conditional statement is true. This structure is also known

as the looping structure.

 We must incorporate these program constructs into the program design whether as a

fl owchart or as a pseudocode. We can also combine the constructs, if necessary. For example, a

selection structure can be a part of a looping structure.

2.4.1 Sequence Structure

In a sequence structure, multiple statements are written in a simple sequence in the program.

The execution of these statements is not affected by any condition. Generally, sequence structure

is used for performing simple computations, which do not require any decision-making. Figure

2.9 shows the representation of statements in the sequence structure.

Problem Solving and Offi ce Automation 2.9

Start

Statement 1

Statement 2

Statement n

Stop

Flowchart Pseudocode

1. Begin

2. Statement 1

3. Statement 2

n n-1. Statement

n. End

Fig. 2.9 Representation of statements in the sequential structure

2.4.2 Selection Structure

In the selection structure, the execution of a set of statements is done according to a pre-

specifi ed condition. The selection structure is also known as decision-making structure because

the decision to execute a particular set of statements is made on the basis of the conditional

statement. The selection structure is categorised as follows:

 • If–Then In this selection structure, If and Then clauses are used to represent a

condition as well as a set of statements. In the If clause, the conditional statement is

written, while in the Then clause the set of statements to be executed is specifi ed. The

execution of the statements specifi ed in the Then clause occurs only if the condition is

true.

 • If–Then-Else This selection structure is quite similar to the If–Then selection structure.

The only difference between the two is that in If–Then–Else selection structure, two sets

of statements are specifi ed. One set of statements is represented in the Then clause and

another is in the Else clause. If the condition given in the If clause is true, then all the

statements specifi ed in the Then clause are executed; otherwise statements given in the

Else clause are executed.

 • Case Type In this selection structure, multiple sets of statements are specifi ed.

Each block of statements is associated with a value. The selection of a particular set of

statements is made on the basis of the value of the variable given at the beginning of the

selection structure.

 Figure 2.10 shows the representation of statements in the If–Then–Else selection

structure.

Computer Programming2.10

1. Begin

2. Statement 1

3. If (condition 1)

Then
Statement 2

Else
Statement 3

4. Statement 4

n n-1. Statement

n. End

Start

Statement 1

If condition
No

Yes

Statement 3Statement 2

Statement 4

Statement n

Stop

Flowchart Pseudocode

Fig. 2.10 Representation of statements in the If–Then–Else selection structure

2.4.3 Repetition Structure

In the repetition structure, only one set of multiple statements is specifi ed. The same set of

statements is executed several times on the basis of the condition specifi ed along with the

structure. Various types of repetition structure are as follows:

 • Do–while In the Do–while structure, a set of statements is given in the Do block and a

condition is given in the While block. The statements given in the Do block are executed

till the given condition is true. At each instance of execution of block statements, the

condition is checked. If the condition is true, then only the block statements are executed;

otherwise the repetition structure is terminated.

 • Repeat–until The Repeat–until structure is opposite to the Do–while repetition

structure. In this structure, the repetitive execution of statements given in the Repeat

clause occurs only when the condition given in the Until clause is false.

 Figure 2.11 shows the representation of statements in the Do–while repetition structure.

Problem Solving and Offi ce Automation 2.11

Statement 4

1. Begin

2. Statement 1

3. Condition

If true

Statement 2

Statement 3

n n-1. Statement

n. End

Start

Statement 1

If condition
No

Yes

Statement 2

Statement 3

Statement n

Stop

Flowchart Pseudocode

4. Statement 4

Fig. 2.11 Representation of the statements in the Do–while repetition structure

 2.5 APPLICATION SOFTWARE PACKAGES

Application software is a software that helps a user to perform a specifi c task on the computer.

A few examples of application software are MS Word, MS Excel, MS PowerPoint, etc.

Application software are broadly classifi ed into two categories—general application software

and customised application software.

 The generalised application software are designed keeping the general requirements of

the users in mind. Thus, these software are capable of fulfi lling the requirements of a large

number of users simultaneously. However, customised application software are those which

are designed keeping the requirements of a specifi c group of users in mind. These software are

also referred as tailor-made application software as they serve the custom requirements of the

users.

 Many application software are bundled together such that they can be collectively used

to accomplish some specifi c tasks. These software are collectively referred as application

packages or application suites. Microsoft Offi ce is one such application package comprising

word processor, spreadsheet package and other application software.

 The application software are also classifi ed on the basis of their usage. The following are

some of the key classifi cations of application software:

Computer Programming2.12

 • Enterprise software

 • Enterprise infrastructure software

 • Educational software

 • Product engineering software

 • Content access software

 • Simulation software

 • Information worker software

 • Media development software

Solved Examples—
Number Systems
and Computer Codes

Example 3.1 Convert the decimal number 6543 to its binary equivalent.

The given decimal number is 6543.

 The following table lists the steps showing the conversion of the given decimal number to

its binary equivalent:

 Decimal number Divisor Quotient Remainder

 6543 2 3271 1

 3271 2 1635 1

 1635 2 817 1

 817 2 408 1

 408 2 204 0

 204 2 102 0

 102 2 51 0

 51 2 25 1

 25 2 12 1

 12 2 6 0

 6 2 3 0

 3 2 1 1

 1 2 0 1

 Now, read the remainders calculated in the above table in upward direction to obtain the

binary equivalent, which is 1100110001111.

 Therefore, (6543)10 = (1100110001111)2

3

Computer Programming3.2

Example 3.2 Convert the decimal number 940 to its binary equivalent.

The given decimal number is 940.

 The following table lists the steps showing the conversion of the given decimal number to

its binary equivalent:

 Decimal number Divisor Quotient Remainder

 940 2 470 0

 470 2 235 0

 235 2 117 1

 117 2 58 1

 58 2 29 0

 29 2 14 1

 14 2 7 0

 7 2 3 1

 3 2 1 1

 1 2 0 1

 Now, read the remainders calculated in the above table in upward direction to obtain the

binary equivalent, which is 1110101100.

 Therefore, (940)10 = (1110101100)2

Example 3.3 Convert the decimal number 999 to its octal equivalent.

The given decimal number is 999.

 The following table lists the steps showing the conversion of the given decimal number to

its octal equivalent:

 Decimal number Divisor Quotient Remainder

 999 8 124 7

 124 8 15 4

 15 8 1 7

 1 8 0 1

 Now, read the remainders calculated in the above table in upward direction to obtain the

octal equivalent, which is 1747.

 Therefore, (999)10 = (1747)8

Example 3.4 Convert the decimal number 1011 to its octal equivalent.

The given decimal number is 1011.

 The following table lists the steps showing the conversion of the given decimal number to

its octal equivalent:

 Decimal number Divisor Quotient Remainder

 1011 8 126 3

Solved Examples—Number Systems and Computer Codes 3.3

 126 8 15 6

 15 8 1 7

 1 8 0 1

 Now, read the remainders calculated in the above table in upward direction to obtain the

octal equivalent, which is 1763.

 Therefore, (1011)10 = (1763)8

Example 3.5 Convert the decimal number 20925 to its hexadecimal equivalent.

The given decimal number is 20925.

 The following table lists the steps showing the conversion of the given decimal number to

its hexadecimal equivalent:

 Decimal number Divisor Quotient Remainder

 20925 16 1307 D

 1307 16 81 B

 81 16 5 1

 5 16 0 5

 Now, read the remainders calculated in the above table in upward direction to obtain the

hexadecimal equivalent, which is 51BD.

 Therefore, (20925)10 = (51BD)16

Example 3.6 Convert the decimal number 9999 to its hexadecimal equivalent.

The given decimal number is 9999.

 The following table lists the steps showing the conversion of the given decimal number to

its hexadecimal equivalent:

 Decimal number Divisor Quotient Remainder

 9999 16 624 F

 624 16 39 0

 39 16 2 7

 2 16 0 2

 Now, read the remainders calculated in the above table in upward direction to obtain the

hexadecimal equivalent, which is 270F.

 Therefore, (9999)10 = (270F)16

Example 3.7 Convert the binary number 1001001 to its decimal equivalent.

The given binary number is 1001001.

 Now, calculate the sum of the products of each bit multiplied by its place value as shown

below:

(1 × 26) + (0 × 25) + (0 × 24) + (1 × 23) + (0 × 22) + (0 × 21) + (1 × 20)

Computer Programming3.4

 = 64 + 0 + 0 + 8 + 0 + 0 + 1

 = 73

 Therefore, (1001001)2 = (73)10

Example 3.8 Convert the binary number 10011000 to its octal equivalent.

The conversion of binary number to its octal equivalent is carried out in two steps. In the fi rst

step, the binary number is converted into its equivalent decimal number; and in the second

step, the resultant decimal number is converted into its octal equivalent.

Binary to Decimal Conversion

The given binary number is 10011000.

 Now, calculate the sum of the products of each bit multiplied by its place value as shown

below:

(1 × 27) + (0 × 26) + (0 × 25) + (1 × 24) + (1 × 23) + (0 × 22) + (1 × 21) + (0 × 20)

 = 128 + 0 + 0 + 16 + 8 + 0 + 0 + 0

 = 152

 Therefore, (10011000)2 = (152)10

Decimal to Octal Conversion

The resultant decimal number is 152.

 The following table lists the steps showing the conversion of the decimal number to its

octal equivalent:

 Decimal number Divisor Quotient Remainder

 152 8 19 0

 19 8 2 3

 2 8 0 2

 Now, read the remainders calculated in the above table in upward direction to obtain the

octal equivalent, which is 230.

 Therefore, (10011000)2 = (230)8

Example 3.9 Convert the binary number 1101111000 to its octal equivalent.

Binary to Decimal Conversion

The given binary number is 1101111000.

 Now, calculate the sum of the products of each bit multiplied by its place value as shown

below:

(1 × 29) + (1 × 28) + (0 × 27) + (1 × 26) + (1 × 25) + (1 × 24) + (1 × 23) + (0 × 22) + (0 × 21) + (0 × 20)

 = 512 + 256 + 0 + 64 + 32 + 16 + 8 + 0 + 0 + 0

 = 888

 Therefore, (1101111000)2 = (888)10

Decimal to Octal Conversion

The resultant decimal number is 888.

Solved Examples—Number Systems and Computer Codes 3.5

 The following table lists the steps showing the conversion of the decimal number to its

octal equivalent:

 Decimal number Divisor Quotient Remainder

 888 8 111 0

 111 8 13 7

 13 8 1 5

 1 8 0 1

 Now, read the remainders calculated in the above table in upward direction to obtain the

octal equivalent, which is 1570.

Therefore, (1101111000)2 = (1570)8

Example 3.10 Convert the binary number 100101011 to its hexadecimal equivalent.

The conversion of binary number to its hexadecimal equivalent is carried out in two steps. In

the fi rst step, the binary number is converted into its equivalent decimal number; and in the

second step, the resultant decimal number is converted into its hexadecimal equivalent.

Binary to Decimal Conversion

The given binary number is 100101011.

 Now, calculate the sum of the products of each bit multiplied by its place value as shown

below:

(1 × 28) + (0 × 27) + (0 × 26) + (1 × 25) + (0 × 24) + (1 × 23) + (0 × 22) + (1 × 21) + (1 × 20)

 = 256 + 0 + 0 + 32 + 0 + 8 + 0 + 2 + 1

 = 299

 Therefore, (100101011)2 = (299)10

Decimal to Hexadecimal Conversion

The resultant decimal number is 299.

 The following table lists the steps showing the conversion of the decimal number to its

hexadecimal equivalent:

 Decimal number Divisor Quotient Remainder

 299 16 18 B

 18 16 1 2

 1 16 0 1

 Now, read the remainders calculated in the above table in upward direction to obtain the

hexadecimal equivalent, which is 12B.

 Therefore, (100101011)2 = (12B)16

Example 3.11 Convert the binary number 1011001000101100 to its hexadecimal equivalent.

Binary to Decimal Conversion

The given binary number is 1011001000101100.

Computer Programming3.6

 Now, calculate the sum of the products of each bit multiplied by its place value as shown

below:

(1 × 215) + (0 × 214) + (1 × 213) + (1 × 212) + (0 × 211) + (0 × 210) + (1 × 29) + (0 × 28) + (0 × 27) + (0

× 26) + (1 × 25) + (0 × 24) + (1 × 23) + (1 × 22) + (0 × 21) + (0 × 20)

 = 32768 + 0 + 8192 + 4096 + 0 + 0 + 512 + 0 + 0 + 0 + 32 + 0 + 8 + 4 + 0 + 0

 = 45612

 Therefore, (1011001000101100)2 = (45612)10

Decimal to Hexadecimal Conversion

The resultant decimal number is 45612.

 The following table lists the steps showing the conversion of the decimal number to its

hexadecimal equivalent:

 Decimal number Divisor Quotient Remainder

 45612 16 2850 C

 2850 16 178 2

 178 16 11 2

 11 16 0 B

 Now, read the remainders calculated in the above table in upward direction to obtain the

hexadecimal equivalent, which is B22C.

 Therefore, (1011001000101100)2 = (B22C)16

Example 3.12 Convert the octal number 674 to its binary equivalent.

The conversion of octal number to its binary equivalent is quite simple. We just need to convert

each of the digits in the octal number to their corresponding binary values; and the resultant

thus obtained is the binary equivalent of the given octal number.

 The given octal number is 674.

 The binary equivalent of each of the digits is shown below.

 6 7 4

 110 111 100

 Therefore, (674)8 = (110111100)2

Example 3.13 Convert the octal number 1177 to its binary equivalent.

 The given octal number is 1177.

 The binary equivalent of each of the digits is shown below.

 1 1 7 7

 001 001 111 111

 Therefore, (1177)8 = (001001111111)2

Solved Examples—Number Systems and Computer Codes 3.7

Example 3.14 Convert the octal number 1433 to its binary equivalent.

 The given octal number is 1433.

 The binary equivalent of each of the digits is shown below.

 1 4 3 3

 001 100 011 011

 Therefore, (1433)8 = (001100011011)2

Example 3.15 Convert the octal number 7033 to its decimal equivalent.

 The given octal number is 7033.

 Now, calculate the sum of the products of each digit multiplied by its place value as shown

below:

(7 × 83) + (0 × 82) + (3 × 81) + (3 × 80)

 = 3584 + 0 + 24 + 3

 = 3611

 Therefore, (7033)8 = (3611)10

Example 3.16 Convert the octal number 3717 to its hexadecimal equivalent.

The conversion of octal number to its hexadecimal equivalent is carried out in two steps. In

the fi rst step, each digit in the octal number is converted into to its corresponding binary

value. The resultant binary equivalent thus obtained is then divided into groups of four bits.

The equivalent hexadecimal values corresponding to each four-bit word form our resultant

hexadecimal equivalent.

 The given octal number is 3717.

 The binary equivalent of each of the digits is shown below.

 3 7 1 7

 011 111 001 111

 Now, let us group the resultant binary values into groups of four; and fi nd their equivalent

hexadecimal values, as shown below:

 0111 1100 1111

 7 C F

 Thus, (3717)8 = (7CF)16

Example 3.17 Convert the hexadecimal number 24D to its binary equivalent.

The conversion of hexadecimal number to its binary equivalent is quite simple. We just need to

convert each of the digits in the hexadecimal number to their corresponding binary values; and

the resultant thus obtained is the binary equivalent of the given hexadecimal number.

 The given hexadecimal number is 24D.

Computer Programming3.8

 The binary equivalent of each of the digits is shown below.

 2 4 D

 0010 0100 1101

 Therefore, (24D)16 = (001001001101)2

Example 3.18 Convert the hexadecimal number 127B3 to its binary equivalent.

The given hexadecimal number is 127B3.

 The binary equivalent of each of the digits is shown below.

 1 2 7 B 3

 0001 0010 0111 1011 0011

 Therefore, (127B3)16 = (00010010011110110011)2

Example 3.19 Convert the hexadecimal number 12FC2 to its decimal equivalent.

The given hexadecimal number is 12FC2.

 Now, calculate the sum of the products of each digit multiplied by its place value as shown

below:

(1 × 164) + (2 × 163) + (15 × 162) + (12 × 161) + (2 × 160)

 = 65536 + 8192 + 3840 + 192 + 2

 = 77762

 Therefore, (12FC2)16 = (77762)10

Example 3.20 Convert the hexadecimal number BBB45 to its octal equivalent.

The conversion of hexadecimal number to its octal equivalent is carried out in two steps. In

the fi rst step, each digit in the hexadecimal number is converted into to its corresponding

binary value. The resultant binary equivalent thus obtained is then divided into groups of

three bits. The equivalent octal values corresponding to each 3-bit group form our resultant

octal equivalent.

 The given hexadecimal number is BBB45.

 The binary equivalent of each of the digits is shown below.

 B B B 4 5

 1011 1011 1011 0100 0101

 Now, let us group the resultant binary values into groups of three; and fi nd their equivalent

octal values, as shown below:

 010 111 011 101 101 000 101

 2 7 3 5 5 0 5

 Thus, (BBB45)16 = (2735505)8

Solved Examples—Number Systems and Computer Codes 3.9

Example 3.21 Convert the hexadecimal number FFF1F to its octal equivalent.

The given hexadecimal number is FFF1F.

The binary equivalent of each of the digits is shown below.

 F F F 1 F

 1111 1111 1111 0001 1111

 Now, let us group the resultant binary values into groups of three; and fi nd their equivalent

octal values, as shown below:

 011 111 111 111 100 011 111

 3 7 7 7 4 3 7

 Thus, (FFF1F)16 = (3777437)8

Example 3.22 Represent the decimal number 8793 in 8421 BCD code.

The given decimal number is 8793.

 The corresponding 4-bit 8421 BCD representation of decimal digit 8 is 1000.

 The corresponding 4-bit 8421 BCD representation of decimal digit 7 is 0111.

 The corresponding 4-bit 8421 BCD representation of decimal digit 9 is 1001.

 The corresponding 4-bit 8421 BCD representation of decimal digit 3 is 0011.

 Therefore, the 8421 BCD representation of decimal number 8793 is 1000 0111 1001 0011.

Example 3.23 Represent the decimal number 9876 in XS-3 BCD code.

 The given decimal number is 9876.

 Now, add 3 to each digit of the given decimal number as shown below:

 9 + 3 = 12

 8 + 3 =11

 7 + 3 = 10

 6 + 3 = 9

 The corresponding 4-bit 8421 BCD representation of the decimal digit 12 is 1100.

 The corresponding 4-bit 8421 BCD representation of the decimal digit 11 is 1011.

 The corresponding 4-bit 8421 BCD representation of the decimal digit 10 is 1010.

 The corresponding 4-bit 8421 BCD representation of the decimal digit 9 is 1001.

 Therefore, the XS–3 BCD representation of the decimal number 9876 is 1100 1011 1010

1001.

Example 3.24 Convert the Gray coded number 110011111100 to its binary equivalent.

 The given Gray coded number is 110011111100.

 The following table lists the steps showing the conversion of the Gray coded number to its

binary equivalent:

Computer Programming3.10

 S No. Gray coded digit Binary addition operation Binary digit

 1 1 1

 2 1 1 + 1 0

 3 0 0 + 0 0

 4 0 0 + 0 0

 5 1 1 + 0 1

 6 1 1 + 1 0

 7 1 1 + 0 1

 8 1 1 + 1 0

 9 1 1 + 0 1

 10 1 1 + 1 0

 11 0 0 + 0 0

 12 0 0 + 0 0

 Hence, the binary equivalent of Gray coded number 110011111100 is 100010101000.

Example 3.25 Convert the binary number 100111010000 to its equivalent Gray coded

number.

The given binary number is 100111010000.

 The following table lists the steps showing the conversion of binary number to its equivalent

Gray coded number:

 S No. Binary digit Binary addition operation Gray coded digit

 1 1 1

 2 0 1 + 0 1

 3 0 0 + 0 0

 4 1 0 + 1 1

 5 1 1 + 1 0

 6 1 1 + 1 0

 7 0 1 + 0 1

 8 1 0 + 1 1

 9 0 1 + 0 1

 10 0 0 + 0 0

 11 0 0 + 0 0

 12 0 0 + 0 0

 Hence, the Gray coded equivalent of the binary number 100111010000 is 110100111000.

Problem-Solving
Examples

Example 4.1 Write a program to display the Fibonacci series.

Algorithm

Step 1 – Start

Step 2 – Accept the length of the Fibonacci series

from the user (len)

Step 3 – Initialize variables num1 = 0, num2 = 1

Step 4 – Display the values of num1 and num2

Step 5 – Initialize looping counter i = 1

Step 6 – Repeat Steps 7-11 while i <= len-2

Step 7 – Set fab = num1 + num2

Step 8 – Display the value of fab

Step 9 – Set num1 = num2

Step 10 – Set num2 = fab

Step 11 – Increment the value of i by 1

Step 12 – Stop

Flowchart

Start

Read len

Is i <= len-2?

fab = num1 + num2

Yes

Stop

No

num1 = 0
num2 = 1

i = 1

Display num1, num2

Display fab

Yes

num1 =
num2 = fab

i = i + 1

num2

4

Computer Programming4.2

Pseudocode

BEGIN

DEFINE: Integer num1, num2, len, i, fab

SET: num1=0, num2=1

DISPLAY: “Enter Length of the Fibonacci Series: “

READ: len

DISPLAY: num1, num2

FOR: i = 1 to len-2

 COMPUTE: fab = num1 + num2

 DISPLAY: fab

 SET: num1 = num2

 SET: num2 = fab

END FOR

END

Example 4.2 Write a program to find out whether the given number is even or odd.

Algorithm

Step 1 – Start

Step 2 – Accept a number from the user (num)

Step 3 – If remainder of num divided by 2 (num/2) is Zero then goto Step 4 else goto Step 5

Step 4 – Display “num is an even number” and goto Step 6

Step 5 – Display “num is an odd number”

Step 6 – Stop

Flowchart

Pseudocode

BEGIN

DEFINE: Integer num

DISPLAY: “Enter a number: “

READ: num

IF: num%2=0

 DISPLAY: “’num’ is an even number”

ELSE

 DISPLAY: “’num’ is an odd number”

END IF

END

Start

Read num

Is
(num%2)=0?

Display “Even Number”

Yes

Stop

Display “Odd Number”

No

Problem-Solving Examples 4.3

Example 4.3 Write a program to find out whether the given number is prime number.

Algorithm

Step 1 – Start

Step 2 – Accept a number from the user (num)

Step 3 – Initialize looping counter i = 2

Step 4 – Repeat Step 5 while i < num

Step 5 – If remainder of num divided by i

(num%i) is Zero then goto Step 6

else goto Step 4

Step 6 – Display “num is not a prime

number” and break from the loop

Step 7 – If i = num then goto Step 8 Else

goto Step 9

Step 8 – Display “num is a prime number”

Step 9 – Stop

Flowchart

Pseudocode

BEGIN

DEFINE: Integer num, i

DISPLAY: “Enter a number: “

READ: num

FOR: i = 2 to num-1

 IF: num%i=0

 DISPLAY: “’num’ is not a prime number”

 BREAK

 END IF

END FOR

IF: i=num

 DISPLAY: “’num’ is a prime number”

END IF

END

Example 4.4 Write a program to display the result of one number raised to the power of

another.

Algorithm

Step 1 – Start

Step 2 – Accept two numbers from the user (x,y)

Step 3 – Calculate x raise to the power of y, POWER(x,y)

Step 4 – Display the computed result

Step 5 – Stop

Is i=num?

Start

Read num

Is i <= num-1?

Display “Not a
Prime Number”

Yes

Stop

No

i = 2

Is num%i=0? i = i + 1

Display “Prime
Number”

Yes

No

Yes

No

Computer Programming4.4

Flowchart

Pseudocode

BEGIN

DEFINE: Integer x, y

DEFINE: Long Integer result

DISPLAY: “Enter the values of x and y: “

READ: x, y

COMPUTE: result = POW(x,y)

DISPLAY: “’x’ raised to the power of ‘y’ is equal to ‘result’”

END

Example 4.5 Write a program to display the square root of a number.

Algorithm

Step 1 – Start

Step 2 – Accept a number from the user (num)

Step 3 – Calculate square root of num, Sqrt(num)

Step 4 – Display the computed result

Step 5 – Stop

Flowchart

Pseudocode

BEGIN

DEFINE: Integer num

DEFINE: Real result

DISPLAY: “Enter the value whose square root is to be computed: “

READ: num

COMPUTE: result = SQRT(num)

DISPLAY: “The square root of ‘num’ is ‘result’”

END

Example 4.6 Write a program to determine whether a given string is a palindrome or not.

Algorithm

Step 1 – Start

Step 2 – Accept a string from the user (str)

Step 3 – Calculate the length of string str (len)

Step 4 – Initialize looping counters left=0, right=len-1 and chk = ‘t’

Stop

Start

Read x, y

Result = POW(x,y)

Display ‘’’x’ raised to
the power of ‘y’ is

equal to ‘result’

Stop

Start

Read num

Result = SQRT (num)

Display “The square root
of ‘num’ is ‘result’”

Problem-Solving Examples 4.5

Step 5 – Repeat Steps 6-8 while left < right and chk = ‘t’

Step 6 – If str(left) = str(right) goto Step 8 else goto step 7

Step 7 – Set chk = ‘f’

Step 8 – Set left = left + 1 and right = right + 1

Step 9 – If chk=’t’ goto Step 10 else goto Step 11

Step 10 – Display “The string is a palindrome” and goto Step 12

Step 11 – Display “The string is not a palindrome”

Step 12 – Stop

Flowchart

Pseudocode

BEGIN

DEFINE: String str

DEFINE: Character chk

DEFINE: Integer left, right, len

SET: chk = ‘t’

Stop

Start

Read str

len = strlen(str)
left = 0

right = len-1
chk = ‘t’

Is left<right
and chk = ‘t’?

Display “Palindrome
String”

Yes

Display “Not a
Palindrome String”

No

Is str(left)=
str(right)?

No

Is chk= ‘t’?

chk= ‘f’

left = left + 1
right = right – 1

No

Yes

Yes

Computer Programming4.6

DISPLAY: “Enter a string: “

READ: str

COMPUTE: len = strlen(str)

SET: left = 0

SET: right = len-1

REPEAT

 IF: str(left)=str(right)

 CONTINUE

 ELSE

 SET: chk = ‘f’

 END IF

 COMPUTE: left = left + 1

 COMPUTE: right = right - 1

UNTIL: left<right AND chk=’t’

IF: chk=’t’

 DISPLAY: “’str’ is a palindrome string”

ELSE

 DISPLAY: “’str’ is not a palindrome string”

END IF

END

Example 4.7 Write a program to find the roots of the quadratic equation.

Algorithm

Step 1 – Start

Step 2 – Accept three numbers (a, b, c) from the user for the

quadratic equation ax2 + bx + c

Step 3 – Calculate root1=((-1)*b+sqrt(b*b-4*a*c))/2*a

Step 4 – Calculate root2=((-1)*b-sqrt(b*b-4*a*c))/2*a

Step 5 – Display the computed roots of the quadratic equation

Step 6 – Stop

Flowchart

Pseudocode

BEGIN

DEFINE: Integer a, b, c

DEFINE: Real root1, root2

DISPLAY: “Enter the values of a, b and c for the quadratic equation ax2 + bx + c: “

READ: a, b, c

COMPUTE: root1=((-1)*b+sqrt(b*b-4*a*c))/2*a

COMPUTE: root2=((-1)*b-sqrt(b*b-4*a*c))/2*a

DISPLAY: “The roots of the quadratic equation are ‘root1’ and ‘root2’

END

Stop

Start

Read a, b, c

root1=((–1)*b+sqrt(b*b–4*a*c))/2*a
root2=((–1)*b–sqrt(b*b–4*a*c))/2*a

Display root1, root2

Problem-Solving Examples 4.7

Example 4.8 Write a program to find the area of a circle.

Algorithm

Step 1 – Start

Step 2 – Accept the radius of the circle from the user (radius)

Step 3 – Calculate area of the circle using formula area = 3.14 * radius * radius

Step 4 – Display the computed area of the cirle

Step 5 – Stop

Flowchart

Pseudocode

BEGIN

DEFINE: Real radius, area

DISPLAY: “Enter the radius of the circle: “

READ: radius

COMPUTE: area = 3.14*radius*radius

DISPLAY: “The area of the circle is ‘area’”

END

Example 4.9 Write a program to find the average of marks obtained by a student in three

subjects.

Algorithm

Step 1 – Start

Step 2 – Accept the marks in three subjects from the user (marks1, marks2, marks3)

Step 3 – Calculate average marks using formula, average = (marks1 + marks2 + marks3)/3

Step 4 – Display the computed average of three subject marks

Step 5 – Stop

Flowchart

Pseudocode

BEGIN

DEFINE: Integer marks1, marks2, marks3

DEFINE: Real average

DISPLAY: “Enter the marks in three subjects: “

READ: marks1, marks2, marks3

COMPUTE: average = (marks1 + marks2 + marks3)/3

DISPLAY: “The average value of marks is ‘average’”

END

Stop

Start

Read radius

area = 3.14*radius*radius

Display area

Stop

Start

Read marks1, marks2, marks3

average =
(marks1 + marks2 + marks3)/3

Display average

Computer Programming4.8

Example 4.10 Write a program to determine whether the given year is a leap year or not.

Algorithm

Step 1 – Start

Step 2 – Accept an year value from the user (year)

Step 3 – If remainder of year value divided by 4 (year%4) is 0 then goto Step 4 else goto

Step 5

Step 4 – Display “’year’ is a leap year” and goto Step 6

Step 5 – Display “’year’ is not a leap year”]

Step 6 – Stop

Flowchart

Pseudocode

BEGIN

DEFINE: Integer year

DISPLAY: “Enter the year value: “

READ: year

IF: year%4=0

 DISPLAY: “’year’ is a leap year”

ELSE

 DISPLAY: “’year’ is not a leap year”

END IF

END

Example 4.11 Write a program to find the sum of digits of an integer.

Algorithm

Step 1 – Start

Step 2 – Accept an integer value from the user

(num)

Step 3 – Defi ne a variable Sum to store the sum of

digits and initialize it to 0

Step 4 – Assign the value of num to a temporary

variable (temp=num)

Step 5 – Repeat Steps 6-7 while temp is not equal

to 0 (temp!=0)

Step 6 – Calculate Sum = Sum+(temp%10)

Step 7 – Calculate temp=temp/10

Step 8 – Display Sum as the result containing sum

of digits of num

Step 9 – Stop

Flowchart

Stop

Start

Read year

Is (year%4)=0?

Display “Leap Year” Display “Not a Leap Year”

Yes

No

Start

Read num

Is temp ! = 0?

Sum = sum+temp%10
temp=temp/10

Yes

Stop

No

sum = 0
temp = num

Display sum

Problem-Solving Examples 4.9

Pseudocode

BEGIN

DEFINE: Long Integer num, temp

DEFINE: Integer sum

SET: sum=0

DISPLAY: “Enter an integer value: “

READ: num

SET: temp=num

REPEAT

 COMPUTE: sum = sum+temp%10

 COMPUTE: temp=temp/10

UNTIL: temp!=0

DISPLAY: “The sum of digits of ‘num’ is ‘sum’”

END

Example 4.12 Write a program to find the length of a string.

Algorithm

Step 1 – Start

Step 2 – Accept a string from the user, str

Step 3 – Calculate the length of the string, strlen(str)

Step 4 – Display the computed result

Step 5 – Stop

Flowchart

Pseudocode

BEGIN

DEFINE: String str

DEFINE: Integer len

DISPLAY: “Enter a string: “

READ: str

COMPUTE: len = strlen(str)

DISPLAY: “The length of string ‘str’ is ‘len’”

END

Example 4.13 Write a program to display the reverse of a string.

Algorithm

Step 1 – Start

Step 2 – Accept a string from the user (str)

Step 3 – Calculate the length of string str (len)

Stop

Start

Read str

len = strlen(str)

Display len

Computer Programming4.10

Step 4 – Initialize looping counter i=0

Step 5 – Repeat Step 6-7 while i < len

Step 6 – Set revstr[len-i-1]=str[i]

Step 7 – Set i = i + 1

Step 8 – Set revstr[len]=’\0’

Step 9 – Display revstr as the reverse of the

original string str

Step 10 – Stop

Flowchart

Pseudocode

BEGIN
DEFINE: String str, revstr

DEFINE: Integer i, len

DISPLAY: “Enter a string: “

READ: str

COMPUTE: len = strlen(str)

FOR: i = 0 to len-1

 COMPUTE: revstr[len-i-1]=str[i]

END FOR

SET: revstr[len]=’\0’

DISPLAY: “The reverse of string ‘str’ is ‘revstr’”

END

Example 4.14 Write a program to determine whether there is a profit or a loss during the selling

of an item.

Algorithm

Step 1 – Start

Step 2 – Accept the cost price and selling price of an item from the user (cp, sp)

Step 3 – If sp>cp then goto step 4 else goto step 5

Step 4 – Display “There is a profi t of (sp-cp)” and goto Step 8

Step 5 – If cp>sp then goto step 6 else goto step 7

Step 6 – Display “There is a loss of (cp-sp)”

Step 7 – Display “No profi t no loss!”

Step 8 – Stop

Flowchart

Start

Read str

Is i <= len-1?

revstr[len-i-1]=str[i]

Yes

Stop

No

len = strlen(str)
i = 0

Display revstr

revstr[len]=’\0’

Problem-Solving Examples 4.11

Pseudocode

BEGIN

DEFINE: Long Integer cp, sp

DISPLAY: “Enter the cost

price and selling

price of an item:“

READ: cp, sp

 IF: sp>cp

 DISPLAY: “There is

a profi t of

‘sp-cp’”

 ELSE

 IF: cp>sp

 DISPLAY: “There

is a loss of ‘cp-sp’”

 ELSE

 DISPLAY: “No profi t no loss!”

 END IF

 END IF

END

Example 4.15 Write a program to print the ASCII value of a given character.

Algorithm

Step 1 – Start

Step 2 – Accept a character from the user (ch)

Step 3 – Determine the ASCII value of ch

Step 4 – Display the computed ASCII value

Step 5 – Stop

Flowchart

Pseudocode

BEGIN

DEFINE: Character ch

DEFINE: Integer asc

DISPLAY: “Enter a character: “

READ: ch

COMPUTE: asc = ASCII(ch)

DISPLAY: “The ASCII value of ‘ch’ is ‘asc’”

END

Stop

Start

Read ch

asc = ASCII(ch)

Display asc

Start

Read cp, sp

Is sp>cp?

Yes

Stop

No

Display loss = cp-sp

Display profit = sp-cp

Is cp>sp?

Display “No Profit
No Loss”

No

Yes

Computer Programming4.12

Example 4.16 Write a program to find out whether a given number is positive or negative.

Algorithm

Step 1 – Start

Step 2 – Accept a number from the user (num)

Step 3 – If num is greater than 0 (num>0)

then goto Step 4 else goto Step 5

Step 4 – Display “num is a positive number”

and goto Step 6

Step 5 – Display “num is a negative number”

Step 6 – Stop

Flowchart

Pseudocode

BEGIN

DEFINE: Integer num

DISPLAY: “Enter a number: “

READ: num

IF: num>0

 DISPLAY: “’num’ is a positive number”

ELSE

 DISPLAY: “’num’ is a negative number”

END IF

END

Example 4.17 Write a program to compare two strings.

Algorithm

Step 1 – Start

Step 2 – Accept two strings from the

user (str1, str2)

Step 3 – Compare the two strings str1

and str2 using a string

comparison function. If str1

and str2 are same goto Step

4 else goto Step 5

Step 4 – Display “The two strings are

equal” and goto Step 6

Step 5 – Display “The two strings

are not equal”

Step 6 – Stop

Flowchart

Start

Read str1, str2

Is strcmp(str1,
str2)=0?

Yes

Stop

No

Display “Strings do not Match”Display “Strings Match”

Start

Read num

Is num>0?

Yes

Stop

No

Display “Negative number”Display “Positive Number”

Problem-Solving Examples 4.13

Pseudocode

BEGIN

DEFINE: String str1, str2

DISPLAY: “Enter the 1st string:“

READ: str1

DISPLAY: “Enter the 2nd string:“

READ: str2

IF: strcmp(str1, str2)=0

 DISPLAY: “The strings str1 and str2 are equal!”

ELSE

 DISPLAY: “The strings str1 and str2 are not equal!”

END IF

END

Example 4.18 Write a program to calculate speed.

Algorithm

Step 1 – Start

Step 2 – Accept the value of distance traveled in KMs (d)

Step 3 – Accept the value of travel time in hours (t)

Step 4 – Calculate speed using formula, speed = d/t

Step 5 – Display the computed value of speed

Step 6 – Stop

Flowchart

Pseudocode

BEGIN

DEFINE: Real d, t, s

DISPLAY: “Enter the distance traveled in Kms: “

READ: d

DISPLAY: “Enter the travel time in hours: “

READ: t

COMPUTE: s = d/t

DISPLAY: “Speed = ‘s’ Km/h”

END

Example 4.19 Write a program to find the sine and cosine of a given value.

Algorithm

Step 1 – Start

Step 2 – Accept the degree value, the sine and cosine of which is to be calculated (x):

Step 3 – Calculate Sin(x) = sin(x*3.14/180)

Stop

Start

Read d, t, s

s=d/t

Display s

Computer Programming4.14

Step 4 – Calculate Cos(x) = cos(x*3.14/180)

Step 5 – Display the computed Sin(x) and Cos(x) values

Step 6 – Stop

Flowchart

Pseudocode

BEGIN

DEFINE: Real x, sinx, cosx

DISPLAY: “Enter the degree value, the sine and cosine of which is to

be calculated: “

READ: x

Compute: sinx = sin(x*3.14/180)

Compute: cosx = cos(x*3.14/180)

DISPLAY: “Sin(‘x’)=’sinx’”

DISPLAY: “Cos(‘x’)=’cosx’”

END

Example 4.20 Write a program to determine whether a given number is Armstrong or not.

Algorithm

Step 1 – Start

Step 2 – Accept a number from the user (num)

Step 3 – Store the value of num in a temporary variable temp, temp=num

Step 4 – Defi ne a variable sum and initialize it to 0

Step 5 – Repeat Steps 6-8 while temp > 0

Step 6 – Calculate i=temp%10;

Step 7 – Calculate sum=sum+i*i*i;

Step 8 – Calculate temp=temp/10;

Step 9 – if num is equal to sum then goto Step 10 else goto Step 11

Step 10 – Display ”num is an Armstrong number” and goto Step 12

Step 11 – Display ”num is not an Armstrong number”

Step 12 – Stop

Flowchart

Pseudocode

BEGIN

DEFINE: Integer num, temp, sum, i

SET: sum = 0

DISPLAY: “Enter a number: “

READ: num

SET: temp=num

REPEAT

 COMPUTE: i=temp%10

Stop

Start

Read x

sinx = sin(x*3.14/180)
cosx = cos(x*3.14/180)

Display sinx, cosx

Problem-Solving Examples 4.15

Start

Read num

Is temp >0?

Yes

Stop

No

Display “Armstrong
Number”

sum = 0
temp = num

i=temp%10
sum=sum+i*i*i
temp=temp/10

Is
sum=num?

Display “Not an
Armstrong Number

Yes

No

 COMPUTE: sum=sum+i*i*i

 COMPUTE: temp=temp/10

UNTIL: temp>0

IF: sum=num

 DISPLAY: “’num’ is an Armstrong number”

ELSE

 DISPLAY: “’num’ is not an Armstrong number”

END IF

END

Solved
Programming Exercises

Example 5.1 Write a program to determine the Greatest Common Divisor (GCD) of two

numbers.

Algorithm

Step 1 – Start

Step 2 – Accept the two numbers whose GCD is to be found (num1, num2)

Step 3 – Call function GCD(num1,num2)

Step 4 – Display the value returned by the function call GCD(num1,num2)

Step 5 – Stop

GCD(a,b)

Step 1 – Start

Step 2 – If b > a goto Step 3 else goto Step 4

Step 3 – Return the result of the function call GCD(b,a) to the calling function

Step 4 – If b = 0 goto Step 5 else goto Step 6

Step 5 – Return the value a to the calling function

Step 6 – Return thFCe result of the function call GCD(b,a mod b) to the calling function

Flowchart

Program

#include <stdio.h>

#include <conio.h>

#include <math.h>

int GCD(int m, int n);

void main()

{

 int num1,num2;

 clrscr();

5

Computer Programming5.2

 printf(“Enter the two numbers whose GCD is to be found: “);

 scanf(“%d %d”,&num1,&num2);

 printf(“\nGCD of %d and %d is %d\n”,num1,num2,GCD(num1,num2));

 getch();

}

int GCD(int a, int b)

{

 if(b>a)

 return GCD(b,a);

 if(b==0)

 return a;

 else

 return GCD(b,a%b);

}

Output

Enter the two numbers whose GCD is to be found: 18 12

GCD of 18 and 12 is 6

Start

Read num1,.num2

Call GCD (num1, num2)

Stop

Display the return value of
GCD (num1, num2)

GCD (num1, num2)

Return
GCD (b, a%b)

Is b>a?

No

Is b=a? Return a

Return
GCD (b, a)

Yes

Yes

No

Solved Programming Exercises 5.3

Example 5.2 Write a program to accept two complex numbers and find their sum.

Algorithm

Step 1 – Start

Step 2 – Defi ne a structure to represent a complex number

 STRUCTURE complex

 REAL real

 REAL img

 END STRUCTURE

 STRUCTURE complex c1, c2

Step 3 – Read the real and imaginary parts of the fi rst complex number (c1.real, c1.img)

Step 4 – Read the real and imaginary parts of the second complex number (c2.real, c2.img)

Step 5 – Calculate c3.real=c1.real+c2.real

Step 6 – Calculate c3.img=c1.img+c2.img

Step 7 – Display c3

Step 8 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

#include <math.h>

void main()

{

struct complex

{

 double real;

 double img;

};

struct complex c1, c2, c3;

clrscr();

printf(“\n Enter two Complex Numbers (x+iy):\n\n Real Part of First Number: “);

scanf(“%lf”,&c1.real);

printf(“\n Imaginary Part of First Number: “);

scanf(“%lf”,&c1.img);

printf(“\n Real Part of Second Number: “);

scanf(“%lf”,&c2.real);

Read c1.real, c1.img
Read c2.real, c2.img

c3.real = c1.real + c2.real
c3.img = c1.img + c2.img

Stop

Display c3

Start

Computer Programming5.4

printf(“\n Imaginary Part of Second Number: “);

scanf(“%lf”,&c2.img);

c3.real=c1.real+c2.real;

c3.img=c1.img+c2.img;

printf(“\n\n%.2lf+(%.2lf)i + %.2lf+(%.2lf)i = %.2lf+(%.2lf)i”, c1.real, c1.img, c2.real,

c2.img, c3.real, c3.img);

getch();

}

Output

Enter two Complex Numbers (x+iy):

Real Part of First Number: 22

Imaginary Part of First Number: 4

Real Part of Second Number: 5

Imaginary Part of Second Number: 3

22.00+(4.00)i + 5.00+(3.00)i = 27.00+(7.00)i

Example 5.3 Write a program to simulate a simple calculator for performing basic arithmetic

operations.

Algorithm

Step 1 – Start

Step 2 – Display a list of operations for the user to choose from

 1. Addition

 2. Subtraction

 3. Multiplication

 4. Division

Step 3 – Read the choice entered by the user (choice)

Step 4 – Read the two operands (num1, num2)

Step 5 – If choice = 1 goto Step 6 else goto Step 7

Step 6 – Calculate num1 + num2, display the result and goto Step 14

Step 7 – If choice = 2 goto Step 8 else goto Step 9

Step 8 – Calculate num1 - num2, display the result and goto Step 14

Step 9 – If choice = 3 goto Step 10 else goto Step 11

Step 10 – Calculate num1 X num2, display the result and goto Step 14

Step 11 – If choice = 4 goto Step 12 else goto Step 13

Step 12 – Calculate num1 / num2, display the result and goto Step 14

Step 13 – Display the message “Invalid Choice”

Step 14 – Stop

Solved Programming Exercises 5.5

Flowchart

Program

#include <stdio.h>

#include <conio.h>

void main()

{

int choice;

fl oat num1, num2;

clrscr();

printf(“**********Simple Calc***********”);

printf(“\n\nChoose a type of operation from the following: “);

printf(“\n\t1. Addition”);

printf(“\n\t2. Subtraction”);

printf(“\n\t3. Multiplication”);

printf(“\n\t4. Division\n”);

scanf(“%d”, &choice);

printf(“\n\nEnter the two operands: “);

scanf(“%f %f”, &num1, & num2);

switch (choice)

{

case 1:

printf(“\n%.2f + %.2f = %.2lf”, num1, num2, num1+num2);

break;

case 2:

printf(“\n%.2f - %.2f = %.2lf”, num1, num2, num1-num2);

break;

case 3:

printf(“\n%.2f * %.2f = %.2lf”, num1, num2, num1*num2);

break;

case 4:

printf(“\n%.2f / %.2f = %.2lf”, num1, num2, num1/num2);

break;

default:

printf(

“\nIncorrect Choice!”);

}

getch();

}

Output

**********Simple Calc***********

Computer Programming5.6

Result = num1 + num2 Display result
YesIs

choice = 1?

Result = num1 – num2 Display result
YesIs

choice = 2?

Result = num1 * num2 Display result
YesIs

choice = 3?

Result = num1/num2 Display result
YesIs

choice = 4?

1. Adition
2. Subtraction
3. Multiplication
4. Division

Display the list of operations

Read choice, num1, num2

Start

Display "Invalid Choice"

Stop

No

No

No

No

Solved Programming Exercises 5.7

Choose a type of operation from the following:

 1. Addition

 2. Subtraction

 3. Multiplication

 4. Division

3

Enter the two operands: 18.25 2.23

18.25 * 2.23 = 40.70

Example 5.4 Write a program that generates random numbers.

Algorithm

Step 1 – Start

Step 2 – Pass the system generated time value as a seed to the srand function,

srand(time(NULL))

Step 3 – Call the rand function to generate a random number, rand()

Step 4 – Display the generated random number value

Step 5 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

#include <time.h>

void main()

{

clrscr();

srand(time(NULL));

printf(“The system generated random number is: %d”, rand());

getch();

}

Output

The system generated random number is: 23176

Start

Stop

srand (time (NULL))

rand()

Display the return value of rand()

Computer Programming5.8

Example 5.5 Write a program to display the Pascal’s triangle.

Algorithm

Step 1 – Start

Step 2 – Set b = 1 and y = 0

Step 3 – Read the number of rows for the Pascal’s triangle (row)

Step 4 – Repeat Steps 5-17 while y < row

Step 5 – Initialize the looping counter x = 40-3*y

Step 6 – Repeat Steps 7-8 while x > 0

Step 7 – Print a blank space on the output screen

Step 8 – x = x - 1

Step 9 – Initialize the looping counter z = 0

Step 10 – Repeat Steps 11-15 while z <= y

Step 11 – If z = 0 OR y = 0 goto Step 12 else goto Step 13

Step 12 – b = 1

Step 13 – b= (b*(y-z+1))/z

Step 14 – Display the value of b in a fi eld width of 6 characters

Step 15 – z = z + 1

Step 16 – Print a new line character

Step 17 – y = y + 1

Step 18 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

void main()

{

 int b,row,x,y,z;

 clrscr();
b=1;

 y=0;

 printf(“Enter the number of rows for the Pascal’s triangle:”);

 scanf(“%d”,&row);

 printf(“\n******Pascal’s Triangle******\n”);

 while(y<row)

 {

 for(x=40-3*y;x>0;--x)

 printf(“ “);

 for(z=0;z<=y;++z)

{

if((z==0)||(y==0))

Solved Programming Exercises 5.9

Start

b = 1
y = 0

Is
y<row?

Yes

No

x = 40 – 3*y

No
Is x>0?

Print one black space

Read row

z = 0

x = x – 1

Stop

Yes

Yes

Print new line

y = y + 1

b=(b*(y – z + 1))/z

Display b

b = 1

Is z = 0
& y = 0?

Is z<= y?
No

Yes

No

 b=1;

 else

 b=(b*(y-z+1))/z;

 printf(“%6d”,b);

 }

 printf(“\n”);

 ++y;

 }

getch();

}

Computer Programming5.10

Output

Enter the number of rows for the Pascal’s triangle: 6

******Pascal’s Triangle******

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

Example 5.6 Write a program to display a pyramid.

Algorithm

Step 1 – Start

Step 2 – Read a value for generating the pyramid (num)

Step 3 – Set x = 40

Step 4 – Initialize the looping counter y=0

Step 5 – Repeat Steps 6-12 while y <= num

Step 6 – Move to the coordinate position (x, y+1)

Step 7 – Initialize the looping counter i=0-y

Step 8 – Repeat Steps 9-10 while i <= y

Step 9 – Display the absolute value of i, abs(i)

Step 10 – i = i + 1

Step 11 – x = x – 3

Step 12 – y = y + 1

Step 13 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

void main()

{

 int num,i,y,x=40;

 clrscr();

 printf(“\nEnter a number for \ngenerating the

pyramid:\n”);

 scanf(“%d”,&num);

 for(y=0;y<=num;y++)

Is i<=y?

Start

Read num

Is
y<= num?

Yes

x = 40
y = 0

gotoxy (x, y + 1)
i = 0 – y

No

x = x – 3

Yes

Display absolute(i)

i = i + 1

Stop

No

Solved Programming Exercises 5.11

 {

 gotoxy(x,y+1);

 for(i=0-y;i<=y;i++)

 printf(“%3d”,abs(i));

 x=x-3;

 }

 getch();

}

Output

Enter a number for

generating the pyramid:

7

 0

 1 0 1

 2 1 0 1 2

 3 2 1 0 1 2 3

 4 3 2 1 0 1 2 3 4

 5 4 3 2 1 0 1 2 3 4 5

 6 5 4 3 2 1 0 1 2 3 4 5 6

 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

Example 5.7 Write a program to find the one’s compliment of a binary number.

Algorithm

Step 1 – Start

Step 2 – Read a binary number string (a[])

Step 3 – Initialize the looping counter i=0

Step 4 – Repeat Steps 5-9 while a[i] != ‘\0’

Step 5 – If a[i]!= 0 AND a[i]!= 1 goto Step 6 else goto Step 7

Step 6 – Display error “Incorrect binary number format” and terminate the program

Step 7 – If a[i] = 0 goto Step 8 else goto Step 9

Step 8 – b[i]=’1’

Step 9 – b[i]=’0’

Step 10 – b[i] = ‘\0’

Step 11 – Display b[] as the one’s compliment of the binary number a[]

Step 12 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

Computer Programming5.12

Start

Read binary number a[]

Is
a[i]!='\0'?

Yes

No

Is a[i]!=0
& a[i]!=1?

i = 0

Display "Incorrect
Binary Number Format"

Is a[i]!=0?

b[i] = 1

Display b[] as
the one's compliment

Stop

b[i] = 0

b[i]=’\0'

Yes

No

Yes

No

void main()

{

 char a[16],b[16];

 int i;

 clrscr();

 printf(“Enter a binary number: “);

 gets(a);

 for(i=0;a[i]!=’\0’; i++)

 {

 if (a[i]!=’0’ && a[i]!=’1’)

 {

 printf(“\nIncorrect binary number format...the program will quit”);

 getch();

 exit(0);

 }

 if (a[i]==’0’)

 b[i]=’1’;

else

 b[i]=’0’;

 }

Solved Programming Exercises 5.13

 b[i]=’\0’;

 printf(“\nThe 1’s compliment of %s is %s”, a,b);

 getch();

}

Output

Enter a binary number: 11001210

Incorrect binary number format...the program will quit

Enter a binary number: 1101101

The 1’s compliment of 1101101 is 0010010

Example 5.8 Write a program to find the two’s compliment of a binary number.

Algorithm

Step 1 – Start

Step 2 – Read a binary number string (a[])

Step 3 – Calculate the length of string str (len)

Step 4 – Initialize the looping counter k=0

Step 5 – Repeat Steps 6-8 while a[k] != ‘\0’

Step 6 – If a[k]!= 0 AND a[k]!= 1 goto Step 7 else goto Step 8

Step 7 – Display error “Incorrect binary number format” and terminate the program

Step 8 – k = k + 1

Step 9 – Initialize the looping counter i = len - 1

Step 10 – Repeat Step 11 while a[i]!=’1’

Step 11 – i = i - 1

Step 12 – Initialize the looping counter j = i - 1

Step 13 – Repeat Step 14-17 while j >= 0

Step 14 – If a[j]=1 goto Step 15 else goto Step 16

Step 15 – a[j]=’0’

Step 16 – a[j]=’1’

Step 17 – j = j - 1

Step 18 – Display a[] as the two’s compliment

Step 19 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

#include <string.h>

void main()

Computer Programming5.14

Start

Read binary number a[]

Is
a[k]!='\0'?

Yes

No

Is a[k]!=0
& a[k]!=1?

len = strlen(a)
k = 0

Display "Incorrect
binary number format"

Display a[] as
the two's compliment

Stop

No

Yes

k = k + 1

i = len – 1

i = i – 1

Yes

No

j = j – 1

No

j = i – 1

Is a[i]!=1?

Is j>=0?

Is a[j]=1?

Yes

a[j]= 0 a[j] = 1

Yes

No

{

 char a[16];

 int i,j,k,len;

 clrscr();

 printf(“Enter a binary number: “);

 gets(a);

 len=strlen(a);

 for(k=0;a[k]!=’\0’; k++)

{

 if (a[k]!=’0’ && a[k]!=’1’)

 {

 printf(“\nIncorrect binary number format...the program will quit”);

 getch();

 exit(0);

 }

 }

 for(i=len-1;a[i]!=’1’; i--)

 ;

 for(j=i-1;j>=0;j--)

Solved Programming Exercises 5.15

 {

 if(a[j]==’1’)

 a[j]=’0’;

 else

 a[j]=’1’;

}

 printf(“\n2’s compliment = %s”,a);

 getch();

}

Output

Enter a binary number: 01011001001

2’s compliment = 10100110111

Example 5.9 Write a program to find the number of instances of different digits in a given

number.

Algorithm

Step 1 – Start

Step 2 – Read an integer number (num)

Step 3 – Repeat steps 4-25 while (num!=0)

Step 4 – Calculate temp = num % 10

Step 5 – If temp = 0 goto Step 6 else goto Step 7

Step 6 – Increment the 0-digit counter by 1 (d0=d0+1)

Step 7 – If temp = 1 goto Step 8 else goto Step 9

Step 8 – Increment the 1-digit counter by 1 (d1=d1+1)

Step 9 – If temp = 2 goto Step 10 else goto Step 11

Step 10 – Increment the 2-digit counter by 1 (d2=d2+1)

Step 11 – If temp = 3 goto Step 12 else goto Step 13

Step 12 – Increment the 3-digit counter by 1 (d3=d3+1)

Step 13 – If temp = 4 goto Step 14 else goto Step 15

Step 14 – Increment the 4-digit counter by 1 (d4=d4+1)

Step 15 – If temp = 5 goto Step 16 else goto Step 17

Step 16 – Increment the 5-digit counter by 1 (d5=d5+1)

Step 17 – If temp = 6 goto Step 18 else goto Step 19

Step 18 – Increment the 6-digit counter by 6 (d6=d6+1)

Step 19 – If temp = 7 goto Step 20 else goto Step 21

Step 20 – Increment the 7-digit counter by 1 (d7=d7+1)

Step 21 – If temp = 8 goto Step 22 else goto Step 23

Step 22 – Increment the 8-digit counter by 1 (d8=d8+1)

Step 23 – If temp = 9 goto Step 24 else goto Step 25

Step 24 – Increment the 9-digit counter by 1 (d9=d9+1)

Computer Programming5.16

Step 25 – Set num = num / 10

Step 26 – Display the number of instances of digits (0-9) present in the number num (d0,

d1, d2, d3, d4, d5, d6, d7, d8, d9)

Step 27 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

void main()

{

 long int num1,num2;

Start R

Read num Display d0, d1, d2, d3, d4, d5, d6, d7, d8, d9

Is
num!=0?

Yes

Is
temp =0?

temp=num%10

Is
temp =1?

No

No

Is
temp =2?

No

Is
temp =3?

No

Is
temp =4?

No

num = num/10

d0 = d0 + 1

d1 = d1 + 1

Yes

Yes

Yes

Yes

Yes

d = d + 12 2

d = d + 13 3

d = d + 14 4

Stop

Is
temp =5?

Is
temp =6?

No

No

Is
temp =7?

No

Is
temp =8?

No

Is
temp =9?

Yes

No

d9 = d9 + 1

Yes

d = d8 + 18

Yes

d7 = d7 + 1

Yes

d6 = d6 + 1

Yes

d5 = d5 + 1

R
No

Solved Programming Exercises 5.17

 int temp,d1=0,d2=0,d3=0,d4=0,d5=0,d6=0,d7=0,d8=0,d9=0,d0=0;

 clrscr();

 printf(“\nEnter the number:”);

 scanf(“%ld”,&num1);

 num2=num1;

 while(num1!=0)

 {

 temp=num1%10;

 switch(temp)

 {

 case 0:

 d0++;

 break;

 case 1:

 d1++;

 break;

 case 2:

 d2++;

 break;

 case 3:

 d3++;

 break;

 case 4:

 d4++;

 break;

 case 5:

 d5++;

 break;

 case 6:

 d6++;

 break;

 case 7:

 d7++;

 break;

 case 8:

 d8++;

 break;

 case 9:

 d9++;

 break;

 }

 num1=num1/10;

 }

 printf(“\nThe no of 0s in %ld are %d”,num2,d0);

Computer Programming5.18

 printf(“\nThe no of 1s in %ld are %d”,num2,d1);

 printf(“\nThe no of 2s in %ld are %d”,num2,d2);

 printf(“\nThe no of 3s in %ld are %d”,num2,d3);

 printf(“\nThe no of 4s in %ld are %d”,num2,d4);

 printf(“\nThe no of 5s in %ld are %d”,num2,d5);

 printf(“\nThe no of 6s in %ld are %d”,num2,d6);

 printf(“\nThe no of 7s in %ld are %d”,num2,d7);

 printf(“\nThe no of 8s in %ld are %d”,num2,d8);

 printf(“\nThe no of 9s in %ld are %d”,num2,d9);

 getch();

}

Output

Enter the number:28544401

The no of 0s in 28544401 are 1

The no of 1s in 28544401 are 1

The no of 2s in 28544401 are 1

The no of 3s in 28544401 are 0

The no of 4s in 28544401 are 3

The no of 5s in 28544401 are 1

The no of 6s in 28544401 are 0

The no of 7s in 28544401 are 0

The no of 8s in 28544401 are 1

The no of 9s in 28544401 are 0

Example 5.10 Write a program to find the number of vowels and consonants in a text string.

Algorithm

Step 1 – Start

Step 2 – Read a text string (str)

Step 3 – Set vow = 0, cons = 0, i = 0

Step 4 – Repeat steps 5-8 while (str[i]!=’\0’)

Step 5 – if str[i] = ‘a’ OR str[i] = ‘A’ OR str[i] = ‘e’ OR str[i] = ‘E’ OR str[i] = ‘i’ OR

str[i] = ‘I’ OR str[i] = ‘o’ OR str[i] = ‘O’ OR str[i] = ‘u’ OR str[i] = ‘U’ goto

Step 6 else goto Step 7

Step 6 – Increment the vowels counter by 1 (vow=vow+1)

Step 7 – Increment the consonants counter by 1 (cons=cons+1)

Step 8 – i = i + 1

Step 9 – Display the number of vowels and consonants (vow, cons)

Step 10 – Stop

Solved Programming Exercises 5.19

Flowchart

Start

Read text string str

Is str[]= \0 ?

No

vow = 0
cons = 0

i = 0

i = i + 1

No

vow = vow + 1 cons = cons + 1

Display vow
Display cons

Stop

Is str[i] = a OR
str[i] = A OR
str[i] = e OR
str[i] = E OR
str[i] = i OR
str[i] = I OR
str[i] = o OR
str[i] = O OR
str[i] = u OR
str[i] = U ?

Yes

Yes

Program

#include <stdio.h>

#include <conio.h>

#include <string.h>

void main()

{

 char str[30];

 int vow=0,cons=0,i=0;

 clrscr();

 printf(“Enter a string: “);

 gets(str);

 while(str[i] != ‘\0’)

 {

Computer Programming5.20

 if(str[i] == ‘a’ || str[i] == ‘A’ || str[i] == ‘e’ || str[i] == ‘E’ || str[i] == ‘i’

|| str[i] == ‘I’ || str[i] == ‘o’ || str[i] == ‘O’ || str[i] == ‘u’ || str[i] == ‘U’)

 vow++;

 else

 cons++;

 i++;

 }

 printf(“\nNumber of Vowels = %d”,vow);

 printf(“\nNumber of Consonants = %d”,cons);

 getch();

}

Output

Enter a string: Chennai

Number of Vowels = 3

Number of Consonants = 4

Example 5.11 Write a program that uses a simple structure for storing different students'

details.

Algorithm

Step 1 – Start

Step 2 – Defi ne a simple structure to store student details

 STRUCTURE student

 STRING name

 INTEGER rollno

 INTEGER t_marks

END STRUCTURE

 STRUCTURE student std[]

Step 3 – Read the number of students for which details are to be entered (num)

Step 4 – Initialize looping counter i = 0

Step 5 – Repeat Steps 6=8 while i < num

Step 6 – Read student’s name, roll no and total marks (std[i].name, std[i].rollno, std[i].t_

marks)

Step 7 – i = i + 1

Step 8 – Display the different students’ details stored in structure array std[]

Step 9 – Stop

Flowchart

Solved Programming Exercises 5.21

Program

#include <stdio.h>

#include <conio.h>

void main ()

{

int num, i=0;

struct student

{

char name[30];

int rollno;

int t_marks;

};

struct student std[10];

clrscr();

printf(“Enter the number of

students: “);

scanf(“%d”,&num);

for(i=0;i<num;i++)

{

printf(“\nEnter the details for %d student”,i+1);

printf(“\n\n Name “);

scanf(“%s”,std[i].name);

printf(“\n Roll No. “);

scanf(“%d”,&std[i].rollno);

printf(“\n Total Marks “);

scanf(“%d”,&std[i].t_marks);

}

printf(“\n Press any key to display the student details!”);

getch();

for(i=0;i<num;i++)

printf(“\nstudent %d \n Name %s \n Roll No. %d \n Total Marks

%d\n”,i+1,std[i].name, std[i].rollno, std[i].t_marks);

getch();

}

Output

Enter the number of students: 3

Enter the details for 1 student

 Name Arjun

 Roll No. 1

Start

Read num

Is i < num?

Read std[i].name
std[i].rollno

std[i].t_marks

i = 0

Display
std[]

Yes

Stop

i = i + 1

No

Computer Programming5.22

 Total Marks 399

Enter the details for 2 student

 Name Binoy

 Roll No. 2

 Total Marks 432

Enter the details for 3 student

 Name Chitra

 Roll No. 3

 Total Marks 402

 Press any key to display the student details!

student 1

 Name Arjun

 Roll No. 1

 Total Marks 399

student 2

 Name Binoy

 Roll No. 2

 Total Marks 432

student 3

 Name Chitra

 Roll No. 3

 Total Marks 402

Example 5.12 Write a program to find the sum of the following series:

1 + x + x2 + x3 + …….. + xn

Algorithm

Step 1 – Start

Step 2 – Read the values of x and n

Step 3 – If n <= 0 OR x <=0 goto Step 4 else goto Step 5

Step 4 – Display error “Invalid values” and terminate the program

Step 5 – Set sum = 1

Step 6 – Initialize the looping counter i = 1

Solved Programming Exercises 5.23

Step 7 – Repeat Steps 8-9 while i<=n

Step 8 – sum = sum + POWER(x,i)

Step 9 – i = i + 1

Step 10 – Display sum as the resultant sum of the series

Step 11 – Stop

Flowchart

Start

Read x, n

Is x <=0
OR

n<=0?

sum = 1
i = 1

Display “Invalid Values”
Yes

Is i<=n?

Sum = sum + POWER(x,y)
i = i + 1

Yes

Display sum of series(sum)

Stop

No

No

Program

#include <stdio.h>

#include <conio.h>

#include <math.h>

void main()

{

long sum;

int n,x,i;

clrscr();

printf(“Enter the values of x and n:”);

scanf(“%d %d”,&x,&n);

if(n<=0 || x<=0)

{

Computer Programming5.24

printf(“The values must be positive integers. Please try again\n”);

getch();

}

else

{
sum=1;

 for(i=1;i<=n;i++)

 {

 sum=sum+pow(x,i);

 }

 printf(“Sum of series=%ld\n”,sum);

}

getch();

}

Output

Enter the values of x and n:2

5

Sum of series = 63

Example 5.13 Write a program to find the sum of the following series:

1 + 2 + 3 + … + n

Algorithm

Step 1 – Start

Step 2 – Read n

Step 3 – Set sum = 0

Step 4 – Initialize the looping counter i = 1

Step 5 – Repeat Steps 6-8 while i<=n

Step 6 – sum = sum + i

Step 7 – i = i + 1

Step 8 – Display sum as the

resultant sum of the series

Step 9 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

void main()

{

Start

Read n

Is i <= n?

sum = sum + i

Display sum
No

Yes

sum = 0
i = 1

i = i + 1
Stop

Solved Programming Exercises 5.25

int i, n;

long sum=0;

clrscr();

printf(“Enter the value of n“);

scanf(“%d”,&n);

for(i=1;i<=n;i++)

sum = sum + i;

printf(“\nThe Sum of the series 1 + 2 + + n (for n = %d) is %ld”,n,sum);

getch();

}

Output

Enter the value of n 6

The Sum of the series 1 + 2 + + n (for n = 6) is 21

Example 5.14 Write a program to print the value and address of variables.

Algorithm

Step 1 – Start

Step 2 – Read the values of x and y

Step 3 – Determine the addresses of x and y using

ampersand (&) operator (&x, &y)

Step 4 – Print the address and value of x (&x, *&x)

Step 5 – Print the address and value of y (&y, *&y)

Step 6 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

void main ()

{

int x,y;

clrscr();

printf(“Enter the values of x and y “);

scanf(“%d %d”,&x,&y);

printf(“Address of x is %u”,&x);

printf(“\nValue of x is %d”,*(&x));

printf(“\nAddress of y is %u”,&y);

printf(“\nValue of y is %d”,*(&y));

Start

Stop

Read x, y

Determine the address of x and y
(&x, &y)

Display &x, *&x
Display &y, *&y

Computer Programming5.26

getch();

}

Output

Enter the values of x and y 22

44

Address of x is 65524

Value of x is 22

Address of y is 65522

Value of y is 44

Example 5.15 Write a program to copy the contents of one file into another.

Algorithm

Step 1 – Start

Step 2 – Read the command line arguments (argc, argv)

Step 3 – If argc !=3 goto Step 4 else goto Step 5

Step 4 – Display “Invalid number of arguments” and terminate the program

Step 5 – Open the source fi le specifi ed by argv[1] in read mode and assign its starting location

to fi le pointer fs (fs = fopen(argv[1],”r”))

Step 6 – If fs=NULL goto Step 7 else goto Step 8

Step 7 – Display “Source fi le cannot be opened” and terminate the program

Step 8 – Open the target fi le specifi ed by argv[2] in write mode and assign its starting

location to fi le pointer ft (ft = fopen(argv[2],”w”))

Step 9 – If ft=NULL goto Step 10 else goto Step 11

Step 10 – Display “Target fi le cannot be opened” and terminate the program

Step 11 – Repeat Steps 12-14 indefi nitely

Step 12 – Read the fi rst character of the source fi le (ch)

Step 13 – If ch = EOF goto Step 15 else goto Step 14

Step 14 – Copy character ch into the target fi le

Step 15 – Close the fi le pointers fs and ft

Step 16 – Display “Files copied successfully”

Step 17 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

void main(int argc, char *argv[])

{

 FILE *fs,*ft;

Solved Programming Exercises 5.27

Start

Read arc, argv

Is argc
!=3?

fs = fopen(argv[1],”r”)

Is fs=NULL?

ft = fopen(argv[2], “w”)

Display “Source file
cannot be opened”

Display “Invalid
number of arguments”

Stop

No

No

Yes

Yes

Is ft=NULL?

ch=fgetc(fs)

No

Yes

Is ch=EOF?

fputc(ch,ft)

No

Yes

Display “Target file
cannot be opened”

fclose(fs)
fclose(ft)

Display “File copy
operation performed

successfully”

 char ch;

 clrscr();

 if(argc!=3)

 {

 printf(“Invalid number of arguments.”);

 exit(0);

 }

 fs = fopen(argv[1],”r”);

 if(fs==NULL)

 {

Computer Programming5.28

 printf(“Source fi le cannot be opened.”);

 exit(0);

 }

 ft = fopen(argv[2],”w”);

 if (ft==NULL)

 {

 printf(“Target fi le cannot be opened.”);

 fclose(fs);

 exit(0);

 }

 while(1)

 {

 ch=fgetc(fs);

 if (ch==EOF)

 break;

 else

 fputc(ch,ft);

 }

 fclose(fs);

 fclose(ft);

 printf(“\nFile copy operation performed successfully”);

 getch();

}

Output

D:\TC\BIN>15.exe s1.txt t1.txt

File copy operation performed successfully

Example 5.16 Write a program to count the number of characters in a file.

Algorithm

Step 1 – Start

Step 2 – Read the command line arguments (argc, argv)

Step 3 – Initialize count = 0

Step 4 – If argc !=2 goto Step 5 else goto Step 6

Step 5 – Display “Invalid number of arguments” and terminate the program

Step 6 – Open the source fi le specifi ed by argv[1] in read mode and assign its starting location

to fi le pointer fs (fs = fopen(argv[1],”r”))

Step 7 – If fs=NULL goto Step 8 else goto Step 9

Step 8 – Display “Source fi le cannot be opened” and terminate the program

Step 9 – Repeat Steps 10-12 indefi nitely

Step 10 – Read the fi rst character of the source fi le (ch)

Solved Programming Exercises 5.29

Step 11 – If ch = EOF goto Step 13 else goto Step 12

Step 12 – count = count + 1

Step 13 – Close the fi le pointer fs

Step 14 – Display count as the number characters contained in the source fi le

Step 15 – Stop

Flowchart

Start

Read arc, argv

Is argc
!=2?

fs = fopen(argv[1],”r”)

Is fs=NULL?
Display “Source file
cannot be opened”

Display “Invalid
number of arguments”

Stop

Yes

Yes

ch=fgetc(fs)

No

Is ch=EOF?

count = count + 1

No

Yes

No

fclose(fs) Display count

count = 0

Program

#include <stdio.h>

#include <conio.h>

void main(int argc, char *argv[])

{

 FILE *fs;

Computer Programming5.30

char ch;

 long count=0;

 clrscr();

 if(argc!=2)

 {

 printf(“Invalid number of arguments.”);

 exit(0);

 }

 fs = fopen(argv[1],”r”);

if(fs==NULL)

 {

 printf(“Source fi le cannot be opened.”);

 exit(0);

 }

 while(1)

 {

 ch=fgetc(fs);

 if (ch==EOF)

 break;

 else

 count=count+1;

 }

 fclose(fs);

 printf(“\nThe number of characters in %s is %ld”,argv[1],count);

 getch();

}

Output

D:\TC\BIN>16.exe s1.txt

The number of characters in s1.txt is 15

Example 5.17 Write a program to find the transpose of a matrix.

Algorithm

Step 1 – Start

Step 2 – Read a 3 X 3 matrix (a[3][3])

Step 3 – Initialize the looping counter i = 0

Step 4 – Repeat Steps 5-9 while i<3

Step 5 – Initialize the looping counter j = 0

Step 6 – Repeat Steps 7-8 while j<3

Step 7 – b[i][j]=a[j][i]

Step 8 – j = j + 1

Solved Programming Exercises 5.31

Step 9 – i = i + 1

Step 10 – Display b[][] as the transpose of the matrix a[][]

Step 11 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

void main()

{

int i,j,a[3][3],b[3][3];

clrscr();

printf(“Enter a 3 X 3 matrix:\n”);

for(i=0;i<3;i++)

{

 for(j=0;j<3;j++)

 {

 printf(“a[%d][%d] = “,i,j);

 scanf(“%d”,&a[i][j]);

 }

}

printf(“\nThe entered matrix

is: \n”);

for(i=0;i<3;i++)

{

 printf(“\n”);

 for(j=0;j<3;j++)

 {

 printf(“%d\t”,a[i][j]);

 }

}

for(i=0;i<3;i++)

{

 for(j=0;j<3;j++)

 b[i][j]=a[j][i];

}

printf(“\n\nThe transpose of the matrix is: \n”);

for(i=0;i<3;i++)

{

 printf(“\n”);

 for(j=0;j<3;j++)

Start

Read a[3][3]

Is i < 3?

j = 0

Is j < 3?

Display b[] [] as the
transpose of a[] []

No

b[i][j]=a[j][i]

Yes

Yes

i = 0

j = j + 1

i = i + 1

Stop
No

Computer Programming5.32

 {

 printf(“%d\t”,b[i][j]);

 }

}

getch();

}

Output

Enter a 3 X 3 matrix:

a[0][0] = 1

a[0][1] = 2

a[0][2] = 3

a[1][0] = 4

a[1][1] = 5

a[1][2] = 6

a[2][0] = 7

a[2][1] = 8

a[2][2] = 9

The entered matrix is:

 1 2 3

 4 5 6

 7 8 9

The transpose of the matrix is:

 1 4 7

 2 5 8

 3 6 9

Example 5.18 Write a program to add two matrices.

Algorithm

Step 1 – Start

Step 2 – Read two 3 X 3 matrices (a[3][3], b[3][3])

Step 3 – Initialize the looping counter i = 0

Step 4 – Repeat Steps 5-9 while i<3

Step 5 – Initialize the looping counter j = 0

Step 6 – Repeat Steps 7-8 while j<3

Step 7 – c[i][j] = a[i][j] + b[i][j]

Step 8 – j = j + 1

Step 9 – i = i + 1

Step 10 – Display c[][] as the resultant sum of the two matrices

Solved Programming Exercises 5.33

Step 11 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

void main()

{

int i,j,a[3][3],b[3][3],c[3][3];

clrscr();

printf(“Enter the fi rst 3 X 3 matrix:\n”);

for(i=0;i<3;i++)

{

 for(j=0;j<3;j++)

 {

 printf(“a[%d][%d] = “,i,j);

 scanf(“%d”,&a[i][j]);

 }

}

printf(“Enter the second 3 X 3 matrix:\n”);

for(i=0;i<3;i++)

{

 for(j=0;j<3;j++)

 {

 printf(“b[%d][%d] = “,i,j);

 scanf(“%d”,&b[i][j]);

 }

}

printf(“\nThe entered matrices are: \n”);

for(i=0;i<3;i++)

{

 printf(“\n”);

 for(j=0;j<3;j++)

 {

 printf(“%d\t”,a[i][j]);

 }

 printf(“\t\t”);

 for(j=0;j<3;j++)

 {

 printf(“%d\t”,b[i][j]);

 }

}

Computer Programming5.34

for(i=0;i<3;i++)

{

 for(j=0;j<3;j++)

 c[i][j] =a[i][j]+b[i][j];

}

printf(“\n\nThe sum of the two matrices is shown below: \n”);

for(i=0;i<3;i++)

{

 printf(“\n\t\t “);

 for(j=0;j<3;j++)

 {

 printf(“%d\t”,c[i][j]);

 }

}

getch();

}

Output

Enter the fi rst 3 X 3 matrix:

a[0][0] = 1

a[0][1] = 1

a[0][2] = 1

a[1][0] = 1

a[1][1] = 1

a[1][2] = 1

a[2][0] = 1

a[2][1] = 1

a[2][2] = 1

Enter the second 3 X 3 matrix:

b[0][0] = 2

b[0][1] = 2

b[0][2] = 2

b[1][0] = 2

b[1][1] = 2

b[1][2] = 2

b[2][0] = 2

b[2][1] = 2

b[2][2] = 2

The entered matrices are:

 1 1 1 2 2 2

 1 1 1 2 2 2

 1 1 1 2 2 2

Start

Read a[3][3] & b[3][3]

i = 0

Is i < 3?

j = 0

Is j < 3?

c[i][j] = a[i][j] + b[i][j]

Yes

Yes j = j + 1

i = i + 1

Display c[][] as the
sum of a[][] & b[][]

Stop

No

No

Solved Programming Exercises 5.35

The sum of the two matrices is shown below:

 3 3 3

 3 3 3

 3 3 3

Example 5.19 Write a program to multiply two matrices.

Algorithm

Step 1 – Start

Step 2 – Read two 3 X 3 matrices (a[3][3], b[3][3])

Step 3 – Initialize the looping counter i = 0

Step 4 – Repeat Steps 5-13 while i<3

Step 5 – Initialize the looping counter j = 0

Step 6 – Repeat Steps 7-12 while j<3

Step 7 – c[i][j]=0

Step 8 – Initialize the looping counter k = 0

Step 9 – Repeat Steps 10-11 while k<3

Step 10 – c[i][j]=c[i][j]+a[i][k]*b[k][j]

Step 11 – k = k + 1

Step 12 – j = j + 1

Step 13 – i = i + 1

Step 14 – Display c[][] as the resultant product of the two matrices

Step 15 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

void main()

{

int i,j,k,a[3][3],b[3][3],c[3][3];

clrscr();

printf(“Enter the fi rst 3 X 3 matrix:\n”);

for(i=0;i<3;i++)

{

 for(j=0;j<3;j++)

 {

 printf(“a[%d][%d] = “,i,j);

 scanf(“%d”,&a[i][j]);

 }

}

Computer Programming5.36

printf(“Enter the second 3 X 3 matrix:\n”);

for(i=0;i<3;i++)

{

 for(j=0;j<3;j++)

 {

 printf(“b[%d][%d] = “,i,j);

 scanf(“%d”,&b[i][j]);

 }

}

printf(“\nThe entered matrices are: \n”);

for(i=0;i<3;i++)

{

 printf(“\n”);

 for(j=0;j<3;j++)

 {

 printf(“%d\t”,a[i][j]);

 }

 printf(“\t\t”);

 for(j=0;j<3;j++)

 {

 printf(“%d\t”,b[i][j]);

 }

}

for(i=0;i<3;i++)

 for(j=0;j<3;j++)

 {

 c[i][j]=0;

 for(k=0;k<3;k++)

 c[i][j]=c[i][j]+a[i][k]*b[k][j];

 }

printf(“\n\nThe product of the two matrices is shown below: \n”);

for(i=0;i<3;i++)

{

 printf(“\n\t\t “);

 for(j=0;j<3;j++)

 {

 printf(“%d\t”,c[i][j]);

}

}

getch();

}

Solved Programming Exercises 5.37

Output

Enter the fi rst 3 X 3 matrix:

a[0][0] = 1

a[0][1] = 2

a[0][2] = 3

a[1][0] = 4

a[1][1] = 5

a[1][2] = 6

a[2][0] = 7

a[2][1] = 8

a[2][2] = 9

Enter the second 3 X 3 matrix:

b[0][0] = 1

b[0][1] = 1

b[0][2] = 1

b[1][0] = 2

b[1][1] = 2

b[1][2] = 2

b[2][0] = 3

b[2][1] = 3

b[2][2] = 3

The entered matrices are:

 1 2 3 1 1 1

 4 5 6 2 2 2

 7 8 9 3 3 3

The product of the two matrices is shown below:

 14 14 14

 32 32 32

 50 50 50

Example 5.20 Write a program that uses insertion sort technique to sort an array of ten

elements.

Algorithm

Step 1 – Start

Step 2 – Accept a ten element array which needs to be sorted (num[])

Step 3 – Call function i_sort(num)

Step 4 – Display the sorted array num[]

Computer Programming5.38

Start

Read a[3][3] & b[3][3]

i = 0

Is i < 3?

j = 0

Is j < 3?

c[i][j] = 0
k = 0

Yes

Yes

i = i + 1

Display c[][] as the
sum of a[][] & b[][]

Stop

No

c[i][j] = c[i][j] + a[i][k]*b[k][j]

Yes

j = j + 1

k = k + 1

Is k < 3?

No

No

Step 5 – Stop

i_sort(num[])

Step 1 – Start

Step 2 – Initialize the looping counter j = 1

Step 3 – Repeat Steps 4–10 while j<10

Step 4 – Set temp = num[j]

Step 5 – Initialize the looping counter i = j-1

Step 6 – Repeat Steps 7–8 while i>=0 AND temp<num[i]

Step 7 – num[i+1]=num[i]

Step 8 – i = i - 1

Step 9 – num[i+1]=temp

Step 10 – j = j + 1

Step 11 – Stop

Solved Programming Exercises 5.39

Flowchart

Program

#include <stdio.h>

#include <conio.h>

void main()

{

 void i_sort(int []);

 int num[10],i;

 clrscr();

 printf(“\nEnter the ten elements to sort:\n”);

 for (i=0;i<10;i++)

 scanf(“%d”,&num[i]);

 i_sort(num);

printf(“\n\nThe sorted elements are:\n”);

 for(i=0;i<10;i++)

 printf(“%d\n”,num[i]);

 getch();
}

void i_sort(int num[])
{
 int i,j,temp;
 for(j=1;j<10;j++)
 {
 temp=num[j];
 for(i=j-1;i>=0 && temp<num[i];i--)
 num[i+1]=num[i];
 num[i+1]=temp;
 }
}

Output

Enter the ten elements to sort:

22

33

1

2

65

18

7

Computer Programming5.40

54

78

5

The sorted elements are:

1

2

5

7

18

22

33

54

65

78

Example 5.21 Write a program that uses bubble sort technique to sort an array of ten

elements.

Algorithm

Step 1 – Start

Step 2 – Accept a ten element array which needs to be sorted (num[])

Step 3 – Call function bubblesort(num)

Step 4 – Display the sorted array num[]

Step 5 – Stop

bubblesort(num[])

Step 1 – Start

Step 2 – Initialize the looping counter i = 0

Step 3 – Repeat Steps 4–9 while i<9

Step 4 – Initialize the looping counter j = i

Step 5 – Repeat Steps 6–8 while j<10

Step 6 – If num[i] > num[j] goto Step 7 else goto Step 8

Step 7 – Swap the values of num[i] and num[j]

Step 8 – j = j + 1

Step 9 – i = i + 1

Step 10 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

Solved Programming Exercises 5.41

Start

Read num[]10

Call i_sort(num)

Display the sorted
array num[]

Stop

j = 1

i_sort(num)

Is
j<10?

temp=num[j], i = j –1

NoStop

j = j + 1

Yes

Is
i>=0 AND

temp<num[i] num[i+1]=temp

num[i+1]=num[i]

Yes
i = i – 1

No

void main()

{

 void bubblesort(int num[]);

 int i, num[10];

 clrscr();

 printf(“\nEnter the 10 elements to be sorted: “);

 for (i = 0; i < 10; i++)

 {

 printf (“\nEnter element %d: “,i+1);

 scanf(“%d”,&num[i]);

 }

 printf(“\n\nThe array elements before sorting are:\n\n”);

 for (i = 0; i < 10; i++)

 printf(“[%d], “,num[i]);

 bubblesort(num);

 printf(“\n\nThe array elements after sorting are:\n\n”);

 for (i = 0; i < 10; i++)

 printf(“[%d], “, num[i]);

 getch();

 }

 void bubblesort(int num[])

 {

Computer Programming5.42

 int i, j, temp;

 for (i = 0; i < 9; i++)

 {

for (j = i; j < 10; j++)

 {

 if (num[i] > num[j])

 {

 temp = num[i];

 num[i] = num[j];

 num[j] = temp;

 }

 }

 }

}

Output

Enter the 10 elements to be sorted:

Enter element 1: 1

Enter element 2: 99

Enter element 3: 3

Enter element 4: 85

Enter element 5: 19

Enter element 6: 74

Enter element 7: 5

Enter element 8: 59

Enter element 9: 18

Enter element 10: 33

The array elements before sorting are:

[1], [99], [3], [85], [19], [74], [5], [59], [18], [33],

The array elements after sorting are:

[1], [3], [5], [18], [19], [33], [59], [74], [85], [99],

Solved Programming Exercises 5.43

Example 5.22 Write a program to implement stack using arrays.

Algorithm

Step 1 – Start

Step 2 – Reserve a 100 element array in the memory stack[100] and set its top pointer to -1

(top = -1)

Step 3 – Repeat Steps 4-15 indefi nitely

Step 4 – Display a list of stack operations for the user to choose from

 1. Push an element into the stack

 2. Pop out an element from the stack

 3. Display the stack elements

 4. Exit

Step 5 – Read the choice entered by the user (choice)

Step 6 – If choice = 1 goto Step 7 else goto Step 9

Step 7 – Read the element to be pushed (num1)

Step 8 – Call the push function, push(num1) and goto Step 3

Start

Read num[]10

Call bubblesort(num)

Display the sorted
array num[]

Stop

i = 0

bubblesort(num)

Is i<9?

j = i

NoStop

i = i + 1

Yes

Is
num[i]>num[j]?

Yesj = j + 1

NoIs j<10?

temp = num[i]
num[i] = num[j]
num[j] = temp

Yes

No

Computer Programming5.44

Step 9 – If choice = 2 goto Step 10 else goto Step 12

Step 10 – Call the pop function, pop()

Step 11 – Display the popped element and goto Step 3

Step 12 – If choice = 3 goto Step 13 else goto Step 14

Step 13 – Call the display function, display() and goto Step 3

Step 14 – If choice = 4 goto Step 16 else goto Step 15

Step 15 – Display message “Invalid Choice” and goto Step 3

Step 16 – Stop

push(element)

Step 1 – Start

Step 2 – If top = 99 goto Step 3 else goto Step 4

Step 3 – Display message ”Stack Full” and exit

Step 4 – top = top + 1

Step 5 – Stack[top] = element

Step 6 – Stop

pop()

Step 1 – Start

Step 2 – If top = -1 goto Step 3 else goto Step 4

Step 3 – Display message ”Stack Empty” and exit

Step 4 – Return stack[top] and set top = top - 1

Step 5 – Stop

display()

Step 1 – Start

Step 2 – Set i = 0

Step 3 – Repeat steps 4-5 while i<=top

Step 4 – Display stack[i]

Step 5 – i = i + 1

Step 6 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

int stack[100];

int top=-1;

void push(int);

int pop();

void display();

void main()

Solved Programming Exercises 5.45

{

 int choice;

char num1=0,num2=0;

 while(1)

 {

 clrscr();

 printf(“Select a choice from the following:”);

 printf(“\n[1] Push an element into the stack”);

 printf(“\n[2] Pop out an element from the stack”);

 printf(“\n[3] Display the stack elements”);

 printf(“\n[4] Exit\n”);

 printf(“\n\tYour choice: “);

 scanf(“%d”,&choice);

 switch(choice)

 {

 case 1:

 {

 printf(“\n\tEnter the element to be pushed into the stack: “);

 scanf(“%d”,&num1);

 push(num1);

 break;

 }

 case 2:

 {

 num2=pop();

 printf(“\n\t%d element popped out of the stack\n\t”,num2);

 getch();

 break;

 }

 case 3:

 {

 display();

 getch();

 break;

 }

 case 4:

 exit(1);

 break;

 default:

 printf(“\nInvalid choice!\n”);

Computer Programming5.46

 break;

 }

 }

}

void push(int element)

{

 if(top==99)

 {

 printf(“Stack is Full.\n”);

 getch();

 exit(1);

 }

 top=top+1;

 stack[top]=element;

}

int pop()

{

 int element;

 if(top==-1)

 {

 printf(“\n\tStack is Empty.\n”);

 getch();

 exit(1);

 }

 return(stack[top--]);

}

void display()

{

 int i;

 printf(“\n\tThe various stack elements are:\n\t”);

 for(i=0;i<=top;i++)

 printf(“%d\t”,stack[i]);

}

Output

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 1

Solved Programming Exercises 5.47

 Enter the element to be pushed into the stack: 42

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

Start

top = 1

Display the list of operations
1. Push an element into the stack
2. Pop out an element from stack
3. Display the stack elements
4. Exit

Read choice

Is choice = 1?

Is choice = 2?

Is choice = 3?

Is choice = 4?

Display Invalid Choice

Stop

Display()

num2 = pop() Display(num2)

Read num1 push(num1)

Yes

Yes

Yes

Yes

No

No

No

No

Computer Programming5.48

[3] Display the stack elements

[4] Exit

 Your choice: 1

 Enter the element to be pushed into the stack: 2

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 3

 The various stack elements are:

 42 2

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

push (element)

Is top=99?

top = top + 1
stack[top] = element

Display “Stack is Full”

Stop
No

Yes

Pop ()

Is top=–1?

Return
stack[top] and set

top = top –1

Display “Stack is Empty”

Stop
No

Yes

display ()

Is i<=top? Display stack[i]

Stop

Yes

i = 0

No

i = i + 1

Solved Programming Exercises 5.49

[4] Exit

 Your choice: 2

 2 element popped out of the stack

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 4

Example 5.23 Write a program to implement stack using pointers.

Algorithm

Step 1 – Start

Step 2 – Defi ne a structure to represent a stack

 STRUCTURE stack

 INTEGER element

 STRUCTURE stack *stptr

 END STRUCTURE

 STRUCTURE stack *top

Step 3 – Repeat Steps 4-X indefi nitely

Step 4 – Display a list of stack operations for the user to choose from

 1. Push an element into the stack

 2. Pop out an element from the stack

 3. Display the stack elements

 4. Exit

Step 5 – Read the choice entered by the user (choice)

Step 6 – If choice = 1 goto Step 7 else goto Step 9

Step 7 – Read the element to be pushed (num1)

Step 8 – Call the push function, push(num1) and goto Step 3

Step 9 – If choice = 2 goto Step 10 else goto Step 12

Step 10 – Call the pop function, pop()

Step 11 – Display the popped element and goto Step 3

Step 12 – If choice = 3 goto Step 13 else goto Step 14

Step 13 – Call the display function, display() and goto Step 3

Step 14 – If choice = 4 goto Step 16 else goto Step 15

Step 15 – Display message “Invalid Choice” and goto Step 3

Step 16 – Stop

Computer Programming5.50

push(value)

Step 1 – Start

Step 2 – Reserve a block of memory of size stack and assign its address to pointer ptr,

(ptr=(struct stack*)malloc(sizeof(struct stack)))

Step 3 – Set ptr Æ element = value

Step 4 – Set ptrÆstptr=top

Step 5 – top = ptr

Step 6 – Return

pop()

Step 1 – Start

Step 2 – If top = NULL goto Step 3 else goto Step 4

Step 3 – Display message ”Stack Empty” and exit

Step 4 – Set temp=topÆelement

Step 5 – Set top=topÆstptr

Step 6 - return (temp)

display()

Step 1 – Start

Step 2 – Create a pointer (ptr1) of type stack and assign it the value contained in top,

(struct stack *ptr1=top)

Step 3 – Repeat steps 4-5 while ptr1!=NULL

Step 4 – Display ptr1Æelement

Step 5 – ptr1=ptr1Æstptr

Step 6 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

struct stack

{

 int element;

 struct stack *stptr;

}*top;

int i;

void push(int);

int pop();

void display();

void main()

{

Solved Programming Exercises 5.51

 int choice;

 char num1=0,num2=0;

 while(1)

 {

 clrscr();

 printf(“Select a choice from the following:”);

 printf(“\n[1] Push an element into the stack”);

 printf(“\n[2] Pop out an element from the stack”);

Start

Display the list of operations
1. Push an element into the stack
2. Pop out an element from stack
3. Display the stack elements
4. Exit

Read choice

Is choice = 1?

Is choice = 2?

Is choice = 3?

Is choice = 4?

Display “Invalid Choice”

Stop

Display0

num2 = pop0 Display num2

Read num1 push(num1)

Yes

Yes

Yes

Yes

No

No

No

No

Computer Programming5.52

 printf(“\n[3] Display the stack elements”);

 printf(“\n[4] Exit\n”);

 printf(“\n\tYour choice: “);

 scanf(“%d”,&choice);

 switch(choice)

 {

 case 1:

 {

 printf(“\n\tEnter the element to be pushed into the stack: “);

 scanf(“%d”,&num1);

 push(num1);

 break;

 }

display ()

Is ptr1!=
NULL?

Display
ptr1->element

Stop

Yes

ptr1 = new (stack)
ptr1 = top

No

ptr1 = ptr1 stptr->

Pop ()

Is top=NULL?

Return (temp)

Display “Stack is Empty”

Stop

Yes

No

temp=top->element
top=top->stptr

push (value)

ptr->element=value
ptr->stptr=top

top ptr

ptr = new (stack)

Return

Solved Programming Exercises 5.53

 case 2:

 {

 num2=pop();

 printf(“\n\t%d element popped out of the stack\n\t”,num2);

 getch();

 break;

 }

 case 3:

 {

 display();

 getch();

 break;

 }

 case 4:

 exit(1);

 break;

 default:

 printf(“\nInvalid choice!\n”);

 break;

 }

 }

}

void push(int value)

{

 struct stack *ptr;

 ptr=(struct stack*)malloc(sizeof(struct stack));

 ptr->element=value;

 ptr->stptr=top;

 top=ptr;

 return;

}

int pop()

{

 if(top==NULL)

 {

 printf(“\n\STACK is Empty.”);

 getch();

 exit(1);

 }

Computer Programming5.54

 else

 {

 int temp=top->element;

 top=top->stptr;

 return (temp);

 }

}

void display()

{

 struct stack *ptr1=NULL;

 ptr1=top;

 printf(“\nThe various stack elements are:\n”);

 while(ptr1!=NULL)

 {

 printf(“%d\t”,ptr1->element);

 ptr1=ptr1->stptr;

 }

}

Output

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 1

 Enter the element to be pushed into the stack: 66

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 1

 Enter the element to be pushed into the stack: 33

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

Solved Programming Exercises 5.55

 Your choice: 3

The various stack elements are:

33 66

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 2

 33 element popped out of the stack

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 4

Example 5.24 Write a program that uses linear search technique to search an element in an

array.

Algorithm

Step 1 – Start

Step 2 – Read a 10 element array (array[])

Step 3 – Read the element that needs to be searched (element)

Step 4 – Set fl ag = 0

Step 5 – Initialize the looping counter j = 0

Step 6 – Repeat Steps 7-9 while j<10

Step 7 – If array[j] = element goto Step 8 else goto Step 9

Step 8 – Display j as the location where element has been found, set fl ag = 1 and goto Step 10

Step 9 – Set j = j + 1

Step 10 – If fl ag = 0 goto Step 11 else goto Step 12

Step 11 – Display message “element not found in the array”

Step 12 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

Computer Programming5.56

void main()

{

 int array[10], i, j, element;

 int fl ag=0;

 clrscr();

 printf(“Enter the 10 elements of the list:\n”);

 for(i=0;i<10;i++)

Start

Read array[10]

Read element

flag = 0
j = 0

Is j <10?

Is array[j]
=element?

j = j + 1

No Yes
Display j as the

location of element
in array

flag = 1

Display “Element
Not Found”

Is flag=0?

Yes

Stop

No

Yes

No

Solved Programming Exercises 5.57

 scanf(“%d”,&array[i]);

 printf(“\n\nEnter the element that you want to search: “);

 scanf(“%d”,&element);

 for(j=0;j<10;j++)

 if(array[j] == element)

 {

 printf(“\nThe element %d is present at %d position in the list\n”,element,j+1);

 fl ag=1;

 break;

 }

 if(fl ag==0)

 printf(“\nThe element is %d is not present in the list\n”,element);

getch();

}

Output

Enter the 10 elements of the list:

1

2

3

9

8

7

4

5

6

22

Enter the element that you want to search: 8

The element 8 is present at 5 position in the list

Example 5.25 Write a program that uses binary search technique to search an element in an

array.

Algorithm

Step 1 – Start

Step 2 – Read a 10 element array (array[])

Step 3 – Read the element that needs to be searched (element)

Step 4 – Set fl ag = 0

Step 5 – Set i = o, j = 10

Step 6 – Repeat Steps 7-12 while i<=j

Step 7 – k = (i+j)/2

Computer Programming5.58

Step 8 – If array[k] = element goto Step 9 else goto Step 10

Step 9 – Display k+1 as the location where element has been found, set fl ag = 1 and goto Step 13

Step 10 – If array[k] < element goto Step 11 else goto Step 12

Step 11 – i = k + 1

Step 12 – j = k-1

Step 13 – If fl ag = 0 goto Step 14 else goto Step 15

Step 14 – Display message “Element not found”

Step 15 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

void main()

{

 int array[10], i, j, k, element;

 int fl ag=0;

 clrscr();

 printf(“Enter the 10 elements of the list in ascending order:\n”);

 for(i=0;i<10;i++)

 scanf(“%d”,&array[i]);

 printf(“\n\nEnter the element that you want to search: “);

 scanf(“%d”,&element);

 i = 0;

 j = 10;

 while(i <= j)

 {

 k = (i+j)/2;

 if(array[k] == element)

 {

 printf(“\nThe element %d is present at %d position in the list\n”,element,k+1);

 fl ag =1;

 break;

 }

 else

 if(array[k] < element)

 i = k+1;

 else

 j = k-1;

 }

 if(fl ag == 0)

 printf(“\nThe element %d is not present in the list\n”,element);

Solved Programming Exercises 5.59

getch();

}

Output

Enter the 10 elements of the list in ascending order:

Start

Read array[10]

Read element

flag = 0
i = 0, j = 10

Is i <=j?

Is array[k]
=element?

Yes
Display k as the

location of element
in array

flag = 1

Display “Element
Not Found”

Is flag=0?

Yes

Stop

No

Yes

No

k = (i+j)/2

Is array[k]
<element?

i = k + 1

j = k – 1
No

Yes

No

Computer Programming5.60

1

3

5

6

13

19

27

33

99

102

Enter the element that you want to search: 27

The element 27 is present at 7 position in the list

Example 5.26 Write a program to solve the following series:

1 + 1/2 + 1/3 + 1/4 + … + 1/n

Algorithm

Step 1 – Start

Step 2 – Read n

Step 3 – Set sum = 1.0

Step 4 – Set i = 2.0

Step 5 – Repeat Steps 6-7 while i<=n

Step 6 – sum = sum + 1.0/i

Step 7 – i = i + 1

Step 8 – Display sum as the resultant sum of the series

Step 9 – Stop

Flowchart

Program

#include <stdio.h>

#include <conio.h>

void main()

{

int n;

fl oat i;

double sum;

clrscr();

printf(“Enter the value of n: “);

scanf(“%d”,&n);

sum = 1.0;

Start

Read n

sum = 1.0
i = 2.0

Is i <=n?

sum = sum = 1.0/i

Yes

No
Display sum

Start

i = i + 1

Solved Programming Exercises 5.61

for(i=2.0;i<=n;i++)

sum = sum + 1.0/i;

printf(“\nThe sum of the series 1 + 1/2 + 1/3 +....+1/n = %.8lf”,sum);

getch();

}

Output

Enter the value of n: 11

The sum of the series 1 + 1/2 + 1/3 + ... + 1/n = 3.01987734

Example 5.27 Write a program in C to draw a circle.

Algorithm

Step 1 – Start

Step 2 – Set gd = DETECT

Step 3 – Call in-build function, initgraph(&gd, &gm, “..\\bgi”)

Step 4 – Call in-built function, circle(320, 225, 50)

Step 5 – closegraph()

Step 6 – Stop

Flowchart

Start

gd = DETECT

initgraph(&gd, &gm, “..\\bgi”)

circle(320, 225, 50)

closegraph()

Stop

Computer Programming5.62

Program

#include<conio.h>

#include<graphics.h>

#include<stdio.h>

void main()

{

int gd = DETECT, gm;

initgraph(&gd, &gm, “..\\bgi”);

circle(320, 225, 50);

getch();

closegraph();

}

Output

Example 5.28 Write a program in C to draw a rectangle.

Algorithm

Step 1 – Start

Step 2 – Set gd = DETECT

Step 3 – Call in-build function, initgraph(&gd, &gm,

“..\\bgi”)

Step 4 – Call in-built function, rectangle(320, 225,

50,100)

Step 5 – closegraph()

Step 6 – Stop

Flowchart

Program

#include<conio.h>

#include<graphics.h>

#include<stdio.h>

void main()

Start

gd = DETECT

initgraph(&gd, &gm, “..\\bgi”)

rectangle(320, 225, 50, 100)

closegraph()

Stop

Solved Programming Exercises 5.63

{

int gd = DETECT, gm;

initgraph(&gd, &gm, “..\\bgi”);

rectangle(320, 225, 50,100);

getch();

closegraph();

}

Output

Example 5.29 Write a program in C to draw a 3D-bar.

Algorithm

Step 1 – Start

Step 2 – Set gd = DETECT

Step 3 – Call in-build function, initgraph(&gd, &gm, “..\\

bgi”)

Step 4 – Call in-built function, bar3d(150, 50, 250,150,

10, 1)

Step 5 – closegraph()

Step 6 – Stop

Flowchart

Program

#include<conio.h>

#include<graphics.h>

#include<stdio.h>

void main()

{

int gd = DETECT, gm;

Start

gd = DETECT

initgraph(&gd, &gm, “..\\bgi”)

bar3d(150, 50, 250, 150, 10, 1)

closegraph()

Stop

Computer Programming5.64

initgraph(&gd, &gm, “..\\bgi”);

bar3d(150, 50, 250,150, 10, 1);

getch();

closegraph();

}

Output

Example 5.30 Write a program in C to draw a shape and fill it with color.

Algorithm

Step 1 – Start

Step 2 – Set gd = DETECT

Step 3 – Call in-build function, initgraph(&gd, &gm, “..\\bgi”)

Step 4 – Call in-build function, setfi llstyle(SOLID_FILL,RED)

Step 4 – Call in-built function, bar3d(150, 50, 250,150, 10, 1)

Step 5 – closegraph()

Step 6 – Stop

Flowchart

Program

#include<conio.h>

#include<graphics.h>

#include<stdio.h>

void main()

{

int gd = DETECT, gm;

initgraph(&gd, &gm, “..\\bgi”);

setfi llstyle(SOLID_FILL,RED);

bar3d(150, 50, 250,150, 10, 1);

getch();

closegraph();

}

Solved Programming Exercises 5.65

Start

gd = DETECT

intigraph(&gd, &gm, “..\\bgi”)

setfillstyle(SOLID_FILL,RED)

bar3d(150, 50, 250, 150, 10, 1

closegraph()

Stop

Output

Unit 2: C PROGRAMMING

BASICS

Overview of C

6.1 HISTORY OF C

�C� seems a strange name for a programming language. But this strange sounding language
is one of the most popular computer languages today because it is a structured, high-level,
machine independent language. It allows software developers to develop programs without
worrying about the hardware platforms where they will be implemented.

The root of all modern languages is ALGOL, introduced in the early 1960s. ALGOL was
the first computer language to use a block structure. Although it never became popular in
USA, it was widely used in Europe. ALGOL gave the concept of structured programming to
the computer science community. Computer scientists like Corrado Bohm, Guiseppe Jacopini
and Edsger Dijkstra popularized this concept during 1960s. Subsequently, several languages
were announced.

In 1967, Martin Richards developed a language called BCPL (Basic Combined Program-
ming Language) primarily for writing system software. In 1970, Ken Thompson created a
language using many features of BCPL and called it simply B. B was used to create early
versions of UNIX operating system at Bell Laboratories. Both BCPL and B were �typeless�
system programming languages.

C was evolved from ALGOL, BCPL and B by Dennis Ritchie at the Bell Laboratories in
1972. C uses many concepts from these languages and added the concept of data types and
other powerful features. Since it was developed along with the UNIX operating system, it is
strongly associated with UNIX. This operating system, which was also developed at Bell
Laboratories, was coded almost entirely in C. UNIX is one of the most popular network
operating systems in use today and the heart of the Internet data superhighway.

For many years, C was used mainly in academic environments, but eventually with the
release of many C compilers for commercial use and the increasing popularity of UNIX, it
began to gain widespread support among computer professionals. Today, C is running under
a variety of operating system and hardware platforms.

During 1970s, C had evolved into what is now known as �traditional C�. The language
became more popular after publication of the book �The C Programming Language� by Brian
Kerningham and Dennis Ritchie in 1978. The book was so popular that the language came to
be known as �K&R C� among the programming community. The rapid growth of C led to the
development of different versions of the language that were similar but often incompatible.

This posed a serious problem for system developers.

6

Computer Programming6.4

To assure that the C language remains standard, in 1983, American National Standards

Institute (ANSI) appointed a technical committee to define a standard for C. The committee

approved a version of C in December 1989 which is now known as ANSI C. It was then

approved by the International Standards Organization (ISO) in 1990. This version of C is

also referred to as C89.

During 1990's, C++, a language entirely based on C, underwent a number of

improvements and changes and became an ANSI/ISO approved language in November 1977.

C++ added several new features to C to make it not only a true object-oriented language but

also a more versatile language. During the same period, Sun Microsystems of USA created a

new language Java modelled on C and C++.

All popular computer languages are dynamic in nature. They continue to improve their

power and scope by incorporating new features and C is no exception. Although C++ and

Java were evolved out of C, the standardization committee of C felt that a few features of

C++/Java, if added to C, would enhance the usefulness of the language. The result was the

1999 standard for C. This version is usually referred to as C99. The history and development

of C is illustrated in Fig. 6.1.

Fig. 6.1 History of ANSI C

Overview of C 6.5

Although C99 is an improved version, still many commonly available compilers do not

support all of the new features incorporated in C99. We, therefore, discuss all the new

features added by C99 in an appendix separately so that the readers who are interested can

quickly refer to the new material and use them wherever possible.

6.2 IMPORTANCE OF C

The increasing popularity of C is probably due to its many desirable qualities. It is a robust

language whose rich set of built-in functions and operators can be used to write any complex

program. The C compiler combines the capabilities of an assembly language with the features

of a high-level language and therefore it is well suited for writing both system software and

business packages. In fact, many of the C compilers available in the market are written in C.

Programs written in C are efficient and fast. This is due to its variety of data types and

powerful operators. It is many times faster than BASIC. For example, a program to

increment a variable from 0 to 15000 takes about one second in C while it takes more than 50

seconds in an interpreter BASIC.

There are only 32 keywords in ANSI C and its strength lies in its built-in functions. Sev-

eral standard functions are available which can be used for developing programs.

C is highly portable. This means that C programs written for one computer can be run on

another with little or no modification. Portability is important if we plan to use a new

computer with a different operating system.

C language is well suited for structured programming, thus requiring the user to think of

a problem in terms of function modules or blocks. A proper collection of these modules would

make a complete program. This modular structure makes program debugging, testing and

maintenance easier.

Another important feature of C is its ability to extend itself. A C program is basically a

collection of functions that are supported by the C library. We can continuously add our own

functions to C library. With the availability of a large number of functions, the programming

task becomes simple.

Before discussing specific features of C, we shall look at some sample C programs, and

analyze and understand how they work.

6.3 SAMPLE PROGRAM 1: PRINTING A MESSAGE

Consider a very simple program given in Fig. 6.2.

main()
{
/*…………printing begins………………*/

printf(“I see, I remember”);
/*………………printing ends…………………*/
}

Fig. 6.2 A program to print one line of text

Computer Programming6.6

This program when executed will produce the following output:

I see, I remember

Let us have a close look at the program. The first line informs the system that the name of

the program is main and the execution begins at this line. The main() is a special function

used by the C system to tell the computer where the program starts. Every program must

have exactly one main function. If we use more than one main function, the compiler cannot

understand which one marks the beginning of the program.

The empty pair of parentheses immediately following main indicates that the function

main has no arguments (or parameters). The concept of arguments will be discussed in

detail later when we discuss functions (in Chapter 9).

The opening brace �{ � in the second line marks the beginning of the function main and

the closing brace �}� in the last line indicates the end of the function. In this case, the closing

brace also marks the end of the program. All the statements between these two braces form

the function body. The function body contains a set of instructions to perform the given task.

In this case, the function body contains three statements out of which only the printf line

is an executable statement. The lines beginning with /* and ending with */ are known as

comment lines. These are used in a program to enhance its readability and understanding.

Comment lines are not executable statements and therefore anything between /* and */ is

ignored by the compiler. In general, a comment can be inserted wherever blank spaces can

occur�at the beginning, middle or end of a line��but never in the middle of a word �.

Although comments can appear anywhere, they cannot be nested in C. That means, we

cannot have comments inside comments. Once the compiler finds an opening token, it

ignores everything until it finds a closing token. The comment line

/* = = = =/* = = = = */ = = = = */

is not valid and therefore results in an error.

Since comments do not affect the execution speed and the size of a compiled program, we

should use them liberally in our programs. They help the programmers and other users in

understanding the various functions and operations of a program and serve as an aid to

debugging and testing. We shall see the use of comment lines more in the examples that

follow.

Let us now look at the printf() function, the only executable statement of the program.

printf(“I see, I remember”);

printf is a predefined standard C function for printing output. Predefined means that it is a

function that has already been written and compiled, and linked together with our program

at the time of linking. The concepts of compilation and linking are explained later in this

chapter. The printf function causes everything between the starting and the ending

quotation marks to be printed out. In this case, the output will be:

I see, I remember

Note that the print line ends with a semicolon. Every statement in C should end with a

semicolon (;) mark.

Suppose we want to print the above quotation in two lines as

I see,
I remember!

This can be achieved by adding another printf function as shown below:

Overview of C 6.7

printf(”I see, \n”);

printf(“I remember !”);

The information contained between the parentheses is called the argument of the func-

tion. This argument of the first printf function is � I see, \n� and the second is �I remember !�.

These arguments are simply strings of characters to be printed out.

Notice that the argument of the first printf contains a combination of two characters \

and n at the end of the string. This combination is collectively called the newline character.

A newline character instructs the computer to go to the next (new) line. It is similar in

concept to the carriage return key on a typewriter. After printing the character comma (,)

the presence of the newline character \n causes the string �I remember !� to be printed on

the next line. No space is allowed between \ and n.

If we omit the newline character from the first printf statement, then the output will

again be a single line as shown below.

I see, I remember !

This is similar to the output of the program in Fig. 6.2. However, note that there is no

space between , and I.

It is also possible to produce two or more lines of output by one printf statement with the

use of newline character at appropriate places. For example, the statement

printf(“I see,\n I remember !”);

will output

I see,

I remember !

while the statement

printf(“I\n.. see,\n… … … I\n… … … remember !”);

will print out

I
.. see,
… … … I
… … … remember !

NOTE: Some authors recommend the inclusion of the statement

#include <stdio.h>

at the beginning of all programs that use any input/output library functions. However, this

is not necessary for the functions printf and scanf which have been defined as a part of the

C language. See Chapter 4 for more on input and output functions.

Before we proceed to discuss further examples, we must note one important point. C does

make a distinction between uppercase and lowercase letters. For example, printf and

PRINTF are not the same. In C, everything is written in lowercase letters. However,

uppercase letters are used for symbolic names representing constants. We may also use

uppercase letters in output strings like �I SEE� and �I REMEMBER�

The above example that printed I see, I remember is one of the simplest programs.

Figure 6.3 highlights the general format of such simple programs. All C programs need a

main function.

Computer Programming6.8

main () Function name

Program statements

End of program

Start of program

Fig. 6.3 Format of simple C programs

The main Function

The main is a part of every C program. C permits different forms of main state ment.

Following forms are allowed.

· main()

· int main()

· void main()

· main(void)

· void main(void)

· int main(void)

The empty pair of parentheses indicates that the function has no arguments. This

may be explicitly indicated by using the keyword void inside the parentheses. We

may also specify the keyword int or void before the word main. The keyword void

means that the function does not return any information to the operating system and

int means that the function returns an integer value to the operating system. When

int is specified, the last statement in the program must be �return 0�. For the sake of

simplicity, we use the first form in our programs.

6.4 SAMPLE PROGRAM 2: ADDING TWO NUMBERS

Consider another program, which performs addition on two numbers and displays the re-

sult. The complete program is shown in Fig. 6.4.

/* Programm ADDITION line-1 */

/* Written by EBG line-2 */

main() /* line-3 */

{ /* line-4 */

Overview of C 6.9

int number; /* line-5 */

float amount; /* line-6 */

/* line-7 */

number = 100; /* line-8 */

/* line-9 */

amount = 30.75 + 75.35; /* line-10 */

printf(“%d\n”,number); /* line-11 */

printf(“%5.2f”,amount); /* line-12 */

} /* line-13 */

Fig. 6.4 Program to add two numbers

This program when executed will produce the following output:
100
106.10

The first two lines of the program are comment lines. It is a good practice to use comment

lines in the beginning to give information such as name of the program, author, date, etc.

Comment characters are also used in other lines to indicate line numbers.

The words number and amount are variable names that are used to store numeric data.

The numeric data may be either in integer form or in real form. In C, all variables should be

declared to tell the compiler what the variable names are and what type of data they hold.

The variables must be declared before they are used. In lines 5 and 6, the declarations
int number;
float amount;

tell the compiler that number is an integer (int) and amount is a floating (float) point

number. Declaration statements must appear at the beginning of the functions as shown in

Fig.6.4. All declaration statements end with a semicolon; C supports many other data types

and they are discussed in detail in Chapter 6.

The words such as int and float are called the keywords and cannot be used as variable

names. A list of keywords is given in Chapter 6.

Data is stored in a variable by assigning a data value to it. This is done in lines 8 and 10.

In line-8, an integer value 100 is assigned to the integer variable number and in line-10, the

result of addition of two real numbers 30.75 and 75.35 is assigned to the floating point

variable amount. The statements

number = 100;
amount = 30.75 + 75.35;

are called the assignment statements. Every assignment statement must have a semicolon

at the end.

The next statement is an output statement that prints the value of number. The print

statement

printf(“%d\n”, number);

contains two arguments. The first argument �%d� tells the compiler that the value of the

second argument number should be printed as a decimal integer. Note that these arguments

are separated by a comma. The newline character \n causes the next output to appear on a

new line.

Computer Programming6.10

The last statement of the program

printf(“%5.2f”, amount);

prints out the value of amount in floating point format. The format specification %5.2f tells

the compiler that the output must be in floating point, with five places in all and two places

to the right of the decimal point.

6.5 SAMPLE PROGRAM 3: INTEREST CALCULATION

The program in Fig. 6.5 calculates the value of money at the end of each year of investment,

assuming an interest rate of 11 percent and prints the year, and the corresponding amount,

in two columns. The output is shown in Fig. 6.6 for a period of 10 years with an initial

investment of 5000.00. The program uses the following formula:

Value at the end of year = Value at start of year (1 + interest rate)

In the program, the variable value represents the value of money at the end of the year

while amount represents the value of money at the start of the year. The statement
amount = value ;

makes the value at the end of the current year as the value at start of the next year.

/*—————————— INVESTMENT PROBLEM ——————————*/
#define PERIOD 10
#define PRINCIPAL 5000.00
/*—————————— MAIN PROGRAM BEGINS ——————————*/
main()
{ /*————————— DECLARATION STATEMENTS ————————*/

int year;
float amount, value, inrate;

/*————————— ASSIGNMENT STATEMENTS —————————*/
amount = PRINCIPAL;
inrate = 0.11;
year = 0;

/*————————— COMPUTATION STATEMENTS —————————*/
/*——————— COMPUTATION USING While LOOP ————————*/

while(year <= PERIOD)
{ printf(“%2d %8.2f\n”,year, amount);

value = amount + inrate * amount;
year = year + 1;

amount = value;
}

/*——————————— while LOOP ENDS ——————————*/
}

/*———————————— PROGRAM ENDS ———————————*/

Fig. 6.5 Program for investment problem

Overview of C 6.11

Let us consider the new features introduced in this program. The second and third lines

begin with #define instructions. A #define instruction defines value to a symbolic constant

for use in the program. Whenever a symbolic name is encountered, the compiler substitutes

the value associated with the name automatically. To change the value, we have to simply

change the definition. In this example, we have defined two symbolic constants PERIOD

and PRINCIPAL and assigned values 10 and 5000.00 respectively. These values remain

constant throughout the execution of the program.

0 5000.00

1 5550.00

2 6160.50

3 6838.15

4 7590.35

5 8425.29

6 9352.07

7 10380.00

8 11522.69

9 12790.00

10 14197.11

Fig. 6.6 Output of the investment program

The #define Directive

A #define is a preprocessor compiler directive and not a statement. Therefore

#define lines should not end with a semicolon. Symbolic constants are generally

written in uppercase so that they are easily distinguished from lowercase variable

names. #define instructions are usually placed at the beginning before the main()

function. Symbolic constants are not declared in declaration section. Preprocessor

directives are discussed in Chapter 14.

We must note that the defined constants are not variables. We may not change their

values within the program by using an assignment statement. For example, the statement

PRINCIPAL = 10000.00;

is illegal.

The declaration section declares year as integer and amount, value and inrate as float-

ing point numbers. Note all the floating-point variables are declared in one statement. They

can also be declared as

Computer Programming6.12

float amount;
float value;
float inrate;

When two or more variables are declared in one statement, they are separated by a comma.

All computations and printing are accomplished in a while loop. while is a mechanism

for evaluating repeatedly a statement or a group of statements. In this case as long as the

value of year is less than or equal to the value of PERIOD, the four statements that follow

while are executed. Note that these four statements are grouped by braces. We exit the loop

when year becomes greater than PERIOD. The concept and types of loops are discussed in

Chapter 6.

C supports the basic four arithmetic operators (�, +, *, /) along with several others. They

are discussed in Chapter 3.

6.6 SAMPLE PROGRAM 4: USE OF SUBROUTINES

So far, we have used only printf function that has been provided for us by the C system. The

program shown in Fig. 6.7 uses a user-defined function. A function defined by the user is

equivalent to a subroutine in FORTRAN or subprogram in BASIC.

Figure 6.7 presents a very simple program that uses a mul () function. The program will

print the following output.

Multiplication of 5 and 10 is 50

/*————————— PROGRAM USING FUNCTION —————————*/
int mul (int a, int b); /*——— DECLARATION ——————*/
/*—————————— MAIN PROGRAM BEGINS ——————————*/

main ()
{

int a, b, c;
a = 5;
b = 10;
c = mul (a,b);

printf (“multiplication of %d and %d is %d”,a,b,c);
}

/* —————————— MAIN PROGRAM ENDS
MUL() FUNCTION STARTS —————————————*/

int mul (int x, int y)
int p;
{

p = x*y;
return(p);

}
/* —————————————— MUL () FUNCTION ENDS —————————————*/

Fig. 6.7 A program using a user-defined function

Overview of C 6.13

The mul () function multiplies the values of x and y and the result is returned to the

main () function when it is called in the statement
c = mul (a, b);

The mul () has two arguments x and y that are declared as integers. The values of a and

b are passed on to x and y respectively when the function mul () is called. User-defined

functions are considered in detail in Chapter 9.

6.7 SAMPLE PROGRAM 5: USE OF MATH FUNCTIONS

We often use standard mathematical functions such as cos, sin, exp, etc. We shall see now
the use of a mathematical function in a program. The standard mathematical functions are

defined and kept as a part of C math library. If we want to use any of these mathematical

functions, we must add an #include instruction in the program. Like #define, it is also a
compiler directive that instructs the compiler to link the specified mathematical functions

from the library. The instruction is of the form
#include <math.h>

math.h is the filename containing the required function. Figure 6.8 illustrates the use of

cosine function. The program calculates cosine values for angles 0, 10, 20����.180 and

prints out the results with headings.

/*——————— PROGRAM USING COSINE FUNCTION ——————— */
#include <math.h>
#define PI 3.1416
#define MAX 180

main ()
{

int angle;
float x,y;

angle = 0;
printf(“ Angle Cos(angle)\n\n”);

while(angle <= MAX)
{

x = (PI/MAX)*angle;
y = cos(x);
printf(“%15d %13.4f\n”, angle, y);
angle = angle + 10;

}
}

 Output
Angle Cos(angle)

0 1.0000
10 0.9848
20 0.9397
30 0.8660

Computer Programming6.14

40 0.7660
50 0.6428
60 0.5000
70 0.3420
80 0.1736
90 –0.0000

100 –0.1737
110 –0.3420
120 –0.5000
130 –0.6428
140 –0.7660
150 –0.8660
160 –0.9397
170 –0.9848
180 –1.0000

Fig. 6.8 Program using a math function

Another #include instruction that is often required is
#include <stdio.h>

stdio.h refers to the standard I/O header file containing standard input and output

functions

The #include Directive

As mentioned earlier, C programs are divided into modules or functions. Some

functions are written by users, like us, and many others are stored in the C library.

Library functions are grouped category-wise and stored in different files known as

header files. If we want to access the functions stored in the library, it is necessary

to tell the compiler about the files to be accessed.

This is achieved by using the preprocessor directive #include as follows:

#include<filename>

filename is the name of the library file that contains the required function defini-

tion. Preprocessor directives are placed at the beginning of a program.

A list of library functions and header files containing them are given in Appendix III.

6.8 BASIC STRUCTURE OF C PROGRAMS

The examples discussed so far illustrate that a C program can be viewed as a group of build-

ing blocks called functions. A function is a subroutine that may include one or more state-

Overview of C 6.15

ments designed to perform a specific task. To write a C program, we first create functions

and then put them together. A C program may contain one or more sections as shown in Fig.

6.9.

The documentation section consists of a set of comment lines giving the name of the pro-

gram, the author and other details, which the programmer would like to use later. The link

section provides instructions to the compiler to link functions from the system library. The

definition section defines all symbolic constants.

There are some variables that are used in more than one function. Such variables are

called global variables and are declared in the global declaration section that is outside of all

the functions. This section also declares all the user-defined functions.

Every C program must have one main() function section. This section contains two parts,

declaration part and executable part. The declaration part declares all the variables used in

the executable part. There is at least one statement in the executable part. These two parts

must appear between the opening and the closing braces. The program execution begins at

the opening brace and ends at the closing brace. The closing brace of the main function

section is the logical end of the program. All statements in the declaration and executable

parts end with a semicolon(;).

Documentation Section

Link Section

Definition Section

Global Declaration Section

main () Function Section

Subprogram section

Declaration part

Executable part

(User-defined functions)

Function 1

Function 2

-

-

Function n

Fig. 6.9 An overview of a C program

The subprogram section contains all the user-defined functions that are called in the main

function. User-defined functions are generally placed immediately after the main function,

although they may appear in any order.

Computer Programming6.16

All sections, except the main function section may be absent when they are not required.

6.9 PROGRAMMING STYLE

Unlike some other programming languages (COBOL, FORTRAN, etc.,) C is a free-form lan-

guage. That is, the C compiler does not care, where on the line we begin typing. While this

may be a licence for bad programming, we should try to use this fact to our advantage in

developing readable programs. Although several alternative styles are possible, we should

select one style and use it with total consistency.

First of all, we must develop the habit of writing programs in lowercase letters. C program

statements are written in lowercase letters. Uppercase letters are used only for symbolic

constants.

Braces, group program statements together and mark the beginning and the end of func-

tions. A proper indentation of braces and statements would make a program easier to read

and debug. Note how the braces are aligned and the statements are indented in the program

of Fig. 6.5.

Since C is a free-form language, we can group statements together on one line. The state-

ments
a = b;
x = y + 1;
z = a + x;

can be written on one line as
a = b; x = y+1; z = a+x;

The program
main()
{

printf(“hello C”);
}

may be written in one line like
main() {printf(“Hello C”)};

However, this style make the program more difficult to understand and should not be

used. In this book, each statement is written on a separate line.

The generous use of comments inside a program cannot be overemphasized. Judiciously

inserted comments not only increase the readability but also help to understand the program

logic. This is very important for debugging and testing the program.

6.10 EXECUTING A �C� PROGRAM

Executing a program written in C involves a series of steps. These are:

1. Creating the program;

2. Compiling the program;

3. Linking the program with functions that are needed from the C library; and

4. Executing the program.

Figure 6.10 illustrates the process of creating, compiling and executing a C program.

Although these steps remain the same irrespective of the operating system, system

Overview of C 6.17

commands for implementing the steps and conventions for naming files may differ on

different systems.

An operating system is a program that controls the entire operation of a computer system.

All input/output operations are channeled through the operating system. The operating sys-

tem, which is an interface between the hardware and the user, handles the execution of user

programs.

The two most popular operating systems today are UNIX (for minicomputers) and MS-

DOS (for microcomputers). We shall discuss briefly the procedure to be followed in executing

C programs under both these operating systems in the following sections.

Fig. 6.10 Process of compiling and running a C program

Computer Programming6.18

6.11 UNIX SYSTEM

Creating the program

Once we load the UNIX operating system into the memory, the computer is ready to receive

program. The program must be entered into a file. The file name can consist of letters, digits

and special characters, followed by a dot and a letter c. Examples of valid file names are:

hello.c
program.c
ebg1.c

The file is created with the help of a text editor, either ed or vi. The command for calling

the editor and creating the file is

ed filename

If the file existed before, it is loaded. If it does not yet exist, the file has to be created so

that it is ready to receive the new program. Any corrections in the program are done under

the editor. (The name of your system�s editor may be different. Check your system manual.)

When the editing is over, the file is saved on disk. It can then be referenced any time later

by its file name. The program that is entered into the file is known as the source program,

since it represents the original form of the program.

Compiling and Linking

Let us assume that the source program has been created in a file named ebg1.c. Now the

program is ready for compilation. The compilation command to achieve this task under UNIX

is

cc ebg1.c

The source program instructions are now translated into a form that is suitable for

execution by the computer. The translation is done after examining each instruction for its

correctness. If everything is alright, the compilation proceeds silently and the translated

program is stored on another file with the name ebg1.o. This program is known as object

code.

Linking is the process of putting together other program files and functions that are

required by the program. For example, if the program is using exp() function, then the

object code of this function should be brought from the math library of the system and

linked to the main program. Under UNIX, the linking is automatically done (if no errors are

detected) when the cc command is used.

If any mistakes in the syntax and semantics of the language are discovered, they are listed

out and the compilation process ends right there. The errors should be corrected in the

source program with the help of the editor and the compilation is done again.

The compiled and linked program is called the executable object code and is stored

automatically in another file named a.out.

Note that some systems use different compilation command for linking mathematical

functions.

cc filename - lm

is the command under UNIPLUS SYSTEM V operating system.

Overview of C 6.19

Executing the Program

Execution is a simple task. The command

a.out

would load the executable object code into the computer memory and execute the instruc-

tions. During execution, the program may request for some data to be entered through the

keyboard. Sometimes the program does not produce the desired results. Perhaps, something

is wrong with the program logic or data. Then it would be necessary to correct the source

program or the data. In case the source program is modified, the entire process of compiling,

linking and executing the program should be repeated.

Creating Your Own Executable File

Note that the linker always assigns the same name a.out. When we compile another pro-

gram, this file will be overwritten by the executable object code of the new program. If we

want to prevent from happening, we should rename the file immediately by using the

command.

mv a.out name

We may also achieve this by specifying an option in the cc command as follows:

cc –o name source-file

This will store the executable object code in the file name and prevent the old file a.out

from being destroyed.

Multiple Source Files

To compile and link multiple source program files, we must append all the files names to the

cc command.

cc filename-1.c …. filename-n.c

These files will be separately compiled into object files called

filename-i.o

and then linked to produce an executable program file a.out as shown in Fig. 6.11.

It is also possible to compile each file separately and link them later. For example, the

commands

cc –c mod1.c

cc –c mod2.c

will compile the source files mod1.c and mod2.c into objects files mod1.o and mod2.o. They

can be linked together by the command

cc mod1.o mod2.o

we may also combine the source files and object files as follows:

cc mod1.c mod2.o

Only mod1.c is compiled and then linked with the object file mod2.o. This approach is useful

when one of the multiple source files need to be changed and recompiled or an already exist-

ing object files is to be used along with the program to be compiled.

Computer Programming6.20

.C .C

a.out

.C

Compiler and
preprocessor

.O .O .O Library

Linker

Fig. 6.11 Compilation of multiple files

6.12 MS-DOS SYSTEM

The program can be created using any word processing software in non-document mode. The

file name should end with the characters �.c� like program.c, pay.c, etc. Then the command
MSC pay.c

under MS-DOS operating system would load the program stored in the file pay.c and gener-

ate the object code. This code is stored in another file under name pay.obj. In case any

language errors are found, the compilation is not completed. The program should then be

corrected and compiled again.

The linking is done by the command
LINK pay.obj

which generates the executable code with the filename pay.exe. Now the command
pay

would execute the program and give the results.

- Every C program requires a main() function (Use of more than one main()

is illegal). The place main is where the program execution begins.

- The execution of a function begins at the opening brace of the function and

ends at the corresponding closing brace.

- C programs are written in lowercase letters. However, uppercase letters

are used for symbolic names and output strings.

- All the words in a program line must be separated from each other by at

least one space, or a tab, or a punctuation mark.

- Every program statement in a C language must end with a semicolon.

- All variables must be declared for their types before they are used in the

program.

- We must make sure to include header files using #include directive when

the program refers to special names and functions that it does not define.

- Compiler directives such as define and include are special instructions

Overview of C 6.21

to the compiler to help it compile a program. They do not end with a semi-

colon.

- The sign # of compiler directives must appear in the first column of the

line.

- When braces are used to group statements, make sure that the opening

brace has a corresponding closing brace.

- C is a free-form language and therefore a proper form of indentation of

various sections would improve legibility of the program.

- A comment can be inserted almost anywhere a space can appear. Use of

appropriate comments in proper places increases readability and under-

standability of the program and helps users in debugging and testing. Re-

member to match the symbols /* and */ appropriately.

6.1 State whether the following statements are true or false.

(a) Every line in a C program should end with a semicolon.

(b) In C language lowercase letters are significant.

(c) Every C program ends with an END word.

(d) main() is where the program begins its execution.

(e) A line in a program may have more than one statement.

(f) A printf statement can generate only one line of output.

(g) The closing brace of the main() in a program is the logical end of the program.

(h) The purpose of the header file such as stdio.h is to store the source code of a

program.

(i) Comments cause the computer to print the text enclosed between /* and */ when

executed.

(j) Syntax errors will be detected by the compiler.

6.2 Which of the following statements are true?

(a) Every C program must have at least one user-defined function.

(b) Only one function may be named main().

(c) Declaration section contains instructions to the computer.

6.3 Which of the following statements about comments are false?

(a) Use of comments reduces the speed of execution of a program.

(b) Comments serve as internal documentation for programmers.

(c) A comment can be inserted in the middle of a statement.

(d) In C, we can have comments inside comments.

6.4 Fill in the blanks with appropriate words in each of the following statements.

(a) Every program statement in a C program must end with a ___________

(b) The ____________ Function is used to display the output on the screen.

(c) The ____________ header file contains mathematical functions.

(d) The escape sequence character ____________ causes the cursor to move to the

next line on the screen.

6.5 Remove the semicolon at the end of the printf statement in the program of Fig. 6.2

and execute it. What is the output?

Computer Programming6.22

6.6 In the Sample Program 2, delete line-5 and execute the program. How helpful is the

error message?

6.7 Modify the Sample Program 3 to display the following output:

Year Amount

1 5500.00

2 6160.00

- ����

- ����

10 14197.11

6.8 Find errors, if any, in the following program:
/* A simple program
int main()
{

/* Does nothing */
}

6.9 Find errors, if any, in the following program:
#include (stdio.h)
void main(void)
{

print(“Hello C”);
}

6.10 Find errors, if any, in the following program:
Include <math.h>
main { }
(

FLOAT X;
X = 2.5;
Y = exp(x);
Print(x,y);

)
6.11 Why and when do we use the #define directive?

6.12 Why and when do we use the #include directive?

6.13 What does void main(void) mean?

6.14 Distinguish between the following pairs:

(a) main() and void main(void)

(b) int main() and void main()

6.15 Why do we need to use comments in programs?

6.16 Why is the look of a program is important?

6.17 Where are blank spaces permitted in a C program?

6.18 Describe the structure of a C program.

6.19 Describe the process of creating and executing a C program under UNIX system.

6.20 How do we implement multiple source program files?

6.1 Write a program that will print your mailing address in the following form:

First line : Name

Overview of C 6.23

Second line : Door No, Street

Third line : City, Pin code

6.2 Modify the above program to provide border lines to the address.

6.3 Write a program using one print statement to print the pattern of asterisks as shown

below:

*

* *

* * *

* * * *

6.4 Write a program that will print the following figure using suitable characters.

6.5 Given the radius of a circle, write a program to compute and display its area. Use a

symbolic constant to define the p value and assume a suitable value for radius.

6.6 Write a program to output the following multiplication table:

5 ´ 1 = 5

5 ´ 2 = 10

5 ´ 3 = 15

. .

. .

5 ´ 10 = 50

6.7 Given two integers 20 and 10, write a program that uses a function add() to add these

two numbers and sub() to find the difference of these two numbers and then display

the sum and difference in the following form:

20 + 10 = 30

20 � 10 = 10

6.8 Given the values of three variables a, b and c, write a program to compute and display

the value of x, where

x =
a

b c-

Execute your program for the following values:

(a) a = 250, b = 85, c = 25

(b) a = 300, b = 70, c = 70

Comment on the output in each case.

6.9 Relationship between Celsius and Fahrenheit is governed by the formula

F =
9

32
5

+

C

Write a program to convert the temperature

Computer Programming6.24

(a) from Celsius to Fahrenheit and

(b) from Fahrenheit to Celsius.

6.10 Area of a triangle is given by the formula

A = S(S-a) (S-b) (S-c)

Where a, b and c are sides of the triangle and 2S = a + b + c. Write a program to

compute the area of the triangle given the values of a, b and c.

6.11 Distance between two points (x1, y1) and (x2, y2) is governed by the formula

D2 = (x2 � x1)
2 + (y2 � y1)

2

Write a program to compute D given the coordinates of the points.

6.12 A point on the circumference of a circle whose center is (o, o) is (4,5). Write a program

to compute perimeter and area of the circle. (Hint: use the formula given in the

Ex. 1.11)

6.13 The line joining the points (2,2) and (5,6) which lie on the circumference of a circle is

the diameter of the circle. Write a program to compute the area of the circle.

6.14 Write a program to display the equation of a line in the form

ax + by = c

for a = 5, b = 8 and c = 18.

6.15 Write a program to display the following simple arithmetic calculator

x = y =

sum Difference =

Product = Division =

Constants,Variables,
and Data Types

7.1 INTRODUCTION

A programming language is designed to help process certain kinds of data consisting of
numbers, characters and strings and to provide useful output known as information. The
task of processing of data is accomplished by executing a sequence of precise instructions
called a program. These instructions are formed using certain symbols and words according
to some rigid rules known as syntax rules (or grammar). Every program instruction must
confirm precisely to the syntax rules of the language.

Like any other language, C has its own vocabulary and grammar. In this chapter, we will
discuss the concepts of constants and variables and their types as they relate to C program-
ming language.

7.2 CHARACTER SET

The characters that can be used to form words, numbers and expressions depend upon the
computer on which the program is run. However, a subset of characters is available that can
be used on most personal, micro, mini and mainframe computers. The characters in C are
grouped into the following categories:

1. Letters
2. Digits
3. Special characters
4. White spaces

The entire character set is given in Table 7.1.
The compiler ignores white spaces unless they are a part of a string constant. White spaces

may be used to separate words, but are prohibited between the characters of keywords and
identifiers.

7

Computer Programming7.2

Trigraph Characters

Many non-English keyboards do not support all the characters mentioned in Table 7.1. ANSI
C introduces the concept of �trigraph� sequences to provide a way to enter certain characters
that are not available on some keyboards. Each trigraph sequence consists of three charac-
ters (two question marks followed by another character) as shown in Table 7.2.
For example, if a keyboard does not support square brackets, we can still use them in a
program using the trigraphs ??(and ??).

Table 7.1 C Character Set

Letters Digits

Uppercase A.....Z All decimal digits 09

Lowercase a.....z

Special Characters

, comma & ampersand

. period ^ caret

; semicolon * asterisk

: colon � minus sign

? question mark + plus sign

� apostrophe < opening angle bracket

� quotation mark (or less than sign)

! exclamation mark > closing angle bracket

| vertical bar (or greater than sign)

/ slash (left parenthesis

\ backslash) right parenthesis

~ tilde [left bracket

_ under score] right bracket

$ dollar sign { left brace

% percent sign } right brace

number sign

White Spaces

Blank space

Horizontal tab

Carriage return

New line

Form feed

Table 7.2 ANSI C Trigraph Sequences

Trigraph sequence Translation

??= # number sign

??([left bracket

??)] right bracket

??< { left brace

??> } right brace

??! | vetical bar

??/ \ back slash

??/ ^ caret

??- ~ tilde

 7.3Constants, Variables, and Data Types

7.3 C TOKENS

In a passage of text, individual words and punctuation marks are called tokens. Similarly, in
a C program the smallest individual units are known as C tokens. C has six types of tokens
as shown in Fig. 7.1. C programs are written using these tokens and the syntax of the lan-
guage.

Fig. 7.1 C tokens and examples

7.4 KEYWORDS AND IDENTIFIERS

Every C word is classified as either a keyword or an identifier. All keywords have fixed
meanings and these meanings cannot be changed. Keywords serve as basic building blocks
for program statements. The list of all keywords of ANSI C are listed in Table 7.3. All key-
words must be written in lowercase. Some compilers may use additional keywords that must
be identified from the C manual.

NOTE: C99 adds some more keywords. See the Appendix "C99 Features".

Table 7.3 ANSI C Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Identifiers refer to the names of variables, functions and arrays. These are user-defined
names and consist of a sequence of letters and digits, with a letter as a first character. Both

Computer Programming7.4

uppercase and lowercase letters are permitted, although lowercase letters are commonly
used. The underscore character is also permitted in identifiers. It is usually used as a link
between two words in long identifiers.

Rules for Identifiers

1. First character must be an alphabet (or underscore).

2. Must consist of only letters, digits or underscore.

3. Only first 31 characters are significant.

4. Cannot use a keyword.

5. Must not contain white space.

7.5 CONSTANTS

Constants in C refer to fixed values that do not change during the execution of a program. C
supports several types of constants as illustrated in Fig. 7.2.

Fig. 7.2 Basic types of C constants

Integer Constants

An integer constant refers to a sequence of digits. There are three types of integers, namely,
decimal integer, octal integer and hexadecimal integer.

Decimal integers consist of a set of digits, 0 through 9, preceded by an optional � or + sign.
Valid examples of decimal integer constants are:

123 � 321 0 654321 +78
Embedded spaces, commas, and non-digit characters are not permitted between digits.

For example,
15 750 20,000 $1000

are illegal numbers.

 7.5Constants, Variables, and Data Types

Note: ANSI C supports unary plus which was not defined earlier.
An octal integer constant consists of any combination of digits from the set 0 through 7,

with a leading 0. Some examples of octal integer are:
037 0 0435 0551

A sequence of digits preceded by 0x or 0X is considered as hexadecimal integer. They may
also include alphabets A through F or a through f. The letter A through F represent the
numbers 10 through 15. Following are the examples of valid hex integers:

0X2 0x9F 0Xbcd 0x
We rarely use octal and hexadecimal numbers in programming.
The largest integer value that can be stored is machine-dependent. It is 32767 on 16-bit

machines and 2,147,483,647 on 32-bit machines. It is also possible to store larger integer
constants on these machines by appending qualifiers such as U,L and UL to the constants.
Examples:

56789U or 56789u (unsigned integer)
987612347UL or 98761234ul (unsigned long integer)
9876543L or 9876543l (long integer)

The concept of unsigned and long integers are discussed in detail in Section 7.7.

Example 7.1 Representation of integer constants on a 16-bit computer.

The program in Fig.7.3 illustrates the use of integer constants on a 16-bit machine. The
output in Fig. 7.3 shows that the integer values larger than 32767 are not properly stored on
a 16-bit machine. However, when they are qualified as long integer (by appending L), the
values are correctly stored.

Program
main()
{

printf(“Integer values\n\n”);
printf(“%d %d %d\n”, 32767,32767+1,32767+10);
printf(“\n”);
printf(“Long integer values\n\n”);
printf(“%ld %ld %ld\n”, 32767L,32767L+1L,32767L+10L);

}
Output

Integer values
32767 -32768 -32759
Long integer values
32767 32768 32777

Fig. 7.3 Representation of integer constants on 16-bit machine

Real Constants

Integer numbers are inadequate to represent quantities that vary continuously, such as
distances, heights, temperatures, prices, and so on. These quantities are represented by
numbers containing fractional parts like 17.548. Such numbers are called real (or floating

point) constants. Further examples of real constants are:

Computer Programming7.6

0.0083 �0.75 435.36 +247.0

These numbers are shown in decimal notation, having a whole number followed by a
decimal point and the fractional part. It is possible to omit digits before the decimal point, or
digits after the decimal point. That is,

215. .95 �.71 +.5

are all valid real numbers.
A real number may also be expressed in exponential (or scientific) notation. For example,

the value 215.65 may be written as 2.1565e2 in exponential notation. e2 means multiply by
102. The general form is:

mantissa e exponent

The mantissa is either a real number expressed in decimal notation or an integer. The expo-

nent is an integer number with an optional plus or minus sign. The letter e separating the
mantissa and the exponent can be written in either lowercase or uppercase. Since the expo-
nent causes the decimal point to �float�, this notation is said to represent a real number in
floating point form. Examples of legal floating-point constants are:

0.65e4 12e-2 1.5e+5 3.18E3 -1.2E-1

Embedded white space is not allowed.
Exponential notation is useful for representing numbers that are either very large or very

small in magnitude. For example, 7500000000 may be written as 7.5E9 or 75E8. Similarly, -
0.000000368 is equivalent to �3.68E-7.

Floating-point constants are normally represented as double-precision quantities. How-
ever, the suffixes f or F may be used to force single-precision and l or L to extend double
precision further.

Some examples of valid and invalid numeric constants are given in Table 7.4.

Table 7.4 Examples of Numeric Constants

Constant Valid ? Remarks

698354L Yes Represents long integer

25,000 No Comma is not allowed

+5.0E3 Yes (ANSI C supports unary plus)

3.5e-5 Yes

7.1e 4 No No white space is permitted

-4.5e-2 Yes

1.5E+2.5 No Exponent must be an integer

$255 No $ symbol is not permitted

0X7B Yes Hexadecimal integer

Single Character Constants

A single character constant (or simply character constant) contains a single character en-
closed within a pair of single quote marks. Example of character constants are:

�5� �X� �;� � �

 7.7Constants, Variables, and Data Types

Note that the character constant �5� is not the same as the number 5. The last constant is
a blank space.

Character constants have integer values known as ASCII values. For example, the state-
ment

printf(“%d”, ‘a’);
would print the number 97, the ASCII value of the letter a. Similarly, the statement

printf(“%c”, ‘97’);
would output the letter �a�. ASCII values for all characters are given in Appendix II.

Since each character constant represents an integer value, it is also possible to perform
arithmetic operations on character constants. They are discussed in Chapter 8.

String Constants

A string constant is a sequence of characters enclosed in double quotes. The characters may
be letters, numbers, special characters and blank space. Examples are:

�Hello!� �1987� �WELL DONE� �?...!� �5+3� �X�

Remember that a character constant (e.g., �X�) is not equivalent to the single character
string constant (e.g., �X�). Further, a single character string constant does not have an
equivalent integer value while a character constant has an integer value. Character strings
are often used in programs to build meaningful programs. Manipulation of character strings
are considered in detail in Chapter 8.

Backslash Character Constants

C supports some special backslash character constants that are used in output functions. For
example, the symbol �\n� stands for newline character. A list of such backslash character
constants is given in Table 7.5. Note that each one of them represents one character, al-
though they consist of two characters. These characters combinations are known as escape

sequences.

Table 7.5 Backslash Character Constants

Constant Meaning

�\a� audible alert (bell)

�\b� back space

�\f� form feed

�\n� new line

�\r� carriage return

�\t� horizontal tab

�\v� vertical tab

�\� single quote

�\�� double quote

�\?� question mark

�\\� backslash

�\0� null

Computer Programming7.8

7.6 VARIABLES

A variable is a data name that may be used to store a data value. Unlike constants that
remain unchanged during the execution of a program, a variable may take different values
at different times during execution. In Chapter 1, we used several variables. For instance,
we used the variable amount in Sample Program 3 to store the value of money at the end of
each year (after adding the interest earned during that year).

A variable name can be chosen by the programmer in a meaningful way so as to reflect its
function or nature in the program. Some examples of such names are:

Average

height

Total

Counter_1

class_strength

As mentioned earlier, variable names may consist of letters, digits, and the underscore(_)
character, subject to the following conditions:

1. They must begin with a letter. Some systems permit underscore as the first character.
2. ANSI standard recognizes a length of 31 characters. However, length should not be

normally more than eight characters, since only the first eight characters are treated
as significant by many compilers. (In C99, at least 63 characters are significant.)

3. Uppercase and lowercase are significant. That is, the varible Total is not the same as
total or TOTAL.

4. It should not be a keyword.
5. White space is not allowed.

Some examples of valid variable names are:

John Value T_raise
Delhi x1 ph_value
mark sum1 distance

Invalid examples include:
123 (area)

% 25th

Further examples of variable names and their correctness are given in Table 7.6.

Table 7.6 Examples of Variable Names

Variable name Valid ? Remark

First_tag Valid

char Not valid char is a keyword

Price$ Not valid Dollar sign is illegal

group one Not valid Blank space is not permitted

average_number Valid First eight characters are significant

int_type Valid Keyword may be part of a name

 7.9Constants, Variables, and Data Types

If only the first eight characters are recognized by a compiler, then the two names

average_height

average_weight

mean the same thing to the computer. Such names can be rewritten as

avg_height and avg_weight

or

ht_average and wt_average

without changing their meanings.

7.7 DATA TYPES

C language is rich in its data types. Storage representations and machine instructions to
handle constants differ from machine to machine. The variety of data types available allow
the programmer to select the type appropriate to the needs of the application as well as the
machine.

ANSI C supports three classes of data types:

1. Primary (or fundamental) data types

2. Derived data types

3. User-defined data types

The primary data types and their extensions are discussed in this section. The user-de-
fined data types are defined in the next section while the derived data types such as arrays,
functions, structures and pointers are discussed as and when they are encountered.

All C compilers support five fundamental data types, namely integer (int), character
(char), floating point (float), double-precision floating point (double) and void. Many of
them also offer extended data types such as long int and long double. Various data types
and the terminology used to describe them are given in Fig. 7.4. The range of the basic four
types are given in Table 7.7. We discuss briefly each one of them in this section.

NOTE: C99 adds three more data types, namely _Bool, _Complex, and _Imaginary. See the
Appendix �C99 Features�.

Computer Programming7.10

PRIMARY DATA TYPES

Integral Type

signed

int

short int

long int

float double Long double
void

unsigned type

Floating point Type

unsigned int

char

Integer Character

unsigned short int

signed char

unsigned long int

unsigned char

Fig. 7.4 Primary data types in C

Table 7.7 Size and Range of Basic Data Types on 16-bit Machines

Data type Range of values

char �128 to 127

int �32,768 to 32,767

float 3.4e�38 to 3.4e+e38

double 1.7e�308 to 1.7e+308

Integer Types

Integers are whole numbers with a range of values supported by a particular machine. Gen-
erally, integers occupy one word of storage, and since the word sizes of machines vary (typi-
cally, 16 or 32 bits) the size of an integer that can be stored depends on the computer. If we
use a 16 bit word length, the size of the integer value is limited to the range �32768 to +32767
(that is, �215 to +215�1). A signed integer uses one bit for sign and 15 bits for the magnitude
of the number. Similarly, a 32 bit word length can store an integer ranging from -
2,147,483,648 to 2,147,483,647.

In order to provide some control over the range of numbers and storage space, C has three
classes of integer storage, namely short int, int, and long int, in both signed and un-

signed forms. ANSI C defines these types so that they can be organized from the smallest to
the largest, as shown in Fig. 7.5. For example, short int represents fairly small integer
values and requires half the amount of storage as a regular int number uses. Unlike signed

 7.11Constants, Variables, and Data Types

integers, unsigned integers use all the bits for the magnitude of the number and are always
positive. Therefore, for a 16 bit machine, the range of unsigned integer numbers will be from
0 to 65,535.

short int

long int

int

Fig. 7.5 Integer types

We declare long and unsigned integers to increase the range of values. The use of quali-
fier signed on integers is optional because the default declaration assumes a signed number.
Table 7.8 shows all the allowed combinations of basic types and qualifiers and their size and
range on a 16-bit machine.

NOTE: C99 allows long long integer types. See the Appendix �C99 Features�.

Table 7.8 Size and Range of Data Types on a 16-bit Machine

Type Size (bits) Range

char or signed char 8 �128 to 127

unsigned char 8 0 to 255

int or signed int 16 �32,768 to 32,767

unsigned int 16 0 to 65535

short int or

signed short int 8 �128 to 127

unsigned short int 8 0 to 255

long int or

signed long int 32 �2,147,483,648 to 2,147,483,647

unsigned long int 32 0 to 4,294,967,295

float 32 3.4E � 38 to 3.4E + 38

double 64 1.7E � 308 to 1.7E + 308

long double 80 3.4E � 4932 to 1.1E + 4932

Floating Point Types

Floating point (or real) numbers are stored in 32 bits (on all 16 bit and 32 bit machines), with
6 digits of precision. Floating point numbers are defined in C by the keyword float. When
the accuracy provided by a float number is not sufficient, the type double can be used to
define the number. A double data type number uses 64 bits giving a precision of 14 digits.
These are known as double precision numbers. Remember that double type represents the
same data type that float represents, but with a greater precision. To extend the precision
further, we may use long double which uses 80 bits. The relationship among floating types
is illustrated in Fig. 7.6.

Computer Programming7.12

float

long double

double

Fig. 7.6 Floating-point types

Void Types

The void type has no values. This is usually used to specify the type of functions. The type of
a function is said to be void when it does not return any value to the calling function. It can
also play the role of a generic type, meaning that it can represent any of the other standard
types.

Character Types

A single character can be defined as a character(char) type data. Characters are usually
stored in 8 bits (one byte) of internal storage. The qualifier signed or unsigned may be
explicitly applied to char. While unsigned chars have values between 0 and 255, signed

chars have values from �128 to 127.

7.8 DECLARATION OF VARIABLES

After designing suitable variable names, we must declare them to the compiler. Declaration
does two things:

1. It tells the compiler what the variable name is.
2. It specifies what type of data the variable will hold.

The declaration of variables must be done before they are used in the program.

Primary Type Declaration

A variable can be used to store a value of any data type. That is, the name has nothing to do
with its type. The syntax for declaring a variable is as follows:

data-type v1,v2,....vn ;

v1, v2,vn are the names of variables. Variables are separated by commas. A declaration
statement must end with a semicolon. For example, valid declarations are:

int count;
int number, total;
double ratio;

int and double are the keywords to represent integer type and real type data values respec-
tively. Table 7.9 shows various data types and their keyword equivalents.

 7.13Constants, Variables, and Data Types

Table 7.9 Data Types and Their Keywords

Data type Keyword equivalent

Character char

Unsigned character unsigned char

Signed character signed char

Signed integer signed int (or int)

Signed short integer signed short int

(or short int or short)

Signed long integer signed long int

(or long int or long)

Unsigned integer unsigned int (or unsigned)

Unsigned short integer unsigned short int

(or unsigned short)

Unsigned long integer unsigned long int

(or unsigned long)

Floating point float

Double-precision

floating point double

Extended double-precision

floating point long double

The program segment given in Fig. 7.7 illustrates declaration of variables. main() is the
beginning of the program. The opening brace { signals the execution of the program. Decla-
ration of variables is usually done immediately after the opening brace of the program. The
variables can also be declared outside (either before or after) the main function. The impor-
tance of place of declaration will be dealt in detail later while discussing functions.

Note: C99 permits declaration of variables at any point within a function or block, prior to their use.

main() /*.........Program Name........................ */
{

/*................Declaration.......................*/
float x, y;
int code;
short int count;
long int amount;

double deviation;
unsigned n;
char c;

/*...............Computation....................... */
. . . .
. . . .
. . . .

} /*.............Program ends.........................*/

Fig. 7.7 Declaration of variables

Computer Programming7.14

When an adjective (qualifier) short, long, or unsigned is used without a basic data type
specifier, C compilers treat the data type as an int. If we want to declare a character variable
as unsigned, then we must do so using both the terms like unsigned char.

Default values of Constants

Integer constants, by default, represent int type data. We can override this default

by specifying unsigned or long after the number (by appending U or L) as shown

below:

Literal Type Value
+111 int 111
�222 int �222
45678U unsigned int 45,678
�56789L long int �56,789
987654UL unsigned long int 9,87,654

Similarly, floating point constants, by default represent double type data. If we

want the resulting data type to be float or long double, we must append the letter f

or F to the number for float and letter l or L for long double as shown below:

Literal Type Value
0. double 0.0
.0 double 0.0
12.0 double 12.0
1.234 double 1.234
�1.2f float �1.2
1.23456789L long double 1.23456789

User-Defined Type Declaration

C supports a feature known as �type definition� that allows users to define an identifier that
would represent an existing data type. The user-defined data type identifier can later be
used to declare variables . It takes the general form:

typedef type identifier;

Where type refers to an existing data type and �identifier� refers to the �new� name given to
the data type. The existing data type may belong to any class of type, including the user-
defined ones. Remember that the new type is �new� only in name, but not the data type.
typedef cannot create a new type. Some examples of type definition are:

typedef int units;
typedef float marks;

Here, units symbolizes int and marks symbolizes float. They can be later used to declare
variables as follows:

units batch1, batch2;
marks name1[50], name2[50];

 7.15Constants, Variables, and Data Types

batch1 and batch2 are inclared as int variable and name1[50] and name2[50] are declared as
50 element floating point array variables. The main advantage of typedef is that we can
create meaningful data type names for increasing the readability of the program.

Another user-defined data type is enumerated data type provided by ANSI standard. It is
defined as follows:

enum identifier {value1, value2, ... valuen};

The �identifier� is a user-defined enumerated data type which can be used to declare vari-
ables that can have one of the values enclosed within the braces (known as enumeration

constants). After this definition, we can declare variables to be of this �new� type as below:
enum identifier v1, v2, ... vn;

The enumerated variables v1, v2, ... vn can only have one of the values value1, value2, ...
valuen. The assignments of the following types are valid:

v1 = value3;
v5 = value1;

An example:

enum day {Monday,Tuesday, ... Sunday};
enum day week_st, week_end;
week_st = Monday;
week_end = Friday;
if(week_st == Tuesday)
week_end = Saturday;

The compiler automatically assigns integer digits beginning with 0 to all the enumeration
constants. That is, the enumeration constant value1 is assigned 0, value2 is assigned 1, and
so on. However, the automatic assignments can be overridden by assigning values explicitly
to the enumeration constants. For example:

enum day {Monday = 1, Tuesday, ... Sunday};
Here, the constant Monday is assigned the value of 1. The remaining constants are as-

signed values that increase successively by 1.
The definition and declaration of enumerated variables can be combined in one statement.

Example:

enum day {Monday, ... Sunday} week_st, week_end;

 7.9 DECLARATION OF STORAGE CLASS

Variables in C can have not only data type but also storage class that provides information
about their location and visibility. The storage class decides the portion of the program
within which the variables are recognized. Consider the following example:

/* Example of storage classes */
int m;

main()
{

int i;
float balance;
....

Computer Programming7.16

....
function1();

}
function1()
{

int i;
float sum;
....
....

}

The variable m which has been declared before the main is called global variable. It can
be used in all the functions in the program. It need not be declared in other functions. A
global variable is also known as an external variable.

The variables i, balance and sum are called local variables because they are declared
inside a function. Local variables are visible and meaningful only inside the functions in
which they are declared. They are not known to other functions. Note that the variable i has
been declared in both the functions. Any change in the value of i in one function does not
affect its value in the other.

C provides a variety of storage class specifiers that can be used to declare explicitly the
scope and lifetime of variables. The concepts of scope and lifetime are important only in
multifunction and multiple file programs and therefore the storage classes are considered in
detail later when functions are discussed. For now, remember that there are four storage
class specifiers (auto, register, static, and extern) whose meanings are given in Table
7.10.

The storage class is another qualifier (like long or unsigned) that can be added to a
variable declaration as shown below:

auto int count;
register char ch;
static int x;
extern long total;

Static and external (extern) variables are automatically initialized to zero. Automatic
(auto) variables contain undefined values (known as �garbage�) unless they are initialized
explicitly.

Table 7.10 Storage Classes and Their Meaning

Storage class Meaning

auto Local variable known only to the function in which it is declared. Default is auto.

static Local variable which exists and retains its value even after the control is transferred to

the calling function.

extern Global variable known to all functions in the file.

register Local variable which is stored in the register.

7.10 ASSIGNING VALUES TO VARIABLES

Variables are created for use in program statements such as,

 7.17Constants, Variables, and Data Types

value = amount + inrate * amount;
while (year <= PERIOD)
{

....

....
year = year + 1;

}

In the first statement, the numeric value stored in the variable inrate is multiplied by the
value stored in amount and the product is added to amount. The result is stored in the
variable value. This process is possible only if the variables amount and inrate have already
been given values. The variable value is called the target variable. While all the variables
are declared for their type, the variables that are used in expressions (on the right side of
equal (=) sign of a computational statement) must be assigned values before they are encoun-
tered in the program. Similarly, the variable year and the symbolic constant PERIOD in
the while statement must be assigned values before this statement is encountered.

Assignment Statement

Values can be assigned to variables using the assignment operator = as follows:

variable_name = constant;

We have already used such statements in Chapter 1. Further examples are:

initial_value = 0;
final_value = 100;
balance = 75.84;
yes = ‘x’;

C permits multiple assignments in one line. For example
initial_value = 0; final_value = 100;

are valid statements.
An assignment statement implies that the value of the variable on the left of the �equal

sign� is set equal to the value of the quantity (or the expression) on the right. The statement

year = year + 1;

means that the �new value� of year is equal to the �old value� of year plus 1.
During assignment operation, C converts the type of value on the right-hand side to the

type on the left. This may involve truncation when real value is converted to an integer.
It is also possible to assign a value to a variable at the time the variable is declared. This

takes the following form:

data-type variable_name = constant;

Some examples are:

int final_value = 100;
char yes = ‘x’;

double balance = 75.84;

Computer Programming7.18

The process of giving initial values to variables is called initialization. C permits the ini-

tialization of more than one variables in one statement using multiple assignment operators.
For example the statements

p = q = s = 0;
x = y = z = MAX;

are valid. The first statement initializes the variables p, q, and s to zero while the second
initializes x, y, and z with MAX. Note that MAX is a symbolic constant defined at the begin-
ning.

Remember that external and static variables are initialized to zero by default. Automatic
variables that are not initialized explicitly will contain garbage.

Example 7.2 Program in Fig. 7.8 shows typical declarations, assignments and values stored in

various types of variables.

The variables x and p have been declared as floating-point variables. Note that the way
the value of 1.234567890000 that we assigned to x is displayed under different output for-
mats. The value of x is displayed as 1.234567880630 under %.12lf format, while the actual

value assigned is 1.234567890000. This is because the variable x has been declared as a float

that can store values only up to six decimal places.
The variable m that has been declared as int is not able to store the value 54321 correctly.

Instead, it contains some garbage. Since this program was run on a 16-bit machine, the
maximum value that an int variable can store is only 32767. However, the variable k (de-
clared as unsigned) has stored the value 54321 correctly. Similarly, the long int variable n

has stored the value 1234567890 correctly.
The value 9.87654321 assigned to y declared as double has been stored correctly but the

value is printed as 9.876543 under %lf format. Note that unless specified otherwise, the

printf function will always display a float or double value to six decimal places. We will
discuss later the output formats for displaying numbers.

Program
main()
{
/*..........DECLARATIONS............................*/

float x, p ;
double y, q ;
unsigned k ;

/*..........DECLARATIONS AND ASSIGNMENTS............*/
int m = 54321 ;
long int n = 1234567890 ;

/*..........ASSIGNMENTS.............................*/
x = 1.234567890000 ;
y = 9.87654321 ;
k = 54321 ;
p = q = 1.0 ;

/*..........PRINTING................................*/

 7.19Constants, Variables, and Data Types

printf(“m = %d\n”, m) ;
printf(“n = %ld\n”, n) ;
printf(“x = %.12lf\n”, x) ;
printf(“x = %f\n”, x) ;
printf(“y = %.12lf\n”,y) ;
printf(“y = %lf\n”, y) ;
printf(“k = %u p = %f q = %.12lf\n”, k, p, q) ;

}

Output
m = -11215
n = 1234567890
x = 1.234567880630
x = 1.234568
y = 9.876543210000
y = 9.876543
k = 54321 p = 1.000000 q = 1.000000000000

Fig. 7.8 Examples of assignments

Reading Data from Keyboard

Another way of giving values to variables is to input data through keyboard using the scanf

function. It is a general input function available in C and is very similar in concept to the
printf function. It works much like an INPUT statement in BASIC. The general format of
scanf is as follows:

scanf(�control string�, &variable1,&variable2,....);

The control string contains the format of data being received. The ampersand symbol &
before each variable name is an operator that specifies the variable name�s address. We must
always use this operator, otherwise unexpected results may occur. Let us look at an exam-
ple:

scanf(“%d”, &number);
When this statement is encountered by the computer, the execution stops and waits for

the value of the variable number to be typed in. Since the control string �%d� specifies that
an integer value is to be read from the terminal, we have to type in the value in integer form.
Once the number is typed in and the �Return� Key is pressed, the computer then proceeds to
the next statement. Thus, the use of scanf provides an interactive feature and makes the
program �user friendly�. The value is assigned to the variable number.

Example 7.3 The program in Fig. 7.9 illustrates the use of scanf function.

The first executable statement in the program is a printf, requesting the user to enter an
integer number. This is known as �prompt message� and appears on the screen like

Enter an integer number

As soon as the user types in an integer number, the computer proceeds to compare the

Computer Programming7.20

value with 100. If the value typed in is less than 100, then a message

Your number is smaller than 100

is printed on the screen. Otherwise, the message

Your number contains more than two digits

is printed. Outputs of the program run for two different inputs are also shown in Fig. 7.9.

Program
main()
{

int number;

printf(“Enter an integer number\n”);
scanf (“%d”, &number);

if (number < 100)
printf(“Your number is smaller than 100\n\n”);

else
printf(“Your number contains more than two digits\n”);

}

Output
Enter an integer number
54
Your number is smaller than 100
Enter an integer number
108
Your number contains more than two digits

Fig. 7.9 Use of scanf function for interactive computing

Some compilers permit the use of the �prompt message� as a part of the control string in
scanf, like

scanf(“Enter a number %d”,&number);
We discuss more about scanf in Chapter 4.

In Fig. 7.9 we have used a decision statement if...else to decide whether the number is
less than 100. Decision statements are discussed in depth in Chapter 5.

Example 7.4 Sample program 3 discussed in Chapter 1 can be converted into a more

flexible interactive program using scanf as shown in Fig. 7.10.

In this case, computer requests the user to input the values of the amount to be invested,
interest rate and period of investment by printing a prompt message

Input amount, interest rate, and period

 7.21Constants, Variables, and Data Types

and then waits for input values. As soon as we finish entering the three values correspond-
ing to the

Program
main()
{

int year, period ;
float amount, inrate, value ;

printf(“Input amount, interest rate, and period\n\n”) ;
scanf (“%f %f %d”, &amount, &inrate, &period) ;
printf(“\n”) ;
year = 1 ;

while(year <= period)
{

value = amount + inrate * amount ;
printf(“%2d Rs %8.2f\n”, year, value) ;
amount = value ;
year = year + 1 ;

}
}

Output
Input amount, interest rate, and period

10000 0.14 5

1 Rs 11400.00
2 Rs 12996.00
3 Rs 14815.44
4 Rs 16889.60
5 Rs 19254.15

Input amount, interest rate, and period

20000 0.12 7

1 Rs 22400.00
2 Rs 25088.00
3 Rs 28098.56
4 Rs 31470.39
5 Rs 35246.84
6 Rs 39476.46
7 Rs 44213.63

Fig. 7.10 Interactive investment program

Computer Programming7.22

three variables amount, inrate, and period, the computer begins to calculate the amount
at the end of each year, up to �period� and produces output as shown in Fig. 7.10.

Note that the scanf function contains three variables. In such cases, care should be exer-
cised to see that the values entered match the order and type of the variables in the list. Any
mismatch might lead to unexpected results. The compiler may not detect such errors.

7.11 DEFINING SYMBOLIC CONSTANTS

We often use certain unique constants in a program. These constants may appear repeatedly
in a number of places in the program. One example of such a constant is 3.142, representing
the value of the mathematical constant �pi�. Another example is the total number of stu-
dents whose mark-sheets are analysed by a �test analysis program�. The number of students,
say 50, may be used for calculating the class total, class average, standard deviation, etc. We
face two problems in the subsequent use of such programs. These are

1. problem in modification of the program and
2. problem in understanding the program.

Modifiability

We may like to change the value of �pi� from 3.142 to 3.14159 to improve the accuracy of
calculations or the number 50 to 100 to process the test results of another class. In both the
cases, we will have to search throughout the program and explicitly change the value of the
constant wherever it has been used. If any value is left unchanged, the program may pro-
duce disastrous outputs.

Understandability

When a numeric value appears in a program, its use is not always clear, especially when the
same value means different things in different places. For example, the number 50 may
mean the number of students at one place and the �pass marks� at another place of the same
program. We may forget what a certain number meant, when we read the program some
days later.

Assignment of such constants to a symbolic name frees us from these problems. For exam-
ple, we may use the name STRENGTH to define the number of students and PASS_MARK

to define the pass marks required in a subject. Constant values are assigned to these names
at the beginning of the program. Subsequent use of the names STRENGTH and
PASS_MARK in the program has the effect of causing their defined values to be automati-
cally substituted at the appropriate points. A constant is defined as follows:

#define symbolic-name value of constant

Valid examples of constant definitions are:
#define STRENGTH 100
#define PASS_MARK 50
#define MAX 200
#define PI 3.14159

Symbolic names are sometimes called constant identifiers. Since the symbolic names are
constants (not variables), they do not appear in declarations. The following rules apply to a
#define statement which define a symbolic constant:

 7.23Constants, Variables, and Data Types

1. Symbolic names have the same form as variable names. (Symbolic names are written
in CAPITALS to visually distinguish them from the normal variable names, which are
written in lowercase letters. This is only a convention, not a rule.)

2. No blank space between the pound sign �#� and the word define is permitted.
3. �#� must be the first character in the line.
4. A blank space is required between #define and symbolic name and between the sym-

bolic name and the constant.

5. #define statements must not end with a semicolon.
6. After definition, the symbolic name should not be assigned any other value within the

program by using an assignment statement. For example, STRENGTH = 200; is ille-
gal.

7. Symbolic names are NOT declared for data types. Its data type depends on the type of
constant.

8. #define statements may appear anywhere in the program but before it is referenced
in the program (the usual practice is to place them in the beginning of the program).

#define statement is a preprocessor compiler directive and is much more powerful than
what has been mentioned here. More advanced types of definitions will be discussed later.
Table 7.11 illustrates some invalid statements of #define.

Table 7.11 Examples of Invalid #define Statements

Statement Validity Remark

#define X = 2.5 Invalid �=� sign is not allowed

define MAX 10 Invalid No white space between # and define

#define N 25; Invalid No semicolon at the end

#define N 5, M 10 Invalid A statement can define only one name.

#Define ARRAY 11 Invalid define should be in lowercase letters

#define PRICE$ 100 Invalid $ symbol is not permitted in name

 7.12 DECLARING A VARIABLE AS CONSTANT

We may like the value of certain variables to remain constant during the execution of a
program. We can achieve this by declaring the variable with the qualifier const at the time
of initialization. Example:

const int class_size = 40;

const is a new data type qualifier defined by ANSI standard. This tells the compiler that the
value of the int variable class_size must not be modified by the program. However, it can be
used on the right_hand side of an assignment statement like any other variable.

 7.13 DECLARING A VARIABLE AS VOLATILE

ANSI standard defines another qualifier volatile that could be used to tell explicitly the
compiler that a variable�s value may be changed at any time by some external sources (from
outside the program). For example:

volatile int date;

Computer Programming7.24

The value of date may be altered by some external factors even if it does not appear on the
left-hand side of an assignment statement. When we declare a variable as volatile, the
compiler will examine the value of the variable each time it is encountered to see whether
any external alteration has changed the value.

Remember that the value of a variable declared as volatile can be modified by its own
program as well. If we wish that the value must not be modified by the program while it may
be altered by some other process, then we may declare the variable as both const and vola-

tile as shown below:
volatile const int location = 100;

NOTE: C99 adds another qualifier called restrict. See the Appendix "C99 Features".

 7.14 OVERFLOW AND UNDERFLOW OF DATA

Problem of data overflow occurs when the value of a variable is either too big or too small for
the data type to hold. The largest value that a variable can hold also depends on the ma-
chine. Since floating-point values are rounded off to the number of significant digits allowed
(or specified), an overflow normally results in the largest possible real value, whereas an
underflow results in zero.

Integers are always exact within the limits of the range of the integral data types used.
However, an overflow which is a serious problem may occur if the data type does not match
the value of the constant. C does not provide any warning or indication of integer overflow.
It simply gives incorrect results. (Overflow normally produces a negative number.) We
should therefore exercise a greater care to define correct data types for handling the input/
output values.

- Do not use the underscore as the first character of identifiers (or variable
names) because many of the identifiers in the system library start with
underscore.

- Use only 31 or less characters for identifiers. This helps ensure portability
of programs.

- Do not use keywords or any system library names for identifiers.
- Use meaningful and intelligent variable names.
- Do not create variable names that differ only by one or two letters.
- Each variable used must be declared for its type at the beginning of the

program or function.
- All variables must be initialized before they are used in the program.
- Integer constants, by default, assume int types. To make the numbers

long or unsigned, we must append the letters L and U to them.
- Floating point constants default to double. To make them to denote float

or long double, we must append the letters F or L to the numbers.
- Do not use lowercase l for long as it is usually confused with the number 1.

 7.25Constants, Variables, and Data Types

- Use single quote for character constants and double quotes for string con-
stants.

- A character is stored as an integer. It is therefore possible to perform arith-
metic operations on characters.

- Do not combine declarations with executable statements.
- A variable can be made constant either by using the preprocessor com-

mand #define at the beginning of the program or by declaring it with the
qualifier const at the time of initialization.

- Do not use semicolon at the end of #define directive.
- The character # should be in the first column.
- Do not give any space between # and define.

- C does not provide any warning or indication of overflow. It simply gives
incorrect results. Care should be exercised in defining correct data type.

- A variable defined before the main function is available to all the functions
in the program.

- A variable defined inside a function is local to that function and not avail-
able to other functions.

1. Calculation of Average of Numbers
A program to calculate the average of a set of N numbers is given in Fig. 7.11.

Program

#define N 10 /* SYMBOLIC CONSTANT */
main()
{

int count ; /* DECLARATION OF */
float sum, average, number ; /* VARIABLES */
sum = 0 ; /* INITIALIZATION */
count = 0 ; /* OF VARIABLES */
while(count < N)
{

scanf(“%f”, &number) ;
sum = sum + number ;
count = count + 1 ;

}
average = sum/N ;
printf(“N = %d Sum = %f”, N, sum);
printf(“ Average = %f”, average);

}
Output

1
3.3

Computer Programming7.26

4.67
1.42
7
3.67
4.08
3.2
4.25
8.21
N = 10 Sum = 38.799999 Average = 3.880

Fig. 7.11 Average of N numbers

The variable number is declared as float and therefore it can take both integer and real
numbers. Since the symbolic constant N is assigned the value of 10 using the #define state-
ment, the program accepts ten values and calculates their sum using the while loop. The
variable count counts the number of values and as soon as it becomes 11, the while loop is
exited and then the average is calculated.

Notice that the actual value of sum is 38.8 but the value displayed is 38.799999. In fact, the
actual value that is displayed is quite dependent on the computer system. Such an inaccuracy
is due to the way the floating point numbers are internally represented inside the computer.

2. Temperature Conversion Problem

The program presented in Fig. 7.12 converts the given temperature in fahrenheit to celsius
using the following conversion formula:

C =
F � 32

1.8

Program
#define F_LOW 0 /* ——————————————— */
#define F_MAX 250 /* SYMBOLIC CONSTANTS */
#define STEP 25 /* —————————————— */

main()
{

typedef float REAL ; /* TYPE DEFINITION */
REAL fahrenheit, celsius ; /* DECLARATION */

fahrenheit = F_LOW ; /* INITIALIZATION */
printf(“Fahrenheit Celsius\n\n”) ;
while(fahrenheit <= F_MAX)
{

celsius = (fahrenheit - 32.0) / 1.8 ;
printf(“ %5.1f %7.2f\n”, fahrenheit, celsius);

 7.27Constants, Variables, and Data Types

fahrenheit = fahrenheit + STEP ;
}

}
Output

Fahrenheit Celsius

0.0 -17.78
25.0 -3.89
50.0 10.00
75.0 23.89

100.0 37.78
125.0 51.67
150.0 65.56
175.0 79.44
200.0 93.33
225.0 107.22
250.0 121.11

Fig. 7.12 Temperature conversion�fahrenheit-celsius

The program prints a conversion table for reading temperature in celsius, given the
fahrenheit values. The minimum and maximum values and step size are defined as symbolic
constants. These values can be changed by redefining the #define statements. An user-
defined data type name REAL is used to declare the variables fahrenheit and celsius.

The formation specifications %5.1f and %7.2 in the second printf statement produces two-
column output as shown.

7.1 State whether the following statements are true or false.
(a) Any valid printable ASCII character can be used in an identifier.
(b) All variables must be given a type when they are declared.
(c) Declarations can appear anywhere in a program.
(d) ANSI C treats the variables name and Name to be same.
(e) The underscore can be used anywhere in an identifier.
(f) The keyword void is a data type in C.
(g) Floating point constants, by default, denote float type values.
(h) Like variables, constants have a type.
(i) Character constants are coded using double quotes.
(j) Initialization is the process of assigning a value to a variable at the time of decla-

ration.
(k) All static variables are automatically initialized to zero.
(l) The scanf function can be used to read only one value at a time.

7.2 Fill in the blanks with appropriate words.

Computer Programming7.28

(a) The keyword _____ can be used to create a data type identifier.
(b) _______ is the largest value that an unsigned short int type variable can store.
(c) A global variable is also known as ________ variable.
(d) A variable can be made constant by declaring it with the qualifier ________ at the

time of initialization.
7.3 What are trigraph characters? How are they useful?
7.4 Describe the four basic data types. How could we extend the range of values they

represent?
7.5 What is an unsigned integer constant? What is the significance of declaring a constant

unsigned?
7.6 Describe the characteristics and purpose of escape sequence characters.
7.7 What is a variable and what is meant by the �value� of a variable?
7.8 How do variables and symbolic names differ?
7.9 State the differences between the declaration of a variable and the definition of a

symbolic name.
7.10 What is initialization? Why is it important?
7.11 What are the qualifiers that an int can have at a time?
7.12 A programmer would like to use the word DPR to declare all the double-precision

floating point values in his program. How could he achieve this?
7.13 What are enumeration variables? How are they declared? What is the advantage of

using them in a program?
7.14 Describe the purpose of the qualifiers const and volatile.
7.15 When dealing with very small or very large numbers, what steps would you take to

improve the accuracy of the calculations?
7.16 Which of the following are invalid constants and why?

0.0001 5 ´ 1.5 99999
+100 75.45 E-2 �15.75�
�45.6 �1.79 e + 4 0.00001234

7.17 Which of the following are invalid variable names and why?
Minimum First.name n1+n2 &name
doubles 3rd_row n$ Row1
float Sum Total Row Total Column-total

7.18 Find errors, if any, in the following declaration statements.
Int x;
float letter,DIGIT;
double = p,q
exponent alpha,beta;
m,n,z: INTEGER
short char c;
long int m; count;
long float temp;

7.19 What would be the value of x after execution of the following statements?
int x, y = 10;
char z = ‘a’;
x = y + z;

7.20 Identify syntax errors in the following program. After corrections, what output would
you expect when you execute it?

 7.29Constants, Variables, and Data Types

#define PI 3.14159
main()
{

int R,C; /* R-Radius of circle
float perimeter; /* Circumference of circle */
float area; /* Area of circle */
C = PI
R = 5;
Perimeter = 2.0 * C *R;
Area = C*R*R;
printf(“%f”, “%d”,&perimeter,&area)
}

7.1 Write a program to determine and print the sum of the following harmonic series for a
given value of n:

1+ 1/2 +1/3 +....+ 1/n

The value of n should be given interactively through the terminal.
7.2 Write a program to read the price of an item in decimal form (like 15.95) and print the

output in paise (like 1595 paise).
7.3 Write a program that prints the even numbers from 1 to 100.
7.4 Write a program that requests two float type numbers from the user and then divides

the first number by the second and display the result along with the numbers.
7.5 The price of one kg of rice is Rs. 16.75 and one kg of sugar is Rs. 15. Write a program

to get these values from the user and display the prices as follows:
*** LIST OF ITEMS ***
Item Price
Rice Rs 16.75
Sugar Rs 15.00

7.6 Write program to count and print the number of negative and positive numbers in a
given set of numbers. Test your program with a suitable set of numbers. Use scanf to
read the numbers. Reading should be terminated when the value 0 is encountered.

7.7 Write a program to do the following:
(a) Declare x and y as integer variables and z as a short integer variable.
(b) Assign two 6 digit numbers to x and y
(c) Assign the sum of x and y to z
(d) Output the values of x, y and z
Comment on the output.

7.8 Write a program to read two floating point numbers using a scanf statement, assign
their sum to an integer variable and then output the values of all the three variables.

7.9 Write a program to illustrate the use of typedef declaration in a program.
7.10 Write a program to illustrate the use of symbolic constants in a real-life application.

Operators and
Expressions

8.1 INTRODUCTION

C supports a rich set of built-in operators. We have already used several of them, such as =,
+, �, *, & and <. An operator is a symbol that tells the computer to perform certain math-
ematical or logical manipulations. Operators are used in programs to manipulate data and
variables. They usually form a part of the mathematical or logical expressions.

C operators can be classified into a number of categories. They include:
1. Arithmetic operators
2. Relational operators
3. Logical operators
4. Assignment operators
5. Increment and decrement operators
6. Conditional operators
7. Bitwise operators
8. Special operators

An expression is a sequence of operands and operators that reduces to a single value. For
example,

10 + 15

is an expression whose value is 25. The value can be any type other than void.

8.2 ARITHMETIC OPERATORS

C provides all the basic arithmetic operators. They are listed in Table 8.1. The operators +, �
, *, and / all work the same way as they do in other languages. These can operate on any
built-in data type allowed in C. The unary minus operator, in effect, multiplies its single
operand by �1. Therefore, a number preceded by a minus sign changes its sign.

8

Computer Programming8.2

Table 8.1 Arithmetic Operators

Operator Meaning

+ Addition or unary plus

� Subtraction or unary minus

* Multiplication

/ Division

% Modulo division

Integer division truncates any fractional part. The modulo division operation produces
the remainder of an integer division. Examples of use of arithmetic operators are:

a � b a + b

a * b a / b

a % b �a * b

Here a and b are variables and are known as operands. The modulo division operator %
cannot be used on floating point data. Note that C does not have an operator for
exponentiation. Older versions of C does not support unary plus but ANSI C supports it.

Integer Arithmetic

When both the operands in a single arithmetic expression such as a+b are integers, the
expression is called an integer expression, and the operation is called integer arithmetic.

Integer arithmetic always yields an integer value. The largest integer value depends on the
machine, as pointed out earlier. In the above examples, if a and b are integers, then for a =
14 and b = 4 we have the following results:

a � b = 10
a + b = 18
a * b = 56
a / b = 3 (decimal part truncated)
a % b = 2 (remainder of division)

During integer division, if both the operands are of the same sign, the result is truncated
towards zero. If one of them is negative, the direction of trunction is implementation
dependent. That is,

6/7 = 0 and �6/�7 = 0

but �6/7 may be zero or �1. (Machine dependent)
Similarly, during modulo division, the sign of the result is always the sign of the first

operand (the dividend). That is

�14 % 3 = �2
�14 % �3 = �2
14 % �3 = 2

Example 8.1 The program in Fig. 8.1 shows the use of integer arithmetic to convert a given

number of days into months and days.

 8.3Operators and Expressions

Program

main ()
{

int months, days ;

printf(“Enter days\n”) ;
scanf(“%d”, &days) ;

months = days / 30 ;
days = days % 30 ;
printf(“Months = %d Days = %d”, months, days) ;

}

Output

Enter days
265
Months = 8 Days = 25
Enter days
364
Months = 12 Days = 4
Enter days
45
Months = 1 Days = 15

Fig. 8.1 Illustration of integer arithmetic

The variables months and days are declared as integers. Therefore, the statement
months = days/30;

truncates the decimal part and assigns the integer part to months. Similarly, the statement

days = days%30;

assigns the remainder part of the division to days. Thus the given number of days is
converted into an equivalent number of months and days and the result is printed as shown
in the output.

Real Arithmetic

An arithmetic operation involving only real operands is called real arithmetic. A real oper-
and may assume values either in decimal or exponential notation. Since floating point values
are rounded to the number of significant digits permissible, the final value is an approxima-
tion of the correct result. If x, y, and z are floats, then we will have:

x = 6.0/7.0 = 0.857143
y = 1.0/3.0 = 0.333333
z = �2.0/3.0 = �0.666667

The operator % cannot be used with real operands.

Computer Programming8.4

Mixed-mode Arithmetic

When one of the operands is real and the other is integer, the expression is called a mixed-

mode arithmetic expression. If either operand is of the real type, then only the real operation
is performed and the result is always a real number. Thus

15/10.0 = 1.5

whereas

15/10 = 1

More about mixed operations will be discussed later when we deal with the evaluation of
expressions.

8.3 RELATIONAL OPERATORS

We often compare two quantities and depending on their relation, take certain decisions. For
example, we may compare the age of two persons, or the price of two items, and so on. These
comparisons can be done with the help of relational operators. We have already used the
symbol �<�, meaning �less than�. An expression such as

a < b or 1 < 20

containing a relational operator is termed as a relational expression. The value of a relational
expression is either one or zero. It is one if the specified relation is true and zero if the
relation is false. For example

10 < 20 is true

but

20 < 10 is false

C supports six relational operators in all. These operators and their meanings are shown
in Table 8.2.

Table 8.2 Relational Operators

Operator Meaning

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

== is equal to

!= is not equal to

A simple relational expression contains only one relational operator and takes the
following form:

 8.5Operators and Expressions

ae-1 relational operator ae-2

ae-1 and ae-2 are arithmetic expressions, which may be simple constants, variables or
combination of them. Given below are some examples of simple relational expressions and
their values:

4.5 <= 10 TRUE

4.5 < �10 FALSE

�35 >= 0 FALSE

10 < 7+5 TRUE

a+b = c+d TRUE only if the sum of values of a and b is equal to the sum of values of
c and d.

When arithmetic expressions are used on either side of a relational operator, the
arithmetic expressions will be evaluated first and then the results compared. That is,
arithmetic operators have a higher priority over relational operators.

Relational expressions are used in decision statements such as if and while to decide the
course of action of a running program. We have already used the while statement in Chapter
1. Decision statements are discussed in detail in Chapters 5 and 6.

Relational Operator Complements

Among the six relational operators, each one is a complement of another operator.

> is complement of <=

< is complement of >=

== is complement of !=

We can simplify an expression involving the not and the less than operators

using the complements as shown below:

Actual one Simplified one

!(x<y) x >= y

!(x>y) x <= y

!(x!=y) x == y

!(x<=y) x > y

!(x>=y) x < y

!(x == y) x != y

Computer Programming8.6

8.4 LOGICAL OPERATORS

In addition to the relational operators, C has the following three logical operators.
&& meaning logical AND
|| meaning logical OR
! meaning logical NOT

The logical operators && and || are used when we want to test more than one condition
and make decisions. An example is:

a > b && x == 10

An expression of this kind, which combines two or more relational expressions, is termed
as a logical expression or a compound relational expression. Like the simple relational
expressions, a logical expression also yields a value of one or zero, according to the truth
table shown in Table 8.3. The logical expression given above is true only if a > b is true and
x == 10 is true. If either (or both) of them are false, the expression is false.

Table 8.3 Truth Table

Value of the expression
op-1 op-2

op-1 && op-2 op-1 || op-2

Non-zero Non-zero 1 1

Non-zero 0 0 1

0 Non-zero 0 1

0 0 0 0

Some examples of the usage of logical expressions are:
1. if (age > 55 && salary < 1000)
2. if (number < 0 || number > 100)

We shall see more of them when we discuss decision statements.
NOTE: Relative precedence of the relational and logical operators is as follows:

Highest !

> >= < <=

== !=

&&

Lowest ||

It is important to remember this when we use these operators in compound expressions.

8.5 ASSIGNMENT OPERATORS

Assignment operators are used to assign the result of an expression to a variable. We have
seen the usual assignment operator, �=�. In addition, C has a set of �shorthand� assignment
operators of the form

 8.7Operators and Expressions

v op= exp;

Where v is a variable, exp is an expression and op is a C binary arithmetic operator. The
operator op= is known as the shorthand assignment operator.

The assignment statement

v op= exp;

is equivalent to
v = v op (exp);

with v evaluated only once. Consider an example

x += y+1;

This is same as the statement

x = x + (y+1);

The shorthand operator += means �add y+1 to x� or �increment x by y+1�. For y = 2, the
above statement becomes

x += 3;

and when this statement is executed, 3 is added to x. If the old value of x is, say 5, then the
new value of x is 8. Some of the commonly used shorthand assignment operators are
illustrated in Table 8.4.

Table 8.4 Shorthand Assignment Operators

Statement with simple Statement with

assignment operator shorthand operator

a = a + 1 a += 1

a = a � 1 a �= 1

a = a * (n+1) a *= n+1

a = a / (n+1) a /= n+1

a = a % b a %= b

The use of shorthand assignment operators has three advantages:

1. What appears on the left-hand side need not be repeated and therefore it becomes

easier to write.

2. The statement is more concise and easier to read.

3. The statement is more efficient.

These advantages may be appreciated if we consider a slightly more involved statement like

value(5*j–2) = value(5*j–2) + delta;

With the help of the += operator, this can be written as follows:

value(5*j–2) += delta;

It is easier to read and understand and is more efficient because the expression 5*j�2 is

evaluated only once.

Computer Programming8.8

Example 8.2 Program of Fig. 8.2 prints a sequence of squares of numbers. Note the use of

the shorthand operator *= .

The program attempts to print a sequence of squares of numbers starting from 2. The state-

ment

a *= a;

which is identical to

a = a*a;

replaces the current value of a by its square. When the value of a becomes equal or greater

than N (=100) the while is terminated. Note that the output contains only three values 2, 4

and 16.

Program

#define N 100
#define A 2
main()
{

int a;
a = A;
while(a < N)
{

printf(“%d\n”, a);
a *= a;

}
}

Output

2
4
16

Fig. 8.2 Use of shorthand operator *=

8.6 INCREMENT AND DECREMENT OPERATORS

C allows two very useful operators not generally found in other languages. These are the
increment and decrement operators:

++ and — –

The operator ++ adds 1 to the operand, while � � subtracts 1. Both are unary operators and
takes the following form:

 8.9Operators and Expressions

++m; or m++;
– —m; or m– —;

++m; is equivalent to m = m+1; (or m += 1;)
– —m; is equivalent to m = m–1; (or m –= 1;)

We use the increment and decrement statements in for and while loops extensively.
While ++m and m++ mean the same thing when they form statements independently,

they behave differently when they are used in expressions on the right-hand side of an
assignment statement. Consider the following:

m = 5;

y = ++m;

In this case, the value of y and m would be 6. Suppose, if we rewrite the above statements
as

m = 5;

y = m++;

then, the value of y would be 5 and m would be 6. A prefix operator first adds 1 to the operand

and then the result is assigned to the variable on left. On the other hand, a postfix operator

first assigns the value to the variable on left and then increments the operand.

Similar is the case, when we use ++ (or � �) in subscripted variables. That is, the statement

a[i++] = 10;

is equivalent to
a[i] = 10;
i = i+1;

The increment and decrement operators can be used in complex statements. Example:

m = n++ –j+10;

Old value of n is used in evaluating the expression. n is incremented after the evaluation.
Some compilers require a space on either side of n++ or ++n.

Rules for ++ and � � Operators

· Increment and decrement operators are unary operators and they require

variable as their operands.

· When postfix ++ (or � �) is used with a variable in an expression, the

expression is evaluated first using the original value of the variable and then

the variable is incremented (or decremented) by one.

· When prefix ++(or � �) is used in an expression, the variable is incremented

(or decremented) first and then the expression is evaluated using the new

value of the variable.

· The precedence and associatively of ++ and � � operators are the same as

those of unary + and unary �.

Computer Programming8.10

8.7 CONDITIONAL OPERATOR

A ternary operator pair �? :� is available in C to construct conditional expressions of the form

exp1 ? exp2 : exp3

where exp1, exp2, and exp3 are expressions.
The operator ? : works as follows: exp1 is evaluated first. If it is nonzero (true), then the

expression exp2 is evaluated and becomes the value of the expression. If exp1 is false, exp3 is
evaluated and its value becomes the value of the expression. Note that only one of the
expressions (either exp2 or exp3) is evaluated. For example, consider the following
statements.

a = 10;

b = 15;

x = (a > b) ? a : b;

In this example, x will be assigned the value of b. This can be achieved using the if..else

statements as follows:

if (a > b)

x = a;

else

x = b;

8.8 BITWISE OPERATORS

C has a distinction of supporting special operators known as bitwise operators for manipula-
tion of data at bit level. These operators are used for testing the bits, or shifting them right
or left. Bitwise operators may not be applied to float or double. Table 8.5 lists the bitwise
operators and their meanings. They are discussed in detail in Appendix I.

Table 8.5 Bitwise Operators

Operator Meaning

& bitwise AND

| bitwise OR

^ bitwise exclusive OR

<< shift left

>> shift right

8.9 SPECIAL OPERATORS

C supports some special operators of interest such as comma operator, sizeof operator,
pointer operators (& and *) and member selection operators (. and �>). The comma and
sizeof operators are discussed in this section while the pointer operators are discussed in

 8.11Operators and Expressions

Chapter 11. Member selection operators which are used to select members of a structure are
discussed in Chapters 16 and 15. ANSI committee has introduced two preprocessor operators
known as �string-izing� and �token-pasting� operators (# and ##). They will be discussed in
Chapter 17.

The Comma Operator

The comma operator can be used to link the related expressions together. A comma-linked
list of expressions are evaluated left to right and the value of right-most expression is the
value of the combined expression. For example, the statement

value = (x = 10, y = 5, x+y);

first assigns the value 10 to x, then assigns 5 to y, and finally assigns 15 (i.e. 10 + 5) to value.
Since comma operator has the lowest precedence of all operators, the parentheses are
necessary. Some applications of comma operator are:

In for loops:

for (n = 1, m = 10, n <=m; n++, m++)

In while loops:

while (c = getchar(), c != ‘10’)

Exchanging values:

t = x, x = y, y = t;

The sizeof Operator

The sizeof is a compile time operator and, when used with an operand, it returns the number
of bytes the operand occupies. The operand may be a variable, a constant or a data type
qualifier.

Examples: m = sizeof (sum);

n = sizeof (long int);

k = sizeof (235L);

The sizeof operator is normally used to determine the lengths of arrays and structures
when their sizes are not known to the programmer. It is also used to allocate memory space
dynamically to variables during execution of a program.

Example 8.3 In Fig. 8.3, the program employs different kinds of operators. The results of their

evaluation are also shown for comparison.

Notice the way the increment operator ++ works when used in an expression. In the state-
ment

c = ++a – b;

new value of a (= 16) is used thus giving the value 6 to c. That is, a is incremented by 1 before
it is used in the expression. However, in the statement

d = b++ + a;

the old value of b (=10) is used in the expression. Here, b is incremented by 1 after it is used
in the expression.

Computer Programming8.12

We can print the character % by placing it immediately after another % character in the
control string. This is illustrated by the statement

printf(“a%%b = %d\n”, a%b);
The program also illustrates that the expression

c > d ? 1 : 0
assumes the value 0 when c is less than d and 1 when c is greater than d.

Program

main()
{

int a, b, c, d;

a = 15;
b = 10;
c = ++a - b;

printf(“a = %d b = %d c = %d\n”,a, b, c);

d = b++ +a;

printf(“a = %d b = %d d = %d\n”,a, b, d);
printf(“a/b = %d\n”, a/b);
printf(“a%%b = %d\n”, a%b);
printf(“a *= b = %d\n”, a*=b);
printf(“%d\n”, (c>d) ? 1 : 0);
printf(“%d\n”, (c<d) ? 1 : 0);

}

Output

a = 16 b = 10 c = 6
a = 16 b = 11 d = 26
a/b = 1
a%b = 5
a *= b = 176
0
1

Fig. 8.3 Further illustration of arithmetic operators

8.10 ARITHMETIC EXPRESSIONS

An arithmetic expression is a combination of variables, constants, and operators arranged as
per the syntax of the language. We have used a number of simple expressions in the examples
discussed so far. C can handle any complex mathematical expressions. Some of the examples
of C expressions are shown in Table 8.6. Remember that C does not have an operator for
exponentiation.

 8.13Operators and Expressions

Table 8.6 Expressions

Algebraic expression C expression

a x b - c a * b - c

(m+n) (x+y) (m+n) * (x+y)

ab

c

æ ö
çè ø

a * b/c

3x2 +2x+1 3 * x * x + 2 * x + 1

x

y

æ ö
çè ø

 + c x/y+c

8.11 EVALUATION OF EXPRESSIONS

Expressions are evaluated using an assignment statement of the form:

variable = expression;

Variable is any valid C variable name. When the statement is encountered, the expression is
evaluated first and the result then replaces the previous value of the variable on the left-
hand side. All variables used in the expression must be assigned values before evaluation is
attempted. Examples of evaluation statements are

x = a * b - c;

y = b / c * a;

z = a - b / c + d;

The blank space around an operator is optional and adds only to improve readability.
When these statements are used in a program, the variables a, b, c, and d must be defined
before they are used in the expressions.

Example 8.4 The program in Fig. 8.4 illustrates the use of variables in expressions and their

evaluation.

Output of the program also illustrates the effect of presence of parentheses in expressions.
This is discussed in the next section.

Program

main()
{

float a, b, c, x, y, z;

Computer Programming8.14

a = 9;
b = 12;
c = 3;

x = a – b / 3 + c * 2 - 1;
y = a – b / (3 + c) * (2 - 1);
z = a – (b / (3 + c) * 2) - 1;

printf(“x = %f\n”, x);
printf(“y = %f\n”, y);
printf(“z = %f\n”, z);

}

Output

x = 10.000000
y = 7.000000
z = 4.000000

Fig. 8.4 Illustrations of evaluation of expressions

8.12 PRECEDENCE OF ARITHMETIC OPERATORS

An arithmetic expression without parentheses will be evaluated from left to right using the
rules of precedence of operators. There are two distinct priority levels of arithmetic operators
in C:

High priority * / %

Low priority + �

The basic evaluation procedure includes �two� left-to-right passes through the expression.
During the first pass, the high priority operators (if any) are applied as they are encountered.
During the second pass, the low priority operators (if any) are applied as they are
encountered. Consider the following evaluation statement that has been used in the program
of Fig. 8.4.

x = a�b/3 + c*2�1

When a = 9, b = 12, and c = 3, the statement becomes

x = 9�12/3 + 3*2�1

and is evaluated as follows

First pass

Step1: x = 9�4+3*2�1

Step2: x = 9�4+6�1

 8.15Operators and Expressions

Second pass

Step3: x = 5+6�1

Step4: x = 11�1

Step5: x = 10

These steps are illustrated in Fig. 8.5. The numbers inside parentheses refer to step num-
bers.

9 – 12/3 3*2+ –
(1)

1

(2)

(4)

10

(5)

(3)

4

5

11

6

Fig. 8.5 Illustration of hierarchy of operations

However, the order of evaluation can be changed by introducing parentheses into an ex-
pression. Consider the same expression with parentheses as shown below:

9�12/(3+3)*(2�1)

Whenever parentheses are used, the expressions within parentheses assume highest pri-
ority. If two or more sets of parentheses appear one after another as shown above, the ex-
pression contained in the left-most set is evaluated first and the right-most in the last. Given
below are the new steps.

First pass

Step1: 9-12/6 * (2-1)

Step2: 9-12/6 * 1

Second pass

Step3: 9-2 * 1

Step4: 9-2

Third pass

Step5: 7
This time, the procedure consists of three left-to-right passes. However, the number of

evaluation steps remains the same as 5 (i.e equal to the number of arithmetic operators).

Computer Programming8.16

Parentheses may be nested, and in such cases, evaluation of the expression will proceed
outward from the innermost set of parentheses. Just make sure that every opening
parenthesis has a matching closing parenthesis. For example

9 � (12/(3+3) * 2) � 1 = 4

whereas

9 � ((12/3) + 3 * 2) � 1 = �2

While parentheses allow us to change the order of priority, we may also use them to
improve understandability of the program. When in doubt, we can always add an extra pair
just to make sure that the priority assumed is the one we require.

Rules for Evaluation of Expression

· First, parenthesized sub expression from left to right are evaluated.

· If parentheses are nested, the evaluation begins with the innermost sub-expres-

sion.

· The precedence rule is applied in determining the order of application of op-

erators in evaluating sub-expressions

· The associativity rule is applied when two or more operators of the same prec-

edence level appear in a sub-expression.

· Arithmetic expressions are evaluated from left to right using the rules of

precedence.

· When parentheses are used, the expressions within parentheses assume highest

priority.

8.13 SOME COMPUTATIONAL PROBLEMS

When expressions include real values, then it is important to take necessary precautions to
guard against certain computational errors. We know that the computer gives approximate
values for real numbers and the errors due to such approximations may lead to serious
problems. For example, consider the following statements:

a = 1.0/3.0;

b = a * 3.0;

We know that (1.0/3.0) 3.0 is equal to 1. But there is no guarantee that the value of b
computed in a program will equal 1.

Another problem is division by zero. On most computers, any attempt to divide a number
by zero will result in abnormal termination of the program. In some cases such a division
may produce meaningless results. Care should be taken to test the denominator that is likely
to assume zero value and avoid any division by zero.

 8.17Operators and Expressions

The third problem is to avoid overflow or underflow errors. It is our responsibility to
guarantee that operands are of the correct type and range, and the result may not produce
any overflow or underflow.

Example 8.5 Output of the program in Fig. 8.6 shows round-off errors that can occur in

computation of floating point numbers.

Program
/*————————— Sum of n terms of 1/n —————————*/

main()
{

float sum, n, term ;
int count = 1 ;

sum = 0 ;
printf(“Enter value of n\n”) ;

scanf(“%f”, &n) ;
term = 1.0/n ;
while(count <= n)
{

sum = sum + term ;
count++ ;

}
printf(“Sum = %f\n”, sum) ;

}

Output

Enter value of n
99
Sum = 1.000001
Enter value of n
143
Sum = 0.999999

Fig. 8.6 Round-off errors in floating point computations

We know that the sum of n terms of 1/n is 1. However, due to errors in floating point
representation, the result is not always 1.

8.14 TYPE CONVERSIONS IN EXPRESSIONS

Implicit Type Conversion

C permits mixing of constants and variables of different types in an expression. C automati-
cally converts any intermediate values to the proper type so that the expression can be
evaluated without loosing any significance. This automatic conversion is known as implicit

type conversion.

Computer Programming8.18

During evaluation it adheres to very strict rules of type conversion. If the operands are of
different types, the �lower� type is automatically converted to the �higher� type before the
operation proceeds. The result is of the higher type. A typical type conversion process is
illustrated in Fig. 8.7.

int i, x;

x

long

long float

float

float

float

double

doubleint

1 i i f d*/= + –

float f;

double d;

long int 1;

Fig. 8.7 Process of implicit type conversion

Given below is the sequence of rules that are applied while evaluating expressions.
All short and char are automatically converted to int; then
1. if one of the operands is long double, the other will be converted to long double and

the result will be long double;
2. else, if one of the operands is double, the other will be converted to double and the

result will be double;
3. else, if one of the operands is float, the other will be converted to float and the result

will be float;
4. else, if one of the operands is unsigned long int, the other will be converted to un-

signed long int and the result will be unsigned long int;
5. else, if one of the operands is long int and the other is unsigned int, then

(a) if unsigned int can be converted to long int, the unsigned int operand will be
converted as such and the result will be long int;

(b) else, both operands will be converted to unsigned long int and the result will be
unsigned long int;

6. else, if one of the operands is long int, the other will be converted to long int and the
result will be long int;

7. else, if one of the operands is unsigned int, the other will be converted to unsigned

int and the result will be unsigned int.

Computer Programming8.20

The operator (float) converts the female_number to floating point for the purpose of
evaluation of the expression. Then using the rule of automatic conversion, the division is
performed in floating point mode, thus retaining the fractional part of result.

Note that in no way does the operator (float) affect the value of the variable female

number. And also, the type of female number remains as int in the other parts of the
program.

The process of such a local conversion is known as explicit conversion or casting a value.

The general form of a cast is:

(type-name)expression

where type-name is one of the standard C data types. The expression may be a constant,
variable or an expression. Some examples of casts and their actions are shown in Table 8.7.

Table 8.7 Use of Casts

Example Action

x = (int) 7.5 7.5 is converted to integer by truncation.

a = (int) 21.3/(int)4.5 Evaluated as 21/4 and the result would be 5.

b = (double)sum/n Division is done in floating point mode.

y = (int) (a+b) The result of a+b is converted to integer.

z = (int)a+b a is converted to integer and then added to b.

p = cos((double)x) Converts x to double before using it.

Casting can be used to round-off a given value. Consider the following statement:

x = (int) (y+0.5);

If y is 27.6, y+0.5 is 28.1 and on casting, the result becomes 28, the value that is
assigned to x. Of course, the expression, being cast is not changed.

Example 8.6 Figure 8.8 shows a program using a cast to evaluate the equation

sum = å
n

i=1

(1/i)

Program

main()
{

float sum ;
int n ;

sum = 0 ;

for(n = 1 ; n <= 10 ; ++n)
{

sum = sum + 1/(float)n ;
printf(“%2d %6.4f\n”, n, sum) ;

}
}

 8.21Operators and Expressions

Output

1 1.0000
2 1.5000
3 1.8333
4 2.0833
5 2.2833
6 2.4500
7 2.5929
8 2.7179
9 2.8290

10 2.9290

Fig. 8.8 Use of a cast

8.15 OPERATOR PRECEDENCE AND ASSOCIATIVITY

As mentioned earlier each operator, in C has a precedence associated with it. This precedence
is used to determine how an expression involving more than one operator is evaluated. There
are distinct levels of precedence and an operator may belong to one of these levels. The
operators at the higher level of precedence are evaluated first. The operators of the same
precedence are evaluated either from �left to right� or from �right to left�, depending on the
level. This is known as the associativity property of an operator. Table 8.8 provides a
complete list of operators, their precedence levels, and their rules of association. The groups
are listed in the order of decreasing precedence. Rank 1 indicates the highest precedence
level and 15 the lowest. The list also includes those operators, which we have not yet been
discussed.

It is very important to note carefully, the order of precedence and associativity of
operators. Consider the following conditional statement:

if (x == 10 + 15 && y < 10)

The precedence rules say that the addition operator has a higher priority than the logical
operator (&&) and the relational operators (== and <). Therefore, the addition of 10 and 15
is executed first. This is equivalent to :

if (x == 25 && y < 10)

The next step is to determine whether x is equal to 25 and y is less than 10. If we assume
a value of 20 for x and 5 for y, then

x == 25 is FALSE (0)

y < 10 is TRUE (1)

Note that since the operator < enjoys a higher priority compared to ==, y < 10 is tested first
and then x == 25 is tested.

Finally we get:

if (FALSE && TRUE)

Computer Programming8.22

Because one of the conditions is FALSE, the complex condition is FALSE.
In the case of &&, it is guaranteed that the second operand will not be evaluated if the

first is zero and in the case of ||, the second operand will not be evaluated if the first is non-
zero.

Table 8.8 Summary of C Operators

Operator Description Associativity Rank

() Function call Left to right 1

[] Aray element reference

+ Unary plus

� Unary minus Right to left 2

++ Increment

� � Decrement

! Logical negation

~ Ones complement

* Pointer reference (indirection)

& Address

sizeof Size of an object

(type) Type cast (conversion)

* Multiplication Left to right 3

/ Division

% Modulus

+ Addition Left to right 4

� Subtraction

<< Left shift Left to right 5

>> Right shift

< Less than Left to right 6

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equality Left to right 7

|= Inequality

& Bitwise AND Left to right 8

^ Bitwise XOR Left to right 9

| Bitwise OR Left to right 10

&& Logical AND Left to right 11

|| Logical OR Left to right 12

?: Conditional expression Right to left 13

= Assignment operators Right to left 14

* = /= %=

+= �= &=

^= |=

<<= >>=

, Comma operator Left to right 15

 8.23Operators and Expressions

Rules of Precedence and Associativity

· Precedence rules decides the order in which different operators are applied

· Associativity rule decides the order in which multiple occurrences of the same

level operator are applied

8.16 MATHEMATICAL FUNCTIONS

Mathematical functions such as cos, sqrt, log, etc. are frequently used in analysis of real-life
problems. Most of the C compilers support these basic math functions. However, there are
systems that have a more comprehensive math library and one should consult the reference
manual to find out which functions are available. Table 8.9 lists some standard math
functions.

Table 8.9 Math functions

Function Meaning

Trigonometric

acos(x) Arc cosine of x

asin(x) Arc sine of x

atan(x) Arc tangent of x

atan 2(x,y) Arc tangent of x/y

cos(x) Cosine of x

sin(x) Sine of x

tan(x) Tangent of x

Hyperbolic

cosh(x) Hyperbolic cosine of x

sinh(x) Hyperbolic sine of x

tanh(x) Hyperbolic tangent of x

Other functions

ceil(x) x rounded up to the nearest integer

exp(x) e to the x power (ex)

fabs(x) Absolute value of x.

floor(x) x rounded down to the nearest integer

fmod(x,y) Remainder of x/y

log(x) Natural log of x, x > 0

log10(x) Base 10 log of x, x > 0

pow(x,y) x to the power y (xy)

sqrt(x) Square root of x, x > = 0

Note: 1. x and y should be declared as double.

2. In trigonometric and hyperbolic functions, x and y are in radians.
3. All the functions return a double.

Computer Programming8.24

4. C99 has added float and long double versions of these fuctions.
5. C99 has added many more mathematical functions.
6. See the Appendix "C99 Features" for details.

As pointed out earlier in Chapter 1, to use any of these functions in a program, we should
include the line:

include <math.h>

in the beginning of the program.

- Use decrement and increment operators carefully. Understand the differ-
ence between postfix and prefix operations before using them.

- Add parentheses wherever you feel they would help to make the evalua-
tion order clear.

- Be aware of side effects produced by some expressions.
- Avoid any attempt to divide by zero. It is normally undefined. It will either

result in a fatal error or in incorrect results.
- Do not forget a semicolon at the end of an expression.
- Understand clearly the precedence of operators in an expression. Use pa-

rentheses, if necessary.
- Associativity is applied when more than one operator of the same prece-

dence are used in an expression. Understand which operators associate
from right to left and which associate from left to right.

- Do not use increment or decrement operators with any expression other
than a variable identifier.

- It is illegal to apply modules operator % with anything other than integers.
- Do not use a variable in an expression before it has been assigned a value.
- Integer division always truncates the decimal part of the result. Use it

carefully. Use casting where necessary.
- The result of an expression is converted to the type of the variable on the

left of the assignment before assigning the value to it. Be careful about the
loss of information during the conversion.

- All mathematical functions implement double type parameters and return
double type values.

- It is an error if any space appears between the two symbols of the opera-
tors ==, !=, <= and >=.

- It is an error if the two symbols of the operators !=, <= and >= are reversed.
- Use spaces on either side of binary operator to improve the readability of

the code.
- Do not use increment and decrement operators to floating point variables.
- Do not confuse the equality operator == with the assignment operator =.

 8.25Operators and Expressions

1. Salesman�s Salary
A computer manufacturing company has the following monthly compensation policy to their
sales-persons:

Minimum base salary : 1500.00
Bonus for every computer sold : 200.00
Commission on the total monthly sales : 2 per cent
Since the prices of computers are changing, the sales price of each computer is fixed at the

beginning of every month. A program to compute a sales-person�s gross salary is given in
Fig. 8.9.

Program
#define BASE_SALAR 1500.00
#define BONUS_RATE 200.00
#define COMMISSION 0.02
main()
{

int quantity ;
float gross_salary, price ;
float bonus, commission ;
printf(“Input number sold and price\n”) ;
scanf(“%d %f”, &quantity, &price) ;
bonus = BONUS_RATE * quantity ;
commission = COMMISSION * quantity * price ;
gross_salary = BASE_SALARY + bonus + commission ;
printf(“\n”);
printf(“Bonus = %6.2f\n”, bonus) ;
printf(“Commission = %6.2f\n”, commission) ;
printf(“Gross salary = %6.2f\n”, gross_salary) ;

}
Output

Input number sold and price
5 20450.00
Bonus = 1000.00
Commission = 2045.00
Gross salary = 4545.00

Fig. 8.9 Program of salesman�s salary

Given the base salary, bonus, and commission rate, the inputs necessary to calculate the
gross salary are, the price of each computer and the number sold during the month.

The gross salary is given by the equation:

Computer Programming8.26

Gross salary = base salary + (quantity * bonus rate)

+ (quantity * Price) * commission rate

2. Solution of the quadratic equation

An equation of the form

ax2 + bx + c = 0

is known as the quadratic equation. The values of x that satisfy the equation are known as
the roots of the equation. A quadratic equation has two roots which are given by the following
two formulae:

root 1 =
2� b+ sqrt (b � 4ac)

2a

root 2 =
2� b � sqrt (b � 4ac)

2a

A program to evaluate these roots is given in Fig. 8.10. The program requests the user to
input the values of a, b and c and outputs root 1 and root 2.

Program
#include <math.h>
main()
{

float a, b, c, discriminant,
root1, root2;

printf(“Input values of a, b, and c\n”);
scanf(“%f %f %f”, &a, &b, &c);
discriminant = b*b - 4*a*c ;
if(discriminant < 0)

printf(“\n\nROOTS ARE IMAGINARY\n”);
else
{

root1 = (-b + sqrt(discriminant))/(2.0*a);
root2 = (-b - sqrt(discriminant))/(2.0*a);
printf(“\n\nRoot1 = %5.2f\n\nRoot2 = %5.2f\n”,

root1,root2);
}

}
Output

Input values of a, b, and c
2 4 -16
Root1 = 2.00
Root2 = -4.00
Input values of a, b, and c
1 2 3
ROOTS ARE IMAGINARY

Fig. 8.10 Solution of a quadratic equation

 8.27Operators and Expressions

The term (b2�4ac) is called the discriminant. If the discriminant is less than zero, its
square roots cannot be evaluated. In such cases, the roots are said to be imaginary numbers
and the program outputs an appropriate message.

8.1 State whether the following statements are true or false.
(a) All arithmetic operators have the same level of precedence.
(b) The modulus operator % can be used only with integers.
(c) The operators <=, >= and != all enjoy the same level of priority.
(d) During modulo division, the sign of the result is positive, if both the operands are

of the same sign.
(e) In C, if a data item is zero, it is considered false.
(f) The expression !(x<=y) is same as the expression x>y.
(g) A unary expression consists of only one operand with no operators.
(h) Associativity is used to decide which of several different expressions is evaluated

first.
(i) An expression statement is terminated with a period.
(j) During the evaluation of mixed expressions, an implicit cast is generated auto-

matically.
(k) An explicit cast can be used to change the expression.
(l) Parentheses can be used to change the order of evaluation expressions.

8.2 Fill in the blanks with appropriate words.
(a) The expression containing all the integer operands is called________ expression.
(b) The operator _________cannot be used with real operands.
(c) C supports as many as _______relational operators.
(d) An expression that combines two or more relational expressions is termed as

__________expression.
(e) The ___________operator returns the number of bytes the operand occupies.
(f) The order of evaluation can be changed by using ______ in an expression.
(g) The use of ________ on a variable can change its type in the memory.
(h) _________is used to determine the order in which different operators in an expres-

sion are evaluated.
8.3 Given the statement

int a = 10, b = 20, c;
determine whether each of the following statements are true or false.
(a) The statement a = + 10, is valid.
(b) The expression a + 4/6 * 6/2 evaluates to 11.
(c) The expression b + 3/2 * 2/3 evaluates to 20.
(d) The statement a + = b; gives the values 30 to a and 20 to b.
(e) The statement ++a++; gives the value 12 to a
(f) The statement a = 1/b; assigns the value 0.5 to a

8.4 Declared a as int and b as float, state whether the following statements are true or
false.

Computer Programming8.28

(a) The statement a = 1/3 + 1/3 + 1/3; assigns the value 1 to a.
(b) The statement b = 1.0/3.0 + 1.0/3.0 + 1.0/3.0; assigns a value 1.0 to b.
(c) The statement b = 1.0/3.0 * 3.0 gives a value 1.0 to b.
(d) The statement b = 1.0/3.0 + 2.0/3.0 assigns a value 1.0 to b.
(e) The statement a = 15/10.0 + 3/2; assigns a value 3 to a.

8.5 Which of the following expressions are true?
(a) !(5 + 5 >=10)
(b) 5 + 5 = = 10 || 1 + 3 = = 5
(c) 5 > 10 || 10 < 20 && 3 < 5
(d) 10 ! = 15 && !(10<20) || 15 > 30

8.6 Which of the following arithmetic expressions are valid ? If valid, give the value of the
expression; otherwise give reason.
(a) 25/3 % 2 (e) �14 % 3
(b) +9/4 + 5 (f) 15.25 + � 5.0
(c) 7.5 % 3 (g) (5/3) * 3 + 5 % 3
(d) 14 % 3 + 7 % 2 (h) 21 % (int)4.5

8.7 Write C assignment statements to evaluate the following equations:
(a) Area = p r2 +2 p rh

(b) Torque =
+
1 2

1 2

2m m

m m
 . g

(c) Side = 2 2a +b �2ab cos(x)

(d) Energy = mass
é ù

´ê ú
ë û

2(velocity)
acceleration height +

2

8.8 Identify unnecessary parentheses in the following arithmetic expressions.
(a) ((x�(y/5)+z)%8) + 25
(b) ((x�y) * p)+q
(c) (m*n) + (�x/y)
(d) x/(3*y)

8.9 Find errors, if any, in the following assignment statements and rectify them.
(a) x = y = z = 0.5, 2.0. �5.75;
(b) m = ++a * 5;
(c) y = sqrt(100);
(d) p * = x/y;
(e) s = /5;
(f) a = b++ �c*2

8.10 Determine the value of each of the following logical expressions if a = 5, b = 10 and
c = �6
(a) a > b && a < c
(b) a < b && a > c
(c) a == c || b > a
(d) b > 15 && c < 0 || a > 0
(e) (a/2.0 == 0.0 && b/2.0 != 0.0) || c < 0.0

 8.29Operators and Expressions

8.11 What is the output of the following program?

main ()
{

char x;
int y;
x = 100;
y = 125;
printf (“%c\n”, x) ;
printf (“%c\n”, y) ;
printf (“%d\n”, x) ;

}

8.12 Find the output of the following program?

main ()
{

int x = 100;
printf(“%d/n”, 10 + x++);
printf(“%d/n”, 10 + ++x);

}
8.13 What is printed by the following program?

main
{

int x = 5, y = 10, z = 10 ;
x = y == z;
printf(“%d”,x) ;

}

8.14 What is the output of the following program?

main ()
{

int x = 100, y = 200;
printf (“%d”, (x > y)? x : y);

}

8.15 What is the output of the following program?

main ()
{

unsigned x = 1 ;
signed char y = -1 ;
if(x > y)

printf(“ x > y”);
else

printf(“x<= y”) ;
}

Did you expect this output? Explain.

Computer Programming8.30

8.16 What is the output of the following program? Explain the output.

main ()
{

int x = 10 ;
if(x = 20) printf(“TRUE”) ;
else printf(“FALSE”) ;

}

8.17 What is the error in each of the following statements?

(a) if (m == 1 & n ! = 0)
printf(�OK�);

(b) if (x = < 5)
printf (�Jump�);

8.18 What is the error, if any, in the following segment?

int x = 10 ;
float y = 4.25 ;
x = y%x ;

8.19 What is printed when the following is executed?

for (m = 0; m <3; ++m)
printf(“%d/n”, (m%2) ? m: m+2);

8.20 What is the output of the following segment when executed?

int m = - 14, n = 3;
printf(“%d\n”, m/n * 10) ;
n = -n;
printf(“%d\n”, m/n * 10);

8.1 Given the values of the variables x, y and z, write a program to rotate their values
such that x has the value of y, y has the value of z, and z has the value of x.

8.2 Write a program that reads a floating-point number and then displays the right-most
digit of the integral part of the number.

8.3 Modify the above program to display the two right-most digits of the integral part of
the number.

8.4 Write a program that will obtain the length and width of a rectangle from the user and
compute its area and perimeter.

8.5 Given an integer number, write a program that displays the number as follows:

First line : all digits
Second line : all except first digit
Third line : all except first two digits
��.
Last line : The last digit

 8.31Operators and Expressions

For example, the number 5678 will be displayed as:

5 6 7 8
6 7 8
7 8
8

8.6 The straight-line method of computing the yearly depreciation of the value of an item
is given by

Depreciation =
-Purchase Price Salvage Value

Years of Service

Write a program to determine the salvage value of an item when the purchase price,
years of service, and the annual depreciation are given.

8.7 Write a program that will read a real number from the keyboard and print the follow-
ing output in one line:
Smallest integer The given Largest integer
not less than number not greater than
the number the number

8.8 The total distance travelled by a vehicle in t seconds is given by

distance = ut + (at2)/2

Where u is the initial velocity (metres per second), a is the acceleration (metres per
second 2). Write a program to evaluate the distance travelled at regular intervals of
time, given the values of u and a. The program should provide the flexibility to the
user to select his own time intervals and repeat the calculations for different values of
u and a.

8.9 In inventory management, the Economic Order Quantity for a single item is given by

EOQ =
´ ´2 demand rate setup costs

holding cost per item per unit time

and the optimal Time Between Orders

TBO =
´

´

2 setup costs

demand rate holding cost per item per unit time

Write a program to compute EOQ and TBO, given demand rate (items per unit time),
setup costs (per order), and the holding cost (per item per unit time).

8.10 For a certain electrical circuit with an inductance L and resistance R, the damped
natural frequency is given by

Frequency =
2

2

1
�

4

R

LC C

It is desired to study the variation of this frequency with C (capacitance). Write a
program to calculate the frequency for different values of C starting from 0.01 to 0.1 in
steps of 0.01.

Computer Programming8.32

8.11 Write a program to read a four digit integer and print the sum of its digits.
Hint: Use / and % operators.

8.12 Write a program to print the size of various data types in C.
8.13 Given three values, write a program to read three values from keyboard and print out

the largest of them without using if statement.
8.14 Write a program to read two integer values m and n and to decide and print whether

m is a multiple of n.
8.15 Write a program to read three values using scanf statement and print the following

results:
(a) Sum of the values
(b) Average of the three values
(c) Largest of the three
(d) Smallest of the three

8.16 The cost of one type of mobile service is Rs. 250 plus Rs. 1.25 for each call made over
and above 100 calls. Write a program to read customer codes and calls made and print
the bill for each customer.

8.17 Write a program to print a table of sin and cos functions for the interval from 0 to 180
degrees in increments of 15 as shown below.

x (degrees) sin (x) cos (x)

0

15

...

...

180

8.18 Write a program to compute the values of square-roots and squares of the numbers 0
to 100 in steps 10 and print the output in a tabular form as shown below.

Number Square-root Square

0 0 0

100 10 10000

8.19 Write a program that determines whether a given integer is odd or even and displays
the number and description on the same line.

8.20 Write a program to illustrate the use of cast operator in a real life situation.

Managing Input
and Output
Operations

9.1 INTRODUCTION

Reading, processing, and writing of data are the three essential functions of a computer
program. Most programs take some data as input and display the processed data, often
known as information or results, on a suitable medium. So far we have seen two methods of
providing data to the program variables. One method is to assign values to variables through
the assignment statements such as x = 5; a = 0; and so on. Another method is to use the input
function scanf which can read data from a keyboard. We have used both the methods in
most of our earlier example programs. For outputting results we have used extensively the
function printf which sends results out to a terminal.

Unlike other high-level languages, C does not have any built-in input/output statements
as part of its syntax. All input/output operations are carried out through function calls such
as printf and scanf. There exist several functions that have more or less become standard
for input and output operations in C. These functions are collectively known as the standard
I/O library. In this chapter we shall discuss some common I/O functions that can be used on
many machines without any change. However, one should consult the system reference
manual for exact details of these functions and also to see what other functions are available.

It may be recalled that we have included a statement

#include <math.h>

in the Sample Program 5 in Chapter 1, where a math library function cos(x) has been used.

This is to instruct the compiler to fetch the function cos(x) from the math library, and that it

is not a part of C language. Similarly, each program that uses a standard input/output

function must contain the statement

#include <stdio.h>

at the beginning. However, there might be exceptions. For example, this is not necessary for

the functions printf and scanf which have been defined as a part of the C language.

9

Computer Programming9.2

The file name stdio.h is an abbrevation for standard input-output header file. The in-

struction #include <stdio.h> tells the compiler �to search for a file named stdio.h and place

its contents at this point in the program�. The contents of the header file become part of the

source code when it is compiled.

9.2 READING A CHARACTER

The simplest of all input/output operations is reading a character from the �standard input�

unit (usually the keyboard) and writing it to the �standard output� unit (usually the screen).

Reading a single character can be done by using the function getchar. (This can also be done

with the help of the scanf function which is discussed in Section 9.4.) The getchar takes the

following form:

variable_name = getchar();

variable_name is a valid C name that has been declared as char type. When this statement

is encountered, the computer waits until a key is pressed and then assigns this character as

a value to getchar function. Since getchar is used on the right-hand side of an assignment

statement, the character value of getchar is in turn assigned to the variable name on the

left. For example

char name;
name = getchar();

Will assign the character �H� to the variable name when we press the key H on the keyboard.

Since getchar is a function, it requires a set of parentheses as shown.

Example 9.1 The program in Fig. 9.1 shows the use of getchar function in an interactive

environment.

The program displays a question of YES/NO type to the user and reads the user�s response

in a single character (Y or N). If the response is Y or y, it outputs the message

My name is BUSY BEE

otherwise, outputs

You are good for nothing

NOTE: There is one line space between the input text and output message.

Program

#include <stdio.h>

main()

{

char answer;

printf(“Would you like to know my name?\n”);

printf(“Type Y for YES and N for NO: “);

answer = getchar(); /* Reading a character...*/

 9.3Managing Input and Output Operations

if(answer == ‘Y’ || answer == ‘y’)
printf(“\n\nMy name is BUSY BEE\n”);

else
printf(“\n\nYou are good for nothing\n”);

}
Output

Would you like to know my name?
Type Y for YES and N for NO: Y

My name is BUSY BEE

Would you like to know my name?
Type Y for YES and N for NO: n

You are good for nothing

Fig. 9.1 Use of getchar function to read a character from keyboard

The getchar function may be called successively to read the characters contained in a

line of text. For example, the following program segment reads characters from keyboard

one after another until the �Return� key is pressed.

— — — –— — — –

— — — –— — — –

char character;

character = ‘ ‘;
while(character != ‘\n’)
{

character = getchar();
}

— — — –— — — –

— — — –— — — –

WARNING

The getchar() function accepts any character keyed in. This includes RETURN

and TAB. This means when we enter single character input, the newline character

is waiting in the input queue after getchar() returns. This could create problems

when we use getchar() in a loop interactively. A dummy getchar() may be used to

'eat' the unwanted newline character. We can also use the fflush function to flush

out the unwanted characters.

NOTE: We shall be using decision statements like if, if�else and while extensively in this chap-

ter. They are discussed in detail in Chapters 5 and 6.

Computer Programming9.4

Example 9.2 The program of Fig. 9.2 requests the user to enter a character and displays a

message on the screen telling the user whether the character is an alphabet or

digit, or any other special character.

This program receives a character from the keyboard and tests whether it is a letter or digit
and prints out a message accordingly. These tests are done with the help of the following
functions:

isalpha(character)
isdigit(character)

For example, isalpha assumes a value non-zero (TRUE) if the argument character contains

an alphabet; otherwise it assumes 0 (FALSE). Similar is the case with the function isdigit.

Program:

#include <stdio.h>
#include <ctype.h>
main()
{

char character;
printf(“Press any key\n”);

character = getchar();
if (isalpha(character) > 0)/* Test for letter */

printf(“The character is a letter.”);
else

if (isdigit (character) > 0)/* Test for digit */
printf(“The character is a digit.”);

else
printf(“The character is not alphanumeric.”);

}
Output

Press any key
h
The character is a letter.

Press any key
5
The character is a digit.

Press any key
*

The character is not alphanumeric.

Fig. 9.2 Program to test the character type

C supports many other similar functions, which are given in Table 9.1. These character

functions are contained in the file ctype.h and therefore the statement

#include <ctype.h>

must be included in the program.

 9.5Managing Input and Output Operations

Table 9.1 Character Test Functions

Function Test

isalnum(c) Is c an alphanumeric character?

isalpha(c) Is c an alphabetic character?

isdigit(c) Is c a digit?

islower(c) Is c lower case letter?

isprint(c) Is c a printable character?

ispunct(c) Is c a punctuation mark?

isspace(c) Is c a white space character?

isupper(c) Is c an upper case letter?

9.3 WRITING A CHARACTER

Like getchar, there is an analogous function putchar for writing characters one at a time

to the terminal. It takes the form as shown below:

putchar (variable_name);

where variable_name is a type char variable containing a character. This statement dis-

plays the character contained in the variable_name at the terminal. For example, the state-

ments

answer = ‘Y’;

putchar (answer);

will display the character Y on the screen. The statement
putchar (‘\n’);

would cause the cursor on the screen to move to the beginning of the next line.

Example 9.3 A program that reads a character from keyboard and then prints it in reverse

case is given in Fig. 9.3. That is, if the input is upper case, the output will be

lower case and vice versa.

The program uses three new functions: islower, toupper, and tolower. The function

islower is a conditional function and takes the value TRUE if the argument is a lowercase

alphabet; otherwise takes the value FALSE. The function toupper converts the lowercase

argument into an uppercase alphabet while the function tolower does the reverse.

Program

#include <stdio.h>
#include <ctype.h>
main()
{

char alphabet;
printf(“Enter an alphabet”);
putchar(‘\n’); /* move to next line */
alphabet = getchar();
if (islower(alphabet))

Computer Programming9.6

putchar(toupper(alphabet));/* Reverse and display */
else

putchar(tolower(alphabet)); /* Reverse and display */
}

Output

Enter an alphabet
a
A
Enter an alphabet
Q
q
Enter an alphabet
z
Z

Fig. 9.3 Reading and writing of alphabets in reverse case

9.4 FORMATTED INPUT

Formatted input refers to an input data that has been arranged in a particular format. For

example, consider the following data:

15.75 123 John

This line contains three pieces of data, arranged in a particular form. Such data has to be

read conforming to the format of its appearance. For example, the first part of the data

should be read into a variable float, the second into int, and the third part into char. This

is possible in C using the scanf function. (scanf means scan formatted.)

We have already used this input function in a number of examples. Here, we shall explore

all of the options that are available for reading the formatted data with scanf function. The

general form of scanf is

scanf (�control string�, arg1, arg2, argn);

The control string specifies the field format in which the data is to be entered and the

arguments arg1, arg2,, argn specify the address of locations where the data is stored.

Control string and arguments are separated by commas.

Control string (also known as format string) contains field specifications, which direct the

interpretation of input data. It may include:

· Field (or format) specifications, consisting of the conversion character %, a data type

character (or type specifier), and an optional number, specifying the field width.

· Blanks, tabs, or newlines.

Blanks, tabs and newlines are ignored. The data type character indicates the type of data

that is to be assigned to the variable associated with the corresponding argument. The field

width specifier is optional. The discussions that follow will clarify these concepts.

 9.7Managing Input and Output Operations

Inputting Integer Numbers

The field specification for reading an integer number is:

% w sd

The percentage sign (%) indicates that a conversion specification follows. w is an integer

number that specifies the field width of the number to be read and d, known as data type

character, indicates that the number to be read is in integer mode. Consider the following

example:
scanf (“%2d %5d”, &num1, &num2);

Data line:
50 31426

The value 50 is assigned to num1 and 31426 to num2. Suppose the input data is as

follows:
31426 50

The variable num1 will be assigned 31 (because of %2d) and num2 will be assigned 426

(unread part of 31426). The value 50 that is unread will be assigned to the first variable in

the next scanf call. This kind of errors may be eliminated if we use the field specifications

without the field width specifications. That is, the statement

scanf(“%d %d”, &num1, &num2);

will read the data

31426 50

correctly and assign 31426 to num1 and 50 to num2.
Input data items must be separated by spaces, tabs or newlines. Punctuation marks do not

count as separators. When the scanf function searches the input data line for a value to be
read, it will always bypass any white space characters.

What happens if we enter a floating point number instead of an integer? The fractional
part may be stripped away! Also, scanf may skip reading further input.

When the scanf reads a particular value, reading of the value will be terminated as soon
as the number of characters specified by the field width is reached (if specified) or until a
character that is not valid for the value being read is encountered. In the case of integers,
valid characters are an optionally signed sequence of digits.

An input field may be skipped by specifying * in the place of field width. For example, the
statement

scanf(“%d %*d %d”, &a, &b)

will assign the data
123 456 789

as follows:

123 to a
456 skipped (because of *)
789 to b

The data type character d may be preceded by �l� (letter ell) to read long integers and h to

read short integers.

NOTE: We have provided white space between the field specifications. These spaces are not neces-

sary with the numeric input, but it is a good practice to include them.

Computer Programming9.8

Example 9.4 Various input formatting options for reading integers are experimented in the

program shown in Fig. 9.4.

Program

main()
{

int a,b,c,x,y,z;
int p,q,r;

printf(“Enter three integer numbers\n”);
scanf(“%d %*d %d”,&a,&b,&c);

printf(“%d %d %d \n\n”,a,b,c);

printf(“Enter two 4-digit numbers\n”);
scanf(“%2d %4d”,&x,&y);

printf(“%d %d\n\n”, x,y);

printf(“Enter two integers\n”);
scanf(“%d %d”, &a,&x);

printf(“%d %d \n\n”,a,x);

printf(“Enter a nine digit number\n”);
scanf(“%3d %4d %3d”,&p,&q,&r);

printf(“%d %d %d \n\n”,p,q,r);

printf(“Enter two three digit numbers\n”);
scanf(“%d %d”,&x,&y);

printf(“%d %d”,x,y);
}

Output

Enter three integer numbers
1 2 3
1 3 -3577

Enter two 4-digit numbers
6789 4321
67 89

Enter two integers
44 66
4321 44

Enter a nine-digit number
123456789
66 1234 567
Enter two three-digit numbers
123 456
89 123

Fig. 9.4 Reading integers using scanf

 9.9Managing Input and Output Operations

The first scanf requests input data for three integer values a, b, and c, and accordingly

three values 1, 2, and 3 are keyed in. Because of the specification %*d the value 2 has been

skipped and 3 is assigned to the variable b. Notice that since no data is available for c, it

contains garbage.

The second scanf specifies the format %2d and %4d for the variables x and y respectively.

Whenever we specify field width for reading integer numbers, the input numbers should not

contain more digits that the specified size. Otherwise, the extra digits on the right-hand side

will be truncated and assigned to the next variable in the list. Thus, the second scanf has

truncated the four digit number 6789 and assigned 67 to x and 89 to y. The value 4321 has

been assigned to the first variable in the immediately following scanf statement.

NOTE: It is legal to use a non-whitespace character between field specifications. However,

the scanf expects a matching character in the given location. For example,

scanf(“%d-%d”, &a, &b);
accepts input like

123-456

to assign 123 to a and 456 to b.

Inputting Real Numbers

Unlike integer numbers, the field width of real numbers is not to be specified and therefore

scanf reads real numbers using the simple specification %f for both the notations, namely,

decimal point notation and exponential notation. For example, the statement

scanf(“%f %f %f”, &x, &y, &z);

with the input data
475.89 43.21E-1 678

will assign the value 475.89 to x, 4.321 to y, and 678.0 to z. The input field specifications may

be separated by any arbitrary blank spaces.

If the number to be read is of double type, then the specification should be %lf instead of

simple %f. A number may be skipped using %*f specification.

Example 9.5 Reading of real numbers (in both decimal point and exponential notation) is

illustrated in Fig. 9.5.

Program

main()
{

float x,y;
double p,q;

printf(“Values of x and y:”);
scanf(“%f %e”, &x, &y);

printf(“\n”);
printf(“x = %f\ny = %f\n\n”, x, y);
printf(“Values of p and q:”);

Computer Programming9.10

scanf(“%lf %lf”, &p, &q);

printf(“\n\np = %.12lf\np = %.12e”, p,q);
}

Output

Values of x and y:12.3456 17.5e-2
x = 12.345600
y = 0.175000

Values of p and q:4.142857142857 18.5678901234567890

p = 4.142857142857
q = 1.856789012346e+001

Fig. 9.5 Reading of real numbers

Inputting Character Strings

We have already seen how a single character can be read from the terminal using the

getchar function. The same can be achieved using the scanf function also. In addition, a

scanf function can input strings containing more than one character. Following are the

specifications for reading character strings:

%ws or %wc

The corresponding argument should be a pointer to a character array. However, %c may be

used to read a single character when the argument is a pointer to a char variable.

Example 9.6 Reading of strings using %wc and %ws is illustrated in Fig. 9.6.

The program in Fig. 9.6 illustrates the use of various field specifications for reading strings.

When we use %wc for reading a string, the system will wait until the wth character is keyed in.

Note that the specification %s terminates reading at the encounter of a blank space.

Therefore, name2 has read only the first part of �New York� and the second part is

automatically assigned to name3. However, during the second run, the string �New-York� is

correctly assigned to name2.

Program

main()
{

int no;
char name1[15], name2[15], name3[15];

printf(“Enter serial number and name one\n”);
scanf(“%d %15c”, &no, name1);

printf(“%d %15s\n\n”, no, name1);
printf(“Enter serial number and name two\n”);

Managing Input and Output Operations 9.11

scanf(“%d %s”, &no, name2);

printf(“%d %15s\n\n”, no, name2);

printf(“Enter serial number and name three\n”);
scanf(“%d %15s”, &no, name3);

printf(“%d %15s\n\n”, no, name3);
}

Output

Enter serial number and name one
1 123456789012345
1 123456789012345r
Enter serial number and name two
2 New York
2 New
Enter serial number and name three
2 York
Enter serial number and name one
1 123456789012
1 123456789012r
Enter serial number and name two
2 New-York
2 New-York
Enter serial number and name three
3 London
3 London

Fig. 9.6 Reading of strings

Some versions of scanf support the following conversion specifications for strings:

%[characters]

%[^characters]

The specification %[characters] means that only the characters specified within the

brackets are permissible in the input string. If the input string contains any other character,

the string will be terminated at the first encounter of such a character. The specification

%[^characters] does exactly the reverse. That is, the characters specified after the

circumflex (^) are not permitted in the input string. The reading of the string will be

terminated at the encounter of one of these characters.

Example 9.7 The program in Fig. 9.7 illustrates the function of %[] specification.

Program-A

main()
{

char address[80];

Computer Programming9.12

printf(“Enter address\n”);
scanf(“%[a-z]”, address);

printf(“%-80s\n\n”, address);
}

Output

Enter address
new delhi 110002
new delhi

Program-B

main()
{

char address[80];

printf(“Enter address\n”);
scanf(“%[^\n]”, address);

printf(“%-80s”, address);
}

Output

Enter address
New Delhi 110 002
New Delhi 110 002

Fig. 9.7 Illustration of conversion specification%[] for strings

Reading Blank Spaces

We have earlier seen that %s specifier cannot be used to read strings with blank

spaces. But, this can be done with the help of %[] specification. Blank spaces may

be included within the brackets, thus enabling the scanf to read strings with spaces.

Remember that the lowercase and uppercase letters are distinct. See

Fig. 9.7.

Reading Mixed Data Types

It is possible to use one scanf statement to input a data line containing mixed mode data. In

such cases, care should be exercised to ensure that the input data items match the control

specifications in order and type. When an attempt is made to read an item that does not

match the type expected, the scanf function does not read any further and immediately

returns the values read. The statement

scanf (“%d %c %f %s”, &count, &code, &ratio, name);

will read the data

Managing Input and Output Operations 9.13

15 p 1.575 coffee

correctly and assign the values to the variables in the order in which they appear. Some

systems accept integers in the place of real numbers and vice versa, and the input data is

converted to the type specified in the control string.
NOTE: A space before the %c specification in the format string is necessary to skip the white space

before p.

Detection of Errors in Input

When a scanf function completes reading its list, it returns the value of number of items

that are successfully read. This value can be used to test whether any errors occurred in

reading the input. For example, the statement

scanf(“%d %f %s, &a, &b, name);

will return the value 3 if the following data is typed in:

20 150.25 motor

and will return the value 1 if the following line is entered

20 motor 150.25

This is because the function would encounter a string when it was expecting a floating-point

value, and would therefore terminate its scan after reading the first value.

Example 9.8 The program presented in Fig.9.8 illustrates the testing for correctness of reading

of data by scanf function.

The function scanf is expected to read three items of data and therefore, when the values for

all the three variables are read correctly, the program prints out their values. During the

third run, the second item does not match with the type of variable and therefore the reading

is terminated and the error message is printed. Same is the case with the fourth run.

In the last run, although data items do not match the variables, no error message has

been printed. When we attempt to read a real number for an int variable, the integer part is

assigned to the variable, and the truncated decimal part is assigned to the next variable.

NOTE: The character �2� is assigned to the character variable c.

Program

main()
{

int a;
float b;
char c;
printf(“Enter values of a, b and c\n”);
if (scanf(“%d %f %c”, &a, &b, &c) == 3)

printf(“a = %d b = %f c = %c\n” , a, b, c);
else

printf(“Error in input.\n”);
}

Computer Programming9.14

Output

Enter values of a, b and c
12 3.45 A
a = 12 b = 3.450000 c = A
Enter values of a, b and c
23 78 9
a = 23 b = 78.000000 c = 9
Enter values of a, b and c
8 A 5.25
Error in input.
Enter values of a, b and c
Y 12 67
Error in input.
Enter values of a, b and c
15.75 23 X
a = 15 b = 0.750000 c = 2

Fig. 9.8 Detection of errors in scanf input

Commonly used scanf format codes are given in Table 9.2

Table 9.2 Commonly used scanf Format Codes

Code Meaning

%c read a single character

%d read a decimal integer

%e read a floating point value

%f read a floating point value

%g read a floating point value

%h read a short integer

%i read a decimal, hexadecimal or octal integer

%o read an octal integer

%s read a string

%u read an unsigned decimal integer

%x read a hexadecimal integer

%[..] read a string of word(s)

The following letters may be used as prefix for certain conversion characters.

h for short integers

l for long integers or double

L for long double

NOTE: C99 adds some more format codes. See the Appendix "C99 Features".

Points to Remember While Using scanf

If we do not plan carefully, some �crazy� things can happen with scanf. Since the I/O routines

are not a part of C language, they are made available either as a separate module of the C

Managing Input and Output Operations 9.15

library or as a part of the operating system (like UNIX). New features are added to these

routines from time to time as new versions of systems are released. We should consult the

system reference manual before using these routines. Given below are some of the general

points to keep in mind while writing a scanf statement.

1. All function arguments, except the control string, must be pointers to variables.

2. Format specifications contained in the control string should match the arguments in

order.

3. Input data items must be separated by spaces and must match the variables receiving

the input in the same order.

4. The reading will be terminated, when scanf encounters a �mismatch� of data or a

character that is not valid for the value being read.

5. When searching for a value, scanf ignores line boundaries and simply looks for the

next appropriate character.

6. Any unread data items in a line will be considered as part of the data input line to the

next scanf call.

7. When the field width specifier w is used, it should be large enough to contain the input

data size.

Rules for scanf

· Each variable to be read must have a filed specification.

· For each field specification, there must be a variable address of proper

type.

· Any non-whitespace character used in the format string must have a match

ing character in the user input.

· Never end the format string with whitespace. It is a fatal error!

· The scanf reads until:

� A whitespace character is found in a numberic specification, or

� The maximum number of characters have been read or

� An error is detected, or

� The end of file is reached

9.5 FORMATTED OUTPUT

We have seen the use of printf function for printing captions and numerical results. It is

highly desirable that the outputs are produced in such a way that they are understandable

and are in an easy-to-use form. It is therefore necessary for the programmer to give careful

consideration to the appearance and clarity of the output produced by his program.

Computer Programming9.16

The printf statement provides certain features that can be effectively exploited to control

the alignment and spacing of print-outs on the terminals. The general form of printf state-

ment is:

printf(“control string”, arg1, arg2,, argn);

Control string consists of three types of items:

1. Characters that will be printed on the screen as they appear.

2. Format specifications that define the output format for display of each item.

3. Escape sequence characters such as \n, \t, and \b.

The control string indicates how many arguments follow and what their types are. The

arguments arg1, arg2,, argn are the variables whose values are formatted and printed

according to the specifications of the control string. The arguments should match in number,

order and type with the format specifications.

A simple format specification has the following form:

% w.p type-specifier

where w is an integer number that specifies the total number of columns for the output value

and p is another integer number that specifies the number of digits to the right of the decimal

point (of a real number) or the number of characters to be printed from a string. Both w and

p are optional. Some examples of formatted printf statement are:

printf(“Programming in C”);

printf(“ “);

printf(“\n”);

printf(“%d”, x);

printf(“a = %f\n b = %f”, a, b);

printf(“sum = %d”, 1234);

printf(“\n\n”);

printf never supplies a newline automatically and therefore multiple printf statements

may be used to build one line of output. A newline can be introduced by the help of a newline

character �\n� as shown in some of the examples above.

Output of Integer Numbers

The format specification for printing an integer number is:

% w d

where w specifies the minimum field width for the output. However, if a number is greater

than the specified field width, it will be printed in full, overriding the minimum specification.

d specifies that the value to be printed is an integer. The number is written right-justified in

the given field width. Leading blanks will appear as necessary. The following examples

illustrate the output of the number 9876 under different formats:

Managing Input and Output Operations 9.17

Format Output

printf(�%d�, 9876) 9 8 7 6

printf(�%6d�, 9876) 9 8 7 6

printf(�%2d�, 9876) 9 8 7 6

printf(�%-6d�, 9876) 9 8 7 6

printf(�%06d�, 9876) 0 0 9 8 7 6

It is possible to force the printing to be left-justified by placing a minus sign directly after

the % character, as shown in the fourth example above. It is also possible to pad with zeros

the leading blanks by placing a 0 (zero) before the field width specifier as shown in the last

item above. The minus (�) and zero (0) are known as flags.

Long integers may be printed by specifying ld in the place of d in the format specification.

Similarly, we may use hd for printing short integers.

Example 9.9 The program in Fig. 9.9 illustrates the output of integer numbers under various

formats.

Program
main()
{

int m = 12345;
long n = 987654;

printf(“%d\n”,m);
printf(“%10d\n”,m);
printf(“%010d\n”,m);
printf(“%-10d\n”,m);
printf(“%10ld\n”,n);
printf(“%10ld\n”,-n);

}
Output

12345
12345

0000012345
12345

987654
– 987654

Fig. 9.9 Formatted output of integers

Output of Real Numbers

The output of a real number may be displayed in decimal notation using the following format

specification:

Computer Programming9.18

% w.p f

The integer w indicates the minimum number of positions that are to be used for the display

of the value and the integer p indicates the number of digits to be displayed after the decimal

point (precision). The value, when displayed, is rounded to p decimal places and printed

right-justified in the field of w columns. Leading blanks and trailing zeros will appear as

necessary. The default precision is 6 decimal places. The negative numbers will be printed

with the minus sign. The number will be displayed in the form [�] mmm-nnn.

We can also display a real number in exponential notation by using the specification:

% w.p e

The display takes the form

[-] m.nnnne[±]xx

where the length of the string of n�s is specified by the precision p. The default precision is 6.

The field width w should satisfy the condition.

w ³ p+7

The value will be rounded off and printed right justified in the field of w columns.

Padding the leading blanks with zeros and printing with left-justification are also possible

by using flags 0 or � before the field width specifier w.
The following examples illustrate the output of the number y = 98.7654 under different

format specifications:

Format Output

printf(�%7.4f �,y) 9 8 7 6 5 4.

printf(�%7.2f �,y) 9 8 7 7.

printf(�%-7.2f �,y) 9 8 7 7.

printf(�%f �,y) 9 8 7 6 5 4.

printf(�%10.2e�,y) 9 8 8. e + 0 1

printf(�%11.4e�,-y) - +9 8 7 6 5 0 1. e

printf(�%-10.2e�,y) 9 8 8 0 1. e +

printf(�%e�,y) 9 8 7 6 5 4 0 0 1. e +

Some systems also support a special field specification character that lets the user define

the field size at run time. This takes the following form:

printf(�%*.*f�, width, precision, number);

Managing Input and Output Operations 9.19

In this case, both the field width and the precision are given as arguments which will supply

the values for w and p. For example,

printf(“%*.*f”,7,2,number);

is equivalent to

printf(“%7.2f”,number);

The advantage of this format is that the values for width and precision may be supplied at

run time, thus making the format a dynamic one. For example, the above statement can be

used as follows:

int width = 7;
int precision = 2;
........
........
printf(“%*.*f”, width, precision, number);

Example 9.10 All the options of printing a real number are illustrated in Fig. 9.10.

Program
main()
{

float y = 98.7654;

printf(“%7.4f\n”, y);
printf(“%f\n”, y);
printf(“%7.2f\n”, y);
printf(“%-7.2f\n”, y);
printf(“%07.2f\n”, y);
printf(“%*.*f”, 7, 2, y);
printf(“\n”);
printf(“%10.2e\n”, y);
printf(“%12.4e\n”, -y);
printf(“%-10.2e\n”, y);
printf(“%e\n”, y);

}
Output

98.7654
98.765404
98.77
98.77
0098.77
98.77
9.88e+001
-9.8765e+001
9.88e+001
9.876540e+001

Fig. 9.10 Formatted output of real numbers

Computer Programming9.20

Printing of a Single Character

A single character can be displayed in a desired position using the format:

%wc

The character will be displayed right-justified in the field of w columns. We can make the

display left-justified by placing a minus sign before the integer w. The default value for w is 1.

Printing of Strings

The format specification for outputting strings is similar to that of real numbers. It is of the

form

%w.ps

where w specifies the field width for display and p instructs that only the first p characters

of the string are to be displayed. The display is right-justified.

The following examples show the effect of variety of specifications in printing a string

�NEW DELHI 110001�, containing 16 characters (including blanks).

N

1 1

N

N

N

N

N

E

2 2

E

E

E

E

E

W

3 34 4

W

W

W

W

W

D

5 5

D

D

D

D

D

E

6 6

E

E

E

E

L

7 7

L

L

L

L

H

8 8

H

H

H

H

I

9 90 0

I

I

I

I

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

OutputSpecification

%s

%20s

%20.10s

%-20.10s

%.5s

%5s

Example 9.11 Printing of characters and strings is illustrated in Fig. 9.11.

Program

main()
{

char x = ‘A’;
char name[20] = “ANIL KUMAR GUPTA”;

printf(“OUTPUT OF CHARACTERS\n\n”);
printf(“%c\n%3c\n%5c\n”, x,x,x);
printf(“%3c\n%c\n”, x,x);

Managing Input and Output Operations 9.21

printf(“\n”);

printf(“OUTPUT OF STRINGS\n\n”);
printf(“%s\n”, name);
printf(“%20s\n”, name);
printf(“%20.10s\n”, name);
printf(“%.5s\n”, name);
printf(“%-20.10s\n”, name);
printf(“%5s\n”, name);

}
Output

OUTPUT OF CHARACTERS
A

A
A

A
A
OUTPUT OF STRINGS
ANIL KUMAR GUPTA

ANIL KUMAR GUPTA
 ANIL KUMAR

ANIL
ANIL KUMAR
ANIL KUMAR GUPTA

Fig. 9.11 Printing of characters and strings

Mixed Data Output

It is permitted to mix data types in one printf statement. For example, the statement of the

type

printf(“%d %f %s %c”, a, b, c, d);

is valid. As pointed out earlier, printf uses its control string to decide how many variables to

be printed and what their types are. Therefore, the format specifications should match the

variables in number, order, and type. If there are not enough variables or if they are of the

wrong type, the output results will be incorrect.

Table 9.3 Commonly used printf Format Codes

Code Meaning

%c print a single character

%d print a decimal integer

%e print a floating point value in exponent form

%f print a floating point value without exponent

%g print a floating point value either e-type or f-type depending on

Computer Programming9.22

Code Meaning

%i print a signed decimal integer

%o print an octal integer, without leading zero

%s print a string

%u print an unsigned decimal integer

%x print a hexadecimal integer, without leading Ox

The following letters may be used as prefix for certain conversion characters.

h for short integers

l for long integers or double

L for long double.

Table 9.4 Commonly used Output Format Flags

Flag Meaning

� Output is left-justified within the field. Remaining field will be blank.

+ + or � will precede the signed numeric item.

0 Causes leading zeros to appear.

(with o or x) Causes octal and hex items to be preceded by O and Ox, respectively.

(with e, f or g) Causes a decimal point to be present in all floating point numbers, even

if it is whole number. Also prevents the truncation of trailing zeros in g-

type conversion.

NOTE: C99 adds some more format codes. See the Appendix " C99 Features".

Enhancing the Readability of Output

Computer outputs are used as information for analysing certain relationships between vari-

ables and for making decisions. Therefore the correctness and clarity of outputs are of ut-

most importance. While the correctness depends on the solution procedure, the clarity de-

pends on the way the output is presented. Following are some of the steps we can take to

improve the clarity and hence the readability and understandability of outputs.

1. Provide enough blank space between two numbers.

2. Introduce appropriate headings and variable names in the output.

3. Print special messages whenever a peculiar condition occurs in the output.

5. Introduce blank lines between the important sections of the output.

The system usually provides two blank spaces between the numbers. However, this can be

increased by selecting a suitable field width for the numbers or by introducing a �tab� charac-

ter between the specifications. For example, the statement

printf(“a = %d\t b = %d”, a, b);

will provide four blank spaces between the two fields. We can also print them on two separate

lines by using the statement

printf(“a = %d\n b = %d”, a, b);

Messages and headings can be printed by using the character strings directly in the printf

statement. Examples:

Managing Input and Output Operations 9.23

printf(“\n OUTPUT RESULTS \n”);

printf(“Code\t Name\t Age\n”);

printf(“Error in input data\n”);

printf(“Enter your name\n”);

- While using getchar function, care should be exercised to clear any

unwanted characters in the input stream.

- Do not forget to include <stdio.h> headerfiles when using functions from

standard input/output library.

- Do not forget to include <ctype.h> header file when using functions from

character handling library.

- Provide proper field specifications for every variable to be read or printed.

- Enclose format control strings in double quotes.

- Do not forget to use address operator & for basic type variables in the

input list of scanf.

- Use double quotes for character string constants.

- Use single quotes for single character constants.

- Provide sufficient field with to handle a value to be printed.

- Be aware of the situations where output may be imprecise due to

formatting.

- Do not specify any precision in input field specifications.

- Do not provide any white-space at the end of format string of a scanf

statement.

- Do not forget to close the format string in the scanf or printf statement

with double quotes.

- Using an incorrect conversion code for data type being read or written will

result in runtime error.

- Do not forget the comma after the format string in scanf and printf

statements.

- Not separating read and write arguments is an error.

- Do not use commas in the format string of a scanf statement.

- Using an address operator & with a variable in the printf statement will

result in runtime error.

1. Inventory Report
Problem: The ABC Electric Company manufactures four consumer products. Their

inventory position on a particular day is given below:

Computer Programming9.24

Code Quantity Rate (Rs)

F105 275 575.00

H220 107 99.95

I019 321 215.50

M315 89 725.00

It is required to prepare the inventory report table in the following format:

INVENTORY REPORT

Code Quantity Rate Value

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� ��

Total Value: ���

The value of each item is given by the product of quantity and rate.

Program: The program given in Fig. 9.12 reads the data from the terminal and generates the

required output. The program uses subscripted variables which are discussed in Chapter 7.

Program

#define ITEMS 4
main()
{ /* BEGIN */

int i, quantity[5];
float rate[5], value, total_value;
char code[5][5];
/* READING VALUES */
i = 1;
while (i <= ITEMS)
{

printf(“Enter code, quantity, and rate:”);
scanf(“%s %d %f”, code[i], &quantity[i],&rate[i]);
i++;

}
/*.......Printing of Table and Column Headings.......*/

printf(“\n\n”);
printf(“ INVENTORY REPORT \n”);
printf(“— \n”);
printf(“ Code Quantity Rate Value \n”);
printf(“— \n”);

/*.......Preparation of Inventory Position..........*/
total_value = 0;
i = 1;
while (i <= ITEMS)
{

Managing Input and Output Operations 9.25

value = quantity[i] * rate[i];
printf(“%5s %10d %10.2f %e\n”,code[i],quantity[i],

rate[i],value);
total_value += value;
i++;

}
/*.......Printing of End of Table..................*/

printf(“— — — — — — — — — — — — — — — — \n”);
printf(“ Total Value = %e\n”,total_value);
printf(“— — — — — — — — — — — — — — — — \n”);

} /* END */

Output

Enter code, quantity, and rate:F105 275 575.00
Enter code, quantity, and rate:H220 107 99.95
Enter code, quantity, and rate:I019 321 215.50
Enter code, quantity, and rate:M315 89 725.00

INVENTORY REPORT

Code Quantity Rate Value

F105 275 575.00 1.581250e+005
H220 107 99.95 1.069465e+004
I019 321 215.50 6.917550e+004
M315 89 725.00 6.452500e+004

Total Value = 3.025202e+005

Fig. 9.12 Program for inventory report

2. Reliability Graph

Problem: The reliability of an electronic component is given by

reliability (r) = e � l t

where l is the component failure rate per hour and t is the time of operation in hours. A

graph is required to determine the reliability at various operating times, from 0 to 3000

hours. The failure rate l (lambda) is 0.001.

Problem

#include <math.h>
#define LAMBDA 0.001
main()
{

double t;
float r;
int i, R;
for (i=1; i<=27; ++i)
{

Computer Programming9.26

printf(“– —”);
}
printf(“\n”);
for (t=0; t<=3000; t+=150)
{

r = exp(–LAMBDA*t);
R = (int)(50*r+0.5);
printf(“ |”);
for (i=1; i<=R; ++i)
{

printf(“*”);
}
printf(“#\n”);

}
for (i=1; i<3; ++i)
{

printf(“ |\n”);
}

}

Output

– –– –– – –– – ––– ––– –– – –– – ––– – –– – –– – –– – –– – –– ––– –

|**#
|***#
|*************************************#
|********************************#
|***************************#
|************************#
|********************#
|*****************#
|***************#
|*************#
|***********#
|**********#
|********#
|*******#
|******#
|*****#
|*****#
|****#
|***#
|***#
|**#

Fig. 9.13 Program to draw reliability graph

Managing Input and Output Operations 9.27

Program: The program given in Fig. 9.13 produces a shaded graph. The values of t are self-

generated by the for statement

for (t=0; t <= 3000; t = t+150)

in steps of 150. The integer 50 in the statement

R = (int)(50*r+0.5)

is a scale factor which converts r to a large value where an integer is used for plotting the

curve. Remember r is always less than 1.

9.1 State whether the following statements are true or false.

(a) The purpose of the header file <studio.h> is to store the programs created by the

users.

(b) The C standard function that receives a single character from the keyboard is

getchar.

(c) The getchar cannot be used to read a line of text from the keyboard.

(d) The input list in a scanf statement can contain one or more variables.

(e) When an input stream contains more data items than the number of specifica-

tions in a scanf statement, the unused items will be used by the next scanf call in

the program.

(f) Format specifiers for output convert internal representations for data to readable

characters.

(g) Variables form a legal element of the format control string of a printf statement.

(h) The scanf function cannot be used to read a single character from the keyboard.

(i) The format specification %+ �8d prints an integer left-justified in a field width of

8 with a plus sign, if the number is positive.

(j) If the field width of a format specifier is larger than the actual width of the value,

the value is printed right-justified in the field.

(k) The print list in a printf statement can contain function calls.

(l) The format specification %5s will print only the first 5 characters of a given string

to be printed.

9.2 Fill in the blanks in the following statements.

(a) The _________specification is used to read or write a short integer.

(b) The conversion specifier _________is used to print integers in hexadecimal form.

(c) For using character functions, we must include the header file ________ in the

program.

(d) For reading a double type value, we must use the specification _________.

(e) The specification _______is used to read a data from input list and discard it with-

out assigning it to many variable.

(f) The specification _____ may be used in scanf to terminate reading at the encoun-

ter of a particular character.

(g) The specification %[] is used for reading strings that contain ________.

(h) By default, the real numbers are printed with a precision of ______decimal places.

Computer Programming9.28

(i) To print the data left-justified, we must use ______in the field specification.

(j) The specifier _______ prints floating-point values in the scientific notation.

9.3 Distinguish between the following pairs:

(a) getchar and scanf functions.

(b) %s and %c specifications for reading.

(c) %s and %[] specifications for reading.

(d) %g and %f specification for printing.

(e) %f and %e specifications for printing.

9.4 Write scanf statements to read the following data lists:

(a) 78 B 45 (b) 123 1.23 45A

(c) 15-10-2002 (d) 10 TRUE 20

9.5 State the outputs produced by the following printf statements.

(a) printf (�%d%c%f�, 10, �x�, 1.23);

(b) printf (�%2d %c %4.2f�, 1234,, �x�, 1.23);

(c) printf (�%d\t%4.2f�, 1234, 456);

(d) printf (�\�%08.2f\��, 123.4);

(e) printf (�%d%d %d�, 10, 20);

For questions 9.6 to 9.10 assume that the following declarations have been made in the program:

int year, count;
float amount, price;
char code, city[10];
double root;

9.6 State errors, if any, in the following input statements.

(a) scanf(�%c%f%d�, city, &price, &year);

(b) scanf(�%s%d�, city, amount);

(c) scanf(�%f, %d, &amount, &year);

(d) scanf(\n�%f�, root);

(e) scanf(�%c %d %ld�, *code, &count, Root);

9.7 What will be the values stored in the variables year and code when the data

1988, x

is keyed in as a response to the following statements:

(a) scanf(�%d %c�, &year, &code);

(b) scanf(�%c %d�, &year, &code);

(c) scanf(�%d %c�, &code, &year);

(d) scanf(�%s %c�, &year, &code);

9.8 The variables count, price, and city have the following values:

count <�� 1275

price <�� �235.74

city <�� Cambridge

Show the exact output that the following output statements will produce:

(a) printf(�%d %f�, count, price);

(b) printf(�%2d\n%f�, count, price);

(c) printf(�%d %f�, price, count);

(d) printf(“%10dxxxx%5.2f”,count, price);

Managing Input and Output Operations 9.29

(e) printf(�%s�, city);

(f) printf(%-10d %-15s�, count, city);

9.9 State what (if anything) is wrong with each of the following output statements:

(a) printf(%d 7.2%f, year, amount);

(b) printf(�%-s, %c�\n, city, code);

(c) printf(�%f, %d, %s, price, count, city);

(d) printf(�%c%d%f\n�, amount, code, year);

9.10 In response to the input statement

scanf(�%4d%*%d�, &year, &code, &count);

the following data is keyed in:

19883745

What values does the computer assign to the variables year, code, and count?

9.11 How can we use the getchar() function to read multicharacter strings?

9.12 How can we use the putchar () function to output multicharacter strings?

9.13 What is the purpose of scanf() function?

9.14 Describe the purpose of commonly used conversion characters in a scanf() function.

9.15 What happens when an input data item contains

(a) more characters than the specified field width and

(b) fewer characters than the specified field width?

9.16 What is the purpose of print() function?

9.17 Describe the purpose of commonly used conversion characters in a printf() function.

9.18 How does a control string in a printf() function differ from the control string in a

scanf() function?

9.19 What happens if an output data item contains

(a) more characters than the specified field width and

(b) fewer characters than the specified field width?

9.20 How are the unrecognized characters within the control string are interpreted in

(a) scanf function; and

(b) printf function?

9.1 Given the string �WORDPROCESSING�, write a program to read the string from the

terminal and display the same in the following formats:

(a) WORD PROCESSING

(b) WORD

PROCESSING

(c) W.P.

9.2 Write a program to read the values of x and y and print the results of the following

expressions in one line:

(a)
x y

x y

+

-
(b)

x y+

2
(c) (x+y)(x�y)

Computer Programming9.30

9.3 Write a program to read the following numbers, round them off to the nearest integers

and print out the results in integer form:

35.7 50.21 � 23.73 � 46.45

9.4 Write a program that reads 4 floating point values in the range, 0.0 to 20.0, and prints

a horizontal bar chart to represent these values using the character * as the fill char-

acter. For the purpose of the chart, the values may be rounded off to the nearest

integer. For example, the value 4.36 should be represented as follows.

* * * *

* * * * 4.36

* * * *

Note that the actual values are shown at the end of each bar.

9.5 Write an interactive program to demonstrate the process of multiplication. The program should

ask the user to enter two two-digit integers and print the product of integers as shown below.

45

´ 37

7 ´ 45 is 315

3 ´ 45 is 135

Add them 1665

9.6 Write a program to read three integers from the keyboard using one scanf statement
and output them on one line using:

(a) three printf statements,
(b) only one printf with conversion specifiers, and
(c) only one printf without conversion specifiers.

9.7 Write a program that prints the value 10.45678 in exponential format with the follow-
ing specifications:
(a) correct to two decimal places;
(b) correct to four decimal places; and
(c) correct to eight decimal places.

9.8 Write a program to print the value 345.6789 in fixed-point format with the following
specifications:

(a) correct to two decimal places;
(b) correct to five decimal places; and
(c) correct to zero decimal places.

9.9 Write a program to read the name ANIL KUMAR GUPTA in three parts using the
scanf statement and to display the same in the following format using the printf
statement.
(a) ANIL K. GUPTA
(b) A.K. GUPTA
(c) GUPTA A.K.

9.10 Write a program to read and display the following table of data.
Name Code Price
Fan 67831 1234.50
Motor 450 5786.70

The name and code must be left-justified and price must be right-justified.

Decision Making
and Branching

10.1 INTRODUCTION

We have seen that a C program is a set of statements which are normally executed
sequentially in the order in which they appear. This happens when no options or no
repetitions of certain calculations are necessary. However, in practice, we have a number of
situations where we may have to change the order of execution of statements based on
certain conditions, or repeat a group of statements until certain specified conditions are met.
This involves a kind of decision making to see whether a particular condition has occurred or
not and then direct the computer to execute certain statements accordingly.

C language possesses such decision-making capabilities by supporting the following
statements:

1. if statement
2. switch statement
3. Conditional operator statement
4. goto statement

These statements are popularly known as decision-making statements. Since these state-
ments �control� the flow of execution, they are also known as control statements.

We have already used some of these statements in the earlier examples. Here, we shall
discuss their features, capabilities and applications in more detail.

10.2 DECISION MAKING WITH IF STATEMENT

The if statement is a powerful decision-making statement and is used to control the flow of
execution of statements. It is basically a two-way decision statement and is used in
conjunction with an expression. It takes the following form:

if (test expression)

It allows the computer to evaluate the expression first and then, depending on whether
the value of the expression (relation or condition) is �true� (or non-zero) or �false� (zero), it

10

Computer Programming10.2

transfers the control to a particular statement. This point of program has two paths to fol-
low, one for the true condition and the other for the false condition as shown in Fig. 10.1.

False

True

Entry

test expression
?

Fig. 10.1 Two-way branching

Some examples of decision making, using if statements are:

1. if (bank balance is zero)
borrow money

2. if (room is dark)
put on lights

3. if (code is 1)
person is male

4. if (age is more than 55)
person is retired

The if statement may be implemented in different forms depending on the complexity of
conditions to be tested. The different forms are:

1. Simple if statement
2. if.....else statement
3. Nested if....else statement
4. else if ladder.

We shall discuss each one of them in the next few sections.

10.3 SIMPLE IF STATEMENT

The general form of a simple if statement is

if (test expression)
 {

statement-block;
 }
statement-x;

The �statement-block� may be a single statement or a group of statements. If the test ex-

pression is true, the statement-block will be executed; otherwise the statement-block will be
skipped and the execution will jump to the statement-x. Remember, when the condition is

Decision Making and Branching 10.3

true both the statement-block and the statement-x are executed in sequence. This is illus-
trated in Fig. 10.2.

False

statement - x

statement-block

Next statement

True

Entry

test
expression

?

Fig. 10.2 Flowchart of simple if control

Consider the following segment of a program that is written for processing of marks ob-
tained in an entrance examination.

.........

.........
if (category == SPORTS)
{

marks = marks + bonus_marks;
}
printf(“%f”, marks);
.........
.........

The program tests the type of category of the student. If the student belongs to the
SPORTS category, then additional bonus_marks are added to his marks before they are
printed. For others, bonus_marks are not added.

Example 10.1 The program in Fig. 10.3 reads four values a, b, c, and d from the terminal and

evaluates the ratio of (a+b) to (c�d) and prints the result, if

c�d is not equal to zero.

The program given in Fig. 10.3 has been run for two sets of data to see that the paths function
properly. The result of the first run is printed as,

Ratio = �3.181818

Computer Programming10.4

Program

main()
{

int a, b, c, d;
float ratio;

printf(“Enter four integer values\n”);
scanf(“%d %d %d %d”, &a, &b, &c, &d);

if (c-d != 0) /* Execute statement block */
{

ratio = (float)(a+b)/(float)(c-d);
printf(“Ratio = %f\n”, ratio);

}
}

Output

Enter four integer values
12 23 34 45
Ratio = -3.181818

Enter four integer values
12 23 34 34

Fig. 10.3 Illustration of simple if statement

The second run has neither produced any results nor any message. During the second
run, the value of (c�d) is equal to zero and therefore, the statements contained in the
statement-block are skipped. Since no other statement follows the statement-block, program
stops without producing any output.

Note the use of float conversion in the statement evaluating the ratio. This is necessary
to avoid truncation due to integer division. Remember, the output of the first run �3.181818
is printed correct to six decimal places. The answer contains a round off error. If we wish to
have higher accuracy, we must use double or long double data type.

The simple if is often used for counting purposes. The Example 10.2 illustrates this.

Example 10.2 The program in Fig. 10.4 counts the number of boys whose weight is less than

50 kg and height is greater than 170 cm.

The program has to test two conditions, one for weight and another for height. This is done
using the compound relation

if (weight < 50 && height > 170)

Decision Making and Branching 10.5

This would have been equivalently done using two if statements as follows:

if (weight < 50)

if (height > 170)

count = count +1;

If the value of weight is less than 50, then the following statement is executed, which in
turn is another if statement. This if statement tests height and if the height is greater
than 170, then the count is incremented by 1.

Program

main()
{

int count, i;
float weight, height;

count = 0;
printf(“Enter weight and height for 10 boys\n”);

for (i =1; i <= 10; i++)
{

scanf(“%f %f”, &weight, &height);
if (weight < 50 && height > 170)

count = count + 1;
}
printf(“Number of boys with weight < 50 kg\n”);
printf(“and height > 170 cm = %d\n”, count);

}

Output

Enter weight and height for 10 boys
45 176.5
55 174.2
47 168.0
49 170.7
54 169.0
53 170.5
49 167.0
48 175.0
47 167
51 170
Number of boys with weight < 50 kg
and height > 170 cm = 3

Fig. 10.4 Use of if for counting

Computer Programming10.6

Applying De Morgan�s Rule

While designing decision statements, we often come across a situation where the
logical NOT operator is applied to a compound logical expression, like
!(x&&y||!z). However, a positive logic is always easy to read and comprehend than
a negative logic. In such cases, we may apply what is known as De Morgan�s rule to
make the total expression positive. This rule is as follows:

�Remove the parentheses by applying the NOT operator to every logical expres-
sion component, while complementing the relational operators�

That is,

x becomes !x

!x becomes x

&& becomes ||

|| becomes &&

Examples:

!(x && y || !z) becomes !x || !y && z

!(x <=0 || !condition) becomes x >0&& condition

10.4 THE IF.....ELSE STATEMENT

The if...else statement is an extension of the simple if statement. The general form is

If (test expression)

{

True-block statement(s)

}

else

{

False-block statement(s)

}

statement-x

If the test expression is true, then the true-block statement(s), immediately following the if
statements are executed; otherwise, the false-block statement(s) are executed. In either case,
either true-block or false-block will be executed, not both. This is illustrated in Fig. 10.5. In
both the cases, the control is transferred subsequently to the statement-x.

Decision Making and Branching 10.7

Fig. 10.5 Flowchart of if......else control

Let us consider an example of counting the number of boys and girls in a class. We use
code 1 for a boy and 2 for a girl. The program statement to do this may be written as follows:

.........

.........
if (code == 1)

boy = boy + 1;
if (code == 2)

girl = girl+1;
.........
.........

The first test determines whether or not the student is a boy. If yes, the number of boys is
increased by 1 and the program continues to the second test. The second test again deter-
mines whether the student is a girl. This is unnecessary. Once a student is identified as a
boy, there is no need to test again for a girl. A student can be either a boy or a girl, not both.
The above program segment can be modified using the else clause as follows:

..........

..........
if (code == 1)

boy = boy + 1;
else

girl = girl + 1;
xxxxxxxxxx

..........

Computer Programming10.8

Here, if the code is equal to 1, the statement boy = boy + 1; is executed and the control is
transferred to the statement xxxxxx, after skipping the else part. If the code is not equal to
1, the statement boy = boy + 1; is skipped and the statement in the else part girl = girl +

1; is executed before the control reaches the statement xxxxxxxx.

Consider the program given in Fig. 10.3. When the value (c�d) is zero, the ratio is not
calculated and the program stops without any message. In such cases we may not know
whether the program stopped due to a zero value or some other error. This program can be
improved by adding the else clause as follows:

..........

..........
if (c-d != 0)

{
ratio = (float)(a+b)/(float)(c-d);
printf(“Ratio = %f\n”, ratio);

}
else

printf(“c-d is zero\n”);
..........
..........

Example 10.3 A program to evaluate the power series

ex = 1 + x +
x

2!

x

3!

x

n!

2 3 n

+ +¼+ , 0 < x < 1

is given in Fig. 10.6. It uses if......else to test the accuracy.

The power series contains the recurrence relationship of the type

Tn = Tn-1

x

n
e j for n > 1

T1 = x for n = 1

T0 = 1

If Tn-1 (usually known as previous term) is known, then Tn (known as present term) can be
easily found by multiplying the previous term by x/n. Then

ex = T0 + T1 + T2 + + Tn = sum

Program

#define ACCURACY 0.0001
main()
{

int n, count;
float x, term, sum;

printf(“Enter value of x:”);

scanf(“%f”, &x);

Decision Making and Branching 10.9

n = term = sum = count = 1;
while (n <= 100)
{

term = term * x/n;
sum = sum + term;
count = count + 1;
if (term < ACCURACY)

n = 999;
else

n = n + 1;
}
printf(“Terms = %d Sum = %f\n”, count, sum);

}

Output

Enter value of x:0
Terms = 2 Sum = 1.000000

Enter value of x:0.1
Terms = 5 Sum = 1.105171

Enter value of x:0.5
Terms = 7 Sum = 1.648720

Enter value of x:0.75
Terms = 8 Sum = 2.116997

Enter value of x:0.99
Terms = 9 Sum = 2.691232

Enter value of x:1
Terms = 9 Sum = 2.718279

Fig. 10.6 Illustration of if...else statement

The program uses count to count the number of terms added. The program stops when
the value of the term is less than 0.0001 (ACCURACY). Note that when a term is less than
ACCURACY, the value of n is set equal to 999 (a number higher than 100) and therefore the
while loop terminates. The results are printed outside the while loop.

 10.5 NESTING OF IF....ELSE STATEMENTS

When a series of decisions are involved, we may have to use more than one if...else

statement in nested form as shown below:
The logic of execution is illustrated in Fig. 10.7. If the condition-1 is false, the statement-3
will be executed; otherwise it continues to perform the second test. If the condition-2 is true,

the

Computer Programming10.10

(test condition-1)

if (test condition-2);

statement -1;

statement -2;

statement -3;

statement -x;

else

else

if

statement-1 will be evaluated; otherwise the statement-2 will be evaluated and then the
control is transferred to the statement-x.

statement - x

Next Statement

False

False True

True

Entry

test
condition 1

?

test
condition 2

?

statement-2statement-3 statement-1

Fig. 10.7 Flow chart of nested if�else statements

Decision Making and Branching 10.11

A commercial bank has introduced an incentive policy of giving bonus to all its deposit
holders. The policy is as follows: A bonus of 2 per cent of the balance held on 31st December
is given to every one, irrespective of their balance, and 5 per cent is given to female account
holders if their balance is more than Rs. 5000. This logic can be coded as follows:

.........
if (sex is female)

{
if (balance > 5000)

bonus = 0.05 * balance;
else

bonus = 0.02 * balance;
}
else
{

bonus = 0.02 * balance;
}
balance = balance + bonus;
.........
.........

When nesting, care should be exercised to match every if with an else. Consider the
following alternative to the above program (which looks right at the first sight):

if (sex is female)
if (balance > 5000)

bonus = 0.05 * balance;
else

bonus = 0.02 * balance;
balance = balance + bonus;

There is an ambiguity as to over which if the else belongs to. In C, an else is linked to the
closest non-terminated if. Therefore, the else is associated with the inner if and there is no
else option for the outer if. This means that the computer is trying to execute the statement

balance = balance + bonus;

without really calculating the bonus for the male account holders.
Consider another alternative, which also looks correct:

if (sex is female)
{

if (balance > 5000)
bonus = 0.05 * balance;

}
else

bonus = 0.02 * balance;
balance = balance + bonus;

In this case, else is associated with the outer if and therefore bonus is calculated for the
male account holders. However, bonus for the female account holders, whose balance is equal
to or less than 5000 is not calculated because of the missing else option for the inner if.

Computer Programming10.12

Example 10.4 The program in Fig. 10.8 selects and prints the largest of the three num-

bers using nested if....else statements.

Program
main()
{
float A, B, C;

printf(“Enter three values\n”);
scanf(“%f %f %f”, &A, &B, &C);

printf(“\nLargest value is “);
if (A>B)
{

if (A>C)
printf(“%f\n”, A);

else
printf(“%f\n”, C);

}
else
{

if (C>B)
printf(“%f\n”, C);

else
printf(“%f\n”, B);

}
}

Output

Enter three values
23445 67379 88843

Largest value is 88843.000000

Fig 10.8 Selecting the largest of three numbers

Dangling Else Problem

One of the classic problems encountered when we start using nested if�.else state-
ments is the dangling else. This occurs when a matching else is not available for an
if. The answer to this problem is very simple. Always match an else to the most
recent unmatched if in the current block. In some cases, it is possible that the false
condition is not required. In such situations, else statement may be omitted

"else is always paired with the most recent unpaired if"

Decision Making and Branching 10.13

10.6 THE ELSE IF LADDER

There is another way of putting ifs together when multipath decisions are involved. A
multipath decision is a chain of ifs in which the statement associated with each else is an if.
It takes the following general form:

if (condition 1)

else if (condition 2)

else if (condition 3)

else if (condition n)

else

statement-1;

statement-2;

statement-3;

statement-n;

default-statement;

statement-x;

This construct is known as the else if ladder. The conditions are evaluated from the top
(of the ladder), downwards. As soon as a true condition is found, the statement associated
with it is executed and the control is transferred to the statement-x (skipping the rest of the
ladder). When all the n conditions become false, then the final else containing the default-

statement will be executed. Fig. 10.9 shows the logic of execution of else if ladder statements.
Let us consider an example of grading the students in an academic institution. The

grading is done according to the following rules:

Average marks Grade

80 to 100 Honours
60 to 79 First Division
50 to 59 Second Division
40 to 49 Third Division
0 to 39 Fail

This grading can be done using the else if ladder as follows:

if (marks > 79)
grade = “Honours”;

else if (marks > 59)
grade = “First Division”;

else if (marks > 49)
grade = “Second Division”;

else if (marks > 39)
grade = “Third Division”;

else

Computer Programming10.14

grade = “Fail”;
printf (“%s\n”, grade);

Consider another example given below:

— — — —
— — — —
if (code == 1)

colour = “RED”;
else if (code == 2)

colour = “GREEN”;
else if (code == 3)

colour = “WHITE”;
else

colour = “YELLOW”;
— — —
— — —

Code numbers other than 1, 2 or 3 are considered to represent YELLOW colour. The same
results can be obtained by using nested if...else statements.

statement - x

next statement

False

False

False

False

True

True

True

True

Entry

Condition-1

Condition-2

Condition-3

Condition-n

statement-2

statement-3

statement-n default
statement

statement-1

Fig. 10.9 Flow chart of else..if ladder

Decision Making and Branching 10.15

if (code != 1)
if (code != 2)

if (code != 3)
colour = “YELLOW”;

else

colour = “WHITE”;
else

colour = “GREEN”;
else

colour = “RED”;

In such situations, the choice is left to the programmer. However, in order to choose an if
structure that is both effective and efficient, it is important that the programmer is fully
aware of the various forms of an if statement and the rules governing their nesting.

Example 10.5 An electric power distribution company charges its domestic consumers as

follows:

Consumption Units Rate of Charge

0 � 200 Rs. 0.50 per unit

201 � 400 Rs. 100 plus Rs. 0.65 per unit excess of 200

401 � 600 Rs. 230 plus Rs. 0.80 per unit excess of 400

601 and above Rs. 390 plus Rs. 1.00 per unit excess of 600
The program in Fig. 10.10 reads the customer number and power consumed and prints the

amount to be paid by the customer.

Program

main()
{

int units, custnum;
float charges;
printf(“Enter CUSTOMER NO. and UNITS consumed\n”);
scanf(“%d %d”, &custnum, &units);
if (units <= 200)

charges = 0.5 * units;
else if (units <= 400)

charges = 100 + 0.65 * (units - 200);
else if (units <= 600)
charges = 230 + 0.8 * (units - 400);

else
charges = 390 + (units - 600);

printf(“\n\nCustomer No: %d: Charges = %.2f\n”,
custnum, charges);

}

Output

Enter CUSTOMER NO. and UNITS consumed 101 150

Computer Programming10.16

Customer No:101 Charges = 75.00

Enter CUSTOMER NO. and UNITS consumed 202 225
Customer No:202 Charges = 116.25

Enter CUSTOMER NO. and UNITS consumed 303 375
Customer No:303 Charges = 213.75

Enter CUSTOMER NO. and UNITS consumed 404 520
Customer No:404 Charges = 326.00

Enter CUSTOMER NO. and UNITS consumed 505 625
Customer No:505 Charges = 415.00

Fig. 10.10 Illustration of else..if ladder

Rules for Indentation

When using control structures, a statement often controls many other statements
that follow it. In such situations it is a good practice to use indentation to show that
the indented statements are dependent on the preceding controlling statement.
Some guidelines that could be followed while using indentation are listed below:

· Indent statements that are dependent on the previous statements; provide
at least three spaces of indentation.

· Align vertically else clause with their matching if clause.

· Use braces on separate lines to identify a block of statements.

· Indent the statements in the block by at least three spaces to the right of the
braces.

· Align the opening and closing braces.

· Use appropriate comments to signify the beginning and end of blocks.

· Indent the nested statements as per the above rules.

· Code only one clause or statement on each line.

 10.7 THE SWITCH STATEMENT

We have seen that when one of the many alternatives is to be selected, we can use an if
statement to control the selection. However, the complexity of such a program increases
dramatically when the number of alternatives increases. The program becomes difficult to
read and follow. At times, it may confuse even the person who designed it. Fortunately, C
has a built-in multiway decision statement known as a switch. The switch statement tests

Decision Making and Branching 10.17

the value of a given variable (or expression) against a list of case values and when a match
is found, a block of statements associated with that case is executed. The general form of the
switch statement is as shown below:

switch (expression)
{

case value-1:
block-1
break;

case value-2:
block-2
break;

......

......
default:

default-block
break;

}
statement-x;

The expression is an integer expression or characters. Value-1, value-2 are constants or
constant expressions (evaluable to an integral constant) and are known as case labels. Each
of these values should be unique within a switch statement. block-1, block-2 are
statement lists and may contain zero or more statements. There is no need to put braces
around these blocks. Note that case labels end with a colon (:).

When the switch is executed, the value of the expression is successfully compared against
the values value-1, value-2,.... If a case is found whose value matches with the value of the
expression, then the block of statements that follows the case are executed.

The break statement at the end of each block signals the end of a particular case and
causes an exit from the switch statement, transferring the control to the statement-x

following the switch.

The default is an optional case. When present, it will be executed if the value of the
expression does not match with any of the case values. If not present, no action takes place if
all matches fail and the control goes to the statement-x. (ANSI C permits the use of as many
as 257 case labels).

The selection process of switch statement is illustrated in the flow chart shown in
Fig. 10.11.

Computer Programming10.18

Entry

statement-x

statement-x
switch

expression

Expression = value-1 block1

block2

default
block

Expression = value-2

(no match) default

Fig. 10.11 Selection process of the switch statement

The switch statement can be used to grade the students as discussed in the last section.
This is illustrated below:

— — —
— — —
index = marks/10
switch (index)
{

case 10:
case 9:
case 8:

grade = “Honours”;
break;

case 7:
case 6:

grade = “First Division”;
break;

case 5:
grade = “Second Division”;
break;

case 4:
grade = “Third Division”;
break;

default:
grade = “Fail”;
break;

}
printf(“%s\n”, grade);
— — —
— — —

Decision Making and Branching 10.19

Note that we have used a conversion statement
index = marks / 10;

where, index is defined as an integer. The variable index takes the following integer values.
Marks Index

100 10
90 - 99 9
80 - 89 8
70 - 79 7
60 - 69 6
50 - 59 5
40 - 49 4

. .

. .
0 0

This segment of the program illustrates two important features. First, it uses empty cases.
The first three cases will execute the same statements

grade = “Honours”;

break;

Same is the case with case 7 and case 6. Second, default condition is used for all other cases
where marks is less than 40.

The switch statement is often used for menu selection. For example:

— — — —

— — — —
printf(“ TRAVEL GUIDE\n\n”);
printf(“ A Air Timings\n”);
printf(“ T Train Timings\n”);
printf(“ B Bus Service\n”);
printf(“ X To skip\n”);
printf(“\n Enter your choice\n”);

character = getchar();

switch (character)
{

case ‘A’ :
air-display();
break;

case ‘B’ :
bus-display();
break;

case ‘T’ :
train-display();
break;

default :
printf(“ No choice\n”);

}
— — — —

— — — —

Computer Programming10.20

It is possible to nest the switch statements. That is, a switch may be part of a case state-
ment. ANSI C permits 15 levels of nesting.

Rules for switch statement

· The switch expression must be an integral type.

· Case labels must be constants or constant expressions.

· Case labels must be unique. No two labels can have the same value.

· Case labels must end with semicolon.

· The break statement transfers the control out of the switch statement.

· The break statement is optional. That is, two or more case labels may
belong to the same statements.

· The default label is optional. If present, it will be executed when the ex-
pression does not find a matching case label.

· There can be at most one default label.

· The default may be placed anywhere but usually placed at the end.

· It is permitted to nest switch statements.

10.8 THE ? : OPERATOR

The C language has an unusual operator, useful for making two-way decisions. This operator
is a combination of ? and :, and takes three operands. This operator is popularly known as
the conditional operator. The general form of use of the conditional operator is as follows:

conditional expression ? expression1 : expression2

The conditional expression is evaluated first. If the result is nonzero, expression1 is
evaluated and is returned as the value of the conditional expression. Otherwise, expression2

is evaluated and its value is returned. For example, the segment
if (x < 0)

flag = 0;

else

flag = 1;

can be written as

flag = (x < 0) ? 0 : 1;

Consider the evaluation of the following function:
y = 1.5x + 3 for x £ 2

Decision Making and Branching 10.21

y = 2x + 5 for x > 2
This can be evaluated using the conditional operator as follows:

y = (x > 2) ? (2 * x + 5) : (1.5 * x + 3);
The conditional operator may be nested for evaluating more complex assignment decisions.
For example, consider the weekly salary of a salesgirl who is selling some domestic products.
If x is the number of products sold in a week, her weekly salary is given by

salary =

4x 100 for x 40

300 for x 40

4.5x 150 for x 40

+ <ì
ï

=í
ï + >î

This complex equation can be written as
salary = (x != 40) ? ((x < 40) ? (4*x+100) : (4.5*x+150)) : 300;

The same can be evaluated using if...else statements as follows:
if (x <= 40)

if (x < 40)
salary = 4 * x+100;

else
salary = 300;

else
salary = 4.5 * x+150;

When the conditional operator is used, the code becomes more concise and perhaps, more
efficient. However, the readability is poor. It is better to use if statements when more than a
single nesting of conditional operator is required.

Example 10.6 An employee can apply for a loan at the beginning of every six months, but he

will be sanctioned the amount according to the following company rules:

Rule 1 : An employee cannot enjoy more than two loans at any point of time.

Rule 2 : Maximum permissible total loan is limited and depends upon the

category of the employee.

A program to process loan applications and to sanction loans is given in Fig.

10.12.

Program
#define MAXLOAN 50000
main()
{

long int loan1, loan2, loan3, sancloan, sum23;

printf(“Enter the values of previous two loans:\n”);
scanf(“ %ld %ld”, &loan1, &loan2);

printf(“\nEnter the value of new loan:\n”);
scanf(“ %ld”, &loan3);

sum23 = loan2 + loan3;
sancloan = (loan1>0)? 0 : ((sum23>MAXLOAN)?

Computer Programming10.22

MAXLOAN - loan2 : loan3);

printf(“\n\n”);
printf(“Previous loans pending:\n%ld %ld\n”,loan1,loan2);
printf(“Loan requested = %ld\n”, loan3);
printf(“Loan sanctioned = %ld\n”, sancloan);

}

Output

Enter the values of previous two loans:
0 20000
Enter the value of new loan:
45000
Previous loans pending:
0 20000
Loan requested = 45000
Loan sanctioned = 30000
Enter the values of previous two loans:
1000 15000
Enter the value of new loan:
25000
Previous loans pending:
1000 15000
Loan requested = 25000
Loan sanctioned = 0

Fig. 10.12 Illustration of the conditional operator

The program uses the following variables:
loan3 - present loan amount requested
loan2 - previous loan amount pending
loan1 - previous to previous loan pending
sum23 - sum of loan2 and loan3
sancloan - loan sanctioned

The rules for sanctioning new loan are:

1. loan1 should be zero.
2. loan2 + loan3 should not be more than MAXLOAN.

Note the use of long int type to declare variables.

Some Guidelines for Writing Multiway Selection
Statements

Complex multiway selection statements require special attention. The readers
should be able to understand the logic easily. Given below are some guidelines
that would help improve readability and facilitate maintenance.

· Avoid compound negative statements. Use positive statements wherever
possible.

Decision Making and Branching 10.23

· Keep logical expressions simple. We can achieve this using nested if state
ments, if necessary (KISS - Keep It Simple and Short).

· Try to code the normal/anticipated condition first.

· Use the most probable condition first. This will eliminate unnecessary tests,
thus improving the efficiency of the program.

· The choice between the nested if and switch statements is a matter of indi-
vidual's preference. A good rule of thumb is to use the switch when alter-
native paths are three to ten.

· Use proper indentations (See Rules for Indentation).

· Have the habit of using default clause in switch statements.

· Group the case labels that have similar actions.

 10.9 THE GOTO STATEMENT

So far we have discussed ways of controlling the flow of execution based on certain specified
conditions. Like many other languages, C supports the goto statement to branch
unconditionally from one point to another in the program. Although it may not be essential
to use the goto statement in a highly structured language like C, there may be occasions
when the use of goto might be desirable.

The goto requires a label in order to identify the place where the branch is to be made. A
label is any valid variable name, and must be followed by a colon. The label is placed
immediately before the statement where the control is to be transferred. The general forms
of goto and label statements are shown below:

goto label;

goto label;

label:
statement;

Forward jump Backward jump

label:
statement;

The label: can be anywhere in the program either before or after the goto label; statement.
During running of a program when a statement like

goto begin;

is met, the flow of control will jump to the statement immediately following the label begin:.
This happens unconditionally.

Note that a goto breaks the normal sequential execution of the program. If the label: is
before the statement goto label; a loop will be formed and some statements will be executed
repeatedly. Such a jump is known as a backward jump. On the other hand, if the label: is

Computer Programming10.24

placed after the goto label; some statements will be skipped and the jump is known as a
forward jump.
A goto is often used at the end of a program to direct the control to go to the input statement,
to read further data. Consider the following example:

main()
{

double x, y;
read:
scanf(“%f”, &x);
if (x < 0) goto read;
y = sqrt(x);
printf(“%f %f\n”, x, y);
goto read;

}

This program is written to evaluate the square root of a series of numbers read from the
terminal. The program uses two goto statements, one at the end, after printing the results
to transfer the control back to the input statement and the other to skip any further
computation when the number is negative.

Due to the unconditional goto statement at the end, the control is always transferred
back to the input statement. In fact, this program puts the computer in a permanent loop
known as an infinite loop. The computer goes round and round until we take some special
steps to terminate the loop. Such infinite loops should be avoided. Example 10.7 illustrates
how such infinite loops can be eliminated.

Example 10.7 Program presented in Fig. 10.13 illustrates the use of the goto statement.

The program evaluates the square root for five numbers. The variable count

keeps the count of numbers read. When count is less than or equal to 5, goto

read; directs the control to the label read; otherwise, the program prints a

message and stops.

Program

#include <math.h>
main()
{

double x, y;
int count;

count = 1;

printf(“Enter FIVE real values in a LINE \n”);
read:

scanf(“%lf”, &x);
printf(“\n”);
if (x < 0)

printf(“Value - %d is negative\n”,count);

Decision Making and Branching 10.25

else
{

y = sqrt(x);
printf(“%lf\t %lf\n”, x, y);

}
count = count + 1;
if (count <= 5)

goto read;
printf(“\nEnd of computation”);

}

Output

Enter FIVE real values in a LINE
50.70 40 -36 75 11.25
50.750000 7.123903
40.000000 6.324555
Value -3 is negative
75.000000 8.660254
11.250000 3.354102
End of computation

Fig. 10.13 Use of the goto statement

Another use of the goto statement is to transfer the control out of a loop (or nested loops)
when certain peculiar conditions are encountered. Example:

— — — —

— — — —
while (— — — —)
{

for (— — — —)
{
— — — —
— — — —
if (— — — —)goto end_of_program;
— — — —
} Jumping

— — — — out of
— — — — loops
}
end_of_program:

We should try to avoid using goto as far as possible. But there is nothing wrong, if we use it
to enhance the readability of the program or to improve the execution speed.

Computer Programming10.26

- Be aware of dangling else statements.
- Be aware of any side effects in the control expression such as if(x++).
- Use braces to encapsulate the statements in if and else clauses of an if�.

else statement.
- Check the use of =operator in place of the equal operator = =.
- Do not give any spaces between the two symbols of relational operators =

=, !=, >= and <=.
- Writing !=, >= and <= operators like =!, => and =< is an error.
- Remember to use two ampersands (&&) and two bars (||) for logical

operators. Use of single operators will result in logical errors.
- Do not forget to place parentheses for the if expression.
- It is an error to place a semicolon after the if expression.
- Do not use the equal operator to compare two floating-point values. They

are seldom exactly equal.
- Do not forget to use a break statement when the cases in a switch

statement are exclusive.
- Although it is optional, it is a good programming practice to use the default

clause in a switch statement.
- It is an error to use a variable as the value in a case label of a switch

statement. (Only integral constants are allowed.)
- Do not use the same constant in two case labels in a switch statement.
- Avoid using operands that have side effects in a logical binary expression

such as (x� �&&++y). The second operand may not be evaluated at all.
- Try to use simple logical expressions.

1. Range of Numbers
Problem: A survey of the computer market shows that personal computers are sold at
varying costs by the vendors. The following is the list of costs (in hundreds) quoted by some
vendors:

35.00, 40.50, 25.00, 31.25, 68.15,
47.00, 26.65, 29.00 53.45, 62.50

Determine the average cost and the range of values.
Problem analysis: Range is one of the measures of dispersion used in statistical analysis of
a series of values. The range of any series is the difference between the highest and the
lowest values in the series. That is

Range = highest value � lowest value

It is therefore necessary to find the highest and the lowest values in the series.

Decision Making and Branching 10.27

Program: A program to determine the range of values and the average cost of a personal
computer in the market is given in Fig. 10.14.

Program

main()
{

int count;
float value, high, low, sum, average, range;
sum = 0;
count = 0;
printf(“Enter numbers in a line :

input a NEGATIVE number to end\n”);
input:

scanf(“%f”, &value);
if (value < 0) goto output;

count = count + 1;
if (count == 1)

high = low = value;
else if (value > high)

high = value;
else if (value < low)

low = value;
sum = sum + value;
goto input;

Output:

average = sum/count;
range = high - low;
printf(“\n\n”);
printf(“Total values : %d\n”, count);
printf(“Highest-value: %f\nLowest-value : %f\n”,

high, low);
printf(“Range : %f\nAverage : %f\n”,

range, average);
}

Output

Enter numbers in a line : input a NEGATIVE number to end
35 40.50 25 31.25 68.15 47 26.65 29 53.45 62.50 -1

Total values : 10
Highest-value : 68.150002
Lowest-value : 25.000000
Range : 43.150002
Average : 41.849998

Fig. 10.14 Calculation of range of values

Computer Programming10.28

When the value is read the first time, it is assigned to two buckets, high and low, through
the statement

high = low = value;

For subsequent values, the value read is compared with high; if it is larger, the value is
assigned to high. Otherwise, the value is compared with low; if it is smaller, the value is
assigned to low. Note that at a given point, the buckets high and low hold the highest and the
lowest values read so far.

The values are read in an input loop created by the goto input; statement. The control is
transferred out of the loop by inputting a negative number. This is caused by the statement

if (value < 0) goto output;

Note that this program can be written without using goto statements. Try.

2. Pay-Bill Calculations

Problem: A manufacturing company has classified its executives into four levels for the
benefit of certain perks. The levels and corresponding perks are shown below:

Perks

Level ��

Conveyance Entertainment

allowance allowance

1 1000 500

2 750 200

3 500 100

4 250 �

An executive�s gross salary includes basic pay, house rent allowance at 25% of basic pay and
other perks. Income tax is withheld from the salary on a percentage basis as follows:

Gross salary Tax rate

Gross <= 2000 No tax deduction

2000 < Gross <= 4000 3%

4000 < Gross <= 5000 5%

Gross > 5000 8%

Write a program that will read an executive�s job number, level number, and basic pay and
then compute the net salary after withholding income tax.
Problem analysis:

Gross salary = basic pay + house rent allowance + perks
Net salary = Gross salary � income tax.

The computation of perks depends on the level, while the income tax depends on the gross
salary. The major steps are:

1. Read data.
2. Decide level number and calculate perks.
3. Calculate gross salary.
4. Calculate income tax.

Decision Making and Branching 10.29

5. Compute net salary.
6. Print the results.

Program: A program and the results of the test data are given in Fig. 10.15. Note that the
last statement should be an executable statement. That is, the label stop: cannot be the last
line.

Program
#define CA1 1000
#define CA2 750
#define CA3 500
#define CA4 250
#define EA1 500
#define EA2 200
#define EA3 100
#define EA4 0
main()
{

int level, jobnumber;
float gross,

basic,
house_rent,
perks,
net,
incometax;

input:
printf(“\nEnter level, job number, and basic pay\n”);
printf(“Enter 0 (zero) for level to END\n\n”);
scanf(“%d”, &level);
if (level == 0) goto stop;
scanf(“%d %f”, &jobnumber, &basic);
switch (level)
{

case 1:
perks = CA1 + EA1;
break;

case 2:
perks = CA2 + EA2;
break;

case 3:
perks = CA3 + EA3;
break;

case 4:
perks = CA4 + EA4;
break;

default:
printf(“Error in level code\n”);

Computer Programming10.30

goto stop;
}
house_rent = 0.25 * basic;
gross = basic + house_rent + perks;
if (gross <= 2000)

incometax = 0;
else if (gross <= 4000)

incometax = 0.03 * gross;
else if (gross <= 5000)

incometax = 0.05 * gross;
else

incometax = 0.08 * gross;
net = gross - incometax;
printf(“%d %d %.2f\n”, level, jobnumber, net);
goto input;
stop: printf(“\n\nEND OF THE PROGRAM”);

}

Output

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

1 1111 4000
1 1111 5980.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

2 2222 3000
2 2222 4465.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

3 3333 2000
3 3333 3007.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

4 4444 1000
4 4444 1500.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

0
END OF THE PROGRAM

Fig. 10.15 Pay-bill calculations

Decision Making and Branching 10.31

10.1 State whether the following are true or false:
(a) When if statements are nested, the last else gets associated with the nearest if

without an else.
(b) One if can have more than one else clause.
(c) A switch statement can always be replaced by a series of if..else statements.
(d) A switch expression can be of any type.
(e) A program stops its execution when a break statement is encountered.
(f) Each expression in the else if must test the same variable.
(g) Any expression can be used for the if expression.
(h) Each case label can have only one statement.
(i) The default case is required in the switch statement.
(j) The predicate !((x >= 10)¦(y = = 5)) is equivalent to (x < 10) && (y !=5).

10.2 Fill in the blanks in the following statements.

(a) The _______ operator is true only when both the operands are true.
(b) Multiway selection can be accomplished using an else if statement or the

__________ statement.
(c) The ______ statement when executed in a switch statement causes immediate

exit from the structure.
(d) The ternary conditional expression using the operator ?: could be easily coded

using ______statement.
(e) The expression ! (x ! = y) can be replaced by the expression ________.

10.3 Find errors, if any, in each of the following segments:

(a) if (x + y = z && y > 0)
printf(“ “);

(b) if (code > 1);
a = b + c

else
a = 0

(c) if (p < 0) || (q < 0)
printf (“ sign is negative”);

10.4 The following is a segment of a program:

x = 1;
y = 1;
if (n > 0)

x = x + 1;
y = y - 1;

printf(“ %d %d”, x, y);
What will be the values of x and y if n assumes a value of (a) 1 and (b) 0.

10.5 Rewrite each of the following without using compound relations:

(a) if (grade <= 59 && grade >= 50)
second = second + 1;

Computer Programming10.32

(b) if (number > 100 || number < 0)
printf(“ Out of range”);

else
sum = sum + number;

(c) if ((M1 > 60 && M2 > 60) || T > 200)
printf(“ Admitted\n”);

else
printf(“ Not admitted\n”);

10.6 Assuming x = 10, state whether the following logical expressions are true or false.

(a) x = = 10 && x > 10 && !x (b) x = = 10 || x > 10 && ! x
(c) x = = 10 && x > 10 || ! x (d) x = = 10 || x > 10 || !x

10.7 Find errors, if any, in the following switch related statements. Assume that the vari-
ables x and y are of int type and x = 1 and y = 2

(a) switch (y);
(b) case 10;
(c) switch (x + y)
(d) switch (x) {case 2: y = x + y; break};

10.8 Simplify the following compound logical expressions

(a) !(x <=10) (b) !(x = = 10) ||! ((y = = 5) || (z < 0))
(c) ! ((x +y = = z) && !(z > 5) (d) !((x <=5) && (y = = 10) & & (z < 5))

10.9 Assuming that x = 5, y = 0, and z = 1 initially, what will be their values after executing
the following code segments?

(a) if (x && y)
x = 10;

else
y = 10;

(b) if (x || y || z)
y = 10;

else
z = 0;

(c) if (x)
 if (y)

z = 10;
else

z = 0;
(d) if (x = = 0 || x & & y)

 if (!y)
z = 0;

else
y = 1;

10.10 Assuming that x = 2, y = 1 and z = 0 initially, what will be their values after executing
the following code segments?

(a) switch (x)

Decision Making and Branching 10.33

{

case 2:

x = 1;

y = x + 1;

case 1:

x = 0;

break;

default:

x = 1;

y = 0;

}

(b) switch (y)

{

case 0:

x = 0;

y = 0;

case 2:

x = 2;

z = 2;

default:

x = 1;

y = 2;

}

10.11 Find the error, if any, in the following statements:

(a) if (x > = 10) then
printf (“\n”) ;

(b) if x > = 10
printf (“OK”) ;

(c) if (x = 10)
printf (“Good”) ;

(d) if (x = < 10)
printf (“Welcome”) ;

10.12 What is the output of the following program?

main ()
{

int m = 5 ;
if (m < 3) printf(“%d” , m+1) ;
else if(m < 5) printf(“%d”, m+2);
else if(m < 7) printf(“%d”, m+3);
else printf(“%d”, m+4);

}

Computer Programming10.34

10.13 What is the output of the following program?

main ()
{

int m = 1;
if (m==1)
{

printf (“ Delhi “) ;
if (m == 2)
printf(“Chennai”) ;
else
printf(“Bangalore”) ;

}
else;
printf(“ END”);

}

10.14 What is the output of the following program?

main()
{

int m ;
for (m = 1; m<5; m++)

printf(%d\n”, (m%2) ? m : m*2);
}

10.15 What is the output of the following program?

main()
{

int m, n, p ;
for (m = 0; m < 3; m++)
for (n = 0; n<3; n++)
for (p = 0; p < 3;; p++)
if (m + n + p == 2)
goto print;

print :
printf(“%d, %d, %d”, m, n, p);

}

10.16 What will be the value of x when the following segment is executed?

int x = 10, y = 15;
x = (x<y)? (y+x) : (y-x) ;

10.17 What will be the output when the following segment is executed?
int x = 0;
if (x >= 0)
if (x > 0)

Decision Making and Branching 10.35

printf(“Number is positive”);
else
printf(“Number is negative”);

10.18 What will be the output when the following segment is executed?
char ch = ‘a’ ;
switch (ch)
{

case ‘a’ :
printf(“A”) ;
case‘b’:
Printf (“B”) ;
default :
printf(“ C “) ;

}

10.19 What will be the output of the following segment when executed?

int x = 10, y = 20;
if((x<y) || (x+5) > 10)
printf(“%d”, x);
else
printf(“%d”, y);

10.20 What will be output of the following segment when executed?

int a = 10, b = 5;
if (a > b)
{

if(b > 5)
printf(“%d”, b);

}
else

printf(“%d”, a);

10.1 Write a program to determine whether a given number is �odd� or �even� and print the
message
NUMBER IS EVEN
or
NUMBER IS ODD
(a) without using else option, and (b) with else option.

10.2 Write a program to find the number of and sum of all integers greater than 100 and
less than 200 that are divisible by 7.

10.3 A set of two linear equations with two unknowns x1 and x2 is given below:

Computer Programming10.36

ax1 + bx2 = m

cx1 + dx2 = n

The set has a unique solution

x1 =
md bn

ad cb

-

-

x2 =
na mc

ad cb

-

-

provided the denominator ad � cb is not equal to zero.
Write a program that will read the values of constants a, b, c, d, m, and n and compute
the values of x1 and x2. An appropriate message should be printed if ad � cb = 0.

10.4 Given a list of marks ranging from 0 to 100, write a program to compute and print the
number of students:
(a) who have obtained more than 80 marks,
(b) who have obtained more than 60 marks,
(c) who have obtained more than 40 marks,
(d) who have obtained 40 or less marks,
(e) in the range 81 to 100,
(f) in the range 61 to 80,
(g) in the range 41 to 60, and
(h) in the range 0 to 40.
The program should use a minimum number of if statements.

10.5 Admission to a professional course is subject to the following conditions:
(a) Marks in Mathematics >= 60
(b) Marks in Physics >= 50
(c) Marks in Chemistry >= 40
(d) Total in all three subjects >= 200
or
Total in Mathematics and Physics >= 150

Given the marks in the three subjects, write a program to process the applications to
list the eligible candidates.

10.6 Write a program to print a two-dimensional Square Root Table as shown below, to
provide the square root of any number from 0 to 9.9. For example, the value x will give
the square root of 3.2 and y the square root of 3.9.

Square Root Table

Number 0.0 0.1 0.2 0.9

0.0

1.0

2.0

3.0 x y

9.0

Decision Making and Branching 10.37

10.7 Shown below is a Floyd�s triangle.
1

2 3

4 5 6

7 8 9 10

11 15

.

.

79 91

(a) Write a program to print this triangle.
(b) Modify the program to produce the following form of Floyd�s triangle.

1

0 1

1 0 1

0 1 0 1

1 0 1 0 1

10.8 A cloth showroom has announced the following seasonal discounts on purchase of
items:

Purchase Discount

amount

Mill cloth Handloom items

0 � 100 � 5%

101 � 200 5% 7.5%

201 � 300 7.5% 10.0%

Above 300 10.0% 15.0%

Write a program using switch and if statements to compute the net amount to be paid
by a customer.

10.9 Write a program that will read the value of x and evaluate the following function

y =

1 for x 0

0 for x 0

1 for x 0

<

=

- <

R
S|

T|
using
(a) nested if statements,
(b) else if statements, and
(c) conditional operator ? :

10.10 Write a program to compute the real roots of a quadratic equation

ax2 + bx + c = 0

The roots are given by the equations

x1 = � b +
b 4 ac

2a

2
-

Computer Programming10.38

x2 = � b �
b 4 ac

2a

2
-

The program should request for the values of the constants a, b and c and print the
values of x1 and x2. Use the following rules:
(a) No solution, if both a and b are zero
(b) There is only one root, if a = 0 (x = �c/b)
(c) There are no real roots, if b2 � 4 ac is negative
(d) Otherwise, there are two real roots
Test your program with appropriate data so that all logical paths are working as per
your design. Incorporate appropriate output messages.

10.11 Write a program to read three integer values from the keyboard and displays the
output stating that they are the sides of right-angled triangle.

10.12 An electricity board charges the following rates for the use of electricity:
For the first 200 units: 80 P per unit
For the next 100 units: 90 P per unit
Beyond 300 units: Rs 1.00 per unit
All users are charged a minimum of Rs. 100 as meter charge. If the total amount is
more than Rs. 400, then an additional surcharge of 15% of total amount is charged.
Write a program to read the names of users and number of units consumed and print
out the charges with names.

10.13 Write a program to compute and display the sum of all integers that are divisible by 6
but not divisible by 4 and lie between 0 and 100. The program should also count and
display the number of such values.

10.14 Write an interactive program that could read a positive integer number and decide
whether the number is a prime number and display the output accordingly.
Modify the program to count all the prime numbers that lie between 100 and 200.
NOTE: A prime number is a positive integer that is divisible only by 1 or by itself.

10.15 Write a program to read a double-type value x that represents angle in radians and a
character-type variable T that represents the type of trigonometric function and dis-
play the value of

(a) sin(x), if s or S is assigned to T,
(b) cos (x), if c or C is assigned to T, and
(c) tan (x), if t or T is assigned to T

using (i) if......else statement and (ii) switch statement.

Decision Making
and Looping

11.1 INTRODUCTION

We have seen in the previous chapter that it is possible to execute a segment of a program

repeatedly by introducing a counter and later testing it using the if statement. While this

method is quite satisfactory for all practical purposes, we need to initialize and increment a

counter and test its value at an appropriate place in the program for the completion of the

loop. For example, suppose we want to calculate the sum of squares of all integers between

1 and 10, we can write a program using the if statement as follows:

sum = 0;
n = 1;
loop:
sum = sum + n*n;

()if n == 10
goto print;

else
n = 10,

n = n+1;
goto loop;

print:

end of loop

L
o
o
p

This program does the following things:

1. Initializes the variable n.

2. Computes the square of n and adds it to sum.

3. Tests the value of n to see whether it is equal to 10 or not. If it is equal to 10, then the

program prints the results.

4. If n is less than 10, then it is incremented by one and the control goes back to compute

the sum again.

11

Computer Programming11.2

The program evaluates the statement

sum = sum + n*n;

10 times. That is, the loop is executed 10 times. This number can be increased or decreased

easily by modifying the relational expression appropriately in the statement if (n == 10). On

such occasions where the exact number of repetitions are known, there are more convenient
methods of looping in C. These looping capabilities enable us to develop concise programs

containing repetitive processes without the use of goto statements.
In looping, a sequence of statements are executed until some conditions for termination of

the loop are satisfied. A program loop therefore consists of two segments, one known as the

body of the loop and the other known as the control statement. The control statement tests
certain conditions and then directs the repeated execution of the statements contained in the

body of the loop.

Depending on the position of the control statement in the loop, a control structure may be

classified either as the entry-controlled loop or as the exit-controlled loop. The flow charts in
Fig. 11.1 illustrate these structures. In the entry-controlled loop, the control conditions are

tested before the start of the loop execution. If the conditions are not satisfied, then the body

of the loop will not be executed. In the case of an exit-controlled loop, the test is performed at
the end of the body of the loop and therefore the body is executed unconditionally for the first

time. The entry-controlled and exit-controlled loops are also known as pre-test and post-test

loops respectively.

Fig. 11.1 Loop control structures

The test conditions should be carefully stated in order to perform the desired number of
loop executions. It is assumed that the test condition will eventually transfer the control out

of the loop. In case, due to some reason it does not do so, the control sets up an infinite loop
and the body is executed over and over again.

Decision Making and Looping 11.3

A looping process, in general, would include the following four steps:

1. Setting and initialization of a condition variable.

2. Execution of the statements in the loop.

3. Test for a specified value of the condition variable for execution of the loop.

4. Incrementing or updating the condition variable.

The test may be either to determine whether the loop has been repeated the specified

number of times or to determine whether a particular condition has been met.

The C language provides for three constructs for performing loop operations. They are:

1. The while statement.

2. The do statement.

3. The for statement.

We shall discuss the features and applications of each of these statements in this chapter.

Sentinel Loops

Based on the nature of control variable and the kind of value assigned to it for

testing the control expression, the loops may be classified into two general catego-

ries:

1. Counter-controlled loops

2. Sentinel-controlled loops

When we know in advance exactly how many times the loop will be executed,

we use a counter-controlled loop. We use a control variable known as counter.

The counter must be initialized, tested and updated properly for the desired loop

operations. The number of times we want to execute the loop may be a constant or

a variable that is assigned a value. A counter-controlled loop is sometimes called

definite repetition loop.

In a sentinel-controlled loop, a special value called a sentinel value is used to

change the loop control expression from true to false. For example, when reading

data we may indicate the "end of data" by a special value, like �1 and 999. The

control variable is called sentinel variable. A sentinel-controlled loop is often called

indefinite repetition loop because the number of repetitions is not known before

the loop begins executing.

11.2 THE WHILE STATEMENT

The simplest of all the looping structures in C is the while statement. We have used while

in many of our earlier programs. The basic format of the while statement is

Computer Programming11.4

while (test condition)
{

body of the loop

}

The while is an entry-controlled loop statement. The test-condition is evaluated and if

the condition is true, then the body of the loop is executed. After execution of the body, the

test-condition is once again evaluated and if it is true, the body is executed once again.

This process of repeated execution of the body continues until the test-condition finally

becomes false and the control is transferred out of the loop. On exit, the program continues

with the statement immediately after the body of the loop.

The body of the loop may have one or more statements. The braces are needed only if the

body contains two or more statements. However, it is a good practice to use braces even if the

body has only one statement.

We can rewrite the program loop discussed in Section 11.1 as follows:

========

sum = 0;

n = 1; /* Initialization */

while(n <= 10) /* Testing */

{

loop sum = sum + n * n;

n = n+1; /* Incrementing */

}

printf(“sum = %d\n”, sum);

========

The body of the loop is executed 10 times for n = 1, 2,, 10, each time adding the

square of the value of n, which is incremented inside the loop. The test condition may also

be written as n < 11; the result would be the same. This is a typical example of counter-

controlled loops. The variable n is called counter or control variable.

Another example of while statement, which uses the keyboard input is shown below:

=========

character = ‘ ‘ ;

while (character != ‘Y’)

character = getchar();

xxxxxxx;

=========

First the character is initialized to � �. The while statement then begins by testing

whether character is not equal to Y. Since the character was initialized to � �, the test is

true and the loop statement

character = getchar();

Decision Making and Looping 11.5

is executed. Each time a letter is keyed in, the test is carried out and the loop statement is

executed until the letter Y is pressed. When Y is pressed, the condition becomes false be-

cause character equals Y, and the loop terminates, thus transferring the control to the

statement xxxxxxx;. This is a typical example of sentinel-controlled loops. The character

constant �y� is called sentinel value and the variable character is the condition variable,

which often referred to as the sentinel variable.

Example 11.1 A program to evaluate the equation

y = xn

when n is a non-negative integer, is given in Fig. 11.2

The variable y is initialized to 1 and then multiplied by x, n times using the while loop.

The loop control variable count is initialized outside the loop and incremented inside the

loop. When the value of count becomes greater than n, the control exists the loop.

Program

main()

{

int count, n;

float x, y;

printf(“Enter the values of x and n : “);

scanf(“%f %d”, &x, &n);

y = 1.0;

count = 1; /* Initialisation */

/* LOOP BEGINs */

while (count <= n) /* Testing */

{

y = y*x;

count++; /* Incrementing */

}

/* END OF LOOP */

printf(“\nx = %f; n = %d; x to power n = %f\n”,x,n,y);

}

Output

Enter the values of x and n : 2.5 4

x = 2.500000; n = 4; x to power n = 39.062500

Enter the values of x and n : 0.5 4

x = 0.500000; n = 4; x to power n = 0.062500

Fig. 11.2 Program to compute x to the power n using while loop

Computer Programming11.6

11.3 THE DO STATEMENT

The while loop construct that we have discussed in the previous section, makes a test of

condition before the loop is executed. Therefore, the body of the loop may not be executed at

all if the condition is not satisfied at the very first attempt. On some occasions it might be

necessary to execute the body of the loop before the test is performed. Such situations can be

handled with the help of the do statement. This takes the form:

 do
 {

body of the loop
 }
 while (test-condition);

On reaching the do statement, the program proceeds to evaluate the body of the loop first.

At the end of the loop, the test-condition in the while statement is evaluated. If the condition

is true, the program continues to evaluate the body of the loop once again. This process

continues as long as the condition is true. When the condition becomes false, the loop will be

terminated and the control goes to the statement that appears immediately after the while

statement.

Since the test-condition is evaluated at the bottom of the loop, the do...while construct

provides an exit-controlled loop and therefore the body of the loop is always executed at least

once.

A simple example of a do...while loop is:

do

printf ("Input a number\n");
loop number = getnum ();

(number > 0);while

This segment of a program reads a number from the keyboard until a zero or a negative
number is keyed in, and assigned to the sentinel variable number.

The test conditions may have compound relations as well. For instance, the statement

while (number > 0 && number < 100);

in the above example would cause the loop to be executed as long as the number keyed in lies
between 0 and 100.

Consider another example:

– – – – – – –
I = 1; /* Initializing */
sum = 0;
do

Decision Making and Looping 11.7

{
sum = sum + I;

loop I = I+2; /* Incrementing */
}
while(sum < 40 || I < 10); /* Testing */
printf(“%d %d\n”, I, sum);
– – – – – – –

The loop will be executed as long as one of the two relations is true.

Example 11.2 A program to print the multiplication table from 1 x 1 to 12 x 10 as shown below

is given in Fig. 11.3.

1 2 3 4 10

 2 4 6 8 20

 3 6 9 12 30

 4 40

 -

 -

 -

 12 120

This program contains two do.... while loops in nested form. The outer loop is controlled by

the variable row and executed 12 times. The inner loop is controlled by the variable column

and is executed 10 times, each time the outer loop is executed. That is, the inner loop is

executed a total of 120 times, each time printing a value in the table.

Program:

#define COLMAX 10
#define ROWMAX 12
main()
{

int row,column, y;
row = 1;
printf(“ MULTIPLICATION TABLE \n”);
printf(“– \n”);
do /*......OUTER LOOP BEGINS........*/
{

column = 1;
do /*.......INNER LOOP BEGINS.......*/
{

y = row * column;
printf(“%4d”, y);
column = column + 1;

}

Computer Programming11.8

while (column <= COLMAX); /*... INNER LOOP ENDS ...*/
printf(“\n”);
row = row + 1;

}
while (row <= ROWMAX);/*..... OUTER LOOP ENDS*/
printf(“—————————————————————————————————\n”);

}
Output

MULTIPLICATION TABLE

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100
11 22 33 44 55 66 77 88 99 110
12 24 36 48 60 72 84 96 108 120

Fig. 11.3 Printing of a multiplication table using do...while loop

Notice that the printf of the inner loop does not contain any new line character (\n). This

allows the printing of all row values in one line. The empty printf in the outer loop initiates

a new line to print the next row.

11.4 THE FOR STATEMENT

Simple �for� Loops

The for loop is another entry-controlled loop that provides a more concise loop control struc-

ture. The general form of the for loop is

 for (initialization ; test-condition ; increment)
 {

body of the loop
 }

The execution of the for statement is as follows:

1. Initialization of the control variables is done first, using assignment statements such

as i = 1 and count = 0. The variables i and count are known as loop-control variables.

2. The value of the control variable is tested using the test-condition. The test-condition

is a relational expression, such as i < 10 that determines when the loop will exit. If the

Decision Making and Looping 11.9

condition is true, the body of the loop is executed; otherwise the loop is terminated and
the execution continues with the statement that immediately follows the loop.

3. When the body of the loop is executed, the control is transferred back to the for state-
ment after evaluating the last statement in the loop. Now, the control variable is
incremented using an assignment statement such as i = i+1 and the new value of the

control variable is again tested to see whether it satisfies the loop condition. If the
condition is satisfied, the body of the loop is again executed. This process continues till
the value of the control variable fails to satisfy the test-condition.

NOTE: C99 enhances the for loop by allowing declaration of variables in the initialization portion.

See the Appendix "C99 Features".

Consider the following segment of a program:

for (x = 0 ; x <= 9 ; x = x+1)

loop {

printf(“%d”, x);

}

printf(“\n”);

This for loop is executed 10 times and prints the digits 0 to 9 in one line. The three

sections enclosed within parentheses must be separated by semicolons. Note that there is no
semicolon at the end of the increment section, x = x+1.

The for statement allows for negative increments. For example, the loop discussed above
can be written as follows:

for (x = 9 ; x >= 0 ; x = x–1)

printf(“%d”, x);

printf(“\n”);

This loop is also executed 10 times, but the output would be from 9 to 0 instead of 0 to 9.
Note that braces are optional when the body of the loop contains only one statement.

Since the conditional test is always performed at the beginning of the loop, the body of the
loop may not be executed at all, if the condition fails at the start. For example,

for (x = 9; x < 9; x = x-1)

printf(“%d”, x);

will never be executed because the test condition fails at the very beginning itself.

Let us again consider the problem of sum of squares of integers discussed in Section 11.1.
This problem can be coded using the for statement as follows:

– – – – – – – – – – – – – – – – –
sum = 0;

for (n = 1; n <= 10; n = n+1)

{

sum = sum+ n*n;

}

printf(“sum = %d\n”, sum);
– – – – – – – – – – – – – – – – –

Computer Programming11.10

The body of the loop

sum = sum + n*n;

is executed 10 times for n = 1, 2,, 10 each time incrementing the sum by the square of the

value of n.

One of the important points about the for loop is that all the three actions, namely ini-

tialization, testing, and incrementing, are placed in the for statement itself, thus making
them visible to the programmers and users, in one place. The for statement and its equiva-

lent of while and do statements are shown in Table 11.1.

Table 11.1 Comparison of the Three Loops

 for while do

for (n=1; n<=10; ++n) n = 1; n = 1;

 { while (n<=10) do

 ���� { {

���� ���� ����

 } ���� ����

 n = n+1; n = n+1;

} }

while(n<=10);

Example 11.3 The program in Fig. 11.4 uses a for loop to print the �Powers of 2� table for the

power 0 to 20, both positive and negative.

The program evaluates the value

p = 2 n

successively by multiplying 2 by itself n times.

q = 2�n =
1

p

Note that we have declared p as a long int and q as a double.

Additional Features of for Loop

The for loop in C has several capabilities that are not found in other loop constructs. For

example, more than one variable can be initialized at a time in the for statement. The state-
ments

p = 1;

for (n=0; n<17; ++n)

can be rewritten as

for (p=1, n=0; n<17; ++n)

Program

main()
{

long int p;
int n;

Decision Making and Looping 11.11

double q;
printf(“– \n”);
printf(“ 2 to power n n 2 to power -n\n”);
printf(“– \n”);
p = 1;
for (n = 0; n < 21 ; ++n) /* LOOP BEGINS */
{

if (n == 0)
p = 1;

else
p = p * 2;

q = 1.0/(double)p ;
printf(“%10ld %10d %20.12lf\n”, p, n, q);

} /* LOOP ENDS */
printf(“– \n”);

}
Output

– –
2 to power n n 2 to power -n

– –
1 0 1.000000000000
2 1 0.500000000000
4 2 0.250000000000
8 3 0.125000000000

16 4 0.062500000000
32 5 0.031250000000
64 6 0.015625000000

128 7 0.007812500000
256 8 0.003906250000
512 9 0.001953125000

1024 10 0.000976562500
2048 11 0.000488281250
4096 12 0.000244140625
8192 13 0.000122070313

16384 14 0.000061035156
32768 15 0.000030517578
65536 16 0.000015258789

131072 17 0.000007629395
262144 18 0.000003814697
524288 19 0.000001907349

1048576 20 0.000000953674
– –

Fig. 11.4 Program to print �Power of 2� table using for loop

Computer Programming11.12

Note that the initialization section has two parts p = 1 and n = 1 separated by a comma.

Like the initialization section, the increment section may also have more than one part.

For example, the loop

for (n=1, m=50; n<=m; n=n+1, m=m-1)
{

p = m/n;
printf(“%d %d %d\n”, n, m, p);

}

is perfectly valid. The multiple arguments in the increment section are separated by commas.

The third feature is that the test-condition may have any compound relation and the

testing need not be limited only to the loop control variable. Consider the example below:

sum = 0;

for (i = 1; i < 20 && sum < 100; ++i)

{

sum = sum+i;

printf(“%d %d\n”, i, sum);

}

The loop uses a compound test condition with the counter variable i and sentinel variable

sum. The loop is executed as long as both the conditions i < 20 and sum < 100 are true. The

sum is evaluated inside the loop.

It is also permissible to use expressions in the assignment statements of initialization and

increment sections. For example, a statement of the type

for (x = (m+n)/2; x > 0; x = x/2)

is perfectly valid.

Another unique aspect of for loop is that one or more sections can be omitted, if necessary.

Consider the following statements:

– – – – – – –
m = 5;

for (; m != 100 ;)

{

printf(“%d\n”, m);

m = m+5;

}

– – – – – – –

Both the initialization and increment sections are omitted in the for statement. The initiali-

zation has been done before the for statement and the control variable is incremented inside

the loop. In such cases, the sections are left �blank�. However, the semicolons separating the

sections must remain. If the test-condition is not present, the for statement sets up an �infi-

nite� loop. Such loops can be broken using break or goto statements in the loop.

 We can set up time delay loops using the null statement as follows:

for (j = 1000; j > 0; j = j-1)

;

Decision Making and Looping 11.13

This loop is executed 1000 times without producing any output; it simply causes a time

delay. Notice that the body of the loop contains only a semicolon, known as a null statement.

This can also be written as

for (j=1000; j > 0; j = j-1)

This implies that the C compiler will not give an error message if we place a semicolon by
mistake at the end of a for statement. The semicolon will be considered as a null statement
and the program may produce some nonsense.

Nesting of for Loops

Nesting of loops, that is, one for statement within another for statement, is allowed in C.

For example, two loops can be nested as follows:

The nesting may continue up to any desired level. The loops should be properly indented so as
to enable the reader to easily determine which statements are contained within each for state-
ment. (ANSI C allows up to 15 levels of nesting. However, some compilers permit more).

The program to print the multiplication table discussed in Example 11.2 can be written more
concisely using nested for statements as follows:

– – – – – – – – – – – – –
for (row = 1; row <= ROWMAX ; ++row)

{

for (column = 1; column <= COLMAX ; ++column)

{

y = row * column;

printf(“%4d”, y);

}

printf(“\n”);

}

– – – – – – – – – – – – –

Computer Programming11.14

The outer loop controls the rows while the inner loop controls the columns.

Example 11.4 A class of n students take an annual examination in m subjects. A program to

read the marks obtained by each student in various subjects and to compute

and print the total marks obtained by each of them is given in Fig. 11.5.

The program uses two for loops, one for controlling the number of students and the other for

controlling the number of subjects. Since both the number of students and the number of

subjects are requested by the program, the program may be used for a class of any size and

any number of subjects.

The outer loop includes three parts:

(1) reading of roll-numbers of students, one after another;

(2) inner loop, where the marks are read and totalled for each student; and

(3) printing of total marks and declaration of grades.

Program
#define FIRST 360
#define SECOND 240
main()
{

int n, m, i, j,
roll_number, marks, total;

printf(“Enter number of students and subjects\n”);
scanf(“%d %d”, &n, &m);
printf(“\n”);
for (i = 1; i <= n ; ++i)
{

printf(“Enter roll_number : “);
scanf(“%d”, &roll_number);
total = 0 ;
printf(“\nEnter marks of %d subjects for ROLL NO %d\n”,

m,roll_number);
for (j = 1; j <= m; j++)
{

scanf(“%d”, &marks);
total = total + marks;

}
printf(“TOTAL MARKS = %d “, total);
if (total >= FIRST)

 printf(“(First Division)\n\n”);
else if (total >= SECOND)

printf(“(Second Division)\n\n”);
else

printf(“(*** F A I L ***)\n\n”);
}

}

Decision Making and Looping 11.15

Output
Enter number of students and subjects
3 6
Enter roll_number : 8701
Enter marks of 6 subjects for ROLL NO 8701
81 75 83 45 61 59
TOTAL MARKS = 404 (First Division)
Enter roll_number : 8702
Enter marks of 6 subjects for ROLL NO 8702
51 49 55 47 65 41
TOTAL MARKS = 308 (Second Division)
Enter roll_number : 8704
Enter marks of 6 subjects for ROLL NO 8704
40 19 31 47 39 25
TOTAL MARKS = 201 (*** F A I L ***)

Fig. 11.5 Illustration of nested for loops

Selecting a Loop

Given a problem, the programmer's first concern is to decide the type of loop

structure to be used. To choose one of the three loop supported by C, we may use

the following strategy:

· Analyse the problem and see whether it required a pre-test or post-test loop.

· If it requires a post-test loop, then we can use only one loop, do while.

· If it requires a pre-test loop, then we have two choices: for and while.

· Decide whether the loop termination requires counter-based control or senti-

nel-based control.

· Use for loop if the counter-based control is necessary.

· Use while loop if the sentinel-based control is required.

· Note that both the counter-controlled and sentinel-controlled loops can be im-

plemented by all the three control structures.

11.5 JUMPS IN LOOPS

Loops perform a set of operations repeatedly until the control variable fails to satisfy the

test-condition. The number of times a loop is repeated is decided in advance and the test

condition is written to achieve this. Sometimes, when executing a loop it becomes desirable

to skip a part of the loop or to leave the loop as soon as a certain condition occurs. For
example, consider the case of searching for a particular name in a list containing, say, 100

names. A program loop written for reading and testing the names 100 times must be termi-

Computer Programming11.16

nated as soon as the desired name is found. C permits a jump from one statement to another
within a loop as well as a jump out of a loop.

Jumping Out of a Loop

An early exiti from a loop can be accomplished by using the break statement or the goto
statement. We have already seen the use of the break in the switch statement and the goto

in the if...else construct. These statements can also be used within while, do, or for loops.
They are illustrated in Fig. 11.6 and Fig. 11.7.

When a break statement is encountered inside a loop, the loop is immediately exited and
the program continues with the statement immediately following the loop. When the loops
are nested, the break would only exit from the loop containing it. That is, the break will
exit only a single loop.

Since a goto statement can transfer the control to any place in a program, it is useful to
provide branching within a loop. Another important use of goto is to exit from deeply nested
loops when an error occurs. A simple break statement would not work here.

while ()

while ()

do

for () for ()

for ()

if(condition) if(condition)

if(error)

if(condition)

(a) (b)

(c) (d)

break; break;

;

break;

break;

Exit
from
loop

Exit
from
loop

Exit
from
loop

Exit
from
inner
loop

Fig. 11.6 Exiting a loop with break statement

Decision Making and Looping 11.17

while () for ()

for ()

if(error)if(condition)

if(error)
stop;

error;

error;

stop:

(a) (b)

abc;

abc:

goto

goto
goto

Jump
within
loop

Exit
from
loop

Exit
from
two
loops

Fig. 11.7 Jumping within and exiting from the loops with goto statement

Example 11.5 The program in Fig. 11.8 illustrates the use of the break statement in a C

program.

The program reads a list of positive values and calculates their average. The for loop is

written to read 1000 values. However, if we want the program to calculate the average of any

set of values less than 1000, then we must enter a �negative� number after the last value in

the list, to mark the end of input.

Program
main()
{

int m;
float x, sum, average;

printf(“This program computes the average of a
set of numbers\n”);

printf(“Enter values one after another\n”);
printf(“Enter a NEGATIVE number at the end.\n\n”);
sum = 0;
for (m = 1 ; m < = 1000 ; ++m)
{

scanf(“%f”, &x);
if (x < 0)

break;
sum += x ;

}
average = sum/(float)(m-1);
printf(“\n”);

Computer Programming11.18

printf(“Number of values = %d\n”, m-1);
printf(“Sum = %f\n”, sum);
printf(“Average = %f\n”, average);

}
Output

This program computes the average of a set of numbers
Enter values one after another
Enter a NEGATIVE number at the end.

21 23 24 22 26 22 -1

Number of values = 6
Sum = 138.000000
Average = 23.000000

Fig. 11.8 Use of break in a program

Each value, when it is read, is tested to see whether it is a positive number or not. If it is

positive, the value is added to the sum; otherwise, the loop terminates. On exit, the average

of the values read is calculated and the results are printed out.

Example 11.6 A program to evaluate the series

1

1 x-
 = 1 + x + x2 + x3 + + xn

for �1 < x < 1 with 0.01 per cent accuracy is given in Fig. 11.9. The goto

statement is used to exit the loop on achieving the desired accuracy.

We have used the for statement to perform the repeated addition of each of the terms in the

series. Since it is an infinite series, the evaluation of the function is terminated when the

term xn reaches the desired accuracy. The value of n that decides the number of loop opera-

tions is not known and therefore we have decided arbitrarily a value of 100, which may or

may not result in the desired level of accuracy.

Program
#define LOOP 100
#define ACCURACY 0.0001
main()
{

int n;
float x, term, sum;

printf(“Input value of x : “);
scanf(“%f”, &x);
sum = 0 ;
for (term = 1, n = 1 ; n <= LOOP ; ++n)
{

sum += term ;
if (term <= ACCURACY)

Decision Making and Looping 11.19

goto output; /* EXIT FROM THE LOOP */
term *= x ;

}
printf(“\nFINAL VALUE OF N IS NOT SUFFICIENT\n”);
printf(“TO ACHIEVE DESIRED ACCURACY\n”);
goto end;
output:
printf(“\nEXIT FROM LOOP\n”);
printf(“Sum = %f; No.of terms = %d\n”, sum, n);
end:
; /* Null Statement */

}
Output

Input value of x : .21
EXIT FROM LOOP
Sum = 1.265800; No.of terms = 7

Input value of x : .75
EXIT FROM LOOP
Sum = 3.999774; No.of terms = 34

Input value of x : .99
FINAL VALUE OF N IS NOT SUFFICIENT
TO ACHIEVE DESIRED ACCURACY

Fig. 11.9 Use of goto to exit from a loop

The test of accuracy is made using an if statement and the goto statement exits the loop

as soon as the accuracy condition is satisfied. If the number of loop repetitions is not large

enough to produce the desired accuracy, the program prints an appropriate message.

Note that the break statement is not very convenient to use here. Both the normal exit

and the break exit will transfer the control to the same statement that appears next to the

loop. But, in the present problem, the normal exit prints the message

�FINAL VALUE OF N IS NOT SUFFICIENT

TO ACHIEVE DESIRED ACCURACY�

and the forced exit prints the results of evaluation. Notice the use of a null statement at the

end. This is necessary because a program should not end with a label.

Structured Programming

Structured programming is an approach to the design and development of pro-

grams. It is a discipline of making a program's logic easy to understand by using

only the basic three control structures:

· Sequence (straight line) structure

· Selection (branching) structure

Computer Programming11.20

· Repetition (looping) structure

While sequence and loop structures are sufficient to meet all the requirements of

programming, the selection structure proves to be more convenient in some situa-

tions.

The use of structured programming techniques helps ensure well-designed pro-

grams that are easier to write, read, debug and maintain compared to those that are

unstructured.

Structured programming discourages the implementation of unconditional branch-

ing using jump statements such as goto, break and continue. In its purest form,

structured programming is synonymous with "goto less programming".

Do not go to goto statement!

Skipping a Part of a Loop

During the loop operations, it may be necessary to skip a part of the body of the loop under

certain conditions. For example, in processing of applications for some job, we might like to

exclude the processing of data of applicants belonging to a certain category. On reading the

category code of an applicant, a test is made to see whether his application should be consid-

ered or not. If it is not to be considered, the part of the program loop that processes the

application details is skipped and the execution continues with the next loop operation.

Like the break statement, C supports another similar statement called the continue

statement. However, unlike the break which causes the loop to be terminated, the con-

tinue, as the name implies, causes the loop to be continued with the next iteration after

skipping any statements in between. The continue statement tells the compiler, �SKIP

THE FOLLOWING STATEMENTS AND CONTINUE WITH THE NEXT ITERATION�. The

format of the continue statement is simply

continue;

The use of the continue statement in loops is illustrated in Fig. 11.10. In while and do

loops, continue causes the control to go directly to the test-condition and then to continue

the iteration process. In the case of for loop, the increment section of the loop is executed

before the test-condition is evaluated.

while (test-condition) do
{ {
--------- ---------
if (---------) if (---------)

continue; continue;

--------- ---------
--------- ---------

} } while (test-condition);
(a) (b)

Decision Making and Looping 11.21

for (initialization; test condition; increment)
{

if (---------)

continue;

}
(c)

Fig. 11.10 Bypassing and continuing in loops

Example 11.7 The program in Fig. 11.11 illustrates the use of continue statement.

The program evaluates the square root of a series of numbers and prints the results. The

process stops when the number 9999 is typed in.

In case, the series contains any negative numbers, the process of evaluation of square root

should be bypassed for such numbers because the square root of a negative number is not

defined. The continue statement is used to achieve this. The program also prints a message

saying that the number is negative and keeps an account of negative numbers.

The final output includes the number of positive values evaluated and the number of

negative items encountered.

Program:
#include <math.h>
main()
{

int count, negative;
double number, sqroot;
printf(“Enter 9999 to STOP\n”);
count = 0 ;
negative = 0 ;
while (count < = 100)
{

printf(“Enter a number : “);
scanf(“%lf”, &number);
if (number == 9999)

break; /* EXIT FROM THE LOOP */
if (number < 0)
{

printf(“Number is negative\n\n”);
negative++ ;
continue; /* SKIP REST OF THE LOOP */

}

Computer Programming11.22

sqroot = sqrt(number);
printf(“Number = %lf\n Square root = %lf\n\n”,

number, sqroot);
count++ ;

}
printf(“Number of items done = %d\n”, count);
printf(“\n\nNegative items = %d\n”, negative);
printf(“END OF DATA\n”);

}
Output

Enter 9999 to STOP
Enter a number : 25.0

Number = 25.000000
Square root = 5.000000

Enter a number : 40.5
Number = 40.500000
Square root = 6.363961

Enter a number : -9
Number is negative

Enter a number : 16
Number = 16.000000
Square root = 4.000000

Enter a number : -14.75
Number is negative

Enter a number : 80
Number = 80.000000
Square root = 8.944272

Enter a number : 9999
Number of items done = 4
Negative items = 2
END OF DATA

Fig. 11.11 Use of continue statement

Avoiding goto

As mentioned earlier, it is a good practice to avoid using goto. There are many reasons for

this. When goto is used, many compilers generate a less efficient code. In addition, using

many of them makes a program logic complicated and renders the program unreadable. It is

possible to avoid using goto by careful program design. In case any goto is absolutely neces-

sary, it should be documented. The goto jumps shown in Fig. 11.12 would cause problems

and therefore must be avoided.

Decision Making and Looping 11.23

Fig. 11.12 goto jumps to be ovoided.

Jumping out of the Program

We have just seen that we can jump out of a loop using either the break statement or goto

statement. In a similar way, we can jump out of a program by using the library function

exit(). In case, due to some reason, we wish to break out of a program and return to the

operating system, we can use the exit() function, as shown below:

........

........
if (test-condition) exit(0) ;
........
........

The exit() function takes an integer value as its argument. Normally zero is used to

indicate normal termination and a nonzero value to indicate termination due to some error

or abnormal condition. The use of exit() function requires the inclusion of the header file

<stdlib.h>.

11.6 CONCISE TEST EXPRESSIONS

We often use test expressions in the if, for, while and do statements that are evaluated and

compared with zero for making branching decisions. Since every integer expression has a

true/false value, we need not make explicit comparisons with zero. For instance, the expres-

sion x is true whenever x is not zero, and false when x is zero. Applying! operator, we can

write concise test expressions without using any relational operators.

if (expression ==0)

is equivalent to

if(!expression)

Similarly,

if (expression! = 0)

is equivalent to

if (expression)

For example,

if (m%5==0 && n%5==0) is same as if (!(m%5)&&!(n%5))

Computer Programming11.24

- Do not forget to place the semicolon at the end of do �.while statement.

- Placing a semicolon after the control expression in a while or for state

ment is not a syntax error but it is most likely a logic error.

- Using commas rather than semicolon in the header of a for statement is

an error.

- Do not forget to place the increment statement in the body of a while or

do�while loop.

- It is a common error to use wrong relational operator in test expressions.

Ensure that the loop is evaluated exactly the required number of times.

- Avoid a common error using = in place of = = operator.

- Do not change the control variable in both the for statement and the body

of the loop. It is a logic error.

- Do not compare floating-point values for equality.

- Avoid using while and for statements for implementing exit-controlled

(post-test) loops. Use do�while statement. Similarly, do not use

do�while for pre-test loops.

- When performing an operation on a variable repeatedly in the body of a

loop, make sure that the variable is initialized properly before entering the

loop.

- Although it is legally allowed to place the initialization, testing and incre-

ment sections outside the header of a for statement, avoid them as far as

possible.

- Although it is permissible to use arithmetic expressions in initialization

and increment section, be aware of round off and truncation errors during

their evaluation.

- Although statements preceding a for and statements in the body can be

placed in the for header, avoid doing so as it makes the program more

difficult to read.

- The use of break and continue statements in any of the loops is consid-

ered unstructured programming. Try to eliminate the use of these jump

statements, as far as possible.

- Avoid the use of goto anywhere in the program.

- Indent the statements in the body of loops properly to enhance readability

and understandability.

- Use of blank spaces before and after the loops and terminating remarks

are highly recommended.

- Use the function exit() only when breaking out of a program is necessary.

Decision Making and Looping 11.25

1. Table of Binomial Coefficients

Problem: Binomial coefficients are used in the study of binomial distributions and reliabil-

ity of multicomponent redundant systems. It is given by

B(m,x) = ()
x

m
 =

m!

x! m x !-()
 , m >= x

A table of binomial coefficients is required to determine the binomial coefficient for any set of

m and x.

Problem Analysis: The binomial coefficient can be recursively calculated as follows:

B(m,o) = 1

B(m,x) = B(m,x�1)
m x 1

x

- +L
NM

O
QP

, x = 1,2,3,...,m

Further,

B(o,o) = 1

That is, the binomial coefficient is one when either x is zero or m is zero. The program in

Fig. 11.12 prints the table of binomial coefficients for m = 10. The program employs one do

loop and one while loop.

Program

#define MAX 10
main()
{

int m, x, binom;
printf(“ m x”);
for (m = 0; m <= 10 ; ++m)

printf(“%4d”, m);
printf(“\n– \n”);
m = 0;
do
{

printf(“%2d “, m);
x = 0; binom = 1;
while (x <= m)
{

if(m == 0 || x == 0)
printf(“%4d”, binom);

else
{

binom = binom * (m - x + 1)/x;
printf(“%4d”, binom);

}

Computer Programming11.26

x = x + 1;
}
printf(“\n”);
m = m + 1;

}
while (m <= MAX);
printf(“– \n”);

}
Output

mx 0 1 2 3 4 5 6 7 8 9 10
– –

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1
– –

Fig. 11.12 Program to print binomial coefficient table

2. Histogram

Problem: In an organization, the employees are grouped according to their basic pay for the
purpose of certain perks. The pay-range and the number of employees in each group are as
follows:

Group Pay-Range Number of Employees
1 750 � 1500 12
2 1501 � 3000 23
3 3001 � 4500 35
4 4501 � 6000 20
5 above 6000 11

Draw a histogram to highlight the group sizes.
Problem Analysis: Given the size of groups, it is required to draw bars representing the
sizes of various groups. For each bar, its group number and size are to be written.
Program in Fig. 11.13 reads the number of employees belonging to each group and draws a
histogram. The program uses four for loops and two if.....else statements.

Program:
#define N 5
main()
{

int value[N];

Decision Making and Looping 11.27

int i, j, n, x;
for (n=0; n < N; ++n)
{

printf(“Enter employees in Group - %d : “,n+1);
scanf(“%d”, &x);
value[n] = x;
printf(“%d\n”, value[n]);

}
printf(“\n”);
printf(“|\n”);
for (n = 0 ; n < N ; ++n)
{

for (i = 1 ; i <= 3 ; i++)
{

if (i == 2)
printf(“Group-%1d |”,n+1);

else
printf(“|”);

for (j = 1 ; j <= value[n]; ++j)
printf(“*”);

if (i == 2)
printf(“(%d)\n”, value[n]);

else
printf(“\n”);

}
printf(“|\n”);

}
}

Output

Enter employees in Group - 1 : 12
12
Enter employees in Group - 2 : 23
23
Enter employees in Group - 3 : 35
35
Enter employees in Group - 4 : 20
20
Enter Employees in Group - 5 : 11
11

|
|************

Group-1 |************(12)
|************
|
|***********************

Computer Programming11.28

Group-2 |***********************(23)
|***********************
|
|***********************************

Group-3 |***********************************(35)
|***********************************
|
|********************

Group-4 |********************(20)
|********************
|
|***********

Group-5 |***********(11)
|***********
|

Fig. 11.13 Program to draw a histogram

3. Minimum Cost

Problem: The cost of operation of a unit consists of two components C1 and C2 which can be

expressed as functions of a parameter p as follows:

C1 = 30 � 8p

C2 = 10 + p2

The parameter p ranges from 0 to 10. Determine the value of p with an accuracy of + 0.1

where the cost of operation would be minimum.

Problem Analysis:

Total cost = C1 + C2 = 40 � 8p + p2

The cost is 40 when p = 0, and 33 when p = 1 and 60 when p = 10. The cost, therefore,

decreases first and then increases. The program in Fig. 11.14 evaluates the cost at successive

intervals of p (in steps of 0.1) and stops when the cost begins to increase. The program

employs break and continue statements to exit the loop.

Program
main()
{

float p, cost, p1, cost1;
for (p = 0; p <= 10; p = p + 0.1)
{

cost = 40 - 8 * p + p * p;
if(p == 0)
{

cost1 = cost;

Decision Making and Looping 11.29

continue;
}
if (cost >= cost1)

break;
cost1 = cost;
p1 = p;

}
p = (p + p1)/2.0;
cost = 40 - 8 * p + p * p;
printf(“\nMINIMUM COST = %.2f AT p = %.1f\n”,

cost, p);
}

Output
MINIMUM COST = 24.00 AT p = 4.0

Fig. 11.14 Program of minimum cost problem

4. Plotting of Two Functions

Problem: We have two functions of the type

y1 = exp (�ax)

y2 = exp (�ax
2
/2)

Plot the graphs of these functions for x varying from 0 to 5.0.

Problem Analysis: Initially when x = 0, y1 = y2 =1 and the graphs start from the same

point. The curves cross when they are again equal at x = 2.0. The program should have

appropriate branch statements to print the graph points at the following three conditions:

1. y1 > y2

2. y1 < y2

3. y1 = y2

The functions y1 and y2 are normalized and converted to integers as follows:

y1 = 50 exp (�ax) + 0.5

y2 = 50 exp (�ax2/2) + 0.5

The program in Fig. 11.15 plots these two functions simultaneously. (0 for y1, * for y2, and

for the common point).

Program

#include <math.h>
main()
{

int i;
float a, x, y1, y2;
a = 0.4;

printf(“ Y – – – – > \n”);

Computer Programming11.30

printf(“ 0 – \n”);
for (x = 0; x < 5; x = x+0.25)
{ /* BEGINNING OF FOR LOOP */
/*......Evaluation of functions*/

y1 = (int) (50 * exp(-a * x) + 0.5);
y2 = (int) (50 * exp(-a * x * x/2) + 0.5);

/*......Plotting when y1 = y2.........*/
if (y1 == y2)
{

if (x == 2.5)
printf(“ X |”);

else
printf(“|”);

for (i = 1; i <= y1 - 1; ++i)
printf(“ “);

printf(“#\n”);
continue;

}
/*...... Plotting when y1 > y2*/

if (y1 > y2)
{

if (x == 2.5)
printf(“ X |”);

else
printf(“ |”);

for (i = 1; i <= y2 -1 ; ++i)
printf(“ “);

printf(“*”);
for (i = 1; i <= (y1 - y2 - 1); ++i)

printf(“-”);
printf(“0\n”);
continue;

}
/*........ Plotting when y2 > y1.........*/

if (x == 2.5)
printf(“ X |”);

else
printf(“ |”);

for (i = 1 ; i <= (y1 - 1); ++i)
printf(“ “);

printf(“0”);
for (i = 1; i <= (y2 - y1 - 1); ++i)

printf(“-”);
printf(“*\n”);

} /*.......END OF FOR LOOP........*/
printf(“ |\n”);

}

Decision Making and Looping 11.31

Output Y
0

#
0 --- *

0------ *
0 ------- *

0------ *
0------ *

0 ---- *
0 - *

#
* -0

*X --- 0
*----- 0

* ------ 0
*-------0

*------- 0
*-------0

*-------0
*-------0
*------0
*-----0

Fig. 11.15 Plotting of two functions

11.1 State whether the following statements are true or false.

(a) The do�while statement first executes the loop body and then evaluate the loop

control expression.

(b) In a pretest loop, if the body is executed n times, the test expression is executed

n + 1 times.

(c) The number of times a control variable is updated always equals the number of

loop iterations.

(d) Both the pretest loops include initialization within the statement.

(e) In a for loop expression, the starting value of the control variable must be less

than its ending value.

(f) The initialization, test condition and increment parts may be missing in a for

statement.

(g) while loops can be used to replace for loops without any change in the body of the

loop.

Computer Programming11.32

(h) An exit-controlled loop is executed a minimum of one time.

(i) The use of continue statement is considered as unstructured programming.

(j) The three loop expressions used in a for loop header must be separated by com-

mas.

11.2 Fill in the blanks in the following statements.

(a) In an exit-controlled loop, if the body is executed n times, the test condition is

evaluated ________times.

(b) The _________statement is used to skip a part of the statements in a loop.

(c) A for loop with the no test condition is known as ______ loop.

(d) The sentinel-controlled loop is also known as _______ loop.

(e) In a counter-controlled loop, variable known as _____ is used to count the loop

operations.

11.3 Can we change the value of the control variable in for statements? If yes, explain its

consequences.

11.4 What is a null statement? Explain a typical use of it.

11.5 Use of goto should be avoided. Explain a typical example where we find the applica-

tion of goto becomes necessary.

11.6 How would you decide the use of one of the three loops in C for a given problem?

11.7 How can we use for loops when the number of iterations are not known?

11.8 Explain the operation of each of the following for loops.

(a) for (n = 1; n != 10; n += 2)
sum = sum + n;

(b) for (n = 5; n <= m; n -=1)
sum = sum + n;

(c) for (n = 1; n <= 5;)
sum = sum + n;

(d) for (n = 1; ; n = n + 1)
sum = sum + n;

(e) for (n = 1; n < 5; n ++)
n = n -1

11.9 What would be the output of each of the following code segments?

(a) count = 5;
while (count -- > 0)
printf(count);

(b) count = 5;
while (-- count > 0)
printf(count);

(c) count = 5;
do printf(count);
while (count > 0);

(d) for (m = 10; m > 7, m -=2)
printf(m);

11.10 Compare, in terms of their functions, the following pairs of statements:

(a) while and do...while

(b) while and for

Decision Making and Looping 11.33

(c) break and goto

(d) break and continue

(e) continue and goto

11.11 Analyse each of the program segments that follow and determine how many times the

body of each loop will be executed.

(a) x = 5;
y = 50;
while (x <= y)
{

x = y/x;
� � �

� � �

}
(b) m = 1;

do
{

� � �

� � �

m = m+2;
}
while (m < 10);

(c) int i;
for (i = 0; i <= 5; i = i+2/3)
{

� � �

� � �

� � �

}
(d) int m = 10;

int n = 7;
while (m % n >= 0)
{

� � �

m = m + 1;
n = n + 2;
� � �

}
11.12 Find errors, if any, in each of the following looping segments. Assume that all the

variables have been declared and assigned values.

(a) while (count != 10);
{

count = 1;
sum = sum + x;
count = count + 1;

}

Computer Programming11.34

(b) name = 0;
do { name = name + 1;
printf(“My name is John\n”);}
while (name = 1)

(c) do;
total = total + value;
scanf(“%f”, &value);
while (value != 999);

(d) for (x = 1, x > 10; x = x + 1)
{

� � �

� � �

� � �

}
(e) m = 1;

n = 0;
for (; m+n < 10; ++n);
printf(“Hello\n”);
m = m+10

(f) for (p = 10; p > 0;)
p = p - 1;
printf(“%f”, p);

11.13 Write a for statement to print each of the following sequences of integers:

(a) 1, 2, 4, 8, 16, 32

(b) 1, 3, 9, 27, 81, 243

(c) � 4, �2, 0, 2, 4

(d) �10, �12, �14, �18, �26, � 42

11.14 Change the following for loops to while loops:

(a) for (m = 1; m < 10; m = m + 1)
printf(m);

(b) for (; scanf(“%d”, & m) != -1;)
printf(m);

11.15 Change the for loops in Exercise 11.14 to do loops.

11.16 What is the output of following code?

int m = 100, n = 0;
while (n == 0)
{

if (m < 10)
break;

m = m-10;
11.17 What is the output of the following code?

int m = 0 ;
do
{

Decision Making and Looping 11.35

if (m > 10)
continue ;

m = m + 10 ;
} while (m < 50) ;
printf(“%d”, m);

11.18 What is the output of the following code?

int n = 0, m = 1 ;
do
{

printf(m) ;
m++ ;

}
while (m <= n) ;

11.19 What is the output of the following code?

int n = 0, m ;
for (m = 1; m <= n + 1 ; m++)

printf(m);
11.20 When do we use the following statement?

for (; ;)

11.1 Given a number, write a program using while loop to reverse the digits of the num-

ber. For example, the number

12345

should be written as

54321

(Hint: Use modulus operator to extract the last digit and the integer division by 10 to get the n�

1 digit number from the n digit number.)

11.2 The factorial of an integer m is the product of consecutive integers from 1 to m. That is,

factorial m = m! = m x (m�1) x x 1.

Write a program that computes and prints a table of factorials for any given m.

11.3 Write a program to compute the sum of the digits of a given integer number.

11.4 The numbers in the sequence

1 1 2 3 5 8 13 21

are called Fibonacci numbers. Write a program using a do....while loop to calculate

and print the first m Fibonacci numbers.

(Hint: After the first two numbers in the series, each number is the sum of the two

preceding numbers.)

11.5 Rewrite the program of the Example 11.1 using the for statement.

11.6 Write a program to evaluate the following investment equation

Computer Programming11.36

V = P(1+r)n

and print the tables which would give the value of V for various combination of the

following values of P, r, and n.

P : 1000, 2000, 3000,........, 10,000

r : 0.10, 0.11, 0.12,, 0.20

n : 1, 2, 3,, 10

(Hint: P is the principal amount and V is the value of money at the end of n years.

This equation can be recursively written as

V = P(1+r)

P = V

That is, the value of money at the end of first year becomes the principal amount for

the next year and so on.)

11.7 Write programs to print the following outputs using for loops.

(a) 1 (b) * * * * *

2 2 * * * *

3 3 3 * * *

4 4 4 4 * *

5 5 5 5 5 *
11.8 Write a program to read the age of 100 persons and count the number of persons in the

age group 50 to 60. Use for and continue statements.

11.9 Rewrite the program of case study 11.4 (plotting of two curves) using else...if con-

structs instead of continue statements.

11.10 Write a program to print a table of values of the function

y = exp (-x)

for x varying from 0.0 to 10.0 in steps of 0.10. The table should appear as follows:

Table for Y = EXP(�X)

x 0.1 0.2 0.3 0.9

0.0

1.0

2.0

3.0

.

.

.

9.0

11.11 Write a program that will read a positive integer and determine and print its binary

equivalent.

(Hint: The bits of the binary representation of an integer can be generated by repeat-

edly dividing the number and the successive quotients by 2 and saving the remainder,

which is either 0 or 1, after each division.)

Decision Making and Looping 11.37

11.12 Write a program using for and if statement to display the capital letter S in a grid of

15 rows and 18 columns as shown below.

* * * * * * * * * * * * * * * * * * *

* * - - - - - - - - - - - - - - - - - - - * *

* * * * * * * * * - - - - - - - - - - * *

* * * *

* * * *

* * * *

* * * * * - - - - - - - - - - - - -* * * *

- - - - - - - - - - - - - - - - - - - * * * *

- - - - - - - - - - - - - - - - - - - * * * *

* * * *

* * * *

* * * *

* * * * - - - - - - - - � - - - * * * *

* * * - - - - - - - - - - - - - - * * * *

* * - - - - - - - - - - - - - - - - * * * *

11.13 Write a program to compute the value of Euler�s number e, that is used as the base of

natural logarithms. Use the following formula.

e = 1 + 1/1! + 1 /2! + 1 /3! + + 1 /n!

Use a suitable loop construct. The loop must terminate when the difference between

two successive values of e is less than 0.00001.

11.14 Write programs to evaluate the following functions to 0.0001% accuracy.

(a) sinx = x � x3/3! + x5/5! � x7/7! +

(b) cosx = 1 � x2/2! + x4/4! � x6/6! +

(c) SUM = 1 + (1/2)2 + (1/3)3 + (1/4)4 + � �

11.15 The present value (popularly known as book value) of an item is given by the relation-

ship.

P = c (1�d)
n

where c = original cost

d = rate of depreciation (per year)

n = number of years

p = present value after y years.

If P is considered the scrap value at the end of useful life of the item, write a program

to compute the useful life in years given the original cost, depreciation rate, and the

scrap value.

The program should request the user to input the data interactively.

11.16 Write a program to print a square of size 5 by using the character S as shown below:

(a) S S S S S (b) S S S S S

S S S S S S S

S S S S S S S

S S S S S S S

S S S S S S S S S S

Computer Programming11.38

11.17 Write a program to graph the function

y = sin (x)

in the interval 0 to 180 degrees in steps of 15 degrees. Use the concepts discussed in

the Case Study 4 in Chapter 11.

11.18 Write a program to print all integers that are not divisible by either 2 or 3 and lie

between 1 and 100. Program should also account the number of such integers and

print the result.

11.19 Modify the program of Exercise 11.16 to print the character O instead of S at the

center of the square as shown below.

S S S S S

S S S S S

S S O S S

S S S S S

S S S S S

11.20 Given a set of 10 two-digit integers containing both positive and negative values, write

a program using for loop to compute the sum of all positive values and print the sum

and the number of values added. The program should use scanf to read the values

and terminate when the sum exceeds 999. Do not use goto statement.

Unit 3: ARRAYS AND

STRINGS

Arrays

12.1 INTRODUCTION

So far we have used only the fundamental data types, namely char, int, float, double and

variations of int and double. Although these types are very useful, they are constrained by

the fact that a variable of these types can store only one value at any given time. Therefore,

they can be used only to handle limited amounts of data. In many applications, however, we

need to handle a large volume of data in terms of reading, processing and printing. To proc-

ess such large amounts of data, we need a powerful data type that would facilitate efficient

storing, accessing and manipulation of data items. C supports a derived data type known as

array that can be used for such applications.

An array is a fixed-size sequenced collection of elements of the same data type. It is simply

a grouping of like-type data. In its simplest form, an array can be used to represent a list of

numbers, or a list of names. Some examples where the concept of an array can be used:

· List of temperatures recorded every hour in a day, or a month, or a year.

· List of employees in an organization.

· List of products and their cost sold by a store.

· Test scores of a class of students.

· List of customers and their telephone numbers.

· Table of daily rainfall data.

and so on.

Since an array provides a convenient structure for representing data, it is classified as one

of the data structures in C. Other data structures include structures, lists, queues and trees.

A complete discussion of all data structures is beyond the scope of this text. However, we

shall consider structures in Chapter 10 and lists in Chapter 13.

As we mentioned earlier, an array is a sequenced collection of related data items that

share a common name. For instance, we can use an array name salary to represent a set of

salaries of a group of employees in an organization. We can refer to the individual salaries by

writing a number called index or subscript in brackets after the array name. For example,

salary [10]

represents the salary of 10th employee. While the complete set of values is referred to as an

array, individual values are called elements.

12

Fundmental

Types

User-defined

Types

Data Types

Derived

Types

Arrays 12.5

12.2 ONE-DIMENSIONAL ARRAYS

A list of items can be given one variable name using only one subscript and such a variable is

called a single-subscripted variable or a one-dimensional array. In mathematics, we often

deal with variables that are single-subscripted. For instance, we use the equation.

A =

x

n

i

i 1

n

=

å

to calculate the average of n values of x. The subscripted variable xi refers to the ith element

of x. In C, single-subscripted variable xi can be expressed as

x[1], x[2], x[3],.........x[n]

The subscript can begin with number 0. That is

x[0]

is allowed. For example, if we want to represent a set of five numbers, say (35,40,20,57,19),

by an array variable number, then we may declare the variable number as follows

int number[5];

and the computer reserves five storage locations as shown below:

number [0]

number [1]

number [2]

number [3]

number [4]

The values to the array elements can be assigned as follows:

number[0] = 35;

number[1] = 40;

number[2] = 20;

number[3] = 57;

number[4] = 19;

This would cause the array number to store the values as shown below:

number [0]

number [1]

number [2]

number [3]

number [4]

35
40
20
57
19

These elements may be used in programs just like any other C variable. For example, the

following are valid statements:

a = number[0] + 10;

number[4] = number[0] + number [2];

number[2] = x[5] + y[10];

value[6] = number[i] * 3;

Computer Programming12.6

The subscripts of an array can be integer constants, integer variables like i, or expressions

that yield integers. C performs no bounds checking and, therefore, care should be exercised to

ensure that the array indices are within the declared limits.

12.3 DECLARATION OF ONE-DIMENSIONAL ARRAYS

Like any other variable, arrays must be declared before they are used so that the compiler

can allocate space for them in memory. The general form of array declaration is

type variable-name[size];

The type specifies the type of element that will be contained in the array, such as int,

float, or char and the size indicates the maximum number of elements that can be stored

inside the array. For example,

float height[50];

declares the height to be an array containing 50 real elements. Any subscripts 0 to 49 are

valid. Similarly,

int group[10];

declares the group as an array to contain a maximum of 10 integer constants. Remember:

· Any reference to the arrays outside the declared limits would not necessarily cause an

error. Rather, it might result in unpredictable program results.

· The size should be either a numeric constant or a symbolic constant.

The C language treats character strings simply as arrays of characters. The size in a

character string represents the maximum number of characters that the string can hold. For

instance,

char name[10];

declares the name as a character array (string) variable that can hold a maximum of 10

characters. Suppose we read the following string constant into the string variable name.

�WELL DONE�

Each character of the string is treated as an element of the array name and is stored in

the memory as follows:

�W�

�E�

�L�

�L�

� �

�D�

�O�

�N�

�E�

�\0�

Arrays 12.7

When the compiler sees a character string, it terminates it with an additional null charac-

ter. Thus, the element name[10] holds the null character �\0�. When declaring character

arrays, we must allow one extra element space for the null terminator.

Example 12.1 Write a program using a single-subscripted variable to evaluate the following

expressions:

Total = x
i

2

i 1

10

=

å

The values of x1,x2,....are read from the terminal.

Program in Fig. 12.1 uses a one-dimensional array x to read the values and compute the

sum of their squares.

Program

main()
{

int i ;
float x[10], value, total ;

/*READING VALUES INTO ARRAY */

printf(“ENTER 10 REAL NUMBERS\n”) ;

for(i = 0 ; i < 10 ; i++)
{

scanf(“%f”, &value) ;
x[i] = value ;

}
/*COMPUTATION OF TOTAL*/

total = 0.0 ;
for(i = 0 ; i < 10 ; i++)

total = total + x[i] * x[i] ;

/*. . . . PRINTING OF x[i] VALUES AND TOTAL . . . */

printf(“\n”);
for(i = 0 ; i < 10 ; i++)

printf(“x[%2d] = %5.2f\n”, i+1, x[i]) ;

printf(“\ntotal = %.2f\n”, total) ;
}

Output

ENTER 10 REAL NUMBERS

Computer Programming12.8

1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10

x[1] = 1.10
x[2] = 2.20
x[3] = 3.30
x[4] = 4.40
x[5] = 5.50
x[6] = 6.60
x[7] = 7.70
x[8] = 8.80
x[9] = 9.90
x[10] = 10.10

Total = 446.86

Fig. 12.1 Program to illustrate one-dimensional array

NOTE: C99 permits arrays whose size can be specified at run time. See Appendix "C99 Features".

12.4 INITIALIZATION OF ONE-DIMENSIONAL ARRAYS

After an array is declared, its elements must be initialized. Otherwise, they will contain

�garbage�. An array can be initialized at either of the following stages:

· At compile time

· At run time

Compile Time Initialization

We can initialize the elements of arrays in the same way as the ordinary variables when they

are declared. The general form of initialization of arrays is:

type array-name[size] = { list of values };

The values in the list are separated by commas. For example, the statement

int number[3] = { 0,0,0 };

will declare the variable number as an array of size 3 and will assign zero to each element.

If the number of values in the list is less than the number of elements, then only that many

elements will be initialized. The remaining elements will be set to zero automatically. For

instance,

float total[5] = {0.0,15.75,–10};

will initialize the first three elements to 0.0, 15.75, and �10.0 and the remaining two ele-

ments to zero.

Arrays 12.9

The size may be omitted. In such cases, the compiler allocates enough space for all initial-

ized elements. For example, the statement

int counter[] = {1,1,1,1};

will declare the counter array to contain four elements with initial values 1. This approach

works fine as long as we initialize every element in the array.

Character arrays may be initialized in a similar manner. Thus, the statement

char name[] = {‘J’,‘o’, ‘h’, ‘n’, ‘\0’};

declares the name to be an array of five characters, initialized with the string �John� ending

with the null character. Alternatively, we can assign the string literal directly as under:

char name [] = “John”;

(Character arrays and strings are discussed in detail in Chapter 12.)

Compile time initialization may be partial. That is, the number of initializers may be less

than the declared size. In such cases, the remaining elements are inilialized to zero, if the

array type is numeric and NULL if the type is char. For example,

int number [5] = {10, 20};

will initialize the first two elements to 10 and 20 respectively, and the remaining elements to

0. Similarly, the declaration.

char city [5] = {‘B’};

will initialize the first element to �B� and the remaining four to NULL. It is a good idea,

however, to declare the size explicitly, as it allows the compiler to do some error checking.

Remember, however, if we have more initializers than the declared size, the compiler will

produce an error. That is, the statement

int number [3] = {10, 20, 30, 40};

will not work. It is illegal in C.

Run Time Initialization

An array can be explicitly initialized at run time. This approach is usually applied for initial-

izing large arrays. For example, consider the following segment of a C program.

� � � �� � � �

� � � �� � � �

for (i = 0; i < 100; i = i+1)
{

if i < 50
sum[i] = 0.0; /* assignment statement */

else
sum[i] = 1.0;

}
� � � �� � � �

� � � �� � � �

The first 50 elements of the array sum are initialized to zero while the remaining 50

elements are initialized to 1.0 at run time.

Computer Programming12.10

We can also use a read function such as scanf to initialize an array. For example, the

statements

int x [3];
scanf(“%d%d%d”, &x[0], &[1], &x[2]);

will initialize array elements with the values entered through the keyboard.

Example 12.2 Given below is the list of marks obtained by a class of 50 students in an annual

examination.

43 65 51 27 79 11 56 61 82 09 25 36 07 49 55 63 74 81 49 37

40 49 16 75 87 91 33 24 58 78 65 56 76 67 45 54 36 63 12 21

73 49 51 19 39 49 68 93 85 59

Write a program to count the number of students belonging to each of following

groups of marks: 0�9, 10�19, 20�29,.....,100.

The program coded in Fig. 12.2 uses the array group containing 11 elements, one for each

range of marks. Each element counts those values falling within the range of values it repre-

sents.

For any value, we can determine the correct group element by dividing the value by 10.

For example, consider the value 59. The integer division of 59 by 10 yields 5. This is the

element into which 59 is counted.

Program

#define MAXVAL 50
#define COUNTER 11
main()
{

float value[MAXVAL];
int i, low, high;
int group[COUNTER] = {0,0,0,0,0,0,0,0,0,0,0};
/*READING AND COUNTING*/
for(i = 0 ; i < MAXVAL ; i++)
{
/*.READING OF VALUES */

scanf(“%f”, &value[i]) ;
/*.COUNTING FREQUENCY OF GROUPS. */

++ group[(int) (value[i]) / 10] ;
}
/*PRINTING OF FREQUENCY TABLE*/
printf(“\n”);
printf(“ GROUP RANGE FREQUENCY\n\n”) ;
for(i = 0 ; i < COUNTER ; i++)
{

low = i * 10 ;
if(i == 10)

high = 100 ;

Arrays 12.11

else
high = low + 9 ;

printf(“ %2d %3d to %3d %d\n”,
i+1, low, high, group[i]) ;

}
}

Output

43 65 51 27 79 11 56 61 82 09 25 36 07 49 55 63 74
81 49 37 40 49 16 75 87 91 33 24 58 78 65 56 76 67 (Input data)
45 54 36 63 12 21 73 49 51 19 39 49 68 93 85 59

GROUP RANGE FREQUENCY
1 0 to 9 2
2 10 to 19 4
3 20 to 29 4
4 30 to 39 5
5 40 to 49 8
6 50 to 59 8
7 60 to 69 7
8 70 to 79 6
9 80 to 89 4
10 90 to 99 2
11 100 to 100 0

Fig. 12.2 Program for frequency counting

Note that we have used an initialization statement.

int group [COUNTER] = {0,0,0,0,0,0,0,0,0,0,0};

which can be replaced by

int group [COUNTER] = {0};

This will initialize all the elements to zero.

Searching and Sorting

Searching and sorting are the two most frequent operations performed on arrays.

Computer Scientists have devised several data structures and searching and sorting

techniques that facilitate rapid access to data stored in lists.

Sorting is the process of arranging elements in the list according to their values, in

ascending or descending order. A sorted list is called an ordered list. Sorted lists are

especially important in list searching because they facilitate rapid search opera-

tions. Many sorting techniques are available. The three simple and most important

among them are:

Computer Programming12.12

· Bubble sort

· Selection sort

· Insertion sort

Other sorting techniques include Shell sort, Merge sort and Quick sort.

Searching is the process of finding the location of the specified element in a list.

The specified element is often called the search key. If the process of searching

finds a match of the search key with a list element value, the search said to be

successful; otherwise, it is unsuccessful. The two most commonly used search tech-

niques are:

· Sequential search

· Binary search

A detailed discussion on these techniques is beyond the scope of this text. Consult

any good book on data structures and algorithms.

12.5 TWO-DIMENSIONAL ARRAYS

So far we have discussed the array variables that can store a list of values. There could be

situations where a table of values will have to be stored. Consider the following data table,

which shows the value of sales of three items by four sales girls:

Item1 Item2 Item3

Salesgirl #1 310 275 365

Salesgirl #2 210 190 325

Salesgirl #3 405 235 240

Salesgirl #4 260 300 380

The table contains a total of 12 values, three in each line. We can think of this table as a

matrix consisting of four rows and three columns. Each row represents the values of sales by

a particular salesgirl and each column represents the values of sales of a particular item.

In mathematics, we represent a particular value in a matrix by using two subscripts such

as vij. Here v denotes the entire matrix and vij refers to the value in the ith row and jth

column. For example, in the above table v23 refers to the value 325.

C allows us to define such tables of items by using two-dimensional arrays. The table

discussed above can be defined in C as

v[4][3]

Two-dimensional arrays are declared as follows:

type array_name [row_size][column_size];

Arrays 12.13

Note that unlike most other languages, which use one pair of parentheses with commas to

separate array sizes, C places each size in its own set of brackets.

Two-dimensional arrays are stored in memory, as shown in Fig.12.3. As with the single-

dimensional arrays, each dimension of the array is indexed from zero to its maximum size

minus one; the first index selects the row and the second index selects the column within

that row.

Column0

Row 0

Row 2

Row 1

Row 3

Column1 Column2

0 0 00 1 2

1

3

2

310

405

10

310

275

235

190

275

365

240

325

365

1

3

2

1

3

2

0

0

0

1

1

1

2

2

2

[[[[[[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[[[[[[

[

[

[

[

[

[[

[

[

[

[

[

[

[

[

[

[

[

[

Fig. 12.3 Representation of a two-dimensional array in memory

Example 12.3 Write a program using a two-dimensional array to compute and print the

following information from the table of data discussed above:

(a) Total value of sales by each girl.

(b) Total value of each item sold.

(c) Grand total of sales of all items by all girls.

The program and its output are shown in Fig. 12.4. The program uses the variable value in

two-dimensions with the index i representing girls and j representing items. The following

equations are used in computing the results:

(a) Total sales by mth girl =

j 0

2

=

å value [m][j](girl_total[m])

(b) Total value of nth item =

i 0

3

=

å value [i][n](item_total[n])

(c) Grand total =
i 0

3

j 0

2

= =

å å value[i][j]

Computer Programming12.14

=

i 0

3

=

å girl_total[i]

=

j 0

2

=

å item_total[j]

Program

#define MAXGIRLS 4
#define MAXITEMS 3

main()
{

int value[MAXGIRLS][MAXITEMS];
int girl_total[MAXGIRLS] , item_total[MAXITEMS];
int i, j, grand_total;

/*.......READING OF VALUES AND COMPUTING girl_total ...*/

printf(“Input data\n”);
printf(“Enter values, one at a time, row-wise\n\n”);

for(i = 0 ; i < MAXGIRLS ; i++)
{

girl_total[i] = 0;
for(j = 0 ; j < MAXITEMS ; j++)
{

scanf(“%d”, &value[i][j]);
girl_total[i] = girl_total[i] + value[i][j];

}
}

/*.......COMPUTING item_total..........................*/

for(j = 0 ; j < MAXITEMS ; j++)
{

item_total[j] = 0;
for(i =0 ; i < MAXGIRLS ; i++)

item_total[j] = item_total[j] + value[i][j];
}

/*.......COMPUTING grand_total.........................*/

grand_total = 0;
for(i =0 ; i < MAXGIRLS ; i++)

grand_total = grand_total + girl_total[i];
/*PRINTING OF RESULTS...........................*/

printf(“\n GIRLS TOTALS\n\n”);

Arrays 12.15

for(i = 0 ; i < MAXGIRLS ; i++)
printf(“Salesgirl[%d] = %d\n”, i+1, girl_total[i]);

printf(“\n ITEM TOTALS\n\n”);
for(j = 0 ; j < MAXITEMS ; j++)

printf(“Item[%d] = %d\n”, j+1 , item_total[j]);
printf(“\nGrand Total = %d\n”, grand_total);

}
Output

Input data
Enter values, one at a time, row_wise

310 257 365
210 190 325
405 235 240
260 300 380

GIRLS TOTALS

Salesgirl[1] = 950
Salesgirl[2] = 725
Salesgirl[3] = 880
Salesgirl[4] = 940

ITEM TOTALS

Item[1] = 1185
Item[2] = 1000
Item[3] = 1310

Grand Total = 3495

Fig. 12.4 Illustration of two-dimensional arrays

Example 12.4 Write a program to compute and print a multiplication table for numbers 1 to 5

as shown below:

1 2 3 4 5

1 1 2 3 4 5

2 2 4 6 8 10

3 3 6 . . .

4 4 8 . . .

5 5 10 . . 25

The program shown in Fig. 12.5 uses a two-dimensional array to store the table values. Each

value is calculated using the control variables of the nested for loops as follows:

product[i] [j] = row * column

Computer Programming12.16

where i denotes rows and j denotes columns of the product table. Since the indices i and j

range from 0 to 4, we have introduced the following transformation:

row = i+1

column = j+1

Program

#define ROWS 5
#define COLUMNS 5
main()
{

int row, column, product[ROWS][COLUMNS] ;
int i, j ;
printf(“ MULTIPLICATION TABLE\n\n”) ;
printf(“ “) ;
for(j = 1 ; j <= COLUMNS ; j++)

printf(“%4d” , j) ;
printf(“\n”) ;
printf(“——————————————————————————————\n”);
for(i = 0 ; i < ROWS ; i++)
{

row = i + 1 ;
printf(“%2d |”, row) ;
for(j = 1 ; j <= COLUMNS ; j++)
{

column = j ;
product[i][j] = row * column ;
printf(“%4d”, product[i][j]) ;

}
printf(“\n”) ;

}
}

Output

MULTIPLICATION TABLE
1 2 3 4 5

1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 5 10 15 20 25

Fig. 12.5 Program to print multiplication table using two-dimensional array

Arrays 12.17

12.6 INITIALIZING TWO-DIMENSIONAL ARRAYS

Like the one-dimensional arrays, two-dimensional arrays may be initialized by following

their declaration with a list of initial values enclosed in braces. For example,

int table[2][3] = { 0,0,0,1,1,1};

initializes the elements of the first row to zero and the second row to one. The initialization

is done row by row. The above statement can be equivalently written as

int table[2][3] = {{0,0,0}, {1,1,1}};

by surrounding the elements of the each row by braces.

We can also initialize a two-dimensional array in the form of a matrix as shown below:

int table[2][3] = {

{0,0,0},

{1,1,1}

};

Note the syntax of the above statements. Commas are required after each brace that closes

off a row, except in the case of the last row.

When the array is completely initialized with all values, explicitly, we need not specify the

size of the first dimension. That is, the statement

int table [] [3] = {

{ 0, 0, 0},

{ 1, 1, 1}

};

is permitted.
If the values are missing in an initializer, they are automatically set to zero. For instance,

the statement

int table[2][3] = {

{1,1},

{2}

};

will initialize the first two elements of the first row to one, the first element of the second row

to two, and all other elements to zero.

When all the elements are to be initialized to zero, the following short-cut method may be

used.

int m[3][5] = { {0}, {0}, {0}};

The first element of each row is explicitly initialized to zero while other elements are

automatically initialized to zero. The following statement will also achieve the same result:

int m [3] [5] = { 0, 0};

Example 12.5 A survey to know the popularity of four cars (Ambassador, Fiat, Dolphin

and Maruti) was conducted in four cities (Bombay, Calcutta, Delhi and Madras).

Each person surveyed was asked to give his city and the type of car he was

using. The results, in coded form, are tabulated as follows:

Computer Programming12.18

M 1 C 2 B 1 D 3 M 2 B 4

C 1 D 3 M 4 B 2 D 1 C 3

D 4 D 4 M 1 M 1 B 3 B 3

C 1 C 1 C 2 M 4 M 4 C 2

D 1 C 2 B 3 M 1 B 1 C 2

D 3 M 4 C 1 D 2 M 3 B 4

Codes represent the following information:

M � Madras 1 � Ambassador

D � Delhi 2 � Fiat

C � Calcutta 3 � Dolphin

B � Bombay 4 � Maruti

Write a program to produce a table showing popularity of various

cars in four cities.

A two-dimensional array frequency is used as an accumulator to store the number of

cars used, under various categories in each city. For example, the element frequency [i][j]

denotes the number of cars of type j used in city i. The frequency is declared as an array of

size 5 ´ 5 and all the elements are initialized to zero.

The program shown in Fig. 12.6 reads the city code and the car code, one set after another,

from the terminal. Tabulation ends when the letter X is read in place of a city code.

Program

main()
{

int i, j, car;
int frequency[5][5] = { {0},{0},{0},{0},{0} };
char city;
printf(“For each person, enter the city code \n”);
printf(“followed by the car code.\n”);
printf(“Enter the letter X to indicate end.\n”);

/*. TABULATION BEGINS */
for(i = 1 ; i < 100 ; i++)
{

scanf(“%c”, &city);
if(city == ‘X’)

break;
scanf(“%d”, &car);
switch(city)
{

case ‘B’ : frequency[1][car]++;
break;

case ‘C’ : frequency[2][car]++;
break;

case ‘D’ : frequency[3][car]++;
break;

case ‘M’ : frequency[4][car]++;

Arrays 12.19

break;
}

}
 /*.TABULATION COMPLETED AND PRINTING BEGINS. . . .*/

printf(“\n\n”);
printf(“ POPULARITY TABLE\n\n”);
printf(“——————————————————————————————–————–\n”);
printf(“City Ambassador Fiat Dolphin Maruti \n”);
printf(“———————————————————————————————————–\n”);
for(i = 1 ; i <= 4 ; i++)
{

switch(i)
{

case 1 : printf(“Bombay “) ;
break ;

case 2 : printf(“Calcutta “) ;
break ;

case 3 : printf(“Delhi “) ;
break ;

case 4 : printf(“Madras “) ;
break ;

}
for(j = 1 ; j <= 4 ; j++)

printf(“%7d”, frequency[i][j]) ;
printf(“\n”) ;

}
printf(“——\n”);

/*. PRINTING ENDS.*/
}
Output

For each person, enter the city code
followed by the car code.
Enter the letter X to indicate end.
M 1 C 2 B 1 D 3 M 2 B 4
C 1 D 3 M 4 B 2 D 1 C 3
D 4 D 4 M 1 M 1 B 3 B 3
C 1 C 1 C 2 M 4 M 4 C 2
D 1 C 2 B 3 M 1 B 1 C 2
D 3 M 4 C 1 D 2 M 3 B 4 X

POPULARITY TABLE

City Ambassador Fiat Dolphin Maruti

Bombay 2 1 3 2

Computer Programming12.20

Calcutta 4 5 1 0
Delhi 2 1 3 2
Madras 4 1 1 4

Fig. 12.6 Program to tabulate a survey data

Memory Layout

The subscripts in the definition of a two-dimensional array represent rows and col-
umns. This format maps the way that data elements are laid out in the memory. The
elements of all arrays are stored contiguously in increasing memory locations, es-
sentially in a single list. If we consider the memory as a row of bytes, with the
lowest address on the left and the highest address on the right, a simple array will
be stored in memory with the first element at the left end and the last element at the
right end. Similarly, a two-dimensional array is stored "row-wise, starting from the
first row and ending with the last row, treating each row like a simple array. This is
illustrated below.

Column

3 3 array¥

0

0

1

1

2

2

30

60

10 20

5040

8070 90

row

row 0 row 1 row 2

10 40 7020 50 8030 60 90

[0][0] [0][1] [0][2] 1][[0] [1][1] [1][2] [2][0] [2][1] [2][2]
1 2 3 4 5 6 7 8 9

Memory Layout

For a multi�dimensional array, the order of storage is that the first element stored
has 0 in all its subscripts, the second has all of its subscripts 0 except the far right
which has a value of 1 and so on.

The elements of a 2 x 3 x 3 array will be stored as under

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

000 001 002 010 011 012 020 021 022 ..

.. 100 101 102 110 111 112 120 121 122

Arrays 12.21

The far right subscript increments first and the other subscripts increment in order

from right to left. The sequence numbers 1, 2,��, 18 represents the location of

that element in the list

12.7 MULTI-DIMENSIONAL ARRAYS

C allows arrays of three or more dimensions. The exact limit is determined by the compiler.

The general form of a multi-dimensional array is

type array_name[s1][s2][s3]....[sm];

where si is the size of the ith dimension. Some example are:

int survey[3][5][12];

float table[5][4][5][3];

survey is a three-dimensional array declared to contain 180 integer type elements. Simi-

larly table is a four-dimensional array containing 300 elements of floating-point type.

The array survey may represent a survey data of rainfall during the last three years from

January to December in five cities.

If the first index denotes year, the second city and the third month, then the element
survey[2][3][10] denotes the rainfall in the month of October during the second year in

city-3.

Remember that a three-dimensional array can be represented as a series of two-dimen-

sional arrays as shown below:

month 1 2 ������� 12

city

Year 1 1

.

.

.

.

5

month 1 2 ������� 12

city

Year 2 1

.

.

.

.

5

Computer Programming12.22

ANSI C does not specify any limit for array dimension. However, most compilers permit

seven to ten dimensions. Some allow even more.

12.8 DYNAMIC ARRAYS

So far, we created arrays at compile time. An array created at compile time by specifying size

in the source code has a fixed size and cannot be modified at run time. The process of allocat-

ing memory at compile time is known as static memory allocation and the arrays that re-

ceive static memory allocation are called static arrays. This approach works fine as long as

we know exactly what our data requirements are.

Consider a situation where we want to use an array that can vary greatly in size. We must

guess what will be the largest size ever needed and create the array accordingly. A difficult

task in fact! Modern languages like C do not have this limitation. In C it is possible to

allocate memory to arrays at run time. This feature is known as dynamic memory allocation

and the arrays created at run time are called dynamic arrays. This effectively postpones the

array definition to run time.

Dynamic arrays are created using what are known as pointer variables and memory man-

agement functions malloc, calloc and realloc. These functions are included in the header

file <stdlib.h>. The concept of dynamic arrays is used in creating and manipulating data

structures such as linked lists, stacks and queues. We discuss in detail pointers and pointer

variables in Chapter 11 and creating and managing linked lists in Chapter 13.

12.9 MORE ABOUT ARRAYS

What we have discussed in this chapter are the basic concepts of arrays and their applica-

tions to a limited extent. There are some more important aspects of application of arrays.

They include:

· using printers for accessing arrays;

· passing arrays as function parameters;

· arrays as members of structures;

· using structure type data as array elements;

· arrays as dynamic data structures; and

· manipulating character arrays and strings.

These aspects of arrays are covered later in the following chapters:

Chapter 8 : Strings

Chapter 9 : Functions

Chapter 10 : Structures

Chapter 11 : Pointers

Chapter 13 : Linked Lists

Arrays 12.23

- We need to specify three things, namely, name, type and size, when we

declare an array.

- Always remember that subscripts begin at 0 (not 1) and end at size �1.

- Defining the size of an array as a symbolic constant makes a program more

scalable.

- Be aware of the difference between the "kth element" and the "element k".

The kth element has a subscript k-1, whereas the element k has a sub-

script of k itself.

- Do not forget to initialize the elements; otherwise they will contain "gar-

bage".

- Supplying more initializers in the initializer list is a compile time error.

- Use of invalid subscript is one of the common errors. An incorrect or

invalid index may cause unexpected results.

- When using expressions for subscripts, make sure that their results do not

go outside the permissible range of 0 to size �1. Referring to an element

outside the array bounds is an error.

- When using control structures for looping through an array, use proper

relational expressions to eliminate "off-by-one" errors. For example, for an

array of size 5, the following for statements are wrong:

for (i = 1; i < =5; i+ +)

for (i = 0; i < =5; i+ +)

for (i = 0; i = =5; i+ +)

for (i = 0; i < 4; i+ +)

- Referring a two-dimensional array element like x[i, j] instead of x[i][j] is a

compile time error.

- When initializing character arrays, provide enough space for the termi-

nating null character.

- Make sure that the subscript variables have been properly initialized be-

fore they are used.

- Leaving out the subscript reference operator [] in an assignment opera-

tion is compile time error.

- During initialization of multi�dimensional arrays, it is an error to omit the

array size for any dimension other than the first.

1. Median of a List of Numbers

When all the items in a list are arranged in an order, the middle value which divides the

items into two parts with equal number of items on either side is called the median. Odd

Computer Programming12.24

number of items have just one middle value while even number of items have two middle

values. The median for even number of items is therefore designated as the average of the

two middle values.

The major steps for finding the median are as follows:

1. Read the items into an array while keeping a count of the items.

2. Sort the items in increasing order.

3. Compute median.

The program and sample output are shown in Fig. 12.7. The sorting algorithm used is as

follows:

1. Compare the first two elements in the list, say a[1], and a[2]. If a[2] is smaller than

a[1], then interchange their values.

2. Compare a[2] and a[3]; interchange them if a[3] is smaller than a[2].

3. Continue this process till the last two elements are compared and interchanged.

4. Repeat the above steps n�1 times.

In repeated trips through the array, the smallest elements �bubble up� to the top. Because

of this bubbling up effect, this algorithm is called bubble sorting. The bubbling effect is

illustrated below for four items.

80

Initial
values

35

After
step 1

35

After
step 2

35

After
step 3

35 80 65 65

65

Trip-1

65 80 10

10 10 10 80

35 35 35

65 65 10

10

Trip-2

10 65

80 80 80

Arrays 12.25

35 10

10 35

65

Trip-3

65

80 80

During the first trip, three pairs of items are compared and interchanged whenever

needed. It should be noted that the number 80, the largest among the items, has been moved

to the bottom at the end of the first trip. This means that the element 80 (the last item in the

new list) need not be considered any further. Therefore, trip-2 requires only two pairs to be

compared. This time, the number 65 (the second largest value) has been moved down the

list. Notice that each trip brings the smallest value 10 up by one level.

The number of steps required in a trip is reduced by one for each trip made. The entire

process will be over when a trip contains only one step. If the list contains n elements, then

the number of comparisons involved would be n(n�1)/2.

Program

#define N 10
main()
{

int i,j,n;
float median,a[N],t;
printf(“Enter the number of items\n”);
scanf(“%d”, &n);

/* Reading items into array a */
printf(“Input %d values \n”,n);
for (i = 1; i <= n ; i++)

scanf(“%f”, &a[i]);
/* Sorting begins */

for (i = 1 ; i <= n–1 ; i++)
{ /* Trip-i begins */

for (j = 1 ; j <= n–i ; j++)
{

if (a[j] <= a[j+1])
{ /* Interchanging values */

t = a[j];
a[j] = a[j+1];
a[j+1] = t;

}
else

continue ;

Computer Programming12.26

}
} /* sorting ends */

/* calculation of median */
if (n % 2 == 0)

 median = (a[n/2] + a[n/2+1])/2.0 ;
else

 median = a[n/2 + 1];
/* Printing */

for (i = 1 ; i <= n ; i++)
printf(“%f “, a[i]);

printf(“\n\nMedian is %f\n”, median);
}

Output

Enter the number of items
5
Input 5 values
1.111 2.222 3.333 4.444 5.555
5.555000 4.444000 3.333000 2.222000 1.111000

Median is 3.333000

Enter the number of items
6
Input 6 values
3 5 8 9 4 6
9.000000 8.000000 6.000000 5.000000 4.000000 3.000000

Median is 5.500000

Fig. 12.7 Program to sort a list of numbers and to determine median

2. Calculation of Standard Deviation

In statistics, standard deviation is used to measure deviation of data from its mean. The

formula for calculating standard deviation of n items is

s = variance

where

variance =
1

n
x mi

i 1

n

-

=

åa f2

and

m = mean =
1

n

i 1

n

=

å x i

Arrays 12.27

The algorithm for calculating the standard deviation is as follows:

1. Read n items.

2. Calculate sum and mean of the items.

3. Calculate variance.

4. Calculate standard deviation.

Complete program with sample output is shown in Fig. 12.8.

Program
#include <math.h>
#define MAXSIZE 100
main()
{

int i,n;
float value [MAXSIZE], deviation,

sum,sumsqr,mean,variance,stddeviation;
sum = sumsqr = n = 0 ;
printf(“Input values: input –1 to end \n”);
for (i=1; i< MAXSIZE ; i++)
{

scanf(“%f”, &value[i]);
if (value[i] == -1)

break;
sum += value[i];
n += 1;

}
mean = sum/(float)n;
for (i = 1 ; i<= n; i++)
{

deviation = value[i] – mean;
sumsqr += deviation * deviation;

}
variance = sumsqr/(float)n ;
stddeviation = sqrt(variance) ;
printf(“\nNumber of items : %d\n”,n);
printf(“Mean : %f\n”, mean);
printf(“Standard deviation : %f\n”, stddeviation);

}
Output

Input values: input -1 to end
65 9 27 78 12 20 33 49 -1

Number of items : 8

Mean : 36.625000
Standard deviation : 23.510303

Fig. 12.8 Program to calculate standard deviation

Computer Programming12.28

3. Evaluating a Test

A test consisting of 25 multiple-choice items is administered to a batch of 3 students. Correct

answers and student responses are tabulated as shown below:

1

Student 1

Correct
answers

Student 2

Student 3

0 1 22 33 44 5

Items

5 66 77 88 99 0 1 2 3 4 5

The algorithm for evaluating the answers of students is as follows:

1. Read correct answers into an array.

2. Read the responses of a student and count the correct ones.

3. Repeat step-2 for each student.

4. Print the results.

A program to implement this algorithm is given in Fig. 12.9. The program uses the follow-

ing arrays:

key[i] - To store correct answers of items

response[i] - To store responses of students

correct[i] - To identify items that are answered correctly.

Program
#define STUDENTS 3
#define ITEMS 25
main()
{

char key[ITEMS+1],response[ITEMS+1];
int count, i, student,n,

correct[ITEMS+1];
/* Reading of Correct answers */

printf(“Input key to the items\n”);
for(i=0; i < ITEMS; i++)

scanf(“%c”,&key[i]);
scanf(“%c”,&key[i]);
key[i] = ‘\0’;

/* Evaluation begins */
for(student = 1; student <= STUDENTS ; student++)
{

/*Reading student responses and counting correct ones*/

Arrays 12.29

count = 0;
printf(“\n”);
printf(“Input responses of student-%d\n”,student);
for(i=0; i < ITEMS ; i++)

scanf(“%c”,&response[i]);
scanf(“%c”,&response[i]);
response[i] = ‘\0’;
for(i=0; i < ITEMS; i++)

correct[i] = 0;
for(i=0; i < ITEMS ; i++)

if(response[i] == key[i])
{

count = count +1 ;
correct[i] = 1 ;

}
/* printing of results */
printf(“\n”);
printf(“Student-%d\n”, student);
printf(“Score is %d out of %d\n”,count, ITEMS);
printf(“Response to the items below are wrong\n”);
n = 0;
for(i=0; i < ITEMS ; i++)

if(correct[i] == 0)
{

printf(“%d “,i+1);
n = n+1;

}
if(n == 0)

printf(“NIL\n”);
printf(“\n”);
} /* Go to next student */

/* Evaluation and printing ends */
}

Output

Input key to the items
abcdabcdabcdabcdabcdabcda

Input responses of student-1
abcdabcdabcdabcdabcdabcda

Student-1
Score is 25 out of 25
Response to the following items are wrong
NIL

Input responses of student-2
abcddcbaabcdabcdddddddddd

Computer Programming12.30

Student-2
Score is 14 out of 25
Response to the following items are wrong
5 6 7 8 17 18 19 21 22 23 25

Input responses of student-3
aaaaaaaaaaaaaaaaaaaaaaaaa

Student-3
Score is 7 out of 25
Response to the following items are wrong
2 3 4 6 7 8 10 11 12 14 15 16 18 19 20 22 23 24

Fig. 12.9 Program to evaluate responses to a multiple-choice test

4. Production and Sales Analysis

A company manufactures five categories of products and the number of items manufactured
and sold are recorded product-wise every week in a month. The company reviews its produc-
tion schedule at every month-end. The review may require one or more of the following
information:

(a) Value of weekly production and sales.
(b) Total value of all the products manufactured.
(c) Total value of all the products sold.
(d) Total value of each product, manufactured and sold.

Let us represent the products manufactured and sold by two two-dimensional arrays M and
S respectively. Then,

M11 M12 M13 M14 M15

 M = M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

S11 S12 S13 S14 S15

 S = S21 S22 S23 S24 S25

S31 S32 S33 S34 S35

S41 S42 S43 S44 S45

where Mij represents the number of jth type product manufactured in ith week and Sij the
number of jth product sold in ith week. We may also represent the cost of each product by a
single dimensional array C as follows:

C = C1 C2 C3 C4 C5

where Cj is the cost of jth type product.

Arrays 12.31

We shall represent the value of products manufactured and sold by two value arrays,

namely, Mvalue and Svalue. Then,

Mvalue[i][j] = Mij x Cj

Svalue[i][j] = Sij x Cj

A program to generate the required outputs for the review meeting is shown in Fig. 12.10.

The following additional variables are used:

Mweek[i] = Value of all the products manufactured in week i

=

J 1

5

=

å Mvalue[i][j]

Sweek[i] = Value of all the products in week i

=

J 1

5

=

å Svalue[i][j]

Mproduct[j] = Value of jth type product manufactured during the month

=

i 1

4

=

å Mvalue[i][j]

Sproduct[j] = Value of jth type product sold during the month

=

i 1

4

=

å Svalue[i][j]

Mtotal = Total value of all the products manufactured during the month

=

i 1

4

=

å Mweek[i] =
j 1

5

=

å Mproduct[j]

Stotal = Total value of all the products sold during the month

=

i 1

4

=

å Sweek[i] =
j 1

5

=

å Sproduct[j]

Program

main()
{

int M[5][6],S[5][6],C[6],
Mvalue[5][6],Svalue[5][6],
Mweek[5], Sweek[5],
Mproduct[6], Sproduct[6],
Mtotal, Stotal, i,j,number;

/* Input data */
printf (“ Enter products manufactured week_wise \n”);
printf (“ M11,M12,——, M21,M22,—— etc\n”);

Computer Programming12.32

for(i=1; i<=4; i++)
for(j=1;j<=5; j++)

scanf(“%d”,&M[i][j]);
printf (“ Enter products sold week_wise\n”);
printf (“ S11,S12,——, S21,S22,—— etc\n”);
for(i=1; i<=4; i++)

for(j=1; j<=5; j++)
scanf(“%d”, &S[i][j]);

printf(“ Enter cost of each product\n”);
for(j=1; j <=5; j++)

scanf(“%d”,&C[j]);
/* Value matrices of production and sales */

for(i=1; i<=4; i++)
for(j=1; j<=5; j++)
{

Mvalue[i][j] = M[i][j] * C[j];
Svalue[i][j] = S[i][j] * C[j];

}
/* Total value of weekly production and sales */

for(i=1; i<=4; i++)
{

Mweek[i] = 0 ;
Sweek[i] = 0 ;
for(j=1; j<=5; j++)
{

Mweek[i] += Mvalue[i][j];
Sweek[i] += Svalue[i][j];

}
}

/* Monthly value of product_wise production and sales */
for(j=1; j<=5; j++)
{

Mproduct[j] = 0 ;
Sproduct[j] = 0 ;
for(i=1; i<=4; i++)
{

Mproduct[j] += Mvalue[i][j];
Sproduct[j] += Svalue[i][j];

}
}

/* Grand total of production and sales values */
Mtotal = Stotal = 0;
for(i=1; i<=4; i++)
{

Mtotal += Mweek[i];
Stotal += Sweek[i];

Arrays 12.33

}
/***

Selection and printing of information required
***/
printf(“\n\n”);
printf(“ Following is the list of things you can\n”);
printf(“ request for. Enter appropriate item number\n”);
printf(“ and press RETURN Key\n\n”);
printf(“ 1.Value matrices of production & sales\n”);
printf(“ 2.Total value of weekly production & sales\n”);
printf(“ 3.Product_wise monthly value of production &”);
printf(“ sales\n”);
printf(“ 4.Grand total value of production & sales\n”);
printf(“ 5.Exit\n”);
number = 0;
while(1)
{ /* Beginning of while loop */

printf(“\n\n ENTER YOUR CHOICE:”);
scanf(“%d”,&number);
printf(“\n”);
if(number == 5)
{

printf(“ G O O D B Y E\n\n”);
break;

}
switch(number)
{ /* Beginning of switch */

/* V A L U E M A T R I C E S */
case 1:

printf(“ VALUE MATRIX OF PRODUCTION\n\n”);
for(i=1; i<=4; i++)
{

printf(“ Week(%d)\t”,i);
for(j=1; j <=5; j++)

printf(“%7d”, Mvalue[i][j]);
printf(“\n”);

}
printf(“\n VALUE MATRIX OF SALES\n\n”);
for(i=1; i <=4; i++)
{

printf(“ Week(%d)\t”,i);
for(j=1; j <=5; j++)

printf(“%7d”, Svalue[i][j]);
printf(“\n”);

}

Computer Programming12.34

break;
/* W E E K L Y A N A L Y S I S */

case 2:
printf(“ TOTAL WEEKLY PRODUCTION & SALES\n\n”);
printf(“ PRODUCTION SALES\n”);
printf(“ — — — — — — — \n”);
for(i=1; i <=4; i++)
{

printf(“ Week(%d)\t”, i);
printf(“%7d\t%7d\n”, Mweek[i], Sweek[i]);

}
break;

/* P R O D U C T W I S E A N A L Y S I S */
case 3:

printf(“ PRODUCT_WISE TOTAL PRODUCTION &”);
printf(“ SALES\n\n”);
printf(“ PRODUCTION SALES\n”);
printf(“ — — — — — — — \n”);
for(j=1; j <=5; j++)
{

printf(“ Product(%d)\t”, j);
printf(“%7d\t%7d\n”,Mproduct[j],Sproduct[j]);

}
break;

/* G R A N D T O T A L S */
case 4:

printf(“ GRAND TOTAL OF PRODUCTION & SALES\n”);
printf(“\n Total production = %d\n”, Mtotal);
printf(“ Total sales = %d\n”, Stotal);
break;

/* D E F A U L T */
default :

printf(“ Wrong choice, select again\n\n”);
break;

} /* End of switch */
} /* End of while loop */
printf(“ Exit from the program\n\n”);

} /* End of main */
Output

Enter products manufactured week_wise
M11, M12, — — – –, M21, M22, — — – – etc
11 15 12 14 13
13 13 14 15 12
12 16 10 15 14
14 11 15 13 12

Arrays 12.35

Enter products sold week_wise
S11,S12,— — – –, S21,S22,— — – – etc
10 13 9 12 11
12 10 12 14 10
11 14 10 14 12
12 10 13 11 10
Enter cost of each product
10 20 30 15 25

Following is the list of things you can
request for. Enter appropriate item number
and press RETURN key
1.Value matrices of production & sales
2.Total value of weekly production & sales
3.Product_wise monthly value of production & sales
4.Grand total value of production & sales
5.Exit
ENTER YOUR CHOICE:1
VALUE MATRIX OF PRODUCTION

Week(1) 110 300 360 210 325
Week(2) 130 260 420 225 300
Week(3) 120 320 300 225 350
Week(4) 140 220 450 185 300

VALUE MATRIX OF SALES
Week(1) 100 260 270 180 275
Week(2) 120 200 360 210 250
Week(3) 110 280 300 210 300
Week(4) 120 200 390 165 250

ENTER YOUR CHOICE:2
TOTAL WEEKLY PRODUCTION & SALES

PRODUCTION SALES

Week(1) 1305 1085
Week(2) 1335 1140
Week(3) 1315 1200
Week(4) 1305 1125

ENTER YOUR CHOICE:3
PRODUCT_WISE TOTAL PRODUCTION & SALES

PRODUCTION SALES

Product(1) 500 450
Product(2) 1100 940
Product(3) 1530 1320
Product(4) 855 765
Product(5) 1275 1075

ENTER YOUR CHOICE:4

GRAND TOTAL OF PRODUCTION & SALES

Computer Programming12.36

Total production = 5260
Total sales = 4550
ENTER YOUR CHOICE:5
G O O D B Y E
Exit from the program

Fig. 12.10 Program for production and sales analysis

12.1 State whether the following statements are true or false.
(a) The type of all elements in an array must be the same.

(b) When an array is declared, C automatically initializes its elements to zero.

(c) An expression that evaluates to an integral value may be used as a subscript.
(d) Accessing an array outside its range is a compile time error.

(e) A char type variable cannot be used as a subscript in an array.
(f) An unsigned long int type can be used as a subscript in an array.

(g) In C, by default, the first subscript is zero.
(h) When initializing a multidimensional array, not specifying all its dimensions is

an error.

(i) When we use expressions as a subscript, its result should be always greater than
zero.

(j) In C, we can use a maximum of 4 dimensions for an array.
(k) In declaring an array, the array size can be a constant or variable or an expres-

sion.

(l) The declaration int x[2] = {1,2,3}; is illegal.

12.2 Fill in the blanks in the following statements.

(a) The variable used as a subscript in an array is popularly known as _________

variable.

(b) An array can be initialized either at compile time or at ________.
(c) An array created using malloc function at run time is referred to as ______ array.

(d) An array that uses more than two subscript is referred to as ______ array.
(e) _______is the process of arranging the elements of an array in order.

12.3 Identify errors, if any, in each of the following array declaration statements, assuming

that ROW and COLUMN are declared as symbolic constants:

(a) int score (100);
(b) float values [10,15];
(c) float average[ROW],[COLUMN];
(d) char name[15];
(e) int sum[];
(f) double salary [i + ROW]
(g) long int number [ROW]
(h) int array x[COLUMN];

Arrays 12.37

12.4 Identify errors, if any, in each of the following initialization statements.

(a) int number[] = {0,0,0,0,0};
(b) float item[3][2] = {0,1,2,3,4,5};
(c) char word[] = {‘A’,‘R’, ‘R’, ‘A’, ‘Y’};
(d) int m[2,4] = {(0,0,0,0)(1,1,1,1)};
(e) float result[10] = 0;

12.5 Assume that the arrays A and B are declared as follows:

int A[5][4];
float B[4];
Find the errors (if any) in the following program segments.

(a) for (i=1; i<=5; i++)
for(j=1; j<=4; j++)
A[i][j] = 0;

(b) for (i=1; i<4; i++)
scanf(“%f”, B[i]);

(c) for (i=0; i<=4; i++)
B[i] = B[i]+i;

(d) for (i=4; i>=0; i� �)
for (j=0; j<4; j++)
A[i][j] = B[j] + 1.0;

12.6 Write a for loop statement that initializes all the diagonal elements of an array to one

and others to zero as shown below. Assume 5 rows and 5 columns.

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

.

.

.

.

.

0 0 0 0 0 1

12.7 We want to declare a two-dimensional integer type array called matrix for 3 rows and

5 columns. Which of the following declarations are correct?

(a) int maxtrix [3],[5];
(b) int matrix [5] [3];
(c) int matrix [1+2] [2+3];
(d) int matrix [3,5];
(e) int matrix [3] [5];

12.8 Which of the following initialization statements are correct?

(a) char str1[4] = “GOOD”;
(b) char str2[] = “C”;
(c) char str3[5] = “Moon”;

Computer Programming12.38

(d) char str4[] = {‘S’, ‘U’, ‘N’};
(e) char str5[10] = “Sun”;

12.9 What is a data structure? Why is an array called a data structure?
12.10 What is a dynamic array? How is it created? Give a typical example of use of a dynamic

array.
12.11 What is the error in the following program?

main ()
{

int x ;
float y [] ;
......

}
12.12 What happens when an array with a specified size is assigned

(a) with values fewer than the specified size; and
(b) with values more than the specified size.

12.13 Discuss how initial values can be assigned to a multidimensional array.
12.14 What is the output of the following program?

main ()
{

int m [] = { 1,2,3,4,5 }
int x, y = 0;
for (x = 0; x < 5; x++)

y = y + m [x];
printf(“%d”, y) ;

}
12.15 What is the output of the following program?

main ()
{

chart string [] = “HELLO WORLD” ;
int m;
for (m = 0; string [m] != ‘\0’; m++)

if ((m%2) == 0)
printf(“%c”, string [m]);

}

12.1 Write a program for fitting a straight line through a set of points (xi,yi), i = 1,....,n.
The straight line equation is

y = mx + c

and the values of m and c are given by

m =
n x y x y

n x x

1 i 1 i

i
2

i

2

S S S

S S

a f a fa f

b g a f
-

-

c =
1

n
 (S yi - m S xi)

All summations are from 1 to n.

Arrays 12.39

12.2 The daily maximum temperatures recorded in 10 cities during the month of January

(for all 31 days) have been tabulated as follows:

City

Day 1 2 3- - - - - - - - - - - - - -- - - - - - - - - - 10

1 - - - - - - - - - - - - - -- - - - - - - - - -

2

3

-

-

-

-

31

Write a program to read the table elements into a two-dimensional array tempera-

ture, and to find the city and day corresponding to

(a) the highest temperature and

(b) the lowest temperature.

12.3 An election is contested by 5 candidates. The candidates are numbered 1 to 5 and the

voting is done by marking the candidate number on the ballot paper. Write a program

to read the ballots and count the votes cast for each candidate using an array variable

count. In case, a number read is outside the range 1 to 5, the ballot should be consid-

ered as a �spoilt ballot� and the program should also count the number of spoilt ballots.

12.4 The following set of numbers is popularly known as Pascal�s triangle.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

- - - - - - -

- - - - - - - -

If we denote rows by i and columns by j, then any element (except the boundary ele-

ments) in the triangle is given by

pij = p i�1, j�1 + p i�1,j

Write a program to calculate the elements of the Pascal triangle for 10 rows and print

the results.

12.5 The annual examination results of 100 students are tabulated as follows:

Roll No. Subject 1 Subject 2 Subject 3

.

.

.

Computer Programming12.40

Write a program to read the data and determine the following:

(a) Total marks obtained by each student.

(b) The highest marks in each subject and the Roll No. of the student who secured it.

(c) The student who obtained the highest total marks.

12.6 Given are two one-dimensional arrays A and B which are sorted in ascending

order.Write a program to merge them into a single sorted array C that contains every

item from arrays A and B, in ascending order.

12.7 Two matrices that have the same number of rows and columns can be multiplied to

produce a third matrix. Consider the following two matrices.

A =

a aa

a aa

. .

. .

. .

a a

11 12 1n

12 22 2n

n1 nn

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

B =

b b b

b b b

. .

. .

. .

b b

11 12 1n

12 22 2n

n1 nn

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

The product of A and B is a third matrix C of size n´n where each element of C is given

by the following equation.

Cij =

k 1

n

=

å aikbkj

Write a program that will read the values of elements of A and B and produce the

product matrix C.

12.8 Write a program that fills a five-by-five matrix as follows:

· Upper left triangle with +1s

· Lower right triangle with �1s

· Right to left diagonal with zeros

Display the contents of the matrix using not more than two printf statements

12.9 Selection sort is based on the following idea:

Selecting the largest array element and swapping it with the last array element leaves

an unsorted list whose size is 1 less than the size of the original list. If we repeat this

step again on the unsorted list we will have an ordered list of size 2 and an unordered

list size n�2 . When we repeat this until the size of the unsorted list becomes one, the

result will be a sorted list.

Write a program to implement this algorithm.

Arrays 12.41

12.10 Develop a program to implement the binary search algorithm. This technique com-

pares the search key value with the value of the element that is midway in a �sorted�

list. Then;

(a) If they match, the search is over.

(b) If the search key value is less than the middle value, then the first half of the list

contains the key value.

(c) If the search key value is greater than the middle value, then the second half

contains the key value.

Repeat this �divide-and-conquer� strategy until we have a match. If the list is reduced

to one non-matching element, then the list does not contain the key value.

Use the sorted list created in Exercise 12.9 or use any other sorted list.

12.11 Write a program that will compute the length of a given character string.

12.12 Write a program that will count the number occurrences of a specified character in a

given line of text. Test your program.

12.13 Write a program to read a matrix of size m ´ n and print its transpose.

12.14 Every book published by international publishers should carry an International Stan-

dard Book Number (ISBN). It is a 10 character 4 part number as shown below.

0-07-041183-2

The first part denotes the region, the second represents publisher, the third identifies

the book and the fourth is the check digit. The check digit is computed as follows:

Sum = (1 ´ first digit) + (2 ´ second digit) + (3 ´ third digit) + - - - - + (9 ´ ninth digit).

Check digit is the remainder when sum is divided by 11. Write a program that reads a

given ISBN number and checks whether it represents a valid ISBN.

12.15 Write a program to read two matrices A and B and print the following:

(a) A + B; and

(b) A � B.

Character Arrays
and Strings

 13.1 INTRODUCTION

A string is a sequence of characters that is treated as a single data item. We have used

strings in a number of examples in the past. Any group of characters (except double quote

sign) defined between double quotation marks is a string constant. Example:

�Man is obviously made to think.�

If we want to include a double quote in the string to be printed, then we may use it with a

back slash as shown below.

�\� Man is obviously made to think,\� said Pascal.�

For example,

printf (“\” Well Done !”\”);

will output the string

� Well Done !�

while the statement

printf(“ Well Done !”);

will output the string

Well Done !

Character strings are often used to build meaningful and readable programs. The com-

mon operations performed on character strings include:

· Reading and writing strings.

· Combining strings together.

· Copying one string to another.

· Comparing strings for equality.

· Extracting a portion of a string.

13

Computer Programming13.2

In this chapter we shall discuss these operations in detail and examine library functions

that implement them.

13.2 DECLARING AND INITIALIZING STRING VARIABLES

C does not support strings as a data type. However, it allows us to represent strings as

character arrays. In C, therefore, a string variable is any valid C variable name and is al-

ways declared as an array of characters. The general form of declaration of a string variable

is:

char string_name[size];

The size determines the number of characters in the string_name. Some examples are:

char city[10];

char name[30];

When the compiler assigns a character string to a character array, it automatically sup-

plies a null character (�\0 �) at the end of the string. Therefore, the size should be equal to the

maximum number of characters in the string plus one.

Like numeric arrays, character arrays may be initialized when they are declared. C per-

mits a character array to be initialized in either of the following two forms:

char city [9] = “ NEW YORK “;

char city [9]={‘N’,‘E’,‘W’,‘ ‘,‘Y’,‘O’,‘R’,‘K’,‘\0’};

The reason that city had to be 9 elements long is that the string NEW YORK contains 8

characters and one element space is provided for the null terminator. Note that when we

initialize a character array by listing its elements, we must supply explicitly the null termi-

nator.

C also permits us to initialize a character array without specifying the number of ele-

ments. In such cases, the size of the array will be determined automatically, based on the

number of elements initialized. For example, the statement

char string [] = {‘G’,‘O’,‘O’,‘D’,‘\0’};

defines the array string as a five element array.

We can also declare the size much larger than the string size in the initializer. That is, the

statement.

char str[10] = “GOOD”;

is permitted. In this case, the computer creates a character array of size 10, places the value

�GOOD� in it, terminates with the null character, and initializes all other elements to NULL.

The storage will look like:

G O O D 0 0 0 0 0 0\ \ \ \ \ \

However, the following declaration is illegal.

char str2[3] = “GOOD”;

Character Arrays and Strings 13.3

This will result in a compile time error. Also note that we cannot separate the initializa-

tion from declaration. That is,

char str3[5];

str3 = “GOOD”;

is not allowed. Similarly,

char s1[4] = “abc”;

char s2[4];

s2 = s1; /* Error */

is not allowed. An array name cannot be used as the left operand of an assignment operator.

Terminating Null Character

You must be wondering, �why do we need a terminating null character?� As we

know, a string is not a data type in C, but it is considered a data structure stored in

an array. The string is a variable-length structure and is stored in a fixed-length

array. The array size is not always the size of the string and most often it is much

larger than the string stored in it. Therefore, the last element of the array need not

represent the end of the string. We need some way to determine the end of the

string data and the null character serves as the �end-of-string� marker.

13.3 READING STRINGS FROM TERMINAL

Using scanf Function

The familiar input function scanf can be used with %s format specification to read in a

string of characters. Example:

char address[10]

scanf(“%s”, address);

The problem with the scanf function is that it terminates its input on the first white space it

finds. A white space includes blanks, tabs, carriage returns, form feeds, and new lines.

Therefore, if the following line of text is typed in at the terminal,

NEW YORK

then only the string �NEW� will be read into the array address, since the blank space after
the word �NEW� will terminate the reading of string.

The scanf function automatically terminates the string that is read with a null character

and therefore the character array should be large enough to hold the input string plus the
null character. Note that unlike previous scanf calls, in the case of character arrays, the

ampersand (&) is not required before the variable name.

Computer Programming13.4

The address array is created in the memory as shown below:

N

0 1 2 3 4 5 6 7 8 9

E W 0 ?? ? ? ? ?\

Note that the unused locations are filled with garbage.

If we want to read the entire line �NEW YORK�, then we may use two character arrays of
appropriate sizes. That is,

char adr1[5], adr2[5];

scanf(“%s %s”, adr1, adr2);

with the line of text

NEW YORK

will assign the string �NEW� to adr1 and �YORK� to adr2.

Example 13.1 Write a program to read a series of words from a terminal using scanf function.

The program shown in Fig. 13.1 reads four words and displays them on the screen. Note that

the string �Oxford Road� is treated as two words while the string �Oxford-Road� as one word.

Program
main()

{

char word1[40], word2[40], word3[40], word4[40];

printf(“Enter text : \n”);

scanf(“%s %s”, word1, word2);

scanf(“%s”, word3);

scanf(“%s”, word4);

printf(“\n”);

printf(“word1 = %s\nword2 = %s\n”, word1, word2);

printf(“word3 = %s\nword4 = %s\n”, word3, word4);

}

Output

Enter text :
Oxford Road, London M17ED

word1 = Oxford
word2 = Road,
word3 = London
word4 = M17ED

Enter text :
Oxford-Road, London-M17ED United Kingdom
word1 = Oxford-Road
word2 = London-M17ED

Character Arrays and Strings 13.5

word3 = United
word4 = Kingdom

Fig. 13.1 Reading a series of words using scanf function

We can also specify the field width using the form %ws in the scanf statement for reading a

specified number of characters from the input string . Example:

scanf(“%ws”, name);

Here, two things may happen.

1. The width w is equal to or greater than the number of characters typed in. The entire

string will be stored in the string variable.

2. The width w is less than the number of characters in the string. The excess characters

will be truncated and left unread.

Consider the following statements:

char name[10];

scanf(“%5s”, name);

The input string RAM will be stored as:

R

0 1 2 3 4 5 6 7 8 9

A M 0 ?? ? ? ? ?\

The input string KRISHNA will be stored as:

K

0 1 2 3 4 5 6 7 8 9

R I 0H ? ? ? ?\S

Reading a Line of Text

We have seen just now that scanf with %s or %ws can read only strings without

whitespaces. That is, they cannot be used for reading a text containing more than one word.

However, C supports a format specification known as the edit set conversion code %[. .] that

can be used to read a line containing a variety of characters, including whitespaces. Recall

that we have used this conversion code in Chapter 4. For example,

the program segment

char line [80];
scanf(”%[^\n]”, line);
printf(“%s”, line);

will read a line of input from the keyboard and display the same on the screen. We would

very rarely use this method, as C supports an intrinsic string function to do this job. This is

discussed in the next section.

Computer Programming13.6

Using getchar and gets Functions

We have discussed in Chapter 4 as to how to read a single character from the terminal, using

the function getchar. We can use this function repeatedly to read successive single charac-

ters from the input and place them into a character array. Thus, an entire line of text can be

read and stored in an array. The reading is terminated when the newline character (�\n�) is

entered and the null character is then inserted at the end of the string. The getchar func-

tion call takes the form:

char ch;
ch = getchar();

Note that the getchar function has no parameters.

Example 13.2 Write a program to read a line of text containing a series of words from the

terminal.

The program shown in Fig. 13.2 can read a line of text (up to a maximum of 80 characters)

into the string line using getchar function. Every time a character is read, it is assigned to

its location in the string line and then tested for newline character. When the newline char-

acter is read (signalling the end of line), the reading loop is terminated and the newline

character is replaced by the null character to indicate the end of character string.

When the loop is exited, the value of the index c is one number higher than the last

character position in the string (since it has been incremented after assigning the new char-

acter to the string). Therefore the index value c-1 gives the position where the null character

is to be stored.

Program
#include <stdio.h>
main()
{

char line[81], character;
int c;
c = 0;
printf(“Enter text. Press <Return> at end\n”);
do
{

character = getchar();
line[c] = character;
c++;

}
while(character != ‘\n’);
c = c - 1;
line[c] = ‘\0’;
printf(“\n%s\n”, line);

}

Character Arrays and Strings 13.7

Output
Enter text. Press <Return> at end
Programming in C is interesting.
Programming in C is interesting.
Enter text. Press <Return> at end
National Centre for Expert Systems, Hyderabad.
National Centre for Expert Systems, Hyderabad.

Fig. 13.2 Program to read a line of text from terminal

Another and more convenient method of reading a string of text containing whitespaces is

to use the library function gets available in the <stdio.h> header file. This is a simple func-

tion with one string parameter and called as under:

gets (str);

str is a string variable declared properly. It reads characters into str from the keyboard

until a new-line character is encountered and then appends a null character to the string.

Unlike scanf, it does not skip whitespaces. For example the code segment

char line [80];

gets (line);

printf (“%s”, line);

reads a line of text from the keyboard and displays it on the screen. The last two statements

may be combined as follows:

printf(“%s”, gets(line));

(Be careful not to input more character that can be stored in the string variable used. Since C

does not check array-bounds, it may cause problems.)

C does not provide operators that work on strings directly. For instance we cannot assign

one string to another directly. For example, the assignment statements.

string = “ABC”;

string1 = string2;

are not valid. If we really want to copy the characters in string2 into string1, we may do so

on a character-by-character basis.

Example 13.3 Write a program to copy one string into another and count the number of

characters copied.

The program is shown in Fig. 13.3. We use a for loop to copy the characters contained inside

string2 into the string1. The loop is terminated when the null character is reached. Note

that we are again assigning a null character to the string1.

Computer Programming13.8

Program
main()
{

char string1[80], string2[80];
int i;

printf(“Enter a string \n”);
printf(“?”);

scanf(“%s”, string2);
for(i=0 ; string2[i] != ‘\0’; i++)

string1[i] = string2[i];

string1[i] = ‘\0’;

printf(“\n”);
printf(“%s\n”, string1);
printf(“Number of characters = %d\n”, i);

}

Output
Enter a string
?Manchester

Manchester
Number of characters = 10

Enter a string
?Westminster

Westminster
Number of characters = 11

Fig. 13.3 Copying one string into another

13.4 WRITING STRINGS TO SCREEN

Using printf Function

We have used extensively the printf function with %s format to print strings to the screen.

The format %s can be used to display an array of characters that is terminated by the null

character. For example, the statement

printf(“%s”, name);

can be used to display the entire contents of the array name.

We can also specify the precision with which the array is displayed. For instance, the speci-

fication

%10.4

indicates that the first four characters are to be printed in a field width of 10 columns.

Character Arrays and Strings 13.9

However, if we include the minus sign in the specification (e.g., %-10.4s), the string will be

printed left-justified. The Example 13.4 illustrates the effect of various %s specifications.

Example 13.4 Write a program to store the string �United Kingdom� in the array country and

display the string under various format specifications.

The program and its output are shown in Fig. 13.4. The output illustrates the following

features of the %s specifications.

1. When the field width is less than the length of the string, the entire string is printed.

2. The integer value on the right side of the decimal point specifies the number of char-

acters to be printed.

3. When the number of characters to be printed is specified as zero, nothing is printed.

4. The minus sign in the specification causes the string to be printed left-justified.

5. The specification % .ns prints the first n characters of the string.

Program
main()
{

char country[15] = “United Kingdom”;
printf(“\n\n”);
printf(“*123456789012345*\n”);
printf(“ — — – – – \n”);
printf(“%15s\n”, country);
printf(“%5s\n”, country);
printf(“%15.6s\n”, country);
printf(“%-15.6s\n”, country);
printf(“%15.0s\n”, country);
printf(“%.3s\n”, country);
printf(“%s\n”, country);
printf(“— — – – – \n”);

}
Output

123456789012345
— — – – –

United Kingdom
United Kingdom

United
United

Uni
United Kingdom
— — – – –

Fig. 13.4 Writing strings using %s format

Computer Programming13.10

The printf on UNIX supports another nice feature that allows for variable field width or

precision. For instance

printf(“%*.*s\n”, w, d, string);

prints the first d characters of the string in the field width of w.

This feature comes in handy for printing a sequence of characters. Example 13.5

illustrates this.

Example 13.5 Write a program using for loop to print the following output:

C

CP

CPr

CPro

.....

.....

CProgramming

CProgramming

.....

.....

CPro

CPr

CP

C

The outputs of the program in Fig. 13.5, for variable specifications %12.*s, %.*s, and %*.1s

are shown in Fig. 13.6, which further illustrates the variable field width and the precision

specifications.

Program
main()
{

int c, d;
char string[] = “CProgramming”;
printf(“\n\n”);
printf(“— — — — — — — — — — — — \n”);
for(c = 0 ; c <= 11 ; c++)
{

d = c + 1;
printf(“|%-12.*s|\n”, d, string);

}
printf(“|— — — — — — — — — — — — |\n”);
for(c = 11 ; c >= 0 ; c— —)
{

Character Arrays and Strings 13.11

d = c + 1;
printf(“|%-12.*s|\n”, d, string);

}
printf(“— — — — — — — — — — — — \n”);

}
Output

C
CP
CPr
CPro
CProg
CProgr
CProgra
CProgram
CProgramm
CProgrammi
CProgrammin
CProgramming
CProgramming

CProgrammin
CProgrammi
CProgramm
CProgram
CProgra
CProgr
CProg
CPro
CPr
CP
C

Fig. 13.5 Illustration of variable field specifications by printing sequences of characters

 C
 CP
 CPr
 CPro
 CProg
 CProgr
 CProgra
 CProgram

C|
CP|
CPr|
CPro|
CProg|
CProgr|
CProgra|
CProgram|

 C|
 C|
 C|
 C|
 C|
 C|
 C|
 C|

Computer Programming13.12

 CProgramm
 CProgrammi
 CProgrammin
CProgramming

CProgramming
 CProgrammin
 CProgrammi
 CProgramm
 CProgram
 CProgra
 CProgr
 CProg
 CPro
 CPr
 CP
 C

CProgramm|
CProgrammi|
CProgrammin|
CProgramming|

CProgramming|
CProgrammin|
CProgrammi|
CProgramm|
CProgram|
CProgra|
CProgr|
CProg|
CPro|
CPr|
CP|
C|

 C|
 C|
 C|
 C|

 C|
 C|
 C|
 C|
 C|
 C|
 C|
 C|
 C|
 C|
 C|
C|

(a) %12.*s (b) %.*s (c) %*.1s

Fig. 13.6 Further illustrations of variable specifications

Using putchar and puts Functions

Like getchar, C supports another character handling function putchar to output the val-

ues of character variables. It takes the following form:

char ch = ‘A’;
putchar (ch);

The function putchar requires one parameter. This statement is equivalent to:

printf(“%c”, ch);

We have used putchar function in Chapter 4 to write characters to the screen. We can use

this function repeatedly to output a string of characters stored in an array using a loop.

Example:

char name[6] = “PARIS”
for (i=0, i<5; i++)

putchar(name[i];
putchar(‘\n’);

Another and more convenient way of printing string values is to use the function puts de-

clared in the header file <stdio.h>. This is a one parameter function and invoked as under:

puts (str);

where str is a string variable containing a string value. This prints the value of the string

variable str and then moves the cursor to the beginning of the next line on the screen. For

example, the program segment

Character Arrays and Strings 13.13

char line [80];
gets (line);
puts (line);

reads a line of text from the keyboard and displays it on the screen. Note that the syntax is

very simple compared to using the scanf and printf statements.

13.5 ARITHMETIC OPERATIONS ON CHARACTERS

C allows us to manipulate characters the same way we do with numbers. Whenever a char-

acter constant or character variable is used in an expression, it is automatically converted

into an integer value by the system. The integer value depends on the local character set of

the system.

To write a character in its integer representation, we may write it as an integer. For

example, if the machine uses the ASCII representation, then,

x = ‘a’;
printf(“%d\n”,x);

will display the number 97 on the screen.

It is also possible to perform arithmetic operations on the character constants and vari-

ables. For example,

x = ‘z’–1;

is a valid statement. In ASCII, the value of �z� is 122 and therefore, the statement will assign

the value 121 to the variable x.

We may also use character constants in relational expressions. For example, the expres-

sion

ch >= ‘A’ && ch <= ‘Z’

would test whether the character contained in the variable ch is an upper-case letter.
We can convert a character digit to its equivalent integer value using the following rela-

tionship:

x = character - ‘0’;

where x is defined as an integer variable and character contains the character digit. For

example, let us assume that the character contains the digit �7�,

Then,

x = ASCII value of �7� � ASCII value of �0�

= 55 � 48

= 7

The C library supports a function that converts a string of digits into their integer values.

The function takes the form

x = atoi(string);

x is an integer variable and string is a character array containing a string of digits. Con-

sider the following segment of a program:

number = “1988”;
year = atoi(number);

Computer Programming13.14

number is a string variable which is assigned the string constant �1988�. The function atoi

converts the string �1988� (contained in number) to its numeric equivalent 1988 and as-

signs it to the integer variable year. String conversion functions are stored in the header file

<std.lib.h>.

Example 13.6 Write a program which would print the alphabet set a to z and A to Z in

decimal and character form.

The program is shown in Fig. 13.7. In ASCII character set, the decimal numbers 65 to 90

represent upper case alphabets and 97 to 122 represent lower case alphabets. The values

from 91 to 96 are excluded using an if statement in the for loop.

Program
main()
{

char c;
printf(“\n\n”);
for(c = 65 ; c <= 122 ; c = c + 1)
{

if(c > 90 && c < 97)
continue;

printf(“|%4d - %c “, c, c);
}
printf(“|\n”);

}

Output
| 65 - A | 66 - B | 67 - C | 68 - D | 69 - E | 70 - F
| 71 - G | 72 - H | 73 - I | 74 - J | 75 - K | 76 - L
| 77 - M| 78 - N| 79 - O| 80 - P| 81 - Q| 82 - R
| 83 - S| 84 - T| 85 - U| 86 - V| 87 - W| 88 - X
| 89 - Y| 90 - Z| 97 - a| 98 - b| 99 - c| 100 - d
|101 - e| 102 - f| 103 - g| 104 - h| 105 - i| 106 - j
|107 - k| 108 - l| 109 - m| 110 - n| 111 - o| 112 - p
|113 - q| 114 - r| 115 - s| 116 - t| 117 - u| 118 - v
|119 - w| 120 - x| 121 - y| 122 - z|

Fig. 13.7 Printing of the alphabet set in decimal and character form

13.6 PUTTING STRINGS TOGETHER

Just as we cannot assign one string to another directly, we cannot join two strings together

by the simple arithmetic addition. That is, the statements such as

string3 = string1 + string2;
string2 = string1 + “hello”;

Character Arrays and Strings 13.15

are not valid. The characters from string1 and string2 should be copied into the string3

one after the other. The size of the array string3 should be large enough to hold the total

characters.

The process of combining two strings together is called concatenation. Example 13.7 illus-

trates the concatenation of three strings.

Example 13.7 The names of employees of an organization are stored in three arrays, namely

first_name, second_name, and last_name. Write a program to concatenate

the three parts into one string to be called name.

The program is given in Fig. 13.8. Three for loops are used to copy the three strings. In the

first loop, the characters contained in the first_name are copied into the variable name

until the null character is reached. The null character is not copied; instead it is replaced by

a space by the assignment statement

name[i] = ‘ ’ ;

Similarly, the second_name is copied into name, starting from the column just after the

space created by the above statement. This is achieved by the assignment statement

name[i+j+1] = second_name[j];

If first_name contains 4 characters, then the value of i at this point will be 4 and therefore

the first character from second_name will be placed in the fifth cell of name. Note that we

have stored a space in the fourth cell.

In the same way, the statement

name[i+j+k+2] = last_name[k];

is used to copy the characters from last_name into the proper locations of name.

At the end, we place a null character to terminate the concatenated string name. In this

example, it is important to note the use of the expressions i+j+1 and i+j+k+2.

Program
main()
{

int i, j, k ;
char first_name[10] = {“VISWANATH”} ;
char second_name[10] = {“PRATAP”} ;
char last_name[10] = {“SINGH”} ;
char name[30] ;

/* Copy first_name into name */
for(i = 0 ; first_name[i] != ‘\0’ ; i++)

name[i] = first_name[i] ;
/* End first_name with a space */

name[i] = ‘ ‘ ;
/* Copy second_name into name */

for(j = 0 ; second_name[j] != ‘\0’ ; j++)
name[i+j+1] = second_name[j] ;

/* End second_name with a space */

Computer Programming13.16

name[i+j+1] = ‘ ‘ ;
/* Copy last_name into name */

for(k = 0 ; last_name[k] != ‘\0’; k++)
name[i+j+k+2] = last_name[k] ;

/* End name with a null character */
name[i+j+k+2] = ‘\0’ ;
printf(“\n\n”) ;
printf(“%s\n”, name) ;

}
Output

VISWANATH PRATAP SINGH

Fig. 13.8 Concatenation of strings

13.7 COMPARISON OF TWO STRINGS

Once again, C does not permit the comparison of two strings directly. That is, the statements

such as

if(name1 == name2)
if(name == “ABC”)

are not permitted. It is therefore necessary to compare the two strings to be tested, character

by character. The comparison is done until there is a mismatch or one of the strings termi-

nates into a null character, whichever occurs first. The following segment of a program

illustrates this.

i=0;
while(str1[i] == str2[i] && str1[i] != ‘\0’

&& str2[i] != ‘\0’)
i = i+1;

if (str1[i] == ‘\0’ && str2[i] == ‘\0’)
printf(“strings are equal\n”);

else
printf(“strings are not equal\n”);

13.8 STRING-HANDLING FUNCTIONS

Fortunately, the C library supports a large number of string-handling functions that can be

used to carry out many of the string manipulations discussed so far. Following are the most

commonly used string-handling functions.

Character Arrays and Strings 13.17

Function Action

strcat() concatenates two strings

strcmp() compares two strings

strcpy() copies one string over another

strlen() finds the length of a string

We shall discuss briefly how each of these functions can be used in the processing of strings.

strcat() Function

The strcat function joins two strings together. It takes the following form:

strcat(string1, string2);

string1 and string2 are character arrays. When the function strcat is executed, string2 is

appended to string1. It does so by removing the null character at the end of string1 and

placing string2 from there. The string at string2 remains unchanged. For example, con-

sider the following three strings:

0

0

0

Part1 =

Part2 =

Part3 =

Execution of the statement

01

1

1

12

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7 8 9

0\V E R Y

0

0

\

\

G

B

O

A

O

D

D

strcat(part1, part2);
will result in:

0

0

Part1 =

Part2 =

while the statement

01

1

1 22

2

3

3

4

4

5

5

6

6

7 8 9

0\G O O D

0\GV E R Y O O D

0

Part1 =

will result in:

01 1 22 3 4 5 6 7 8 9

0\BV E R Y A D

Computer Programming13.18

0

Part3 =

1 2 3 4 5 6

0\B A D

We must make sure that the size of string1 (to which string2 is appended) is large enough

to accommodate the final string.
strcat function may also append a string constant to a string variable. The following is

valid:

strcat(part1,”GOOD”);

C permits nesting of strcat functions. For example, the statement

strcat(strcat(string1,string2), string3);

is allowed and concatenates all the three strings together. The resultant string is stored in

string1.

strcmp() Function

The strcmp function compares two strings identified by the arguments and has a value 0 if

they are equal. If they are not, it has the numeric difference between the first nonmatching

characters in the strings. It takes the form:

strcmp(string1, string2);

string1 and string2 may be string variables or string constants. Examples are:

strcmp(name1, name2);
strcmp(name1, “John”);
strcmp(“Rom”, “Ram”);

Our major concern is to determine whether the strings are equal; if not, which is alphabeti-

cally above. The value of the mismatch is rarely important. For example, the statement

strcmp(“their”, “there”);

will return a value of �9 which is the numeric difference between ASCII �i� and ASCII �r�.

That is, �i� minus �r� in ASCII code is �9. If the value is negative, string1 is alphabetically

above string2.

strcpy() Function

The strcpy function works almost like a string-assignment operator. It takes the form:

strcpy(string1, string2);

and assigns the contents of string2 to string1. string2 may be a character array variable

or a string constant. For example, the statement

strcpy(city, “DELHI”);

will assign the string �DELHI� to the string variable city. Similarly, the statement

strcpy(city1, city2);

Character Arrays and Strings 13.19

will assign the contents of the string variable city2 to the string variable city1. The size of

the array city1 should be large enough to receive the contents of city2.

strlen() Function

This function counts and returns the number of characters in a string. It takes the form

n = strlen(string);

Where n is an integer variable, which receives the value of the length of the string. The

argument may be a string constant. The counting ends at the first null character.

Example 13.6 s1, s2, and s3 are three string variables. Write a program to read two

string constants into s1 and s2 and compare whether they are equal or not. If

they are not, join them together. Then copy the contents of s1 to the variable s3.

At the end, the program should print the contents of all the three variables and

their lengths.

The program is shown in Fig. 13.9. During the first run, the input strings are �New� and

�York�. These strings are compared by the statement

x = strcmp(s1, s2);

Since they are not equal, they are joined together and copied into s3 using the statement

strcpy(s3, s1);

The program outputs all the three strings with their lengths.

During the second run, the two strings s1 and s2 are equal, and therefore, they are not

joined together. In this case all the three strings contain the same string constant �London�.

Program
#include <string.h>
main()
{ char s1[20], s2[20], s3[20];

int x, l1, l2, l3;
printf(“\n\nEnter two string constants \n”);
printf(“?”);
scanf(“%s %s”, s1, s2);

/* comparing s1 and s2 */
x = strcmp(s1, s2);
if(x != 0)
{ printf(“\n\nStrings are not equal \n”);

strcat(s1, s2); /* joining s1 and s2 */
}
else

printf(“\n\nStrings are equal \n”);
/* copying s1 to s3

strcpy(s3, s1);
/* Finding length of strings */

Computer Programming13.20

l1 = strlen(s1);
l2 = strlen(s2);
l3 = strlen(s3);

/* output */
printf(“\ns1 = %s\t length = %d characters\n”, s1, l1);
printf(“s2 = %s\t length = %d characters\n”, s2, l2);
printf(“s3 = %s\t length = %d characters\n”, s3, l3);

}
Output

Enter two string constants
? New York

Strings are not equal
s1 = NewYork length = 7 characters
s2 = York length = 4 characters
s3 = NewYork length = 7 characters

Enter two string constants
? London London

Strings are equal

s1 = London length = 6 characters
s2 = London length = 6 characters
s3 = London length = 6 characters

Fig. 13.9 Illustration of string handling functions

Other String Functions

The header file <string.h> contains many more string manipulation functions. They might

be useful in certain situations.

strncpy

In addition to the function strcpy that copies one string to another, we have another func-

tion strncpy that copies only the left-most n characters of the source string to the target

string variable. This is a three-parameter function and is invoked as follows:

strncpy(s1, s2, 5);

This statement copies the first 5 characters of the source string s2 into the target string s1.

Since the first 5 characters may not include the terminating null character, we have to place

it explicitly in the 6th position of s2 as shown below:

s1[6] =’\0’;

Now, the string s1 contains a proper string.

strncmp

A variation of the function strcmp is the function strncmp. This function has three param-

eters as illustrated in the function call below:

strncmp (s1, s2, n);

Character Arrays and Strings 13.21

this compares the left-most n characters of s1 to s2 and returns.

(a) 0 if they are equal;

(b) negative number, if s1 sub-string is less than s2; and

(c) positive number, otherwise.

strncat

This is another concatenation function that takes three parameters as shown below:

strncat (s1, s2, n);

This call will concatenate the left-most n characters of s2 to the end of s1. Example:

S1 :

S2 :

S :1

After (s1, s2, 4); execution:strncat

0

0

\

\

G

B

U

A

U

A

S

G

M

R

R

L

A

U

Y

U

0\B A L A

strstr

It is a two-parameter function that can be used to locate a sub-string in a string. This takes

the forms:

strstr (s1, s2);
strstr (s1, “ABC”);

The function strstr searches the string s1 to see whether the string s2 is contained in s1. If

yes, the function returns the position of the first occurrence of the sub-string. Otherwise, it

returns a NULL pointer. Example.

if (strstr (s1, s2) == NULL)
printf(“substring is not found”);

else
printf(“s2 is a substring of s1”);

We also have functions to determine the existence of a character in a string. The function

call

strchr(s1, ‘m’);

will locate the first occurrence of the character �m� and the call

strrchr(s1, ‘m’);

will locate the last occurrence of the character �m� in the string s1.

Computer Programming13.22

Warnings

· When allocating space for a string during declaration, remember to count the

terminating null character.

· When creating an array to hold a copy of a string variable of unknown size, we

can compute the size required using the expression

strlen (stringname) +1.

· When copying or concatenating one string to another, we must ensure that the

target (destination) string has enough space to hold the incoming characters.

Remember that no error message will be available even if this condition is not

satisfied. The copying may overwrite the memory and the program may fail in

an unpredictable way.

· When we use strncpy to copy a specific number of characters from a source

string, we must ensure to append the null character to the target string, in case

the number of characters is less than or equal to the source string.

13.9 TABLE OF STRINGS

We often use lists of character strings, such as a list of the names of students in a class, list

of the names of employees in an organization, list of places, etc. A list of names can be treated

as a table of strings and a two-dimensional character array can be used to store the entire

list. For example, a character array student[30][15] may be used to store a list of 30 names,

each of length not more than 15 characters. Shown below is a table of five cities:

C

A

H

M

B

h

h

y

a

o

a

m

d

d

m

n

e

e

r

b

d

d

r

a

a

i

a

a

s

y

g

b

b

a

a

a

r

d

d

h

This table can be conveniently stored in a character array city by using the following decla-

ration:

char city[] []
{
“Chandigarh”,
“Madras”,
“Ahmedabad”,
“Hyderabad”,
“Bombay”

} ;

Character Arrays and Strings 13.23

To access the name of the ith city in the list, we write

city[i-1]

and therefore city[0] denotes �Chandigarh�, city[1] denotes �Madras� and so on. This shows

that once an array is declared as two-dimensional, it can be used like a one-dimensional

array in further manipulations. That is, the table can be treated as a column of strings.

Example 13.9 Write a program that would sort a list of names in alphabetical order.

A program to sort the list of strings in alphabetical order is given in Fig. 13.10. It employs the

method of bubble sorting described in Case Study 1 in the previous chapter.

Program
#define ITEMS 5
#define MAXCHAR 20
main()
{

char string[ITEMS][MAXCHAR], dummy[MAXCHAR];
int i = 0, j = 0;
/* Reading the list */
printf (“Enter names of %d items \n “,ITEMS);
while (i < ITEMS)

scanf (“%s”, string[i++]);
/* Sorting begins */
for (i=1; i < ITEMS; i++) /* Outer loop begins */
{

for (j=1; j <= ITEMS-i ; j++) /*Inner loop begins*/
{

if (strcmp (string[j-1], string[j]) > 0)
{ /* Exchange of contents */

strcpy (dummy, string[j-1]);
strcpy (string[j-1], string[j]);
strcpy (string[j], dummy);

}
} /* Inner loop ends */

} /* Outer loop ends */
/* Sorting completed */
printf (“\nAlphabetical list \n\n”);
for (i=0; i < ITEMS ; i++)

printf (“%s”, string[i]);
}

Output
Enter names of 5 items
London Manchester Delhi Paris Moscow

Alphabetical list

Computer Programming13.24

Delhi
London
Manchester
Moscow
Paris

Fig. 13.10 Sorting of strings in alphabetical order

Note that a two-dimensional array is used to store the list of strings. Each string is read

using a scanf function with %s format. Remember, if any string contains a white space, then

the part of the string after the white space will be treated as another item in the list by the

scanf. In such cases, we should read the entire line as a string using a suitable algorithm.

For example, we can use gets function to read a line of text containing a series of words. We

may also use puts function in place of scanf for output.

 13.10 OTHER FEATURES OF STRINGS

Other aspects of strings we have not discussed in this chapter include:

· Manipulating strings using pointers.

· Using string as function parameters.

· Declaring and defining strings as members of structures.

These topics will be dealt with later when we discuss functions, structures and pointers.

- Character constants are enclosed in single quotes and string constants are

enclosed in double quotes.

- Allocate sufficient space in a character array to hold the null character at

the end.

- Avoid processing single characters as strings.

- Using the address operator & with a string variable in the scanf function

call is an error.

- It is a compile time error to assign a string to a character variable.

- Using a string variable name on the left of the assignment operator is

illegal.

- When accessing individual characters in a string variable, it is logical er-

ror to access outside the array bounds.

- Strings cannot be manipulated with operators. Use string functions.

- Do not use string functions on an array char type that is not terminated

with the null character.

- Do not forget to append the null character to the target string when the

number of characters copied is less than or equal to the source string.

Character Arrays and Strings 13.25

- Be aware the return values when using the functions strcmp and

strncmp for comparing strings.

- When using string functions for copying and concatenating strings, make

sure that the target string has enough space to store the resulting string.

Otherwise memory overwriting may occur.

- The header file <stdio.h> is required when using standard I/O functions.

- The header file <ctype.h> is required when using character handling func-

tions.

- The header file <stdlib.h> is required when using general utility functions.

- The header file <string.h> is required when using string manipulation

functions.

1. Counting Words in a Text

One of the practical applications of string manipulations is counting the words in a text. We

assume that a word is a sequence of any characters, except escape characters and blanks,

and that two words are separated by one blank character. The algorithm for counting words

is as follows:

1. Read a line of text.

2. Beginning from the first character in the line, look for a blank. If a blank is found,

increment words by 1.

3. Continue steps 1 and 2 until the last line is completed.

The implementation of this algorithm is shown in Fig. 13.11. The first while loop will be

executed once for each line of text. The end of text is indicated by pressing the �Return� key

an extra time after the entire text has been entered. The extra �Return� key causes a newline

character as input to the last line and as a result, the last line contains only the null charac-

ter.

The program checks for this special line using the test

if (line[0] == �\0�)

and if the first (and only the first) character in the line is a null character, then counting is

terminated. Note the difference between a null character and a blank character.

Program
#include <stdio.h>
main()
{

char line[81], ctr;
int i,c,

end = 0,
characters = 0,
words = 0,
lines = 0;

Computer Programming13.26

printf(“KEY IN THE TEXT.\n”);
printf(“GIVE ONE SPACE AFTER EACH WORD.\n”);
printf(“WHEN COMPLETED, PRESS ‘RETURN’.\n\n”);
while(end == 0)
{

/* Reading a line of text */
c = 0;
while((ctr=getchar()) != ‘\n’)

line[c++] = ctr;
line[c] = ‘\0’;
/* counting the words in a line */
if(line[0] == ‘\0’)

break ;
else
{

words++;
for(i=0; line[i] != ‘\0’;i++)

if(line[i] == ‘ ‘ || line[i] == ‘\t’)
words++;

}
/* counting lines and characters */
lines = lines +1;
characters = characters + strlen(line);

}
printf (“\n”);
printf(“Number of lines = %d\n”, lines);
printf(“Number of words = %d\n”, words);
printf(“Number of characters = %d\n”, characters);

}
Output

KEY IN THE TEXT.
GIVE ONE SPACE AFTER EACH WORD.
WHEN COMPLETED, PRESS ‘RETURN’.

Admiration is a very short-lived passion.
Admiration involves a glorious obliquity of vision.
Always we like those who admire us but we do not
like those whom we admire.
Fools admire, but men of sense approve.

Number of lines = 5
Number of words = 36
Number of characters = 205

Fig. 13.11 Counting of characters, words and lines in a text

Character Arrays and Strings 13.27

The program also counts the number of lines read and the total number of characters in

the text. Remember, the last line containing the null string is not counted.

After the first while loop is exited, the program prints the results of counting.

2. Processing of a Customer List

Telephone numbers of important customers are recorded as follows:

Full name Telephone number

Joseph Louis Lagrange 869245

Jean Robert Argand 900823

Carl Freidrich Gauss 806788

� � �� � � � �� �

� � �� � � � �� �

It is desired to prepare a revised alphabetical list with surname (last name) first, followed by

a comma and the initials of the first and middle names. For example,

Argand,J.R

We create a table of strings, each row representing the details of one person, such as

first_name, middle_name, last_name, and telephone_number. The columns are interchanged

as required and the list is sorted on the last_name. Figure 13.12 shows a program to achieve

this.

Program

#define CUSTOMERS 10

main()
{

char first_name[20][10], second_name[20][10],
surname[20][10], name[20][20],
telephone[20][10], dummy[20];

int i,j;

printf(“Input names and telephone numbers \n”);
printf(“?”);
for(i=0; i < CUSTOMERS ; i++)
{

scanf(“%s %s %s %s”, first_name[i],
second_name[i], surname[i], telephone[i]);

/* converting full name to surname with initials */

strcpy(name[i], surname[i]);
strcat(name[i], “,”);
dummy[0] = first_name[i][0];

Computer Programming13.28

dummy[1] = ‘\0’;
strcat(name[i], dummy);
strcat(name[i], “.”);
dummy[0] = second_name[i][0];
dummy[1] = ‘\0’;
strcat(name[i], dummy);

}
 /* Alphabetical ordering of surnames */

 for(i=1; i <= CUSTOMERS-1; i++)
 for(j=1; j <= CUSTOMERS-i; j++)
 if(strcmp (name[j-1], name[j]) > 0)
 {
 /* Swaping names */
 strcpy(dummy, name[j-1]);
 strcpy(name[j-1], name[j]);
 strcpy(name[j], dummy);

 /* Swaping telephone numbers */
 strcpy(dummy, telephone[j-1]);
 strcpy(telephone[j-1],telephone[j]);
 strcpy(telephone[j], dummy);
 }

 /* printing alphabetical list */

printf(“\nCUSTOMERS LIST IN ALPHABETICAL ORDER \n\n”);
for(i=0; i < CUSTOMERS ; i++)

 printf(“ %-20s\t %-10s\n”, name[i], telephone[i]);
 }

Output

 Input names and telephone numbers
 ?Gottfried Wilhelm Leibniz 711518
 Joseph Louis Lagrange 869245

 Jean Robert Argand 900823
 Carl Freidrich Gauss 806788
 Simon Denis Poisson 853240
 Friedrich Wilhelm Bessel 719731
 Charles Francois Sturm 222031
 George Gabriel Stokes 545454
 Mohandas Karamchand Gandhi 362718
 Josian Willard Gibbs 123145

 CUSTOMERS LIST IN ALPHABETICAL ORDER

Character Arrays and Strings 13.29

 Argand,J.R 900823
 Bessel,F.W 719731
 Gandhi,M.K 362718
 Gauss,C.F 806788
 Gibbs,J.W 123145
 Lagrange,J.L 869245
 Leibniz,G.W 711518
 Poisson,S.D 853240
 Stokes,G.G 545454

 Sturm,C.F 222031

Fig. 13.12 Program to alphabetize a customer list

13.1 State whether the following statements are true or false

(a) When initializing a string variable during its declaration, we must include the

null character as part of the string constant, like �GOOD\0�.

(b) The gets function automatically appends the null character at the end of the

string read from the keyboard.

(c) When reading a string with scanf, it automatically inserts the terminating null

character.

(d) String variables cannot be used with the assignment operator.

(e) We cannot perform arithmetic operations on character variables.

(f) We can assign a character constant or a character variable to an int type variable.

(g) The function scanf cannot be used in any way to read a line of text with the white-

spaces.

(h) The ASCII character set consists of 128 distinct characters.

(i) In the ASCII collating sequence, the uppercase letters precede lowercase letters.

(j) In C, it is illegal to mix character data with numeric data in arithmetic operations.

(k) The function getchar skips white-space during input.

(l) In C, strings cannot be initialized at run time.

(m) The input function gets has one string parameter.

(n) The function call strcpy(s2, s1); copies string s2 into string s1.

(o) The function call strcmp(�abc�, �ABC�); returns a positive number.

13.2 Fill in the blanks in the following statements.

(a) We can use the conversion specification _______in scanf to read a line of text.

(b) We can initialize a string using the string manipulation function_______.

(c) The function strncat has _____ parameters.

(d) To use the function atoi in a program, we must include the header file ________.

(e) The function _______does not require any conversion specification to read a string

from the keyboard.

Computer Programming13.30

(f) The function _______ is used to determine the length of a string.

(g) The _________string manipulation function determines if a character is contained

in a string.

(h) The function _____is used to sort the strings in alphabetical order.

(i) The function call strcat (s2, s1); appends _____ to ______.

(j) The printf may be replaced by ______function for printing strings.

13.3 Describe the limitations of using getchar and scanf functions for reading strings.

13.4 Character strings in C are automatically terminated by the null character. Explain

how this feature helps in string manipulations.

13.5 Strings can be assigned values as follows:

(a) During type declaration char string[] = {�.......�};

(b) Using strcpy function strcpy(string, �.......�);

(c) Reading using scanf function scanf(�%s�, string);

(d) Reading using gets function gets(string);

Compare them critically and describe situations where one is superior to the others.

13.6 Assuming the variable string contains the value �The sky is the limit.�, determine

what output of the following program segments will be.

(a) printf(�%s�, string);

(b) printf(�%25.10s�, string);

(c) printf(�%s�, string[0]);

(d) for (i=0; string[i] != �.�; i++)

printf(�%c�, string[i]);

(e) for (i=0; string[i] != �\0�; i++;)

printf(�%d\n�, string[i]);

(f) for (i=0; i <= strlen[string]; ;)

{

string[i++] = i;

printf(�%s\n�, string[i]);

}

(g) printf(�%c\n�, string[10] + 5);

(h) printf(�%c\n�, string[10] + 5')

13.7 Which of the following statements will correctly store the concatenation of strings s1

and s2 in string s3?

(a) s3 = strcat (s1, s2);

(b) strcat (s1, s2, s3);

(c) strcat (s3, s2, s1);

(d) strcpy (s3, strcat (s1, s2));

(e) strcmp (s3, strcat (s1, s2));

(f) strcpy (strcat (s1, s2), s3);

13.8 What will be the output of the following statement?

printf (“%d”, strcmp (“push”, “pull”));

13.9 Assume that s1, s2 and s3 are declared as follows:

char s1[10] = “he”, s2[20] = “she”, s3[30], s4[30];

What will be the output of the following statements executed in sequence?

Character Arrays and Strings 13.31

printf(“%s”, strcpy(s3, s1));

printf(“%s”, strcat(strcat(strcpy(s4, s1), “or”), s2));

printf(“%d %d”, strlen(s2)+strlen(s3), strlen(s4));
13.10 Find errors, if any, in the following code segments;

(a) char str[10]

strncpy(str, �GOD�, 3);

printf(�%s�, str);

(b) char str[10];

strcpy(str, �Balagurusamy�);

(c) if strstr(�Balagurusamy�, �guru�) = = 0);

printf(�Substring is found�);

(d) char s1[5], s2[10],

gets(s1, s2);

13.11 What will be the output of the following segment?

char s1[] = �Kolkotta� ;

char s2[] = �Pune� ;

strcpy (s1, s2) ;

printf(�%s�, s1) ;

13.12 What will be the output of the following segment?

char s1[] = �NEW DELHI� ;

char s2[] = �BANGALORE� ;

strncpy (s1, s2, 3) ;

printf(�%s�, s1) ;

13.13 What will be the output of the following code?

char s1[] = �Jabalpur� ;

char s2[] = �Jaipur� ;

printf(strncmp(s1, s2, 2));

13.14 What will be the output of the following code?

char s1[] = "ANIL KUMAR GUPTA";

char s2[] = "KUMAR";

printf (strstr (s1, s2));

13.15 Compare the working of the following functions:

(a) strcpy and strncpy;

(b) strcat and strncat; and

(c) strcmp and strncmp.

13.1 Write a program, which reads your name from the keyboard and outputs a list of

ASCII codes, which represent your name.

13.2 Write a program to do the following:

(a) To output the question �Who is the inventor of C ?�

(b) To accept an answer.

(c) To print out �Good� and then stop, if the answer is correct.

Computer Programming13.32

(d) To output the message �try again�, if the answer is wrong.

(e) To display the correct answer when the answer is wrong even at the third attempt

and stop.

13.3 Write a program to extract a portion of a character string and print the extracted

string. Assume that m characters are extracted, starting with the nth character.

13.4 Write a program which will read a text and count all occurrences of a particular word.

13.5 Write a program which will read a string and rewrite it in the alphabetical order. For

example, the word STRING should be written as GINRST.

13.6 Write a program to replace a particular word by another word in a given string. For

example, the word �PASCAL� should be replaced by �C� in the text �It is good to pro-

gram in PASCAL language.�

13.7 A Maruti car dealer maintains a record of sales of various vehicles in the following

form:

Vehicle type Month of sales Price

MARUTI-800 02/01 210000

MARUTI-DX 07/01 265000

GYPSY 04/02 315750

MARUTI-VAN 08/02 240000

Write a program to read this data into a table of strings and output the details of a

particular vehicle sold during a specified period. The program should request the user

to input the vehicle type and the period (starting month, ending month).

13.8 Write a program that reads a string from the keyboard and determines whether the

string is a palindrome or not. (A string is a palindrome if it can be read from left and

right with the same meaning. For example, Madam and Anna are palindrome strings.

Ignore capitalization).

13.9 Write program that reads the cost of an item in the form RRRR.PP (Where RRRR

denotes Rupees and PP denotes Paise) and converts the value to a string of words that

expresses the numeric value in words. For example, if we input 125.75, the output

should be �ONE HUNDRED TWENTY FIVE AND PAISE SEVENTY FIVE�.

13.10 Develop a program that will read and store the details of a list of students in the

format

Roll No. Name Marks obtained

. .

.

.

and produce the following output lits:

(a) Alphabetical list of names, roll numbers and marks obtained.

(b) List sorted on roll numbers.

(c) List sorted on marks (rank-wise list)

13.11 Write a program to read two strings and compare them using the function strncmp ()

and print a message that the first string is equal, less, or greater than the second one.

13.12 Write a program to read a line of text from the keyboard and print out the number of

occurrences of a given substring using the function strstr ().

13.13 Write a program that will copy m consecutive characters from a string s1 beginning at

position n into another string s2.

Character Arrays and Strings 13.33

13.14 Write a program to create a directory of students with roll numbers. The program

should display the roll number for a specified name and vice-versa.

13.15 Given a string

char str [] = �123456789� ;

Write a program that displays the following:

1

2 3 2

3 4 5 4 3

4 5 6 7 6 5 4

5 6 7 8 9 8 7 6 5

Unit 4: FUNCTIONS AND

POINTERS

User-Defined

Functions

14.1 INTRODUCTION

We have mentioned earlier that one of the strengths of C language is C functions. They are

easy to define and use. We have used functions in every program that we have discussed so

far. However, they have been primarily limited to the three functions, namely, main, printf,

and scanf. In this chapter, we shall consider in detail the following:

· How a function is designed?

· How a function is integrated into a program?

· How two or more functions are put together? and

· How they communicate with one another?

C functions can be classified into two categories, namely, library functions and user-de-

fined functions. main is an example of user-defined functions. printf and scanf belong to

the category of library functions. We have also used other library functions such as sqrt,

cos, strcat, etc. The main distinction between these two categories is that library functions

are not required to be written by us whereas a user-defined function has to be developed by

the user at the time of writing a program. However, a user-defined function can later become

a part of the C program library. In fact, this is one of the strengths of C language.

14.2 NEED FOR USER-DEFINED FUNCTIONS

As pointed out earlier, main is a specially recognized function in C. Every program must

have a main function to indicate where the program has to begin its execution. While it is

possible to code any program utilizing only main function, it leads to a number of problems.

The program may become too large and complex and as a result the task of debugging,

testing, and maintaining becomes difficult. If a program is divided into functional parts,

then each part may be independently coded and later combined into a single unit. These

independently coded programs are called subprograms that are much easier to understand,

debug, and test. In C, such subprograms are referred to as 'functions'.

14

Computer Programming14.4

There are times when certain type of operations or calculations are repeated at many

points throughout a program. For instance, we might use the factorial of a number at several

points in the program. In such situations, we may repeat the program statements wherever

they are needed. Another approach is to design a function that can be called and used when-

ever required. This saves both time and space.

This �division� approach clearly results in a number of advantages.

1. It facilitates top-down modular programming as shown in Fig. 14.1. In this program-

ming style, the high level logic of the overall problem is solved first while the details of

each lower-level function are addressed later.

2. The length of a source program can be reduced by using functions at appropriate

places. This factor is particularly critical with microcomputers where memory space is

limited.

3. It is easy to locate and isolate a faulty function for further investigations.

4. A function may be used by many other programs. This means that a C programmer

can build on what others have already done, instead of starting all over again from

scratch.

Main Program

Function
A

Function
C

Function
B

B1 B2

Fig. 14.1 Top-down modular programming using functions

14.3 A MULTI-FUNCTION PROGRAM

A function is a self-contained block of code that performs a particular task. Once a function

has been designed and packed, it can be treated as a �black box� that takes some data from

the main program and returns a value. The inner details of operation are invisible to the rest

of the program. All that the program knows about a function is: What goes in and what

comes out. Every C program can be designed using a collection of these black boxes known as

functions.

Consider a set of statements as shown below:

User-Defined Functions 14.5

The above set of statements defines a function called printline, which could print a line of
39-character length. This function can be used in a program as follows:

This program will print the following output:

���������������������-

���������������������-
The above program contains two user-defined functions:

main() function
printline() function

As we know, the program execution always begins with the main function. During execu-
tion of the main, the first statement encountered is

printline();

which indicates that the function printline is to be executed. At this point, the program
control is transferred to the function printline. After executing the printline function,
which outputs a line of 39 character length, the control is transferred back to the main.
Now, the execution continues at the point where the function call was executed. After ex-
ecuting the printf statement, the control is again transferred to the printline function for

printing the line once more.
The main function calls the user-defined printline function two times and the library

function printf once. We may notice that the printline function itself calls the library func-
tion printf 39 times repeatedly.

Any function can call any other function. In fact, it can call itself. A �called function� can
also call another function. A function can be called more than once. In fact, this is one of the

main features of using functions. Figure 14.2 illustrates the flow of control in a multi-
function program.

Computer Programming14.6

Except the starting point, there are no other predetermined relationships, rules of prec-

edence, or hierarchies among the functions that make up a complete program. The functions

can be placed in any order. A called function can be placed either before or after the calling

function. However, it is the usual practice to put all the called functions at the end. See the

box �Modular Programming�

Fig. 14.2 Flow of control in a multi-function program

User-Defined Functions 14.7

Modular Programming

Modular programming is a strategy applied to the design and development of soft-

ware systems. It is defined as organizing a large program into small, independent

program segments called modules that are separately named and individually

callable program units. These modules are carefully integrated to become a soft-

ware system that satisfies the system requirements. It is basically a "divide-and-

conquer" approach to problem solving.

Modules are identified and designed such that they can be organized into a

top-down hierarchical structure (similar to an organization chart). In C, each mod-

ule refers to a function that is responsible for a single task.

Some characteristics of modular programming are:

1. Each module should do only one thing.

2. Communication between modules is allowed only by a calling module.

3. A module can be called by one and only one higher module.

4. No communication can take place directly between modules that do not have

calling-called relationship.

5. All modules are designed as single-entry, single-exit systems using control struc-

tures.

14.4 ELEMENTS OF USER-DEFINED FUNCTIONS

We have discussed and used a variety of data types and variables in our programs so far.

However, declaration and use of these variables were primarily done inside the main func-

tion. As we mentioned in Chapter 4, functions are classified as one of the derived data types

in C. We can therefore define functions and use them like any other variables in C programs.

It is therefore not a surprise to note that there exist some similarities between functions and

variables in C.

· Both function names and variable names are considered identifiers and therefore they must adhere

to the rules for identifiers.

· Like variables, functions have types (such as int) associated with them.

· Like variables, function names and their types must be declared and defined before they are used in

a program.

In order to make use of a user-defined function, we need to establish three elements that are

related to functions.

1. Function definition.

2. Function call.

3. Function declaration.

The function definition is an independent program module that is specially written to

implement the requirements of the function. In order to use this function we need to invoke

Computer Programming14.8

it at a required place in the program. This is known as the function call. The program (or a

function) that calls the function is referred to as the calling program or calling function. The

calling program should declare any function (like declaration of a variable) that is to be used

later in the program. This is known as the function declaration or function prototype.

14.5 DEFINITION OF FUNCTIONS

A function definition, also known as function implementation shall include the following

elements;

1. function name;

2. function type;

3. list of parameters;

4. local variable declarations;

5. function statements; and

6. a return statement.

All the six elements are grouped into two parts, namely,

· function header (First three elements); and

· function body (Second three elements).

A general format of a function definition to implement these two parts is given below:

The first line function_type function_name(parameter list) is known as the function

header and the statements within the opening and closing braces constitute the function

body, which is a compound statement.

Function Header

The function header consists of three parts: the function type (also known as return type),

the function name and the formal parameter list. Note that a semicolon is not used at the

end of the function header.

Name and Type

The function type specifies the type of value (like float or double) that the function is ex-

pected to return to the program calling the function. If the return type is not explicitly

User-Defined Functions 14.9

specified, C will assume that it is an integer type. If the function is not returning anything,
then we need to specify the return type as void. Remember, void is one of the fundamental
data types in C. It is a good programming practice to code explicitly the return type, even
when it is an integer. The value returned is the output produced by the function.

The function name is any valid C identifier and therefore must follow the same rules of

formation as other variable names in C. The name should be appropriate to the task per-
formed by the function. However, care must be exercised to avoid duplicating library routine
names or operating system commands.

Formal Parameter List

The parameter list declares the variables that will receive the data sent by the calling pro-
gram. They serve as input data to the function to carry out the specified task. Since they
represent actual input values, they are often referred to as formal parameters. These param-

eters can also be used to send values to the calling programs. This aspect will be covered
later when we discuss more about functions. The parameters are also known as arguments.

The parameter list contains declaration of variables separated by commas and surrounded
by parentheses. Examples:

float quadratic (int a, int b, int c) {. . . . }
double power (double x, int n) {.}
float mul (float x, float y) {. . . . }
int sum (int a, int b) {. . . . }

Remember, there is no semicolon after the closing parenthesis. Note that the declaration of
parameter variables cannot be combined. That is, int sum (int a,b) is illegal.

A function need not always receive values from the calling program. In such cases, func-
tions have no formal parameters. To indicate that the parameter list is empty, we use the

keyword void between the parentheses as in

void printline (void)
{

. . . .
}

This function neither receives any input values nor returns back any value. Many compilers

accept an empty set of parentheses, without specifying anything as in

void printline ()

But, it is a good programming style to use void to indicate a nill parameter list.

Function Body

The function body contains the declarations and statements necessary for performing the
required task. The body enclosed in braces, contains three parts, in the order given below:

1. Local declarations that specify the variables needed by the function.

2. Function statements that perform the task of the function.

3. A return statement that returns the value evaluated by the function.

If a function does not return any value (like the printline function), we can omit the
return statement. However, note that its return type should be specified as void. Again, it
is nice to have a return statement even for void functions.

Computer Programming14.10

Some examples of typical function definitions are:

NOTE:

1. When a function reaches its return statement, the control is transferred back to the calling

program. In the absence of a return statement, the closing brace acts as a void return.

2. A local variable is a variable that is defined inside a function and used without having any

role in the communication between functions.

14.6 RETURN VALUES AND THEIR TYPES

As pointed out earlier, a function may or may not send back any value to the calling function.
If it does, it is done through the return statement. While it is possible to pass to the called
function any number of values, the called function can only return one value per call, at the
most.

The return statement can take one of the following forms:

return;

return(expression);

The first, the �plain� return does not return any value; it acts much as the closing brace of
the function. When a return is encountered, the control is immediately passed back to the
calling function. An example of the use of a simple return is as follows:

if(error)
return;

NOTE: In C99, if a function is specified as returning a value, the return must have value associ-

ated with it.

User-Defined Functions 14.11

The second form of return with an expression returns the value of the expression. For

example, the function

int mul (int x, int y)
{

int p;
p = x*y;
return(p);

}

returns the value of p which is the product of the values of x and y. The last two statements

can be combined into one statement as follows:

return (x*y);

A function may have more than one return statements. This situation arises when the value

returned is based on certain conditions. For example:

if(x <= 0)
return(0);

else
return(1);

What type of data does a function return? All functions by default return int type data. But

what happens if a function must return some other type? We can force a function to return a

particular type of data by using a type specifier in the function header as discussed earlier.

When a value is returned, it is automatically cast to the function�s type. In functions that

do computations using doubles, yet return ints, the returned value will be truncated to an

integer. For instance, the function

int product (void)
{

return (2.5 * 3.0);
}

will return the value 7, only the integer part of the result.

14.7 FUNCTION CALLS

A function can be called by simply using the function name followed by a list of actual pa-

rameters (or arguments), if any, enclosed in parentheses. Example:

main()
{

int y;
y = mul(10,5); /* Function call */
printf(“%d\n”, y);

}

When the compiler encounters a function call, the control is transferred to the function

mul(). This function is then executed line by line as described and a value is returned when

a return statement is encountered. This value is assigned to y. This is illustrated below:

Computer Programming14.12

main ()

int y;

int p;

p = x* y;

return (p);

int mul(int x,int y)

y = mul(10,5); /* call*/

/* local variable*/

/* x = 10, y = 5*/

The function call sends two integer values 10 and 5 to the function.

int mul(int x, int y)

which are assigned to x and y respectively. The function computes the product x and y,

assigns the result to the local variable p, and then returns the value 25 to the main where it

is assigned to y again.

There are many different ways to call a function. Listed below are some of the ways the
function mul can be invoked.

mul (10, 5)

mul (m, 5)

mul (10, n)

mul (m, n)

mul (m + 5, 10)

mul (10, mul(m,n))

mul (expression1, expression2)

Note that the sixth call uses its own call as its one of the parameters. When we use expres-

sions, they should be evaluated to single values that can be passed as actual parameters.

A function which returns a value can be used in expressions like any other variable. Each

of the following statements is valid:

printf(“%d\n”, mul(p,q));
y = mul(p,q) / (p+q);
if (mul(m,n)>total) printf(“large”);

However, a function cannot be used on the right side of an assignment statement. For in-

stance,

mul(a,b) = 15;

is invalid.

A function that does not return any value may not be used in expressions; but can be

called in to perform certain tasks specified in the function. The function printline() dis-

cussed in Section 14.3 belongs to this category. Such functions may be called in by simply

stating their names as independent statements.

User-Defined Functions 14.13

Example:

main()
{

printline();
}

Note the presence of a semicolon at the end.

Function Call

A function call is a postfix expression. The operator (. .) is at a very high level of

precedence. (See Table 3.8) Therefore, when a function call is used as a part of an

expression, it will be evaluated first, unless parentheses are used to change the

order of precedence.

In a function call, the function name is the operand and the parentheses set (. .)

which contains the actual parameters is the operator. The actual parameters must

match the function's formal parameters in type, order and number. Multiple actual

parameters must be separated by commas.

NOTE:

1. If the actual parameters are more than the formal parameters, the extra actual
arguments will be discarded.

2. On the other hand, if the actuals are less than the formals, the unmatched

formal arguments will be initialized to some garbage.

3. Any mismatch in data types may also result in some garbage values.

14.8 FUNCTION DECLARATION

Like variables, all functions in a C program must be declared, before they are invoked. A

function declaration (also known as function prototype) consists of four parts.

· Function type (return type).

· Function name.

· Parameter list.

· Terminating semicolon.

They are coded in the following format:

Function-type function-name parameter list

This is very similar to the function header line except the terminating semicolon. For

example, mul function defined in the previous section will be declared as:

int mul (int m, int n); /* Function prototype */

Computer Programming14.14

Points to note:

1. The parameter list must be separated by commas.

2. The parameter names do not need to be the same in the prototype declaration and the function

definition.

3. The types must match the types of parameters in the function definition, in number and order.

4. Use of parameter names in the declaration is optional.

5. If the function has no formal parameters, the list is written as (void).

6. The return type is optional, when the function returns int type data.

7. The retype must be void if no value is returned.

8. When the declared types do not match with the types in the function definition, compiler will

produce an error.

Equally acceptable forms of declaration of mul function are:

When a function does not take any parameters and does not return any value, its proto-

type is written as:

void display (void);

A prototype declaration may be placed in two places in a program.

1. Above all the functions (including main).

2. Inside a function definition.

When we place the declaration above all the functions (in the global declaration sec-

tion), the prototype is referred to as a global prototype. Such declarations are available for

all the functions in the program.

When we place it in a function definition (in the local declaration section), the prototype

is called a local prototype. Such declarations are primarily used by the functions contain-

ing them.

The place of declaration of a function defines a region in a program in which the func-

tion may be used by other functions. This region is known as the scope of the function.

(Scope is discussed later in this chapter.) It is a good programming style to declare proto-

types in the global declaration section before main. It adds flexibility, provides an excel-

lent quick reference to the functions used in the program, and enhances documentation.

Prototypes: Yes or No

Prototype declarations are not essential. If a function has not been declared

before it is used, C will assume that its details available at the time of linking.

Since the prototype is not available, C will assume that the return type is an

integer and that the types of parameters match the formal definitions. If these

User-Defined Functions 14.15

assumptions are wrong, the linker will fail and we will have to change the program.

The moral is that we must always include prototype declarations,

preferably in global declaration section.

Parameters Everywhere!

Parameters (also known as arguments) are used in three places:

1. in declaration (prototypes),

2. in function call, and

3. in function definition.

The parameters used in prototypes and function definitions are called formal

parameters and those used in function calls are called actual parameters. Actual

parameters used in a calling statement may be simple constants, variables or ex-

pressions.

The formal and actual parameters must match exactly in type, order and number.

Their names, however, do not need to match.

14.9 CATEGORY OF FUNCTIONS

A function, depending on whether arguments are present or not and whether a value is

returned or not, may belong to one of the following categories:

Category 1: Functions with no arguments and no return values.

Category 2: Functions with arguments and no return values.

Category 3: Functions with arguments and one return value.

Category 4: Functions with no arguments but return a value.

Category 5: Functions that return multiple values.

In the sections to follow, we shall discuss these categories with examples. Note that, from

now on, we shall use the term arguments (rather than parameters) more frequently:

14.10 NO ARGUMENTS AND NO RETURN VALUES

When a function has no arguments, it does not receive any data from the calling function.

Similarly, when it does not return a value, the calling function does not receive any data

from the called function. In effect, there is no data transfer between the calling function and

the called function. This is depicted in Fig. 14.3. The dotted lines indicate that there is only

a transfer of control but not data.

Program

main()

void printline(void)

User-Defined Functions 14.17

void value(void)

Output
— —

— —

Fig. 14.4 Functions with no arguments and no return values

It is important to note that the function value receives its data directly from the terminal.

The input data include principal amount, interest rate and the period for which the final

value is to be calculated. The while loop calculates the final value and the results are printed

by the library function printf. When the closing brace of value() is reached, the control is

Computer Programming14.18

transferred back to the calling function main. Since everything is done by the value itself

there is in fact nothing left to be sent back to the called function. Return types of both

printline and value are declared as void.

Note that no return statement is employed. When there is nothing to be returned, the

return statement is optional. The closing brace of the function signals the end of execution

of the function, thus returning the control, back to the calling function.

14.11 ARGUMENTS BUT NO RETURN VALUES

In Fig. 14.4 the main function has no control over the way the functions receive input data.

For example, the function printline will print the same line each time it is called. Same is

the case with the function value. We could make the calling function to read data from the

terminal and pass it on to the called function. This approach seems to be wiser because the

calling function can check for the validity of data, if necessary, before it is handed over to the

called function.

The nature of data communication between the calling function and the called func-

tion with arguments but no return value is shown in Fig. 14.5.

function 2 ()fValues
of arguments

No return value

function1 ()

function2 (a)

Fig. 14.5 One-way data communication

We shall modify the definitions of both the called functions to include arguments as fol-

lows:

void printline(char ch)

void value(float p, float r, int n)

The arguments ch, p, r, and n are called the formal arguments. The calling function can

now send values to these arguments using function calls containing appropriate arguments.

For example, the function call

value(500,0.12,5)

would send the values 500,0.12 and 5 to the function

void value(float p, float r, int n)

and assign 500 to p, 0.12 to r and 5 to n. The values 500, 0.12 and 5 are the actual argu-

ments, which become the values of the formal arguments inside the called function.

User-Defined Functions 14.19

The actual and formal arguments should match in number, type, and order. The values of
actual arguments are assigned to the formal arguments on a one to one basis, starting with
the first argument as shown in Fig. 14.6.

main ()

function 1 (a1, a2, a3, , am)
Function
call

Called
function

function1 (f1, f2, f3, , fn)

actual arguments

formal arguments

Fig. 14.6 Arguments matching between the function call and the called function

We should ensure that the function call has matching arguments. In case, the actual
arguments are more than the formal arguments (m > n), the extra actual arguments are
discarded. On the other hand, if the actual arguments are less than the formal arguments,

the unmatched formal arguments are initialized to some garbage values. Any mismatch in
data type may also result in passing of garbage values. Remember, no error message will be
generated.

While the formal arguments must be valid variable names, the actual arguments may be
variable names, expressions, or constants. The variables used in actual arguments must be
assigned values before the function call is made.

Remember that, when a function call is made, only a copy of the values of actual argu-
ments is passed into the called function. What occurs inside the function will have no effect
on the variables used in the actual argument list.

Example 14.2 Modify the program of Example 14.1 to include the arguments in the function

calls.

The modified program with function arguments is presented in Fig. 14.7. Most of the
program is identical to the program in Fig. 14.4. The input prompt and scanf assignment

statement have been moved from value function to main. The variables principal, inrate,
and period are declared in main because they are used in main to receive data. The function
call

value(principal, inrate, period);

passes information it contains to the function value.

Computer Programming14.20

The function header of value has three formal arguments p,r, and n which correspond to

the actual arguments in the function call, namely, principal, inrate, and period. On ex-

ecution of the function call, the values of the actual arguments are assigned to the corre-

sponding formal arguments. In fact, the following assignments are accomplished across the

function boundaries:

p = principal;
r = inrate;
n = period;

Program

User-Defined Functions 14.21

Output

Fig. 14.7 Functions with arguments but no return values

The variables declared inside a function are known as local variables and therefore their

values are local to the function and cannot be accessed by any other function. We shall

discuss more about this later in the chapter.

The function value calculates the final amount for a given period and prints the results as

before. Control is transferred back on reaching the closing brace of the function. Note that

the function does not return any value.

The function printline is called twice. The first call passes the character �Z�, while the

second passes the character �C� to the function. These are assigned to the formal argument

ch for printing lines (see the output).

Variable Number of Arguments

Some functions have a variable number of arguments and data types which can-

not be known at compile time. The printf and scanf functions are typical exam-

ples. The ANSI standard proposes new symbol called the ellipsis to handle such

functions. The ellipsis consists of three periods (�) and used as shown below:

double area(float d,�)

Both the function declaration and definition should use ellipsis to indicate that

the arguments are arbitrary both in number and type.

14.12 ARGUMENTS WITH RETURN VALUES

The function value in Fig. 14.7 receives data from the calling function through arguments,

but does not send back any value. Rather, it displays the results of calculations at the termi-

nal. However, we may not always wish to have the result of a function displayed. We may

use it in the calling function for further processing. Moreover, to assure a high degree of

portability between programs, a function should generally be coded without involving any I/O

Computer Programming14.22

operations. For example, different programs may require different output formats for dis-

play of results. These shortcomings can be overcome by handing over the result of a function

to its calling function where the returned value can be used as required by the program.

A self-contained and independent function should behave like a �black box� that receives a

predefined form of input and outputs a desired value. Such functions will have two-way data

communication as shown in Fig. 14.8.

function 2 (f)

return (e)

Values
of arguments

Function result

function1()

function2 (a)

Fig. 14.8 Two-way data communication between functions

We shall modify the program in Fig. 14.7 to illustrate the use of two-way data communica-

tion between the calling and the called functions.

Example 14.3 In the program presented in Fig. 14.7 modify the function value, to return the

final amount calculated to the main, which will display the required output at

the terminal. Also extend the versatility of the function printline by having it to

take the length of the line as an argument.

The modified program with the proposed changes is presented in Fig. 14.9. One major change

is the movement of the printf statement from value to main.

Program

User-Defined Functions 14.23

default return type

returns int part of sum

Output

Fig. 14.9 Functions with arguments and return values

The calculated value is passed on to main through statement:

return(sum);

Since, by default, the return type of value function is int, the �integer� value of sum at this

point is returned to main and assigned to the variable amount by the functional call

amount = value (principal, inrate, period);

The following events occur, in order, when the above function call is executed:

1. The function call transfers the control along with copies of the values of the actual arguments to the

function value where the formal arguments p, r, and n are assigned the actual values of principal,

inrate and period respectively.

2. The called function value is executed line by line in a normal fashion until the return(sum);

statement is encountered. At this point, the integer value of sum is passed back to the function-call

in the main and the following indirect assignment occurs:

value(principal, inrate, period) = sum;

Computer Programming14.24

3. The calling statement is executed normally and the returned value is thus assigned to amount, a

float variable.

4. Since amount is a float variable, the returned integer part of sum is converted to floating-point

value. See the output.

Another important change is the inclusion of second argument to printline function to

receive the value of length of the line from the calling function. Thus, the function call

printline(‘*’, 52);

will transfer the control to the function printline and assign the following values to the

formal arguments ch, and len;

ch = ‘*’ ;
len = 52;

Returning Float Values

We mentioned earlier that a C function returns a value of the type int as the default case

when no other type is specified explicitly. For example, the function value of Example 14.3
does all calculations using floats but the return statement

return(sum);

returns only the integer part of sum. This is due to the absence of the type-specifier in the

function header. In this case, we can accept the integer value of sum because the truncated

decimal part is insignificant compared to the integer part. However, there will be times
when we may find it necessary to receive the float or double type of data. For example, a

function that calculates the mean or standard deviation of a set of values should return the
function value in either float or double.

In all such cases, we must explicitly specify the return type in both the function definition

and the prototype declaration.
If we have a mismatch between the type of data that the called function returns and the

type of data that the calling function expects, we will have unpredictable results. We must,
therefore, be very careful to make sure that both types are compatible.

Example 14.4 Write a function power that computes x raised to the power y for integers x and

y and returns double-type value.

Figure. 14.10 shows a power function that returns a double. The prototype declaration

double power(int, int);

appears in main, before power is called.

Program

User-Defined Functions 14.25

Output

Fig. 14.10 Power fuctions: Illustration of return of float values

Another way to guarantee that power�s type is declared before it is called in main is to

define the power function before we define main. Power�s type is then known from its

definition, so we no longer need its type declaration in main.

14.13 NO ARGUMENTS BUT RETURNS A VALUE

There could be occasions where we may need to design functions that may not take any

arguments but returns a value to the calling function. A typical example is the getchar

function declared in the header file <stdio.h>. We have used this function earlier in a

number of places. The getchar function has no parameters but it returns an integer type

data that represents a character.

We can design similar functions and use in our programs. Example:

Computer Programming14.26

14.14 FUNCTIONS THAT RETURN MULTIPLE VALUES

Up till now, we have illustrated functions that return just one value using a return state-

ment. That is because, a return statement can return only one value. Suppose, however, that

we want to get more information from a function. We can achieve this in C using the argu-

ments not only to receive information but also to send back information to the calling func-

tion. The arguments that are used to �send out� information are called output parameters.

The mechanism of sending back information through arguments is achieved using what

are known as the address operator (&) and indirection operator (*). Let us consider an exam-

ple to illustrate this.

The actual arguments x and y are input arguments, s and d are output arguments. In the

function call, while we pass the actual values of x and y to the function, we pass the ad-

dresses of locations where the values of s and d are stored in the memory. (That is why, the

operator & is called the address operator.) When the function is called the following assign-

ments occur:

value of x to a

value of y to b

address of s to sum

address of d to diff

User-Defined Functions 14.27

Note that indirection operator * in the declaration of sum and diff in the header indicates

these variables are to store addresses, not actual values of variables. Now, the variables sum

and diff point to the memory locations of s and d respectively.

(The operator * is known as indirection operator because it gives an indirect reference to

a variable through its address.)

In the body of the function, we have two statements:

The first one adds the values a and b and the result is stored in the memory location

pointed to by sum. Remember, this memory location is the same as the memory location of s.

Therefore, the value stored in the location pointed to by sum is the value of s.

Similarly, the value of a�b is stored in the location pointed to by diff, which is the same as

the location d. After the function call is implemented, the value of s is a+b and the value of d

is a�b. Output will be:

s = 30

d = 10

The variables *sum and *diff are known as pointers and sum and diff as pointer vari-

ables. Since they are declared as int, they can point to locations of int type data.

The use of pointer variables as actual parameters for communicating data between func-

tions is called �pass by pointers� or �call by address or reference�. Pointers and their applica-
tions are discussed in detail in Chapter 11.

Rules for Pass by Pointers

1. The types of the actual and formal arguments must be same.

2. The actual arguments (in the function call) must be the addresses of variables

that are local to the calling function.

3. The formal arguments in the function header must be prefixed by the indirec-

tion operatior *.

4. In the prototype, the arguments must be prefixed by the symbol *.

5. To access the value of an actual argument in the called function, we must use

the corresponding formal argument prefixed with the indirection operator *.

14.15 NESTING OF FUNCTIONS

C permits nesting of functions freely. main can call function1, which calls function2,

which calls function3, ���. and so on. There is in principle no limit as to how deeply

functions can be nested.

Consider the following program:

Computer Programming14.28

The above program calculates the ratio

a

b c-

and prints the result. We have the following three functions:

main()

ratio()

difference()

main reads the values of a, b and c and calls the function ratio to calculate the value

a/(b�c). This ratio cannot be evaluated if (b�c) = 0. Therefore, ratio calls another function

difference to test whether the difference (b�c) is zero or not; difference returns 1, if b is

not equal to c; otherwise returns zero to the function ratio. In turn, ratio calculates the

value a/(b�c) if it receives 1 and returns the result in float. In case, ratio receives zero from

difference, it sends back 0.0 to main indicating that (b�c) = 0.

Nesting of function calls is also possible. For example, a statement like

P = mul(mul(5,2),6);

is valid. This represents two sequential function calls. The inner function call is evaluated

first and the returned value is again used as an actual argument in the outer function call. If

mul returns the product of its arguments, then the value of p would be 60 (= 5´2´6).

Note that the nesting does not mean defining one function within another. Doing this is

illegal.

User-Defined Functions 14.29

14.16 RECURSION

When a called function in turn calls another function a process of �chaining� occurs. Recur-

sion is a special case of this process, where a function calls itself. A very simple example of

recursion is presented below:

main()
{

printf(“This is an example of recursion\n”)
main();

}

When executed, this program will produce an output something like this:

This is an example of recursion

This is an example of recursion

This is an example of recursion

This is an ex

Execution is terminated abruptly; otherwise the execution will continue indefinitely.

Another useful example of recursion is the evaluation of factorials of a given number. The

factorial of a number n is expressed as a series of repetitive multiplications as shown below:

factorial of n = n(n�1)(n�2).........1.

For example,

factorial of 4 = 4´3´2´1 = 24

A function to evaluate factorial of n is as follows:

Let us see how the recursion works. Assume n = 3. Since the value of n is not 1, the state-

ment

fact = n * factorial(n–1);

will be executed with n = 3. That is,

fact = 3 * factorial(2);

will be evaluated. The expression on the right-hand side includes a call to factorial with

n = 2. This call will return the following value:

2 * factorial(1)

Once again, factorial is called with n = 1. This time, the function returns 1. The sequence of

operations can be summarized as follows:

Computer Programming14.30

fact = 3 * factorial(2)

= 3 * 2 * factorial(1)

= 3 * 2 * 1

= 6

Recursive functions can be effectively used to solve problems where solution is expressed

in terms of successively applying the same solution to subsets of the problem. When we write

recursive functions, we must have an if statement somewhere to force the function to return

without the recursive call being executed. Otherwise, the function will never return.

14.17 PASSING ARRAYS TO FUNCTIONS

One-Dimensional Arrays

Like the values of simple variables, it is also possible to pass the values of an array to a

function. To pass a one-dimensional an array to a called function, it is sufficient to list the

name of the array, without any subscripts, and the size of the array as arguments. For

example, the call

largest(a,n)

will pass the whole array a to the called function. The called function expecting this call

must be appropriately defined. The largest function header might look like:

float largest(float array[], int size)

The function largest is defined to take two arguments, the array name and the size of the

array to specify the number of elements in the array. The declaration of the formal argument

array is made as follows:

float array[];

The pair of brackets informs the compiler that the argument array is an array of

numbers. It is not necessary to specify the size of the array here.

Let us consider a problem of finding the largest value in an array of elements. The

program is as follows:

User-Defined Functions 14.31

When the function call largest(value,4) is made, the values of all elements of array value

become the corresponding elements of array a in the called function. The largest function

finds the largest value in the array and returns the result to the main.

In C, the name of the array represents the address of its first element. By passing the

array name, we are, in fact, passing the address of the array to the called function. The array

in the called function now refers to the same array stored in the memory. Therefore, any

changes in the array in the called function will be reflected in the original array.

Passing addresses of parameters to the functions is referred to as pass by address (or pass

by pointers). Note that we cannot pass a whole array by value as we did in the case of

ordinary variables.

Example 14.5 Write a program to calculate the standard deviation of an array of values. The

array elements are read from the terminal. Use functions to calculate standard

deviation and mean.

Standard deviation of a set of n values is given by

S.D =
1

n
x xi

2

i 1

n

-

=

åa f

Where x is the mean of the values.

Program

Computer Programming14.32

Output

Fig. 14.11 Passing of arrays to a function

A multifunction program consisting of main, std_dev, and mean functions is shown in

Fig. 14.11. main reads the elements of the array value from the terminal and calls the

function std_dev to print the standard deviation of the array elements. Std_dev, in turn,

calls another function mean to supply the average value of the array elements.

Both std_dev and mean are defined as floats and therefore they are declared as floats

in the global section of the program.

Three Rules to Pass an Array to a Function

1. The function must be called by passing only the name of the array.

2. In the function definition, the formal parameter must be an array type; the size

of the array does not need to be specified.

3. The function prototype must show that the argument is an array.

User-Defined Functions 14.33

When dealing with array arguments, we should remember one major distinction. If a

function changes the values of the elements of an array, then these changes will be made to

the original array that passed to the function. When an entire array is passed as an argu-

ment, the contents of the array are not copied into the formal parameter array; instead,

information about the addresses of array elements are passed on to the function. Therefore,

any changes introduced to the array elements are truly reflected in the original array in the

calling function. However, this does not apply when an individual element is passed on as

argument. Example 14.6 highlights these concepts.

Example 14.6 Write a program that uses a function to sort an array of integers.

A program to sort an array of integers using the function sort() is given in Fig. 14.12. Its

output clearly shows that a function can change the values in an array passed as an argu-

ment.

Program

Computer Programming14.34

Output

Fig. 14.12 Sorting of array elements using a function

Two-Dimensional Arrays

Like simple arrays, we can also pass multi-dimensional arrays to functions. The approach is

similar to the one we did with one-dimensional arrays. The rules are simple.

1. The function must be called by passing only the array name.

2. In the function definition, we must indicate that the array has two-dimensions by including two

sets of brackets.

3. The size of the second dimension must be specified.

4. The prototype declaration should be similar to the function header.

The function given below calculates the average of the values in a two-dimensional ma-

trix.

This function can be used in a main function as illustrated below:

User-Defined Functions 14.35

14.18 PASSING STRINGS TO FUNCTIONS

The strings are treated as character arrays in C and therfore the rules for passing strings to

functions are very similar to those for passing arrays to functions.

Basic rules are:

1. The string to be passed must be declared as a formal argument of the function when it is defined.

Example:

void display(char item_name[])

{

.

.

}

2. The function prototype must show that the argument is a string. For the above function definition,

the prototype can be written as

void display(char str[]);

3. A call to the function must have a string array name without subscripts as its actual argument.

Example:

display (names);

where names is a properly declared string array in the calling function.

We must note here that, like arrays, strings in C cannot be passed by value to

functions.

Pass by Value versus Pass by Pointers

The technique used to pass data from one function to another is known as param-

eter passing. Parameter passing can be done in two ways:

· Pass by value (also known as call by value).

· Pass by Pointers (also known as call by pointers).

In pass by value, values of actual parameters are copied to the variables in the

parameter list of the called function. The called function works on the copy and not

on the original values of the actual parameters. This ensures that the original data

in the calling function cannot be changed accidentally.

Computer Programming14.36

In pass by pointers (also known as pass by address), the memory addresses of the

variables rather than the copies of values are sent to the called function. In this

case, the called function directly works on the data in the calling function and the

changed values are available in the calling function for its use.

Pass by pointers method is often used when manipulating arrays and strings.

This method is also used when we require multiple values to be returned by the

called function.

14.19 THE SCOPE, VISIBILITY AND LIFETIME OF VARIABLES

Variables in C differ in behaviour from those in most other languages. For example, in a

BASIC program, a variable retains its value throughout the program. It is not always the

case in C. It all depends on the �storage� class a variable may assume.

In C not only do all variables have a data type, they also have a storage class. The follow-

ing variable storage classes are most relevant to functions:

1. Automatic variables.

2. External variables.

3. Static variables.

4. Register variables.

We shall briefly discuss the scope, visibility and longevity of each of the above class of

variables. The scope of variable determines over what region of the program a variable is

actually available for use (�active�). Longevity refers to the period during which a variable

retains a given value during execution of a program (�alive�). So longevity has a direct effect

on the utility of a given variable. The visibility refers to the accessibility of a variable from

the memory.

The variables may also be broadly categorized, depending on the place of their declara-

tion, as internal (local) or external (global). Internal variables are those which are declared

within a particular function, while external variables are declared outside of any function.

It is very important to understand the concept of storage classes and their utility in order

to develop efficient multifunction programs.

Automatic Variables

Automatic variables are declared inside a function in which they are to be utilized. They are

created when the function is called and destroyed automatically when the function is exited,

hence the name automatic. Automatic variables are therefore private (or local) to the func-

tion in which they are declared. Because of this property, automatic variables are also re-

ferred to as local or internal variables.

A variable declared inside a function without storage class specification is, by default, an

automatic variable. For instance, the storage class of the variable number in the example

below is automatic.

User-Defined Functions 14.37

We may also use the keyword auto to declare automatic variables explicitly.

One important feature of automatic variables is that their value cannot be changed acci-

dentally by what happens in some other function in the program. This assures that we may

declare and use the same variable name in different functions in the same program without

causing any confusion to the compiler.

Example 14.7 Write a multifunction to illustrate how automatic variables work.

A program with two subprograms function1 and function2 is shown in Fig. 14.13. m is an
automatic variable and it is declared at the beginning of each function. m is initialized to 10,

100, and 1000 in function1, function2, and main respectively.

When executed, main calls function2 which in turn calls function1. When main is

active, m = 1000; but when function2 is called, the main�s m is temporarily put on the shelf

and the new local m = 100 becomes active. Similarly, when function1 is called, both the

previous values of m are put on the shelf and the latest value of m (=10) becomes active. As

soon as function1 (m=10) is finished, function2 (m=100) takes over again. As soon it is

done, main (m=1000) takes over. The output clearly shows that the value assigned to m in

one function does not affect its value in the other functions; and the local value of m is

destroyed when it leaves a function.

Program

Computer Programming14.38

Output

Fig. 14.13 Working of automatic variables

There are two consequences of the scope and longevity of auto variables worth remember-
ing. First, any variable local to main will be normally alive throughout the whole program,
although it is active only in main. Secondly, during recursion, the nested variables are
unique auto variables, a situation similar to function-nested auto variables with identical
names.

External Variables

Variables that are both alive and active throughout the entire program are known as exter-
nal variables. They are also known as global variables. Unlike local variables, global vari-
ables can be accessed by any function in the program. External variables are declared out-
side a function. For example, the external declaration of integer number and float length
might appear as:

� � �� �� �

� � �� �� �

� � �� �� �

User-Defined Functions 14.39

� � �� � � �

� � �� � � �

� � �� � � �

The variables number and length are available for use in all the three functions. In case
a local variable and a global variable have the same name, the local variable will have prec-
edence over the global one in the function where it is declared. Consider the following exam-
ple:

� � �� �

� � �� �

� � � � � �

� � � � � �

When the function references the variable count, it will be referencing only its local vari-
able, not the global one. The value of count in main will not be affected.

Example 14.8 Write a multifunction program to illustrate the properties of global variables.

A program to illustrate the properties of global variables is presented in Fig. 14.14. Note that
variable x is used in all functions but none except fun2, has a definition for x. Because x has
been declared �above� all the functions, it is available to each function without having to pass
x as a function argument. Further, since the value of x is directly available, we need not use
return(x) statements in fun1 and fun3. However, since fun2 has a definition of x, it re-
turns its local value of x and therefore uses a return statement. In fun2, the global x is not
visible. The local x hides its visibility here.

Program

Computer Programming14.40

Output

Fig. 14.14 Illustration of properties of global variables

Once a variable has been declared as global, any function can use it and change its value.

Then, subsequent functions can reference only that new value.

Global Variables as Parameters

Since all functions in a program source file can access global variables, they can be

used for passing values between the functions. However, using global variables as

parameters for passing values poses certain problems.

· The values of global variables which are sent to the called function may be

changed inadvertently by the called function.

· Functions are supposed to be independent and isolated modules. This character

is lost, if they use global variables.

· It is not immediately apparent to the reader which values are being sent to the

called function.

· A function that uses global variables suffers from reusability.

User-Defined Functions 14.41

One other aspect of a global variable is that it is available only from the point of declara-

tion to the end of the program. Consider a program segment as shown below:

We have a problem here. As far as main is concerned, y is not defined. So, the compiler

will issue an error message. Unlike local variables, global variables are initialized to zero by

default. The statement

y = y+1;

in fun1 will, therefore, assign 1 to y.

External Declaration

In the program segment above, the main cannot access the variable y as it has been declared

after the main function. This problem can be solved by declaring the variable with the stor-

age class extern.

For example:

extern int

extern int

Although the variable y has been defined after both the functions, the external declara-

tion of y inside the functions informs the compiler that y is an integer type defined some-

where else in the program. Note that extern declaration does not allocate storage space for

variables. In case of arrays, the definition should include their size as well.

Computer Programming14.42

Example:

extern

extern

An extern within a function provides the type information to just that one function.
We can provide type information to all functions within a file by placing external declara-
tions before any of them.

Example:

extern

The distinction between definition and declaration also applies to functions. A function
is defined when its parameters and function body are specified. This tells the compiler to
allocate space for the function code and provides type information for the parameters.
Since functions are external by default, we declare them (in the calling functions) without
the qualifier extern. Therefore, the declaration

void print_out(void);

is equivalent to

extern void print_out(void);

User-Defined Functions 14.43

Function declarations outside of any function behave the same way as variable declara-

tions.

Static Variables

As the name suggests, the value of static variables persists until the end of the program. A

variable can be declared static using the keyword static like

static int x;
static float y;

A static variable may be either an internal type or an external type depending on the place

of declaration.

Internal static variables are those which are declared inside a function. The scope of inter-

nal static variables extend up to the end of the function in which they are defined. Therefore,

internal static variables are similar to auto variables, except that they remain in existence

(alive) throughout the remainder of the program. Therefore, internal static variables can be

used to retain values between function calls. For example, it can be used to count the number

of calls made to a function.

Example 14.9 Write a program to illustrate the properties of a static variable.

The program in Fig. 14.15 explains the behaviour of a static variable.

Program

Output

Fig. 14.15 Illustration of static variable

Computer Programming14.44

A static variable is initialized only once, when the program is compiled. It is never initial-

ized again. During the first call to stat, x is incremented to 1. Because x is static, this value

persists and therefore, the next call adds another 1 to x giving it a value of 2. The value of x

becomes three when the third call is made.

Had we declared x as an auto variable, the output would have been:

x = 1

x = 1

x = 1

This is because each time stat is called, the auto variable x is initialized to zero.

When the function terminates, its value of 1 is lost.

An external static variable is declared outside of all functions and is available to all

the functions in that program. The difference between a static external variable and a sim-

ple external variable is that the static external variable is available only within the file

where it is defined while the simple external variable can be accessed by other files.

It is also possible to control the scope of a function. For example, we would like a

particular function accessible only to the functions in the file in which it is defined, and not

to any function in other files. This can be accomplished by defining �that� function with the

storage class static.

Register Variables

We can tell the compiler that a variable should be kept in one of the machine�s registers,

instead of keeping in the memory (where normal variables are stored). Since a register ac-

cess is much faster than a memory access, keeping the frequently accessed variables (e.g.,

loop control variables) in the register will lead to faster execution of programs. This is done

as follows:

register int

Although, ANSI standard does not restrict its application to any particular data type,

most compilers allow only int or char variables to be placed in the register.

Since only a few variables can be placed in the register, it is important to carefully select

the variables for this purpose. However, C will automatically convert register variables into

non-register variables once the limit is reached.

Table 14.1 summarizes the information on the visibility and lifetime of variables in func-

tions and files.

Table 14.1 Scope and Lifetime of Variables

Storage Where declared Visibility Lifetime

Class (Active) (Alive)

None Before all functions Entire file plus Entire

in a file (may be other files where program

initialized) variable is dec- (Global)

lared with extern

extern Before all functions Entire file plus Global

in a file (cannot be other files where

(Contd.)

User-Defined Functions 14.45

Storage Where declared Visibility Lifetime

Class (Active) (Alive)

initialized) variable is declared

extern and the file

where originally

declared as global.

static Before all functions Only in that file Global

in a file

None or Inside a function (or Only in that Until end of

auto a block) function or block function or

block

register Inside a function or Only in that Until end of

block function or block function or block

static Inside a function Only in that function Global

Nested Blocks

A set of statements enclosed in a set of braces is known a block or a compound statement.

Note that all functions including the main use compound statement. A block can have its

own declarations and other statements. It is also possible to have a block of such statements

inside the body of a function or another block, thus creating what is known as nested blocks

as shown below:

When this program is executed, the value c will be 10, not 30. The statement b = a; assigns

a value of 20 to b and not zero. Although the scope of a extends up to the end of main it is not

�visible� inside the inner block where the variable a has been declared again. The inner a

hides the visibility of the outer a in the inner block. However, when we leave the inner block,

the inner a is no longer in scope and the outer a becomes visible again.

Remember, the variable b is not re-declared in the inner block and therefore it is visible in

both the blocks. That is why when the statement

int c = a + b;

is evaluated, a assumes a values of 0 and b assumes a value of 10.

Although main�s variables are visible inside the nested block, the reverse is not true.

Computer Programming14.46

Scope Rules

Scope

The region of a program in which a variable is available for use.

Visibility

The program�s ability to access a variable from the memory.

Lifetime

The lifetime of a variable is the duration of time in which a variable exists in the

memory during execution.

Rules of use

1. The scope of a global variable is the entire program file.

2. The scope of a local variable begins at point of declaration and ends at the end

of the block or function in which it is declared.

3. The scope of a formal function argument is its own function.

4. The lifetime (or longevity) of an auto variable declared in main is the entire

program execution time, although its scope is only the main function.

5. The life of an auto variable declared in a function ends when the function is

exited.

6. A static local variable, although its scope is limited to its function, its lifetime

extends till the end of program execution.

7. All variables have visibility in their scope, provided they are not declared again.

8. If a variable is redeclared within its scope again, it loses its visibility in the

scope of the redeclared variable.

14.20 MULTIFILE PROGRAMS

So far we have been assuming that all the functions (including the main) are defined in one

file. However, in real-life programming environment, we may use more than one source files

which may be compiled separately and linked later to form an executable object code. This

approach is very useful because any change in one file does not affect other files thus elimi-

nating the need for recompilation of the entire program.

Multiple source files can share a variable provided it is declared as an external variable

appropriately. Variables that are shared by two or more files are global variables and there-

fore we must declare them accordingly in one file and then explicitly define them with ex-

tern in other files. Figure 14.16 illustrates the use of extern declarations in a multifile

program.

The function main in file1 can reference the variable m that is declared as global in file2.

Remember, function1 cannot access the variable m. If, however, the extern int m; state-

ment is placed before main, then both the functions could refer to m. This can also be

achieved by using extern int m; statement inside each function in file1.

User-Defined Functions 14.47

The extern specifier tells the compiler that the following variable types and names have

already been declared elsewhere and no need to create storage space for them. It is the

responsibility of the linker to resolve the reference problem. It is important to note that a

multifile global variable should be declared without extern in one (and only one) of the files.

The extern declaration is done in places where secondary references are made. If we declare

a variable as global in two different files used by a single program, then the linker will have

a conflict as to which variable to use and, therefore, issues a warning.

file1.c file2.c

int m

extern

Fig. 14.16 Use of extern in a multifile program

The multifile program shown in Fig. 14.16 can be modified as shown in Fig. 14.17.

file1.c file2.c

int m; extern

Fig. 14.17 Another version of a multifile program

Computer Programming14.48

When a function is defined in one file and accessed in another, the later file must include

a function declaration. The declaration identifies the function as an external function whose

definition appears elsewhere. We usually place such declarations at the beginning of the file,

before all functions. Although all functions are assumed to be external, it would be a good

practice to explicitly declare such functions with the storage class extern.

- It is a syntax error if the types in the declaration and function definition do

not match.

- It is a syntax error if the number of actual parameters in the function call

do not match the number in the declaration statement.

- It is a logic error if the parameters in the function call are placed in the

wrong order.

- It is illegal to use the name of a formal argument as the name of a local

variable.

- Using void as return type when the function is expected to return a value

is an error.

- Trying to return a value when the function type is marked void is an

error.

- Variables in the parameter list must be individually declared for their

types. We cannot use multiple declarations (like we do with local or global

variables).

- A return statement is required if the return type is anything other than

void.

- If a function does not return any value, the return type must be declared

void.

- If a function has no parameters, the parameter list must be declared void.

- Placing a semicolon at the end of header line is illegal.

- Forgetting the semicolon at the end of a prototype declaration is an error.

- Defining a function within the body of another function is not allowed.

- It is an error if the type of data returned does not match the return type of

the function.

- It will most likely result in logic error if there is a mismatch in data types

between the actual and formal arguments.

- Functions return integer value by default.

- A function without a return statement cannot return a value, when the

parameters are passed by value.

- A function that returns a value can be used in expressions like any other C

variable.

- When the value returned is assigned to a variable, the value will be con-

verted to the type of the variable receiving it.

- Function cannot be the target of an assignment.

User-Defined Functions 14.49

- A function with void return type cannot be used in the right-hand side of

an assignment statement. It can be used only as a stand-alone statement.

- A function that returns a value cannot be used as a stand-alone statement.

- A return statement can occur anywhere within the body of a function.

- A function can have more than one return statement.

- A function definition may be placed either after or before the main func-

tion.

- Where more functions are used, they may be placed in any order.

- A global variable used in a function will retain its value for future use.

- A local variable defined inside a function is known only to that function. It

is destroyed when the function is exited.

- A global variable is visible only from the point of its declaration to the end

of the program.

- When a variable is redeclared within its scope either in a function or in a

block, the original variable is not visible within the scope of the redeclared

variable.

- A local variable declared static retains its value even after the function is

exited.

- Static variables are initialized at compile time and therefore they are ini-

tialized only once.

- Use parameter passing by values as far as possible to avoid inadvertent

changes to variables of calling function in the called function.

- Although not essential, include parameter names in the prototype declara-

tions for documentation purposes.

- Avoid the use of names that hide names in outer scope.

Calculation of Area under a Curve

One of the applications of computers in numerical analysis is computing the area under a

curve. One simple method of calculating the area under a curve is to divide the area into a

number of trapezoids of same width and summing up the area of individual trapezoids. The

area of a trapezoid is given by

Area = 0.5
*
 (h1 + h2)

*
b

where h1 and h2 are the heights of two sides and b is the width as shown in Fig. 14.18.

The program in Fig. 14.20 calculates the area for a curve of the function

f(x) = x2 + 1

between any two given limits, say, A and B.

Input

Lower limit (A)

Upper limit (B)

Number of trapezoids

Computer Programming14.50

Output

Total area under the curve between the given limits.

Algorithm

1. Input the lower and upper limits and the number of trapezoids.

2. Calculate the width of trapezoids.

3. Initialize the total area.

4. Calculate the area of trapezoid and add to the total area.

5. Repeat step-4 until all the trapezoids are completed.

6. Print total area.

The algorithm is implemented in top-down modular form as in Fig. 14.19.

main

input find_area

function_x trap_area

Fig. 14.19 Modular chart

The evaluation of f(x) has been done using a separate function so that it can be easily

modified to allow other functions to be evaluated.

The output for two runs shows that better accuracy is achieved with larger number of

trapezoids. The actual area for the limits 0 and 3 is 12 units (by analytical method).

f(x)
h1 h2

b

A Bx

Curve

Fig. 14.18 Area under a curve

User-Defined Functions 14.51

Program

Computer Programming14.52

Output

Fig. 14.20 Computing area under a curve

14.1 State whether the following statements are true or false.

(a) C functions can return only one value under their function name.

(b) A function in C should have at least one argument.

(c) A function can be defined and placed before the main function.

(d) A function can be defined within the main function.

(e) An user-defined function must be called at least once; otherwise a warning message will be

issued.

(f) Any name can be used as a function name.

(g) Only a void type function can have void as its argument.

(h) When variable values are passed to functions, a copy of them are created in the memory.

(i) Program execution always begins in the main function irrespective of its location in the pro-

gram.

(j) Global variables are visible in all blocks and functions in the program.

(k) A function can call itself.

(l) A function without a return statement is illegal.

(m) Global variables cannot be declared as auto variables.

(n) A function prototype must always be placed outside the calling function.

(o) The return type of a function is int by default.

(p) The variable names used in prototype should match those used in the function definition.

(q) In parameter passing by pointers, the formal parameters must be prefixed with the symbol * in

their declarations.

User-Defined Functions 14.53

(r) In parameter passing by pointers, the actual parameters in the function call may be variables

or constants.

(s) In passing arrays to functions, the function call must have the name of the array to be passed

without brackets.

(t) In passing strings to functions, the actual parameter must be name of the string post-fixed

with size in brackets.

14.2 Fill in the blanks in the following statements.

(a) The parameters used in a function call are called ______.

(b) A variable declared inside a function is called _________.

(c) By default, ______ is the return type of a C function.

(d) In passing by pointers, the variables of the formal parameters must be prefixed with _______

in their declaration.

(e) In prototype declaration, specifying ____ is optional.

(f) _________ refers to the region where a variable is actually available for use.

(g) A function that calls itself is known as a _______ function.

(h) If a local variable has to retain its value between calls to the function, it must be declared as

_________.

(i) A _______ aids the compiler to check the matching between the actual arguments and the

formal ones.

(j) A variable declared inside a function by default assumes ______ storage class.

14.3 The main is a user-defined function. How does it differ from other user-defined functions?

14.4 Describe the two ways of passing parameters to functions. When do you prefer to use each of them?

14.5 What is prototyping? Why is it necessary?

14.6 Distinguish between the following:

(a) Actual and formal arguments

(b) Global and local variables

(c) Automatic and static variables

(d) Scope and visibility of variables

(e) & operator and * operator

14.7 Explain what is likely to happen when the following situations are encountered in a program.

(a) Actual arguments are less than the formal arguments in a function.

(b) Data type of one of the actual arguments does not match with the type of the corresponding

formal argument.

(c) Data type of one of the arguments in a prototype does not match with the type of the corre-

sponding formal parameter in the header line.

(d) The order of actual parameters in the function call is different from the order of formal param-

eters in a function where all the parameters are of the same type.

(e) The type of expression used in return statement does not match with the type of the function.

14.8 Which of the following prototype declarations are invalid? Why?

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Computer Programming14.54

14.9 Which of the following header lines are invalid? Why?

(a)

(b)

(c)

(d)

(e)

(f)

(g)

14.10 Find errors, if any, in the following function definitions:

14.11 Find errors in the following function calls:

(a)

(b)

(c)

(d)

(e)

14.12 A function to divide two floating point numbers is as follows:

User-Defined Functions 14.55

What will be the value of the following function calls�

(a) divide (10, 2)

(b) divide (9, 2)

(c) divide (4.5, 1.5)

(d) divide (2.0, 3.0)

14.13 What will be the effect on the above function calls if we change the header line as follows:

(a) int divide (int x, int y)

(b) double divide (float x, float y)

14.14 Determine the output of the following program?

14.15 What will be the output of the following program?

14.16 The function test is coded as follows:

Computer Programming14.56

What will be the values of x and y when the following statements are executed?

14.17 Enumerate the rules that apply to a function call.

14.18 Summarize the rules for passing parameters to functions by pointers.

14.19 What are the rules that govern the passing of arrays to function?

14.20 State the problems we are likely to encounter when we pass global variables as param-

eters to functions.

14.1 Write a function exchange to interchange the values of two variables, say x and y. Illustrate the use

of this function, in a calling function. Assume that x and y are defined as global variables.

14.2 Write a function space(x) that can be used to provide a space of x positions between two output

numbers. Demonstrate its application.

14.3 Use recursive function calls to evaluate

f(x) = x �
x

3!

3

 +
x

5!

5

 �
x

7!

7

 +.....

14.4 An n_order polynomial can be evaluated as follows:

P = (.....(((a0x+a1)x+a2)x+a3)x+..+an)

Write a function to evaluate the polynomial, using an array variable. Test it using a main program.

14.5 The Fibonacci numbers are defined recursively as follows:

F1 = 1

F2 = 1

Fn = F n�1+F n�2, n > 2

Write a function that will generate and print the first n Fibonacci numbers. Test the function for n

= 5, 10, and 15.

14.6 Write a function that will round a floating-point number to an indicated decimal place. For ex-

ample the number 17.457 would yield the value 17.46 when it is rounded off to two decimal places.

14.7 Write a function prime that returns 1 if its argument is a prime number and returns zero otherwise.

14.8 Write a function that will scan a character string passed as an argument and convert all lowercase

characters into their uppercase equivalents.

14.9 Develop a top_down modular program to implement a calculator. The program should request the

user to input two numbers and display one of the following as per the desire of the user:

(a) Sum of the numbers

(b) Difference of the numbers

(c) Product of the numbers

(d) Division of the numbers

Provide separate functions for performing various tasks such as reading, calculating and display-

ing. Calculating module should call second level modules to perform the individual mathematical

operations. The main function should have only function calls.

User-Defined Functions 14.57

14.10 Develop a modular interactive program using functions that reads the values of three sides of a

triangle and displays either its area or its perimeter as per the request of the user. Given the three

sides a, b and c.

Perimeter = a + b + c

Area = (s � a) (s � b) (s � c)

where s = (a+b+c)/2

14.11 Write a function that can be called to find the largest element of an m by n matrix.

14.12 Write a function that can be called to compute the product of two matrices of size m by n and n by

m. The main function provides the values for m and n and two matrices.

14.13 Design and code an interactive modular program that will use functions to a matrix of m by n size,

compute column averages and row averages, and then print the entire matrix with averages shown

in respective rows and columns.

14.14 Develop a top-down modular program that will perform the following tasks:

(a) Read two integer arrays with unsorted elements.

(b) Sort them in ascending order

(c) Merge the sorted arrays

(d) Print the sorted list

Use functions for carrying out each of the above tasks. The main function should have only func-

tion calls.

14.15 Develop your own functions for performing following operations on strings:

(a) Copying one string to another

(b) Comparing two strings

(c) Adding a string to the end of another string

Write a driver program to test your functions.

14.16 Write a program that invokes a function called find() to perform the following tasks:

(a) Receives a character array and a single character.

(b) Returns 1 if the specified character is found in the array, 0 otherwise.

14.17 Design a function locate () that takes two character arrays s1 and s2 and one integer

value m as parameters and inserts the string s2 into s1 immediately after the index

m.

Write a program to test the function using a real-life situation. (Hint: s2 may be a

missing word in s1 that represents a line of text).

14.18 Write a function that takes an integer parameter m representing the month number

of the year and returns the corresponding name of the month. For instance, if m = 3,

the month is March.

Test your program.

14.19 In preparing the calendar for a year we need to know whether that particular year is

leap year or not. Design a function leap() that receives the year as a parameter and

returns an appropriate message.

What modifications are required if we want to use the function in preparing the actual

calendar?

14.20 Write a function that receives a floating point value x and returns it as a value

rounded to two nearest decimal places. For example, the value 123.4567 will be

rounded to 123.46 (Hint: Seek help of one of the math functions available in math

library).

Pointers

15.1 INTRODUCTION

A pointer is a derived data type in C. It is built from one of the fundamental data types

available in C. Pointers contain memory addresses as their values. Since these memory

addresses are the locations in the computer memory where program instructions and data

are stored, pointers can be used to access and manipulate data stored in the memory.

Pointers are undoubtedly one of the most distinct and exciting features of C language. It

has added power and flexibility to the language. Although they appear little confusing and

difficult to understand for a beginner, they are a powerful tool and handy to use once they

are mastered.

Pointers are used frequently in C, as they offer a number of benefits to the programmers.

They include:

1. Pointers are more efficient in handling arrays and data tables.

2. Pointers can be used to return multiple values from a function via function argu-

ments.

3. Pointers permit references to functions and thereby facilitating passing of functions

as arguments to other functions.

4. The use of pointer arrays to character strings results in saving of data storage space in

memory.

5. Pointers allow C to support dynamic memory management.

6. Pointers provide an efficient tool for manipulating dynamic data structures such as

structures, linked lists, queues, stacks and trees.

7. Pointers reduce length and complexity of programs.

8. They increase the execution speed and thus reduce the program execution time.

Of course, the real power of C lies in the proper use of pointers. In this chapter, we will

examine the pointers in detail and illustrate how to use them in program development.

Chapter 13 examines the use of pointers for creating and managing linked lists.

15.2 UNDERSTANDING POINTERS

The computer�s memory is a sequential collection of storage cells as shown in Fig. 15.1. Each

cell, commonly known as a byte, has a number called address associated with it. Typically,

15

Computer Programming15.2

the addresses are numbered consecutively, starting from zero. The last address depends on

the memory size. A computer system having 64 K memory will have its last address as

65,535.

0

Memory Cell Address

1

2

3

4

5

6

7

65,535

Fig. 15.1 Memory organisation

Whenever we declare a variable, the system allocates, somewhere in the memory, an ap-

propriate location to hold the value of the variable. Since, every byte has a unique address

number, this location will have its own address number. Consider the following statement

int quantity = 179;

This statement instructs the system to find a location for the integer variable quantity

and puts the value 179 in that location. Let us assume that the system has chosen the address

location 5000 for quantity. We may represent this as shown in Fig. 15.2. (Note that the

address of a variable is the address of the first bye occupied by that variable)

Variable

Address

Value

Quantity

5000

179

Fig. 15.2 Representation of a variable

Pointers 15.3

During execution of the program, the system always associates the name quantity with

the address 5000. (This is something similar to having a house number as well as a house

name.) We may have access to the value 179 by using either the name quantity or the

address 5000. Since memory addresses are simply numbers, they can be assigned to some

variables, that can be stored in memory, like any other variable. Such variables that hold

memory addresses are called pointer variables. A pointer variable is, therefore, nothing but

a variable that contains an address, which is a location of another variable in memory.

Remember, since a pointer is a variable, its value is also stored in the memory in another

location. Suppose, we assign the address of quantity to a variable p. The link between the

variables p and quantity can be visualized as shown in Fig.15.3. The address of p is 5048.

quantity

P

Variable Value Address

179 5000

5000 5048

Fig. 15.3 Pointer variable

Since the value of the variable p is the address of the variable quantity, we may access

the value of quantity by using the value of p and therefore, we say that the variable p

�points� to the variable quantity. Thus, p gets the name �pointer�. (We are not really

concerned about the actual values of pointer variables. They may be different everytime we

run the program. What we are concerned about is the relationship between the variables p

and quantity.)

Underlying Concepts of Pointers

Pointers are built on the three underlying concepts as illustrated below:

Pointers

Pointer

constants

Pointer

values

Pointer

variables

Computer Programming15.4

Memory addresses within a computer are referred to as pointer constants. We can-

not change them; we can only use them to store data values. They are like house

numbers.

We cannot save the value of a memory address directly. We can only obtain the

value through the variable stored there using the address operator (&). The value

thus obtained is known as pointer value. The pointer value (i.e. the address of a

variable) may change from one run of the program to another.

Once we have a pointer value, it can be stored into another variable. The vari-

able that contains a pointer value is called a pointer variable.

15.3 ACCESSING THE ADDRESS OF A VARIABLE

The actual location of a variable in the memory is system dependent and therefore, the

address of a variable is not known to us immediately. How can we then determine the

address of a variable? This can be done with the help of the operator & available in C. We

have already seen the use of this address operator in the scanf function. The operator &

immediately preceding a variable returns the address of the variable associated with it. For

example, the statement
p = &quantity;

would assign the address 5000 (the location of quantity) to the variable p. The & operator

can be remembered as �address of �.

The & operator can be used only with a simple variable or an array element. The following

are illegal use of address operator:

1. &125 (pointing at constants).

2. int x[10];

&x (pointing at array names).

3. &(x+y) (pointing at expressions).

If x is an array, then expressions such as

&x[0] and &x[i+3]

are valid and represent the addresses of 0th and (i+3)th elements of x.

Example 15.1 Write a program to print the address of a variable along with its value.

The program shown in Fig. 15.4, declares and initializes four variables and then prints out

these values with their respective storage locations. Note that we have used %u format for

printing address values. Memory addresses are unsigned integers.

 Program
 main()
 {
 char a;
 int x;

Pointers 15.5

 float p, q;

 a = 'A';
 x = 125;
 p = 10.25, q = 18.76;
 printf("%c is stored at addr %u.\n", a, &a);
 printf("%d is stored at addr %u.\n", x, &x);
 printf("%f is stored at addr %u.\n", p, &p);
 printf("%f is stored at addr %u.\n", q, &q);

 }

Output

 A is stored at addr 4436.
 125 is stored at addr 4434.
 10.250000 is stored at addr 4442.
 18.760000 is stored at addr 4438.

Fig. 15.4 Accessing the address of a variable

15.4 DECLARING POINTER VARIABLES

In C, every variable must be declared for its type. Since pointer variables contain addresses

that belong to a separate data type, they must be declared as pointers before we use them.

The declaration of a pointer variable takes the following form:

data_type *pt_name;

This tells the compiler three things about the variable pt_name.

1. The asterisk (*) tells that the variable pt_name is a pointer variable.

2. pt_name needs a memory location.

3. pt_name points to a variable of type data_type.

For example,

int *p; /* integer pointer */

declares the variable p as a pointer variable that points to an integer data type. Remember

that the type int refers to the data type of the variable being pointed to by p and not the type

of the value of the pointer. Similarly, the statement

float *x; / * float pointer */

declares x as a pointer to a floating-point variable.

The declarations cause the compiler to allocate memory locations for the pointer variables

p and x. Since the memory locations have not been assigned any values, these locations may

contain some unknown values in them and therefore they point to unknown locations as

shown:

Computer Programming15.6

int *p; p

contains
garbage

points to
unknown location

? ?

Pointer Declaration Style

Pointer variables are declared similarly as normal variables except for the addition

of the unary * operator. This symbol can appear anywhere between the type name

and the printer variable name. Programmers use the following styles:

int* p; /* style 1 */
int *p; /* style 2 */

int * p; /* style 3 */

However, the style2 is becoming increasingly popular due to the following reasons:

1. This style is convenient to have multiple declarations in the same statement.
Example:

int *p, x, *q;

2. This style matches with the format used for accessing the target values. Exam-

ple:

int x, *p, y;

x = 10;

p = & x;
y = *p; /* accessing x through p */

p = 20; / assigning 20 to x */

We use in this book the style 2, namely,

int *p;

15.5 INITIALIZATION OF POINTER VARIABLES

The process of assigning the address of a variable to a pointer variable is known as initiali-

zation. As pointed out earlier, all uninitialized pointers will have some unknown values that

will be interpreted as memory addresses. They may not be valid addresses or they may point

to some values that are wrong. Since the compilers do not detect these errors, the programs

with uninitialized pointers will produce erroneous results. It is therefore important to ini-

tialize pointer variables carefully before they are used in the program.

Once a pointer variable has been declared we can use the assignment operator to initialize

the variable. Example:
int quantity;

Pointers 15.7

int *p; /* declaration */
p = &quantity; /* initialization */

We can also combine the initialization with the declaration. That is,
int *p = &quantity;

is allowed. The only requirement here is that the variable quantity must be declared before

the initialization takes place. Remember, this is an initialization of p and not *p.

We must ensure that the pointer variables always point to the corresponding type of data.

For example,

float a, b;
int x, *p;
p = &a; /* wrong */
b = *p;

will result in erroneous output because we are trying to assign the address of a float variable

to an integer pointer. When we declare a pointer to be of int type, the system assumes

that any address that the pointer will hold will point to an integer variable. Since the

compiler will not detect such errors, care should be taken to avoid wrong pointer

assignments.

It is also possible to combine the declaration of data variable, the declaration of pointer

variable and the initialization of the pointer variable in one step. For example,

int x, *p = &x; /* three in one */

is perfectly valid. It declares x as an integer variable and p as a pointer variable and then

initializes p to the address of x. And also remember that the target variable x is declared

first. The statement

int *p = &x, x;

is not valid.

We could also define a pointer variable with an initial value of NULL or 0 (zero). That is,

the following statements are valued

int *p = NULL;
int *p = 0;

Pointer Flexibility

Pointers are flexible. We can make the same pointer to point to different data

variables in different statements. Example;

int x, y, z, *p;

.

p = &x;

.

p = &y;

.

p = &z;

.

x y

p

z

Computer Programming15.8

We can also use different pointers to point to the same data variable. Example.
int x;
int *p1 = &x;
int *p2 = &x;
int *p3 = &x;
.
.

With the exception of NULL and 0, no other constant value can be assigned to a pointer

variable. For example, the following is wrong:

int *p = 5360; / *absolute address */

15.6 ACCESSING A VARIABLE THROUGH ITS POINTER

Once a pointer has been assigned the address of a variable, the question remains as to how to

access the value of the variable using the pointer? This is done by using another unary

operator * (asterisk), usually known as the indirection operator. Another name for the

indirection operator is the dereferencing operator. Consider the following statements:

int quantity, *p, n;
quantity = 179;
p = &quantity;
n = *p;

The first line declares quantity and n as integer variables and p as a pointer variable

pointing to an integer. The second line assigns the value 179 to quantity and the third line

assigns the address of quantity to the pointer variable p. The fourth line contains the

indirection operator *. When the operator * is placed before a pointer variable in an

expression (on the right-hand side of the equal sign), the pointer returns the value of the

variable of which the pointer value is the address. In this case, *p returns the value of the

variable quantity, because p is the address of quantity. The * can be remembered as �value

at address�. Thus the value of n would be 179. The two statements

p = &quantity;
n = *p;

are equivalent to
n = *&quantity;

which in turn is equivalent to
n = quantity;

In C, the assignment of pointers and addresses is always done symbolically, by means of

symbolic names. You cannot access the value stored at the address 5368 by writing *5368. It

will not work. Example 15.2 illustrates the distinction between pointer value and the value

it points to.

Example 15.2 Write a program to illustrate the use of indirection operator �*� to access the

value pointed to by a printer.

x

p1 p2 p3

Pointers 15.9

The program and output are shown in Fig.15.5. The program clearly shows how we can

access the value of a variable using a pointer. You may notice that the value of the pointer

ptr is 4104 and the value it points to is 10. Further, you may also note the following

equivalences:
x = *(&x) = *ptr = y
&x = &*ptr

Program
 main()
 {

 int x, y;
 int *ptr;
 x = 10;
 ptr = &x;
 y = *ptr;

 printf("Value of x is %d\n\n",x);

 printf("%d is stored at addr %u\n", x, &x);
 printf("%d is stored at addr %u\n", *&x, &x);
 printf("%d is stored at addr %u\n", *ptr, ptr);
 printf("%d is stored at addr %u\n", ptr, &ptr);
 printf("%d is stored at addr %u\n", y, &y);
 *ptr = 25;

 printf("\nNow x = %d\n",x);

 }

Output

 Value of x is 10
 10 is stored at addr 4104
 10 is stored at addr 4104
 10 is stored at addr 4104
 4104 is stored at addr 4106
 10 is stored at addr 4108
 Now x = 25

Fig. 15.5 Accessing a variable through its pointer

The actions performed by the program are illustrated in Fig. 15.6. The statement ptr =

&x assigns the address of x to ptr and y = *ptr assigns the value pointed to by the pointer
ptr to y.

Note the use of the assignment statement

*ptr = 25;

Computer Programming15.10

This statement puts the value of 25 at the memory location whose address is the value of

ptr. We know that the value of ptr is the address of x and therefore, the old value of x is
replaced by 25. This, in effect, is equivalent to assigning 25 to x. This shows how we can

change the value of a variable indirectly using a pointer and the indirection operator.

x

4104

Values in the storage cells and their addressesStage

Declaration

x = 10

ptr = &x

y = *ptr

*ptr = 25

4104

4104

4104

4104

y

4108

4108

4108

4108

pointer to x

4106

4108

ptr

4106
address

address

address

address

4106

4106

4106

25

1010

10

10

10

4104

4104

4104

Fig. 15.6 Illustration of pointer assignments

15.7 CHAIN OF POINTERS

It is possible to make a pointer to point to another pointer, thus creating a chain of pointers

as shown.

p2 p1 variable

address 2 address 1 value

Here, the pointer variable p2 contains the address of the pointer variable p1, which points

to the location that contains the desired value. This is known as multiple indirections.

A variable that is a pointer to a pointer must be declared using additional indirection

operator symbols in front of the name. Example:

int **p2;

Pointers 15.11

This declaration tells the compiler that p2 is a pointer to a pointer of int type. Remember,

the pointer p2 is not a pointer to an integer, but rather a pointer to an integer pointer.

We can access the target value indirectly pointed to by pointer to a pointer by applying the

indirection operator twice. Consider the following code:
main ()
{

int x, *p1, **p2;
x = 100;
p1 = &x; /* address of x */
p2 = &p1 /* address of p1 */
printf (“%d”, **p2);

}

This code will display the value 100. Here, p1 is declared as a pointer to an integer and p2

as a pointer to a pointer to an integer.

15.8 POINTER EXPRESSIONS

Like other variables, pointer variables can be used in expressions. For example, if p1 and p2

are properly declared and initialized pointers, then the following statements are valid.

y = *p1 * *p2; same as (*p1) * (*p2)
sum = sum + *p1;
z = 5* – *p2/ *p1; same as (5 * (– (*p2)))/(*p1)
*p2 = *p2 + 10;

Note that there is a blank space between / and * in the item3 above. The following is wrong.
z = 5* – *p2 /*p1;

The symbol /* is considered as the beginning of a comment and therefore the statement

fails.

C allows us to add integers to or subtract integers from pointers, as well as to subtract one

pointer from another. p1 + 4, p2�2 and p1 � p2 are all allowed. If p1 and p2 are both pointers

to the same array, then p2 � p1 gives the number of elements between p1 and p2.

We may also use short-hand operators with the pointers.

p1++;
—p2;
sum += *p2;

In addition to arithmetic operations discussed above, pointers can also be compared using

the relational operators. The expressions such as p1 > p2, p1 = = p2, and p1 != p2 are

allowed. However, any comparison of pointers that refer to separate and unrelated variables

makes no sense. Comparisons can be used meaningfully in handling arrays and strings.

We may not use pointers in division or multiplication. For example, expressions such as

p1 / p2 or p1 * p2 or p1 / 3

are not allowed. Similarly, two pointers cannot be added. That is, p1 + p2 is illegal.

Example 15.3 Write a program to illustrate the use of pointers in arithmetic operations.

The program in Fig.15.7 shows how the pointer variables can be directly used in expressions.

It also illustrates the order of evaluation of expressions. For example, the expression

Computer Programming15.12

4* � *p2 / *p1 + 10

is evaluated as follows:

((4 * (�(*p2))) / (*p1)) + 10

When *p1 = 12 and *p2 = 4, this expression evaluates to 9. Remember, since all the vari-

ables are of type int, the entire evaluation is carried out using the integer arithmetic.

Program
 main()
 {
 int a, b, *p1, *p2, x, y, z;
 a = 12;
 b = 4;
 p1 = &a;
 p2 = &b;
 x = *p1 * *p2 – 6;
 y = 4* – *p2 / *p1 + 10;
 printf("Address of a = %u\n", p1);
 printf("Address of b = %u\n", p2);
 printf("\n");
 printf("a = %d, b = %d\n", a, b);
 printf("x = %d, y = %d\n", x, y);
 *p2 = *p2 + 3;
 *p1 = *p2 – 5;
 z = *p1 * *p2 – 6;
 printf("\na = %d, b = %d,", a, b);

 printf(" z = %d\n", z);
 }

Output
 Address of a = 4020
 Address of b = 4016
 a = 12, b = 4
 x = 42, y = 9
 a = 2, b = 7, z = 8

Fig. 15.7 Evaluation of pointer expressions

15.9 POINTER INCREMENTS AND SCALE FACTOR

We have seen that the pointers can be incremented like

p1 = p2 + 2;
p1 = p1 + 1;

Pointers 15.13

and so on. Remember, however, an expression like

p1++;

will cause the pointer p1 to point to the next value of its type. For example, if p1 is an

integer pointer with an initial value, say 2800, then after the operation p1 = p1 + 1, the

value of p1 will be 2802, and not 2801. That is, when we increment a pointer, its value is

increased by the �length� of the data type that it points to. This length called the scale factor.

For an IBM PC, the length of various data types are as follows:

characters 1 byte

integers 2 bytes

floats 4 bytes

long integers 4 bytes

doubles 8 bytes

The number of bytes used to store various data types depends on the system and can be

found by making use of the sizeof operator. For example, if x is a variable, then sizeof(x)

returns the number of bytes needed for the variable. (Systems like Pentium use 4 bytes for

storing integers and 2 bytes for short integers.)

Rules of Pointer Operations

The following rules apply when performing operations on pointer variables.

1. A pointer variable can be assigned the address of another variable.

2. A pointer variable can be assigned the values of another pointer variable.

3. A pointer variable can be initialized with NULL or zero value.

4. A pointer variable can be pre-fixed or post-fixed with increment or decrement

operators.

5. An integer value may be added or subtracted from a pointer variable.

6. When two pointers point to the same array, one pointer variable can be sub-

tracted from another.

7. When two pointers point to the objects of the same data types, they can be

compared using relational operators.

8. A pointer variable cannot be multiplied by a constant.

9. Two pointer variables cannot be added.

10. A value cannot be assigned to an arbitrary address (i.e &x = 10; is illegal).

Computer Programming15.14

15.10 POINTERS AND ARRAYS

When an array is declared, the compiler allocates a base address and sufficient amount of

storage to contain all the elements of the array in contiguous memory locations. The base

address is the location of the first element (index 0) of the array. The compiler also defines

the array name as a constant pointer to the first element. Suppose we declare an array x as

follows:

int x[5] = {1, 2, 3, 4, 5};

Suppose the base address of x is 1000 and assuming that each integer requires two bytes,

the five elements will be stored as follows:

1

1000 1008100610041002

Base address

x[0]Elements

Address

Value

x[1] x[2] x[3] x[4]

2 3 4 5

The name x is defined as a constant pointer pointing to the first element, x[0] and

therefore the value of x is 1000, the location where x[0] is stored. That is,

x = &x[0] = 1000

If we declare p as an integer pointer, then we can make the pointer p to point to the array

x by the following assignment:

p = x;

This is equivalent to

p = &x[0];

Now, we can access every value of x using p++ to move from one element to another. The

relationship between p and x is shown as:

p = &x[0] (= 1000)

p+1 = &x[1] (= 1002)

p+2 = &x[2] (= 1004)

p+3 = &x[3] (= 1006)

p+4 = &x[4] (= 1008)

You may notice that the address of an element is calculated using its index and the scale

factor of the data type. For instance,

address of x[3] = base address + (3 x scale factor of int)

= 1000 + (3 x 2) = 1006

When handling arrays, instead of using array indexing, we can use pointers to access

array elements. Note that *(p+3) gives the value of x[3]. The pointer accessing method is

much faster than array indexing.

The example 15.4 illustrates the use of pointer accessing method.

Pointers 15.15

Example 15.4 Write a program using pointers to compute the sum of all elements stored in an

array.

The program shown in Fig. 15.8 illustrates how a pointer can be used to traverse an array

element. Since incrementing an array pointer causes it to point to the next element, we need

only to add one to p each time we go through the loop.

Program
 main()
 {
 int *p, sum, i;
 int x[5] = {5,9,6,3,7};
 i = 0;
 p = x; /* initializing with base address of x */
 printf("Element Value Address\n\n");
 while(i < 5)
 {
 printf(" x[%d] %d %u\n", i, *p, p);
 sum = sum + *p; /* accessing array element */
 i++, p++; /* incrementing pointer */
 }
 printf("\n Sum = %d\n", sum);
 printf("\n &x[0] = %u\n", &x[0]);

 printf("\n p = %u\n", p);
 }

Output
Element Value Address
x[0] 5 166
x[1] 9 168
x[2] 6 170
x[3] 3 172
x[4] 7 174
Sum = 55
&x[0] = 166
p = 176

Fig. 15.8 Accessing one-dimensional array elements using the pointer

It is possible to avoid the loop control variable i as shown:

.....
p = x;
while(p <= &x[4])
{

Computer Programming15.16

sum += *p;
p++;
}
.....

Here, we compare the pointer p with the address of the last element to determine when

the array has been traversed.

Pointers can be used to manipulate two-dimensional arrays as well. We know that in a

one-dimensional array x, the expression
*(x+i) or *(p+i)

represents the element x[i]. Similarly, an element in a two-dimensional array can be

represented by the pointer expression as follows:
((a+i)+j) or *(*(p+i)+j)

1

1

0

0

p + 4

Rows

2

Columns

2

3

3

4

4

5

5

6

4,0 4,3

p

p + 1

p + 4

p + 6

(p + 4) + 3(p + 4)

p pointer to first row

pointer to ith row

pointer to first element in the ith row

pointer to jth element in the ith row

value stored in the cell (i,j)
(ith row and jth column)

p + i

*(p + i)

*(p + i) + j

((p + i) + j)

Fig. 15.9 Pointers to two-dimensional arrays

Figure 15.9 illustrates how this expression represents the element a[i][j]. The base ad-

dress of the array a is &a[0][0] and starting at this address, the compiler allocates contigu-

ous space for all the elements row-wise. That is, the first element of the second row is placed

immediately after the last element of the first row, and so on. Suppose we declare an array a

as follows:

int a[3][4] = { {15,27,11,35},
{22,19,31,17},
{31,23,14,36}
};

The elements of a will be stored as:

Pointers 15.17

15

address = &a[0] [0]

27 11

row 0 row 1 row 2

35 22 19 31 17 31 23 14 36

If we declare p as an int pointer with the initial address of &a[0][0], then

a[i][j] is equivalent to *(p+4 ´ i+j)

You may notice that, if we increment i by 1, the p is incremented by 4, the size of each row.

Then the element a[2][3] is given by *(p+2 ´ 4+3) = *(p+11).

This is the reason why, when a two-dimensional array is declared, we must specify the

size of each row so that the compiler can determine the correct storage mapping.

15.11 POINTERS AND CHARACTER STRINGS

We have seen in Chapter 8 that strings are treated like character arrays and therefore, they

are declared and initialized as follows:
char str [5] = “good”;

The compiler automatically inserts the null character �\0� at the end of the string. C

supports an alternative method to create strings using pointer variables of type char.

Example:
char *str = “good”;

This creates a string for the literal and then stores its address in the pointer variable str.

The pointer str now points to the first character of the string �good� as:

g

str

o o d 0\

We can also use the run-time assignment for giving values to a string pointer. Example
char * string1;
string1 = “good”;

Note that the assignment
string1 = “good”;

is not a string copy, because the variable string1 is a pointer, not a string.

(As pointed out in Chapter 8, C does not support copying one string to another through the

assignment operation.)

We can print the content of the string string1 using either printf or puts functions as

follows:
printf(“%s”, string1);
puts (string1);

Remember, although string1 is a pointer to the string, it is also the name of the string.

Therefore, we do not need to use indirection operator * here.

Computer Programming15.18

Like in one-dimensional arrays, we can use a pointer to access the individual characters

in a string. This is illustrated by the example 15.5.

Example 15.5 Write a program using pointers to determine the length of a character string.

A program to count the length of a string is shown in Fig.15.10. The statement
char *cptr = name;

declares cptr as a pointer to a character and assigns the address of the first character of

name as the initial value. Since a string is always terminated by the null character, the

statement

while(*cptr != ‘\0’)

is true until the end of the string is reached.

When the while loop is terminated, the pointer cptr holds the address of the null

character. Therefore, the statement

length = cptr – name;

gives the length of the string name.

D

name
(5 4)

cptr
(5 9)

E L H I 0\

The output also shows the address location of each character. Note that each character

occupies one memory cell (byte).

Program
 main()
 {
 char *name;
 int length;
 char *cptr = name;
 name = "DELHI";
 printf ("%s\n", name);
 while(*cptr != '\0')
 {
 printf("%c is stored at address %u\n", *cptr, cptr);
 cptr++;
 }
 length = cptr - name;
 printf("\nLength of the string = %d\n", length);
 }

Output

Pointers 15.19

 DELHI
 D is stored at address 54
 E is stored at address 55
 L is stored at address 56
 H is stored at address 57
 I is stored at address 58

 Length of the string = 5

Fig. 15.10 String handling by pointers

In C, a constant character string always represents a pointer to that string. And therefore

the following statements are valid:

char *name;
name = “Delhi”;

These statements will declare name as a pointer to character and assign to name the

constant character string �Delhi�. You might remember that this type of assignment does

not apply to character arrays. The statements like

char name[20];
name = “Delhi”;

do not work.

15.12 ARRAY OF POINTERS

One important use of pointers is in handling of a table of strings. Consider the following

array of strings:
char name [3][25];

This says that the name is a table containing three names, each with a maximum length

of 25 characters (including null character). The total storage requirements for the name

table are 75 bytes.

We know that rarely the individual strings will be of equal lengths. Therefore, instead of

making each row a fixed number of characters, we can make it a pointer to a string of varying

length. For example,

char *name[3] = {
“New Zealand”,
Australia”,
“India”

};

Computer Programming15.20

declares name to be an array of three pointers to characters, each pointer pointing to a

particular name as:

name [0]

name [1]

name [2]

New Zealand

Australia

India

This declaration allocates only 28 bytes, sufficient to hold all the characters as shown

N

A

I

e

u

n

e

a

a

l

l

i

a

a

n d 0

0

0

\

\

\

w

s

d

t

i

Z

r

a

The following statement would print out all the three names:

for(i = 0; i <= 2; i++)
printf(“%s\n”, name[i]);

To access the jth character in the ith name, we may write as

*(name[i]+j)

The character arrays with the rows of varying length are called �ragged arrays� and are

better handled by pointers.

Remember the difference between the notations *p[3] and (*p)[3]. Since * has a lower

precedence than [], *p[3] declares p as an array of 3 pointers while (*p)[3] declares p as a

pointer to an array of three elements.

15.13 POINTERS AS FUNCTION ARGUMENTS

We have seen earlier that when an array is passed to a function as an argument, only the
address of the first element of the array is passed, but not the actual values of the array
elements. If x is an array, when we call sort(x), the address of x[0] is passed to the function
sort. The function uses this address for manipulating the array elements. Similarly, we can
pass the address of a variable as an argument to a function in the normal fashion. We used
this method when discussing functions that return multiple values (see Chapter 9).

When we pass addresses to a function, the parameters receiving the addresses should be
pointers. The process of calling a function using pointers to pass the addresses of variables is
known as �call by reference�. (You know, the process of passing the actual value of variables is
known as �call by value�.) The function which is called by �reference� can change the value of
the variable used in the call.

Consider the following code:

main()
{

int x;
x = 20;
change(&x); /* call by reference or address */
printf(“%d\n”,x);

}
change(int *p)

Pointers 15.21

{
*p = *p + 10;

}

When the function change() is called, the address of the variable x, not its value, is passed
into the function change(). Inside change(), the variable p is declared as a pointer and
therefore p is the address of the variable x. The statement,

*p = *p + 10;

means �add 10 to the value stored at the address p�. Since p represents the address of x, the
value of x is changed from 20 to 30. Therefore, the output of the program will be 30, not 20.

Thus, call by reference provides a mechanism by which the function can change the stored
values in the calling function. Note that this mechanism is also known as �call by address� or
�pass by pointers�

NOTE: C99 adds a new qualifier restrict to the pointers passed as function parameters. See the

Appendix �C99 Features�.

Example 15.6 Write a function using pointers to exchange the values stored in two locations in

the memory.

The program in Fig. 15.11 shows how the contents of two locations can be exchanged using
their address locations. The function exchange() receives the addresses of the variables x
and y and exchanges their contents.

Program
 void exchange (int *, int *); /* prototype */
 main()
 {
 int x, y;
 x = 100;
 y = 200;
 printf("Before exchange : x = %d y = %d\n\n", x, y);
 exchange(&x,&y);/* call */
 printf("After exchange : x = %d y = %d\n\n", x, y);
 }
 exchange (int *a, int *b)
 {
 int t;
 t = *a; /* Assign the value at address a to t */
 *a = *b; /* put b into a */
 b = t; / put t into b */
 }

Output

 Before exchange : x = 100 y = 200
 After exchange : x = 200 y = 100

Fig. 15.11 Passing of pointers as function parameters

Computer Programming15.22

You may note the following points:

1. The function parameters are declared as pointers.

2. The dereferenced pointers are used in the function body.

3. When the function is called, the addresses are passed as actual arguments.

The use of pointers to access array elements is very common in C. We have used a pointer

to traverse array elements in Example 15.4. We can also use this technique in designing

user-defined functions discussed in Chapter 9. Let us consider the problem sorting an array

of integers discussed in Example 9.6.

The function sort may be written using pointers (instead of array indexing) as shown:

void sort (int m, int *x)
{ int i j, temp;

for (i=1; i<= m–1; i++)
for (j=1; j<= m–1; j++)
if (*(x+j–1) >= *(x+j))
{

temp = *(x+j– 1);
*(x+j–1) = *(x+j);
*(x+j) = temp;
}

}

Note that we have used the pointer x (instead of array x[]) to receive the address of array

passed and therefore the pointer x can be used to access the array elements (as pointed out in
Section 15.10). This function can be used to sort an array of integers as follows:

.
int score[4] = {45, 90, 71, 83};

.
sort(4, score); /* Function call */

.

The calling function must use the following prototype declaration.

void sort (int, int *);

This tells the compiler that the formal argument that receives the array is a pointer, not

array variable.

Pointer parameters are commonly employed in string functions. Consider the function

copy which copies one string to another.

copy(char *s1, char *s2)
{

while((*s1++ = *s2++) != ‘\0’)
;

}

This copies the contents of s2 into the string s1. Parameters s1 and s2 are the pointers to

character strings, whose initial values are passed from the calling function. For example, the

calling statement

copy(name1, name2);

will assign the address of the first element of name1 to s1 and the address of the first

element of name2 to s2.

Pointers 15.23

Note that the value of *s2++ is the character that s2 pointed to before s2 was incremented.

Due to the postfix ++, s2 is incremented only after the current value has been fetched. Simi-

larly, s1 is incremented only after the assignment has been completed.

Each character, after it has been copied, is compared with �\0� and therefore copying is

terminated as soon as the �\0� is copied.

15.14 FUNCTIONS RETURNING POINTERS

We have seen so far that a function can return a single value by its name or return multiple

values through pointer parameters. Since pointers are a data type in C, we can also force a

function to return a pointer to the calling function. Consider the following code:

int *larger (int *, int *); /* prototype */
main ()
{

int a = 10;
int b = 20;
int *p;
p = larger(&a, &b); /Function call */
printf (“%d”, *p);

}
int *larger (int *x, int *y)
{

if (*x>*y)
return (x); / *address of a */

else
return (y); /* address of b */

}

The function larger receives the addresses of the variables a and b, decides which one is

larger using the pointers x and y and then returns the address of its location. The returned

value is then assigned to the pointer variable p in the calling function. In this case, the

address of b is returned and assigned to p and therefore the output will be the value of b,

namely, 20.

Note that the address returned must be the address of a variable in the calling function. It

is an error to return a pointer to a local variable in the called function.

15.15 POINTERS TO FUNCTIONS

A function, like a variable, has a type and an address location in the memory. It is therefore,

possible to declare a pointer to a function, which can then be used as an argument in another

function. A pointer to a function is declared as follows:
type (*fptr) ();

This tells the compiler that fptr is a pointer to a function, which returns type value. The

parentheses around *fptr are necessary. Remember that a statement like

type *gptr();

would declare gptr as a function returning a pointer to type.

Computer Programming15.24

We can make a function pointer to point to a specific function by simply assigning the
name of the function to the pointer. For example, the statements

double mul(int, int);
double (*p1)();
p1 = mul;

declare p1 as a pointer to a function and mul as a function and then make p1 to point to the
function mul. To call the function mul, we may now use the pointer p1 with the list of
parameters. That is,

(*p1)(x,y) /* Function call */

is equivalent to

mul(x,y)

Note the parentheses around *p1.

Example 15.7 Write a program that uses a function pointer as a function argument.

A program to print the function values over a given range of values is shown in Fig. 15.12.
The printing is done by the function table by evaluating the function passed to it by the
main.

With table, we declare the parameter f as a pointer to a function as follows:

double (*f)();

The value returned by the function is of type double. When table is called in the state-
ment

table (y, 0.0, 2, 0.5);

we pass a pointer to the function y as the first parameter of table. Note that y is not followed
by a parameter list.

During the execution of table, the statement

value = (*f)(a);

calls the function y which is pointed to by f, passing it the parameter a. Thus the function y
is evaluated over the range 0.0 to 2.0 at the intervals of 0.5.

Similarly, the call

table (cos, 0.0, PI, 0.5);

passes a pointer to cos as its first parameter and therefore, the function table evaluates the
value of cos over the range 0.0 to PI at the intervals of 0.5.

Program
 #include <math.h>
 #define PI 3.1415926
 double y(double);
 double cos(double);
 double table (double(*f)(), double, double, double);

 main()
 { printf("Table of y(x) = 2*x*x–x+1\n\n");

Pointers 15.25

 table(y, 0.0, 2.0, 0.5);
 printf("\nTable of cos(x)\n\n");
 table(cos, 0.0, PI, 0.5);
 }
 double table(double(*f)(),double min, double max, double step)
 { double a, value;
 for(a = min; a <= max; a += step)
 {
 value = (*f)(a);
 printf("%5.2f %10.4f\n", a, value);
 }
 }
 double y(double x)
 {
 return(2*x*x-x+1);
 }

Output
Table of y(x) = 2*x*x-x+1

0.00 1.0000
0.50 1.0000
1.00 2.0000
1.50 4.0000
2.00 7.0000

Table of cos(x)
0.00 1.0000
0.50 0.8776
1.00 0.5403
1.50 0.0707
2.00 -0.4161
2.50 -0.8011
3.00 -0.9900

Fig. 15.12 Use of pointers to functions

Compatibility and Casting

A variable declared as a pointer is not just a pointer type variable. It is also a pointer

to a specific fundamental data type, such as a character. A pointer therefore always

has a type associated with it. We cannot assign a pointer of one type to a pointer of

another type, although both of them have memory addresses as their values. This is

known as incompatibility of pointers.

Computer Programming15.26

All the pointer variables store memory addresses, which are compatible, but

what is not compatible is the underlying data type to which they point to. We

cannot use the assignment operator with the pointers of different types. We can

however make explicit assignment between incompatible pointer types by using

cast operator, as we do with the fundamental types. Example:

int x;
char *p;
p = (char *) & x;

In such cases, we must ensure that all operations that use the pointer p must

apply casting properly.

We have an exception. The exception is the void pointer (void *). The void

pointer is a generic pointer that can represent any pointer type. All pointer types

can be assigned to a void pointer and a void pointer can be assigned to any pointer

without casting. A void pointer is created as follows:

void *vp;

Remember that since a void pointer has no object type, it cannot be de-referenced.

15.16 POINTERS AND STRUCTURES

We know that the name of an array stands for the address of its zeroth element. The same

thing is true of the names of arrays of structure variables. Suppose product is an array

variable of struct type. The name product represents the address of its zeroth element.

Consider the following declaration:

struct inventory
{

char name[30];
int number;
float price;

} product[2], *ptr;

This statement declares product as an array of two elements, each of the type struct

inventory and ptr as a pointer to data objects of the type struct inventory. The

assignment
ptr = product;

would assign the address of the zeroth element of product to ptr. That is, the pointer ptr

will now point to product[0]. Its members can be accessed using the following notation.

ptr –> name
ptr –> number
ptr –> price

The symbol �> is called the arrow operator (also known as member selection operator) and

is made up of a minus sign and a greater than sign. Note that ptr�> is simply another way of

writing product[0].

Pointers 15.27

When the pointer ptr is incremented by one, it is made to point to the next record, i.e.,

product[1]. The following for statement will print the values of members of all the elements

of product array.

for(ptr = product; ptr < product+2; ptr++)
printf (“%s %d %f\n”, ptr–>name, ptr–>number, ptr–>price);

We could also use the notation
(*ptr).number

to access the member number. The parentheses around *ptr are necessary because the

member operator �.� has a higher precedence than the operator *.

Example 15.8 Write a program to illustrate the use of structure pointers.

A program to illustrate the use of a structure pointer to manipulate the elements of an array

of structures is shown in Fig. 15.13. The program highlights all the features discussed above.

Note that the pointer ptr (of type struct invent) is also used as the loop control index in for
loops.

Program
 struct invent
 {
 char *name[20];
 int number;
 float price;
 };
 main()
 {
 struct invent product[3], *ptr;
 printf("INPUT\n\n");
 for(ptr = product; ptr < product+3; ptr++)
 scanf("%s %d %f", ptr–>name, &ptr–>number, &ptr–>price);
 printf("\nOUTPUT\n\n");
 ptr = product;
 while(ptr < product + 3)
 {

 printf("%–20s %5d %10.2f\n",
 ptr–>name,
 ptr–>number,
 ptr–>price);
 ptr++;
 }
 }

Output

 INPUT
 Washing_machine 5 7500

Computer Programming15.28

 Electric_iron 12 350
 Two_in_one 7 1250

 OUTPUT
 Washing machine 5 7500.00
 Electric_iron 12 350.00
 Two_in_one 7 1250.00

Fig. 15.13 Pointer to structure variables

While using structure pointers, we should take care of the precedence of operators.
The operators ��>� and �.�, and () and [] enjoy the highest priority among the operators.

They bind very tightly with their operands. For example, given the definition

struct
{

int count;
float *p; /* pointer inside the struct */

} ptr; /* struct type pointer */

then the statement

++ptr–>count;

increments count, not ptr. However,

(++ptr)–>count;

increments ptr first, and then links count. The statement

ptr++ –> count;

is legal and increments ptr after accessing count.
The following statements also behave in the similar fashion.

*ptr�>p Fetches whatever p points to.

*ptr�>p++ Increments p after accessing whatever it points to.

(*ptr�>p)++ Increments whatever p points to.

*ptr++�>p Increments ptr after accessing whatever it points to.

In the previous chapter, we discussed about passing of a structure as an argument to a
function. We also saw an example where a function receives a copy of an entire structure and
returns it after working on it. As we mentioned earlier, this method is inefficient in terms of
both, the execution speed and memory. We can overcome this drawback by passing a pointer
to the structure and then using this pointer to work on the structure members. Consider the
following function:

print_invent(struct invent *item)
{

printf(“Name: %s\n”, item->name);
printf(“Price: %f\n”, item->price);

}

This function can be called by

print_invent(&product);

Pointers 15.29

The formal argument item receives the address of the structure product and therefore it

must be declared as a pointer of type struct invent, which represents the structure of

product.

15.17 TROUBLES WITH POINTERS

Pointers give us tremendous power and flexibility. However, they could become a nightmare

when they are not used correctly. The major problem with wrong use of pointers is that the

compiler may not detect the error in most cases and therefore the program is likely to

produce unexpected results. The output may not given us any clue regarding the use of a bad

pointer. Debugging therefore becomes a difficult task.

We list here some pointer errors that are more commonly committed by the programmers.

· Assigning values to uninitialized pointers

int * p, m = 100 ;
p = m ; / Error */

· Assigning value to a pointer variable

int *p, m = 100 ;
p = m; /* Error */

· Not dereferencing a pointer when required

int *p, x = 100;
p = &x;
printf(“%d”,p); /* Error */

· Assigning the address of an uninitialized variable

int m, *p
p = &m; /* Error */

· Comparing pointers that point to different objects

char name1 [20], name2 [30];
char *p1 = name1;
char *p2 = name2;
if(p1 > p2)....... /* Error */

We must be careful in declaring and assigning values to pointers correctly before using

them. We must also make sure that we apply the address operator & and referencing

operator * correctly to the pointers. That will save us from sleepless nights.

- Only an address of a variable can be stored in a pointer variable.

- Do not store the address of a variable of one type into a pointer variable of

another type.

- The value of a variable cannot be assigned to a pointer variable.

- A pointer variable contains garbage until it is initialized. Therefore we

must not use a pointer variable before it is assigned, the address of a vari-

able.

Computer Programming15.30

- Remember that the definition for a pointer variable allocates memory only

for the pointer variable, not for the variable to which it is pointing.

- If we want a called function to change the value of a variable in the calling

function, we must pass the address of that variable to the called function.

- When we pass a parameter by address, the corresponding formal param-

eter must be a pointer variable.

- It is an error to assign a numeric constant to a pointer variable.

- It is an error to assign the address of a variable to a variable of any basic

data types.

- It is an error to assign a pointer of one type to a pointer of another type

without a cast (with an exception of void pointer).

- A proper understanding of a precedence and associativity rules is very

important in pointer applications. For example, expressions like *p++,

*p[], (*p)[], (p).member should be carefully used.

- When an array is passed as an argument to a function, a pointer is actually

passed. In the header function, we must declare such arrays with proper

size, except the first, which is optional.

- A very common error is to use (or not to use) the address operator (&) and

the indirection operator (*) in certain places. Be careful. The compiler may

not warn such mistakes.

1. Processing of Examination Marks

Marks obtained by a batch of students in the Annual Examination are tabulated as follows:

Student name Marks obtained

S. Laxmi 45 67 38 55

V.S. Rao 77 89 56 69

- - - - -

It is required to compute the total marks obtained by each student and print the rank list

based on the total marks.

The program in Fig. 15.14 stores the student names in the array name and the marks in

the array marks. After computing the total marks obtained by all the students, the program

prepares and prints the rank list. The declaration

int marks[STUDENTS][SUBJECTS+1];

defines marks as a pointer to the array�s first row. We use rowptr as the pointer to the row

of marks. The rowptr is initialized as follows:

int (*rowptr)[SUBJECTS+1] = array;

Note that array is the formal argument whose values are replaced by the values of the

actual argument marks. The parentheses around *rowptr makes the rowptr as a pointer

to an array of SUBJECTS+1 integers. Remember, the statement

int *rowptr[SUBJECTS+1];

Pointers 15.31

would declare rowptr as an array of SUBJECTS+1 elements.

When we increment the rowptr (by rowptr+1), the incrementing is done in units of

the size of each row of array, making rowptr point to the next row. Since rowptr points to

a particular row, (*rowptr)[x] points to the xth element in the row.

Program
 #define STUDENTS 5
 #define SUBJECTS 4
 #include <string.h>

 main()
 {
 char name[STUDENTS][20];
 int marks[STUDENTS][SUBJECTS+1];

 printf("Input students names & their marks in four subjects\n");
 get_list(name, marks, STUDENTS, SUBJECTS);
 get_sum(marks, STUDENTS, SUBJECTS+1);
 printf("\n");
 print_list(name,marks,STUDENTS,SUBJECTS+1);
 get_rank_list(name, marks, STUDENTS, SUBJECTS+1);

 printf("\nRanked List\n\n");
 print_list(name,marks,STUDENTS,SUBJECTS+1);
 }

/* Input student name and marks */
 get_list(char *string[],
 int array [] [SUBJECTS +1], int m, int n)
 {
 int i, j, (*rowptr)[SUBJECTS+1] = array;
 for(i = 0; i < m; i++)
 {
 scanf("%s", string[i]);
 for(j = 0; j < SUBJECTS; j++)
 scanf("%d", &(*(rowptr + i))[j]);
 }
 }
 /* Compute total marks obtained by each student */
 get_sum(int array [] [SUBJECTS +1], int m, int n)
 {
 int i, j, (*rowptr)[SUBJECTS+1] = array;
 for(i = 0; i < m; i++)
 {
 (*(rowptr + i))[n-1] = 0;
 for(j =0; j < n-1; j++)
 (*(rowptr + i))[n-1] += (*(rowptr + i))[j];
 }
 }

Computer Programming15.32

 /* Prepare rank list based on total marks */

 get_rank_list(char *string [],
 int array [] [SUBJECTS + 1]
 int m,
 int n)
 {
 int i, j, k, (*rowptr)[SUBJECTS+1] = array;
 char *temp;

 for(i = 1; i <= m–1; i++)
 for(j = 1; j <= m–i; j++)
 if((*(rowptr + j–1))[n–1] < (*(rowptr + j))[n–1])
 {
 swap_string(string[j-1], string[j]);

 for(k = 0; k < n; k++)
 swap_int(&(*(rowptr + j–1))[k],&(*(rowptr+j))[k]);
 }

 }
 /* Print out the ranked list */
 print_list(char *string[],
 int array [] [SUBJECTS + 1],
 int m,
 int n)
 {
 int i, j, (*rowptr)[SUBJECTS+1] = array;
 for(i = 0; i < m; i++)
 {
 printf("%–20s", string[i]);
 for(j = 0; j < n; j++)
 printf("%5d", (*(rowptr + i))[j]);
 printf("\n");
 }
 }
 /* Exchange of integer values */
 swap_int(int *p, int *q)
 {
 int temp;
 temp = *p;
 *p = *q;
 *q = temp;
 }

Pointers 15.33

 /* Exchange of strings */
 swap_string(char s1[], char s2[])
 {
 char swaparea[256];
 int i;
 for(i = 0; i < 256; i++)
 swaparea[i] = '\0';
 i = 0;
 while(s1[i] != '\0' && i < 256)
 {
 swaparea[i] = s1[i];
 i++;
 }
 i = 0;
 while(s2[i] != '\0' && i < 256)
 {
 s1[i] = s2[i];
 s1[++i] = '\0';
 }
 i = 0;
 while(swaparea[i] != '\0')

 {
 s2[i] = swaparea[i];
 s2[++i] = '\0';
 }
 }

Output

 Input students names & their marks in four subjects
 S.Laxmi 45 67 38 55
 V.S.Rao 77 89 56 69
 A.Gupta 66 78 98 45
 S.Mani 86 72 0 25
 R.Daniel 44 55 66 77

 S.Laxmi 45 67 38 55 205
 V.S.Rao 77 89 56 69 291
 A.Gupta 66 78 98 45 287
 S.Mani 86 72 0 25 183
 R.Daniel 44 55 66 77 242

 Ranked List
 V.S.Rao 77 89 56 69 291
 A.Gupta 66 78 98 45 287

Computer Programming15.34

 R.Daniel 44 55 66 77 242
 S.Laxmi 45 67 38 55 205
 S.Mani 86 72 0 25 183

Fig. 15.14 Preparation of the rank list of a class of students

2. Inventory Updating

The price and quantity of items stocked in a store changes every day. They may either in-

crease or decrease. The program in Fig. 15.15 reads the incremental values of price and

quantity and computes the total value of the items in stock.

The program illustrates the use of structure pointers as function parameters. &item, the

address of the structure item, is passed to the functions update() and mul(). The formal

arguments product and stock, which receive the value of &item, are declared as pointers

of type struct stores.

Program
 struct stores
 {
 char name[20];
 float price;
 int quantity;

 };
 main()
 {
 void update(struct stores *, float, int);
 float p_increment, value;
 int q_increment;

 struct stores item = {"XYZ", 25.75, 12};
 struct stores *ptr = &item;

 printf("\nInput increment values:");
 printf(" price increment and quantity increment\n");
 scanf("%f %d", &p_increment, &q_increment);

 /* - */
 update(&item, p_increment, q_increment);
 /* - */
 printf("Updated values of item\n\n");
 printf("Name : %s\n",ptr–>name);
 printf("Price : %f\n",ptr–>price);
 printf("Quantity : %d\n",ptr–>quantity);

 /* - */
 value = mul(&item);
 /* - */

Pointers 15.35

 printf("\nValue of the item = %f\n", value);
 }

 void update(struct stores *product, float p, int q)
 {
 product–>price += p;
 product–>quantity += q;
 }
 float mul(struct stores *stock)
 {
 return(stock–>price * stock–>quantity);
 }

Output

 Input increment values: price increment and quantity increment
 10 12
 Updated values of item

 Name : XYZ
 Price : 35.750000
 Quantity : 24

 Value of the item = 858.000000

Fig. 15.15 Use of structure pointers as function parameters

15.1 State whether the following statements are true or false.

(a) Pointer constants are the addresses of memory locations.

(b) Pointer variables are declared using the address operator.

(c) The underlying type of a pointer variable is void.

(d) Pointers to pointers is a term used to describe pointers whose contents are the

address of another pointer.

(e) It is possible to cast a pointer to float as a pointer to integer.

(f) An integer can be added to a pointer.

(g) A pointer can never be subtracted from another pointer.

(h) When an array is passed as an argument to a function, a pointer is passed.

(i) Pointers cannot be used as formal parameters in headers to function definitions.

(j) Value of a local variable in a function can be changed by another function.

15.2 Fill in the blanks in the following statements:

(a) A pointer variable contains as its value the _____ of another variable.

(b) The ______operator is used with a pointer to de-reference the address contained

in the pointer.

Computer Programming15.36

(c) The _____operator returns the value of the variable to which its operand points.

(d) The only integer that can be assigned to a pointer variable is ______.

(e) The pointer that is declared as ______cannot be de-referenced.

15.3 What is a pointer?

15.4 How is a pointer initialized?

15.5 Explain the effects of the following statements:

(a) int a, *b = &a;
(b) int p, *p;
(c) char *s;
(d) a = (float *) &x);
(e) double(*f)();

15.6 If m and n have been declared as integers and p1 and p2 as pointers to integers, then

state errors, if any, in the following statements.

(a) p1 = &m;
(b) p2 = n;
(c) *p1 = &n;
(d) p2 = &*&m;
(e) m = p2–p1;
(f) p1 = &p2;
(g) m = *p1 + *p2++;

15.7 Distinguish between (*m)[5] and *m[5].

15.8 Find the error, if any, in each of the following statements:

(a) int x = 10;
(b) int *y = 10;
(c) int a, *b = &a;
(d) int m;

int **x = &m;
15.9 Given the following declarations:

int x = 10, y = 10;
int *p1 = &x, *p2 = &y;

What is the value of each of the following expressions?

(a) (*p1) ++

(b) � � (*p2)

(c) *p1 + (*p2) � �

(d) + + (*p2) � *p1

15.10 Describe typical applications of pointers in developing programs.

15.11 What are the arithmetic operators that are permitted on pointers?

15.12 What is printed by the following program?

int m = 100';
int * p1 = &m;
int **p2 = &p1;
printf(“%d”, **p2);

Pointers 15.37

15.13 What is wrong with the following code?
int **p1, *p2;
p2 = &p1;

15.14 Assuming name as an array of 15 character length, what is the difference between

the following two expressions?

(a) name + 10; and

(b) *(name + 10).

15.15 What is the output of the following segment?

int m[2];
*(m+1) = 100;
*m = *(m+1);
printf(“%d”, m [0]);

15.16 What is the output of the following code?
int m [2];
int *p = m;
m [0] = 100 ;
m [1] = 200 ;
printf(“%d %d”, ++*p, *p);

15.17 What is the output of the following program?

int f(char *p);
main ()
{

char str[] = “ANSI”;
printf(“%d”, f(str));

}
int f(char *p)
{

char *q = p;
while (*++p)

;
return (p-q);

}

15.18 Given below are two different definitions of the function search()

a) void search (int* m[], int x)

{

}

b) void search (int ** m, int x)

{

}

Are they equivalent? Explain.

15.19 Do the declarations
char s [5] ;
char *s;
represent the same? Explain.

15.20 Which one of the following is the correct way of declaring a pointer to a function?

Why?

(a) int (*p) (void) ;

(b) int *p (void);

Computer Programming15.38

15.1 Write a program using pointers to read in an array of integers and print its elements

in reverse order.

15.2 We know that the roots of a quadratic equation of the form

ax2 + bx + c = 0

are given by the following equations:

x1 =
- -b + square - root (b 4ac)

2a

2

x2 =
- - - b square - root (b 4ac)

a

2

2

Write a function to calculate the roots. The function must use two pointer parameters,

one to receive the coefficients a, b, and c, and the other to send the roots to the calling

function.

15.3 Write a function that receives a sorted array of integers and an integer value, and

inserts the value in its correct place.

15.4 Write a function using pointers to add two matrices and to return the resultant matrix

to the calling function.

15.5 Using pointers, write a function that receives a character string and a character as

argument and deletes all occurrences of this character in the string. The function

should return the corrected string with no holes.

15.6 Write a function day_name that receives a number n and returns a pointer to a

character string containing the name of the corresponding day. The day names should

be kept in a static table of character strings local to the function.

15.7 Write a program to read in an array of names and to sort them in alphabetical order.

Use sort function that receives pointers to the functions strcmp and swap.sort in

turn should call these functions via the pointers.

15.8 Given an array of sorted list of integer numbers, write a function to search for a par-

ticular item, using the method of binary search. And also show how this function may

be used in a program. Use pointers and pointer arithmetic.

(Hint: In binary search, the target value is compared with the array�s middle element.

Since the table is sorted, if the required value is smaller, we know that all values

greater than the middle element can be ignored. That is, in one attempt, we eliminate

one half the list. This search can be applied recursively till the target value is found.)

15.9 Write a function (using a pointer parameter) that reverses the elements of a given

array.

15.10 Write a function (using pointer parameters) that compares two integer arrays to see

whether they are identical. The function returns 1 if they are identical, 0 otherwise.

Unit 5: STRUCTURES AND

UNIONS

Structures and

Unions

16.1 INTRODUCTION

We have seen that arrays can be used to represent a group of data items that belong to the

same type, such as int or float. However, we cannot use an array if we want to represent a

collection of data items of different types using a single name. Fortunately, C supports a

constructed data type known as structures, a mechanism for packing data of different types.

A structure is a convenient tool for handling a group of logically related data items. For

example, it can be used to represent a set of attributes, such as student_name, roll_number

and marks. The concept of a structure is analogous to that of a �record� in many other

languages. More examples of such structures are:

time : seconds, minutes, hours

date : day, month, year

book : author, title, price, year

city : name, country, population

address : name, door-number, street, city

inventory : item, stock, value

customer : name, telephone, city, category

Structures help to organize complex data in a more meaningful way. It is a powerful

concept that we may often need to use in our program design. This chapter is devoted to the

study of structures and their applications in program development. Another related concept

known as unions is also discussed.

16.2 DEFINING A STRUCTURE

Unlike arrays, structures must be defined first for their format that may be used later to

declare structure variables. Let us use an example to illustrate the process of structure

definition and the creation of structure variables. Consider a book database consisting of

16

Computer Programming16.4

book name, author, number of pages, and price. We can define a structure to hold this infor-

mation as follows:

struct book_bank
{

char title[20];
char author[15];
int pages;
float price;

};

The keyword struct declares a structure to hold the details of four data fields, namely

title, author, pages, and price. These fields are called structure elements or members.

Each member may belong to a different type of data. book_bank is the name of the structure

and is called the structure tag. The tag name may be used subsequently to declare variables

that have the tag�s structure.

Note that the above definition has not declared any variables. It simply describes a format

called template to represent information as shown below:

array of 20 characterstitle

author

pages

price

array of 15 characters

integer

float

The general format of a structure definition is as follows:

struct tag_name
{

data_type member1;
data_type member2;

– – – – – – – –
– – – – – – – –

};

In defining a structure you may note the following syntax:

1. The template is terminated with a semicolon.

2. While the entire definition is considered as a statement, each member is declared

independently for its name and type in a separate statement inside the template.

3. The tag name such as book_bank can be used to declare structure variables of its

type, later in the program.

Structures and Unions 16.5

Arrays Vs Structures

Both the arrays and structures are classified as structured data types as they pro-
vide a mechanism that enable us to access and manipulate data in a relatively easy
manner. But they differ in a number of ways.

1. An array is a collection of related data elements of same type. Structure can
have elements of different types.

2. An array is derived data type whereas a structure is a programmer-defined one.

3. Any array behaves like a built-in data type. All we have to do is to declare an
array variable and use it. But in the case of a structure, first we have to design
and declare a data structure before the variables of that type are declared and
used.

 16.3 DECLARING STRUCTURE VARIABLES

After defining a structure format we can declare variables of that type. A structure variable

declaration is similar to the declaration of variables of any other data types. It includes the
following elements:

1. The keyword struct.

2. The structure tag name.

3. List of variable names separated by commas.

4. A terminating semicolon.

For example, the statement

struct book_bank, book1, book2, book3;

declares book1, book2, and book3 as variables of type struct book_bank.

Each one of these variables has four members as specified by the template. The complete

declaration might look like this:

struct book_bank
{

char title[20];
char author[15];
int pages;
float price;

};
struct book_bank book1, book2, book3;

Remember that the members of a structure themselves are not variables. They do not

occupy any memory until they are associated with the structure variables such as book1.

When the compiler comes across a declaration statement, it reserves memory space for the

structure variables. It is also allowed to combine both the structure definition and variables

declaration in one statement.

Computer Programming16.6

The declaration

struct book_bank

{

char title[20];

char author[15];

int pages;

flat price;

} book1, book2, book3;

is valid. The use of tag name is optional here. For example:

struct

{

........

........

} book1, book2, book3;

declares book1, book2, and book3 as structure variables representing three books, but

does not include a tag name. However, this approach is not recommended for two reasons.
1. Without a tag name, we cannot use it for future declarations:

2. Normally, structure definitions appear at the beginning of the program file, before

any variables or functions are defined. They may also appear before the main, along

with macro definitions, such as #define. In such cases, the definition is global and can

be used by other functions as well.

Type-Defined Structures

We can use the keyword typedef to define a structure as follows:

typedef struct
{

type member1;
type member2;
.
.

} type_name;

The type_name represents structure definition associated with it and therefore can
be used to declare structure variables as shown below:

type_name variable1, variable2, ;

Remember that (1) the name type_name is the type definition name, not a variable
and (2) we cannot define a variable with typedef declaration.

Structures and Unions 16.7

16.4 ACCESSING STRUCTURE MEMBERS

We can access and assign values to the members of a structure in a number of ways. As

mentioned earlier, the members themselves are not variables. They should be linked to the

structure variables in order to make them meaningful members. For example, the word

title, has no meaning whereas the phrase �title of book3� has a meaning. The link between a

member and a variable is established using the member operator �.� which is also known as

�dot operator� or �period operator�. For example,

book1.price
is the variable representing the price of book1 and can be treated like any other ordinary

variable. Here is how we would assign values to the members of book1:

strcpy(book1.title, “BASIC”);
strcpy(book1.author, “Balagurusamy”);
book1.pages = 250;
book1.price = 120.50;

We can also use scanf to give the values through the keyboard.

scanf(“%s\n”, book1.title);
scanf(“%d\n”, &book1.pages);

are valid input statements.

Example 16.1 Define a structure type, struct personal that would contain person name, date

of joining and salary. Using this structure, write a program to read this

information for one person from the keyboard and print the same on the

screen.

Structure definition along with the program is shown in Fig. 16.1. The scanf and printf

functions illustrate how the member operator �.� is used to link the structure members to the

structure variables. The variable name with a period and the member name is used like an

ordinary variable.

Program
struct personal

 {
 char name[20];
 int day;
 char month[10];
 int year;
 float salary;
 };
 main()
 {
 struct personal person;
 printf("Input Values\n");

Computer Programming16.8

 scanf("%s %d %s %d %f",
 person.name,
 &person.day,
 person.month,
 &person.year,
 &person.salary);

 printf("%s %d %s %d %f\n",
 person.name,
 person.day,
 person.month,
 person.year,
 person.salary);
 }

Output
 Input Values
 M.L.Goel 10 January 1945 4500
 M.L.Goel 10 January 1945 4500.00

Fig. 16.1 Defining and accessing structure members

16.5 STRUCTURE INITIALIZATION

Like any other data type, a structure variable can be initialized at compile time.

main()
 {

struct
{

int weight;
float height;

}
student = {60, 180.75};
.....
.....

 }

This assigns the value 60 to student. weight and 180.75 to student. height. There is a

one-to-one correspondence between the members and their initializing values.

A lot of variation is possible in initializing a structure. The following statements initialize
two structure variables. Here, it is essential to use a tag name.

main()
{

struct st_record
{

Structures and Unions 16.9

int weight;
float height;

};
struct st_record student1 = { 60, 180.75 };
struct st_record student2 = { 53, 170.60 };
.....
.....

}

Another method is to initialize a structure variable outside the function as shown below:

struct st_record
{

int weight;
float height;

} student1 = {60, 180.75};
main()
{

struct st_record student2 = {53, 170.60};
.....
.....

}

C language does not permit the initialization of individual structure members within the
template. The initialization must be done only in the declaration of the actual variables.

Note that the compile-time initialization of a structure variable must have the following
elements:

1. The keyword struct.

2. The structure tag name.

3. The name of the variable to be declared.

4. The assignment operator =.

5. A set of values for the members of the structure variable, separated by commas and enclosed in

braces.

6. A terminating semicolon.

Rules for Initializing Structures

There are a few rules to keep in mind while initializing structure variables at
compile-time.

1. We cannot initialize individual members inside the structure template.

2. The order of values enclosed in braces must match the order of members in the
structure definition.

3. It is permitted to have a partial initialization. We can initialize only the first
few members and leave the remaining blank. The uninitialized members
should be only at the end of the list.

4. The uninitialized members will be assigned default values as follows:

Computer Programming16.10

· Zero for integer and floating point numbers.
· �\0� for characters and strings.

16.6 COPYING AND COMPARING STRUCTURE VARIABLES

Two variables of the same structure type can be copied the same way as ordinary variables.

If person1 and person2 belong to the same structure, then the following statements are

valid:

person1 = person2;

person2 = person1;

However, the statements such as

person1 == person2

person1 != person2

are not permitted. C does not permit any logical operations on structure variables. In case,

we need to compare them, we may do so by comparing members individually.

Example 16.2 Write a program to illustrate the comparison of structure variables.

The program shown in Fig. 16.2 illustrates how a structure variable can be copied into an-
other of the same type. It also performs member-wise comparison to decide whether two

structure variables are identical.

program
 struct class
 {
 int number;
 char name[20];
 float marks;
 };

 main()
 {
 int x;
 struct class student1 = {111,"Rao",72.50};
 struct class student2 = {222,"Reddy", 67.00};
 struct class student3;

 student3 = student2;

 x = ((student3.number == student2.number) &&
 (student3.marks == student2.marks)) ? 1 : 0;

 if(x == 1)
 {

printf("\nstudent2 and student3 are same\n\n");

Structures and Unions 16.11

printf("%d %s %f\n", student3.number,
student3.name,
student3.marks);

 }
 else
 printf("\nstudent2 and student3 are different\n\n");

 }

Output

 student2 and student3 are same

 222 Reddy 67.000000

Fig. 16.2 Comparing and copying structure variables

Word Boundaries and Slack Bytes

Computer stores structures using the concept of �word boundary�. The size of a
word boundary is machine dependent. In a computer with two bytes word bound-
ary, the members of a structure are stored left_aligned on the word boundary, as
shown below. A character data takes one byte and an integer takes two bytes. One
byte between them is left unoccupied. This unoccupied byte is known as the slack

byte.

0 1 2 3

char

slack byte

int

When we declare structure variables, each one of them may contain slack bytes
and the values stored in such slack bytes are undefined. Due to this, even if the
members of two variables are equal, their structures do not necessarily compare
equal. C, therefore, does not permit comparison of structures. However, we can
design our own function that could compare individual members to decide whether
the structures are equal or not.

Computer Programming16.12

16.7 OPERATIONS ON INDIVIDUAL MEMBERS

As pointed out earlier, the individual members are identified using the member operator, the

dot. A member with the dot operator along with its structure variable can be treated like any

other variable name and therefore can be manipulated using expressions and operators.

Consider the program in Fig. 16.2. We can perform the following operations:

if (student1.number == 111)

student1.marks += 10.00;

float sum = student1.marks + student2.marks;

student2.marks * = 0.5;

We can also apply increment and decrement operators to numeric type members. For

example, the following statements are valid:

student1.number ++;

++ student1.number;

The precedence of the member operator is higher than all arithmetic and relational

operators and therefore no parentheses are required.

Three Ways to Access Members

We have used the dot operator to access the members of structure variables. In fact,
there are two other ways. Consider the following structure:

typedef struct

{

int x;

int y;

} VECTOR;

VECTOR v, *ptr;

ptr = & n;

The identifier ptr is known as pointer that has been assigned the address of the
structure variable n. Now, the members can be accessed in three ways:

· using dot notation : n.x
· using indirection notation : (*ptr).x
· using selection notation : ptr �> x

The second and third methods will be considered in Chapter 11.

Structures and Unions 16.13

16.8 ARRAYS OF STRUCTURES

We use structures to describe the format of a number of related variables. For example, in

analyzing the marks obtained by a class of students, we may use a template to describe
student name and marks obtained in various subjects and then declare all the students as

structure variables. In such cases, we may declare an array of structures, each element of
the array representing a structure variable. For example:

struct class student[100];

defines an array called student, that consists of 100 elements. Each element is defined to be

of the type struct class. Consider the following declaration:

struct marks
{

int subject1;
int subject2;
int subject3;

};
main()
{

struct marks student[3] =
{{45,68,81}, {75,53,69}, {57,36,71}};

This declares the student as an array of three elements student[0], student[1], and

student[2] and initializes their members as follows:

student[0].subject1 = 45;
student[0].subject2 = 65;

....

....
student[2].subject3 = 71;

Note that the array is declared just as it would have been with any other array. Since

student is an array, we use the usual array-accessing methods to access individual elements

and then the member operator to access members. Remember, each element of student

array is a structure variable with three members.

An array of structures is stored inside the memory in the same way as a multi-dimensional

array. The array student actually looks as shown in Fig. 16.3.

Example 16.3 For the student array discussed above, write a program to calculate the

subject-wise and student-wise totals and store them as a part of the structure.

The program is shown in Fig. 16.4. We have declared a four-member structure, the fourth

one for keeping the student-totals. We have also declared an array total to keep the subject-

totals and the grand-total. The grand-total is given by total.total. Note that a member name

can be any valid C name and can be the same as an existing structure variable name. The

linked name total.total represents the total member of the structure variable total.

Computer Programming16.14

45student [0].subject 1

.subject 2

.subject 3

student [1].subject 1

.subject 2

.subject 3

student [2].subject 1

.subject 2

.subject 3

68

81

75

53

69

57

36

71

Fig. 16.3 The array student inside memory

Program
 struct marks
 {
 int sub1;
 int sub2;
 int sub3;
 int total;
 };

 main()
 {
 int i;
 struct marks student[3] = {{45,67,81,0},
 {75,53,69,0},
 {57,36,71,0}};
 struct marks total;
 for(i = 0; i <= 2; i++)
 {
 student[i].total = student[i].sub1 +
 student[i].sub2 +
 student[i].sub3;
 total.sub1 = total.sub1 + student[i].sub1;
 total.sub2 = total.sub2 + student[i].sub2;
 total.sub3 = total.sub3 + student[i].sub3;
 total.total = total.total + student[i].total;
 }
 printf(" STUDENT TOTAL\n\n");
 for(i = 0; i <= 2; i++)
 printf("Student[%d] %d\n", i+1,student[i].total);
 printf("\n SUBJECT TOTAL\n\n");
 printf("%s %d\n%s %d\n%s %d\n",

Structures and Unions 16.15

 "Subject 1 ", total.sub1,
 "Subject 2 ", total.sub2,
 "Subject 3 ", total.sub3);

 printf("\nGrand Total = %d\n", total.total);
 }

Output

 STUDENT TOTAL
 Student[1] 193
 Student[2] 197

 Student[3] 164

 SUBJECT TOTAL
 Subject 1 177
 Subject 2 156
 Subject 3 221

 Grand Total = 554

Fig. 16.4 Arrays of structures: Illustration of subscripted structure variables

16.9 ARRAYS WITHIN STRUCTURES

C permits the use of arrays as structure members. We have already used arrays of charac-

ters inside a structure. Similarly, we can use single-dimensional or multi-dimensional arrays

of type int or float. For example, the following structure declaration is valid:

struct marks
{

int number;
float subject[3];

} student[2];

Here, the member subject contains three elements, subject[0], subject[1] and

subject[2]. These elements can be accessed using appropriate subscripts. For example, the

name

student[1].subject[2];

would refer to the marks obtained in the third subject by the second student.

Example 16.4 Rewrite the program of Example 16.3 using an array member to represent the

three subjects.

The modified program is shown in Fig. 16.5. You may notice that the use of array name for

subjects has simplified in code.

Computer Programming16.16

Program
 main()
 {
 struct marks
 {
 int sub[3];
 int total;
 };
 struct marks student[3] =
 {45,67,81,0,75,53,69,0,57,36,71,0};

 struct marks total;
 int i,j;

 for(i = 0; i <= 2; i++)
 {
 for(j = 0; j <= 2; j++)
 {
 student[i].total += student[i].sub[j];
 total.sub[j] += student[i].sub[j];
 }
 total.total += student[i].total;
 }
 printf("STUDENT TOTAL\n\n");
 for(i = 0; i <= 2; i++)
 printf("Student[%d] %d\n", i+1, student[i].total);

 printf("\nSUBJECT TOTAL\n\n");
 for(j = 0; j <= 2; j++)
 printf("Subject-%d %d\n", j+1, total.sub[j]);

 printf("\nGrand Total = %d\n", total.total);

 }

Output

 STUDENT TOTAL
 Student[1] 193
 Student[2] 197
 Student[3] 164

 STUDENT TOTAL
 Student-1 177
 Student-2 156
 Student-3 221

 Grand Total = 554

Fig. 16.5 Use of subscripted members arrays in structures

Structures and Unions 16.17

16.10 STRUCTURES WITHIN STRUCTURES

Structures within a structure means nesting of structures. Nesting of structures is permit-

ted in C. Let us consider the following structure defined to store information about the salary

of employees.

struct salary
{

char name;
char department;
int basic_pay;
int dearness_allowance;
int house_rent_allowance;
int city_allowance;

}
employee;

This structure defines name, department, basic pay and three kinds of allowances. We can

group all the items related to allowance together and declare them under a substructure as

shown below:

struct salary
{

char name;
char department;
struct
{

int dearness;
int house_rent;
int city;

}
allowance;

}
employee;

The salary structure contains a member named allowance, which itself is a structure

with three members. The members contained in the inner structure namely dearness,

house_rent, and city can be referred to as:

employee.allowance.dearness

employee.allowance.house_rent

employee.allowance.city

An inner-most member in a nested structure can be accessed by chaining all the con-

cerned structure variables (from outer-most to inner-most) with the member using dot op-

erator. The following are invalid:

employee.allowance (actual member is missing)

employee.house_rent (inner structure variable is missing)

An inner structure can have more than one variable. The following form of declaration is

legal:

Computer Programming16.18

struct salary
{

.....
struct
{

int dearness;
.....

}
allowance,
arrears;

}
employee[100];

The inner structure has two variables, allowance and arrears. This implies that both of

them have the same structure template. Note the comma after the name allowance. A base

member can be accessed as follows:

employee[1].allowance.dearness

employee[1].arrears.dearness

We can also use tag names to define inner structures. Example:

struct pay
{

int dearness;
int house_rent;
int city;

};
struct salary
{

char name;
char department;
struct pay allowance;
struct pay arrears;

};
struct salary employee[100];

pay template is defined outside the salary template and is used to define the structure of

allowance and arrears inside the salary structure.

It is also permissible to nest more than one type of structures.

struct personal_record
{

struct name_part name;
struct addr_part address;
struct date date_of_birth;
.....
.....

};
struct personal_record person1;

The first member of this structure is name, which is of the type struct name_part.

Similarly, other members have their structure types.

NOTE: C permits nesting upto 15 levels. However, C99 allows 63 levels of nesting.

Structures and Unions 16.19

16.11 STRUCTURES AND FUNCTIONS

We know that the main philosophy of C language is the use of functions. And therefore, it is

natural that C supports the passing of structure values as arguments to functions. There are

three methods by which the values of a structure can be transferred from one function to

another.

1. The first method is to pass each member of the structure as an actual argument of the

function call. The actual arguments are then treated independently like ordinary vari-

ables. This is the most elementary method and becomes unmanageable and inefficient

when the structure size is large.

2. The second method involves passing of a copy of the entire structure to the called

function. Since the function is working on a copy of the structure, any changes to

structure members within the function are not reflected in the original structure (in

the calling function). It is, therefore, necessary for the function to return the entire

structure back to the calling function. All compilers may not support this method of

passing the entire structure as a parameter.

3. The third approach employs a concept called pointers to pass the structure as an argu-

ment. In this case, the address location of the structure is passed to the called func-

tion. The function can access indirectly the entire structure and work on it. This is

similar to the way arrays are passed to function. This method is more efficient as

compared to the second one.

In this section, we discuss in detail the second method, while the third approach using

pointers is discussed in the next chapter, where pointers are dealt in detail.

The general format of sending a copy of a structure to the called function is:

function_name (structure_variable_name);

The called function takes the following form:

data_type function_name(struct_type st_name)
{

......

......
return(expression);

}

The following points are important to note:

1. The called function must be declared for its type, appropriate to the data type it is

expected to return. For example, if it is returning a copy of the entire structure, then

it must be declared as struct with an appropriate tag name.

2. The structure variable used as the actual argument and the corresponding formal

argument in the called function must be of the same struct type.

3. The return statement is necessary only when the function is returning some data

back to the calling function. The expression may be any simple variable or structure

variable or an expression using simple variables.

Computer Programming16.20

4. When a function returns a structure, it must be assigned to a structure of identical

type in the calling function.

5. The called functions must be declared in the calling function appropriately.

Example 16.5 Write a simple program to illustrate the method of sending an entire structure

as a parameter to a function.

A program to update an item is shown in Fig. 16.6. The function update receives a copy of

the structure variable item as one of its parameters. Note that both the function update

and the formal parameter product are declared as type struct stores. It is done so be-

cause the function uses the parameter product to receive the structure variable item

and also to return the updated values of item.

The function mul is of type float because it returns the product of price and quantity.

However, the parameter stock, which receives the structure variable item is declared as

type struct stores.

The entire structure returned by update can be copied into a structure of identical

type. The statement

item = update(item,p_increment,q_increment);

replaces the old values of item by the new ones.

Program
 /* Passing a copy of the entire structure */
 struct stores
 {
 char name[20];
 float price;
 int quantity;
 };
 struct stores update (struct stores product, float p, int q);
 float mul (struct stores stock);
 main()
 {
 float p_increment, value;
 int q_increment;

 struct stores item = {"XYZ", 25.75, 12};

 printf("\nInput increment values:");
 printf(" price increment and quantity increment\n");
 scanf("%f %d", &p_increment, &q_increment);

 /* - */
 item = update(item, p_increment, q_increment);
 /* - */
 printf("Updated values of item\n\n");

Structures and Unions 16.21

 printf("Name : %s\n",item.name);
 printf("Price : %f\n",item.price);
 printf("Quantity : %d\n",item.quantity);

 /* - */
 value = mul(item);
 /* - */
 printf("\nValue of the item = %f\n", value);
 }
 struct stores update(struct stores product, float p, int q)
 {

 product.price += p;
 product.quantity += q;
 return(product);
 }
 float mul(struct stores stock)
 {
 return(stock.price * stock.quantity);
 }

Output
Input increment values: price increment and quantity increment
10 12
Updated values of item
Name : XYZ
Price : 35.750000
Quantity : 24
Value of the item = 858.000000

Fig. 16.6 Using structure as a function parameter

You may notice that the template of stores is defined before main(). This has made the

data type struct stores as global and has enabled the functions update and mul to make

use of this definition.

16.12 UNIONS

Unions are a concept borrowed from structures and therefore follow the same syntax as

structures. However, there is major distinction between them in terms of storage. In

structures, each member has its own storage location, whereas all the members of a union

use the same location. This implies that, although a union may contain many members of

different types, it can handle only one member at a time. Like structures, a union can be

declared using the keyword union as follows:

Computer Programming16.22

union item
{

int m;
float x;
char c;

} code;

This declares a variable code of type union item. The union contains three members,

each with a different data type. However, we can use only one of them at a time. This is

due to the fact that only one location is allocated for a union variable, irrespective of its

size.

1000 1001

Storage of 4 bytes

1002 1004

c

m

x

Fig. 16.7 Sharing of a storage locating by union members

The compiler allocates a piece of storage that is large enough to hold the largest vari-

able type in the union. In the declaration above, the member x requires 4 bytes which is

the largest among the members. Figure 16.7 shows how all the three variables share the

same address. This assumes that a float variable requires 4 bytes of storage.

To access a union member, we can use the same syntax that we use for structure

members. That is,

code.m

code.x

code.c

are all valid member variables. During accessing, we should make sure that we are

accessing the member whose value is currently stored. For example, the statements such

as

code.m = 379;
code.x = 7859.36;
printf(“%d”, code.m);

would produce erroneous output (which is machine dependent).

In effect, a union creates a storage location that can be used by any one of its members

at a time. When a different member is assigned a new value, the new value supersedes the

previous member�s value.

Unions may be used in all places where a structure is allowed. The notation for access-

ing a union member which is nested inside a structure remains the same as for the nested

structures.

Structures and Unions 16.23

Unions may be initialized when the variable is declared. But, unlike structures, it can be
initialized only with a value of the same type as the first union member. For example, with
the preceding, the declaration

union item abc = {100};

is valid but the declaration

union item abc = {10.75};

is invalid. This is because the type of the first member is int. Other members can be initial-
ized by either assigning values or reading from the keyboard.

16.13 SIZE OF STRUCTURES

We normally use structures, unions, and arrays to create variables of large sizes. The actual
size of these variables in terms of bytes may change from machine to machine. We may use

the unary operator sizeof to tell us the size of a structure (or any variable). The expression

sizeof(struct x)

will evaluate the number of bytes required to hold all the members of the structure x. If y is
a simple structure variable of type struct x, then the expression

sizeof(y)

would also give the same answer. However, if y is an array variable of type struct x, then

sizeof(y)
would give the total number of bytes the array y requires.

This kind of information would be useful to determine the number of records in a data-
base. For example, the expression

sizeof(y)/sizeof(x)

would give the number of elements in the array y.

16.14 BIT FIELDS

So far, we have been using integer fields of size 16 bits to store data. There are occasions
where data items require much less than 16 bits space. In such cases, we waste memory
space. Fortunately, C permits us to use small bit fields to hold data items and thereby to

pack several data items in a word of memory. Bit fields allow direct manipulation of string of
a string of preselected bits as if it represented an integral quantity.

A bit field is a set of adjacent bits whose size can be from 1 to 16 bits in length. A word can
therefore be divided into a number of bit fields. The name and size of bit fields are defined
using a structure. The general form of bit field definition is:

struct tag-name
{

data-type name1: bit–length;
data-type name2: bit–length;
.
.
data-type nameN: bit-length;

}

Computer Programming16.24

The data-type is either int or unsigned int or signed int and the bit-length is the

number of bits used for the specified name. Remember that a signed bit field should have

at least 2 bits (one bit for sign). Note that the field name is followed by a colon. The bit-

length is decided by the range of value to be stored. The largest value that can be stored is

2n�1, where n is bit-length.

The internal representation of bit fields is machine dependent. That is, it depends on

the size of int and the ordering of bits. Some machines store bits from left to right and

others from right to left. The sketch below illustrates the layout of bit fields, assuming a

16-bit word that is ordered from right to left.

15 14

name N name 2 name 1

13 12 11 10 9 8 7 6 5 4 3 2 1 0

There are several specific points to observe:

1. The first field always starts with the first bit of the word.

2. A bit field cannot overlap integer boundaries. That is, the sum of lengths of all the

fields in a structure should not be more than the size of a word. In case, it is more,
the overlapping field is automatically forced to the beginning of the next word.

3. There can be unnamed fields declared with size. Example:

Unsigned : bit-length

Such fields provide padding within the word.

4. There can be unused bits in a word.
5. We cannot take the address of a bit field variable. This means we cannot use scanf

to read values into bit fields. We can neither use pointer to access the bit fields.
6. Bit fields cannot be arrayed.

7. Bit fields should be assigned values that are within the range of their size. If we try

to assign larger values, behaviour would be unpredicted.
Suppose, we want to store and use personal information of employees in compressed

form, this can be done as follows:

struct personal

{

unsigned sex : 1

unsigned age : 7

unsigned m_status : 1

unsigned children : 3

unsigned : 4

} emp;

This defines a variable name emp with four bit fields. The range of values each field

could have is follows:

Bit field Bit length Range of value

sex 1 0 or 1
age 7 0 or 127 (27 � 1)

m_status 1 0 or 1

children 3 0 to 7 (23�1)

Structures and Unions 16.25

Once bit fields are defined, they can be referenced just as any other structure-type data

item would be referenced. The following assignment statements are valid.

emp.sex = 1;
emp.age = 50;

Remember, we cannot use scanf to read values into a bit field. We may have to read into

a temporary variable and then assign its value to the bit field. For example:

scanf(%d %d”, &AGE,&CHILDREN);
emp.age = AGE;
emp.children = CHILDREN;

One restriction in accessing bit fields is that a pointer cannot be used. However, they can

be used in normal expressions like any other variable. For example:

sum = sum + emp.age;
if(emp.m_status).;
printf(“%d\n”, emp.age);

are valid statements.

It is possible to combine normal structure elements with bit field elements. For example:

struct personal
{

char name[20]; /* normal variable */
struct addr address; /* structure variable */
unsigned sex : 1;
unsigned age : 7;
.
.

}
emp[100];

This declares emp as a 100 element array of type struct personal. This combines normal

variable name and structure type variable address with bit fields.

Bit fields are packed into words as they appear in the definition. Consider the following

definition.

struct pack
{

unsigned a:2;
int count;
unsigned b : 3;

};

Here, the bit field a will be in one word, the variable count will be in the second word and

the bit field b will be in the third word. The fields a and b would not get packed into the same

word.

NOTE: Other related topics such as �Structures with Pointers� and �Structures and Linked Lists�

are discussed in Chapter 11 and Chapter 12, respectively.

Computer Programming16.26

- Remember to place a semicolon at the end of definition of structures and

unions.

- We can declare a structure variable at the time of definition of a structure

by placing it after the closing brace but before the semicolon.

- Do not place the structure tag name after the closing brace in the

definition. That will be treated as a structure variable. The tag name must

be placed before the opening brace but after the keyword struct.

- When we use typedef definition, the type_name comes after the closing

brace but before the semicolon.

- We cannot declare a variable at the time of creating a typedef definition.

We must use the type_name to declare a variable in an independent state-

ment.

- It is an error to use a structure variable as a member of its own struct type

structure.

- Assigning a structure of one type to a structure of another type is an error.

- Declaring a variable using the tag name only (without the keyword struct)

is an error.

- It is an error to compare two structure variables.

- It is illegal to refer to a structure member using only the member name.

- When structures are nested, a member must be qualified with all levels of

structures nesting it.

- When accessing a member with a pointer and dot notation, parentheses

are required around the pointer, like (*ptr).number.

- The selection operator (�>) is a single token. Any space between the

symbols � and > is an error.

- When using scanf for reading values for members, we must use address

operator & with non-string members.

- Forgetting to include the array subscript when referring to individual

structures of an array of structures is an error.

- A union can store only one of its members at a time. We must exercise care

in accessing the correct member. Accessing a wrong data is a logic error.

- It is an error to initialize a union with data that does not match the type of

the first member.

- Always provide a structure tag name when creating a structure. It is con-

venient to use tag name to declare new structure variables later in the

program.

- Use short and meaningful structure tag names.

- Avoid using same names for members of different structures (although it

is not illegal).

- Passing structures to functions by pointers is more efficient than passing

by value. (Passing by pointers are discussed in Chapter 11.)

Structures and Unions 16.27

- We cannot take the address of a bit field. Therefore, we cannot use scanf

to read values in bit fields. We can neither use pointer to access the bit

fields.

- Bit fields cannot be arrayed.

Book Shop Inventory

A book shop uses a personal computer to maintain the inventory of books that are being sold

at the shop. The list includes details such as author, title, price, publisher, stock position,

etc. Whenever a customer wants a book, the shopkeeper inputs the title and author of the

book and the system replies whether it is in the list or not. If it is not, an appropriate message

is displayed. If book is in the list, then the system displays the book details and asks for

number of copies. If the requested copies are available, the total cost of the books is displayed;

otherwise the message �Required copies not in stock� is displayed.

A program to accomplish this is shown in Fig. 16.8. The program uses a template to define

the structure of the book. Note that the date of publication, a member of record structure, is

also defined as a structure.

When the title and author of a book are specified, the program searches for the book in the

list using the function

look_up(table, s1, s2, m)

The parameter table which receives the structure variable book is declared as type

struct record. The parameters s1 and s2 receive the string values of title and author

while m receives the total number of books in the list. Total number of books is given by the

expression

sizeof(book)/sizeof(struct record)

The search ends when the book is found in the list and the function returns the serial

number of the book. The function returns �1 when the book is not found. Remember that the

serial number of the first book in the list is zero. The program terminates when we respond

�NO� to the question

Do you want any other book?

Note that we use the function

get(string)

to get title, author, etc. from the terminal. This enables us to input strings with spaces such

as �C Language�. We cannot use scanf to read this string since it contains two words.

Since we are reading the quantity as a string using the get(string) function, we have to

convert it to an integer before using it in any expressions. This is done using the atoi()

function.

Computer Programming16.28

Programs
 #include <stdio.h>
 #include <string.h>
 struct record
 {
 char author[20];
 char title[30];
 float price;
 struct

 {
 char month[10];
 int year;
 }
 date;
 char publisher[10];
 int quantity;
 };
 int look_up(struct record table[],char s1[],char s2[],int m);
 void get (char string []);
 main()
 {
 char title[30], author[20];
 int index, no_of_records;
 char response[10], quantity[10];
 struct record book[] = {
 {"Ritche","C Language",45.00,"May",1977,"PHI",10},
 {"Kochan","Programming in C",75.50,"July",1983,"Hayden",5},
 {"Balagurusamy","BASIC",30.00,"January",1984,"TMH",0},
 {"Balagurusamy","COBOL",60.00,"December",1988,"Macmillan",25}
 };

 no_of_records = sizeof(book)/ sizeof(struct record);
 do
 {
 printf("Enter title and author name as per the list\n");
 printf("\nTitle: ");
 get(title);
 printf("Author: ");
 get(author);
 index = look_up(book, title, author, no_of_records);
 if(index != -1) /* Book found */
 {
 printf("\n%s %s %.2f %s %d %s\n\n",
 book[index].author,
 book[index].title,

Structures and Unions 16.29

 book[index].price,
 book[index].date.month,
 book[index].date.year,
 book[index].publisher);

 printf("Enter number of copies:");
 get(quantity);
 if(atoi(quantity) < book[index].quantity)

 printf("Cost of %d copies = %.2f\n",atoi(quantity),
 book[index].price * atoi(quantity));
 else
 printf("\nRequired copies not in stock\n\n");
 }
 else
 printf("\nBook not in list\n\n");

 printf("\nDo you want any other book? (YES / NO):");
 get(response);
 }
 while(response[0] == 'Y' || response[0] == 'y');
 printf("\n\nThank you. Good bye!\n");
 }
 void get(char string [])
 {
 char c;
 int i = 0;
 do
 {
 c = getchar();
 string[i++] = c;
 }
 while(c != '\n');
 string[i-1] = '\0';
 }

 int look_up(struct record table[],char s1[],char s2[],int m)
 {
 int i;
 for(i = 0; i < m; i++)
 if(strcmp(s1, table[i].title) == 0 &&
 strcmp(s2, table[i].author) == 0)
 return(i); /* book found */
 return(-1); /* book not found */
 }

Computer Programming16.30

Output

 Enter title and author name as per the list
 Title: BASIC
 Author: Balagurusamy
 Balagurusamy BASIC 30.00 January 1984 TMH

 Enter number of copies:5
 Required copies not in stock

 Do you want any other book? (YES / NO):y
 Enter title and author name as per the list
 Title: COBOL
 Author: Balagurusamy
 Balagurusamy COBOL 60.00 December 1988 Macmillan

 Enter number of copies:7
 Cost of 7 copies = 420.00

 Do you want any other book? (YES / NO):y
 Enter title and author name as per the list
 Title: C Programming
 Author: Ritche

 Book not in list

 Do you want any other book? (YES / NO):n

 Thank you. Good bye!

Fig. 16.8 Program of bookshop inventory

16.1 State whether the following statements are true or false.

(a) A struct type in C is a built-in data type.

(b) The tag name of a structure is optional.

(c) Structures may contain members of only one data type.

(d) A structure variable is used to declare a data type containing multiple fields.

(e) It is legal to copy a content of a structure variable to another structure variable

of the same type.

(f) Structures are always passed to functions by printers.

(g) Pointers can be used to access the members of structure variables.

(h) We can perform mathematical operations on structure variables that contain

only numeric type members.

Structures and Unions 16.31

(i) The keyword typedef is used to define a new data type.

(j) In accessing a member of a structure using a pointer p, the following two are

equivalent:

(*p).member_name and p �> member_name

(k) A union may be initialized in the same way a structure is initialized.

(l) A union can have another union as one of the members.

(m) A structure cannot have a union as one of its members.

(n) An array cannot be used as a member of a structure.

(o) A member in a structure can itself be a structure.

16.2 Fill in the blanks in the following statements:

(a) The _____________ can be used to create a synonym for a previously defined data

type.

(b) A_______________ is a collection of data items under one name in which the items

share the same storage.

(c) The name of a structure is referred to as _______________.

(d) The selection operator �> requires the use of a _________________ to access the

members of a structure.

(e) The variables declared in a structure definition are called its ______________.

16.3 A structure tag name abc is used to declare and initialize the structure variables of

type struct abc in the following statements. Which of them are incorrect? Why? As-

sume that the structure abc has three members, int, float and char in that order.

(a) struct a,b,c;
(b) struct abc a,b,c
(c) abc x,y,z;
(d) struct abc a[];
(e) struct abc a = { };
(f) struct abc = b, { 1+2, 3.0, “xyz”}
(g) struct abc c = {4,5,6};
(h) struct abc a = 4, 5.0, “xyz”;

16.4 Given the declaration

struct abc a,b,c;

which of the following statements are legal?

(a) scanf (“%d, &a);
(b) printf (“%d”, b);
(c) a = b;
(d) a = b + c;
(e) if (a>b)

.
16.5 Given the declaration

struct item_bank
{

int number;
double cost;

};

Computer Programming16.32

which of the following are correct statements for declaring one dimensional array of

structures of type struct item_bank?

(a) int item_bank items[10];
(b) struct items[10] item_bank;
(c) struct item_bank items (10);
(d) struct item_bank items [10];
(e) struct items item_bank [10];

16.6 Given the following declaration

typedef struct abc
{

char x;
int y;
float z[10];

} ABC;

State which of the following declarations are invalid? Why?

(a) struct abc n1;
(b) struct abc n2[10];
(c) struct ABC n3;
(d) ABC a,b,c;
(e) ABC a[10];

16.7 How does a structure differ from an array?

16.8 Explain the meaning and purpose of the following:

(a) Template

(b) struct keyword

(c) typedef keyword

(d) sizeof operator

(e) Tag name

16.9 Explain what is wrong in the following structure declaration:

struct
{

int number;
float price;

}
main()
{

.

.
}

16.10 When do we use the following?

(a) Unions

(b) Bit fields

(c) The sizeof operator

16.11 What is meant by the following terms?

(a) Nested structures

(b) Array of structures

Give a typical example of use of each of them.

Structures and Unions 16.33

16.12 Given the structure definitions and declarations

 struct abc
 {

int a;
float b;

};
struct xyz
{

int x;
float y;

};
abc a1, a2;
xyz x1, x2;

find errors, if any, in the following statements:
(a) a1 = x1;
(b) abc.a1 = 10.75;
(c) int m = a + x;
(d) int n = x1.x + 10;
(e) a1 = a2;
(f) if (a.a1 > x.x1) . . .
(g) if (a1.a < x1.x) . . .
(h) if (x1 != x2) . . .

16.13 Describe with examples, the different ways of assigning values to structure members.

16.14 State the rules for initializing structures.
16.15 What is a �slack byte�? How does it affect the implementation of structures?
16.16 Describe three different approaches that can be used to pass structures as function

arguments.
16.17 What are the important points to be considered when implementing bit-fields in struc-

tures?

16.18 Define a structure called complex consisting of two floating-point numbers x and y
and declare a variable p of type complex. Assign initial values 0.0 and 1.1 to the
members.

16.19 What is the error in the following program?

typedef struct product
{

char name [10];
float price ;

} PRODUCT products [10];
16.20 What will be the output of the following program?

main ()
{

union x
{

int a;
float b;
double c ;

};

Computer Programming16.34

printf(“%d\n”, sizeof(x));
a.x = 10;

printf(“%d%f%f\n”, a.x, b.x, c.x);
c.x = 1.23;

printf(“%d%f%f\n”, a.x, b.x, c.x);
}

16.1 Define a structure data type called time_struct containing three members integer

hour, integer minute and integer second. Develop a program that would assign
values to the individual members and display the time in the following form:

16:40:51
16.2 Modify the above program such that a function is used to input values to the mem-

bers and another function to display the time.

16.3 Design a function update that would accept the data structure designed in Exer-
cise 16.1 and increments time by one second and returns the new time. (If the incre-

ment results in 60 seconds, then the second member is set to zero and the minute
member is incremented by one. Then, if the result is 60 minutes, the minute mem-

ber is set to zero and the hour member is incremented by one. Finally when the
hour becomes 24, it is set to zero.)

16.4 Define a structure data type named date containing three integer members day,

month and year. Develop an interactive modular program to perform the follow-
ing tasks;

· To read data into structure members by a function

· To validate the date entered by another function

· To print the date in the format

April 29, 2002

by a third function.

The input data should be three integers like 29, 4, and 2002 corresponding to day,

month and year. Examples of invalid data:

31, 4, 2002 � April has only 30 days

29, 2, 2002 � 2002 is not a leap year

16.5 Design a function update that accepts the date structure designed in Exercise

16.4 to increment the date by one day and return the new date. The following rules

are applicable:

· If the date is the last day in a month, month should be incremented

· If it is the last day in December, the year should be incremented

· There are 29 days in February of a leap year

16.6 Modify the input function used in Exercise 16.4 such that it reads a value that
represents the date in the form of a long integer, like 19450815 for the date 15-8-

1945 (August 15, 1945) and assigns suitable values to the members day, month

and year.

Use suitable algorithm to convert the long integer 19450815 into year, month and

day.

Structures and Unions 16.35

16.7 Add a function called nextdate to the program designed in Exercise 16.4 to perform

the following task;

· Accepts two arguments, one of the structure data containing the present date and

the second an integer that represents the number of days to be added to the

present date.

· Adds the days to the present date and returns the structure containing the next

date correctly.

Note that the next date may be in the next month or even the next year.

16.8 Use the date structure defined in Exercise 16.4 to store two dates. Develop a function

that will take these two dates as input and compares them.

· It returns 1, if the date1 is earlier than date2

· It returns 0, if date1 is later date

16.9 Define a structure to represent a vector (a series of integer values) and write a modu-

lar program to perform the following tasks:

· To create a vector

· To modify the value of a given element

· To multiply by a scalar value

· To display the vector in the form

(10, 20, 30,)

16.10 Add a function to the program of Exercise 16.9 that accepts two vectors as input pa-

rameters and return the addition of two vectors.

16.11 Create two structures named metric and British which store the values of distances.

The metric structure stores the values in metres and centimetres and the British

structure stores the values in feet and inches. Write a program that reads values for

the structure variables and adds values contained in one variable of metric to the

contents of another variable of British. The program should display the result in the

format of feet and inches or metres and centimetres as required.

16.12 Define a structure named census with the following three members:

· A character array city [] to store names

· A long integer to store population of the city

· A float member to store the literacy level

Write a program to do the following:

· To read details for 5 cities randomly using an array variable

· To sort the list alphabetically

· To sort the list based on literacy level

· To sort the list based on population

· To display sorted lists

16.13 Define a structure that can describe an hotel. It should have members that include the

name, address, grade, average room charge, and number of rooms.

Write functions to perform the following operations:

· To print out hotels of a given grade in order of charges

· To print out hotels with room charges less than a given value

16.14 Define a structure called cricket that will describe the following information:

player name

team name

batting average

Computer Programming16.36

Using cricket, declare an array player with 50 elements and write a program to read

the information about all the 50 players and print a team-wise list containing names

of players with their batting average.

16.15 Design a structure student_record to contain name, date of birth and total marks

obtained. Use the date structure designed in Exercise 16.4 to represent the date of

birth.

Develop a program to read data for 10 students in a class and list them rank-wise.

The Preprocessor

17.1 INTRODUCTION

C is a unique language in many respects. We have already seen features such as structures
and pointers. Yet another unique feature of the C language is the preprocessor. The C pre-
processor provides several tools that are unavailable in other high-level languages. The pro-
grammer can use these tools to make his program easy to read, easy to modify, portable, and
more efficient.

The preprocessor, as its name implies, is a program that processes the source code before
it passes through the compiler. It operates under the control of what is known as preproces-

sor command lines or directives. Preprocessor directives are placed in the source program
before the main line. Before the source code passes through the compiler, it is examined by
the preprocessor for any preprocessor directives. If there are any, appropriate actions (as per
the directives) are taken and then the source program is handed over to the compiler.

Preprocessor directives follow special syntax rules that are different from the normal C
syntax. They all begin with the symbol # in column one and do not require a semicolon at the
end. We have already used the directives #define and #include to a limited extent. A set of
commonly used preprocessor directives and their functions is given in Table 17.1.

Table 17.1 Preprocessor Directives

Directive Function

#define Defines a macro substitution

#undef Undefines a macro

#include Specifies the files to be included

#ifdef Test for a macro definition

#endif Specifies the end of #if.

#ifndef Tests whether a macro is not defined.

#if Test a compile-time condition

#else Specifies alternatives when #if test fails.

These directives can be divided into three categories:
1. Macro substitution directives.
2. File inclusion directives.
3. Compiler control directives.

17

Computer Programming17.2

17.2 MACRO SUBSTITUTION

Macro substitution is a process where an identifier in a program is replaced by a predefined
string composed of one or more tokens. The preprocessor accomplishes this task under the
direction of #define statement. This statement, usually known as a macro definition (or
simply a macro) takes the following general form:

#define identifier string

If this statement is included in the program at the beginning, then the preprocessor re-
places every occurrence of the identifier in the source code by the string. The keyword
#define is written just as shown (starting from the first column) followed by the identifier

and a string, with at least one blank space between them. Note that the definition is not
terminated by a semicolon. The string may be any text, while the identifier must be a valid C
name.

There are different forms of macro substitution. The most common forms are:

1. Simple macro substitution.
2. Argumented macro substitution.
3. Nested macro substitution.

Simple Macro Substitution

Simple string replacement is commonly used to define constants. Examples of definition of
constants are:

#define COUNT 100
#define FALSE 0
#define SUBJECTS 6
#define PI 3.1415926
#define CAPITAL �DELHI�

Notice that we have written all macros (identifiers) in capitals. It is a convention to write
all macros in capitals to identify them as symbolic constants. A definition, such as

#define M 5

will replace all occurrences of M with 5, starting from the line of definition to the end of the
program. However, a macro inside a string does not get replaced. Consider the following two
lines:

total = M * value;

printf(“M = %d\n”, M);

These two lines would be changed during preprocessing as follows:

total = 5 * value;

printf(“M = %d\n”, 5);

Notice that the string �M=%d\n� is left unchanged.
A macro definition can include more than a simple constant value. It can include expres-

sions as well. Following are valid definitions:

The Preprocessor 17.3

#define AREA 5 * 12.46
#define SIZE sizeof(int) * 4
#define TWO-PI 2.0 * 3.1415926

Whenever we use expressions for replacement, care should be taken to prevent an unex-
pected order of evaluation. Consider the evaluation of the equation

ratio = D/A;

where D and A are macros defined as follows:

#define D 45 � 22
#define A 78 + 32

The result of the preprocessor�s substitution for D and A is:

ratio = 45–22/78+32;

This is certainly different from the expected expression

(45 � 22)/(78+32)

Correct results can be obtained by using parentheses around the strings as:

#define D (45 � 22)
#define A (78 + 32)

It is a wise practice to use parentheses for expressions used in macro definitions.
As mentioned earlier, the preprocessor performs a literal text substitution, whenever the

defined name occurs. This explains why we cannot use a semicolon to terminate the #define
statement. This also suggests that we can use a macro to define almost anything. For exam-
ple, we can use the definitions

#define TEST if (x > y)
#define AND
#define PRINT printf(�Very Good. \n�);

to build a statement as follows:

TEST AND PRINT

The preprocessor would translate this line to

if(x>y) printf(“Very Good.\n”);

Some tokens of C syntax are confusing or are error-prone. For example, a common pro-
gramming mistake is to use the token = in place of the token == in logical expressions.
Similar is the case with the token &&.

Following are a few definitions that might be useful in building error free and more read-
able programs:

#define EQUALS ==
#define AND &&
#define OR | |
#define NOT_EQUAL !=
#define START main() {
#define END }
#define MOD %

Computer Programming17.4

#define BLANK_LINE printf(�\n�);
#define INCREMENT ++

An example of the use of syntactic replacement is:

START

… …..

… …..

if(total EQUALS 240 AND average EQUALS 60)
INCREMENT count;
… …..
… ….
END

Macros with Arguments

The preprocessor permits us to define more complex and more useful form of replacements.
It takes the form:

#define identifier(f1, f2, fn) string

Notice that there is no space between the macro identifier and the left parentheses. The
identifiers f1, f2, � � .,fn are the formal macro arguments that are analogous to the formal
arguments in a function definition.

There is a basic difference between the simple replacement discussed above and the re-
placement of macros with arguments. Subsequent occurrence of a macro with arguments is
known as a macro call (similar to a function call). When a macro is called, the preprocessor
substitutes the string, replacing the formal parameters with the actual parameters. Hence,
the string behaves like a template.
A simple example of a macro with arguments is

#define CUBE(x) (x*x*x)

If the following statement appears later in the program

volume = CUBE(side);

Then the preprocessor would expand this statement to:

volume = (side * side * side);

Consider the following statement:

volume = CUBE(a+b);

This would expand to:

volume = (a+b * a+b * a+b);

which would obviously not produce the correct results. This is because the preprocessor
performs a blind test substitution of the argument a+b in place of x. This shortcoming can be
corrected by using parentheses for each occurrence of a formal argument in the string.
Example:

#define CUBE(x) ((x) * (x) *(x))

This would result in correct expansion of CUBE(a+b) as:

volume = ((a+b) * (a+b) * (a+b));

The Preprocessor 17.5

Remember to use parentheses for each occurrence of a formal argument, as well as the
whole string.

Some commonly used definitions are:

#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
#define ABS(x) (((x) > 0) ? (x) : (�(x)))
#define STREQ(s1,s2) (strcmp((s1,) (s2)) == 0)
#define STRGT(s1,s2) (strcmp((s1,) (s2)) > 0)

The argument supplied to a macro can be any series of characters. For example, the defi-
nition

#define PRINT(variable, format) printf(�variable = %format \n�, variable)

can be called-in by

PRINT(price x quantity, f);

The preprocessor will expand this as

printf(“price x quantity = %f\n”, price x quantity);

Note that the actual parameters are substituted for formal parameters in a macro call,
although they are within a string. This definition can be used for printing integers and
character strings as well.

Nesting of Macros

We can also use one macro in the definition of another macro. That is, macro definitions may
be nested. For instance, consider the following macro definitions.

#define M 5
#define N M+1
#define SQUARE(x) ((x) * (x))
#define CUBE(x) (SQUARE (x) * (x))
#define SIXTH(x) (CUBE(x) * CUBE(x))

The preprocessor expands each #define macro, until no more macros appear in the text.
For example, the last definition is first expanded into

((SQUARE(x) * (x)) * (SQUARE(x) * (x)))

Since SQUARE (x) is still a macro, it is further expanded into

((((x)*(x)) * (x)) * (((x) * (x)) * (x)))

which is finally evaluated as x6.
Macros can also be used as parameters of other macros. For example, given the definitions

of M and N, we can define the following macro to give the maximum of these two:

#define MAX(M,N) (((M) > (N)) ? (M) : (N))

Macro calls can be nested in much the same fashion as function calls. Example:

#define HALF(x) ((x)/2.0)
#define Y HALF(HALF(x))

Computer Programming17.6

Similarly, given the definition of MAX(a,b) we can use the following nested call to give the
maximum of the three values x,y, and z:

MAX (x, MAX(y,z))

Undefining a Macro

A defined macro can be undefined, using the statement

#undef identifier

This is useful when we want to restrict the definition only to a particular part of the pro-
gram.

17.3 FILE INCLUSION

An external file containing functions or macro definitions can be included as a part of a
program so that we need not rewrite those functions or macro definitions. This is achieved by
the preprocessor directive

#include �filename�

where filename is the name of the file containing the required definitions or functions. At
this point, the preprocessor inserts the entire contents of filename into the source code of the
program. When the filename is included within the double quotation marks, the search for
the file is made first in the current directory and then in the standard directories.

Alternatively this directive can take the form

#include <filename>

without double quotation marks. In this case, the file is searched only in the standard direc-
tories.

Nesting of included files is allowed. That is, an included file can include other files. How-
ever, a file cannot include itself.

If an included file is not found, an error is reported and compilation is terminated.
Let use assume that we have created the following three files:

SYNTAX.C contains syntax definitions.
STAT.C contains statistical functions.
TEST.C contains test functions.

We can make use of a definition or function contained in any of these files by including
them in the program as:

#include <stdio.h>

#include �SYNTAX.C�

#include �STAT.C�
#include �TEST.C�

#define M 100

main ()

{

}

The Preprocessor 17.7

17.4 COMPILER CONTROL DIRECTIVES

While developing large programs, you may face one or more of the following situations:

1. You have included a file containing some macro definitions. It is not known whether a
particular macro (say, TEST) has been defined in that header file. However, you want
to be certain that Test is defined (or not defined).

2. Suppose a customer has two different types of computers and you are required to write
a program that will run on both the systems. You want to use the same program,
although certain lines of code must be different for each system.

3. You are developing a program (say, for sales analysis) for selling in the open market.
Some customers may insist on having certain additional features. However, you would
like to have a single program that would satisfy both types of customers.

4. Suppose you are in the process of testing your program, which is rather a large one.
You would like to have print calls inserted in certain places to display intermediate
results and messages in order to trace the flow of execution and errors, if any. Such
statements are called �debugging� statements. You want these statements to be a part
of the program and to become �active� only when you decide so.

One solution to these problems is to develop different programs to suit the needs of differ-
ent situations. Another method is to develop a single, comprehensive program that includes
all optional codes and then directs the compiler to skip over certain parts of source code
when they are not required. Fortunately, the C preprocessor offers a feature known as con-
ditional compilation, which can be used to �switch� on or off a particular line or group of lines
in a program.

Situation 1

This situation refers to the conditional definition of a macro. We want to ensure that the
macro TEST is always defined, irrespective of whether it has been defined in the header file
or not. This can be achieved as follows:

#include �DEFINE.H�

#ifndef TEST

#define TEST 1

#endif

� �

DEFINE.H is the header file that is supposed to contain the definition of TEST macro. The
directive.

#ifndef TEST

searches for the definition of TEST in the header file and if not defined, then all the lines
between the #ifndef and the corresponding #endif directive are left �active� in the program.
That is, the preprocessor directive

define TEST is processed.

In case, the TEST has been defined in the header file, the #ifndef condition becomes false,
therefore the directive #define TEST is ignored. Remember, you cannot simply write

define TEST 1

because if TEST is already defined, an error will occur.

Computer Programming17.8

Similar is the case when we want the macro TEST never to be defined. Looking at the
following code:

� � �
#ifdef TEST
#undef TEST
#endif

� �
� �

This ensures that even if TEST is defined in the header file, its definition is removed.
Here again we cannot simply say

#undef TEST

because, if TEST is not defined, the directive is erroneous.

Situation 2

The main concern here is to make the program portable. This can be achieved as follows:
� �
� �
main()
{

� �
� �

#ifdef IBM_PC
{

� �
� � code for IBM_PC
� �

}
#else
{

� �
� � code for HP machine
� �

}
#endif

� ..
� ..

}

If we want the program to run on IBM PC, we include the directive

#define IBM_PC

in the program; otherwise we don�t. Note that the compiler control directives are inside the
function. Care must be taken to put the # character at column one.

The compiler complies the code for IBM PC if IBM-PC is defined, or the code for the HP
machine if it is not.

The Preprocessor 17.9

Situation 3

This is similar to the above situation and therefore the control directives take the following

form:

#ifdef ABC

group-A lines

#else

group-B lines

#endif

Group-A lines are included if the customer ABC is defined. Otherwise, group-B lines are

included.

Situation 4

Debugging and testing are done to detect errors in the program. While the Compiler can

detect syntactic and semantic errors, it cannot detect a faulty algorithm where the program

executes, but produces wrong results.

The process of error detection and isolation begins with the testing of the program with a
known set of test data. The program is divided down and printf statements are placed in

different parts to see intermediate results. Such statements are called debugging statements

and are not required once the errors are isolated and corrected. We can either delete all of

them or, alternately, make them inactive using control directives as:

… …

… …

#ifdef TEST

{

printf(“Array elements\n”);

for (i = 0; i< m; i++)

printf(“x[%d] = %d\n”, i, x[i]);

}

#endif

… ..

… ..

#ifdef TEST

printf(….);

#endif

… …

The statements between the directives #ifdef and #endif are included only if the macro

TEST is defined. Once everything is OK, delete or undefine the TEST. This makes the

#ifdef TEST conditions false and therefore all the debugging statements are left out.

The C preprocessor also supports a more general form of test condition - #if directive. This

takes the following form:

Computer Programming17.10

#if constant expression

{

statement-1;

statement-2;

… …

… …

}

#endif

The constant-expression may be any logical expression such as:

TEST <= 3
(LEVEL == 1 || LEVEL == 2)
MACHINE == �A�

If the result of the constant-expression is nonzero (true), then all the statements between
the #if and #endif are included for processing; otherwise they are skipped. The names
TEST, LEVEL, etc. may be defined as macros.

17.5 ANSI ADDITIONS

ANSI committee has added some more preprocessor directives to the existing list given in
Table 17.1. They are:

#elif Provides alternative test facility
#pragma Specifies certain instructions
#error Stops compilation when an error occurs

The ANSI standard also includes two new preprocessor operations:

Stringizing operator
Token-pasting operator

elif Directive

The #elif enables us to establish an �if..else..if..� sequence for testing multiple conditions.
The general form of use of #elif is:

#if expression 1
statement sequence 1

#elif expression 2
statement sequence 2
.
.

#elif expression N
statement sequence N

#endif

For example:

#if MACHINE == HCL
#define FILE �hcl.h�

The Preprocessor 17.11

#elif MACHINE == WIPRO
#define FILE �wipro.h�

#elif MACHINE == DCM
#define FILE �dcm.h�

#endif
#include FILE

#pragma Directive

The #pragma is an implementation oriented directive that allows us to specify various in-
structions to be given to the compiler. It takes the following form:

#pragma name

where, name is the name of the pragma we want. For example, under Microsoft C,

#pragma loop_opt(on)

causes loop optimization to be performed. It is ignored, if the compiler does not recognize it.

#error Directive

The #error directive is used to produce diagnostic messages during debugging. The general
form is

#error error message

When the #error directive is encountered, it displays the error message and terminates
processing. Example.

#if !defined(FILE_G)
#error NO GRAPHICS FACILITY
#endif

Note that we have used a special processor operator defined along with #if. defined is a

new addition and takes a name surrounded by parentheses. If a compiler does not support
this, we can replace it as follows:

#if !defined by #ifndef
#if defined by #ifdef

Stringizing Operator #

ANSI C provides an operator # called stringizing operator to be used in the definition of
macro functions. This operator allows a formal argument within a macro definition to be
converted to a string. Consider the example below:

#define sum(xy) printf(#xy “ = %f\n”, xy)

main()

Computer Programming17.12

{

… …

… …

sum(a+b);

… …

}

The preprocessor will convert the line

sum(a+b);

into

printf(“a+b” “=%f\n”, a+b);

which is equivalent to

printf(“a+b =%f\n”, a+b);

Note that the ANSI standard also stipulates that adjacent strings will be concatenated.

Token Pasting Operator ##

The token pasting operator ## defined by ANSI standard enables us to combine two tokens
within a macro definition to form a single token. For example:

#define combine(s1,s2) s1 ## s2

main()

{

... ..

... ..

printf(“%f”, combine(total, sales));

... ..

... ..

}

The preprocessor transforms the statement

printf(“%f”, combine(total, sales));

into the statement

printf(“%f”, totalsales);

Consider another macro definition:

#define print(i) printf(�a� #i �=%f�, a##i)

This macro will convert the statement

print(5);

into the statement

printf(“a5 = %f”, a5)

The Preprocessor 17.13

17.1 Explain the role of the C preprocessor.
17.2 What is a macro and how is it different from a C variable name?
17.3 What precautions one should take when using macros with argument?
17.4 What are the advantages of using macro definitions in a program?
17.5 When does a programmer use #include directive?
17.6 The value of a macro name cannot be changed during the running of a program. Com

ment?
17.7 What is conditional compilation? How does it help a programmer?
17.8 Distinguish between #ifdef and #if directives.
17.9 Comment on the following code fragment:

#if 0

{

line-1;

line-2;

… …

… …

line-n;

}

#endif

17.10 Identify errors, if any, in the following macro definitions:
(a) #define until(x) while(!x)
(b) #define ABS(x) (x > 0) ? (x) : (�x)
(c) #ifdef(FLAG)

#undef FLAG
#endif

(d) #if n == 1 update(item)
#else print-out(item)
#endif

17.11 State whether the following statements are true or false.
(a) The keyword #define must be written starting from the first column.
(b) Like other statements, a processor directive must end with a semicolon.
(c) All preprocessor directives begin with #.
(d) We cannot use a macro in the definition of another macro.

17.12 Fill in the blanks in the following statements.
(a) The __________________ directive discords a macro.
(b) The operator _______________ is used to concatenate two arguments.
(c) The operator _______________ converts its operand.
(d) The ______________ directive causes an implementation-oriented action.

17.13 Enumerate the differences between functions and parameterized macros.
17.14 In #include directives, some file names are enclosed in angle brackets while others

are enclosed in double quotation marks. Why?
17.15 Why do we recommend the use of parentheses for formal arguments used in a macro

definition? Give an example.

Computer Programming17.14

17.1 Define a macro PRINT_VALUE that can be used to print two values of arbitrary type.
17.2 Write a nested macro that gives the minimum of three values.
17.3 Define a macro with one parameter to compute the volume of a sphere. Write a pro-

gram using this macro to compute the volume for spheres of radius 5, 10 and 15
metres.

17.4 Define a macro that receives an array and the number of elements in the array as
arguments. Write a program using this macro to print out the elements of an array.

17.5 Using the macro defined in the exercise 17.4, write a program to compute the sum of
all elements in an array.

17.6 Write symbolic constants for the binary arithmetic operators +, �, * and /. Write a
short program to illustrate the use of these symbolic constants.

17.7 Define symbolic constants for { and } and printing a blank line. Write a small program
using these constants.

17.8 Write a program to illustrate the use of stringizing operator.

APPENDIX

Developing a C
Program: Some Guidelines

1 INTRODUCTION

We have discussed so far various features of C language and are ready to write and execute
programs of modest complexity. However, before attempting to develop complex programs, it
is worthwhile to consider some programming techniques that would help design efficient
and error-free programs.

The program development process includes three important stages, namely, program de-
sign, program coding and program testing. All the three stages contribute to the production
of high-quality programs. In this chapter we shall discuss some of the techniques used for
program design, coding and testing.

2 PROGRAM DESIGN

Program design is the foundation for a good program and is therefore an important part of
the program development cycle. Before coding a program, the program should be well con-
ceived and all aspects of the program design should be considered in detail.

Program design is basically concerned with the development of a strategy to be used in
writing the program, in order to achieve the solution of a problem. This includes mapping
out a solution procedure and the form the program would take. The program design involves
the following four stages:

1. Problem analysis.
2. Outlining the program structure.
3. Algorithm development.
4. Selection of control structures.

Problem Analysis

Before we think of a solution procedure to the problem, we must fully understand the nature
of the problem and what we want the program to do. Without the comprehension and

I

Computer ProgrammingA.4

definition of the problem at hand, program design might turn into a hit-or-miss approach.
We must carefully decide the following at this stage;

What kind of data will go in?;
What kind of outputs are needed?; and
What are the constraints and conditions under which the program has to operate?

Outlining the Program Structure

Once we have decided what we want and what we have, then the next step is to decide how
to do it. C as a structured language lends itself to a top-down approach. Top-down means
decomposing of the solution procedure into tasks that form a hierarchical structure, as
shown in Fig. I.1. The essence of the top-down design is to cut the whole problem into a
number of independent constituent tasks, and then to cut the tasks into smaller subtasks,
and so on, until they are small enough to be grasped mentally and to be coded easily. These
tasks and subtasks can form the basis of functions in the program.

Problem

Task 1 Task 3Task 2

T11 T21 T31T12 T22 T32

Fig. I.1 Hierarchical structure

An important feature of this approach is that at each level, the details of the design of
lower levels are hidden. The higher-level functions are designed first, assuming certain
broad tasks of the immediately lower-level functions. The actual details of the lower-level
functions are not considered until that level is reached. Thus the design of functions pro-
ceeds from top to bottom, introducing progressively more and more refinements.

This approach will produce a readable and modular code that can be easily understood
and maintained. It also helps us classify the overall functioning of the program in terms of
lower-level functions.

Algorithm Development

After we have decided a solution procedure and an overall outline of the program, the next
step is to work out a detailed definite, step-by-step procedure, known as algorithm for each
function. The most common method of describing an algorithm is through the use of flow-

charts. The other method is to write what is known as pseudocode. The flow chart presents

Appendix I A.5

the algorithm pictorially, while the pseudocode describe the solution steps in a logical order.
Either method involves concepts of logic and creativity.

Since algorithm is the key factor for developing an efficient program, we should devote
enough attention to this step. A problem might have many different approaches to its solu-
tion. For example, there are many sorting techniques available to sort a list. Similarly, there
are many methods of finding the area under a curve. We must consider all possible ap-
proaches and select the one, which is simple to follow, takes less execution time, and pro-
duces results with the required accuracy.

Control Structures

A complex solution procedure may involve a large number of control statements to direct the
flow of execution. In such situations, indiscriminate use of control statements such as goto
may lead to unreadable and uncomprehensible programs. It has been demonstrated that any
algorithm can be structured, using the three basic control structure, namely, sequence struc-
ture, selection structure, and looping structure.

Sequence structure denotes the execution of statements sequentially one after another.
Selection structure involves a decision, based on a condition and may have two or more
branches, which usually join again at a later point. ifelse and switch statements in C
can be used to implement a selection structure. Looping structure is used when a set of
instructions is evaluated repeatedly. This structure can be implemented using do, while, or
for statements.

A well-designed program would provide the following benefits:

1. Coding is easy and error-free.
2. Testing is simple.
3. Maintenance is easy.
4. Good documentation is possible.
5. Cost estimates can be made more accurately.
6. Progress of coding may be controlled more precisely.

3 PROGRAM CODING

The algorithm developed in the previous section must be translated into a set of instructions
that a computer can understand. The major emphasis in coding should be simplicity and
clarity. A program written by one may have to be read by others later. Therefore, it should be
readable and simple to understand. Complex logic and tricky coding should be avoided. The
elements of coding style include:

· Internal documentation.
· Construction of statements.
· Generality of the program.
· Input/output formats.

Internal Documentation

Documentation refers to the details that describe a program. Some details may be built-in as
an integral part of the program. These are known as internal documentation.

Computer ProgrammingA.6

Two important aspects of internal documentation are, selection of meaningful variable
names and the use of comments. Selection of meaningful names is crucial for understanding
the program. For example,

area = breadth * length

is more meaningful than

a = b * l;

Names that are likely to be confused must be avoided. The use of meaningful function
names also aids in understanding and maintenance of programs.

Descriptive comments should be embedded within the body of source code to describe
processing steps.

The following guidelines might help the use of comments judiciously:

1. Describe blocks of statements, rather than commenting on every line.
2. Use blank lines or indentation, so that comments are easily readable.
3. Use appropriate comments; an incorrect comment is worse than no comment at all.

Statement Construction

Although the flow of logic is decided during design, the construction of individual statements
is done at the coding stage. Each statement should be simple and direct. While multiple
statements per line are allowed, try to use only one statement per line with necessary inden-
tation. Consider the following code:

if(quantity>0){code = 0; quantity = rate;}

else { code = 1; sales = 0:)

Although it is perfectly valid, it could be reorganized as follows:

if(quantity>0)

{

code = 0;

quantity = rate;

}

else

{

code = 1;

sales = 0:

}

The general guidelines for construction of statements are:

1. Use one statement per line.
2. Use proper indentation when selection and looping structures are implemented.
3. Avoid heavy nesting of loops, preferably not more than three levels.
4. Use simple conditional tests; if necessary break complicated conditions into simple

conditions.
5. Use parentheses to clarify logical and arithmetic expressions.
6. Use spaces, wherever possible, to improve readability.

Appendix I A.7

Input/Output Formats

Input/output formats should be simple and acceptable to users. A number of guidelines
should be considered during coding.

1. Keep formats simple.

2. Use end-of-file indicators, rather than the user requiring to specify the number of items.

3. Label all interactive input requests.

4. Label all output reports.

5. Use output messages when the output contains some peculiar results.

Generality of Programs

Care should be taken to minimize the dependence of a program on a particular set of data, or
on a particular value of a parameter. Example:

for(sum = 0, i=1; i <= 10; i++)
sum = sum + i;

This loop adds numbers 1,2, �..10. This can be made more general as follows;

sum =0;
for(i =m; i <=n; i = i+ step);

sum = sum + i;

The initial value m, the final value n, and the increment size step can be specified inter-
actively during program execution. When m=2, n=100, and step =2, the loop adds all even
numbers up to, and including 100.

4 COMMON PROGRAMMING ERRORS

By now you must be aware that C has certain features that are easily amenable to bugs.
Added to this, it does not check and report all kinds of run-time errors. It is therefore, advis-
able to keep track of such errors and to see that these known errors are not present in the
program. This section examines some of the more common mistakes that a less experienced
C programmer could make.

Missing Semicolons

Every C statement must end with a semicolon. A missing semicolon may cause considerable
confusion to the compiler and result in �misleading� error messages. Consider the following
statements:

a = x+y

b = m/n;

The compiler will treat the second line as a part of the first one and treat b as a variable
name. You may therefore get an �undefined name� error message in the second line. Note
that both the message and location are incorrect. In such situations where there are no
errors in a reported line, we should check the preceding line for a missing semicolon.

There may be an instance when a missing semicolon might cause the compiler to go �crazy�
and to produce a series of error messages. If they are found to be dubious errors, check for a
missing semicolon in the beginning of the error list.

Computer ProgrammingA.8

Misuse of Semicolon

Another common mistake is to put a semicolon in a wrong place. Consider the following code:

for(i = 1; i<=10; i++);
sum = sum + i;

This code is supposed to sum all the integers from 1 to 10. But what actually happens is
that only the �exit� value of i is added to the sum. Other examples of such mistake are:

1. while (x < Max);
{

}
2. if(T>= 200);

grade = ‘A’;

A simple semicolon represents a null statement and therefore it is syntactically valid. The
compiler does not produce any error message. Remember, these kinds of errors are worse
than syntax errors.

Use of = Instead of = =

It is quite possible to forget the use of double equal sings when we perform a relational
test. Example:

if(code = 1)

count ++;

It is a syntactically valid statement. The variable code is assigned 1 and then, because
code = 1 is true, the count is incremented. In fact, the above statement does not perform any
relational test on code. Irrespective of the previous value of code, count ++; is always ex-
ecuted.

Similar mistakes can occur in other control statements, such as for and while. Such a
mistake in the loop control statements might cause infinite loops.

Missing Braces

It is common to forget a closing brace when coding a deeply nested loop. It will be usually
detected by the compiler because the number of opening braces should match with the clos-
ing ones. However, if we put a matching brace in a wrong place, the compiler won�t notice the
mistake and the program will produce unexpected results.

Another serious problem with the braces is, not using them when multiple statements are
to be grouped together. For instance, consider the following statements:

for(i=1; i <= 10; i++)
sum1 = sum 1 +i;
sum2 = sum2 + i*i;

printf(“%d %d\n”, sum1,sum2);

This code is intended to compute sum1, sum2 for i varying from 1 to 10, in steps of 1 and
then to print their values. But, actually the for loop treats only the first statement, namely,

sum = sum1 + i;

as its body and therefore the statement

sum2 = sum2 + i*i;

Appendix I A.9

is evaluated only once when the loop is exited. The correct way to code this segment is to
place braces as follows:

for(i=1; i<=10; i++)

{
sum1 = sum1 + i;
sum2 = sum2 +i*i;

}
printf(“%d %d\n”, sum1 sum2);

In case, only one brace is supplied, the behaviour of the compiler becomes unpredictable.

Missing Quotes

Every string must be enclosed in double quotes, while a single character constant in single
quotes. If we miss them out, the string (or the character) will be interpreted as a variable
name. Examples:

if(response ==YES) /* YES is a string */
Grade = A; /* A is a character constant */

Here YES and A are treated as variables and therefore, a message �undefined names� may
occur.

Misusing Quotes

It is likely that we use single quotes whenever we handle single characters. Care should be
exercised to see that the associated variables are declared properly. For example, the state-
ment

city = ‘M’;

would be invalid if city has been declared as a char variable with dimension (i.e., pointer to
char).

Improper Comment Characters

Every comment should start with a /* and end with a */. Anything between them is ignored
by the compiler. If we miss out the closing */, then the compiler searches for a closing */
further down in the program, treating all the lines as comments. In case, it fails to find a
closing */, we may get an error message. Consider the following lines:

.
/* comment line 1

statement1;
statement2;
/* comment line 2 */

statement 3;
.

Since the closing */ is missing in the comment line 1, all the statements that follow, until
the closing comment */ in comment line 2 are ignored.

Computer ProgrammingA.10

We should remember that C does not support nested comments. Assume that we want to
comment out the following segment:

.
x = a–b;
Y = c–d;
/* compute ratio */
ratio = x/y;
.
.

we may be tempted to add comment characters as follows:

/* x = a�b;
y = c�d;
/* Compute ratio */
ratio = x/y; */

This is incorrect. The first opening comment matches with the first closing comment and
therefore the lines between these two are ignored. The statement

ratio = x/y;

is not commented out. The correct way to comment out this segment is shown as:

/* x = a�b;
y = c�d; */
/* compute ratio */
/* ratio = x/y; */

Undeclared Variables

C requires every variable to be declared for its type, before it is used. During the develop-
ment of a large program, it is quite possible to use a variable to hold intermediate results and
to forget to declare it.

Forgetting the Precedence of Operators

Expressions are evaluated according to the precedence of operators. It is common among
beginners to forget this. Consider the statement

if (value = product () >= 100)

tax = 0.05 * value;

The call product () returns the product of two numbers, which is compared to 100. If it is
equal to or greater than 100, the relational test is true, and a 1 is assigned to value, other-
wise a 0 is assigned. In either case, the only values value can take on are 1 or 0. This
certainly is not what the programmer wanted.

The statement was actually expected to assign the value returned by product() to value
and then compare value with 100. If value was equal to or greater than 100, tax should
have been computed, using the statement

tax = 0.05 * value;

Appendix I A.11

The error is due to the higher precedence of the relational operator compared to the as-
signment operator. We can force the assignment to occur first by using parentheses as fol-
lows:

if(value = product()) >=100)

tax = 0.05 * value;

Similarly, the logical operators && and || have lower precedence than arithmetic and
relational operators and among these two, && has higher precedence than ||. Try, if there
is any difference between the following statements:

1. if(p > 50|| c > 50 && m > 60 && T > 180)
x = 1;

2. if((p > 50|| c > 50) && m > 60 && T > 180)
x = 1;

3. if((p > 50|| c > 50 && m > 60) && T > 180)
x = 1;

Ignoring the Order of Evaluation of Increment/Decrement
Operators

We often use increment or decrement operators in loops. Example

... ...
i = 0;
while ((c = getchar()) != ‘\n’;
{

string[i++] = c;

}
string[i–1] = ‘\n’;

The statement string[i++] = c; is equivalent to :

string[i] = c;
i = i+1;

This is not the same as the statement string[++i] = c; which is equivalent to

i =i+1;
string[i] = c;

Forgetting to Declare Function Parameters

Remember to declare all function parameters in the function header.

Mismatching of Actual and Formal Parameter
Types in Function Calls

When a function with parameters is called, we should ensure that the type of values passed,
match with the type expected by the called function. Otherwise, erroneous results may oc-
cur. If necessary, we may use the type cast operator to change the type locally. Example:

y = cos((double)x);

Computer ProgrammingA.12

Nondeclaration of Functions

Every function that is called should be declared in the calling function for the types of value
it returns. Consider the following program:

main()

{
float a =12.75;
float b = 7.36;
printf(“%f\n”, division(a,b));

}
double division(float x, float y)

{
return(x/y);

}

The function returns a double type value but this fact is not known to the calling function
and therefore it expects to receive an int type value. The program produces either meaning-
less results or error message such as �redefinition�.

The function division is like any other variable for the main and therefore it should be
declared as double in the main.

Now, let us assume that the function division is coded as follows:

division(float x, float y)
{

return(x/y);
}

Although the values x and y are floats and the result of x/y is also float, the function
returns only integer value because no type specifier is given in the function definition. This
is wrong too. The function header should include the type specifier to force the function to
return a particular type of value.

Missing & Operator in scanf Parameters

All non-pointer variables in a scanf call should be preceded by an & operator. If the variable
code is declared as an integer, then the statement

scanf(“%d”, code);

is wrong. The correct one is scanf(�%d�, &code);
Remember, the compiler will not detect this error and you may get a crazy output.

Crossing the Bounds of an Array

All C indices start from zero. A common mistake is to start the index from 1. For example,
the segment

int x[10], sum i;
Sum = 0;
for (i = 1; i < = 10; i++)

sum = sum + x[i];

Appendix I A.13

would not find the correct sum of the elements of array x. The for loop expressions should be
corrected as follows:

for(i=0;i<10;i++)

Forgetting a Space for Null character in a String

All character arrays are terminated with a null character and therefore their size should be
declared to hold one character more than the actual string size.

Using Uninitialized Pointers

An uninitialized pointer points to garbage. The following program is wrong:

main()
{

int a, *ptr;
a = 25;
*ptr = a+5;

}

The pointer ptr has not been initialized.

Missing Indirection and Address Operators

Another common error is to forget to use the operators * and & in certain places. Consider
the following program:

main()
{

int m, *p1;
m = 5;

p1 = m;
printf(“%d\n”, *p1);

}

This will print some unknown value because the pointer assignment

p1 =m;

is wrong. It should be:

p1 = &m;

Consider the following expression:

y = p1 + 10;

Perhaps, y was expected to be assigned the value at location p1 plus 10. But it does not
happen. y will contain some unknown address value. The above expression should be rewrit-
ten as:

y = *p1 + 10;

Computer ProgrammingA.14

Missing Parentheses in Pointer Expressions

The following two statements are not the same:

x = *p1 + 1;

x = *(p1 + 1);

The first statement would assign the value at location p1 plus 1 to x, while the second
would assign the value at location p1 + 1.

Omitting Parentheses around Arguments in Macro
Definitions

This would cause incorrect evaluation of expression when the macro definition is substi-
tuted.
Example: # define f(x) x * x + 1
The call y = f(a+b);
will be evaluated as y = a+b * a+b+1; which is wrong.
Some other mistakes that we commonly make are:

· Wrong indexing of loops.
· Wrong termination of loops.
· Unending loops.
· Use of incorrect relational test.
· Failure to consider all possible conditions of a variable.
· Trying to divide by zero.
· Mismatching of data specifications and variables in scanf and printf statements.
· Forgetting truncation and rounding off errors.

5 PROGRAM TESTING AND DEBUGGING

Testing and debugging refer to the tasks of detecting and removing errors in a program, so
that the program produces the desired results on all occasions. Every programmer should be
aware of the fact that rarely does a program run perfectly the first time. No matter how
thoroughly the design is carried out, and no matter how much care is taken in coding, one
can never say that the program would be 100 per cent error-free. It is therefore necessary to
make efforts to detect, isolate and correct any errors that are likely to be present in the
program.

Types of Errors

We have discussed a number of common errors. There might be many other errors, some
obvious and others not so obvious. All these errors can be classified under four types, namely,
syntax errors, run-time errors, logical errors, and latent errors.

Syntax errors: Any violation of rules of the language results in syntax errors. The compiler
can detect and isolate such errors. When syntax errors are present, the compilation fails and
is terminated after listing the errors and the line numbers in the source program, where the
errors have occurred. Remember, in some cases, the line number may not exactly indicate

Appendix I A.15

the place of the error. In other cases, one syntax error may result in a long list of errors.
Correction of one or two errors at the beginning of the program may eliminate the entire list.

Run-time errors: Errors such as a mismatch of data types or referencing an out-of-range
array element go undetected by the compiler. A program with these mistakes will run, but
produce erroneous results and therefore, the name run-time errors is given to such errors.
Isolating a run-time error is usually a difficult task.

Logical errors: As the name implies, these errors are related to the logic of the program
execution. Such actions as taking a wrong path, failure to consider a particular condition,
and incorrect order of evaluation of statements belong to this category. Logical errors do not
show up as compiler-generated error messages. Rather, they cause incorrect results. These
errors are primarily due to a poor understanding of the problem, incorrect translation of the
algorithm into the program and a lack of clarity of hierarchy of operators. Consider the
following statement:

if(x ==y)

printf(“They are equal\n”);

when x and y are float types values, they rarely become equal, due to truncation errors. The
printf call may not be executed at all. A test like while(x != y) might create an infinite loop.

Latent errors: It is a �hidden� error that shows up only when a particular set of data is used.
For example, consider the following statement:

ratio = (x+y)/(p–q);

An error occurs only when p and q are equal. An error of this kind can be detected only by
using all possible combinations of test data.

Program Testing

Testing is the process of reviewing and executing a program with the intent of detecting
errors, which may belong to any of the four kinds discussed above. We know that while the
compiler can detect syntactic and semantic errors, it cannot detect run-time and logical er-
rors that show up during the execution of the program. Testing, therefore, should include
necessary steps to detect all possible errors in the program. It is, however, important to
remember that it is impractical to find all errors. Testing process may include the following
two stages:

1. Human testing.
2. Computer-based testing.

Human testing is an effective error-detection process and is done before the computer-
based testing begins. Human testing methods include code inspection by the programmer,
code inspection by a test group, and a review by a peer group. The test is carried out state-
ment by statement and is analyzed with respect to a checklist of common programming
errors. In addition to finding the errors, the programming style and choice of algorithm are
also reviewed.

Computer-based testing involves two stages, namely compiler testing and run-time test-

ing. Compiler testing is the simplest of the two and detects yet undiscovered syntax errors.
The program executes when the compiler detects no more errors. Should it mean that the

Computer ProgrammingA.16

program is correct? Will it produce the expected results? The answer is negative. The pro-
gram may still contain run-time and logic errors.

Run-time errors may produce run-time error messages such as �null pointer assignment�
and �stack overflow�. When the program is free from all such errors, it produces output
,which might or might not be correct. Now comes the crucial test, the test for the expected

output. The goal is to ensure that the program produces expected results under all condi-
tions of input data.

Test for correct output is done using test data with known results for the purpose of com-
parison. The most important consideration here is the design or invention of effective test
data. A useful criteria for test data is that all the various conditions and paths that the
processing may take during execution must be tested.

Program testing can be done either at module (function) level or at program level. Module
level test, often known as unit test, is conducted on each of the modules to uncover errors
within the boundary of the module. Unit testing becomes simple when a module is designed
to perform only one function.

Once all modules are unit tested, they should be integrated together to perform the de-
sired function(s). There are likely to be interfacing problems, such as data mismatch be-
tween the modules. An integration test is performed to discover errors associated with inter-
facing.

Program Debugging

Debugging is the process of isolating and correcting the errors. One simple method of debug-
ging is to place print statements throughout the program to display the values of variables.
It displays the dynamics of a program and allows us to examine and compare the information
at various points. Once the location of an error is identified and the error corrected, the
debugging statements may be removed. We can use the conditional compilation statements,
discussed in Chapter 14, to switch on or off the debugging statements.

Another approach is to use the process of deduction. The location of an error is arrived at
using the process of elimination and refinement. This is done using a list of possible causes of
the error.

The third error-locating method is to backtrack the incorrect results through the logic of
the program until the mistake is located. That is, beginning at the place where the symptom
has been uncovered, the program is traced backward until the error is located.

6 PROGRAM EFFICIENCY

Two critical resources of a computer system are execution time and memory. The efficiency
of a program is measured in terms of these two resources. Efficiency can be improved with
good design and coding practices.

Execution Time

The execution time is directly tied to the efficiency of the algorithm selected. However, cer-
tain coding techniques can considerably improve the execution efficiency. The following are
some of the techniques, which could be applied while coding the program.

Appendix I A.17

1. Select the fastest algorithm possible.
2. Simplify arithmetic and logical expressions.
3. Use fast arithmetic operations, whenever possible.
4. Carefully evaluate loops to avoid any unnecessary calculations within the loops.
5. If possible, avoid the use of multi-dimensional arrays.
6. Use pointers for handling arrays and strings.

However, remember the following, while attempting to improve efficiency.

1. Analyse the algorithm and various parts of the program before attempting any effi-
ciency changes.

2. Make it work before making it faster.
3. Keep it right while trying to make it faster.
4. Do not sacrifice clarity for efficiency.

Memory Requirement

Memory restrictions in the micro-computer environment is a real concern to the program-
mer. It is therefore, desirable to take all necessary steps to compress memory requirements.

1. Keep the program simple. This is the key to memory efficiency.
2. Use an algorithm that is simple and requires less steps.
3. Declare arrays and strings with correct sizes.
4. When possible, limit the use of multi-dimensional arrays.
5. Try to evaluate and incorporate memory compression features available with the lan-

guage.

I.1 Discuss the various aspects of program design.
I.2 How does program design relate to program efficiency?
I.3 Readability is more important than efficiency, Comment.
I.4 Distinguish between the following:

a. Syntactic errors and semantic errors.
b. Run-time errors and logical errors.
c. Run-time errors and latent errors.
d. Debugging and testing.
e. Compiler testing and run-time testing.

I.5 A program has been compiled and linked successfully. When you run this program you
face one or more of the following situations.

a. Program is executed but no output.
b. It produces incorrect answers.
c. It does not stop running.

I.6 List five common programming mistakes. Write a small program containing these
errors and try to locate them with the help of computer.

I.7 In a program, two values are compared for convergence, using the statement

if((x–y) < 0.00001) …

Dloes the statement contain any error? If yes, explain the error.

Computer ProgrammingA.18

I.8 A program contains the following if statements:

... ..

... ..
if(x>1&&y == 0)p = p/x;
if(x == 5|| p > 2) p = p+2;
... ..
... ..

Draw a flow chart to illustrate various logic paths for this segment of the program and
list test data cases that could be used to test the execution of every path shown.

I.9 Given below is a function to compute the yth power of an integer x.

power(int x, int y)

{
int p;
p = y;
while(y > 0)

x *= y — —;
return(x);

}

This function contains some bugs. Write a test procedure to locate the errors with the
help of a computer.

I.10 A program reads three values from the terminal, representing the lengths of three
sides of a box namely length, width and height and prints a message stating whether
the box is a cube, rectangle, or semi-rectangle. Prepare sets of data that you feel would
adequately test this program.

Bit-Level
Programming

1 INTRODUCTION

One of the unique features of C language as compared to other high-level languages is that
it allows direct manipulation of individual bits within a word. Bit-level manipulations are
used in setting a particular bit or group of bits to 1 or 0. They are also used to perform certain
numerical computations faster. As pointed out in Chapter 3, C supports the following opera-
tors:

1. Bitwise logical operators.
2. Bitwise shift operators.
3. One�s complement operator.

All these operators work only on integer type operands.

2 BITWISE LOGICAL OPERATORS

There are three logical bitwise operators. They are:
· Bitwise AND (&)
· Bitwise OR (|)
· Bitwise exclusive OR (^)

These are binary operators and require two integer-type operands. These operators work
on their operands bit by bit starting from the least significant (i.e. the rightmost) bit, setting
each bit in the result as shown in Table 1.

Table 1 Result of Logical Bitwise Operations

op1 op2 op1 & op2 op1 | op2 op1 ^ op2

1 1 1 | 0

1 0 0 1 1

0 1 0 1 1

0 0 0 0 0

II

Computer ProgrammingA.20

Bitwise AND

The bitwise AND operator is represented by a single ampersand (&) and is surrounded on
both sides by integer expressions. The result of ANDing operation is 1 if both the bits have a
value of 1; otherwise it is 0. Let us consider two variables x and y whose values are 13 and
25. The binary representation of these two variables are

x - - -> 0000 0000 0000 1101
y - - -> 0000 0000 0001 1001

If we execute statement

z = x & y ;

then the result would be:

z - - -> 0000 0000 0000 1001

Although the resulting bit pattern represents the decimal number 9, there is no apparent
connection between the decimal values of these three variables.

Bitwise ANDing is often used to test whether a particular bit is 1 or 0. For example, the
following program tests whether the fourth bit of the variable flag is 1 or 0.

#define TEST 8 /* represents 00........01000 */
main()
{

int flag;
....
....

if((flag & TEST) != 0) /* test 4th bit */
{

printf(“ Fourth bit is set \n”);
}
....
....

Note that the bitwise logical operators have lower precedence than the relational opera-
tors and therefore additional parentheses are necessary as shown above.

The following program tests whether a given number is odd or even.

main()
{

int test = 1;
int number;

printf(“Input a number \n”);
scanf(“%d”, &number);

while (number != –1)
{

if(number & test)
print(“Number is odd\n\n”);

else

Appendix II A.21

printf(“Number is even\n\n”);

printf(“Input a number \n”);
scanf(“%d”, &number);

}
}
Output

Input a number
20
Number is even

Input a number
9
Number is odd

Input a number
–1

Bitwise OR

The bitwise OR is represented by the symbol | (vertical bar) and is surrounded by two inte-
ger operands. The result of OR operation is 1 if at least one of the bits has a value of 1;
otherwise it is zero. Consider the variables x and y discussed above.

x - - -> 0000 0000 0000 1101
y - - -> 0000 0000 0001 1001

x|y - - -> 0000 0000 0001 1101_______________________

The bitwise inclusion OR operation is often used to set a particular bit to 1 in a flag. Exam-
ple:

#define SET 8
main()
{

int flag;
....
....
flag = flag | SET;

if ((flag & SET) != 0)
{

printf(“flag is set \n”);
}
....
....

}
The statement

flag = flag | SET;

causes the fourth bit of flag to set 1 if it is 0 and does not change it if it is already 1.

Computer ProgrammingA.22

Bitwise Exclusive OR

The bitwise exclusive OR is represented by the symbol ^. The result of exclusive OR is 1 if
only one of the bits is 1; otherwise it is 0. Consider again the same variable x and y discussed
above.

x - - -> 0000 0000 0000 1101
y - - -> 0000 0000 0001 1001

x^y - - -> 0000 0000 0001 0100_______________________

3 BITWISE SHIFT OPERATORS

The shift operators are used to move bit patterns either to the left or to the right. The shift
operators are represented by the symbols << and >> and are used in the following form:

Left shift: op << n

Right shift: op >> n

op is the integer expression that is to be shifted and n is the number of bit positions to be
shifted.

The left-shift operation causes all the bits in the operand op to be shifted to the left by n
positions. The leftmost n bits in the original bit pattern will be lost and the rightmost n bit
positions that are vacated will be filled with 0s.

Similarly, the right-shift operation causes all the bits in the operand op to be shifted to the
right by n positions. The rightmost n bits will be lost. The leftmost n bit positions that are
vacated will be filled with zero, if the op is an unsigned integer. If the variable to be shifted
is signed, then the operation is machine dependent.

Both the operands op and n can be constants or variables. There are two restrictions on
the value of n. It may not be negative and it may not exceed the number of bits used to
represent the left operand op.

Let us suppose x is an unsigned integer whose bit pattern is

0100 1001 1100 1011

then, vacated
positions

x << 3 = 0100 1110 0101 1000
7

x >> 3 = 0000
2

1001 00111001
vacated
positions

Shift operators are often used for multiplication and division by powers of two.
Consider the following statement:

x = y << 1;

This statement shifts one bit to the left in y and then the result is assigned to x. The
decimal value of x will be the value of y multiplied by 2. Similarly, the statement

x = y >> 1;

shifts y one bit to the right and assigns the result to x. In this case, the value of x will be the
value of y divided by 2.

Appendix II A.23

The shift operators, when combined with the logical bitwise operators, are useful for ex-
tracting data from an integer field that holds multiple pieces of information. This process is
known as masking. Masking is discussed in Section 5.

4 BITWISE COMPLEMENT OPERATORS

The complement operator ~ (also called the one�s complement operator) is an unary operator
and inverts all the bits represented by its operand. That is, 0s become 1s and 1s become zero.
Example:

x = 1001 0110 1100 1011
~x = 0110 1001 0011 0100

This operator is often combined with the bitwise AND operator to turn off a particular bit.
For example, the statement

x = 8; /* 0000 0000 0000 1000 */
flag = flag & ~x;

would turn off the fourth bit in the variable flag.

5 MASKING

Masking refers to the process of extracting desired bits from (or transforming desired bits in)
a variable by using logical bitwise operation. The operand (a constant or variable) that is
used to perform masking is called the mask. Examples:

y = x & mask;
y = x | mask;

Masking is used in many different ways.

· To decide bit pattern of an integer variable.
· To copy a portion of a given bit pattern to a new variable, while the remainder of the

new variable is filled with 0s (using bitwise AND).
· To copy a portion of a given bit pattern to a new variable, while the remainder of the

new variable is filled with 1s (using bitwise OR).
· To copy a portion of a given bit pattern to a new variable, while the remainder of the

original bit pattern is inverted within the new variable (using bitwise exclusive OR).

The following function uses a mask to display the bit pattern of a variable.

void bit_pattern(int u)
{

int i, x, word;
unsigned mask;

mask = 1;
word = 8 * sizeof(int);
mask = mask << (word – 1);

/* shift 1 to the leftmost position */

Computer ProgrammingA.24

for(i = 1; i<= word; i++)
{

x = (u & mask) ? 1 : 0; /* identify the bit */
printf(“%d”, x); /* print bit value */
mask >>= 1; /* shift mask by 11 position to right */

ASCII Values

of Characters

ASCII ASCII ASCII ASCII

Value Character Value Character Value Character Value Character

000 NUL 032 blank 064 @ 096 ¬

001 SOH 033 ! 065 A 097 a

002 STX 034 � 066 B 098 b

003 ETX 035 # 067 C 099 c

004 EOT 036 $ 068 D 100 d

005 ENQ 037 % 069 E 101 e

006 ACK 038 & 070 F 102 f

007 BEL 039 � 071 G 103 g

008 BS 040 (072 H 104 h

009 HT 041) 073 I 105 i

010 LF 042 * 074 J 106 j

011 VT 043 + 075 K 107 k

012 FF 044 , 076 L 108 l

013 CR 045 � 077 M 109 m

014 SO 046 . 078 N 110 n

015 SI 047 / 079 O 111 o

016 DLE 048 0 080 P 112 p

017 DC1 049 1 081 Q 113 q

018 DC2 050 2 082 R 114 r

019 DC3 051 3 083 S 115 s

020 DC4 052 4 084 T 116 t

021 NAK 053 5 085 U 117 u

022 SYN 054 6 086 V 118 v

023 ETB 055 7 087 W 119 w

024 CAN 056 8 088 X 120 x

025 EM 057 9 089 Y 121 y

026 SUB 058 : 090 Z 122 z

III

(Contd.)

Computer ProgrammingA.26

ASCII ASCII ASCII ASCII

Value Character Value Character Value Character Value Character

027 ESC 059 ; 091 [123 {

028 FS 060 < 092 \ 124 |

029 GS 061 = 093] 125 }

030 RS 062 > 094 126 ~

031 US 063 ? 095 - 127 DEL

NOTE: The first 32 characters and the last character are control characters; they cannot be

printed.

ANSI C Library
Functions

The C language is accompanied by a number of library functions that perform various tasks.

The ANSI committee has standardized header files which contain these functions. What

follows is a slit of commonly used functions and the header files where they are defined. For

a more complete list, the reader should refer to the manual of the version of C that is being

used.

The header files that are included in this Appendix are:

<ctype.h> Character testing and conversion functions

<math.h> Mathematical functions

<stdio.h> Standard I/O library functions

<stdlib.h> Utility functions such as string conversion routines, memory allocation rou-

tines, random number generator, etc.

<string.h> String manipulation functions

<time.h> Time manipulation functions

Note: The following function parameters are used:

c - character type argument

d - double precision argument

f - file argument

i - integer argument

l - long integer argument

p - pointer argument

s - string argument

u - unsigned integer argument

An asterisk (*) denotes a pointer

IV

Computer ProgrammingA.28

Function Data type Task

returned

<ctype.h>

isalnum(c) int Determine if argument is alphanumeric. Return nonzero value if true; 0

otherwise.

isalpha(c) int Determine if argument is alphabetic. Return nonzero value if true; 0

otherwise.

isascii(c) int Determine if argument is an ASCII character. Return nonzero value if

true; 0 otherwise.

iscntrl(c) int Determine if argument is an ASCII control character. Return nonzero

value if true; 0 otherwise.

isdigit(c) int Determine if argument is a decimal digit. Return nonzero value if true;

0 otherwise.

isgraph(c) int Determine if argument is a graphic printing ASCII character. Return

nonzero value if true; 0 otherwise.

islower(c) int Determine if argument is lowercase. Return nonzero value if true; 0

otherwise.

isodigit(c) int Determine if argument is an octal digit. Return nonzero value if true; 0

otherwise.

isprint(c) int Determine if argument is a printing ASCII character. Return nonzero

value if true; 0 otherwise.

ispunct(c) int Determine if argument is a punctuation character. Return non-zero

value if true; 0 otherwise.

isspace(c) int Determine if argument is a whitespace character. Return non-zero value

if true; 0 otherwise.

isupper(c) int Determine if argument is uppercase. Return nonzero value if true; 0

otherwise.

isxdigit(c) int determine if argument is a hexadecimal digit. Return nonzero value if

true; 0 otherwise.

toascii(c) int Convert value of argument to ASCII.

tolower(c) int Convert letter to lowercase.

toupper(c) int Convert letter to uppercase.

<math.h>

acos(d) double Return the arc cosine of d.

asin(d) double Return the arc sine of d.

atan(d) double Return the arc tangent of d.

atan2(d1,d2) double Return the arc tangent of d1/d2.

ceil(d) double Return a value rounded up to the next higher integer.

cos(d) double Return the cosine of d.

cosh(d) double Return the hyperbolic cosine of d.

exp(d) double Raise e to the power d.

fabs(d) double Return the absolute value of d.

floor(d) double Return a value rounded down to the next lower integer.

fmod(d1, d2) double Return the remainder of d1/d2 (with same sign as d1).

labs(l) long int Return the absolute value of 1.

log(d) double Return the natural logarithm of d.

log10(d) double Return the logarithm (base 10) of d.

pow(d1,d2) double Return d1 raised to the d2 power.

sin(d) double Return the sine of d.

Appendix IV A.29

Function Data type Task

returned

sinh(d) double Return the hyperbolic sine of d.

sqrt(d) double Return the square root of d.

tan(d) double Return the tangent of d.

tanh(d) double Return the hyperbolic tangent of d.

<stdio.h>

fclose(f) int Close file f. Return 0 if file is successfully closed.

feof(f) int Determine if an end-of-file condition has been reached. If so, return a

nonzero value; otherwise, return 0.

fgetc(f) int Enter a single character form file f.

fgets(s, i, f) char* Enter string s, containing i characters, from file f.

fopen(s1,s2) file* Open a file named s1 of type s2. Return a pointer to the file.

fprint(f,...) int Send data items to file f.

fputc(c,f) int Send a single character to file f.

fputs(s,f) int Send string s to file f.

fread(s,i1,i2,f) int Enter i2 data items, each of size i1 bytes, from file f to string s.

fscanf(f,...) int Enter data items from file f

fseek(f,1,i) int Move the pointer for file f a distance 1 bytes from location i.

ftell(f) long int Return the current pointer position within file f.

fwrite(s,i1,i2,f) int Send i2 data items, each of size i1 bytes from string s to file f.

getc(f) int Enter a single character from file f.

getchar(void) int Enter a single character from the standard input device.

gets(s) char* Enter string s from the standard input device.

printf(...) int Send data items to the standard output device.

putc(c,f) int Send a single character to file f.

putchar(c) int Send a single character to the standard output device.

puts(s) int Send string s to the standard output device.

rewind(f) void Move the pointer to the beginning of file f.

scanf(...) int Enter data items from the standard input device.

<stdlib.h>

abs(i) int Return the absolute value of i.

atof(s) double Convert string s to a double-precision quantity.

atoi(s) int Convert string s to an integer.

atol(s) long Convert string s to a long integer.

calloc(u1,u2) void* Allocate memory for an array having u1 elements, each of length u2

bytes. Return a pointer to the beginning of the allocated space.

exit(u) void Close all files and buffers, and terminate the program. (Value of u is

assigned by the function, to indicate termination status).

free(p) void Free a block of allocated memory whose beginning is indicated by p.

malloc(u) void* Allocate u bytes of memory. Return a pointer to the beginning of the

allocated space.

rand(void) int Return a random positive integer.

realloc(p, u) void* Allocate u bytes of new memory to the pointer variable p. Return a

pointer to the beginning of the new memory space.

srand(u) void Initialize the random number generator.

system(s) int Pass command string s to the operating system. Return 0 if the com-

mand is successfully executed; otherwise, return a nonzero value typi-

cally �1.

Computer ProgrammingA.30

Function Data type Task

returned

<string.h>

strcmp(s1, s2) int Compare two strings lexicographically. Return a negative value if

s1<s2; 0 if s1 and s2 are identical; and a positive value if s1>s2.

strcmpi(s1, s2) int Compare two strings lexicographically, without regard to case. Return

a negative value if s1<s2; 0 if s1 and s2 are identical; and a value of

s1 > s2.

strcpy(s1, s2) char* Copy string s2 to string s1.

strlen(s) int Return the number of characters in string s.

strset(s, c) char* Set all characters within s to c(excluding the terminating null charac-

ter \0).

<time.h>

difftime(11,12) double Return the time difference 11 ~ 12, where 11 and 12 represent elapsed

time beyond a designated base time (see the time function).

time(p) long int Return the number of seconds elapsed beyond a designated base time.

NOTE: C99 adds many more header files and adds many new functions to the existing header

files. For more details, refer to the manual of C99.

Projects

INVENTORY MANAGEMENT SYSTEM

The project aims at developing an inventory management system using the C language that

enables an organization to maintain its inventory.

The project demonstrates the creation of a user interface of a system, without the use of C

Graphics library. The application uses basic C functions to generate menus, show message

boxes and print text on the screen. To display customized text with colors and fonts accord-

ing to application requirements, functions have been created in the application, which fetch

the exact video memory addresses of a target location, to write text at the particular location.

The application also implements the concept of structures to define the inventory items. It

also effectively applies the various C concepts, such as file operations, looping and branching

constructs and string manipulation functions.

V

Computer ProgrammingA.32

/**

 Application: Inventry Management System
 Compiled on: Borland Turbo C++ 3.0

**/

#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>
#include <graphics.h>
#include <string.h>

#define TRUE 1
#define FALSE 0

/* List of Global variables used in the application*/
int mboxbrdrclr,mboxbgclr,mboxfgclr; /* To set colors for all message boxes in

the application*/
int menutxtbgclr,menutxtfgclr,appframeclr; /* To set the frame and color’s for menu

items’s*/
int section1_symb,section1_bgclr,section1_fgclr; /* To set color of section 1, the region

around the menu options*/
int section2_symb,section2_bgclr,section2_fgclr; /* To set color of section 2, the section

on the right of the menu options*/
int fEdit;
int animcounter;

static struct struct_stock /* Main database structure*/
{
 char itemcode[8];
 char itemname[50];
 float itemrate;
 float itemqty;
 int minqty; /*Used for Reorder level, which is the

minimum no of stock*/
}inv_stock;

struct struct_bill
{
 char itemcode[8];
 char itemname[50];
 float itemrate;
 float itemqty;
 float itemtot;
}item_bill[100];

char password[8];

Appendix V A.33

const long int stocksize=sizeof(inv_stock); /*stocksize stores the size of the
struct_stock*/

float tot_investment;
int numItems; /*To count the no of items in the stock*/
int button,column,row; /*To allow mouse operations in the applica-

tion*/

FILE *dbfp; /*To perform database file operations on
“inv_stock.dat”*/

int main(void)
{
 float issued_qty;
 char userchoice,code[8];
 int flag,i,itemsold;
 float getInvestmentInfo(void);
 FILE *ft;
 int result;
 getConfiguration();

 /* Opens & set ‘dbfp’ globally so that it is accessible from anywhere in the application*/
 dbfp=fopen(“d:\invstoc.dat”,”r+”);
 if(dbfp==NULL)
 {
 clrscr();
 printf(“\nDatabase does not exists.\nPress Enter key to create it. To exit, press any

other key.\n “);
 fflush(stdin);
 if(getch()==13)
 {
 dbfp=fopen(“d:\invstoc.dat”,”w+”);
 printf(“\nThe database for the application has been created.\nYou must restart the

application.\nPress any key to continue.\n”);
 fflush(stdin);
 getch();
 exit(0);
 }
 else
 {
 exit(0);
 }
 }
 /* Application control will reach here only if the database file has been opened success-

fully*/
 if(initmouse()==0)
 messagebox(10,33,”Mouse could not be loaded.”,”Error “,’
‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);
 showmouseptr();
 _setcursortype(_NOCURSOR);

Computer ProgrammingA.34

 while(1)
 {
 clrscr();
 fEdit=FALSE;
 ShowMenu();
 numItems=0;
 rewind(dbfp);

 /* To calculate the number of records in the database*/
 while(fread(&inv_stock,stocksize,1,dbfp)==1)
 ++numItems;
 textcolor(menutxtfgclr);
 textbackground(menutxtbgclr);
 gotopos(23,1);
 cprintf(“Total Items in Stock: %d”,numItems);
 textcolor(BLUE);
 textbackground(BROWN);
 fflush(stdin);

 /*The application will wait for user response */
 userchoice=getUserResponse();
 switch(userchoice)
 {
 /* To Close the application*/
 case ‘0’:

BackupDatabase(); /*Backup the Database file to secure data*/
flushall();
fclose(dbfp);
fcloseall();
print2screen(12,40,”Thanks for Using the application.”,BROWN,BLUE,0);
sleep(1);
setdefaultmode();
exit(0);

 /* To Add an item*/
 case ‘1’:

if(getdata()==1)
{
 fseek(dbfp,0,SEEK_END);
 /*Write the item information into the database*/
 fwrite(&inv_stock,stocksize,1,dbfp);
 print2screen(13,33,”The item has been successfully added. “,BROWN,BLUE,0);
 getch();
}

 break;

 /* To edit the item information*/
 case ‘2’:

print2screen(2,33,”Enter Item Code>”,BROWN,BLUE,0);gotopos(2,54);fflush(stdin);
scanf(“%s”,&code);

Appendix V A.35

fEdit=TRUE;
if(CheckId(code)==0)
{
 if(messagebox(0,33,”Press Enter key to edit the item.”,”Confirm”,’

‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0)!=13)
 {
 messagebox(10,33,”The item information could not be modified. Please try

again.”,”Edit “,’ ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);
 fEdit=FALSE;
 break;
 }
 fEdit=TRUE;
 getdata();
 fflush(stdin);
 fseek(dbfp,-stocksize,SEEK_CUR);
 fwrite(&inv_stock,stocksize,1,dbfp);
}
else
 messagebox(10,33,”The item is not available in the database.”,”No records found”,’

‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);
 fEdit=FALSE;

 break;

 /* To show information about an an Item*/
 case ‘3’:

print2screen(2,33,”Enter Item Code: “,BROWN,BLUE,0);gotopos(2,55);fflush(stdin);
scanf(“%s”,&code);
flag=0;
rewind(dbfp);
while(fread(&inv_stock,stocksize,1,dbfp)==1)
{
 if(strcmp(inv_stock.itemcode,code)==0)
 {
 DisplayItemInfo();
 flag=1;
 }
}
if(flag==0)
 messagebox(10,33,”The item is not available.”,”No records found “,’

‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);
 break;

 /* To show information about all items in the database*/
 case ‘4’:

if(numItems==0)
 messagebox(10,33,”No items are available. “,”Error “,’

‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);
textcolor(BLUE);
textbackground(BROWN);
gotopos(3,33);

Computer ProgrammingA.36

cprintf(“Number of Items Available in Stock: %d”,numItems);
gotopos(4,33);
getInvestmentInfo();
cprintf(“Total Investment :Rs.%.2f”,tot_investment);
gotopos(5,33);
cprintf(“Press Enter To View. Otherwise Press Any Key...”);fflush(stdin);
if(getch()==13)
{
 rewind(dbfp);
 while(fread(&inv_stock,stocksize,1,dbfp)==1); /*List All records*/
 DisplayItemRecord(inv_stock.itemcode);
}
textcolor(BLUE);

 break;

 /* To issue Items*/
 case ‘5’:
 itemsold=0;
 i=0;
 top:

print2screen(3,33,”Enter Item Code: “,BROWN,BLUE,0);fflush(stdin);gotopos(3,55);
scanf(“%s”,&code);
if(CheckId(code)==1)
 if(messagebox(10,33,”The item is not available.”,”No records found “,’

‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0)==13)
 goto top;
 else
 goto bottom;
rewind(dbfp);
while(fread(&inv_stock,stocksize,1,dbfp)==1)
{
 if(strcmp(inv_stock.itemcode,code)==0) /*To check if the item code is available in

 the database*/
 {
 issued_qty=IssueItem();
 if(issued_qty > 0)
 {

itemsold+=1;
strcpy(item_bill[i].itemcode,inv_stock.itemcode);
strcpy(item_bill[i].itemname,inv_stock.itemname);
item_bill[i].itemqty=issued_qty;
item_bill[i].itemrate=inv_stock.itemrate;
item_bill[i].itemtot=inv_stock.itemrate*issued_qty;
i+=1;

 }
 print2screen(19,33,”Would you like to issue another item(Y/

N)?”,BROWN,BLUE,0);fflush(stdin);gotopos(19,45);
 if(toupper(getch())==’Y’)
 goto top;
 bottom:

Appendix V A.37

 break;
 }
}

 break;

 /* Items to order*/
 case ‘6’:

if(numItems<=0)
{
 messagebox(10,33,”No items are available. “,”Items Not Found “,’

‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);
 break;
}
print2screen(3,33,”Stock of these items is on the minimum

level:”,BROWN,RED,0);fflush(stdin);
flag=0;
fflush(stdin);
rewind(dbfp);
while(fread(&inv_stock,stocksize,1,dbfp)==1)
{
 if(inv_stock.itemqty <= inv_stock.minqty)
 {
 DisplayItemInfo();
 flag=1;
 }
}
if(flag==0)
 messagebox(10,33,”No item is currently at reorder level.”,”Reorder Items”,’

‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);
 break;

 default:
messagebox(10,33,”The option you have entered is not available.”,”Invalid Option “,’

‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);
 break;
 }
 }
}

/*Display Menu & Skins that the user will see*/
ShowMenu()
{
 if(section1_bgclr != BROWN || section1_symb != ‘ ‘)
 fillcolor(2,1,23,39,section1_symb,section1_bgclr,section1_fgclr,0);
 if(section2_bgclr != BROWN || section2_symb != ‘ ‘)
 fillcolor(2,40,23,79,section2_symb,section2_bgclr,section2_fgclr,0);
 print2screen(2,2,”1: Add an Item”,menutxtbgclr,menutxtfgclr,0);
 print2screen(4,2,”2: Edit Item Information”,menutxtbgclr,menutxtfgclr,0);
 print2screen(6,2,”3: Show Item Information”,menutxtbgclr,menutxtfgclr,0);
 print2screen(8,2,”4: View Stock Report”,menutxtbgclr,menutxtfgclr,0);

Computer ProgrammingA.38

 print2screen(10,2,”5: Issue Items from Stock”,menutxtbgclr,menutxtfgclr,0);
 print2screen(12,2,”6: View Items to be Ordered “,menutxtbgclr,menutxtfgclr,0);
 print2screen(14,2,”0: Close the application”,menutxtbgclr,menutxtfgclr,0);

 htskin(0,0,’ ‘,80,appframeclr,LIGHTGREEN,0);
 htskin(1,0,’ ‘,80,appframeclr,LIGHTGREEN,0);
 vtskin(0,0,’ ‘,24,appframeclr,LIGHTGREEN,0);
 vtskin(0,79,’ ‘,24,appframeclr,LIGHTGREEN,0);
 htskin(24,0,’ ‘,80,appframeclr,LIGHTGREEN,0);
 vtskin(0,31,’ ‘,24,appframeclr,LIGHTGREEN,0);
 return;
}

/*Wait for response from the user & returns choice*/
getUserResponse()
{
 int ch,i;
 animcounter=0;

 while(!kbhit())
 {
 getmousepos(&button,&row,&column);

 /*To show Animation*/
 BlinkText(0,27,”Inventory Management System”,1,YELLOW,RED,LIGHTGRAY,0,50);
 animcounter+=1;

 i++;
 if(button==1 && row==144 && column>=16 && column<=72) /*Close*/
 return(‘0’);
 if(button==1 && row==16 && column>=16 && column<=136) /*Add New Item*/
 return(‘1’);
 if(button==1 && row==32 && column>=16 && column<=144) /*Edit Item*/
 return(‘2’);
 if(button==1 && row==48 && column>=16 && column<=160) /*Show an Item*/
 return(‘3’);
 if(button==1 && row==64 && column>=16 && column<=104) /*Stock Report*/
 return(‘4’);
 if(button==1 && row==80 && column>=16 && column<=144) /*Issue an Item*/
 return(‘5’);
 if(button==1 && row==96 && column>=16 && column<=152) /*Items to order*/
 return(‘6’);
 }
 ch=getch();
 return ch;
}

/*Reads a valid id and its information,returns 0 if id already exists*/
getdata()
{

Appendix V A.39

 char tmp[8];
 float tst;
 _setcursortype(_NORMALCURSOR);
 print2screen(3,33,”Enter Item Code: “,BROWN,BLUE,0);fflush(stdin);gotopos(3,53);
 scanf(“%s”,&tmp);
 if(CheckId(tmp)==0 && fEdit == FALSE)
 {
 messagebox(10,33,”The id already exists. “,”Error “,’

‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);
 return 0;
 }
 strcpy(inv_stock.itemcode,tmp); /*Means got a correct item code*/
 print2screen(4,33,”Name of the Item: “,BROWN,BLUE,0);fflush(stdin);gotopos(4,53);
 gets(inv_stock.itemname);
 print2screen(5,33,”Price of Each Unit: “,BROWN,BLUE,0);fflush(stdin);gotopos(5,53);
 scanf(“%f”,&inv_stock.itemrate);
 print2screen(6,33,”Quantity: “,BROWN,BLUE,0);fflush(stdin);gotopos(6,53);
 scanf(“%f”,&inv_stock.itemqty);
 print2screen(7,33,”Reorder Level: “,BROWN,BLUE,0);fflush(stdin);gotopos(7,53);
 scanf(“%d”,&inv_stock.minqty);
 _setcursortype(_NOCURSOR);
 return 1;
}

/*Returns 0 if the id already exists in the database, else returns 1*/
int CheckId(char item[8])
{
 rewind(dbfp);
 while(fread(&inv_stock,stocksize,1,dbfp)==1)
 if(strcmp(inv_stock.itemcode,item)==0)
 return(0);
 return(1);
}

/*Displays an Item*/
DisplayItemRecord(char idno[8])
{
 rewind(dbfp);
 while(fread(&inv_stock,stocksize,1,dbfp)==1)
 if(strcmp(idno,inv_stock.itemcode)==0)
 DisplayItemInfo();
 return;
}

/*Displays an Item information*/
DisplayItemInfo()
{
 int r=7;
 textcolor(menutxtfgclr);
 textbackground(menutxtbgclr);

Computer ProgrammingA.40

 gotopos(r,33);
 cprintf(“Item Code: %s”,” “);
 gotopos(r,33);
 cprintf(“Item Code: %s”,inv_stock.itemcode);
 gotopos(r+1,33);
 cprintf(“Name of the Item: %s”,” “);
 gotopos(r+1,33);
 cprintf(“Name of the Item: %s”,inv_stock.itemname);
 gotopos(r+2,33);
 cprintf(“Price of each unit: %.2f”,” “);
 gotopos(r+2,33);
 cprintf(“Price of each unit: %.2f”,inv_stock.itemrate);
 gotopos(r+3,33);
 cprintf(“Quantity in Stock: %.4f”,” “);
 gotopos(r+3,33);
 cprintf(“Quantity in Stock: %.4f”,inv_stock.itemqty);
 gotopos(r+4,33);
 cprintf(“Reorder Level: %d”,” “);
 gotopos(r+4,33);
 cprintf(“Reorder Level: %d”,inv_stock.minqty);
 gotopos(r+5,33);
 cprintf(“\nPress Any Key...”);fflush(stdin);getch();
 textbackground(BROWN);
 textcolor(BLUE);
 return;
}

/*This function will return 0 if an item cannot issued, else issues the item*/
IssueItem()
{
 float issueqnty;
 DisplayItemInfo();
 print2screen(15,33,”Enter Quantity: “,BROWN,BLUE,0);fflush(stdin);gotopos(15,49);
 scanf(“%f”,&issueqnty);

 /*If the stock of the item is greater than minimum stock*/
 if((inv_stock.itemqty - issueqnty) >= inv_stock.minqty)
 {
 textcolor(BLUE);
 textbackground(BROWN);
 gotopos(18,33);
 cprintf(“%.4f Item(s) issued.”,issueqnty);
 gotopos(19,33);
 cprintf(“You should pay RS. %.2f”,issueqnty*inv_stock.itemrate);getch();
 textcolor(BLUE);
 inv_stock.itemqty-=issueqnty; /*Updating quantity for the item in stock*/
 fseek(dbfp,-stocksize,SEEK_CUR);
 fwrite(&inv_stock,stocksize,1,dbfp);
 return issueqnty;
 }

Appendix V A.41

 /* If the stock of the item is less than minimum stock.ie Reorder level*/
 else
 {
 messagebox(10,33,”Insufficient quantity in stock.”,”Insufficient Stock”,’

‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);
 gotopos(17,33);
 textcolor(BLUE);
 textbackground(BROWN);
 cprintf(“ONLY %.4f pieces of the Item can be issued.”,inv_stock.itemqty-
inv_stock.minqty);
 gotopos(18,33);
 cprintf(“Press Any Key...”);getch();
 textcolor(BLUE);
 textbackground(BROWN);
 return 0;
 }
}

/* Calculates the total investment amount for the stock available*/
float getInvestmentInfo(void)
{
 tot_investment=0;
 rewind(dbfp);
 while(fread(&inv_stock,stocksize,1,dbfp)==1)
 tot_investment+=(inv_stock.itemrate*inv_stock.itemqty);
 return tot_investment;
}

/* Creates a backup file “Bakckup” of “inv_stock.dat”*/
BackupDatabase(void)
{
 FILE *fback;
 fback=fopen(“d:/Backup.dat”,”w”);
 rewind(dbfp);
 while(fread(&inv_stock,stocksize,1,dbfp)==1)
 fwrite(&inv_stock,stocksize,1,fback);
 fclose(fback);
 return;
}

/*This structure is used color settings for the application*/
struct colors
{
 char cfg_name[10];

 int mboxbrdrclr;
 int mboxbgclr;
 int mboxfgclr;

 int menutxtbgclr;

Computer ProgrammingA.42

 int menutxtfgclr;
 int appframeclr;

 int section1_symb;
 int section1_bgclr;
 int section1_fgclr;

 int section2_symb;
 int section2_bgclr;
 int section2_fgclr;
}clr;
const long int clrsize=sizeof(clr);

/* Gets the display configuration for the application*/
getConfiguration()
{

 FILE *flast;
 flast=fopen(“lastcfg”,”r+”);
 if(flast==NULL)
 {
 SetDefaultColor();
 return 0;
 }
 rewind(flast);

 /*Reads the first record.*/
 fread(&clr,clrsize,1,flast);
#ifdef OKAY
 if(strcmp(clr.cfg_name,”lastclr”)!=0)
 {
 SetDefaultColor();
 fclose(flast);
 return 0;
 }
#endif
 mboxbrdrclr=clr.mboxbrdrclr;mboxbgclr=clr.mboxbgclr;mboxfgclr=clr.mboxfgclr;
 menutxtbgclr=clr.menutxtbgclr;menutxtfgclr=clr.menutxtfgclr;appframeclr=clr.appframeclr;
 section1_symb=clr.section1_symb;section1_bgclr=clr.section1_bgclr;section1_fgclr=clr.section1_fgclr;
 section2_symb=clr.section2_symb;section2_bgclr=clr.section2_bgclr;section2_fgclr=clr.section2_fgclr;
 fclose(flast);
 return 1;
}

/* Sets the default color settings for the application*/
SetDefaultColor()
{
 mboxbrdrclr=BLUE,mboxbgclr=GREEN,mboxfgclr=WHITE;
 menutxtbgclr=BROWN,menutxtfgclr=BLUE,appframeclr=CYAN;
 section1_symb=’ ‘,section1_bgclr=BROWN,section1_fgclr=BLUE;

Appendix V A.43

 section2_symb=’ ‘,section2_bgclr=BROWN,section2_fgclr=BLUE;
 return 1;
}

/* Adds animation to a text */
BlinkText(const int r,const int c,char txt[],int bgclr,int fgclr,int BGCLR2,int FGCLR2,int
blink,const int dly)
{
 int len=strlen(txt);

 BGCLR2=bgclr;FGCLR2=BLUE;
 htskin(r,c,’ ‘,len,bgclr,bgclr,0);
 print2screen(r,c,txt,bgclr,fgclr,blink);

 write2screen(r,c+animcounter+1,txt[animcounter],BGCLR2,FGCLR2,0);
 write2screen(r,c+animcounter+2,txt[animcounter+1],BGCLR2,FGCLR2,0);
 write2screen(r,c+animcounter+3,txt[animcounter+2],BGCLR2,FGCLR2,0);
 write2screen(r,c+animcounter+4,txt[animcounter+3],BGCLR2,FGCLR2,0);
 write2screen(r,c+animcounter+5,txt[animcounter+4],BGCLR2,FGCLR2,0);
 write2screen(r,c+animcounter+6,txt[animcounter+5],BGCLR2,FGCLR2,0);
 delay(dly*2);
 write2screen(r,c+animcounter+1,txt[animcounter],bgclr,fgclr,0);
 write2screen(r,c+animcounter+2,txt[animcounter+1],bgclr,fgclr,0);
 write2screen(r,c+animcounter+3,txt[animcounter+2],bgclr,fgclr,0);
 write2screen(r,c+animcounter+4,txt[animcounter+3],bgclr,fgclr,0);
 write2screen(r,c+animcounter+5,txt[animcounter+4],bgclr,fgclr,0);
 write2screen(r,c+animcounter+6,txt[animcounter+5],bgclr,fgclr,0);

 animcounter+=1;
 if(animcounter+5 >= len) animcounter=0;

 return;
}

/* Displays a single character with its attrribute*/
write2screen(int row,int col,char ch,int bg_color,int fg_color,int blink)
{
 int attr;
 char far *v;
 char far *ptr=(char far*)0xB8000000;
 if(blink!=0)
 blink=128;

 attr=bg_color+blink;

 attr=attr<<4;
 attr+=fg_color;
 attr=attr|blink;

Computer ProgrammingA.44

 v=ptr+row*160+col*2; /*Calculates the video memory address corresponding to row & col
umn*/

 *v=ch;
 v++;
 *v=attr;
 return 0;
}

/* Prints text with color attribute direct to the screen*/
print2screen(int row,int col,char string[],int bg_color,int fg_color,int blink)
{
 int i=row,j=col,strno=0,len;
 len=strlen(string);
 while(j<80)
 {
 j++;
 if(j==79)
 {

j=0;
i+=1;

 }
 write2screen(i,j,string[strno],bg_color,fg_color,blink); /*See below function*/
 strno+=1;
 if(strno > len-1)

break;
 }
 return;
}

/* Prints text horizontally*/
htskin(int row,int column,char symb,int no,int bg_color,int fg_color,int blink)
{
 int i;
 for(i=0;i<no;i++)
 write2screen(row,column++,symb,bg_color,fg_color,blink); /*Print one symbol*/
 return;
}

/*Print text vertically*/
vtskin(int row,int column,char symb,int no,int bg_color,int fg_color,int blink)
{
 int i;
 for(i=0;i<no;i++)
 write2screen(row++,column,symb,bg_color,fg_color,blink); /*Print one symbol*/
 return;
}

/* Shows a message box*/
messagebox(int row,int column,char message[50],char heading[10],char symb,int borderclr,int
bg_color,int fg_color,int blink)

Appendix V A.45

{
 int len;
 char key,image[1000];
 len=strlen(message);
 capture_image(row,column,row+3,column+len+7,&image);
 draw_mbox(row,column,row+3,column+len+7,symb,symb,borderclr,YELLOW,blink,borderclr,YELLOW,blink);
 fillcolor(row+1,column+1,row+2,column+len+6,’ ‘,bg_color,bg_color,0);
 print2screen(row+1,column+2,message,bg_color,fg_color,blink);
 print2screen(row+2,column+2,”Press Any Key... “,bg_color,fg_color,blink);
 print2screen(row,column+1,heading,borderclr,fg_color,blink);
 sound(400);
 delay(200);
 nosound();
 fflush(stdin);
 key=getch();
 put_image(row,column,row+3,column+len+7,&image);
 return key;
}

/* Fills color in a region*/
fillcolor(int top_row,int left_column,int bottom_row,int right_column,char symb,int
bg_color,int fg_color,int blink)
{
 int i,j;
 for(i=top_row;i<=bottom_row;i++)
 htskin(i,left_column,symb,right_column-left_column+1,bg_color,fg_color,blink);
 return;
}

/* Prints a message box with an appropriate message*/
draw_mbox(int trow,int tcolumn,int brow,int bcolumn,char hsymb,char vsymb,int hbg_color,int
hfg_color,int hblink,int vbg_color,int vfg_color,int vblink)
{
 htskin(trow,tcolumn,hsymb,bcolumn-tcolumn,hbg_color,hfg_color,hblink);
 htskin(brow,tcolumn,hsymb,bcolumn-tcolumn,hbg_color,hfg_color,hblink);
 vtskin(trow,tcolumn,vsymb,brow-trow+1,vbg_color,vfg_color,vblink);
 vtskin(trow,bcolumn,vsymb,brow-trow+1,vbg_color,vfg_color,vblink);
 return;
}

/* Copies the txt mode image below the messagebox*/
capture_image(int toprow,int leftcolumn,int bottomrow,int rightcolumn,int *image)
{
 char far *vidmem;
 int i,j,count;
 count=0;
 for(i=toprow;i<=bottomrow;i++)
 for(j=leftcolumn;j<=rightcolumn;j++)
 {

Computer ProgrammingA.46

 vidmem=(char far*)0xB8000000+(i*160)+(j*2); /*Calculates the video memory address
corresponding to row & column*/
 image[count]=*vidmem;
 image[count+1]=*(vidmem+1);
 count+=2;
 }
 return;
}

/* Places an image on the screen*/
put_image(int toprow,int leftcolumn,int bottomrow,int rightcolumn,int image[])
{
 char far *ptr=(char far*)0xB8000000;
 char far *vid;
 int i,j,count;
 count=0;
 for(i=toprow;i<=bottomrow;i++)
 for(j=leftcolumn;j<=rightcolumn;j++)
 {
 vid=ptr+(i*160)+(j*2); /*Calculates the video memory address corresponding to row &

column*/
 *vid=image[count];
 *(vid+1)=image[count+1];
 count+=2;
 }
 return;
}

/* To move the curser position to desired position*/
gotopos(int r,int c)
{
 union REGS i,o;
 i.h.ah=2;
 i.h.bh=0;
 i.h.dh=r;
 i.h.dl=c;
 int86(16,&i,&o);
 return 0;
}

union REGS i,o;

/* Initialize the mouse*/

initmouse()
{
 i.x.ax=0;
 int86(0x33,&i,&o);
 return(o.x.ax);
}

Appendix V A.47

/* Shows the mouse pointer*/
showmouseptr()
{
 i.x.ax=1;
 int86(0x33,&i,&o);
 return;
}

/* Get the mouse position*/
getmousepos(int *button,int *x,int *y)
{
 i.x.ax=3;
 int86(0x33,&i,&o);
 *button=o.x.bx;
 *x=o.x.dx;
 *y=o.x.cx;
 return 0;
}

/* Restores the default text mode*/
setdefaultmode()
{
 set25x80();
 setdefaultcolor();
 return;
}

/* Sets the default color and cursor of screen*/
setdefaultcolor()
{
 int i;
 char far *vidmem=(char far*)0xB8000000;
 window(1,1,80,25);
 clrscr();
 for (i=1;i<4000;i+=2)
 *(vidmem+i)=7;
_setcursortype(_NORMALCURSOR);
return;
}

/* Sets 25x80 Text mode*/
set25x80()
{
 asm mov ax,0x0003;
 asm int 0x10;
 return;
}

Computer ProgrammingA.48

Appendix V A.49

Computer ProgrammingA.50

Appendix V A.51

Computer ProgrammingA.52

Appendix V A.53

Computer ProgrammingA.54

Appendix V A.55

Computer ProgrammingA.56

Appendix V A.57

RECORD ENTRY SYSTEM

The objective of the record entry system is to develop a login-based record keeping system,

which has nested menus and different interfaces for different sets of users.

The application contains separate interfaces defined for an administrator and employees.

The application provides a basic menu, which has menu options for both types of users.

According to the selection made by a user, the user is prompted to enter his login name and

password. On successfully validating the user name and password, a menu is displayed to

the user according to his level. For example, an employee after logging into the system, can

record his Log In and Log Out timings.

The project demonstrates working with date and time in C, showing �*� characters when

user types the password, user authentication and two levels of menus for each type of user.

The project also adds validations on user input to ensure proper data entry into the data-

base.

The project uses various C concepts, such as while loop, if statement and switch case

statement to display the required functionality.

Computer ProgrammingA.58

/**

 Application: Record Entry System
 Compiled on: Borland Turbo C++ 3.0

**/

#include <stdio.h>

#include <conio.h>
#include <string.h>

#include <dos.h>

#include <ctype.h>

void dataentry(void);

void selectAdminOption(void);
void getData(int option);

int showAdminMenu;

void main()

{

int cancelOption,timeOption,entryOption,exitOption;
char choice[1];

char selectOption[1];

textcolor(YELLOW);

cancelOption=0;

/* Shows the main menu for the application*/

 while (cancelOption==0)

{
clrscr();

gotoxy(30,7);

printf(“Please Select an Action—>”);
gotoxy(30,10);

printf(“Daily Time Record [1] “);

gotoxy(30,11);
printf(“Data Entry [2] “);

gotoxy(30,12);

printf(“Close [3] “);
gotoxy(30,15);

printf(“Please Enter Your Choice (1/2/3): “);

scanf(“%s”,&choice);
timeOption=strcmp(choice,”1");

entryOption=strcmp(choice,”2");

exitOption=strcmp(choice,”3");

if (timeOption==0)
{

Appendix V A.59

clrscr();
gotoxy(23,6);
printf(“DAILY EMPLOYEE TIME RECORDING SYSTEM”);
gotoxy(16,24);
printf(“Input Any Other key to Return to Previous Screen.”);
gotoxy(31,9);
printf(“[1] Employee Log In “);
gotoxy(31,10);
printf(“[2] Employee Log Out”);
gotoxy(28,12);
printf(“Please Enter Your Option: “);
scanf(“%s”,&selectOption);
if (strcmp(selectOption,”1")==0)
{
 getData(5);
}
if (strcmp(selectOption,”2")==0)
{
 getData(6);
}
cancelOption=0;
}
if (entryOption==0)
{
dataentry();
cancelOption=0;
}
if (exitOption==0)
{
cancelOption=1;
}

if (!(timeOption==0 || entryOption==0 || exitOption==0))
{

 gotoxy(10,17);
 printf(“You Have Entered an Invalid Option. Please Choose Either 1, 2 or 3. “);
 getch();
 cancelOption=0;
}

}
clrscr();
gotoxy(23,13);
printf(“The Application will Close Now. Thanks!”);
getch();

}

/* This function provides logic for data entry to be done for the system.
Access to Data Entry screens will be only allowed to administrator user.*/
void dataentry(void)

Computer ProgrammingA.60

{

char adminName[10], passwd[5],buffer[1];
char tempo[6],sel[1];
int validUserNameOption,validUserPwdOption,returnOption,UserName,inc,tmp;
char plus;

clrscr();
validUserNameOption=0;
validUserPwdOption=0;
while (validUserPwdOption==0)
{

clrscr();
while (validUserNameOption==0)
{

clrscr();
gotoxy(20,5);
printf(“IT SOFTWARE DATA ENTRY SYSTEM-ADMIN INTERFACE”);
gotoxy(20,24);
printf(“Info: Type return to go back to the main screen.”);
gotoxy(28,10);
printf(“Enter Administrator Name: “);
scanf(“%s”,&adminName);
returnOption=strcmp(adminName,”return”);
UserName=strcmp(adminName,”admin”);

if (returnOption==0)
{
goto stream;
}
if (!(UserName==0 || returnOption==0))
{

gotoxy(32,11);
printf(“Administrator Name is Invalid.”);
getch();
validUserNameOption=0;
}
else
validUserNameOption=1;

}

gotoxy(30,11);
printf(“Enter Password: “);
inc=0;
while (inc<5)
{
 passwd[inc]=getch();
 inc=inc+1;
 printf(“* “);

Appendix V A.61

}
inc=0;
while (inc<5)
{
 tempo[inc]=passwd[inc];
 inc=inc+1;
}
while(getch()!=13);
if (!strcmp(tempo, “admin12”))

{
 gotoxy(28,13);

printf(“You have Entered a Wrong Password. Please Try Again. “);
getch();
validUserPwdOption=0;
validUserNameOption=0;

}
else
{

clrscr();
gotoxy(24,11);
textcolor(YELLOW+BLINK);
cprintf(“You Have Successfully Logged In.”);
gotoxy(24,17);
textcolor(YELLOW);
printf(“Press Any Key to Continue.”);
validUserPwdOption=1;
validUserNameOption=1;
getch();
showAdminMenu=0;

 while (showAdminMenu==0)
 {

clrscr();
gotoxy(24,4);
printf(“ADMIN OPTIONS”);
gotoxy(26,9);
printf(“Add New Employee [1]”);
gotoxy(26,11);
printf(“Show Daily Entries [2]”);
gotoxy(26,13);
printf(“Search Employee Record [3]”);
gotoxy(26,15);
printf(“Remove Employee [4]”);
gotoxy(26,17);
printf(“Close [5]”);
gotoxy(24,21);
printf(“Please enter your choice: “);
selectAdminOption();

 }
}

Computer ProgrammingA.62

}
stream:{}

}

/* This function provides the administrator level functionalities, such as Adding or delet-
ing an employee.*/
void selectAdminOption(void)
{
 char chc[1];
 int chooseNew,chooseShow,chooseSearch,chooseRemove,chooseClose;

 gets(chc);

 chooseNew=strcmp(chc,”1");
 chooseShow=strcmp(chc,”2");
 chooseSearch=strcmp(chc,”3");
 chooseRemove=strcmp(chc,”4");
 chooseClose=strcmp(chc,”5");

 if (!(chooseNew==0 || chooseShow==0 || chooseSearch==0 || chooseRemove==0 ||
chooseClose==0))
 {
 gotoxy(19,21);
 textcolor(RED+BLINK);
 cprintf(“Invalid Input!”);
 gotoxy(34,21);
 textcolor(YELLOW);
 cprintf(“Press any key to continue.”);
 }

 if (chooseNew==0)
 {
 clrscr();
 gotoxy(25,5);
 getData(1);
 }
 else if(chooseShow==0)
 {
 getData(2);
 }
 else if(chooseSearch==0)
 {
 clrscr();
 getData(3);
 }
 else if(chooseRemove==0)
 {
 getData(4);
 }

Appendix V A.63

 else if (chooseClose==0)
 {
 showAdminMenu=1;
 }
}

/* This function retreives data from the database as well as do data processing according to
user requests.
 The function provides functionality for menu options provided to both employee as well as
administrator user*/
void getData(int option)
{
 FILE *db,*tempdb;
 char anotherEmp;
 int choice;
 int showMenu,posx,posy;
 char checkSave,checkAddNew;
 int i;

 struct employee
 {
 char firstname[30];
 char lastname[30];
 char password[30];
 int empid;
 char loginhour;
 char loginmin;
 char loginsec;
 char logouthour;
 char logoutmin;
 char logoutsec;
 int yr;
 char mon;
 char day;
 };

 struct employee empData;

 char confirmPassword[30];
 long int size;
 char lastNameTemp[30],firstNameTemp[30],password[30];
 int searchId;
 char pass[30];
 char findEmployee;
 char confirmDelete;

 struct date today;
 struct time now;

 clrscr();

Computer ProgrammingA.64

 /* Opens the Employee Database*/
 db=fopen(“d:/empbase.dat”,”rb+”);
 if(db==NULL)

{
db=fopen(“d:/empbase.DAT”,”wb+”);
if(db==NULL)
{

printf(“The File could not be opened.\n”);
exit();

}
}

 printf(“Application Database \n”);
 size=sizeof(empData);
 showMenu=0;
 while(showMenu==0)
 {
 fflush(stdin);
 choice=option;

 /* Based on the choice selected by admin/employee, this switch statement processes the
request*/
 switch(choice)
 {

 /* To add a new employee to the database*/
 case 1:

 fseek(db,0,SEEK_END);
 anotherEmp=’y’;

 while(anotherEmp==’y’)
 {

 checkAddNew=0;
 while(checkAddNew==0)
 {
 clrscr();
 gotoxy(25,3);
 printf(“ADD A NEW EMPLOYEE”);
 gotoxy(13,22);
 printf(“Warning: Password Must Contain Six(6) AlphaNumeric Digits.”);
 gotoxy(5,8);
 printf(“Enter First Name: “);
 scanf(“%s”,&firstNameTemp);
 gotoxy(5,10);
 printf(“Enter Last Name: “);
 scanf(“%s”,&lastNameTemp);
 gotoxy(43,8);
 printf(“Enter Password: “);
 for (i=0;i<6;i++)
 {

Appendix V A.65

 password[i]=getch();
 printf(“* “);
 }
 password[6]=’\0';

 while(getch()!=13);

 gotoxy(43,10);
 printf(“Confirm Password: “);
 for (i=0;i<6;i++)
 {
 confirmPassword[i]=getch();
 printf(“* “);
 }
 confirmPassword[6]=’\0';

 while(getch()!=13);
 if (strcmp(password,confirmPassword))
 {
 gotoxy(24,12);

 printf(“Passwords do not match.”);
 gotoxy(23,13);
 printf(“Press any key to continue.”);
 getch();
 }
 else
 {
 checkAddNew=1;
 rewind(db);
 empData.empid=0;
 while(fread(&empData,size,1,db)==1);
 if (empData.empid<2000)
 empData.empid=20400;

 empData.empid=empData.empid+1;
 gotoxy(29,16);
 printf(“Save Employee Information? (y/n): “);
 checkSave=getche();
 if (checkSave==’y’)
 {
 strcpy(empData.firstname,firstNameTemp);
 strcpy(empData.lastname,lastNameTemp);
 strcpy(empData.password,password);
 empData.loginhour=’t’;
 empData.logouthour=’t’;
 empData.day=’j’;
 fwrite(&empData,size,1,db);
 }
 gotoxy(28,16);
 printf(“ “);

Computer ProgrammingA.66

 gotoxy(28,16);
 printf(“Would like to add another employee? (y/n):”);
 fflush(stdin);
 anotherEmp=getche();
 printf(“\n”);
 }
 }

 }
 break;

 /* To view time records for all employees*/
 case 2:

 clrscr();
 gotoxy(21,2);
 printf(“VIEW EMPLOYEE INFORMATION”);
 gotoxy(1,5);
 printf(“Employee ID Employee Name Time Logged In Time Logged Out

Date\n\n”);
 rewind(db);
 posx=3;
 posy=7;
 while(fread(&empData,size,1,db)==1)
 {
 empData.firstname[0]=toupper(empData.firstname[0]);
 empData.lastname[0]=toupper(empData.lastname[0]);
 gotoxy(posx,posy);
 printf(“%d”,empData.empid);
 gotoxy(posx+10,posy);
 printf(“| %s, %s”,empData.lastname,empData.firstname);
 gotoxy(posx+30,posy);
 if (empData.loginhour==’t’)
 {
 printf(“| Not Logged In”);
 }
 else
 printf(“| %d:%d:%d”,empData.loginhour,empData.loginmin,empData.loginsec);

 gotoxy(posx+49,posy);
 if (empData.logouthour==’t’)
 {
 printf(“| Not Logged Out”);
 }
 else
 printf(“| %d:%d:%d”,empData.logouthour,empData.logoutmin,empData.logoutsec);
 if (empData.day==’j’)
 {
 gotoxy(posx+69,posy);
 printf(“| No Date”);
 }

Appendix V A.67

 else
 {
 gotoxy(posx+73,posy);
 printf(“| %d/%d/%d”,empData.mon,empData.day,empData.yr);
 }

 posy=posy+1;
 }
 getch();

 printf(“\n”);
 break;

 /* To search a particular employee and view their time records*/
 case 3:

 clrscr();
 gotoxy(27,5);
 printf(“SEARCH EMPLOYEE INFORMATION”);
 gotoxy(25,9);
 printf(“Enter Employee Id to Search: “);
 scanf(“%d”, &searchId);
 findEmployee=’f’;
 rewind(db);

 while(fread(&empData,size,1,db)==1)
 {
 if (empData.empid==searchId)
 {

gotoxy(33,11);
textcolor(YELLOW+BLINK);
cprintf(“Employee Information is Available.”);
textcolor(YELLOW);
gotoxy(25,13);
printf(“Employee name is: %s

%s”,empData.lastname,empData.firstname);
if(empData.loginhour==’t’)
{
gotoxy(25,14);
printf(“Log In Time: Not Logged In”);
}
else
{
gotoxy(25,14);
printf(“Log In Time is:

%d:%d:%d”,empData.loginhour,empData.loginmin,empData.loginsec);
}
if(empData.logouthour==’t’)
{
gotoxy(25,15);
printf(“Log Out Time: Not Logged Out”);
}

Computer ProgrammingA.68

else
{
gotoxy(25,15);
printf(“Log Out Time is:

%d:%d:%d”,empData.logouthour,empData.logoutmin,empData.logoutsec);
}
findEmployee=’t’;

 getch();
 }
 }
 if (findEmployee!=’t’)
 {
 gotoxy(30,11);
 textcolor(YELLOW+BLINK);
 cprintf(“Employee Information not available. Please modify the search.”);
 textcolor(YELLOW);
 getch();
 }
 break;

 /* To remove entry of an employee from the database*/
 case 4:

 clrscr();
 gotoxy(25,5);
 printf(“REMOVE AN EMPLOYEE”);
 gotoxy(25,9);
 printf(“Enter Employee Id to Delete: “);
 scanf(“%d”, &searchId);
 findEmployee=’f’;
 rewind(db);

 while(fread(&empData,size,1,db)==1)
 {

 if (empData.empid==searchId)
 {

gotoxy(33,11);
textcolor(YELLOW+BLINK);
cprintf(“Employee Information is Available.”);
textcolor(YELLOW);
gotoxy(25,13);
printf(“Employee name is: %s %s”,empData.lastname,empData.firstname);
findEmployee=’t’;

 }
 }
 if (findEmployee!=’t’)
 {
 gotoxy(30,11);
 textcolor(YELLOW+BLINK);
 cprintf(“Employee Information not available. Please modify the search.”);

Appendix V A.69

 textcolor(YELLOW);
 getch();
 }
 if (findEmployee==’t’)
 {
 gotoxy(29,15);
 printf(“Do you want to Delete the Employee? (y/n)”);
 confirmDelete=getche();

if (confirmDelete==’y’ || confirmDelete==’Y’)
{
tempdb=fopen(“d:/tempo.dat”,”wb+”);
rewind(db);
while(fread(&empData,size,1,db)==1)

{
 if (empData.empid!=searchId)
 {
 fseek(tempdb,0,SEEK_END);
 fwrite(&empData,size,1,tempdb);
 }
}

fclose(tempdb);
fclose(db);
remove(“d:/empbase.dat”);
rename(“d:/tempo.dat”,”d:/empbase.dat”);
db=fopen(“d:/empbase.dat”,”rb+”);
}

 }
 break;

 /* To login an employee into the system and record the login date and time*/
 case 5:

 clrscr();
 gotoxy(20,4);
 printf(“DAILY EMPLOYEE TIME RECORDING SYSTEM”);
 gotoxy(20,23);
 printf(“Warning: Please Enter Numeric Values Only.”);
 gotoxy(23,7);
 printf(“Enter Your Id to Login: “);
 scanf(“%d”, &searchId);
 gotoxy(20,23);
 printf(“ “);
 findEmployee=’f’;
 rewind(db);

 while(fread(&empData,size,1,db)==1)
 {
 if (empData.empid==searchId)
 {

gotoxy(23,8);
printf(“Enter Your Password: “);

Computer ProgrammingA.70

 for (i=0;i<6;i++)
 {
 pass[i]=getch();
 printf(“* “);
 }
 pass[6]=’\0';
 while(getch()!=13);

if (strcmp(empData.password,pass))
{
 gotoxy(23,11);
 textcolor(YELLOW+BLINK);
 cprintf(“You Have Supplied a Wrong Password.”);
 textcolor(YELLOW);
 findEmployee=’t’;
 getch();
 break;
}
gotoxy(23,11);
textcolor(YELLOW+BLINK);
cprintf(“You have successfully Logged In the System.”);
textcolor(YELLOW);
gotoxy(23,13);
printf(“Employee name: %s %s”,empData.lastname,empData.firstname);
gettime(&now);
getdate(&today);
gotoxy(23,14);
printf(“Your LogIn Time: %2d:%2d:%2d”,now.ti_min,now.ti_hour,now.ti_sec);
gotoxy(23,15);
printf(“Your Log In Date: %d/%d/%d”,today.da_mon,today.da_day,today.da_year);
empData.day=today.da_day;
empData.mon=today.da_mon;
empData.yr=today.da_year;
fseek(db,-size,SEEK_CUR);
empData.loginhour=now.ti_min;
empData.loginmin=now.ti_hour;
empData.loginsec=now.ti_sec;
fwrite(&empData,size,1,db);
findEmployee=’t’;
getch();

 }
 }
 if (findEmployee!=’t’)
 {
 gotoxy(30,11);
 textcolor(YELLOW+BLINK);
 cprintf(“Employee Information is not available.”);
 textcolor(YELLOW);
 getch();
 }

Appendix V A.71

 break;

 /* To logout an employee and record the logout date and time*/
 case 6:

 clrscr();
 gotoxy(20,4);
 printf(“DAILY EMPLOYEE TIME RECORDING SYSTEM”);
 gotoxy(20,23);
 printf(“Warning: Please Enter Numeric Values Only.”);
 gotoxy(23,7);
 printf(“Enter Your Id to Logout: “);
 scanf(“%d”, &searchId);
 gotoxy(20,23);
 printf(“ “);
 findEmployee=’f’;
 rewind(db);

 while(fread(&empData,size,1,db)==1)
 {
 if (empData.empid==searchId)
 {

gotoxy(23,8);
printf(“Enter Password: “);

 for (i=0;i<6;i++)
 {
 pass[i]=getch();
 printf(“* “);
 }
 pass[6]=’\0';
 while(getch()!=13);

if (strcmp(empData.password,pass))
{
 gotoxy(30,11);
 textcolor(YELLOW+BLINK);
 cprintf(“You Have Supplied a Wrong Password.”);
 textcolor(YELLOW);
 findEmployee=’t’;
 getch();
 break;
}
gotoxy(23,11);
textcolor(YELLOW+BLINK);
cprintf(“You have successfully Logged Out of the System.”);
textcolor(YELLOW);
gotoxy(23,13);
printf(“Employee name is: %s

%s”,empData.lastname,empData.firstname);

Computer ProgrammingA.72

gettime(&now);
getdate(&today);
gotoxy(23,14);
printf(“Your Log Out Time:

%2d:%2d:%2d”,now.ti_min,now.ti_hour,now.ti_sec);
gotoxy(23,15);
printf(“Your Log Out Date:

%d/%d/%d”,today.da_mon,today.da_day,today.da_year);
fseek(db,-size,SEEK_CUR);
empData.logouthour=now.ti_min;
empData.logoutmin=now.ti_hour;
empData.logoutsec=now.ti_sec;
fwrite(&empData,size,1,db);
findEmployee=’t’;
getch();

 }
 }
 if (findEmployee!=’t’)
 {
 gotoxy(23,11);
 textcolor(YELLOW+BLINK);
 cprintf(“Employee Information is not available.”);
 textcolor(YELLOW);
 getch();
 }

 break;

 /* Show previous menu*/
 case 9:

 printf(“\n”);
 exit();
 }

 fclose(db);
 showMenu=1;
 }
 }

Appendix V A.73

Computer ProgrammingA.74

Appendix V A.75

Computer ProgrammingA.76

Appendix V A.77

Computer ProgrammingA.78

Appendix V A.79

Computer ProgrammingA.80

Appendix V A.81

C99 Features

1 INTRODUCTION

C, as developed and standardized by ANSI and ISO, is a powerful, flexible, portable and
elegant language. Due to its suitability for both systems and applications programming, it
has become an industry-standard, general-purpose language to-day.

The standardization committee working on C language has been trying to examine each
element of the language critically and see any change or enhancement is necessary in order
to continue to maintain its lead over other competing languages. The committee also inter-
acted with many user groups and elicited suggestions on improvements that are required
from the point-of-view of users. The result was the new version of C, called C99.

The C99 standard incorporates enhancements and new features that are desirable for any
modern computer language. Although it has borrowed some features from C++ (a progeny of
C) and modified a few constructs, it retains almost all the features of ANSI C and thus
continues to be a true C language.

In this appendix, we will highlight the important changes and new features added to C by
the 1999 standard.

2 NEW KEYWORDS

ANSI C has defined 32 keywords. C99 has added five more keywords. They are:

_Bool
_Complex
_Imaginary
inline
restrict

Addition of these keywords is perhaps the most significant feature of C99. The use of these
keywords are highlighted later in this appendix.

3 NEW COMMENT

C99 adds what is known as the single-line comment, a feature borrowed from C++. Single-
line comments begin with // (two back slashes) and end at the end of the line. Examples:

VI

Appendix VI A.83

// A comment line
if (x > y) // Testing

printf(..........); // Printing
int m; // Declaration

Single-line comments are useful when brief, line-by-line comments are needed.

4 NEW DATA TYPES

C defines five basic data types, namely, char, int, float, double, and void. C99 adds three

new built-in data types. They are:

_Bool

_Complex

_Imaginary

C99 also allows long to modify long thus creating two more modified data types, namely,

long long int and unsigned long long int.

_Bool Type

_Bool is an integer type which can held the values 1 and 0. Example:

_Bool x, y;
x = 1;
y = 0;

We know that relational and logical expressions return 0 for false and 1 for true. These

values can be stored in _Bool type variables. For example,

_Bool b = m > n;

The variable b is assigned 1 if m is greater than n, otherwise 0.

_Complex and _Imaginary Types

C99 adds two keywords_Complex and_Imaginary to provide support for complex arithme-

tic that is necessary for numerical programming. The following complex types are supported:

float_Complex float_Imaginary

double_Complex double_Imaginary

long double_Complex long double_Imaginary

The long long Types

The long long int has range of at least �(263 �1) to 263 �1. Similarly, the unsigned long

long int has a range of 0 to 264 �1.

5 DECLARATION OF VARIABLES

In C, we know that all the variables must be declared at the beginning of a block or function

before any executable statements. However, C99 allow us to declare a variable at any point,

just before its use. For example, the following code is legal in C99.

Computer ProgrammingA.84

main()

{
int m;
m = 100;
.
.
int n; /* Legal in C99*/
n = 200;
. . . .

}

C99 extends this concept to the declaration of control variables in for loops. That is, C99
permits declaration of one or more variables within the initialization part of the loop. For
example, the following code is legal.

main()
{

.

.
for (int i = 0; i<5; i + +)
{

.

.
}
.
.

}

A variable declared inside a for loop is local to that loop only. The value of the variable is
lost, once the loop ends. (This concept is again borrowed from C++.)

6 CHANGES TO I/O FORMATS

In order to handle the new data types with long long specification, C99 adds a new format

modifier ll to both scanf() and printf() format specifications. Examples: %lld, %llu, %lli,

%llo and %llx.

Similarly, C99 adds hh modifier to d, i, o, u and x specifications when handling char type

values.

7 HANDLING OF ARRAYS

C99 introduces some features that enhance the implementation of arrays.

Variable-Length Arrays

In ANSI C, we must declare array dimensions using integer constants and therefore the size

of an array is fixed at compile time. C99 permits declaration of array dimensions using inte-

ger variables or any valid integer expressions. The values of these variables can be specified

just before they are used. Such arrays are called variable-length arrays.

Appendix VI A.85

Example:

main()
{

int m, n;
scanf(“%d %d”, &m, &n);
float matrix [m] [n]; /* variable-length array */
.
.

}

We can specify the values of m and n at run time interactively thus creating the matrix with
different size each time the program is run.

Type Specification in Array Declaration

When we pass arrays as function arguments, we can qualify the dimension parameters with
the keyword static. For example:

void array (int x [static 20])
{

.

.
}

The qualifier static guarantees that the array x contains at least the specified number of
elements.

Flexible Arrays in Structures

When designing structures, C99 permits declaration of an array without specifying any size

as the last member. This is referred to as a flexible array member. Example:

struct find

{
float x;
int number;
float list []; /* flexible array */

};

8 FUNCTIONS IMPLEMENTATION

C99 has introduced some changes in the implementation of functions. They include:

· Removal of �default to int� rule
· Removal of �implicit function declaration�
· Restrictions on return statement
· Making functions inline

Default to int Rule

In ANSI C, when the return type of a function is not specified, the return type is assumed to

be int. For example,

Computer ProgrammingA.86

prod(int a, int b) /* return type is int by default */
{

return (a*b);
}

is a valid definition. The return type is assumed to be int by default. The implicit int rule is

not valid in C99. It requires an explicit mention of return type, even if the function returns

an integer value. The above definition must be written as:

int prod(int a, int b) /* explicit type specification */
{

return (a*b);
}

Another place where we use implicit int rule is when we declare function parameters

using qualifiers. For example, function definitions such as

fun1(const a) /* a is int by default */
{

.
}

and

fun2 (register x, register y) /* x and y are int */
{

.
}

are not acceptable in C99. The parameters a, x and y must be explicitly declared as int, like:

const int a

const register x

Explicit Function Decalaration

Although prior explicit declaration of function is not technically required in ANSI C, it is

required in C99 (like in C++).

Restrictions on return Statement

In ANSI C, a non-void type function can include a return statement without including a

value. For example, the following code is valid in ANSI C.

float value (float x, float y)
{

.

.
return; /* no value included */

}

But, in C99, if a function is specified as returning a value, its return statement must have a

return value specified with it. Therefore, the above definition is not valid in C99. The return

statement for the above function may take one of the following forms:

Appendix VI A.87

return(p); /* p contains float value */

return(p);

return o.o; /* when no value to be returned*/

Making Functions inline

The new keyword inline is used to optimize the function calls when a program is executed.

The inline specifier is used in function definition as follows:

inline mul (int x, int y)
{

return (x*y);
}

Such functions are called inline functions. When an inline function is invoked, the function�s

code is expanded inline, rather than called. This eliminates a significant amount of overhead

that is required by the calling and returning mechanisms thus reducing the execution time

considerably. However, the expansion �inline� may increase the size of the object code of the

program when the function is invoked many times. Due to this, only small functions are

made inline.

9 RESTRICTED POINTERS

The new keyword restrict has been introduced by C99 as a type qualifier that is applied

only to pointers. A pointer qualified with restrict is referred to as a restricted pointer. Re-

stricted pointers are declared as follows.

int *restrict p1;
void *restrict p2;

A pointer declared �restricted� is the only means of accessing the object it points to. (How-

ever, another pointer derived from the restricted pointer can also be used to access the ob-

ject.)

Pointers with restrict specifier are mainly used as function parameters. They are also

used as pointers that point to memory created by malloc () function.

C99 has added this feature to the prototype of many library functions, both existing and

new. For details, you must refer to the functions defined in the C standard library.

10 CHANGES TO COMPILER LIMITATIONS

All language compilers have limitations in terms of handling some features such as the

length of significant characters, number of arguments in functions, etc. C99 has enhanced

many of such limitations. They are listed below:

· Significant characters in identifiers: increased from 6 to 31

· Levels of nesting of blocks : Increased from 15 to 127

· Arguments in a function : Increased from 31 to 127

· Members in a structure : Increased from 127 to 1023

Computer ProgrammingA.88

11 OTHER CHANGES

C99 has also introduced many other changes that include:

· New libraries and headers

· New built-in macros

· Some changes to the preprocessor

MODEL QUESTION PAPER

Model Question
Paper

Part A
 1. Give the classifi cation of computers.

 2. Convert the (756)10 to octal and hexa decimal.

 3. What are the various types of software?

 4. What is a protocol?

 5. What is a pseudocode?

 6. Defi ne : algorithm.

 7. Write any four escape sequences in ‘C’.

 8. Distinguish between while ... and do ... while statement.

 9. What is a pointer?

 10. Write any four features of array.

Part B
11. (a) (i) Explain the characteristics of computers. (8)

 (ii) Discuss the evolution of computers. (8)

Or

 (b) Explain the basic organisation of computer with suitable block diagram. (16)

12. (a) Explain the steps of software developments with suitable examples. (16)

Or

 (b) (i) Discuss the following internet terminologies

 (1) Band width

 (2) FTP

 (3) IP Address

 (4) Modem (8)

 (ii) Write some of the internet applications. (8)

13. (a) (i) Draw the fl owchart for fi nding the roots of a quadratic equation. (8)

 (ii) Write an algorithm to fi nd the largest of three numbers. (8)

Or

Computer ProgrammingMQP.4

 (b) Discuss in detail about the features of offi ce packages. (16)

14. (a) (i) Explain different data types in ‘C’ with examples. (8)

 (ii) Discuss about bitwise operators and logical operators in ‘C’. (8)

Or

 (b) (i) Explain any four format string with examples. (4)

 (ii) Write the syntax of “for construct” in C. Give an example. (4)

 (iii) Write a C program to count the letters in a sequence of characters. (8)

Or

15. (a) (i) Write a C program to sort the given set of numbers in ascending order. (8)

 (ii) Discuss about any eight built-in functions. (8)

Or

 (b) (i) Write the syntax of structure declaration in ‘C’ program. Give an example. (4)

 (ii) Distinguish between structure and union. (4)

 (iii) Write a C program to fi nd the addition of two matrices. (8)

SOLUTIONS

Part A
1. Classifi cation of Computers:
 Computers are classifi ed according to the following three criteria:

 ∑ Based on Operating principles

 ∑ Based on applications

 ∑ Based on size and capability

2. 756(10)

 Octal=1364(8)

 Hexadecimal=2F4(16)

3. Types of Software:
 There are 2 types of software,

 • System software:
 Operating systems like Windows, Unix

 • Application software:
 Word processing, spread sheet, Data bases, Accounting Package

4. Protocol:
 Protocol refers to a standard set of rules to be followed.

5. Pseudocode:
 Pseudo means false and code refers to the instruction written in a programming language.

Pseudocode is a programming analysis tool that is used for planning programming logic.

Model Question Paper MQP.5

6. Algorithm:
 An algorithm means the logic of a program. It is a step by step description of how to arrive

at a solution of a given program.

 In algorithm each and every instruction should be precise and unambiguous.

7. Four Escape Sequences in C
 \n New line

 \t Tab

 \b Backspace

 \’ Single quote

8. Difference between while and do-while Loops:
 • In while loop, the condition is fi rst executed. If the condition is true then it executes the

body of the loop. If the condition is false then it comes out of the loop.

 • In do-while loop, fi rst the statement is executed and then the condition is checked. The

major difference here is that, the loop will be executed at least once even though the

condition is false at the very fi rst time.

9. Pointer:
 A pointer is a variable which holds the address of another variable i.e. direct address of

the memory location. Like any variable or constant, you must declare a pointer before you

can use it to store any variable address. Pointers are more effi cient in handling the data in

arrays.

10. Features of Arrays:
 • An array holds elements that have the same data type.

 • Array elements are stored in subsequent memory locations.

 • Two-dimensional array elements are stored row by row in subsequent memory

locations.

 • Array name represents the address of the starting element.

 • Array size should be mentioned in the declaration.

Part B
11(a)(i) Characteristics of Computers
 The characteristics and capabilities of a modern digital are as follows:

 • Speed
 A computer is a very fast device. It can carry out instructions at a very high speed

obediently, uncritically. It can perform in a few seconds the amount of work that a

human being can do in an entire year.

 Some calculation that would have taken hours and days to complete otherwise, can be

completed in a few seconds using the computer. The speed of computer is calculated in

MHz, that is one million instructions per second.

Computer ProgrammingMQP.6

 • Accuracy
 Accuracy of a computer is consistently high and the degree of accuracy of a particular

computer depends on the instructions and the type of processor. But for a particular

computer, each and every calculation is performed. For example, the computer

accurately gives the result of division of any number up to 10 decimal points.

 • Versatility
 Versatility is one of the most wonderful things about computer. Multi-processing

features of computer makes it versatile in nature. One moment, it is preparing the

results of particular examination, the next moment it is busy preparing electricity

bills, and in between it may be helping an offi ce secretary to trace an important letter

in seconds. It can perform different types of tasks with same ease.

 • Storage Capacity
 The computers have a lot of storage devices which can store a tremendous amount of

data. Data storage is essential function of the computer. Second storage devices like

fl oppy disk can store a large amount of data permanently.

 • Reliability
 Computer provides very high speed accompanied by high level for reliability. Thus,

computers never make mistakes of their own accord.

 • Diligence
 The computer is a machine that does not suffer from the human traits of tiredness

nor does it loses concentration even after working continuously for a long time. This

characteristic of computer is especially useful for those jobs where same tasks are

done again and again. It can perform long and complex calculations with same speed

and accuracy from the start till the end.

11(a)(ii) Evolution of Computers
 The need for a device to do calculations along with the growth in commerce and other

human activities explain the evolution of computers. Computers were preceded by

many devices that mankind developed for their computing requirements.

 Some of the early computing devices were manually operated, while the later computing

devices were completely automated.

 • Manual computing devices:

 Sand Tables:
 In ancient times, people used fi ngers to perform the calculations such as

addition and subtraction. Even today, simple calculations are done on fi ngers.

 Soon, mankind realized that it would be easier to do calculations with pebbles

as compared to fi ngers.

 Consequently, pebbles were used to represent numbers, which led to the

development of sand tables. They are known to be the earliest device for

computation.

 A sand table consists of three grooves in the sand with a maximum of 10 pebbles

in each groove.

Model Question Paper MQP.7

 To increase the count by one, a pebble has to be added in the right-hand groove.

When 10 pebbles were collected in the right groove, they were removed and one

pebble was added to the adjacent left groove.

 Abacus:
 Abacus emerged around 5000 years ago in Asia Minor and it is still in use in

some parts of the world.

 The word ‘abacus’ was derived from the Arabic word ‘abaq’, which means ‘dust’.

An abacus consists of sliding beads arranged on a rack, which has two parts:

upper and lower.

 The upper part contains two beads and the lower part contains fi ve beads per

wire. The numbers are represented by the position of the beads on the rack.

 For example, in the upper part of the rack, a raised bead denotes 0, whereas

a lowered bead denotes digit 5. In the lower part, a raised bead stands for 1

and a lowered bead stands for 0. The arithmetic operations like addition and

subtraction can be performed by positioning the beads appropriately.

 Napier Bones:
 In 1614, John Napier, a Scottish mathematician, made a more sophisticated

computing machine called the Napier bones.

 This was a small instrument made of 10 rods on which the multiplication table

was engraved. It was made of the strips of ivory bones, and so the name Napier

bones.

 This device enabled multiplication in a fast manner, if one of the numbers was

of one digit only (for example, 6 × 6745)..

 Slide Rule
 The invention of logarithms infl uenced the development of another famous

invention known as slide rule.

 In 1620 AD, the fi rst slide rule came into existence. It was jointly devised by

two British mathematicians, Edmund Gunter and William Oughtred.

 It was based on the principle that actual distances from the starting point of

the rule is directly proportional to the logarithm of the numbers printed on the

rule. The slide rule is embodied by two sets of scales that are joined together,

with a marginal space between them.

 Pascaline
 In 1623, Wilhelm Schickard invented the ‘calculating clock’, which could add

and subtract, and indicated the overfl ow by ringing a bell.

 Subsequently, it helped in the evolution of Pascaline. In 1642 AD, Blaise

Pascal, a French mathematician, scientist and philosopher, invented the fi rst

functional automatic calculator. It had a complex arrangement of wheels, gears

and windows for displaying numbers.

 It was operated by a series of dials attached to the wheels with each wheel

having 10 segments (numbered from zero to nine) on its circumference.

 When a wheel made a complete turn, the wheel on its left advanced by one

segment. Indicators above the dial displayed the correct answer. However, the

usage of this device was limited to addition and subtraction only.

Computer ProgrammingMQP.8

 • Automated Computing Devices:

 Difference Engine
 In 1822, Charles Babbage, a professor of mathematics, devised a calculating

machine known as difference engine, which could be used to mechanically

generate mathematical tables.

 The difference engine can be viewed as a huge complex abacus. It was intended

to solve differential equations as well. However, Babbage never made a fully

functional difference engine and in 1833, he quit working on this machine to

concentrate on the analytical engine.

 MARK-I Computer
 From the year 1937 to 1944, Howard Aiken, an American mathematician,

under the sponsorship of IBM, developed MARK-I.

 It was essentially a serial collection of electromechanical calculators and had

many similarities to Babbage’s analytical machine. This electronic calculating

machine used relays and electromagnetic components to replace mechanical

components.

 MARK-I was capable of performing addition, subtraction, division,

multiplication and table reference. However, it was extremely slow, noisy and

bulky (approximately 50 ft long, 8 ft high and weighed 5 tons).

 ENIAC
 In 1946, John Eckert and John Mauchly of the Moore School of Engineering at

the University of Pennsylvania developed Electronic Numerical Integrator and

Calculator (ENIAC).

 Like the ABC computer, this computer also used electronic vacuum tubes for its

internal parts. It embodied almost all the components and concepts of today’s

high-speed, electronic digital computers.

 This machine could discriminate the sign of a number, compare quantities for

equality, add, subtract, multiply, divide and extract square roots.

 ENIAC consisted of 18,000 vacuum tubes, which required around 160 KW of

electricity and weighed nearly 30 tons. It could compute at a speed 1000 times

that of Mark-I, but had a limited amount of space to store and manipulate

information.

 EDVAC
 John Eckert and John Mauchly also proposed the development of Electronic

Discrete Variable Automatic Computer (EDVAC).

 Although, the conceptual design of EDVAC was completed by 1946, it came

into existence only in 1949.

 The EDVAC was the fi rst electronic computer to use the stored program concept

introduced by John Von Neumann.

 It also had the capability of conditional transfer of control, that is, the computer

could stop any time and then resumed again. EDVAC contained approximately

4000 vacuum tubes and 10,000 crystal diodes.

Model Question Paper MQP.9

 EDSAC
 The Electronic Delay Storage Automatic Calculator (EDSAC) was also based

on John Von Neumann’s stored program concept.

 The work began on EDSAC in 1946 at Cambridge University by a team headed

by Maurice Wilkes. In 1949, the fi rst successful program was run on this

machine. It used mercury delay lines for memory and vacuum tubes for logic.

 EDSAC had 3000 vacuum valves arranged on 12 racks and used tubes fi lled

with mercury for memory. It could carry out only 650 instructions per second.

 A program was fed into the machine through a sequence of holes punched into

a paper tape. The machine occupied a room, which measured 5 meters by 4

meters.

 UNIVAC
 The Universal Automatic Computer (UNIVAC) was the fi rst commercially

available electronic computer.

 It was also the fi rst general-purpose computer, which was designed to handle

both numeric and textual information.

 It was manufactured by the Eckert-Mauchly Corporation in 1951 and its

implementation marked the real beginning of the computer era. UNIVAC could

compute at a speed of 120–3600 µs.

 Magnetic tapes were used as input and output media at a speed of around

13,000 characters/s. The machine was 25 by 50 ft in length, contained 5600

tubes, 18,000 crystal diodes and 300 relays. UNIVAC was used for general-

purpose computing with large amounts of input and output.

11(b) Basic organization of a computer

 The basic computer organization explains the way in which different units of computer

are interconnected with each other and controlled. Some of the basic units of computer

organization are:

 • Input unit

 • Memory unit

 • CPU

 • Output unit

Computer ProgrammingMQP.10

 Input unit:

 The most commonly used input devices are:

 Keyboard

 Mouse

 Scanner

 Elaborate on each input device.

 Memory unit:

 The memory units of a computer are classifi ed as “primary memory” and “secondary

memory”.

 Primary memory: Commonly used primary memories are:

 ROM

 RAM

 Cache memory

 Secondary memory: Commonly used secondary storage devices are:

 Magnetic storage disk

 Optical storage disk

 Magneto-optical storage disk

 Universal Serial Bus(USB) drive

 CPU:

 Main operations of CPU include four phases:

 1. Fetching instructions from the memory

 2. Decoding the instructions to decide what operations to be performed

 3. Executing the instructions

 4. Storing the results back in the memory

 The three main components of CPU are:

 Arithmetic and Logic unit(ALU)

 Control Unit(CU)

 Registers

 Elaborate on each component.

 Output Unit:

 The most commonly used output devices are:

 Monitor

 Printer

 Scanner

 Elaborate on each output device.

Model Question Paper MQP.11

12(a) Steps of Software Developments:

Analysis

Design

Testing

Coding

Maintenance

 Systems Analysis, Requirements Defi nition: Defi nes project goals into defi ned

functions and operation of the intended application. Analyzes end-user information

needs.

 Systems design: Describes desired features and operations in detail, including screen

layouts, business rules, process diagrams, pseudocode and other documentation.

 Development: The real code is written here.

 Integration and testing: Brings all the pieces together into a special testing

environment, then checks for errors, bugs and interoperability.

 Acceptance, installation, deployment: The fi nal stage of initial development,

where the software is put into production and runs actual business.

 Maintenance: What happens during the rest of the software’s life: changes, correction,

additions, moves to a different computing platform and more. This is often the longest

of the stages.

(b)(i) (1) Bandwidth:
 • In computer networks, bandwidth is often used as a synonym for data transfer

rate—the amount of data that can be carried from one point to another in a given

time period (usually a second).

 • This kind of bandwidth is usually expressed in bits (of data) per second (bps).

Occasionally, it’s expressed as bytes per second (Bps).

 • In general, a link with a high bandwidth is one that may be able to carry enough

information to sustain the succession of images in a video presentation.

 • In electronic communication, bandwidth is the width of the range (or band) of

frequencies that an electronic signal uses on a given transmission medium. In

this usage, bandwidth is expressed in terms of the difference between the highest-

frequency signal component and the lowest-frequency signal component.

 • A typical voice signal has a bandwidth of approximately three kilohertz (3 kHz); an

analog television (TV) broadcast video signal has a bandwidth of six megahertz (6

MHz)—some 2,000 times as wide as the voice signal.

Computer ProgrammingMQP.12

 (2) IP Address:
 • An IP address is an identifi er for a computer or device on a TCP/IP network.

Networks using the TCP/IP protocol route messages based on the IP address of the

destination.

 • The format of an IP address is a 32-bit numeric address written as four numbers

separated by periods. Each number can be zero to 255. For example, 1.160.10.240

could be an IP address.

 • Within an isolated network, you can assign IP addresses at random as long as each

one is unique. However, connecting a private network to the Internet requires using

registered IP addresses (called Internet addresses) to avoid duplicates.

 • An IP address can be static or dynamic. A static IP address will never change and it

is a permanent Internet address. A dynamic IP address is a temporary address that

is assigned each time a computer or device accesses the Internet.

 (3) FTP:
 • FTP allows you to transfer fi les between two computers on the Internet. FTP is

a simple network protocol based on Internet Protocol and also a term used when

referring to the process of copying fi les when using FTP technology.

 • To transfer fi les with FTP, you use a program often called the client.

 • An FTP client program initiates a connection to a remote computer running FTP

server software.

 • After the connection is established, the client can choose to send and/or receive

copies of fi les, singly or in groups.

 • To connect to an FTP server, a client requires a username and password as set by

the administrator of the server.

 (4) Modem:
 • Traditional modems used on dialup networks convert data between the analog form

used on telephone lines and the digital form used on computers.

 • Standard dial-up network modems transmit data at a maximum rate of 56,000

bits per second (56 Kbps). However, inherent limitations of the public telephone

network limit modem data rates to 33.6 Kbps or lower in practice.

 • Broadband modems that are part of high-speed Internet services use more advanced

signaling techniques to achieve dramatically higher network speeds than traditional

modems.

 • Broadband modems are sometimes called “digital modems” and those used for

traditional dial-up networking, “analog modems.”

 • Cellular modems are a type of digital modem that establishes Internet connectivity

between a mobile device and a cell phone network.

 (ii) Applications of Internet:
 Internet is used in almost all fi elds. It’s majorly used in the following fi elds:

 • The internet in Business:

 Business to business

 Business to consumer

 Consumer to consumer

 Consumer to business

Model Question Paper MQP.13

 • The internet in Education

 • The internet in Communication

 • The internet in Entertainment

 • The internet in Governance

 Elaborate about each fi eld.

13(a)(i) Flowchart for Quadratic Equation:

 (ii) Algorithm to fi nd largest of three numbers
 Step 1: fl oat a,b,c;

 Step 2: print ‘Enter any three numbers:’;

 Step 3: read a,b,c;

 Step 4: if((a>b)&&(a>c))

 Step 5: print ‘Largest of three numbers:’, a;

 Step 6: else

 Step 7: if((b>a)&&(b>c))

 Step 8: print ‘Largest of three numbers:’, b;

 Step 9: else

 Step 10: print ‘Largest of three numbers:’, c;

3.(b) Features of Offi ce Packages:
 The main features of offi ce package are word, excel, PowerPoint etc.

 Microsoft Word:
 • It’s a word processor and was previously considered the main program in Offi ce.

Computer ProgrammingMQP.14

 • Its proprietary DOC format is considered a de facto standard, although Word 2007

can also use a new XML-based, Microsoft Offi ce-optimized format called .DOCX,

which has been standardized by Ecma International as Offi ce Open XML and its

SP2 update supports PDF and a limited ODF.

 • Word is also available in some editions of Microsoft Works.

 Microsoft Excel
 • Microsoft Excel is a spreadsheet program that originally competed with the

dominant Lotus 1-2-3, but eventually outsold it.

 • It is available for the Windows and OS X platforms. Microsoft released the fi rst

version of Excel for the Mac OS in 1985, and the fi rst Windows version (numbered

2.05 to line up with the Mac and bundled with a standalone Windows run-time

environment) in November 1987.

 Outlook:
 • Microsoft Outlook is a personal information manager and e-mail communication

software.

 • The replacement for Windows Messaging, Microsoft Mail, and Schedule+ starting

in Offi ce 97, it includes an e-mail client, calendar, task manager and address book.

 • On the Mac OS, Microsoft offered several versions of Outlook in the late 1990s, but

only for use with Microsoft Exchange Server.

 • In Offi ce 2001, it introduced an alternative application with a slightly different

feature set called Microsoft Entourage. It reintroduced Outlook in Offi ce 2011,

replacing Entourage.

 OneNote:
 • Microsoft OneNote is a note-taking and free-form information gathering program,

used with both tablet and conventional PCs.

 • It gathers users’ notes (handwritten or typed), drawings, screen clippings and audio

commentaries. Notes can be shared with other OneNote users over the Internet or

a network.

 Microsoft PowerPoint:
 • Microsoft PowerPoint is a presentation program for Windows and OS X. It is used

to create slideshows, composed of text, graphics, and other objects, which can be

displayed on-screen and shown by the presenter or printed out on transparencies

or slides.

4(a) (i) Data Types in C:
 Storage representations and machine instructions to handle constants differ from

machine to machine. The variety of data types available allows the programmer to

select the type appropriate to the needs of the application as well as the machine.

 Three types of data types supported:

 Primary data types

 Derived data types

 User defi ned data types

Model Question Paper MQP.15

 (ii) Bitwise and Logical Operators:
 Bitwise operators:
 A bitwise operator works on each bit of data. Bitwise operators are used in bit level

programming.

Operators Meaning of Operators

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

~ Bitwise complement

<< Shift left

>> Shift right

 Logical Operators:
 Logical operators are used to combine expressions containing relation operators. In C,

there are 3 logical operators:

Operator Meaning of Operator

&& Logial AND

|| Logical OR

! Logical NOT

Computer ProgrammingMQP.16

14(b)(i) Four Format Strings in C
 %d - for getting the input and displaying the output of integers.

 %f - for getting the input and displaying the output of fl oat values.

 %s - for getting the input and displaying the output of string.

 %c - for getting the input and displaying the output of character.

(ii) For construct in C
 The “for loop” loops from one number to another number and increases by a specifi ed

value each time. For loop is an entry controlled loop.

 Syntax:

 for (initialization; test condition; increment)
 {
 Body of the loop
 }

 Example:

 #include<stdio.h>
 int main()
 {
 int i;
 for (i = 0; i < 10; i++)
 {
 printf (“Hello\n”);
 printf (“World\n”);
 }
 return 0;
 }

NOTE: A single instruction can be placed behind the “for loop” without the curly brackets

 Let’s look at the “for loop” from the example: We fi rst start by setting the variable i

to 0. This is where we start to count. Then we say that the for loop must run if the

counter i is smaller than ten. Last we say that every cycle i must be increased by one

(i++).

 (iii) Program to Count the Letters in a Sequence of Characters

 #include<stdio.h>
 #include<conio.h>
 #include<string.h>
 void main()
 {
 char ch;
 do{
 char a[20],f=0;

Model Question Paper MQP.17

 int i,n,ascii;
 clrscr();
 printf(“enter a string:”);
 gets(a);
 strlwr(a); // Sting convert in small letter
 for(ascii=97;ascii<=122;ascii++)// a=97 and z=122 ascii value for looping
 {
 n=0;
 f=0;
 for(i=0;a[i]!=NULL;i++)
 {
 if(ascii==a[i])// Ascii value for checking
 {
 n++; // If Checking sucessfull ..increment +1
 f=1;
 }
 }
 if(f==1) // Checking f value is similar or not
 printf(“\t\t%c value found %d times “,ascii,n);
 }
 printf(“\n\t continue (y/n):”);
 ch=getch();
 }while(ch==’y’||ch==’Y’);
 }

 Output:

 enter a string: Hello World
 d value found 1 times
 e value found 1 times
 h value found 1 times
 l value found 3 times
 o value found 2 times
 r value found 1 times
 w value found 1 times
 continue(y/n):

15.(a)(i) Program to sort the given set of numbers in ascending order

 #include <stdio.h>
 #include <conio.h>
 int main()
 {
 int a[10],i,j,temp=0;
 printf(“Enter all the 10 numbers”);
 for(i=0;i<10;i++)

Computer ProgrammingMQP.18

 scanf(“%d”,&a[i]);
 for(i=0;i<10;i++) //This loop is for total array elements (n)
 {
 for(j=0;j<9;j++) //this loop is for total combinations (n-1)
 {
 if(a[j]>a[j+1]) //if the fi rst number is bigger then swap the two numbers
 {
 temp=a[j];
 a[j]=a[j+1];
 a[j+1]=temp;
 }
 }
 }
 printf(“The ordered array is”);
 for(j=0;j<10;j++) //Finally print the ordered array
 printf(“%d \t”,a[j]);
 getch();
 return 0;
 }

 (ii) Eight built-in functions in C
 C has many built-in functions that you can use in your programs. So far we have

learned 15 built-in functions:

 main() printf() scanf()

 gets() uts() strcpy()

 strlen() strcmp() stricmp()

 strcat() strstr() isalpha()

 Explain about any of those functions.

15(b)(i) Structure:
 A structure is a collection of variables under a single name. These variables can be

of different types, and each has a name which is used to select it from the structure.

A structure is a convenient way of grouping several pieces of related information

together.

 Syntax:

 struct tag_name
 {
 Data_type member1;
 Data_type member2;
 …….
 };

 Example:

 This program is used to store and access “id, name and percentage” of one student. We

can also store and access these data for many students.

Model Question Paper MQP.19

 #include <stdio.h>
 #include <string.h>
 struct student
 {
 int id;
 char name[20];
 fl oat percentage;
 };
 int main()
 {
 struct student record;
 record.id=1;
 strcpy(record.name, “shyam”);
 record.percentage = 96.5;
 printf(“ Id is: %d \n”, record.id);
 printf(“ Name is: %s \n”, record.name);
 printf(“ Percentage is: %f \n”, record.percentage);
 return 0;
 }

 Output:

 Id is: 1
 Name is: Shyam
 Percentage is: 96.500000

(ii) Difference between Structure and Union:

 Structure:
 Every member has its own memory space.

 Keyword struct is used.

 Any member can be accessed any time without the loss of data

 Different interpretations for the same memory location is not possible

 It may be initialized with all its members.

 Union:
 All the members use the same memory space to store the values.

 Keyword union is used.

 It can handle only one member at time, even though all the members use the same

space.

 Different interpretations for the same memory location are possible.

 Only its fi rst members may be initialized.

Computer ProgrammingMQP.20

(iii) A Program to Add Two Matrices:

 #include <stdio.h>
 int main()
 {
 int m, n, c, d, fi rst[10][10], second[10][10], sum[10][10];

 printf(“Enter the number of rows and columns of matrix\n”);
 scanf(“%d%d”, &m, &n);
 printf(“Enter the elements of fi rst matrix\n”);
 for (c = 0 ; c < m ; c++)
 for (d = 0 ; d < n ; d++)
 scanf(“%d”, &fi rst[c][d]);
 printf(“Enter the elements of second matrix\n”);
 for (c = 0 ; c < m ; c++)
 for (d = 0 ; d < n ; d++)
 scanf(“%d”, &second[c][d]);
 for (c = 0 ; c < m ; c++)
 for (d = 0 ; d < n ; d++)
 sum[c][d] = fi rst[c][d] + second[c][d];
 printf(“Sum of entered matrices:-\n”);
 for (c = 0 ; c < m ; c++)
 {
 for (d = 0 ; d < n ; d++)
 printf(“%d\t”, sum[c][d]);
 printf(“\n”);
 }
 return 0;
 }

SOLVED QUESTION PAPERS

Solved Question
Paper

Part A
 1. Find out the decimal equivalent for the following binary numbers:

 (i) 0011(2) (ii) 100111(2)

 2. What are the major applications of computer?

 3. Why do we use #include directive when we write a C program?

 4. What is switch statement? Give its syntax.

 5. What will happen when you access the array more than its dimension?

 6. What is the use of these functions?

 (i) strrev() (ii) strupr()

 7. What’s the difference between user-defi ned functions and library function?

 8. What are the uses of pointer?

 9. What do you mean by self-referential structure?

 10. Difference between structure and union?

Part B
1. (a) Explain in detail about Computer Generations. (16)

Or

(b) (i) Write the algorithm, pseudo code and fl ow chart to fi nd whether a number is prime or

not. (12)

 (ii) Convert decimal number 39.77(10) to binary number. (4)

2. (a) (i) Write the basic structure of C program. (6)

 (ii) Explain about variables, constants and data types in C. (10)

Or

(b) (i) Write in detail about various conditional (Decision making) statements provided by C.

 (10)

 (ii) Write a program to fi nd the largest of three numbers. (6)

3. (a) (i) Explain about the following:

 ∑ One dimensional array (4)

 ∑ Two dimensional array (4)

 (ii) Write a program to fi nd whether a given string is a palindrome or not. (8)

1

Computer ProgrammingSQP.4

Or

(b) (i) What are Character String as Arrays? (4)

 (ii) Write a program to multiply two matrices. (12)

4. (a) What is a function? Elaborate about defi nition of function with an example. (16)

Or

 (b) Explain the following:

 ∑ Pointer Initialization (4)

 ∑ Accessing a variable through a pointer (4)

 ∑ Pointer Expression (4)

 ∑ Pointer and Arrays (4)

5. (a) (i) Explain about structure within a structure. (6)

 (ii) What is union? Give its syntax and explain with suitable example. (10)

Or

(b) (i) Write on Pre-Processor directives. (6)

 (ii) Write a program to print student details (student name, register number and marks

obtained in 5 subjects) using structure. (10)

SOLUTIONS

1. (i) 0011(2) = 3(10)

 (ii) 100111(2) = 39(10)

2. Major applications of computer:

 • Business applications like Banking, Offi ce automation

 • Industrial applications

 • Scientifi c research

 • In communication, especially in air travel

3. #include directive usage:
 Some functions are written by users, like us, while many are predefi ned and stored in C

library. These library functions are grouped category- wise and stored in different fi les

known as header fi les. If we want to access the functions stored in the library, it is necessary

to tell the compiler about the fi les to be accessed. This is achieved by preprocessor directive

#include.

 Syntax to be followed: #include <fi lename>

4. Switch statement:
 A switch statement allows a variable to be tested for equality against a list of values. Each

value is called a case, and the variable being switched on is checked for each switch case.

 Syntax:

 switch (test) {
 case 1 :
 // Process for test = 1
 ...
 break;

Solved Question Paper 1 SQP.5

 case 2 :
 // Process for test = 5
 ...
 break;

 default :
 // Process for all other cases.
 ...

 }

5. When we access the array more than its dimension, garbage value will be fetched.

6. (i) strrev()- strrev reverses the order of the characters in the given string.

 (ii) strupr()- Converts a string to upper case.

7. Difference between user-defi ned and library functions:
 ∑ User defi ned functions are written by users like us according to our needs.

 ∑ Library functions are predefi ned functions present in the C Library. If a user wants to

use those functions, it has to be included using #include preprocessor in the program.

8. Uses of pointer:
 A pointer is a variable whose value is the address of another variable ie. direct address of

the memory location. Like any variable or constant, you must declare a pointer before you

can use it to store any variable address.

 ∑ It’s used to access memory directly

 ∑ It’s used to pass information between function and its reference point.

 ∑ An alternate way to access an array element.

9. Self-referential structure:
 A self referential structure is used to create data structures like linked lists, stacks, etc.

Following is an example of this kind of structure:

 struct struct_name
 {
 datatype datatypename;
 struct_name * pointer_name;
 };

10. Difference between union and structure:
 ∑ union allocates the memory equal to the maximum memory required by the member

of the union but structure allocates the memory equal to the total memory required by

the members.

 ∑ In union one block is used by all the member of the union but in case of structure each

member have their own memory space

Computer ProgrammingSQP.6

Part B

1.(a) Computer Generations:
 The history of computer development is often referred to in reference to the different

generations of computing devices. Each of the fi ve generations of computers is

characterized by a major technological development that fundamentally changed the

way computers operate, resulting in increasingly smaller, cheaper, more powerful and

more effi cient and reliable computing devices.

 The fi ve generations are:

Generations Components used Memory Operating speed

First Generation Vaccum tubes 10,000- 20,000 characters Milli Seconds

Second Generation Transistors Upto 64,000 characters Micro Seconds

Third Generation Integrated circuits Upto 4 million characters Nano Seconds

Fourth Generation Micro processesors Semi conductor memory 1 to 10 Nano seconds

Fifth Generation Artifi cial Intelligence CMOS 1 to 100 Nano seconds

 Elaborate on each generations by giving their advantages and disadvantages.

 OR

(b) (i) Algorithm, pseudo code and fl ow chart to fi nd whether the number is prime or not.

 Algorithm
 Step 1: Start

 Step 2: Assign i 2

 Step 3: READ n

 Step 4: REPEAT Steps 4.1, 4.2

 UNTIL i < = n-1

 Step 4.1: IF (n mod i = 0) THEN

 Step 4.1.1: Print Not Prime

 Step 4.1.2: Exit

 Step 4.2: i i + 1

 Step 5: IF(i = n) Then

 Step 6: Print Prime

 Step 7: Stop

 Pseudocode
 Set initial 2 to i.

 READ n

 IF (i = n-1)

 IF (n mod i = 0)

 WRITE “Not Prime”

 EXIT

 ENDIF

 i = i + 1

Solved Question Paper 1 SQP.7

 IF (n=1)

 WRITE “Prime”

 ENDIF

ENDIF

 Stop

(ii) Converting decimal number to binary

 39.77(10) = 100111.1100(2)

2. (a) (i) Basic structure of C program:

 Elaborate on the basic structure.

(ii) Variables, constants, and data types in C:
 Variables: A data name that may be used to store a data value. Rules for constructing

variable names

 1. A Variable name consists of any combination of alphabets, digits and underscores.

Some compiler allows variable names whole length could be up to 247 characters.

Still it would be safer to stick to the rule of 31 characters. Please avoid creating long

variable name as it adds to your typing effort.

 2. The fi rst character of the variable name must either be alphabet or underscore. It

should not start with the digit.

 3. No commas and blanks are allowed in the variable name.

 4. No special symbols other than underscore are allowed in the variable name.

 Data types: Storage representations and machine instructions to handle constants differ

from machine to machine. The variety of data types available allows the programmer to

select the type appropriate to the needs of the application as well as the machine.

 Three types of data types supported:

 ∑ Primary data types

 ∑ Derived data types

 ∑ User defi ned data types

Computer ProgrammingSQP.8

 Constants: Constants in C refer to fi xed values that do not change during the execution of

a program. C supports several types of constants.

∑ Integer constants

∑ Real constants

∑ Single character constants

∑ String constants

 Elaborate further on these side headings.

OR

(b) (i) Various conditional statements in C
 We have a number of situations where we may have to change the order of execution of

statements based on certain conditions, or repeat a group of statements until certain

specifi ed conditions are met. This involves a kind of decision making where we can see

whether a particular condition has occurred or not and then direct the computer to

execute certain statements accordingly.

 C language possesses such decision making capabilities by supporting the following

statements:

 ∑ If statement

 ∑ Switch statement

 ∑ Conditional operator statement

 ∑ Goto statement

 Elaborate on these.

 (ii) Program to fi nd largest of three numbers:

 #include <stdio.h>
 int main()
 {
 fl oat a, b, c;
 printf(“Enter three numbers: “);
 scanf(“%f %f %f”, &a, &b, &c);
 if(a>=b && a>=c)
 printf(“Largest number = %.2f”, a);
 if(b>=a && b>=c)
 printf(“Largest number = %.2f”, b);
 if(c>=a && c>=b)
 printf(“Largest number = %.2f”, c);
 return 0;
 }

3.(a)(i) One dimensional array : A list of items can be given one variable name using only one

subscript and such a variable is called one dimensional array. The elements in this

type of array can be expressed as:

X [0], X [1], X [2], X [3] … X [N]

Solved Question Paper 1 SQP.9

 Elaborate further.

 Two dimensional arrays: It is similar to a one dimensional array. A two-dimensional

array is, in essence, a list of one-dimensional arrays. To declare a two-dimensional

integer array of size x,y you would write something as follows:

type arrayName [x][y];

 Where type can be any valid C data type and arrayName will be a valid C identifi er. A

two dimensional array can be think as a table which will have x number of rows and y

number of columns.

 Elaborate further.

(ii) A program to fi nd whether a given string is palindrome or not

 #include<stdio.h>
 #include<conio.h>
 #include<string.h>
 # defi ne SIZE 26
 void main()
 {
 char s[SIZE];
 int fl ag=0,i,j,l;
 clrscr();
 printf(“\n enter the string\n\t”);
 gets(s);
 l=strlen(s);
 for
 (i=0,j=l-1;s[i]!=’\0’;i++,j—)
 {
 if(s[i]!=s[j])
 {
 fl ag=1;
 break;
 }
 }
 if(fl ag==0)
 printf(“\n given string is palindrom”);
 else
 printf(“\n given string is not palindrom”);
 getch();
 }

OR

(b)(i) Character Strings as Arrays:
 Our task is to store and print non-numeric text data, i.e. a sequence of characters

which are called strings. A string is an list (or string) of characters stored contiguously

Computer ProgrammingSQP.10

with a marker to indicate the end of the string. Let us consider the task:STRING0:

Read and store a string of characters and print it out.

 Since the characters of a string are stored contiguously, we can easily implement a

string by using an array of characters if we keep track of the number of elements

stored in the array. However, common operations on strings include breaking them up

into parts (called substrings), joining them together to create new strings, replacing

parts of them with other strings, etc. There must be some way of detecting the size of

a current valid string stored in an array of characters.

 In C, a string of characters is stored in successive elements of a character array and

terminated by the NULL character. For example, the string “Hello” is stored in a

character array, msg[], as follows:

 char msg[SIZE];

 msg[0] = ‘H’;
 msg[1] = ‘e’;
 msg[2] = ‘l’;
 msg[3] = ‘l’;
 msg[4] = ‘o’;
 msg[5] = ‘\0’;

 The NULL character is written using the escape sequence ‘\0’. The ASCII value of

NULL is 0, and NULL is defi ned as a macro to be 0 in stdio.h; so programs can use the

symbol, NULL, in expressions if the header fi le is included. The remaining elements in

the array after the NULL may have any garbage values. When the string is retrieved,

it will be retrieved starting at index 0 and succeeding characters are obtained by

incrementing the index until the fi rst NULL character is reached signaling the end of

the string.

 (ii) A program to multiply two matrices

 #include<stdio.h>
 int main(){
 int a[5][5],b[5][5],c[5][5];
 int i,j,k,sum=0,m,n,o,p;
 printf(“\nEnter the row and column of fi rst matrix”);
 scanf(“%d %d”,&m,&n);
 printf(“\nEnter the row and column of second matrix”);
 scanf(“%d %d”,&o,&p);
 if(n!=o){
 printf(“Matrix mutiplication is not possible”);
 printf(“\nColumn of fi rst matrix must be same as row of second matrix”);}
 else{
 printf(“\nEnter the First matrix->”);
 for(i=0;i<m;i++)
 for(j=0;j<n;j++)
 scanf(“%d”,&a[i][j]);
 printf(“\nEnter the Second matrix->”);

Solved Question Paper 1 SQP.11

 for(i=0;i<o;i++)
 for(j=0;j<p;j++)
 scanf(“%d”,&b[i][j]);
 printf(“\nThe First matrix is\n”);
 for(i=0;i<m;i++){
 printf(“\n”);
 for(j=0;j<n;j++){
 printf(“%d\t”,a[i][j]);
 }
 }
 printf(“\nThe Second matrix is\n”);
 for(i=0;i<o;i++){
 printf(“\n”);
 for(j=0;j<p;j++){
 printf(“%d\t”,b[i][j]);
 }
 for(i=0;i<m;i++)
 for(j=0;j<p;j++)
 c[i][j]=0;
 for(i=0;i<m;i++){//row of fi rst matrix
 for(j=0;j<p;j++){//column of second matrix
 sum=0;
 for(k=0;k<n;k++)
 sum=sum+a[i][k]*b[k][j];
 c[i][j]=sum;
 }
 }
 }
 printf(“\nThe multiplication of two matrix is\n”);
 for(i=0;i<m;i++){
 printf(“\n”);
 for(j=0;j<p;j++){
 printf(“%d\t”,c[i][j]);
 }
 }
 return 0;
 }

4.(a) Function:
 A function is a block of code that has a name and it has a property that it is reusable

i.e. it can be executed from as many different points in a C Program as required.

 Function groups a number of program statements into a unit and gives it a name.

This unit can be invoked from other parts of a program. A computer program cannot

handle all the tasks by itself. Instead its requests other program like entities – called

functions in C – to get its tasks done.

Computer ProgrammingSQP.12

 Defi nition of functions:

 ∑ Function header:

 � Function name

 � Function type

 � List of parameters

 ∑ Function body:

 � Local variable declarations

 � Function statements

 � A return statement

 Elaborate each of the bulletins with examples.

 General format of a function:

 Function_type function_name(parameter list)
 {
 local variable declaration;
 executable statements1;
 executable statements2;
 …….
 …….
 return statement;
 }

OR
 (b) Pointer Initialization
 The process of assigning the address of a variable to a pointer is known as initialization

after it is declared. If it’s not initialized, then, they will have some unknown values

that will be interpreted as memory addresses. They may not be valid addresses or they

may point to some values that are wrong. Since the compilers don’t detect these errors,

the programs with uninitialized pointers will produce erroneous results. Its therefore

very important to initialize the pointers.

 int quantity;
 int *p; /*declaration*/
 p= &quantity; /*initialization*/

 We can also combine the initialization with the declaration. That is,

 Int *p = &quantity;

 Only thing here is that, quantity must be declared before initialization takes place.

 Accessing a variable through its pointer:

 Once a pointer has been assigned the address of a variable, the question arises as how

to access the value of the variable using the pointer. This is done by using another

unary operator *. This is called indirection operator.

 Consider this:

 int quantity, *p, n; /*declares quantity, n as interger variables and p as
pointer variable */

Solved Question Paper 1 SQP.13

 quantity = 179; /* 179 is assigned to quantity */
 p = &quantity; /* address of quantity to pointer variable */
 n = *p; /* indirection operator used. *p returns the value of the

variable quantity, because p is the value of the variable
quantity. */

 Pointer Expressions:
 Pointer expression is a linear combination of pointer variables, variables and operators

(+, -, ++, __).

 The pointer expression gives either numerical output or address output.

 The general form of pointer assignment is

 variable = pointer expression

 Example:

 int x=5,y;
 int *p, *q;
 p = &x;
 q = &y;
 *q = *p +10 => pointer assignment.

 Example:

 y = *p1 * *p2;
 sum = sum + *p1;
 z = 5* - *p2/p1;
 *p2 = *p2 + 10;

 C language allows us to add integers to, subtract integers from pointers as well as

to subtract one pointer from the other. We can also use short hand operators with

the pointers p1+=; sum+=*p2; etc., we can also compare pointers by using relational

operators the expressions such as p1 > p2 , p1==p2 and p1!=p2 are allowed.

 Pointer and arrays:
 When an array is declared, the compiler allocates a base address and suffi cient amount

of storage to contain all the elements of the array in contiguous memory locations. The

base address is the location of the fi rst element (index 0) of the array. The compiler

also defi nes the array name as a constant pointer to the fi rst element.

 Suppose we declare array x as follows:

Int x[5] = {1, 2, 3, 4, 5};

 Suppose the base address of x is 1000 and assuming that each integer requires two

bytes, the fi ve elements will be stored as follows:

 x[0] with value 1 in address 1000
 x[1] with value 2 in address 1002
 x[2] with value 3 in address 1004
 x[3] with value 4 in address 1006
 x[4] with value 5 in address 1008

Computer ProgrammingSQP.14

 the name x is defi ned as a constant pointer pointing to the fi rst element, x[0] and

therefore the value of x is 1000, the location where x[0] is stored. That is,

 x = & x[0] = 1000
 if we declare p as an integer pointer, then we can make the pointer p to point to the

array x by the following assignment: p = x;

 this is equivalent to: p = &x[0];

 now, we can access every value of x using p++ to move from one element to another.

The relationship between p and x is shown as:

 p = &x[0] (=1000)
 p +1 = &x[1] (=1002)
 p+2 = &x[2] (=1004)
 p+3 = &x[3] (=1006)
 p+4 = &x[4] (=1008)

5.(a)(i) Structure within a structure:
 When a structure is declared as the member of another structure, it is called structure

within a structure. It is also known as nested structure.

 Consider an example:

 struct date_of_joining{
 // members of structure
 int day;
 int month;
 int year;
 };
 struct companyX{
 char name[20];
 int employee_id;
 char gender[5];
 int age;
 struct date_of_joining dob; /*structure within structure*/
 };

 (ii) About Union:
 A union is a special data type available in C that enables you to store different data

types in the same memory location. You can defi ne a union with many members, but

only one member can contain a value at any given time. Unions provide an effi cient

way of using the same memory location for multi-purpose.

 To defi ne a union, you must use the union statement in very similar was as you did

while defi ning structure. The union statement defi nes a new data type, with more than

one member for your program. The format of the union statement is as follows:

 union [union tag]
 {
 member defi nition;
 member defi nition;

Solved Question Paper 1 SQP.15

 ...
 member defi nition;
 } [one or more union variables];

 The union tag is optional and each member defi nition is a normal variable defi nition,

such as int i; or fl oat f; or any other valid variable defi nition. At the end of the union’s

defi nition, before the fi nal semicolon, you can specify one or more union variables but

it is optional.

 Give an example and elaborate it further.

OR

(b)(i) Pre-Processor Directives:
 Preprocessor directives are nothing but lines that are included in the code of our

programs that are not program statements but directives for the preprocessor. These

lines are always preceded by a hash sign (#). The preprocessor is executed before the

actual compilation of code begins, therefore the preprocessor digests all these directives

before any code is generated by the statements.

 To defi ne preprocessor macros we can use #defi ne. Its format is:

#defi ne identifi er replacement

 When the preprocessor encounters this directive, it replaces any occurrence of identifi er

in the rest of the code by replacement. This replacement can be an expression, a

statement, a block or simply anything.

 #defi ne BOOK_PAGES 100
 int book1[BOOK_PAGES];
 int book2[BOOK_PAGES];

 After the preprocessor has replaced BOOK_PAGES, the code becomes equivalent to:

 int book1[100];
 int book2[100];

(ii) A program to print student details using structure

 #include<stdio.h>
 struct student
 {
 char name[50]; int roll;
 fl oat m1,m2,m3,m4,m5,avg;
 };
 int main()
 {
 struct student s[5];
 int i;
 printf(“Enter information of 5 students:\n”);
 for(i=0;i<5;++i)
 {

Computer ProgrammingSQP.16

 s[i].roll=i+1;
 printf(“\nFor roll number %d\n”,s[i].roll);
 printf(“Enter name: “);
 scanf(“%s”,s[i].name);
 printf(“Enter marks of all the fi ve subjects: “);
 scanf(“%f, %f , %f , %f , %f “,&s[i].m1, &s[i].m2, &s[i].m3, &s[i].m4,

&s[i].m5);
 printf(“\n”);
 }
 printf(“Displaying information of students:\n\n”);
 for(i=0;i<5;++i)
 {
 printf(“\nInformation for roll number %d:\n”,i+1);
 printf(“Name: “); puts(s[i].name);
 printf(“Marks of all the fi ve subjects: %.1f, %.1f, %.1f, %.1f, %.1f”,s[i].

m1,s[i].m2,s[i].m3,s[i].m4,s[i].m5);
 }
 return 0;
 }

Solved Question
Paper

Part A
 1. What are the types of number system?

 2. Defi ne: Data and information.

 3. What are the characteristics of C?

 4. What are the steps involved in executing a C program?

 5. What would be the output of the following?

 main()
 {
 printf(5 + “Fascimile”);
 }

 6. What is the output?

 main()
 {
 printf(“%c”, “abcdef”[4]);
 }

 7. What is the need for user defi ned functions?

 8. What do you mean by nesting of functions?

 9. What are the three ways available to access the structure members?

 10. List any 2 differences between structure and array?

Part B
1. (a) Explain about the following:

 Classifi cation of computers (8)

 Basic Organization of a computer (8)

Or

 (b) (i) Convert the binary number 100111(2) to decimal number (4)

 (ii) Convert the decimal number 3977(10) to octal number (4)

 (iii) Convert the hexadecimal number CBAED(16) to octal number (4)

 (iv) Convert the decimal number 50(10) to binary (4)

2. (a) Write notes on various operators available in C with example. (16)

Or

2

Computer ProgrammingSQP.18

 (b) Explain about the following loops with an example for each: (16)

 ∑ The for loop

 ∑ The while loop

 ∑ The do-while loop

3. (a) What are the different string handling functions? Explain them with example. (16)

Or

 (b) (i) Write a program which will read a string and re-write in alphabetical order. For

example, the word “LIFE” should be written as “EFIL”. (8)

 (ii) Explain about arrays with an example. (8)

4. (a) Explain the following with an example:

 ∑ Pass by value (8)

 ∑ Pass by reference (8)

Or

 (b) (i) What is a recursive function? Give an example. (8)

 (ii) Write a program to access the elements in an array (1D) using pointers. (8)

5. (a) (i) What is a structure? Give its syntax and explain it with an example. (10)

 (ii) Arrays of structures with an example. (6)

Or

 (b) (i) Defi ne a structure called cricket that will describe the following information.

 ∑ Player name

 ∑ Team name

 ∑ Batting average

 Using cricket, declare an array player with 50 elements and write a program to read the

Information about all the 50 players and print a team-wise list containing names of players

their batting average. (10)

 (ii) Write short note on Storage Class. (6)

SOLUTIONS

1. Two types of number system:

 • Positional number system

 • Non positional number system

2. Data: Collection of facts or raw data

 Information: processed data is referred to as information.

3. Characteristics of C:

 • Highly structured language

 • Can handle bit level operations

 • Machine independent language, hence highly portable

 • Supports variety of data types

 • Supports dynamic memory management

 • Supports a powerful set of operators.

Solved Question Paper 2 SQP.19

4. Steps involved in executing a C program:

 a. Creating the program

 b. Compiling the program

 c. Linking the program with functions that are needed from the C library

 d. Executing the program

5. Output: mile

6. Output: e

7. Need for user defi ned functions:

 Length of the source code can be reduced

 Same function can be used by many other programs

 It can be can be called and used whenever required. Thus, saves both time and space

8. Nesting of functions:
 C permits nesting of functions, main() function can call function1, which calls function2,

which calls function3 and so on. There is in principle no limit as to how deeply functions

can be nested.

 A nested function can access all identifi ers of the containing function that precede its

defi nition. A nested function must not be called after the containing function exits.

9. Three ways available to access the structure members are as follows:

 a. Using dot notation, ex: v.x

 b. Using indirection notation, ex: (*ptr).x

 c. Using selection notation, ex: ptr->x

 In the above mentioned example, x is the structure member and v is the structure variable.

The identifi er ptr is known as pointer that has been assigned the address of the structure

variable.

10.

Structure Array

Array is a collection of homogeneous data. Structure is a collection of heterogeneous data.

Array is a derived data type. Structure is user defi ned data type

Syntax:

<data_type> array_name[size];

Syntax:

struct struct_name

 {

 structure element 1;

 structure element 2;

—————

—————

structure element n;

}struct_var_nm;

Computer ProgrammingSQP.20

Example:

int rno[5];

Example:

struct item_mst

{

 int rno;

 char nm[50];

}item;

Part B

1.(a) Classifi cation of Computers:
 Computers are classifi ed according to the following three criteria:

 ∑ Based on Operating principles

 ∑ Based on applications

 ∑ Based on size and capability

 Based on operating principles:

 On the basis of operations performed and methods used to store and process data and

information, computers can be classifi ed into the following categories:

 Analog computers

 Digital computers

 Hybrid Computers

 Elaborate on each category.

 Based on Applications:

 On the basis of different applications or, computers can be classifi ed into the following

categories:

 General-purpose computers

 Special-purpose computers

 Elaborate on each category.

 Based on size and capability:

 On the basis of size and capability, computers can be classifi ed into the following

categories:

 Microcomputers

 Mini computers

 Mainframe computers

 Super computers

 Elaborate each category.

1.(a) Basic Organization of a Computer:
 The basic computer organization explains the way in which different units of computer

are interconnected with each other and controlled. Some of the basic units of computer

organization are:

 • Input unit

 • Memory unit

 • CPU

Solved Question Paper 2 SQP.21

 • Output unit

 Input unit:

 The most commonly used input devices are:

 Keyboard

 Mouse

 Scanner

 Elaborate on each input device.

 Memory unit:

 The memory units of a computer are classifi ed as “primary memory” and “secondary

memory”.

 Primary memory: Commonly used primary memories are:

 ROM

 RAM

 Cache memory

 Secondary memory: Commonly used secondary storage devices are:

 Magnetic storage disk

 Optical storage disk

 Magneto-optical storage disk

 Universal Serial Bus(USB) drive

 CPU:

 Main operations of CPU include four phases:

 1. Fetching instructions from the memory

 2. Decoding the instructions to decide what operations to be performed

 3. Executing the instructions

 4. Storing the results back in the memory

 The three main components of CPU are:

 Arithmetic and Logic unit(ALU)

 Control Unit(CU)

 Registers

 Elaborate on each component.

Computer ProgrammingSQP.22

 Output Unit:

 The most commonly used output devices are:

 Monitor

 Printer

 Scanner

1.(b) (i) 39(10)

 (ii) 7611(8)

 (iii) 3135355(8)

 (iv) 110010(2)

2.(a) Operators in C
 C operators can be classifi ed into a number of categories. They include,

 ∑ Arithmetic Operators

 ∑ Increment and Decrement Operators

 ∑ Assignment Operators

 ∑ Relational Operators

 ∑ Logical Operators

 ∑ Conditional Operators

 ∑ Bitwise Operators

 ∑ Special Operators

 Arithmetic Operators:

Operator Meaning

+

–

*

/

%

Addition or unary plus

Subtraction or unary minus

Multiplication

Division

Modulo division

 Increment and Decrement Operators:
 In C, ++ and — are called increment and decrement operators respectively. Both of

these operators are unary operators, i.e, used on single operand. ++ adds 1 to operand

and — subtracts 1 to operand respectively.

 For example:

 Let a=5 and b=10

 a++; //a becomes 6

 a- -; //a becomes 5

 ++a; //a becomes 6

 - - a; //a becomes 5

 Assignment Operator:
 The most common assignment operator is =. This operator assigns the value in right

side to the left side.

Solved Question Paper 2 SQP.23

 For example:

 var=5 //5 is assigned to var

 a=c; //value of c is assigned to a

 5=c; // Error! 5 is a constant

Operator Example Same as

=

+=

-=

*=

/=

%=

a=b

a+=b

a-+b

a*=b

a/=b

a%=b

a=b

a=a+b

a=a-b

a=a*b

a=a/b

a=a%b

 Relational Operator:
 Relational operators checks relationship between two operands. If the relation is true,

it returns value 1 and if the relation is false, it returns value 0.

Operator Meaning

== Equal to

> Greater than

< Lesser than

!= Not equal to

>= Greater than or equal to

<= Lesser than or equal to

 Logical Operators:
 Logical operators are used to combine expressions containing relation operators. In C,

there are 3 logical operators:

Operator Meaning of Operator

&& Logial AND

|| Logical OR

! Logical NOT

 Conditional Operator:
 Conditional operators are used in decision making in C programming, i.e., executes

different statements according to test condition whether it is either true or false.

Conditional operator takes three operands and consists of two symbols ? and : .

Conditional operators are used for decision making in C.

 Syntax of Conditional Operators:
 conditional_expression?expression1:expression2

 For example: c=(c>0)?10:-10;

 If c is greater than 0, value of c will be 10 but, if c is less than 0, value of c will be -10.

Computer ProgrammingSQP.24

 Bitwise Operators:
 A bitwise operator works on each bit of data. Bitwise operators are used in bit level

programming.

Operators Meaning of Operators

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

~ Bitwise complement

<< Shift left

>> Shift right

 Special Operators:
 There are two special operators, they are comma operator and sizeof operator.

 Comma operators are used to link related expressions together.

 For example: int a,c=5,d;

 The sizeof operator is a unary operator which is used in fi nding the size of data type,

constant, arrays, structure etc.

2.(b) Loops:
 The for loop: The “for loop” loops from one number to another number and increases

by a specifi ed value each time. For loop is an entry controlled loop.

 Syntax:

 for (initialization; test condition; increment)
 {
 Body of the loop
 }

 Example:

 #include<stdio.h>
 int main()
 {
 int i;
 for (i = 0; i < 10; i++)
 {
 printf (“Hello\n”);
 printf (“World\n”);
 }
 return 0;
 }

NOTE: A single instruction can be placed behind the “for loop” without the curly brackets

Solved Question Paper 2 SQP.25

 Let’s look at the “for loop” from the example: We fi rst start by setting the variable i to 0.

This is where we start to count. Then we say that the for loop must run if the counter

i is smaller than ten. Last we say that every cycle i must be increased by one (i++).

 In the example we used i++ which is the same as using i = i + 1. This is called

incrementing. The instruction i++ adds 1 to i. If you want to subtract 1 from i you

can use i—. It is also possible to use ++i or —i. The difference is that with ++i (prefi x

incrementing) the one is added before the “for loop” tests if i < 10. With i++ (postfi x

incrementing) the one is added after the test i < 10.

 The while loop: The while loop can be used if you don’t know how many times a loop

must run. While loop is also an entry controlled loop. Here is an example:

 Syntax:

 while(test condition)
 {
 Body of the loop
 }
 #include<stdio.h>
 int main()
 {
 int counter, howmuch;
 scanf(“%d”, &howmuch);
 counter = 0;
 while (counter < howmuch)
 {
 counter++;
 printf(“%d\n”, counter);
 }
 return 0;
 }

 Let’s take a look at the example: First you must always initialize the counter before the

while loop starts. Then the while loop will run if the variable counter is smaller than

the variable “howmuch”. If the input is ten, then 1 through 10 will be printed on the

screen. A last thing you have to remember is to increment the counter inside the loop

(counter++). If you forget this the loop becomes infi nite.

 It makes a difference if prefi x incrementing (++i) or postfi x incrementing (i++) is used

with while loop. Take a look at the following postfi x and prefi x increment while loop

example:

 #include<stdio.h>
 int main(void)
 {
 int i;
 i = 0;
 while(i++ < 5)

Computer ProgrammingSQP.26

 {
 printf(“%d\n”, i);
 }
 printf(“\n”);
 i = 0;
 while(++i < 5)
 {
 printf(“%d\n”, i);
 }
 return 0;
 }

 The output of the postfi x and prefi x increment example will look like this:

 1

 2

 3

 4

 5

 1

 2

 3

 4

 i++ will increment the value of i, but is using the pre-incremented value to test against

< 5. That’s why we get 5 numbers.

 ++i will increment the value of i, but is using the incremented value to test against <

5. That’s why we get 4 numbers.

 The do while loop: The “do while loop” is almost the same as the while loop. But the

only difference is that it is an exit controlled loop, and therefore the body of the loop is

always executed atleast once. The “do while loop” has the following form:

 Syntax:

 do
 {
 Body of the loop
 }
 while (test-condition);

 Do something fi rst and then test if we have to continue. The result is that the loop

always runs once. (Because the expression test comes afterward). Take a look at an

example:

 Example:

 #include<stdio.h>
 int main()
 {
 int counter, howmuch;

Solved Question Paper 2 SQP.27

 scanf(“%d”, &howmuch);
 counter = 0;
 do
 {
 counter++;
 printf(“%d\n”, counter);
 }
 while (counter < howmuch);
 return 0;
 }

NOTE: There is a semi-colon behind the while line.

3.(a) String Handling functions:
 Following are some of the useful string handling functions supported by C.

 • strlen()

 • strcpy()

 • strncpy()

 • strcat()

 • strncat()

 • strcmp()

 • strncmp()

 • strcmpi()

 • strncmpi()

 These functions are defi ned in string.h header fi le. Hence you need to include this

header fi le whenever you use these string handling functions in your program.All

these functions take either character pointer or character arrays as arguments.

 • strlen()

 strlen() function returns the length of the string. strlen() function returns integer

value.

 Example:

 char *str = “Learn C”;
 int strLength;
 strLength = strlen(str); //strLength contains the length of the string i.e. 14

 • strcpy()

 strcpy() function is used to copy one string to another. The Destination_String should

be a variable and Source_String can either be a string constant or a variable.

 Syntax:

 strcpy(Destination_String,Source_String);
 Example:

 char *Destination_String;
 char *Source_String = “Learn C “;
 strcpy(Destination_String,Source_String);
 printf(“%s”, Destination_String);

Computer ProgrammingSQP.28

 Output:

 Learn C

 • strncpy()

 strncpy() is used to copy only the left most n characters from source to destination.

 Syntax:

 strncpy(Destination_String, Source_String,no_of_characters);

 • strcat()

 strcat() is used to concatenate two strings.

 Syntax:

 strcat(Destination_String, Source_String);
 Example:

 char *Destination_String =”Learn “;
 char *Source_String = “C “;
 strcat(Destination_String, Source_String);
 puts(Destination_String);

 Output:

 Learn C

 • strncat()

 strncat() is used to concatenate only the leftmost n characters from source with the

destination string.

 Syntax:

 strncat(Destination_String, Source_String,no_of_characters);
 Example:

 char *Destination_String=”How to”;
 char *Source_String = “Learn C easily”;
 strncat(Destination_String, Source_String, 7);
 puts(Destination_String);

 Output:

 How to Learn C

 • strcmp()

 strcmp() function is use two compare two strings. strcmp() function does a case sensitive

comparison between two strings. The Destination_String and Source_String can either

be a string constant or a variable.

 Syntax:

 int strcmp(string1, string2);

 This function returns integer value after comparison. Value returned is 0 if two strings

are equal. If the fi rst string is alphabetically greater than the second string then, it

returns a positive value. If the fi rst string is alphabetically less than the second string

then, it returns a negative value.

 Example:

 char *string1 = “Learn C”;
 char *string2 = “Learn C”;

Solved Question Paper 2 SQP.29

 int ret;
 ret=strcmp(string1, string2);
 printf(“%d”,ret);

 Output:

 0

 • strncmp()

 strncmp() is used to compare only left most ‘n’ characters from the strings.

 Syntax:

 int strncmp(string1, string2,no_of_chars);
 This function returns integer value after comparison.

 Value returned is 0 if left most ‘n’ characters of two strings are equal.

 If the left most ‘n’ characters of fi rst string is alphabetically greater than the left most

‘n’ characters of second string then, it returns a positive value.

 If the left most ‘n’ characters of fi rst string is alphabetically less than the left most ‘n’

characters of second string then, it returns a negative value

 Example:

 char *string1 = “Learn C”;
 char *string2 = “Learn C programming”;
 int ret;
 ret=strncmp(string1, string2,7);
 printf(“%d”,ret);

 Output:

 0

 • strcmpi()

 strcmpi() function is use two compare two strings. strcmp() function does a case

insensitive comparison between two strings. The Destination_String and Source_

String can either be a string constant or a variable.

 Syntax:

 int strcmpi(string1, string2);
 This function returns integer value after comparison.

 Example:

 char *string1 = “Learn C “;
 char *string2 = “LEARN C “;
 int ret;
 ret=strcmpi(string1, string2);
 printf(“%d”,ret);

 Output:

 0

 • strncmpi()

 strncmpi() is used to compare only left most ‘n’ characters from the strings. strncmpi()

function does a case insensitive comparison.

 Syntax:

 int strncmpi(string1, string2,no_of_chars);

Computer ProgrammingSQP.30

 This function returns integer value after comparison.

 Example:

 char *string1 = “Learn C easily”;
 char *string2 = “LEARN C”;
 int ret;
 ret=strncmpi(string1, string2,7);
 printf(“%d”,ret);

 Output:

 0

3(b)(i) A program to read a string and rewrite in alphabetical order:

 #include<stdio.h>
 main()
 {
 char str[100],temp;
 int i,j;
 clrscr();
 printf(“Enter the string :”);
 gets(str);
 printf(“%s in ascending order is -> “,str);
 for(i=0;str[i];i++)
 {
 for(j=i+1;str[j];j++)
 {
 if(str[j]<str[i])
 {
 temp=str[j];
 str[j]=str[i];
 str[i]=temp;
 }
 }
 }
 printf(“%s\n”,str);
 getch();
 }

3(b)(ii) Arrays:
 An array in C Programming Language can be defi ned as number of memory locations,

each of which can store the same data type and which can be referenced through the

same variable name.

 An array is a collective name given to a group of similar quantities. These similar

quantities could be percentage marks of 100 students, number of chairs in home, or

Solved Question Paper 2 SQP.31

salaries of 300 employees or ages of 25 students. Thus an array is a collection of similar

elements. These similar elements could be all integers or all fl oats or all characters

etc. Usually, the array of characters is called a “string”, where as an array of integers

or fl oats are called simply an array. All elements of any given array must be of the

same type i.e we can’t have an array of 10 numbers, of which 5 are integers and 5 are

fl oats.

 Declaration of an Array: Arrays must be declared before they can be used in the

program. Standard array declaration is as

 type variable_name[lengthofarray];

 Here type specifi es the data type of the element which is going to be stored in the array.

In C programming language we can declare the array of any basic standard type which

C language supports. For example

 double height[10];
 fl oat width[20];
 int min[9];
 char name[20];

 In C Language, arrays starts at position 0. The elements of the array occupy adjacent

locations in memory. C Language treats the name of the array as if it were a pointer to

the fi rst element This is important in understanding how to do arithmetic operations

with arrays. Any item in the array can be accessed through its index, and it can be

accessed anywhere from within the program. So

 m=height[0];

 variable m will have the value of fi rst item of array height.

 The program below will declare an array of fi ve integers and print all the elements of

the array.

 int myArray [5] = {1,2,3,4,5};
 /* To print all the elements of the array
 for (int i=0;i<5;i++){
 printf(“%d”, myArray[i]);
 }

 Initializing Arrays: Initializing of array is very simple in c programming. The initializing

values are enclosed within the curly braces in the declaration and placed following an

equal sign after the array name. Here is an example which declares and initializes an

array of fi ve elements of type int. Array can also be initialized after declaration. Look

at the following C code which demonstrate the declaration and initialization of an

array.

 int myArray[5] = {1, 2, 3, 4, 5}; //declare and initialize the array in one statement
 int studentAge[4];
 studentAge[0]=14;
 studentAge[1]=13;

Computer ProgrammingSQP.32

 studentAge[2]=15;
 studentAge[3]=16;

4(a) Pass by Value:
 Pass by value is a term describing function call semantics. To pass by value means that

the argument (a variable, constant or other expression) is evaluated and a copy of its

value is then passed to the function.

 Whenever the function accesses the parameter it receives, it does so without reference

to the original argument which cannot be overwritten; nor can a volatile argument

change the value of the parameter once the function is entered.

 Example:

 #include <stdio.h>
 void val(int x);
 main()
 {
 int i = 5;
 printf(“In main(): %d\n”, i);
 val(i);
 printf(“In main(): %d\n”, i);
 return 0;
 }
 void val(int x)
 {
 printf(“In val(): %d\n”, x);
 x = 10;
 printf(“In val(): %d\n”, x);
 }

 Output:

 In main(): 5
 In val(): 5
 In val(): 10
 In main(): 5

 Pass by reference:
 Pass by reference is a term that describes a part of the semantics of function parameters.

To pass by reference means that within the function, the formal parameter is or acts as

an alias (reference) for the function argument - so pass by reference is only meaningful

when the function’s argument is a variable.

 Within the function, accesses of the formal parameter, either for reading or for writing,

directly access the same variable that the caller of the function passed in as its

argument.

 C does not directly support pass by reference because it always uses pass by value, but

a programmer can implement pass by reference by passing a pointer to the variable

that the programmer wants passed by reference.

Solved Question Paper 2 SQP.33

 Example:

 #include <stdio.h>
 void ref(int *x);
 int main(void) {
 int i = 5;
 printf(“In main(): %d\n”, i);
 ref(&i);
 printf(“In main(): %d\n”, i);
 return 0;
 }
 void ref(int *x)
 {
 printf(“In ref(): %d\n”, *x);
 *x = 10;
 printf(“In foo(): %d\n”, *x);
 }

 Ouput:

 In main(): 5
 In ref(): 5
 In ref(): 10
 In main(): 10

4.(b)(i) Recursive Function:
 A function that calls itself is known as recursive function and the process of calling

function itself is known as recursion in C programming.

 Example program:
 Below is a program to fi nd sum of fi rst n natural numbers using recursion. Here,Positive

integers are known as natural number i.e. 1, 2, 3....n

 #include <stdio.h>
 int sum(int n);
 int main()
 {
 int number,add;
 printf(“Enter a positive integer:\n”);
 scanf(“%d”,&number);
 add=sum(number);
 printf(“sum=%d”,add);
 }
 int sum(int n)
 {
 if(n==0)
 return n;
 else
 return n+sum(n-1); /*self call to function sum() */
 }

Computer ProgrammingSQP.34

 Output:

 Enter a positive integer:
 3
 6

 Advantages and Disadvantages of Recursion:
 • Recursion can be used to replace complex nesting code by dividing the problem into

same problem of its sub-type.

 • The disadvantage is that, it is hard to think the logic of a recursive function. It is

also diffi cult to debug the code containing recursion.

 (ii) A program to access elements in an array using pointers:

 #include<stdio.h>
 #include<conio.h>
 void main()
 {
 int a[10];
 int i,sum=0;
 int *ptr;
 printf(“Enter 10 elements:n”);
 for(i=0;i<10;i++)
 scanf(“%d”,&a[i]);
 ptr = a; /* a=&a[0] */
 for(i=0;i<10;i++)
 {
 sum = sum + *ptr; //*p=content pointed by ‘ptr’
 ptr++;
 }
 printf(“The sum of array elements is %d”,sum);
 }

 Output:

 Enter 10 elements : 11 12 13 14 15 16 17 18 19 20
 The sum of array elements is 155

5(a)(i) Structure:
 A structure is a collection of variables under a single name. These variables can be

of different types, and each has a name which is used to select it from the structure.

A structure is a convenient way of grouping several pieces of related information

together.

 Defi ning a Structure
 A structure type is usually defi ned near to the start of a fi le using a typedef statement.

typedef defi nes and names a new type, allowing its use throughout the program.

typedefs usually occur just after the #defi ne and #include statements in a fi le.

Solved Question Paper 2 SQP.35

 Example of structure defi nition:

 typedef struct
 {
 char name[64];
 char course[128];
 int age;
 int year;
 } student;

 This defi nes a new type student variables of type student can be declared as follows.

 student st_rec;

 This is similar to declaring an int or fl oat. The variable name is st_rec, it has members

called name, course, age and year.

 Accessing Members of a Structure:
 Each member of a structure can be used just like a normal variable, but its name will

be a bit longer. To return to the examples above, member name of structure st_rec will

behave just like a normal array of char, however we refer to it by the name

 st_rec.name

 Here the dot is an operator which selects a member from a structure.

 Where we have a pointer to a structure we could dereference the pointer and then

use dot as a member selector. This method is a little clumsy to type. Since selecting a

member from a structure pointer happens frequently, it has its own operator -> which

acts as follows. Assume that st_ptr is a pointer to a structure of type student We would

refer to the name member as

 st_ptr -> name
 Example program: This program is used to store and access “id, name and percentage”

of one student. We can also store and access these data for many students.

 #include <stdio.h>
 #include <string.h>
 struct student
 {
 int id;
 char name[20];
 fl oat percentage;
 };
 int main()
 {
 struct student record;
 record.id=1;
 strcpy(record.name, “shyam”);
 record.percentage = 96.5;
 printf(“ Id is: %d \n”, record.id);
 printf(“ Name is: %s \n”, record.name);

Computer ProgrammingSQP.36

 printf(“ Percentage is: %f \n”, record.percentage);
 return 0;
 }

 Output:

 Id is: 1
 Name is: Shyam
 Percentage is: 96.500000

 (ii) Arrays of structure with an example:
 We use structures to describe the format of a number of related variables. For example,

in analyzing the marks obtained by the students in a class, we may use a template to

describe student name and marks obtained in various subjects and then declare all the

students as structure variables. In such cases we may declare an array of structures,

each element of an array representing a structure variable.

 For example, for an array named class, that consists of 100 elements, we create the

structure variable as follows.

 struct inventory
 {
 int part_no;
 fl oat cost;
 fl oat price;
 };
 struct inventory table[4];

 which defi nes an array with four elements, each of which is of type struct inventory, i.e.

each is an inventory structure.

 We can think of such a data structure as a tabular representation of our data base

of parts inventory with each row representing a part, and each column representing

information about that part, i.e. the part_no, cost, and price, as shown in Figure

part_no cost price

table[0]--> 123 10.00 15.00

table[1]--> . . .

table[2]--> . . .

table[3]--> . . .

 Example program:

 #include <stdio.h>
 struct marks
 {
 int sub1;
 int sub2;

Solved Question Paper 2 SQP.37

 int sub3;
 int total;
 };
 main()
 {
 int i;
 struct marks student[3] = { {56, 45, 65}, {59, 55, 75},{45, 65, 75}};
 struct marks total;
 for (i = 0; i <= 2; i++)
 {
 student[i].total = student[i].sub1 + student[i].sub2 + student[i].sub3;
 total.sub1 = total.sub1 + student[i].sub1;
 total.sub2 = total.sub2 + student[i].sub2;
 total.sub3 = total.sub3 + student[i].sub3;
 total.total = total.total + student[i].total;
 }
 printf(“\nSTUDENT TOTAL\n\n”);
 for (i = 0; i <= 2; i++)
 printf(“\nStudent[%d] %d”, i + 1, student[i].total);
 printf(“\nSUBJECT TOTAL\n\n”);
 printf(“%s %d\n%s %d\n%s %d\n”,”Subject 1”, total.sub1,”Subject 2”, total.

sub2,”Subject 3”,total.sub3);
 printf(\nGrand Total = %d”,total.total);
 }

5(b)(i) A program to to read the Information about all the 50 players and print a team-wise

list containing names of players their batting average.

 #include<stdio.h>
 #include<conio.h>
 #include<string.h>

 struct cricket
 {
 char nm[20],team[20];
 int avg;
 };

 #defi ne total 5
 int main()
 {
 struct cricket player[total],temp;
 int i,j;
 clrscr();
 for(i=0;i<total;i++)

Computer ProgrammingSQP.38

 {
 printf(“For player %d\n”,i+1);
 printf(“Enter the name of player : “);
 ffl ush(stdin);
 gets(player[i].nm);
 printf(“Enter the team : “);
 ffl ush(stdin);
 gets(player[i].team);
 printf(“Enter the batting average : “);
 ffl ush(stdin);
 scanf(“%d”,&player[i].avg);
 }
 printf(“\nTeam Name Average\n”);
 printf(“ \n”);
 for(i=0;i<total;i++)
 {
 printf(“%-10s %-10s %7d\n”,player[i].team,player[i].nm,player[i].avg);
 }
 getch();
 return 0;
 }

 Output:

 For player 1
 Enter the name of player : Diz
 Enter the team : India
 Enter the batting average : 100
 For player 2
 Enter the name of player : Tiwari
 Enter the team : Pakistan
 Enter the batting average : 5
 For player 3
 Enter the name of player : Tendulkar
 Enter the team : India
 Enter the batting average : 45
 For player 4
 Enter the name of player : Dhoni
 Enter the team : India
 Enter the batting average : 48
 For player 5
 Enter the name of player : Yuvi
 Enter the team : India
 Enter the batting average : 39

Solved Question Paper 2 SQP.39

 Team Name Average
 ————————————————————————————
 India Diz 100
 Pakistan Tiwari 5
 India Tendulkar 45
 India Dhoni 48
 India Yuvi 39

 (ii) Storage Class
 A storage class defi nes the scope (visibility) and life time of variables and/or functions

within a C Program.

 There are following storage classes which can be used in a C Program

 • Auto

 • register

 • static

 • extern

 • auto—auto is the default storage class for all local variables.

 {
 int Count;
 auto int Month;
 }

 The example above defi nes two variables with the same storage class. auto can only be

used within functions, i.e. local variables.

 • register—register is used to defi ne local variables that should be stored in a

register instead of RAM. This means that the variable has a maximum size equal to

the register size (usually one word) and cant have the unary ‘&’ operator applied to it

(as it does not have a memory location).

 {
 register int Miles;
 }

 Register should only be used for variables that require quick access - such as counters.

It should also be noted that defi ning ‘register’ goes not mean that the variable will be

stored in a register. It means that it MIGHT be stored in a register - depending on

hardware and implementation restrictions.

 • static—static is the default storage class for global variables. The two variables

below (count and road) both have a static storage class.

 static int Count;
 int Road;
 {
 printf(“%d\n”, Road);
 }

Computer ProgrammingSQP.40

 static variables can be ‘seen’ within all functions in this source fi le. At link time, the

static variables defi ned here will not be seen by the object modules that are brought

in.

 • extern—extern is used to give a reference of a global variable that is visible to ALL

the program fi les. When you use ‘extern’ the variable cannot be initialized as all it does

is point the variable name at a storage location that has been previously defi ned.

 When you have multiple fi les and you defi ne a global variable or function which will

be used in other fi les also, then extern will be used in another fi le to give reference of

defi ned variable or function. Just for understanding extern is used to decalre a global

variable or function in another fi les.

 File 1: one.c

 int count=5;
 main()
 {
 write_extern();
 }
 File 2: two.c

 void write_extern(void);
 extern int count;
 void write_extern(void)
 {
 printf(“count is %i\n”, count);
 }

 Here extern keyword is being used to declare count in another fi le.

	Title
	Contents
	Unit 1: INTRODUCTION
	1 Introduction to Computers
	2 Problem Solving and Office Automation
	3 Solved Examples—Number Systems and Computer Codes
	4 Problem-Solving Examples
	5 Solved Programming Exercises

	Unit 2: PROGRAMMING BASICS
	6 Overview of C
	7 Constants, Variables, and Data Types
	8 Operators and Expressions
	9 Managing Input and Output Operations
	10 Decision Making and Bracnching
	11 Decision Making and Looping

	Unit 3: ARRAYS AND STRINGS
	12 Arrays
	13 Character Arrays and Strings

	Unit 4: Functions and Pointers
	14 User-Defined Functions
	15 Pointers

	Unit 5: Structures and Unions
	16 Structures and Unions
	17 The Preprocessors

	Appendix
	MODEL QUESTION PAPER
	SOLVED QUESTION PAPERS

